
Neural mechanisms of information
processing and transmission

Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften

eingereicht am Fachbereich Humanwissenschaften
der Universität Osnabrück

vorgelegt von
Johannes Leugering
Osnabrück, Januar 2021

Neural mechanisms of information
processing and transmission

Dissertation
for a doctoral degree in natural sciences

submitted to the School of Human Sciences
of Osnabrück University

by
Johannes Leugering
Osnabrück, January 2021

Contents

Abstract v

Preface vii

Acknowledgments xi

1 The computer and the brain 1
1.1 The origins of computational (neuro-)science and machine learning 2
1.2 From Perceptrons to Deep Neural Networks 4

1.3 The “Deep Learning Revolution” 5
1.4 The state of the field(s) today 6

2 Information processing in artificial neural networks 9
2.1 Terminology 9
2.2 Artificial neural networks are function approximators 10
2.3 A bird’s eye view of artificial neural networks 11
2.4 Where artificial and biological neural networks diverge 16

3 Neuromorphic computing — a bridge between engineering and neuroscience 23
3.1 The neuromorphic zoo 23
3.2 A signal processing view of neuron models 25
3.3 Closing the gap 28

4 Dendritic filters and delays 31
4.1 Terminology 32
4.2 Dendritic filtering improves information transmission 32
4.3 Dendritic filtering in the linear-nonlinear model 34
4.4 Dendritic filtering in the Gamma Neuron 36
4.5 Computing with synaptic delays 37
4.6 Dendritic filtering in the real world 41

5 Homeostatic plasticity 45
5.1 The Information Bottleneck Principle 46
5.2 Mutual information and maximum entropy 46
5.3 Optimal Transport and the Monge Problem 49
5.4 Intrinsic homeostatic plasticity 51
5.5 The complex interactions of synaptic and intrinsic plasticity 52
5.6 Applying the information bottleneck to neural assemblies 54
5.7 Plasticity is information processing 55

preface iii

6 Rate-coding with spiking neurons 59
6.1 Why do (only) biological neurons spike? 59
6.2 Encoding continuous signals into rate-coded spike-trains 60
6.3 Rate-coding neurons are linear-nonlinear neurons 64
6.4 How good is rate-coding for transmitting information? 64
6.5 Optimal rate-coding under metabolic constraints 66
6.6 Rate-coding spiking neural networks and machine learning 67

7 Spike-timing and event based computation 71
7.1 Spike-time coding 72
7.2 Event coding 74
7.3 Detecting events in spike-trains 74
7.4 Active dendritic sequence processing 76
7.5 Rate-, phase-, ISI-, or event-coding? 78

8 Conclusion 85

A Appendix for chapter 4 89
A.1 Equivalence between filtering and continuous delays 89
A.2 Transfer function of the Gamma neuron 90
A.3 The ring of Gamma filters 92

B Appendix for chapter 6 93
B.1 Rate-coding with (L)IF neurons 93
B.2 Rate-coding with linear-nonlinear-Poisson neurons 95
B.3 The entropy of LIF and LNP encoding 97
B.4 Spike-coding under metabolic constraints 97

C Index of included contributions 99

D Full-text sources of further contributions 105
A visit to the neuromorphic zoo 106
Neuromorphic Adaptive Filters for event detection, trained with a gradient free online learning rule 113
Event-based pattern detection in active dendrites 114
Neuromorpher Musterdetektor und neuromorphe Schaltkreisanordnung hiermit 131

Abstract

English

This (cumulative) dissertation is concerned with mechanisms and models of information
processing and transmission by individual neurons and small neural assemblies. In this
document, I first provide historical context for these ideas and highlight similarities and
differences to related concepts from machine learning and neuromorphic engineering. With
this background, I then discuss the four main themes of my work, namely dendritic filtering
and delays, homeostatic plasticity and adaptation, rate-coding with spiking neurons, and
spike-timing based alternatives to rate-coding. The content of this discussion is in large
part derived from several of my own publications, but it has been extended and revised
to provide a more accessible and broad explanation of the main ideas, as well as to show
their inherent connections. I conclude that fundamental differences remain between our
understanding of information processing and transmission in machine learning on the one
hand and theoretical neuroscience on the other, which should provide a strong incentive for
further interdisciplinary work on the domain boundaries between neuroscience, machine
learning and neuromorphic engineering.

Deutsch

Diese (kumulative) Dissertation behandelt Mechanismen und Modelle der Informationsver-
arbeitung und -übertragung durch einzelne Neuronen sowie kleine neuronale Assemblies.
In diesem Dokument stelle ich erst den historischen Kontext dieser Ideen dar, und zeige
Gemeinsamkeiten und Unterschiede zu verwandten Ansätzen beim maschinellen Lernen
und Neuromorphic Engineering auf. Vor diesem Hintergrund entwickele ich im Anschluss
die vier Kernthemen meiner Arbeit: dendritische Filterung und Delays, homeostatische Plas-
tizität und Adaption, Ratencodierung durch gepulste Neuronen, sowie spike-timing-basierte
Alternativen zur Ratencodierung. Der Inhalt dieser Darstellung basiert im Wesentlichen auf
mehreren eigenen Publikationen,er wurde allerdings weiterentwickelt und ergänzt um die
Kernideen einfacher zugänglich zu machen, umfassender zu erklären und ihre inhaltlichen
Verbindungen herauszustellen. Ich schließe die Diskussion mit der Schlussfolgerung ab,
dass nach wie vor fundamentale Unterschiede in unserem Verständnis von Informationsver-
arbeitung und -übertragung bei maschinellem Lernen auf der einen, und theoretischen
Neurowissenschaften auf der anderen Seite bestehen, die einen starken Anreiz für weitere
interdisziplinäre Arbeiten im Grenzbereich zwischen Neurowissenschaften, maschinellem
Lernen und Neuromorphic Engineering bieten sollten.

Preface

What this thesis is about

In this dissertation, I talk about several aspects of neural information processing that I
believe to be very important for biological systems, but which are often overlooked or
under-appreciated in models of (artificial) neurons. The topics of this thesis are therefore
situated between the fields of theoretical neuroscience, machine learning and neuromorphic
hardware. In order to explain the similarities and differences between these fields, the first
two chapters offer a brief historical perspective of how they came to be (chapter 1), and
how each of them understands and uses (artificial) neurons and networks today (chapter 2).
Chapter 3 gives a brief tour of the field of neuromorphic hardware — my application domain
for concepts from theoretical neuroscience. In each of the subsequent chapters, I then address
one important aspect of neural computation, i.e. computing with dendritic filters and delays
in chapter 4, improving computation with homeostatic plasticity in chapter 5, rate-coding
with spiking neurons in chapter 6, and finally spike-timing and event-based computation in
chapter 7.

What this thesis is not about

It is impossible for me to give a full account of all the topics related to neural information
processing in one thesis, and even for the topics that I want to discuss, there is a large host
of prior work that is better summarized elsewhere. For those who are interested in a deeper
discussion of these topics as well as the historical context, I can highly recommend the books
by Rosenblatt [1], Ashby [2], Maass and Bishop [3], Turing and Copeland [4], Eliasmith and
Anderson [5], Laughlin [6], and Stone [7].

During my time in the Neuroinformatics lab, I also worked on other topics in machine
learning and statistical modeling that I have decided to not incorporate into this thesis, since
they are thematically disconnected. These include:

• Joint work with Olivera Stojanovic and the Robert-Koch-Institute on a Bayesian spatio-
temporal model of the spread of infectious diseases [8].

• Joint workwith Kristoffer Appel, among others, on the creation of the TRAUMSCHREIBER,
a low-power mobile EOG/ECG/EMG/EEG device for polysomnography [9], as well as a
software-stack to go with it and a block-course on wearable electronics.

viii preface

• Joint work with Pascal Nieters, the German Meteorological Service and others on a model
to predict precipitation using deep learning [10].

• The contents of a lecture series on Ensemble methods for machine learning, developed and
held with Olivera Stojanovic in the summer term of 2017.

• The supervision of 16 Bachelor’s and 7 Master’s theses and several student projects on
various topics.

What are the main scientific contributions within this thesis?

Most of the chapters in this thesis summarize ideas that are explored in depth in some corre-
sponding publication(s). These contributions are the following three journal papers¹, two 1 The first two are published in peer-

reviewed journals, the third has only
been published as a pre-print and sub-
mitted for review.

peer-reviewed conference papers, one book chapter, one patent², one non-peer-reviewed arti-

2 The patent has been filed and is cur-
rently pending.

cle and one conference poster, each of which is introduced in more detail in the corresponding
chapter(s):

1. P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic computation in multi-delay coupled
models,” IBM Journal of Research and Development, vol. 61, no. 2/3, 8:7–8:9, 1, 2017, issn:
0018-8646, 0018-8646. doi: 10.1147/JRD.2017.2664698.

2. J. Leugering and G. Pipa, “A Unifying Framework of Synaptic and Intrinsic Plasticity
in Neural Populations,” Neural Computation, vol. 30, no. 4, pp. 945–986, 17, 2018, issn:
0899-7667. doi: 10.1162/neco_a_01057.

3. J. Leugering, P. Nieters, and G. Pipa, “Event-based pattern detection in active dendrites,”
bioRxiv, 17, 2020. doi: 10.1101/690792v3.

4. F. Meyer zu Driehausen, R. Busche, J. Leugering, and G. Pipa, “Bistable Perception in
Conceptor Networks,” in Artificial Neural Networks and Machine Learning – ICANN 2019:
Workshop and Special Sessions, 2019, isbn: 978-3-030-30493-5. doi: 10.1007/978-3-03
0-30493-5_3.

5. J. Leugering, “Making spiking neurons more succinct with multi-compartment models,”
in Proceedings of the Neuro-Inspired Computational Elements Workshop, 17, 2020, isbn:
978-1-4503-7718-8. doi: 10.1145/3381755.3381763.

6. J. Leugering, P. Nieters, and G. Pipa, “Computational Elements of Circuits,” in The
Neocortex, W. Singer, T. J. Sejnowski, and P. Rakic, eds., red. by J. Lupp, vol. 27, The MIT
Press, 2019, pp. 195–209, isbn: 978-0-262-04324-3. doi: 10.7551/mitpress/12593.0
03.0016.

7. J. Leugering, P. Nieters, and G. Pipa, “Neuromorpher Musterdetektor und neuromorphe
Schaltkreisanordnung hiermit,” patent application DE 10 2019 134 044 A1.

8. J. Leugering, “A visit to the neuromorphic zoo,” in Embedded World Conference 2020 –
Proceedings, 2020, isbn: 978-3-645-50186-6.

9. P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic Adaptive Filters for event detection,
trained with a gradient free online learning rule,” presented at the Machine Learning
Summer School (MLSS-Africa 2019), 1, 2019.

http://dx.doi.org/10.1147/JRD.2017.2664698
http://dx.doi.org/10.1162/neco_a_01057
http://dx.doi.org/10.1101/690792v3
http://dx.doi.org/10.1007/978-3-030-30493-5_3
http://dx.doi.org/10.1007/978-3-030-30493-5_3
http://dx.doi.org/10.1145/3381755.3381763
http://dx.doi.org/10.7551/mitpress/12593.003.0016
http://dx.doi.org/10.7551/mitpress/12593.003.0016

preface ix

But some content is also new, or at least not covered by my own publications. In particular,
chapters 4 and 6 contain work that motivated me to pursue the ideas of chapter 7, but
ultimately did not directly appear in any of my publications yet. I have therefore decided to
include some of this additional content in appendices A and B, respectively, in the hope that
it will help to keep the rest of the text concise.

The main body of this thesis is intended to provide a more accessible summary of these
publications, to highlight the links between various topics, and to embed them into the
bigger picture that has motivated my work. Since I have compiled this thesis over a long
time-span, some of my views have also evolved, and I chose to introduce some of these older
ideas in a new, hopefully clearer way. In some places, this has revealed some new interesting
connections that were not explored in the original work.

Who should read this thesis?

Naturally, I hope the PhD committee will like this text, but I’m writing this with a different
audience in mind, as well. Over the last few years, I have recognized more and more under-
appreciated similarities between theoretical neuroscience on the one hand, and engineering
fields like electronics, signal processing and communication systems on the other — both in
terms of what questions are asked (“How much information can be transmitted over this
kind of channel? Is a pulse-based code effective? How can I realize this computation with
these components?”), and in terms of the tools and models used to answer these questions
(information theory, signal processing, dynamical systems, control theory, etc.). Similarly, I
think that a lot of the early results of cybernetics and connectionism are often overlooked
today; but reading papers and books by Minsky and Papert, Ashby, Turing, von Neumann,
Rosenblatt and others shows how many of the seemingly revolutionary ideas of the last
few years are already implied there! In particular at the fringes where these different fields
meet, namely neuromorphic hardware, the close connection and shared history between
theoretical neuroscience, computer science, machine learning and engineering becomes
obvious. It is therefore not a coincidence that some of the most inspiring books I have read
during my time as a PhD student are actually rooted in engineering disciplines. I have tried
to follow their example, giving this text a bit of an engineering flavor.

Hopefully, the high-level descriptions given here make these results more accessible than
the original publications (which were rather specifically written for other neuroscientists)
and thus also prove useful for scientists and engineers from different fields, e.g. neuromorphic
hardware designers or machine learning researchers, who are interested in abstract models
of neural information processing mechanisms.

Johannes Leugering
Nürnberg,
2020

Ancillary material is available in this code repository:
https://github.com/jleugeri/phd

https://github.com/jleugeri/phd

Acknowledgments

During my time in the Prof. Pipa’s Neuroinformatics group I was given an unusual amount
of freedom to work on diverse topics that really interested me, most of which did not
find a way into this thesis. But these apparently “unproductive” activities, too, played an
important role for me, because they offered new perspectives and insights that came in
handy in completely unforeseen circumstances. Today, I probably wouldn’t be working on
neuromorphic hardware, were it not for all the hours I had to invest into the design of the
TRAUMSCHREIBER! This transition would not have been possible in an environment that
singularly values publication metrics rather than curiosity.

I am therefore grateful to our dean of studies at the time, Prof. Achim Stephan, for fostering
such a liberating studying environment, to my colleagues and forebears for creating a pleasant
and inspiring working environment, to Anna Rushing-Jungeilges for ironing out any and all
tensions, and to my supervisor Prof. Gordon “Entropy” Pipa for caring more about content
than form and leaving me the freedom to find my own way. Last but not least, I’m thankful
to my family and my girlfriend Olivera for being at my side through the ups and downs
during these years!

It was the best of times, it was the worst of times,
it was the age of wisdom, it was the age of foolishness,
it was the epoch of belief, it was the epoch of incredulity,
it was the season of Light, it was the season of Darkness

— A Tale of Two Cities by Charles Dickens

The issues that give rise to excitement today seem much the same as those that were
responsible for previous rounds of excitement. The issues that were then obscure remain
obscure today because no one yet knows how to tell which of the present discoveries are
fundamental and which are superficial.

— Perceptrons — Expanded Edition by Marvin Minsky and Seymour Papert

1 The computer and the brain

When photons hit the retina and cause a neuron to emit a spike, a physical effect becomes
information. How is this information represented and processed by the neural network that
constitutes the brain? How does it extract structure from its sensory inputs, and learn to
adapt to its environment?

These are fundamental questions that have kept generations of scientists and philosophers
busy. To answer them, we’ll need to thoroughly understand the basic mechanisms at play
in neural information processing. The objective of theoretical neuroscience is therefore to
identify these principles, from the level of individual neurons and synapses all the way up to
networks and brain areas, and to abstract them into theoretical (i.e. mathematical) models,
which can be understood without all the overwhelming complexity that has developed over
hundreds of millions of years of evolutionary history.

The sudden and rapid development of Deep Learning in the last couple of years might
have given many people the impression that we have now finally “cracked the code” of how
neural networks work, and that we are on the verge of solving the mystery of the brain and
(artificial) intelligence. While this is certainly an exciting perspective, it’s important not to
forget, that similar claims have been made multiple times before, and the celebration has
always turned out to be premature. For example, consider the following brutal assessment
by Marvin Minsky and Seymour Papert from the year 1988 and mentally substitute the older
term “Connectionism” with its modern counterpart “Deep Learning”:

[…] [L]ittle of significance had changed since 1969, when the book was first published[…]. One
reason why progress has been so slow in this field is that researchers unfamiliar with its history
have continued to make many of the same mistakes that others have made before them. Some
readers may be shocked to hear it said that little of significance has happened in this field. Have
not perceptron-like networks — under the new name connectionism — become a major subject
of discussion at gatherings of psychologists and computer scientists? Has not there been a
“connectionist revolution?” Certainly yes, in that there is a great deal of interest and discussion.
Possibly yes, in the sense that discoveries have been made that may, in time, turn out to be
of fundamental importance. But certainly no, in that there has been little clear-cut change in
the conceptual basis of the field. The issues that give rise to excitement today seem much the
same as those that were responsible for previous rounds of excitement. The issues that were
then obscure remain obscure today because no one yet knows how to tell which of the present
discoveries are fundamental and which are superficial. Our position remains what it was when
we wrote the book: We believe this realm of work to be immensely important and rich, but we
expect its growth to require a degree of critical analysis that its more romantic advocates have
always been reluctant to pursue — perhaps because the spirit of connectionism seems itself to
go somewhat against the grain of analytic rigor. [20]

2 chapter 1. the computer and the brain

So what has changed since then? Are we about to make the same mistakes again? To
get a better understanding of where we stand today, I’d like to start with a bit of historical
background of the field(s).

1.1 The origins of computational (neuro-)science and machine learning

The medical study of the central nervous system can be traced back for more than three
millennia [21], but the mechanism by which it operates has remained a mystery throughout
most of this history. It was only after a series of remarkable scientific discoveries in the
19th century, notably the observation of so-called “animal electricity” [22], advances in
microscopy and histology [23], the theory of evolution [24] and the popularization of cell
theory [25] that the neuron doctrine took root [26] and modern scientific theories of the
brain’s function began to emerge. In 1943, in the middle of World War II, Warren McCulloch
and Walter Pitts wrote a landmark paper A Logical Calculus of Ideas Immanent in Nervous
Activity [27], in which they first proposed that networks of interconnected nerve cells could
implement a powerful symbolic logic calculus. A sufficiently large network of neurons,
endowed with the necessary periphery and memory, could therefore satisfy the conditions of
a universal machine as outlined just seven years prior by Alan Turing [28]. They write [27]:

It is easily shown: first, that every net, if furnished with a tape, scanners connected to afferents,
and suitable efferents to perform the necessary motor-operations, can compute only such
numbers as can a Turing machine; second, that each of the latter numbers can be computed
by such a net; and that nets with circles can be computed by such a net; and that nets with
circles can compute, without scanners and a tape, some of the numbers the machine can, but
no others, and not all of them. This is of interest as affording a psychological justification of
the Turing definition of computability and its equivalents, Church’s A-definability and Kleene’s
primitive recursiveness: if any number can be computed by an organism, it is computable by
these definitions, and conversely.

This connection between the biological connectivity of neurons and an abstract, mathe-
matical notion of computation created a theoretical foundation for the field of computational
neuroscience. But the concept of computability did not merely provide a language for neu-
roscientists to describe the operation of the brain — it also made it conceivable to simulate
neural behavior, and therefore intelligent behavior, on any appropriate universal machine.
Turing became fascinated by this idea and in 1948 wrote a visionary publication entitled
Intelligent Machinery [29] that today reads like a prescient outline for many subsequent
developments in machine learning.¹ 1 In it, he discussed, for example, not

just recurrently connected neural net-
works, but also proposed randomly
initialized networks, which are then
trained through reward and punish-
ment, as a reasonable analogy for
(some parts of) cortex — a view that
anticipated some recently resurfaced
ideas in the field of reservoir comput-
ing [30]. His B-Type networks further-
more bear some resemblance to gated
recurrent units (GRUs) [31] which
have been popularized recently by the
LSTM model [32].

In 1949, Donald Hebb provided the first mechanistically plausible theory of (unsupervised)
learning in neural networks, the now famous Hebbian learning rule, which in its most explicit
form stated that “[w]hen one cell repeatedly assists in firing another, the axon of the first cell
develops synaptic knobs (or enlarges them if they already exist) in contact with the soma of
the second cell.” [33] Thus the study of synaptic plasticity and learning in neural networks
was born. Ross Ashby extended this view of self-organization as an essential property of the
brain (and life in general), and ultimately proposed in his highly influential 1954 book Design
for a Brain [2] the “Homeostat”, a self-regulating machine, as an example of artificial life.

But since these algorithmic mechanisms could also be simulated by a Turing machine,
it now seemed conceivable to simulate intelligent behavior, and, even more interestingly,
learning. As Turing himself suggested in private correspondence to Ross Ashby, hisAutomatic
Computing Engine (ACE) could be used to that end:

1.1 . the origins of computational (neuro-)science and machine learning 3

It would be quite possible for the machine to try out variations of behavior and accept or reject
them in the manner you describe and I have been hoping to make the machine do this. […]
Thus, although the brain may in fact operate by changing its neuron circuits by the growth
of axons and dendrites, we could nevertheless make a model, within the ACE, in which this
possibility was allowed for, but in which the actual construction of the ACE did not alter, but
only the remembered data, describing the mode of behavior applicable at any time. I feel that
you would be well advised to take advantage of this principle, and do your experiments on the
ACE, instead of building a special machine. I should be very glad to help you over this. [4]

In his later publications and talks, Turing pursued the idea of intelligent and learning
machines (or rather software programs?) further, and in his 1950 essay Computing Machinery
and Intelligence [4] presented the Imitation Game, today known as the Turing Test, which was
meant to illustrate how sufficiently powerful computing machines could be considered to be
as intelligent (or more so) than their human counterpart. He was quite outspoken about this
conviction:

The original question, “Can machines think?” I believe to be too meaningless to deserve discus-
sion. Nevertheless, I believe that at the end of the century the use of words and general educated
opinion will have altered so much that one will be able to speak of machines thinking without
expecting to be contradicted. I believe further that no useful purpose is served by concealing
these beliefs.

These ideas set in motion the development of ever more powerful computer architectures,
which in turn enabled generations of increasingly complex artificial neural network models
and learning methods. This progress continues well into the present era of deep learning,
which owes part of its success to the highly parallelized computing architectures that have
emerged in recent decades. But it’s worth keeping inmind that this transition from serial “von-
Neumann” to parallel “non-von-Neumann” computer architectures is less of a revolutionary
new idea than it is a return to the roots of computer science and neuromorphic hardware. In
fact, John von Neumann himself had both studied models of biological systems and developed
artificial computers like the ENIAC [34], and therefore understood the respective strengths
and weaknesses of both approaches. But in a time when computers were still excessively
large, expensive and memory a limited resource, he concluded in his tragically incomplete
lecture notes The Computer and the Brain [35], from which I have stolen the title of this
chapter:

That is, large and efficient natural automata are likely to be highly parallel, while large and
efficient artificial automata will tend to be less so, and rather to be serial. […] More specifically,
not everything serial can be immediately paralleled — certain operations can only be performed
after certain others, and not simultaneously with them (i.e. they must use the results of the latter).
In such a case, the transition from a serial scheme to a parallel one may be impossible, or it may
be possible but only concurrently with a change in the logical approach and organization of the
procedure. Conversely, the desire to serialize a parallel procedure may impose new requirements
on the automaton. Specifically, it will almost always create new memory requirements, since
the results of the operations that are performed first must be stored while the operations that
come after these are performed. Hence, the logical approach and structure in natural automata
may be expected to differ widely from those in artificial automata.

Half a century later and with new materials and manufacturing processes at hand, neu-
romorphic hardware might finally be able to bridge this gap between natural and artificial
automata.

4 chapter 1. the computer and the brain

1.2 From Perceptrons to Deep Neural Networks

The theoretical study of artificial neural networks as (simulated) learningmachines continued,
first under the label of cybernetics, then connectionism, into the modern field of deep learning.
First, Frank Rosenblatt’s original Perceptron [1] demonstrated that even a simple feed-
forward network model, composed of one layer of (random) feature detectors followed by a
single McCulloch-Pitts neuron, could solve many perceptual problems. Minsky and Papert
[20] thoroughly analyzed the capabilities and limitations of this and similar kinds of network
with their corresponding learning rules mathematically, and provided sound arguments why
these networks were still impractical for many relevant problems. Despite the fact that they
explicitly limited this critique to perceptrons with a single trainable layer ², this may have 2 Their critique also went well beyond

the often mentioned inability of indi-
vidual threshold-linear functions to
solve the XOR problem, and included
questions of learning speed, complex-
ity of the required networks and even
the information content required for
specifying all coefficients. Despite sig-
nificant advances in the field, all of
these questions are still relevant to-
day.

had an adverse impact on the amount of research and funding dedicated to the study of
perceptrons at the time — a period that is sometimes referred to, a bit melodramatically, as
the first AI winter.

Over the course of a few years, multi-layer perceptrons [36] gradually became more
powerful and offered a first flavor of the abstract artificial neural networks (ANNs) still in
use today: a hierarchy of (affine) linear combinations of inputs followed by non-linear trans-
formations (in this case a step-function) with coefficients that could all be chosen or learned.
Kunihiko Fukushima’s Cognitron [37] made use of a deep hierarchy of neural network layers
to solve a complex computer-vision problem, and could therefore be considered one of the
first deep neural networks — although its weights were not optimized through end-to-end
supervised learning, but partly derived from expert models, partly trained through a compet-
itive form of unsupervized learning. A later extension, the neocognitron [38], even introduced
shift-invariant features and could be considered an early form of convolutional neural network
[39]. A series of proofs, e.g. in [40], finally extended the analysis of the computational power
of perceptrons by Minsky and Papert to multi-layered networks and showed that different
kinds of feed-forward neural networks are capable of uniformly approximating arbitrary
real-valued functions. These proofs of universal function approximation capabilities didn’t
require particularly deep neural networks — a single hidden layer suffices in principle, so
many practitioners questioned whether stacking many layers of neurons into deep neural
networks would serve any practical “computational” purpose at all. In a curious repetition
of history, Minsky and Papert reaffirmed their skepticism of neural networks in a practically
unchanged revision of their influential Perceptron book [20], and to similar effect. They
wrote:

The perceptron has shown itself worthy of study despite (and even because of!) its severe
limitations. It has many features to attract attention: its linearity; its intriguing learning theorem;
its clear paradigmatic simplicity as a kind of parallel computation. There is no reason to suppose
that any of these virtues carry over to the many-layered version. Nevertheless, we consider
it to be an important research problem to elucidate (or reject) our intuitive judgment that the
extension is sterile. Perhaps some powerful convergence theorem will be discovered, or some
profound reason for the failure to produce an interesting “learning theorem” for the multilayered
machine will be found.

And in some sense their words became a self-fulfilling prophecy, with many researchers
opting for the simpler to train and to use shallow network architectures (which had stiff
competition from more sophisticated machine learning methods). The following “second
AI winter” spelled the end of this connectionist era, even though the ‘interesting “learning
theorem” ’, as Minsky and Papert had asked for, already existed unbeknownst to many in
the form of the backpropagation algorithm, which was repeatedly re-discovered over the
preceding and the following decades [41].

1.3 . the “deep learning revolution” 5

In parallel to these studies of feed-forward networks, recurrent neural network (RNN)
models were developed, to endow networks with some form of memory and/or allow them
to process temporally varying information. Jeffrey Elman introduced context units, i.e. hidden
neurons that receive the network’s previous outputs as additional inputs, into an otherwise
feed-forward network, thus retaining previous activity in a form of “active” working memory
[42]. John Hopfield took inspiration from Ising models [43], which were being developed
in statistical physics to model the dynamics of the spins of electromagnetically coupled
atoms, and provided an alternative account of memory, where each “memory” is associated
with a stable fixed-point of a recurrently connected network’s dynamics. These two novel
perspectives on memory, a form of volatile memory realized by the networks momentary
state and a persistent memory encoded in the network’s connectivity, inextricably linked
the concepts of memory and computation. In Elman’s words:

In this account, memory is neither passive nor a separate subsystem. One cannot properly speak
of a memory for sequences; that memory is inextricably bound up with the rest of the processing
mechanism. [42]

1.3 The “Deep Learning Revolution”

After a phase of relative tranquility, (feed-forward) neural networks entered the spotlight for
a third time after several convolutional neural network architectures [44–46] won several
computer vision challenges, most famously the network nicknamed AlexNet by Krizhevsky,
Sutskever, and Hinton, which severely out-performed the competing machine learning
methods and thus proved the impressive capabilities of deep neural networks to a wider
audience. The real reason for the breakthrough success of deep learning has since been
debated intensely. But besides scientific reasons, which we shall look at in chapter 2, the
success of deep learning can be attributed at least in part to the availability of “big data”,
i.e. large, unstructured datasets, which are ideally suited as training material for (deep)
neural networks with their large number of parameters. Another factor is certainly the
rapid improvement of computer hardware, graphic cards and dedicated accelerators, and
a corresponding surge in optimized software tools for simulating large networks such as
TensorFlow [47] and PyTorch [48], which enabled many researchers to develop and test
countless variations of network architectures.

But the most compelling explanation, in my opinion, is neither better data, software or
hardware, nor better performance of deep networks per se. Instead, deep learning owes
much of its success to the surprising³ efficiency of the gradient-based optimization of neural 3 We will see in chapter 2 why this is

surprising.networks. This only works because deep neural networks, despite being complex nonlinear
models, can be easily differentiated with respect to all their parameters and optimized using
stochastic gradient descent, also called (error-)backpropagation in Deep Learning [39]. The
same optimization tools can also be applied to train recurrent networks in discrete time,
by a procedure called backpropagation through time [49]. If a task can be expressed by a
differentiable loss function, as it is often the case in machine learning problems, we can
therefore use variations of the greedy (stochastic) gradient descent algorithm to iteratively
reduce the loss. This offers a very simple interface towards applications, because it only
requires specifying the goal of a task in terms of a differentiable loss function and providing
some data — little domain knowledge required! So, deep learning really is all about learning,
albeit in the narrow context of optimization, rather than biology or psychology.

6 chapter 1. the computer and the brain

1.4 The state of the field(s) today

Of course, how neural networks “learn” has been a critical question not just in machine
learning, but also for theoretical/computational neuroscience. However, neuroscientific
models of learning naturally have to work within the confines set by biologically plausible
mechanisms, and are thus primarily concerned with questions about how unsupervised
(possibly modulated by other factors) local plasticity mechanisms might interact, what kind
of top-down error signals may be provided by the nervous system, or how they might be
propagated. Machine learning, on the other hand, does not have to play by the same rules,
and instead application-driven questions of reliability, speed, performance and efficient usage
of limited labelled training data take center stage there.

Today, half a century after the conception of the multi-layer perceptron, deep neural
networks are the dominant method throughout many application areas of machine learning,
where they have displaced other approaches such as kernel methods and decision trees from
the leaderboards of most competitions.

However, just as machine learning has advanced over the last decades, so has neuroscience,
and the early models, such as the logic calculus proposed by McCulloch and Pitts, from which
artificial neural networks were derived, no longer reflect our best current understanding of
biological neural networks. Since the first full, mechanistic, dynamic model of a biological
neuron by Hodgkin and Huxley [50], major technological and methodical improvements
in experimental neuroscience have revealed more and more about the complex biological
mechanisms at play, and our theoretical models of neurons and networks have changed
accordingly. Chapters 4 to 7 are about some of these developments.

To make a long story short, what once started as a single research question — how neurons
process information — has since split into three distinct areas of research: the study of how
abstract (deep) artificial neural networks can be used to implement intelligent or learning
machines, which today are major subfields of artificial intelligence and machine learning, the
study of how biological neurons process information, which we now refer to as computational
neuroscience, and the study of how similar artificial systems could be realized efficiently in
hardware, now called neuromorphic hardware.

1.4 . the state of the field(s) today 7

References for chapter 1:

1. F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in
the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958, issn: 1939-1471(ELECTRONIC),0033-
295X(PRINT). doi: 10.1037/h0042519 (cit. on pp. vii, 4, 14, 24).

2. W. R. Ashby, Design for a Brain: The Origin of Adaptive Behaviour (2nd Ed. Rev.). Chapman &
Hall, 1960. doi: 10.1037/11592-000 (cit. on pp. vii, 2, 45).

4. A.M. Turing and B. J. Copeland, The Essential Turing: Seminal Writings in Computing, Logic,
Philosophy, Artificial Intelligence, and Artificial Life, plus the Secrets of Enigma. Clarendon Press ;
Oxford University Press, 2004, isbn: 978-0-19-825079-1 978-0-19-825080-7 (cit. on pp. vii, 3, 31,
32).

20. M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, Expanded ed.
MIT Press, 1988, isbn: 978-0-262-63111-2 (cit. on pp. 1, 4, 11, 12, 26).

21. J. J. van Middendorp, G.M. Sanchez, and A. L. Burridge, “The Edwin Smith papyrus: A clinical
reappraisal of the oldest known document on spinal injuries,” European Spine Journal, vol. 19,
no. 11, pp. 1815–1823, 2010, issn: 0940-6719. doi: 10.1007/s00586-010-1523-6. pmid:
20697750 (cit. on p. 2).

22. M. Piccolino, “Animal electricity and the birth of electrophysiology: The legacy of Luigi Galvani,”
Brain Research Bulletin, vol. 46, no. 5, pp. 381–407, 1998, issn: 03619230. doi: 10.1016/S036
1-9230(98)00026-4 (cit. on p. 2).

23. C. GOLGI, “Sur la structure des cellules nerveuses,” Arch. Ital. Biol., vol. 30, pp. 60–71, 1898 (cit.
on p. 2).

24. C. Darwin, On the Origin of Species by Means of Natural Selection, or Preservation of Favoured
Races in the Struggle for Life. John Murray, 1859 (cit. on p. 2).

25. T. Schwann, Mikroskopische Untersuchungen Über Die Uebereinstimmung in Der Struktur Und
Dem Wachsthum Der Thiere Und Pflanzen, 1. Auflage. Sander, 1839 (cit. on p. 2).

26. C. Golgi, “The Neuron Doctrine: Theory and Facts,” in Physiology or Medicine, vol. 1 (1901-1921),
1906, isbn: 981-02-3409-0 (cit. on p. 2).

27. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1, 1943, issn: 0007-4985,
1522-9602. doi: 10.1007/BF02478259 (cit. on pp. 2, 10, 25).

28. “On computable numbers, with an application to the Entscheidungsproblem,” J. of Math, vol. 58,
no. 345-363, p. 5, 1936 (cit. on p. 2).

29. A.M. Turing, “Intelligent machinery,” 1948 (cit. on p. 2).

30. H. Jaeger, W. Maass, and J. Principe, “Special issue on echo state networks and liquid state
machines.,” 2007 (cit. on pp. 2, 14, 62).

31. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. “Empirical evaluation of gated recurrent neural
networks on sequence modeling.” arXiv: 1412.3555. (2014) (cit. on p. 2).

32. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8,
pp. 1735–1780, 1, 1997, issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735 (cit. on pp. 2,
10).

33. D. O. Hebb, The Organization of Behavior. A Neuropsychological Theory. John Wiley & Sons, 1949
(cit. on p. 2).

34. H. H. Goldstine and A. Goldstine, “The electronic numerical integrator and computer (eniac),”
Mathematical Tables and Other Aids to Computation, vol. 2, no. 15, pp. 97–110, 1946 (cit. on p. 3).

35. J. von Neumann, The Computer and the Brain. Yale University Press, 1958, isbn: 978-0-300-
08473-3 978-0-300-00793-0 978-0-300-02415-9 (cit. on pp. 3, 31).

36. A. Gamba, L. Gamberini, G. Palmieri, and R. Sanna, “Further experiments with PAPA,” Il Nuovo
Cimento (1955-1965), vol. 20, no. 2, pp. 112–115, 1961, issn: 1827-6121. doi: 10.1007/BF0282
2639 (cit. on p. 4).

http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/11592-000
http://dx.doi.org/10.1007/s00586-010-1523-6
20697750
http://dx.doi.org/10.1016/S0361-9230(98)00026-4
http://dx.doi.org/10.1016/S0361-9230(98)00026-4
http://dx.doi.org/10.1007/BF02478259
https://arxiv.org/abs/1412.3555
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/BF02822639
http://dx.doi.org/10.1007/BF02822639

8 chapter 1. the computer and the brain

37. K. Fukushima, “Cognitron: A self-organizing multilayered neural network,” Biological Cybernet-
ics, vol. 20, no. 3-4, pp. 121–136, 1, 1975, issn: 0340-1200, 1432-0770. doi: 10.1007/BF00342
633 (cit. on p. 4).

38. K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, no. 4, pp. 193–
202, 1980, issn: 0340-1200, 1432-0770. doi: 10.1007/BF00344251 (cit. on p. 4).

39. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press Cambridge, 2016, vol. 1
(cit. on pp. 4, 5, 9, 12, 85).

40. G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control,
Signals, and Systems, vol. 2, no. 4, pp. 303–314, 1989, issn: 0932-4194, 1435-568X. doi: 10.100
7/BF02551274 (cit. on pp. 4, 10).

41. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61,
pp. 85–117, 2015. doi: 10.1016/j.neunet.2014.09.003 (cit. on pp. 4, 9).

42. J. L. Elman, “Finding Structure in Time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, 1990, issn:
03640213. doi: 10.1207/s15516709cog1402_1 (cit. on pp. 5, 11).

43. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences, vol. 79, no. 8, pp. 2554–2558, 1, 1982,
issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.79.8.2554. pmid: 6953413 (cit. on pp. 5,
14).

44. K. Chellapilla, S. Puri, and P. Simard, “High Performance Convolutional Neural Networks for
Document Processing,” p. 7, (cit. on p. 5).

45. D. C. Ciresan, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber, “Flexible, High Perfor-
mance Convolutional Neural Networks for Image Classification,” p. 6, (cit. on p. 5).

46. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional
neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 24, 2017, issn: 0001-0782,
1557-7317. doi: 10.1145/3065386 (cit. on p. 5).

47. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V.
Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” presented at the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016, isbn: 978-1-931971-33-1 (cit. on pp. 5, 12).

48. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al., “Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, 2019 (cit. on p. 5).

49. P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Proceedings of the
IEEE, vol. 78, no. 10, pp. 1550–1560, 1990 (cit. on p. 5).

50. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its applica-
tion to conduction and excitation in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500–544,
28, 1952, issn: 0022-3751. pmid: 12991237 (cit. on pp. 6, 61).

http://dx.doi.org/10.1007/BF00342633
http://dx.doi.org/10.1007/BF00342633
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1073/pnas.79.8.2554
6953413
http://dx.doi.org/10.1145/3065386
12991237

Connectionists use learning rules in big networks of simple components — loosely
inspired by nerves in a brain. Connectionists take pride in not understanding how a
network solves a problem. [...] If you just have a single problem to solve, then fine, go
ahead and use a neural network. But if you want to do science and understand how
to choose architectures, or how to go to a new problem, you have to understand what
different architectures can and cannot do.

— Marvin Minsky

2 Information processing in artificial neural networks

When we talk about information processing by biological neurons and networks, the best
place to start is probably the highly simplified, biologically inspired model of artificial neural
networks. But as we already saw in chapter 1, the development of these models for machine
learning purposes has since become a science of its own, and has produced models that satisfy
the constraints of computer hardware very well, but differ from their biological inspiration
in substantial ways. These differences are what I want to explore throughout the rest of this
thesis.

2.1 Terminology

Throughout this thesis, I will rely on a lot of terminology and basic concepts from theoretical
neuroscience and machine learning. If you are already familiar with these, feel free to skip
ahead to section 2.2; otherwise the following section offers a brief and high-level summary.
For a more in-depth or rigorous definition, any current review or book concerned with
neural networks should do, e.g. Goodfellow, Bengio, and Courville [39], Schmidhuber [41],
and Strang [51]. In abstract terms, an artificial neural network (ANN) is a graph of nodes and
directed, weighted edges. The nodes represent neurons, the edges represent synaptic connections
between neurons. Each synapse connects its pre-synaptic neuron to its post-synaptic neuron.
In turn, the synapse is one of its pre-synaptic neuron’s outgoing, and one of its post-synaptic
neuron’s incoming connections. Each edge can be assigned a synaptic weight or efficacy,
which either represents the gain that the synapse applies to its signal or the probability with
which an individual spike (also called never impulse or action potential) is transmitted by the
synapse. These weights of a network can be collected in a so-called weight matrix, also called
the connectome of the network. In a machine learning context, neurons are typically grouped
into an ordered list of 𝑘 > 0 layers of neurons with typically no connections within each
layer.¹ For the most common kind in machine learning, feed-forward networks, the graph is

1 The corresponding graph is 𝑘-partite,
and the synaptic weights of such a
network form a block-matrix.

acyclic², meaning that its directed synapses define a partial ordering of the neurons from

2 The weight matrix of such a network
is (block) triangular without diagonal
entries.

the input all the way “forward” to output neurons (hence the name). If the graph describing
the network is cyclic, it is referred to as a recurrent network.³ Biological neural networks

3 Sometimes, a bit inconsistently, also
groups of neurons with mutual con-
nections that are embedded in an oth-
erwise feed-forward structure are re-
ferred to as recurrent layers of a feed-
forward network. The correspond-
ing synaptic weights would then
form a block-triangular matrix with
super-diagonal entries in the diagonal
blocks.

can also be stratified into layers, but here the definition is based on the neurons’ cell-bodies’
locations, rather than their connectivity, and hence cannot be used interchangeably.

Some neurons or layers (for feed-forward networks typically the first layer(s) in the
hierarchy) receive external input signals and are called the input neurons or layers, whereas
the neurons or layer(s) whose states are taken as the output of the network (for feed-forward

10 chapter 2. information processing in artificial neural networks

networks typically found higher up in the hierarchy) are called the output neurons or layer(s).
Neurons or layers that are neither input nor output are called hidden. Following a rather
vague heuristic, a network is typically called a deep neural network if it is composed of
particularly many layers and its weights are inferred from data — but exceptions to this
rule exist, e.g. the Long-Short-Term-Memory [32] architecture is commonly counted among
the deep neural network architectures despite it being a recurrent network. Conversely,
networks with only very few hidden layers are sometimes called shallow. Since the concept
of depth is not applicable at all in cyclic graphs, the distinction between deep, shallow and
other networks, is therefore blurry in practice and often determined by the historical context.

The graph structure defines the topology of the network, and together with a choice of
neuron and synapse models determines the network architecture. The precise behavior of the
network depends on the values of its parameters such as synaptic weights, gain or bias terms.

Artificial neural networks are often used to approximate functions that are only partially
specified by some training dataset of input-output pairs. The act of optimizing the network
parameters for this task is then referred to as training. Using a trained neural network to
map (previously unseen) inputs onto corresponding outputs is referred to as inference.

When simulating neural networks, time can be represented in different ways. For feed-
forward networks in a Machine Learning context, time is typically quantized into discrete
update steps, where the information is assumed to propagate through the entire network
from the input layer to the output layer within one time-step. For recurrent networks in
discrete time, one time-step resembles one simultaneous update to each neuron’s output,
and the time-varying outputs of the network are represented by real-valued sequences. In
a computational neuroscience context, especially for analog and spiking networks, time is
often represented continuously. The signals emitted by the neurons are then modeled as
real-valued functions, stochastic processes, or spike trains. While it is in principle possible to
mix these different kinds of signals within one network, most architectures assume signals
to be either all continuous, discrete, or spiking.

2.2 Artificial neural networks are function approximators

For machine learning applications, the utility of neural networks derives solely from their
remarkable ability to approximate highly non-linear functions. For example, if a neural
network is used to distinguish images of cats from images of dogs, it is implicitly assumed
that the network is in principle capable, once the correct parameters are chosen, to solve
the problem — at least to a sufficiently good degree of approximation. In other words, we
expect the network, a complex mathematical model with lots of parameters, to be able
to approximate some (unknown) function that maps from the space of photographs to the
discrete set {cat, dog}. This may seem trivial now, but proving that this holds for the kind of
networks we use today turned out to be a quite challenging task. It has long been known
that networks of simple McCulloch-Pitts neurons with a step-function as nonlinearity can
represent any boolean function [27], but showing that this concept can be generalized to
arbitrary continuous functions for neurons with other nonlinearities such as the rectified
linear or the hyperbolic tangent function is anything but trivial. Cybenko [40] finally provided
the very general proofs, that any continuous function on the n-dimensional unit cube or
any indicator function of a finite measurable subset on the n-dimensional unit cube can be
uniformly approximated by an expression of the form

𝑦(𝑥) = 𝑊 𝑜𝑢𝑡𝑓 (𝑊 𝑖𝑛𝑥 + 𝑏),

with parameters 𝑊 𝑜𝑢𝑡, 𝑊 𝑖𝑛 and 𝑏 if 𝑓 is continuous and discriminatory ⁴ (e.g. any sigmoid

4 A function is defined to be discrim-
inatory if its integral w.r.t. a non-
negative measure is zero only if the
measure is identically zero. The most
popular choice of activation function
in deep learning, the rectified lin-
ear activation functions of the form
𝑅𝑒𝐿𝑈 (𝑥) = max(𝑥, 0) for example is
not discriminatory, since it is constant
on the negative half-plain.

2.3 . a bird’s eye view of artificial neural networks 11

function would do). Hornik [52] showed that the same in fact holds true for any arbitrary
function that is continuous, bounded and non-constant. ⁵ A more recent insight about the 5 This proof still does not directly

cover the ReLU function, which is not
bounded, but since a linear combina-
tion of two ReLUs can be used to con-
struct a bounded function that satis-
fied the requirements, this indirectly
proves the same power for ReLU func-
tions as well [51].

approximation capabilities of deep neural networks comes from the study of splines: a
feed-forward network with rectified-linear activation functions — a very popular choice in
machine learning — provides a parameter-efficient way to construct a continuous, piece-wise
linear (CPWL) function or spline [53–55].

In simple terms this means, that both regression problems (i.e. approximating a continuous
function) and classification problems (i.e. approximating an indicator function over some
subset) can be solved arbitrarily well by a neural network with one or more hidden layers, if
there are enough neurons in the hidden layers.

The addition of recurrent connections allows these models to retain information for
extended periods of time in the network’s state, endowing the system with a form of memory.
This was observed by Elman [42], who argued that by including context units, which feed
back the system’s current output as an additional input, the network can “memorize” and
distinguish sequences of input. This idea has been generalized by Funahashi and Nakamura
[56], proving that in fact any continuous function of time 𝐹(𝑡), including of course the state of
an autonomous dynamical system, can be uniformly approximated arbitrary well on a (finite)
time-interval by some recurrent neural network with sufficiently many hidden neurons. The
argument was further extended by Chow and Li [57] to non-autonomous, i.e. input-driven,
systems under few generous additional conditions.

The function/system approximation paradigm therefore also covers recurrent artificial
neural networks. Similar arguments can be made for both feed-forward and recurrent spiking
neural networks (see chapter 6), which are universal computers as well, given sufficiently
many neurons [58].

To summarize the summary, these existence proofs show that feed-forward and recurrent
artificial neural networks, spiking or not, can in principle (i.e. if they are sufficiently large,
which depends on the task at hand) approximate both instantaneous functions of the input
and input-driven dynamical systems arbitrarily well. This makes artificial neural networks
extremely powerful tools for machine learning and, as we shall see, neuromorphic hardware.

2.3 A bird’s eye view of artificial neural networks

The existence proofs above only promise that neural networks are in principle capable of
approximating functions, but give no indications of how such networks can be constructed.
A large part of neural network research since the Connectionists’ era has therefore been
concerned with finding different architectures that are good at solving different tasks, as
well as smart, systematic ways to combine them. As Minsky and Papert [20] already wrote:

Different kinds of networks lend themselves best to different kinds of representations and to
different sorts of generalizations. […] This is why we maintain that the scientific future of
connectionism is tied not to the search for some single, universal scheme to solve all problems
at once but to the evolution of a many-faceted technology of “brain design” that encompasses
good technical theories about the analysis of learning procedures, of useful architectures, and of
organizational principles to use when assembling those components into larger systems.

Today, there are at least four major conceptual frameworks that provide tools for con-
structing useful, large neural networks. We’ll have a look at each of them in the following,
and see why neither of them is suitable for studying information processing on the lower
level of individual biological neurons that I am interested in.

12 chapter 2. information processing in artificial neural networks

2.3.1 Deep Learning

Currently, the most popular framework by far for constructing large artificial neural networks
is deep learning. As the name implies, it typically involves stacking many layers of neurons
into deep hierarchies, and training the entire network through gradient-based optimization
methods.

in
pu

t
hi
dd

en
ou

tp
ut ⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯

Figure 2.1. A feed-forward net-
work with input, hidden, and output
layer(s). Information flows only from
input towards output layers.

Despite its apparent success, this approach was (and still is) met with some skepticism:
Why would stacking more than one hidden layer have any qualitative benefit for the net-
work’s computational power, if the proofs above show that a single hidden layer is apparently
enough? Also, given their typically rather large number of parameters, the numerics of opti-
mizing these networks alone are a serious challenge that requires capable linear algebra tools
[47]. And more fundamentally, according to basic results from statistical learning theory
[59], these networks should either require an infeasibly large amount of training data and/or
strong regularization of the parameters, ⁶ or generalize poorly to new data. This is apparent 6 There are a lot of explicit and heuris-

tic options for regularization in deep
learning, such as Nesterov optimizers,
dropout, weight decay, data augmen-
tation and early stopping [39].

from the large amount of information content that the network weights store, as already
pointed out by Minsky and Papert [20]⁷. Another concern from the perspective of nonlinear

7 For example, the MegatronLM GPT2
model with its 345 million parameters
comes at a compressed size of about
650MB [60], its bigger cousin with 8.3
billion parameters [61] is correspond-
ingly larger.

optimization of such large models should be local minimal of the loss function — i.e. mediocre
solutions of the problem, which are difficult to improve for greedy gradient based methods
and would require more sophisticated optimization methods.

Nevertheless, the training of large deep neural networks with gradient methods appears
to stubbornly defy these intuitions, and has been surprisingly effective in practice. One
argument in favor of building such deeper hierarchies is, that this “compositionality” allows
for a much more efficient approximation of high-dimensional functions by comparatively
few neurons. For the example of networks with rectified-linear activation functions, which
correspond to piece-wise linear splines as we already saw above, the number of neurons
required to approximate a given function can in some cases be exponentially reduced as we
increase the number of layers in the network!⁸ Another argument is based on the surprising 8 To be precise: there are functions 𝑓

for every integer 𝑘 such that a deep
network with 𝑘3 neurons distributed
over 𝑘2 layers can approximate 𝑓 at
least as well as any shallower network
with ≤ 𝑘 layers and 1

2 𝑘
𝑘+1 −1 or more

neurons! [54].

observation that the higher number of parameters in deep neural networks appears to
make the optimization easier ! Even deep neural networks that have parameters in excess
of training data samples, make no explicit use of regularization, and perfectly interpolate
all the training data have been shown to generalize well to previously unseen data [62].
This point has been debated a lot, but the answer might come from two rather unexpected
directions: First, in the high dimensional parameter-space of neural networks, local minima
of the loss function are comparatively less common in relation to e.g. saddle points, which
pose much less of a problem for gradient methods [63]. Second, it appears that the commonly
used stochastic gradient descent algorithm itself has an implicit regularizing effect on the
learned coefficients, and leads the network coefficients towards a minimum norm solution
[62, 64, 65]. A different, albeit controversial, explanation of the same phenomenon can be
made in terms of the information bottleneck principle [66], which we’ll return to in a different
context in chapter 5. The lottery ticket hypothesis [67] goes one step further and suggests,
that much smaller sub-networks (the winning tickets) that perform equally well can typically
be extracted from deep neural networks by eliminating most of the synapses, neurons or
even layers. Sometimes, the learned weights of entire layers within a deep neural network
can be completely irrelevant for the task, as can be demonstrated by randomizing them with
only negligible impact on performance [68]. However, finding such a sparser or shallower
structure directly, e.g. by optimizing a smaller neural network to begin with, fails in practice.
This, the argument goes, is because the parameter-rich deep neural networks offer a large
search space, or a scaffold of sorts, in which the much smaller networks (which are sufficient
to solve the task) can be constructed efficiently using gradient based optimization methods.

2.3 . a bird’s eye view of artificial neural networks 13

Therefore, gradient descent and deep learning are so intimately coupled, that one of the
most prominent figures in the field, Yann LeCun, even advocated for altogether switching to
the more accurate name “differentiable programming” instead of “deep learning”, since the
optimization of neural networks by gradient-based methods is the defining feature, rather
than the depth of the networks, as the term “deep learning” would imply [69].

An increasingly important practical consideration of deep learning research today is also
the search of parameter efficient network architectures for different domains, i.e. by trying
to reduce the number of neurons or synapses [70, 71], efficiently reusing synaptic weights
[72] or even lowering the precision of weights [73, 74]. Over time, deep neural network
architectures have thus evolved, much like their biological counterparts, and in the process
incorporated a lot of domain-specific optimizations and inductive biases that make them
well suited to specific tasks, but also pose a risk as they are typically not well understood
(see also the note below).

Note: Nature or nurture in deep learning?

One important question in neuroscience is, how much of behavior is genetically
predetermined (i.e. by nature), and how much is learned (i.e. by nurture). A very
similar question could in fact be asked for deep learning! On first sight, it may seem
obvious that all network coefficients are learned from data, and the amount of domain
expertise explicitly build into the network is also minimal compared to early work by
Connectionists, hence learning should play the major part. However, this is not true
if we look at the discipline of deep learning as a whole: Deep neural networks are
typically evaluated and compared to each other by training and testing them on the
same benchmark tasks with the same datasets. Naturally, the more effective solutions
are more likely to be picked up and developed further. What is kept and modified from
one implementation to the next is typically not the weights (although pre-trained
networks exist), but the network architecture — i.e. the types and numbers of layers,
activation functions, etc. But, if we now evaluate the next generation of networks
on the same dataset(s), we have committed a cardinal sin of statistical modeling by
peeking at the test dataset (i.e. starting from an architecture, a meta-parameter of the
model, selected on the same test dataset) before training the model! We could avoid
this by testing each model on entirely new testing data, but even in that case merely
choosing the best-performing model as a starting-point effectively bakes domain
“knowledge” (or rather, information) into the network architecture. The result of this
dynamic, which happens not on the level of the individual researcher but across the
entire field, could be viewed as an evolutionary algorithm that produces ever more
powerful, complex and specialized network architectures for these benchmarks. This
is partially deliberate, since we want to find better and more useful models, partially
unwittingly, since we might underestimate how much of bias this can introduce. A
funny and slightly worrying example of this are the weight agnostic neural networks
by Gaier and Ha [75], which show that some network architectures are so specifically
designed for a certain task that they can solve it reasonably well even if all of their
coefficients are fully randomized — reducing the role of learning in deep learning ad
absurdum!

In a nutshell, the deep learning framework uses large, mostly feed-forward artificial
neural networks with weights optimized by gradient descent to approximate functions that
minimize some differentiable measure of “loss” or “cost”. Its surprising effectiveness is at least
in part due to the quantitative improvements that this optimization approach can offer, such

14 chapter 2. information processing in artificial neural networks

as the reduction of local minima and implicit regularization, but this can come at the expense
of over-complete networks, where many neurons or synapses may be entirely redundant.
The choice of network architectures plays an important part, as well, but is often based
on heuristics and incremental improvements of prior work. Despite interesting attempts
to address the issue [76, 77], this “black-box” character of deep neural networks remains a
contentious topic of debate [78] to date.

2.3.2 Attractor Networks

ou
tp
ut

hi
dd

en
in
pu

t

⋯

Figure 2.2. A recurrent network with
input, hidden, and output neurons. In-
formation is actively maintained in
the network by recurrent activity.

Attractor networks offer a completely different explanation of information processing by
artificial neural networks. As we have seen above, recurrent neural networks can, if large
enough, implement arbitrary dynamical systems. The computation realized by a neural
network could therefore also be attributed to the long-term dynamics of the network as
a whole, such as convergence of the network’s state to some fixed-point, rather than the
instantaneous output of a network in response to input. This insight underlies the model
proposed by Hopfield [43]. He studied the linearized dynamics of recurrently connected
neural networks and showed, that under certain constraints on the connectivity between
neurons (e.g. symmetric and bounded connection weights), the network state must —without
external input— converge to one of possibly many stable equilibria, depending on the
network’s initial state. Starting from a perturbed state that is similar but not identical to
one of these stable attractors brings the network activity towards the attractor, and thereby
“restores” the unperturbed stable state. By converging to a fixed-point, the network thus
retrieves and reconstructs a perfect “memory” from an incomplete or corrupted version
of that memory — a form of memory that he called content addressable memory. Rather
than a function, the network thus implements an iterative algorithm! Since each memory
is implemented by a fixed-point of the network dynamics, it imposes a constraint on the
weight matrix of the network, and the total number of memories that can be stored this ways
(and the robustness with which each memory can be recovered) depends on the size of the
network. While Hopfield networks themselves are barely used in machine learning, they
have been very influential in theoretical neuroscience. Similar ideas can be found today also
in reservoir computing approaches.

2.3.3 Reservoir Computing and Conceptors

re
ad

ou
t

hi
dd

en
in
pu

t

⋯

⋯

Figure 2.3. A reservoir computer with
input and hidden neurons and a linear
readout layer. Information is actively
maintained in the network by recur-
rent activity and accessed through the
readout layer.

Reservoir computing (also known as echo state networks or liquid state machines) [30] repre-
sents a more radical approach to using recurrent network dynamics. It uses the transient
dynamics of randomly connected recurrent neural networks, which are continuously driven
by the network’s inputs. The time-varying state of the networks’ neurons thus provides
a random, non-linear embedding of the network’s input history into a high-dimensional
vector space. For this embedding to be useful, it only needs to satisfy a few basic and easy to
satisfy conditions [58]. The recurrent network is then called a reservoir computer, and a linear
transformation of the network’s high-dimensional state vector can be used to approximate
a time-varying target signal, i.e. some function of the network’s recent input history. This
transformation is also called the network’s linear readout, and its coefficients are the only
parameters of the reservoir computer that are optimized for a specific task. ⁹ The conceptor 9 This combination of a random

high-dimensional, non-linear feature-
expansion with a simple linear regres-
sionmodel is reminiscent of the kernel
trick popularized by support vector
machines [79] and the original Per-
ceptron [1].

framework [80] combines this approach with ideas from attractor networks. By controlling
the attractors and limit-cycle dynamics of the reservoir (like a Hopfield network), a conceptor
network can shape the dynamics to produce or resonate with certain stable time-varying
patterns of activity, which a linear readout (like in a reservoir computer) can shape into a
desired time-varying output signal. For an example of a network architecture built from
such conceptor networks, see contribution 1.

2.3 . a bird’s eye view of artificial neural networks 15

Contribution 1: Bistable Perception in Conceptor Networks

This conference paper explores, how a hierarchy of conceptor networks, which can
act as generative models for time-series signals, can be used to actively suppress
noise and minimize prediction errors. The idea of such a hierarchical predictive
coding scheme is in line with biological observations and provides an appealing
model of perception. When presented with ambiguous superposition of two stimuli,
this architecture reproduces the well known psychological phenomenon of bi-stable
perception, where either of the two pure stimuli is perceived in isolation for a period
of time, before the percept switches to the other. It matches empirical results with
surprising fidelity, including the distribution of the time-spans for which either of
the stimuli is perceived! This paper extends ideas developed within Felix Meyer
zu Driehausen’s thesis, which I had the pleasure of supervising. Felix and Rüdiger
Busche subsequently turned it into a viable model and a nice conference paper, for
which they deserve all the credit.

Reference :

F. Meyer zu Driehausen, R. Busche, J. Leugering, and G. Pipa, “Bistable Perception in
Conceptor Networks,” in Artificial Neural Networks and Machine Learning – ICANN
2019: Workshop and Special Sessions, 2019, isbn: 978-3-030-30493-5. doi: 10.1007
/978-3-030-30493-5_3.

2.3.4 The Neural Engineering Framework

The Neural Engineering Framework (NEF) incorporates ideas from both deep learning and
reservoir computing, but it offers a rather different perspective on how to construct large
neural networks. A great in-depth discussion of this approach can be found in [5]. It focuses
on the design of modular neural network architectures from smaller building blocks with well-
defined function, rather than end-to-end optimization of network coefficients from data. Each
of these building blocks is itself a randomly connected feed-forward network or reservoir
computer, whose activation encodes (or represents) some variable, typically low-dimensional.
Connections between the blocks are optimized to implement functions (or transformations)
of these variables. By stacking and connecting many such modules together, large and
complex networks with well-defined behavior can thus be constructed. This approach is very
general and works well for different kinds of neuron models, from the simple linear-nonlinear
neurons to more complex dynamic neuron models like leaky integrate-and-fire neurons,
because it doesn’t rely on the backpropagation of gradient information through deeply nested
hierarchies of neural network layers. Figure 2.4 illustrates this modular approach.

Figure 2.4. A network constructed out
of mutually connected feed-forward
and reservoir modules according to
the neural engineering framework.

A practical limitation of this approach is that it requires the problem to be analytically
decomposed into sub-problems that are each simple enough to be efficiently solved by a
single module, and we need either an analytical solution of each of these sub-problems or
sufficient data to train them. But when this is possible, the neural engineering framework
provides a straight-forward way to compose smaller feed-forward and recurrent neural
networks into very large networks with well-understood, highly complex functionality.¹⁰

10 The Nengo software tool [81] offers
a very fast and entertaining way to
construct neural networks using the
NEF.

http://dx.doi.org/10.1007/978-3-030-30493-5_3
http://dx.doi.org/10.1007/978-3-030-30493-5_3

16 chapter 2. information processing in artificial neural networks

2.4 Where artificial and biological neural networks diverge

We now looked at four popular frameworks for constructing large artificial neural networks,
each of which offers a different interpretation of ‘neural information processing’. But do
these machine learning frameworks explain information processing in the brain? I believe
not, because despite their shared history, terminology and many conceptual connections,
the artificial neurons and networks shown above are extreme simplifications, idealizations
and modifications of their biological inspirations. To name just of a few of the fundamental
differences that have emerged between the artificial neural networks models form machine
learning and those from theoretical neuroscience:

1. Artificial neural network models employ a single kind of neuron and a single kind of
synapse, the behavior of which is fully parameterized by a single bias andweight coefficient
each. In the brain, however, neurons are morphologically and behaviorally so diverse that
even a classification into distinct classes can be challenging. But with around 60 different
types of neurons in the retina alone, the number of different classes of neurons in the
human brain may well be in the hundreds [82] — not to even speak of other cell types
like glia cells, which are entirely absent from artificial neural network models. Similarly
for synapses, whose inhibitory and excitatory effects are not adequately expressed by
positive and negative synaptic weights alone [83]. Also, electrical gap junctions, which
directly and bi-directionally couple neurons and play an important role in some biological
neural networks [84], are not modeled at all in artificial neural networks. In addition to
these neural structures, the vast variety of neurotransmitters or -modulators is ignored in
artificial neural networks, despite their critical influence on behavior in biology [85].

2. A lot of biological structures are genetically pre-determined, rather than learned in an
end-to-end fashion as is popular in machine learning. For instance, in simple multicellular
organisms such as C. elegans [86] or tadpole larvae [87], neurons are assembled in very
specific, genetically determined patterns; so specific in fact, that the entire connectomes
can be described on the level of individual neurons. Neurons can also form specificmotives
[88] of mutual connectivity patterns, that are reproduced many times throughout the
nervous system, or larger homogenous groups of strongly coupled neurons called cell
assemblies [89], or even larger structures called canonical microcircuits, possibly arranged
in a columnar structure called cortical (micro-)columns — but this latter point remains
a contentious topic [90]. These innate, highly specific structures don’t fit any of our
machine learning paradigms above, yet they “compute” nonetheless.
This is particularly relevant if one considers the fact that neurons and networks must
have evolved from such and even simpler structures. Studies of the evolutionary origins
of neurons and nervous systems point to simple sensory cells arranged in homogenous
nerve nets [91] that made use of available electrical or chemical messaging processes
[92] to broadcast sensory stimuli or motor commands across the animal’s body. None of
these mechanisms seem to fit the frameworks discussed above — or even the function
approximation paradigm in general!

3. Conversely, many biological neural networks also rely heavily on local synaptic, intrinsic
and structural plasticity, and thus continuously adjust to changing circumstances (see
chapter 5). The weights, biases and nonlinearities of deep networks, on the other hand,
are typically assumed to remain fixed after initial training.

4. The transmission of signals also incurs delays, which are ignored in most artificial net-
work models, yet they have significant and unavoidable implications on the behavior, in
particular for real-time or recurrently connected neural networks (see chapter 4).

2.4 . where artificial and biological neural networks diverge 17

5. The neuron and synapse models in artificial neural networks are also typically modeled
as memory-less functions, that instantaneously map an input onto an output. Biological
neurons, on the other hand, integrate information in time (see chapter 4), adapt (see
chapter 5) and can have a rather complex internal state and memory (see chapter 7).

6. For the majority of neurons in the brain, the output is not communicated as a real-valued
signal, but via distinct spike events, which requires a fundamentally different mathematical
framework (see sec. 6 and chapter 7) of event-based detection of spike patterns, rather
than rate-based function approximation.

7. The complex morphology of biological neurons and their dendritic arbors is typically
ignored in favor of point-neuron models — despite ample evidence of the relevance of
that morphology for behavior (see chapter 7).

Given the remarkable complexity of biological neurons, it seems like a fool’s errand to
attempt to give a single model of neural computation on the same level of abstraction as
current artificial neural networks and to then expect that it applies to “the brain” in general
— let alone across different species. In the following chapters, I will therefore only attempt
to describe a few of these points in some more detail. For a deep dive into the intricacies of
many of these neural mechanisms, I’d refer to Singer, Sejnowski, and Rakic [93], which also
contains contribution 2, or Laughlin [6] for a more “bottom-up” perspective.

Contribution 2: Computational Elements of Circuits

The book “The Neocortex”, published by the Ernst Strüngmann Forum, compiles the
current state of knowledge about the basic principles of operation of the neocortex.
In our contribution to this work, the book chapter entitled “Computational Elements
of Circuits”, we discuss several fundamental properties of neural computation — from
homeostasis to delayed interactions, synchronization, random feature expansion and
reservoir computing. Within this book chapter, my own largest contribution can
be found in the section “Information Processing in Single Neurons and Populations”,
which elaborates and generalizes ideas from contribution 6.

Reference :

J. Leugering, P. Nieters, and G. Pipa, “Computational Elements of Circuits,” in The
Neocortex, W. Singer, T. J. Sejnowski, and P. Rakic, eds., red. by J. Lupp, vol. 27, The
MIT Press, 2019, pp. 195–209, isbn: 978-0-262-04324-3. doi: 10.7551/mitpress
/12593.003.0016.

http://dx.doi.org/10.7551/mitpress/12593.003.0016
http://dx.doi.org/10.7551/mitpress/12593.003.0016

18 chapter 2. information processing in artificial neural networks

References for chapter 2:

1. F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in
the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958, issn: 1939-1471(ELECTRONIC),0033-
295X(PRINT). doi: 10.1037/h0042519 (cit. on pp. vii, 4, 14, 24).

5. C. Eliasmith and C. H. Anderson,Neural Engineering: Computation, Representation, and Dynamics
in Neurobiological Systems. MIT press, 2004 (cit. on pp. vii, 15, 60, 64).

6. S. (O. N. Laughlin University Of C, Principles of Neural Design. 2017, isbn: 978-0-262-53468-0
(cit. on pp. vii, 17, 34, 51, 60, 66).

14. F. Meyer zu Driehausen, R. Busche, J. Leugering, and G. Pipa, “Bistable Perception in Conceptor
Networks,” in Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and
Special Sessions, 2019, isbn: 978-3-030-30493-5. doi: 10.1007/978-3-030-30493-5_3 (cit.
on pp. viii, 15, 99).

16. J. Leugering, P. Nieters, and G. Pipa, “Computational Elements of Circuits,” in The Neocortex,
W. Singer, T. J. Sejnowski, and P. Rakic, eds., red. by J. Lupp, vol. 27, The MIT Press, 2019,
pp. 195–209, isbn: 978-0-262-04324-3. doi: 10.7551/mitpress/12593.003.0016 (cit. on
pp. viii, 17, 100).

20. M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, Expanded ed.
MIT Press, 1988, isbn: 978-0-262-63111-2 (cit. on pp. 1, 4, 11, 12, 26).

27. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1, 1943, issn: 0007-4985,
1522-9602. doi: 10.1007/BF02478259 (cit. on pp. 2, 10, 25).

30. H. Jaeger, W. Maass, and J. Principe, “Special issue on echo state networks and liquid state
machines.,” 2007 (cit. on pp. 2, 14, 62).

32. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8,
pp. 1735–1780, 1, 1997, issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735 (cit. on pp. 2,
10).

39. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press Cambridge, 2016, vol. 1
(cit. on pp. 4, 5, 9, 12, 85).

40. G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control,
Signals, and Systems, vol. 2, no. 4, pp. 303–314, 1989, issn: 0932-4194, 1435-568X. doi: 10.100
7/BF02551274 (cit. on pp. 4, 10).

41. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61,
pp. 85–117, 2015. doi: 10.1016/j.neunet.2014.09.003 (cit. on pp. 4, 9).

42. J. L. Elman, “Finding Structure in Time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, 1990, issn:
03640213. doi: 10.1207/s15516709cog1402_1 (cit. on pp. 5, 11).

43. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences, vol. 79, no. 8, pp. 2554–2558, 1, 1982,
issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.79.8.2554. pmid: 6953413 (cit. on pp. 5,
14).

47. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V.
Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” presented at the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 2016, isbn: 978-1-931971-33-1 (cit. on pp. 5, 12).

51. G. Strang, Linear Algebra and Learning from Data. Wellesley-Cambridge Press, 2019 (cit. on
pp. 9, 11).

52. K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Networks,
vol. 4, no. 2, pp. 251–257, 1, 1991, issn: 0893-6080. doi: 10.1016/0893-6080(91)90009-T
(cit. on p. 11).

53. T. Poggio, L. Rosasco, A. Shashua, N. Cohen, and F. Anselmi, “Notes on Hierarchical Splines,
DCLNs and i-theory,” Center for Brains, Minds and Machines (CBMM), Technical Report, 29,
2015 (cit. on p. 11).

http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1007/978-3-030-30493-5_3
http://dx.doi.org/10.7551/mitpress/12593.003.0016
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1073/pnas.79.8.2554
6953413
http://dx.doi.org/10.1016/0893-6080(91)90009-T

2.4 . where artificial and biological neural networks diverge 19

54. R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. “Understanding Deep Neural Networks with Rec-
tified Linear Units.” arXiv: 1611.01491 [cond-mat, stat]. (27, 2018), [Online]. Available:
http://arxiv.org/abs/1611.01491 (visited on 10/17/2020) (cit. on pp. 11, 12).

55. M. Unser, “A Representer Theorem for Deep Neural Networks,” Journal of Machine Learning
Research, vol. 20, no. 110, pp. 1–30, 2019, issn: 1533-7928 (cit. on p. 11).

56. K.-i. Funahashi and Y. Nakamura, “Approximation of dynamical systems by continuous time
recurrent neural networks,” Neural Networks, vol. 6, no. 6, pp. 801–806, 1, 1993, issn: 0893-6080.
doi: 10.1016/S0893-6080(05)80125-X (cit. on p. 11).

57. T. Chow and X.-D. Li, “Modeling of continuous time dynamical systems with input by recur-
rent neural networks,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 47, no. 4, pp. 575–578, 2000, issn: 1558-1268. doi: 10.1109/81.841860 (cit.
on p. 11).

58. W. Maass and H. Markram, “On the computational power of circuits of spiking neurons,” Journal
of Computer and System Sciences, vol. 69, no. 4, pp. 593–616, 1, 2004, issn: 0022-0000. doi:
10.1016/j.jcss.2004.04.001 (cit. on pp. 11, 14).

59. V. N. Vapnik, “An overview of statistical learning theory,” IEEE transactions on neural networks,
vol. 10, no. 5, pp. 988–999, 1999 (cit. on p. 12).

60. “Megatron GPT2 345M | NVIDIA NGC.” (), [Online]. Available: https://ngc.nvidia.com
/catalog/models/nvidia:megatron_lm_345m (visited on 08/28/2020) (cit. on p. 12).

61. M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. “Megatron-LM:
Training Multi-Billion Parameter Language Models Using Model Parallelism.” arXiv: 1909.08
053 [cs]. (13, 2020), [Online]. Available: http://arxiv.org/abs/1909.08053 (visited
on 08/28/2020) (cit. on p. 12).

62. C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep learning requires
rethinking generalization.” arXiv: 1611.03530. (2016) (cit. on p. 12).

63. Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. “Identifying and attacking
the saddle point problem in high-dimensional non-convex optimization.” arXiv: 1406.2572
[cs, math, stat]. (10, 2014), [Online]. Available: http://arxiv.org/abs/1406.2572
(visited on 08/22/2020) (cit. on p. 12).

64. B. Neyshabur, R. Tomioka, and N. Srebro. “In search of the real inductive bias: On the role of
implicit regularization in deep learning.” arXiv: 1412.6614. (2014) (cit. on p. 12).

65. M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice and
the classical bias–variance trade-off,” Proceedings of the National Academy of Sciences, vol. 116,
no. 32, pp. 15 849–15 854, 2019 (cit. on p. 12).

66. N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,” in 2015
IEEE Information Theory Workshop (ITW), 2015. doi: 10.1109/ITW.2015.7133169 (cit. on
pp. 12, 46).

67. J. Frankle and M. Carbin. “The lottery ticket hypothesis: Finding sparse, trainable neural
networks.” arXiv: 1803.03635. (2018) (cit. on p. 12).

68. C. Zhang, S. Bengio, and Y. Singer. “Are All Layers Created Equal?” arXiv: 1902.01996 [cs,
stat]. (24, 2019), [Online]. Available: http://arxiv.org/abs/1902.01996 (visited on
08/22/2020) (cit. on p. 12).

69. “Yann LeCun.” (5, 2018), [Online]. Available: https://www.facebook.com/yann.lecun
/posts/10155003011462143 (visited on 08/20/2020) (cit. on p. 13).

70. Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances in Neural Information
Processing Systems, 1990 (cit. on p. 13).

71. E. Karnin, “A simple procedure for pruning back-propagation trained neural networks,” IEEE
Transactions on Neural Networks, vol. 1, no. 2, pp. 239–242, 1990, issn: 1941-0093. doi: 10.110
9/72.80236 (cit. on p. 13).

72. B. Lautrup, L. K. Hansen, I. Law, N. Mørch, C. Svarer, and S. C. Strother, “Massive weight sharing:
A cure for extremely ill-posed problems,” in Workshop on Supercomputing in Brain Research:
From Tomography to Neural Networks, 1994 (cit. on p. 13).

https://arxiv.org/abs/1611.01491
http://arxiv.org/abs/1611.01491
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1109/81.841860
http://dx.doi.org/10.1016/j.jcss.2004.04.001
https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m
https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1406.2572
https://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
https://arxiv.org/abs/1412.6614
http://dx.doi.org/10.1109/ITW.2015.7133169
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1902.01996
https://arxiv.org/abs/1902.01996
http://arxiv.org/abs/1902.01996
https://www.facebook.com/yann.lecun/posts/10155003011462143
https://www.facebook.com/yann.lecun/posts/10155003011462143
http://dx.doi.org/10.1109/72.80236
http://dx.doi.org/10.1109/72.80236

20 chapter 2. information processing in artificial neural networks

73. S. Han, H. Mao, and W. J. Dally. “Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding.” arXiv: 1510.00149. (2015) (cit. on pp. 13,
65).

74. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification using
binary convolutional neural networks,” in European Conference on Computer Vision, 2016 (cit.
on pp. 13, 26).

75. A. Gaier and D. Ha, “Weight Agnostic Neural Networks,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d\ textquotesingle Alché-Buc,
E. Fox, and R. Garnett, eds., Curran Associates, Inc., 2019, pp. 5364–5378 (cit. on p. 13).

76. M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why should i trust you? ”: Explaining the predictions
of any classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’16, 2016, isbn: 978-1-4503-4232-2. doi: 10.1145/293967
2.2939778 (cit. on p. 14).

77. A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug & play generative networks:
Conditional iterative generation of images in latent space,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, isbn: 978-1-5386-0457-1. doi: 10.1109/CVPR.2
017.374 (cit. on p. 14).

78. G. Marcus. “Deep learning: A critical appraisal.” arXiv: 1801.00631 [cs, stat]. (2018),
[Online]. Available: http://arxiv.org/abs/1801.00631 (visited on 09/21/2019) (cit. on
p. 14).

79. A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing,
vol. 14, no. 3, pp. 199–222, 1, 2004, issn: 1573-1375. doi: 10.1023/B:STCO.0000035301.4
9549.88 (cit. on p. 14).

80. H. Jaeger. “Controlling Recurrent Neural Networks by Conceptors.” arXiv: 1403.3369 [cs].
(22, 2017), [Online]. Available: http://arxiv.org/abs/1403.3369 (visited on 08/22/2020)
(cit. on p. 14).

81. T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen, X. Choo, A.
Voelker, and C. Eliasmith, “Nengo: A Python tool for building large-scale functional brain
models,” Frontiers in Neuroinformatics, vol. 7, 2014, issn: 1662-5196. doi: 10.3389/fninf.20
13.00048 (cit. on p. 15).

82. R. H. Masland, “Neuronal cell types,” Current Biology, vol. 14, no. 13, R497–R500, 2004, issn:
09609822. doi: 10.1016/j.cub.2004.06.035 (cit. on p. 16).

83. S. J. Mitchell and R. A. Silver, “Shunting Inhibition Modulates Neuronal Gain during Synaptic
Excitation,” Neuron, vol. 38, no. 3, pp. 433–445, 8, 2003, issn: 0896-6273. doi: 10.1016/S0896
-6273(03)00200-9 (cit. on p. 16).

84. D. H. Hall, “Gap junctions in C. elegans: Their roles in behavior and development,”Developmental
Neurobiology, vol. 77, no. 5, pp. 587–596, 2017, issn: 1932-846X. doi: 10.1002/dneu.22408
(cit. on p. 16).

85. C. I. Bargmann, “Beyond the connectome: How neuromodulators shape neural circuits,” BioEs-
says, vol. 34, no. 6, pp. 458–465, 2012, issn: 1521-1878. doi: 10.1002/bies.201100185 (cit.
on p. 16).

86. J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, “The Structure of the Nervous System
of the Nematode Caenorhabditis elegans,” Philosophical Transactions of the Royal Society of
London. Series B, Biological Sciences, vol. 314, no. 1165, pp. 1–340, 1986, issn: 0080-4622. JSTOR:
2990196 (cit. on p. 16).

87. K. Ryan, Z. Lu, and I. A. Meinertzhagen, “The CNS connectome of a tadpole larva of Ciona
intestinalis (L.) highlights sidedness in the brain of a chordate sibling,” eLife, vol. 5, E. Marder,
ed., e16962, 6, 2016, issn: 2050-084X. doi: 10.7554/eLife.16962 (cit. on p. 16).

88. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network Motifs:
Simple Building Blocks of Complex Networks,” Science, vol. 298, no. 5594, pp. 824–827, 25, 2002,
issn: 0036-8075, 1095-9203. doi: 10.1126/science.298.5594.824. pmid: 12399590 (cit.
on p. 16).

https://arxiv.org/abs/1510.00149
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1109/CVPR.2017.374
http://dx.doi.org/10.1109/CVPR.2017.374
https://arxiv.org/abs/1801.00631
http://arxiv.org/abs/1801.00631
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
https://arxiv.org/abs/1403.3369
http://arxiv.org/abs/1403.3369
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.1016/j.cub.2004.06.035
http://dx.doi.org/10.1016/S0896-6273(03)00200-9
http://dx.doi.org/10.1016/S0896-6273(03)00200-9
http://dx.doi.org/10.1002/dneu.22408
http://dx.doi.org/10.1002/bies.201100185
http://www.jstor.org/stable/2990196
http://dx.doi.org/10.7554/eLife.16962
http://dx.doi.org/10.1126/science.298.5594.824
12399590

2.4 . where artificial and biological neural networks diverge 21

89. K. D. Harris, “Neural signatures of cell assembly organization,” Nature Reviews Neuroscience,
vol. 6, no. 5, pp. 399–407, 5 2005, issn: 1471-0048. doi: 10.1038/nrn1669 (cit. on p. 16).

90. N.M.M. Amorim Da Costa and K. Martin, “Whose cortical column would that be?” Frontiers
in Neuroanatomy, vol. 4, 2010, issn: 1662-5129. doi: 10.3389/fnana.2010.00016 (cit. on
p. 16).

91. T. Katsuki and R. J. Greenspan, “Jellyfish nervous systems,” Current Biology, vol. 23, no. 14,
R592–R594, 2013, issn: 09609822. doi: 10.1016/j.cub.2013.03.057 (cit. on pp. 16, 74).

92. W. B. Kristan, “Early evolution of neurons,” Current Biology, vol. 26, no. 20, R949–R954, 24, 2016,
issn: 0960-9822. doi: 10.1016/j.cub.2016.05.030 (cit. on p. 16).

93. W. Singer, T. J. Sejnowski, and P. Rakic, eds., The Neocortex, red. by J. Lupp. The MIT Press, 2019,
vol. 27, isbn: 978-0-262-04324-3 (cit. on p. 17).

http://dx.doi.org/10.1038/nrn1669
http://dx.doi.org/10.3389/fnana.2010.00016
http://dx.doi.org/10.1016/j.cub.2013.03.057
http://dx.doi.org/10.1016/j.cub.2016.05.030

What I cannot create, I do not understand.

— Richard Feynman

In particular, this requirement [of a physical implementation] will help to prevent the
solution from being a mere verbalistic ‘explanation’, for in the background will be the
demand that we build a machine to do these things.

— W. Ross Ashby, Design for a Brain

3 Neuromorphic computing — a bridge between
engineering and neuroscience

As we have seen in chapters 1 and 2, machine learning can produce very large artificial
neural networks that require correspondingly large data sets and a lot of power to train.
Since the available compute resources are a major bottleneck for the deployment of deep
neural networks in many real-world applications, the numerical efficiency of artificial neural
networks has become a major concern of deep learning research. This optimization of neural
network models for the available hardware has certainly produced impressive results, but it
also limits the scope of research to just those kinds of models that can be efficiently simulated
on current hardware. Due to this compromise, modern deep learning on the one hand makes
use of tools and algorithms that are not available to biological neurons, and on the other
hand it cannot use many of the interesting biological mechanisms studied in theoretical
neuroscience.

The field of neuromorphic hardware approaches this issue from the other side: If a neural
mechanism seems promising for improving computation, but it lacks efficient hardware-
support, then we should develop custom hardware rather than compromise our models! The
design constraints of neuromorphic hardware are therefore determined only by what can be
efficiently realized by analog and digital (or even ionic and photonic) circuits. A large range of
biological mechanism that are difficult to integrate into a classical machine learning setting,
such as spiking neural networks, are thus commonly used in the neuromorphic computing
community. At the same time, the design constraints imposed by the hardware development
raise other important questions that can help to challenge and improve theoretical models.
As we shall see, many of the constraints faced by engineers are in fact quite similar to the
limitations that biological neurons have to overcome. Hence, I believe that neuromorphic
hardware can build a bridge between the two disciplines by providing engineers with
biological inspirations, and neuroscientists with tools and measures to evaluate their models.

3.1 The neuromorphic zoo

In the wake of the impressive success of deep learning and the foreseeable end of Moore’s
Law, the research of new, alternative computing architectures and technologies on which
to efficiently execute these neural network models attracts considerable interest from both
academia and industry [95]. This has led to a revival of research on neuromorphic hardware,
which promises to convert the theoretical insights from neuroscience into tangible benefits

24 chapter 3. neuromorphic computing — a bridge between engineering and neuroscience

Contribution 3: A Visit to the Neuromorphic Zoo

In this paper, which accompanies a public talk held at the EmbeddedWorld conference,
I provide a brief overview over current concepts and academic as well as commercial
developments in the field of AI-hardware acceleration in general, and neuromorphic
hardware in particular. This paper was selected by WEKA Fachmedien for a re-
publication in the magazine DESIGN&ELEKTRONIK, where it appeared in German
translation under the title “Neuromorphe Hardware”. Since the Embedded World
conference accompanies an industry fair, the proceedings are targeted towards an
engineering audience and are intended to offer an accessible high-level perspective.
(These papers passed an editorial process, but no scientific peer-review.)

Reference :

J. Leugering, “A visit to the neuromorphic zoo,” in Embedded World Conference 2020
– Proceedings, 2020, isbn: 978-3-645-50186-6.

A German translation of this article appeared also in:

J. Leugering, “Neuromorphe Hardware,” DESIGN&ELEKTRONIK, no. 7/2020, pp. 41–
47, 2020.

for the development of biologically inspired, highly efficient computing hardware. While
this idea is not entirely new¹, there are several good reasons for the renewed interest: 1 In fact, neuromorphic hardware is

as old as neural networks, since they
both pre-date the emergence of pow-
erful general purpose computers. An
early example is the Perceptron Mark
1, a physical implementation of the
perceptron model by Rosenblatt [1].

The first is economical: The stunning success of neural networks in recent years has
revealed many new potential application areas for neural networks, from sensor and image
processing and voice control all the way to autonomous robots and vehicles. Since many
of these applications are “at the edge” [96], i.e. they do not have direct access to high
performance computing infrastructure, they require on-board hardware capable of executing
specific neural network architectures. Neuromorphic hardware can address this new and
growing market.

Second, technological breakthroughs in the development of new materials such as various
memristive devices [97], carbon nanotubes, in-silicon photonics, spintronics and much more
[98], as well as improved procedures of lithography provide new freedom to implement
neuromorphic architectures efficiently in hardware.

Third, there are promising new theoretical concepts in the field of neural networks as
well as in electronics design. For example, an increasing emphasis is placed on non-volatile
memory that can persist even when power is switched off. This is often paired with (analog)
in-memory computing [99], which brings simple processing elements such as logic gates
directly together with storage elements. That is great news for neuromorphic hardware,
which can leverage this for an efficient implementation of synaptic connections [100, 101].
Similarly, a lot of theoretical models like spiking neural networks, that play only a minor
role in conventional machine learning, are being actively explored in the neuromorphic
computing domain [102].

All of these factors combined explain the current resurgence of neuromorphic hardware
as one leg of the so-called next generation computing (NGC, the other leg being quantum
computing). Recently, a large variety of hardware implementations, using analog, digital,
mixed signal and even photonic circuits have been developed, and the research of neuro-

3.2 . a signal processing view of neuron models 25

morphic computing has since developed into an independent discipline in academia and
industry alike. For a brief review of the current state of the neuromorphic hardware field,
see contribution 3.

3.2 A signal processing view of neuron models

In chapter 2 we saw how machine learning frameworks build large networks from individ-
ual neurons. Each neuron in that context is really just a function of the form 𝑥𝑗(𝑡 + 1) =
𝑓𝑗(∑𝑖 𝑤𝑗,𝑖𝑥𝑖(𝑡) + 𝑏𝑗), which becomes a seamless part of the larger function that describes the
network as a whole. It makes little sense to ask, how much energy this neuron consumes,
how much memory it has, or what it’s latency is. But biological neurons have to have a
physical realization of some sort, and this kind of question becomes critical. I therefore think
the analogy between neurons and electronic components can be much more illustrative and
satisfying than the mathematical abstraction of neural networks as function approximators if
we want to better understand the behavior of real neurons. In the following, we will look at a
few common neuron models, and we will explore how each of them resembles a well-known
electronic component with a specific application in computer science or signal processing.
These analogies will allow us to transfer some intuitions from engineering disciplines to
neuroscience, and will thus help us better understand the computational capabilities and
limitations of various neuron models. Figure 3.1 shows an overview of neuron models and
closely related electric circuits.

binary neuron

digital neuron first-order ΔΣ-modulator

cont. LN neuron spiking lIF neuron
+

𝑥[𝑡]

×
𝑤1

×
𝑤2

⋮

+

𝑥[𝑡]

×
𝑤1

×
𝑤2

⋮

+ +

𝑥[𝑡]
1
𝑧

×
𝑤1

×
𝑤2

⋮
reset−𝜃

+

𝑥(𝑡)

×
𝑤1

×
𝑤2

⋮

+ +

𝑥(𝑡)
𝛼

𝑠+𝛼

×
𝑤1

×
𝑤2

⋮
reset−𝜃

discrete
multi-level

pdm
(clocked)

continuous
multi-level

spiking
(async.)

Figure 3.1. Neuron models, electron-
ics components and their relationships.
Boolean logic gates are equivalent to
binary neurons (left). They can be
extended by allowing multi-valued
outputs, resulting in the standard
linear-nonlinear neuron model in ei-
ther digital (top center) or continu-
ous (bottom center) form. Transmit-
ting these multi-valued outputs by a
pulse-density modulated code yields
the first-order ΔΣ modulator (top
right) for discrete time models or the
leaky integrate-and-fire spiking neu-
ron model (bottom right) for continu-
ous time.

3.2.1 Binary neurons are logic gates

To get started, let’s consider the most basic neuron model and logic calculus that McCulloch
and Pitts [27] proposed. It states that the neuron’s binary output 𝑦[𝑡] within some brief
time-interval 𝑡 is 1 (the neuron emits a spike) if its membrane potential exceeds a critical
threshold and 0 otherwise. Formally, 𝑦[𝑡] = 𝑓 (∑𝑁

𝑖=1 𝑤𝑖𝑠𝑖[𝑡]) − 𝑏, where 𝑓 (𝑥) = 1[0,∞)(𝑥) is
the Heaviside step-function, 𝑤𝑖 are the synaptic weights, 𝑏 is a bias term and 𝑠𝑖[𝑡] are the
values of the input signals at time-interval 𝑡. See figure 3.2 for an illustration. The neuron thus
maps its 𝑁 binary input signals onto a single binary output signal, and hence implements a
Boolean function. If we limit ourselves to ternary weights as McCulloch and Pitts did, i.e.
𝑤𝑖 ∈ {−1, 0, 1}, each input is either inverted (an inhibitory input), absent, or left unchanged

26 chapter 3. neuromorphic computing — a bridge between engineering and neuroscience

(an excitatory input). We can then view the neuron as a logic gate that calculates whether at
least 𝑏 of its 𝑁 weighted inputs are equal to 1. This “gate” includes as special cases the AND

gate (𝑏 = 𝑁) and the OR gate (𝑏 = 1), negations thereof, the constant true gate (𝑏 = 0)
as well as the constant false gate (𝑏 > 𝑁); it is therefore a functionally complete set of
first-order logic. ² 2 The exclusive OR (XOR) gate,

however, was famously shown by
Minsky and Papert [20] to be not rep-
resentable by only a single layer of
such neurons.

Figure 3.2 shows a schematic of this model.

Binary neuron/gate

+

𝑥[𝑡]

×
𝑤1

×
𝑤2

⋮

𝑠1[𝑡]

𝑠2[𝑡] 𝑦[𝑡]

Figure 3.2. A binary neuron is a spe-
cial boolean logic gate.

By assigning each input with an appropriate weight, we can thus construct arbitrary logic
circuits, or binary neural networks with ternary synaptic weights [103]. From the perspective of
deep learning, such extremely quantized networks may seem tedious, since they are difficult
to train using gradient based-methods. In fact, logic circuits are traditionally optimized using
numerically slower discrete optimization methods such as the Quine-McCluskey algorithm
[104]. But recent advances in deep compression techniques are leveraging the powerful
gradient-based optimization methods from deep learning for the optimization of ternary
neural networks (or XNOR networks) and have produced highly promising results [74].

3.2.2 Linear-nonlinear neurons are summing amplifiers

A natural extension of these binary neurons to real-valued signals leads to the typical
(discrete-time continuously-valued) linear-nonlinear neuron model that is typically used
in deep learning. Here, the hard threshold is simply replaced with a continuous, typically
monotonic non-linear function, e.g. a sigmoid function like 𝑓 (𝑥) = tanh(𝑥) or the rectified
linear function 𝑓 (𝑥) = max(0, 𝑥). Figure 3.3 shows a schematic. This reflects the observation,
that the firing rate of a biological neuron increases as a continuous function³ of its membrane 3 Strictly speaking, this only holds for

the so called class-I or type-I class of
neuron models; type-II neurons have
a discontinuous jump in their firing-
rate response [105].

potential (see e.g. chapter 6). We already saw in chapter 2 that a network of such continuous
linear-nonlinear neurons can be used to approximate arbitrary continuous functions, rather
than just Boolean functions. But more importantly, the nonlinear function 𝑓 that replaces the
step-function of the McCulloch-Pitts neuron can be chosen to be (piece-wise) differentiable,
which makes the entire network differentiable with respect to its parameters! Deep learning
makes use of this fact and relies on gradient-based optimization methods to fix the synaptic
weights.

Real-valued neuron

+

𝑥(𝑡)

×
𝑤1

×
𝑤2

⋮

𝑠1(𝑡)

𝑠2(𝑡) 𝑦(𝑡)

Figure 3.3. The linear-nonlinear neu-
ron can be implemented in analog
electronics.

Of course, a similar device is also useful for countless signal processing applications, in
particular if we choose the rectified-linear function 𝑓 as the nonlinearity. The behavior of
this neuron could then, in engineering terms, be described as an ideal summing unity-gain
amplifier or buffer that clips off negative values — a common component e.g. in analog audio
circuits. See figure 3.3 for a schematic.

Digital neuron

+

𝑥[𝑡]

×
𝑤1

×
𝑤2

⋮

𝑠1[𝑡]

𝑠2[𝑡] 𝑦[𝑡]

Figure 3.4. The neuron model in fig-
ure 3.3 can be discretized into a digital
neuron model.

This linear-nonlinear model can be realized in hardware either by a digital or a fully
analog electronic circuit, and both options are used in practice. Computing directly with
analog voltages and currents is an extremely appealing concept and the cornerstone of
many neuromorphic hardware designs, because it can result in very high energy efficiency
and low latency. But analog computation comes with its own drawbacks: for one, analog
signals in continuous time are difficult to buffer or route and hence require dedicated physical
connections between the neurons, the number of which grows quadratically with the number
of neurons. This arrangement may work well in the three-dimensional brain, ⁴ but poses a

4 Even in the brain, the longer-ranging
synaptic connections of the white-
matter alone can make up half of the
cortex by volume [106].

serious challenge for neuromorphic hardware that must be laid out in two dimensions. In
addition to that, transmitting analog signals over large distances makes them susceptible
to noise. A digital implementation of the same model (see figure 3.4) can alleviate these
problems, but possibly at the cost of reduced accuracy due to quantization, increased circuit
size and complexity, and increased power consumption. This discrete-time, discrete-value
implementation is used in many digital neuromorphic circuits and is emulated by most DNN
software-models.

3.2 . a signal processing view of neuron models 27

3.2.3 (Leaky)-Integrate-and-Fire neurons are ΔΣ-modulators

Spiking neurons combine some benefits of analog computation (namely energy efficiency
and speed) with the benefits of binary transmission (namely noise robustness)⁵, because 5 For a neuromorphic hardware de-

signer, there is the additional bene-
fit of being able to route the discrete
spikes through a bus system.

they process signals in the analog domain (whether in a biological neuron’s dendrite or a
neuromorphic circuit) while sending out only a series of binary pulses (see also chapter 6)!

Leaky integrate-and-fire neuron

+ +

𝑥(𝑡)
𝛼

𝑠+𝛼

×
𝑤1

×
𝑤2

⋮

𝑠1(𝑡)

𝑠2(𝑡)
reset−𝜃 𝑦(𝑡)

Figure 3.5. A leaky integrate-and-fire
neuron converts analog or spiking
input signals into a continuous-time
spike-train. A negative feed-back loop
resets the neuron after each pulse.
The leaky integrator with leak-rate
𝛼 is represented here by its Laplace-
transform, 𝛼/𝑠+𝛼.

The simplest example of this is the well known integrate-and-fire neuron. In essence,
it integrates its input(s) over time and fires a pulse whenever the integral 𝑥[𝑡] exceeds a
threshold. A negative feed-back loop then resets the system, and the process begins anew.
Instead of a perfect integrator, a first-order exponentially decaying filter is often used to
describe the response of biological neurons, which accounts for the fact that absent any
input, the neuron’s membrane potential tends to return to its resting potential over time.
This model is called the leaky integrate-and-fire neuron (LIF neuron, see figure 3.5). Instead of
the exponential filter, other filters could be used as well, which affects the neuron’s response
in interesting ways that we’ll discuss in chapter 4.

The firing-rate of such a neuron encodes the input in a very similar way to the linear-
nonlinear neuron, it only uses a pulse-based code to transmit its output. For band-width
limited signals, this encoding can be entirely lossless [107], but it may require rather large
firing rates (see chapter 6 for a discussion).

Δ-modulator

+ +

𝑥[𝑡]
1
𝑧

×
𝑤1

×
𝑤2

⋮

𝑠1(𝑡)

𝑠2(𝑡)
reset−𝜃 𝑦[𝑡]

Figure 3.6. A first-order Δ-modulator
converts analog input signals into a
clocked sequence of binary pulses.
A negative feed-back loop resets
the component after each pulse.
The discrete-time integrator is repre-
sented here by its 𝑧-transform, 1/𝑧+1.

Such pulse-based communication schemes are also popular in electronics. In fact, the
LIF neuron directly resembles a very popular electronic circuit, the so-called ΔΣ-modulator,
which is an integral part ofΔΣ analog-to-digital converters [108] and pulse-width-modulators
(PWM). In this comparison, the dendrite of the LIF neuron corresponds to a demodulator,
which converts, sums and integrates the pulse-based input signals into a single analog signal,
while the spike-generation mechanism at the soma uses Δ-modulation to encode whenever
this signal has increased beyond a fixed threshold. Figure 3.6 shows a schematic.

To improve the noise characteristics of analog-to-digital converters further, another feed-
back can be added that subtracts the recent average output signal from the input and thus
prevents the accumulation of quantization errors over time. This, too, has a direct counterpart
in biological neuron models, namely the adaptive exponential integrate-and-fire neuron
(AdExp, [109]), which also happens to be a more faithful representation of biological spiking
neurons than the simpler LIF neuron [110]. We will discuss similar adaptation mechanisms in

28 chapter 3. neuromorphic computing — a bridge between engineering and neuroscience

chapter 5. By replacing the first-order integrator by higher-order filters, this can be improved
further — an idea that we will also return to in chapter 4.

In an electronics context, the pulse-train generated by such a circuit constitutes an “over-
sampled” digital pulse-density modulated (PDM) signal, which can then either be decimated, i.e.
converted into a higher bit-precision signal at a reduced sampling rate, or directly transmitted
over a digital connection. From this perspective, the (time-varying) density of the binary
pulses (or firing rate) encodes the (time-varying) value of the analog signal. This view mirrors
the rate-coding perspective, which we will look at in chapter 6.

A different perspective would be to treat the circuit as an event-detector, which emits a
spike once it has accumulated enough input. We will discuss this alternative in chapter 7.

3.3 Closing the gap

For machine learning applications of artificial neural networks, the physical implementation
of the individual neuron is of little concern — it represents an abstract mathematical function
that is viewed as an “atomic operation” inside a larger algorithm. But from both a neuroscience
and a neuromorphic computing perspective, the internal mechanisms that generate this
behavior are of great interest. The two fields can therefore benefit from each other, by using
engineeringmethods to investigate the function of biological neurons, or by taking inspiration
from biological mechanisms for the development of a new generation of computing hardware.
Ultimately, I believe these two disciplines ought to come together in a single discipline which
I’ll just refer to as neuromorphic science — the study of neuroscience-inspired physical
mechanisms of information processing.

In the following, I will therefore occasionally use tools from signal processing and en-
gineering to describe the behavior and information processing capabilities of biological
neurons, and focus on the kind of questions that is also relevant for neuromorphic design. In
chapter 7, I will then present a neuron model derived entirely from biological observations,
along with an efficient neuromorphic circuit to implement it.

3.3 . closing the gap 29

References for chapter 3:

1. F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in
the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958, issn: 1939-1471(ELECTRONIC),0033-
295X(PRINT). doi: 10.1037/h0042519 (cit. on pp. vii, 4, 14, 24).

18. J. Leugering, “A visit to the neuromorphic zoo,” in Embedded World Conference 2020 – Proceed-
ings, 2020, isbn: 978-3-645-50186-6 (cit. on pp. viii, 24, 100).

20. M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, Expanded ed.
MIT Press, 1988, isbn: 978-0-262-63111-2 (cit. on pp. 1, 4, 11, 12, 26).

27. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1, 1943, issn: 0007-4985,
1522-9602. doi: 10.1007/BF02478259 (cit. on pp. 2, 10, 25).

74. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification using
binary convolutional neural networks,” in European Conference on Computer Vision, 2016 (cit.
on pp. 13, 26).

94. J. Leugering, “Neuromorphe Hardware,” DESIGN&ELEKTRONIK, no. 7/2020, pp. 41–47, 2020
(cit. on pp. 24, 100).

95. T. N. Theis and H.-S. P. Wong, “The End of Moore’s Law: A New Beginning for Information
Technology,” Computing in Science Engineering, vol. 19, no. 2, pp. 41–50, 2017, issn: 1558-366X.
doi: 10.1109/MCSE.2017.29 (cit. on p. 23).

96. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” IEEE
Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016, issn: 2327-4662. doi: 10.1109/JIO
T.2016.2579198 (cit. on p. 24).

97. Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired computing,”Nature Materials,
vol. 18, no. 4, pp. 309–323, 4 2019, issn: 1476-4660. doi: 10.1038/s41563-019-0291-x (cit.
on p. 24).

98. G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano,
and A. Hirose, “Recent advances in physical reservoir computing: A review,” Neural Networks,
vol. 115, pp. 100–123, 1, 2019, issn: 0893-6080. doi: 10.1016/j.neunet.2019.03.005 (cit.
on p. 24).

99. D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive switching devices,” Nature
Electronics, vol. 1, no. 6, pp. 333–343, 6 2018, issn: 2520-1131. doi: 10.1038/s41928-018-0
092-2 (cit. on p. 24).

100. G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan,
A. Fumarola, L. L. Sanches, I. Boybat, M. L. Gallo, K. Moon, J. Woo, H. Hwang, and Y. Leblebici,
“Neuromorphic computing using non-volatile memory,” Advances in Physics: X, vol. 2, no. 1,
pp. 89–124, 2, 2017, issn: null. doi: 10.1080/23746149.2016.1259585 (cit. on p. 24).

101. S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “XNOR-SRAM: In-Memory Computing SRAM Macro
for Binary/Ternary Deep Neural Networks,” IEEE Journal of Solid-State Circuits, vol. 55, no. 6,
pp. 1733–1743, 2020, issn: 1558-173X. doi: 10.1109/JSSC.2019.2963616 (cit. on p. 24).

102. C. D. Schuman, T. E. Potok, R.M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and J. S. Plank. “A
Survey of Neuromorphic Computing and Neural Networks in Hardware.” arXiv: 1705.06963
[cs]. (19, 2017), [Online]. Available: http://arxiv.org/abs/1705.06963 (visited on
08/23/2020) (cit. on p. 24).

103. H.M. A. Andree, G. T. Barkema, W. Lourens, A. Taal, and J. C. Vermeulen, “A comparison study
of binary feedforward neural networks and digital circuits,” Neural Networks, vol. 6, no. 6,
pp. 785–790, 1, 1993, issn: 0893-6080. doi: 10.1016/S0893-6080(05)80123-6 (cit. on
p. 26).

104. E. J. McCluskey, “Minimization of Boolean functions,” The Bell System Technical Journal, vol. 35,
no. 6, pp. 1417–1444, 1956, issn: 0005-8580. doi: 10.1002/j.1538-7305.1956.tb03835.x
(cit. on p. 26).

http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1109/MCSE.2017.29
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1038/s41563-019-0291-x
http://dx.doi.org/10.1016/j.neunet.2019.03.005
http://dx.doi.org/10.1038/s41928-018-0092-2
http://dx.doi.org/10.1038/s41928-018-0092-2
http://dx.doi.org/10.1080/23746149.2016.1259585
http://dx.doi.org/10.1109/JSSC.2019.2963616
https://arxiv.org/abs/1705.06963
https://arxiv.org/abs/1705.06963
http://arxiv.org/abs/1705.06963
http://dx.doi.org/10.1016/S0893-6080(05)80123-6
http://dx.doi.org/10.1002/j.1538-7305.1956.tb03835.x

30 chapter 3. neuromorphic computing — a bridge between engineering and neuroscience

105. E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
The MIT Press, 2006, isbn: 978-0-262-27607-8. doi: 10.7551/mitpress/2526.001.0001
(cit. on pp. 26, 93).

106. B. Mota, S. E. D. Santos, L. Ventura-Antunes, D. Jardim-Messeder, K. Neves, R. S. Kazu, S. Noctor,
K. Lambert, M. F. Bertelsen, P. R. Manger, C. C. Sherwood, J. H. Kaas, and S. Herculano-Houzel,
“White matter volume and white/gray matter ratio in mammalian species as a consequence
of the universal scaling of cortical folding,” Proceedings of the National Academy of Sciences,
vol. 116, no. 30, pp. 15 253–15 261, 23, 2019, issn: 0027-8424, 1091-6490. doi: 10.1073/pnas
.1716956116. pmid: 31285343 (cit. on p. 26).

107. A. A. Lazar and L. T. Tóth, “Time encoding and perfect recovery of bandlimited signals,” in
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings,
vol. 6, 25, 2003 (cit. on pp. 27, 59, 73).

108. R. Gray, “Oversampled Sigma-Delta Modulation,” IEEE Transactions on Communications, vol. 35,
no. 5, pp. 481–489, 1987, issn: 1558-0857. doi: 10.1109/TCOM.1987.1096814 (cit. on pp. 27,
63).

109. M. V. Nair and G. Indiveri, “An Ultra-Low Power Sigma-Delta Neuron Circuit,” in 2019 IEEE
International Symposium on Circuits and Systems (ISCAS), 2019. doi: 10.1109/ISCAS.2019
.8702500 (cit. on p. 27).

110. R. Brette and W. Gerstner, “Adaptive Exponential Integrate-and-Fire Model as an Effective
Description of Neuronal Activity,” Journal of Neurophysiology, vol. 94, no. 5, pp. 3637–3642, 1,
2005, issn: 0022-3077. doi: 10.1152/jn.00686.2005 (cit. on p. 27).

http://dx.doi.org/10.7551/mitpress/2526.001.0001
http://dx.doi.org/10.1073/pnas.1716956116
http://dx.doi.org/10.1073/pnas.1716956116
31285343
http://dx.doi.org/10.1109/TCOM.1987.1096814
http://dx.doi.org/10.1109/ISCAS.2019.8702500
http://dx.doi.org/10.1109/ISCAS.2019.8702500
http://dx.doi.org/10.1152/jn.00686.2005

A single neuron in the brain is an incredibly complex machine that even today we don’t
understand. A single “neuron” in a neural network is an incredibly simple mathematical
function that captures a minuscule fraction of the complexity of a biological neuron. So
to say neural networks mimic the brain, that is true at the level of loose inspiration, but
really artificial neural networks are nothing like what the biological brain does.

— Andrew Ng

4 Dendritic filters and delays

In chapters 2 and 3, we discussed information processing in artificial neural networks of
simple point-neurons. However, while these models offer a very convenient simplification,
they don’t account for the complex structure and behavior of real dendritic arbors, the
behavior of which is better described by neural cable theory [111]. If we take the attenuation
and delays into account that inevitably occur as membrane potentials are propagated along
the dendrite, then even the location of a synapse on the spatially extended dendrite influences
the effect of an input signal on the neuron’s firing rate [112]! This makes the behavior much
more difficult to describe, but it could also increase the computational complexity of the
individual neuron considerably by endowing it with a notion of time or memory. Among the
first to see the serious implications of this arrangement was, once again, von Neumann [35]:

It may well be that certain nerve pulse combinations will stimulate a given neuron not simply
by virtue of their number but also by virtue of the spatial relations of the synapses to which they
arrive. That is, one may have to face situations in which there are, say, hundreds of synapses
on a single nerve cell, and the combinations of stimulations on these that are effective (that
generate a response pulse in the last-mentioned neuron) are characterized not only by their
number but also by their coverage of certain special regions on that neuron (on its body or on
its dendrite system, cf. above), by the spatial relations of such regions to each other, and by
even more complicated quantitative and geometrical relationships that might be relevant. […]
Lastly, I would like to mention that systems of nerve cells, which stimulate each other in various
possible cyclical ways, also constitute memories. These would be memories made up of active
elements (nerve cells).[35].

In a very similar sense, the delayed interaction of neurons by synaptic spikes, which could
be seen as an imperfection of an idealized neuron and thus a nuisance to be avoided, also
increases the complexity of the neuron’s behavior by introducing long-lasting dependencies,
i.e. memory. These complex nonlinear dynamics and long memory are very appealing for
reservoir computing, where neurons with delayed feedback have recently been evaluated
as a potential computational substrate. But like many other concepts mentioned in this
thesis, the idea to use delayed self-coupling as a form memory and computing device is
actually surprisingly old and goes all the way back to Turing and Copeland [4], who proposed
building a computer based on the delayed interaction of shock waves in tubes of mercury:

It is proposed to build ‘delay line’ units consisting of mercury […] tubes about 5’ long and 1” in
diameter in contact with a quartz crystal at each end. The velocity of sound in …mercury […]
is such that the delay will be 1.024ms. The information to be stored may be considered to be a
sequence of 1024 ‘digits’ (0 or 1) […] These digits will be represented by a corresponding sequence
of pulses. The digit 0 […] will be represented by the absence of a pulse at the appropriate time,

32 chapter 4. dendritic filters and delays

the digit 1 […] by its presence. This series of pulses is impressed on the end of the line by one
piezo crystal, it is transmitted down the line in the form of supersonic waves, and is reconverted
into a varying voltage by the crystal at the far end. This voltage is amplified sufficiently to give
an output of the order of 10 volts peak to peak and is used to gate a standard pulse generated
by the clock. The pulse may be again fed into the line by means of the transmitting crystal, or
we may feed in some altogether different signal. We also have the possibility of leading the
gated pulse to some other part of the calculator, if we have need of that information at the time.
Making use of the information does not of course preclude keeping it also [4].

Therefore, two aspects of biological neurons that are often disregarded as a nuisance,
dendritic filtering and synaptic transmission delays, could theoretically serve an important
purpose for neural computation. But is all this complexity really instrumental, or is it just
an inevitable side effect of some biological process, through which nature approximates a
much simpler mechanism? In this chapter, we’ll make use of some simple tools from signal
processing to investigate the role of dendritic filtering and delays for neural information
processing.

4.1 Terminology

Before we get started, I’d like to introduce a few terms that are used inconsistently across
different disciplines: The general mathematical formalism we’ll use is temporal convolution,
which is also called filtering in engineering domains. Since physical systems cannot be
retroactively affected by future events, causal filters play a special role, which are linear
integral operators that only depend on the values of the signal in the recent past. Such a
filter operator Κ can be applied to a continuous-time signal 𝑠 by the convolution

Κ𝑠(𝑡) = (𝑠 ∗ 𝜅)(𝑡) = ∫
𝑡

−∞
𝑠(𝜏)𝜅(𝑡 − 𝜏)d𝜏

where 𝜅 is the kernel or impulse-response function of Κ. Delays are a special case of causal
filtering that can be represented by the convolution (𝑠 ∗ 𝜅)(𝑡) = 𝑠(𝑡 − Δ𝑡) with a shifted
Dirac-𝛿-distribution kernel of the form 𝜅(𝑡) = 𝛿(𝑡 − Δ𝑡), where Δ𝑡 is the duration of the delay.
Conversely, we can interpret a continuous filter kernel 𝜅 as the limiting case of a linear
combination of delay terms (for a derivation, see appendix A.1). This equivalence is used in
the (digital) signal processing domain to design filters for periodically sampled discrete-time
signals [113, p. 67]. Therefore, filtering and delays are really two sides of the same coin!

I will also use the one-sided Laplace transform ℒ{𝜅}(𝑠) = ∫∞0 𝜅(𝑡) exp(−𝑠𝑡)d𝑡, which is
closely related to the Fourier transform, to represent a filter with kernel 𝜅(𝑡) in the frequency
domain [114]. The Laplace transform can simplify the analysis greatly, because it allows
us to represent a concatenation of multiple filters in the frequency domain simply by the
multiplication 𝜅1(𝑠) ⋅ 𝜅2(𝑠) ⋅ 𝜅3(𝑠) ⋅ 𝜅4(𝑠) ⋯ of their individual transformations, rather than by
the convolution 𝜅1(𝑡) ∗ 𝜅2(𝑡) ∗ 𝜅3(𝑡) ∗ 𝜅4(𝑡) … in the time domain. If it is clear from context,
I will just write 𝜅(𝑡) and 𝜅(𝑠) ≔ ℒ{𝜅}(𝑠) to denote the filter kernel in the time- or the
Laplace-domain, respectively.

4.2 Dendritic filtering improves information transmission

Why should we care about the filtering effect of dendrites, in the first place? For one,
because including it greatly increases the accuracy with which the firing-rates of biological
neurons can be approximated when compared to simpler point neurons [3, 115]. But more
importantly, filtering offers an opportunity to improve the information transmission and

4.2 . dendritic filtering improves information transmission 33

processing capabilities of individual neurons. This same argument can be made in multiple
ways, and we’ll look at five different perspectives in the following.

4.2.1 Denoising

From the perspective of information theory, the linear-nonlinear neuron is a noisy channel
with limited capacity to transmit information (see also chapter 2 of [7] and the later chapter 5).
This is formalized in the Shannon-Hartley theorem [7, 113], which states that an analog
channel’s ability to transmit information (in some frequency band) is limited by the channel
capacity 𝐶 = 𝐵 log2(1 + 𝑅), where 𝐵 is the analog channel bandwidth and 𝑅 is the signal-
to-noise-ratio, i.e. the ratio of the expected power of the signal to be transmitted relative to
the power of the independent noise signal. Since the amount of transmitted information
adds up linearly across distinct frequency bands, it follows that a carefully chosen filter
can selectively amplify or attenuate different frequency bands to boost the signal while
suppressing the noise. Therefore, a key benefit that an appropriately chosen dendritic filter
can offer for information transmission is to improve the signal-to-noise-ratio and thus the
channel capacity of the neuron. ¹ In general, it will be impossible to completely filter out all 1 The simplest example is when the

signal and the noise occupy distinct
frequency bands altogether, in which
case a simple band-pass filter can be
used to fully isolate the signal and sup-
press the noise.

noise this way, because the spectra of signal and noise are likely to overlap. But the signal-to-
noise ratio can always be optimized by the so-called (causal) Wiener filter or matched filter
[116], which shapes the spectrum in a way that maximizes the relative power of the signal
while minimizing that of the noise.

4.2.2 Pattern detection and sparse coding

Denoising can also be understood in a rather different way. Let’s consider the special case
that the signal 𝑠(𝑡) consists only of repetitions of some stereotypical pattern 𝑔(𝑡), 0 ≤ 𝑡 ≤ 𝑇
with duration 𝑇 subject to white noise 𝜂(𝑡), i.e.

𝑠(𝑡) = ∑
𝜏𝑖≤𝑡

𝑔(𝑡 − 𝜏𝑖) + 𝜂(𝑡) = (𝑔 ∗ 𝜒)(𝑡) + 𝜂(𝑡) with 𝜒(𝑡) = ∑
𝜏𝑖≤𝑡

𝛿(𝑡 − 𝜏𝑖).

Then the power spectrum of the noise is flat, and the kernel of the Wiener filter simplifies to
the time-reversed pattern ℎ(𝑡) = 𝑔(𝑇 − 𝑡). Denoising the signal 𝑠 with this filter ℎ yields the
signal

(ℎ ∗ 𝑠)(𝑡) = (𝑟 ∗ 𝜒)(𝑡) + (ℎ ∗ 𝜂)(𝑡) where 𝑟(𝑡) = (ℎ ∗ 𝑔)(𝑡) = ∫
𝑡

0
𝑔(𝜏)𝑔(𝜏 + 𝑇 − 𝑡)d𝜏 for 𝑡 ≤ 𝑡.

So whenever the stereotypical pattern 𝑔 is seen in the input, the filter responds with 𝑟, the
autocorrelation function of 𝑔, which always has a distinct maximum at 𝑡 = 𝑇. These peaks
in the signal can be easily detected by an appropriately chosen threshold despite the noise,
because filtering the white noise 𝜂 with the same kernel merely results in colored noise with
comparatively lower amplitude. Therefore, a neuron with appropriate dendritic filter can
become an efficient pattern detector (with delay 𝑇) for the stereotypical pattern 𝑔. Detectors
of this sort have long been used, for example, in radar systems to detect reflected radio pulses
of known shape [116], and the same ideas transfer to other time-series signals. In chapter 7,
we’ll contrast this to a rather different type of pattern detector.

4.2.3 Deconvolution

The problem of pattern detection can also be approached from a different perspective:
Imagine that in the same setting as in section 4.2.2 we’d like the filter ℎ to directly return
(ℎ ∗ 𝑠)(𝑡) = 𝜒(𝑡) + (ℎ ∗ 𝜂)(𝑡) rather than (𝑟 ∗ 𝜒)(𝑡) + (ℎ ∗ 𝜂)(𝑡). This inverse problem, called

34 chapter 4. dendritic filters and delays

deconvolution, is unfortunately generally ill-conditioned² and outright impossible if we 2 For a discrete convolution operator,
which can be represented by a ma-
trix, this can be done through itera-
tive matrix-inversion methods with
strong regularization [117], and it be-
comes more complex for continuous-
time operators.

are limited to causal filters. ³ But we could introduce another filter 𝑞 and try to solve the

3 Just consider, for example, the ker-
nel 𝛿(𝑡 − 𝜏) with a delay 𝜏 > 0. Invert-
ing this filter would imply inverting
the time-shift, which would require
an acausal “negative delay”!

relaxed problem ℎ ∗ 𝑠 = 𝑞 ∗ 𝜒 + ℎ ∗ 𝜂 instead, i.e. ℎ ∗ 𝑔 = 𝑞. If we choose 𝑞 well, this can be
(approximately) solved for ℎ even if 𝑔 cannot be inverted. Looking back at section 4.2.2, we
can e.g. choose 𝑞 = 𝑟, which again gives us the matched filter ℎ(𝑡) = 𝑔(𝑇 − 𝑡). Or we could
choose the filter 𝑞 to approximate a delay-line with delay 𝑇 ′ > 𝑇, which would allow us to
approximate a delayed deconvolution (with delay 𝑇 ′)!

4.2.4 Equalization

Another way of looking at the same idea is the equalization [118] (sometimes also called
whitening) of signals, which removes temporal correlations from the signal itself and thus
leads to an equalized or flat power spectrum, resembling that of white noise (hence the
name). This is done in the context of communication systems with bandwidth-limited
communication channels, where the most information can be transmitted if all the available
spectral bandwidth is used to convey relevant (i.e. non-predictable) information. A very
similar argument can be made for the neuron as well, and we’ll return to this idea also in
chapter 5 when we talk about optimal firing rate distributions.

4.2.5 Predictive Coding

A more biologically motivated perspective is predictive coding (see e.g. chapter 6 of [7]),
which argues that the dendritic filter can subtract predicted future inputs, leaving only the
residual error to be transmitted by the neuron. The benefit of such an encoding is, again,
that (given a sufficiently good prediction) these residuals are temporally decorrelated (i.e.
equalized), which leads to an information theoretically and metabolically efficient encoding
[7, chapter 6]. This has been experimentally observed in visual [119, 120] and auditory
neurons [121], as well as in other modalities and animals [6], and is believed to play an
important role for neural information processing in general [122].

4.3 Dendritic filtering in the linear-nonlinear model

We saw that, when we view the neuron as a signal-processing device, the ability to imple-
ment dendritic filters is extremely attractive. We will now investigate, how this could be
implemented on a mechanistic level.

If we are willing to ignore all the non-linear effects that can occur in neural dendrites,
such as dendritic plateau potentials,⁴ and instead focus exclusively on the linear effects 4 I actually believe that these non-

linear effects are absolutely crucial for
dendritic computation, and I argue for
this position in chapter 7.

described by neural cable theory [111], then the behavior of a dendrite can be approximated
by assigning a specific impulse response to each synapse, depending on its location on the
dendrite. The somatic membrane potential can then be approximated by a linear combination
of these differently filtered synaptic inputs. The result is a more general type of linear-
nonlinear neuron model, which I’ll just call the “filter-nonlinear” model in the following (see
figure 4.1).

A very simple special case of this model is Rall’s so-called ball-and-stick model [123]:
Under certain simplifying assumptions (e.g. specific relationships between the thickness of
dendritic branches), the effect of a synaptic input onto the soma’s membrane potential only
depends on the distance of the synapse to the soma— the complex tree-shaped topology of the
dendrite can be ignored altogether. In this case the dendrite therefore behaves equivalently
to a single cylindrical dendrite as shown in the top panel of figure 4.5. This cylinder can be
approximated by a chain of multiple compartments, each of which receives and filters input
from its “up-stream” neighbor compartment as well as synaptic inputs. How many of these

4.3 . dendritic filtering in the linear-nonlinear model 35

Filter-Nonlinear neuron

+𝒦1

𝑥1(𝑡)
𝑠1(𝑡)

𝒦2

𝑥2(𝑡)
𝑠2(𝑡)

𝒦3

𝑥3(𝑡)
𝑠3(𝑡)

⋮⋮

𝑦(𝑡)

Figure 4.1. A linear-nonlinear neu-
ron, where the dendrite is modeled
by a set of filters 𝒦𝑖. Each synap-
tic input 𝑠𝑖(𝑡) now produces a differ-
ent post-synaptic membrane poten-
tial 𝑥𝑖(𝑡), which are then summed up
and non-linearly transformed at the
soma.

compartments a synaptic input has to traverse depends on the distance of the synapse to
the soma, therefore the dendrite can be also viewed as a filter bank. See the middle panel of
figure 4.5 for an illustration.

Rall’s ball-stick model

Neuron with dendritic filter-bank

Neuron with dendritic feedback filter-bank

𝑤1,1

𝑤1,2

𝑤2,1

𝑤2,2

𝑤3,1

𝑤3,2

𝑠1(𝑡)

𝑠2(𝑡)

…

𝑦(𝑡)

+ 𝜅3
𝑥1(𝑡)

𝑤1,1
𝑤1,2

+ 𝜅2
𝑥2(𝑡)

𝑤2,1
𝑤2,2

+ 𝜅1
𝑥3(𝑡)

𝑤3,1
𝑤3,2

⋯

𝑠1(𝑡)

𝑠2(𝑡)

…

𝑦(𝑡)

+ 𝜅3
𝑥1(𝑡)

𝑤1,1
𝑤1,2

+ 𝜅2
𝑥2(𝑡)

𝑤2,1
𝑤2,2

+ 𝜅1
𝑥3(𝑡)

𝑤3,1
𝑤3,2

⋯

𝑠1(𝑡)

𝑠2(𝑡)

…

𝑦(𝑡)𝑣1𝑣2𝑣3 𝑦(𝑡)

Figure 4.2. Top: The ball-and-stick
model [123] abstracts the neuron’s
dendritic arbor into a single “equiv-
alent cylinder” or cable, on which the
propagation of activity can be mod-
eled by a partial differential equation.
The impulse response of an input sig-
nal depends on the location along the
cylinder. Middle: A neuron with a
dendrite modeled by a tapped filter-
bank composed of individual filters 𝜅𝑖.
Each tap of the filter-bank provides
a local state-variable 𝑥𝑖(𝑡). The neu-
ron’s output 𝑦(𝑡) = 𝑓 (𝑥1) is then just
a non-linear function of the somatic
membrane potential 𝑥1. Bottom: By
adding a linear feedback term, more
complex filters can be constructed.

Just like forward-propagation, the effects of backward-propagation of membrane potential
in the retrograde direction, i.e. away from the soma, can be also incorporated by adding
linear feedback terms (see the bottom panel of figure 4.5). In this model, the weights of the
(feed-forward) input and the weights of the feedback term parameterize a family of dendritic
filters that can approximate the filtering effect of a dendritic tree. ⁵ 5 Curiously, this type of dendritic fil-

ter with feed-back resembles a well
known topology of infinite impulse
response filters for electrical signal
processing [124]!

In the following, we’ll look at two particularly simple and relevant implementations of
such a dendritic filter banks:

36 chapter 4. dendritic filters and delays

4.4 Dendritic filtering in the Gamma Neuron

If we implement the dendrite shown in figure 4.5 as a bank of identical first-order low-pass
filters with transfer function 𝜅𝑖(𝑠) =

𝛼
𝑠+𝛼 and time-constant 𝛼, then this much simpler multi-

compartment model can be described by a system of ordinary differential equations instead
of Rall’s original partial differential equation. The resulting neuron is shown in figure 4.3.

Gamma neuron with linear feedback

+ 𝛼
𝑠+𝛼

𝑥1(𝑡)

𝑤1,1
𝑤1,2

+ 𝛼
𝑠+𝛼

𝑥2(𝑡)

𝑤2,1
𝑤2,2

+ 𝛼
𝑠+𝛼

𝑥3(𝑡)

𝑤3,1
𝑤3,2

⋯

𝑠1(𝑡)

𝑠2(𝑡)

…

𝑦(𝑡)𝑣1𝑣2𝑣3 𝑦(𝑡)

Figure 4.3. The GammaNeuron uses a
filter-bank composed of identical first-
order filters with transfer function
𝛼

𝑠+𝛼 to model the dendrite. Inputs are
projected onto the filter taps through
multiple synapses with weights 𝑤𝑗,𝑖.
Similarly, feed-back paths can be
added with weights 𝑣𝑗. These weights
parameterize the dendritic filter. A
nonlinear activation function is ap-
plied to the filter output.

The low-pass filter response of each tap resembles the simplified sub-threshold dynamics
of the leaky integrate-and-fire neuron, and the filter bank can hence be interpreted as a chain
of weakly coupled dendrite compartments. The result is the versatile Gamma-neuron [125],
which can be represented by a particularly simple system of ordinary differential equations.
This model owes its name to the fact that a synaptic spike arriving at the 𝑘th compartment
from the soma would be subjected to the transfer function (𝛼/𝑠+𝛼)𝑘, which is the Laplace
transform of the density function of some Gamma distribution. The impulse response of the
dendrite therefore becomes broader and broader with every additional compartment that a
spike has to traverse on its way to the soma (see figure 4.4).

Figure 4.4. Open-loop impulse-
responses of the somatic membrane
potential in response to synaptic in-
put spikes received at various taps
along the dendrite. The impulse re-
sponses have the form of the proba-
bility density function of Gamma dis-
tributions, hence the name Gamma
Neuron.

Now, if the same input signal 𝑠𝑖 arrives at various taps 𝑗 along the dendrite through
multiple synapses with weights 𝑤𝑗,𝑖, then the total effect of the dendrite on that input is
a linear combination of the individual taps’ responses. By adding a feedback path with
additional coefficients 𝑣𝑖, we can extend this neuron model to allow much more complex
filters to be implemented by the dendrite [126]. This family of filters can be formalized nicely
(see the note below) and includes a lot of interesting special cases: For example, low-, high-
and band-pass filters can be implemented with just two taps, and with increasing order the
(open-loop) impulse response of the taps more and more resembles Gaussian filters. Also, for
any filter 𝜅 that can be implemented by a Gamma Neuron, the derivative 𝜅′ can be trivially
implemented as well. See appendix A.3 for derivations.

If we put all of this together, a single Gamma neuron could therefore theoretically

(a) extract relevant frequency-bands from each of its multiple input signals,

(b) equalize each signal to extract the maximum amount of information,

(c) calculate derivatives or (“leaky”) integrals thereof,

(d) and linearly combine them into a single signal that is then

4.5 . computing with synaptic delays 37

Note: The ring of Gamma filters

The filters that can be implemented by the Gamma neuron span a finite-dimensional
function space, parameterized by the input and feedbackweights.With a bit of algebra,
we can make this more precise (see appendix A.2 for a derivation): The space of filters
that can be implemented by the Gamma neuron corresponds to exactly those with a
proper rational transfer function in the Laplace domain. The addition and convolution
(i.e. concatenation) of two implementable filters yields another implementable filter,
but the inverse 𝜅−1 of an implementable filter 𝜅 is in general not a proper rational
function (i.e. 𝜅−1 is acausal) and thus not implementable. Therefore, the class of
filters that can be implemented by such a filter bank forms a commutative ring (or
rather pseudo-ring) without multiplicative identity and inverse. This space of filters
is extremely general; it contains all analog linear filters that can be implemented by
networks of lumped electric elements, i.e. discrete resistors, capacitors and inductors
[127], and any transfer function can at least be well approximated by such a rational
function, also called a Padé approximant [128].

(e) passed through a nonlinearity.

This also makes the individual neuron at least as powerful as a PID controller [129], a
versatile tool from control theory and much more impressive than the simple logic gates we
saw in chapter 3!

In contribution 4, we extend this model further and employ a synaptic plasticity rule to
train individual (spiking) Gamma neurons to detect specific temporal patterns in their input.

Contribution 4: Training the Gamma Neuron for event detection

We extended the Gamma Neuron to a spike-based temporal pattern detector for a
conference poster presented first at the Cognitive Computing 2018 conference in
Hannover, Germany, and then again at the Machine Learning Summer-School (MLSS)
2019 held in Cape Town, South Africa. Here we investigated how this type of neuron
model could be trained to produce a spike-based classification of temporal patterns
through a local, reward-modulated synaptic learning rule.

Reference :

P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic Adaptive Filters for event
detection, trained with a gradient free online learning rule,” presented at the Machine
Learning Summer School (MLSS-Africa 2019), 1, 2019.

4.5 Computing with synaptic delays

We already saw above that delays are just a special case of causal filtering and vice versa, but
delays deserve special treatment in the study of neural systems. They are a fact of life, since
no physical system can respond instantaneously to its input — and of course neurons are no
exception. However, even minuscule delays can make otherwise benign dynamical systems
difficult to control or even chaotic [130], which is why they are often seen as a nuisance
to be avoided by theoreticians and engineers alike. But biological neurons are inherently

38 chapter 4. dendritic filters and delays

analog machines that work asynchronously and in real time, so we have no choice but to
recognize and understand the effect of delays on their dynamics. As we shall see, this might
be a blessing in disguise, since there are even (somewhat surprising) ways in which delays
might actually improve the computational capabilities of neurons and networks!

To understand how delays, e.g. caused by synaptic transmission, could be used construc-
tively by biological neurons, we need to make a brief detour into (digital) signal processing
and control theory.

4.5.1 Delay-embeddings, state-estimation and Koopman-control

So far, we looked at continuous-time signals and filters, but a lot of the intuitions about
information transmission come from the study of sampled discrete-time systems. The connec-
tion is established by the Nyquist sampling theorem [118, 124], which states that any analog
bandwidth limited signal can be fully represented without loss of information by samples of
the signal, if they are measured at a sufficiently high finite sampling rate. In that context, the
same effect that a continuous filter would have on a continuous signal can be achieved by
filtering the sampled signal with a discrete-time filter, which can be implemented by a linear
combination of the outputs of a tapped delay-line. ⁶ Just like in the Gamma neuron, a linear 6 This is analogous to how we used

a continuous filter bank above to
construct the dendritic filter of the
Gamma neuron.

feedback loop can be used to extend these filters, which allows us to also construct infinite
impulse response filters. See [118, 124, 131] for an introduction into filter design and tapped
delay-lines.

Neuron with tapped delay-line

Neuron with (multi-)delayed feedback

+ 𝑒−𝜏𝑠

𝑥1(𝑡)

𝑤1,1
𝑤1,2

+ 𝑒−𝜏𝑠

𝑥2(𝑡)

𝑤2,1
𝑤2,2

+ 𝑒−𝜏𝑠

𝑥3(𝑡)

𝑤3,1
𝑤3,2

⋯

𝑠1(𝑡)

𝑠2(𝑡)

…

𝑦(𝑡)

+ 𝑒−𝜏𝑠

𝑥1(𝑡)

𝑤1,1
𝑤1,2

+ 𝑒−𝜏𝑠

𝑥2(𝑡)

𝑤2,1
𝑤2,2

+ 𝑒−𝜏𝑠

𝑥3(𝑡)

𝑤3,1
𝑤3,2

⋯

𝑠1(𝑡)

𝑠2(𝑡)

…

𝑦(𝑡)𝑣1𝑣2𝑣3 𝑦(𝑡)

Figure 4.5. Top: A neuron with den-
dritic or synaptic delays modeled by
a tapped delay-line composed of in-
dividual delay elements with trans-
fer function 𝑒−𝜏𝑠 and identical delay
𝜏. This topology can implement finite
impulse-response filters. Bottom: By
adding a linear feedback term, infinite
impulse-response filters can be con-
structed.

But of course, tapped delay-lines can also be utilized in a continuous-time setting. In that
context, we’d say that the outputs of all the taps constitute a delay embedding of the signal —
a higher dimensional representation of the signal and its recent past. Such an embedding
contains a lot of information about the signal that can, for example, be used to estimate
derivatives or to forecast the signal into the future. See also the note below. Under the more
general heading of embedding theory, this has many practical applications for the study of
dynamical systems, signal analysis and causality. Schumacher [132] has a great discussion of
this subject. One fairly recent application of these ideas has been in control theory, specifically
Koopman control [133–135], which comprises many state-of-the-art approaches to controlling
non-linear systems by the use of delay embeddings.

4.5 . computing with synaptic delays 39

Note: Derivatives, finite differences and delay embeddings

To give an intuitive example, how delay embeddings can be used to extract relevant
information from a continuous-time signal, let’s consider the definition of (higher-
order) derivatives. The left derivative of a function 𝑓 can be defined as 𝑓 ′(𝑡) =
limΔ𝑡→0

𝑓 (𝑡)−𝑓 (𝑡−Δ𝑡)
Δ𝑡 . So if we can produce a delayed signal ̃𝑓 (𝑡) = 𝑓 (𝑡 − Δ𝑡) for a

small delay Δ𝑡, we can use the signals 𝑓 and ̃𝑓 to continuously estimate the derivative
𝑓 ′. In fact, the same idea can be applied repeatedly: if 𝑓 ′(𝑡) ≈ 𝑓 (𝑡)−𝑓 (𝑡−Δ𝑡)

Δ𝑡 and

𝑓 ′(𝑡 − Δ𝑡) ≈ 𝑓 (𝑡−Δ𝑡)−𝑓 (𝑡−2Δ𝑡)
Δ𝑡 , then 𝑓 ″(𝑡) ≈ 𝑓 ′(𝑡)−𝑓 ′(𝑡−Δ𝑡)

Δ𝑡 ≈ 𝑓 (𝑡)−2𝑓 (𝑡−Δ𝑡)+𝑓 (𝑡−2Δ𝑡)
Δ𝑡2

, and
so on. We can thus estimate the first 𝑁 derivatives of a signal by a linear combination
of 𝑁 + 1 delayed versions with delays 𝑘 ⋅ Δ𝑡, 𝑘 ∈ {0, 1, 2, … , 𝑁 }. I’ll let 𝛿𝑘(𝑡) denote the
delay line 𝛿(𝑡 − 𝑘Δ𝑡). The mapping

𝑓 (𝑡) → ((𝛿0 ∗ 𝑓)(𝑡) (𝛿1 ∗ 𝑓)(𝑡) (𝛿𝑁 ∗ 𝑓)(𝑡))

is then a so-called delay embedding, which embeds the one-dimensional time-varying
signal 𝑓 into an 𝑁 + 1-dimensional space. This can be implemented by a tapped delay-
line composed of 𝑁 concatenated delay elements, each with the same delay Δ𝑡. From
this embedding, approximate derivatives of order ≤ 𝑁 can be trivially read out by
linear combinations of different taps’ outputs. Therefore, an 𝑛-tap delay-embedding
contains enough information about the signal to approximate a Taylor-approximation
of order 𝑛 − 1 at the current point in time!

4.5.2 Delayed nonlinear feedback

So far, we only discussed linear systems with delay, but what if we include nonlinear feedback-
loops? The result is a nonlinear delay- or retarded differential equation, which has an infinite
dimensional state-space and can exhibit extremely complex, if not chaotic, behavior. The
inherent complexity of such systems with nonlinear delayed feedback can introduce very
long-lasting memory effects (see also [130] for more examples). ⁷ 7 One example of such systems are

feedback shift registers, whose very
long memory is used for the gener-
ation of maximally long sequences of
non-repeating pseudo-random num-
bers [136]!

4.5.3 Filter- or multi-delay-coupled reservoir computing

The idea to use the longmemory of systemswith delayed nonlinear feedback also underlies an
admittedly weird neuron model called the single node, multi-delay-coupled reservoir computer
(SNMDCR). It is an extension of the slightly simpler single node, delay-coupled reservoir
computer (SNDCR), which is situated between machine learning, neuroscience and optical
neuromorphic hardware [137].⁸ We extend this model in contribution 5 to use multiple 8 The original physical realization of

the system was implemented by self-
coupled lasers with optical delay ele-
ments.

delayed feedback terms (hence the slight change in name), which considerably increases
the neuron’s ability to learn complex temporal dynamics. The resulting neuron model is
summarized in figure 4.6.

SNMDCR neuron

+ 𝛼
𝑠+𝛼

𝑥1(𝑡)

𝑤1,1
𝑤1,2

+ 𝑒−𝜏𝑠

𝑥2(𝑡)

𝑤2,1
𝑤2,2

+ 𝑒−𝜏𝑠

𝑥3(𝑡)

𝑤3,1
𝑤3,2

⋯

𝑠1(𝑡)

𝑠2(𝑡)

…

𝑦(𝑡)𝑣1𝑣2𝑣3 𝑦(𝑡)

Figure 4.6. A single-node multi-delay-
coupled reservoir. It resembles the neu-
ron in figure 4.3, but with delay ele-
ments instead of exponential filters
for all but the first tap. Each tap de-
lays the signal by 𝜏. Note that the
feedback-signal is here taken after the
nonlinearity, so the behavior of the en-
tire system is no longer of the simple
linear-nonlinear form.

40 chapter 4. dendritic filters and delays

Contribution 5: Neuromorphic computation in multi-delay coupled models

In this paper, we explored how delayed feedback, in particular the interaction between
differently delayed feedback-loops, can be exploited to endow a single neuron, which
could be implemented in an electrical or photonic circuit, with memory and the
capability to compute complex functions of its input history. For a simple single-node
multi-delay-coupled reservoir neuron, we show how the relationship between the
delay terms leads to different complexity of behavior, and hence different performance
of the trained neuron across different time-series regression tasks. Curiously, we can
show that — and why — co-prime delays result in the best performance, and thus
give some intuition for the complex behavior of delay-coupled systems.

Reference :

P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic computation in multi-delay
coupled models,” IBM Journal of Research and Development, vol. 61, no. 2/3, 8:7–8:9, 1,
2017, issn: 0018-8646, 0018-8646. doi: 10.1147/JRD.2017.2664698.

Due to the combination of continuous dynamics and delayed feedback, the SN(M)DCR
must be modeled by delay-differential equations, and it shows highly complex if not chaotic
behavior, depending on the precise choice of the relative delays. We use this neuron with
its complex dynamics as a substrate for reservoir computing, i.e. we inject various task-
specific input signals into the neuron and use a weighted linear combination of the delay
embedding of the neuron’s output as a readout. As usual, (only) these weights are optimized
such that the readout approximates the desired output signal of the task. To investigate the
impact of the precise choice of delays on the ability of the SNMDCR to produce interesting
behavior, we look at a neuron with just two feedback paths with different delays 𝜏1 and 𝜏2.
We systematically vary one of the two delays 𝜏2 while keeping the other fixed, and for each
choice of 𝜏2 optimize the neuron’s weights for some simple task, like estimating the N-bit
parity of a binary signal or approximating a fixed NARMA model of a continuously-valued
signal. Remarkably, the SNMDCR performs very well on either task, but its performance
critically depends on the relative timing of the two delays and deteriorates whenever this
ratio approaches a ratio of small integers such as 1 ∶ 1, 1 ∶ 2, 2 ∶ 3 etc. Since the SNMDCR
is described in discrete time and the delays are integer multiples of these time-steps, we
can compare the location and magnitude of the performance drops to the greatest common
divisor of the two delays and find a clear correspondence.

To get a better mechanistic understanding of how and why the SNMDCR works (and
when it fails), we analyze how it integrates and recombines information over time, and
conclude that co-prime delays provide the best “mixing” over time with the longest memory,
which appears to be the critical factor for performance on these tasks. While these results are
specific for an unusual type of neuron model and cannot be directly transferred to others⁹, 9 For example, in the continuous-time

context of biological neurons, the in-
herently discrete concepts like co-
primality and greatest common divi-
sors are not applicable.

they nevertheless provide a useful intuition: Dendritic filtering and synaptic delays can be
used to not only extract relevant information from time-varying signals, but also to improve
information transmission, provide volatile memory, and implement computation within a
single neuron!

http://dx.doi.org/10.1147/JRD.2017.2664698

4.6 . dendritic filtering in the real world 41

4.6 Dendritic filtering in the real world

We have seen for a couple of examples above how a neuron could, in principle, make con-
structive use of the delays and filtering effects introduced by synaptic transmission and the
dynamics of ion currents in the dendrite. A natural question to ask now is: How much, what
for and how, if at all, do biological neurons actually use dendritic filtering? A second question
is: Should we use dendritic filtering in machine learning models of neural networks?

On the one hand, there has been a lot of biological evidence that shows dendrites using
delays and filtering to do muchmore than just instantaneous linear combinations of incoming
signals. For example, the distance-dependent filtering and delaying effect of dendrites has
long been proposed as a critical feature for binaural localization of sounds [138]. There is
even some evidence that these transmission delays can be fine-tuned by controlling the
myelinization of axons [139], which would represent an entirely new form of plasticity
mechanism! The huge theoretical potential that dendritic filtering can offer for processing
time-series signals also makes it likely that evolution would have found ways to exploit it in
some way.

On the other hand, it is also tempting to entirely brush off the intimidating complexity
of biological dendrites as functionally irrelevant “implementation details”, and there is also
biological evidence to support this view. For example, the attenuation along the dendrite
appears (in some cases) to be precisely counteracted by some other mechanism like synaptic
scaling or “synaptic democracy” [140, 141]. This could ensure that each synaptic spike,
regardless of its location on the dendrite, has the same effect on the somatic membrane
potential. Through such regulatory mechanisms, an apparently complex nonlinear neuron
could produce a rather simple linear behavior that is well described by the point-neuron
model, after all. ¹⁰ But more critically, the real time-constants of dendritic filtering and 10 However, such a regulatory mecha-

nism might only affect the amplitude,
not the delay, of a synaptic input as
a function of its location on the den-
drite. In that case, the arguments of
this section could still be applied.

synaptic delays (on the order of microseconds to tens of milliseconds) might just not be
long enough to implement most useful filters on behaviorally relevant time-scales. And on a
more fundamental level, the strongly nonlinear effects that can be observed within small
dendritic branches call the assumption into question, that the temporal dynamics can be well
approximated by linear filters, at all! Instead, the interaction of active, localized nonlinear
processes within the dendrites need to be taken into account [142]. We will return to this
point in detail in chapter 7.

It might therefore turn out, that biological neurons make only limited and rather specific
use of (linear) dendritic filtering, e.g. for the purpose of adaptation (see chapter 5) and for
the processing of spiking inputs (see chapter 6), while relying on different mechanisms on
the neuron or network level, such as active dendritic processes (see chapter 7) or recurrent
networks (see chapter 2) for more sophisticated temporal integration and processing of
information.

Of course, for machine learning models and neuromorphic hardware these biological
constraints do not apply, and dendritic filtering is certainly worth considering. However,
the introduction of dendritic filters (in analog or digital hardware as well as in software)
complicates the individual neuron substantially, and the additional slow dynamics makes
temporal credit assignment difficult. Models like the Gamma neuron are therefore more
difficult to simulate and to train using conventional gradient-based methods (see contribu-
tion 4). I therefore see the most promising applications of these ideas in conjunction with
local learning rules (e.g. for unsupervised equalization of signals) and/or in the context of
analog neuromorphic hardware, where filtering is inevitable and can be efficiently realized
by simple electronic circuits.

42 chapter 4. dendritic filters and delays

References for chapter 4:

3. W. Maass and C.M. Bishop, Pulsed Neural Networks. MIT Press, 2001, 414 pp., isbn: 978-0-262-
63221-8. Google Books: jEug7sJXP2MC (cit. on pp. vii, 32, 59, 61–63, 73).

4. A.M. Turing and B. J. Copeland, The Essential Turing: Seminal Writings in Computing, Logic,
Philosophy, Artificial Intelligence, and Artificial Life, plus the Secrets of Enigma. Clarendon Press ;
Oxford University Press, 2004, isbn: 978-0-19-825079-1 978-0-19-825080-7 (cit. on pp. vii, 3, 31,
32).

6. S. (O. N. Laughlin University Of C, Principles of Neural Design. 2017, isbn: 978-0-262-53468-0
(cit. on pp. vii, 17, 34, 51, 60, 66).

7. J. V. Stone, Principles of Neural Information Theory: Computational Neuroscience and Metabolic
Efficiency. Sebtel Press, 2018, 214 pp., isbn: 978-0-9933679-2-2 (cit. on pp. vii, 33, 34, 46, 55, 60,
62, 66, 71, 98).

11. P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic computation in multi-delay coupled
models,” IBM Journal of Research and Development, vol. 61, no. 2/3, 8:7–8:9, 1, 2017, issn:
0018-8646, 0018-8646. doi: 10.1147/JRD.2017.2664698 (cit. on pp. viii, 40, 101).

19. P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic Adaptive Filters for event detection,
trained with a gradient free online learning rule,” presented at the Machine Learning Summer
School (MLSS-Africa 2019), 1, 2019 (cit. on pp. viii, 37, 101).

35. J. von Neumann, The Computer and the Brain. Yale University Press, 1958, isbn: 978-0-300-
08473-3 978-0-300-00793-0 978-0-300-02415-9 (cit. on pp. 3, 31).

111. C. Koch, “Cable theory in neurons with active, linearized membranes,” Biological Cybernetics,
vol. 50, no. 1, pp. 15–33, 1, 1984, issn: 1432-0770. doi: 10.1007/BF00317936 (cit. on pp. 31,
34).

112. B. F. Behabadi, A. Polsky, M. Jadi, J. Schiller, and B.W. Mel, “Location-Dependent Excitatory
Synaptic Interactions in Pyramidal Neuron Dendrites,” PLOS Computational Biology, vol. 8, no. 7,
e1002599, 19, 2012, issn: 1553-7358. doi: 10.1371/journal.pcbi.1002599 (cit. on p. 31).

113. J. B. Anderson and R. Johnnesson, Understanding Information Transmission. John Wiley & Sons,
17, 2006, 323 pp., isbn: 978-0-471-71119-3. Google Books: GD5GY4XyPXIC (cit. on pp. 32, 33,
46, 48, 60, 61).

114. J. L. Schiff, The Laplace Transform: Theory and Applications. Springer, 1999, 233 pp., isbn:
978-0-387-98698-2. Google Books: N_jZBwAAQBAJ (cit. on p. 32).

115. K. Doya, S. Ishii, A. Pouget, and R. P. N. Rao, Bayesian Brain: Probabilistic Approaches to Neural
Coding. MIT Press, 2007, 341 pp., isbn: 978-0-262-04238-3. Google Books: bsQMWXXHzrYC (cit.
on pp. 32, 77).

116. G. Turin, “An introduction to matched filters,” IRE Transactions on Information Theory, vol. 6,
no. 3, pp. 311–329, 1960, issn: 2168-2712. doi: 10.1109/TIT.1960.1057571 (cit. on p. 33).

117. P. C. Hansen, “Deconvolution and Regularization with Toeplitz Matrices,” p. 56, (cit. on p. 34).

118. M.D. Adams, Continuous-Time Signals and Systems (Edition 2.0). Michael Adams, 29, 2020,
400 pp., isbn: 978-1-55058-658-9. Google Books: BWPXDwAAQBAJ (cit. on pp. 34, 38).

119. M. V. Srinivasan, S. B. Laughlin, A. Dubs, and G. A. Horridge, “Predictive coding: A fresh view of
inhibition in the retina,” Proceedings of the Royal Society of London. Series B. Biological Sciences,
vol. 216, no. 1205, pp. 427–459, 22, 1982. doi: 10.1098/rspb.1982.0085 (cit. on p. 34).

120. T. Hosoya, S. A. Baccus, and M. Meister, “Dynamic predictive coding by the retina,” Nature,
vol. 436, no. 7047, pp. 71–77, 7047 2005, issn: 1476-4687. doi: 10.1038/nature03689 (cit.
on p. 34).

121. E. C. Smith and M. S. Lewicki, “Efficient auditory coding,” Nature, vol. 439, no. 7079, pp. 978–982,
7079 2006, issn: 1476-4687. doi: 10.1038/nature04485 (cit. on pp. 34, 51).

122. L. Aitchison and M. Lengyel, “With or without you: Predictive coding and Bayesian inference
in the brain,” Current Opinion in Neurobiology, vol. 46, pp. 219–227, 1, 2017, issn: 0959-4388.
doi: 10.1016/j.conb.2017.08.010 (cit. on p. 34).

http://books.google.com/books?id=jEug7sJXP2MC
http://dx.doi.org/10.1147/JRD.2017.2664698
http://dx.doi.org/10.1007/BF00317936
http://dx.doi.org/10.1371/journal.pcbi.1002599
http://books.google.com/books?id=GD5GY4XyPXIC
http://books.google.com/books?id=N_jZBwAAQBAJ
http://books.google.com/books?id=bsQMWXXHzrYC
http://dx.doi.org/10.1109/TIT.1960.1057571
http://books.google.com/books?id=BWPXDwAAQBAJ
http://dx.doi.org/10.1098/rspb.1982.0085
http://dx.doi.org/10.1038/nature03689
http://dx.doi.org/10.1038/nature04485
http://dx.doi.org/10.1016/j.conb.2017.08.010

4.6 . dendritic filtering in the real world 43

123. W. Rall, “Electrophysiology of a Dendritic Neuron Model,” Biophysical Journal, vol. 2, no. 2,
pp. 145–167, 1962, issn: 00063495. doi: 10.1016/S0006-3495(62)86953-7 (cit. on pp. 34,
35).

124. M. K. Mandal and A. Asif, Continuous and Discrete Time Signals and Systems. Cambridge Univer-
sity Press, 2007, 865 pp., isbn: 978-0-521-85455-9 (cit. on pp. 35, 38, 91).

125. B. de Vries and J. C. Principe, “The gamma model—A new neural model for temporal processing,”
Neural Networks, vol. 5, no. 4, pp. 565–576, 1992, issn: 08936080. doi: 10.1016/S0893-6080
(05)80035-8 (cit. on pp. 36, 89, 91).

126. J. Principe, B. de Vries, and P. de Oliveira, “The gamma-filter-a new class of adaptive IIR filters
with restricted feedback,” IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 649–656,
1993, issn: 1941-0476. doi: 10.1109/78.193206 (cit. on pp. 36, 89).

127. A. I. Zverev, Handbook Of Filter Synthesis. 1967 (cit. on p. 37).

128. G. A. Baker, G. A. B. Jr, G. Baker (A.), P. Graves-Morris, and S. S. Baker, Pade Approximants:
Encyclopedia of Mathematics and It’s Applications, Vol. 59 George A. Baker, Jr., Peter Graves-
Morris. Cambridge University Press, 26, 1996, 762 pp., isbn: 978-0-521-45007-2. Google Books:
Vkk4JNLKbLoC (cit. on p. 37).

129. Kiam Heong Ang, G. Chong, and Yun Li, “PID control system analysis, design, and technology,”
IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559–576, 2005, issn: 1558-
0865. doi: 10.1109/TCST.2005.847331 (cit. on pp. 37, 92).

130. H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences.
Springer New York, 2011, vol. 57, isbn: 978-1-4419-7645-1 978-1-4419-7646-8. doi: 10.1007
/978-1-4419-7646-8 (cit. on pp. 37, 39).

131. B. A. Shenoi, Introduction to Digital Signal Processing and Filter Design/ B.A. Shenoi. Wiley, 2006,
isbn: 978-0-471-46482-2 978-0-471-65442-1 (cit. on p. 38).

132. J. Schumacher, “Time series analysis informed by dynamical systems theory,” Institute of
Cognitive Science, 2015 (cit. on p. 38).

133. J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing Koopman Theory to Allow for Inputs
and Control,” SIAM Journal on Applied Dynamical Systems, vol. 17, no. 1, pp. 909–930, 2018,
issn: 1536-0040. doi: 10.1137/16M1062296 (cit. on p. 38).

134. M. Kamb, E. Kaiser, S. L. Brunton, and J. N. Kutz. “Time-Delay Observables for Koopman:
Theory and Applications.” arXiv: 1810.01479 [cs, math]. (14, 2020), [Online]. Available:
http://arxiv.org/abs/1810.01479 (visited on 08/23/2020) (cit. on p. 38).

135. E. Kaiser, J. N. Kutz, and S. L. Brunton. “Data-driven discovery of Koopman eigenfunctions for
control.” arXiv: 1707.01146 [math]. (19, 2020), [Online]. Available: http://arxiv.org/a
bs/1707.01146 (visited on 08/23/2020) (cit. on p. 38).

136. J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transactions on Information Theory,
vol. 15, no. 1, pp. 122–127, 1969, issn: 1557-9654. doi: 10.1109/TIT.1969.1054260 (cit.
on p. 39).

137. J. Schumacher, H. Toutounji, and G. Pipa, “An Introduction to Delay-Coupled Reservoir Com-
puting,” in Artificial Neural Networks, P. Koprinkova-Hristova, V. Mladenov, and N. K. Kasabov,
eds., vol. 4, Springer International Publishing, 2015, pp. 63–90, isbn: 978-3-319-09902-6 978-3-
319-09903-3. doi: 10.1007/978-3-319-09903-3_4 (cit. on p. 39).

138. H. Agmon-Snir, C. E. Carr, and J. Rinzel, “The role of dendrites in auditory coincidence detection,”
Nature, vol. 393, no. 6682, pp. 268–272, 6682 1998, issn: 1476-4687. doi: 10.1038/30505 (cit.
on p. 41).

139. R. D. Fields, “A new mechanism of nervous system plasticity: Activity-dependent myelination,”
Nature reviews. Neuroscience, vol. 16, no. 12, pp. 756–767, 2015, issn: 1471-003X. doi: 10.1038
/nrn4023. pmid: 26585800 (cit. on pp. 41, 60).

140. M. Häusser, “Synaptic function: Dendritic democracy,” Current Biology, vol. 11, no. 1, R10–R12,
9, 2001, issn: 0960-9822. doi: 10.1016/S0960-9822(00)00034-8 (cit. on p. 41).

141. C. C. Rumsey and L. F. Abbott, “Synaptic Democracy in Active Dendrites,” Journal of Neurophys-
iology, vol. 96, no. 5, pp. 2307–2318, 1, 2006, issn: 0022-3077. doi: 10.1152/jn.00149.2006
(cit. on pp. 41, 76).

http://dx.doi.org/10.1016/S0006-3495(62)86953-7
http://dx.doi.org/10.1016/S0893-6080(05)80035-8
http://dx.doi.org/10.1016/S0893-6080(05)80035-8
http://dx.doi.org/10.1109/78.193206
http://books.google.com/books?id=Vkk4JNLKbLoC
http://dx.doi.org/10.1109/TCST.2005.847331
http://dx.doi.org/10.1007/978-1-4419-7646-8
http://dx.doi.org/10.1007/978-1-4419-7646-8
http://dx.doi.org/10.1137/16M1062296
https://arxiv.org/abs/1810.01479
http://arxiv.org/abs/1810.01479
https://arxiv.org/abs/1707.01146
http://arxiv.org/abs/1707.01146
http://arxiv.org/abs/1707.01146
http://dx.doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1007/978-3-319-09903-3_4
http://dx.doi.org/10.1038/30505
http://dx.doi.org/10.1038/nrn4023
http://dx.doi.org/10.1038/nrn4023
26585800
http://dx.doi.org/10.1016/S0960-9822(00)00034-8
http://dx.doi.org/10.1152/jn.00149.2006

44 chapter 4. dendritic filters and delays

142. A. Polsky, B.W.Mel, and J. Schiller, “Computational subunits in thin dendrites of pyramidal cells,”
Nature Neuroscience, vol. 7, no. 6, pp. 621–627, 6 2004, issn: 1546-1726. doi: 10.1038/nn1253
(cit. on pp. 41, 76).

http://dx.doi.org/10.1038/nn1253

The green reed which bends in the wind
is stronger than the mighty oak
which breaks in a storm.

— Confucius

’[A]daptive’ behaviour is equivalent to the behaviour of a stable system

— W. Ross Ashby, Design for a Brain

5 Homeostatic plasticity

In the previous chapters, I presented networks and neurons as information processing “ma-
chines” and likened them to logic gates and other electronic components. But while logic
gates are fed a steady diet of ones and zeros, nervous systems are embedded in biological or-
ganisms, and they are bombarded by noisy input signals from an ever-changing environment,
perceived through sensors that themselves develop or degrade over time. To keep working
in this chaotic setting requires the organism to take active counter-measures to maintain
itself. This ability to adapt to changes is so critical for survival that early cyberneticists like
Ashby [2] saw the concept of homeostasis as the defining feature of life, and one of the main
differences that sets life (and nervous systems) apart from dead matter (and logic gates).
The term “homeostasis” entails that some attribute(s) of the organism are maintained at a
desirable state, and that the system can recover this state from small disturbances through
some self-regulating mechanism. In the case of the nervous system, that could mean to
remain functional (or to quickly regain functionality) even if certain aspects of the sensory
inputs change abruptly. The idea of homeostatic adaptation is therefore quite central in
theoretical and computational neuroscience, and it should play an important role for our
understanding of (artificial) intelligence as well. In fact, a survey of different definitions of
intelligence [143] found that at least 23 out of the 72 definitions see the ability to adjust or
adapt to the environment as a defining feature, and many of the others imply it!

But in most current deep learning research, adaptation plays only a minor role, and
most of the big data sets on which models are trained and evaluated have been explicitly
preprocessed to remove any of the systematic changes or drifts that would require the system
to adapt in the first place¹. Since self-regulating, adaptive systems are also typically harder 1 Many image recognition challenges,

for example, present a fixed set of
training images in randomized or-
der. Often, these images are color-
adjusted, scaled to equal size, centered
or otherwise prepared. It would be
considerably harder, if the training set
was allowed to change over time.

to understand, control and train than static ones, the homeostatic plasticity mechanisms
that we know from biological neurons are hence still largely absent from machine learning
models.

In this chapter, I’d like to illustrate why homeostatic adaptation is not just a biological ne-
cessity, but also a useful mechanism for neural information processing in general. I’ll present
an abstract framework that unifies two different forms of biological plasticity mechanisms to
solve a practical, easily interpretable machine learning problem. Most content of this chapter
is directly based on contribution 6, but it offers another, hopefully simpler motivation for the
main results, while leaving out a lot of the technicalities here. Nevertheless, this will take us
through a number of abstract mathematical concepts, and I will try my best to explain them
here on a rather high level.

46 chapter 5. homeostatic plasticity

Contribution 6: A Unifying Framework of Synaptic and Intrinsic Plasticity
in Neural Populations

In this rather long paper, I explore the relationships and interaction of intrinsic and
synaptic plasticity for computation. The entire chapter 5 of my thesis is largely based
on ideas containedwithin this publication. I try tomotivate the samemain results here
using a slightly different approach that introduces concepts like optimal transport
theory. But for most content of the current chapter, a more in-depth discussion can
be found within this original publication.

Reference :

J. Leugering and G. Pipa, “A Unifying Framework of Synaptic and Intrinsic Plasticity
in Neural Populations,” Neural Computation, vol. 30, no. 4, pp. 945–986, 17, 2018,
issn: 0899-7667. doi: 10.1162/neco_a_01057.

5.1 The Information Bottleneck Principle

The Information Bottleneck Principle [66, 144] loosely states that in neural networks, the
capacity to transmit information from neuron to neuron, or from layer to layer, or from
region to region, is often the limiting factor for computation — a bottleneck, so to speak. As
such, the capacity should be used providently, and neural computation should be optimized
to make efficient use of it. This provides a clear objective, towards which a neuron or network
can be optimized: to convey as much information as possible about the input signal through
an information channel with limited capacity. A popular and quite literal example of this
idea are auto-encoders [145] in deep learning, where a feed-forward network is supposed
to transmit its input signals without loss to its output layer, but with one important twist:
some intermediate layers of the network contain only few neurons and thus present an
information bottleneck. In order to reproduce the network’s input signal on its output, the
network layers leading up to this bottleneck must find a very low-dimensional, compressed
representation of the input (encoding), which the subsequent layer can then decode again.
This is illustrated in figure 5.1. By forcing the network to find such a low-dimensional latent
space representation of its input, we can make sure that the network picks up only on the
most informative features of its input — or so the story goes.

en
co

de
r

bo
tt
le
ne

ck
de

co
de

r

⋯ ⋯ ⋯ ⋯
⋯

⋯

⋯ ⋯ ⋯ ⋯

Figure 5.1. An auto-encoder with a
narrow bottleneck in between the en-
coder and decoder layer(s).

bo
tt
le
ne

ck

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

Figure 5.2. A single neuron acts as an
information bottleneck in between its
synaptic inputs and outputs.

As we already saw in chapter 4, the same principle can be also applied at a much smaller
level, the individual neuron, which needs to reduce its high-dimensional input signal from
thousands of incoming synaptic connections to the only one-dimensional output signal with
finite bandwidth ([146]; see figure 5.2). Particularly when metabolic constraints and noise
are considered, the capacity of individual neurons to transmit information is limited and a
loss of information becomes inevitable. If we apply the information bottleneck principle to
the single neuron, the neuron should be tuned to ensure that as much (relevant) information
as possible about its inputs is preserved in its output. Example 1 gives some intuition for
this idea.

5.2 Mutual information and maximum entropy

From an information theoretical perspective [7, 113, 147], the neuron represents a noisy
channel, and the information bottleneck problem is a matter of maximizing the mutual

http://dx.doi.org/10.1162/neco_a_01057

5.2 . mutual information and maximum entropy 47

Example 1: Gain modulation and the information bottleneck

Consider a linear-nonlinear neuron of the form 𝑓 (𝑥) = tanh(𝑠 ⋅ 𝑥) with a single free parameter, the slope 𝑠 = 𝑓 ′(0) at
the origin. We assume that the output signal 𝑌 = 𝑓 (𝑋) + 𝜂 produced by the neuron is corrupted by additive noise 𝜂. A
perfect recovery of the input signal 𝑋 from the corrupted output signal is 𝑌 impossible, so the neuron becomes a lossy,
non-linear noisy channel. How well this channel can transmit information depends on the choice of the gain 𝑠. To
illustrate this, let’s consider three different neurons, one with low, medium and high gain each (see the three insets
below, from left to right):

Each neuron receives input with the same prior distribution 𝑋 ∼ 𝒩 (0, 1) (gray, above each inset), which results in
different output distributions 𝑃(𝑌) (gray, right of each inset). If we now observed the three output values 𝑦1 = 0.9,
𝑦2 = 0.0 and 𝑦3 = −0.9 (horizontal dashed lines), we can infer the conditional input probability distributions 𝑃(𝑋 |𝑦𝑖)
(shown above in corresponding colors). For a neuron with a low gain of 𝑠 ≈ 0.1, these conditional input distributions
are quite broad and uninformative. For a slope of 𝑠 ≈ 1, each of the three outputs encodes a distinct, narrower input
distribution. For a very steep slope 𝑠 ≈ 10, the observations 𝑦1 = 0.9 or 𝑦3 = −0.9 again reveal only little about 𝑋 —
mostly just whether it was positive or negative.
The red curve below quantifies this dependence of the neuron’s information transmission ℐ (𝑋; 𝑌) on the gain
parameter: As 𝑠 → 0, 𝑓 becomes constant, and the transmitted information content approaches 0 bits. In the other
extreme, when the nonlinearity approaches a step-function (𝑠 → ∞), the output distribution becomes sharply bimodal,
and conveys only the sign-bit of the input signal. For some intermediate optimal slope (𝑠 ≈ 1), however, the neuron’s
output yields a maximum of about 2.5 bits of information about its current input. Modulating the gain can therefore
help to mitigate the information bottleneck!

48 chapter 5. homeostatic plasticity

information between the channel’s in- and output. This critically depends on the statistical
properties of the source signals to be transmitted and the noise affecting the channel, as well
as the parameters of the channel itself. If we think of the standard linear-nonlinear neuron
model with an invertible activation function, then we can express the mutual information as
follows:

𝐼 (𝑋 ; 𝑌) = 𝐼 (̄𝑌 ; 𝑌) = ℎ(̄𝑌) − ℎ(̄𝑌 |𝑌),

where 𝑋 is the neuron’s input (or membrane potential), ̄𝑌 = 𝑓 (𝑋) is its noiseless output, 𝑌 is
the noisy signal that is ultimately received by the next neuron, ℎ(̄𝑌) is the differential entropy
of ̄𝑌 and ℎ(̄𝑌 |𝑌) is the conditional differential entropy of ̄𝑌 given that 𝑌 has been observed, i.e.
the uncertainty of our decoding of ̄𝑌 from the noise-corrupted version 𝑌.

In the absence of noise, the channel’s capacity to transmit information is only limited by
the source entropy ℎ(̄𝑌) — this is Shannon’s famed first theorem (source-coding theorem)[113,
147]. To maximize information transmission by a noiseless channel, we therefore need to
use an “encoding” ̄𝑌 = 𝑓 (𝑋) that results in a maximum entropy distribution of ̄𝑌.

Note: Subtleties of differential entropy

For the continuously valued case we are interested in, there is one extra caveat to
consider [147]: Since the differential entropy ℎ(̄𝑌) can be arbitrarily increased by
just scaling ̄𝑌 (in fact, ℎ(𝛼 ⋅ 𝑌) = ℎ(𝑌) + log(|𝛼|)), the absolute value of the differential
entropy is typically meaningless, as it depends on the choice of units and scales of
the variables of interest. This is fundamentally different from discrete entropy, which
is invariant to any invertible transformation![147]. When we talk of maximizing
differential entropy ℎ(̄𝑌), we therefore always include direct or indirect constraints
on the scale of the random variable and focus not on the absolute value of this
maximum, but only on the distribution that achieves it (this only requires comparing
differences of differential entropy, in which case the scale-dependent terms cancel.).

In practice, any physical channel is subject to noise that reduces its capacity, and the
neuron is of course no exception. This is the core of Shannon’s even more famous second
theorem (channel-coding theorem)[113, 147], which establishes the limit of how much infor-
mation can be transmitted through the channel in the presence of noise. This upper limit
can be increased by improving the signal-to-noise ratio, either by allocating more bandwidth
to the signal (e.g. scaling up firing rates) and/or by suppressing the noise (e.g. by filtering,
see also chapter 4).

Optimizing the encoding while simultaneously taking into account the statistical proper-
ties of the source signal and the characteristics of the channel is called joint source-channel-
coding and can be quite challenging. Luckily for us, the joint source-channel separation theorem
[147] suggests² that an optimal solution to this problem can be found by separately optimiz- 2 The theorem assumes discrete chan-

nels, and does not perfectly translate
to continuously valued signals [148].

ing the source encoding (which only depends on the distribution of source signals) followed
by a channel-specific encoding (which only depends on the characteristics of the channel).
In the following, we will therefore limit ourselves to the simpler problem of source-coding,
i.e. we’d like to find the distribution of neural outputs ̄𝑌 with the largest differential entropy
ℎ(̄𝑌) under certain metabolic constraints imposed by the channel.

For biological spiking neurons, these constraints could be a finite maximum firing rate of
the neuron, an energy constraint on the mean firing rate, or even a constraint that depends
nonlinearly on the firing rate. For neuromorphic hardware, they could be finite supply
voltages or limits on the energy dissipation.

5.3 . optimal transport and the monge problem 49

To incorporate such metabolic constraints, we need to find the output distribution 𝑃∗ with
the largest entropy subject to a list of equations or inequalities of the form 𝐸𝑃(𝑦)[𝑔𝑖(𝑦)] = 𝑐𝑖 for
𝑖 ∈ 𝐼 and 𝐸𝑃(𝑦)[𝑔𝑖(𝑦)] ≥ 𝑐𝑗 for 𝑗 ∈ 𝐽.³ Finding such a measure 𝑃∗ might seem like a daunting 3 To ensure that the result is a valid

probability distribution, there is al-
ways one additional equality con-
straint 0 ∈ 𝐼 with 𝑔0 ≡ 1 on the do-
main of 𝑃 and 𝑐0 = 1.

task, but fortunately there is a beautiful solution to this very problem by Jaynes [149],
generalizing results attributed to Ludwig Boltzmann. It states that the optimal distribution
𝑃∗ is always from an exponential family with a probability density 𝑝∗ that can be expressed
directly in terms of the constraints:

𝑝∗(𝑦) = exp (∑
𝑖∈𝐼 ∩𝐽

𝜆∗𝑖 𝑔𝑖(𝑦))

where 𝜆∗ = argmax𝜆 (∑
𝑖∈𝐼 ∩𝐽

𝜆𝑖𝑐𝑖 −∫ exp (∑
𝑖
𝜆𝑖𝑔𝑖(𝑦)) 𝑑𝑦)

subject to ∀𝑗 ∈ 𝐽 ∶ 𝜆𝑗 ≥ 0

In contribution 6, we look at some examples of such maximum entropy distributions. The
fact that the resulting distributions are all from some exponential family has a lot of interesting
implications and comes in handy for the analysis. We will revisit this in chapter 6 and contrast
it to a different approach, which aims to maximize metabolic efficiency of information
transmission rather than maximizing information transmission under metabolic constraints.
Here, we will just continue with the knowledge that we can in principle derive the optimal
distribution of the output of a linear-nonlinear neuron under metabolic constraints according
to the information bottleneck principle, and that it takes the form of some exponential family
distribution.

5.3 Optimal Transport and the Monge Problem

We saw above how the neuron’s activation function shapes the neuron’s output distribu-
tion and thus its ability to transmit information. I then showed how metabolic constraints
determine the optimal output distribution. Putting these results together, finding an activa-
tion function that produces that desirable output distribution would improve information
transmission, and thus constitute a solution to the bottleneck problem. But what would
this activation function look like for different input distributions? And what is the best
approximation that a neuron could realize?

Again luckily for us, more general versions of this optimization problem, the Monge-
Kantorovich, Kantorovich-Rubinstein or Optimal Transport Problem [150], have been studied
extensively. It can be loosely paraphrased as the problem to find the ‘best’ deterministic trans-
formation to map one given probability density onto another given probability density. What
‘best’ means in this context is precisely defined by a cost function 𝑐(𝑥, 𝑦) ∶ 𝒳 ×𝒴 → [0, 1]
that penalizes the transport of probability mass from 𝑥 to 𝑦. In the historic setting, in which
this question was originally posed, 𝑐 quite literally referred to the cost of moving earth from
one spot 𝑥 to another spot 𝑦, which is also where the alternate name earth mover’s distance
originates from [150]. The original Monge problem can be expressed in terms of this cost
function as an optimization problem:

𝑓 ∗ = arginf𝑓#(𝜇)=𝜈 ∫ 𝑐(𝑥, 𝑓 (𝑥))𝑑𝜇(𝑥),

where 𝜇 and 𝜈 are the source and target the probability distribution, respectively, and 𝑓#(𝜇)
is the distribution onto which 𝜇 is mapped by 𝑓 (i.e. the push-forward measure of 𝜇 under
the function 𝑓).

50 chapter 5. homeostatic plasticity

In our context, we would like the neuron’s activation function to deviate as little as
possible from a linear function (in part because this makes the decoding simpler), so we
choose 𝑐(𝑥, 𝑦) to penalize any deviation of 𝑦 = 𝑓 (𝑥) from 𝑥. The cost function is then some
radial function 𝑐(||𝑥 − 𝑦||) that only depends monotonically on the distance between 𝑥 and 𝑦
in some norm || ⋅ ||. Under generous assumptions, which our cost function satisfies, ⁴ it turns 4 Both 𝑝𝑋 and 𝑝𝑌 must be atom-free,

univariate, continuous probability dis-
tributions.

out that a unique optimum 𝑓 ∗ exists and has the following simple form — regardless of the
precise choice of 𝑐 [150, Remark 2.30]:

𝑓 ∗ = 𝐹−1𝑌 ∗ ∘ 𝐹𝑋,

where 𝐹𝑋 and 𝐹𝑌 ∗ are the cumulative probability distribution of 𝑋 and 𝑌 ∗, respectively.
Combining this result with the maximum entropy approach above, we therefore know the

optimal activation function 𝑓 ∗ that will maximize the neuron’s ability to transmit information
for a given input distribution! And since 𝑓 ∗ is defined purely in terms of the distributions
𝐹𝑋 and 𝐹𝑌 ∗ , any parameter of these distributions becomes a parameter of 𝑓 ∗. Conveniently
for us, the optimal function 𝑓 ∗ is also an acceptable candidate for an activation function
of a neuron, since it is monotonically increasing and continuous if 𝐹𝑋 is continuous and
𝐹𝑌 ∗ is injective. ⁵ In contribution 6, I derive the same solution, albeit from a very different 5 For every root 𝑝𝑌 ∗(𝑦) = 0, 𝑓 ∗ has a

discontinuity at 𝑥 ∈ 𝐹−1𝑋 ({𝑦}).perspective, and discuss in more detail the properties of this functional mapping; a related
derivation can also be found in [151].

Note: Kantorovich’s relaxation [150]

The existence of a deterministic one-to-one mapping 𝑓 ∗ as above is no longer guaran-
teed if we allow discontinuous probability distributions. But even if such a solution
exists, the activation function 𝑓 can become highly nonlinear. If we wish to avoid
that while also maintaining the desired output distribution, we can express the op-
timization problem in a more general form or relaxation proposed by Kantorovich
[150]. Rather than a deterministic one-to-one function 𝑓 ∗, it defines a probabilistic
mapping 𝛾∗ ∶ 𝒳 ×𝒴 → R+, where 𝛾∗(𝑥, 𝑦) is the relative amount of probability
mass to be transferred from 𝑥 to 𝑦:

𝛾∗ = arginf𝛾∈Γ(𝑝𝑋,𝑝𝑌) ∫ 𝑐(𝑥, 𝑦)𝑑𝛾 (𝑥, 𝑦)

Here Γ(𝑝𝑋, 𝑝𝑌) is the set of all joint probability densities with marginal distributions
𝑝𝑋 and 𝑝𝑌, respectively. Such a map always exists (consider for example the trivial
case 𝛾 (𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦)), but the optimal map is not (necessarily) the graph of a
deterministic function from 𝑥 to 𝑦, i.e. such that 𝛾 (𝑥, 𝑦) = 𝛿(𝑥 − 𝑓 (𝑦)), as the stricter
Monge-problem would require. In this non-deterministic case, the same input 𝑥
is instead “distributed” probabilistically over possible outputs 𝑦 with distribution
𝑝𝑦|𝑥 = 𝛾(𝑥, 𝑦). This means that in order to enforce a desired output distribution, we
could also include randomness into the neuron model itself and control it in an input
dependent way. But whether this is useful or not is a separate topic I will not discuss
here.

Let me summarize these results: in order to be an efficient information channel, a neuron
should tune its activation function 𝑓 to map its input 𝑋 ∼ 𝑃𝑋 to an output 𝑌 ∗ = 𝑓 (𝑋)
with maximum entropy distribution 𝑌 ∗ ∼ 𝑃∗. The optimal way to achieve that is to set
𝑓 ← 𝑓 ∗ = 𝐹−1𝑌 ∗ ∘ 𝐹𝑋. This is also extremely useful if we are interested in optimizing spike-
based information transmission, which we will return to in chapter 6.

5.4 . intrinsic homeostatic plasticity 51

5.4 Intrinsic homeostatic plasticity

These derivations all describe the mapping of a single random variable, 𝑋, onto a single
random variably 𝑌 by the neuron’s activation function 𝑓, but a real neuron is faced with a
continuously varying input signal 𝑋(𝑡) which must be expressed as a stochastic process. ⁶ 6 I only look at drift-diffusion processes,

which have a stationary distribution
from some exponential family [152].

And what if the probability distribution of 𝑋(𝑡) were to suddenly change? In order to achieve
andmaintain the optimal output distribution, we’d expect the neuron to adjust to any changes
in its input distribution by homeostatically regulating its nonlinear activation function in real
time. This finally brings us to the main topic of this chapter, intrinsic homeostatic plasticity.

If we take for granted that a neuron can approximate the information-theoretically optimal
input-output mapping in principle, the challenge for homeostatic plasticity is to keep the
mapping optimal, i.e. to constantly adjust the coefficients of the activation function to changes
in the environment that affect the input distribution. However, since the current probability
distribution over input values is determined by external factors, it must be constantly inferred
by the neuron from the recent history of its own input signals. In order to do this with a finite
number of variables, the input distribution has to be approximated by some parameterized
family of distributions, the time-varying parameters of which have to be estimated online,
e.g. by the concentrations of some chemicals or voltage traces.

In contribution 6, I model the neuron’s fast-changing membrane potential 𝑋(𝑡) by a
continuous stochastic process with a given stationary probability distribution from some
exponential family, e.g. a Gaussian. Changes due to environmental factors are assumed to
occur sporadically on a much slower time-scale, which I model as sudden changes in the
stationary distribution of the process. I show that despite the much more complicated math-
ematics involved with stochastic processes, the intuitions derived above for the probability
distributions of in- and output can in fact be applied directly to the stationary distribution
of the stochastic in- and output processes. Thus, by transforming the stochastic process
that describes the neuron’s membrane potential through some nonlinear function 𝑓, we can
produce a stochastic process with any desired stationary distribution as the neuron’s output,
including the maximum entropy distribution that solves the information bottleneck problem.

By assuming a parameterized family of both the stationary input and output distributions,
the optimal activation function also becomes parameterized. Since we are working with a
stationary membrane potential distribution from an exponential family, these parameters
are determined by the distribution’s so-called sufficient statistics.

These sufficient statistics all take the form of an expected value of some nonlinear func-
tion of the process, which we can therefore estimate by filtering, e.g. with an exponentially
weighted continuously running average. ⁷ I prove in contribution 6 that as the running 7 If themean value itself is one of these

sufficient statistic (as e.g. for the Gaus-
sian distribution), the estimation and
homeostatic regulation of that param-
eter could be realized entirely by den-
dritic filtering, as discussed in chap-
ter 4.

estimates of the sufficient statistics approach the true values⁸, the realized output distribution

8 They do this in an unbiased way,
but with some residual uncertainty
that depends on the estimator’s time-
constant. The longer the time con-
stant is, the better the approximation
becomes at the cost of a longer la-
tency.

also approaches the desired output distribution. Since the filtering of the sufficient statistics
constitutes a form of running average, the neuron will thus quickly recover from a perturba-
tion to its input distribution! Example 2 illustrates this mechanism for the simple example of
Gaussian inputs. While this description has focused on continuous linear-nonlinear models,
the same arguments can be extended to spiking neurons, which are known to adapt to their
input distributions, e.g. by regulating the spike-threshold [153]. Stabilizing a neuron’s output
by adjusting to the statistical properties of its input can also promote sparsity and might
help explain the emergence of complex cell receptive fields in visual cortex [154]. This form
of dynamic re-scaling has been directly observed in biological neurons in vision [155, 156],
olfaction [157], audition [121], and might play an important role for neural information
processing, in general [6].

52 chapter 5. homeostatic plasticity

Example 2: A homeostatic neuron for Gaussian inputs

With the popular choice of an Ornstein-Uhlenbeck process [152] as a model of the
membrane potential𝑋, the stationary distribution is Gaussian with sufficient statistics
𝑠1 = E[𝑋] and 𝑠2 = E[𝑋 2]. Two internal state variables 𝜒1 and 𝜒2 provide a running
estimate of 𝑠1 and 𝑠2, respectively. In order to produce an output with cumulative
distribution function 𝐹𝑌, the neuron nonlinearly transforms its membrane potential
through the function 𝑓.

A homeostatic neuron

+

×
𝑤1

×
𝑤2

⋮

𝛼
𝑠+𝛼

𝑥(𝑡)

𝛽
𝑠+𝛽

𝜒1

𝛽
𝑠+𝛽

𝜒2

𝑠1(𝑡)

𝑠2(𝑡) 𝑦(𝑡)

The traces 𝜒1 and 𝜒2 are used to parameterize the activation function

𝑓 (𝑥) ≔ 𝐹−1𝑌 (𝐹𝑋(𝑥)) ≈ 𝐹−1𝑌 (1 + erf(
𝑥 − 𝜒1

√2 (𝜒2 − 𝜒2
1)

))

The neuron operates on two time-scales defined by the fast time-constant 𝛼 of the
membrane potential dynamics, and the slower time-constant 𝛽 of the adaptation
process. Any shift in mean or variance of the input distribution is counteracted by the
neuron on the slower timescale — the neuron exhibits homeostatic self-regulation.

5.5 The complex interactions of synaptic and intrinsic plasticity

Of course, intrinsic plasticity mechanisms that adjust the neuron’s response are not the only
form of neural plasticity. The most critical mechanisms for learning appear to be structural
and synaptic plasticity [158], which lead to the (dis-)appearance of synaptic connections (or
dendritic spines) and an adjustment of the synaptic efficacy, respectively. Each of these forms
of plasticity, intrinsic to the neuron or occurring within each synapse, only have access to
different information and can thus influence the behavior of neurons in different ways.

Each synapse can, in principle, modulate its transmission strength (or transmission
probability) based on the activity of the two neurons it connects, while each neuron, through
intrinsic plasticity, can only adjust its nonlinearity based on the neuron’s membrane potential.
To see where a combination of both rules leads, we investigate the dynamics of a neuron’s
membrane potential and its synaptic weights under the effect of both intrinsic and synaptic
plasticity in contribution 6.

5.5.1 Principal Component Analysis

Consider as an example a neuron with two synaptic inputs, which evolve according to a

(non-linear) Hebbian rule with weight decay of the form 1
𝜂
d𝑤𝑗,𝑖(𝑡)

d𝑡 = 𝑓 (𝑦𝑖(𝑡))𝑔(𝑦𝑗(𝑡)) − 𝑤𝑗,𝑖(𝑡),
where 𝑓 and 𝑔 are increasing functions, 𝑤𝑗,𝑖 is the weight of the synapse connecting neuron 𝑖

5.5 . the complex interactions of synaptic and intrinsic plasticity 53

to 𝑗 and 𝑦𝑖, 𝑦𝑗 are the corresponding neurons’ activations. In this model, if the outputs of the
pre- and post-synaptic neurons stayed constant, the weight 𝑤𝑗,𝑖 would approach the expected
value E[𝑓 (𝑦𝑖(𝑡))𝑔(𝑦𝑗(𝑡))] over time. But there is in fact a positive feedback-loop, since an
increase in the synaptic weight leads to an increase in the post-synaptic activation, which
in turn leads to a further increase of the synaptic weight, and so on. This could potentially
lead to unstable runaway dynamics, where the weights all either converge to 0 or diverge
to ±∞. Stable variations of this rule exist for that reason, such as the popular BCM rule
[159], which includes a term that adjusts for the neuron’s mean activity. Instead, I use the
homeostatic intrinsic plasticity of the post-synaptic neuron to the same end, i.e. to maintain
a fixed distribution of the neuron’s output.

Note: Beyond linear Hebbian learning

The most commonly used synaptic learning rules are (bi-)linear Hebbian learning
rules, where the rate of change of the weights is a product of a linear function
of pre- and post-synaptic activation. But non-linear dependencies on the pre- and
post-synaptic activations are of course conceivable, as well! Such non-linear Heb-
bian learning rules make it possible to further decouple the effects of synaptic and
intrinsic plasticity, e.g. choosing an activation function purely to maximize infor-
mation transmission in combination with a learning rule to realize principal or
independent component analysis. Non-linear Hebbian learning rules therefore open
countless more opportunities for synaptic learning rules that could be studied in this
framework.

So what happens when we drive an assembly of multiple neurons with a multi-variate
stationary input process, and let the synaptic connections and intrinsic parameters evolve
according to these synaptic and intrinsic plasticity rules? As we show analytically in con-
tribution 6, without any stabilizing homeostatic plasticity, the weights do in fact diverge.
But under the effect of intrinsic plasticity, the weights follow a gradient field and settle in
stable fixed-points. For multi-variate Gaussian inputs, these fixed-points correspond exactly
to the principal component directions. More accurately, the linear Hebbian synaptic learning
rule finds a projection of the multi-dimensional input space onto the one-dimensional mem-
brane potential, for which the expected activation of the post-synaptic neuron is maximized,
whereas intrinsic plasticity normalizes its expected activation.

As the input distribution (and thus its principal component directions) changes, the weight
vector re-aligns itself and thus counteracts this transformation, thereby realizing a special
form of homeostasis.

5.5.2 Independent component analysis

In the previous section, the combination of intrinsic and synaptic plasticity lead to the
discovery of principal components, because for that choice of input distribution and activation
function, the variance of the input had the largest effect on the expected output of the neuron.
But what if we were to choose a different input distribution than Gaussian, where higher-
order moments carry important information?

Due to the nonlinear activation function, the expected value of the neuron’s output
also depends on the higher-order moments of its membrane potential (see the appendix of
contribution 6). For example, with a monomial activation function 𝑓 (𝑥) = 𝑥𝑛, the neuron’s
mean output measures the 𝑛-th moment of the input distribution. With 𝑛 = 2, such a neuron
would be sensitive to the variance of the input, and to the curtosis for 𝑛 = 3. In general,

54 chapter 5. homeostatic plasticity

it depends on the Taylor expansion of the activation function, how much each moment
of the input distribution influences the neuron’s mean output. If we choose a different
activation function or input distribution, the neuron can therefore discover other subspaces
that maximize higher-order moments of the input distribution, instead. This can be used
to disentangle signals that are uncorrelated, but not independent, because they do share
higher-order correlations. In analogy to principal component analysis, this procedure is
therefore called independent component analysis (ICA). ⁹ Our combination of intrinsic and 9 The original work by [160] intro-

duced independent component analy-
sis using a similar, neuro-inspired mo-
tivation with the activation function
𝑓 (𝑥) = 𝑥3 to maximize curtosis.

synaptic plasticity mechanisms produces either principal or independent component analysis
or a mixture thereof, depending on the input distributions and/or activation function!

5.6 Applying the information bottleneck to neural assemblies

We can generalize these ideas from individual neurons to neural assemblies: By selecting and
scaling the inputs into the neurons, synaptic plasticity determines how the neurons’ inputs
are related to each other, whereas intrinsic plasticity independently controls the marginal
distribution of each individual neuron’s outputs.

This raises an interesting question: how much control over its joint output distribution
could an assembly of neurons theoretically exert, if the only free parameters are each neuron’s
nonlinearity and the incoming synaptic connections? Can an assembly of neurons map an
arbitrary multi-variate input distribution onto an arbitrary multi-variate output distribution?
The general answer is no¹⁰, but to make this more precise, we have to disentangle the effects 10 Consider e.g. that a uni-variate in-

put signal cannot be transformed into
multiple independent output signals.

of synaptic and intrinsic plasticity. In contribution 6, we do this by introducing a concept
from probability theory called copula ([161], see also the note below).

Note: Copulas describe the coupling of random variables

For an assembly of 𝑁 neurons with individual inputs 𝑋𝑖 ∼ 𝑃𝑋𝑖 with joint distribution
𝑃𝑋 and outputs 𝑌𝑖 ∼ 𝑃𝑌𝑖 , we define the intermediate random variables 𝑈𝑖 = 𝐹𝑋𝑖(𝑋𝑖),
called the ranks or quantiles of 𝑋𝑖, each of which is marginally uniformly distributed.
The joint distributions of these rank-variables is the copula

𝐶(𝑢) ≔ 𝐹𝑋(𝐹−1𝑋1
(𝑢1), 𝐹−1𝑋2

(𝑢2), … , 𝐹−1𝑋𝑁
(𝑢𝑁)),

a probability distribution in the 𝑁-dimensional unit cube, that captures how the ran-
dom variables 𝑋𝑖 are related — regardless of their marginal distributions! A common
application of this rank-transformation in statistics is when random variables need
to be compared across different scales. In that case, the correlation between the ranks
of the variables can be used, which is just the correlation of the copula. The copula
has many more interesting theoretical properties, e.g. [162], but most importantly for
us, it is invariant under any invertible univariate transformations of the individual
random variables 𝑋𝑖. Therefore, the copula 𝐶 of the assembly’s multi-variate input
and its multi-variate output distribution coincide and we can just talk of the copula
of the assembly. The copula is only a property of the synaptic connections and the
input distribution, and unaffected by the neuron’s nonlinearity.

Using the copula 𝐶, we can factorize the stationary joint probability distributions of the
membrane potentials 𝑋 and activations 𝑌 = 𝑓 ∗(𝑋) as follows:

𝐹𝑋(𝑥) = 𝐶(𝐹𝑋1(𝑥1), 𝐹𝑋2(𝑥2), … , 𝐹𝑋𝑁(𝑥𝑁))

𝐹𝑌(𝑥) = 𝐶(𝐹𝑌1(𝑦1), 𝐹𝑌2(𝑦2), … , 𝐹𝑌𝑁(𝑦𝑁))

5.7 . plasticity is information processing 55

The last factorization specifies the population’s joint output distribution in terms of the
desired individual marginal distributions 𝐹𝑌𝑖 of each neuron’s output, which can be enforced
by intrinsic plasticity, and the copula function 𝐶, which captures the co-dependency between
the neurons’ activity. The copula is invariant under element-wise invertible transformations,
and therefore only depends on the synaptic connections — not the activation function.
In other words: No matter what activation functions we choose, we can only modify the
marginal distributions of each neuron’s output —but not the assembly’s copula— through
intrinsic plasticity! Synaptic plasticity, on the other hand, can shape how different signals
are combined by the individual neurons, and thus it can influence the assembly’s copula, but
not the activation function.

In general, 𝐶 can be arbitrarily complex, and there is little hope that it can be fully
controlled by setting the synaptic weights alone. ¹¹ For copulas that are parameterized by 11 Of course, it may still be possible to

control the copula through synaptic
weights by using multiple layers of
neurons, as is done e.g. for so-called
normalizing flows [163].

more than one parameter per synapse, for example, synaptic plasticity alone is obviously
insufficient to fully control the copula. But e.g. for jointly Gaussian inputs, the distribution is
fully parameterized by the covariance matrix (and the mean), which can be shaped arbitrarily
by an appropriate choice of synaptic weights (and intrinsic plasticity).

If we apply the information bottleneck argument now to an entire assembly of multiple
neurons, the neurons should jointly maximize information transmission. This can be achieved
if the neurons’ outputs are i.i.d. with a marginal maximum entropy distribution.

It therefore seems reasonable from an information bottleneck perspective, that the indi-
vidual neurons should encode different independent (or principal) components. One way to
ensure this is mutual decorrelation of the neurons within an assembly by lateral inhibition
in order to enforce the learning of different weights. We demonstrate that this leads to the
unsupervised clustering of the MNIST handwritten digits dataset by the extraction of inde-
pendent components. For a second control dataset composed of random image patches no
such independent components should exist, and indeed the same setup leads to the discovery
of the dominant principal components instead. The same idea, sometimes called blind source
separation, can be generalized to other types of input signals as well, in particular to separate
heavy-tailed¹² source signals (see also example 3). 12 I use this term to refer to random

variables with larger higher-order mo-
ments than a normally distributed
variables with equal variance.

There is plenty of biological evidence to prove that such a decorrelation of signals by
PCA/ICA also occurs in nature. For example, this can be observed on a very low level of
the mammalian visual system (see [7, chapter 5] for a great summary of this topic). There,
colors are sensed by receptors tuned to different (but overlapping) spectra of visual light, but
the signals that are transmitted by ganglion cells appear to be linear combinations of these
“raw signals”: instead of a ‘red’, a ‘green’ and a ‘blue’ channel, the spike-trains transmitted
over the optic nerve seem to represent a ‘blue-(red+green)’ difference, a ‘red+green’ sum
and a ‘red-green’ difference channel! This representation decorrelates the highly correlated
responses of the individual color channels, and results in a more information theoretically and
metabolically efficient code. Just as in our hypothetical example, this requires an appropriate
rotation of the synaptic weight vectors and an appropriate scaling of the neuron’s nonlinear
activation function, although that may be genetically predetermined, rather than learned, in
this specific case. A similar observation can be made in the olfactory bulb of zebrafish larvae
[164], where appropriate lateral inhibition decorrelates the neurons’ responses.

5.7 Plasticity is information processing

In the field of machine learning, we think of neural networks in terms of a training phase,
where the network is optimized, and an inference phase, where the trained network is used to
process information. As I tried to show in this rather long chapter, this perspective completely
misses the important role that plasticity mechanisms play in information processing, in

56 chapter 5. homeostatic plasticity

Example 3: Blind-source separation with synaptic- & intrinsic plasticity

Suppose we want to “de-mix” two independent source signals 𝑠1(𝑡) and 𝑠2(𝑡) from two different mixtures 𝑖1(𝑡) and
𝑖2(𝑡). This could be two independent sound sources that reach our two ears with different attenuation, or it could
merely be two correlated outputs of neurons in a previous layer — in either case, the mixture coefficients 𝑚𝑖,𝑗 are not
explicitly known. These two input signals are then transmitted through synaptic connections with weights 𝑤𝑖,𝑗 to
the two neurons, where they are integrated into the membrane potential 𝑥1(𝑡) or 𝑥2(𝑡), respectively (we ignore the
temporal filtering of the membrane potential here). Each neuron 𝑖 then applies its activation function 𝑓𝑖 to produce
the output 𝑦𝑖(𝑡). We’d like each neuron to reproduce a nonlinear function exp(𝑠𝑖(𝑡)) of just one of the input signals.
This is called blind-source separation or independent component analysis.

The interaction of synaptic plasticity and intrinsic plasticity can solve this problem in an unsupervised manner. To
ensure that 𝑓𝑖(𝑥) = (𝐹−1𝑌𝑖 ∘ 𝐹𝑋𝑖)(𝑥) = exp(𝑥), we assume 𝑋𝑖 has a probability distribution from the same family as
𝑆𝑖, and set 𝑃𝑌𝑖 = exp#(𝑃𝑆𝑖). The greedy mechanism of synaptic plasticity then finds a weight matrix 𝑊 that inverts
the unknown mixing matrix 𝑀, while intrinsic plasticity stabilizes this process and ensures that the outputs have
the desired distributions 𝐹𝑌𝑖 . The intermediate variable 𝑈 (𝑡) = (𝑢1(𝑡) 𝑢2(𝑡))𝑇 is marginally uniform, and its joint
distribution is the copula of 𝑋1 and 𝑋2 or 𝑌1 and 𝑌2, respectively.

particular if we consider the dynamics of online learning that has to happen in real-time, such
as homeostatic intrinsic plasticity and synaptic plasticity. Since the interaction of intrinsic
and synaptic plasticity can help not just to stabilize the behavior of neurons and networks,
but also to extract, compress and track relevant information like principal or independent
components in high-dimensional signals, I’d consider them to be information processing
mechanisms in and of themselves. While the high-level discussion above was focused on
continuous linear-nonlinear neuron models, we will apply these concepts to spiking neurons,
as well, in chapter 6.

5.7 . plasticity is information processing 57

References for chapter 5:

2. W. R. Ashby, Design for a Brain: The Origin of Adaptive Behaviour (2nd Ed. Rev.). Chapman &
Hall, 1960. doi: 10.1037/11592-000 (cit. on pp. vii, 2, 45).

6. S. (O. N. Laughlin University Of C, Principles of Neural Design. 2017, isbn: 978-0-262-53468-0
(cit. on pp. vii, 17, 34, 51, 60, 66).

7. J. V. Stone, Principles of Neural Information Theory: Computational Neuroscience and Metabolic
Efficiency. Sebtel Press, 2018, 214 pp., isbn: 978-0-9933679-2-2 (cit. on pp. vii, 33, 34, 46, 55, 60,
62, 66, 71, 98).

12. J. Leugering and G. Pipa, “A Unifying Framework of Synaptic and Intrinsic Plasticity in Neural
Populations,” Neural Computation, vol. 30, no. 4, pp. 945–986, 17, 2018, issn: 0899-7667. doi:
10.1162/neco_a_01057 (cit. on pp. viii, 46, 102).

66. N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,” in 2015
IEEE Information Theory Workshop (ITW), 2015. doi: 10.1109/ITW.2015.7133169 (cit. on
pp. 12, 46).

113. J. B. Anderson and R. Johnnesson, Understanding Information Transmission. John Wiley & Sons,
17, 2006, 323 pp., isbn: 978-0-471-71119-3. Google Books: GD5GY4XyPXIC (cit. on pp. 32, 33,
46, 48, 60, 61).

121. E. C. Smith and M. S. Lewicki, “Efficient auditory coding,” Nature, vol. 439, no. 7079, pp. 978–982,
7079 2006, issn: 1476-4687. doi: 10.1038/nature04485 (cit. on pp. 34, 51).

143. S. Legg and M. Hutter. “A Collection of Definitions of Intelligence.” arXiv: 0706.3639 [cs].
(25, 2007), [Online]. Available: http://arxiv.org/abs/0706.3639 (visited on 08/20/2020)
(cit. on p. 45).

144. N. Tishby, F. C. Pereira, and W. Bialek. “The information bottleneck method.” arXiv: physic
s/0004057. (24, 2000), [Online]. Available: http://arxiv.org/abs/physics/0004057
(visited on 08/22/2020) (cit. on p. 46).

145. S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in reinforcement learning,” in
The 2010 International Joint Conference on Neural Networks (IJCNN), 2010. doi: 10.1109/IJC
NN.2010.5596468 (cit. on p. 46).

146. L. Buesing and W. Maass, “A Spiking Neuron as Information Bottleneck,” Neural Computation,
vol. 22, no. 8, pp. 1961–1992, 25, 2010, issn: 0899-7667. doi: 10.1162/neco.2010.08-09-1
084 (cit. on p. 46).

147. T.M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Wiley-Interscience, 2006,
748 pp., isbn: 978-0-471-24195-9 (cit. on pp. 46, 48).

148. T. Goblick, “Theoretical limitations on the transmission of data from analog sources,” IEEE
Transactions on Information Theory, vol. 11, no. 4, pp. 558–567, 1965, issn: 1557-9654. doi:
10.1109/TIT.1965.1053821 (cit. on p. 48).

149. E. T. Jaynes, “Information Theory and Statistical Mechanics,” Physical Review, vol. 106, no. 4,
pp. 620–630, 15, 1957. doi: 10.1103/PhysRev.106.620 (cit. on p. 49).

150. G. Peyré and M. Cuturi, “Computational Optimal Transport: With Applications to Data Science,”
Foundations and Trends® in Machine Learning, vol. 11, no. 5-6, pp. 355–607, 11, 2019, issn:
1935-8237, 1935-8245. doi: 10.1561/2200000073 (cit. on pp. 49, 50).

151. A. Painsky and N. Tishby, “Gaussian lower bound for the information bottleneck limit,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 7908–7936, 1, 2017, issn: 1532-4435 (cit.
on p. 50).

152. B. Øksendal, “Stochastic Differential Equations,” in Stochastic Differential Equations, Springer
Berlin Heidelberg, 2003, pp. 65–84, isbn: 978-3-540-04758-2 978-3-642-14394-6. doi: 10.1007
/978-3-642-14394-6_5 (cit. on pp. 51, 52).

153. A. Azarfar, N. Calcini, C. Huang, F. Zeldenrust, and T. Celikel, “Neural coding: A single neuron’s
perspective,” Neuroscience & Biobehavioral Reviews, vol. 94, pp. 238–247, 1, 2018, issn: 0149-7634.
doi: 10.1016/j.neubiorev.2018.09.007 (cit. on p. 51).

http://dx.doi.org/10.1037/11592-000
http://dx.doi.org/10.1162/neco_a_01057
http://dx.doi.org/10.1109/ITW.2015.7133169
http://books.google.com/books?id=GD5GY4XyPXIC
http://dx.doi.org/10.1038/nature04485
https://arxiv.org/abs/0706.3639
http://arxiv.org/abs/0706.3639
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/physics/0004057
http://dx.doi.org/10.1109/IJCNN.2010.5596468
http://dx.doi.org/10.1109/IJCNN.2010.5596468
http://dx.doi.org/10.1162/neco.2010.08-09-1084
http://dx.doi.org/10.1162/neco.2010.08-09-1084
http://dx.doi.org/10.1109/TIT.1965.1053821
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1561/2200000073
http://dx.doi.org/10.1007/978-3-642-14394-6_5
http://dx.doi.org/10.1007/978-3-642-14394-6_5
http://dx.doi.org/10.1016/j.neubiorev.2018.09.007

58 chapter 5. homeostatic plasticity

154. K. P. Körding, C. Kayser, W. Einhäuser, and P. König, “HowAre Complex Cell Properties Adapted
to the Statistics of Natural Stimuli?” Journal of Neurophysiology, vol. 91, no. 1, pp. 206–212, 1,
2004, issn: 0022-3077. doi: 10.1152/jn.00149.2003 (cit. on p. 51).

155. N. Brenner, W. Bialek, and R. de Ruyter van Steveninck, “Adaptive Rescaling Maximizes In-
formation Transmission,” Neuron, vol. 26, no. 3, pp. 695–702, 1, 2000, issn: 0896-6273. doi:
10.1016/S0896-6273(00)81205-2 (cit. on p. 51).

156. A. L. Fairhall, G. D. Lewen, W. Bialek, and R. R. de Ruyter van Steveninck, “Efficiency and
ambiguity in an adaptive neural code,” Nature, vol. 412, no. 6849, pp. 787–792, 6849 2001, issn:
1476-4687. doi: 10.1038/35090500. pmid: 11518957 (cit. on p. 51).

157. L. Kostal, P. Lansky, and J.-P. Rospars, “Efficient Olfactory Coding in the Pheromone Receptor
Neuron of a Moth,” PLOS Computational Biology, vol. 4, no. 4, e1000053, 25, 2008, issn: 1553-7358.
doi: 10.1371/journal.pcbi.1000053 (cit. on p. 51).

158. A. Holtmaat and K. Svoboda, “Experience-dependent structural synaptic plasticity in the mam-
malian brain,” Nature Reviews Neuroscience, vol. 10, no. 9, pp. 647–658, 9 2009, issn: 1471-0048.
doi: 10.1038/nrn2699 (cit. on p. 52).

159. E. L. Bienenstock, L. N. Cooper, and P.W. Munro, “Theory for the development of neuron
selectivity: Orientation specificity and binocular interaction in visual cortex,” The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience, vol. 2, no. 1, pp. 32–48, 1982,
issn: 0270-6474. pmid: 7054394 (cit. on p. 53).

160. A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms and applications,”
Neural Networks, vol. 13, no. 4, pp. 411–430, 1, 2000, issn: 0893-6080. doi: 10.1016/S0893-6
080(00)00026-5 (cit. on p. 54).

161. P. Jaworski, F. Durante, W. K. Härdle, and T. Rychlik, eds., Copula Theory and Its Applications:
Proceedings of the Workshop Held in Warsaw, 25-26 September 2009. Springer Berlin Heidelberg,
2010, vol. 198, isbn: 978-3-642-12464-8 978-3-642-12465-5. doi: 10.1007/978-3-642-1246
5-5 (cit. on p. 54).

162. J. Ma and Z. Sun, “Mutual Information Is Copula Entropy,” Tsinghua Science & Technology,
vol. 16, no. 1, pp. 51–54, 1, 2011, issn: 1007-0214. doi: 10.1016/S1007-0214(11)70008-6
(cit. on p. 54).

163. D. J. Rezende and S. Mohamed. “Variational Inference with Normalizing Flows.” arXiv: 1505.0
5770 [cs, stat]. (14, 2016), [Online]. Available: http://arxiv.org/abs/1505.05770
(visited on 08/29/2020) (cit. on p. 55).

164. A. A. Wanner and R.W. Friedrich, “Whitening of odor representations by the wiring diagram
of the olfactory bulb,” Nature Neuroscience, vol. 23, no. 3, pp. 433–442, 3 2020, issn: 1546-1726.
doi: 10.1038/s41593-019-0576-z (cit. on p. 55).

http://dx.doi.org/10.1152/jn.00149.2003
http://dx.doi.org/10.1016/S0896-6273(00)81205-2
http://dx.doi.org/10.1038/35090500
11518957
http://dx.doi.org/10.1371/journal.pcbi.1000053
http://dx.doi.org/10.1038/nrn2699
7054394
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://dx.doi.org/10.1007/978-3-642-12465-5
http://dx.doi.org/10.1007/978-3-642-12465-5
http://dx.doi.org/10.1016/S1007-0214(11)70008-6
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1505.05770
http://dx.doi.org/10.1038/s41593-019-0576-z

Yeah, but your scientists were so preoccupied over whether or not they could that they
didn’t stop to think if they should.

Dr. Ian Malcolm in Jurassic Park

6 Rate-coding with spiking neurons

The neuron models we looked at so far all use real-valued, continuous output signals as a
proxy of the neuron’s current firing rate. But — electric gap-junctions aside — biological
neurons in the human brain communicate via chemical synapses that actually have to
generate individual spikes to communicate. This mode of communication has been known
for almost two centuries [165], but to this day it plays only a minor role in machine learning
models of neural networks. Why is it, that biological neurons send spikes, rather than
continuous signals? And why haven’t we seen more applications of spiking neural networks
in machine learning?

There are two fundamentally different schools of thought on this issue. The rate-coding
paradigm assumes, that the only relevant information conveyed by a spike-train is the
time-varying rate at which the spikes are generated, while the spike-(time-)coding paradigm
treats each individual spike as a symbol, the timings of which convey individual pieces
of information. Unsurprisingly, how and how well a neuron can represent its input and
whether rate-coding is a viable model for that, has been one of the oldest research questions
in theoretical neuroscience [166], and has been revisited many times (see e.g. [167, 168]).
Surprisingly, there is still a lack of conclusive biological evidence one way or another and
the distinction between the two is not always clearly cut [169], so this apparently simple
question hasn’t been settled even after decades of intense debate. To better understand what
rate-coding entails, I will therefore stick to an entirely theoretical view of rate-coding in
the spirit of [166], and analyze its capacity to encode and transmit information for two of
the most common neuron models. In chapter 7, I will then try to account for more recent
biological evidence, which will lead us to spike-time coding, or rather event-coding.

6.1 Why do (only) biological neurons spike?

For proponents of rate-coding, the additional complexity of spike-based communication can
be understood as a biological “implementation detail” of sorts: Pulse-based communication
offers a noise-robust and energy-efficient means to approximately convey a continuous,
real-valued signal (the firing rate) under metabolic constraints over what is essentially a
binary channel (the neuron’s axon with its chemical synapses). The continuous signal is
then represented by the rate or density of the pulses per unit time-interval. This form of
encoding is simple to implement and very reliable, which is why variations of this scheme
are also used in digital electronics to transmit inherently analog signals (e.g. audio signals or
servo-motor controls) over a digital connection. ¹

1 In electronics, there is in fact a
corresponding pulse-based encoding
scheme for each of the spike-based
communication paradigms (see also
[3, chapter 3]): pulse-density modula-
tion (PDM) and its variants, which go
by the names pulse-frequency modu-
lation (PFM) and pulse-code modula-
tion (PCM) correspond to rate coding.
Pulse-position modulation (PPM) cor-
responds to spike-time coding, which
we will discuss in chapter 7. Asyn-
chronous ΔΣ modulation is directly
related to integrate-and-fire neurons
and time-encoding-machines [107].

60 chapter 6. rate-coding with spiking neurons

Spike-based communication also shares another benefit with digital electronics: While
analog signals strongly attenuate as they propagate along the neural membrane (see also
chapter 4), binary spikes can be detected over long distances and regenerated to their full
amplitude by error-correcting mechanisms. In cortical neurons, this happens at distinct
locations along the axon called Ranvier nodes [6], ² which are separated by highly myelinated 2 Again, there is a rich analogy toman-

made electrical communication sys-
tems: while the strong attenuation of
analog signals along wires originally
made the transmission of analog sig-
nals (such as the telephone) over large
distances difficult, the digital nature
of the telegraph allowed for a regen-
eration of the signal at periodically
spaced relay stations, much alike Ran-
vier nodes, and thus enabled fast long
range communication. A nice account
of this development can be found in
[113].

(i.e. electrically insulated) stretches of the axon. This insulation not only reduces leakage
but also greatly increases conduction velocity. The resulting saltatory propagation of action
potentials allows for an extremely fast, reliable and energy efficient communication over
long distances without degradation, which is critical for coordinating motor activity in limbs
far away from cortex [7, 139] and plays a crucial role in the consolidation of memory [139].

In short, from the rate-coding perspective, spike-based communication is a very useful
adjustment to bio-physical constraints. But as long as a spiking neuron’s firing rate can be
well approximated by a nonlinear function of its input, the precise mode of communication
makes little conceptual difference; the overarching framework is still function approxi-
mation by linear-nonlinear neurons, and spiking neurons are merely a hardware-efficient
implementation (or approximation) thereof. In fact, as we shall see below, there is a direct
correspondence between continuous linear-nonlinear neurons and simple spiking neuron
models that makes it trivial to convert back-and-forth (as long as we are only concerned
with mean firing rates).

6.2 Encoding continuous signals into rate-coded spike-trains

For the rate-coding paradigm, any benefit of spiking neurons has to come not from increased
computational power, but rather from an increased metabolic efficiency, i.e. the amount of
information transmitted per Joule of energy spent. To discuss the capabilities and limitations
of rate-coding, it’s therefore important to understand how and how well time-varying signals
can be encoded into a series of spikes, in the first place.

Since a neuron will have to be able to decode the relevant signal again from the spike train,
typical requirements for spike-based codes are as follows: The current firing rate of a neuron
is only a function of its recent input ³ ; a neuron’s response is time-equivariant, i.e. a temporal 3 Adaptation effects as in chapter 5 are

sometimes included as well, but on a
much slower timescale.

shift in the input results in a corresponding shift in the output; each spike is represented by
a brief stereotypical pulse with identical mass⁴; and despite the non-linear encoding, a linear 4 Typically, a Dirac 𝛿(𝑡) is chosen

for continuous time and a Kronecker
𝛿𝑡/rectangular pulse for discrete-time
models.

decoder, i.e. a filter, must be sufficient to decode the continuous rate from the spiking signal⁵.

5 This requirement is the first principle
of the neural engineering framework
[5]; see also chapter 2.

This linear ‘decodability’ imposes a hard constraint on the sort of spike-patterns that can
be used to convey information, but there is biological evidence to support this simplifying
assumption⁶. Since the spike-encoding mechanism might induce filtering effects that are

6 Pairwise correlations between
spikes (which can be assessed with
a linear filter) carry most of the
information content in individual
neurons’ spike-trains [170].

irreversible, as we have seen in chapter 4, we will be satisfied if we can encode a signal 𝑠(𝑡)
into a spike-train 𝑧(𝑡) and are then able to recover (𝜅 ∗ 𝑧)(𝑡) = 𝑓 ((𝜓 ∗ 𝑠)(𝑡)) for some kernel
𝜓 and some invertible function 𝑓 from the spike-train by the linear decoder with kernel 𝜅.
These constraints still leave room for many different mechanisms to encode a continuous
signal into a discrete sequence of spikes, but I will only consider three particularly interesting
types of rate-based encodings.

Since each spike requires energy to generate and transmit, we can compare these different
approaches by the number of spikes they tend to generate, and how well we can decode the
underlying continuous signal from the spike-train.

6.2.1 Periodic sampling and digital transmission

To put the encoding capabilities of spiking neurons into perspective, let’s compare them
to a well-known reference: digital encoding schemes. In the signal processing domain,

6.2 . encoding continuous signals into rate-coded spike-trains 61

Figure 6.1. The same input signal (top
row, solid red) is encoded by a 4-bit
digital code (left column), an LIF neu-
ron (middle column) and an LNP neu-
ron (right column) over a 10s interval.
The LIF neuron produces spikes at (al-
most) even increments of the signal’s
integral, while the LNP neuron fires at
uniformly distributed signal integrals
(second row). The digital code results
in a parsimonious representation that
here requires only 33 active bits. The
LIF neuron requires 46 spikes for a
slightly worse reconstruction (bottom
row, black line) of the filtered input sig-
nal (orange line), while the LNP neu-
ron gives a bad approximation even
for 117 spikes.

continuous real-valued signals are typically measured at periodic time-intervals, which
produces a discrete sequence of real-valued samples. According to the Nyquist-Shannon
sampling theorem [113], any bandwidth-limited signal can be losslessly represented this way
if the sampling rate is sufficiently high. Each real-valued sample can then be approximated by
𝑛-bit binary number, and the active bits can be transmitted as brief pulses via 𝑛 parallel wires.
If we scaled each of these pulses (or bits) by the corresponding power of two, summed and
filtered them appropriately, ⁷ we’d recover the continuous signal. While this binary encoding

7 The optimal kernel, a sinc function
scaled and stretched according to the
sampling frequency, is acausal, but an
approximate solution can also be ob-
tained with a causal kernel. See also
chapter 4.

would hence (with a little stretch of the imagination) satisfy our requirements of a rate-based
encoding, it is of course not actually a viable model of neural spike-based communication.
But it does provide a theoretically optimal reference implementation for the pulse-based
transmission of bandwidth-limited continuous signals, against which we can measure the
performance of other, more plausible rate-coding schemes.

6.2.2 Rate-coding with (leaky-)integrate-and-fire neurons

Biological neurons generate spikes through a cascade of opening and closing ion channels,
which modulate in- and outgoing ion currents that in turn drive the neural membrane
potential. This complex biological mechanism is described by the famed Hodgkin-Huxley
model [50], but much simpler models suffice if we are only interested in capturing the
encoding of continuous signals into spikes. The simplest of these is the ubiquitous integrate-
and-fire model [3, 171, 172], which operates by integrating the input signal up to a critical
threshold, where it resets and fires a spike.

62 chapter 6. rate-coding with spiking neurons

This can be theoretically “justified” as follows: For a continuous signal 𝑠(𝑡), the firing rate
of the neuron should encode the signal in a way that can be linearly decoded by filtering
(see also chapters 2 and 5). Therefore, the firing rate ought to be proportional to 𝑠(𝑡), i.e. the
average number of spikes in an interval [𝑡1, 𝑡2] should be proportional to ∫𝑡2𝑡1 𝑠(𝑡)d𝑡.⁸ For the

8 The average number of spikes in
a small interval [𝑡 − Δ𝑡/2, 𝑡 + Δ𝑡/2] of
length Δ𝑡 should be approximately
proportional to 𝑠(𝑡) ⋅ Δ𝑡. Partitioning
the interval [𝑡1, 𝑡2] into strips of width
Δ𝑡 and calculating the Riemann sum
for Δ𝑡 → 0 gives this result.

neuron to fire exactly one more spike, the average time-interval between the previous spike
at time 𝑡1 and the new spike at time 𝑡2 should therefore be 𝑐 ∫𝑡2𝑡1 𝑠(𝑡)d𝑡 = 1 ⇔ 𝑆(𝑡2) = 𝑆(𝑡1) + 1/𝑐,

where 𝑆(𝑡) = ∫𝑡−∞ 𝑠(𝜏)d𝜏 and 𝑐 is a constant of proportionality. In other words, the neuron
should fire a spike whenever 𝑆(𝑡), the integral of the signal 𝑠(𝑡), increases by more than the
threshold 𝜃 = 1/𝑐 over its value at the previous spike. Of course, this is exactly the mechanism
implemented by the standard integrate-and-fire neuron, which integrates its input 𝑠(𝑡) up to
the critical threshold 𝜃, where the opening of voltage-gated channels resets the neuron back
to its resting potential (here chosen as 0 for the sake of simplicity), and the process begins
anew. Such an encoding is also called a send-on-delta scheme, as a spike is emitted whenever
there is a significant change (“delta”) in the (integral) of the signal.

This allows us to say something about the timing of the spikes in relation to the signal:
If we assume a positive input signal 𝑠, then 𝑆(𝑡) is a monotonically increasing (and hence
invertible) function. Whenever 𝑆(𝑡) = 𝑆(𝑡𝑖) + 1/𝑐, a new spike 𝑡𝑖+1 is generated, therefore the
spike times 𝑡𝑘 satisfy 𝑆(𝑡𝑘) = 𝑘𝜃 and thus 𝑡𝑘 = 𝑆−1(𝑘𝜃). This spike-train is linearly decodable
by construction, and we can easily verify that this also meets our other requirements of a
rate-code, since a delay in 𝑠 leads to an equal delay in 𝑆 and thus in 𝑡𝑘.

The ideal integral operator in this construction would require the membrane potential to
remain constant in the absence of external inputs. Not only do inevitable leakage currents
make this implausible for both biology and neuromorphic hardware, but it also has the
undesirable theoretical implication, that the output of the neuron depends on a potentially
infinitely long history of inputs. ⁹ To remedy this, the integral operator, whose impulse 9 This would e.g. violate the fading-

memory assumption of reservoir com-
puting [30].

response is a step-function, is often replaced by a low-pass filter with an exponentially
decaying impulse response. This results in the more biologically plausible and very popular
leaky integrate-and-fire (LIF) neuron [3]. If the time-scale of the exponential filter is very
short, it approaches a Dirac-𝛿 kernel and the neuron acts like a coincidence detector of nearly
simultaneous spikes, to which we will return in chapter 7. For a very long time-scale, on the
other hand, the exponential filter approaches a step-function and the model converges to the
pure integrate-and-fire neuron. As theoretical considerations and biological observations
show (see e.g. chapter 3 of [7]), the optimal trade off between these two extremes in terms of
metabolic efficiency (i.e. how many bits are transmitted per Joule spent) seems to be achieved
when the filter’s time-scale roughly equals the expected inter-spike interval. Other filters
than the exponential could be used as well (see also the node below), but will not be further
discussed here.

encoding neuron decoding neuron

+ 𝛼
𝑠+𝛼

𝑠(𝑡)
reset−𝜃

×
𝜃

𝛼
𝑠+𝛼

𝑧(𝑡)𝑦(𝑡)

Figure 6.2. Two simple leaky
integrate-and-fire neurons as used
in figure 6.1, one of which receives
a time-varying continuous signal
𝑠(𝑡) as its input and encodes it
into a spike-train 𝑦(𝑡). The second
neuron decodes the spike-train into
piece-wise continuous membrane
potential trace 𝑧(𝑡). Both use the
same exponential kernel 𝜅𝛼 = 𝛼

𝑠+𝛼
with rate 𝛼.

Let’s consider the example shown in figure 6.2 of a pair of LIF neurons with the dendritic
filter 𝜅𝛼(𝑠) =

𝛼
𝑠+𝛼 . Suppose we’d like to recover the filtered signal (𝜅𝛼 ∗ 𝑠)(𝑡) from the decoding

neuron’s membrane potential 𝑧(𝑡). We know that the residual (𝜅𝛼 ∗ 𝑠)(𝑡) − (𝜅𝛼 ∗ 𝑦)(𝑡) between
the filtered input signal and the filtered spike-train is bounded between 0 and 𝜃, because
whenever the error exceeds that bound, another spike is generated, resetting the error back to
0. Under a few simplifying assumptions (see appendix B.1), this residual has a mean value of

6.2 . encoding continuous signals into rate-coded spike-trains 63

≈ 𝜃/2 and a root-mean-squared error (RMSE) of ≈ 𝛼𝜃/√12. By reducing 𝜃 (and thus increasing
the firing rate) or 𝛼 (and thus increasing the filter’s time-constant), we can therefore reduce
the error bound arbitrarily and get uniform convergence lim𝜃→0 𝑧 = 𝑠 ∗ 𝜅𝛼.

For a constant signal 𝑠(𝑡) = 𝑐 ≥ 𝜃, the neuron’s firing rate thus scales almost ¹⁰ linearly 10 This approximation of themean and
RMSE fail when the mean input to the
neuron goes below 𝜃.

with 𝑐, whereas the expected RMSE remains constant across almost the entire input range of
the neuron. No spikes at all are generated for 𝑐 ≤ 𝜃, so the mean firing rate as a function of
the constant input 𝑐 approximates the rectified-linear unit (ReLU) 𝑓 (𝑐 − 𝜃/2) ≈ max(0, 𝑐 − 𝜃/2).
See also appendix B.1 for a derivation.

As figure 6.1 shows, the LIF neuron is capable of reliably encoding a time-varying signal
into a single pulse-train. Because of its simplicity, a very similar mechanism is also commonly
used in signal processing under the name ΣΔ or ΔΣmodulator [108] or just integrate-and-fire
sampling [173] to convert continuous signals into pulse-trains¹¹. 11 The main difference is, that a ΔΣ-

modulator encodes both positive and
negative changes of the signal into
the rising and falling edges of a bi-
nary pulse-width-modulated signal,
whereas the LIF mechanism encodes
only positive changes into spikes and
relies on the passive leakage for de-
creasing the signal.

Note: Filter-and-fire neurons

The (leaky) integrator represents only one specific type of filter that a neural den-
drite could implement (see chapter 4). By substituting in various other kernels, the
integrate-and-fire model can thus be generalized to a very interesting class of filter-
and-fire models [3]. The leaky-integrate-and-fire (LIF) model with an exponential
kernel shown here is a particularly popular example, since it can be motivated from
biological first principles and can be implemented very efficiently by a single first-
order low-pass filter. But also second-order filters like the 𝛼-kernel, a convolution of
two exponential kernels, are used to model the combined effect of filtering by the
chemical synapse as well as the neuron’s membrane potential [3]. Such a higher-
order filter could help remove the high-frequency noise otherwise introduced by
the discontinuous jumps that result from filtering a spike-train with a first-order
filter. Naturally, the choice of kernel has strong implications for the behavior of the
neuron, and all the arguments from chapter 4 apply to spiking neurons just as well.

6.2.3 Stochastic encoding

A rather different approach to rate-coding utilizes stochasticity. A linear-nonlinear-Poisson
(LNP) spiking neuron [174] fires spikes according to an inhomogeneous Poisson process [175]
that uses the input signal 𝑠(𝑡) as its time-varying rate. The resulting spike-times are stochastic,
but the expected number of spikes per time-interval [𝑡1, 𝑡2] is proportional to the integral
∫𝑡2𝑡1 𝑠(𝑡)d𝑡, just like for the LIF neuron above. But in contrast to the LIF neuron, the spike-times
in that interval are independently and identically distributed with cumulative distribution
function 𝑆, i.e. 𝑡𝑘 ∼ 𝑆−1(𝑢𝑘) where 𝑢𝑘 is a uniform random variable. ¹² In fact, this property 12 Recall that in (L)IF neurons, the la-

tent variable 𝑢𝑘 would instead be (al-
most) regularly spaced at 𝑢𝑘 = 𝑘/𝑁 for
𝑁 spikes.

allows us to elucidate the key difference between the deterministic integrate-and-fire and the
stochastic LNP model: While the spike-times of the IF neuron contain no information besides
the signal 𝑠 (i.e. the spike-times 𝑡𝑘 are deterministic given 𝑠), the spike-times of the LNP
neuron also encode noise (i.e. the spike-times 𝑡𝑘 are randomly distributed with a cumulative
distribution function proportional to 𝑆). A different way of looking at the same phenomenon
is to view the LNP neuron as equivalent to an IF neuron with exponentially distributed
random threshold¹³, or subject to a corresponding distribution of noise on the membrane 13 Since spikes are generated at uni-

formly distributed levels of 𝑆, the in-
crements from one spike to the next
are exponentially distributed.

potential. All other things being equal, the LNP neuron is therefore likely to achieve a much
worse signal-to-noise ratio, as we shall also see below.

Let’s look at an example of LNP neurons in figure 6.1. Just like in the case of the integrate-
and-fire neuron above, the signal can be linearly decoded by filtering the spike-train with an

64 chapter 6. rate-coding with spiking neurons

exponential kernel. One can show (see appendix B.2), that exponentially filtering the spike-
train provides an unbiased estimate of the signal with an RMSE that approaches √𝛼𝑐/(2𝜆).
Like for the LIF neuron, the expected firing rate response of the LNP neuron to constant
input is therefore given by a rectified-linear function, but unlike the LIF neuron, the RMSE
actually grows with 𝑐.

Key benefits of the stochastic approach and the main reason for its popularity are the
possibility to incorporate noise and its conceptual simplicity, which allows it to be trivially
extended to assemblies of multiple neurons. Deterministic LIF neurons, for contrast, can
show phase-locking and other specific dynamics, or may fail to fire all together if the input
is sub-threshold, whereas LNP neurons respond linearly across the entire input range. The
stochasticity of the LNP neuron could thus actually enhance information transmission in
some specific cases, but it generally comes at considerable expense in others, as we’ll quantify
in section 6.4.

6.3 Rate-coding neurons are linear-nonlinear neurons

We already saw above that the mean firing rate of spiking neurons can be modeled as a
function of their (constant) input signals. Conveniently, this function takes the rectified-linear
form for both LIF and LNP neurons, one of the most popular choices of activation function
in current deep neural network architectures.¹⁴ By making the firing rates sufficiently large, 14 This is of course hardly a coinci-

dence, since the rectified-linear acti-
vation function was in fact modeled
after its (spiking) biological inspira-
tion.

¹⁵ an arbitrary accuracy (i.e. an arbitrarily low RMSE) can be achieved. If we also choose the

15 For the (L)IF neuron, this can be
achieved by lowering the threshold
𝜃, for the LNP neuron by raising the
gain 𝜆.

dendritic filters’ time-constants appropriately, a trained deep neural network can be trivially
translated into a spiking neural network simply by replacing each continuous neuron with
one accordingly configured spiking neuron — et voilà, we have a trained deep spiking neural
network! A direct conversion of this sort has been shown to work even for very large, state-
of-the-art network models [176, 177]. The same idea can be applied to recurrent networks
and reservoir computers, as well (see also [5]). As the success of this one-to-one conversion
confirms, rate-coding really is merely a different implementation of the continuous function
approximation paradigm discussed in chapter 2.

6.4 How good is rate-coding for transmitting information?

If we adopt the rate-coding perspective, the single purpose of spike-based communication
is to transmit analog signals reliably under biological constraints. But which mechanism
works best? How does it fare in comparison to a purely analog implementation? And how
does rate-coding with spikes compare to conventional digital sampling schemes that are
used to simulate deep neural networks? Are rate-coding spiking neural networks a viable
machine-learning alternative to conventional deep neural networks?

I’ll attempt to (partially) answer these questions here, starting with the example shown in
figure 6.1. There, we saw three fundamentally different coding schemes that all represent a
continuous signal by discrete series of binary pulses, but they yield rather different results.
Using the digital “neuron” as a reference, I’ll compare, how efficiently the LIF and the LNP
neuron can encode information into a spike-train. Figure 6.3 shows the RMSE of both neuron
models when encoding the constant signal 𝑠(𝑡) = 𝑐 = 0.5. As we systematically vary the
neuron’s firing rate by varying the LIF neuron’s threshold 𝜃 and the LNP neuron’s gain 𝜆, we
can observe a consistently and substantially lower error for the LIF neuron than for the LNP
neuron. Besides the fact that both the LIF and LNP neuron follow the rate-coding approach
and use the same exponential kernel with rate 𝛼 = 40𝐻𝑧 for decoding, the LIF neuron makes
much better use of the precise timing of each spike, and encodes the continuous input signal
more effectively into a spike train.

6.4 . how good is rate-coding for transmitting information? 65

Figure 6.3. Top left: The normalized
mean firing rate as a function of the
constant input 𝑐 matches the (shifted)
ReLU activation function max(0, 𝑥 −
𝑏) closely, where 𝑏 = 0 for the LNP
neuron and 𝑏 = 𝜃/2 for the LIF neu-
ron. The interquartile range of the
LNP neuron’s firing rates (in blue), es-
timated over 50 trials, grows with 𝑐
and is much larger than for an LIF
neuron (in red). Top right: The RMSE
as a function of the firing rate for con-
stant input 𝑐 = 0.5 shows, that the LIF
neuron achieves much lower errors at
equal firing rates than the LNP neu-
ron. Bottom: Spike-trains and decoded
signals in response to a slow varying
sine-wave (black dashed line). For ref-
erence, a 4-bit signal sampled at 20Hz
is included (green).

We can quantify this more accurately with the help of information theory (see appendix B.3
for a derivation), which shows that encoding a (constant) signal with the same specified
accuracy 𝜖 (defined by the differential entropy of the residual) will require a quadratically
larger number of spikes for the LNP neuron than for the LIF neuron as we increase 𝜖!

But how do these simple rate-coding spiking neural network models compare against
an analog implementation or their digital counterparts from deep learning? Not too well,
unfortunately: As figure 6.3 already shows, even for firing rates as high as 10, 000Hz, the
LIF neuron in this setup only reaches an accuracy less than that of a 10bit signal sampled at
20Hz. At a more reasonable 250Hz firing rate, the rate-coding LIF neuron barely matches the
accuracy of a 4-bit signal sampled at a rate of 20Hz, resulting in an effective information
content of less than a quarter bit per spike. The LNP neuron fares much worse than that.

As shown above, this disparity is in large part due to the poor scaling of the accuracy
with the number of spikes, which is linear in the firing rate for the LIF neuron and only
scales with the square root of the firing rate for the LNP neuron. For contrast, the accuracy
of a digital code grows exponentially with the bit-depth of the signal! This is bad news for
rate-coding with spiking neurons, since most deep learning models currently make use of the
much more accurate half-precision (16-bit) or quarter-precision (8-bit) floats or integers, with
only few networks quantized to precisions as low as 4-bit or below [73]. In the rate-coding

66 chapter 6. rate-coding with spiking neurons

context, SNNs also offer no qualitative benefits in terms of raw computational power; to the
contrary, they are merely used to approximate the behavior of DNNs and can therefore not
be expected to surpass their performance. ¹⁶ Any benefit of rate-coding in biology, machine 16 It is however possible that spiking

neural networks have intrinsic biases
that prove beneficial, e.g. if they had
a regularizing effect of sorts, but I’m
not aware of any proof of that.

learning or neuromorphic hardware must therefore come from a more efficient physical
implementation, rather than an information theoretical argument.

6.5 Optimal rate-coding under metabolic constraints

So far, we focused on the encoding accuracy of spiking neurons (measured by the RMSE) for
some given constant signal. In the language of information theory, this corresponds to the
problem of channel coding. But if we want to fully assess the neuron’s ability to transmit
information, we need to consider source-coding, as well. In section 5.2, we approached this
from the information bottleneck perspective: to make the neuron’s output as informative
as possible, we opted to maximize its entropy (measured in bits/second) while respecting the
metabolic constraints imposed on the neuron. This leads to the most powerful neuron that
the energy budget allows, but in a realistic setting that may not be the best solution overall.
Here, we will instead try to make the best possible use of the energy by optimizing the
metabolic efficiency 𝜀 ≔ ℎ/cost instead, i.e. the entropy of the neuron’s output in relation
to the required power cost (measured in bits/Joule). This alternative approach leads to a less
powerful but more parsimonious neuron, which is a worthwhile trade-off if energy, rather
than the number of neurons, is the most critically limited resource. In general, there is a
four-way trade-off for spiking neurons between raw performance on the one hand, and
firing rates (‘paying with spikes’), the complexity and size of neurons, synapses and circuits
(‘paying with hardware’), and metabolic costs (‘paying with power’) on the other [7]. If we
take into account, that the human brain demands almost 20% of the body’s entire energy
budget [178] and almost 80% of that energy is directly spent on the firing of spikes [178,
179], and scales linearly with the mean firing rate [178, 180], the enormous evolutionary
benefit of increased metabolic efficiency becomes obvious. And indeed, the general tendency
for biological neurons seems to be optimization of metabolic efficiency [6, 7]. The idea of
such an economy of impulses goes back at least to [181] and was formalized by [182] for
populations of neurons. We’ll briefly look at what this implies for the single rate-coding
neuron.

One important observation is, that under rather mild assumptions (see example 4) the
metabolic efficiency is maximized for a unique optimal firing rate 𝜇∗ that strikes a good
balance between the inevitable static power consumption of the neuron, which occurs
regardless of the neuron’s firing rate, and the dynamic power consumption due to the
generation of spikes. A brief back-of-the-envelope calculation in example 4 using parameter
estimates from real neurons puts this optimal rate at a surprisingly low mean firing rate of
around 1.41spikes/𝑠 — much lower than what cortical neurons are capable of, but very well in
line with the distribution of firing rates observed in vivo. ¹⁷ 17 The mean firing rate of human cor-

tical neurons is estimated at 1.15Hz
with a range from 0.5 − 2.0Hz; see
[179] and references within.

Which ever firing rate distribution offers the best trade-off, a neuron could achieve and
maintain it with an appropriate activation function and homeostatic plasticity, as I argued in
chapter 5. For the LNP neuron, this can be implemented by explicitly making the instanta-
neous firing rate a nonlinear function of the membrane potential. This is more complicated
for deterministic (L)IF neurons, because their effective nonlinearity is only implicitly defined
by the neural dynamics, but the effective firing rate function can be influenced by various
indirect means such as filtering (see chapter 4) or nonlinear dependencies between the mem-
brane potential and the input [183] or between the threshold and the membrane potential
[184]. In either case, a homeostatic mechanism like in chapter 5 could help achieve and

6.6 . rate-coding spiking neural networks and machine learning 67

Example 4: Low firing rates optimize metabolic efficiency

Let’s assume that the static power consumption of the neuron is a constant coststatic,
whereas the dynamic power consumption scales linearly with the number of spikes
𝜇 = E[𝑌] at a fixed cost of 𝑒spike per spike. The total power consumption of the
neuron is then 𝜇𝑒spike + coststatic. If we further assume that the firing-rate 𝑌 of the
neuron is only subject to additive noise and exponentially distributed, which, as we
saw already in chapter 5, maximizes the neuron’s capacity for a certain mean firing
rate 𝜇, the neuron’s capacity to transmit information is 1 + log(𝑐𝜇) + 𝑐, where 𝑐 is a
unit-dependent scaling factor to make 𝑐𝜇 unit-free. Under these (mild) assumptions,
the efficiency is a function of the mean firing rate

𝜖(𝜇) ∝
1 + log(𝑐𝜇) + 𝑐

𝜇𝑒spike + coststatic
,

which has a unique maximum for

𝜇 = 𝛾/𝑐𝑊 (𝛾), where 𝛾 ≔ coststatic/𝑒spike and 𝑊 is Lambert’s function.

If we take biological measurements from rodents [178] to estimate static and dynamic
power (𝑒spike ≈ 7.12 × 108ATP, coststatic = 3.42 × 108ATP/𝑠, both measured in terms of
the consumed number of adenosine triphosphate (ATP) molecules, 𝑐 = 1s), we get a
factor of 𝛾 ≈ 0.48 and thus an optimal firing rate 𝜇∗ ≈ 1.41Hz.

maintain this optimal encoding in the face of changing or unpredictable input distributions
¹⁸.

18 Work to apply these ideas to the de-
sign of neuromorphic hardware is cur-
rently ongoing, but not yet completed
at the time of writing this thesis.

6.6 Rate-coding spiking neural networks and machine learning

Spiking neuron models are certainly worth studying for both biologists and neuromorphic
hardware designers, but since they are more difficult to simulate in software and rate-coding
offers no apparent qualitative computational benefits over deep learning, they are currently
of little relevance for machine learning. Hence, the viability of SNNs hinges on how well they
can encode continuous signals into spikes and back, and how efficiently this can be physically
implemented. Rather than representational power of the neuron, metabolic efficiency might
therefore be the decisive factor behind the evolutionary success of spiking neural networks.

In the following chapter 7, we’ll pursue this idea to it natural conclusion by looking at
even more parsimonious, event-based alternatives to the rate-coding paradigm itself.

68 chapter 6. rate-coding with spiking neurons

References for chapter 6:

3. W. Maass and C.M. Bishop, Pulsed Neural Networks. MIT Press, 2001, 414 pp., isbn: 978-0-262-
63221-8. Google Books: jEug7sJXP2MC (cit. on pp. vii, 32, 59, 61–63, 73).

5. C. Eliasmith and C. H. Anderson,Neural Engineering: Computation, Representation, and Dynamics
in Neurobiological Systems. MIT press, 2004 (cit. on pp. vii, 15, 60, 64).

6. S. (O. N. Laughlin University Of C, Principles of Neural Design. 2017, isbn: 978-0-262-53468-0
(cit. on pp. vii, 17, 34, 51, 60, 66).

7. J. V. Stone, Principles of Neural Information Theory: Computational Neuroscience and Metabolic
Efficiency. Sebtel Press, 2018, 214 pp., isbn: 978-0-9933679-2-2 (cit. on pp. vii, 33, 34, 46, 55, 60,
62, 66, 71, 98).

30. H. Jaeger, W. Maass, and J. Principe, “Special issue on echo state networks and liquid state
machines.,” 2007 (cit. on pp. 2, 14, 62).

50. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its applica-
tion to conduction and excitation in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500–544,
28, 1952, issn: 0022-3751. pmid: 12991237 (cit. on pp. 6, 61).

73. S. Han, H. Mao, and W. J. Dally. “Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding.” arXiv: 1510.00149. (2015) (cit. on pp. 13,
65).

107. A. A. Lazar and L. T. Tóth, “Time encoding and perfect recovery of bandlimited signals,” in
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings,
vol. 6, 25, 2003 (cit. on pp. 27, 59, 73).

108. R. Gray, “Oversampled Sigma-Delta Modulation,” IEEE Transactions on Communications, vol. 35,
no. 5, pp. 481–489, 1987, issn: 1558-0857. doi: 10.1109/TCOM.1987.1096814 (cit. on pp. 27,
63).

113. J. B. Anderson and R. Johnnesson, Understanding Information Transmission. John Wiley & Sons,
17, 2006, 323 pp., isbn: 978-0-471-71119-3. Google Books: GD5GY4XyPXIC (cit. on pp. 32, 33,
46, 48, 60, 61).

139. R. D. Fields, “A new mechanism of nervous system plasticity: Activity-dependent myelination,”
Nature reviews. Neuroscience, vol. 16, no. 12, pp. 756–767, 2015, issn: 1471-003X. doi: 10.1038
/nrn4023. pmid: 26585800 (cit. on pp. 41, 60).

165. E. H. D. B. Reymond, Vorläufiger Abriß einer Untersuchung über den sogenannten Froschstrom und
über die elektromotorischen Fische. 1843, 30 pp. Google Books: goNar3mBwJkC (cit. on p. 59).

166. D.M. MacKay and W. S. McCulloch, “The limiting information capacity of a neuronal link,” The
bulletin of mathematical biophysics, vol. 14, no. 2, pp. 127–135, 1, 1952, issn: 1522-9602. doi:
10.1007/BF02477711 (cit. on pp. 59, 71, 78).

167. S. Panzeri, R. S. Petersen, S. R. Schultz, M. Lebedev, and M. E. Diamond, “The Role of Spike
Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex,” Neuron, vol. 29, no. 3,
pp. 769–777, 1, 2001, issn: 0896-6273. doi: 10.1016/S0896-6273(01)00251-3 (cit. on
p. 59).

168. F. Zeldenrust, S. de Knecht, W. J. Wadman, S. Denève, and B. Gutkin, “Estimating the Information
Extracted by a Single Spiking Neuron from a Continuous Input Time Series,” Frontiers in
Computational Neuroscience, vol. 11, 2017, issn: 1662-5188. doi: 10.3389/fncom.2017.000
49 (cit. on p. 59).

169. R. Brette, “Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain,” Frontiers
in Systems Neuroscience, vol. 9, 2015, issn: 1662-5137. doi: 10.3389/fnsys.2015.00151
(cit. on p. 59).

170. A. Dettner, S. Münzberg, and T. Tchumatchenko, “Temporal pairwise spike correlations fully
capture single-neuron information,” Nature Communications, vol. 7, no. 1, pp. 1–11, 1 15, 2016,
issn: 2041-1723. doi: 10.1038/ncomms13805 (cit. on p. 60).

171. A. N. Burkitt, “A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic
Input,” Biological Cybernetics, vol. 95, no. 1, pp. 1–19, 1, 2006, issn: 1432-0770. doi: 10.1007
/s00422-006-0068-6 (cit. on p. 61).

http://books.google.com/books?id=jEug7sJXP2MC
12991237
https://arxiv.org/abs/1510.00149
http://dx.doi.org/10.1109/TCOM.1987.1096814
http://books.google.com/books?id=GD5GY4XyPXIC
http://dx.doi.org/10.1038/nrn4023
http://dx.doi.org/10.1038/nrn4023
26585800
http://books.google.com/books?id=goNar3mBwJkC
http://dx.doi.org/10.1007/BF02477711
http://dx.doi.org/10.1016/S0896-6273(01)00251-3
http://dx.doi.org/10.3389/fncom.2017.00049
http://dx.doi.org/10.3389/fncom.2017.00049
http://dx.doi.org/10.3389/fnsys.2015.00151
http://dx.doi.org/10.1038/ncomms13805
http://dx.doi.org/10.1007/s00422-006-0068-6
http://dx.doi.org/10.1007/s00422-006-0068-6

6.6 . rate-coding spiking neural networks and machine learning 69

172. A. N. Burkitt, “A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic
input and network properties,” Biological Cybernetics, vol. 95, no. 2, pp. 97–112, 1, 2006, issn:
1432-0770. doi: 10.1007/s00422-006-0082-8 (cit. on p. 61).

173. H. G. Feichtinger, J. C. Príncipe, J. L. Romero, A. Singh Alvarado, and G. A. Velasco, “Approxi-
mate reconstruction of bandlimited functions for the integrate and fire sampler,” Advances in
Computational Mathematics, vol. 36, no. 1, pp. 67–78, 2012, issn: 1019-7168, 1572-9044. doi:
10.1007/s10444-011-9180-9 (cit. on p. 63).

174. S. Ostojic and N. Brunel, “From Spiking Neuron Models to Linear-Nonlinear Models,” PLOS
Computational Biology, vol. 7, no. 1, e1001056, 20, 2011, issn: 1553-7358. doi: 10.1371/jour
nal.pcbi.1001056 (cit. on pp. 63, 93).

175. V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Birkhäuser
Boston, 2012, isbn: 978-0-8176-8345-0 978-0-8176-8346-7. doi: 10.1007/978-0-8176-8346
-7 (cit. on p. 63).

176. B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of Continuous-Valued
Deep Networks to Efficient Event-Driven Networks for Image Classification,” Frontiers in
Neuroscience, vol. 11, 2017, issn: 1662-453X. doi: 10.3389/fnins.2017.00682 (cit. on
p. 64).

177. A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going Deeper in Spiking Neural Networks:
VGG and Residual Architectures,” Frontiers in Neuroscience, vol. 13, 2019, issn: 1662-453X. doi:
10.3389/fnins.2019.00095 (cit. on p. 64).

178. D. Attwell and S. B. Laughlin, “An Energy Budget for Signaling in the Grey Matter of the Brain:”
Journal of Cerebral Blood Flow & Metabolism, 31, 2016. doi: 10.1097/00004647-20011000
0-00001 (cit. on pp. 66, 67).

179. Y. Yu, P. Herman, D. L. Rothman, D. Agarwal, and F. Hyder, “Evaluating the gray and white
matter energy budgets of human brain function,” Journal of Cerebral Blood Flow and Metabolism:
Official Journal of the International Society of Cerebral Blood Flow and Metabolism, vol. 38, no. 8,
pp. 1339–1353, 2018, issn: 1559-7016. doi: 10.1177/0271678X17708691. pmid: 28589753
(cit. on p. 66).

180. G. Yi and W.M. Grill, “Average firing rate rather than temporal pattern determines metabolic
cost of activity in thalamocortical relay neurons,” Scientific Reports, vol. 9, no. 1, p. 6940, 1 6,
2019, issn: 2045-2322. doi: 10.1038/s41598-019-43460-8 (cit. on p. 66).

181. H. B. Barlow, “Trigger features, adaptation and economy of impulses,” in Information Processing
in the Nervous System: Proceedings of a Symposium Held at the State University of New York at
Buffalo 21st–24th October, 1968, K. N. Leibovic, ed., Springer Berlin Heidelberg, 1969, pp. 209–230,
isbn: 978-3-642-87086-6. doi: 10.1007/978-3-642-87086-611 (cit. on p. 66).

182. W. B. Levy and R. A. Baxter, “Energy Efficient Neural Codes,” Neural Computation, vol. 8, no. 3,
pp. 531–543, 1, 1996, issn: 0899-7667. doi: 10.1162/neco.1996.8.3.531 (cit. on p. 66).

183. M. Stemmler and C. Koch, “How voltage-dependent conductances can adapt to maximize the
information encoded by neuronal firing rate,” Nature Neuroscience, vol. 2, no. 6, pp. 521–527,
1999, issn: 1097-6256. doi: 10.1038/9173 (cit. on p. 66).

184. N. Fourcaud-Trocmé, D. Hansel, C. van Vreeswijk, and N. Brunel, “How Spike Generation
Mechanisms Determine the Neuronal Response to Fluctuating Inputs,” Journal of Neuroscience,
vol. 23, no. 37, pp. 11 628–11 640, 17, 2003, issn: 0270-6474, 1529-2401. doi: 10.1523/JNEURO
SCI.23-37-11628.2003. pmid: 14684865 (cit. on p. 66).

185. K. A. Boahen, “Communicating Neuronal Ensembles between Neuromorphic Chips,” in Neu-
romorphic Systems Engineering: Neural Networks in Silicon, T. S. Lande, ed., Springer US, 1998,
pp. 229–259, isbn: 978-0-585-28001-1. doi: 10.1007/978-0-585-28001-1_11 (cit. on
p. 71).

http://dx.doi.org/10.1007/s00422-006-0082-8
http://dx.doi.org/10.1007/s10444-011-9180-9
http://dx.doi.org/10.1371/journal.pcbi.1001056
http://dx.doi.org/10.1371/journal.pcbi.1001056
http://dx.doi.org/10.1007/978-0-8176-8346-7
http://dx.doi.org/10.1007/978-0-8176-8346-7
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.3389/fnins.2019.00095
http://dx.doi.org/10.1097/00004647-200110000-00001
http://dx.doi.org/10.1097/00004647-200110000-00001
http://dx.doi.org/10.1177/0271678X17708691
28589753
http://dx.doi.org/10.1038/s41598-019-43460-8
http://dx.doi.org/10.1007/978-3-642-87086-6₁1
http://dx.doi.org/10.1162/neco.1996.8.3.531
http://dx.doi.org/10.1038/9173
http://dx.doi.org/10.1523/JNEUROSCI.23-37-11628.2003
http://dx.doi.org/10.1523/JNEUROSCI.23-37-11628.2003
14684865
http://dx.doi.org/10.1007/978-0-585-28001-1_11

Time represents itself.

— Boahen in [185]

What we have found is that at least a comparable information capacity is potentially
available in respect of impulse timing [...] and it seems unlikely that the nervous system
functions in such a way as to utilize none of this.

— MacKay and McCulloch in [166]

7 Spike-timing and event based computation

In chapter 6 we came to the sobering conclusion that in order to match the accuracy of linear-
nonlinear neurons, rate-coding neurons would have to fire at excessive firing rates. The
high metabolic cost associated with the generation of spikes makes such “naive” rate-coding
theoretically unappealing for biological and artificial neurons. We addressed this issue by
directly optimizing the firing rate distribution for metabolic efficiency instead, which resulted
in a much more efficient encoding with firing rates as low as 1Hz. While such low rates are
in line with experimental observations, they pose a theoretical conundrum for rate-coding:
We assumed that a rate-code should be linearly decodable by the dendritic filter of another
neuron i.e. on a timescale on the order of tens of milliseconds — but a rate of 1Hz is orders
of magnitude too slow to be smoothed by a dendritic filter! One way to make sense of this is
to consider that each neuron receives input from not just a single other neuron, but from
thousands, and it could be their combined input that rate-codes a signal. But this explanation
raises another question: If all of these neurons encode the same signal through their firing
rates, this redundancy increases the energy cost again — destroying any gains in metabolic
efficiency due to the individually lower firing rates. Wouldn’t a single neuron at a higher
firing rate be more efficient? ¹ On the other hand, if all of these neurons encode different 1 In chapter 6 we saw that the power

consumption scales almost linearly
with firing rates with a per-neuron
overhead due to static power con-
sumption. Such a redundant popula-
tion code would therefore almost cer-
tainly be less efficient.

signals, each of these signals is represented by a too low firing rate to be interpretable in a
rate-coding setting, and we’re back to square one.

In this chapter, I’d therefore like to ask a more fundamental question: Is rate-coding
already the best we can do, or is there a more metabolically efficient code for spike-based
communication?

An early study [166] applied tools from information theory to establish limits for how
much information a single spike could, in principle, transmit in a realistic setting. Their
estimate put this capacity at an astonishing 9 bits per spike — orders of magnitude larger
than what we saw for rate-coding neurons in chapter 6! ² Early empirical studies have yielded 2 For example, we saw an LIF neuron

firing around 300 spikes per second to
encode a signal with an accuracy and
speed roughly comparable to a 4 bit
signal sampled at 20Hz, i.e. at a rate
of only about 0.27bits per spike.

more conservative estimates for the amount of information actually transmitted per spike in
vivo (around 1 bit per spike, see [186] for a (dated) review), but some more recent experiments
do come surprisingly close to this theoretical limit, demonstrating transmission of around
5.6 − 7 bits per spike [7, 187]! In order to achieve such a high information content per spike,
merely counting the average rate of spikes per second is not sufficient — the timing must
be taken into account, as well. In the following, we’ll therefore look at spike-timing-based
codes.

72 chapter 7. spike-timing and event based computation

7.1 Spike-time coding

Depending on the definition, there might be infinitely many different spike-trains with the
same (time-varying) firing rate, so there is a lot of potentially relevant information encoded
in the precise spike-times in addition to the mere firing rate (see also example 5). But how
could a biological neuron extract such timing information?

Example 5: Phase coding is pulse-position modulation (PPM)

To understand how spike timing allows a single spike to convey multiple bits of
information, we can make a simple analogy to a digital serial code that uses a “one-
hot”-encoding with 2𝑛 bits to convey 𝑛 bits of information. In the case of 𝑛 = 4, this
means that within a time-interval discretized into 24 = 16 time-steps, exactly one bit
is active:

By looking at which bit is active within a given interval, we can thus recover 4 bits
of information encoded by the corresponding sequence (here, 0110). A single active
bit (or spike) in this example therefore transmits 4 bits of information! Note however,
that this requires a reference signal to indicate the start of the interval and a precise
clock signal against which the relative timing of the spike can be measured. Therefore,
phase coding is just the time-continuous counterpart of pulse-position-modulation, a
popular digital encoding scheme in signal processing !

Let’s look at two popular models of spike-time coding that can be implemented by
integrate-and-fire neurons (see also example 6):

The first makes use of the timing-delay between a neuron’s spikes and a separate reference
signal to encode a real-valued number. The reference signal could either be some particular
event such as the onset of a stimulus or a saccade (then also called “time-to-first-spike” coding
[188]), or it could be some change in the electrical potential of the neuron. If the reference

7.1 . spike-time coding 73

Example 6: Implementing phase and ISI-codes

Information can be encoded by the timing of spikes relative to some reference signal.
Here, the reference signal could be either a spike from another neuron or a specific
phase of a background oscillation (phase coding), or it could be the previous spike
from the neuron itself (ISI coding).

In either case, the relative timing of each spike provides one real valued sample.
Using a simple mechanism like dendritic filtering with a slowly decaying exponential
filter that is triggered by the reference signal, the relative timing delay of a spike to
the reference is a (nonlinear) function of the remaining trace at spike-time.

signal is periodic, such as theta oscillations in hippocampus [189], the spike-train thus
encodes a periodically sampled signal. Each sample is then encoded by the relative phase-
delay between the spike and the reference signal, which is why this code is also referred
to as phase-coding. For a comparatively slow reference signal, such a code results in a very
sparse spike-train with, in the extreme case, only a single spike per cycle that encodes a
multi-bit measurement! Just like in the linear-nonlinear neuron model, synaptic weights can
be used to change the timing of spikes, and the real-valued samples encoded by the relative
spike times can be used for universal computation (see e.g. chapter 2 of [3]). Such a code
also offers some computational advantages over the rate-codes from chapter 6: Consider,
for example, an assembly of multiple neurons, each of which represents a different feature
of an input signal and is decorrelated from its neighbors by inhibitory lateral connections,
e.g. via some inhibitory inter-neuron. The neuron with the strongest response then fires
first, and thus disables the others before they can fire. Such an assembly would compute the
maximum operation over multiple signals with only a single spike fired! This mechanism is
also extremely robust to changes in scale: If all neurons’ responses were scaled down, the
time of each spike might be delayed, but the order would be preserved, leading to the same
result. This is consistent with the observations that cortical neurons typically fire at much
lower frequencies and respond faster than the rate-coding perspective would require (see
chapter 6), and that most information about a novel stimulus can often be decoded from just
the first few spikes [188].

The second kind of spike-timing code is inter-spike-interval (ISI) coding [3], and it assumes
that information is conveyed by the precise time-interval between two consecutive spikes.
Just like with periodic sampling, a bandwidth-limited analog signal can in principle be
encoded, transmitted and decoded without loss [107] using such an encoding³. A biological 3 However, optimal decoding of such a

signal might require a more complex
mechanism than the linear decoder
we required in chapter 6.

neuron might implement this e.g. by an exponentially decaying trace of the membrane

74 chapter 7. spike-timing and event based computation

potential or some chemical, which is reset to a fixed value by each spike. The value of the
trace at any point in time then (nonlinearly) encodes the time since the previous spike, and
affects the likelihood of the neuron to fire once it receives a new input. One might argue
that this is quite similar to what the leaky-integrate-and-fire model already does in the limit
of extremely low firing rates, and the key to explain its superior performance over the LNP
model (see chapter 6).

Both of these spike-timing based encoding-mechanisms integrate nicely with the theoret-
ical framework of spike-timing dependent synaptic plasticity (STDP) [190], which not only
consider the simultaneous firing rates of the pre- and postsynaptic neuron (like rate-based
Hebbian rules), but also the relative timing of their spikes.

7.2 Event coding

Both of the spike-timing-based approaches above rely on the same basic assumption as
rate coding, that a spike-train ultimately encodes some time-varying, continuous signal
or samples thereof. This provides a nice mathematical framework in which to compare
various encoding schemes, and it integrates perfectly with the prevalent machine-learning
perspective of neural networks as continuous function approximators (see chapter 2). But
in some situations this might be an overly convoluted way of explaining a much simpler
phenomenon: the neuron just fires a spike, whenever it receives a “relevant” stimulus! I’ll
call this simpler view the event-coding paradigm, in which each spike (or volley of spikes, as
we shall see later) represents the occurrence of a specific event, rather than a real-valued
sample of some continuous signal. Conceptually, this is much closer to an interrupt- or
event-driven rather than a sampling-based mode of communication, which is also used in
digital electronics to convey sparse signals with little latency.

A biological example of such an extremely parsimonious event-based code can be found in
the fast sensory pathway of the weakly electric fish [191], where spherical neurons produce
only a single individual spike in response to a prolonged stimulation. That neurons would
use such an event-based style of communication also seems reasonable from an evolutionary
perspective, since many of the biological mechanism used by spiking neurons predate the sort
of nervous system required to even generate or interpret a rate-, ISI- or phase-coded signal.
Consider for example bacteria that can form biofilm and coordinate through chemically
communicated electric action potentials [192], or the rudimentary Ca2+ signallingmechanism
already present in choanoflagellates [193] that predate animal life. Here, an event (e.g. high
concentration of a chemical) triggers a specific response (e.g. release of chemicals, formation
of a biofilm) — a simple mechanism that might be a precursor to spiking neurons and is best
understood from this event-driven perspective. In another evolutionary stage, nerve-nets
[91], action potentials often induce some synchronized behavior throughout the body of an
animal. For example, pacemaker neurons of the jellyfish generate periodic action potentials
that trigger a nerve-net of motor neurons to drive synchronized contraction of swimming
muscles [91]. The output of these pacemaker neurons can be best understood as a form
of event-coding. The spike-based transmission of information might therefore originate in
some form of event-coded sensory or motor signals. By triggering these event detectors at a
stimulus-dependent rate, it is conceivable that rate-based codes could also have emerged
from such a simpler event-based code.

7.3 Detecting events in spike-trains

But what exactly constitutes an event, and how can such an event be detected? While this
may be clear for a sensory neuron, we need to specify what event means in the context of

7.3 . detecting events in spike-trains 75

cortical neurons that only receive spiking input from other neurons. I will give two different
definitions, fixed spatio-temporal patterns, and ordered but variable sequences of such patterns.
Most of these ideas apply to continuous signals as well, but in both cases I will focus only on
spike events.

Figure 7.1. Left: A pattern-detector
for one spike each from two incoming
spike-trains. The kernel for each input
filter is shown in red and blue, respec-
tively. Only the spike pair (𝑎) → (𝑑)
is an accepted pattern. Middle: A de-
tector for a sequence of one spike in
input 1 that precedes another spike
in input 2 by some bounded time-
interval. Both patterns (𝑎) → (𝑑) and
(𝑏) → (𝑑) are accepted. Right: The
same detector for a sequence of spike-
volleys, rather than individual spikes.

7.3.1 Fixed spatio-temporal patterns

The most obvious definition of an event would be a stereotypical signal that last for a brief
time-interval and always follows the same time-course. For spiking signals, that would be a
fixed pattern of spikes over time, distributed across one or more neurons. We can define this
as follows:

A spike pattern event 𝑃 = {𝜏𝑖,𝑗 ∶ 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ 𝐽𝑖} that occurs at time 𝜏 produces the
𝑛-dimensional signal 𝑃𝑖(𝑡) = ∑𝑗∈𝐽𝑖 𝛿(𝑡 − 𝜏 − 𝜏𝑖,𝑗), where 𝜏𝑖,𝑗 are called the spike-times of the
pattern. 𝐽𝑖 is the index set of spikes belonging to neuron 𝑖 in this pattern.

To detect such a pattern, a neuron could make use of a dendritic filter that implements the
matched filter of the pattern, i.e. a kernel 𝜅(𝑡) = 𝑃(𝑇 − 𝑡) for some 𝑇 (see chapter 4). To allow
for small jitter in the timing of the spikes, we can additionally smoothen the dendritic filter
by convolution with some other kernel 𝑔.⁴ Additional spikes not belonging to the pattern at 4 This corresponds to a Janossy dis-

tance metric over spike-trains [194]
and could be similarly derived from
optimal transport theory [195].

all can also affect the filter response, so an appropriately high threshold needs to be chosen
to allow a reliable distinction between pattern and noise. The detection of such fixed patterns
therefore reduces to dendritic filtering and thresholding, which e.g. the Gamma-neuron from
chapter 4 with appropriate number of filter taps can approximate very well.

While the ability to detect such stereotypical patterns is certainly useful, this kind of
event-detector suffers from two draw-backs. First, biological parameters determine the time-
scale of dendritic integration, which limits the length of patterns that can be detected by this
mechanism and may prove to be too short for many interesting patterns. Second and more
importantly, this definition of a spike pattern is extremely rigid, as it prescribes the exact time
of each spike in the pattern with little room for variability. This is fine for detecting relatively
short patterns, such as volleys of (nearly) synchronous spikes or rapid successions of spikes
produced by a “hard-wired” cell assembly or motive. The high timing precision of some
cortical neurons [196, 197] shows that such well-timed spike patterns are certainly possible
to generate. But for longer lasting patterns, in particular if they are driven by external inputs
that can vary in length, we’d expect some variability in the timing of the individual spikes.

7.3.2 Ordered (but variable) sequences of spikes and spike patterns

Instead of prescribing the actual spike times as above, we might only be interested in the
order in which certain spikes arrive. For example, a spike from neuron 𝐴 followed by a
spike from neuron 𝐵 would constitute a noteworthy event regardless of the precise timing

76 chapter 7. spike-timing and event based computation

of either spike (as long as 𝐵 fires within some time interval after 𝐴). This would be a very
parsimonious code, as well, but it relies on the ability of an individual spike to reliably encode
the occurrence of some event. Conversely, a single erroneously generated spike could trigger
such a neuron and lead to a false detection.

To improve the reliability of such an event-based code, we can extend this concept to
ordered sequences of spike patterns, e.g. sufficiently large volleys of spikes from some assembly
of neurons rather than individual spikes. In the notation from above, such a spike volley
corresponds to a pattern with a single spike per neuron (i.e. 𝐽𝑖 = {1}), all of which are set
to occur at roughly the same time (i.e. 𝑡𝑖,𝑗 = 0). This can be easily detected by a dendritic
filter, e.g. the fast exponential filter of the leaky-integrate-and-fire neuron model or a brief
rectangular filter would work. Since multiple synchronous spikes are required to elicit a
response, such an encoding would be extremely robust to noise, while having very low
latency and requiring only relatively few spikes to signal a noteworthy event.

7.4 Active dendritic sequence processing

The ability to detect sequences of spike-volleys as discussed above would be a very useful
property for spiking neurons to have, but it requires more sophisticated biological mecha-
nisms than just passive dendritic integration. Over the last century, a lot of research has gone
into studying the electrical properties of cortical neurons, but only in the last two decades
has the vastly improved technology in neuroimaging and electrophysiology allowed a deeper
investigation of one rather fundamental property of cortical neurons: Neural dendrites are
not just the passive cables we considered in chapter 4, but they can produce localized long-
lasting depolarization, i.e. dendritic NMDA or calcium spikes or, as I will collectively call
them, plateau potentials [198]. These actively generated effects have been shown to play
an important role in cortical UP-states [199], the generation of spikes and bursts, synaptic
plasticity and learning, non-linear dendritic computation, and more [198]. In an apparent
case of convergent evolution, physiologically different but functionally similar mechanisms
exist not just in cortical pyramidal neurons, but also in other cell types such as Purkinje cells
[200].

London and Häusser [201] suggested that such localized processes would endow a single
dendrite with countless functional subunits, which might be the key to understanding a
neuron’s computational capabilities. Given the importance and ubiquity of this phenomenon,
it is surprising how few models in theoretical neuroscience and machine learning currently
incorporate active dendritic processes or offer an explanation of their contribution. This may
in part be due to inconclusive and sometimes even contradictory biological evidence⁵, which 5 For example, it has been reported

that individual spike-inputs at apical
dendrites might have no measurable
impact on somatic membrane poten-
tials due to strong signal attenuation
[202] just as it has been reported that
this effect might be completely com-
pensated for by synaptic scaling [141].
Strongly nonlinear interactions be-
tween localized dendritic membrane
potentials have been demonstrated
[142], but other results show a nearly
linear integration through the entire
dendrite [203]. The list goes on.

makes it difficult for theoreticians to decide, which phenomena are fundamental, and which
are merely “quirks of nature”. Two very interesting models by Hawkins and Ahmad [204]
and Brea, Gaál, Urbanczik, and Senn [205] include such active dendritic processes to explain
the emergence of a predictive UP-state in the neuron’s somatic membrane potential, which
allows the individual neuron to predict (and learn) “state-transitions” and a network of such
neurons to (learn to) detect long-lasting sequences of input! We build on these ideas and
derive a much more general model of this process, which we call active dendritic sequences
processing.

The proposed model and its derivation from basic biological principles and observations
is detailed in contribution 7. It uses passive dendritic filtering (i.e. the integration of EPSPs)
in individual, electrically isolated dendritic compartments to detect volleys of coincident
spikes originating from some populations of neurons. Upon detecting such an event, an active
process generates a localized, long-lasting depolarization (a plateau potential), which enables
a nearby dendrite segment to detect the next volley event in the sequence. If the second

7.4 . active dendritic sequence processing 77

Note: Stochastic population codes with event-based spiking neurons

Just like a single spike, a spike volley is a well-timed event that can be used for
an event-based code. But unlike the single spike, it conveys an additional piece of
information besides the timing of the event: the magnitude of the volley, i.e. the
number of participating spikes. This could carry either of two different interpretations:
it could signify the magnitude of the corresponding event, just like an earth-quake
event has a time andmagnitude, or it could signify the probability with which a binary
event has occurred, encoding the detector’s uncertainty. The latter interpretation is
very useful in the context of detecting sequences, as it allows a population of sequence
detectors to encode their uncertainty. It also offers a simple interpretation for the
unreliable transmission of spikes by stochastic synapses:With deterministic synapses,
a spike volley of a given magnitude will either always or never suffice to trigger a
plateau potential. But with stochastic synapses, only a random subset of those spikes
will be transmitted. Therefore, the probability, that the effective size of the spike
volley is sufficient to trigger detection depends on the magnitude of the volley. This
turns the individual ADSP neuron into a probabilistic detector, which responds to a
sequence of input patterns with a probability that reflects the uncertainty encoded in
the input signals. For example, a sequence where each required event has occurred
with high certainty will lead to a sequence of large spike volleys, which will be
detected with high probability. However, if any of the events only occurred with
reduced probability, the corresponding spike volleys will be smaller, and hence the
detector is more likely to not respond. By combining multiple such detectors into
an assembly, we again produce a code of spike-volleys, where the magnitude of the
volley is the number of triggered detectors, and thus encodes the probability of the
sequence having occurred. This is highly beneficial if we want the population to
quickly produce a graded response to a spike-based input [206]! Therefore, ADSP
neurons with stochastic synapses can be combined into assemblies or populations
that communicate via a stochastic, event-based population code (see also chapter 6 of
[115])!

pattern actually occurs during this plateau, a new plateau is generated in that segment,
which in turn activates another dendrite segment, and so on. This procession can make its
way to the soma, where it then triggers a spike, if and only if the entire sequence of events
has occurred in the correct order. Importantly, the precise timing of the individual volleys
doesn’t matter here, as long as they happen in the correct order (and within the specified
time-intervals). This allows individual neurons to detect ordered sequences of incoming
spike volleys that can last hundreds of milliseconds! Not only does this mechanism allow
an individual neuron to detect sequential inputs, but it also provides a simple yet reliable
mechanism to do non-linear computations with spike-volleys in continuous time. This also
resolves the important question, how the fast (passive) neural membrane potential dynamics
can contribute to the detection of patterns on a much slower, behaviorally relevant timescale:
Our model only uses the fast dendritic filter to detect brief volleys of coincident spikes,
rather than complex temporally extended patterns as in chapter 4. The further integration
of that information on a slower time-scale is then due to long-lasting plateau potentials.
This is a more realistic interpretation of biological evidence [207]. Since this mechanism is
invariant to changes in the precise timing of the spikes (or spike volleys), it would allow
the detection of such sequences across multiple time-scales, which might be relevant e.g.
for reactivation, replay or preplay of hippocampal place-cell activity [208–210]. If we once

78 chapter 7. spike-timing and event based computation

again draw a comparison to concepts from computer science and electronics, this behavior
is better described by a state machine or timed automaton [211, 212], rather than the logic
gate we saw in chapter 3.

Contribution 7: Event-based pattern detection in active dendrites

In this manuscript, we derive a simple yet powerful mechanisms of dendritic com-
putation in single neurons from first biological principles. Our model makes use
of actively generated dendritic plateau potentials, which provide the neuron with
distributed processing elements and memory traces that collectively allow a single
neuron’s dendritic tree to process information in nonlinear ways and on timescales
that exceed the typical timescales of membrane potentials by orders of magnitude.
We show how this event-based mechanism can be used to reproduce well known
nonlinear computations when viewed from a rate-coding perspective, but also how
it goes much further than that by detecting specific long-lasting sequences of spike
volleys and integrating information from a vast number of inputs over comparatively
long time-scales. A pre-print of this paper is publicly available, and a revised version
of the same manuscript is currently still under review.

Reference :

J. Leugering, P. Nieters, and G. Pipa, “Event-based pattern detection in active den-
drites,” bioRxiv, 17, 2020. doi: 10.1101/690792v3.

To better understand how such a neuron can process information through the interaction
of localized process that are distributed throughout the dendrite, an analogy can be made to
decision trees, which rely on a similar hierarchical structure to classify high-dimensional
inputs. A modified learning rule for decision trees can therefore even be used to train this
biologically motivated neuron model! I investigated this perspective in contribution 8.

The event-based detection of long sequences results in a highly parsimonious code,
which offers potentially large savings in energy consumption for biological neurons and
neuromorphic hardware alike, which is why we also filed a patent for a digital neuromorphic
circuit model of an ADSP neuron that can be implemented in a fully digital electronic circuit
(see contribution 9).

7.5 Rate-, phase-, ISI-, or event-coding?

So which code do spiking neurons actually use: rate-, phase-, ISI-, or event-coding? This
question goes back almost 70 years to [166], who used information theory to analyze the
maximum capacity of a synapse under various assumed codes. But the answer is context
dependent and differentiating between these paradigms can be surprisingly difficult.

To illustrate how much the answer to this question depends on context, consider for the
sake of argument a hypothetical neuron that can detect the presence of a specific odor of
a predator and fires a single spike (or a burst of spikes) whenever it detects a few of its
molecules, which happens once every couple of milliseconds.

Looking at the exact same spike-train, a proponent of rate-coding could rightly argue:
“The more molecules there are, the higher the firing rate of the neuron, hence the neuron uses a
rate-coding approach to encode the concentration of the molecules.”.

http://dx.doi.org/10.1101/690792v3

7.5 . rate- , phase- , isi- , or event-coding? 79

Contribution 8: Making spiking neurons more succinct with multi-
compartment models

In this conference paper, which accompanies a full-length presentation (which was
postponed due to the ongoing SARS-Cov-2 pandemic and is now to be held in March,
2021), I analyze the computational properties of the biologically motivated multi-
compartment neuron model of contribution 7 from a machine-learning perspective.
By transferring and adapting concepts and learning rules developed for decision
trees to this neuron model, I give an intuition for how such a hierarchical structure
like a neural dendrite can be useful for computation, and how simple, local learning
rules might be enough to optimize such models.

Reference :

J. Leugering, “Making spiking neurons more succinct with multi-compartment
models,” in Proceedings of the Neuro-Inspired Computational Elements Workshop, 17,
2020, isbn: 978-1-4503-7718-8. doi: 10.1145/3381755.3381763.

A proponent of ISI-coding could argue with equal justification: “Since the incoming events
are essentially Poisson-distributed with time-varying rate, two detections in short succession are
a good indicator of a high concentration, so the neuron uses an ISI-coding approach.”.

A proponent of Phase-coding could say for much the same reason: “The waiting time
between phase zero of some reference oscillation and the first detection of a molecule gives an
estimate of the concentration, so the neuron uses a phase code.”.

From an event-coding perspective, I would argue: “The neuron merely signals each event,
i.e. the detection of a molecule, with a spike.”.

Neither of these explanations is wrong, but the way this thought experiment was set
up, they are not equally useful: In order for some downstream neuron to make the decision
whether the animal should stay or run away, the rate-coding perspective would require
passing the spike train through a low-pass filter with a long enough time-constant to combine
the effects of multiple spikes (see chapter 6), which introduces an inevitable and irreversible
delay into the signal (see chapter 4). To reach some specific accuracy in the decoded signal,
the filter must be longer and hence the response must slower the fewer spikes there are. This
is obvious a problem in our thought-experiment, since the animal wouldn’t have the luxury
of waiting that long! The phase coding approach would require some reference signal, the
rate of which limits the response time of the animal and the phase of which introduces an
independent random variable. ISI coding would require multiple spikes in order to assess
their relative timing. In the extreme case, where a decision must be made based on a single
spike, event-coding thus seems to be the only viable explanation of the neuron’s code.

But in a slightly different situation, e.g. if a decision to stay or run away is not based
on the detection of individual molecules, but rather on whether the average concentration
exceeds some higher threshold for some period of time, a rate-coding view might very well
offer the better explanation! In fact, two different “decoders” downstream from the neuron
might even simultaneously decode the same spike-train for different purposes by ways that
can be explained by different paradigms. A crucial take-away of this thought experiment is
therefore, that the coding paradigm we use to explain neural firing depends as much on the
receiver as it does on the transmitter!

http://dx.doi.org/10.1145/3381755.3381763

80 chapter 7. spike-timing and event based computation

Contribution 9: “Neuromorpher Musterdetektor und neuromorphe
Schaltkreisanordnung hiermit” (German patent filing)

Based on the insights derived from the neuron model of contribution 7, we designed
a digital neuromorphic circuit that can efficiently realize the computation required
for active dendritic sequence processing without the need for any general purpose
processing elements like arithmetic-logic-units or micro-processors. It implements
a processor for temporal patterns and sequences in each hierarchically structured
neuron through a combination of pulses of different lengths, just like its biological
counterpart. Homogeneous assemblies of multiple such neurons then communicate
with each other through a code that serializes and transmits multiple spike-trains
over a single binary connection.

Reference :

J. Leugering, P. Nieters, and G. Pipa, “Neuromorpher Musterdetektor und neu-
romorphe Schaltkreisanordnung hiermit,” patent application DE 10 2019 134 044
A1.

But one obvious benefit of event-based communication is that it allows for a maximally
sparse code, where each event of interest is represented by just a single spike. A neural
network thus becomes a network of interconnected pattern detectors, where neurons close
to the periphery detect patterns in the input stimuli, while neurons deeper within the
nervous system can be thought of as detecting “patterns of patterns”. This argument is very
appealing for both computational neuroscience and for implementations of spiking neural
networks in the context of machine learning and neuromorphic hardware. However, this
requires individual neurons to be able to detect relevant patterns in the first place. This
requires an extension of our spiking neuron models, which incorporates well-known but
often neglected active processes that occur within the dendrites. Due to the solid foundation
of this mechanism on biological evidence and the powerful computation it enables, I believe
event-coding to be a fundamental, if not the primary, mode of spike-based communication.
Consequently, I have come to view rate- and phase-coding as modifications or refinements
thereof, which become relevant when some type of event occurs often enough to admit a
notion of rate, or when its timing is only relevant in relation to some reference signal.

7.5 . rate- , phase- , isi- , or event-coding? 81

References for chapter 7:

3. W. Maass and C.M. Bishop, Pulsed Neural Networks. MIT Press, 2001, 414 pp., isbn: 978-0-262-
63221-8. Google Books: jEug7sJXP2MC (cit. on pp. vii, 32, 59, 61–63, 73).

7. J. V. Stone, Principles of Neural Information Theory: Computational Neuroscience and Metabolic
Efficiency. Sebtel Press, 2018, 214 pp., isbn: 978-0-9933679-2-2 (cit. on pp. vii, 33, 34, 46, 55, 60,
62, 66, 71, 98).

13. J. Leugering, P. Nieters, and G. Pipa, “Event-based pattern detection in active dendrites,” bioRxiv,
17, 2020. doi: 10.1101/690792v3 (cit. on pp. viii, 78, 102).

15. J. Leugering, “Making spiking neurons more succinct with multi-compartment models,” in
Proceedings of the Neuro-Inspired Computational Elements Workshop, 17, 2020, isbn: 978-1-4503-
7718-8. doi: 10.1145/3381755.3381763 (cit. on pp. viii, 79, 103).

17. J. Leugering, P. Nieters, and G. Pipa, “Neuromorpher Musterdetektor und neuromorphe
Schaltkreisanordnung hiermit,” patent application DE 10 2019 134 044 A1 (cit. on pp. viii,
80, 103).

91. T. Katsuki and R. J. Greenspan, “Jellyfish nervous systems,” Current Biology, vol. 23, no. 14,
R592–R594, 2013, issn: 09609822. doi: 10.1016/j.cub.2013.03.057 (cit. on pp. 16, 74).

107. A. A. Lazar and L. T. Tóth, “Time encoding and perfect recovery of bandlimited signals,” in
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings,
vol. 6, 25, 2003 (cit. on pp. 27, 59, 73).

115. K. Doya, S. Ishii, A. Pouget, and R. P. N. Rao, Bayesian Brain: Probabilistic Approaches to Neural
Coding. MIT Press, 2007, 341 pp., isbn: 978-0-262-04238-3. Google Books: bsQMWXXHzrYC (cit.
on pp. 32, 77).

141. C. C. Rumsey and L. F. Abbott, “Synaptic Democracy in Active Dendrites,” Journal of Neurophys-
iology, vol. 96, no. 5, pp. 2307–2318, 1, 2006, issn: 0022-3077. doi: 10.1152/jn.00149.2006
(cit. on pp. 41, 76).

142. A. Polsky, B.W.Mel, and J. Schiller, “Computational subunits in thin dendrites of pyramidal cells,”
Nature Neuroscience, vol. 7, no. 6, pp. 621–627, 6 2004, issn: 1546-1726. doi: 10.1038/nn1253
(cit. on pp. 41, 76).

166. D.M. MacKay and W. S. McCulloch, “The limiting information capacity of a neuronal link,” The
bulletin of mathematical biophysics, vol. 14, no. 2, pp. 127–135, 1, 1952, issn: 1522-9602. doi:
10.1007/BF02477711 (cit. on pp. 59, 71, 78).

186. A. Borst and F. E. Theunissen, “Information theory and neural coding,” Nature Neuroscience,
vol. 2, no. 11, pp. 947–957, 11 1999, issn: 1546-1726. doi: 10.1038/14731 (cit. on p. 71).

187. P. J. Simmons and R. R. de Ruyter van Steveninck, “Sparse but specific temporal coding by spikes
in an insect sensory-motor ocellar pathway,” Journal of Experimental Biology, vol. 213, no. 15,
pp. 2629–2639, 1, 2010, issn: 0022-0949, 1477-9145. doi: 10.1242/jeb.043547 (cit. on p. 71).

188. R. VanRullen, R. Guyonneau, and S. J. Thorpe, “Spike times make sense,” Trends in Neurosciences,
vol. 28, no. 1, pp. 1–4, 1, 2005, issn: 0166-2236. doi: 10.1016/j.tins.2004.10.010 (cit.
on pp. 72, 73).

189. G. Buzsáki, “Theta Oscillations in the Hippocampus,” Neuron, vol. 33, no. 3, pp. 325–340, 31,
2002, issn: 0896-6273. doi: 10.1016/S0896-6273(02)00586-X (cit. on p. 73).

190. Y. Dan and M.-m. Poo, “Spike Timing-Dependent Plasticity of Neural Circuits,” Neuron, vol. 44,
no. 1, pp. 23–30, 30, 2004, issn: 0896-6273. doi: 10.1016/j.neuron.2004.09.007 (cit. on
p. 74).

191. J. Nogueira, M. E. Castelló, and A. A. Caputi, “The role of single spiking spherical neurons in a
fast sensory pathway,” Journal of Experimental Biology, vol. 209, no. 6, pp. 1122–1134, 15, 2006,
issn: 0022-0949, 1477-9145. doi: 10.1242/jeb.02080. pmid: 16513939 (cit. on p. 74).

192. A. Prindle, J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G.M. Süel, “Ion channels enable electrical
communication in bacterial communities,” Nature, vol. 527, no. 7576, pp. 59–63, 2015, issn:
1476-4687. doi: 10.1038/nature15709 (cit. on p. 74).

http://books.google.com/books?id=jEug7sJXP2MC
http://dx.doi.org/10.1101/690792v3
http://dx.doi.org/10.1145/3381755.3381763
http://dx.doi.org/10.1016/j.cub.2013.03.057
http://books.google.com/books?id=bsQMWXXHzrYC
http://dx.doi.org/10.1152/jn.00149.2006
http://dx.doi.org/10.1038/nn1253
http://dx.doi.org/10.1007/BF02477711
http://dx.doi.org/10.1038/14731
http://dx.doi.org/10.1242/jeb.043547
http://dx.doi.org/10.1016/j.tins.2004.10.010
http://dx.doi.org/10.1016/S0896-6273(02)00586-X
http://dx.doi.org/10.1016/j.neuron.2004.09.007
http://dx.doi.org/10.1242/jeb.02080
16513939
http://dx.doi.org/10.1038/nature15709

82 chapter 7. spike-timing and event based computation

193. X. Cai, “Unicellular ca2+ signaling ‘toolkit’ at the origin of metazoa,” Molecular Biology and
Evolution, vol. 25, no. 7, pp. 1357–1361, 2008, issn: 0737-4038. doi: 10.1093/molbev/msn077
(cit. on p. 74).

194. D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, 2nd ed. Springer,
2003, 2 pp., isbn: 978-0-387-95541-4 978-0-387-21337-8 978-0-387-49835-5 (cit. on p. 75).

195. B. Sotomayor-Gómez, F. P. Battaglia, and M. Vinck, “A geometry of spike sequences: Fast,
unsupervised discovery of high-dimensional neural spiking patterns based on optimal transport
theory,” Neuroscience, preprint, 4, 2020. doi: 10.1101/2020.06.03.131573 (cit. on p. 75).

196. K. H. Srivastava, C.M. Holmes, M. Vellema, A. R. Pack, C. P. H. Elemans, I. Nemenman, and S. J.
Sober, “Motor control by precisely timed spike patterns,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 114, no. 5, pp. 1171–1176, 31, 2017, issn: 0027-8424.
doi: 10.1073/pnas.1611734114. pmid: 28100491 (cit. on p. 75).

197. J. Putney, R. Conn, and S. Sponberg, “Precise timing is ubiquitous, consistent, and coordinated
across a comprehensive, spike-resolved flight motor program,” Proceedings of the National
Academy of Sciences, vol. 116, no. 52, pp. 26 951–26 960, 26, 2019, issn: 0027-8424, 1091-6490.
doi: 10.1073/pnas.1907513116. pmid: 31843904 (cit. on p. 75).

198. G. J. Stuart and N. Spruston, “Dendritic integration: 60 years of progress,” Nature Neuroscience,
vol. 18, no. 12, pp. 1713–1721, 12 2015, issn: 1546-1726. doi: 10.1038/nn.4157 (cit. on p. 76).

199. C. Wilson and Y. Kawaguchi, “The origins of two-state spontaneous membrane potential
fluctuations of neostriatal spiny neurons,” The Journal of Neuroscience, vol. 16, no. 7, pp. 2397–
2410, 1, 1996, issn: 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.16-07-02397.1996
(cit. on p. 76).

200. E. A. Rancz, “Dendritic Calcium Spikes Are Tunable Triggers of Cannabinoid Release and Short-
Term Synaptic Plasticity in Cerebellar Purkinje Neurons,” Journal of Neuroscience, vol. 26, no. 20,
pp. 5428–5437, 17, 2006, issn: 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.5284-05.2
006 (cit. on p. 76).

201. M. London and M. Häusser, “Dendritic Computation,” Annual Review of Neuroscience, vol. 28,
no. 1, pp. 503–532, 2005. doi: 10.1146/annurev.neuro.28.061604.135703. pmid:
16033324 (cit. on p. 76).

202. G. Stuart and N. Spruston, “Determinants of Voltage Attenuation in Neocortical Pyramidal
Neuron Dendrites,” The Journal of Neuroscience, vol. 18, no. 10, pp. 3501–3510, 15, 1998, issn:
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.18-10-03501.1998 (cit. on p. 76).

203. S. Cash and R. Yuste, “Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons,”
Neuron, vol. 22, no. 2, pp. 383–394, 1, 1999, issn: 0896-6273. doi: 10.1016/S0896-6273(00
)81098-3 (cit. on p. 76).

204. J. Hawkins and S. Ahmad, “Why Neurons Have Thousands of Synapses, a Theory of Sequence
Memory in Neocortex,” Frontiers in Neural Circuits, vol. 10, 2016, issn: 1662-5110. doi: 10.33
89/fncir.2016.00023 (cit. on p. 76).

205. J. Brea, A. T. Gaál, R. Urbanczik, and W. Senn, “Prospective Coding by Spiking Neurons,” PLOS
Computational Biology, vol. 12, no. 6, e1005003, 24, 2016, issn: 1553-7358. doi: 10.1371/jou
rnal.pcbi.1005003 (cit. on p. 76).

206. W. Maass and T. Natschläger, “A Model for Fast Analog Computation Based on Unreliable
Synapses,” Neural Computation, vol. 12, no. 7, pp. 1679–1704, 1, 2000, issn: 0899-7667. doi:
10.1162/089976600300015303 (cit. on p. 77).

207. P. König, A. K. Engel, and W. Singer, “Integrator or coincidence detector? The role of the cortical
neuron revisited,” Trends in Neurosciences, vol. 19, no. 4, pp. 130–137, 1, 1996, issn: 0166-2236.
doi: 10.1016/S0166-2236(96)80019-1 (cit. on p. 77).

208. M. Wilson and B. McNaughton, “Reactivation of hippocampal ensemble memories during sleep,”
Science, vol. 265, no. 5172, pp. 676–679, 1994. doi: 10.1126/science.8036517 (cit. on p. 77).

209. L. Buhry, A.H. Azizi, and S. Cheng. “Reactivation, Replay, and Preplay: How It Might All Fit
Together.” (13, 2011), [Online]. Available: https://www.hindawi.com/journals/np/201
1/203462/ (visited on 12/06/2020) (cit. on p. 77).

http://dx.doi.org/10.1093/molbev/msn077
http://dx.doi.org/10.1101/2020.06.03.131573
http://dx.doi.org/10.1073/pnas.1611734114
28100491
http://dx.doi.org/10.1073/pnas.1907513116
31843904
http://dx.doi.org/10.1038/nn.4157
http://dx.doi.org/10.1523/JNEUROSCI.16-07-02397.1996
http://dx.doi.org/10.1523/JNEUROSCI.5284-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.5284-05.2006
http://dx.doi.org/10.1146/annurev.neuro.28.061604.135703
16033324
http://dx.doi.org/10.1523/JNEUROSCI.18-10-03501.1998
http://dx.doi.org/10.1016/S0896-6273(00)81098-3
http://dx.doi.org/10.1016/S0896-6273(00)81098-3
http://dx.doi.org/10.3389/fncir.2016.00023
http://dx.doi.org/10.3389/fncir.2016.00023
http://dx.doi.org/10.1371/journal.pcbi.1005003
http://dx.doi.org/10.1371/journal.pcbi.1005003
http://dx.doi.org/10.1162/089976600300015303
http://dx.doi.org/10.1016/S0166-2236(96)80019-1
http://dx.doi.org/10.1126/science.8036517
https://www.hindawi.com/journals/np/2011/203462/
https://www.hindawi.com/journals/np/2011/203462/

7.5 . rate- , phase- , isi- , or event-coding? 83

210. J.-B. Eichenlaub, B. Jarosiewicz, J. Saab, B. Franco, J. Kelemen, E. Halgren, L. R. Hochberg, and
S. S. Cash, “Replay of Learned Neural Firing Sequences during Rest in Human Motor Cortex,”
Cell Reports, vol. 31, no. 5, p. 107 581, 5, 2020, issn: 2211-1247. doi: 10.1016/j.celrep.202
0.107581 (cit. on p. 77).

211. R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science, vol. 126, no. 2,
pp. 183–235, 1994, issn: 03043975. doi: 10.1016/0304-3975(94)90010-8 (cit. on p. 78).

212. C. Sloth and R. Wisniewski, “Complete abstractions of dynamical systems by timed automata,”
Nonlinear Analysis: Hybrid Systems, vol. 7, no. 1, pp. 80–100, 2013, issn: 1751570X. doi: 10.10
16/j.nahs.2012.05.003 (cit. on p. 78).

http://dx.doi.org/10.1016/j.celrep.2020.107581
http://dx.doi.org/10.1016/j.celrep.2020.107581
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/j.nahs.2012.05.003
http://dx.doi.org/10.1016/j.nahs.2012.05.003

Perfection is finally attained not when there is no longer anything to add, but when there
is no longer anything to take away.

— Terre des hommes, Antoine de Saint-Exupéry

I feel like I’m just gluing oranges to hair-dryers!

— Anonymous

It’s the most powerful words in the world. No argument or eloquence can stand a chance
against it. [...] It’s: ”So what?”

— Dusty Attenborough, Ginga Eiyū Densetsu

8 Conclusion

As we have seen in chapter 1, the study of artificial neural networks started with an attempt
to capture the basic mechanism by which biological neurons process information, and to
distill it into an abstract mathematical model. And still today, such artificial neural networks
are used as the dominant metaphor to explain “how the brain works”, i.e. how it is, that
sensory information is processed, decisions are made and actions are taken. The success
of deep learning has left many with the illusion that we have finally “cracked the code”
of neural information processing, and in a (surprisingly unsurprising) twist, the answer
appears to be the same function approximation framework that was already proposed by
cyberneticists in the 1960s, and then again by Connectionists in the 1980s. Of course, the
capability of recent (deep and/or recurrent) artificial neural networks to solve all sorts of
machine learning problems has improved to an impressive degree, and demonstrates the
enormous potential of neural networks much more effectively than either cyberneticist
or theoretical neuroscientists could. However, these models, which we briefly looked at
in chapters 2 and 3, are primarily designed with machine learning applications in mind
and hence provide an extremely simplistic, sometimes even misleading, perspective on
information processing in the brain. This does not discredit deep neural networks in the
least, but it shows that despite their common origin, neuroscience and deep learning have
fundamentally different objectives, and caution is required when transferring intuitions from
one to the other. Goodfellow, Bengio, and Courville [39] summarized this clearly:

[O]ne should not view deep learning as an attempt to simulate the brain. […] It is worth noting
that the effort to understand how the brain works on an algorithmic level is alive and well. This
endeavor is primarily known as “computational neuroscience” and is a separate field of study
from deep learning. It is common for researchers to move back and forth between both fields. The
field of deep learning is primarily concerned with how to build computer systems that are able
to successfully solve tasks requiring intelligence, while the field of computational neuroscience
is primarily concerned with building more accurate models of how the brain actually works.

But this is not to say that machine learning and theoretical neuroscience couldn’t benefit
from each other. Quite to the contrary, I believe that neuroscientists could benefit greatly
from the analysis tools developed in machine learning, electrical engineering and computer
science, whereas computer scientists and engineers interested in machine learning would do
well to take more inspiration from the biological mechanisms analyzed in neuroscience!

Throughout this entire thesis, I have therefore attempted to discuss several inherently
biological phenomena that defy this framework in the language of engineering, i.e. den-
dritic filtering in chapter 4, homeostatic plasticity mechanisms in chapter 5, spike-based

86 chapter 8. conclusion

communication in chapter 6 and finally event-based mechanisms of neural computation in
chapter 7.

To decide whether these additions are actually instrumental for information processing
or merely abstract descriptions of a needlessly complicated biological mechanism, we will
have to put them to the test. I have come to believe that the best way to do that is by looking
across the domain boundaries between neuroscience and adjacent disciplines, in order to
find inspiration and to test ideas in a less forgiving environment outside one’s own control.
Particularly the embodiment of concepts from theoretical neuroscience in neuromorphic
hardware appeals to me as a tough, but honest benchmark that makes it possible to evaluate
the merit of many theoretical models of neural computation “in the real world”. I therefore
believe that many future innovations in theoretical neuroscience will originate in or be
driven by such application oriented fields, which also motivated my own transition towards
neuromorphic hardware.

87

References for chapter 8:

39. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press Cambridge, 2016, vol. 1
(cit. on pp. 4, 5, 9, 12, 85).

A Appendix for chapter 4

Note:

Some derivations in this appendix can also be found in similar form in the original
work on the Gamma neuron [125, 126], others come from (unpublished) work in
our lab. I have decided to re-derive and compile them here for conciseness and
completeness. At some points, we have also slightly extended the Gamma neuron
beyond its original definition or taken it out of its original context, but decided to
keep the established name for our more general extension.

A.1 Equivalence between filtering and continuous delays

Filter and (continuous) delay operators are very closely related.
To show the first direction of this relationship, consider a continuous signal 𝑠(𝑡). Any

operator 𝐷 that delays 𝑠 by some fixed delay Δ𝑡 ≥ 0 can be expressed as a causal filter with a
shifted Dirac-distribution as its kernel:

𝐷𝑠(𝑡) = 𝑠(𝑡 − Δ𝑡) = ∫
𝑡

−∞
𝑠(𝜏)𝜅(𝑡 − 𝜏)d𝜏

𝜅(𝑡) ≔ 𝛿(𝑡 − Δ𝑡)

Conversely, for a continuous signal 𝑠(𝑡) and a causal filter with (piece-wise) continuous
kernel 𝜅(𝑡), we can use the Riemann integral to approximate the effect of the kernel 𝜅 by a
linear combination ̄𝜅 of shifted and scaled 𝛿-pulses:

90 appendix a. appendix for chapter 4

(𝑠 ∗ 𝜅)(𝑡) = ∫
𝑡

−∞
𝑠(𝜏)𝜅(𝑡 − 𝜏)d𝜏

= lim
Δ𝑡→0

Δ𝑡
∞
∑
𝑘=0

𝑠(𝑡 − 𝑘 ⋅ Δ𝑡)𝜅(𝑘 ⋅ Δ𝑡)

= lim
Δ𝑡→0

Δ𝑡
∞
∑
𝑘=0

(∫
𝑡

−∞
𝑠(𝜃)𝛿(𝑡 − 𝜃 − 𝑘 ⋅ Δ𝑡)d𝜃) 𝜅(𝑘 ⋅ Δ𝑡)

= ∫
𝑡

−∞
𝑠(𝜃) lim

Δ𝑡→0
Δ𝑡

∞
∑
𝑘=0

𝜅(𝑘 ⋅ Δ𝑡)𝛿(𝑡 − 𝜃 − 𝑘 ⋅ Δ𝑡)d𝜃

= (𝑠 ∗ ̄𝜅)(𝑡) where ̄𝜅(𝑡) = lim
Δ𝑡→0

Δ𝑡
∞
∑
𝑘=0

𝜅(𝑘 ⋅ Δ𝑡)𝛿(𝑡 − 𝑘 ⋅ Δ𝑡)

A.2 Transfer function of the Gamma neuron

Consider the Gamma neuron as described in section 4.4. We can analyze the linear system
realized by its dendritic filter in the Laplace domain. Let us denote the Laplace transform of
the 𝑗th input signal 𝑠(𝑡) with 𝑆𝑗(𝑠), and the Laplace transform of the output signal of the 𝑖th

tap of the dendritic filter with 𝑋𝑖(𝑠), where 𝑋1(𝑠) is the output of the filter tap closes to the
soma. To simplify the analysis, we separate the feed-forward and the feed-back paths of the
model by defining the open-loop impulse-response to the 𝑗th external input signal (denoted
𝜅fwd
𝑗) as well as the open-loop impulse-response of the neuron to its own output 𝑦 (denoted
𝜅fb).

In the absence of feedback, an impulse arriving at the 𝑖th tap from the soma has to traverse
𝑖 filters on its way to the soma, and hence produces (in the Laplace domain) a filter response

(𝛼
𝑠+𝛼)

𝑖
— which corresponds to the probability density function of a Gamma distribution

with coefficients 𝑖 and 𝛼.
For a neuron with 𝑛 taps and 𝑚 input signals and time-constant 𝛼, these individual impulse

responses of the taps are scaled by the forward and feedback weights 𝑤𝑖,𝑗 and 𝑣𝑖, respectively,
and linearly combined to yield the effective dendritic filter kernels:

𝜅fwd
𝑗 =

𝑛
∑
𝑖=1

(𝛼
𝑠 + 𝛼

)
𝑖
𝑤𝑖,𝑗

𝜅fb =
𝑛
∑
𝑖=1

(𝛼
𝑠 + 𝛼

)
𝑖
𝑣𝑖

We can then derive the transfer function:

𝑋1(𝑠) = 𝜅fb𝑋1(𝑠) +
𝑚
∑
𝑗=1

𝜅fwd
𝑗 𝑆𝑗(𝑠)

⇒ 𝑋1(𝑠) =
𝑚
∑
𝑗=1

𝜅fwd
𝑗

1 − 𝜅fb
𝑆𝑗(𝑠)

=
𝑚
∑
𝑗=1

∑𝑛
𝑖=1 (

𝛼
𝑠+𝛼)

𝑖
𝑤𝑖,𝑗

1 −∑𝑛
𝑖=1 (

𝛼
𝑠+𝛼)

𝑖
𝑣𝑖
𝑆𝑗(𝑠)

= −
𝑚
∑
𝑗=1

∑𝑛
𝑖=1 𝛼 𝑖(𝑠 + 𝛼)𝑛−𝑖𝑤𝑖,𝑗

∑𝑛
𝑖=0 𝛼 𝑖(𝑠 + 𝛼)𝑛−𝑖𝑣𝑖

𝑆𝑗(𝑠)

= −
𝑚
∑
𝑗=1

∑𝑛
𝑖=1∑

𝑛−𝑖
𝑘=0 (

𝑛−𝑖
𝑘)𝑠

𝑘𝛼𝑛−𝑘𝑤𝑖,𝑗

∑𝑛
𝑖=0∑

𝑛−𝑖
𝑘=0 (

𝑛−𝑖
𝑘)𝑠

𝑘𝛼𝑛−𝑘𝑣𝑖
𝑆𝑗(𝑠)

a.2 . transfer function of the gamma neuron 91

The last expression can be simplified using matrix-vector multiplications:

(𝑤 𝑗)𝑖 ≔ 𝑤𝑖,𝑗, 𝑤 𝑗 ∈ R𝑛

(𝑀)𝑘,𝑖 ≔ {
𝛼𝑛−𝑘(𝑛−𝑖𝑘) if 𝑘 ≤ 𝑖

0 otherwise
, 𝑀 ∈ R𝑛×𝑛

The matrix 𝑀 above is an invertible matrix, therefore the coefficient vectors 𝑀𝑤 𝑗 and 𝑀𝑣
of this rational transfer function can be freely determined by an appropriate choice of the
feed-forward and feedback weights 𝑤𝑘,𝑗 and 𝑣𝑘, respectively. The resulting transfer function
of the dendritic filter simplifies to:

𝑋1(𝑠) =
𝑚
∑
𝑗=1

∑𝑛
𝑘=1 𝑠𝑘−1(𝑀𝑤 𝑗)𝑘

1−∑𝑛
𝑘=1 𝑠𝑘(𝑀𝑣)𝑘

𝑆𝑗(𝑠).

The special case of a Gamma neuron without feedback occurs when setting the feedback
weights 𝑣 to zero, which results in the simpler form:

𝑋1(𝑠) =
𝑚
∑
𝑗=1

(
𝑛
∑
𝑘=1

𝑠𝑘−1(𝑀𝑤 𝑗)𝑘) 𝑆𝑗(𝑠)

The Gamma neuron with 𝑛 filter taps and linear feedback can thus be used to implement
a dendritic filter with arbitrary proper rational transfer function (for a single input signal)
with degrees up to 𝑛 − 1 in the numerator and 𝑛 in the denominator. For multiple inputs, the
numerator of this transfer function can be individually chosen for each input, whereas the
denominator (determined by the feedback coefficients) is shared among all inputs.

The ability to freely place zeros and poles (i.e. zeros of the denominator) of the transfer
function makes this type of filter bank with feedback extremely versatile. It is capable of
implementing a wide range of practically relevant filters, such as higher-order Butterworth,
Chebyshev and Elliptic filters in low- and band-pass form. High-pass and band-stop filter can
similarly be implemented, but some limitations apply. For an in-depth look at continuous
filter design, see e.g. chapter 7 of [124].

Derivatives of Gamma filters are Gamma filters

The time-derivative of the open-loop impulse-response of tap 𝑘 ≥ 2 in the Gamma neuron’s
filter can be expressed simply in terms of just two neighboring taps (see also [125]):

𝜅𝑘(𝑡) =
𝛼𝑘

Γ(𝑘)
𝑡𝑘−1 exp(−𝛼𝑡)

𝜅′𝑘(𝑡) =
𝛼𝑘

Γ(𝑘)
(𝑡𝑘−2 exp(−𝛼𝑡) − 𝛼𝑡𝑘−1 exp(−𝛼𝑡))

= 𝛼
𝑘 − 1

𝜅𝑘−1(𝑡) − 𝛼𝜅𝑘(𝑡)

Therefore, the time derivative of any filter constructed without feedback by linear combi-
nation of the taps 𝑘 ≥ 2 can be implemented by the same filter bank, as well. The same
argument applies to the feedback path, and hence the time-derivative can be implemented
for (most) filters constructed with feedback, as well.

In short, this means that the Gamma neuron model can combine filtering and differen-
tiation in the linear operator implemented by its dendrite. The Gamma neuron therefore
posses all the capabilities required of a PID-controller : proportional input (i.e. a 𝛿-impulse
response, e.g. approximated by a quickly decaying exponential filter), integration of input

92 appendix a. appendix for chapter 4

(e.g. approximated by a slowly decaying exponential filter) and differentiation of input. See
also [129] for more information about the design of PID-controllers.

A.3 The ring of Gamma filters

As shown in appendix A.2, the Gamma neuron’s dendritic filter has a proper rational transfer
function with order ≤ 𝑛 in the denominator. While rational functions form a field, proper
rational functions only form a ring, since the multiplicative inverse of a proper rational
function would not necessarily be proper. This has an analog physical interpretation: The
sum of two causal filters or the concatenation of two causal filters (with rational transfer
functions) is again a causal filter (with rational transfer function), but a causal filter cannot
be inverted by application of a causal filter (consider as a simple counter-example, that
inverting a delay would require an acausal advance of the signal). This ring is commutative,
but it doesn’t contain a multiplicative identity (this would correspond to a Dirac-𝛿 in the
time-domain), and could therefore be called a pseudo-ring.

While multiplicative inverses don’t exist in this ring, we can approximate a solution of
𝜅2 = 𝜅†𝜅1 for 𝜅† by Euclidean division with remainder 𝑟:

∃!𝜅†, 𝑟 ∶ 𝜅2 = 𝜅†𝜅1 + 𝑟.

Now consider a signal 𝑠 and its filtered version ̃𝑠 ≔ 𝜅1 ∗ 𝑠. We then have

𝜅† ∗ ̃𝑠 = (𝜅2 − 𝑟) ∗ 𝑠

Therefore, while we cannot implement deconvolution, we can use filtering to “replace” the
effect of the filter 𝜅1 with the effect of the filter 𝜅2 − 𝑟, an approximation of 𝜅2. If 𝜅2(𝑠) is now
chosen e.g. to approximate the delay 𝛿(𝑡 − 𝑇) for some large 𝑇, then this reconvolution with
the filter 𝜅† approximates a delayed deconvolution, i.e. it approximately recovers the delayed
original signal 𝑠(𝑡 − 𝑇)!

B Appendix for chapter 6

Note:

Many of the derivations in this appendix are not new results, and can hence be
found across standard literature like [105, 174, 213]. I have nevertheless decided
to re-derive them here from scratch and compile them in order to provide a more
concise summary and to allow for a direct comparison between the different models
using a common language.

B.1 Rate-coding with (L)IF neurons

Activation function of integrate-and-fire neurons

The pure integrate-and-fire neuron integrates its input up until it hits a threshold 𝜃, at which
point it resets and the process begins anew. For an incoming signal 𝑠(𝑡) with integral 𝑆(𝑡) =
∫𝑡0 𝑠(𝑡), the integrate-and-fire neuron thus produces spikes at the times 𝑡𝑘 = 𝑆−1(𝑘𝜃), 𝑘 ∈N.
If we filter the resulting spike train 𝜒(𝑡) = ∑𝑡𝑘 𝛿(𝑡 − 𝑡𝑘) by a filter 𝜅(𝑡), we get the decoded
signal 𝑧IF:

𝑧IF(𝑡) = 𝜃 ⋅ (𝜅 ∗ 𝜒)(𝑡) (B.1)

= 𝜃 ∑
𝑡𝑘≤𝑡

∫
𝑡

−∞
𝜅(𝑡 − 𝜏)𝛿(𝜏 − 𝑡𝑘)d𝜏 (B.2)

= 𝜃 ∑
𝑡𝑘≤𝑡

𝜅(𝑡 − 𝑡𝑘) (B.3)

For a constant signal 𝑠(𝑡) = 𝑐 ≥ 0, we get 𝑆(𝑡) = 𝑐𝑡 and hence 𝑡𝑘 = 𝑘𝜃/𝑐. To simplify notation,
we can introduce 𝐾𝑡 ≔ max{𝑘 ∶ 𝑡𝑘 ≤ 𝑡} = ⌊𝑐𝑡/𝜃⌋, which is the index of the last spike before
time 𝑡. If we choose the exponential kernel 𝜅(𝑡) = 𝐻(𝑡)𝛼 exp(−𝑡𝛼), where 𝐻 is the Heaviside

94 appendix b. appendix for chapter 6

step-function and 𝛼 > 0 sets the time-scale of the filter, we can compute 𝑧IF:

𝑧IF(𝑡) =
𝐾𝑡

∑
𝑘=−∞

𝛼𝜃 exp(−𝛼(𝑡 − 𝑘𝜃/𝑐)) (B.4)

= 𝛼𝜃
1 − exp(−𝛼𝜃/𝑐)

exp(𝛼(𝐾𝑡𝜃/𝑐− 𝑡)) (B.5)

= 𝛼𝜃
1 − exp(−𝛼𝜃/𝑐)

exp(−𝛼Δ𝑡) where Δ𝑡 ≔ 𝑡 − 𝑡𝐾𝑡 (B.6)

This expression depends only on the relative time Δ𝑡 since the previous spike, and repeats
after every spike. Therefore, the “decoded” spike-train is a periodic signal of discontinuous
jumps after every spike with period 𝑡𝑘+1 − 𝑡𝑘 = 𝜃/𝑐, followed by exponential decay. We can
thus compute the mean signal by averaging it between two successive spikes:

̄𝑧IF(𝑐) =
1
𝜃/𝑐 ∫

𝜃/𝑐

0
𝑧IF(𝑡)dΔ𝑡 (B.7)

= 𝛼𝜃
𝜃/𝑐

⋅ 1
1 − exp(−𝛼𝜃/𝑐) ∫

𝜃/𝑐

0
exp(−𝛼(Δ𝑡))dΔ𝑡 (B.8)

= 𝑐 ⋅
1 − exp(−𝛼𝜃/𝑐)
1 − exp(−𝛼𝜃/𝑐)

(B.9)

= 𝑐 (B.10)

Therefore, the (linearly decoded) output of the integrate-and-fire neuron is given by a rectified
linear function ̄𝑧IF(𝑐) = max(0, 𝑐) of the constant input 𝑐.

Decoding error of integrate-and-fire spike-trains

Given 𝑧IF(𝑡) and ̄𝑧IF(𝑐), we can similarly calculate the expected root-mean-squared error
(RMSE) of the IF neuron.

MSEIF(𝑐) =
1
𝜃/𝑐 ∫

𝜃/𝑐

0
(𝑧IF(Δ𝑡) − ̄𝑧IF(𝑐))2dΔ𝑡 (B.11)

= 𝑐
𝜃 ∫

𝜃/𝑐

0
𝑧IF(Δ𝑡)2dΔ𝑡 − (̄𝑧IF(𝑐))2 (B.12)

= 𝑐𝛼2𝜃
(1 − exp(− 𝛼𝜃

𝑐))
2 ∫

𝜃/𝑐

0
exp(−2𝛼Δ𝑡)dΔ𝑡 − 𝑐2 (B.13)

=
𝑐𝛼𝜃(1 + exp(− 𝛼𝜃

𝑐))

2(1 − exp(− 𝛼𝜃
𝑐))

− 𝑐2 (B.14)

= 𝑐𝛼𝜃
2

coth(𝛼𝜃
2𝑐
) − 𝑐2 (B.15)

RMSEIF(𝑐) = √
𝑐𝛼𝜃
2

coth(𝛼𝜃
2𝑐
) − 𝑐2 (B.16)

lim
𝑐→∞

MSEIF(𝑐) =
𝛼2𝜃2

12
⇒ lim

𝑐→∞
RMSEIF(𝑐) ≈

𝛼𝜃
√12

(B.17)

The last equation shows, that in the limit of relatively high firing rates (which we typically
assume when talking about rate coding) the RMSE only depends on the product 𝛼𝜃 and
becomes independent of 𝑐. To reduce the error, we have to either use a slower kernel with
smaller 𝛼 or lower the threshold 𝜃.

b.2 . rate-coding with linear-nonlinear-poisson neurons 95

A different way to interpret this result is to consider that in the steady-state, the filtered
spike-train makes a jump of fixed magnitude 𝛼𝜃 after each spike and then relaxes back to
the same initial value 𝑧0 before spiking again. The higher the firing rate is, the more this
exponential relaxation looks like a linear decrease, and the more the filtered spike-train
looks like a saw-tooth wave. If we were to estimate the stationary distribution of the error
that results from sampling the filtered signal 𝑧IF at a random point in time, the residual 𝑟
would then be uniformly distributed in the range [𝑐 − 𝛼𝜃/2, 𝑐 + 𝛼𝜃/2] with mean value 𝑐 and
standard deviation 𝛼𝜃/√12. We will make use of this probabilistic perspective for comparing
the information content of various encodings in appendix B.3.

Activation function of leaky integrate-and-fire neurons

Leaky integrate-and-fire (LIF) neurons are very similar to integrate-and-fire neurons, but the
integrator is replaced by a first-order low-pass filter with leak-rate 𝛼. We will choose the
same 𝛼 for both the LIF neuron and the decoder (which would be another LIF neuron in a
spiking neural network, anyway). LIF neurons also fire periodically in response to constant
inputs, albeit with a lower firing rate that depends non-linearly on the input and the leak-rate
𝛼. We can therefore model the LIF neuron as an IF neuron, whose input signal 𝑐′ = 𝜈(𝑐) has
been nonlinearly transformed. This nonlinear distortion 𝜈 can be characterized as follows:

For constant input 𝑐 and following a reset at time 0, the LIF neuron’s membrane potential
follows the trajectory 𝑐/𝛼(1 − exp(−𝛼𝑡)), i.e. it exponentially approaches 𝑐/𝛼 rather than
growing at constant rate 𝑐 like in the IF neuron. The threshold 𝜃 is reached at time 𝑡 =
−1/𝛼 log(1− 𝛼𝜃/𝑐). An IF neuronwould produce the same periodic firing for a different constant
input 𝑐′:

−1/𝛼 log(1 − 𝛼𝜃/𝑐) = 𝜃/𝑐′ (B.18)

⇔ 𝜈(𝑐) ≔ 𝑐′ = − 𝛼𝜃
log(1 − 𝛼𝜃/𝑐)

(B.19)

For 𝑐 ≫ 𝜃, this has the asymptote 𝑐′(𝑐) ≈ 𝑐 + 𝛼𝜃/2.
This implies, that the LIF neuron has the transfer function is

̄𝑧LIF(𝑐) = ̄𝑧IF(𝜈(𝑐)) = max(0, − 𝛼𝜃
log(1 − 𝛼𝜃/𝑐)

).

If we use the asymptotic approximation, this reduces further to simply

̄𝑧LIF(𝑐) ≈ max(0, 𝑐 + 𝛼𝜃/2).

Decoding error of leaky integrate-and-fire spike-trains

Using the same trick of substituting in 𝑐′ = 𝜈(𝑐) for the input of an IF neuron, we can
also calculate the RMSE of the LIF neuron. But since we are mostly interested in the high
firing-rate regime, where we saw that the RMSE of the IF neuron does not depend on 𝑐 at all,
we get the same approximation for the LIF neuron as well:

RMSELIF(𝑐) ≈
𝛼𝜃
√12

.

B.2 Rate-coding with linear-nonlinear-Poisson neurons

To allow for a direct comparison between the LNP neuron and the (L)IF neuron from ap-
pendix B.1, let’s now imagine that we filter the spiking output of an LNP neuron in response
to a (piece-wise) constant input. The linear-nonlinear-Poisson spiking neuron produces

96 appendix b. appendix for chapter 6

stochastic spikes at the (time-varying) rate 𝑠(𝑡) by an inhomogeneous Poisson process, i.e.
the number 𝑁 of spikes in the time-interval [0, 𝑡] is a Poisson random variable with expected
value E[𝑁] = ∫𝑡0 𝜆𝑠(𝜏)d𝜏 = 𝜆(𝑆(𝑡) − 𝑆(0)). Here, 𝜆 is a firing-rate gain parameter that plays
the same role as 1/𝜃 does in the LIF neuron. When decoding the spike-train, we therefore
weigh each spike by 1/𝜆 instead of 𝜃 to compensate for the gain. In contrast to the (L)IF
neuron, the spike-times are not periodically spaced for the LNP neuron, so we have to follow
a slightly different approach to derive the mean and RMSE of the decoded spike-train.

For each of these 𝑁 spikes, the spike times 𝑡𝑘 ∼ Uniform(0, 𝑡) are independent and
identically distributed random variables. If we use the same constant signal 𝑠(𝑡) = 𝑐 and
exponential filter 𝜅 as in appendix B.1, we can compute the effect 𝛾𝑘 of the individual spikes
on the decoded signal, the combined effect Γ of all spikes since time 𝑡 = 0, as well as a couple
of expectations that will be useful later:

𝛾𝑘(𝑡) =
𝛼
𝜆
exp(−𝛼(𝑡 − 𝑡𝑘)) (B.20)

Γ(𝑡) = ∑
0≤𝑡𝑘≤𝑡

𝛾𝑘(𝑡) (B.21)

E[𝑁] = 𝜆 ∫
𝑡

0
𝑐d𝜏 = 𝜆𝑡𝑐 (B.22)

E[𝛾𝑘(𝑡)] =
1
𝑡 ∫

𝑡

0

𝛼
𝜆
exp(−𝛼(𝑡 − 𝜏))d𝜏 = 1

𝜆𝑡
(1 − exp(−𝛼𝑡)) (B.23)

E[𝛾𝑘(𝑡)2] =
𝛼2

𝑡𝜆2 ∫
𝑡

0
exp(−𝛼(𝑡 − 𝜏))2d𝜏 = 𝛼

2𝑡𝜆2
(1 − exp(−2𝛼𝑡)) (B.24)

E[Γ(𝑡)|𝑁] = 𝑁E[𝛾𝑖(𝑡)] =
𝑁
𝜆𝑡
(1 − exp(−𝛼𝑡)) (B.25)

E[Γ(𝑡)] = E[𝑁]E[𝛾𝑖(𝑡)] = 𝑐(1 − exp(−𝛼𝑡)) (B.26)

With these results, we can finally derive the decoded signal and its expected value:

𝑧LNP(𝑡) = 1/𝜆(𝜅 ∗ 𝜒)(𝑡) (B.27)

= ∑
−∞≤𝑡𝑘≤𝑡

𝛾𝑘(𝑡) (B.28)

= 𝑧LNP(0) exp(−𝛼𝑡) + Γ(𝑡) (B.29)

E[𝑧LNP(𝑡)|𝑁] = E[𝑧LNP(0)] exp(−𝛼𝑡) +E[Γ(𝑡)|𝑁] (B.30)

E[𝑧LNP(𝑡)] = E[𝑧LNP(0)] exp(−𝛼𝑡) +E[Γ(𝑡)] (B.31)

= E[𝑧LNP(0)] exp(−𝛼𝑡) + 𝑐(1 − exp(−𝛼𝑡)) (B.32)

We can solve the last equation easily by using the fact that the filtered signal (and hence its
expectations) must be time-shift-invariant, i.e. E[𝑧LNP(𝑡)] = E[𝑧LNP(0)]. For the mean value
̄𝑧LNP(𝑐) of the decoded signal in response to constant input 𝑠(𝑡) = 𝑐, we thus get:

̄𝑧LNP(𝑐) = E[𝑧LNP(𝑡)] = 𝑐 (B.33)

Filtering an LNP neuron’s spike-train thus also produces an unbiased estimate of its (constant)
input.

Calculating the RMSE for the LNP neuron is more difficult, because it involves a random
number of spikes 𝑁 as well as the random times of each individual spike. But we can use the
law of total variance and apply the same trick as above, i.e. enforcing that the MSE must be

b.3 . the entropy of lif and lnp encoding 97

time-shift-invariant:

Var[𝑧LNP(𝑡)|𝑁] = Var[𝑧LNP(0) exp(−𝛼𝑡) + Γ(𝑡)] (B.34)

= Var[𝑧LNP(0) exp(−𝛼𝑡)] +Var[Γ(𝑡)] (B.35)

= Var[𝑧LNP(0)] exp(−2𝛼𝑡) + 𝑁Var[𝛾𝑖(𝑡)] (B.36)

MSELNP(𝑐) = Var[𝑧LNP(𝑡)] (B.37)

= E(Var[𝑧LNP(𝑡)|𝑁]) +Var(E[𝑧LNP(𝑡)|𝑁]) (B.38)

= E(Var[𝑧LNP(0)] exp(−2𝛼𝑡) + 𝑁Var[𝛾𝑖(𝑡)]) +Var(E[𝑧LNP(0)] exp(−𝛼𝑡) + 𝑁E[𝛾𝑖(𝑡)])
(B.39)

= Var[𝑧LNP(0)] exp(−2𝛼𝑡) +E[𝑁]E[𝛾𝑖(𝑡)2] + (Var(𝑁) −E[𝑁])E[𝛾𝑖(𝑡)]2

(B.40)

= Var[𝑧LNP(0)] exp(−2𝛼𝑡) +E[𝑁]E[𝛾𝑖(𝑡)2] (B.41)

Var[𝑧LNP(0)] = Var[𝑧LNP(𝑡)] ⇔ MSELNP(𝑐) =
𝛼𝑐
2𝜆

(B.42)

RMSELNP(𝑐) = √
𝛼𝑐
2𝜆

(B.43)

Since the filtered spike-train of the LNP neuron can be viewed as a sum of independent
and identically distributed random variables, we can assume that the distribution of the
membrane potential (for a sufficiently high firing rate) approaches a normal distribution
due to the central limit theorem. In contrast to the (L)IF neuron, the RMSE hence increases
proportionally to √𝑐! We will make use of this in appendix B.3.

B.3 The entropy of LIF and LNP encoding

Let’s assume as in appendices B.1 and B.2 that 𝑐 ≫ 0, so that we may assume a Gaussian
distribution of errors when decoding the LNP neuron’s output and a uniform distribu-
tion for the LIF neuron. The entropy of a Gaussian distribution with standard-deviation
RMSELNP(𝑐) = √

𝛼𝑐
2𝜆 is 𝐸𝜎Gauss = 1/2 log(𝜋𝑒 𝛼𝑐𝜆) and the entropy of a uniformly distributed

random variable on the interval [0, 𝛼𝜃] is 𝐸𝜃Uniform = log(𝛼𝜃). Therefore, measurements of

the two neurons’ firing rates are similarly informative if 𝐸𝜎Gauss = 𝐸𝜃Uniform, i.e. if 𝜃 = √
𝜋𝑒𝑐
𝛼𝜆 .

Since for a constant signal, the mean firing rate 𝑟LNP of the LNP neuron scales linearly with
𝜆 whereas the mean firing rate 𝑟LIF of the LIF neuron scales linearly with 1/𝜃, we can see that

in order to reach similar performance, we have to have 𝑟LIF ∝ √
𝛼𝑟LNP
𝜋𝑒𝑐 .

B.4 Spike-coding under metabolic constraints

B.4.1 Maximizing information-rate under metabolic constraints

Following the procedure already outlined in section 5.2, we can find the optimal distribution
of firing rates 𝑌 that maximizes the information-rate under certain metabolic constraints.
For example, we might want to keep the expected (RMS) error below some limit 𝜃error, and
the energy cost below the limit 𝜃cost. The optimal firing rate distribution must then be of the
form:

𝑝(𝑦) = exp(𝜆01𝑅(𝑦) + 𝜆1cost(𝑦) + 𝜆2error(𝑦)),

and the optimal coefficients of the distribution 𝜆∗ = (𝜆∗0 𝜆∗1 𝜆∗2)
𝑇
can be found by opti-

mization of:
𝜆∗ = argmax

𝜆
(𝜆𝑇𝜃 − ∫

𝑅
𝑝(𝑦)d𝑦) subject to 𝜆1, 𝜆2 ≥ 0,

98 appendix b. appendix for chapter 6

where 𝑅 = [0, 𝑅max] is the range of admissible firing rates and 𝜃 = (1 −𝜃cost −𝜃error)
holds the constraints we wish to enforce. ¹ In general, it might be difficult to derive a closed- 1 The first term 1 and corresponding

coefficient 𝜆0 originate from the con-
straint that the distribution of 𝑌 has to
be normalized over 𝑅, the other two
from the metabolic constraints.

form solution for this, but if we are for instance willing to assume that (a) the firing rate is
bounded, (b) the cost increases linearly with the rate and (c) RMSE is (almost) independent
of 𝑦 (as is the case for the (L)IF neuron), then the equation above reduces to a truncated
exponential distribution! ² 2 If the cost constraint is redundant,

this simplifies further to a uniform
distribution.

B.4.2 Maximizing metabolic efficiency

While optimizing the through-put of a neuron seems reasonable from an information bottle-
neck perspective, there is convincing evidence that (some) biological neurons appear to be
optimized for metabolic efficiency instead, firing at rates as low as two spikes per second
and with an information content as high as 5.6 bits per spike (see e.g. chapter 4 of [7]). This
may be much less than the maximum bit-rate that a single neuron could deliver in principle,
but it appears to make optimal use of the invested energy. To find the optimal firing rate
distribution 𝑃∗𝑌 , we can proceed as follows: If we again use cost(𝑦) to denote the power
required for maintaining a firing rate 𝑦, the cost associated with the firing rate distribution
𝑃𝑌 is cost𝑃𝑌 = E𝑃𝑌[cost(𝑦)]. We can then express the metabolic efficiency of the neuron

𝜀 =
𝐼𝑃𝑌

cost𝑃𝑌
where 𝐼𝑃𝑌 denotes the information-rate of the neuron for firing rate distribution 𝑃𝑌.

If the cost was independent of the firing rate distribution (i.e. if generating spikes required
no additional energy), then most the “powerful” encoding from above would also be the
most metabolically efficient. But if we make the more realistic assumption, that each spike
costs a finite amount of energy 𝑒spike in addition to the static power 𝑐𝑜𝑠𝑡static required to keep
the neuron operational, the metabolic efficiency is optimized by the distribution

𝑃∗𝑌 = argmax
𝑃𝑌

𝐼𝑃𝑌
E[𝑌] ⋅ 𝑒spike + coststatic

.

If we only consider exponential distributions and assume a one-to-one deterministic
encoding by the neuron, then the information rate (which is then proportional to the entropy
of 𝑌) is just a function of the expected firing rate 𝐼𝑃𝑌 ∝ log2(E[𝑌]) + 1, and hence 𝑃∗𝑌 becomes
a function of just the mean firing rate, as well. In this case, we see that the metabolic efficiency
would be maximized for

E[𝑌] =
𝛾

𝛾𝑊 (2 exp(−1))
, where 𝛾 ≔ coststatic/𝑒spike and 𝑊 is Lambert’s function.

Note that this gives us a finite, optimal firing rate for the neuron, even if we impose no hard
limits on either the energy constraint or the maximum firing rate.

C Index of included contributions

In the following, I have compiled all the relevant own publications referenced in the thesis.
Full-text sources are available through the respective publishers. Unpublished or inaccessible
contributions are attached in appendix D.

Description of the contribution

#1 Title: Bistable Perception in Conceptor Networks.

Publication type: conference paper

Summary: This conference paper explores, how a hierarchy of conceptor networks,
which can act as generative models for time-series signals, can be used to actively
suppress noise and minimize prediction errors. The idea of such a hierarchical predic-
tive coding scheme is in line with biological observations and provides an appealing
model of perception. When presented with ambiguous superposition of two stimuli,
this architecture reproduces the well known psychological phenomenon of bi-stable
perception, where either of the two pure stimuli is perceived in isolation for a period
of time, before the percept switches to the other. It matches empirical results with
surprising fidelity, including the distribution of the time-spans for which either of
the stimuli is perceived! This paper extends ideas developed within Felix Meyer zu
Driehausen’s thesis, which I had the pleasure of supervising. Felix and Rüdiger Busche
subsequently turned it into a viable model and a nice conference paper, for which they
deserve all the credit.

Full-text available at: https://doi.org/10.1007/978-3-030-30493-5_3

Bibliographic reference:

F. Meyer zu Driehausen, R. Busche, J. Leugering, and G. Pipa, “Bistable Per-
ception in Conceptor Networks,” in Artificial Neural Networks and Machine
Learning – ICANN 2019: Workshop and Special Sessions, 2019, isbn: 978-3-030-
30493-5. doi: 10.1007/978-3-030-30493-5_3.

https://doi.org/10.1007/978-3-030-30493-5_3
http://dx.doi.org/10.1007/978-3-030-30493-5_3

100 appendix c. index of included contributions

#2 Title: Computational Elements of Circuits.

Publication type: book chapter

Summary: The book “The Neocortex”, published by the Ernst Strüngmann Forum,
compiles the current state of knowledge about the basic principles of operation of
the neocortex. In our contribution to this work, the book chapter entitled “Compu-
tational Elements of Circuits”, we discuss several fundamental properties of neural
computation — from homeostasis to delayed interactions, synchronization, random
feature expansion and reservoir computing. Within this book chapter, my own largest
contribution can be found in the section “Information Processing in Single Neurons and
Populations”, which elaborates and generalizes ideas from contribution 6.

Full-text available at: https://mitpress.mit.edu/books/neocortex

Bibliographic reference:

J. Leugering, P. Nieters, and G. Pipa, “Computational Elements of Circuits,”
in The Neocortex, W. Singer, T. J. Sejnowski, and P. Rakic, eds., red. by J. Lupp,
vol. 27, The MIT Press, 2019, pp. 195–209, isbn: 978-0-262-04324-3. doi: 10
.7551/mitpress/12593.003.0016.

#3 Title: A visit to the neuromorphic zoo.

Publication type: conference/fair paper

Summary: In this paper, which accompanies a public talk held at the EmbeddedWorld
conference, I provide a brief overview over current concepts and academic as well
as commercial developments in the field of AI-hardware acceleration in general, and
neuromorphic hardware in particular. This paper was selected by WEKA Fachmedien
for a re-publication in the magazine DESIGN&ELEKTRONIK, where it appeared in
German translation under the title “Neuromorphe Hardware”. Since the Embedded
World conference accompanies an industry fair, the proceedings are targeted towards
an engineering audience and are intended to offer an accessible high-level perspective.
(This paper passed an editorial process, but no scientific peer-review.)

Full-text available at: appendix D, page 106ff

Bibliographic reference:

J. Leugering, “A visit to the neuromorphic zoo,” in EmbeddedWorld Conference
2020 – Proceedings, 2020, isbn: 978-3-645-50186-6.
A German translation also appeared in:
J. Leugering, “Neuromorphe Hardware,” DESIGN&ELEKTRONIK, no. 7/2020,
pp. 41–47, 2020.

https://mitpress.mit.edu/books/neocortex
http://dx.doi.org/10.7551/mitpress/12593.003.0016
http://dx.doi.org/10.7551/mitpress/12593.003.0016

101

#4 Title: Neuromorphic Adaptive Filters for event detection, trained with a gradient free
online learning rule.

Publication type: conference poster

Summary: We extended the Gamma Neuron to a spike-based temporal pattern
detector for a conference poster presented first at the Cognitive Computing 2018
conference in Hannover, Germany, and then again at the Machine Learning Summer-
School (MLSS) 2019 held in Cape Town, South Africa. Here we investigated how
this type of neuron model could be trained to produce a spike-based classification of
temporal patterns through a local, reward-modulated synaptic learning rule.

Full-text available at: appendix D, page 113ff

Bibliographic reference:

P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic Adaptive Filters for
event detection, trained with a gradient free online learning rule,” presented
at the Machine Learning Summer School (MLSS-Africa 2019), 1, 2019.

#5 Title: Neuromorphic computation in multi-delay coupled models.

Publication type: journal paper

Summary: In this paper, we explored how delayed feedback, in particular the in-
teraction between differently delayed feedback-loops, can be exploited to endow a
single neuron, which could be implemented in an electrical or photonic circuit, with
memory and the capability to compute complex functions of its input history. For a
simple single-node multi-delay-coupled reservoir neuron, we show how the relation-
ship between the delay terms leads to different complexity of behavior, and hence
different performance of the trained neuron across different time-series regression
tasks. Curiously, we can show that — and why — co-prime delays result in the best
performance, and thus give some intuition for the complex behavior of delay-coupled
systems.

Full-text available at: http://ieeexplore.ieee.org/document/7921635/

Bibliographic reference:

P. Nieters, J. Leugering, and G. Pipa, “Neuromorphic computation in multi-
delay coupled models,” IBM Journal of Research and Development, vol. 61,
no. 2/3, 8:7–8:9, 1, 2017, issn: 0018-8646, 0018-8646. doi: 10.1147/JRD.20
17.2664698.

http://ieeexplore.ieee.org/document/7921635/
http://dx.doi.org/10.1147/JRD.2017.2664698
http://dx.doi.org/10.1147/JRD.2017.2664698

102 appendix c. index of included contributions

#6 Title: A Unifying Framework of Synaptic and Intrinsic Plasticity in Neural Populations.

Publication type: journal paper

Summary: In this rather long paper, I explore the relationships and interaction of
intrinsic and synaptic plasticity for computation. The entire chapter 5 of my thesis is
largely based on ideas contained within this publication. I try to motivate the same
main results here using a slightly different approach that introduces concepts like
optimal transport theory. But for most content of the current chapter, a more in-depth
discussion can be found within this original publication.

Full-text available at: https://www.mitpressjournals.org/doi/10.1162
/neco_a_01057

Bibliographic reference:

J. Leugering and G. Pipa, “A Unifying Framework of Synaptic and Intrinsic
Plasticity in Neural Populations,” Neural Computation, vol. 30, no. 4, pp. 945–
986, 17, 2018, issn: 0899-7667. doi: 10.1162/neco_a_01057.

#7 Title: Event-based pattern detection in active dendrites.

Publication type: journal paper (pre-print)

Summary: In this manuscript, we derive a simple yet powerful mechanisms of
dendritic computation in single neurons from first biological principles. Our model
makes use of actively generated dendritic plateau potentials, which provide the neuron
with distributed processing elements andmemory traces that collectively allow a single
neuron’s dendritic tree to process information in nonlinear ways and on timescales
that exceed the typical timescales of membrane potentials by orders of magnitude.
We show how this event-based mechanism can be used to reproduce well known
nonlinear computations when viewed from a rate-coding perspective, but also how
it goes much further than that by detecting specific long-lasting sequences of spike
volleys and integrating information from a vast number of inputs over comparatively
long time-scales. A pre-print of this paper is publicly available, and a revised version
of the same manuscript is currently still under review.

Full-text available at: appendix D, page 114ff

Bibliographic reference:

J. Leugering, P. Nieters, and G. Pipa, “Event-based pattern detection in active
dendrites,” bioRxiv, 17, 2020. doi: 10.1101/690792v3.

https://www.mitpressjournals.org/doi/10.1162/neco_a_01057
https://www.mitpressjournals.org/doi/10.1162/neco_a_01057
http://dx.doi.org/10.1162/neco_a_01057
http://dx.doi.org/10.1101/690792v3

103

#8 Title: Making spiking neurons more succinct with multi-compartment models.

Publication type: conference paper

Summary: In this conference paper, which accompanies a full-length presentation, I
analyze the computational properties of the biologically motivated multi-compartment
neuron model of contribution 7 from a machine-learning perspective. By transferring
and adapting concepts and learning rules developed for decision trees to this neuron
model, I give an intuition for how such a hierarchical structure like a neural dendrite
can be useful for computation, and how simple, local learning rules might be enough
to optimize such models.

Full-text available at: https://doi.org/10.1145/3381755.3381763

Bibliographic reference:

J. Leugering, “Making spiking neurons more succinct with multi-
compartment models,” in Proceedings of the Neuro-Inspired Computational
Elements Workshop, 17, 2020, isbn: 978-1-4503-7718-8. doi: 10.1145/33817
55.3381763.

#9 Title: Neuromorpher Musterdetektor und neuromorphe Schaltkreisanordnung hiermit.

Publication type: patent (filed & pending)

Summary: Based on the insights derived from the neuron model of contribution 7,
we designed a digital neuromorphic circuit that can efficiently realize the compu-
tation required for active dendritic sequence processing without the need for any
general purpose processing elements like arithmetic-logic-units or micro-processors.
It implements a processor for temporal patterns and sequences in each hierarchi-
cally structured neuron through a combination of pulses of different lengths, just like
its biological counterpart. Homogeneous assemblies of multiple such neurons then
communicate with each other through a code that serializes and transmits multiple
spike-trains over a single binary connection.

Full-text available at: appendix D, page 131ff

Bibliographic reference:

J. Leugering, P. Nieters, and G. Pipa, “Neuromorpher Musterdetektor und
neuromorphe Schaltkreisanordnung hiermit,” patent application DE 10 2019
134 044 A1.

https://doi.org/10.1145/3381755.3381763
http://dx.doi.org/10.1145/3381755.3381763
http://dx.doi.org/10.1145/3381755.3381763

104 appendix c. index of included contributions

#10 Title: A Bayesian Monte Carlo approach for predicting the spread of infectious diseases.

Publication type: journal paper

Summary: In this publication, we investigate a simple class of probabilistic models
of the spread of infectious diseases using Hamiltonian Markov Chain Monte Carlo
sampling techniques and spatio-temporal kernel functions. Since this work is themati-
cally disconnected from the central focus of this dissertation, it is referenced here for
completeness but not discussed further.

Full-text available at: https://journals.plos.org/plosone/article?id
=10.1371/journal.pone.0225838

Bibliographic reference:

O. Stojanović, J. Leugering, G. Pipa, S. Ghozzi, and A. Ullrich, “A Bayesian
Monte Carlo approach for predicting the spread of infectious diseases,” PLOS
ONE, vol. 14, no. 12, e0225838, 18, 2019, issn: 1932-6203. doi: 10.1371/jou
rnal.pone.0225838.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225838
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225838
http://dx.doi.org/10.1371/journal.pone.0225838
http://dx.doi.org/10.1371/journal.pone.0225838

D Full-text sources of further contributions

In the following, I have compiled unpublished or inaccessible contributions referenced in
the thesis. The documents are included “as-is” in the exact form they were submitted or
presented (except, of course, for the added page numbers and legal notices).

www.embedded-world.eu

 A visit to the neuromorphic zoo
Johannes Leugering

Institute for Integrated Circuits

Fraunhofer Gesellschaft e.V.

Erlangen, Germany

johannes.leugering@iis.fraunhofer.de

Abstract— Over the course of the last decade, neural networks

have finally found their way from mostly academic research into

commercial applications. So far, this transition has taken place

primarily behind closed doors at high-performance computing

centers – but with ever more powerful mobile devices and a

growing interest in the Internet of Things, a similar revolution is

ahead of us in the embedded device market. One technology that

takes center stage in these developments is specialized

neuromorphic hardware, custom designed for executing neural

network applications. In this paper, we would like to provide some

background information on this fascinating branch of hardware

development for interested readers from other disciplines,

compare different approaches and provide an overview of the

current state of the field.

Keywords—neuromorphic hardware; embedded AI; neural

networks; deep learning; accelerators

I. THE DEEP LEARNING REVOLUTION

The last decade has brought with it a remarkable
transformation of the field of artificial intelligence. Starting in
2012, when a Deep Neural Network now known as AlexNet [1]
beat all competing approaches in a highly competitive computer
vision challenge for the first time, Deep Learning has enjoyed a
stellar rise in popularity - both in academia and industry alike.
Today, it has become a ubiquitous and indispensable tool for a
broad range of applications: Unlocking a mobile phone through
facial recognition [2], controlling it through voice [3, 4], or
having it translate a website [5] likely relies on a deep neural
network in the background to bear the brunt of the work. On the
other end of the spectrum, powerful servers and clusters employ
deep neural networks for the automated analysis of big medical
data sets [6], economic forecasts [7] or epidemiological
predictions [8] etc., and ever-more complex neural networks are
being developed to tackle increasingly harder problems.

In the wake of this "Deep Learning revolution" and as we
mourn the gradual decline of Moore's law [9], there is a growing
demand for innovative hardware solutions to sustain this
development – even as we approach the limits of established
technologies. In particular neuromorphic hardware, which is
often subsumed with other approaches under the generic
umbrella terms next generation computing (NGC) or non-von-
Neumann computing, promises to deliver critical performance
benefits that pave the way for further market adoption of
machine learning and artificial intelligence. But what exactly is

neuromorphic hardware, and how does it work? Why is it
becoming increasingly relevant today, and where might it lead
us in the future? We'll discuss these questions in the following,
starting with a little bit of background.

II. WHAT EXACTLY IS NEUROMORPHIC HARDWARE?

The term "neuromorphic" is obviously a portmanteau of
"neuro-" and "-morphic", and it describes hardware that is in
some way inspired by the morphology of biological neural
systems. Since biological inspiration can take many forms and
can be taken to different levels, the label “neuromorphic
hardware” is applied rather loosely to an entire research field
that shares the common objective to implement (some) neural
network models efficiently in hardware. The best way to achieve
this varies, depending on the type of neural network to
accelerate, design constraints and the performance criteria that
have to be optimized, e.g. power, latency, noise robustness etc.
There are many degrees of freedom in the design process, among
them:

 What type of networks should be used, e.g. neurons with
continuously valued states that change continuously
with time, or with discrete states that are updated at
discrete time-steps, or spiking neurons that
communicate asynchronously?

 Should these computations be realized by analog or
digital circuitry?

 Should the topology of the networks be restricted to
some specific structure, e.g. to feed-forward, recurrent
or convolutional networks?

 Which components of the network should be directly
implemented by dedicated hardware components, and
which, if any, should be emulated with a more
conventional processor design?

 Can the design be decomposed into functional modules,
and if so, how should these modules communicate with
each other?

Any combination of these (and many more) design choices
leads to a different species in zoo of neuromorphic hardware
designs. In practice, this results in a broad continuum from
specialized multi-processor designs on the one end, all the way
to full analog instantiations of biological neural network models

106
Reprinted with permission from WEKA Fachmedien: A visit to the neuromorphic zoo. J Leugering.

Published in: embedded world Conference 2020 Proceedings.
© WEKA (2020). www.embedded-world.eu

www.embedded-world.eu

on the other end, where each neuron and synapse of the neural
network model has a corresponding dedicated electrical
counterpart. Neuromorphic hardware therefore encompasses
several diverse technologies, rather than any one in particular,
so an exact technical definition of the term is difficult. Instead,
we can identify some characteristic features, or design
principles, that distinguish (most) neuromorphic hardware
designs from more conventional approaches:

 highly parallel computing instead of to the sequential
operation of a single central processing unit (CPU)

 the use of distributed and decentralized memory instead
of a central dedicated storage

 a system design specifically optimized to implement
neural networks of some form.

III. HOW CAN/DOES NEUROMORPHIC HARDWARE WORK?

Since neuromorphic hardware is designed to accelerate
neural networks, its merits can only be explained in the context
of neural networks. Luckily, the mathematical model underlying
most machine-learning applications of neural networks is
actually very simple. To get everyone on the same page, what
follows is a (hopelessly incomplete) high-level glance at the
theory of neural networks, focusing only on those aspects that
are relevant for neuromorphic hardware designers. For a more
complete introduction, we refer to [10] and references therein.
Everyone who is familiar with the theory already can safely skip
right ahead to the next section, where we then discuss different
approaches to implementing such network models in hardware.

A. Excursion: How do (deep) neural networks work?

In the machine-learning context1, a neural network is a graph
structure composed of neurons that are connected by synapses.
Each synapse can multiplicatively scale its input, which may be
the output of some neuron or an external source, by some
number called the synapse’s weight, and transmit the result to
another neuron. Each neuron linearly combines all of the signals
from its incoming synaptic connections (scaled by their
respective weights) into a single signal. This signal is then non-
linearly transformed to produce the neuron’s output.

Mathematically [10], the neuron 𝑗’s output 𝑦𝑗(𝑡) at time 𝑡 is

therefore a function of the input signals 𝑥𝑖(𝑡), and has the simple

form 𝑦𝑗(𝑡) = 𝑓(∑ 𝑤𝑗,𝑖 𝑥𝑖(𝑡) + 𝑏𝑗𝑖), where 𝑤𝑗,𝑖 represents the

scalar weight of a synaptic connection from input 𝑥𝑖 to neuron 𝑗,
and 𝑏𝑗 is a neuron specific offset or bias term. We can group all

the weights and bias terms in a single weight matrix 𝑊 and the

bias vector 𝑏⃗ , which results in the simple matrix equation 𝑦 (𝑡) =𝑓(𝑊𝑥 (𝑡) + 𝑏⃗). From this equation, it should become clear, that

the multiply-accumulate operations (MACs) required for
matrix-vector multiplication constitute the main computational
cost for simulating neural networks.

One major exception to this story are spiking neural
networks (SNNs, [11]), which encode a neuron's output instead

1 We only discuss neural network models for machine-

learning, not bio-physically accurate models of nervous

systems.

by a sequence of brief, stereotypical pulses (spikes). In these
networks, much like pulse code modulate (PCM, [12]) in digital
signal processing, it is the number of spikes per unit time that
conveys the magnitude of a signal, not the amplitude. The
corresponding mathematical model requires an explicit
representation of time and is hence best suited for the processing
of time-series.

Despite the simple mathematical formalism, many types of
neural networks can be realized by different classes of weight
matrices. To give a few examples, a (block)-triangular weight
matrix represents a (layered) feed-forward network. Diagonal
blocks represent recurrently connected layers (i.e. groups of
mutually connected neurons), and all blocks on the second or
higher off-diagonal represent so-called skip connections. Off-
diagonal blocks in Toeplitz-form resemble convolutional layers
– a structure that has proved to be invaluable in image processing
tasks, and so on. Besides the structure of the weight matrix, we
can also choose what numeric type of entries it should contain.
For example, instead of real valued weights, we can use integer
valued weights, pick from an arbitrary set of discrete weights,
e.g. binary (𝑤 ∈ {−1,1}) or ternary (𝑤 ∈ {−1,0,1}), or even use
a compressed encoding of the weights. To summarize, there are
countless interesting classes of weight matrices, and each of
them has specific implications for the corresponding class of
neural networks and offers specific opportunities for hardware
acceleration.

In order for a neural network to do anything useful at all, the
free parameters, i.e. weights and bias terms, must be set to
specific task-dependent values. Earlier engineering approaches
like the famous Neocognitron [13] anticipated many of features
of deep neural networks, but relied heavily on domain-
knowledge and inspiration from the network structures observed
in nature2. The real breakthrough happened decades later, when
improvements in computer technology suddenly made it feasible
to directly optimize (or train) the weight matrices (and bias
terms) of highly structured networks (e.g. deep convolutional
feed-forward networks [1]) to minimize errors (or loss) on
extremely large data-sets.

Since global optimization of such large non-linear systems is
near impossible, the work-horse for the optimization of deep
neural networks are simple, greedy, gradient-based algorithms,
that differentiate the loss function on a training data-set with
respect to the network's parameters, and use this information to
iteratively improve the parameters [10]. While this is
significantly more difficult for spiking neural networks (the
discrete-time nature of their event-based communication makes
the calculation of gradients difficult), some remedies exist [14,
15] that allow us to use similar tools even for training spiking
neural networks. As a result, gradient-based methods have de
facto become such a central part of deep learning, that
differentiable programming has even been suggested as a more
accurate label for the entire field [16].

2 The study of these biological and artificial connectomes

under the name connectionism was the intellectual precursor

of modern deep learning.

107

www.embedded-world.eu

B. The Neuromorphic Zoo

As this brief overview/recap of neural networks hopefully
shows, there are many knobs to turn in the construction of neural
networks, and the possible hardware implementations are
similarly plentiful. In the following, let’s have a brief look at
several different approaches to neuromorphic hardware design.
We stay on a rather high conceptual level here, and discuss five
clusters of approaches, grouped by the degree to which the
network model is directly reflected in the hardware. A more
complete overview and a more in-depth discussion of the
various underlying hardware design concepts can be found e.g.
in [17, 18]. We begin with conventional computing devices, and
end with truly neuromorphic, fully analog designs that replicate
each individual synapse in hardware.

1) Generic co-processors and graphics cards
Since a major fraction of the simulation and training time for

neural networks is spent on MAC operations, the key innovation
in most accelerator designs is an efficient hardware
implementation of matrix multiplication for some class of
weight matrices. Arguably the most flexible and generic form of
hardware accelerators for neural networks are therefore
conventional many-processor designs like graphics processing
units (GPUs, [19]) or other “number crunching” co-processors
like tensor processing/streaming units (TPUs, [20, 21]), which
have been thoroughly optimized for large and fast matrix-
multiplications. They are generally not considered
neuromorphic hardware, but the high demand of such devices
for deep learning applications, among others, has driven the
development of a new generation of GPUs and TPUs optimized
entirely for generic parallel compute tasks, and software libraries
[22, 23] have accordingly begun to delegate more and more
parallel operations away from the CPU to such co-processors.
However, their versatility comes at a high price: the ability to
execute arbitrary programs requires an extensive control-logic,
powerful arithmetic logic units and a cache-, memory- and bus-
system optimized for arbitrary memory access and fast data
transfer. This overhead is unnecessary for many neural network
architectures and can lead to power, performance or latency
penalties. In addition, since the main speed-up offered by such
co-processors is through the acceleration of matrix
multiplication, they yield hardly any benefit at all for certain
types of networks like SNNs, extremely sparsely connected
networks or networks with non-linear synaptic effects.

2) Custom many-processor designs
Similar in spirit, albeit more closely focused on neural

network applications, are specialized many-core designs (e.g.
[24, 25] among many others), that distribute the task of
simulating or training a large neural network across many
independent processor cores. They typically support a (reduced)
instruction set tailored and optimized towards neural network
applications. Rather than by arbitrary access to shared memory,
these designs typically implement an efficient routing or
message passing system for the exchange of information
between the nodes. Despite the focus on neural network
applications, the neurons are here emulated algorithmically in
software, and data flows through a shared bus-system, rather

3 In fact, they are not limited to neural network applications at

all, and can be used for other tasks with similar demands.

than dedicated synapses. Since these devices do not directly
implement any of the components of a neural network in
hardware, they are not genuine neuromorphic hardware in the
narrowest sense3, but they are generally discussed alongside
neuromorphic hardware due to their near-identical application
areas and user interfaces.

3) Digital deep learning accelerators
There is another class of digital accelerators (e.g. [26, 27,

28]), that is designed and optimized on a low level entirely for
the implementation of (some) deep neural networks. Here, the
operation of individual neurons is approximated by a dedicated
digital logic circuit, that realizes the specific MAC operations
required for the network class of interest (respecting the
structure as well as the bit-precision the neurons’ input weights
and activation functions). These devices therefore don’t allow
arbitrary code execution, but instead require provisioning with
the precise topology and coefficients of the network. Once
configured, they act as a black box that efficiently executes the
provisioned network, mapping digital input signals onto the
network’s digital outputs.

 Rather than on their own, such deep learning accelerators
can be used as small cores embedded within a larger many-core
system similar to the ones discussed above. Such a modular
design can be more effective, flexible and easier to scale, in
particular when a specific network architecture to be accelerated
allows for specific optimizations. For example, convolutional
neural networks re-use the same structure of synaptic weights
repeatedly for different neurons (also called weight-sharing),
which can be implemented very efficiently by re-using the same
hardware substrate in a time-multiplexed design that updates the
network one neuron at a time. Generally in feed-forward
networks, the neurons within one layer are conditionally
independent given their input and can thus be processed in
parallel. Here, an efficient hardware solution could update one
entire layer at a time. For sparse weight matrices, an optimized
handling of zeros can further improve performance, while
networks with low-precision (e.g. ternary) weights can be
implemented by much more compact circuits.

4) Analog deep learning accelerators
As we saw before, the mathematical models of neural

networks are typically given in terms of real numbers. So rather
than approximating them via discrete digital circuitry, another
natural approach is to instead represent the real-valued quantities
of the model by real-valued physical quantities like analog
voltages, currents or charges. Such a use of analog circuit design
goes back to the earliest attempts of neuromorphic hardware
design in the 1950s [29], but fell out of favor during the digital
revolution in electronics. While the susceptibility to noise is still
a major challenge for most applications of analog circuitry, some
neural networks have, quite surprisingly, proven to be
remarkably robust to the effects of noise [30] – in fact, some
forms of noise may even help to improve the robustness of the
system [31]! Other pit-falls of analog circuit design, e.g. the
difficulty of precisely controlling (non-)linearities in the system,

108

are much less critical for neural networks than other
applications, because the networks have sufficient degrees of
freedom to counteract such defects (provided, of course, that the
defects are known). Despite these challenges and limitations,
which ultimately caused the transition to digital circuit design,
there are of course also major benefits for the implementation of
neural networks in the analog domain. First, our continuous
model of a neuron is remarkably similar to that of a logic gate4
– one might even view it as a continuous, weighted extension of
logic gates – with one crucial difference: neurons can be
differentiated with respect to their parameters, which, as we have
seen above, is critical for deep learning [10]. Deep learning
therefore provides a framework to optimize analog circuits in a
way that cannot be directly applied to digital circuits. While it is
of course possible to approximate the behavior of continuous
neuron models by digital circuitry (see above), this can result in
a high component count of transistor and logic gates, each of
which has itself a complexity rivaling that of an analog
implementation of the neuron model [17]. In the analog
approach, multiplication and addition is instead realized by
direct application of Ohm’s and Kirchhoff’s laws, i.e. by
choosing appropriate values of resistive elements to represent
individual synaptic weigths and accumulating the resulting
currents. This also allows for ultra-low power applications,
possibly at the expense of an increased noise-floor, and
alleviates the need to wait for signals to settle, which makes low-
latency asynchronous designs possible.

Due to strong barriers to entry, e.g. high manufacturing costs
and long development cycles, only a comparatively small
number of fully analog deep learning accelerators have actually
seen the light of day. However, a vast amount of literature has
been written about this already (see e.g. [17, 18] and references
therein) and if the number of recent start-ups and research
projects in that field is any indication, there is a substantial and
growing commercial and academic interest, as well.

5) Spiking neural network accelerators
Last but not least, neuromorphic hardware for spiking neural

networks, currently an outlier in the machine learning world, is
set to become another major branch of hardware accelerated
embedded AI. Contrary to conventional neural networks, the
purely event-driven operation of spiking neural networks defies
the simple mathematical frameworks of continuous function
approximation and periodic sampling. An efficient
implementation of such networks is therefore difficult for both
clocked digital logic as well as in conventional imperative
programming paradigms. Combined with the increased
complexity of training algorithms for SNNs [14, 15, 32], this
may explain the relative lack of attention these networks have
received within the machine learning community – despite
advocacy by some leading theoreticians in the field [11].
However, the very same properties of spiking neurons that
appear as major obstacles for efficient software implementations
(e.g. integration and low-pass filtering of signals over time and
rising-edge triggered generation of pulses) are commonplace
[12] in signal processing and can be implemented by simple

4 The earliest theories of neural networks by McCulloch &

Pitts [67] already established this connection.

analog circuits [33]. As a result, there is little overhead in
complexity when switching from an analog to a spike-based
network design. To the contrary, since each neuron’s spiking
output is a binary signal that can be converted into an analog
signal merely by low-pass filtering (one of the axioms of the
neural engineering framework [34]), spike-based neuromorphic
hardware can combine the best of both worlds: the highly
energy-efficient computation of analog circuitry and the binary
transmission of signals via spikes, which decreases
susceptibility to noise and simplifies routing and buffering.

Just as for digital hardware accelerators, the communication
between individual neurons of a spiking network can therefore
be implemented either through dedicated electrical lines or
through a (digital) package routing system, the most popular of
which is address event representation [35] encoding, where
each spike is conveyed as a package containing the “address” of
the neuron from which it originated. While such a routing system
greatly improves the scalability of the system by time-
multiplexing the usage of the same communication channels, it
requires sophisticated scheduling and low latencies that can
become prohibitive as the number of interconnected neurons
increases. A hybrid approach that uses many cores with full
internal connectivity through dedicated lines, connected to each
other via a common bus system, is therefore a popular
compromise (e.g. in [36, 37]).

IV. WHY IS NEUROMORPHIC HARDWARE RELEVANT TODAY?

With this brief overview in mind, one might wonder, why
neuromorphic hardware has so suddenly become a hot topic
among AI researchers and ASIC developers. None of these ideas
seem novel enough to justify this rise in popularity – in fact,
similar ideas have been continuously suggested since the very
beginning of artificial intelligence research and computer
science in the 1950s [29]. Even the term “neuromorphic
hardware” was popularized already in the 1990s by Carver Mead
[38], who has been a pioneer in this research area since its early
days. So why should we invest in neuromorphic hardware today,
and why didn’t this happen before?

The most obvious argument is purely opportunistic: never
before have neural networks had sufficient size to be practically
useful for complex, data-driven applications. Now, with the
breakthroughs in image classification competitions during the
recent years, neural networks have finally proven their worth for
commercial applications, and have received massive exposure to
the public and industry ever since. This growing popularity has
correspondingly lead to an increased demand of efficient
hardware on which to run neural networks.

The applications in fields like image processing [1], gaming
[39], text analysis [40], audio processing [41, 4] and data-
science, e.g. in medical image analysis [6], have diversified and
become more complex, with weight coefficients numbering
anywhere from hundreds of thousands up to a staggering billion

109

www.embedded-world.eu

for extreme cases [42]5. The range of applications is likely only
going to increase, as a growing number of mobile devices from
smartphones [43] all the way to autonomous vehicles do already
(or will soon) use neural networks for demanding image
recognitions tasks, and require the corresponding computing
power.

So far, we have been riding the wave of ever-improving
CPUs and GPUs, and technological progress alone could sustain
the growing demand, but as we begin to witness the end of
Moore’s [9] law, we need fundamentally new ideas. Current
state-of-the-art 7nm CMOS technology approaches physical
limits and it seems unlikely that we can continue scaling down
size, power-consumption or latency much further. At the same
time, the total training time, power-consumption and initial cost
of systems capable of simulating larger state-of-the-art neural
networks has sky-rocketed to an unsustainable level [44], while
the limited power budget of mobile devices has been a limiting
factor for many potentially interesting applications.

Of course, neuromorphic hardware, too, has benefitted from
the technological advances in electronics manufacturing during
the last few decades. Besides a new market, the availability of
new technologies is thus another reason for a renewed interest in
neuromorphic hardware development. For example, new
transistor design principles like fin field-effect transistors
(FinFETs, [45]), fully depleted silicon on insulator (FD-SOI,
[46]) and floating multi-gate MOSFET transistors [47, 48] as

well as special neuro-transistors (νMOS, [49]) have enabled
extremely low-power applications and novel neuromorphic
hardware designs. Since neural networks require a sizeable
amount of memory for storing the network topology and
synaptic weights, neuromorphic hardware also stands to gain a
lot from new trends in memory technology. With small feature
sizes of 28nm and below and advances in dynamic RAM
(DRAM) and static RAM (SRAM), it has become possible to
store reasonably sized networks directly in silico, and process
data right where it is stored. While this new paradigm of in-
memory computing [50, 51] is by no means limited to
neuromorphic hardware, the highly distributed structure of
neural networks can leverage this advantage particularly well,
and thus overcome the memory-bottleneck that conventional
von-Neumann architectures suffer from.

Since the network coefficients (typically) do not change at
all during inference, emerging non-volatile memory
technologies (eNVM, [52]) are particularly interesting for
neuromorphic hardware. One major development is the
emergence of several forms of memristive devices, which can
act as the programmable resistive components required for re-
configurable analog hardware accelerators [53]. Competing
technologies like charge trap flash memory (CTF) , ferro-
electric field-effect transistors (FeFETs), resistive RAM
(ReRAM), conductive bridge RAM (CBRAM) and phase
change memory (PCM) [52, 54] all exploit different physical
phenomena to allow non-volatile storage on chip, many of them
supporting the storage of analog values at a multi-bit resolution

5 It should be recognized that despite the general trend of

increasing network sizes, there are also contrary efforts to

reduce the number of parameters, e.g. [68].

[51], which is critical for analog hardware accelerators and
reduces the die-space required for memory.

Lastly, we have learned a lot about neural networks in the
meantime: we have demonstrated their capability, know now
that there are indeed use-cases for large networks, and we have
found better ways and tools [22, 23] to train even large networks.
As we continue to learn more in-depth about which network
topologies are effective for which specific tasks, and why, we
also develop a better understanding of what sort of networks are
worth accelerating in hardware – and which are not.

V. WHERE IS THE DEVELOPMENT OF NEUROMORPHIC

HARDWARE HEADED IN THE NEAR FUTURE?

Of course, predicting the future is hard, particularly for a
field that has been through all the season (including the dreaded,
recurring “AI winter”) several times already. But with new
exciting technologies on the horizon, such as 3D [55] and wafer-
scale [56] integration, nano-wire transistors [57], carbon nano-
tubes [58] on-chip, silicon photonics [59], spintronics [60], ever-
smaller micro- and nano-electro-mechanical systems (MEMS,
NEMS [61]), integrated sensor-processor systems and more, it
is hard to not feel optimistic about the future of neuromorphic
hardware.

The technological progress is likely to bring neuromorphic
hardware into new application areas, where it can reduce energy
consumption, latency or the cost of existing solutions. For
example, co-processors for AI are already being included in
modern smartphones [43] to reduce CPU load during AI
applications and therefore prolong battery life. On the other end
of the spectrum, the increasing demand for high-performance
computing clusters and cloud-services that provide “deep-
learning-as-a-service” [62] shows a market for server-side
energy efficient, dedicated neuromorphic hardware co-
processors.

Neuromorphic hardware can also enable applications that are
in principle possible right now, but not economically viable yet,
such as natural language [63] or gesture based [64] user-
interfaces for controlling a wide range of electrical devices, e.g.
in the context of the internet-of-things or home-automation and
appliances. Industry could use neuromorphic hardware to make
even low-level processes in manufacturing more adaptive or
responsive, or improve the interaction between humans and
machines.

Finally, the adoption of neuromorphic hardware might even
enable machine learning solutions that are flat-out impossible
right now, such as many sophisticated real-time applications like
the processing and fusion of complex, high-dimensional sensor
data and the intelligent real-time control of sophisticated robots
or production plants. Power savings might enable novel mobile
applications like large-scale distributed sensor networks [65], or
autonomous systems that are smart enough to act on their own
and resilient enough to survive in difficult environments. By
optimizing die-space, neuromorphic hardware could also find its
way into miniaturized sensors, e.g. ingestible medical sensors

110

[66] and much more. Of course, the most important applications
might turn out to be entirely different from the ones listed here,
but we are confident that industry and academia will find
countless ways to capitalize on neuromorphic hardware in the
future!

REFERENCES

[1] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification

with Deep Convolutional Neural Networks," in Advanced in Neural

Information Processing Systems 25, 2012.

[2] O. M. Parkhi, A. Vedaldi and A. Zisserman, "Deep face recognition," in

Procedings of the British Machine Vision Conference 2015, Swansea,

2015.

[3] J. P. Dominguez-Morales et al., „Deep Spiking Neural Network model
for time-variant signals classification: a real-time speech recognition

approach,“ in 2018 International Joint Conference on Neural Networks
(IJCNN), Rio de Janeiro, 2018.

[4] D. Li, H. Geoffrey und K. Brian, „New types of deep neural network
learning for speech recognition and related applications: An overview,“

in 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing, 2013.

[5] Y. Wu et al., „Google's neural machine translation system: bridging the
gap between human and machine translation,“ arXiv:1609.08144 [cs],

10 2016.

[6] G. Litjens et al., "A survey on deep learning in medical image
analysis," Medical Image Analysis, vol. 42, pp. 60-88, 12 2017.

[7] D. Xiao, Z. Junw, L. Ting und D. Junw, „Deep learning for event-
driven stock prediction,“ in Twenty-fourth international joint

conference on artificial intelligence, 2015.

[8] M. Salathé, "Digital epidemiology: what is it, and where is it going?,"

Life Sciences, Society and Policy, vol. 14, p. 1, 12 2018.

[9] M. M. Waldrop, "The chips are down for Moore’s law," Nature, vol.

530, pp. 144-147, 2 2016.

[10] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," Nature, vol. 521,
pp. 436-444, 5 2015.

[11] W. Maass, "Networks of spiking neurons: The third generation of

neural network models," Neural Networks, vol. 10, pp. 1659-1671, 12
1997.

[12] B. M. Oliver, J. R. Pierce und C. E. Shannon, „The philosophy of pcm,“
Proceedings of the IRE, Bd. 36, pp. 1324-1331, 11 1948.

[13] K. Fukushima, "Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position,"

Biological Cybernetics, vol. 36, pp. 193-202, 4 1980.

[14] A. Sengupta, Y. Ye, R. Wang, C. Liu and K. Roy, "Going deeper in

spiking neural networks: vgg and residual architectures," Frontiers in
Neuroscience, vol. 13, 2019.

[15] E. O. Neftci, H. Mostafa und F. Zenke, „Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based

optimization to spiking neural networks,“ IEEE Signal Processing

Magazine, Bd. 36, pp. 51-63, 11 2019.

[16] Y. LeCun, Facebook Post.
https://www.facebook.com/yann.lecun/posts/10155003011462143

[17] G. Indiveri and T. K. Horiuchi, "Frontiers in neuromorphic

engineering," Frontiers in Neuroscience, vol. 5, 2011.

[18] C. D. Schuman et al., „A survey of neuromorphic computing and neural
networks in hardware,“ arXiv:1705.06963 [cs], 5 2017.

[19] S. Chetlur et al., „Cudnn: efficient primitives for deep learning,“
arXiv:1410.0759 [cs], 12 2014.

[20] Groq's tensor streaming architecture, 2019, https://groq.com/groqs-

tensor-streaming-architecture/

[21] N. P. Jouppi, C. Young, N. Patil and D. Patterson, "A domain-specific

architecture for deep neural networks," Communications of the ACM,

vol. 61, pp. 50-59, 8 2018.

[22] The Theano Team et al., „Theano: A Python framework for fast
computation of mathematical expressions,“ arXiv:1605.02688 [cs], 5

2016.

[23] M. Abadi et al., „Tensorflow: large-scale machine learning on

heterogeneous distributed systems,“ arXiv:1603.04467 [cs], 3 2016.

[24] S. B. Furber, F. Galluppi, S. Temple und L. A. Plana, „The spinnaker
project,“ Proceedings of the IEEE, Bd. 102, pp. 652-665, 5 2014.

[25] Graphcore: Accelerating machine learning for a world of intelligent
machines, https://www.graphcore.ai/

[26] Y.-H. Chen, T. Krishna, J. S. Emer und V. Sze, „Eyeriss: An Energy-

Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,“ IEEE Journal of Solid-State Circuits, Bd. 52, pp. 127-138,

1 2017.

[27] M. H. Ionica und D. Gregg, „The Movidius Myriad Architectures
Potential for Scientific Computing,“ IEEE Micro, Bd. 35, pp. 6-14, 1

2015.

[28] „NVDLA Primer,“ 2018, http://nvdla.org/primer.html

[29] F. Rosenblatt, "The perceptron: A probabilistic model for information

storage and organization in the brain.," Psychological Review, vol. 65,

pp. 386-408, 1958.

[30] D. Rolnick, A. Veit, S. Belongie und N. Shavit, „Deep learning is
robust to massive label noise,“ arXiv:1705.10694 [cs], 2 2018.

[31] Y. Gal and Z. Ghahramani, "Dropout as a bayesian approximation:
representing model uncertainty in deep learning," in International

Conference on Machine Learning, 2016.

[32] J. H. Lee, T. Delbruck und M. Pfeiffer, „Training deep spiking neural
networks using backpropagation,“ Frontiers in Neuroscience, Bd. 10,

11 2016.

[33] Y. P. Tsividis, „Integrated continuous-time filter design,“ in
Proceedings of IEEE Custom Integrated Circuits Conference - CICC

'93, 1993.

[34] C. Eliasmith und C. H. Anderson, Neural engineering: computation,
representation, and dynamics in neurobiological systems, Cambridge,

Mass: MIT Press, 2003.

[35] M. Mahowald, An analog vlsi system for stereoscopic vision, Boston,
MA: Springer US, 1994.

[36] M. Davies et al., „Loihi: a neuromorphic manycore processor with on-

chip learning,“ IEEE Micro, Bd. 38, pp. 82-99, 1 2018.

[37] F. Akopyan et al., „Truenorth: design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip,“ IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, Bd. 34,
pp. 1537-1557, 10 2015.

[38] C. Mead, „Neuromorphic electronic systems,“ Proceedings of the

IEEE, Bd. 78, pp. 1629-1636, 10 1990.

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.

Tang und W. Zaremba, „Openai gym,“ arXiv:1606.01540 [cs], 6 2016.

[40] Better language models and their implications, 2019,
https://openai.com/blog/better-language-models/

[41] A. v. d. Oord et al., „Wavenet: a generative model for raw audio,“
arXiv:1609.03499 [cs], 9 2016.

[42] Megatronlm: training billion+ parameter language models using gpu

model parallelism, 2019, https://nv-adlr.github.io/MegatronLM

[43] Ai benchmark: all about deep learning on smartphones in 2019.

https://www.groundai.com/project/ai-benchmark-all-about-deep-

learning-on-smartphones-in-2019/1

[44] J. Toole, Deep learning has a size problem, 2019,

https://heartbeat.fritz.ai/deep-learning-has-a-size-problem-ea601304cd8

[45] B. Yu et al., „FinFET scaling to 10 nm gate length,“ in Digest.
International Electron Devices Meeting,, 2002.

[46] J.-P. Colinge, „Fully-depleted SOI CMOS for analog applications,“
IEEE Transactions on Electron Devices, Bd. 45, pp. 1010-1016, 5

1998.

111

www.embedded-world.eu

[47] F. Khateb, "Bulk-driven floating-gate and bulk-driven quasi-floating-

gate techniques for low-voltage low-power analog circuits design,"
AEU - International Journal of Electronics and Communications, vol.

68, pp. 64-72, 1 2014.

[48] J. P. Colinge, "Multi-gate soi mosfets," Microelectronic Engineering,
vol. 84, pp. 2071-2076, 9 2007.

[49] Z. Wang et al., "Capacitive neural network with neuro-transistors,"

Nature Communications, vol. 9, pp. 1-10, 8 2018.

[50] D. Ielmini and H.-S. P. Wong, "In-memory computing with resistive

switching devices," Nature Electronics, vol. 1, pp. 333-343, 6 2018.

[51] M. Le Gallo et al., "Mixed-precision in-memory computing," Nature
Electronics, vol. 1, pp. 246-253, 4 2018.

[52] A. Chen, "A review of emerging non-volatile memory (Nvm)

technologies and applications," Solid-State Electronics, vol. 125, pp.
25-38, 11 2016.

[53] O. Krestinskaya, A. P. James und L. O. Chua, „Neuromemristive
circuits for edge computing: a review,“ IEEE Transactions on Neural

Networks and Learning Systems, Bd. 31, pp. 4-23, 1 2020.

[54] C.-Y. Lu, „Future Prospects of NAND Flash Memory Technology—
The Evolution from Floating Gate to Charge Trapping to 3D Stacking,“
Journal of Nanoscience and Nanotechnology, Bd. 12, pp. 7604-7618,

10 2012.

[55] J. U. Knickerbocker et al., „3D silicon integration,“ in 2008 58th
Electronic Components and Technology Conference, 2008.

[56] J. Schemmel, J. Fieres und K. Meier, „Wafer-scale integration of

analog neural networks,“ in 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational

Intelligence), 2008.

[57] W. Taube Navaraj et al., "Nanowire fet based neural element for
robotic tactile sensing skin," Frontiers in Neuroscience, vol. 11, 2017.

[58] J. Tang et al., "Flexible CMOS integrated circuits based on carbon

nanotubes with sub-10 ns stage delays," Nature Electronics, vol. 1, pp.
191-196, 3 2018.

[59] R. Soref, „The past, present, and future of silicon photonics,“ IEEE

Journal of Selected Topics in Quantum Electronics, Bd. 12, pp. 1678-
1687, 11 2006.

[60] I. Žutić, J. Fabian und S. Das Sarma, „Spintronics: Fundamentals and
applications,“ Reviews of Modern Physics, Bd. 76, pp. 323-410, 4 2004.

[61] S. E. Lyshevski, Mems and nems : systems, devices, and structures,

CRC Press, 2018.

[62] M. S. V. Janakiram, The rise of artificial intelligence as a service in the
public cloud.2018,

https://www.forbes.com/sites/janakirammsv/2018/02/22/the-rise-of-

artificial-intelligence-as-a-service-in-the-public-cloud/

[63] J. Hirschberg and C. D. Manning, "Advances in natural language

processing," Science, vol. 349, pp. 261-266, 7 2015.

[64] N. Neverova, C. Wolf, G. W. Taylor and F. Nebout, "Multi-scale deep
learning for gesture detection and localization," in Computer Vision -

ECCV 2014 Workshops, Cham, 2015.

[65] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam und E. Cayirci, „A
survey on sensor networks,“ IEEE Communications Magazine, Bd. 40,

pp. 102-114, 8 2002.

[66] K. Kalantar-zadeh, N. Ha, J. Z. Ou und K. J. Berean, „Ingestible
sensors,“ ACS Sensors, Bd. 2, pp. 468-483, 4 2017.

[67] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas

immanent in nervous activity," The bulletin of mathematical biophysics,
vol. 5, pp. 115-133, 12 1943.

[68] F. N. Iandola et al., „SqueezeNet: AlexNet-level accuracy with 50x

fewer parameters and <0.5MB model size,“ arXiv:1602.07360 [cs], 11
2016.

112

113

EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES

PREPRINT

Johannes Leugering*

Osnabrück University, Germany
jleugeri@uni-osnabrueck.de

Pascal Nieters∗

Osnabrück University, Germany
pnieters@uni-osnabrueck.de

Gordon Pipa
Osnabrück University, Germany
gpipa@uni-osnabrueck.de

August 17, 2020

ABSTRACT

Many behavioural tasks require an animal to integrate information on a slow timescale that can
exceed hundreds of milliseconds. How this is realized by neurons with membrane time constants on
the order of tens of milliseconds or less remains an open question. We show, how the interaction of
two kinds of events within the dendritic tree, excitatory postsynaptic potentials and locally generated
dendritic plateau potentials, can allow a single neuron to detect specific sequences of spiking
input on such slow timescales. Our conceptual model reveals, how the morphology of a neuron’s
dendritic tree determines its computational function, which can range from a simple logic gate to
the gradual integration of evidence to the detection of complex spatio-temporal spike-sequences on
long timescales. As an example, we illustrate in a simulated navigation task how this mechanism can
even allow individual neurons to reliably detect specific movement trajectories with high tolerance
for timing variability. We relate our results to conclusive findings in neurobiology and discuss
implications for both experimental and theoretical neuroscience.

Author Summary

The recognition of patterns that span multiple timescales is a critical function of the brain. This is a conceptual
challenge for all neuron models that rely on the passive integration of synaptic inputs and are therefore limited to the
rigid millisecond timescale of post-synaptic currents. However, detailed biological measurements recently revealed
that single neurons actively generate localized plateau potentials within the dendritic tree that can last hundreds
of milliseconds. Here, we investigate single-neuron computation in a model that adheres to these findings but is
intentionally simple. Our analysis reveals how plateaus act as memory traces, and their interaction as defined by the
dendritic morphology of a neuron gives rise to complex non-linear computation. We demonstrate how this mechanism
enables individual neurons to solve difficult, behaviorally relevant tasks that are commonly studied on the network-level,
such as the detection of variable input sequences or the integration of evidence on long timescales. We also characterize
computation in our model using rate-based analysis tools, demonstrate why our proposed mechanism of dendritic
computation cannot be detected under this analysis and suggest an alternative based on plateau timings. The interaction
of plateau events in dendritic trees is, according to our argument, an elementary principle of neural computation which
implies the need for a fundamental change of perspective on the computational function of neurons.

Introduction1

The ability to detect long-lasting sequences of neural activity is crucial for complex behavior, but poses a serious2

challenge for most established neuron models. Consider a rodent navigating through an environment in search for3

food. Receptive fields of place and grid cells tile a spatial map of the environment and encode the current position by4

their respective population activities [1, 2]. But in order to find its way back, the animal needs to know not only its5

present location, but also which path it took to get there. Decoding this path from the sequential activation of place and6

grid cells requires the integration of information on behavioural timescales that can span hundreds of milliseconds or7

∗Both authors contributed equally.

114

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

more [3, 4]. Relevant patterns on such long timescales may prove to be a ubiquitous phenomenon, and have already been8

documented for a wide range of sensory processing tasks, such as olfaction [5, 6] or cortical auditory processing [7].9

This raises the puzzling question, how such long sequences of neural activity can be processed by volatile neurons10

with membrane time constants on the timescale of tens of milliseconds or less [8]. While this problem is typically11

addressed on a network level, e.g. by relying on effects of fast-acting synaptic plasticity [9] or slow emergent dynamics12

due to recurrent connections [10], we argue that it can be solved on the level of individual neurons by active processes13

within their dendritic trees. These localized processes endow neurons with internal memory traces on the timescale of14

hundreds of milliseconds, and can be captured in a simple, conceptual model that adheres to recent biological evidence15

not accounted for in integrate-and-fire neuron models.16

By investigating the computational properties of neurons with active dendrites, we draw three conclusions.17

Firstly, active dendritic processes can implement complex spatio-temporal receptive fields for ordered sequences of18

synaptic inputs. Secondly, active dendritic processes enable the robust integration of weak signals over timescales much19

longer than post-synaptic responses. Thirdly, when analyzed from a rate-coding perspective, active dendritic processes20

implement sophisticated non-linear computations that are characterized by the neuron’s dendritic morphology.21

We demonstrate these propositions in a general computational framework for event-based, active dendritic sequence22

processing (ADSP), which offers an elegant solution to the problem of detecting highly variable, long lasting patterns in23

a neuron’s input.24

The functional role of active dendritic processes.25

We derive our abstract model of dendritic computation from a few basic biological observations: Most of a cortical26

pyramidal neuron’s excitatory synaptic inputs terminate on dendritic spines [11], where post-synaptic ion channels27

are activated via the stochastic, pre-synaptic release of glutamate-carrying vesicles [12, 13]. The activated channels,28

primarily controlled by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) [14], become29

conductive to a mixture of ions, which leads to a brief depolarization in the corresponding spine, referred to as the30

excitatory post-synaptic potential (EPSP) [15]. These voltage changes in nearby spines induce a modest depolarization31

in the local dendritic membrane potential [16], which passively propagates along the dendrite as described by neural32

cable theory (Fig. 1c). For very specific branching patterns, the passive propagation of activity along a neuron’s dendrite33

can be simplified to an equivalent model of a cylinder, in which the contribution of individual synaptic inputs sum34

(sub-)linearly [17]. Since propagation along the cylinder is very fast, abstract point-neuron models such as leaky35

integrate-and-fire neurons ignore the spatial dimension of the dendritic tree entirely and model the neuron as if it were36

a single electric compartment [18]. However, in this purely passive model of dendritic integration, the attenuation37

of signals along the dendritic cable is so strong, that synaptic input onto thin apical dendrites should have little, if38

any, measurable effect on the membrane potential at the soma far away [19, 20]. A synaptic plasticity mechanism39

that proportionally up-scales synaptic efficacies depending on the synapses’ distance to the soma may counteract this40

phenomenon. Aptly termed “dendritic democracy”[21], it has been shown in hippocampal pyramidal neurons [22],41

where it results in a similar contribution of synaptic inputs onto the somatic membrane potential — regardless of the42

synapse’s position along the dendrite. We instead look at a different mechanism to boost weak synaptic inputs, which43

relies on localized depolarizations that are actively generated and maintained within the dendritic tree.44

Such active dendritic processes are ubiquitous [23, 24] and largely rely on N-methyl-D-asparate receptor (NMDAR)45

gated ion-channels [14] (see Fig. 1c for a schematic representation of this mechanism). NMDAR gated channels, like46

their AMPAR gated counterparts, are activated in the presence of glutamate, but do not become conductive unless a47

channel-blocking Mg+ ion is first displaced by a sufficiently strong depolarization [25, 26]. This depolarization can be48

achieved by the coactivation of multiple AMPAR channels on nearby spines within a short time-window. Experimental49

as well as simulation studies report that this requires a volley of 4-20 or even up to 50 spikes within 1-4ms, depending50

on the location along the dendritic tree [16, 27, 28, 29]. The opening of NMDAR channels triggers a massive influx51

of different ionic currents that lead to a complete depolarization of a small segment of the dendritic arbor. While the52

isolated NMDAR response itself is reported to last on the order of at least 25ms [30], in vivo recordings reveal that53

voltage-gated channels in the dendritic membrane [20] prolong this effect, resulting in a depolarization that can last54

from tens to hundreds of milliseconds [31]. We focus on these longer lasting events, which we collectively refer to as55

dendritic plateau potentials, and argue, that they provide useful memory traces within the dendritic tree that can last56

hundreds of milliseconds.57

The much larger depolarization during a plateau potential propagates further along the dendrite than the weaker effect58

of individual EPSPs and thus extends the range at which they can contribute to somatic action potential generation.59

This may even be required for generating or spiking [32] or bursting [33] output. Just like EPSPs, however, plateau60

potentials are still subject to considerable attenuation along the dendritic cable and thus have a strong effect only in61

2

115

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

their direct neighbourhood2. This leads to a division of complex dendritic arbors into functional subunits [34, 35, 36],62

which we here refer to as dendritic segments. How local plateau potentials in these segments interact within a dendritic63

tree depends on its morphology. In particular, the depolarizing effect on other directly connected dendritic segments64

is effectively raising their resting potential for the whole duration of the plateau potential, thus lowering the amount65

of coinciding spikes required to initiate a plateau potential there [37]. As [38] demonstrates, this local nonlinear66

interaction of dendritic segments due to NMDAR-gated channels can allow neural dendrites to become selective to67

specific sequences of synaptic inputs. While their work uses a biophysical, spatially extended neuron model to explain68

this behaviour, we instead derive a much simplified model composed of discrete dendritic segments. This helps explain69

how local interactions between connected segments lead to cascades of plateau potentials, which in turn allow the70

detection of specific long-lasting sequences within the dendritic tree.71

Each segment of a dendritic tree tends to receive strongly correlated volleys of spikes on clustered synaptic inputs from72

some subpopulation of neurons [39, 40]. We suppose, that such incoming spike volleys constitute elementary events73

that convey relevant information. Then, the morphology of the dendritic tree then determines how this information is74

processed and retained in memory, and thereby endows the ADSP neuron with an intricate computational function.75

The interaction of active dendritic processes realizes event-based computation.76

We construct an abstract mathematical model of active dendritic sequence processing, that is firmly rooted in the77

previous biological observations. Conceptually, the complex dynamics of dendritic membrane potentials are reduced to78

the interactions of two kinds of events, EPSPs and actively generated plateau potentials, in a tree structure of dendritic79

segments. Since both of these events result in localized stereotypical effects on the dendritic membrane potential, we80

abstractly model them simply as rectangular pulses of unit magnitude and fixed duration τsynapse and τdendrite, respectively.81

Because the qualitative behaviour of the dendritic arbor is thus explained purely in terms of the locations and times82

at which EPSPs and plateau potential are initiated in its dendritic segments, our model concisely describes dendritic83

computation.84

Only those incoming spikes that are successfully transmitted by the probabilistic synapses induce EPSPs in the85

postsynaptic segment, which sum up and constitute the total synaptic input into the segment. This input is particularly86

strong when a volley of multiple spikes occurs in a time-window short enough for their EPSPs to overlap. In addition to87

synaptic input, the electric coupling between directly connected dendritic segments provides another source of dendritic88

input.89

When both the synaptic and dendritic input into a segment exceed critical thresholds, the segment enters a prolonged90

plateau state. For the whole duration of the plateau, all other directly connected segments receive depolarizing dendritic91

input. Segments of the dendritic tree therefore act as coincidence detectors that respond to highly synchronized volleys92

of spikes with plateau potentials. The precise thresholds for synaptic and dendritic input depend on the segment’s93

location within the dendritic tree. While a large volley of spikes alone suffices to trigger a plateau in the outermost94

segments of the dendritic tree, internal segments require the additional dendritic input due to plateau potentials in95

connected segments. For segments that lie at branching points in the dendritic tree, more than one of their neighbours96

may have to be in a plateau state concurrently to have a sufficient effect. If the soma, which lies at the root of the97

dendritic tree, receives sufficient synaptic and dendritic input, a somatic action potential, rather than a plateau potential,98

is generated.99

Since the small effects of EPSPs remain confined to the postsynaptic dendrite segment, they only affect the neuron’s100

behaviour indirectly by contributing to the generation of local plateau potentials. It is the plateau potentials and their101

interaction across neighbouring segments that drives the dendritic membrane potential, and therefore implements102

an event-based framework of dendritic computation on two distinct timescales orders of magnitude apart. On a fast103

timescale, the combined effect of a volley of coincident spikes initiates a localized plateau potential. On a much slower104

timescale, the interaction of these plateaus provides an ephemeral memory of the recent history. The computation105

we have described here is fully formalized in terms of synaptic spikes and plateau events as provided in the Methods106

section.107

In Fig. 1 we describe an exemplary ADSP neuron that receives input from five populations of neurons on five segments108

(Fig. 1a). Each segment, if sufficiently excited, responds to a spike volley in its respective input populations by emitting109

a plateau event at the time of the volley (Fig. 1b). The morphology of the dendritic tree determines how these plateaus110

interact along the dendritic tree. For example, segment C will only activate if both segments A and B are already active111

once segment C receives a spike volley. We formalize the relative timing requirement for these three segments by112

the expression (A + B) →2 C, which indicates that all two child branches A and B must be simultaneously active113

to enable the parent segment C, allowing it to emit a plateau in response to a spike-volley. We read this as "A and B,114

2Unlike EPSPs, this attenuation cannot be circumvented by synaptic scaling as for dendritic democracy.

3

116

117

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

The interaction between connected dendritic segments facilitates cascades of plateau potentials along the dendritic tree,123

as illustrated in Fig. 1b. Starting in a distal segment, a leaf-node in our diagrams, a spike volley can initiate a plateau,124

which then provides dendritic input for the parent segment. Next, that segment responds to an incoming spike volley125

with a plateau of its own, in turn providing dendritic input to yet another segment. Whenever such a continuous chain126

of plateau potentials proceeds all the way to the soma, it culminates in a somatic action potential.127

This signals to other neurons, that a specific sequence of spike volleys has been detected – on a timescale that may128

be as long as the number of segments times the plateau duration, i.e. hundreds of milliseconds. The precise timing129

between spike volleys is not prescribed exactly, as long as the distance between two successive volleys does not exceed130

the duration of one plateau potential. This invariance is critical whenever the precise timing of the individual events can131

vary, e.g. due to external circumstances such as varying movement speeds along a path in navigation tasks or due to132

neural mechanisms such as sleep replay [41], because it allows the neuron to generalize over all such perturbations. The133

branching morphology of a dendritic tree therefore determines the computation performed by the neuron, which allows134

even single neurons to detect complex compositions of sequential patterns. This event-based computation is what we135

call active dendritic sequence processing (ADSP).136

Results137

Dendritic processing allows the rapid detection of long, time-invariant patterns138

To demonstrate the implications of such neuronal sequence detection, we return to the example of a rat navigating an139

environment. We assume that the rat has an internal representation of its environment, tiled by the receptive fields of140

distinct populations of place cells. While the animal resides within such a receptive field, the corresponding population141

emits spike volleys with a magnitude that is largest when the animal is close to the center of the receptive field. Different142

paths lead the animal through some of these receptive fields in different order, and result in different sequences of spike143

volleys.144

Each individual spike volley consists of several coincident spikes, the EPSPs of which have to be integrated and145

thresholded on a millisecond time-scale to detect sufficiently significant events in the presence of noise. To detect146

whether the animal has taken a specific path through the environment, only specific sequences of such significant spike147

volleys must be detected on a much slower behavioural time-scale. These two distinct timescales pose a challenge for148

conventional spiking neuron models, which is further exacerbated by the fact, that the precise timing of the spike-volleys149

can vary substantially, depending e.g. on the speed with which the animal traverses its environment. While a solution to150

this problem may be found on a population level, we illustrate in Fig. 2 how a single neuron can implement a solution151

very elegantly with just three active dendritic segments.152

To simulate the rat’s behaviour, we generate random movement trajectories through the environment by a stochastic153

process (see Methods section). Each place-cell population fires spike-volleys with a magnitude determined by the154

population’s tuning-curve, a two-dimensional Gaussian function centered at the population’s preferred location on a155

hexagonal grid. In this example, we are interested in paths that traverse three specific receptive fields, respectively156

color-coded in blue, orange and purple, and hence look at a neuron that consists of a chain of three dendritic segments,157

each receiving input from just one of these place-cell populations (Fig. 2b). The only trajectories that effectively158

drive the neuron to spike are those that sequentially traverse the three receptive fields in the correct order Blue →1159

Orange →1 Purple (Fig. 2a).160

During the example path shown in solid black, the three place cell populations are activated in the correct order over the161

course of 200ms and emit sufficiently large spike volleys to trigger a cascade of plateau potentials that lead the neuron162

to emit a somatic spike Fig. 2b. To illustrate how reliable of a detector an individual neuron can be — even when its163

synaptic inputs are stochastic with a transmission probability of 0.5 —, we systematically evaluate the probability of the164

neuron to fire in response to different paths with varying directions and lateral offsets. For an ideal straight 200ms long165

path through the center of all three place cell populations, the firing probability of the neuron is around 75%. When166

the orientation of the path is varied, this probability sharply decreases to 0%, indicating that the neuron is both highly167

sensitive and highly specific for paths with this orientation (Fig. 2c). Similarly, when the path is shifted orthogonally to168

the movement direction, the response probability falls quickly, confirming that the neuron is sensitive to the absolute169

location of the path as well as its direction (Fig. 2d).170

A remarkable feature of this mechanism is, that it is invariant to changes in the precise timing of the individual volleys171

as long as two consecutive segments are activated within one plateau duration τdendrite of each other. The ADSP Neuron172

can therefore detect paths of any duration from 0ms to Nτdendritems, where N = 3 is the number of consecutive173

segments. We believe this source of timing-invariance to be a highly beneficial feature for generalization that helps174

explain phenomena, where the same sequence of events must be detected across multiple timescales.175

5

118

119

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

Plateaus integrate evidence on long timescales176

In the previous example, specific paths are recognized by memorizing the sequential activation of different neural177

populations on a slow behavioural time-scale. A seemingly different, yet in fact closely related problem is the integration178

of individually unreliable bits of evidence over time. Consider, for example, a population of neurons that extract some179

relevant feature of a stimulus, such as the local movement direction in a visual moving dots stimulus. If we assume180

a retinotopic mapping, neighbouring neurons are highly correlated, and whenever the local movement direction is181

apparent, we expect a couple of neighbouring neurons coding for that direction to produce a volley of spikes. However,182

these events are unlikely to occur at the exact same point in time throughout the entire input space. The decision,183

whether or not the visual flow is in a certain direction, therefore requires that a neuron can integrate many such pieces of184

evidence, each indicated by a spike volley event, over a longer time-scale. Despite the all-or-none response of dendritic185

plateaus, a neuron with sufficiently many dendritic segments can in fact approximate such a smooth integration of186

evidence on timescales of hundreds of milliseconds!187

We give an example of evidence integration using dendritic plateau potentials in a simplified experiment, in which a188

neuron with 1000 dendritic compartments receives input from a population of 1000 input neurons through a total of189

20, 000 stochastic synapses (Fig. 3). The weak signal to be integrated by the ADSP neuron is encoded into spike volleys190

of 10 simultaneous spikes from adjacent neurons of the input population. Each dendritic segment of the ADSP neuron191

is connected to a different set of 20 adjacent neurons in the input population, and a total of 300 dendritic segments are192

required be in simultaneous plateau states for the neuron to emit a somatic spike.193

Because each spike volley is likely to activate a different dendritic segment, we expect the number of simultaneously194

active dendritic compartments to reflect the average rate of incoming spike volleys during a time-interval of one plateau195

duration. This corresponds to a filtering of the time-varying rate by a rectangular filter, and, for a brief interval after196

stimulus onset, represents an ideal integrator. We observe this exact behavior by driving the rate, at which spike volleys197

are generated by the input population, to three different levels for brief time-intervals (Fig. 3b, orange line). The number198

of co-activated dendritic segments (blue line) closely follows the theoretical prediction of an ideal rectangular filter199

(black dashed line) until saturation. In particular, during the rising flanks right after stimulus onset (Fig. 3c, d and e.),200

we see the number of co-active segments rise with a slope proportional to the intensity of the stimulus until it saturates201

after 100ms. The neuron begins firing spikes once sufficiently many segments are active (red line). This is exactly the202

behavior expected for evidence integration: The ADSP neuron will fire sooner if the amount of evidence encoded in the203

stimulus is stronger, and will not fire at all if it remains sub-critical.204

Interestingly, the stochasticity of synaptic transmission helps to further decorrelate the partially overlapping input to205

different dendritic segments, and can regulate the total amount of evidence required to reach the neuron’s physiologically206

fixed spiking threshold. Also, while the example here makes use of just a single "layer" of dendritic segments directly207

driving the soma, this idea can be extended to deeper chains of multiple segments, such as in the previous example, to208

allow for the integration of evidence and non-linear combination thereof on timescales even longer than one plateau209

duration.210

Dendritic morphology determines computational function211

In the two previous examples, we assume that each dendritic segment is driven by well-timed volleys of coincident212

spikes, the magnitudes of which represent the magnitude of an underlying signal. But in theoretical neuroscience, the213

function of a neuron is often analyzed in a rate-based framework, which relates only the average firing rate of a neuron214

to the average firing rates of its spiking inputs.215

Applying this sort of analysis to our proposed neuron model reveals, how different morphologies of dendritic arbors give216

rise to different non-linear computations. A dendritic segment driven by independent Poisson spike-trains originating217

from some population A of 25 neurons respond by triggering plateau potentials at a rate ̺(rA) that continuously depend218

on the fixed firing-rate rA of the populations’ neurons. Here, 8 coincident spikes are required to trigger a plateau. As219

each plateau lasts for 100ms, ̺ saturates at a rate of 10 plateaus per second for large inputs (Fig. 4a). In more complex220

neurons composed of three dendritic segments, each of which is driven by an identical but independent population of221

neurons, we analyze the relative contributions of the populations B and C in the same way. In these experiments, we222

hold the firing rate rA = 25 constant. For a neuron C →1 B →1 A, whose segments are sequentially chained together,223

a spike is generated if and only if both C and B are activated, and in the correct order. The resulting contour-plot, which224

shows how the output firing rate of this neuron scales with both rC and rB , illustrates that both a high firing rate of225

population C and B are required to result in a high firing rate of the neuron (Fig. 4d). This is similar to the neuron with226

two parallel segments (C + B) →2 A (Fig. 4e), only that simultaneous activation of both segments, not sequential227

activation, is required. The shape of this function closely matches an idealized "and" operation (Fig. 4b), the firing rate228

of which can be derived as just the product of the rates at which plateaus are triggered in all dendritic segments:229

7

120

121

122

123

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

laterally connected neurons, endowing the networks with a form of temporal sequence-memory (“hierarchical temporal276

memory”). In our work, we have focused on a more mechanistic model that heavily relies on biological phenomena277

observed in single neurons. This allowed us to describe a neuron’s computational capability concretely as that of a278

sophisticated pattern detector with long-lasting memory, and to illustrate how these mechanisms at play would appear279

under a rate based analysis. We believe our results offer a very appealing explanation of spike-based computation that280

has wider implications in neuroscience and raises several important questions, which we briefly discuss in the following:281

What is the role of inhibition for dendritic computation?282

Our model only takes into account excitatory synapses, but has clear implications for the role of inhibition. The283

all-or-none response of dendritic plateau potentials in our model implies that the only significant effect an inhibitory284

synapse can have on the far-away soma is by either reducing the likelihood of plateaus, preventing the generation of285

plateaus altogether, or by disrupting already ongoing plateau potentials. In the first two cases, an inhibitory synapse’s286

post-synaptic potential must be either well-timed to coincide with the volley of excitatory spikes or exhibit a longer287

time-scale. Experiments suggest that inhibition can affect the ability of dendrites to generate active plateaus and prevent288

them [46]. The disruption of ongoing plateaus has also been reported and analyzed [47] and requires no such precise289

timing a-priori, as long as the spike occurs within the plateau’s duration. Inhibition may, however, exhibit different290

effects depending on when during the plateau processes it is received. In all cases, the likely effect is shunting, rather291

than substractive, inhibition.292

Shunting inhibition can provide an efficient mechanism to improve the computational capabilities of the neurons293

described above, for example as it would allow individual neurons to exclusively respond to a sequence a → b but not294

to the sequence a → b → c, which is impossible for a neuron with purely excitatory synapses. Inhibition may therefore295

play an important and distinct role in ADSP neuron that warrants further investigation.296

What are the implications of this model for plasticity?297

We discussed a fundamental mechanism of dendritic computation and its capabilities, but did not cover the important298

topic of learning and plasticity. Nevertheless, the model presented here imposes constraints on potential plasticity299

mechanisms. Due to the long-lasting plateau potentials, a synaptic input can have a relevant causal effect for a somatic300

spike at a much later time. This makes the temporal assignment of credit for spiking outputs to synaptic inputs301

fundamentally difficult. The timing-invariance shown by our model and the dependency on the complex nonlinear302

dynamics within a dendritic tree further exacerbate this problem.303

The most prominent example of synaptic learning is spike-time dependent plasticity [48], which tunes synaptic efficacy304

based on the relative timing of pre- and post-synaptic activity. Since the active dendritic processes discussed here305

both dominate the post-synaptic membrane potential as well as local Ca2+ concentration, they have a major effect on306

Hebbian plasticity [49, 50].307

This is at odds with the common assumption, that backpropagating action potentials (bAPs) from the soma into the308

dendrite act as the primary post synaptic signal driving synaptic plasticity [51]. Since dendritic plateau potentials309

strongly depolarize dendrite segments for an extended period of time and should similarly “backpropagate” throughout310

the dendritic tree, it seems unlikely to us that bAPs are the primary factor for synaptic plasticity in neurons with active311

dendritic processes. Resolving this inconsistency is an important, but open research question.312

Additionally, our model is based on binary stochastic synapses, and which segment the synapse terminates on plays313

a more important role than its efficacy. We therefore believe that structural plasticity mechanisms are particularly314

relevant for this kind of model. Furthermore, homeostatic plasticity mechanisms, e.g. scaling synaptic transmission315

probabilities[52], are in our view important to ensure that only sufficiently large spike-volleys, but not randomly316

correlated inputs, can reliably trigger plateau potentials.317

Is neuronal computation based on plateau processes?318

Dendritic processes are thought to implement solutions to a number of specific computational problems in neurons [53],319

often distributed across many functional dendritic compartments [54, 55]. Based on convincing biological evidence320

for the mechanism of plateau generation and the interaction of such plateaus, we have argued that they are indeed the321

primary building block for the implementation of behaviorally highly relevant computations. How can this claim be322

experimentally verified or falsified?323

Direct experimental verification, that computation in single neurons is well described by our proposed ADSP neuron324

model requires simultaneous measurement of synaptic inputs and local membrane potentials along a single neuron’s325

dendrite on a fine temporal and spatial resolution over a long-time span.326

As a first step, since our model is driven by incoming spike volleys from multiple intact neuron populations, in vivo327

measurements could verify the existence of patterns of spike-volleys over different timescales using newly developed328

11

124

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

statistical techniques [56, 57].329

Secondly, a key part of the model, the detection and integration of information across two timescales, one on the order330

of a few milliseconds, the other on the order of a hundred milliseconds or more, can be refuted for any type of neuron331

that achieves this without reliance on active dendritic processes. This may be the case either for neurons incapable of332

generating plateaus in the first place, or if plateau-generating processes have been pharmacologically disabled.333

Thirdly, we predict single neurons that use active dendritic sequence processing to have spatio-temporal receptive334

fields on long temporal timescales, but with high tolerance to variations in the precise timing of individual plateaus,335

qualitatively described in Fig. 2. Because of this invariance, we propose to go beyond linear analysis such as spike-336

triggered averages and instead measure both somatic response, as well as the timing of plateaus across the dendritic337

tree to find structures in the joint distributions as demonstrated in Fig. 5. Experimentally, spatio-temporal receptive338

fields of this kind could also be found by systematically varying stimuli, and should disappear when plateau-generating339

processes are disrupted.340

While we have based our analysis on NMDAr-mediated plateaus in pyramidal cells [20], the same computational341

principle may be found in other neuron types, as well. For example, Purkinje cells in the cerebellum also generate342

localized Ca2+ events in response to coincident input on individual dendritic segments [58, 59], and thalamo-cortical343

neurons respond to strong synaptic input by localized plateaus in distal dendritic branches [60]. This indicates that the344

underlying ADSP mechanism, possibly implemented through diverse means in a case of convergent evolution, may be345

very general and ubiquitous in the brain.346

In summary, we have presented and analyzed an intentionally simple model of neural computation based solely347

on the interaction of coincident spikes and dendritic plateau potentials. This revealed, how the morphology of the348

dendritic tree can implement and compose a wide range of non-linear computational functions. Two key features of this349

computational mechanism are its invariance to exact timings of inputs and its ability to operate on timescales much350

longer than post-synaptic potentials. We have highlighted the importance of the combination of these two features351

in two behaviorally relevant tasks: the detection of sequences and the integration of weak signals on long timescales.352

However, when analyzed from the usual perspective of rate-coding, these computational properties are hard to detect.353

To this end, we have therefore an alternative set of analyses to identify whether computation in single neurons is indeed354

based on dendritic plateaus.355

Methods356

Formal description of the event-based framework for computation in active dendrites357

Mathematically, we approximate both EPSPs and plateau potentials by rectangular pulses with fixed duration τsynapse358

and τdendrite, respectively. Here, we chose τsynapse = 5ms and τdendrite = 100ms for all experiments if not stated otherwise.359

The dynamics of each dendritic segment can then be fully described in terms of the arrival times of incoming spikes360

as well as the times at which plateau potentials are initiated within the segment itself or in other directly connected361

segments. For some segment i, the synaptic input Xi and the dendritic input Yi take the form of equations (1) and (2),362

respectively:363

Xi(t) =
∑

j∈Si

∑

k

χi,j,k · 1[sj
k
,s

j

k
+τsynapse]

(t) where χi,j,k ∼ Bernoulli(ωi,j) (1)

Yi(t) =
∑

j∈Di

∑

k

1[tj
k
,t

j

k
+τdendrite]

(t) (2)

tim+1 = min
{

t ∈ R
∣

∣ t ≥ tim + τdendrite, Xi(t) ≥ θsyn
i and Yi(t) ≥ θden

i

}

, (3)

where 1[a,b] represents a unit pulse during the time interval [a, b], and sjk and tij are the times of spikes arriving from364

some presynaptic neuron j and the plateau onset times on segment i, respectively. The random variable χi,j,k represents365

the independent probabilistic transmission of every spike k from source j via a synapse to dendritic segment i, where the366

transmission occurs with the synapse specific probability ωi,j . The sets Si and Di respectively identify the segment’s367

synaptic connections to other neurons and which other dendritic segments it is directly coupled to, and therefore reflect368

the morphology of the neuron’s dendritic tree. Equation (3) states that, if the segment is not in a plateau state already, a369

new plateau is initiated as soon as both synaptic and dendritic inputs exceed their respective thresholds θsyn
i and θden

i .370

12

125

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

Implementation of the navigation experiments371

To simulate the stochastic movements of a rat, random paths are generated with time-varying location l(t) =372

(X(t), Y (t)) ∈ R
2 as solutions of the following system of stochastic differential equations:373

dX = cos(2πA)V dt

dY = sin(2πA)V dt

dA = 0.25dWA

dV = 10.0(0.25− V)dt+ 0.1dWV

A represents the angular heading of the animal, V represents its velocity in m
s

and WA,WV represent independent374

standard Brownian motion processes. Each path is generated with a randomized initial position within a rectangular375

domain of 10cm × 9.5cm , a random angular heading and a random velocity according to the marginal stationary376

distribution of V in the equation above, and is simulated for a fixed duration of 200ms. Three populations of place cells,377

each 20 neurons strong, are centered on a hexagonal grid with center-to-center distance of r ≈ 2.9cm. Each population378

randomly emits spike volleys following a homogeneous Poisson process with rate λ = 50Hz. The magnitude of each379

spike volley is determined by the population’s mean activity at the time, which depends on the animal’s location within380

the environment through a receptive field tuning curve. The tuning curves model the probability of each individual381

neuron within the population to participate in a given spike volley by the bell-curves fi(x) = exp(−x−µi

2σ2) with382

coefficient σ = 9.7mm, centered on the tiles of the hexagonal grid. The total number of spikes emitted during a383

volley from population i at time t is therefore a random variable distributed according to a Binomial distribution with384

population size n = 20 and probability p = fi(l(t)). Additionally, each neuron in the population emits random spikes385

at a rate of 5Hz to emulate background activity. Each spike is transmitted through stochastic synapses independently386

with probability 0.5.387

Each of the simulated neuron’s dendritic segments receives spiking input from the 20 neurons of one population and388

requires at least 5 coincident spikes to trigger a plateau potential. The three segments are connected in a chain that389

requires sequential activation by spike volleys from the input populations in correct order to fire a spike. A random390

path is considered to be accepted by the neuron, if the neuron responds with a spike at any point in time during the391

corresponding simulation run.392

To evaluate the rotation and location sensitivity of the neuron, we also generate straight paths with constant movement393

speed v = 3r
200ms

≈ 43cm/s that are either rotated around the center of the environment by an angle α or offset from394

the center by a distance ∆x orthogonal to the optimal movement direction. For each angle or offset, respectively, the395

empirical firing probability of the neuron in response to that path is estimated by simulating the path and the neuron’s396

responses 500 times each.397

Implementation of the evidence-integration experiments398

The input to the evidence-integrating neuron is generated by superimposing spike volleys onto 1000 independent399

Poisson processes with a constant firing rate of 10Hz. The volleys times are generated by a Poisson process with a400

time-varying rate λ(t) representing the incoming "evidence". Here, λ(t) = 200Hz · (1[0.25,0.5](t) + 2 · 1[0.75,1.0](t) +401

3 · 1[1.25,1.5](t)) + 20Hz. Each volley consists of simultaneous spikes from a randomly chosen set of ten input neurons402

with consecutive indices (wrapping around from 1000 to 1). Since each EPSP is assumed to last for a duration of 5ms,403

volleys and individual spikes are discarded if they occur less than 5ms after a preceding volley or spike. Each of the404

neuron’s 1000 dendritic segments receives synaptic input via stochastic synapses with transmission probability 0.5 from405

20 consecutive input neurons. As the number of input neurons and dendritic segments matches in this example, there406

is exactly one dendritic segment for every group of 20 consecutive input neurons, and each input neuron projects to407

exactly 20 dendritic segments. The total number of the neuron’s synapses in this example is therefore 20000. Over408

time, the number of simultaneously active dendritic compartments as well as the times of generated somatic spikes is409

recorded. As a reference, the convolution (λ ⋆Π)(t) of the time-varying rate-function λ with a rectangular filter Π of410

length 100ms and unit-integral is calculated.411

Implementation of the rate-based analysis412

For the rate-based analysis, four different neurons are constructed. First, a neuron consisting of a single dendritic413

compartment is driven by a total of 25 independent Poisson spike-trains with constant firing rate rA. As in all414

13

126

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

other experiments, the duration of each spike is set to τsynapse = 5ms, the duration of a plateau potential is set to415

τdendrite = 100ms. By systematically varying rA and, for each choice, recording the number of plateau potentials416

generated during a simulation time-interval of 250s we can estimate the smooth function ̺(rA), which relates the firing417

rate of the input population A to the resulting rate at which plateau potentials are generated.418

For each of the three morphologies representing the C →1 B →1 A neuron, the (C + B) →2 A neuron and the419

(C +B) →1 A neuron, we systematically vary the input firing rates of both populations B and C independently while420

keeping the firing rate of population A fixed at a constant 25Hz. For each combination, we again record the number of421

somatic spikes generated over a time-interval of 250s. As a reference for these two-dimensional functions, we use an422

idealized "and" and "or" function defined as:423

fand(B,C) = τ2dendrite̺(rC)̺(rB) (4)

for(B,C) = τdendrite̺(C) + τdendrite̺(B)− fand(B,C) (5)

= 1− (1− τdendrite̺(C))(1− τdendrite̺(B)) (6)

At a firing rate rX , a segment driven by population X is in a plateau state at a given point in time with probability424

τdendrite̺(rX), therefore the probability that a segment driven by population C is active at the time that an input from425

population B arrives, which could in turn activate the next segment, is τdendrite̺(rC). The probability that this second426

segment is still active, when yet another volley from population A arrives to possibly trigger a somatic spike is also427

τdendrite̺(rB). Therefore the neuron’s firing rate is proportional to τ2dendrite̺(rC)̺(rB). Similarly, the probability that428

two parallel upstream segments driven by populations C and B are simultaneously active at a given point in time is429

τ2dendrite̺(rC)̺(rB). In contrast, the probability that either upstream segment is active at a given point in time is just the430

probability that not both are simultaneously inactive, i.e. 1− (1− τdendrite̺(C))(1− τdendrite̺(B)). This expression has431

the nice alternative form c+ b− cb, where c = τdendrite̺(C), b = τdendrite̺(B) and cb = fand(B,C), which generalizes432

the Boolean "or" operation to real-valued firing rates. When identifying true with 1 and false with 0, the truth-table of433

this expressions matches that of the logic expression "c or b".434

To evaluate timing requirements for each of these three neuron morphologies, we run another simulation at constant input435

rates rA = rB = rC = 25Hz for a duration of 1h of simulated time. We record the time of each plateau-initiation-event436

in both upstream segments driven by population C and B for a time-interval of 200ms preceding each somatic spike. If437

there is exactly one plateau-event from each segment in such a time-interval, we record this as an unambiguous pair438

of plateau events. If there is more than one plateau-event on either of the dendritic segments, we record all pairs of439

plateau-events in that time-interval composed of one plateau event for each segment. We refer to these latter pairs as440

ambiguous. Using these ambiguous pairs, we estimate the joint probability distribution Pi(∆tB ,∆tC |tA) over relative441

times ∆tB and ∆tC between a plateau triggered by population B or C and a somatic spike triggered at time tA by442

population A. For a more reliable estimate of the timing constraints, we consider only the unambiguous pairs, which443

evidently fall into distinct domains of these joint probability distributions that uniquely characterize the precise timing444

requirements of the respective neuron morphologies. This can be seen in figure 5. E.g. for the C →1 B →1 A neuron,445

all plateaus triggered by population C must precede those triggered by B, but cannot precede them by more than one446

plateau duration of 100ms, therefore they fall into a parallelogram below the diagonal. For the (C +B) →2 A neuron,447

on the other hand, both plateau events must independently occur within 100ms before a somatic spike, and hence fall448

into the upper quadrant of the joint density.449

Code availability450

All simulations are implemented in a custom developed package in the Julia programming language [61], publicly451

available via the code repository hosted at https://github.com/jleugeri/ADSP.jl. Further documentation of the simulator452

and implementation details can be found there.453

14

127

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

References454

[1] J O’Keefe and J Dostrovsky. The hippocampus as a spatial map. preliminary evidence from unit activity in the455

freely-moving rat. Brain Res., 34(1):171–175, November 1971.456

[2] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I Moser. Microstructure of a spatial457

map in the entorhinal cortex. Nature, 436(7052):801–806, August 2005.458

[3] Martin Stemmler, Alexander Mathis, and Andreas V M Herz. Connecting multiple spatial scales to decode the459

population activity of grid cells. Sci Adv, 1(11):e1500816, December 2015.460

[4] Howard Eichenbaum. On the integration of space, time, and memory. Neuron, 95(5):1007–1018, August 2017.461

[5] Brice Bathellier, Derek L Buhl, Riccardo Accolla, and Alan Carleton. Dynamic ensemble odor coding in the462

mammalian olfactory bulb: sensory information at different timescales. Neuron, 57(4):586–598, February 2008.463

[6] Bede M Broome, Vivek Jayaraman, and Gilles Laurent. Encoding and decoding of overlapping odor sequences.464

Neuron, 51(4):467–482, August 2006.465

[7] Huan Luo and David Poeppel. Phase patterns of neuronal responses reliably discriminate speech in human466

auditory cortex. Neuron, 54(6):1001–1010, June 2007.467

[8] Ofer Melamed, Wulfram Gerstner, Wolfgang Maass, Misha Tsodyks, and Henry Markram. Coding and learning468

of behavioral sequences. Trends Neurosci., 27(1):11–4; discussion 14–5, January 2004.469

[9] Gianluigi Mongillo, Omri Barak, and Misha Tsodyks. Synaptic theory of working memory. Science,470

319(5869):1543–1546, March 2008.471

[10] Yulia Sandamirskaya and Gregor Schöner. An embodied account of serial order: how instabilities drive sequence472

generation. Neural Netw., 23(10):1164–1179, December 2010.473

[11] C Beaulieu and M Colonnier. A laminar analysis of the number of round-asymmetrical and flat-symmetrical474

synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J. Comp. Neurol., 231(2):180–189,475

January 1985.476

[12] Katz. The Release of Neural Transmitter Substances (The Sherrington Lectures). Liverpool University Press,477

December 1969.478

[13] C F Stevens. Quantal release of neurotransmitter and long-term potentiation. Cell, 72 Suppl:55–63, January 1993.479

[14] Michael Hollmann and Stephen Heinemann. Cloned glutamate receptors. Annual review of neuroscience,480

November 2003.481

[15] JC Watkins and RH Evans. Excitatory amino acid transmitters. Annual review of pharmacology and toxicology,482

21(1):165–204, 1981.483

[16] Attila Losonczy and Jeffrey C Magee. Integrative properties of radial oblique dendrites in hippocampal CA1484

pyramidal neurons. Neuron, 50(2):291–307, April 2006.485

[17] W Rall. Electrophysiology of a dendritic neuron model. Biophys. J., 2(2 Pt 2):145–167, March 1962.486

[18] A N Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol. Cybern.,487

95(1):1–19, July 2006.488

[19] Greg Stuart and Nelson Spruston. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites.489

Journal of Neuroscience, 18(10):3501–3510, 1998.490

[20] Nelson Spruston. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci., 9(3):206–491

221, March 2008.492

[21] Michael Häusser. Synaptic function: dendritic democracy. Current Biology, 11(1):R10–R12, 2001.493

[22] Jeffrey C Magee and Erik P Cook. Somatic epsp amplitude is independent of synapse location in hippocampal494

pyramidal neurons. Nature neuroscience, 3(9):895–903, 2000.495

[23] Srdjan D Antic, Wen-Liang Zhou, Anna R Moore, Shaina M Short, and Katerina D Ikonomu. The decade of the496

dendritic NMDA spike. J. Neurosci. Res., 88(14):2991–3001, November 2010.497

[24] Katerina D Oikonomou, Mandakini B Singh, Enas V Sterjanaj, and Srdjan D Antic. Spiny neurons of amygdala,498

striatum, and cortex use dendritic plateau potentials to detect network UP states. Front. Cell. Neurosci., 8:292,499

September 2014.500

[25] H Monyer, N Burnashev, D J Laurie, B Sakmann, and P H Seeburg. Developmental and regional expression in the501

rat brain and functional properties of four NMDA receptors. Neuron, 12(3):529–540, March 1994.502

15

128

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

[26] T Götz, U Kraushaar, J Geiger, J Lübke, T Berger, and P Jonas. Functional properties of AMPA and NMDA503

receptors expressed in identified types of basal ganglia neurons. J. Neurosci., 17(1):204–215, January 1997.504

[27] Sonia Gasparini, Michele Migliore, and Jeffrey C Magee. On the initiation and propagation of dendritic spikes in505

CA1 pyramidal neurons. J. Neurosci., 24(49):11046–11056, December 2004.506

[28] Sonia Gasparini and Jeffrey C Magee. State-dependent dendritic computation in hippocampal CA1 pyramidal507

neurons. J. Neurosci., 26(7):2088–2100, February 2006.508

[29] Jacopo Bono and Claudia Clopath. Modeling somatic and dendritic spike mediated plasticity at the single neuron509

and network level. Nat. Commun., 8(1):706, September 2017.510

[30] Paul Rhodes. The properties and implications of NMDA spikes in neocortical pyramidal cells. J. Neurosci.,511

26(25):6704–6715, June 2006.512

[31] Guy Major, Matthew E Larkum, and Jackie Schiller. Active properties of neocortical pyramidal neuron dendrites.513

Annu. Rev. Neurosci., 36:1–24, July 2013.514

[32] Tim Jarsky, Alex Roxin, William L Kath, and Nelson Spruston. Conditional dendritic spike propagation following515

distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci., 8(12):1667–1676, December516

2005.517

[33] Christine Grienberger, Xiaowei Chen, and Arthur Konnerth. Nmda receptor-dependent multidendrite ca2+ spikes518

required for hippocampal burst firing in vivo. Neuron, 81(6):1274–1281, 2014.519

[34] C Koch, T Poggio, and V Torre. Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos.520

Trans. R. Soc. Lond. B Biol. Sci., 298(1090):227–263, July 1982.521

[35] Alon Polsky, Bartlett W Mel, and Jackie Schiller. Computational subunits in thin dendrites of pyramidal cells.522

Nat. Neurosci., 7(6):621–627, June 2004.523

[36] Tiago Branco and Michael Häusser. The single dendritic branch as a fundamental functional unit in the nervous524

system. Curr. Opin. Neurobiol., 20(4):494–502, August 2010.525

[37] Guy Major, Alon Polsky, Winfried Denk, Jackie Schiller, and David W Tank. Spatiotemporally graded NMDA526

spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J. Neurophysiol., 99(5):2584–2601,527

May 2008.528

[38] Tiago Branco, Beverley A Clark, and Michael Häusser. Dendritic discrimination of temporal input sequences in529

cortical neurons. Science, 329(5999):1671–1675, 2010.530

[39] Matthew E Larkum and Thomas Nevian. Synaptic clustering by dendritic signalling mechanisms. Curr. Opin.531

Neurobiol., 18(3):321–331, June 2008.532

[40] Naoya Takahashi, Kazuo Kitamura, Naoki Matsuo, Mark Mayford, Masanobu Kano, Norio Matsuki, and Yuji533

Ikegaya. Locally synchronized synaptic inputs. Science, 335(6066):353–356, January 2012.534

[41] David R Euston, Masami Tatsuno, and Bruce L McNaughton. Fast-forward playback of recent memory sequences535

in prefrontal cortex during sleep. Science, 318(5853):1147–1150, November 2007.536

[42] Debora Ledergerber and Matthew Evan Larkum. Properties of layer 6 pyramidal neuron apical dendrites. Journal537

of Neuroscience, 30(39):13031–13044, 2010.538

[43] Panayiota Poirazi, Terrence Brannon, and Bartlett W Mel. Pyramidal neuron as two-layer neural network. Neuron,539

37(6):989–999, 2003.540

[44] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of sequence memory in541

neocortex. Frontiers in neural circuits, 10:23, 2016.542

[45] Johanni Brea, Alexisz Tamás Gaál, Robert Urbanczik, and Walter Senn. Prospective coding by spiking neurons.543

PLOS Computational Biology, 12(6):1–25, 06 2016.544

[46] Monika Jadi, Alon Polsky, Jackie Schiller, and Bartlett W Mel. Location-dependent effects of inhibition on local545

spiking in pyramidal neuron dendrites. PLoS Comput Biol, 8(6):e1002550, 2012.546

[47] Michael Doron, Giuseppe Chindemi, Eilif Muller, Henry Markram, and Idan Segev. Timed synaptic inhibition547

shapes nmda spikes, influencing local dendritic processing and global i/o properties of cortical neurons. Cell548

reports, 21(6):1550–1561, 2017.549

[48] Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learning through spike-timing-dependent550

synaptic plasticity. Nature neuroscience, 3(9):919–926, 2000.551

[49] John Lisman and Nelson Spruston. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike552

timing-dependent plasticity. Nat. Neurosci., 8(7):839–841, July 2005.553

16

129

PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 17, 2020

[50] Jason Hardie and Nelson Spruston. Synaptic depolarization is more effective than back-propagating action554

potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. J. Neurosci.,555

29(10):3233–3241, March 2009.556

[51] Nicola Kuczewski, Cristophe Porcher, Volkmar Lessmann, Igor Medina, and Jean-Luc Gaiarsa. Back-propagating557

action potential. Communicative & Integrative Biology, 1(2):153–155, 2008. PMID: 19704877.558

[52] Gina Turrigiano. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function.559

Cold Spring Harbor perspectives in biology, 4(1):a005736, 2012.560

[53] Michael London and Michael Häusser. Dendritic computation. Annu. Rev. Neurosci., 28:503–532, 2005.561

[54] Aaron Kerlin, Mohar Boaz, Daniel Flickinger, Bryan J MacLennan, Matthew B Dean, Courtney Davis, Nelson562

Spruston, and Karel Svoboda. Functional clustering of dendritic activity during decision-making. Elife, 8:e46966,563

2019.564

[55] Hongbo Jia, Nathalie L Rochefort, Xiaowei Chen, and Arthur Konnerth. Dendritic organization of sensory input565

to cortical neurons in vivo. Nature, 464(7293):1307–1312, April 2010.566

[56] Rory G Townsend and Pulin Gong. Detection and analysis of spatiotemporal patterns in brain activity. PLoS567

Comput. Biol., 14(12):e1006643, December 2018.568

[57] Min Song, Minseok Kang, Hyeonsu Lee, Yong Jeong, and Se-Bum Paik. Classification of spatiotemporal neural569

activity patterns in brain imaging data. Sci. Rep., 8(1):8231, May 2018.570

[58] Yunliang Zang, Stéphane Dieudonné, and Erik De Schutter. Voltage- and Branch-Specific climbing fiber responses571

in purkinje cells. Cell Rep., 24(6):1536–1549, August 2018.572

[59] CF Ekerot and O Oscarsson. Prolonged depolarization elicited in purkinje cell dendrites by climbing fibre impulses573

in the cat. The Journal of physiology, 318(1):207–221, 1981.574

[60] Sigita Augustinaite, Bernd Kuhn, Paul Johannes Helm, and Paul Heggelund. NMDA spike/plateau potentials in575

dendrites of thalamocortical neurons. J. Neurosci., 34(33):10892–10905, August 2014.576

[61] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical computing.577

SIAM review, 59(1):65–98, 2017.578

17

130

(19) *DE102019134044A120210617*

(10) DE 10 2019 134 044 A1 2021.06.17

(12) Offenlegungsschrift

(21) Aktenzeichen: 10 2019 134 044.6
(22) Anmeldetag: 11.12.2019
(43) Offenlegungstag: 17.06.2021

(51) Int Cl.: G06N 3/063 (2006.01)

(71) Anmelder:
Universität Osnabrück, 49074 Osnabrück, DE

(74) Vertreter:
Holz, Christian, Dipl.-Ing. Dr.-Ing., 30159
Hannover, DE

(72) Erfinder:
Leugering, Johannes, 49076 Osnabrück, DE;
Nieters, Pascal, 49124 Georgsmarienhütte, DE;
Pipa, Gordon, Prof. Dr., 49205 Hasbergen, DE

(56) Ermittelter Stand der Technik:
US 2016 / 0 292 569 A1

Leugering, Johannes; Nieters, Pascal; Pipa,
Gordon: Event-based pattern detection in active
dendrites. In: bioRxiv, 02.07.2019, 1-13. https://
www.biorxiv.org/content/early/2019/07/02/
690792.full.pdf [abgerufen am 11.12.2020]

Prüfungsantrag gemäß § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen.

(54) Bezeichnung: Neuromorpher Musterdetektor und neuromorphe Schaltkreisanordnung hiermit

(57) Zusammenfassung: Die vorliegende Erfindung betrifft
einen neuromorphen Musterdetektor (2), welcher ausgebil-
det ist, wenigstens zwei 1-Bit Eingangssignale (E1-EN) eines
zu erkennenden Musters zu erhalten, mit wenigstens zwei
Vergleichsschaltungen (3), welche jeweils ausgebildet sind,
eines der 1-Bit Eingangssignale (E1-EN) zu erhalten, die An-
zahl der „high“-Zustände oder der „low“-Zustände des jewei-
ligen 1-Bit Eingangssignals (E1-EN) innerhalb eines vorbe-
stimmten Zeitraums zu zählen, die Anzahl der gezählten Zu-
stände mit einem vorbestimmten Schwellwert der jeweiligen
Vergleichsschaltung (3) zu vergleichen und bei Überschrei-
ten des Schwellwerts auf die erfolgte Erkennung des zu er-
kennenden Musters hinzuweisen.

131

DE 10 2019 134 044 A1 2021.06.17

2/22

Beschreibung

[0001] Die vorliegende Erfindung betrifft einen neu-
romorphen Musterdetektor gemäß dem Patentan-
spruch 1 sowie eine neuromorphe Schaltkreisanord-
nung gemäß dem Patentanspruch 13.

[0002] Zur Verarbeitung ihrer Informationen können
analog erfasste Signale, welche z.B. sensorisch er-
fasste Informationen repräsentieren können, in digi-
tale Signale gewandelt und dann verarbeitet werden.
Die Erfassung der analogen Signale kann üblicher-
weise mittels elektrischer Spannung erfolgen, wel-
che einen zeit- und wertkontinuierlichen Verlauf, d.h.
eine durchgängigen Verlauf der elektrischen Span-
nung über der Zeit, aufweist. Ein derartiges elektri-
sches Analogsignal kann mittels eines Analog-Digi-
tal-Umsetzers in ein digitales Signal in Form eines
zeit- und wertdiskreten Verlaufs gewandelt werden,
um die Information der digitalen Signalverarbeitung
zugänglich zu machen. Ein derartiges digitales Si-
gnal kann auch als binäres Signal bezeichnet werden
und zwei unterschiedliche Zustände in Form von un-
terschiedlich hohen elektrischen Spannungspegeln
aufweisen, so dass über die Länge bzw. Dauer des
Signalverlaufs zwischen niedrigen und hohen Span-
nungspegeln unterschieden werden kann. Die niedri-
gen Spannungspegel können als „low“-Zustände und
die hohen Spannungspegel als „high“-Zustände be-
zeichnet werden. Hierdurch können die Zustände „0“
und „1“ dargestellt werden.

[0003] Die digitale Signalverarbeitung mittels ent-
sprechender elektronischer Bauelemente wie z.B. di-
gitale Signalprozessoren und Mikroprozessoren bie-
tet dabei Vorteile und Möglichkeiten, welche mit ana-
log arbeitender Elektronik gar nicht oder lediglich mit
hohem Aufwand umsetzbar wären. Dabei werden die
digitalen Signale üblicherweise nicht als die binären
Signale eines Verlaufs von Nullen und Einsen in Form
von niedrigen und hohen Spannungszuständen ver-
arbeitet sondern als Werte etc. z.B. in Folgen von
acht Bits, auch Byte genannt, dargestellt, gespeichert
und durch Software verarbeitet. Die entsprechenden
Algorithmen, welche die Verarbeitung der digitalen
Signale durchführen, werden hierzu als Programm-
code einer geeigneten Programmiersprache umge-
setzt und z.B. auf einem Mikroprozessor oder auf ei-
ner CPU (Central Processing Unit) als serielle Abfol-
ge der Programmierschritte ausgeführt. Mit anderen
Worten werden in der digitalen Signalverarbeitung
üblicherweise die Instruktionen numerischer Algorith-
men von Prozessorarchitekturen auf Binärzahlen im-
plementieren, was die sequentielle Abarbeitung in
arithmetisch-logischen Einheiten (ALU) und die Ver-
wendung einer Speichereinheit bedingt.

[0004] Zur Verarbeitung digitaler sowie analoger In-
formationen in Form digitaler Signale können auch
sog. künstliche neuronale Netze bzw. Netzwerke ver-

wendet werden, bei denen mittels künstlicher Neu-
ronen die Funktionsweisen biologischer Neuronen
bzw. biologischer neuronaler Netze bzw. Netzwer-
ke nachgebildet werden. Die einzelnen künstlichen
Neuronen arbeiten dabei zeitlich parallel zueinander,
vergleichbar der Vorbilder der biologischen Neuro-
nen. Da eine derartige Arbeitsweise mit den sequen-
tiell arbeitenden Prozessoren strukturbedingt jedoch
nicht möglich ist, kann die parallele Arbeitsweise der
künstlichen Neuronen auch bei Verwendung mehre-
rer paralleler Prozessoren bzw. Prozessorkerne nur
unzureichend implementiert werden. Dies erschwert
die tatsächliche Implementierung parallel arbeitender
Verfahren zur digitalen Signalverarbeitung mit künst-
lichen neuronalen Netzen.

[0005] Zur Implementierung von künstlichen neuro-
nalen Netzen bzw. Netzwerken werden daher auch
neuromorphe Schaltkreise verwendet, welche jeweils
ein biologisches Neuron als elektronische Schaltung
abbilden und durch ihr Zusammenwirken das künst-
liche neuronale Netz bzw. Netzwerk ergeben. Die
einzelnen neuromorphen Schaltkreise können da-
bei tatsächlich parallel zueinander arbeiten und hier-
durch die Signalverarbeitung beschleunigen bzw. die
als Vorbild dienenden biologischen Neuronen besser
nachbilden.

[0006] Typischerweise wird das Verhalten des ein-
zelnen künstlichen Neurons dynamischen Systemen
aus den theoretischen Neurowissenschaften wie z.B.
dem Leaky-Integrate-and-Fire-Modell nachempfun-
den, durch digitale Arithmetik approximiert und der
Datenaustausch zwischen den künstlichen Neuronen
durch die Übertragung von Paketen realisiert. Dies
erfordert jedoch den Einsatz vieler Recheneinheiten
bzw. vieler arithmetisch-logischer Einheiten und stellt
hohe Anforderungen an das Paket-Routing zwischen
den einzelnen Recheneinheiten. Im speziellen Be-
reich der Spiking-Neuromorphic-Hardware wird dabei
pro künstlichen Neuron und pro Zeitschritt lediglich
ein binäres Signal erzeugt.

[0007] In einem parallel signalverarbeitenden neuro-
morphen Netz bzw. Netzwerk der Digitaltechnik soll-
ten somit folgende technische Probleme gelöst bzw.
folgende technische Eigenschaften realisiert werden:

• Künstliche Neurone sollte Eingangssignale von
vielen anderen künstlichen Neuronen integrie-
ren können. Dies erfordert einen Mechanismus,
um Eingangssignale aufzuaddieren und mit ei-
nem kritischen Grenzwert vergleichen zu kön-
nen. In bestehenden Ansätzen der digitalen Si-
gnalverarbeitung wird dies mittels ALUs durch
Ganzzahlarithmetik realisiert.

• Das Einsatzgebiet von digitaler Signalverarbei-
tung ist häufig durch das Erfordernis der Echt-
zeitfähigkeit ausgezeichnet, d.h. durch die Fä-
higkeit des Betriebssystems der Recheneinheit

132

DE 10 2019 134 044 A1 2021.06.17

3/22

bzw. der Recheneinheiten, digitale Signale in-
nerhalb einer vorbestimmbaren Frist sicher ver-
arbeiten zu können. Die Einhaltung einer Reak-
tion auf das digitale Signal innerhalb dieser Frist
muss in diesem Fall sichergestellt sein.

So sind die Zeitskalen, auf welche ein analoges Si-
gnal in der Außenwelt relevante und zu verarbeiten-
de Charakteristika aufweist, nicht fest und zum Teil
auf schnellen oder langsamen Skalen variiert. Daher
müssen die Zeitskalen der Verarbeitung digitaler Si-
gnal im integrierten Schaltkreis von denen in der Au-
ßenwelt entkoppelt werden. Klassische Ansätze der
digitalen Signalverarbeitung in z.B. Mikrokontrollern
umgehen dieses Problem, indem Zwischenergebnis-
se im dedizierten Arbeitsspeicher abgelegt werden.

[0008] In neuromorphen Ansätzen wird Information
meist stattdessen lokal im Zustand der einzelnen
Neuronen gehalten. Ggfs. kann die Rate, mit der sich
der Zustand des Neurons pro Zeitschritt ändert, ska-
liert und auf die relevante Zeitskala des Eingangssi-
gnals abgestimmt werden. Die Verarbeitung langsa-
mer Signale mit einem schnellen Takt erfordert daher
einen hoch aufgelösten internen Zustand der Neuro-
nen.

• Um komplexere Funktionalitäten wie das
Erkennen von Mustern mittels neuromorpher
Schaltkreise abzubilden, müssen viele Neuro-
nen sinnvoll miteinander verschaltet werden.
Dies wird gegenwärtig durch verschiedene Me-
sh- und Crossbar-Routing-Systeme implemen-
tiert, welche bestimmte Konfigurationen zulas-
sen und Output-Signale dem Input verschiede-
ner Neuronen zuordnen. Die Verbindungen zwi-
schen einzelnen Neuronen sind dabei meist un-
terschiedlich gewichtet, was einen entsprechen-
den Mechanismus zur verbindungsspezifischen
Konfiguration und Signalübertragung erfordert.

• Um mit verrauschten Eingangssignalen umge-
hen zu können, sollte als Ausgangssignal nicht
nur das gewünschte Signal, z.B. ob ein gege-
benes Muster erkannt wurde oder nicht, son-
dern auch ein Maß der zugehörigen Unsicher-
heit generiert werden. Dies kann von bestehen-
den Ansätzen lediglich mittelbar unter Rückgriff
auf bestimmte Netzwerkarchitekturen realisiert
werden, ist aber nicht in der Hardware selbst an-
gelegt.

[0009] Somit weisen die bestehenden Ansätze
spike-basierter neuromorpher Hardware, welche auf
gepulsten neuronalen Netzen (Englisch: spiking neu-
ral networks - SNN) beruhen, verschiedene Nachtei-
le auf. So erfordert die Verwendung von Ganzzahl-
arithmetik und Paket-Routing den Einsatz von Mi-
kroprozessoren, was die technische Komplexität der
Hardware erhöhen und aufgrund ihrer sequentiellen
Operation zu Latenzen führen kann. Auch kann die

Beschränkung auf einfache generische Neuronen-
modelle mit gewichteten Verbindungen, welche nicht
für die Analyse von kontinuierlichen Signalströmen
entwickelt wurden, zur Verwendung von notwendi-
gerweise großen Netzwerken führen, deren interne
Kommunikation viel Platz-, Energie- und bzw. oder
Zeitressourcen beanspruchen kann.

[0010] Eine Aufgabe der vorliegenden Erfindung ist
es, einen neuromorphen Schaltkreis bereitzustellen,
um die zuvor genannten technischen Probleme zu
lösen bzw. die zuvor genannten technischen Eigen-
schaften zu realisieren. Insbesondere soll ein zu er-
kennendes Muster in einem binären Eingangssignal
schneller und bzw. oder zuverlässiger als bisher be-
kannt erkannt werden können. Zumindest soll eine
Alternative zu bekannten derartigen neuromorphen
Schaltkreisen bereitgestellt werden.

[0011] Die Aufgabe wird erfindungsgemäß durch ei-
nen neuromorphen Musterdetektor mit den Merkma-
len des Patentanspruchs 1 sowie durch eine neu-
romorphe Schaltkreisanordnung mit den Merkmalen
des Patentanspruchs 13 gelöst. Vorteilhafte Weiter-
bildungen sind in den Unteransprüchen beschrieben.

[0012] Somit betrifft die Erfindung einen neuromor-
phen Musterdetektor, welcher ausgebildet ist, we-
nigstens zwei 1-Bit Eingangssignale eines zu erken-
nenden Musters zu erhalten, mit wenigstens zwei
Vergleichsschaltungen, welche jeweils ausgebildet
sind, eines der 1-Bit Eingangssignale zu erhalten, die
Anzahl der „high“-Zustände oder der „low“-Zustän-
de des jeweiligen 1-Bit Eingangssignals innerhalb
eines vorbestimmten Zeitraums zu zählen, die An-
zahl der gezählten Zustände mit einem vorbestimm-
ten Schwellwert der jeweiligen Vergleichsschaltung
zu vergleichen und bei Überschreiten des Schwell-
werts auf die erfolgte bzw. auf die erfolgreiche Erken-
nung des zu erkennenden Musters hinzuweisen. Der
neuromorphe Musterdetektor ist vorzugsweise mit-
tels Digitaltechnik umgesetzt.

[0013] Mit anderen Worten werden wenigstens zwei
1-Bit Datenströme, welche gemeinsam ein zu er-
kennendes Muster in Form einer parallelen Bitfolge
enthalten, dem erfindungsgemäßen neuromorphen
Musterdetektor in Form einer neuromorphen Schal-
tung zugeführt. Über eine vorbestimmte Anzahl von
Bit, welche dem vorbestimmten Zeitraum entspre-
chen, werden nun die „high“-Zustände oder die „low“-
Zustände, d.h. die hohen Signalpegel oder die nied-
rigen Signalpegel, gezählt. Diese Anzahl wird fort-
laufend mit einem Schwellwert verglichen. Wird die-
ser Schwellwert überschritten, so wird hieraus ge-
schlussfolgert, dass zu erkennende Muster in dem je-
weiligen 1-Bit Datenstrom der jeweiligen Vergleichs-
schaltung erkannt zu haben. Dies wird von dem neu-
romorphen Musterdetektor nach außen angezeigt,
z.B. über ein entsprechendes Ausgangssignal.

133

DE 10 2019 134 044 A1 2021.06.17

4/22

[0014] Auf diese Art und Weise kann erfindungsge-
mäß vergleichsweise einfach mittels einer neuromor-
phen Schaltung eine Mustererkennung in einem digi-
talen Signal erfolgen.

[0015] Gemäß einem Aspekt der Erfindung ist die
eine Vergleichsschaltung der anderen Vergleichs-
schaltung erstrangig untergeordnet, wobei die über-
geordnete Vergleichsschaltung ausgebildet ist, nur
dann auf die erfolgte Erkennung des zu erkennenden
Musters hinzuweisen, falls der Schwellwert der über-
geordneten Vergleichsschaltung überschritten und
zeitgleich von der erstrangig untergeordneten Ver-
gleichsschaltung auf die erfolgte Erkennung des zu
erkennenden Musters hingewiesen wird.

[0016] Dies kann es ermöglichen, die Entschei-
dung der übergeordneten Vergleichsschaltung von
der Entscheidung der untergeordneten Vergleichs-
schaltung, das vorbestimmte Muster erkannt zu ha-
ben oder nicht, abhängig zu machen.

[0017] Gemäß einem weiteren Aspekt der Erfindung
weist der neuromorphe Musterdetektor wenigstens
eine weitere Vergleichsschaltung auf, welche paral-
lel zu der untergeordneten Vergleichsschaltung an-
geordnet ist, wobei die übergeordnete Vergleichs-
schaltung ausgebildet ist, nur dann auf die erfolg-
te Erkennung des zu erkennenden Musters hinzu-
weisen, falls der Schwellwert der übergeordneten
Vergleichsschaltung überschritten und zeitgleich von
den erstrangig untergeordneten Vergleichsschaltun-
gen jeweils auf die erfolgte Erkennung des zu erken-
nenden Musters hingewiesen wird.

[0018] Dies kann es ermöglichen, die Entschei-
dung der übergeordneten Vergleichsschaltung von
der Entscheidung der beiden untergeordneten Ver-
gleichsschaltungen, das vorbestimmte Muster er-
kannt zu haben oder nicht, abhängig zu machen.

[0019] Gemäß einem weiteren Aspekt der Erfin-
dung weist der neuromorphe Musterdetektor wenigs-
tens eine weitere Vergleichsschaltung auf, welche
zweitrangig untergeordnet zu der erstrangig unter-
geordneten Vergleichsschaltung angeordnet ist, wo-
bei die erstrangig untergeordnete Vergleichsschal-
tung ausgebildet ist, nur dann auf die erfolgte Er-
kennung des zu erkennenden Musters hinzuweisen,
falls der Schwellwert der erstrangig untergeordneten
Vergleichsschaltung überschritten und zeitgleich von
der zweitrangig untergeordneten Vergleichsschal-
tung auf die erfolgte Erkennung des zu erkennenden
Musters hingewiesen wird.

[0020] Dies kann es ermöglichen, die Entscheidung
der erstrangig untergeordneten Vergleichsschaltung
von der Entscheidung der zweitrangig untergeordne-
ten Vergleichsschaltung, das vorbestimmte Muster
erkannt zu haben oder nicht, abhängig zu machen.

[0021] Dabei können die zuvor beschriebenen Mög-
lichkeiten der Anordnung von mehr als zwei Ver-
gleichsschaltungen auch miteinander kombiniert wer-
den, indem wenigstens zwei erstrangige und wenigs-
tens eine zweitrangige Vergleichsschaltung verwen-
det und wie zuvor beschrieben miteinander und bzw.
oder seitens der übergeordneten Vergleichsschal-
tung in Abhängigkeit gesetzt werden.

[0022] Gemäß einem weiteren Aspekt der Erfindung
bilden die wenigstens drei Vergleichsschaltungen ei-
nen Binärbaum mit wenigstens zwei Ebenen. Un-
ter einem Binärbaum, auch binärer Baum genannt,
wird eine besondere Unterart eines Baumes verstan-
den, wie er in der Informatik für hierarchische Da-
tenstrukturen verwendet wird. Der Ausgangspunkt,
wie hier die übergeordnete Vergleichsschaltung, wird
als Wurzel oder auch Binärbaumwurzel bezeichnet,
von welcher sich der Binärbaum in verschiedenen
Ebene wie hier der erstrangigen und zweitrangigen
Vergleichsschaltungen einzeln oder paarweise ver-
zweigt, bis der jeweilige Ast an einem Binärbaumblatt
endet.

[0023] Entsprechend können die Eigenschaften und
Vorteile derartiger hierarchischer Datenstrukturen auf
die erfindungsgemäße neuromorphe Schaltung über-
tragen und dort genutzt werden.

[0024] Gemäß einem weiteren Aspekt der Erfindung
sind die Vergleichsschaltungen identisch ausgebil-
det. Dies kann die Umsetzung vereinfachen, da der
Entwurf der neuromorphen Schaltung mit geringe-
rem Aufwand ausfallen kann, in dem das Design der
Vergleichsschaltung mehrfach verwendet wird. Auch
kann dies die Vergrößerung der Schaltung des neu-
romorphen Musterdetektors vereinfachen und hier-
durch eine Skallierbarkeit ermöglichen.

[0025] Gemäß einem weiteren Aspekt der Erfindung
wird bei Überschreiten des Schwellwerts ein 1-Bit
Ausgangssignal der jeweiligen Vergleichsschaltung
auf den „high“-Zustand, ansonsten auf den „low“-Zu-
stand, gesetzt, oder umgekehrt. Dies kann es ermög-
lichen, dass Hinweisen der jeweiligen Vergleichs-
schaltung auf die erfolgte Erkennung des zu erken-
nenden Musters einfach umzusetzen.

[0026] Gemäß einem weiteren Aspekt der Erfindung
sind die Vergleichsschaltungen ausgebildet, jeweils
ein 1-Bit Steuersignal zu erhalten und in Reaktion
auf einen „high“-Zustand oder auf einen „low“-Zu-
stand des jeweiligen 1-Bit Steuersignals das 1-Bit
Ausgangssignal der jeweiligen Vergleichsschaltung
auf den „low“-Zustand zu setzen. Hierdurch kann ei-
ne Möglichkeit geschaffen werden, die entsprechen-
de Vergleichsschaltung mittels des jeweiligen 1-Bit
Steuersignals wieder zurückzusetzen. Mit anderen
Worten kann die Vergleichsschaltung von außen re-
setted werden. Dies kann es insbesondere ermög-

134

DE 10 2019 134 044 A1 2021.06.17

5/22

lichen, alle Vergleichsschaltungen zurückzusetzen,
um anschließend mit dem Erkennen eines neuen
Musters beginnen zu können, ohne dass der zuvor
erfolgte Vorgang auf dessen Ergebnis Auswirkungen
haben kann.

[0027] Gemäß einem weiteren Aspekt der Erfin-
dung gibt der vorbestimmte Schwellwert der Anzahl
der Zustände der jeweiligen Vergleichsschaltung vor,
wann das zu erkennende Muster als erkannt ange-
sehen wird. Mit anderen Worten kann durch die Hö-
he des Schwellwerts in Relation zur Länge bzw. Kür-
ze des vorbestimmten Zeitraums bzw. der vorbe-
stimmten Anzahl von Bit des Eingangssignals vorbe-
stimmt werden, wie deutlich eine Übereinstimmung
zwischen dem jeweiligen Eingangssignal und dem
vorbestimmten Muster vorliegen muss, um das vor-
bestimmte Muster im jeweiligen Eingangssignal als
erkannt anzusehen. Dies kann für jedes zu erkennen-
de Muster und für jede Vergleichsschaltung vorge-
geben werden. Dies kann über die Konfiguration der
Vergleichsschaltungen erfolgen.

[0028] Gemäß einem weiteren Aspekt der Erfin-
dung weisen die Vergleichsschaltungen jeweils einen
Schiebefensterdetektor auf, welcher jeweils ausgebil-
det ist, das jeweilige 1-Bit Eingangssignal zu erhalten
und die Anzahl der „high“-Zustände oder der „low“-
Zustände des jeweiligen 1-Bit Eingangssignals inner-
halb des vorbestimmten Zeitraums zu zählen. Dies
kann die Umsetzung dieser Funktion der Vergleichs-
schaltungen einfach und bzw. oder zuverlässig er-
möglichen.

[0029] Gemäß einem weiteren Aspekt der Erfin-
dung erfolgt das Zählen der Anzahl der „high“-Zu-
stände oder der „low“-Zustände des jeweiligen 1-Bit
Eingangssignals innerhalb des vorbestimmten Zeit-
raums mittels eines bidirektionalen Schieberegisters
des jeweiligen Schiebefensterdetektors. Dies kann
die Umsetzung dieser Funktion der Vergleichsschal-
tungen einfach und bzw. oder zuverlässig ermögli-
chen.

[0030] Gemäß einem weiteren Aspekt der Erfindung
erhalten die Vergleichsschaltungen, vorzugsweise
deren Schiebefensterdetektor, jeweils ein Taktsignal
zur Steuerung der Verarbeitung der Pulse und ein
Taktsignal zur Steuerung der Länge der Plateaus,
wobei die beiden Taktsignale unterschiedlich sind.
Unter einem Puls bzw. Spike ist der Zustand eines
Signals im Zustand „high“ nach und vor einem Zu-
stand „low“ zu verstehen. Unter einem Plateau ei-
nes Signals ist die Zeitdauer bzw. die Signallänge
im Zustand „high“ zu verstehen. Mit anderen Wor-
ten ist unter eine Plateau eine Funktion vergleichbar
einem volatilen Cache-Zwischenspeicher zu verste-
hen, welcher für eine konfigurierbare Zeit, d.h. die
Zeitdauer des Plateaus, ein Zwischenergebnis spei-
chert. Auf diese Art und Weise kann die Mustererken-

nung der Vergleichsschaltungen und damit auch des
neuromorphen Musterdetektors in Abhängigkeit von
wenigstens zwei unterschiedlichen Taktsignalen er-
folgen.

[0031] Die vorliegende Erfindung betrifft auch eine
neuromorphe Schaltkreisanordnung mit einer Mehr-
zahl von neuromorphen Musterdetektoren wie zuvor
beschrieben, wobei jeder neuromorphe Musterdetek-
tor ausgebildet ist, das gleiche 1-Bit Eingangssignal
zu erhalten, ein unterschiedliches 1-Bit Zufallszah-
lensignal zu erhalten, das jeweilige 1-Bit Eingangs-
signal mit dem entsprechenden 1-Bit Zufallszahlen-
signal zu verändern, und die Anzahl der „high“-Zu-
stände oder der „low“-Zustände des jeweiligen verän-
derten 1-Bit Eingangssignals innerhalb eines vorbe-
stimmten Zeitraums zu zählen.

[0032] Unter einem 1-Bit Zufallszahlensignal ist ein
Signal mit einer Bitfolge zu verstehen, welche zufällig
erzeugt wurde. Dies kann deterministisch oder nicht-
deterministisch erfolgen. Ein deterministisch erzeug-
tes 1-Bit Zufallszahlensignal kann auch als Pseudo-
Zufallszahlensignal bezeichnet werden. Dabei kann
die Verwendung eines pseudo-zufälligen 1-Bit Zu-
fallszahlensignals vorteilhaft sein, da dies einfacher
als ein nicht-deterministisches 1-Bit Zufallszahlensi-
gnal erzeugt werden und zur Erzielung der entspre-
chenden Eigenschaften und Vorteile ausreichend
sein kann.

[0033] Somit können mehrere der zuvor beschrie-
benen neuromorphen Musterdetektoren parallel zu-
einander angeordnet und verwendet werden, um je-
weils das gleiche vorbestimmte Muster in dem glei-
chen Eingangssignal zu erkennen. Hierbei können
die beiden 1-Bit Datenströme jeweils unterschiedlich
stochastisch verändert werden, so dass das gleiche
Muster jeweils in unterschiedlichen Eingangssigna-
len der einzelnen neuromorphen Musterdetektoren
erkannt werden muss. Dies kann eine Aussage über
die Zuverlässigkeit der Mustererkennung erlauben,
da die gleichen Eingangssignal mit dem zu erken-
nenden Muster durch die 1-Bit Zufallssignale unter-
schiedliche verfremdet bzw. gestört jeweils identisch
durch die neuromorphen Musterdetektoren bearbei-
tet werden.

[0034] Diesbezüglich sei angemerkt, dass ein (pseu-
do-)zufälliges Maskieren eines Datenstroms in meh-
rere sich zufällig unterscheidende Datenströme auch
unabhängig von einer neuromorphen Schaltkreisan-
ordnung wie zuvor beschrieben und insbesondere
unabhängig von einer Mehrzahl von neuromorpher
Musterdetektoren wie zuvor beschrieben umgesetzt
und angewendet werden kann. Dies kann es ermögli-
chen, die entsprechenden Eigenschaften und Vortei-
le auch unabhängig umzusetzen und anzuwenden.

135

DE 10 2019 134 044 A1 2021.06.17

6/22

[0035] Gemäß einem Aspekt der Erfindung weist
wenigstens eine Vergleichsschaltung, vorzugsweise
weisen alle Vergleichsschaltungen jeweils, ein Und-
Gatter auf, welches ausgebildet ist, das jeweilige
1-Bit Eingangssignal und das entsprechende 1-Bit
Zufallszahlensignal zu kombinieren. Hierdurch kann
die Veränderung der gleichen Eingangssignal durch
die unterschiedlichen stochastischen 1-Bit Zufalls-
zahlensignal umgesetzt werde.

[0036] Gemäß einem weiteren Aspekt der Erfindung
ist die neuromorphe Schaltkreisanordnung ausgebil-
det, die Anzahl der 1-Bit Ausgangssignale der jeweili-
gen Vergleichsschaltung, welche zeitgleich im „high“-
Zustand oder im „low“-Zustand sind, zu erfassen und
aus dem Verhältnis der Anzahl von 1-Bit Ausgangssi-
gnalen im „high“-Zustand oder im „low“-Zustand und
der Anzahl der neuromorphen Musterdetektoren ei-
nen Grad der Übereinstimmung zwischen 1-Bit Ein-
gangssignal und zu erkennendem Muster zu bestim-
men. Hierdurch kann diese Information bestimmt und
zur Verfügung gestellt werden.

[0037] Gemäß einem weiteren Aspekt der Erfindung
weist wenigstens eine Vergleichsschaltung, vorzugs-
weise weisen alle Vergleichsschaltungen jeweils, ei-
nen Zeitmultiplexer auf, welcher ausgebildet ist, par-
allele Ausgangssignale der neuromorphen Muster-
detektoren zu einem 1-Bit-Ausgangssignalder neuro-
morphen Schaltkreisanordnung zusammenzuführen.
Auf diese Art und Weise kann ein einziger resultieren-
den 1-Bit Datenstrom als Ausgangssignal der neuro-
morphen Schaltkreisanordnung erzeugt werden.

[0038] Ein Ausführungsbeispiel und weitere Vortei-
le der Erfindung werden nachstehend im Zusammen-
hang mit den folgenden Figuren rein schematisch
dargestellt und näher erläutert. Darin zeigt:

Fig. 1 eine schematische Darstellung eines
Symbols eines Schaltkreises einer Population
der Fig. 2;

Fig. 2 eine schematische Darstellung eines
Schaltkreises der Population der Fig. 1;

Fig. 3 eine schematische Darstellung eines
Symbols eines Schaltkreises eines Neurons der
Fig. 4;

Fig. 4 eine schematische Darstellung eines
Schaltkreises des Neurons der Fig. 3;

Fig. 5 eine schematische Darstellung eines
Schaltkreises eines Binärbaumzweigs;

Fig. 6 eine schematische Darstellung eines
Schaltkreises eines Abschlusszweigs;

Fig. 7 eine schematische Darstellung eines
Symbols eines Schaltkreises eines Segments
der Fig. 8;

Fig. 8 eine schematische Darstellung eines
Schaltkreises des Segments der Fig. 7;

Fig. 9 eine schematische Darstellung eines
Symbols eines Schaltkreises eines Schiebe-
fensterdetektors der Fig. 10;

Fig. 10 eine schematische Darstellung eines
Schaltkreises des Schiebefensterdetektors der
Fig. 9;

Fig. 11 eine schematische Darstellung eines
Symbols eines Schaltkreises eines Zeitmultiple-
xers der Fig. 12; und

Fig. 12 eine schematische Darstellung eines
Schaltkreises des Zeitmultiplexers der Fig. 11.

[0039] Fig. 1 zeigt eine schematische Darstellung ei-
nes Symbols eines Schaltkreises einer Population 1
der Fig. 2. Fig. 2 zeigt eine schematische Darstellung
eines Schaltkreises der Population 1 der Fig. 1.

[0040] Unter einer Population 1 im Sinne von Com-
putersoftware wird eine Anordnung von gleichen
Computerprogrammen verstanden, welche gemein-
sam die Population 1 bilden. Wird dies auf neuromor-
phe Schaltkreise übertragen, so kann die o.g. Popu-
lation 1 mittels neuromorpher Schaltkreise als neuro-
morphe Schaltkreisanordnung 1 gebildet werden, in-
dem mehrere neuromorphe Musterdetektoren 2, wel-
che auch als Neuronen 2 bezeichnet werden können,
gleicher Struktur in Form von identisch ausgebildeten
neuromorphen Schaltkreisen miteinander zur Popu-
lation 1 verschaltet werden, siehe Fig. 2.

[0041] Die Population 1 besteht dabei gemäß dem
dargestellten Ausführungsbeispiel aus einer Anzahl
K von Neuronen 2, von welchen in der Fig. 2 das ers-
te, das zweite und das K-te Neuron 2 von links nach
rechts dargestellt sind. Jedes Neuron 2 erhält den-
selben eingehenden Datenstrom E als Eingangssi-
gnal E, welches aus einer Anzahl N von einzelnen 1-
Bit Eingangssignalen E1-EN besteht. Das Eingangs-
signal E enthält ein zu erkennendes Muster, welches
auch als Pattern bezeichnet werden kann.

[0042] Jedes Neuron 2 erhält ferner parallel das-
selbe Steuersignal I, welches aus einer Mehrzahl
von einzelnen 1-Bit Steuersignalen l1-lN besteht. Das
Steuersignal l kann zum Zurücksetzen von Ver-
gleichsschaltungen 2, auch Segmente 3 genannt, in-
nerhalb der Neuronen 2 verwendet werden, wie wei-
ter unten näher beschrieben werden wird.

[0043] Ferner erhält jedes Neuron 2 eine Anzahl N
von binären Zufallszahlensignalen M1,1-MK,N, welche
deterministisch erzeugt und für jedes Neuron 2 un-
terschiedlich pseudo-zufällig sind. Genauer gesagt
wird der Population 1 für jedes der N Eingangssignale
E1-EN und für jedes der K Neuronen 2 ein zufälliges
1-Bit Zufallssignal M1,1-MK,N zur Verfügung gestellt.

136

DE 10 2019 134 044 A1 2021.06.17

7/22

[0044] Des Weiteren erhält jedes Neuron 2 drei
unterschiedliche Taktsignal CLKPLT, CLKSPIKE und
CLKPROG. Das Taktsignal CLKPLT ist ein Taktsignal
zur Steuerung der Länge der Plateaus der Ver-
gleichsschaltungen 3, wie weiter unten noch näher
erläutert werden wird. Das Taktsignal CLKSPIKE ist ein
Taktsignal zur Steuerung der Verarbeitung von Spi-
kes, d.h. von Pulsen, der Vergleichsschaltungen 3,
wie ebenfalls weiter unten noch näher erläutert wer-
den wird. Das Taktsignal CLKPROG ist ein Taktsignal
eines Konfigurationssignals DPROG bzw. DPROGO, wie
ebenfalls weiter unten noch näher erläutert werden
wird.

[0045] Ein Konfigurationssignal DPROG der Populati-
on 1 wird als Eingangssignal dem ersten Neuron 2
zugeführt, dort zur Konfiguration des ersten Neurons
2 verwendet und als Konfigurationssignal DPROGO von
dem ersten Neuron 2 an das zweite Neuron 2 ausge-
geben. Das zweite Neuron 2 erhält somit das Konfi-
gurationssignal DPROG als Eingangssignal usw. Das
Konfigurationssignal DPROGO als Ausgangssignal des
letzten K-ten Neurons 2 ist das Konfigurationsaus-
gangssignal DPROGO der Population 1.

[0046] Jedes der K Neuronen 2 erzeugt ein binäres
Ausgangssignal P1-PK, welche parallel einem Zeit-
multiplexer 5 als dessen Eingangssignale S1-SK zu-
geführt werden. Die Verarbeitung dieser Eingangssi-
gnale S1-SK zu einem Ausgangssignal O des Zeitmul-
tiplexers 5, welches auch das Ausgangssignal O der
gesamten Population 1 darstellt, wird weiter unter be-
schrieben.

[0047] Fig. 3 zeigt eine schematische Darstellung ei-
nes Symbols eines Schaltkreises eines Neurons 2
der Fig. 4. Fig. 4 zeigt eine schematische Darstellung
eines Schaltkreises des Neurons 2 der Fig. 3. Fig. 5
zeigt eine schematische Darstellung eines Schalt-
kreises eines Binärbaumzweigs 21, 22. Fig. 6 zeigt
eine schematische Darstellung eines Schaltkreises
eines Abschlusszweigs 20.

[0048] Jedes Neuron 2 besteht im Wesentlichen aus
einem rekursiv eingebetteten, binären Baum, auch
Binärbaum genannt, mit einem ersten Binärbaum-
zweig 21, einem zweiten Binärbaumzweig 22 sowie
dem zuvor bereits erwähnten Segments 3, siehe z.B.
Fig. 4. Jeder der beiden Baumzweige 21, 22 kann in
jeder Ebene des binären Baums entweder ein weite-
res Neuron 2 mit zwei weiteren Binärbaumzweigen
21, 22 und einem Segment 3, siehe Fig. 5, oder ein
Abschlusszweig 20 mit lediglich einem Segment 3,
siehe Fig. 6, sein. Die beiden Binärbaumzweige 21,
22 können auch als innere Knoten des Binärbaums
21, 22 oder als Nested Branches 21, 22 bezeichnet
werden. Der Abschlusszweig 20 kann auch als Binär-
baumblatt 20 oder als Terminal Branch 20 bezeich-
net werden. Das Neuron 2 selbst kann daher auch
als Binärbaumwurzel 2 bezeichnet werden. Mit ande-

ren Worten wird jeder Binärbaumzweige 21, 22 ent-
weder aus einem weiteren Neuron 2, welches seiner-
seits wieder zwei Binärbaumzweige 21, 22 aufweist,
oder aus einem Abschlusszweig 20 gebildet.

[0049] Dabei besitzt das jeweilige Segment 3, wel-
ches die Wurzel des Binärbaums bildet, die gleiche
Struktur wie die Binärbaumzweige 21, 22 der wei-
teren Ebenen des binären Baums mit dem Unter-
schied, dass das Segment 3 der Wurzel des Binär-
baums statt dem Taktsignal CLKPLT das Taktsignal
CLKSPIKE erhält. Die Binärbaumzweige 21, 22 erhal-
ten das Taktsignal CLKPLT. Dies führt dazu, dass das
Ausgangssignal P1-Pk des Neurons 2 als kurze Spi-
kes mit dem Taktsignal CLKSPIKE und nicht lange Pla-
teaus mit dem Taktsignal CLKPLT aufweist.

[0050] Das Konfigurationssignal DPROG des Neurons
2 wird jedem Binärbaumzweig 21, 22, jedem Ab-
schlusszweig 20 sowie jedem Segment 3 zugeführt.

[0051] Jedes Segment 3 jeder Ebene des binä-
ren Baums erhält eines der 1-Bit Eingangssignale
E1-EN sowie das entsprechende 1-Bit Steuersigna-
le l1-lN und das entsprechende Zufallszahlensignal
M1,1-MK,N. Die Funktion des Segments 3 wird weiter
unten erklärt werden. Auch erhält jedes Segment 3 je-
der Ebene des binären Baums die Taktsignale CLK-
PLT, CLKSPIKE und CLKPROG zu den zugehörigen Si-
gnalen.

[0052] Der Abschlusszweig 20 besteht lediglich aus
einem Segment 3 mit zwei konstanten Eingangssi-
gnalen B1, B2, welche beide den Zustand „high“ auf-
weisen. Ferner erhält das Segment 3 ebenfalls ei-
nes der 1-Bit Eingangssignale E1-EN sowie das ent-
sprechende 1-Bit Steuersignale l1-lN und das entspre-
chende Zufallszahlensignal M1,1-MK,N.

[0053] Fig. 7 zeigt eine schematische Darstellung ei-
nes Symbols eines Schaltkreises eines Segments 3
der Fig. 8. Fig. 8 zeigt eine schematische Darstellung
eines Schaltkreises des Segments 3 der Fig. 7.

[0054] Das Segment 3, welches wie zuvor beschrie-
ben jeweils identisch in jedem Neuron 2 mehrfach
auf verschiedenen Ebenen des binären Baums ver-
wendet wird, erhält stets die Ausgangssignale P der
Binärbaumzweige 21, 22 derselben Ebene als Ein-
gangssignal B1, B2. Die beiden Eingangssignale B1,
B2 sind parallel sowohl auf ein erstes Oder-Gatter
30 als auch auf ein erstes Und-Gatter 31 geschaltet.
Die Ausgangssignale der beiden ersten Gatter 30, 31
können entweder ein konstantes „high“-Signal oder
ein konstantes „low“-Signal sein, welche parallel ei-
nem 4-fach Multiplexer 32 zugeführt werden. Zusätz-
lich zu den beiden Ausgangssignalen der beiden ers-
ten Gatter 30,31 werden ein konstantes „low“-Signal
und ein konstantes „high“-Signal parallel dem 4-fach
Multiplexer 32 zugeführt. Dabei wird das Ausgangs-

137

DE 10 2019 134 044 A1 2021.06.17

8/22

signal des 4-fach Multiplexers 32 von einem ersten 2-
bit SIPO Schieberegister 33 (SIPO: serial-input-par-
allel-output) gewählt und einem zweiten Und-Gatter
34 zugeführt.

[0055] Die zwei 1-Bit Eingangssignale E1-EN und
M1,1-MK,N des jeweiligen Segments 3 werden von ei-
nem dritten Und-Gatter 35 verschaltet, dessen Aus-
gangssignal in einen Schiebefensterdetektor 4 als
dessen Eingangssignal DIN geschaltet wird, welcher
auch als Slider 4 bezeichnet werden kann und weiter
unten näher erläutert werden wird. Der Schiebefens-
terdetektor 4 wird durch den Datenstrom des Konfi-
gurationssignals DPROG mit dem zugehörigen Taktsi-
gnal CLKPROG konfiguriert. Das Ausgangssignal des
Konfigurationssignals DPROGO des Schiebefensterde-
tektors 4 ist wiederum das Eingangssignal des ersten
2-bit SIPO Schieberegisters 33, welches seinerseits
durch die steigende Flanke des Taktsignals CLKPROG
weitergeschoben wird. Das erste 2-bit SIPO Schie-
beregister 33 erzeugt dabei parallel zu der zuvor be-
schriebenen Auswahl des Ausgangssignals des 4-
fach Multiplexers 32 das Ausgangssignal des Konfi-
gurationssignals DPROGO des Segments 3.

[0056] Der Schiebefensterdetektor 4 erzeugt parallel
zu dem Konfigurationssignals DPROGO des Schiebe-
fensterdetektors 4 ferner ein Ausgangssignal DOUT,
welches das zweite Eingangssignal des zweiten Und-
Gatters 34 ist, dessen Ausgangssignal einen 1-Bit
Flipflop 36 zu jeder steigenden Flanke in den „high“-
Zustand versetzt. Das Ausgangssignal des 1-Bit Flip-
flops 36 ist auch das Ausgangssignal P des jeweili-
gen Segments 3.

[0057] Zu jeder steigenden Flanke des Taktsignals
CLKPLT wird ein zweites N-bit SIPO Schieberegister
37 um einen Schritt geschoben, wodurch das aktuel-
le Ausgangssignal des 1-Bit Flipflops 36 ausgelesen
wird. Das letzte Bit des parallelen Ausgangssignals
des zweites N-bit SIPO Schieberegisters 37 bildet ein
Eingangssignal eines zweiten Oder-Gatters 38. Das
andere Eingangssignal des zweiten Oder-Gatters 38
ist das entsprechende 1-Bit Steuersignale l1-lN. Wenn
eines der beiden Eingangssignale des zweiten Oder-
Gatters 38 den „high“-Zustand aufweist, ist auch das
Ausgangssignal des zweiten Oder-Gatters 38 „high“
und die steigende Flanke schaltet den Zustand des 1-
Bit Flipflops 36 zurück sowie setzt hierdurch alle Bits
des zweites N-bit SIPO Schieberegisters 37 auf „low“,
d.h. in den „low“-Zustand.

[0058] Fig. 9 zeigt eine schematische Darstellung ei-
nes Symbols eines Schaltkreises eines Schiebefens-
terdetektors 4 der Fig. 10. Fig. 10 zeigt eine schema-
tische Darstellung eines Schaltkreises des Schiebe-
fensterdetektors 4 der Fig. 9.

[0059] Der Schiebefensterdetektor 4 dient dazu zu
erkennen, ob die Anzahl der „high“-Bits, d.h. der Bits

im „high“-Zustand, in seinem Eingangssignal DIN in-
nerhalb der letzten N-bits, d.h. innerhalb eines vor-
bestimmten Zeitraums, welcher durch das Konfigu-
rationssignal DPROG konfigurierbar ist, des 1-Bit Ein-
gangssignals DIN einen konfigurierbaren Schwellwert
übersteigt. Hierzu wird das 1-Bit Eingangssignal DIN
des Schiebefensterdetektors 4 einem ersten Und-
Gatter 40 als dessen erstes Eingangssignal zuge-
führt.

[0060] Das Ausgangssignal des ersten Und-Gatters
40 wird als Eingangssignal in ein erstes N-bit SIPO
Schieberegister 41 geleitet, welches das serielle Ein-
gangssignal parallelisiert und mit jeder steigenden
Flanke im Taktsignal CLKIN einen Schritt weiterge-
schoben wird. Das N-te parallele Ausgangssignal des
ersten N-bit SIPO Schieberegisters 41 ist das links-
schiebende Eingangssignal SL in ein zweites bidi-
rektionales M-bit SIPO-Schieberegister 42. Das Aus-
gangssignal des ersten Und-Gatters 40 selbst ist das
rechtsschiebende Eingangssignal SR des zweiten bi-
direktionalen M-bit SIPO-Schieberegisters 42.

[0061] Zu jeder steigenden Flanke des Taktsignals
CLKIN wird das zweite bidirektionale M-bit SIPO-
Schieberegister 42 einen Schritt in die Richtung nach
rechts geschoben, falls das rechtsschiebende Ein-
gangssignal SR „high“ und das linksschiebende Ein-
gangssignal SL „low“ ist. Wenn das rechtsschieben-
de Eingangssignal SR „low“ und das linksschieben-
de Eingangssignal SL „high“ ist, wird das zweite bidi-
rektionale M-bit SIPO-Schieberegister 42 hingegen in
die Richtung nach links geschoben. Ansonsten bleibt
das zweite bidirektionale M-bit SIPO-Schieberegister
42 unverändert.

[0062] Falls das zweite bidirektionale M-bit SIPO-
Schieberegister 42 in die Richtung nach rechts ge-
schoben wird, wird ein „high“-Bit von links eingefügt.
Falls hingegen das zweite bidirektionale M-bit SIPO-
Schieberegister 42 in die Richtung nach links gescho-
ben wird, wird ein „low“-Bit von rechts eingefügt. Das
letzte Bit des parallelen Ausgangssignals des zweiten
bidirektionalen M-bit SIPO-Schieberegisters 42 wird
invertiert als zweites Eingangssignal des ersten Und-
Gatters 40 genutzt.

[0063] Ein M+1fach Multiplexer 43 wird von K 1-Bit
Eingangssignalen konfiguriert und generiert so ent-
weder ein konstantes „high“-Ausgangssignal oder se-
lektiert einen der M parallelen Ausgangssignale des
zweiten bidirektionalen M-bit SIPO-Schieberegisters
42. Das selektierte Signal ist das Ausgangssignal des
M+1fach Multiplexers 43 und des gesamten Schiebe-
fensterdetektors 4.

[0064] Welches der M+1 <= 2^K (M plus 1 klei-
nergleich 2 hoch K) Eingangssignale mittels des M
+1fach Multiplexers 43 ausgesucht wird, wird von
dem parallelen Ausgangssignals eines dritten K-bit

138

DE 10 2019 134 044 A1 2021.06.17

9/22

SIPO-Schieberegisters 44 festgelegt, welches von
einem Bitstrom des Eingangssignals DPROG mit ei-
nem dazugehörigen Taktsignals CLKPROG betrieben
wird. Das letzte parallele Ausgangssignal des dritten
K-bit SIPO-Schieberegisters 44 ist der zusätzliche
Konfigurationssignal DPROGO als Ausgangssignal des
Schiebefensterdetektors 4, um mehrere Segmente 3
bzw. Neuronen 2 in Serie verschalten zu können.

[0065] Fig. 11 zeigt eine schematische Darstellung
eines Symbols eines Schaltkreises eines Zeitmulti-
plexers 5 der Fig. 12. Fig. 12 zeigt eine schematische
Darstellung eines Schaltkreises des Zeitmultiplexers
5 der Fig. 11.

[0066] Der Zeitmultiplexer 5 ist in der Lage, eine Fol-
ge von K 1-Bit parallelen Eingangssignalen S1-SK in
ein serielles 1-Bit Ausgangssignal O zu enkodieren.
Die steigende Flanke eines der K Eingangssignale
S1-SK setzt ein korrespondierendes Flipflop 50 einer
Anzahl K von identischen und parallel zueinander an-
geordneten Flipflops 50 in den „high“-Zustand. Die
Ausgangssignale der Flipflops 50 sind jeweils eines
der beiden Eingangssignale eines jeweils korrespon-
dierenden Und-Gatters 51 einer Anzahl K von iden-
tischen und parallel zueinander angeordneten Und-
Gattern 51.

[0067] Zu jeder steigenden Flanke des Taktsignals
CLKSPIKE wird ein selbst initialisierter K-bit Ringzäh-
ler 52 weitergeschoben, dessen parallele Ausgangs-
signale jeweils das zweite Eingangssignal der Und-
Gatter 51 sowie das zurücksetzende Signal, d.h. das
Reset-Signal, für die Flipflops 50 sind. Zu jedem Zeit-
punkt ist genau ein Bit des Ringzählers 52 im Zustand
„high“ während alle anderen Bit des Ringzählers 52
im Zustand „low“ sind. Zur fallenden Flanke des Re-
set-Signals wird das jeweilige Flipflop 50 in den „low“-
Zustand geschaltet.

[0068] Während beide Eingangssignale eines der
Und-Gatter 51 im Zustand „high“ sind, ist auch das
Ausgangssignal dieses Und-Gatters 51 im Zustand
„hoch“, ansonsten im Zustand „low“. Wenn eines
der K Und-Gatter 50 ein Ausgangssignal im Zustand
„hoch“ hat, ist das Ausgangssignal eines Oder-Gat-
ters 53 ebenfalls im Zustand „high“, sonst im Zu-
stand „low“. Zur steigenden Flanke des Taktsignals
CLKSPIKE wird das Ausgangssignal des Oder-Gatters
53 für einen Taktzyklus in einem D-Flipflop 54 zwi-
schengespeichert. Das Ausgangssignal des D-Flip-
flops 54 ist das Ausgangssignal des Zeitmultiplexers
5.

[0069] Das Taktsignal CLKPROG ist an den Daten-
strom des Konfigurationssignals DPROG zur Konfigu-
ration der Segmente 3 gekoppelt und hat lediglich die
Funktion, die Segmente 3 innerhalb des jeweiligen
Neurons 2 sowie die Neuronen 2 innerhalb der Popu-
lation 1 untereinander zu synchronisieren.

[0070] Das Taktsignal CLKSPIKE steuert die Verar-
beitung von sog. „Spikes“, d.h. von Pulsen als „high“-
Zustände. Zum einen wird mit der Frequenz des Takt-
signales CLKSPIKE das Ausgangssignal der Populati-
on 1 in der Zeit multiplexed. Zum anderen wird das
Taktsignal CLKSPIKE im zweiten bidirektionalen M-bit
SIPO-Schieberegister 42 des Schiebefensterdetek-
tors 4 genutzt, um dieses Eingangssignal synchroni-
siert zu verarbeiten. Somit ist der ausgehende Daten-
strom des zweiten bidirektionalen M-bit SIPO-Schie-
beregisters 42 an das Taktsignal CLKSPIKE gebun-
den. Auch hängen alle eingehenden Datenströme
des Eingangssignals E, des Kontrollsignals I sowie
der binären Zufallszahlensignal M, welche zur Mus-
tererkennung dienen, an dem Taktsignal CLKSPIKE•

[0071] In der Verarbeitung des Eingangssignals E,
des Kontrollsignals I sowie der binären Zufallszah-
lensignal M zur Mustererkennung gilt insbesondere,
dass das Zeitfenster des Schiebefensterdetektors 4
N * 1/f(CLK-SPIKE) ist, also durch den Horizont des
n bidirektionalen M-bit SIPO-Schieberegister 42 des
Schiebefensterdetektors 4 und durch die Frequenz
des Taktsignals gegeben ist. In der Anwendung lässt
sich durch die Wahl der Frequenz die Population 1
auf die Zeitskalen anpassen, auf denen Teilmuster
erkannt werden sollen, wobei ein Teilmuster das ist,
was ein Segment 3 alleine durch den Schiebefens-
terdetektor 4 erkennt.

[0072] Das Taktsignal CLKPLT steuert ausschließlich
die Länge der Plateaus in den einzelnen Segmen-
te 3, also die Zeitdauer bzw. Signallänge, für die ein
einzelnes Segment 3 sich die Erkennung eines Teil-
musters zusammen mit ausreichendem Signal aus
dem binären Baum merkt: Cache für das Zwischener-
gebnis. Im Speziellen wird das asynchron geschalte-
te „high“-Ausgangssignal des Segments 3 nach min-
destens N * 1/f(CLKPLT) und nach maximal (N+1) *
1/f(CLKPLT) wieder ausgeschaltet. Die Spanne ergibt
sich dadurch, dass das Zählen im Schiebefensterre-
gister 4 zum Ausschalten vom Anschalten des Aus-
gangssignals entkoppelt ist. Damit lässt sich über die
Wahl von N die zeitliche Präzision auf Kosten von
Bauteilen und über die gemeinsame Wahl von N und
der Frequenz des Taktsignals CLKPLT die Zeitskala
regeln, auf der Zwischenergebnisse und Teilmuster
gespeichert werden. Das Taktsignal CLKPLT stellt so-
mit eine zweite Zeitskala in der Mustererkennung dar.

[0073] Die Kombination der Taktsignale CLKSPIKE
und CLKPLT, um Teilmuster auf zwei unabhängig
wählbaren Zeitskalen zur Mustererkennung zu kom-
binieren, stellt eine Besonderheit der Neuronen 2
dar. Isoliert kontrolliert jedes Taktsignal CLKSPIKE und
CLKPLT wie bisher üblich einen Teil des Neurons 2
über Flankensteuerung. Genauer betrachtet werden
jedoch erfindungsgemäß die Segmente 3 innerhalb
des Neurons 2 von den verschiedenen Taktsigna-
len CLKSPIKE und CLKPLT gesteuert und dies zur Im-

139

DE 10 2019 134 044 A1 2021.06.17

10/22

plementierung von Algorithmen zur Mustererkennung
verwendet.

[0074] Die zuvor beschriebene Population 1 kann
dazu verwendet werden, mit niedriger Latenz Mus-
ter in kontinuierlichen, digitalen Datenströmen (Bit-
streams) zu erkennen. Da aufgrund von Störsignalen
oder zeitlicher Impräzision niemals dieselben Muster
in gleicher Form auftreten, können dabei auch unge-
fähre Übereinstimmungen erkannt und der Grad der
Übereinstimmung quantifiziert werden. Dabei sind
die zu erkennenden Muster konfigurierbar, d.h. kön-
nen vorbestimmt werden.

[0075] Hierzu werden die zuvor beschriebenen Neu-
ronen 2 als mehrere Musterdetektoren in Gruppen in
Form von Populationen 1 zusammengefasst. Jedes
einzelne Neuron 2 ist hier eine hierarchische Struktur
der Segmente 3, welche untereinander verknüpft sind
und, je nach problemspezifischer Konfiguration, je-
weils eigene Eingangssignale verarbeiten. Wenn ein
komplexes Muster als Eingangssignal alle Segmen-
te 3 in der richtigen zeitlichen Sequenz aktiviert, er-
zeugt das jeweilige Neuron 2 in seinem Ausgangs-
signal ein positives Bit, d.h. ein Ausgangssignal mit
dem Zustand „high“; sozusagen „feuert“ das Neuron
2 bzw. das Neuron 2 erzeugt einen Pulse bzw. einen
„Spike“.

[0076] Die Wahrscheinlichkeit, mit der ein einzelnes
Neuron 2 feuert, reflektiert dabei den Grad der Über-
einstimmung zwischen dem geforderten, d.h. dem
konfigurierten vorbestimmten, und dem gesehenen,
d.h. der Population 1 zugeführten, Muster. In einer
Population 1 lesen alle K gleichkonfigurierten Neuro-
nen 2 den gleichen Datenstrom als Eingangssignal
E und versuchen, das gleiche Muster in dem Ein-
gangssignal E zu erkennen, erhalten jedoch durch ei-
ne pseudo-zufällige Maskierung der Eingangssigna-
le E mit den binären Zufallszahlensignalen M sto-
chastisch voneinander verschiedene Eingangssigna-
le E. Dies bedeutet, dass auf jedes Muster W von K
Neuronen 2 reagieren, wobei W den Grad der Über-
einstimmung zwischen dem zugeführten Muster und
dem konfigurierten vorbestimmten Muster abbildet.
Die technische Umsetzung kommt hierbei gänzlich
ohne Mikroprozessoren aus und ist gänzlich in den
zuvor beschriebenen Schaltkreisen umsetzbar.

[0077] Hierzu wird der eingehende Datenstrom E, in
welchem ein Muster erkannt werden sollen, als ge-
taktetes binäres Signal E in Form von N 1-Bit Ein-
gangssignalen E1-EN auf mehreren parallelen Leitun-
gen gelegt und der Population 1 zugeführt. Dies gilt
ebenso für das Kontrollsignal I und die binären Zu-
fallszahlensignale M.

[0078] Innerhalb der Population 1 werden auf der
Eingangsseite die gleichen Eingangssignale E und
Kontrollsignale I an jedes Neuron 2 geleitet, wo die

Eingangssignale E mit den neuronenspezifischen bi-
nären Zufallssignalen M maskiert werden. Die einzel-
nen Ergebnisse der Neuronen 2 werden dann im Zeit-
multiplexer 5 zusammengeführt, um einen einzelnen
Datenstrom O als Ausgang der Population 1 zu ge-
nerieren, welcher wie gefordert die Qualität des er-
kannten Musters in den eingehenden Datenstrom E
widerspiegelt.

[0079] Jedem einzelnen Neuron 2 innerhalb Popu-
lation 1 kommt dabei die Aufgabe zu, das konfigu-
rierbare, vorbestimmte Muster im jeweiligen 1-Bit Ein-
gangssignal E1-EN der N 1-Bit Eingangssignale E1-EN
zu erkennen. Hierzu sind die Neuronen 2 jeweils aus
den einzelnen N Segmenten 3 aufgebaut, von de-
nen jedes eines der eingehenden N 1-Bit Eingangs-
signale E1-EN verarbeitet. Jedes Segment 3 reagiert
dabei auf ein relevantes Signal in seinem zugeord-
neten 1-Bit Eingangssignal E1-EN, d.h. das k-te Seg-
ment 3 auf ein relevantes Signal im 1-Bit Eingangs-
signal Ek, indem das Segment 3 für eine bestimm-
te Zeit eingeschaltet, d.h. in den „high“-Zustand ver-
setzt, wird. Untereinander sind diese Segmente 3 in
dem binären Baum derart verschaltet, dass jedes ein-
zelne Segment 3 nur dann durch das jeweilige 1-
Bit Eingangssignal E1-EN eingeschaltet werden kann,
wenn - je nach Konfiguration - Null, Eins oder Zwei
der untergeordneten Binärbaumzweige 21, 22 oder
Abschlusszweige 20 im binären Baum bereits einge-
schaltet sind. Wie lange ein Segment 3 eingeschal-
tet ist, wird durch das Taktsignal CLKPLT festgelegt,
welches nicht an das Taktsignal CLKSPIKE des Ein-
gangssignals E gekoppelt ist.

[0080] In jedem Neuron 2 ist diese Verschachte-
lung in dem Binärbaum abgebildet. Ein Neuron 2 hat
für jedes Segment 3 ein jeweils zugeordnetes 1-Bit
Eingangssignal E1-EN der N 1-Bit Eingangssignale
E1-EN, mit welchem das jeweilige Segment 3 für ei-
ne feste Zeit eingeschaltet, d.h. in den Zustand „high“
gebracht, werden kann (Plateau). Jedes Segment 3
hat ebenso ein jeweils zugeordnetes 1-Bit Kontroll-
signal I1-IN der N 1-Bit Kontrollsignale I1-IN, mit wel-
chem das Segment 3, falls es bereits in den Zu-
stand „high“ ist, durch das jeweils zugeordnete 1-Bit
Kontrollsignal I1-IN als externes Signal wieder aus-
geschaltet, d.h. in den „low“-Zustand gebracht, wer-
den kann. Einzelne Segmente 3 bekommen das kon-
figurierbare Taktsignal CLKPLT, welches die zeitliche
Dauer bestimmt, für die ein Segment 3 eingeschaltet
ist. Das Segment 3 an der Wurzel der Baumstruktur,
d.h. in der obersten Ebene es binären Baums, gene-
riert kurze Pulse, auch Spikes genannt, mit derselben
Taktung des Taktsignals CLKSPIKE wie die Eingangs-
signale E anstatt längere Plateaus zu erzeugen, wie
in den übrigen Segmenten 3.

[0081] Jedes der Segmente 3 wird zunächst durch
die Eingangssignale B1, B2 anderer im binären Baum
untergeordneter Segmente 3 getrieben, sofern die-

140

DE 10 2019 134 044 A1 2021.06.17

11/22

se existieren. Hier kann konfiguriert werden, ob Null,
Eins oder Zwei Segmente 3 eingeschaltet sein müs-
sen. Weiter wird der eingehende Datenstrom E in
dem Schiebefensterdetektor 4 verarbeitet, welches
für kurze Zeit eingeschaltet ist, falls die Anzahl der
gesetzten Bits in einem festen Zeitfenster einen kri-
tischen Pegel überschreitet. Das Eingangssignal in
den Schiebefensterdetektor 4 wird vorher mit dem
binäres Zufallszahlensignal M maskiert. So ist die
Antwort jedes Schiebefensterdetektors 4 auf dassel-
be Eingangssignal E stochastisch und unterscheidet
sich, wie oben beschrieben, von anderen Schiebe-
fensterdetektoren 4 in der Population 1, welche auf
das gleiche Eingangssignal E abweichend reagieren.

[0082] Falls sowohl das jeweils zugeordnete 1-Bit
Eingangssignal E1-EN das konfigurierte Kriterium der
untergeordneten Binärbaumzweige 21, 22 bzw. Ab-
schlusszweige 20 erfüllt und der Schiebefensterde-
tektor 4 des Segments 3 im zugeordneten 1-Bit Ein-
gangssignal E1-EN ein Signal erkannt hat, schaltet
sich das Segment 3 ein. In dem zweiten bidirektio-
nalen M-bit SIPO-Schieberegister 42 wird dieser Zu-
stand für eine feste Anzahl an Takten des Taktsignals
CLKPLT gehalten, worauf sich das Segment 3 selbst
wieder ausschaltet. Weiter kann das jeweils zugeord-
nete 1-Bit Kontrollsignal I1-IN den zweiten bidirektio-
nalen M-bit SIPO-Schieberegister 42 zurücksetzen
und das Segment 3 frühzeitig ausschalten. Intern ist
das Ausgangssignal des Segments 3 lediglich indi-
rekt über den Schiebefensterdetektor 4 an ein Takt-
signals CLKSPIKE gebunden. Das Segment 3 reagiert
ansonsten mit einer zu vernachlässigen Verzögerung
der einzelnen Bauteile.

[0083] Dem Schiebefensterdetektor 4 kommt dabei
die Aufgabe zu, zu detektieren, falls die Anzahl der
gesetzten Bits, d.h. der Bits im „high“-Zustand, in ei-
nem festen vorbestimmten Zeitfenster des getakte-
ten Datenstroms einen kritischen Wert überschrei-
tet. Hierzu wird seitens des Schiebefensterdetektors
4 pro Segment 3 die Anzahl der eingehenden Pul-
se, d.h. der Bits im Zustand „high“, in dem festen
Zeitfenster in dem jeweiligen Datenstrom DIN ge-
zählt. Jedes eingehende gesetzte Bit, d.h. Bit im Zu-
stand „high“, schiebt das zweite bidirektionale M-bit
SIPO-Schieberegister 42 vorwärts und wird gleich-
zeitig in einer durch das zweite bidirektionale M-bit
SIPO-Schieberegister 42 und durch das Taktsignal
CLKSPIKE des Datenstrom E implementierten Delay-
line gespeichert. Nach diesem Delay wird das zweite
bidirektionale M-bit SIPO-Schieberegister 42 wieder
zurückgeschoben.

[0084] Konfigurierbar ist, an welcher Stelle im zwei-
ten bidirektionalen M-bit SIPO-Schieberegister 42 ein
Bit gesetzt sein muss, um ein Ausgangssignal zu er-
zeugen. So signalisiert das zweite bidirektionale M-
bit SIPO-Schieberegister 42, wann mehr als ein kon-
figurierbarer, vorbestimmter Schwellwert 1-Bit-Signa-

le in dem durch das Taktsignal CLKSPIKE und durch
die Länge der Delayline festgelegten Zeitfenster im
Datenstrom DIN zu finden waren.

[0085] Der Schiebefensterdetektor 4 dekodiert somit
1-Bit Signale, welche genau der Kodierung des Aus-
gangssignals der Population 1 entsprechen. Die An-
zahl der Pulse in kurzer Zeit kodiert dabei die Stärke
des Signals. Der Schwellwert im zweiten bidirektio-
nalen M-bit SIPO-Schieberegister 42 legt fest, wann
ein Signal stark genug war.

[0086] Das Konfigurationssignal DPROG, welches
sich durch alle Bauteile der Population 1 zieht, er-
möglicht die Konfiguration der Population 1 und aller
enthaltener Bauteile.

[0087] Im Vergleich zu bekannten Lösungen zur di-
gitalen Signalverarbeitung und Mustererkennung, be-
sonders im Bereich neuromorpher Technologien, er-
geben sich eine Reihe von Vorteilen aus den zuvor
beschriebenen Neuronen 2 sowie der hieraus aufge-
bauten Population 1.

[0088] So ermöglicht der zuvor beschriebene Ansatz
die Erkennung von konfigurierbaren Mustern auf ver-
schiedenen Zeitskalen und ist somit tolerant gegen-
über Störungen im Signal oder im Timing. Dies er-
laubt den Einsatz in erschwerten Bedingungen, z.B.
im Verbund mit unpräziser Sensorik oder mit Signa-
len mit hoher Variabilität.

[0089] Auch kann durch die Nutzung stochastischer
Eingangssignale als die binären pseudo-zufälligen
Zufallszahlensignale M nicht nur ein gegebenes Mus-
ter erkannt werden, sondern es kann auch der Grad
der Übereinstimmung quantifiziert werden.

[0090] Sowohl das Eingangssignal E als auch das
Ausgangssignal O der Population 1 sind kompati-
bel, um mit weiteren Populationen zu kommunizieren,
und erlauben somit die Verschaltung zu großen Net-
zen.

[0091] Die Informationsverarbeitung erfolgt gänzlich
ohne den Einsatz von Mikroprozessoren oder Pa-
ket-Routing, was technisch einfacher umsetzbar ist,
ein hohes Maß an Parallelisierung ermöglicht und zu
niedrigen Latenzen führt.

[0092] Die Kommunikation zwischen Populationen 1
und das An- bzw. Ausschalten von Segmenten 3 ist
an zwei verschiedene Taktsignale, nämlich die Takt-
signale CLKPLT und CLKSPIKE, gebunden. Hierdurch
wird das Taktsignal CLKSPIKE, auf welchem Muster
im Datenstrom E als Eingangssignal E erkannt wer-
den sollen, von dem Taktsignal CLKPLT entkoppelt.
Auf diese Art und Weise können im bestimmungs-
gemäßen Gebrauch im Datenstrom E Teilmuster er-
kannt werden, welche auf einer von dem Datenstrom

141

DE 10 2019 134 044 A1 2021.06.17

12/22

E entkoppelten Zeitskala, nämlich dem Taktsignal
CLKSPIKE, mit anderen Teilmustern des Datenstroms
E verbunden werden.

[0093] Zum Beispiel können viele Pulse im Daten-
strom E in sehr kurzer Zeit übertragen werden und
auf ein wichtiges Ereignis wie zum Beispiel das Über-
schreiten eines kritischen Wertes eines Temperatur-
sensors hinweisen. Ein zweites Ereignis wie zum Bei-
spiel das Überschreiten eines kritischen Wertes ei-
nes Beschleunigungssensors kann ebenfalls schnell
mittels des Taktsignals CLKSPIKE übertragen werden.
Beide Ereignisse können als Teil eines Muster „kri-
tische Temperatur und dann kritische Beschleuni-
gung“ dann aber auf einer Zeitskala, welche von dem
Taktsignal CLKSPIKE entkoppelt und durch das Takt-
signal CLKPLT zum Beispiel deutlich langsamer defi-
niert ist, kombiniert werden. Durch die Kombination
beider Taktsignale CLKSPIKE, CLKPLT kann ein Seg-
ment 3 auf die speziellen externen Timing-Anforder-
rungen der Anwendung angepasst werden.

[0094] Werden die Neuronen 2 mit einer höheren
Komplexität in Form eines binären Baums mit zahl-
reichen Ebenen umgesetzt, so können mehr Informa-
tionen im internen Zustand der Neuronen 2 verarbei-
tet und gespeichert werden. Daher sind für dieselbe
Leistung weniger individuelle Neuronen 2 erforder-
lich, was die Größe der resultierenden Population 1
und damit die Komplexität der notwendigen Kommu-
nikationsinfrastruktur deutlich reduzieren kann.

[0095] Weitere Ausgestaltungen der Erfindung, wel-
che von dem betrachteten Ausführungsbeispiel ab-
weichen, sind vorstellbar. Jedes einzelne der oben
genannten Bauteile kann in seinem Funktionsumfang
erweitert oder in der Umsetzung angepasst werden.
Auch können mehrere Populationen 1 zu Netzen ver-
schaltet werden, die eingesetzt werden könnten, um
komplexere Probleme zu lösen.

Bezugszeichenliste

B1 Eingangssignal eines
Segments 3 seitens ei-
nes ersten Binärbaum-
zweigs 21

B2 Eingangssignal eines
Segments 3 seitens ei-
nes zweiten Binärbaum-
zweigs 22

CLKPLT Taktsignal zur Steue-
rung der Länge der Pla-
teaus der Vergleichs-
schaltungen 3

CLKSPIKE Taktsignal zur Steue-
rung der Verarbeitung
der Spikes der Ver-
gleichsschaltungen 3

CLKPROG Taktsignal des Konfigu-
rationssignals DPROG,
DPROGO

DIN Eingangssignal eines
Schiebefensterdetektors
4

DOUT Ausgangssignal eines
Schiebefensterdetektors
4

DPROG Konfigurationssignal als
Eingangssignal

DPROGO Konfigurationssignal als
Ausgangssignal

E, E1-EN Eingangssignal der Po-
pulation 1; eingehender
Datenstrom

i Zählindex

I, I1-IN Kontrollsignal

J Anzahl der Eingangs-
signale des Abschluss-
zweigs 20

K Anzahl der Neuronen

M, M1,1-MK,N 1-Bit bzw. binäres Zu-
fallszahlensignale

N Anzahl der Segmente

O Ausgangssignal des
Zeitmultiplexers 5 bzw.
der Population 1

P1-Pk 1-Bit Ausgangssignale
der Neuronen 2, der Ab-
schlusszweige 20, der
Binärbaumzweige 21, 22
und der Segmente 3

S1-SK Eingangssignale des
Zeitmultiplexers 5

SL linksschiebendes Ein-
gangssignal des zweiten
bidirektionalen (M-bit SI-
PO-) Schieberegisters
42 des Schiebefenster-
detektors 4

SR rechtsschiebendes Ein-
gangssignal des zweiten
bidirektionalen (M-bit SI-
PO-) Schieberegisters
42 des Schiebefenster-
detektors 4

W Grad der Übereinstim-
mung zwischen zuge-
führtem Muster und kon-
figurierten vorbestimm-
ten Muster

142

DE 10 2019 134 044 A1 2021.06.17

13/22

1 neuromorphe Schalt-
kreisanordnung; Popula-
tion

2 neuromorpher Muster-
detektor; Neuron; Neu-
ronen-Schaltkreis; Binär-
baumwurzel

20 Abschlusszweig; Bi-
närbaumblatt; Terminal
Branch

21 erster Binärbaumzweig;
erster innerer Knoten
des Binärbaums; erster
Nested Branch

22 zweiter Binärbaum-
zweig; zweiter innerer
Knoten des Binärbaums;
zweiter Nested Branch

3 Vergleichsschaltung;
Segment

30 erstes Oder-Gatter

31 erstes Und-Gatter

32 (4-fach) Multiplexer

33 erstes (2-bit SIPO-)
Schieberegister

34 zweites Und-Gatter

35 drittes Und-Gatter

36 (1-Bit) Flipflop

37 zweites (N-bit SIPO-)
Schieberegister

38 zweites Oder-Gatter

4 Schiebefensterdetektor;
Slider

40 erstes Und-Gatter

41 erstes (N-bit SIPO-)
Schieberegister

42 zweites bidirektionales
(M-bit SIPO-) Schiebere-
gister

43 ((M+1)-fach) Multiplexer

44 drittes (K-bit SIPO-)
Schieberegister

5 Zeitmultiplexer; Time
Multiplexer

50 Flipflops

51 Und-Gatter

52 selbst initialisierter (K-
bit) Ringzähler

53 Oder-Gatter

54 D-Flipflop

Patentansprüche

1. Neuromorpher Musterdetektor (2),
welcher ausgebildet ist, wenigstens zwei 1-Bit Ein-
gangssignale (E1-EN) eines zu erkennenden Musters
zu erhalten,
mit wenigstens zwei Vergleichsschaltungen (3), wel-
che jeweils ausgebildet sind,
eines der 1-Bit Eingangssignale (E1-EN) zu erhalten,
die Anzahl der „high“-Zustände oder der „low“-Zu-
stände des jeweiligen 1-Bit Eingangssignals (E1-EN)
innerhalb eines vorbestimmten Zeitraums zu zählen,
die Anzahl der gezählten Zustände mit einem vor-
bestimmten Schwellwert der jeweiligen Vergleichs-
schaltung (3) zu vergleichen und
bei Überschreiten des Schwellwerts auf die erfolgte
Erkennung des zu erkennenden Musters hinzuwei-
sen.

2. Neuromorpher Musterdetektor (2) nach An-
spruch 1, dadurch gekennzeichnet, dass die ei-
ne Vergleichsschaltung (3) der anderen Vergleichs-
schaltung (3) erstrangig untergeordnet ist, wobei die
übergeordnete Vergleichsschaltung (3) ausgebildet
ist, nur dann auf die erfolgte Erkennung des zu erken-
nenden Musters hinzuweisen, falls der Schwellwert
der übergeordneten Vergleichsschaltung (3) über-
schritten und zeitgleich von der erstrangig unterge-
ordneten Vergleichsschaltung (3) auf die erfolgte Er-
kennung des zu erkennenden Musters hingewiesen
wird.

3. Neuromorpher Musterdetektor (2) nach An-
spruch 2, gekennzeichnet durch
wenigstens eine weitere Vergleichsschaltung (3),
welche parallel zu der untergeordneten Vergleichs-
schaltung (3) angeordnet ist,
wobei die übergeordnete Vergleichsschaltung (3)
ausgebildet ist, nur dann auf die erfolgte Erkennung
des zu erkennenden Musters hinzuweisen, falls der
Schwellwert der übergeordneten Vergleichsschal-
tung (3) überschritten und zeitgleich von den erstran-
gig untergeordneten Vergleichsschaltungen (3) je-
weils auf die erfolgte Erkennung des zu erkennenden
Musters hingewiesen wird.

4. Neuromorpher Musterdetektor (2) nach einem
der Ansprüche 2 oder 3, gekennzeichnet durch
wenigstens eine weitere Vergleichsschaltung (3),
welche zweitrangig untergeordnet zu der erstrangig
untergeordneten Vergleichsschaltung (3) angeordnet
ist,
wobei die erstrangig untergeordnete Vergleichs-
schaltung (3) ausgebildet ist, nur dann auf die erfolg-

143

DE 10 2019 134 044 A1 2021.06.17

14/22

te Erkennung des zu erkennenden Musters hinzu-
weisen, falls der Schwellwert der erstrangig unterge-
ordneten Vergleichsschaltung (3) überschritten und
zeitgleich von der zweitrangig untergeordneten Ver-
gleichsschaltung (3) auf die erfolgte Erkennung des
zu erkennenden Musters hingewiesen wird.

5. Neuromorpher Musterdetektor (2) nach An-
spruch 3 oder 4, dadurch gekennzeichnet, dass die
wenigstens drei Vergleichsschaltungen (3) einen Bi-
närbaum mit wenigstens zwei Ebenen bilden.

6. Neuromorpher Musterdetektor (2) nach einem
der vorangehenden Ansprüche, dadurch gekenn-
zeichnet, dass die Vergleichsschaltungen (3) iden-
tisch ausgebildet sind.

7. Neuromorpher Musterdetektor (2) nach einem
der vorangehenden Ansprüche, dadurch gekenn-
zeichnet, dass bei Überschreiten des Schwellwerts
ein 1-Bit Ausgangssignal (P1-Pk) der jeweiligen Ver-
gleichsschaltung (3) auf den „high“-Zustand, ansons-
ten auf den „low“-Zustand, gesetzt wird, oder umge-
kehrt.

8. Neuromorpher Musterdetektor (2) nach An-
spruch 7, dadurch gekennzeichnet, dass die Ver-
gleichsschaltungen (3) ausgebildet sind, jeweils ein
1-Bit Steuersignal (I1-IN) zu erhalten und in Reakti-
on auf einen „high“-Zustand oder auf einen „low“-Zu-
stand des jeweiligen 1-Bit Steuersignals (I1-IN) das 1-
Bit Ausgangssignal (P1-Pk) der jeweiligen Vergleichs-
schaltung (3) auf den „low“-Zustand zu setzen.

9. Neuromorpher Musterdetektor (2) nach einem
der vorangehenden Ansprüche, dadurch gekenn-
zeichnet, dass der vorbestimmte Schwellwert der
Anzahl der Zustände der jeweiligen Vergleichsschal-
tung (3) vorgibt, wann das zu erkennende Muster als
erkannt angesehen wird.

10. Neuromorpher Musterdetektor (2) nach ei-
nem der vorangehenden Ansprüche, dadurch ge-
kennzeichnet, dass die Vergleichsschaltungen (3)
jeweils einen Schiebefensterdetektor (4) aufweisen,
welcher jeweils ausgebildet ist, das jeweilige 1-Bit
Eingangssignal (E1-EN) zu erhalten und die Anzahl
der „high“-Zustände oder der „low“-Zustände des je-
weiligen 1-Bit Eingangssignals (E1-EN) innerhalb des
vorbestimmten Zeitraums zu zählen.

11. Neuromorpher Musterdetektor (2) nach An-
spruch 10, dadurch gekennzeichnet, dass das Zäh-
len der Anzahl der „high“-Zustände oder der „low“-Zu-
stände des jeweiligen 1-Bit Eingangssignals (E1-EN)
innerhalb des vorbestimmten Zeitraums mittels eines
bidirektionalen Schieberegisters (42) des jeweiligen
Schiebefensterdetektors (4) erfolgt.

12. Neuromorpher Musterdetektor (2) nach einem
der vorangehenden Ansprüche, dadurch gekenn-
zeichnet, dass
die Vergleichsschaltungen (3), vorzugsweise de-
ren Schiebefensterdetektor 4, jeweils ein Taktsignal
CLKSPIKE zur Steuerung der Verarbeitung der Pulse
und ein Taktsignal CLKPLT zur Steuerung der Länge
der Plateaus erhalten,
wobei die beiden Taktsignale CLKSPIKE und CLKPLT
unterschiedlich sind.

13. Neuromorphe Schaltkreisanordnung (1)
mit einer Mehrzahl von neuromorphen Musterdetek-
toren (2) nach einem der vorangehenden Ansprüche,
wobei jeder neuromorphe Musterdetektor (2) ausge-
bildet ist,
das gleiche 1-Bit Eingangssignal (E1-EN) zu erhalten,
ein unterschiedliches 1-Bit Zufallszahlensignal (M1,1-
MK,N) zu erhalten,
das jeweilige 1-Bit Eingangssignal (E1-EN) mit dem
entsprechenden 1-Bit Zufallszahlensignal (M1,1-MK,N)
zu verändern, und
die Anzahl der „high“-Zustände oder der „low“-Zu-
stände des jeweiligen veränderten 1-Bit Eingangs-
signals (E1-EN) innerhalb eines vorbestimmten Zeit-
raums zu zählen.

14. Neuromorphe Schaltkreisanordnung (1) nach
Anspruch 13, dadurch gekennzeichnet, dass we-
nigstens eine Vergleichsschaltung (3), vorzugsweise
alle Vergleichsschaltungen (3) jeweils, ein Und-Gat-
ter (35) aufweist, welches ausgebildet ist, das jewei-
lige 1-Bit Eingangssignal (E1-EN) und das entspre-
chende 1-Bit Zufallszahlensignal (M1,1-MK,N) zu kom-
binieren.

15. Neuromorphe Schaltkreisanordnung (1) nach
Anspruch 13 oder 14, dadurch gekennzeichnet,
dass
die neuromorphe Schaltkreisanordnung (1) ausgebil-
det ist,
die Anzahl der 1-Bit Ausgangssignale (P1-Pk) der je-
weiligen Vergleichsschaltung (3), welche zeitgleich
im „high“-Zustand oder im „low“-Zustand sind, zu er-
fassen und
aus dem Verhältnis der Anzahl von 1-Bit Ausgangs-
signalen (P1-Pk) im „high“-Zustand oder im „low“-Zu-
stand und der Anzahl der neuromorphen Musterde-
tektoren (2) einen Grad (W) der Übereinstimmung
zwischen 1-Bit Eingangssignal (E1-EN) und zu erken-
nendem Muster zu bestimmen.

16. Neuromorphe Schaltkreisanordnung (1) nach
einem der Ansprüche 13 bis 15, dadurch gekenn-
zeichnet, dass wenigstens eine Vergleichsschaltung
(3), vorzugsweise alle Vergleichsschaltungen (3) je-
weils, einen Zeitmultiplexer (5) aufweist, welcher aus-
gebildet ist, parallele Ausgangssignale (P1-PK) der
neuromorphen Musterdetektoren (2) zu einem 1-Bit-

144

DE 10 2019 134 044 A1 2021.06.17

15/22

Ausgangssignal (O) der neuromorphen Schaltkreis-
anordnung (1) zusammenzuführen.

Es folgen 7 Seiten Zeichnungen

145

DE 10 2019 134 044 A1 2021.06.17

16/22

Anhängende Zeichnungen

146

DE 10 2019 134 044 A1 2021.06.17

17/22

147

DE 10 2019 134 044 A1 2021.06.17

18/22

148

DE 10 2019 134 044 A1 2021.06.17

19/22

149

DE 10 2019 134 044 A1 2021.06.17

20/22

150

DE 10 2019 134 044 A1 2021.06.17

21/22

151

DE 10 2019 134 044 A1 2021.06.17

22/22

Das Dokument wurde durch die Firma Jouve hergestellt.

152

	Abstract
	Preface
	Acknowledgments
	The computer and the brain
	The origins of computational (neuro-)science and machine learning
	From Perceptrons to Deep Neural Networks
	The ``Deep Learning Revolution''
	The state of the field(s) today

	Information processing in artificial neural networks
	Terminology
	Artificial neural networks are function approximators
	A bird's eye view of artificial neural networks
	Where artificial and biological neural networks diverge

	Neuromorphic computing Â— a bridge between engineering and neuroscience
	The neuromorphic zoo
	A signal processing view of neuron models
	Closing the gap

	Dendritic filters and delays
	Terminology
	Dendritic filtering improves information transmission
	Dendritic filtering in the linear-nonlinear model
	Dendritic filtering in the Gamma Neuron
	Computing with synaptic delays
	Dendritic filtering in the real world

	Homeostatic plasticity
	The Information Bottleneck Principle
	Mutual information and maximum entropy
	Optimal Transport and the Monge Problem
	Intrinsic homeostatic plasticity
	The complex interactions of synaptic and intrinsic plasticity
	Applying the information bottleneck to neural assemblies
	Plasticity is information processing

	Rate-coding with spiking neurons
	Why do (only) biological neurons spike?
	Encoding continuous signals into rate-coded spike-trains
	Rate-coding neurons are linear-nonlinear neurons
	How good is rate-coding for transmitting information?
	Optimal rate-coding under metabolic constraints
	Rate-coding spiking neural networks and machine learning

	Spike-timing and event based computation
	Spike-time coding
	Event coding
	Detecting events in spike-trains
	Active dendritic sequence processing
	Rate-, phase-, ISI-, or event-coding?

	Conclusion
	Appendix for sec:filtering
	Equivalence between filtering and continuous delays
	Transfer function of the Gamma neuron
	The ring of Gamma filters

	Appendix for sec:spiking
	Rate-coding with (L)IF neurons
	Rate-coding with linear-nonlinear-Poisson neurons
	The entropy of LIF and LNP encoding
	Spike-coding under metabolic constraints

	Index of included contributions
	Full-text sources of further contributions
	A visit to the neuromorphic zoo
	Neuromorphic Adaptive Filters for event detection, trained with a gradient free online learning rule
	Event-based pattern detection in active dendrites
	Neuromorpher Musterdetektor und neuromorphe Schaltkreisanordnung hiermit

