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Chapter 1

Preface

This thesis is mainly located in the area of applied analysis. In particular, it deals
with variational methods for direct and inverse problems involving functions with
discontinuities. There are tight connections with numerical analysis and with iter-
ative optimization schemes. Since we also consider manifold-valued data we base
on concepts from differential geometry as well. Further, there is a (formal) link
to maximum a posteriori estimators in Bayesian statistics. Application areas are
signal and image processing, imaging, as well as data analysis.

Functions having discontinuities appear when modeling real-life problems in
various branches of applied science, for instance, in connection with crack forma-
tion in mechanics or as earth mantle layers in geophysical exploration. In biology
and medicine, on which the applications in this thesis are primarily focusing, dis-
continuities appear in different forms in microarray data [SNS+01], tomography
[RR07], single-molecule fluorescence resonance energy transfer [JBI+08], as well
as microscopy [ZLMY+02]. Another very concrete example is the rotation of the
bacterial flagella motor [SRL+05]. The latter data represent angles and are thus
not living in a linear space, but on the cricle. Circle valued data also appear in SAR
imaging [MF98]. Further nonlinear data spaces appear when considering non-flat
models for color image processing [CKS01]. In medical imaging, a prominent
example with manifold-valued data is diffusion tensor imaging [BML94].

The discontinuities often represent highly significant information; for instance,
they determine cell or tissue boundaries, or boundary layers between nerve fibers.
Hence, it is important to capture this information from the measurements which
are often corrupted by noise. Classical regularization techniques such as Tikhonov
regularization do not respect the discontinuities of the underlying signals, and we
lose significant information when applying them. Further, classical techniques
typically do not apply to data living in nonlinear spaces.

Modern regularization approaches aim at preserving discontinuities. One di-
rection of research aims at finding suitable sparse representation systems such as
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2 Chapter 1. Preface

wavelets [DeV98]. For multivariate functions, shearlets [LLKW05] and curvelets
[CD04], collectively known as parabolic molecules [GK14], are suitable systems.
Another approach to discontinuity preserving regularization using sparse expan-
sions are wedgelets, introduced in [Don99].

We here primarily follow the approach via free-discontinuity problems. Free-
discontinuity problems describe situations where the solution of interest is defined
by a function and a lower-dimensional set consisting of the discontinuities of the
function [DG91, FW10]. One of the historically first free-discontinuity problem
is given by the Potts model [Pot52, GG84] or piecewise-constant Mumford-Shah
model [MS85, MS89]. Here the task is to minimize an energy functional which
consists of a data term and a regularizing or prior term. The data term penalizes
the distance to the data, and the prior term penalizes the size of the discontinuity
set, i.e., its Hausdorff measure. In the Potts model, the underlying target functions
u are assumed to change only at the discontinuity set. The Mumford-Shah model
[MS89] additionally penalizes the variation on the complement of the disconti-
nuity set which promotes piecewise smooth minimizers. The target variables are
functions of bounded variation where the corresponding signed measure has no
Cantor part. From an algorithmic point of view, the considered free-discontinuity
problems are challenging nonsmooth and nonconvex problems. A related vari-
ational regularization technique is total variation (TV) regularization. Here the
regularizer penalizes the total variation of the candidate function. Whereas the
TV problem is convex for linear space data, it is nonconvex for manifold-valued
data in general.

This thesis provides several contributions to variational regularization based
on free-discontinuity problems and to TV regularization. We consider vector
space and manifold-valued data. The central focus is on the development of com-
putationally feasible algorithms. We further provide theoretical foundations as
well as application to concrete problems to show the potential of the derived meth-
ods. The articles comprising this thesis can be grouped as follows:

• Free-discontinuity methods for directly measured vector space data [1, 2];

• Free-discontinuity methods for indirectly measured vector space data [3, 4];

• Free-discontinuity methods for manifold-valued data [5];

• TV regularization for manifold-valued data [6, 7];

• Higher order TV type methods for manifold-valued data [8, 9].

The thesis consist of a summarizing chapter as well as the included articles.
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Chapter 2

Summary

We here summarize the content of the publications comprising this thesis. The
chapter is organized as follows. We start out by briefly giving motivation for the
considered problems and by reviewing the state of the art in Chapter 2.1. Here,
we consider data living in linear space and in manifolds as well as the direct and
indirect measurement case. In the rest of the chapter, we summarize the contribu-
tions of this thesis. The contributions concerning free-discontinuity problems for
directly measured data in a linear space are the topic of Chapter 2.2. We deal with
free-discontinuity problems in connection with inverse problems in Chapter 2.3.
Then, we consider variational methods for manifold-valued data. The topic of
Chapter 2.4 are free-discontinuity problems for manifold-valued data. In Chap-
ter 2.5, we consider total variation minimization for manifold-valued data as well
as higher order generalizations.

2.1 Motivation and State of the Art

Let us start to motivate the use of edge-preserving variational methods and why it
is important to consider nonlinear data spaces in this context.

Edge-preserving variational methods try to restore the discontinuities of the
signals or functions from the measured data. This is important because we en-
counter such functions with discontinuities almost everywhere in our environ-
ment and, in particular, in various branches of applied science. For example, they
appear in connection with boundary layers in geophysics. In the biomedical con-
text, on which we are concentrating here, functions with discontinuities appear
in tomography [RR07], in microscopy [ZLMY+02], and in connection with mi-
croarray data [SNS+01, DMH+03, HST+04] to mention some examples. For fur-
ther examples, we refer to the papers [LJ11a, LJ11b, FMS14] and the references
therein.
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6 Chapter 2. Summary

A more specific, but prominent example of data representing functions with
discontinuities is the time evolution of the rotation angle of the bacterial flagella
motor [SRL+05, SB08]. As angular data, these data live on the unit circle. Circle
valued data also appear in SAR imaging [MF98] where they represent phase val-
ues. These examples show that frequently the data does not live in a linear, but in
a nonlinear space. Further examples of nonlinear data spaces appear in connection
with non-flat model spaces for color image processing such as HSV, HSI as well
as chromaticity-based spaces; see, e.g., [CKS01, VO02]. Another data space im-
portant for application is the Euclidean motion group which appears for instance
in the context of registration problems; see, e.g., [URDDS05, RBB+12].

In medical imaging, a very prominent example with manifold-valued data
is diffusion tensor imaging (DTI). To give the reader a more concrete impres-
sion, let us briefly discuss DTI in more detail here. DTI allows to quantify
diffusional characteristics non-invasively [BML94, AP08, JBB09]. DTI is help-
ful in the context of neurodegenerative pathologies such as, e.g., schizophrenia
[FMC+00, KMW+07], autism [ALL+07] or Huntington’s disease [RLB+10]. In
DTI, the data can be viewed as living in a Riemannian manifold, namely the man-
ifold of positive (definite) matrices; see, e.g., [PFA06]. The underlying distance
corresponds to the Fisher-Rao metric [Rao45] which is statistically motivated
since the positive matrices (which are called diffusion tensors) represent covari-
ance matrices. The diffusion tensors model the diffusivity of water molecules.
The discontinuities represent the boundaries between different kind of tissue.

As the mentioned examples show, data representing functions with disconti-
nuities appear frequently in applications, and these data may be manifold-valued.
Typically, the discontinuities encode most significant information such as the
boundaries between different nerve fiber bundles in DTI. Therefore, it is important
to reliably extract this information from the data. Unfortunately, classical regular-
ization techniques, such as Tikhonov regularization based on Sobolev seminorms,
do not capture the discontinuities of the underlying signals; they treat the ob-
jectives as smooth functions, and we lose most significant information. Modern
regularization approaches try to preserve discontinuities.

Regularization based on free-discontinuity problems as well as on total varia-
tion models and corresponding higher order generalizations are examples of such
modern regularization approaches. Since these approaches are the topic of this
thesis, we start out discussing them in detail first. Further approaches are dis-
cussed later on.

Free-discontinuity problems describe situations where the solution of interest
is defined by a function and a lower-dimensional set describing the discontinuities
of the function [DG91, FW10]. One of the earliest free-discontinuity problems is
the Potts model. It has its roots in the work of R. B. Potts on statistical mechanics
[Pot52] in 1952. It has been first used in imaging by Geman and Geman [GG84].
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(a) Noisy data f . (b) Piecewise-constant u. (c) Discontinuity set C.

Figure 2.1: Segmentation of a noisy color image based on the Potts model using
the method developed in [2].

The Potts problem is given by

minimize
u,C

γ length(C)+E(u, f ). (2.1)

Here, we optimize w.r.t. the piecewise-constant function u where we denote its
discontinuity set by C⊂Ω⊂R2; Ω is the domain of the image u. In the described
bivariate situation, the length is the one-dimensional Hausdorff measure which
agrees with the intuitive length for smooth boundaries; in the univariate situa-
tion, length(C) corresponds to the number of jumps of u, where C is the jump set
of u. In a general multivariate setup Ω ⊂ RL, the penalty is given by the (L−1)-
dimensional Hausdorff measure of C. The parameter γ > 0 controls the trade-off
between the boundary length penalty and the data fidelity given by the functional
E. The data fidelity term E is determined by the data acquisition modality. It
measures how good u explains the acquired data f . In the simplest case, E is the
squared L2 distance E(u, f ) = ‖u− f‖2

2 and a minimizer u is a piecewise constant
regularization of f . Its discontinuity set C yields a partitioning of the image which
makes image segmentation a typical application [GG84, BVZ01]; for an illustra-
tion, see Figure 2.1. Another important class of free-discontinuity problems is
given by the Mumford-Shah models. They are of the form

minimize
u,C

γ length(C)+α

∫
Ω\C
|∇u(x)|q dx+E(u, f ). (2.2)

Instead of assuming u to be piecewise constant, we now penalize its Lq-variation
on the complement of the discontinuity set C. This promotes piecewise smooth
minimizers. Here, the parameter α > 0 controls the influence of the variation
penalty. In particular, the Potts model corresponds to the degenerate case α → ∞.
(This might explain why the Potts model is also known as piecewise-constant
Mumford-Shah model.) We notice that the total variation model corresponds to
γ → ∞ and q = 1. As for the Potts model, the set C is interpreted as the discon-
tinuity set of the image u. It can serve as a basis for segmentation as well. The
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Mumford-Shah model has been studied in the seminal work of Mumford and Shah
[MS89]; its discrete variant has been investigated by Blake and Zisserman [BZ87].

From an algorithmic point of view, the considered free-discontinuity prob-
lems are very challenging. The corresponding discretized multivariate versions
are NP-hard; cf. [Vek99, AW10] for related statements. Due to their importance
in data processing, various strategies have been proposed. The discussion of the
state-of-the-art algorithms for directly measured data, indirectly measured data,
and manifold-valued data are central topics of Chapter 2.1.1, Chapter 2.1.2, and
Chapter 2.1.3, respectively. A central focus of this thesis is the design of new
algorithmic strategies for these classes of problems.

Instead of penalizing the length of the discontinuity set C and the Lq-variation
on its complement in (2.2), total variation (TV) regularization penalizes the total
variation TV (u) of the candidate u. For differentiable functions u, a version of the
total variation can be defined by TV (u) =

∫
Ω
|∇u|dλ . Then, the TV functional is

given by
minimize

u
α TV(u)+E(u, f ). (2.3)

As above, the parameter α regulates the trade-off between the data fidelity E(u, f )
and the regularity which is measured with respect to the total variation here. The
natural underlying Banach space for the TV problem is the space BV of func-
tions of bounded variation, i.e., the space of functions whose derivatives (in the
sense of distributions) are regular finite signed vector-valued measures. The total
variation defines a seminorm on BV. We note that there are functions with dis-
continuities/jumps which are contained in BV. In contrast to the Mumford-Shah
penalty, the TV penalty measures the jump height as well. TV regularization was
first introduced in the early 1990ies by Rudin, Osher and Fatemi [ROF92]. It
has been used in many applications, e.g., [DBFZ+06, ZPB07, AS12], and various
theoretical properties have been shown, e.g., [CL97, PCXD99].

A lot of different algorithms for TV minimization have been proposed since
the early 1990ies, e.g., [ROF92, Cha04, NNZC08, GO09, YZY10, CJK10, CP11a].
TV regularization for vector and matrix-valued data were, for instance, consid-
ered in [BC98, RWT+14, LO14]. In contrast to linear space data, the inves-
tigation of manifold-valued data has started only recently. Related theoretical
work is [GM06, GM07]; first algorithmic approaches are [SC11, LSKC13] and
[6] which is part of the present thesis. A focus of this thesis are algorithms for
total variation regularization for manifold-valued data as well as second order TV
type generalizations for manifold-valued data. A more detailed discussion includ-
ing the state of the art is given in Chapter 2.1.4.

The recovery of functions with discontinuities from incomplete linear mea-
surements can also be performed assuming as a regularizing prior its nearly-sparse
expansion with respect to a prescribed dictionary of functions. It is, for instance,
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well known that one-dimensional piecewise smooth functions exhibit sparse ex-
pansions with respect to wavelets [DeV98]. For multivariate functions, shear-
lets [LLKW05] and curvelets [CD04], collectively known as parabolic molecules
[GK14], play the same role. These approaches complement the ones mentioned
in the previous paragraphs as they employ the molecules to model the edges (in an
a priori semidiscrete way) whereas the previous employ derivatives (in the gen-
eralized sense) as analysis operators. In the context of discontinuity preserving
regularization, curvelets were employed for the reconstruction of frescos using
iterative thresholding algorithms [FR08a, FR08b]. Another approach to disconti-
nuity preserving regularization using sparse expansions are wedgelets, introduced
in [Don99]. Here, the (weighted) number of wedges related to a quadtree decom-
position together with the complexity of this decomposition is penalized.

2.1.1 Free-Discontinuity Problems for Directly Measured Data
In case of direct measurements, the data f are noisy versions of the underlying
signal or image. Hence, a natural data fidelity is given by

E(u, f ) = ‖u− f‖p
p =

∫
Ω

| f (x)−u(x)|p dx (2.4)

with p≥ 1. Here, a Gaussian noise model corresponds to the squared L2 distance
(p = 2) which is the most classical setup and which has been extensively studied
[MS89]. For Laplacian noise, or if there are severe outliers, the L1 data fidelity
term is typically a better choice. The symbol Ω ⊂ RL denotes the domain of the
data f and f can be vector-valued meaning that f (x) lives in RK; for instance,
K = 3 for color images, K = 10 to K = 40 for multispectral images, or K = 10 to
K = 200 for feature images as they are used in texture segmentation.

In the classical direct setup of data terms of the form (2.4), many theoreti-
cal aspects of free-discontinuity problems are well-understood nowadays. A rich
source of information in this respect is the book of Ambrosio et al. [AFP00].
To mention one relevant topic treated there, showing the existence of minimiz-
ers required sophisticated methods from geometric measure theory as approached
first in [Amb89]. The Potts problem and the Mumford-Shah problem on discrete
domains have been studied by Geman and Geman [GG84] and Blake and Zis-
serman [BZ87]. Later, Chambolle [Cha95] has shown that the discrete function-
als of Blake and Zisserman converge (in sense of Γ-convergence) for increasing
sampling density to an anisotropic variant of the Mumford-Shah functional. Γ-
convergence to the classical Mumford-Shah functional was obtained using adap-
tive finite elements discretization [CDM99]. Boysen et al. [BLMW07, BKL+09]
have investigated the stability (in the statistical sense) of univariate Potts estima-
tors with L2 data fidelity. They have shown consistency which means that the
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minimizers of a sequence of increasingly finer discretized noisy problems con-
verge to a minimizer of the continuous domain noise-free Potts problem as the
discretization gets finer and if the noise level does not increase too fast.

Existing computational approaches. Classical algorithmic approaches to free-
discontinuity problems are simulated annealing [GG84], graduated non-convexity
[BZ87], and approximations by elliptic functionals [AT90]. Current state-of-the-
art methods are based on active contours, convex relaxations, and graph cuts.
In the active contour approach, the discontinuity set C is parametrized (e.g, via
snakes [KWT88] or, implicitly, via level sets [CV01, VC02].) One iteratively
evolves the discontinuity set C and updates the target function u while C is fixed.
The direct access to the discontinuity set allows to include shape priors [CRD07]
or user interaction [DGTSU12]. On the flipside, they are computationally expen-
sive on large domains. Dimensionality reduction strategies – such as the narrow
band method – reduce the computational load, but come with a rather high sensi-
tivity to the initialization of C. Furthermore, active contours require the a priori
knowledge of the number of labels. In convex relaxation approaches, the original
problem is replaced by a related convex problem which is then solved using con-
vex optimization techniques [PCBC09, LKY+09, SCC12]. They are less affected
by certain metrization errors related to the discretization of the jump penalty,
but their computational costs are very high for high-dimensional range spaces.
The graph-cut based α-expansion algorithm of Boykov et al. [BVZ01] iteratively
solves a series of binary segmentation problems. Each subproblem constitutes
a max-flow/min-cut problem which is solved using graph cuts. Graph cuts are
presently the benchmark in terms of trade-off between computational costs and
quality. However, their computational costs grow exponentially in the dimension
of the range space K.

For univariate data, the considered free-discontinuity problems are not NP-
hard. They can be solved exactly using dynamic programming [MS89, Bla89,
WL02, FKLW08]. Solvers for the univariate problems are interesting in their own
right as univariate data appear for instance as time series. Furthermore, they are
important as basic building block of the multivariate algorithms developed in the
thesis. The state-of-the-art solver for the univariate Potts problem with L2 data
term has O(n2) time and O(n) space complexity w.r.t. the length of the signal
[FKLW08]; the previous state-of-the-art solver for the univariate Potts problem
with L1 data term has O(n2 logn) time and O(n2) space complexity. The solvers
proposed for the Mumford-Shah problem have cubic complexity [Bla89].
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2.1.2 Free-Discontinuity Problems for Indirectly Measured
Data

Often the function of interest u is only measured indirectly; that is, we have data f
given as a noisy version of H(u), where H is a (possibly nonlinear) measurement
operator. Examples are medical imaging modalities such as computed tomogra-
phy, photoacoustic tomography, and magnetic particle imaging. For segmentation
in such setups, it is common to first reconstruct the image by a stabilized inversion
of the operator H and then to segment the reconstructed image. In particular for
incomplete or very noisy measurements, the results produced by this two-stage
process are often unsatisfactory. Combined approaches can provide a significant
improvement [RR07]; for a visualization, see Figure 2.2. Joint reconstruction and
segmentation can be modeled by the data term

E(u, f ) = ‖H(u)− f‖p
p =

∫
Ω′
|H(u)(x)− f (x)|p dx. (2.5)

For such data terms, additional assumptions (which are often fulfilled in appli-
cations) are required to guarantee the existence of minimizers in a continuous
setting; cf. [RS01, RR10, FW10, FMS13]. The regularizing properties in the
sense of inverse problems were analyzed for the Potts problem in [RR10] and
for the Mumford-Shah problem in [Ron08, JMP14]. In contrast to (2.4), the
data term (2.5), in general even in the univariate setting, leads to NP-hard prob-
lems [AW10].

Existing computational approaches. In contrast to the direct measurement
case, there is significantly less work dealing with algorithms for the indirect mea-
surement variants. The earliest approaches are based on Ambrosio-Tortorelli ap-
proximations [RS01, BSK04]. Rondi and Santosa [RS01] use this approach for
the Mumford-Shah and the Potts model in electrical impedance tomography; Bar
et al. [BSK04] apply it for blind image deblurring. Ambrosio-Tortorelli approx-
imations are easy to implement but computationally rather expensive. For linear
inverse problems with L2 data term, Fornasier and Ward [FW10] propose iter-
ative thresholding algorithms and apply them to inpainting problems; see also
[FMS13, AFS13]. Candès, Wakin, and Boyd [CWB08] use iteratively reweighted
total variation minimization for piecewise constant recovery problems. Nikolova
et al. [NNZC08, NNT10] derive algorithms of graduated non-convexity type.
Kim et al. [KTCW02] propose a level-set active contour approach for deconvo-
lution problems. Ramlau and Ring [RR07] use a level-set approach for the joint
reconstruction and segmentation of x-ray tomographic images; related methods
are applied to electron tomography [Kla11] and single photon emission computed
tomography [KRR11]. As in the case of direct measurements, the main advantage
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(a) Shepp-Logan
phantom (256×256
pixel).

(b) FBP reconstruc-
tion from 7 angles,
tuned w.r.t. PSNR.

(c) Segmentation
of FBP result using
graph cuts.

(d) Joint reconstruc-
tion and segmenta-
tion.

Figure 2.2: Reconstruction and segmentation from highly undersampled Radon
data (7 projection angles). The joint reconstruction and segmentation algorithm
of [SWFU15] (which bases on [2, 4]) outperforms the two-stage process (b),(c).

of level-set approaches lies in the access to the parametrization. The drawbacks
are the computational costs on large domains.

In a noise free setup and under certain assumptions on the measurement oper-
ator (e.g., restricted isometry property) the minimizers of the Potts problem agree
with the minimizers of the (convex) total variation model; this is a central result of
compressed sensing [Don06, CRT06, NW13]. However, in general, and in partic-
ular for noisy data, the results of the Potts model and total variation minimization
are often different; for a discussion see [Cha09].

2.1.3 Free-Discontinuity Problems for Manifold-Valued Data
When the data live in a (Riemannian) manifold, there is no norm available to
devise a data term. Instead, we may use the distance d induced by the Riemannian
metric to obtain

E(u, f ) =
∫

Ω

dp(u(x), f (x))dx.

In the context of manifold-valued data, the symbol |∇u(x)| in (2.2) can be under-
stood in the sense of metric differentials [Kir94]. Examples of manifold-valued
data are circle and sphere-valued data as appearing in SAR imaging [MF98] and
color image processing [CKS01, VO02, KS02, LO14]. Other examples are data
taking values in the special orthogonal group SO(3) expressing vehicle headings,
aircraft orientations or camera positions [URDDS05], Euclidean motion group-
valued data [RBB+12] as well as shape-space data [MM07]. As already men-
tioned, another prominent manifold is the space of positive (definite) matrices
endowed with the Fisher-Rao metric [Rao45] which is the data space in DTI
[PFA06]. This space is a Cartan-Hadamard manifold; it has particularly nice
differential-geometric properties such as non-positive sectional curvature.
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Related work dealing with the processing of data with values in a manifold are
wavelet-type multiscale transforms [URDDS05, GW09, Wei10, WYW11, Wei12a,
Wei12b] as well as manifold-valued partial differential equations [TD01, CTDF04,
GHS15]. Work on statistics on Riemannian manifolds is [OC95, BP03, FLPJ04,
BP05, Pen06, FJ07].

Existing computational approaches. In the context of DTI, Wang and Vemuri
consider a Chan-Vese model for manifold-valued data which is a variant of the
Potts model for the case of two segments. They further consider a piecewise
smooth analogue [WV04, WV05] of their Chan-Vese model. Their method is
based on a level-set active-contour approach. In order to reduce the computational
load in their algorithms the authors resort to non-Riemannian distance measures
in [WV04, WV05]. Recently, also DTI in the Riemannian setup in combination
with the piecewise constant Chan-Vese model has been considered in [CSV12].

Tikhonov-type regularization using manifold-valued partial differential equa-
tions has been considered by Chefd’hotel et al. [CTDF04]; they numerically solve
a corresponding evolution equation.

2.1.4 Total Variation Models for Manifold-valued Data and
Higher-Order Generalizations

Total variation (TV) regularization was proposed by Rudin, Osher and Fatemi
in the seminal paper [ROF92]; the corresponding minimization problem is fre-
quently called the ROF model. A major advantage of TV regularization is that
it better preserves sharp edges [GM01, SC03] in contrast to classical Tikhonov
regularization. Especially because of this property TV minimization is used in
a lot of applications. Examples are biomedical imaging [DBFZ+06], geophysics
[AS12] and computer vision [CYZ+06, ZPB07].

There is a lot of work on theoretical properties of total variation regulariza-
tion for scalar data. For example, results on existence and uniqueness of min-
imizers are shown in [CL97]. Connections to wavelet shrinkage are a topic in
[PCXD99]; equivalences between diffusion techniques, thresholding strategies
and TV minimization are given in [SWB+04]. Many algorithms for TV minimiza-
tion for scalar- and vector-valued data have been developed. Rudin, Osher, Fatemi
[ROF92] consider `2 data terms. They use gradient descent on the Euler-Lagrange
equations of the total variation functional. Other methods are based on Fenchel
duals [Cha04], the alternating direction method of multipliers (ADMM) [YZY10],
as well as split Bregman methods [GO09]. Total variation regularization for
matrix-valued data is the topic of [RWT+14] and [LO14]. Total variation prob-
lems with `1 data terms were for instance considered in [All92, Nik02, CE05]. Ap-
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proaches using the `1-TV functional have edge preserving properties and are addi-
tionally more robust to outliers. For `1-TV regularization various algorithmic ap-
proaches have been proposed: for example, schemes based on smooth approxima-
tions are considered in [Nik04, NNZC08]; semi-smooth Newton approaches are
proposed in [CJK10]; primal-dual methods are considered in [DHN09, CP11a].

In order to avoid staircasing, higher order generalizations of the TV func-
tional are often employed. In particular, second order differences/derivatives are
used. Pioneering work was done by Chambolle and Lions in [CL97] as well as by
Bredies, Kunisch and Pock in [BKP10] which deals with total generalized vari-
ation. We further mention the papers [Sch98, CMM00, LLT03, LT06, HS06,
CEP07, DWB09, SST11, LBU12] which include applications, discussions and
references as well.

For TV related functionals for manifold valued data, a theoretical analysis is
the topic of [GM06, GM07]. These two articles extend the paper [GMS93] on
S1-valued functions where, in particular, the existence of minimizers of certain
TV-type energies is shown.

Existing computational approaches. A convex relaxation based algorithm for
TV regularization for S1-valued data was considered in [SC11, CS13]. An ap-
proach for TV regularization for general Riemannian manifolds was proposed
in [LSKC13]. It is based on a reformulation as multilabel optimization problem
with an infinite number of labels and a subsequent convex relaxation. This work
emerged in parallel to the work [6] which uses a different approach.

Concerning higher order TV type functional, we are not aware of any algo-
rithms developed previously neither for S1 nor for general manifold-valued data.

2.2 Free-discontinuity Problems for Directly Mea-
sured Data

We here summarize our results on free-discontinuity methods for directly mea-
sured vector space data which are contained in the papers [1, 2].

In the article [1], we study univariate L1-Potts functionals. We here use the
capital letter L1 notation since we consider the space of (equivalence classes of)
absolutely integrable functions w.r.t. the Lebesgue measure. Considering an L1

data term instead of an L2 data term is motivated by the observation that it pro-
duces better reconstructions when the data is corrupted by non-Gaussian noise.
The main contributions of [1] are as follows. First, we develop a discretization
framework for the continuous L1-Potts functional. Secondly, we develop a fast
algorithm to minimize the discretized L1-Potts functionals. Thirdly, we show
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that both continuous and discretized L1-Potts functionals have blind deconvolu-
tion properties.

We start with our first main contribution. The continuous L1-Potts functional
is defined on L1[0,1] by

Pγ(u) = γ · J(u)+‖u− f‖1, if u ∈ PC, (2.6)

and by Pγ(u) = ∞ else. Here PC denotes the space of piecewise constant functions
on the interval [0,1]. The regularity term J(u) = ‖∇u‖0 counts the number of
jumps of u. (The abusive but appealing norm notation ‖ · ‖0 is very popular in the
sparsity community [Ela10].) A minimizer of the L1-Potts functional may be seen
as a jump-sparse approximation to the data f . We emphasize the non-uniqueness
of minimizers. We consider (possibly non-equidistant) samplings fk = Sk f of
continuous time data f obtained from f by a sampling operator Sk at some level k,
k ∈N. One implementation of Sk is the integral sampling using the local averages

f k( j) = Sk f ( j) = 1
|I j|

∫
I j

f dλ , (2.7)

where the intervals I j live on level k and form a partition of the unit interval. If f
is continuous, one can also consider point sampling

f k( j) = Sk f ( j) = f (x j), (2.8)

where x j might be taken as the midpoint of the interval I j. Then, the discrete Potts
functionals read

Pk
γ (u) = γ · J(u)+‖u−∑ j Sk f ( j) ·1I j‖1, if u ∈ PCk, (2.9)

and Pk
γ (u) = ∞ else. Here, PCk are those functions which only jump at the interval

boundaries of the I j. Our first result consists of convergence statements of the
discretizations to the continuous model as well as corresponding statements for
the minimizers. It is stated as Theorem 2.4 in [1].

Theorem 1 Let f be an integrable function and let Pγ be the corresponding con-
tinuous L1-Potts functional. Then the discrete L1-Potts functionals Pk

γ converge
to Pγ as k→ ∞ in the sense of Γ-convergence. Each sequence uk, where uk is a
minimizer of Pk

γ , has at least one accumulation point. Each such accumulation
point u is a minimizer of Pγ , i.e., Pγ(u) = infv∈L1[0,1]Pγ(v).

We recall that Γ-convergence and convergence of minimizers in connection with
the L2-Potts functional were topics of [BLMW07, BKL+09]. In these papers, Γ-
convergence is shown for a modified L2-Potts functional. This approach relies
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on the Hilbert space structure of L2, and therefore does not carry over to the L1

context.
Our second main contribution in [1] is a fast algorithm for the L1 Potts prob-

lem which has the same complexity as the state-of-the-art algorithm proposed for
the L2 Potts problem in [FKLW08]. The algorithm in [FKLW08] computes an
exact minimizer of the L2 Potts problem in O(n2) time and O(n) space, where n
denotes the length of the discrete data. In this paper, the authors also consider the
discrete L1-Potts model. Using a red-black tree approach the authors obtain an
O(n2 logn) time algorithm to minimize the discrete L1 Potts functional which im-
proves the time complexity of a naive implementation by a factor of n. However,
this comes with O(n2) space consumption which means losing a factor of n. In
[1], we introduce a suitable data structure which we call indexed linked histogram
and combine it with the dynamic programming approach. Concerning runtimes
we obtain the following statement

Theorem 2 The algorithm proposed for the L1-Potts problem in [1] computes an
exact minimizer of the discrete L1-Potts functional within O(n2) time and O(n)
space.

This statement is formulated as Corollary 3.2 in [1] and deals with equidistant
sampling. A corresponding statement for non-equidistant sampling is [1, The-
orem 3.1]. Since it involves more technicalities we refer to [1] for details. It
incorporates weights which arise naturally in applications where data are avail-
able only on a non-uniform grid [SSM+11]. Besides this asymptotic result, the
actual runtime of the L1 algorithm is, for data of larger size, only less than 20%
slower than that of the L2 version. We compare the L1-Potts algorithm with the
L2-Potts algorithm of [FKLW08] and the L1-TV algorithm of [CJK09] for various
types of noise. The numerical experiments in [1] indicate that L1-Potts minimiza-
tion outperforms L1-TV minimization whenever the underlying signal is jump-
sparse. Furthermore, the L1-Potts functional is more robust to non-Gaussian noise
than the L2-Potts functional; further, it yields comparable results for Gaussian
noise. An efficient implementation of the proposed algorithm can be found at
http://www.pottslab.de.

We next discuss our third main contribution in [1]. We observe that besides its
high robustness to noise, the L1-Potts functional has blind deconvolution proper-
ties which are neither shared by the L2-Potts nor by the L1-TV functional. In fact,
we show that the continuous time L1-Potts functional exactly recovers piecewise
constant signals g from mildly blurred measurements K ∗g without knowledge of
the (narrowly supported) convolution kernel K. This result is stated as [1, Theo-
rem 4.4]. For its formulation, we denote the minimal and maximal jump height of
g by hmin and hmax, respectively. Furthermore, lmin denotes the minimal interval
length between two jumps of g.

http://www.pottslab.de
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Theorem 3 Let g be a piecewise constant function on [0,1] and f = K ∗g. If the
support size κ of the convolution kernel K satisfies

κ ≤ hminlmin

2(8hmax +hmin)
(2.10)

then g is the unique minimizer of the Potts functional Pγ associated with f , i.e.,

Pγ(g) = inf
u∈PC

Pγ(u) = inf
u∈PC

γJ(u)+‖u− f‖1, (2.11)

for any Potts parameter γ satisfying

2κhmax ≤ γ ≤ 1
2hminlmin− (hmin +6hmax)κ. (2.12)

This property is inherited by the discretizations of the L1-Potts functional. A
corresponding statement is formulated as [1, Theorem 4.5] where we refer to for
details. The experiments conducted in [1] show that the blind deconvolution prop-
erty approximately persists under noise. For the reconstruction of severely blurred
signals (and known kernel), we consider the related deconvolution problem

γ · ‖∇u‖0 +‖K ∗u− f‖1→min . (2.13)

We derive a heuristic approach to solve (2.13) where our fast algorithm to solve
the L1 Potts problem for K being the identity is employed as basic building block
of an iterative algorithm.

In [2], we develop fast solvers for the 2D Potts problem with higher-dimensio-
nal range spaces. We develop and extend the ideas to employ the dynamic pro-
gramming solvers for univariate Potts problems as basic building blocks to ap-
proach more complex problems. We first show the potential gain of our ap-
proach by comparing our strategy with the current state-of-the-art. We see in Fig-
ure 2.3 that the current benchmark algorithm, the graph-cut based α-expansion
[BVZ01, BK04, SZS+08] already breaks down at a moderate dimension. Our
approach, in contrast, scales much better with the problem size in terms of com-
putational costs, and it reaches lower functional values at the same time.

Let us explain our approach. For an image f defined on an n×m grid with
values in Rs, we consider a discrete domain version of (2.1) which reads

u∗ = argminu∈Rm×n×s

{
γ ∑

i, j
∑

(a,b)∈N
ωa,b · [ui, j,: 6= ui+a, j+b,:]+ ∑

i, j,k
|ui, j,k− fi, j,k|2

}
.

(2.14)
Here ui, j,: is a vector sitting in the pixel (i, j) and the Iverson bracket [·] equals one
whenever the expression in brackets is true, and it yields zero else. The neighbor-
hood relation N together with the positive weights ω define a discrete boundary
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Figure 2.3: Comparison of our algorithm for the Potts problem with the graph-cut
based benchmark algorithm for a multispectral image (255×355). The runtime of
graph cuts grows exponentially in the dimension of the range space whereas our
approach scales approximately linearly. At the same time, our method reaches
lower functional values.

length of the corresponding partitions. The simplest case is given by the coor-
dinate unit vectors as neighborhood relation and unit weights. It corresponds to
the penalty ‖∇1u‖0 +‖∇2u‖0. This penalty counts the non-zero elements of the
directional difference operators ∇1 and ∇2 applied to u. Since this measures the
boundary length of the partitions in the so called Manhattan metric (`1-norm),
the results suffers from block artifacts. To deal with such effects, we consider
larger neighborhoods and derive appropriate weights to obtain a more isotropic
discretization.

To approach (2.14) we reformulate it as a suitable constrained optimization
problem. In case of the Manhattan discretization, this problem reads

γ ‖∇1u‖0 + γ ‖∇2v‖0 +
1
2‖u− f‖2

2 +
1
2‖v− f‖2

2→min, s.t. u− v = 0,

where u,v ∈Rm×n. The augmented Lagrangian of this consensus form is given by

Lµ(u,v,λ ) = γ‖∇1u‖0 + γ‖∇2v‖0 +
1
2‖u− f‖2

2 +
1
2‖v− f‖2

2

+ 〈λ ,u− v〉+ µ

2 ‖u− v‖2
2. (2.15)

The parameter µ > 0 regulates how strongly the difference between u and v is
penalized. The dual variable λ is an (m× n)-dimensional matrix of Lagrange
multipliers. We approach this problem using the alternating direction methods of
multipliers (ADMM). In the corresponding iteration we first minimize Lµ(u,v,λ )
with respect to u, then with respect to v. The third step is the update of the dual
variable λ . As a result, we obtain computationally accessible subproblems. The
crucial point is that these subproblems reduce to univariate Potts problems which
can be solved fast and exactly using dynamic programming. We propose an accel-
eration strategy for the dynamic program which, in our experiments, resulted in a
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speed up of the algorithm by a factor of four to five. The underlying theoretical
basis for this speed-up is Theorem 2 in [2]. The corresponding algorithm is given
as Algorithm 2 in [2]. We note that the proposed algorithm convergences; this
result is stated as Theorem 1 in [2].

Theorem 4 Algorithm 1 of [2] converges in the sense that (uk,vk)→ (u∗,v∗) with
u∗ = v∗.

Since the original problem is NP-hard, we cannot expect that the limit point is
in general a minimizer of the cost function (2.14). In [2], we observe that, in
practice, we get slightly lower functional values than the state-of-the art method
graph cuts. The visual quality of our results is often slightly better than the result
obtained by the graph cuts method.

The proposed algorithm has the advantage that it does not need any discretiza-
tion in the codomain or, synonymously, range space of u. This contrasts most state
of the art schemes which require a finite set of discrete labels. The main benefit
of the proposed algorithm is its efficiency with respect to runtime and memory.
Already for color images with a relatively coarse discretization of the color cube
[0,1]3, the computational costs of our approach are significantly lower than that
of the graph cuts method as well as lower than the costs of convex relaxation
methods. The advantage becomes even more prominent for higher dimensional
codomains since our method grows linearly in the dimension of the codomain.
This contrasts the exponential growth of graph cut based methods. Due to the
linear scaling, we can process images taking values in a high-dimensional vector
space in a reasonable time. Here a prominent example are multispectral images
which may have more than 30 channels. The applications in [2] illustrate that our
method is well suited for both image segmentation and the restoration of cartoon-
like images.

We point out that the proposed method allowed us to process feature images of
range space dimensions of a few hundreds as they appear in texture segmentation
problems; see [SWU14].

2.3 Free-discontinuity Problems for Indirectly Mea-
sured Data

In [3], we propose a majorization-minimization approach for the discrete uni-
variate Mumford-Shah and Potts problems. Discretizations of the Mumford-Shah
functional are known under the name Blake-Zisserman functionals. The weak
string model as it is called by Blake and Zisserman in [BZ87] is given in its uni-
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variate version for inverse problems by

minimize γ ∑
i

min(|ui−ui−1|q,sq)+‖Au− f‖2
2. (2.16)

Here the data f lives in a real-valued finite dimensional linear space. The param-
eter γ > 0 controls the trade-off between data fidelity and regularizing term. The
parameter s > 0 determines the discontinuity in the sense that, if |ui− ui−1| > s,
we say there is a jump between i− 1, i. The penalty for a jump does not depend
on its magnitude. If the distance is smaller than s, the penalty is the discrete `q-th
variation of u. In the inverse setup considered in this section, the discrete Potts
model reads

minimize γ ‖∇u‖0 +‖Au− f‖2
2. (2.17)

Here, ∇ denotes the backward difference operator. Formally, the Potts problem
(2.17) can be seen as the “Lagrange formulation” of the following constrained
problem which we call J-jump sparsity problem. It reads

minimize ‖Au− f‖2
2,

subject to ‖∇u‖0 ≤ J,
(2.18)

where J is a nonnegative integer. To our knowledge, for general A, the J-jump
sparsity problem (2.18) has only recently appeared in the literature [FHM14]; the
authors obtain asymptotic statements in the context of inverse regression. The
situation A = I, where I denotes the identity, is well studied; see [Bru65, AL89].
Related sparsity problems are the topic of [BD08].

We explain our majorization-minimization approach. We start with the Potts
problem (2.17). We need the corresponding surrogate functional Psurr

γ which is
defined by

Psurr
γ (u,v) = γ ‖∇u‖0 +‖Au− f‖2

2−‖Au−Av‖2
2 +‖u− v‖2

2. (2.19)

By a straightforward calculation, we see that Psurr
γ (u,v) = γ ‖∇u‖0 +‖u− v +

A∗Av−A∗ f‖2
2 +C, with some constant C which does not depend on u and which

is therefore negligible. It follows that, for fixed v,

argminuPsurr
γ (u,v) = argminu

{
γ ‖∇u‖0 +‖u− v+A∗Av−A∗ f‖2

2
}
. (2.20)

We now successively compute uk+1 = argminuPsurr(u,uk). We obtain the follow-
ing iterative Potts minimization algorithm given by the iteration{

dk+1 = (I−A∗A)uk +A∗ f ,

uk+1 = argminuγ ‖∇u‖0 +‖u−dk+1‖2
2,

(2.21)
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where I denotes the identity matrix. The first step is a matrix-vector multipli-
cation. The crucial point is that the second step consists of minimizing a Potts
functional with A = I, which can be solved by dynamic programming in quadratic
time. Proceeding similarly for the J-jump sparsity problem (2.18), we obtain the
iteration {

dk+1 = (I−A∗A)uk +A∗ f ,
uk+1 = argmin‖u−dk+1‖2

2, s.t. ‖∇u‖0 ≤ J.
(2.22)

We call this iterative scheme iterative J-jump sparsity algorithm. We have to
solve a J-jump sparsity problem for A = I in (2.22). As the Potts problem, it can
be solved by dynamic programming; the algorithm was reinvented several times
in a different context; references are [Bru65, AL89]. Finally, we use the above
principle to derive the iterative Blake-Zissermann minimization algorithmdk+1 = (I−A∗A)uk +A∗ f ,

uk+1 = argminuγ ∑
i

min(|ui−ui−1|q,sq)+‖u−dk+1‖2
2.

(2.23)

Again, the second line constitutes a Blake-Zisserman problem for A = I. For
such Blake-Zisserman problems with A = I, we have proposed an exact solver
of quadratic runtime in [HSW15].

We briefly comment on related algorithms for the sparsity problem. Fornasier
and Ward [FW10] rewrite the Blake-Zisserman problem as a problem with sep-
arable penalty. They derive generalized iterative thresholding algorithms for the
rewritten problem. Related algorithms are iterative soft thresholding for `1 pe-
nalized problems, analyzed by Daubechies, Defrise, and De Mol in the seminal
paper [DDDM04], and the iterative hard thresholding algorithms for `0 penaliza-
tions, analyzed by Blumensath and Davies in [BD08, BD09]. In contrast to the
approaches in [FW10] and [BD08, BD09], which lead to thresholding algorithms,
our approach leads to non-separable problems in the backward step.

Facing the challenge due to the non-separability of the backward step, we
provide a convergence analysis. In particular, we obtain convergence statements
towards local minimizers. We start our analysis by showing that the Potts problem
(2.17) and the J-jump sparsity problem (2.18) are not equivalent; this result is
stated as Theorem 3.1 in [3].

Theorem 5 The problems (2.17) and (2.18) are not equivalent. More precisely, if
u∗ is a solution of the Potts problem (2.17) with γ > 0 then it is also a solution of
the constrained problem (2.18) with parameter k = ‖∇u∗‖0. On the other hand, a
minimizer of (2.18) need not necessarily be a minimizer of (2.17) – not even for
some parameter.

In the following theorems on convergence, the measurement matrix A is always
assumed to fulfill ‖A‖ < 1 with respect to the operator norm on `2. We note that
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this can always be achieved by rescaling which, however, results in a smaller step
size in the respective algorithm. We first obtain the following convergence results
for iterative Potts minimization; it is stated as Theorem 3.2 in [3].

Theorem 6 We let ‖A‖< 1. Then the iterative Potts minimization algorithm (2.21)
converges to a local minimizer of the inverse Potts functional (2.17) for any start-
ing point. The convergence rate is linear. Furthermore, we have the following
relation between local minimizers L , global minimizers G and the fixed points
Fix(I) of the iteration (2.21),

G ⊂ Fix(I)⊂L . (2.24)

We next consider the constrained J-jump sparsity problem (2.18). The formula-
tion of the corresponding convergence result, Theorem 3.3 in [3], is somewhat
more involved which is due to additional assumptions. These additional assump-
tions are usually fulfilled when there is noise in the data. We recall that u is J-jump
sparse if it has at most J jumps.

Theorem 7 We let ‖A‖ < 1 and assume that the unrestricted problem of mini-
mizing ‖Au− f‖2 with respect to u ∈ RL has at most one J-jump sparse solution.
(This is for example the case if A is injective.)

If the unrestricted problem has no J-jump sparse solution, then the iterative
J-jump sparsity algorithm (2.22) converges towards a local minimizer of (2.18).

Otherwise, the iterative J-jump sparsity algorithm (2.22) produces iterates uk

that either converge to a local minimizer of (2.18) with (exactly) J jumps or they
have a cluster point which is a global minimizer of (2.18) with (strictly) less than
J jumps. If, in this situation, f is in the range of A and A is injective, then the
iterates converge to a local minimizer (which is a global minimizer when it has
(strictly) less than J jumps.)

Regarding the analysis of the iterative Blake-Zissermann minimization algorithm,
we obtain the following convergence result which is stated as Theorem 3.4 in [3].

Theorem 8 For ‖A‖ < 1, the iterative Blake-Zisserman minimization algorithm
(2.23) converges to a local minimizer of the Blake-Zisserman functional (2.16) for
any starting point. Furthermore, the relation (2.24) holds true in the context of
the Blake-Zisserman functionals Bγ,s of (2.16) as well.

In [3], we show the applicability of our approach in several signal recovery exper-
iments. We consider deconvolution problems with full as well as with partial data.
Finally, we apply our methods to real data. We use it for estimating the steps in
the rotation of the bacterial flagellar motor [SRL+05].
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In [4], we consider the univariate discrete Potts problem with indirect measure-
ments for the more general case p ∈ [1,∞) which, in particular, includes p = 1. It
is given by

Pγ(u) = γ · ‖∇u‖0 +‖Au−b‖p
p→min. (2.25)

We recall that ∇ denotes the backward difference operator, i.e., ∇ui = ui− ui−1.
We first clarify the existence of minimizers.

Theorem 9 The discrete inverse Potts problem (2.25) has a minimizer.

The corresponding result is stated as Theorem 1 in [4]. We recall that the cor-
responding continuous models need not have a minimizer without additional as-
sumptions.

Then, we propose an algorithm for (2.25) based on the alternating directions
method of multipliers (ADMM). For its derivation, we rewrite (2.25) as the bi-
variate constrained optimization problem

minimize γ‖∇u‖0 +‖Av−b‖p
p

subject to u− v = 0.
(2.26)

We incorporate the constraint u− v into the target functional to obtain the aug-
mented Lagrangian of (2.26) given by Lµ(u,v,λ ) = γ‖∇u‖0 + 〈λ ,u− v〉 +µ

2 ‖u−
v‖2

2 +‖Av− b‖p
p Here, the parameter µ > 0 regulates the coupling of u and v.

The dual variable λ is an n-dimensional vector of Lagrange multipliers. Some
computation yields the problem

Lµ(u,v,λ ) =γ‖∇u‖0− µ

2 ‖
λ

µ
‖2

2 +
µ

2 ‖u− v+ λ

µ
‖2

2 +‖Av−b‖p
p→min . (2.27)

In order to minimize (2.27) we use the ADMM, see e.g. [BPC+11], i.e., we iter-
atively minimize (2.27) w.r.t. one variable keeping the others fixed. The resulting
ADMM algorithm for the Potts problem with indirect measurements (2.17) reads

uk+1 ∈ argminuγ‖∇u‖0 +
µk
2 ‖u− (vk− λ k

µk
)‖2

2,

vk+1 = argminv‖Av−b‖p
p +

µk
2 ‖v− (uk+1 + λ k

µk
)‖2

2,

λ
k+1 = λ

k +µk(uk+1− vk+1).

(2.28)

Here, we employ a coupling sequence µk such that ∑k µ
−1/2
k < ∞. Both sub-

problems appearing in the first and the second line of (2.28) are computationally
tractable. The first subproblem is the minimization of a classical Potts problem for
A being the identity matrix which is accessible via dynamic programming as al-
ready explained above. For p = 2, the second subproblem is the minimization of a
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classical Tikhonov-type problem which results in a linear problem. In particular,
for convolution operators, the resulting linear problem can be solved efficiently
using Fourier transform techniques. For p = 1, we can employ a fast semismooth
Newton method [CJK10].

In [4], we further clarify the relation between the Potts problem and the sparse
recovery problem

Sγ(x) = γ · ‖x‖0 +‖Ax−b‖p
p→min. (2.29)

We obtain the following statements which are formulated as Theorems 4 and 5
in [4].

Theorem 10 Let x∗ ∈Rn+1 be a minimizer of the inverse Potts functional associ-
ated with the matrix B = A∇, i.e.,

x∗ ∈ argminx∈Rn+1γ‖∇x‖0 +‖Bx−b‖p
p. (2.30)

Then u∗ = ∇x∗ minimizes the sparsity problem (2.29) related to the matrix A and
data b.

We use the relation given by Theorem 10 to rewrite sparsity problems as Potts
problems.

Theorem 11 For the inverse Potts problem (2.25) associated with the matrix A
and data b we consider the sparsity problem associated with the matrix B = A′∇+

and data b′, where A′, ∇+ and b′ are transformed matrices and vectors, repec-
tively, given as in [4, Theorem 5]. Let u∗ be a minimizer of the sparsity problem
with respect to B,b′,i. e.,

u∗ ∈ argminu∈Rn−1γ‖u‖0 +‖Bu−b′‖2
2. (2.31)

Then x∗ = ∇+u∗+µ(∇+u∗)e (with µ given by [4, Formula (28)]) is a solution of
the inverse Potts problem (2.25) associated with A,b.

We note that Theorem 11 only holds for p = 2; it is not clear how to get a similar
result for p 6= 2. A related statement for Blake-Zissermann problems is given in
[FW10].

In [4], we apply the proposed algorithm to reconstruct jump-sparse signals
from indirect measurements. In particular we consider blurred data as well as
Fourier data. We consider the case of incomplete measurements and data cor-
rupted with Gaussian noise, Laplacian noise, or impulsive noise. Our algorithm
recovers jump sparse signals almost perfectly from a reasonable level of noise. In
average, it yields higher reconstruction quality than TV minimization. We further
apply the developed method to sparse recovery problems. We consider blurred
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data under different types of noise. We show the potential of our method by com-
paring it with orthogonal matching pursuit [Tem03, Tro04, Pet06], basis pursuit
denoising [YZ11], iterative hard thresholding [BD09] and iteratively reweighted
`1 minimization [CWB08], which are the state-of-the-art approaches to sparse re-
covery. In order to the guarantee the reproducibility of the derived results, an
implementation of the proposed algorithms is available at www.pottslab.de.

As concluding remark, we point out that, we have proposed an ADMM based
algorithm for the bivariate Potts problem in [SWFU15]. Furthermore, we have
developed an related algorithmic framework for the inverse first order Mumford-
Shah model in [HSW15].

2.4 Free-Discontinuity Problems for Data with Val-
ues in a Manifold

In this section, we consider manifold-valued data. We summarize the paper [5],
where we have derived algorithms for Mumford-Shah and Potts regularization
for manifold-valued data. We note that, for manifold-valued data, an additional
challenge arises from the fact that the elementary features of vector spaces such
as addition and scalar multiplication are not available. Besides the approach to
the Chan-Vese model for the particular instance of DTI data [WV04, WV05] (cf.
Chapter 2.1.3), our recently proposed algorithms in [5] seem to be the first al-
gorithmic approaches to the Mumford-Shah problem and the Potts problem for
manifold-valued data. We point out that our algorithms are applicable for any
Riemannian manifold whose exponential mapping and its inverse can be evalu-
ated within reasonable time.

We start with the univariate problems. These are not only important in their
own right; variants of the derived solvers are also used as a basic building block for
the proposed algorithm for the multivariate problems. In the univariate case, the
discretization of the Mumford-Shah functional and the Potts functional is rather
straightforward. The (equidistantly sampled) discrete Mumford-Shah functional
reads

Bα,γ(x) =
1
p

n

∑
i=1

d(xi, fi)
p +

α

q ∑
i/∈J (x)

d(xi,xi+1)
q + γ|J (x)|, (2.32)

where d is the distance with respect to the Riemannian metric in the manifold
M, f ∈ Mn is the data, and J is the jump set of x. The jump set is given by
J (x) = {i : 1 ≤ i < n and d(xi,xi+1) > s} where the jump height s is related to
the parameter γ via γ = αsq/q. Using a truncated power function we may rewrite

www.pottslab.de
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(2.32) in the Blake-Zisserman type form

Bα,s(x) =
1
p

n

∑
i=1

d(xi, fi)
p +

α

q

n−1

∑
i=1

min(sq,d(xi,xi+1)
q), (2.33)

where s is the argument the power function t 7→ tq is truncated at.
The discrete univariate Potts functional for manifold-valued data reads

Pγ(x) =
1
p

n

∑
i=1

d(xi, fi)
p + γ|J (x)|, (2.34)

where d is the distance in the manifold and i belongs to the jump set of x if xi 6=
xi+1.

We first show in [5] that the problems (2.32) and (2.34) have a minimizer.
We note that certain variants of the Mumford-Shah and Potts functional do not
have a minimizer without additional assumptions; see for instance [FMS13]. The
following result is stated as Theorem 1 in [5].

Theorem 12 In a complete Riemannian manifold the discrete Mumford-Shah func-
tional (2.32) and the discrete Potts functional (2.34) have a minimizer.

We note that the data spaces in applications are typically complete Riemannian
manifolds.

For univariate Mumford-Shah and Potts problems, we derive solvers based on
a combination of dynamic programming techniques developed in [MS89, Cha95,
WL02, FKLW08] and proximal point based methods for manifold-valued data
developed by the authors in [6]. In fact, the motivation for [6] (which studies
the TV problem for manifold-valued data) was to find a solver for the univariate
Mumford problem for manifold-valued data.

We obtain that our algorithms compute global minimizers for data living in
Cartan-Hadamard manifolds which includes many symmetric spaces. Prominent
examples are the spaces of positive matrices (which are the data space in dif-
fusion tensor imaging) and the hyperbolic spaces. Cartan-Hadamard manifolds
are simply-connected complete Riemannian manifolds of nonpositive sectional
curvature. For details we refer to [dC92] or to [BGS85]. In particular, in these
manifolds, geodesics always exist and are unique shortest paths. The following
result is formulated as Theorem 2 in [5].

Theorem 13 In a Cartan-Hadamard manifold, Algorithm 1 in [5] computes a
global minimizer for the univariate Mumford-Shah problem (2.32) and the uni-
variate Potts problem (2.34).
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This result generalizes to the more general class of (locally compact) Hada-
mard spaces. These are certain metric spaces generalizing the concept of Cartan-
Hadamard manifolds [Stu03]. Examples of Hadamard spaces which are not Car-
tan-Hadamard manifolds are given in [Stu03]. We point out that, for general com-
plete Riemannian manifolds, we obtain an analogous result under the additional
assumption of restricting the search space to candidates whose jump sets corre-
spond to admissible partitions as explained in [5].

We next consider the multivariate situation. Here, the straight forward fi-
nite difference discretization with respect to the coordinate directions is known
to produce undesired block artifacts in the reconstruction [Cha99]. The results
improve significantly when including further finite difference directions such as
the diagonal directions [Cha99, SWFU15]. We use the notation dp(x,y) for the
pth power of the p-distance of two manifold-valued images x,y, i.e., dp(x,y) =
∑i, j dp(xi j,yi j). We further define the penalty function

Ψa(x) = ∑
i, j

ψ(x(i, j)+a,xi j)

with respect to some finite difference vector a ∈ Z2 \{0} using the potential func-
tion ψ which we instantiate in the Mumford-Shah case by ψ(w,z) = 1

q min(sq,

d(w,z)q). and in the Potts case by ψ(w,z) = 1 if w 6= z, and 0 else, for w,z ∈M.
We employ discretizations of the form

min
x∈Mm×n

1
p

dp(x, f )+α

R

∑
s=1

ωsΨas(x), (2.35)

where the finite difference vectors as ∈ Z2 \ {0} belong to a neighborhood sys-
tem N . For example, N = {(1,0);(0,1);(1,1);(1,−1)}. The values ω1, ...,ωR
are non-negative weights. We obtain the existence of minimizers of the discrete
functional (2.35). The corresponding result is stated as Theorem 4 in [5].

Theorem 14 Let M be a complete Riemannian manifold. Then the discrete Mum-
ford-Shah and Potts problems (2.35) both have a minimizer.

For the discrete Mumford-Shah and Potts problems for manifold-valued images
(where the problems become NP-hard), we propose a novel splitting approach.
Starting from (2.35) we use a penalty method to split the problems into computa-
tionally tractable subproblems: we first rewrite (2.35) as the constrained problem

min
x1,...,xR

R

∑
s=1

1
pR

dp(xs, f )+αωsΨas(xs) (2.36)
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subject to xs = xs+1 for all 1≤ s≤ R, where we use the convention xR+1 = x1. We
include the constraints into the target functional using a penalty method (see for
instance [Ber76]) and get the problem

min
x1,...,xR

R

∑
s=1

ωs pRαΨas(xs)+dp(xs, f )+µkdp(xs,xs+1).

We use an increasing coupling sequence (µk)k which fulfills the summability con-
dition ∑k µ

−1/p
k < ∞. Optimization with respect to all variables simultaneously is

still not tractable, but our specific splitting allows us to minimize the functional
with respect to the variables x1, ...,xR separately. These subproblems are closely
related to univariate Mumford-Shah and Potts problems. They can be solved us-
ing the methods we developed for the corresponding univariate problems. The
proposed method does not require any a priori restrictions on the edge set; further,
we do not have to discretize the data space. The presented algorithm is subsumed
in [5, Equ. 18]. We eventually show convergence. The corresponding statement
is Theorem 5 in [5].

Theorem 15 For Cartan-Hadamard manifold-valued images, the proposed algo-
rithm [5, Equ. 18] converges for both the Mumford-Shah and the Potts problem.

In [5], we apply our method to diffusion tensor imaging (DTI) as well as Q-
ball imaging. For DTI, we first consider several synthetic examples corrupted by
Rician noise and show our algorithms potential for edge-preserving denoising. In
certain cases, the edge set produced by our method can directly serve as a seg-
mentation. We illustrate this for the corpus callosum of real human brain data.
In DTI, oriented diffusivity along fiber structures is reflected by the anisotropy of
the corresponding tensors; typically, there is one large eigenvalue and the corre-
sponding eigenvector yields the orientation of the fiber. Potential problems arise
in areas where two or more fiber bundles are crossing because the tensors are not
able to represent multiple directions. In order to overcome this, the Q-ball imag-
ing (QBI) approach [Tuc04, HMH+06, DAFD07] uses higher angular information
to allow for multiple directional peaks at each voxel; it was, for instance, applied
to diffusion tractography [BJBJ+07]. The Q-ball imaging data can be modeled by
a probability density on the 3D-unit sphere which is called orientation distribu-
tion function (ODF). The corresponding space of ODFs can in turn be endowed
with a Riemannian manifold structure [GLTV09]. We show the capability of our
methods by applying it to Q-ball imaging as well.
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Figure 2.4: Left: Diffusion tensor image of a real human brain. The ellipsoids
represent the diffusivity at a voxel. Right: Total variation denoising using the
cyclic proximal point algorithm developed in [6]; figure taken from [6].

2.5 TV and Higher-Order Models for Manifold-Val-
ued Data

In this section, we summarize our results for TV and related higher-order models
for manifold-valued data. We start with [6], where we propose algorithms for TV
minimization for (Riemannian) manifold-valued data; for an illustration in DTI
we refer to Figure 2.4. The algorithms are parallelizable, fast and do not require
any a priori discretization. We propose a cyclic proximal point algorithm as well
as a parallel proximal point algorithm to minimize discrete TV functionals with
`p-type data terms in the case of manifold-valued data. The algorithms are based
on iterative geodesic averaging which makes them applicable to a large class of
data manifolds.

We explain our approach. Let us consider the problem of bivariate discrete
`p-TVq minimization

1
p ∑

i, j
dp(xi j, fi j)+α

1
q ∑

i, j
dq(xi j,xi+1, j)+α

1
q ∑

i, j
dq(xi j,xi, j+1)→min. (2.37)

The data fi j and the targets xi j to minimize take their values in a Riemannian man-
ifold M. Setting q = 1 in (2.37), we get the discrete (anisotropic) TV functional
with `p data term. In particular, if p = 1, we are in the `1-TV setting. The case
q = 2 corresponds to the classical Tikhonov regularization term in the linear space
case. Huber data and regularizing terms can be incorporated as well; for details,
we refer to [6]. We rewrite (2.37) as the sum

F(x)+α ∑
i, j

Gi j(x)+α ∑
i, j

Hi j(x)→min; (2.38)
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here, F : M× . . .×M→ R is the data term,

F(x) =
1
p

n,m

∑
i, j=1

dp(xi j, fi j); (2.39)

and the functions Gi j,Hi j : M× . . .×M→ R are given by

Gi j(x) =
1
q

dq(xi j,xi, j+1), Hi j(x) =
1
q

dq(xi j,xi+1, j). (2.40)

For each summand in (2.38), we consider its proximal mapping [Mor62, FO02,
AF05]. The proximal mappings of the Gi j are defined by the minimization prob-
lem

proxλGi j
x = argminy∈Mn×m

(
λGi j(y)+

1
2

d2(x,y)
)
, (2.41)

where the parameter λ > 0 and the distance d on the product manifold Mn×m

is given by d2(x,y) = ∑
n,m
i, j=1 d(xi j,yi j)

2. The proximal mappings of F and the
Hi j are defined analogously. The crucial point is that, using the splitting (2.38),
the proximal mappings of all appearing summands can be explicitly computed as
geodesic averages. More precisely, solving the minimization problem of (2.41)
reduces to computing points on shortest geodesics joining given points. The same
is true for the analogous problems for F and the Hi j. We get

(proxλGi j
x)i j = [xi j,xi, j+1]t ,

(proxλGi j
x)i, j+1 = [xi, j+1,xi j]t ,

(2.42)

where the symbol [·, ·]t denotes the point reached after time t on the unit speed
geodesic starting at the first argument in direction of the second argument. In the
TV case (q = 1), we get

t =

{
λ , if λ < 1

2d(xi j,xi, j+1),

d(xi j,xi, j+1)/2, else.
(2.43)

For q = 2, which corresponds to quadratic variation, we have

t =
λ

1+2λ
d(xi j,xi, j+1). (2.44)

The proximal mappings of the Hi j are obtained analogously. We state the follow-
ing result which is part of [6, Proposition 1].

Proposition 16 If there is a single shortest geodesic joining the data items xi, j
and xi, j+1 (which is always the case for nearby points and almost everywhere
globally), then the proximal mapping of Gi j is well defined as a single-valued
mapping. It is given by (2.42),(2.43),(2.44). Analogous statements hold for the
Hi j.
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We note that [6, Proposition 1] also considers the case of non-unique geodesics;
we refer to [6] for details. The proximal mapping of F corresponds to the proximal
mapping of the distance function in M and is given by [FO02]

(proxλF)i j(x) = [xi j, fi j]t , (2.45)

where, for the `2 data term, t = λ

1+λ
d(xi j, fi j). For the `1 data term, t = λ if

λ < d(xi j, fi j) and d(xi j, fi j) else. In order to make our algorithms work on a
concrete manifold, the only operations we need are those needed for calculating
geodesics. The spaces which frequently appear as data spaces are matrix groups
or related symmetric spaces. So usually, there are explicit formulae available for
this task.

Our algorithms are iterative schemes. In each iteration, we apply the above
proximal mappings of the functionals decomposing the TV functional. The first
algorithm is a cyclic proximal point algorithm. We consider the problem in the
form F(x)+ α ∑i, j Gi j(x) +α ∑i, j Hi j(x) given by (2.38). We first apply the prox-
imal mapping of F which is given as pointwise geodesic averages of data fi j
and the argument of the functional xi j; see (2.45). Then we successively apply
the proximal mappings of all the Gi j. As a last step, the analogous operations
are executed for the Hi j. Iteration of all these steps yields the algorithm which is
stated as Algorithm 1 in [6]. During the iteration, the parameter λr of the prox-
imal mappings is successively decreased. In this way, the penalty for deviation
from the previous iterate is successively increased. It is chosen in a way such that
the sequence λr is square-summable but not summable. This is moderate enough
not to prevent convergence towards a minimizer; cf. Theorem 17. The second
algorithm is a parallel proximal point algorithm. Here the proximal mappings are
calculated for the same initial point and averaged afterwards using the Rieman-
nian center of mass. Since computing mean values on a manifold is a relatively
expensive iterative procedure, we also consider a variant which only does approxi-
mative averaging (but yields comparable results). We call this variant fast parallel
proximal point algorithm. The corresponding parallel proximal point algorithms
are stated in Algorithm 2 in [6].

The proposed algorithms belong to the class of proximal splitting methods
for manifold valued data. References for related proximal splitting methods for
scalar data are for instance [CP11b, BPC+11, Ber11]. In [Bač14], cyclic proximal
point methods are applied for the computation of means and medians in Hadamard
spaces.

As an application, we consider denoising images which take their values in
a manifold. We apply our algorithms to diffusion tensor images, interferometric
SAR images as well as sphere and cylinder valued images. Further we consider
SO(3)-valued data.
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We obtain the convergence of Algorithm 1 and Algorithm 2 of [6] to a global
minimizer for Cartan-Hadamard manifolds. The proofs in [6] work in the more
general setup of Hadamard spaces without additional effort. For details on Hada-
mard spaces we refer to [Stu03] and the references therein or to the book [BH99].
The next result is stated as Theorem 2 in [6].

Theorem 17 For data in a (locally compact) Hadamard space Algorithm 1 of [6]
converges towards a minimizer of the `p-TVq functional. The statement remains
true when using Huber data and regularizing terms.

The following statement is Theorem 3 in [6].

Theorem 18 The parallel proximal algorithm for `p-TVq minimization (Algo-
rithm 2 of [6]) and its approximate variant converge towards a minimizer in every
(locally compact) Hadamard space. The statement remains true when using Hu-
ber regularization and Huber data terms.

In the CVPR paper [7] we deal with TV regularization in shape spaces. The
considered manifolds are particularly high-dimensional when dealing with shape
spaces [Ken84, MM07, Fle13]. We consider shape signals, i.e., collections of
shapes which appear in a spatial or temporal context. An obvious example is ob-
ject tracking in video sequences where all shapes have a natural temporal ordering.
Another example is organ segmentation from tomographic imaging modalities
such as computed tomography or magnetic resonance imaging, where a three-
dimensional organ can be segmented by obtaining its two-dimensional outlines
from all containing slices.

We use active contours to obtain the shape of the object under considera-
tion within each slice or frame. The idea of active-contour-based tracking is al-
ready considered in the seminal work [KWT88]. Further reference is [CRD07,
CMP+07, SYM08, SYMS09, SMSY09]. Then we use our approach for TV regu-
larization developed in [6] to regularize the shape signals. Even if active-contour-
based segmentation methods are augmented by sophisticated shape metrics, the
regularity of the obtained segmentation is not comparable to the one obtained by
our approach. We observe in [7] that our method nicely complements Sobolev-
type active contours by further regularizing their results.

There are various models for shape spaces; see for instance [MM06, MM07,
YMSM07, SKJJ11, BBM14, BBMM14]. Here, we consider the Kendall shape
space [Ken84] as well as a related oriented variant which turned out to perform
better in our experiments. We start by recalling the concept of the Kendall shape
space. We define

Vn−1 = {z ∈ Cn :
n

∑
i=1

zi = 0} ⊂ Cn, (2.46)
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which can itself be identified with Cn−1. We note that z ∈Vn−1 can be scaled by a
factor s > 0 and rotated by an angle θ ∈ [0,2π) by multiplying all complex com-
ponents zi with the complex number w = sexp(iθ) = scos(θ)+ issin(θ). Con-
sequently, all z ∈ Vn−1 which are equivalent w.r.t. rotation, and scaling lie on the
complex line Lz = {w · z : w ∈ C\{0}}. Then a shape Lz, or loosely speaking z, is
an equivalence class in Vn−1 representing a polygon described by points in Cn up
to rigid transformations and scalings. The set of these shapes can thus be iden-
tified with the complex projective space CPn−2 or, more intuitively, the complex
unit sphere Sn−2

C (with antipodal points identified). As a consequence, the expo-
nential mapping and the inverse exponential mapping are given by the respective
mappings of Sn−2

C , i.e.,

expz(v) = cos(φ) · z+ ‖z‖sin(φ)
φ

· v,φ = ‖v‖ (2.47)

and

logz(y) = φ · y−Πz(y)
‖y−Πz(y)‖

,φ = arccos(
|〈z,y〉|
‖z‖‖y‖

), (2.48)

where Πz(y)= z ·〈z,y〉/‖z‖2 denotes the projection of y onto z. Here, 〈·, ·〉 denotes
the complex scalar product, i.e., 〈z,y〉= ∑

n
i=1 ziyi. and ‖ · ‖ the induced norm.

Based on the considerations above, we derive a shape representation which is
not rotationally invariant. We term this representation oriented Kendall shapes.
At first, we normalize x = (x1, . . . ,xn), with all xi ∈ R2, to obtain invariance w.r.t.
translation. This is done by restriction to the real subspace

V2n−2 = {x ∈ R2n :
n

∑
i=1

(x(1)i ,x(2)i ) = 0} ⊂ R2n. (2.49)

Next, we notice that an element x ∈ V2n−2 is scaled by multiplying all real com-
ponents xi with a real number s 6= 0. Consequently, in order to require scaling in-
variance only, we consider the equivalence classes Lx = {s · x : s ∈ R\{0}}. Then
a shape Lx, or loosely x, is an equivalence class in V2n−2 representing a polygon
described by points in R2n up to translation and scaling. Thus, the corresponding
shape can be identified with the real projective space RP2n−3 or, more intuitively,
with the real unit sphere S2n−3

R with antipodal points identified. As a consequence,
the exponential mapping and the inverse exponential mapping are given by the re-
spective mappings of Sn−3

R , i.e., formulas (2.47) and (2.48) but this time with the
real-valued scalar product 〈x,y〉 as well as its induced norm. Hence, all mappings
can be implemented very efficiently using basic linear algebra subroutines.

In [7], we apply the proposed scheme to synthetic shape signals as well as to
shape signals obtained from real imaging data. A natural real data application of
our method is the processing of shape signals obtained from video segmentation
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algorithms, in particular, in case of low resolution and low quality video data.
Thus, we applied the recently proposed video segmentation algorithm of [PF13]
to the “monkey” sequence of the SegTrack database1 of [TFR10]. The results are
shown in [7, Figure 4]. It can be observed that the segmentation boundaries are
significantly regularized without deviating too much from the original segmenta-
tion. Furthermore, we observe that our method is robust w.r.t. perturbations of the
initial shape data.; see [7, Table 2]. As further application, we consider geometry
processing applications. A typical scenario appears in the context of slice-wise
segmentation of organs. As example, we consider the segmentation of the abdom-
inal part of the aorta from computed tomography angiography [7, Figure 5].

To conclude our discussion on TV regularization, we point out that TV regular-
ization for S1-valued data is the topic of our paper [SWU16]. There, we develop a
non-iterative scheme particularly tailored for TV minimization of S1-valued data.

Based on [6], we develop an algorithm for higher order TV type functionals
for S1-valued data in [8]. We extend the TV functional considered in (2.38), here
denoted by TV1, by the second order terms TV2, i.e., we consider the problem

J(x) = F(x)+α TV1(x)+β TV2(x)→min, (2.50)

where α TV1(x) = α ∑i, j Gi j(x)+α ∑i, j Hi j(x) is as in (2.38) and

β TV2(x) =β1 ∑
i, j

d2(xi−1, j,xi, j,xi+1, j)+β2 ∑
i, j

d2(xi, j−1,xi, j,xi, j+1)

+β3 ∑
i, j

d1,1(xi, j,xi+1, j,xi, j+1,xi+1, j+1). (2.51)

Here, d2,d1,1 are second order differences for S1-valued data defined as follows.
Recall that, for real data, the absolute value of the diagonal second order difference
d1,1 w.r.t. the stencil (−1,1)⊗(−1,1) is given by d1,1(xi, j,xi+1, j, xi, j+1,xi+1, j+1)=
|xi, j−xi+1, j−xi, j+1+xi+1, j+1|. For circle valued data, we identify S1 with [−π,π)
and consider all possible liftings of the items xk,l, k ∈ {i, i+1}, l ∈ { j, j+1}, i.e.,
xk,l +Z2π; for each such 4-tuple we take the absolute value of the diagonal sec-
ond order difference in the sense of real valued data, and define d1,1(xi, j,xi+1, j,
xi, j+1,xi+1, j+1) as the minimum of these values. For the second order differ-
ence d2 we proceed analogously basing on the real-valued definition d2(xi−1, j,xi, j,
xi+1, j) = |xi−1, j−2xi, j +xi+1, j|. We adapt the cyclic proximal point scheme of [6]
for the first order total variation problem by including the proximal mappings of
the TV2 atoms, i.e., we apply the proximal mapping of each summand in (2.51)
within the cyclic scheme. To compute the proximal mappings of these atoms

1cpl.cc.gatech.edu/projects/SegTrack/
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d2,d1,1, we need the minimizers w.r.t. x of the functional

E (x, f ,w) =
1
2

r

∑
j=1

d( f j,x j)
2 +λd(x,w), (2.52)

on [−π,π)r, for λ > 0. Here, w∈ {b1,b2,b1,1} where b1,b2 represents the second
order difference stencils corresponding to (1,−2,1) and b1,1 is the mixed bivari-
ate second order stencil (−1,1)⊗ (−1,1). The symbol d(x,w) is the second order
difference w.r.t. the weight vector w given by the corresponding stencils; for in-
stance, d(x,(1,−2,1)), r = 3, corresponds to d2(xi−1, j,xi, j,xi+1, j) above. We get
the following result which is stated as [8, Theorem 3.5].

Theorem 19 For w ∈ {b1,b2,b1,1} set s = sign(〈 f ,w〉)2π . Let f ∈ [−π,π)r,
where r is adapted to the respective length of w. If |(〈 f ,w〉)2π | < π , then the
unique minimizer of E (x, f ,w) is given by

x̂ = ( f − smw)2π , m = min
{

λ ,
|(〈 f ,w〉)2π |
‖w‖2

2

}
. (2.53)

If |(〈 f ,w〉)2π |= π , then E (x, f ,w) has the two minimizers

x̂ = ( f ∓ smw)2π , m = min
{

λ ,
π

‖w‖2
2

}
. (2.54)

The proposed scheme is subsumed in Algorithm 1,(21),(22) in [8].
In [8], we show its convergence for S1-valued images under certain conditions.

Our first condition is that the data f ∈ (S1)N×M is dense enough. This means that
the distance between neighboring pixels

d∞( f ) := max
(i, j)

max
(k,l)∈Ni, j

d( fi, j, fk,l) (2.55)

is sufficiently small. Here Ni, j is the four-neighborhood of (i, j). Similar condi-
tions also appear in the convergence analysis of nonlinear subdivision schemes
for manifold-valued data in [Wei10, WYW11]. We further require that the regu-
larization parameters α,β in (2.50) are sufficiently small. We note that, for large
parameters α,β , the solutions become almost constant and the model looses its
interpretation which is an inherent problem due to the cyclic structure of the
data. Finally, the parameter sequence {λk}k has to be square summable, but not
summable, with a small `2 norm. The latter can be achieved by rescaling. The
following statement is formulated as Theorem 4.10 in [8].
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Theorem 20 We consider an image f defined on an N×M grid with values in
S1 with d∞( f )< π

8 . Let {λk}k be a sequence of positive numbers which is square
summable but not summable and√

ε2 +2‖λ‖2
2L2c(c+1)+2‖λ‖∞cL <

π

16
, (2.56)

for some ε > 0, where c= 15 and L = 4. Further, assume that the parameters α,β

of the functional J in (2.50) satisfy (1,1)TV1( f )+ (1,1,1)TV2( f ) ≤ ε2

m , where
m = max(α,β ). Then the sequence {x(k)}k generated by [8, Algorithm 1] (imple-
mented via [8, Eq.(21), Eq.(22)]) converges to a minimizer of J.

Our convergence analysis is based on an unwrapping procedure combined with a
convergence result in [Bač14]. In [8], we apply the proposed algorithm to inter-
ferometric SAR data and to electroencephalography data [MHCS+15].

In [9], we consider the second order TV type problem (2.50) for more general
manifolds. We first find a suitable geometric definition of the absolute values of
second order differences d2,d1,1 in a Riemannian manifold. We let

d2(x,y,z) = 2 dist(mid(x,z),y), d1,1(x,y,z,v) = 2 dist(mid(x,z),mid(y,v)),
(2.57)

where the symbol dist(·, ·) denotes the distance induced by the Riemannian metric
and the symbol mid(·, ·) denotes the midpoint between the corresponding argu-
ments. If the midpoint is non-unique, we take the minimum w.r.t. all midpoints
in (2.57). We note that this geometric definition is particularly appealing since
it avoids using the tangent bundle. As a result, it is computationally accessible
by the machinery of Jacobi fields which, in particular, in symmetric spaces yields
rather explicit descriptions. We recall that the symmetric spaces form a class of
manifolds including many spaces interesting in applications such as the spheres,
the spaces of symmetric positive definite matrices, rotation groups, and motion
groups, to mention only a few.

For the minimization of (2.50), we employ the cyclic proximal point strategy
of [6] explained above. In addition to the proximal mappings for the TV terms
discussed in [6], we have to compute the proximal mappings of the second or-
der differences d2,d1,1. In contrast to [8] where we derived closed formulae, we
here employ an approximate strategy for the proximal mappings of d2,d1,1. Since
the proximal mappings of d2,d1,1 are not evaluated exactly, we obtain an inexact
variant of the cyclic proximal point algorithm. We show the convergence of the
proposed inexact variant of the cyclic proximal point algorithm in a Hadamard
space. This result is formulated as Theorem 4.4 in [9].

Theorem 21 Let H be a locally compact Hadamard space and let ϕ be a real-
valued function given by ϕ = ∑

L
l=1 ϕl, where all ϕl are convex continuous func-
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tions, and assume that ϕ attains a (global) minimum. Assume that for every start-
ing point, the sequence generated by the exact cyclic PPA converges to a mini-
mizer of ϕ . Let {x(k)}k∈N be the sequence generated by the inexact cyclic PPA,
where ∑

∞
k=0 εk < ∞ and εk is the perturbation in the kth step. Then the sequence

{x(k)}k∈N converges to a minimizer of ϕ .

We explain the approximate strategy we employ to compute the proximal map-
pings of d2,d1,1. In order to minimize the functional defining the proximal map-
ping of d2,d1,1, we use a (sub)gradient descent scheme. We proceed with explain-
ing the procedure for d2; the approach for d1,1 is analogous. We notice that for
mid(x,z) 6= y the subgradient of d2 coincides with its gradient

∇M3d2 = (∇Md2(·,y,z),∇Md2(x, ·,z),∇Md2(x,y, ·))T . (2.58)

In the special case mid(x,z) = y, d2 is not differentiable. For a discussing of the
corresponding subgradients, we refer to [9]. It turns out that the zero vector is a
subgradient which allows us to use it in our subgradient descent algorithm. The
gradient of the second component of (2.58) is directly obtained from the gradi-
ent of the Riemannian distance function. For computing the gradient of the first
and third component of (2.58), we use the machinery of Jacobi fields: in order
to differentiate the mapping x 7→mid(x,z), we consider the corresponding Jacobi
differential equation with boundary conditions. We use the properties of sym-
metric spaces, which allow a rather explicit analytic solution of the correspond-
ing initial value problem. Then, in symmetric spaces, relating the initial and the
boundary value problem can be done explicitly avoiding inversion. These analytic
ingredients avoid tedious numerical computations and so guarantee computational
feasibility.

In [9], we illustrate the performance of the algorithm by applying it to sphere
valued data and to data taking values in the manifold of symmetric positive definite
matrices.
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