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Identifying the sources of structural 
sensitivity in partially specified 
biological models
Matthew W. Adamson1,5* & Andrew Yu. Morozov2,3,4,5

Biological systems are characterised by a high degree of uncertainty and complexity, which implies 
that exact mathematical equations to describe biological processes cannot generally be justified. 
Moreover, models can exhibit sensitivity to the precise formulations of their component functions—a 
property known as structural sensitivity. Structural sensitivity can be revealed and quantified by 
considering partially specified models with uncertain functions, but this goes beyond well-established, 
parameter-based sensitivity analysis, and currently presents a mathematical challenge. Here we build 
upon previous work in this direction by addressing the crucial question of identifying the processes 
which act as the major sources of model uncertainty and those which are less influential. To achieve 
this goal, we introduce two related concepts: (1) the gradient of structural sensitivity, accounting for 
errors made in specifying unknown functions, and (2) the partial degree of sensitivity with respect to 
each function, a global measure of the uncertainty due to possible variation of the given function while 
the others are kept fixed. We propose an iterative framework of experiments and analysis to inform a 
heuristic reduction of structural sensitivity in a model. To demonstrate the framework introduced, we 
investigate the sources of structural sensitivity in a tritrophic food chain model.

Compared to the physical sciences, biological processes are often more complex, more variable and less well 
understood. Consequently, the uncertainty in any representation of biological processes by a simple ‘macroscale’ 
mathematical model applies to the choice of equations themselves, as well as their parameters. This can be 
problematic since models can be sensitive to the precise functions used to represent processes such as growth 
rates, mortality rates or feeding rates of organisms, a property known as structural sensitivity1–3, even when they 
are robust to variations of parameters for a given choice of functions. Since many if not all of the precise functions 
used in a biological model have little formal justification and may be considered to be uncertain, structural 
sensitivity is a challenge to quantifying model uncertainty and the sensitivity of the resulting predictions 
that must be addressed. In previous work, a novel framework was proposed to detect and quantify structural 
sensitivity in biological models when the exact formulation of a single model function is uncertain3–5. However, a 
fundamental open question concerns how to evaluate the respective contributions of each individual unspecified 
model function to the overall sensitivity of the model outputs. In this paper we demonstrate how this can be 
done through an extension of the authors’ previously developed framework to consider structural sensitivity 
with respect to each unknown model process.

Overall, the fact that the equations used to model many biological processes are not themselves justifiable is 
rarely appreciated in the literature (with some exceptions2,6). However, even the simplest biological processes 
involve dozens of complex interactions among diverse entities (proteins, cells, organs) across many different 
scales of time and space and levels of organisation, and can at best be approximated by a given function. Even if 
processes can be represented by mechanistically-derived functions as in the case of the Holling-type functional 
responses in predator-prey systems7, the derivation is often based upon a number of idealized assumptions 
and the resulting function is only justified when these assumptions approximately hold, and may not remain 
valid under the effects of evolution8, scaling up in space9 or changes in environmental conditions10. Most of the 
questions related to uncertainty in models are addressed either to the particular choice of model parameters11, 
or to the topology of the system coupling12—i.e. as represented in the flow diagram—while the actual equations 
used to represent individual processes are treated as fixed ‘modules’ which are plugged into models without their 
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validity being questioned. Such an approach would be reasonable if close model functions could be guaranteed 
to produce consistent model predictions, but due to structural sensitivity this is not the case3,13.

There is a long tradition in mathematical biology of using general classes of models and proving results 
based on generic properties of the model functions14,15, stretching back to the work of Kolmogorov on predator-
prey systems16. A more applied approach is the consideration of partially specified models17,18, whereby known 
functions are given a precise formulation, while unknown functions are represented by a set of biological 
constraints and either an objective functional measuring goodness of fit to data and penalising high curvature, 
or a set of error bounds together with bounds on the second derivatives. Other promising approaches are 
generalized modelling6,19,20, nonlinear forecasting approaches21, and the formation of a new model out of the 
parameterisation of the convex hull of several choices of model functions, followed by a standard bifurcation 
analysis on the combined model22. When the model functions themselves are not fixed, rigorously detecting and 
quantifying structural sensitivity in the system is challenging since the space of inputs that needs to be sampled 
from is infinite dimensional. An approach to do this with respect to the stability of an equilibrium was previously 
developed3,4 using partially specified models17. Unspecified functions are restricted to a certain neighbourhood 
which can be projected into the space of the local function values that influence the system’s Jacobian matrix, 
which is finite dimensional and can therefore be investigated directly. Quantifying the overall sensitivity of a 
system with respect to all of its uncertain inputs in this way is a task often called uncertainty analysis (UA). When 
the uncertain inputs are parameters, a large range of techniques for UA exists23.

A related task to uncertainty analysis is sensitivity analysis (SA). While UA determines the overall sensitivity 
of the model outputs given uncertain inputs, the aim of SA is to quantify the respective contribution of the 
different model inputs to this uncertainty. Such an analysis can have many uses. It can tell us which factors are 
most responsible for the uncertainty in a system, so that these can then be targeted for further investigation 
in order to reduce the uncertainty most effectively23. Conversely, SA can indicate factors to which a model 
is not sensitive and which can therefore be safely fixed as a model reduction strategy. SA can also indicate 
conceptual problems with a model and inform theory: highly sensitive model inputs can become targets for 
further refinement of the model formulation, for a re-evaluation of their role in the corresponding theory or 
for nonparametric analysis24. For example, the functional response of a highly sensitive predator prey model 
has previously been refined using the parameter cascades method25. As with UA, SA can be either local or 
global, with local SA being far more prevalent in the literature, even though it is only reliable when applied to 
linear models26. A number of further techniques apply local sensitivity analysis in a global way to obtain extra 
information or computational benefits27,28. Parameter-based techniques for SA are widespread, but when the 
model functions themselves are uncertain, techniques to carry out SA are lacking. The presence of structural 
sensitivity in models thus clearly raises the question of how we can extend sensitivity analysis to incorporate 
variation in the model functions.

In this paper we address sensitivity analysis with respect to multiple uncertain model functions. We propose 
a method to evaluate which uncertain processes contribute the most to the uncertainty in the model outputs 
and therefore would be the most useful to investigate in order to reduce the total structural sensitivity of the 
model. Using a well studied tritrophic food chain model in ecology as an illustrative example, we suggest two 
approaches to accomplish this. In the first, the overall degree of structural sensitivity in the system is treated 
as a function of the error terms in each function, and then we compute its gradient weighted by the local error 
terms. In the second, each single function in turn is allowed to vary, and we compute the degree of sensitivity 
when the others are kept fixed. We then take the average of this sensitivity across the space of values of the fixed 
functions to arrive at a form of partial degree of structural sensitivity. The partial degrees of sensitivity measure 
the total contribution of each function to model output uncertainty and are analogous to the total sensitivity 
index in the Sobol–Jansen framework29. In order to illustrate how the approach can be used, we propose a generic 
procedure of sensitivity analysis, experimentation and model refinement through which the structural sensitivity 
of a model can be iteratively reduced.

Methods
Quantifying structural sensitivity in models with uncertain component functions.  In general, 
we consider a system of the form:

where x ∈ R is the vector of d state variables, hi , fi : Rdi → R are the m different component functions describing 
the inflows and outflows of biomass, energy or individuals due to certain biological processes, with G : Rm → R

d 
being a composition function describing the general topology of the system. We consider that the precise 
mathematical formulation of the functions fi are known (or at least postulated) with the only related uncertainty 
being the precise choice of their parameters. The functions h1, . . . hp are considered to have unspecified functional 
form. Instead, they are represented by bounds on their derivatives matching the qualitative properties we would 
expect from such a function. For example, the per-capita reproduction rate of a population is generally decreasing, 
at least at large population numbers, while a feeding term described by a Holling type II functional response 
of a predator should be increasing and decelerating. The hi may also have quantitative bounds on their values:

which can be either hypothetical, or obtained from experimental fitting.

(1)ẋ = G
(

h1(x), h2(x), . . . , hp(x), f1(x), f2(x), . . . , fm−p(x)
)

,

(2)hlowi (x) < hi(x) < h
upp
i (x),
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In the context of functions fitted to experimental data on biological processes, it often makes sense to consider 
these upper and lower bounds to be given by functions a given absolute or relative distance from a fitted function 
ĥi , which we refer to as the ‘base function’. For instance, considering a maximal absolute error of εi gives us

To obtain a concrete biological model from system (1), we need to specify precise equations for the uncertain 
functions hi , as well as specifying parameters for both the fi and our specific choices of hi . Without any additional 
information, our choice of equation to represent a given hi is essentially arbitrarily taken from the infinite-
dimensional space of possible functions which satisfy (2) along with the qualitative restrictions on the derivatives. 
If we vary the parameters of this choice of functions, we can only cover a finite dimensional subset of this infinite 
dimensional space with the exact dimension of the subset determined by the number of parameters in the chosen 
functions. However, if we wish to fully investigate the model dynamics that can be exhibited by the system, we 
need to somehow consider the whole of this infinite-dimensional space. Previously the authors have developed 
an approach to do this with respect to the linear stability of (hyperbolic) equilibria3,4 by using the fact that this 
is determined by the eigenvalues of the Jacobian matrix of the system at the equilibrium30, which only depends 
upon the equilibrium values x∗ , the values of the unknown functions at this equilibrium hi(x∗) and their partial 
derivatives ∂hi

∂xj
(x∗) (along with the parameters of the fixed model functions). If we are able to adequately project 

the space of valid model functions into this finite-dimensional space, then we can not only check for the case 
that different mathematical formulations of functions can give conflicting predictions for stability, but can also 
quantify the likelihood of stability or otherwise by comparing the size of the volumes of the regions giving each 
type of behaviour.

Projecting the infinite-dimensional space of valid functions onto the finite-dimensional space of values that 
determine the Jacobian is the core of this approach to quantify structural sensitivity3,4. First, we restrict the 
functions hi to those with Lipschitz continuous first derivatives described by the maximal Lipschitz constants 
Ai > 0 . This implies that

The question of projection can now be stated more precisely as follows: given the set of local values x∗, hi(x∗) , 
and ∂hi

∂xj
(x∗) , does at least one set of functions h1, . . . , hp exist which takes these values while the hi both fit the 

base function ĥi adequately [by satisfying (2)] and satisfy their respective qualitative restrictions (monotonicity, 
deceleration etc.) and maximal Lipschitz constants stated in (5).

Remark  The introduction of maximal Lipschitz constants on the first derivatives is necessary because of the 
nature of the bounds (2). These bound the values of hi directly, to within a given tolerance of a fitted base 
function, which entails the use of a C0-metric. Without further bounds on the second derivatives of the functions, 
the first derivatives of the functions (and consequently, the Jacobian of the system) can be perturbed to any 
degree through an arbitrarily small perturbation in the C0-metric. This permits nonsensical outcomes, such 
as the appearance of an arbitrarily large number of equilibria in a slight perturbation of a system with a single 
equilibrium (see Section 2.5 of Kuznetsov30 for further explanation). For this reason, the most common types 
of metric used in dynamical systems are C1-metrics, which measure the distance between two functions based 
on the sum of distance between the two functions and the distance between their first derivatives. For the 
current application, the use of a C1 metric would force the first derivatives of functions to remain close to the 
first derivatives of the base function, which raises the question of how we can justify the first derivatives of the 
fitted base function. In the best case, data on the first derivatives of function is available, as well as data on their 
values, so that we can choose a base function which fits both data sets. However, the availability of such data 
(or data of high-enough quality that the derivatives can be reliably estimated) is extremely rare, especially in 
the life sciences. The introduction of Lipschitz constants on the first derivatives provides an alternative way to 
restrict variation of the derivatives: on the space of functions with Lipschitz continuous first derivatives of a given 
Lipschitz constant, the C0-metric is topologically equivalent to the C1 metric.

The two sets of requirements for each function yield two sets of upper and lower bounds for each hi . One set 
is given directly by the error bounds huppi (x) and hlowi (x) specified in (2). The second set is constructed by using 
the bounds on the second derivatives following from the maximal Lipschitz constant of the first derivatives (5), 
and the qualitative restrictions on the first and second derivatives to derive tangent curves at x∗, hi(x∗) , h

′

i(x
∗) : 

an upper tangent curve ui(x) and a lower one li(x) . Previously, it was shown4 that the following conditions are 
necessary and sufficient for the existence of a valid function h depending on a single variable x (here we drop 
the indices i and j for clarity) for a wide class of qualitative restrictions:

(3)hlowi (x) := ĥi(x)− εi ,

(4)h
upp
i (x) := ĥi(x)+ εi .

(5)
n

∑

k=1

∣

∣

∣

∣

∂2hi

∂xj∂xk
(x)

∣

∣

∣

∣

< Ai , ∀j ∈
{

1, . . . p
}

.

(6)u(x) > hlow(x) ∀x ∈ [xmin, xmax],

(7)l(x) < hupp(x) ∀x ∈ [xmin, xmax].



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16926  | https://doi.org/10.1038/s41598-020-73710-z

www.nature.com/scientificreports/

Namely, if the set of ‘tangent’ upper and lower bounds at 
(

x∗, h(x∗), h
′
(x∗)

)

 are consistent with the quantitative 
bounds on the functions, then there exists a valid function within the quantitative bounds, satisfying the 
qualitative restrictions and passing through (x∗, h(x∗)) with slope h′

(x∗) . The same logic can be applied to the 
more general case of scalar functions with vector inputs, h(x), x ∈ R

n, n > 1.
The set of values x∗, hi(x∗), h′i(x∗), i = 1, . . . , p, which satisfy the above conditions form a closed region 

V ⊂ R
n+p+np which corresponds to all sets of valid functions hi (note that V will only be n+ p+ np-dimen-

sional if all of the p unknown functions depend on all of the n variables of the dynamical system, and absolutely 
none of the values of the equilibrium or the functions at that equilibrium can be obtained from the the isocline 
equations of the system). By computing the eigenvalues of the Jacobian matrix determined by points in V, it can 
be subdivided into regions Vstable and Vunstable in which the corresponding equilibrium is stable and unstable, 
respectively. With the introduction of a probability density function ρ : V ⇒ R

+ , we can consider the probability 
of an equilibrium being stable/unstable, and that of two different choices of function yielding conflicting predic-
tions. Since this ranges from 0 to 0.5 in the case of minimal and maximal sensitivity, respectively, we multiply it 
by two to get the (total) degree of structural sensitivity, given by the following definition:

Definition 1  The degree of structural sensitivity of a set of local function values V ⊂ R
n+p+np , with a given 

probability density function ρ : V ⇒ R
+ is given by

The degree of sensitivity � takes values between 0, when the functions either all yield a stable equilibrium 
or all an unstable equilibrium, and 1, when half of the functions yield a stable equilibrium and the other half 
an unstable equilibrium, and the model essentially gives us no information about the equilibrium’s stability. It 
quantifies the structural sensitivity in the system by capturing the uncertainty in the model output as a result of 
the uncertainty in the model functions, and can be used to determine how the structural sensitivity of a system 
depends on the model parameters.

The above definition allows two interpretations of uncertainty. (i) The most straightforward interpretation 
is that � is proportional to the probability that the stability of the given equilibrium will be different for two 
independent choices of the uncertain model functions. (ii) To interpret � in terms of the variance of model 
outputs, which is conventionally used in uncertainty and sensitivity analysis, we consider the model output Y 
to be the Bernoulli process corresponding to the stability/instability of the equilibrium for a randomly chosen 
set of functions. Then we have � = 4 · Var(Y) (the scaling by 4 simply ensures that � ranges between 0 and 1) 
From (ii), it is clear that computation of the degree of structural sensitivity is a form of uncertainty analysis, in 
that we compute the variance of a model output (in the sense of the stability of an equilibrium) when all of the 
unknown functions may vary across their entire valid range.

One open question concerns which probability density function ρ to consider on the space of local function 
values. A uniform distribution may be the most natural case to reflect the fact that we have little direct informa-
tion about the distribution of points in this space. In this case, � will be expressed purely in terms of the relative 
volume of V for which the equilibrium is stable. Alternatively, if the error terms in the functions are assumed to 
be normally distributed around their respective base functions, we may construct a ‘layer cake’ approximation 
to the corresponding probability distribution in V by considering successively smaller error terms converging 
on the base function, and computing the corresponding regions of local function values that are valid for each. 
We can then assign a probability density to these values according to the size of the error term for which they 
still correspond to a valid function3.

Two approaches to quantify the relative contribution of each function to uncertainty.  In 
the case of a single unknown function in the model ( p = 1 ), the degree of structural sensitivity gives us a 
full analysis of the structural sensitivity in the system (possibly in combination with some parameter-based 
sensitivity analysis). However, in the more likely case that multiple functions are unknown ( p > 1 ), an important 
question remains: which of the unknown functions contribute the most to the degree of structural sensitivity in 
the system? The degree of structural sensitivity does not distinguish between the various sources of uncertainty 
and therefore cannot quantify the relative contributions of the unknown functions to the uncertainty in the 
model dynamics.

To determine the contribution of each unknown function hi , one can allow the error terms 
(

ε1, ε2, . . . , εp
)

 to 
vary with the goal of investigating how the degree of sensitivity varies with them. For the purpose of this sec-
tion, let us denote the initial error terms by ε0i  . We might be tempted to use the dependence on the εi to perform 
global optimisation under certain constraints to find the best possible reduction of 

(

ε1, ε2, . . . , εp
)

 . However, one 
should bear in mind that this analysis would depend on the base functions ĥi considered. While these functions 
are ideally fitted to experimental data, they are only accurate within the error terms ε0i  . Excessively reducing the 
εi will force all admissible functions to conform strongly in their shape to these base functions far beyond their 
demonstrated accuracy of fit.

The dependence of the degree of sensitivity on εi should therefore only be evaluated locally by calculating the 
gradient 

(

∂�
∂ε1

, . . . , ∂�
∂εp

)

|(ε01 ,...ε
0
p

) giving the direction for the best local reduction of the errors. To adjust for the 

fact that the error terms may be of different orders of magnitude, when handling the vectors of error terms we 
should use the norm

(8)� := 4 ·

∫

Vstable

ρ dV ·

∫

Vunstable

ρ dV = 4 ·

∫

Vstable

ρ dV ·

(

1−

∫

Vstable

ρ dV

)

.
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Working in this norm, the gradient needs to be weighted by the initial error terms to provide the direction for 
the best local reduction of the error terms, this is described by the following structural sensitivity gradient.

Definition 2  The structural sensitivity gradient in a model with p unknown functions each having an error of 
magnitude ε0i  is defined as

where �
(

ε1, . . . , εp
)

 is the degree of structural sensitivity of the system considered as a function of the error 
terms εi.

One possible problem with the structural sensitivity gradient is that the degree of structural sensitivity in 
the system may not be an increasing function of the magnitude of the errors. Consider the case that the exact 
system is structurally unstable, e.g. at a bifurcation point. Then no matter how small the error terms are, there 
may still be very high levels of structural sensitivity, while larger error terms may cause the level of uncertainty 
to decrease5. In this case, the structural sensitivity gradient will indicate that one or more of the functions has 
a negative contribution to the uncertainty of the system, and cannot be taken as a basis for sensitivity analysis.

An alternative approach to quantifying the individual impact of unknown functions which avoids this issue 
is the computation of partial degrees of sensitivity with respect to each hk . To do this, we fix every unknown 
function except hk , a set which we denote H∼k , by fixing the x∗j  , hi(x∗) , and ∂hi

∂xj
(x∗) that are consequently deter-

mined by the isocline equations. Denoting by Vk the cross-sections of V where only hk varies, and the cross-
sections for H∼k by V∼k , the local partial degree of structural sensitivity can be defined as follows.

Definition 3  The local partial degree of structural sensitivity with respect to hk , is the degree of structural 
sensitivity in the model when hk is unspecified and all other functions hi ∈ H∼k are fixed:

where ρHk |H∼k
 is the conditional probability density function on H∼k:

with ρ the (joint) probability distribution over V.

The local partial sensitivity �k(H∼k) is a function of H∼k in that it depends upon the particular values at 
which the elements of V∼k are fixed. As with the degree of structural sensitivity, it can be interpreted as either 
the probability that the stability of the given equilibrium will be different for two independent choices of the 
function hk when the h∼k are fixed at the given values, or in terms of variance as �k(H∼k) = 4 · Vark(Y |H∼k) (Y 
is the Bernoulli variable for stability). If the joint probability distribution ρ is uniform in V, then �k(H∼k) can 
be expressed purely in terms of the fraction of the volume of Vk which gives a stable equilibrium:

To obtain a global measure for the sensitivity of the model to hk , we can take the average of �k over V∼k.

Definition 4  The partial degree of structural sensitivity with respect to hk is given by

where ρH∼k
 is the marginal probability density function of H∼k.

Recalling the variance-based interpretation of the degree of sensitivity, we obtain �̄k = 4 · E∼k(Vark(Y |H∼k)) . 
In other words, �̄k gives the scaled average variance when all functions except hk are fixed. We can also relate 

the partial degree of structural sensitivity to indices used in conventional variance-based sensitivity analysis. 

Dividing �̄k by the overall degree of structural sensitivity in the model gives us �̄k
�

= E∼k(Vark(Y |H∼k))
Var(Y) = STk , 

the total effect index23 of hk on the stability of the equilibrium. This is a measure of the total contribution of hk to 

(9)�ε� =

√

√

√

√

p
∑

i=1

(

εi

ε0i

)2

.

(10)
(

−ε01 ·
∂�

∂ε1
, . . . ,−ε0p ·

∂�

∂εp

)

|(ε1=ε01 ,...,εp=ε0p
),

(11)�k(H∼k) := 4 ·

∫

Vkstable

ρHk |H∼k
dHk ·

(

1−

∫

Vkstable

ρHk |H∼k
dHk

)

,

ρHk |H∼k
=

ρ
∫

V ρdH∼k
,

(12)�k(H∼k) = 4 ·

∫

Vkstable
dHk

∫

Vk
dHk

·

(

1−

∫

Vkstable
dHk

∫

Vk
dHk

)

.

(13)�̄k :=

∫

V∼k

ρH∼k
·�k(H∼k) dH∼k
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the sensitivity—both alone and in conjunction with the other functions H∼k . However, since the space of valid 
functions V is in general not a hypercube, the functions hi are not independent factors, and a total decomposition 
of variance is not possible. Indeed, even if the joint probability distribution ρ is uniform, the marginal probability 
distribution ρH∼k

 will generally not be: instead it will equal the volume of the corresponding cross-section Vk for 

H∼k , divided by the volume of V. An alternative to using the partial degrees of sensitivity would be to consider 

the first-order sensitivity indices Sk =
Vark

(

EH∼k
(Y |hk)

)

Var(Y)  . However, these do not take into account possible joint 

effects of the hi on the structural sensitivity of the system, so a small Sk does not indicate that hk is not a source 
of sensitivity, whereas �̄k = 0 means that hk does not contribute to the structural sensitivity in the system at all.

Similarly to the gradient of the total degree of sensitivity � as a function of the respective error tolerances, 
the vector 

(

−�̄h1 , . . . ,−�̄hp

)

 needs to be scaled by the elements of ε0 to give us the optimal direction of decrease 

in � if the error terms εi are subject to a proportional reduction. This is described by 
(

−ε01�̄h1 , . . . ,−ε0p�̄hp

)

.

Outline of an iterative framework of experiments for reducing structural sensitivity.  When 
dealing with partially specified models, an important practical task is the reduction of the overall uncertainty in 
the system by decreasing the uncertainty in the system processes (i.e. the unknown model functions). Here we 
propose an iterative process of such a reduction based on improving our empirical knowledge of the uncertain 
functions hk.

As a starting point, we assume that experiments have produced data on the unknown functions h1, . . . , hp , 
to which we can fit some base functions ĥ1, . . . , ĥp with initial errors ε01, . . . , ε0p . We assume that it is possible to 
perform additional experiments on all uncertain processes in order to obtain more data such that the εi can be 
decreased, but with the natural constraint that the total error can only be reduced by a magnitude of 0 < c < 1 
in each round of experiments. The main question we consider here is: by which ratio should we aim to reduce 
the different error terms to achieve the maximum total reduction in structural sensitivity?

The essence of the approach is as follows (an outline is shown in Fig. 1). To determine the optimal step of 
length c by which errors in the space of (ε1, . . . , εp) may be reduced, we can choose either of the approaches 
given in the previous section: either using the gradient of the total degree of structural sensitivity, or the ratio of 
the partial degrees of structural sensitivity. If the gradient is used, it can be accurately approximated using finite 
differences with a small step size. New experiments can then be carried out to obtain extra data to which we can 
fit new base functions ĥ1, . . . , ĥp with more accurate error terms ε11, . . . , ε1p , with the aim that these new error 
terms should be as close as possible to those calculated to give the maximum reduction in structural sensitivity. 
The degree of sensitivity in the system can be computed at this stage to check that a corresponding reduction 
has been achieved. The process can then be repeated with the new base functions and error terms, until the 
structural sensitivity in the system has been reduced to an acceptable level. Note that the method resembles the 
gradient descent algorithm for iteratively finding local minima of a function, except with a fixed step size. In 
order to demonstrate the approach, in the next sections we show how structural sensitivity can be quantified and 
attributed to different uncertain processes in a well-known tritrophic food chain model, and apply the iterative 
framework to the model with a plausible artificial sequence of experiments.

Results
Description of a partially specified tritrophic food chain model.  We consider the well-known 
tritrophic Rosenzweig-MacArthur food chain model introduced by Hastings and Powell31:

where x is the population of a resource, y is an intermediate consumer and z is a top predator. We consider two 
unspecified functions: the per-capita growth rate of the resource, g(x) , and the functional response of the top 
predator, f

(

y
)

 , the per-capita feeding rate as a function of prey density. Consumption of x by y is described by 
a functional response given by the Holling disc equation7, with maximum attack rate a1 > 0 and half saturation 
constant b1 > 0 . k1 > 0 and k2 > 0 are trophic conversion factors and d1 > 0 and d2 > 0 are linear mortality 
rates of each predator. In the notation of the Methods section, the number of unspecified functions p = 2 , with 

h1
(

x, y, z
)

≡ g(x) and h2
(

x, y, z
)

≡ f
(

y
)

 . The remaining, specified model functions are the consumer func-

tional response f1
(

x, y, z
)

=
a1xy
b1+x , the consumer mortality f2

(

x, y, z
)

= d1y , and the top predator mortality 
f3
(

x, y, z
)

= d2z.
We fix the parameters of all specified model components at baseline values of a1 = 5 , b1 = 2 , k1 = 1 , d1 = 0.4 , 

k2 = 0.9 and d2 = 0.01 . We assume that experimental data is available on the unspecified functions g and f, to 

(14)
dx

dt
= xg(x)−

a1xy

b1 + x
,

(15)
dy

dt
=

k1a1xy

b1 + x
− f

(

y
)

z − d1y,

(16)
dz

dt
= k2f

(

y
)

z − d2z,
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which base functions of the form ĝ(x) = r
(

1− x
K

)

 and f̂ (x) = a2x
1+b2x

 can be fitted, respectively, with r = 1 , 
K = 1 , a2 = 0.1 , b2 = 2 . However, these fits are not perfect: the growth rate may have a maximum absolute error 
of εg = 0.1 , and the functional response may have a maximum error of εf = 0.005 . The fitted base functions are 
shown together with their error bounds in Fig. 2A and B. In addition to fitting available data, we also consider 
qualitative restrictions on the derivatives of g and f. For the functional response f, we require that it is of Holling 
type II, i.e. both increasing and decelerating, so that f ′

(

y
)

> 0, f ′′
(

y
)

< 0 ∀y ∈
[

0, ymax

]

 . Furthermore, in the 
absence of prey no predation is possible, so that f (0) = 0 must hold. Finally, as in (5), we consider that f ′ is a 
Lipschitz continuous function with Lipschitz constant no greater than B > 0 , that is |f ′′(y)| < B ∀y ∈

[

0, ymax

]

. 
For the per-capita growth rate of the resource, we make no further qualitative restrictions, except for the 
necessary requirement that g ′ is Lipschitz continuous with Lipschitz constant no greater than A > 0 so that 

|g
′′
(x)| < A ∀x ∈ [0, xmax].

Figure 1.   Schematic diagram of an iterative process of experiments and analysis to reduce structural sensitivity 
in a system with multiple uncertain functions.
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Based on the above assumptions, the resource growth rate must be a function g(x) satisfying the following 
conditions: 

	 (i)	 ĝ(x)− εg < g(x) < ĝ(x)+ εg : The function must lie within the error bounds (see Fig. 2A).
	 (ii)	 |g

′′
(x)| < A ∀x ∈ [0, xmax],A > 0 : The growth rate function must have a Lipschitz-continuous first 

derivative with Lipschitz constant at most A. In this paper, we take A = 10.

The functional response of the top predator must be a function f
(

y
)

 satisfying the following conditions: 

	 (i)	 f̂
(

y
)

− εf < f
(

y
)

< f̂
(

y
)

+ εf  : The function must lie within the error bounds (see Fig. 2B).

	 (ii)	 f (0) = 0 : The absence of prey implies the absence of predation.

	 (iii)	 f ′
(

y
)

> 0 ∀y ∈
[

0, ymax

]

 : Per-capita predation rate is an increasing function of prey density.

	 (iv)	 −B < f ′′
(

y
)

< 0 ∀y ∈
[

0, ymax

]

 : Per-capita predation rate is a decelerating function of prey density, 

and the functional response must have a Lipschitz-continuous first derivative with Lipschitz constant at 
most B. In this paper, we take B = 10.

Any coexistence equilibria of the system must satisfy the isocline equations (Supplementary Material 
Appendix A). For any strictly increasing function f, a single equilibrium value y∗ for the intermediate predator 
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Figure 2.   Sample base functions (solid lines) and maximal error bounds (dashed lines) for system (14)–(16). 
The dotted lines correspond to the correct model functions as defined in Eqs. (19) and (20) (A) Logistic per-
capita growth rate base function (21), together with maximal error bounds for εg = 0.1 . (B) Holling type II 
predation base function (22), together with maximal error bounds for εf = 0.005.
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is possible. Even if g is considered to be strictly increasing, multiple equilibrium values for the lowest trophic 
species x∗ , and consequently multiple z∗ values, are possible, but not for the parameters considered here.

Quantifying the structural sensitivity of the model.  Without specifying the functions f or g, we 
cannot determine the equilibria of the system or their stability, but a full description of the functions f and g is 
not necessary for this: only four values are. To fully determine the equilibrium values in the system, it is enough 
for us to know the local values y∗ and g(x∗) . The linear stability of a given equilibrium is determined by the 
linearisation of the system at this equilibrium, represented by the Jacobian matrix (Supplementary Material 
Appendix A)), for which we also need to know the quantities g ′(x∗) and f ′

(

y∗
)

 . All other necessary values 
are fixed by the isocline equations. The question of whether or not the stability of the equilibrium is sensitive 
to the precise equations for f and g is therefore equivalent to the question of whether or not the set V of values 
(

y∗, g(x∗), g ′(x∗), f ′
(

y∗
))

∈ R
4 which can be taken by valid functions g and f (i.e. satisfying properties (i)–(ii) 

and (iii)–(iv), respectively) contains subsets of positive measure which yield Jacobians with different stability 
properties. Essentially the problem reduces to finding a projection φ between the space of valid functions f, g, 
and the space of local values 

(

g(x∗), g ′(x∗), y∗, f ′
(

y∗
))

∈ R
4 taken by such functions. The question of projection 

can be stated as follows: given a set of values y∗, f (y∗), f ′
(

y∗
)

 , x∗, g(x∗), g ′(x∗) , does there exist at least one pair 
of functions f and g satisfying restrictions (i)–(iv) taking these values? The conditions for the existence of such 
functions are found in full in4. Aside from some small additions concerning the other qualitative restrictions, the 
conditions for the existence of a valid function g are

The conditions for the existence of a valid function f are similar. One can also use a computational method based 
on optimal control theory32 to approximately check for the existence of valid functions f and g.

(17)ug (x) > g low(x) := ĝ(x)− εg ∀x ∈ [0, xmax],

(18)lg (x) < gupp(x) := ĝ(x)+ εg ∀x ∈ [0, xmax].

Figure 3.   The dependence of the degree of sensitivity in system (14)–(16) on the error terms in the per-capita 
growth rate of the species on the lowest trophic level, εg and the functional response of the top predator, εf  . The 
cross marks the initial error as shown in Fig. 2A and B. (a) is the vector of magnitude 0.3 in the direction 
opposite to the gradient in the weighted norm: 

(

−ε0g ·
∂�
∂εg

,−ε0f ·
∂�
∂εf

)

 . (b) is the vector of the same magnitude in 
the direction (−10,−1) . The standard Euclidean norm of vector (b) is almost 8 times that of (a).
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The dependence of the degree of structural sensitivity of the system on the error terms εg and εf  is shown in 
Fig. 3. Here most of the structural sensitivity in the system seems to be caused by uncertainty in the functional 
response term: reducing the error in the growth term does not reduce the uncertainty in the system without a 
simultaneous reduction of the error in the functional response. The weighted gradient of the degree of sensitivity, 

giving the direction for the best local reduction of the error terms is 
(

−ε0g ·
∂�
∂εg

,−ε0f ·
∂�
∂εf

)

= (0.05960, 0.3319) 

(see vector (a) in Fig 3). The importance of using the weighted norm is emphasized by considering as an example 
the vector of the same magnitude in the weighted norm, 0.3, but in the direction (−10,−1) (see vector (b) in 
Fig 3). In the Euclidean norm, (b) is almost 8 times as large as (a).

In "Two approaches to quantify the relative contribution of each function to uncertainty" section, computation 
of partial degrees of structural sensitivity was suggested as an alternative to the gradient of the degree of structural 
sensitivity. To compute the partial degree of sensitivity with respect to g, for example, we assume the functional 
response f is fixed then compute the set of g(x∗) and g ′(x∗) values which correspond to valid functions g given 
these fixed f values, a 2D cross-section Vf  of the 4D set V. Based on this cross-section, we can compute the 
probability that the equilibrium is stable conditional on a given f, and the local partial degree of structural 
sensitivity with respect to g, �g

(

y∗, f ′
(

y∗
))

 . The partial sensitivity with respect to f, �f  , is computed in the 
same way, except that in this case we fix g. Figure 4 shows how the probability of a stable nontrivial equilibrium 
in system (14)–(16) varies when each functions are fixed, with error terms εg = 0.1 , εf = 0.005 , as in Fig. 2. 
Corresponding plots of the local partial degree of structural sensitivity are given in Supplementary Material 
B: �i = 0 when the probability of a stable equilibrium is 0 or 1, and �i = 1 when the probability of a stable 
equilibrium is 12 . To obtain the partial degrees of structural sensitivity �̄g , �̄f  , we need to take the expectation 

Figure 4.   The probability of a stable nontrivial equilibrium in model (14)–(16) conditional on each unspecified 
function for maximal errors εg = 0.1 , εf = 0.005 , as depicted in Fig. 2. Dark blue regions lie outside of the set 
of valid functions, V. (A) P

(

Stable|f
)

 as a function of the local values of the fixed functional response f. Only 
the growth rate g can vary. (B) P

(

Stable|g
)

 as a function of the local values of the fixed growth rate g. Only the 
functional response f can vary.
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of �g and �f  over all valid y∗, f ′
(

y∗
)

 and g(x∗), g ′(x∗) values with the marginal probability distributions ρg and 
ρf  (see Supplementary Material C). We find �̄g = 0.2148 and �̄f = 0.3260 , indicating that the system is more 
sensitive overall to the functional response.

Reducing the model structural sensitivity.  To demonstrate the iterative framework for reducing model 
uncertainty outlined in Fig. 1, we assume that the experimental data is generated from (14)–(16) with a cubic 
per-capita growth rate of prey and a hyperbolic tangent functional response of the top predator:

where α3 = 0.6 , α2 = −1 , α1 = −0.6 , α0 = 0.95 , aTrig2 = 0.04 , and bTrig2 = 1.38 . In place of empirical data, we 
will directly consider plausible fitted base functions and error terms (chosen such that the true functions are 
within the given error bounds) to represent the results of experiments or measurements. For the initial data 
available, we assume that the fitted base functions and the error bounds match the scenario presented in the 
Methods section. That is, the functional response and the per-capita growth rate are given by a Holling type II 
function and logistic growth, respectively:

where r = 1 , K = 1 , aHolling
2 = 0.1 and bHolling

2 = 2 . The two initial error terms are given by ε0g = 0.1 and 

ε0f = 0.005 . The true functions, along with the initial base functions and error bounds are shown in Fig. 2A and 

B, and as was already shown, the degree of structural sensitivity in the system with these base functions and 
errors is �0 ≈ 0.5123.

In order to find the best way to reduce the degree of structural sensitivity, we consider a total error reduction 
in each round of experiments of magnitude c = 0.3 . To determine the best direction to make this error reduction 
we will use the partial degrees of sensitivity. As previously  shown, these are given by �̄g = 0.2148 and 

�̄f = 0.3260  ,  g iv i ng  u s  an  approx i m at e  d i re c t i on  of  opt i m a l  e r ror  d e c re a s e  o f 
(

−ε0g · �̄g ,−ε0f · �̄f

)

|(
εg=ε0g ,εf=ε0f

) = (−0.0181,−0.00132) . A reduction in the total error of magnitude c = 0.3 

in this direction results in errors of ε1g ≈ 0.0835 and ε1f ≈ 0.00375.
Consider now that a second round of experiments is conducted which yields new data on the functions 

such that the reduction of the errors to ε1g ≈ 0.0835 and ε1f ≈ 0.00375 follows. As an example, consider an Ivlev 
functional response and a quadratic per-capita growth function:

where β2 = −0.4303 , β1 = −0.5425 , β0 = 0.87 aIvlev2 = 0.042 and bIvlev2 = 1.9269 . These updated base functions 
are plotted together with the corresponding error bounds and the correct functions in Fig. 5A and B. The cor-
responding degree of structural sensitivity in this system is found to be �1 = 0.2397 , a reduction of more than 
50%, substantially more than the total weighted reduction in εg and εf  of ≈ 21% . In order to determine the best 
way to reduce the sensitivity in the system in the next round of experiments, we again compute the partial degrees 
of sensitivity of the system with respect to the two functions. The probability of a stable equilibrium in the system 
conditional on f, P

(

Stable|f
)

 , is shown in Fig. 6A, and P
(

Stable|g
)

 is plotted in Fig. 6B. The partial degrees of 
sensitivity are calculated to be �̄g = 0.1472 and �̄f = 0.1203 , which gives an optimal direction for error decrease 

of 
(

−ε1g · �̄g ,−ε1f · �̄f

)

|(
εg=ε1g ,εf=ε1f

) = (−0.0123,−0.000451) , so that the optimal step of length 0.3 to reduce 

the error terms yields ε2g ≈ 0.0638 and ε2f ≈ 0.00305.

Consider that a final round of experiments is conducted which yields improved data on the functional 
response and per-capita growth rate such that the functions can be estimated with these improved errors 

ε2g ≈ 0.0638 and ε2f ≈ 0.00305 . For example, we may assume that the correct functional forms are finally fitted, 

but with inaccurate parameters:

(19)gTrue(x) = α3x
3 + α2x

2 + α1x + α0,

(20)fTrue
(

y
)

= a
Trig
2 tanh

(

b
Trig
2 y

)

,

(21)ĝ0(x) := r
(

1−
x

K

)

,

(22)f̂0(y) :=
a
Holling
2 y

1+ b
Holling
2 y

,

(23)ĝ1(x) := β2x
2 + β1x + β0,

(24)f̂1(y) := aIvlev2

(

1− exp bIvlev2 y
)

,
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where α3 = 0.53 , α2 = −0.97 , α1 = −0.47 , α0 = 0.905 , aTrig2 = 0.039 , and bTrig2 = 1.4 . These final base functions 
are plotted together with the new error bounds and the corresponding true functions in Fig. 7A and B. The 
corresponding degree of structural sensitivity in the system is found to be �2 = 0.2094 . Over the course of 

the two iterations, the degree of structural sensitivity in the system has been reduced from �0 = 0.5123 by 

approximately 60%, by reducing the error terms from ε0g = 0.1 , ε0f = 0.005 , to ε2g ≈ 0.0638 and ε2f ≈ 0.00305 , a 

total reduction of 38%. One may perform further iterations to continue the reduction of structural sensitivity, 
eventually approaching � = 0 provided the system is structurally stable; however, in practice it may be difficult 
to achieve an error of less than 2.5–5% in a typical biological experiment.

Discussion
In conclusion, in this paper we address the question of sensitivity analysis of a model with respect to uncertainty 
in its component functions, rather than just its parameters, and we outline such an approach to sensitivity 
analysis where the model output we’re interested in is the stability or otherwise of an equilibrium. The consid-
eration of uncertain functions to represent biological processes in mathematical models is necessary since the 
use of particular equations to represent these processes is far more restrictive than is often supposed. Models 
can be sensitive to changes in their constituent functions while remaining robust to variation of the parameters 

(25)ĝ2(x) = α3x
3 + α2x

2 + α1x + α0,

(26)f̂2(y) = a
Trig
2 tanh

(

b
Trig
2 y

)

,
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Figure 5.   Updated base functions (solid lines) and maximal error bounds (dashed lines) after one iteration of 
the procedure for reducing structural sensitivity detailed in Fig. 1. (A) Quadratic per-capita growth rate base 
function (23), with maximal error ε1g ≈ 0.0835 . The true per-capita growth rate is given by the dotted line, for 
comparison. (B) Ivlev predation base function (24), with maximal error ε1f ≈ 0.00375 . The true functional 
response is given by the dotted line, for comparison.
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that specify these functions, a form of sensitivity known as structural sensitivity1,2,13. The structural sensitivity 
paradigm poses both challenges and opportunities. Parameter-based sensitivity analysis can miss much of the 
possible uncertainty in a model because only a severely restricted subset of the space of possible model functions 
is considered, and this necessitates the development of new approaches going beyond the use of precise func-
tions. But these new approaches may also open up new prospects for identifying influential factors in biological 
systems and those of other disciplines3,6,19. We have introduced two measures to quantify the contribution of the 
impact of different sources of uncertainty to the model predictions for the stability of a given equilibrium state. 
We show how either measure can be used to inform an efficient approach to reduce the structural sensitivity in 
the model by iteratively obtaining targeted empirical data.

Our approach can be considered as an extension of variance-based sensitivity analysis (SA)23 whereby the 
uncertainty in the model output is partitioned among the various input parameters. The first measure we pro-
pose considers the degree of structural sensitivity in the system to depend on the error terms in each constituent 
model function, �

(

ε1, . . . , εp
)

 . By varying these error terms one can approximate the gradient of the degree of 
structural sensitivity with respect to each of them, and the respective magnitudes of the components represent 
the rate of increase/decrease in model uncertainty that would result from small changes in the accuracy of the 
measurement of each function. Approaches to SA can be classified as either local or global. Local SA approaches 
revolve around computing or estimating the partial derivatives of the relevant model output with respect to each 
input parameter by varying one factor at a time26, while global SA approaches consider the effects of different 
inputs on the variance of the model output with sampling over the whole region of parameter values29,33. The 
gradient of sensitivity can be understood as a local SA of a global uncertainty analysis (measured by the degree 
of structural sensitivity) with respect to the ranges of its inputs. Note that a global SA with respect to the errors 

Figure 6.   The probability of a stable nontrivial equilibrium in the model (14)–(16) conditional on each 
unspecified function after one iteration of the procedure for reducing structural sensitivity detailed in Fig. 1. 
The updated error terms are ε1g ≈ 0.0835 and ε1f ≈ 0.00375 , as depicted in Fig. 5. Axis have the same range as 
in Fig. 4. Dark blue regions lie outside of the set of valid functions, V. (A) P

(

Stable|f
)

 as a function of the local 
values of the fixed functional response f. Only the growth rate g can vary. (B) P

(

Stable|g
)

 as a function of the 
local values of the fixed growth rate g. Only the functional response f can vary.
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εi , or any other global exploration of this space, isn’t valid: the error bounds are obtained as confidence intervals 
centered around fitted base functions. Significantly smaller error bounds restrict the analysis to the particular 
functional forms of these base functions, which are not justified.

The second measure we introduce is based on a global SA where the input parameters are the values of the 
unknown functions that determine the equilibrium’s stability. These may vary over a bounded region which cor-
responds to model functions satisfying the necessary qualitative and quantitative constraints. We can compute 
the degree of sensitivity with respect to a target function when all other functions are fixed, then average this 
over the other functions to obtain the partial degree of sensitivity with respect to the target function, a measure 
of the overall sensitivity of the model to this function, including through interactions with the uncertainty in the 
other functions. In terms of variance-based SA, the partial degrees of sensitivity are equivalent to the total effect 
of each function on the stability of the equilibrium. One advantage of using the partial degrees of sensitivity over 
the gradient of the degree of sensitivity is that the variables determined by the general functions are treated the 
same as the model parameters of any fixed functions, so that sensitivity analysis with respect to the unspecified 
functions can be straightforwardly extended to include a simultaneous global SA with respect to the parameters 
of the specified functions.

Since global SA with a large number of inputs requires the evaluation of high-dimensional integrals, and 
the estimation of variances and expectation needs to be made based on the potentially costly computation of 
model outputs, techniques such as Latin Hypercube sampling34,35 or the use of Sobol’ sequences29,36 are often 
used to more efficiently sample the multidimensional input space in a more representative way than can be 
obtained by brute-force Monte Carlo approaches. In the present paper, no model evaluation is required, since 
only the eigenvalues of the Jacobian matrix are tested, reducing the computational demand. When the number 
of uncertain functions that need to be investigated are large, pseudorandom sampling strategies are likely to be 
beneficial. The issue is complicated, however, by the fact that the set of local function values corresponding to 

0 0.2 0.4 0.6 0.8 1

Prey population, x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
er

-c
ap

ita
 g

ro
w

th
 r

at
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Intermediate predator population, y

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

P
er

-c
ap

ita
 fe

ed
in

g 
ra

te
 o

f t
op

 p
re

da
to

r

A

B

Figure 7.   Updated base functions (solid lines) and maximal error bounds (dashed lines) after two iterations 
of the procedure for reducing structural sensitivity detailed in Fig. 1. (A) Cubic per-capita growth rate base 
function (25), with maximal error ε2g ≈ 0.0638 . The true per-capita growth rate is given by the dotted line, for 
comparison. (B) Hyperbolic tangent predation base function (26), with maximal error ε2f ≈ 0.00305 . The true 
functional response is given by the dotted line, for comparison.
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valid functions may have a complex geometry, with dependence among the different unspecified functions37, 
while most sampling techniques are designed for independent inputs in a hypercube.

Implementation of either measure introduced here quantifies the contribution of each unspecified function 
to the total structural sensitivity. This allows us to reduce uncertainty in the model outputs by suggesting an 
optimal ratio in which to reduce the error terms in the unspecified functions, and thus decide which experi-
ments should best refine the model (the sketch of the procedure is shown in Fig. 1). In the tri-trophic ecosystem 
model considered here as an example, the structural sensitivity was reduced by around 60% from �0 = 0.5123 
to �2 = 0.2094 through a reduction in the errors εf  and εg in the unknown functions of around 40%. We argue 
that when designing a sequence of experiments to reduce model sensitivity, an iterative sequence of experiments 
should be more efficient than a single but more extensive experiment when aiming to obtain the best accuracy 
for unknown functions. This is because the partial sensitivities are local with respect to the error terms, and the 
optimal ratio in which to decrease the error terms may change as these errors are reduced and more accurate 
fits are obtained. However, in practice single extensive experiments may be more economical than sequences 
of less-extensive ones and it may only be feasible to investigate a single uncertain process at a time. In this case, 
the partial degrees of structural sensitivity can still be used to single out functions for further investigation. The 
ultimate convergence of the method is a complicated matter (if the underlying model system is structurally 
unstable it will be impossible), but is a moot point in practical terms, since we are rarely able to reduce error 
terms below a modest level due to experimental noise.

In this paper, it has been assumed that model functions are obtained directly from measurements before being 
introduced into the model. However, in many cases only time series data for the whole system is available, so 
all parts of the model needed to be fitted simultaneously by comparing model and time series outputs through 
methods such as maximum likelihood estimation38,39. With such approaches, it is possible to produce estimates 
of the confidence intervals of the parameters, but not of the function values themselves. To do this, advanced 
techniques for nonparametric regression24,25 may be used. Another approach is to make an initial choice of func-
tions and determine the possible range of their parameters, then to find the maximum and minimum values for 
each function over this range. Except in simple cases, it will generally not be possible to maximise a given func-
tion across its entire domain simultaneously, because of non-monotonic dependence on certain parameters, or 
because parameters have combined effects on the likelihood. In this case, we need to decide how to specify the 
error bounds, whether e.g. to maximise or minimise the average of the function over its domain, to maximise each 
parameter simultaneously or maximise the function values piecewise, each of which has its disadvantages. Once 
error bounds are obtained for the function values, however, the approach outlined here can be applied as usual.

There remain several open questions with respect to the proposed structural sensitivity analysis framework. 
Firstly, there are situations where the method used here to compute the space of valid function values V is not 
applicable. We have projected the set of valid functions into the space of local values using arguments based 
on the compatibility of two sets of upper and lower bounds on functions over a 1D domain. However, we may 
also wish to consider functions on higher dimensional domains: for example, in model (14)–(16) we treat the 
functional response of a predator as a function of prey density, but it may also be dependent on predator density 
as with a ratio-dependent functional response. In the framework presented here, we also assume that all func-
tions vary independently within their given range, which makes sense for independent experiments on each 
function, but if the functions are all estimated from the same data, modification of the projection used would be 
preferable. Finally, the analysis carried out here has been largely qualitative in nature, concerning the stability 
of an equilibrium. In general, however, other important quantitative model outputs such as non-equilibrium 
attractors or transient dynamics can also be sensitive to variations in the model function. All of these issues 
require extensions of the method, with consideration of quantitative outputs being particularly challenging since 
it potentially necessitates consideration of the entire range of function values.
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