A computational framework for modeling complex sensor network data using graph signal processing and graph neural networks in structural health monitoring

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://doi.org/10.48693/254
Open Access logo originally created by the Public Library of Science (PLoS)
Langanzeige der Metadaten
DC ElementWertSprache
dc.creatorBloemheuvel, Stefan-
dc.creatorvan den Hoogen, Jurgen-
dc.creatorMartin, Atzmüller-
dc.date.accessioned2023-02-17T12:27:42Z-
dc.date.available2023-02-17T12:27:42Z-
dc.date.issued2021-12-23-
dc.identifier.citationBloemheuvel, S., van den Hoogen, J. & Atzmueller, M.: A computational framework for modeling complex sensor network data using graph signal processing and graph neural networks in structural health monitoring. Appl Netw Sci 6, 97 (2021).ger
dc.identifier.urihttps://doi.org/10.48693/254-
dc.identifier.urihttps://osnadocs.ub.uni-osnabrueck.de/handle/ds-202302178297-
dc.description.abstractComplex networks lend themselves for the modeling of multidimensional data, such as relational and/or temporal data. In particular, when such complex data and their inherent relationships need to be formalized, complex network modeling and its resulting graph representations enable a wide range of powerful options. In this paper, we target this—connected to specific machine learning approaches on graphs for Structural Health Monitoring (SHM) from an analysis and predictive (maintenance) perspective. Specifically, we present a framework based on Complex Network Modeling, integrating Graph Signal Processing (GSP) and Graph Neural Network (GNN) approaches. We demonstrate this framework in our targeted application domain of SHM. In particular, we focus on a prominent real-world SHM use case, i. e., modeling and analyzing sensor data (strain, vibration) of a large bridge in the Netherlands. In our experiments, we show that GSP enables the identification of the most important sensors, for which we investigate a set of search and optimization approaches. Furthermore, GSP enables the detection of specific graph signal patterns (i. e., mode shapes), capturing physical functional properties of the sensors in the applied complex network. In addition, we show the efficacy of applying GNNs for strain prediction utilizing this kind of sensor data.eng
dc.relationhttps://doi.org/10.1007/s41109-021-00438-8ger
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectComplex networkseng
dc.subjectGraph signal processingeng
dc.subjectSensor dataeng
dc.subjectComplex networks for physical infrastructureseng
dc.subjectStructural health monitoringeng
dc.subjectGraph neural networkseng
dc.subjectMachine learning on graphseng
dc.subject.ddc004 - Informatikger
dc.titleA computational framework for modeling complex sensor network data using graph signal processing and graph neural networks in structural health monitoringeng
dc.typeEinzelbeitrag in einer wissenschaftlichen Zeitschrift [Article]ger
orcid.creatorhttps://orcid.org/0000-0002-2480-6901-
dc.identifier.doi10.1007/s41109-021-00438-8-
Enthalten in den Sammlungen:FB06 - Hochschulschriften
Open-Access-Publikationsfonds

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ApplNetSci_Bloemheuvel_etal_2021.pdfArticle3,35 MBAdobe PDF
ApplNetSci_Bloemheuvel_etal_2021.pdf
Miniaturbild
Öffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons