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Abstract: The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis
in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-
phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving
the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with
glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative
branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose
catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered
and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute
almost equally to glucose degradation in other yeasts. We here summarize the data available for
the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of
gene deletions and the benefits of their overproduction and modification. Reference to other yeasts
and to the importance of the PPP in their biotechnological and medical applications is briefly being
included. We propose future studies on the PPP in K. lactis to be of special interest for basic science
and as a host for the expression of human disease genes.
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1. Introduction

For a long time investigations of central carbohydrate metabolism in yeast has raised
comparatively little scientific interest. This has changed in the last few years with their
increasing relevance for novel biotechnological processes and the enormous potential of the
new discipline of synthetic biology [1,2]. Moreover, although the wine, beer, and baker’s
yeast Saccharomyces cerevisiae holds a leading position not only in classical fermentations
but also as a key model organism for eukaryotic cell biology [3,4], other “non-conventional”
yeast species have been intensively studied as alternative microbial models and production
organisms [5–7].

In this context, we decided to give an overview of the role of the pentose phos-
phate pathway, further abbreviated as PPP, and its constituting enzymes in yeast sugar
metabolism, as compared to glycolysis. Besides the best studied yeast S. cerevisiae, we will
primarily concentrate on the milk yeast, Kluyveromyces lactis, for its close relationship and
model character [8], but also refer to Candida albicans, for its importance as an opportunistic
human pathogen [9,10], and other yeast species, whenever data are available. For a broader
perspective, including the importance for human physiology, interested readers are referred
to excellent reviews on the PPP [11] and on yeast glycolysis [12,13]. Further reviews on the
functions of the PPP in other fungi, plants, bacteria, the human immune system or the liver
are also available [14–19].

2. Overview on the Reactions of the Pentose Phosphate Pathway (PPP)

The PPP is generally depicted with two branches (Figure 1): (i) the oxidative, essen-
tially irreversible part, owing its designation to the generation of NADPH in two of its key
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reactions, and (ii) the non-oxidative, reversible part, in which metabolites are interconverted
by the transaldolase and transketolase reactions. The latter also link the PPP to central
carbohydrate metabolism by producing the glycolytic intermediates fructose-6-phosphate
and glyceraldehyde-3-phosphate.
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Figure 1. Overview of the reactions of the pentose phosphate pathway (PPP) and its connection to glycolysis and al-
coholic fermentation. Enzymes are designated in bold blue letters, adopted from the nomenclature in Saccharomyces
cerevisiae. Where more than one isozyme operates in this yeast, numbers behind the three-letter code have been omitted.
Enzymes marked by a red asterisk are encoded by only one essential gene in the milk yeast Kluyveromyces lactis, i.e.,
deletions are not viable. One-headed arrows designate physiologically irreversible reactions, two-headed arrows reversible
ones. The oxidative part of the PPP is shaded in blue, the non-oxidative part in green. Abbreviations of metabolites are:
G-6-P = glucose-6-phosphate; F-6-P = fructose-6-phosphate; F-1,6-P2 = fructose-1,6-bisphosphate; GAP = glyceraldehyde-
3-phosphate; DHAP = dihydroxyacetone phosphate; 6-PGL = 6-phosphogluconolactone; 6-PGA = 6-phosphogluconate;
Ribu-5-P = ribulose-5-phosphate; Xylu-5-P = xylulose-5-phosphate; Ribo-5-P = ribose-5-phosphate; Ery-4-P = erythrose-4-
phosphate; Sed-7-P = sedoheptulose-7-phosphate; Sed-1,7-P2 = sedoheptulose-1,7-bisphosphate. Enzyme/protein designa-
tions are: Hxt = hexose transporter; Hxk = hexokinase; Pgi1 = phosphoglucose isomerase; PFK = phosphofructokinase,
written in capital letters, because it is a heterooctameric enzyme formed by four α- and four ß-subunits, encoded by the genes
PFK1 and PFK2 [20]; Fba1 = fructose-1,6-bisphosphate aldolase; Tpi1 = triosephosphate isomerase; Tdh = glyceraldehyde-
3-phosphate dehydrogenase (“triosephosphate dehydrogenase”); Pgk1 = phosphoglycerate kinase; Gpm1 = phospho-
glycerate mutase; Eno = enolase; Pyk1 = pyruvate kinase; Pdc = pyruvate decarboxylase; Adh = alcohol dehydrogenase;
Zwf1 = glucose-6-phosphate dehydrogenase (“Zwischenferment”); Sol = phosphogluconolactonase (“suppressor of los1-1”);
Gnd = phosphogluconate dehydrogenase; Rki1 = ribosephosphate ketol isomerase; Rpe1 = ribulosephosphate epimerase;
Tkl = transketolase; Tal = transaldolase; Shb17 = sedoheptulose-1,7-bisphosphatase; PDH = pyruvate dehydrogenase
complex; TCA = tricarboxylic acid cycle.

Both the PPP and the EMP (Embden–Meyerhof–Parnas pathway, or simply glycolysis)
are ancient biological processes which ensure energy production from sugar sources and
provide the building blocks for nucleic and amino acid syntheses. Thus, they operate
and fulfill essential roles in cells from bacteria, fungi, plants and animals, including hu-
mans, where defects in enzymes of the PPP are associated with serious diseases (reviewed
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in [21,22]). In the context of pathway evolution, the oxidative part of the PPP appears to be
more variable, as it is largely absent in archaea. There, a special ribulose monophosphate
pathway (RMP) replaces the reactions of the oxidative PPP [23]. As an exception, both a
glucose-6-phosphate dehydrogenase (G6PD) and a 6-phosphogluconate dehydrogenase
(6PGD) have been identified in Haloferax volcanii, a member of the haloarchaea [24]. In
addition to the classical reactions commonly depicted in textbooks, metabolome analyses
in S. cerevisiae revealed that carbon can also be fed into the PPP independent of the ox-
idative branch. This is achieved via an activity of the glycolytic aldolase enzyme, Fba1,
which condenses dihydroxyacetone phosphate with erythrose-4-phosphate to generate
sedoheptulose-1,7-bisphosphate (Figure 1; [25]). The latter is then metabolized by a special-
ized, highly conserved bisphosphatase, Shb17.

In the following section, we will discuss the enzymes involved in the PPP one by one,
comparing their features. Key parameters of the yeast enzymes and their encoding genes
are also listed in Table 1.

Table 1. Features of PPP enzymes and their encoding genes in S. cerevisiae and K. lactis.

Enzyme Yeast Gene (Systematic
Name)/Accession Number 1 Structure/Identity 2 Cofactors Specific Activity

(mU/mg) 3 References

Glucose-6-phosphate
dehydrogenase

(G6PD) EC 1.1.1.49

S. cerevisiae ZWF1 (YNL241C)
NC_001146.8 2(4) × 59 kDa NADP+ 100–180 [26–30]

K. lactis KlZWF1 (KLLA0D19855g) 2(4) × 59 kDa 69% NADP+ 135–430 [26,27,31,32]

6-Phosphoglucono-
lactonase (6PGL) EC

3.1.1.31

S. cerevisiae

SOL4 (YGR248W)
NC_001139.9

SOL3 (YHR163W)
NC_001140.6

(?) × 28 kDa
(?) × 28 kDa - n.d. [33,34]

K. lactis KlSOL4 (KLLA0A05390g) (?) × 28 kDa 45%/53% n.d.

6-phosphogluconate
dehydrogenase

(6PGD) EC 1.1.1.44

S. cerevisiae

GND1 (YHR183W)
NC_001140.6

GND2 (YGR256W)
NC_001139.9

2 × 52 kDa NADP+ 48c [28,30,35,36]

K. lactis KlGND1 (KLLA0A09339g) (?) × 54 kDa 85%/81% NADP+ n.d.

Ribulosephosphate
epimerase (RPE) EC

5.1.3.1

S. cerevisiae RPE1 (YJL121C)
NC_001142.9 (?) × 26 kDa - 1900–2200 [28,37]

K. lactis KlRPE1 (KLLA0E15071g) (?) × 26 kDa 69%

Ribosephosphate
ketol isomerase (RKI)

EC 5.3.1.6

S. cerevisiae RKI1 (YOR095C)
NC_001147.6 4 × 28 kDa - 91 [37,38]

K. lactis KlRKI1 (KLLA0C13541g) (?) × 30 kDa 65% n.d.

Transketolase (TKL)
EC 2.2.1.1

S. cerevisiae

TKL1 (YPR074C)
NC_001148.4

TKL2 (YBR117C)
NC_001134.8

2 × 74 kDa TPP
Mg2+ 80–100 [27,39–43]

K. lactis KlTKL1 (KLLA0B09152g) (?) × 74 kDa 77%/70% 230–260 [27]

Transaldolase (TAL)
EC 2.2.1.2

S. cerevisiae TAL1 (YLR354C)
NM_001182243.1 2 × 38 kDa - 45–73 [28,37,41,44]

K. lactis KlTAL1 (KLLA0A02607g) (?) × 36 kDa 75% 298 [44]

Sedoheptulose-1,7-
bisphosphatase

(SHB17) EC 3.1.3.37

S. cerevisiae SHB17 (YKR043C)
NC_001143.9 2 × 31 kDa Mg2+ n.d. [25]

K. lactis KlSHB17 (KLLA0E14961g) (?) × 31 kDa 71%
1 accession numbers are from GenBank. 2 identities of amino acid residues of the K. lactis homologs to their S. cerevisiae counterparts
were obtained using alignments with ClustalW; if two isoforms exist in S. cerevisiae, identity values are given in the order of appearance.
3 specific enzyme activities are given in mU/mg protein; note that different methods of protein determination were employed in different
works. n.d. = not determined; (?) the oligomer structure of the enzyme is unknown; molecular weights for Sol3, Sol4, and Shb17 from
S. cerevisiae, and all of the K. lactis proteins were deduced from the translated gene sequences, except for KlZwf1, which was determined
experimentally [32].

2.1. The Oxidative Part of the PPP
2.1.1. Glucose-6-phosphate Dehydrogenase

Glucose-6-phosphate dehydrogenase (G6PD), discovered in the first half of last century
by Otto Warburg as “Zwischenferment” (hence the common abbreviation Zwf; [39]), has
certainly attracted the most interest of all the PPP enzymes, not least because its malfunction
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is related to an abundant human hereditary disease with an estimated 400 million cases
worldwide, which most frequently results in hemolytic anemia (see [45,46], and references
therein). As shown in Figure 2, catalysis by G6PD is the first reaction to generate NADPH
and thereby provides a reduction power for the synthesis of fatty acids and lipids, as well
as reducing glutathione required for the detoxification of reactive oxygen species (ROS).
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Figure 2. PPP metabolites and their role in biosynthetic processes and response to oxidative stress. Key metabolites of
the PPP (central part shaded in blue and green) are highlighted in red and enlarged again in its periphery. Arrows with
dotted lines indicate intermediate reactions not shown in detail. Abbreviations for the PPP are listed in the legend of
Figure 1. Additional abbreviations are: PEP = phosphoenol pyruvate; PRS = phosphoribosylpyrophosphate synthase;
PRPP = phosphoribosyl pyrophosphate; GSSG/GSH = oxidized and reduced forms of glutathione, respectively; ROS = reac-
tive oxygen species; NAD = nicotinamide adenine dinucleotide; FAD = flavine adenine dinucleotide; CoA = coenzyme A;
TPP = thiamine pyrophosphate; vitamin B2 = riboflavin; vitamin B6 = pyridoxal phosphate (see [47] for a review on vitamin
synthesis in yeast).

In S. cerevisiae, the active enzyme appears to be a tetramer, whose dissociation into
dimers and decrease in activity could be triggered by NADPH [48]. The subunits are
encoded by the ZWF1 gene, which has been cloned and deleted from the haploid yeast
genome by various groups [26,28–30,49]. Deletions invariably show an increased sensi-
tivity towards oxidative stress conditions; for example, cells are unable to grow in the
presence of hydrogen peroxide. This can be largely attributed to the failure to produce
sufficient NADPH for the reduction of glutathione needed to cope with increased ROS
levels (Figure 2). Nevertheless, ZWF1 gene expression appears to be fairly constitutive, i.e.,
it is not induced under oxidative stress [50]. Another phenotype of zwf1 mutants is their de-
pendence on an organic sulfur source reflected by their methionine auxotrophy, hence the
synonymous designation of ZWF1 as MET19 [30]. Although not evident from the original
work, this has also been attributed to the depletion of NADPH, as three molecules of this
cofactor are required for the production of one methionine molecule [51,52]. Growth on
rich medium under non-stress conditions remained unaffected by a zwf1 deletion in several
yeast strains [28–30], while being severely impaired in a strain more closely resembling
those used for industrial purposes [26]. The chronological life span was also reduced in this
genetic background, but not in others, as would be expected from the impaired production
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of reducing power and the concomitant failure to cope with internal ROS species produced
by metabolism.

The KlZWF1 gene has been cloned and deleted in the Pasteur-positive (Crabtree-
negative) yeast K. lactis. The Pasteur effect is commonly interpreted as the downregulation
of fermentation in the presence of oxygen, since respiration produces much higher ATP
yields per molecule of glucose [53]. Ironically, this occurs in K. lactis, but not in S. cerevisiae,
the yeast that Pasteur was actually working on [31]. There, high sugar concentrations lead
to repression of respiration and a predominantly fermentative metabolism, independent
from oxygen availability. This behavior is known as the Crabtree effect [54]. Despite
these metabolic differences, KlZWF1 gene expression appeared to be constitutive, as is
observed in the S. cerevisiae homolog. The Klzwf1 mutant showed a reduced biomass
production on different carbon sources, suggesting that the enzyme activity is required
for both fermentative and respiratory metabolism. KlZwf1 was found to occur both as
a tetramer and as a dimer. Careful biochemical analyses indicated that conformational
transitions, caused by the replacement of NADP+ for NADPH at an allosteric site in the
subunits, trigger the formation of dimers of the tetrameric active enzyme and lead to an
inhibition of its activity [32].

In Candida albicans, functional peroxisomal signal sequences were detected in CaZwf1
and also in the 6-phosphogluconate dehydrogenase CaGnd1 [55]. Thus, while a majority of
these enzymes were cytosolic, approximately 10% and 5% of the proteins, respectively, were
localized in peroxisomes, providing a means for detoxification of ROS produced during
fatty acid degradation. In a recent work, heterozygous CaZWF1/Cazwf1 mutants showed
a reduced growth under hypoxic conditions and the authors state that the homozygous
deletion would be lethal [56].

ZWF1 genes have also been studied in Kluyveromyces marxianus [57], and the en-
zymes were purified from Schizosaccharomyces pombe [58] and Candida utilis [59]. Except for
an unusual serine/threonine-rich region in the latter enzyme with unknown functional
consequences, they seem to be similar to those from other yeasts.

2.1.2. 6-Phosphoglucono Lactonase

G6PD produces 6-phosphoglucono lactone, which originally was believed to sponta-
neously convert to 6-phosphogluconate. However, the S. cerevisiae genome contains four
genes for putative 6-phosphoglucono lactonases, named SOL1-SOL4 for the ability of its
founding member—SOL1—to partially suppress the phenotypes of a los1-1 mutation when
overexpressed. Only Sol3 and Sol4 show 6-phosphogluconlactonase activity and their
overproduction does not suppress the los1 mutant. Thus, Sol3 and Sol4 were proposed
to function in the PPP, while Sol1 and Sol2 are involved in nuclear tRNA export [34].
Quadruple mutants are perfectly viable and only the sol3 deletion has been found to be
more sensitive to oxidative stress in a large-scale screen [34,60].

For K. lactis, only one gene representing a homolog of SOL3 and SOL4 exists in
the genome sequence (using the yeast genome order browser [61], http://ygob.ucd.ie/,
accessed on 25 March 2021), which may encode the 6-phosphoglucono lactonase, but has
not yet been investigated. In analogy to S. cerevisiae, we assume that one other homolog of
SOL1 and SOL2, also found in the K. lactis genome, would encode a protein not related to
carbohydrate metabolism.

2.1.3. 6-Phosphogluconate Dehydrogenase

A second NADPH is produced in the oxidative PPP by the action of 6-phosphogluconate
dehydrogenase (6PGD; Figure 1). Concomitantly, the C1 carbon from glucose is removed
by decarboxylation, generating ribulose-5-phosphate, which feeds into the non-oxidative
part of the pathway. In S. cerevisiae, due to the whole genome duplication, two encoding
genes were found—GND1 and GND2—with Gnd1 contributing approximately 80% of the
enzyme activity [62]. Accordingly, while gnd2 deletions do not display a strong phenotype
under standard growth conditions, gnd1 deletions grow more slowly on glucose media,

http://ygob.ucd.ie/
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and in some strain backgrounds, not at all [33]. Growth of the former strains is inhibited
by hydrogen peroxide [28]. Neither the slow growth nor the sensitivity to oxidative stress
are exacerbated by an additional deletion of GND2.

Only one homologous gene can be found in K. lactis, which has not undergone a whole
genome duplication, and a Klgnd1 deletion is lethal in the background of the sequenced
type strain, i.e., spores from heterozygous diploids carrying the deletion do not produce
colonies after tetrad analysis on rich medium with yeast extract, peptone, and glucose as a
carbon source (this laboratory, unpublished results).

6PGD enzymes have been purified from C. utilis [63] and from S. pombe. The latter
works as a tetramer in contrast to the dimeric enzymes from other yeasts [64].

2.2. The Non-Oxidative Part of the PPP
2.2.1. Ribulosephosphate Epimerase

Null mutants in the sole gene for ribulosephosphate epimerase, RPE1, have been
constructed in a haploid strain of S. cerevisiae. While rendering the cells devoid of any
detectable D-ribulose-5-phosphate 3-epimerase activity, they displayed a reduced growth
under standard conditions as well as on minimal media with glucose as a sole carbon
source [33]. As expected, such strains are unable to grow on D-xylulose, which wild-
type cells can utilize at a slow rate [65], since ribose-5-phosphate as the second pentose
phosphate feeding into the PPP cannot be generated in the absence of the enzyme (Figure 1).
As the mutants in the oxidative PPP, rpe1 deletions proved to be hypersensitive towards
hydrogen peroxide [28]. To our knowledge, data on mutants from other yeast species have
not been published so far.

2.2.2. Ribosephosphate Ketol Isomerase

The gene encoding ribosephosphate ketol isomerase, RKI1, is essential in S. cerevisiae,
preventing the analysis of haploid null mutants [65]. The reason for this lethality remains
elusive, given that the other PPP mutants, like rpe1 reported above, are viable. A conditional
mutant, rki1R189K, abolished more than 99% of the wild-type enzyme activity and rendered
the cells auxotrophic for pyridoxine [38]. Biochemical analyses showed that this mutation
affected the quaternary structure of the enzyme, so that the tetrameric form dissociated
into dimers. In K. lactis, a Klrki1 deletion, is also not viable (this laboratory, unpublished
results). The gene appears to be essential in C. albicans as well, as only mutants with a
heterozygous genotype, CaRKI1/Carki1, could be studied [56].

2.2.3. Transketolase

S. cerevisiae carries two genes encoding putative transketolase isozymes: TKL1 and
TKL2. The lack of any detectable enzyme activity in vitro in crude extracts from a tkl1 dele-
tion clearly indicates that this gene encodes the major isoform [43]. However, the authors
deduced that some activity of Tkl2 in vivo fulfills an important physiological function, as
only tkl1 tkl2 double mutants proved to be auxotrophic for aromatic amino acids, whose
synthesis requires erythrose-4-phosphate as a precursor (Figure 2). Other phenotypes of
the tkl1 null mutant apparently depend on the genetic background of the strain employed,
with various degrees of growth impairment on synthetic media [42,43,66,67]. A lack of
growth on D-xylulose and an increased sensitivity against hydrogen peroxide is already
displayed by the tkl1 mutant, and is not enhanced by an additional tkl2 deletion, further
substantiating the view that TKL1 encodes the major transketolase isoform [28,37,68].

The sole gene for transketolase in the K. lactis genome, KlTKL1, has been cloned and
analyzed [27]. Interestingly, sequence analyses indicated that the transketolase genes from
yeasts are more closely related to those from prokaryotes than from other eukaryotes.
Expressed under the control of its original promoter, KlTKL1 complemented the growth
phenotypes of the tkl1 tkl2 double deletion in S. cerevisiae and restored transketolase activity.
However, attempts to construct a Kltkl1 deletion were not successful at the time, provoking
the assumption that the gene may be essential in this yeast. Unpublished data from our
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laboratory now confirm this hypothesis. Again, this is consistent with data from C. albicans
indicating that the homozygous deletion in this diploid yeast is lethal [56].

2.2.4. Transaldolase

Unlike the transketolase, a single TAL1 gene encodes transaldolase in the S. cerevisiae
genome. Accordingly, its deletion abolishes all enzymatic activity [41]. NQM1, a paralog
present in the genome presumed to have originated from the whole genome duplication,
seems to play a minor role and was studied mainly in a highly modified strain capable
of xylose fermentation [69]. The tal1 deletion is perfectly viable under standard growth
conditions, indicating that all essential intermediates of the PPP can be formed in cells
lacking this enzyme. However, accumulation of sedoheptulose-7-phosphate in the null
mutant proves that the transaldolase reaction is required to maintain an equilibrium
of metabolites in the non-oxidative PPP. The TAL1 gene in wild-type cells is expressed
constitutively [41,49]. As with the other PPP genes, tal1 mutants are hypersensitive towards
oxidative stress conditions [28,49]. The null mutant also requires supplementation with
inositol, as observed in a large-scale screen [70]. A point mutation at lysine residue 144 also
rendered the mutant catalytically inactive [37].

K. lactis also contains a sole gene encoding a transaldolase, KlTAL1, which has been
cloned and deleted in a haploid strain background [44]. Like the transketolase gene, the
wild-type gene from K. lactis was shown to restore enzyme activity in the respective tal1 null
mutant of S. cerevisiae, proving its functional homology. Combination of the Kltal1 deletion
with deletions in glycolytic genes was crucial in the assessment of the importance of the PPP
for glucose utilization in K. lactis, as explained below in chapter 3. In C. albicans, the CaTAL1
gene has been reported to be essential, but displays a certain degree of haploinsufficiency
under conditions of limiting oxygen supply [56].

The existence of three transaldolase isoforms in C. utilis was suggested by early
biochemical studies and was later deduced to originate from two encoding genes, whose
products can form both homo- and heterooligomers [71].

2.2.5. Sedoheptulose-1,7-bisphosphatase

For a long time, the reactions described so far were thought to cover the PPP in yeast
and other organisms. However, metabolic flux analyses with modern mass-spectrometry
analyses revealed another, hitherto unrecognized enzymatic activity in S. cerevisiae. Cells
with a deletion of the previously uncharacterized open reading frame YKR043c showed a
distinct accumulation of seven and eight carbon sugar phosphates, identified as sedoheptulose-
1,7- and octulose-1,8-bisphosphate [25]. Apparently, sedoheptulose-1,7-bisphosphate (S1,7P2)
is a metabolite that serves to replenish the PPP with carbon. Under growth conditions when
there is little need for the reducing power generated by the oxidative part of the pathway,
S1,7P2 is produced and then dephosphorylated by a specific bisphosphatase, Shb17. The
enzyme seems to be widely conserved amongst the different biological kingdoms. In
fact, homologs of the SHB17 gene (renamed from YKR043c) of S. cerevisiae are present in
the genomes of all other yeasts listed in the genome order browser (http://ygob.ucd.ie/
as of 25 March 2021 [61]), including K. lactis. This indicates that the encoded bisphos-
phatase serves an important biological function. Besides the accumulation of metabo-
lites, no distinct growth phenotypes have been associated with the shb17 deletion in
S. cerevisiae so far. Interestingly, the authors proposed a new connection between glycol-
ysis and the PPP, in that sedoheptulose-1,7-bisphosphate is formed by the aldolase, con-
densing dihydroxyacetone phosphate and erythrose-4-phosphate in a reversible reaction
(Figure 1; [25]). Similarly, they propose that the octulose bisphosphates could be formed by
condensation of DHAP with ribose-5-phosphate, an important reaction that also occurs
in plants [72]. Sedoheptulose-7-phosphate has also been reported to be converted to the
bisphosphate by a side reaction of pyrophosphate-dependent phosphofructokinases (PFK)
from bacteria [73,74]. Evidence for such a generation of sedoheptulose-1,7-bisphosphate
by the yeast ATP-dependent PFK has not been found.

http://ygob.ucd.ie/
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3. Contribution of the PPP to Sugar Degradation

Early attempts to determine the relative contribution of the PPP to sugar consump-
tion in S. cerevisiae relied on glucose molecules specifically labelled with 14C at different
carbon atoms. They were based on determinations of the radioactive label in the carbon
dioxide produced, which varies with the degradation pathway: while the CO2 liberated
by the oxidative branch of the PPP carries the C1 carbon of the glucose molecule, purely
glycolytic degradation and channeling into alcoholic fermentation through the pyruvate
decarboxylase reaction generates CO2 only from C3 and C4 [75,76]. From such studies
it was estimated that only approximately 2.5% of the glucose is metabolized through the
oxidative PPP by S. cerevisiae under standard growth conditions [76]. This agrees well
with genetic studies, which demonstrated that blocking any step in glycolysis renders the
mutants incapable of growth on glucose as a sole carbon source [77].

By contrast, K. lactis cells lacking either the KlPGI1 gene or the genes encoding the
two subunits of the heterooctameric phosphofructokinase, KlPFK1 and KlPFK2, grew well
on glucose media, already indicating that the flux through glycolysis is not absolutely
essential in this yeast [78,79]. In fact, S. cerevisiae cannot grow on glucose when it lacks Pgi1.
This was attributed to glucose-6-phosphate being fed into the oxidative PPP, which would
lead to the accumulation of NADPH that cannot be re-oxidized, because S. cerevisiae lacks
transhydrogenase activities [80]. On the other hand, external mitochondrial transhydroge-
nases exist in K. lactis, so that an NADPH imbalance is not an issue [81,82]. Triple mutants
of the type Kltal1 Klpfk1 Klpfk2 could not use glucose as a sole carbon source, as did the
single Kltal1 or the double Klpfk1 Klpfk2 deletions. It was thereby concluded that the PPP
and glycolysis both have sufficient capacities for glucose metabolization in K. lactis [44].
Accordingly, other simultaneous blocks of glycolysis and PPP in Klpgi1 Kltal1 and Klpgi1
Klzwf1 double mutants likewise failed to grow on glucose as a sole carbon source [31,44].
Consistent with the notion of an important contribution of the PPP to glucose degradation
in K. lactis, specific activities of key PPP enzymes, like KlTal1 and KlTkl1, were considerably
higher than those of their counterparts in S. cerevisiae [27,44].

Reduced growth rates under hypoxic conditions of strains being heterozygous for
various mutations in genes of the PPP in C. albicans would suggest that, in this opportunistic
pathogen, the pathway also contributes significantly to glucose consumption [56].

It now has become possible to study metabolic fluxes directly by following the in vivo
distribution of carbohydrates in growing yeast cells. These studies generally confirm that
less than 2.5% of the glucose consumed by S. cerevisiae cells growing on synthetic medium
(i.e., defined mineral medium with 2% glucose as a carbon source) are diverted into the
oxidative part of the PPP. In rich medium containing yeast extract, peptone, and also
glucose as a carbon source, less than 0.9% of the sugar is degraded by the PPP [83]. These
percentages also vary with growth conditions and the state of the cell cycle the yeasts
are in. Thus, entering the growth phase from a G0 state clearly requires the synthesis of
nucleic acids for DNA replication and gene expression and triggers a transient increase
in the carbon flux to be re-routed into the PPP [84]. In addition, a considerable portion of
glycolytic metabolites can enter the non-oxidative PPP through the connections depicted
in Figure 1. Taken these into account, 10–20% of the carbon atoms are redistributed to the
PPP [25,33,85]. In contrast, and consistent with the genetic and biochemical data presented
above, the contribution of the PPP to glucose degradation in K. lactis has been estimated to
be much higher, reaching up to 40% [86].

Regarding its regulation, the PPP in S. cerevisiae has been proposed to participate in the
fastest response to oxidative stress, reacting within the range of seconds [87]. This is owed
to the links with glycolysis depicted in Figure 1. Thus, ROS rapidly inactivates the glycolytic
enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH, with isozymes encoded
by three TDH genes) and triosephosphate isomerase (Tpi1), which is accompanied by the
activation of NADPH production through Zwf1 [88]. This has been originally attributed
to the accumulation of the precursor metabolites, especially of glucose-6-phosphate as a
substrate. However, metabolome analyses suggested that it is rather the increased recycling
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of this sugar phosphate through the non-oxidative PPP caused by the limitation in glycolytic
flux [89]. This hypothesis, although probably valid across the biological kingdoms [26], is
based largely on data from human erythrocytes, rather than on studies in yeast [90]. In the
blood cells, the rapid response to oxidative stress is enabled by the fact that the NADPH
produced in the oxidative PPP is rapidly scavenged to produce reduced glutathione for
detoxification of ROS [89]. Otherwise, the activity of G6PD would be effectively be inhibited
to less than 1% of its capacity by NADPH and ATP [91]. Similar mechanisms are probably
acting on the yeast enzymes, at least in S. cerevisiae and K. lactis [32]. Due to the reversibility
of the reactions catalyzed by the enzymes of the non-oxidative PPP, a tight control of their
activities is not expected. Consistent with the increased need for synthesis of nucleotides
and aromatic amino acids (Figure 2), metabolite levels within the PPP were shown to be
elevated during growth on synthetic as opposed to rich media [92].

At the level of gene expression, the zinc-dependent transcription factor Stb5 appears to
be the major activator of genes encoding PPP enzymes [93–95]. These include ZWF1, GND1,
GND2, and TAL1, but markedly not RPE1. Stb5 is also required for the proper induction of
SOL3 and RKI1. As expected, its binding to the promoters of many of these target genes is
activated by the addition of diamide as an oxidative stress agent [95]. Although not induced
by diamide, expression of TKL1 also requires Stb5, as shown by its decreased transcript
levels in a stb5 deletion mutant. Since gene expression of non-PPP is hyper-activated in
such deletions, the authors concluded that Stb5 may act either as a transcriptional activator
or repressor, depending on the target gene. Notably, its binding reduces the expression
of the glycolytic PGI1 gene. The general function of Stb5 therefore lies in maintaining the
NADPH balance [95].

4. Biotechnological Implications
4.1. Fermentation of Pentoses by S. cerevisiae

The wine, beer and baker’s yeast S. cerevisiae has been employed for thousands of
years as a workhorse for the production of beverages from hexose sugars by mankind [96],
to which first-generation bioethanol production has been added in the last decades [97,98].
Based on the long-term experience in these fermentation processes, and the ease of its
genetic manipulation, S. cerevisiae has been applied to the conversion of alternative car-
bon sources for second-generation biofuels, especially from pentoses [99]. The latter are
not only found abundantly in the waste-streams of the paper industry, but also form a
major part of the biomass in plant-derived lignocellulosic material [100]. Two alternative
approaches of heterologous gene expression have been used to convert xylose from such
sources into xylulose-5-phosphate as a substrate that can be metabolized by the PPP, and,
through its connection with glycolysis, ultimately be fermented to ethanol (Figure 3). (i)
Early attempts relied on the heterologous expression of two genes from Scheffersomyces
stipitis (then still called Pichia stipitis), which encode xylose reductase and xylitol dehy-
drogenase [101,102]. This resulted in the accumulation of xylitol, which was overcome
by further manipulations of the cofactor requirements of the enzymes [103]. (ii) High-
level expression of xylose isomerase genes from various sources avoided the imbalance of
reduced cofactors, and, combined with overproduction of the native xylulokinase and elim-
ination of an aldose reductase gene, the problem of xylitol production was resolved [104].
Xylose fermentation has been further improved by overproduction of endogenous Tkl1
in conjunction with heterologous Rki1 and Tal1 from Kluyveromyces marxianus [105]. In
similar approaches, overexpression of RPE1 was also shown to be beneficial [106–108].
Recent developments are aimed at the simultaneous fermentation of glucose and xylose,
by additionally increasing the fermentation temperature in an extensively modified strain
background [109]. In addition, arabinose was channeled into the PPP of S. cerevisiae by
employing the Gal2 transporter and expression of three bacterial genes for its conversion
into xylulyose-5-phosphate (Figure 3; [110], reviewed in [99]). Efficient fermentation of the
two pentoses has also been considerably improved by the engineering of their transport
into S. cerevisiae, as reviewed in [111].
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Further details on the importance of pentoses and lignocellulosic sources for the
production of next-generation biofuels, and the important role of the PPP for detoxification
of oxidants like furfural produced in these processes, would go far beyond the scope of
this overview, but have been extensively reviewed, e.g., in [99,100,109,111,113,114].

4.2. The PPP and Synthetic Biology in the Production of Value-Added Products

Besides bioethanol, alternative biofuels are being developed, which are based on the
production of fatty acids, also serving as building blocks for oleochemicals for cosmetic
purposes and as detergents and industrial lubricants [115,116]. As outlined in Figure 2,
fatty acid synthesis requires reduction equivalents from the oxidative PPP. Thus, it is not
surprising that overexpression of STB5, which encodes a positive transcription factor and
enhances the expression of PPP genes, has been instrumentalized for this purpose [93].

Moreover, platform strains of S. cerevisiae are being developed, to increase the level of
isoprenoids as precursors for the production of carotenoids, other nutraceuticals and food
colorants in many industrial processes [117]. In fact, the production of the potent antimalar-
ial drug artemisinin in yeast is based on the increased supply of these precursors [118].
Again, isoprenoid synthesis depends on an increased generation of NADPH from the ox-
idative PPP, so that overexpression of ZWF1 has been combined with a reduced glycolytic
phosphofructokinase activity to obtain a more reductive power [119].

Unlike the unwanted occurrence of xylitol as a by-product in bioethanol production
from pentoses described above, xylitol is of value as a sweetener and a functional food addi-
tive, with proposed anticancerogenic effects. Heterologous expression of xylose reductase
genes has been employed in this context for xylitol production in yeast [120].

The immense capacity of synthetic biology in relation to the PPP was demonstrated
by the production of shinorine in yeast. Shinorine is a secondary metabolite naturally
produced by cyanobacteria that protects against the damaging effects of UV, which can be
used in sun creams as an environmentally friendly additive [121,122]. Since sedoheptulose-
7-phosphate is a key precursor for shinorine synthesis, an S. cerevisiae strain already
manipulated to efficiently grow on xylose by expression of the xylose assimilating genes
from S. stipitis was employed [121]. In that work, biosynthetic genes for shinorine synthesis
from Nostoc punctiforme were introduced into the platform strain, the native TAL1 gene was
deleted, and TKL1 and STB5 were overexpressed.

Manipulation of the PPP has also been employed to increase the supply of erythrose-
4-phosphate for the generation of aromatic amino acids and the production of compounds
derived from them, as exemplified in [123–125]. Other valuable products, such as butanol
and butanediols, can be produced from erythritol as a platform chemical derived from
erythrose-4-phosphate in the PPP, using waste glycerol as a growth substrate [126].
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4.3. Non-Conventional Yeasts

One of the yeasts extensively studied for its ability to metabolize xylose, S. stipitis
(P. stipitis), served as the first source for genes heterologously expressed in S. cerevisiae in
bioethanol production [101,102]. In fact, expression of these genes and those of the PPP is
strongly induced by growing S. stipitis on xylose as a sole carbon source [127]. Yet, due to
the low yield and the general sensitivity of this yeast to ethanol, research has been mainly
focused on adapting the knowledge gained to the more suitable S. cerevisiae [128].

The yeast Pichia pastoris (Komagataella phaffii) has long been employed for heterologous
protein production due to its high capacity and its efficient secretion system [129]. How-
ever, vast overproduction of foreign proteins requires a high energy input and presents a
metabolic burden, often resulting in reduced product yields. In this context, overexpression
of genes encoding PPP enzymes, especially ZWF1 and SOL3, were found to improve the
production of human superoxide dismutase by almost a factor of four [130]. As simi-
lar problems with heterologous protein productions have been observed in other yeasts,
including S. cerevisiae, the approach of manipulating the PPP seems promising.

Compared to its close relative K. lactis, K. marxianus has two important advantages
for industrial applications: it can grow on xylose as a carbon source, although glucose
and lactose are preferred, and it is more thermotolerant, i.e., it thrives at temperatures
higher than 47 ◦C (see [131], and references therein). However, it should be noted that
considerable genetic heterogeneity, including their ploidy, has been observed for different
K. marxianus strains, thus complicating data analyses [132]. Nevertheless, extensive genetic
manipulations and laboratory evolution have led to the development of strains efficiently
fermenting xylose [133]. This so far has included an overexpression of either endogenous or
heterologous XYL1 and XYL2 genes, encoding xylose reductase and xylitol dehydrogenase,
as well as a reduction in the carbon flow to glycerol by deleting the GPD1 gene. In an
analogy to the results from bioethanol production from pentoses by S. cerevisiae described
above, considerable progress by the concomitant overproduction of PPP enzymes may be
beneficial in future approaches.

The oleaginous yeast Yarrowia lipolytica has attracted a lot of attention due to its ability
to grow on and convert hydrocarbons and its remarkable resistance to toxic industrial
by-products [13]. Moreover, it was found that the PPP is highly active in this yeast and
with the rise of the CRISPR/Cas9 technology, it can now be readily manipulated (reviewed
in [134]).

These are just a few examples demonstrating that non-conventional yeasts and their
PPP are of great interest for ongoing and future biotechnological applications. For a larger
overview on these and other yeast species in applied pentose metabolism, the reader is
referred to [128].

5. Yeasts as Workhorses to Study PPP-Related Diseases

The PPP has attracted considerable attention for its role in human health. A summary
of diseases related to malfunctions of its components is given in Table 2.
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Table 2. Diseases related to malfunctions of PPP enzymes.

Enzyme Disease References

Glucose-6-phosphate Dehydrogenase
(G6PD)

hemolytic anemia, diabetes, lung, liver, colorectal,
prostate, and cervical cancer, leukemia, heart

defects, Parkinson’s disease, Alzheimer’s disease
[45,135–140]

6-Phosphoglucono-Lactonase
(6PGL) metastases in bones originating from breast cancer [141]

6-Phosphogluconate
Dehydrogenase

(6PGD)
lung and brain cancer [136,137]

Ribosephosphate
Isomerase

(RPI)
pancreatic cancer and leukoencephalopathy [136,142,143]

Ribulosephosphate
Epimerase

(RPE)
pancreatic cancer [136]

Transketolase
(TKL)

lung, liver and pancreatic cancer,
Wernicke-Korsakoff syndrome, heart defects [136,144–146]

Transaldolase
(TAL)

lung cancer, liver cirrhosis, anemia,
thrombocytopenia, heart defects,

renal malfunction and neonatal edema multiple
sclerosis, rheumatoid arthritis

[136,140,147–150]

Gene expression and/or activity of most of the PPP enzymes are upregulated in
cancer cells, which involves different signaling pathways, with prominent components like
PI3K/Akt, Ras, p53, and mTor (reviewed in [151]). The requirement for this increase in
PPP capacity has been attributed to its role in providing precursors for fatty and nucleic
acid synthesis needed for cell proliferation, DNA damage repair and survival, as well as
the supply of NADPH to cope with oxidative stress [137]. The latter is also instrumental in
patients with Diabetes mellitus type 2, for which both overexpression and deficiency of
G6PD reduce the level of insulin secretion [136]. Moreover, a diminished response to oxida-
tive stress participates in the development of neurodegenerative diseases like Parkinson’s
disease (PD) [139], whereas amyloid ß and tau, two proteins associated with Alzheimer’s
disease (AD), may be modified by glycosylation with PPP-derived D-ribose [138]. Accord-
ingly, chemotherapies and other treatments can be impaired by alterations in the PPP. Its
enzymes are thus promising drug targets for new therapeutic approaches (see [136,152],
and references therein). Beyond that, an interesting observation links the NADPH produc-
tion within the oxidative PPP to the regulation of the circadian clock in both mammalian
cells and in flies. The disruption of the circadian clock in cancer cells was therefore also
related to the PPP [153,154]. From a comparison with cyanobacteria, it was proposed that
the circadian clock in mammalian cells acts as a regulating device between a proliferative
and a homeostatic metabolism [153]. Readjusting the “timer” by targeting the activity of
PPP enzymes could thus be a putative future approach in cancer therapy.

While there are many regulatory functions exerted by the PPP, the majority of investi-
gations concentrated on the reaction catalyzed by G6PD, since it is the first and rate-limiting
step providing reductive power [155]. Moreover, as briefly mentioned above, mutations
in the encoding gene, located on the human X chromosome, constitute the most common
cause of hereditary disease, which frequently results in severe hemolytic anemia [45,135].
On the other hand, the deficiency in human erythrocytes may also have a moderate pro-
tective effect against malaria infections [156]. The structure, allosteric regulation, and
physiological role of G6PD has therefore been extensively studied. A central mechanism in
this context is the feedback inhibition of the enzyme by NADPH, which keeps its capacity
at about 1% maximum under non-stress conditions [91]. This is rapidly and dramatically
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increased upon application of oxidative stress, which triggers the scavenging of the reduced
cofactor for detoxification purposes, thus relieving the enzyme inhibition [90]. Vice versa,
activating glycolytic flux by increasing PFK activity leads to inhibition of G6PD affecting
metastasis of melanoma cells [157].

While the structure of human G6PD was studied predominantly from enzymes puri-
fied from E. coli, it has also efficiently been produced in S. cerevisiae [158]. These investiga-
tions revealed that it is a dimer of dimers, in which the dissociation of the tetrameric form
is triggered by NADPH binding to an allosteric site, which is different from the catalytic
one. While studies on the quaternary structure of the enzyme from S. cerevisiae appeared to
give somewhat conflicting results, KlZwf1 from K. lactis displayed striking similarities to
its human homolog [32]. This offers the possibility of applying the results from the yeast to
the human enzyme. More importantly, it implies that expression of the human gene and its
mutant variants could ease their structural and biochemical characterization.

This is also true for the investigation of other PPP enzymes, which are much more
rarely associated with hereditary diseases and have barely been studied in yeast systems.
Thus, transketolase deficiencies were originally associated with their decreased affinity for
binding the cofactor thiamine pyrophosphate (TPP). That this really causes the Wernicke-
Korsakoff syndrome was questioned later [146]. More recent reports still suggest a relation
of human transketolase to alcohol-induced, TPP-dependent symptoms [145], and it was
found that mutations in the encoding gene can cause both developmental and congenital
heart defects [144].

Finally, the biochemical properties of human transaldolase have been studied and
compared to the enzymes from other sources [149]. In humans, deficiencies cause a
rare autosomal disorder of carbohydrate metabolism, which has been confirmed in only
39 patients so far. This can result in liver malfunctions and cirrhosis, but also causes
congenital heart disease [148,150].

Other rare reports on diseases related to PPP, including progressive leukoencephalopa-
thy caused by RPI deficiency and organ defects triggered by liver malfunction due to
mutations in a TALDO gene, are reviewed in [140]. This stresses the need for a simple and
easy-to-handle eukaryotic expression system to advance the basic research in these cases,
which we propose to be either S. cerevisiae or K. lactis. In this context, only an expression of
human G6PD gene variants and the human RPIA gene in S. cerevisiae have been reported so
far [143,158]. However, given the structural conservation, exemplified by the modeling of
human transketolase based on the crystal structure of the yeast enzyme [159], heterologous
expression of the other genes is not expected to pose any problem. In fact, G6PD genes
from various organisms have been successfully expressed in S. cerevisiae [26], as were
those encoding key glycolytic enzymes like human muscle phosphofructokinase from
patients suffering from glycogen storage disease [160]. Although there may exist specific
modifications or protein interactions of the enzymes in human cells that cannot be mirrored
in yeasts, their eukaryotic nature is expected to come closer to the natural environment
than bacterial expression systems. Moreover, such specific factors, if they exist, could even
be identified using the power of yeast genetics.

6. Conclusions and Outlook

The pentose phosphate pathway has attracted revived attention not only in the model
yeast Saccharomyces cerevisiae, but also throughout the biological kingdoms [11]. For yeast,
this has been focused mainly on the fermentation of pentoses to bioethanol, increasingly
through the use of synthetic biology. In this respect, we have probably only seen the tip of
the iceberg, as more and more other value-added products will be produced based on the
platform strains obtained in these studies, as shown by a few examples in paragraph 4.2.

With respect to basic research, and in the light of the importance of the PPP for
carbohydrate metabolism in K. lactis as opposed to S. cerevisiae, it is surprising that very
few studies have been dedicated to its genetics so far. As outlined above, only KlZwf1
and its mutants have been studied in some physiological detail [31,32], while beyond
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that only Kltal1 null mutants were obtained [44]. This is probably due to the fact that
genetic manipulations, while being basically similar to those of S. cerevisiae, are more time-
consuming and laborious in K. lactis [8], and our preliminary results indicate that many of
the genes encoding PPP enzymes may be essential in this yeast (Figure 1). Nevertheless,
genetics of the PPP in K. lactis will be addressed in the near future and the findings are
expected to be largely applicable to its close relative K. marxianus. Moreover, with respect
to the carbon flow into and within the PPP, modern metabolomic approaches are expected
to yield more similar results to human physiology in K. lactis than in S. cerevisiae, as the
latter is too specialized in alcoholic fermentation. The higher similarity to mammalian cell
physiology also recommends K. lactis as a heterologous host to produce and study human
isoforms and variants. In contrast to most other non-conventional yeasts, K. lactis shares
the advantage of a similar life cycle with S. cerevisiae, thus participating in the “power of
yeast genetics” [8], while a congenic strain series can serve as a platform for molecular
genetic manipulations [161]. We thus look forward to interesting developments in the near
future and are positive that K. lactis will re-draw the attention of the scientific community
as an alternative model organism to “the yeast” S. cerevisiae.
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