
Mouse Underlaying: Global Key and Mouse Listener
Based on an Almost Invisible Window with Local
Listeners and Sophisticated Focus
Tim Niklas Witte

Institute of Computer Science, Osnabrück University, Germany

Abstract

Keyloggers are serious threats for computer users both private and commercial. If an attacker is capable of
installing this malware on the victim’s machine then he or she is able to monitor keystrokes of a user. This
keylog contains login information. As a consequence, protection and detection techniques against keyloggers
become increasingly better. This article presents the method of Mouse Underlaying for creating a new kind
of software based keyloggers. This method is implemented in Java for testing countermeasures concerning
keylogger protection, virtual keyboard, signatures and behavior detection by anti-virus programs. Products
of various manufacturers are used for demonstration purposes. All of them failed without an exception.
In addition, the reasons why these products failed are analyzed, and moreover, measures against Mouse
Underlaying are developed based on the demonstration results.

Received on 02 July 2018; accepted on 09 October 2018; published on 15 October 2018
Keywords: Computer security, Information security, Keylogger, Malware, Security, Spyware

Copyright © 2018 Tim Niklas Witte et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.15-10-2018.155740

implementation of Mouse Underlaying is explained in
detail. In the following, countermeasures are tested
with the keylogger applying Mouse Underlaying.
Subsequently, the result of this evaluation based
on keylogger protection techniques and differences
between Mouse Underlaying and other keylogging
methods is analyzed. In the end, the results are
summarized to develop effective countermeasures
against Mouse Underlaying.

2. Software Based Keyloggers
Software keyloggers are applications for monitoring
user keystrokes, without the awareness of the user, in
order to retrieve information such as login details [24].
Frequently, keyloggers have capabilities that extend
beyond this keylogging function: screen scrapers take
periodic screenshots, advanced keyloggers are similar
to backdoor viruses because they allow remote control.
For this reason, the attacker tracks anything on
the victim’s computer, for instance, file operations
(executing, printouts, copy and paste operations
etc.) [26]. In most cases, this information is stored in
a log file hidden in the file system. Hence, this log file

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

∗Corresponding author. Email: wittet@uni-osnabrueck.de

1. Introduction
Keyloggers are software and hardware components
(devices between keyboard and I/O port mostly
plugged into the end of the keyboard cable) for
monitoring keystrokes [16]. They are powerful spying
tools because an attacker is able to reconstruct user
activities on the compromised system. For this reason,
special police forces, intelligence services and similar
organizations use these tools frequently [8]. In many
cases it is easier to reconstruct an encrypted email
via keylogging than decrypt this email. In addition,
keyloggers are simple to install. The installation process
is comparable to a virus installation: the target needs
to open an infected file. I n m ost c ases, a n attacker
applies social engineering such as opening an image [4].
However, criminals (black hat hackers) often employ
keyloggers for obtaining login information about bank
accounts of users. Protection techniques exist for
protecting users against keyloggers. However, Mouse
Underlaying is capable of bypassing any of them easily.

This article is structured as follows: Both known
methods for keylogging and protection techniques
against them are introduced. Hereafter, the total

http://creativecommons.org/licenses/by/3.0/

T. N. Witte

is difficult to distinguish from regular operating system
files [5]. Typically, these files are encrypted [14]. For this
reason, it is impossible for the user to notice this attack.
A keylogger application sends the collected information
back to the spying person using an email or uploads
it directly to a server (e.g. FTP) [23]. Keyloggers are
different from other types of malware because they do
not damage the system or propagate to other systems.
Keylogger applications are designed for running in
stealth mode. Therefore, they have both a low CPU and
memory usage. In addition, they do not show in the
process list (e.g. Task Manager) [26]. As a consequence,
it is a challenge to distinguish them from legitimate
programs.

2.1. General processing of keystrokes
Methods for software keyloggers must
be specified for each operating system:
this article is focused on WindowsTM.
As depicted in Figure 1 Windows employs an event
mechanism: if a key is pressed, then the keyboard
driver translates this keystroke into a WM_KEYDOWN

Windows Message. Subsequently, this message is
forwarded to the Windows System Message Queue
(WSMQ). Ensuing, Windows conveys this message
to the Thread Message Queue (TMQ) of the focused
window. In the end, a thread of this window polls
this queue (Thread Message Loop) and processes this
Windows Message [21, 26].

There is a minimum time between two keystrokes. If
the time span between these two keystrokes is shorter
than this minimum time, then the second keystroke
will be ignored. This should prevent the WSMQ from
overloading [4].

2.2. Kernel-based Keyboard Filter Driver Method
Figure 1 depicts how the the keylogger is installing a
Keyboard Filter Driver before the system’s keyboard
device driver takes effect [12]. In order to install this
filter driver administrator privileges are required [17].
In the following, this filter driver captures keystrokes
of the user and relays them by cloning. However,
keystrokes are monitored at the kernel level. In other
words, keystrokes will be monitored even before the
operating system takes effect [8]. As a consequence, this
keylogger is invisible for detection techniques.

2.3. Windows Keyboard Hook Method
A hook is an interface for allowing the program
to execute extension code. Often these functions
are provided by the operating system. Normally,
keyboard hooks are applied to recognize shortcuts and
react to them [13]. However, a hook-based keylogger
exploits this functionality to monitor keystrokes: The

Keystroke

Keyboard
Device Driver

Windows System
Message Queue

Thread Message Loop

Translate keystroke
into WM_KEYDOWN

Window

Keyboard State Table Method

Local Hook

Windows Keyboard Hook Method

Kernel-Based
Keyboard Filter Driver

Thread Message
Queue

Kernel-Based Keyboard
Filter Driver Method

Global Hook

Keylogger Thread

AttachThreadInput API

Keyboard State Table

GetKeyboardState

Figure 1. Processing keystrokes in Windows with keylogging
methods.

keylogging process registers itself into this keyboard
hook. For this reason, every WM_KEYDOWN Windows
Message reaches the keylogger process before entering
the window that receives this message [20, 21].

Keyboard hooks can be classified into two distinct
types:

1. Global (system-wide) keyboard hook: This hook is
linked between the WSMQ and TMQ. Therefore,
this hook is able to capture global key events of a
system [26].

2. Local (thread-specific) keyboard hook: This kind
of hook is linked between the TMQ and the
Thread Message Loop of a specific window. For
this reason, a local hook is only capable of moni-
toring keystrokes for this specific application [26].

2.4. Keyboard State Table Method
Every application using a window refers to a Keyboard
State Table. This table contains the status of 256 virtual
keys. Typically, this table is used by programs for
detecting more then one key state at the same time [18].
This is in most cases implementing shortcuts in a
program (e.g. [CTRL] + [C] for copying text).

As presented in Figure 1, the keylogger adds its own
thread into the Thread Message Loop by applying the

2 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

Mouse Underlaying: Global Key and Mouse Listener Based on an Almost Invisible Window with Local Listeners and Sophisticated Focus

AttachThreadInput API. Then the keylogger employs
the GetKeyboardState API function to determine
information about the Keyboard State Table [4].
Generally this thread contains an infinite loop with
another loop inside, which requests every key state by
applying this function: if a key is pressed, then it is
logged [32].

3. Countermeasures

3.1. Key Event Encryption

An encryption unit is linked between the Key-
board Device Driver and the WSMQ. All incom-
ing WM_KEYDOWN Windows Messages by the Keyboard
Device Driver will be encrypted prior to entering the
WSMQ. The encryption of a WM_KEYDOWN Windows
Message does not change the type of this message.
This message is still a WM_KEYDOWN Windows Message
but the information which key is pressed is changed.
However, a decryption unit is linked between TMQ and
the window. For this reason, all incoming encrypted
WM_KEYDOWN Windows Messages will be decrypted
before entering the window for processing [2, 6].

As a consequence, keyloggers which apply the
Windows Keyboard Hook Method or Keyboard State
Table Method monitor encrypted keystrokes. In other
words, these keyloggers record wrong keystrokes. The
Key Event Encryption can not prevent keylogging by
the Kernel-based Filter Driver Method because the
keystrokes are monitored even before these reach the
encryption unit.

3.2. Anti-Hook Technique

This technique is based on the fact that some
keyloggers apply API functions for hooking. The
detection mechanism works as follows: firstly, the
total system will be scanned for enumerating each
process. In the following, every process will be
enumerated by all DLLs (Dynamic Link Libraries). For
installing a hook the command SetWindowHookEx is
necessary [20]. This command resides under the banner
of USER32.LIB. Consequently, if a process is using this
API, then this process will be marked. At the end,
all marked processes will be listed, and the user has
to decide whether this process has rights for hooking
keystrokes [7, 28].

As a result, keyloggers which apply the Windows
Keyboard Hook Method will be detected. Although the
Anti-Hook Technique can not prevent keylogging by
the Keyboard State Table Method and Kernel-based
Keyboard Filter Driver Method, these methods do not
apply an API for hooking keystrokes.

3.3. Fool a keylogger: conceal sensitive data

This simple scheme is based on the fact that a keylogger
is capable of monitoring every keystroke but it is not
able to understand them. In other words, a keylogger
fails to recognize which application is employing
keystrokes and which are used [26].

Typically, an operating element (e.g. the password
field in the window) reacts to keystrokes if this
operating element has focus. If no operating element
is in focus, then only the layout is able to react to
keystrokes by a local key listener [10].

The user types a part of his or her password then he
or she clicks elsewhere, e.g. in a other text field. Now
the password field is out of focus. Yet, the user types
random characters. In the next step, the user clicks
again on the password field, and so on [28].

As a consequence, the attacker is unable to
reconstruct the login information from the keylog
(recorded keystrokes). The attacker does not know
which characters of login information belong together
in a row. Between the characters of the real login
information are the random characters typed by the
user. Regardless, the attacker could use brute-force to
determine the real login information by trying each
possible combination of monitored keystrokes in a row.
However, this process takes a long time [10].

Generally, this scheme is capable of confusing
all keylogging methods previously mentioned. This
scheme fails if the keylogger monitors the mouse’s
actions too because the attacker recognizes in the keylog
the changed focus.

3.4. HoneyID

Based on generating keystrokes this technique baits
keyloggers. This mechanism consists of three modules:
trap manager, bogus event generator and spyware
detector. The trap manager gathers the CPU usage
of each process. While the bogus event generator is
imitating keystrokes, the spyware detector compares
the CPU usage of each process before and while bogus
event generator evokes the keystroke imitation. If the
CPU usage of a process is increasing, then this process
reacts upon the imitated keystrokes. In other words,
this process monitors keystrokes [28, 33].

For this reason, the keyloggers which apply the Win-
dows Keyboard Hook Method or the Keyboard State
Table Method will be detected. However, a detection
of keyloggers based on Kernel-based Keyboard Filter
Driver Method fails, because the applied Kernel-Based
Keyboard Filter Driver is not a process. Therefore, its
CPU usage will not be listed.

3 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

T. N. Witte

3.5. Random Multiple Layouts
Every key has a unique value, called a scan code. If a
key is pressed then the keyboard controller generates
a corresponding scan code for this keystroke. In the
following, the keyboard driver translates this scan code
based on the current keyboard layout into a virtual-
key code. Afterwards, the keyboard driver generates
a WM_KEYDOWN Windows Message which contains this
virtual-key code information. This Windows Message is
pushed into the WSMQ [22].

This keylogger protection technique applies multi-
ple keyboard layouts to mislead keyloggers: For each
keystroke the current keyboard layout is randomly
replaced with another layout. Therefore, the gener-
ated WM_KEYDOWN Windows Message contains translated
virtual-key code information based on this randomly
replaced layout keyboard. In other words, this Win-
dows Message contains an incorrect virtual-key code.
This virtual-key code information of the Windows Mes-
sage will be corrected by converting back into the orig-
inal keyboard layout before entering the window [6].

Keyloggers applying the Windows Keyboard Hook
Method or Keyboard State Table Method record
keystrokes based on the Windows Message, which con-
tains incorrect virtual-key code information. In other
words, these keylogging methods monitor incorrect
keystrokes. However, Random Multiple Layouts can
not prevent keylogging by the Kernel-based Keyboard
Filter Driver Method because the keystroke (scan code)
is recorded even before it is translated based on the
keyboard layout.

3.6. Detection by Support Vector Machine
A Support Vector Machine (SVM) is a machine learning
algorithm. A SVM determines the best separating line
into a dataset by maximizing the distance between
each data point and this line. In other words, a SVM
classifies the given datasets into two classes. Every data
point before the line belongs to the same class. As a
consequence, every data point behind the line belongs
to the other class [30].

The applied data points of the dataset for keylogger
detection have the following form:

DD
DU
UD
UU
RT

• Down-Down (DD): time difference between when

a key is pressed and when the next key is
pressed [22].

• Down-Up (DU): time difference between when the
same key is pressed and when it is released [22].

• Up-Down (UD): time difference between when
a key is released and when the next key is
pressed [22].

• Up-Up (UU): time difference between when a key
is released and when the next key is released [22].

• Reaction Time (RT): time difference between
when a key is pressed and when it is received by
the process [22].

This training dataset is generated by typing
keystrokes while:

1. a keylogger is active.

2. no keylogger is active.

Meanwhile, a global keyboard hook is applied to
measure the time of a key press and its release to
calculate DD, DU, UD, and UU values. To calculate
the corresponding RT value, the time when the target
window receives this keystroke is logged. This target
window displays the reception of this keystroke in a
text box. Afterwards, the SVM is applied to determine
the best separating line into this training dataset. Now,
the data points can be classified into keylogger active
or no keylogger active based on this separating line
as presented in Figure 2. This figure is a simplified
data representation, because only two dimensions are
represented instead of five. To check the system for the
existence of a keylogger, a keystroke is typed and the
corresponding DD, DU, UD, UU, and RT values will be
determined. If this data point lies in the keylogger active
section, then a keylogger is monitoring keystrokes [22].

Data point classified as
“keylogger active” (training dataset)

Data point classified as
“no keylogger active” (training dataset)

Best separating line

Data point to classify

Data point classified as
“keylogger active”

Data point classified as
“no keylogger active”

DD

DU

Figure 2. Keylogger detection by Support Vector Machine.

Generally, this technique is based on the fact that a
keylogger delays the arrival of the Windows Message
to the target window by monitoring keystrokes. The

4 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

keystroke information of this message will be copied
and stored such as in a log file. This technique is
able to detect keyloggers which apply the Windows
Keyboard Hook Method. Recorded time differences
(DD, DU, UD, UU, and RT value) are longer than
normal because the Windows Message must enter
this hook (additional element) before entering the
window (target). Detection of keyloggers based on
the Keyboard State Table Method is difficult, because
there is no entering of the Windows Message into its
additional thread. This thread is only monitoring the
Keyboard State Table concurrent (multithreading) with
the keystroke processing. For this reason, monitored
time differences are minimally higher than normal.
Besides, this technique is unable to detect keyloggers
applying the Kernel-based Keyboard Filter Driver
Method due to keystrokes that are logged even before
the time differences are determined.

4. Mouse Underlaying
4.1. General Approach
The keylogger generates a small transparent window
which is always under the mouse pointer requesting
focus. Hence, local listeners are capable of capturing
the entire user input (keystrokes and mouse clicks). In
the following, this keylogger window closes while the
captured user input is imitated. The intra-system focus
handing for windows secures that the actual window
receives the imitated user input.

The overall implementation of Mouse Underlaying
is presented in Figure 3. The keylogger window has
the following properties: undecorated, visible, same
position as mouse pointer, size of 1x1 pixel, opacity of 1
%, focusable and always on top 1 . If the opacity value
is lower then 1 %, then there is an incompatibility with
the used key and mouse listener.

The moveWindow_thread contains an infinite loop
setting the keylogger window position equal to
the mouse pointer position 2 . In addition, the
requestFocus_thread is always checking which window
is in focus: if the keylogger window is not in
focus, then this window receives focus 3 . Overall,
it is impossible for the keylogger window to lose
focus, e.g. if another window is opening. Moreover,
the closedWindow_thread is constant checking if the
keylogger window is closed then there is a shortcut
for closing a window imitated after the keylogger
window opens again 4 . This mechanism closes another
weakness of this technique (see #2 in the listing below).

If a key is pressed 5 , then all applied threads
will be paused 6 . Afterwards, the keystroke will be
recorded 7 . Subsequently, the keylogger window is
closing 8 . After a brief waiting time, this keystroke
will be imitated: there is a key pressure imitation
after a waiting time, followed by a key release

Window properties:
- Undecorated
- Visible
- Same position as mouse pointer
- Size of 1x1 pixel
- Opacity of 1 %
- Focusable
- Always on top

If mouse pressedIf key pressed
except special keys

Record keystroke

Close window

Imitate keystroke

Wait

Wait

Open the window again

1

2

5

7

8

9

10

12

Press key

Release key

Wait

Set window unfocusable14

Move window to a different position

Wait

17

Imitate mouse release15

Imitate mouse press18

Pause: moveWindow_thread
 requestFocus_thread

 closedWindow_thread

6

If mouse is pressed
more than 5s

23If mouse released
(if mouse entered)

Set window focusable21

20

Set window focusable25

Imitate mouse release24

11

Start moveWindow_thread:

 Set window under mouse pointer

Infinite loop

Start closedWindow_thread:

 If this window is closed then imitate a
 shortcut for closing a window then
 open this window again

Infinite loop

Start requestFocus_thread:

If this window is not on focus then
 this window requests focus

Infinite loop3

4

Resume: moveWindow_thread
 requestFocus_thread

 closedWindow_thread

Pause: requestFocus_thread13

Wait

Pause: moveWindow_thread16

Resume: moveWindow_thread19

22 Resume: requestFocus_thread
26 Resume: requestFocus_thread

Wait

Figure 3. Implementation of Mouse Underlaying.

5

Mouse Underlaying: Global Key and Mouse Listener Based on an Almost Invisible Window with Local Listeners and Sophisticated Focus

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

T. N. Witte

imitation 9 . However, an exception exists for the
following keys: [CTRL], [SHIFT], [CAPS LOCK], [ALT]
and [ALT GRAPH]. This is a requirement for imitating
capitals and special characters, moreover applying
key combinations. Without this exception there is an
imitation of key release directly after the imitation of
key pressure. Hence, the operating system does not
longer recognize this key pressed, although the user
still holds the key down. After a brief waiting time, the
keylogger window opens again 10 . Finally, all applied
threads will be resumed 11 .

If a mouse button is pressed 12 , then the requestFo-
cus_thread will be paused 13 . Subsequently, the keylog-
ger window changes to an unfocusable state 14 . After
a short waiting time, the released mouse button will
be imitated 15 . Afterwards, the moveWindow_thread
will be paused 16 . Now the keylogger window moves
to a different position in the vicinity of the mouse
pointer 17 . After a short waiting time, the pressed
mouse button state will be imitated 18 . According
to an again waiting time, the moveWindow_thread
will be resumed 19 . Due to this resumed thread, the
keylogger window is always set directly under the
mouse pointer. If the mouse is released (perceived
with a MouseEntered-Event) 20 , then the keylogger
window changes to focusable 21 . Finally, the request-
Focus_thread will be resumed 22 .

This mechanism enables the user to move windows,
tabs, etc. with the mouse while recording the mouse
events. The mouse press by the user is intercepted by
the focusable keylogger window. The imitated mouse
release while the keylogger window is under the
mouse pointer is only for resetting the mouse state.
Though, this MouseReleased-Event will be relayed by
the operating system to the actual window because
the keylogger window is unfocusable. The move of
the keylogger window to a different position followed
by an imitated mouse press leads to a MouseEntered-
Event for the actual window and leads to a MouseExit-
Event for the keylogger window. In addition, there
is a MousePressed-Event for the actual window.
The moveWindow_thread sets always this keylogger
window under the mouse pointer. However, this
movements do not lead to a MouseEntered-Event for
keylogger window and do not lead to a MouseExit-
Event for the actual window due to the unfocusable
state of the keylogger window. Overall, the keylogger
window is under the mouse pointer while the mouse
is pressed in the actual window. However, if the mouse
is released by the user then a MouseEntered-Event for
keylogger window and MouseExit-Event for the actual
window will be created. Moreover, this MouseReleased-
Event will be also relayed to the actual window due to
the unfocusable keylogger window. If there is only a
mouse click (mouse button pressed after fast releasing)
then 21 will be immediately triggered. Hence, mouse

clicks will be relayed to the actual window. In total, a
MousePressed-Event and a MouseReleased-Event reach
the actual window.

1px

1px

32px

32px

Application window Mouse pointer

Keylogger window

x

Key pressed

Keylogger process

Imitate key press

Keylogger process

Application windowNormal

Key event

Imitation

Recording

Keyboard

Keyboard

Keyboard

x

Application window

x

Application window

x

Keylogger process

Figure 4. Overview of Mouse Underlaying.

As presented in Figure 4, by closing the keylogger
window, the actual window in the background regains
focus. Hence, the imitation of key and mouse events
can be transmitted to the actual window. The imitation
is required because the focusable keylogger window
intercepts all key and mouse events by the user.
Without this imitation, all of these events would only
be recorded, but there would be no relaying of them to
the actual window. As a consequence, the user would
not be able to interact with the actual window.

6 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

However, Mouse Underlaying has two vulnerabilities:

1. While the user is pressing his or her mouse
button, the keylogger window is unfocusable.
Therefore the local key listener is disabled. Hence,
keystrokes are not recorded. However, this is
untypical user behavior. Although, there is a
mechanism: if the mouse is pressed more than
five seconds 23 , then the released mouse state
will be imitated for resetting the mouse state 24 .
Subsequently, the keylogger window changes to
focusable 25 . Finally, the requestFocus_thread
will be resumed 26 .

2. Various key combinations are able to close
the focused window, such as [ALT] + [F4]

in Windows. If the user applies this shortcut,
then he or she will close the keylogger window
and no keylogging will be possible. Therefore,
the closedWindow_thread employs an infinite
loop checking whether the keylogger window is
closed 4 . In this case, the shortcut for closing a
window will be imitated. Afterwards, the closed
keylogger window opens again. An exception
exists for this mechanism while the keylogger
process is relaying the keystroke to the actual
window. This exception is realized by pausing 6

and resuming 11 the closedWindow_thread. With
this mechanism the Mouse Underlaying is able
to relay the effect of this shortcut to the actual
window.

Windows pushes in regular intervals (system update
time) the Windows Message of the WSMQ to the TMQ
of a current focused window [26]. As a consequence, the
waiting time must be higher than the duration of these
regular intervals for securing a registration of:

• A changed window focus.

• Imitated key and mouse events.

• A switch between of a focusable and unfocusable
state of a window.

• An opening and closing of a window.

4.2. Protocol And Relay Keystrokes
Figure 5 shows the manipulation of keystroke process-
ing in Windows by Mouse Underlaying: Ultimately,
Windows employs a WSMQ for managing which TMQ
of a window receives information about keystrokes [4].
The keylogger window is always on focus. For this
reason, the TMQ of this window obtains WSMQ infor-
mation about keystrokes. If a key is pressed, then the
keylogger window is closing and subsequently removed
from the WSMQ. Simultaneously, the actual window

is on focus, and its TMQ receives WSMQ informa-
tion about keystrokes. While imitating the keystroke a
WM_KEYDOWN Windows Message is created by the keylog-
ger process and automatically pushed to the WSMQ. In
the following, the TMQ of the actual window is receiv-
ing information about this keystroke. In other words,
with this function the keylogger window is capable of
relaying logged keystrokes to the actual window. There
is no difference in generating keystrokes between a
keyboard device driver and a process. Hence, the actual
window is able to react upon any kind of generated
keystroke. The same applies to mouse events: instead
of a WM_KEYDOWN there is a WM_MOUSEDOWN, WM_MOUSEUP
etc. Windows Message.

Normal

Imitation

Keystroke

Keyboard
Device Driver

Windows System
Message Queue Thread Message Loop

Translate keystroke
into WM_KEYDOWN

Keylogger window

Actual window

Thread Message
Queue

Thread Message
Queue Thread Message Loop

Thread Message Loop

Keylogger process

Imitating keystroke by
generating WM_KEYDOWN

Actual window Windows System
Message Queue

Thread Message
Queue

If keystroke

Figure 5. Manipulation of keystroke processing in Windows by
Mouse Underlaying.

4.3. Change Window Focus
Figure 6 presents the changing of window focus while
Mouse Underlaying is active: The keylogger window is
in focus, and its TMQ comes first in the WSMQ. If there
is a mouse click, then the keylogger window intercepts
it. In addition, the keylogger window is closing, and its

7

Mouse Underlaying: Global Key and Mouse Listener Based on an Almost Invisible Window with Local Listeners and Sophisticated Focus

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

T. N. Witte

TMQ is removed from the WSMQ. The actual window
(window no.1 in Figure 6) has focus. Therefore its TMQ
is now first listed in the WSMQ. The imitated mouse
click (same position as the intercepted mouse click)
in a window not focused (window no.3 in Figure 6)
sets this window in focus and puts its TMQ on the
first place in the WSMQ. If this mouse click resides
on an operating element, then this element is focus in
the window. However, if this window is in focus again,
then this element is automatically in focus too. The
reopening of the keylogger window sets this window in
focus and assigns its TMQ to first listed in the WSMQ.

Window no.3

Window no.2

Keylogger window

Window no.1

Window no.2

Windows System
Message Queue

Normal

Keylogger window

Mouse click on window no. 3

Mouse click

Keylogger window is closing

Imitation of mouse click

Imitated
mouse click

Changing focus

Window no.3

Window no.1

Window no.3

Window no.2

Keylogger window

Window no.1

Window no.2

Keylogger window
Window no.3

Window no.1

Window no.3

Window no.2

Window no.1

Window no.2

Window no.3

Window no.1

Window no.3

Window no.2

Window no.1

Window no.2

Window no.3

Window no.1

Window no.2

Window no.1

Window no.3

Window no.1

Window no.2

Window no.3

Window no.2

Window no.1

Keylogger window

Window no.3

Window no.1

Keylogger window

Window no.2

Window no.3

Reopen of keylogger window

Windows System
Message Queue

Windows System
Message Queue

Windows System
Message Queue

Windows System
Message Queue

Windows System
Message Queue

Figure 6. Changing window focus while Mouse Underlaying is
active.

5. Evaluation
A sample.jar file (programming language: Java) is
generated applying Mouse Underlaying. This window
is a JFrame. A key and mouse listener is employed for
monitoring key and mouse events of the user. Mouse
and key events are imitated by a robot. The program
contains a kill switch: if [ESC] is pressed, then the
program will stop. However, the program sample.jar
displays captured keystrokes in a console. Furthermore,
no admin rights, only standard user privileges are
applied to the following operating systems: Windows
(Version: XP - 10), OS X (Version: 10.8 - 10.13), Linux
(Ubuntu and Debian), Solaris, Android and Qubes OS.

5.1. Operating System Compatibility
Mouse Underlaying works perfectly under Windows,
Linux and Solaris. However, there is a minor issue with
OS X as described in the following paragraph.

Table 1. Compatibility of Mouse Underlaying with operating
systems.

Name Version Vulnerable

Windows XP 3

Vista 3

7 3

8 3

8.1 3

10 3

OS X 10.8 (Mountain Lion) 3

10.9 (Mavericks) 3

10.10 (Yosemite) 3

10.11 (El Capitan) 3

10.12 (Sierra) 3

10.13 (High Sierra) 3

Linux Ubuntu 16.04.3 3

Debian 9.3 3

Solaris 11.3 3

Android 8.1.0 7

Qubes OS 3.2 7

Before sample.jar is being launched on OS X, a
window appears indicating that this program is using
accessibility features (imitation of keystrokes and
mouse clicks) as shown in Figure 7.

As usual in OS X, the keylogger process generates
Window Messages (in Windows: Windows Messages)
for imitating key and mouse events and tries to push
these Messages into the Event Queue (in Windows:
WSMQ). However, OS X prevents pushing Window
Messages into the Event Queue by processes. Normally,
only the corresponding device driver to this event
has privileges to push Window Messages into this
Event Queue. However, the user is able to define

8 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

Figure 7. Message of OS X before launching sample.jar.

exceptions [15]. After the user confirms this message by
defining an exception for this keylogger process, Mouse
Underlaying will work perfectly. Social Engineering is
an effective method to convince the user to confirm this
message.

Android is not vulnerable for Mouse Underlaying
because it does not provide software-induced focus
request. Moreover, the graphical user interface of
Android is not a typical desktop. Only one window can
be opened exclusively. The other windows are stored in
a queue [29]. The following sequence of activities can
be observed:

1. if the current window closes;

2. then the next window in this queue will open
immediately;

3. if the keylogger window is open;

4. then the user can see the background image,
which is suspisious;

5. (again) mouse or keystroke by the user;

6. keylogger window closes;

7. evoking next window in the queue;

8. keylogger imitates mouse or keystroke;

9. keylogger window opens again;

10. the user can see the background image again
which is suspisious, and so on.

However, Mouse Underlaying does not work on
Qubes OS. For testing purposes, the keylogger was
started in a VM while trying to monitor keystrokes in
another VM. Qubes OS employs a compartmentaliza-
tion. For this reason, there is an instantiation of each
VM [25]. On this basis, the keylogger window receives
only focus in one VM but not in other VMs. Hence, the
keylogger window is not able to get the overall focus
on the desktop. Therefore, local key and mouse listener
are not effective. Basically, Mouse Underlaying works on
Qubes OS only if one VM is used. In order to achieve
that the the attacker has two effective methods to apply
the keylogger:

1. sending an HTTP link file to the user opening
a website with a bound keylogger. From this
moment on the attacker is capable of monitoring
all keystrokes in the browser because this browser
and the keylogger run in the same VM.

2. a modification of Mouse Underlaying can par-
tially bypass the compartmentalization of Qubes
OS: the keylogger window is open, then it closes
briefly in order to open again. As a result, the key-
logger window has obtained the total focus on the
desktop including all VMs. Local key and mouse
listener are now able to monitor user activities in
one VM but no imitation of user activities in other
VMs is possible because of the compartmentaliza-
tion.

Some operating systems such as Linux and Solairs
employ multiple desktops. For testing purposes the
keylogger was started in the first desktop instance while
trying to log keystrokes in the second desktop instance.
Mouse Underlaying is not able to record keystrokes
in the second desktop instance because the keylogger
window exists only in first desktop instance. However,
the modification of Mouse Underlaying applied in
Qubes OS transfers the keylogger window to the second
desktop instance (currently used). In addition, this
window is on focus. As a consequence, keystrokes will
be recorded.

For ensuring a platform independence of Mouse
Underlaying there are different waiting times for
each operating system based on the system update
time for window focus. For example, in Windows
the update time is determined the WSMQ. However,
this does not apply to operating systems based on
compartmentalization. The system update time is
influenced by the hardware performance and current
CPU usage. Moreover, Mouse Underlaying requires
a desktop allowing more than one window opened
concurrently.

5.2. Minor Limitations
Normally, every window in Windows 8 (or higher)
which is not on focus has a gray layout. The focused
window has its normal layout as presented in Figure 8
(a).

While Mouse Underlaying is running on a Windows-
type operating system, every window appears as not
focused. In other words, each window has a gray layout
as depicted in Figure 8 (b). The focused window is the
keylogger window (size of 1x1 pixel therefore almost
invisible for the user).

In addition, during the relaying process of user
activities the focus changes twice. This relaying process
is extremely fast. For this reason, the window layout
changes similarely fast: the active layout of the actual

9

Mouse Underlaying: Global Key and Mouse Listener Based on an Almost Invisible Window with Local Listeners and Sophisticated Focus

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

T. N. Witte

(a) inactive (b) active

Figure 8. Changed window focus behaviour due to Mouse
Underlaying.

window displays only a few milliseconds before it
turns into gray again. For example in the case of
word processing, the user does not notice this change
because he or she focuses on the text and not on the
window frame while writing. However, there is no text
cursor in text fields because this operating element is
not on focus. While relaying user activities this text
cursor is appearing for milliseconds. Furthermore, if
the user is typing faster than the waiting time (the
time elapsed between to keystrokes is shorter than the
waiting time), then this keystroke will not be recorded
and imitated because the user is writing while the
keylogger window is closed. This usually happens when
the user constantly presses a key. The same applies to
mouse events but this is an unusual user behavior.

Besides, there is a minimal delay (barely noticeable)
between typing keystroke and see result on the
screen. Moreover, while Mouse Underlaying is active,
automatic completion such as in browsers is disabled
due to the browser not being in focus.

5.3. Countermeasures

Antivirus software. This sample.jar file was uploaded to
the website www.virustotal.com which uses signatures
of a lot of anti-virus software for detecting malware [3,
31]. The results of this analysis is demonstrated in
Figure 9: none of 60 used anti-virus programs were able
to recognize sample.jar as malware (keylogger).

Figure 9. Analysis by virustotal.com.

In addition, for testing purposes the following
behavior controls of anti-virus software are applied: G
DATA, Symantac, Kaspersky, Avira and Trend Micro.
None of them was able to recognize sample.jar as
malware (keylogger).

Keylogger protection software. A whole variety of key-
logger protection software by different manufacturers
has been tested. None of them was able to prevent
monitoring keystrokes by sample.jar as illustrated in
Table 2.

Table 2. Keylogger protection software attempting to prevent
keylogging.

Name Attack Prevented

Elite Anti Keylogger 7

G DATA 7

Ghostpress 7

GuardedID 7

Kaspersky 7

KeyScrambler 7

SpyShelter 7

Zemana 7

Virtual keyboards. Virtual keyboards are applied for
testing their capability to prevent capturing keystrokes
by sample.jar. As displayed in Table 3 none of them was
able to prevent keylogging by Mouse Underlaying.

Table 3. Virtual keyboards attempting to prevent keylogging by
Mouse Underlaying.

Name Attack Prevented

Free Virtual Keyboard 7

Kaspersky Virtual Keyboard 7

Windows On-Screen Keyboard 7

6. Analysis
6.1. Countermeasures
A detection of Mouse Underlaying by signatures and
behavior controls of anti-virus programs failed. Mouse
Underlaying is based on actions which are often applied
by usual programs such as moving, opening and
closing of its window, and requesting focus. These
actions are benign because there is no system damage
or serious system change caused by them. Moreover,
Mouse Underlaying was virtually unknown at this time.

Keylogger protection techniques presented in Table
II employ the Key Event Encryption [2]: WM_KEYDOWN
Windows Messages will be encrypted by the encryption
unit of the Key Event Encryption and pushed to the
WSMQ. At the end of the keystroke handling process
there is a decryption of this Windows Message by the
decryption unit before entering the keylogger window.
However, each keystroke by the user will be recorded
in a decrypted state. As usual, there is an imitation of
these keystrokes. The generated WM_KEYDOWN Windows
Message of the keylogger process will be encrypted

10 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

by the encryption unit and pushed to the WSMQ.
The same applies for this generated Windows Message
by entering the actual window. In other words, this
generated Windows Message will reach the actual
window in a decrypted state. As a consequence, the Key
Event Encryption does not prevent Mouse Underlaying:
The keystroke (of the user) will be recorded in a
decrypted state and the imitated keystroke reaches the
actual window in a decrypted state.

Moreover, keylogger protection techniques and
behavior controls of anti-virus software often addition-
ally apply the Anti-Hook Technique [9]: Mouse Under-
laying does not use an API for hooking keys because
it applies a sophisticated window focus in combination
with a local key listener. For this reason, Mouse Under-
laying is undetectable for the Anti-Hook Technique.

Basically, Mouse Underlaying can be overreached
such as other keyloggers with changing focus while typ-
ing. By modifying the local mouse listener into record-
ing mouse clicks in the keylog, Mouse Underlaying is
able to recognize a changing focus.

Generated keystrokes by HoneyID are kernel based
keystrokes because these do not originate from a
keyboard driver. By imitation of a keystroke a
WM_KEYDOWN Windows Message is created and pushed
into the WSMQ by a process instead of a keyboard
driver. However, there is no difference between a
WM_KEYDOWN Windows Message generated by a keyboard
driver or a process [28]. For this reason, a local key
listener reacts to generated keystrokes by HoneyID.
As a consequence, the CPU usage of the keylogger
increases while HoneyID is imitating keystrokes.
However, this increasing is limited by a low CPU usage
value based on a maximum count of imitation due
to using waiting times. Therefore, it is a challenge to
distinguish a keylogger applying Mouse Underlaying
from other processes based on the fact that other
processes do not have a constant CPU usage.

However, Random Multiple Layouts can not prevent
keylogging by Mouse Underlaying because this incor-
rect virtual-key code information of the Windows Mes-
sage will be converted back into the original keyboard
layout before entering the keylogger window. For this
reason, the keylogger window receives the Windows
Message containing the correct virtual-key code infor-
mation.

Moreover, the detection technique based on the
SVM is able to detect Mouse Underlaying. While
Mouse Underlaying is active, a Windows Message has
double the normal distance to reach the target (actual
window): Reaching the keylogger window, monitoring
and imitating it, then reaching the target. Therefore, the
measured time differences are approximately twice as
high as normal.

The window of a virtual keyboard application is
unfocusable: if this window is focusable, then it blocks

the generated key events independently. As mentioned
above, there is no difference in generating keystrokes
between a keyboard device driver and a process. Hence,
the local key listener is able to react to them. However,
virtual keyboards only prevent keylogging by the
Kernel-based Keyboard Filter Driver Method because
the generated Windows Messages are pushed into the
WSMQ by the process of a virtual keyboard. Hence,
these messages do not enter the Kernel-Based Keyboard
Filter Driver.

6.2. Differences between Mouse Underlaying and
conventional keylogging methods
Mouse Underlaying does not install an additional
element (thread, hook, or driver) to the keystroke
processing of the operating system like conventionally
applied keylogger methods [4]. These methods get
the keystroke information illegally because there
is no focused window. Mouse Underlaying records
keystrokes in accordance with the operating system
policy (legal) by using a sophisticated window focus.
The operating system sets its window, residing at the
end of the keystroke handling process due to its focused
state. For each key press the keylogger window closes
and relays this keystroke to the actual window by
imitation.

For this reason, Mouse Underlaying substantially
changes the flow of the Windows Messages: The keylog-
ger window intercepts all incoming Windows Messages
by logging. Afterwards, the keylogger window closes.
Subsequently, a clone of these messages will be gener-
ated by imitating the same keystroke. Now this gener-
ated Windows Message will be pushed into the WSMQ.
Afterwards, this message reaches the actual window
(target). In other words, while Mouse Underlaying is
active, a Windows Message has double the normal
distance to reach the target: Reaching the keylogger
window, monitoring and imitating it, then reaching
the target. Unlike Kernel-based Keyboard Filter Driver
Method and Windows Keyboard Hook Method, there is
no interception of all incoming Windows Messages by
logging them [26]. Hence, there is no recreation of this
message by imitation required. As a consequence, the
original Windows Message reaches the window (target)
in one way. There is a further entering of the additional
element. Unlike the Keyboard State Table Method, there
is no entering of the Windows Message into its addi-
tional thread [4]. This thread is only monitoring the
Keyboard State Table concurrent (multithreading) with
the keystroke processing. The table indirectly repre-
sents a WM_KEYDOWN Windows Message: If this message
is generated then its information about the keystroke
exists in this table.

Mouse Underlaying applies a 1x1 pixel-sized and
very transparent window. Hence, the user does not

11

Mouse Underlaying: Global Key and Mouse Listener Based on an Almost Invisible Window with Local Listeners and Sophisticated Focus

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

T. N. Witte

notice this window as focused. The user is mistakenly
convinced that the actual window (in the background)
has focus. Conventional keylogging methods operate
directly on the operating system or kernel level. Hence,
these methods are not applied on the graphical user
interface. As a consequence, the user is not visually
fooled.

For installing an additional element applied by
conventional keylogging methods, kernel modification
(driver installation) or changes in the configuration file
of the operation system (hook registration and thread
attaching) are required [17]. As a consequence, anti-
virus programs will report this action to the user. These
actions also require administrator privileges.

Mouse Underlaying operates directly on the graphical
user interface (desktop) by applying:

• Imitation of key and mouse events.

• Information about the mouse pointer position.

• Local key and mouse listener.

• Moving, opening and closing of its window.

• Switching between a focusable and unfocusable
state.

• Requesting focus.

Thus, only standard user privileges are required.
Moreover, these actions are often applied by usual
programs. As mentioned above, these actions are also
benign. As a result, Mouse Underlaying will not
be identified as suspicious (malware) by anti-virus
programs.

Moreover, if the attacker applies one of the
conventional keylogging methods, he or she often tries
to cover their tracks by uninstalling the additional
element after the attack. However, operating systems
and other tools log when an additional driver (Kernel-
based Keyboard Filter Driver Method) is installed,
hooks are applied (Windows Keyboard Hook Method)
etc. [27]. Therefore, conventional keylogging methods
are traceable after the attack. An attacker who applies
Mouse Underlaying needs only to terminate this
process. For this reason, it is a challenge to prove Mouse
Underlaying after the attack.

7. Outlook and further research
7.1. Disabling keyboard and mouse
If there is no local key listener, then Mouse Underlaying
is capable of disabling the keyboard instead of
keylogging. The same applies to the mouse by removing
the used mouse listener. However, other techniques
require administrator privileges for disabling both
keyboard and mouse due to kernel modifications [27].

For this reason, there is a detection by behavior
controls of an anti-virus program. In addition, Mouse
Underlaying with cumulative modifications (see above)
can be applied in Qubes OS to disable the entirety of
keyboard and mouse functions (also in other VMs).

7.2. Optimization
Appearance of focus layout. While Mouse Underlaying
is active in Windows 8 (or higher) each window
has a grey layout. Generally, regular users are not
able to recognize this layout modification. Though
there are computer-experts and highly attentive users
noticing this modification enabling them to react
appropriately. On that account, Mouse Underlaying
should disable this layout modification. A registry key
modification is a way to do that [11]. However, if the
keylogger implements this directly via command, then
the keylogger will be detected by behavior control of an
anti-virus program.

Instead of manipulating a registry key there is
another way to solve this layout problem by modifying
Mouse Underlaying: the program takes a screenshot.
The window size is identical with the screen size and
requesting focus. This window contains the screenshot
taken. If there is a key or mouse event (noticed by local
listeners), then the window will close. After imitating
this event there is another screenshot activity. At this
point, the window opens with the updated screenshot.
However, this modification causes a still image on the
desktop. In general, the user does not notice this attack
while, for instance, watching a video or playing a game.
Moreover, a number of operating systems such as Linux
noticed a white contour for a few seconds during the
opening process.

Imitation of keystrokes. For imitating keystrokes Mouse
Underlaying forges pressure and release of a particular
key. Between pressure and release there is a waiting
time based on the system update time. This waiting
time is identical for each imitation. For this reason,
it is possible to develop specific detection techniques.
These techniques analyze the elapsed time of a pressed
key. If this time is always the same or too short for
human activites, then Mouse Underlaying is active. As
a consequence, the length of the waiting time must be
within particular interval boundaries. The length of the
waiting time is determined by a random value within
these boundaries. The interval range is determined by
an analysis of human keystrokes.

8. Conclusions
This paper has described a new software-based
keylogger method: Mouse Underlaying does not install
an additional element (thread, hook, or driver) to
the keystroke processing of the operating system like

12 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

conventional applied keylogger methods. For each key
press the keylogger window closes and relays this
keystroke to the actual window by imitation. This
keylogger window is almost invisible. For this reason,
the user is mistakenly convinced that the actual window
is on focus and there exists no focused keylogger
window. In other words, Mouse Underlaying visually
spoofs the user.

Besides, Mouse Underlaying has the following advan-
tages compared with conventional applied keylogging
methods:

• No modification of kernel or configuration file for
installing an additional element to the keystroke
processing of the operating system.

• No administrator privileges are required, only
standard user privileges.

• Obtains keystroke information legally by employ-
ing a focused window.

• Indirect manipulation of Windows Messages
flow (keystroke processing): keylogger protection
techniques based on encryption can not prevent
this attack.

• No identification as suspicious by anti-virus
programs based on benign operations such as
moving, open and closing of its window (often
applied by usual programs).

• Difficult to prove after the attack.

Although, Mouse Underlaying has the following
disadvantages:

• Requires a desktop which allows several windows
open at the same time.

• Operating systems chart the focus by layout
of the window and the operating element.
There is no focused window and no focused
operating element represented. Besides, while
typing keystrokes there are two focus changes
(also represented in the layout). Overall, the user
could become suspicious.

• The employed waiting time is different for each
operating system.

Conventional keylogger protection techniques are
designed to prevent keylogging by methods which
install an additional element in the keystroke process-
ing of the operating system. However, these protec-
tion techniques are not designed to prevent an almost
invisible window to receive keystroke information and
relay it to the actual window (manipulation of Windows
Messages flow). Overall, Mouse Underlaying is a serious
threat. However, there are various countermeasures and
detection techniques for Mouse Underlaying:

• The behavior control of an anti-virus program
must analyze the WSMQ on irregularities: if a
window appears frequently on the first place
(focused window) even directly after its interme-
diate disappearance, then this application should
be identified as suspicious. The MessageQueue-
Class in C# and C++ is capable of analysing the
WSMQ [19]. This method is able to detect the
main part of Mouse Underlaying, a window fre-
quently opening and closing and always on focus.

• Besides, the behavior control of an anti-virus pro-
gram shall identify an application as suspicious if
its position changes often.

• Moreover, there should be a limited protected area
within the mouse pointer: operating systems and
anti-virus programs shall prevent the movement
of applications in this area.

• However, a complete disabling or ignoring of
imitating both key and mouse events is not useful
because physically incapacitated people use tools
such as voice control. In this way it may be
seen as a discrimination. Over and above, remote
maintenance tools use this functionality too.

• Furthermore, if a program is imitating mouse and
key events, then the operating system and the
related anti-virus program must report this action
to the user in form of a message box. However, OS
X is the only operating system capable of this type
reporting.

• In addition, an 1x1 pixel-sized window is
suspecious because this is untypical for a useful
program. Hence, the window manager must
recognize the suitable window. Therefore, it must
provide a minimum window size. If a window
is smaller than the minimum size, then the
window manager is terminating the process of the
undersized window.

• Moreover, based on the fact that the keylogger
window is always under the mouse pointer,
Mouse Underlaying can be detected with a
modification of HoneyID: there is a determent
of CPU usage of each process. Instead of
imitating keystrokes there is an imitation of
mouse movement. Meanwhile the CPU usage of
each process is determined again and compared
during this imitation. If there is an increase of
CPU usage of a process, then this process will use
Mouse Underlaying.

• Another method to detect Mouse Underlaying
generates a window with both a local key and
mouse listener. The process of this window

13

Mouse Underlaying: Global Key and Mouse Listener Based on an Almost Invisible Window with Local Listeners and Sophisticated Focus

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

T. N. Witte

imitates both mouse and key events at a high
frequency. If events are recorded with a delay
(elapsed time between imitation and recording)
by the local listeners, then Mouse Underlaying is
active.

• In addition, an analysis of the keylog is able to
detect Mouse Underlaying: if there are always the
same two characters in a row such as tteesstt then
Mouse Underlaying is active. Of the two same
characters the first is user induced and the second
is the result of a keylogger imitation.

• An effective measure against Mouse Underlaying
is compartmentalization such as in Qubes OS.
There is a instantiation of each process. In other
words, every process is isolated from the others.
Microsoft operating systems can be protected
against Mouse Underlaying with Bromium Secure
Platform. This is a security software which runs
every application in a micro VM [1].

Annotation
This paper was accepted to The 17th IEEE International
Conference On Trust, Security And Privacy In Computing
And Communications (IEEE TrustCom-18) in New York.
Unfortunately, there was not financial support to pay
conference fee etc. therefore I must withdraw this
paper.

Acknowledgements. I would like to thank the Distributed
Systems Group from the Osnabrück University for valuable
feedback, discussions, and work. I would also like to thank
Jörg Krywkow who did an extended proofreading of my first
paper. Moreover, I would like to thank the Cyber Analysis and
Defense Group from the Fraunhofer FKIE for value feedback
and good suggestions for the evaluation.

References
[1] (2016) Bromium- Redefining Endpoint Security. Tech. rep.,

Bromium.
[2] (2017) GuardedID. Tech. rep., StrikeForce Technologies.
[3] Abrams, R. (2017) Virustotal tips, tricks and myths. In

VB2017.
[4] Abukar, Y., Maarof, M., Hassan, F. and Muse Abshir, M.

(2014) Survey of keylogger technologies 5: 25–31.
[5] Akhil S, Neeraja M Nair, A.P.A.R. (2014) Detection and

prevention of keylogger spyware attacks. International
Journal of Computer Engineering & Technology (IJET) .

[6] Ali, T.O.M., Awadelseed, O.S.A. and Eldewahi,

A.E.W. (2016) Random multiple layouts: Keylogger
prevention technique. In 2016 Conference of Basic
Sciences and Engineering Studies (SGCAC): 1–5.
doi:10.1109/SGCAC.2016.7457997.

[7] Aslam, M., Muzammil Baig, M. and Asif Arshad, M.

(2004) Anti-hook shield against the software key loggers.
CiteSeerX .

[8] Creutzburg, R. (2017) The strange world of keyloggers -
an overview, part I 2017: 139–148.

[9] Dadkhah, M., Davarpanah Jazi, M., Ciobotaru, A.M.

and Barati, E. (2014) An introduction to undetectable
keyloggers with experimental testing 4: 1–5.

[10] Florencio, D. and Herley, C. (2006) How to login from
an internet cafe without worrying about keyloggers .

[11] Honeycutt, J. (2005) Microsoft Windows Registry Guide,
Second Edition (Redmond, WA, USA: Microsoft Press).

[12] Howard, A. and Hu, Y. (2012) An approach for
detecting malicious keyloggers. In Proceedings of the 2012
Information Security Curriculum Development Conference,
InfoSecCD ’12 (New York, NY, USA: ACM): 53–56.
doi:10.1145/2390317.2390326, URL http://doi.acm.

org/10.1145/2390317.2390326.
[13] Kishore Subramanyam, Charles E. Frank, D.F.G. (2007)

Keyloggers: The Overlooked Threat to Computer Security.
[14] Lee, R. (2004) Keystroke logging investigation. SANS

Security Essentials (GSEC) .
[15] Miller, B.P., Cooksey, G. and Moore, F. (2006) An empir-

ical study of the robustness of MacOS applications using
random testing. In Proceedings of the 1st International
Workshop on Random Testing, RT ’06 (New York, NY,
USA: ACM): 46–54. doi:10.1145/1145735.1145743, URL
http://doi.acm.org/10.1145/1145735.1145743.

[16] NameHemita Pathak, Apurva Pawar, B.P. (2015) A
survey on keylogger: A malicious attack. International
Journal of Advanced Research in Computer Engineering &
Technology (IJARCET) 4.

[17] Navarro, J., Naudon, E. and Oliveira, D. (2012)
Bridging the semantic gap to mitigate kernel-level
keyloggers. In 2012 IEEE Symposium on Security and
Privacy Workshops: 97–103. doi:10.1109/SPW.2012.22.

[18] Olzak, T. (2008) Keystroke logging (keylogging) .
[19] Oney, W. (2002) Programming the Microsoft Windows

Driver Model, Second Edition (Redmond, WA, USA:
Microsoft Press), 2nd ed.

[20] Ortolani, S., Giuffrida, C. and Crispo, B. (2013)
Unprivileged black-box detection of user-space keylog-
gers. IEEE Transactions on Dependable and Secure Com-
puting 10(1): 40–52. doi:10.1109/TDSC.2012.76.

[21] Peter Schartner, M.F. (2011) System-manipulation
using windows-messaging-hooks. Semantic Scholar .

[22] Pillai, D. and Siddavatam, I. (2018) A modified
framework to detect keyloggers using machine learning
algorithm : 1–6.

[23] Preeti Tuli, P.S. (2013) System monitoring and security
using keylogger. International Journal of Computer Science
and Mobile Computing 2.

[24] Rahim, R., Nurdiyanto, H., Ahmar, A., Abdullah, D.,
Hartama, D. and Napitupulu, D. (2018) Keylogger
application to monitoring users activity with exact string
matching algorithm 954: 012008.

[25] Rutkowska, J. and Wojtczuk, R. (2010) Qubes OS
Architecture. Tech. rep., Invisible Things Lab.

[26] Sagiroglu, S. and Canbek, G. (2009) Keyloggers:
Increasing threats to computer security and privacy.
IEEE Technology and Society Magazine 28(3): 10–17.
doi:10.1109/MTS.2009.934159.

[27] Silberschatz, A., Galvin, P.B. and Gagne, G. (2008)
Operating System Concepts (Wiley Publishing), 8th ed.

14 EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

http://dx.doi.org/10.1109/SGCAC.2016.7457997
http://dx.doi.org/10.1145/2390317.2390326
http://doi.acm.org/10.1145/2390317.2390326
http://doi.acm.org/10.1145/2390317.2390326
http://dx.doi.org/10.1145/1145735.1145743
http://doi.acm.org/10.1145/1145735.1145743
http://dx.doi.org/10.1109/SPW.2012.22
http://dx.doi.org/10.1109/TDSC.2012.76
http://dx.doi.org/10.1109/MTS.2009.934159

[28] Solairaj, A., Prabanand, S.C., Mathalairaj, J., Prathap,
C. and Vignesh, L.S. (2016) Keyloggers software detec-
tion techniques. In 2016 10th International Confer-
ence on Intelligent Systems and Control (ISCO): 1–6.
doi:10.1109/ISCO.2016.7726880.

[29] Song, M., Song, H. and Fu, X. (2011) Methodology
of user interfaces design based on android. In 2011
International Conference on Multimedia Technology: 408–
411. doi:10.1109/ICMT.2011.6002076.

[30] Tharwat, A., Hassanien, A.E. and Elnaghi, B.E. (2017)
A ba-based algorithm for parameter optimization of
support vector machine. Pattern Recognition Letters 93:
13–22. doi:10.1016/j.patrec.2016.10.007, URL https://

doi.org/10.1016/j.patrec.2016.10.007.

[31] Verma, A., Rao, M., Gupta, A., Jeberson, W. and Singh,

V. (2013) A literature review on malware and its analysis
5.

[32] Wazid, M., Katal, A., Goudar, R.H., Singh, D.P.,
Tyagi, A., Sharma, R. and Bhakuni, P. (2013) A
framework for detection and prevention of novel
keylogger spyware attacks. In 2013 7th International
Conference on Intelligent Systems and Control (ISCO): 433–
438. doi:10.1109/ISCO.2013.6481194.

[33] Ysterud, S.A. (2014) Keylogging of user interaction in
physical and virtual environments and its implications for
honeypot analysis. Master’s thesis, University Of Oslo.

15

Mouse Underlaying: Global Key and Mouse Listener Based on an Almost Invisible Window with Local Listeners and Sophisticated Focus

EAI Endorsed Transactions on
Security and Safety

05 2018 - 10 2018 | Volume 5 | Issue 15 | e5

http://dx.doi.org/10.1109/ISCO.2016.7726880
http://dx.doi.org/10.1109/ICMT.2011.6002076
http://dx.doi.org/10.1016/j.patrec.2016.10.007
https://doi.org/10.1016/j.patrec.2016.10.007
https://doi.org/10.1016/j.patrec.2016.10.007
http://dx.doi.org/10.1109/ISCO.2013.6481194

	1 Introduction
	2 Software Based Keyloggers
	2.1 General processing of keystrokes
	2.2 Kernel-based Keyboard Filter Driver Method
	2.3 Windows Keyboard Hook Method
	2.4 Keyboard State Table Method

	3 Countermeasures
	3.1 Key Event Encryption
	3.2 Anti-Hook Technique
	3.3 Fool a keylogger: conceal sensitive data
	3.4 HoneyID
	3.5 Random Multiple Layouts
	3.6 Detection by Support Vector Machine

	4 Mouse Underlaying
	4.1 General Approach
	4.2 Protocol And Relay Keystrokes
	4.3 Change Window Focus

	5 Evaluation
	5.1 Operating System Compatibility
	5.2 Minor Limitations
	5.3 Countermeasures
	Antivirus software
	Keylogger protection software
	Virtual keyboards

	6 Analysis
	6.1 Countermeasures
	6.2 Differences between Mouse Underlaying and conventional keylogging methods

	7 Outlook and further research
	7.1 Disabling keyboard and mouse
	7.2 Optimization
	Appearance of focus layout
	Imitation of keystrokes

	8 Conclusions

