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1. LUSTERNIK-SCHNIRELMANN CATEGORY

The Lusternik-Schnirelmann category cat(X) of a topological space
X is defined to be the least number n such that there are n + 1 open
subsets which cover X and which are contractible in X. A classical
theorem of Lusternik and Schnirelmann [53] states that cat(M) + 1 is
a lower bound for the number of critical points of a smooth function f
on the smooth manifold M. Due to this result, the invariant cat plays
an important role in geometry and analysis [I8]. Under mild point-set
topology assumptions, there are equivalent descriptions of cat accord-
ing to Ganea and Whitehead which are manifestly homotopy invariant
in nature. A first one, given by Whitehead, defines cat(X) < n if the
diagonal

AT X — X

factors up to homotopy through the fat wedge X <"*1>. A second one,
corresponing to Ganea, puts cat(X) < n if the homotopy fibration

QX" 5 BOX = BoOX ~ X

admits a homotopy section. Here, QX*"*1 is the (n + 1)-fold join of
the Moore loop space X, and B,Q.X stands for the n'" stage of the
classifying space of the topological monoid 2.X. There are also relative
versions cat(p) which take as input a fibration p: Y — X.

It is a classical fact that LS-category satisfies an inequality
cat(X xY) < cat(X) + cat(Y).
There are well-known examples, involving torsion at different primes
in the homology of XY, for which the inequality is strict. Relatively
recently, Iwase gave also torsion-free examples in which one of the fac-

tors is a sphere [46]. They serve as counter examples for the famous
Ganea conjecture which predicted that

cat(X x S™) = cat(X) + 1.

In contrast, for simply connected rational spaces of finite type Xy, Yo,
Felix, Halperin, and Lemaire showed in [26] that the equality

cat(Xo x Yp) = cat(Xy) + cat(Yp)

holds. They built on important earlier work of Hess and Jessup which,
taken together, settles the case in which Y{ is the rational sphere Sj.
Jessup proved a product theorem for the so-called module category
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Mecat [47]. This invariant is at first sight a weak approximation of cat.
It was at first defined in a purely algebraic way. To be more precise, one
considers the minimal Sullivan model AV [73] of X, and the quotient
map

AV B AV

where A=V stands for the (n+ 1)-th power of the augmentation ideal.
Consider a factorization p = ¢i into cofibration and trivial fibration,
in the model category introduced in [11]. Then, by a famous theorem
of Felix and Halperin [25], cat(Xp) is the smallest n such that ¢ has a
retraction of dg algebras. That is, the map ¢ is a model of the n-th
Ganea fibration in a weak sense. If one asks only for a retraction of dg
AV-modules, one arrives at the definition of the invariant M cat.

A little later, Hess proved the surprising theorem [45] that in fact
there is an equality

cat(Xo) = Mecat(Xy).

Before we go further, we provide some background information on
the algebraic models of the homotopy category which show up in our
work on the subject.

There are algebraic models involving dg commutative algebras, dg
Lie algebras, or dg Hopf algebras for the homotopy theory of 1-connected
p-local complexes of fixed dimension localized at a large enough prime.
Hence, no notion of E_-structures is needed in this restricted context.
More generally, the homotopy category of tame spaces can be modeled
in this way. Without going into details, a space is tame if the divisi-
bility of the homotopy groups increases fast enough to prevent stable
k-invariants from appearing.

It was Dwyer, following Quillen’s treatment of rational homotopy
theory, who constructed a dg Lie-version of tame homotopy theory
based on so-called Lazard algebras [22]. These are decreasingly filtered
Lie algebras with increasing divisibility on the filtrations.

As in Sullivan’s approach to rational homotopy theory [73], a de
Rham theorem for a dg algebra of polynomial forms is central to the
version of tame theory based on commutative dg algebras. This gener-
alization of the Sullivan-de Rham theorem is due to Cenkl-Porter [14].
The Cenkl-Porter algebra 7%*(X) on a simplicial set X is a filtered
commutative dg algebra of polynomial forms on the cubical subdivided
simplexes of a simplicial set. It is filtered by polynomial degree in a way
so that the k-th filtration T*(X) is a module over the ring Z[%|p < kJ.
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Integration defines a homology equivalence from T%*(X) to the sin-
gular cochaines on X with coefficients in Z[i!p < k]. Of course, the
filtrations are not closed under the wedge product of forms. The ho-
motopy theory of filtered dg commutative algebras was developed by
Cenkl and Porter in a series of preprints and then further by the F.U.
topology group, who gave a model categorical presentation, in some
preprints and several theses [9].

A little later Anick constructed a version of tame homotopy theory
based on so-called Hopf algebras up to homotopy [2] which is somehow
intermediate between the dg Lie and dg commutative algebra versions.
The main algebraic models used by Anick are universal enveloping
algebras of dg Lie-algebras.

In a series of papers, Scheerer and Tanré explored the theory further
and gave applications [61],[62],[63],[64].

A large part of rational homotopy theory can be extended to this
large prime p-local setting. For example, there are minimal models
which are unique up to isomorphism and an interpretation of the qua-
dratic part of the differential of a minimal model in terms of mod-p
Whitehead products. For us most important is a description of LS cat-
egory [61] parallel to the one given in the Felix-Halperin theorem quoted
above. Recently, classical rational theorems of Halperin on free torus
actions [42] have been generalized by Hanke to free (Z/pZ)"-actions by
use of tame homotopy theory [43]. Moreover, there are decomposition
theorems for tame loop spaces and suspensions which state that every
loop space is homotopy equivalent to a product of Eilenberg-MacLane
spaces and every suspension is equivalent to a wedge product of Moore
spaces. Hence, stable tame homotopy theory is rather trivial, a prop-
erty which is shared by rational stable homotopy theory. However, the
Bockstein operators add a new layer of structure to the tame theory.

After the appearance of the rational results on the additivity of cat
quoted above, Scheerer and Tanré and also Hess conjectured that there
should be a large prime version of the main results in [26]. This was
provided by the following theorem [70]:

Theorem 1.1. Let X, Y be n-connected p-local CW-complezes of finite
Ly -type, and R a quotient ring of Z,). Suppose that

dim(X) + dim(Y) < min(n+2p —3,np — 1),

and that H,(QX, Zy), H.(QY, Z,) are free R-modules for < dim(X )+
dim(Y') — 1. Then cat(X xY) = cat(X) + cat(Y).



As a corollary one obtains a mod p version of the Ganea conjecture
under restrictions:

Corollary 1.2. Let PY(R) be the Moore space for R with top cell in
dimension . Suppose that Y is as in the theorem above and that
dim(Y)+1 < min(n+2p—3,np—1). Then cat(Y x P(R)) = cat(Y)+1.

In a first main step, the equality cat(X) = Mcat(X) is deduced
from a deformation argument. As one may expect, the action of the
Bockstein operators causes some problems. It is only here where the
assumptions on the loop space homology are needed. In a further step,
the additivity for Mcat is reduced to show additivity of the Toomer
invariant e [77]. Finally, a duality argument shows additivity for e.
The rational results serve as a blue-print. We also rely heavily on work
of Scheerer and Tanré which, in the p-local theory, connects holonomy
and LS category [64].

What is missing so far is to assemle the p-local and rational results
by some arithmetic square argument. But the behaviour of cat with
respect to localization is not fully understood. There are infinite com-
plexes X such that cat(X,)) < m for all primes p but cat(X) = m. No
such examples are known for finite X (see [58]).

In [66] we gave, together with Hans Scheerer, a topological interpre-
tation of the invariant Mcat (see also chapter 5.6. of [1§]).

Consider for a fibration p : E — B of spaces the fibration S ym;’co(E ) —
B obtained by application of a fiberwise version of the infinite symmet-
ric power functor to the fibration p.

Definition 1.3. Define Sym™cat(X) to be the smallest n such that
Sym(Gn(p)) — B
has a section.

Let A be an commutative dg algebra over the rationals. The for-
get functor from dg commutative algebras under A to pointed dg A-
modules has a left adjoint U (M). The functor U shows up in the next
theorem which gives an interpretation of the invariant Sym™cat(X) in
the rational context:

Theorem 1.4. Let p : Y — X be a fibration of 1-connected rational
spaces of finite type. Moreover, let AV be a cofibrant model of X and
AV — AV @, AW be a cofibration which models p. Then

AV = U(AV @, AW)



1s a model for the fibration
SymF(Y) — X.

The subscript 7 above indicates that the differential is twisted.

We obtain the following interpretation of Hess’s result:

Corollary 1.5. Let X be a 1-connected rational space of finite type.
Then the Ganea fibration

Gn(X) = X
admits a section if, and only if, the symmetrized Ganea fibration
SymF(Gn(X)) — X
admits one.

Remark 1.6. There is also a version of [[.4]in the tame p-local setting.

The functor Sym> can be replaced by others, for example by the
functor Q(—) representing stabilization. The idea to define invariants
by fiberwise linearization of Ganea fibrations has been taken up by sev-
eral authors [78],[65] who proved additivity theorems for the linearized
invariants. Recently, the authors of [29] gave an interpretation of the
homotopy category of unbounded dg AV-modules in terms of rational
spectra parametrized by the rational space Xy whose model is AV.

The strong category Cat(X) was introduced by Fox [34] as an ap-
proximation to cat(X). It is the smallest number n such that there
is a space of the homotopy type of X which can be covered by n+1
open contractible subsets. The strong category can be described as
cone length. That is, Cat(X) < n if, and only if, there are cofibration
sequences

L'L'_>X’i_>Xi+1> 0<i<n

with X ~ * and X,, ~ X [37]. It was proved by Cornea [16],[17] that
one can find a n-cone presentation in which L; ~ X'Z;.

In [72], we study relations between cat(X) and Cat(X) of a topolog-
ical space X. In general, there is an inequality [37]:

cat(X) < Cat(X) < cat(X) + 1.

Until recently, there were no spaces X known with 2 < cat(X) #
Cat(X). This has now changed. The first example, found by Dupont
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[21], is a rational space with cat(X) = 3 and Cat(X) = 4. There can
be no rational example of lower category [28]. A little later, Stanley
constructed, for each n spaces X,, with cat(X,) = n and Cat(X,) =
n+ 1 [69]. Stanley’s work was inspired by the ideas used by Iwase in
the construction of his counter-example to the Ganea conjecture [46].
In a certain range, both invariants agree. For example, Clapp and
Puppe, improving on an earlier result of Ganea [37], showed [14] that,
for X a finite (I — 1)-connected (2 < [) CW-complex with dim(X) <
(2cat(X) + 1)l — 3, the equality cat(X) =Cat(X) holds. The case
of category one was already studied by Ganea [35]. The condition
cat(X) = 1 is equivalent to X being a co-H space, and Cat(X) = 1
translates into X being of the homotopy type of a suspension. For a co-
H space X which admits the structure of a coalgebra up to homotopy
over the cotriple defined by the functor ¥, a theorem in [35] tells us
that already the inequality dim(X) < 4] — 5 implies that Cat(X) = 1.
Later, Saito showed that this bound can be further improved for co-Ay4
spaces [59].

These results were generalized independently by Arkowitz and Go-
lasinski [3] on the one hand, and by Klein, Schwénzl, and Vogt on
the other [49]. Both groups apply a version of A.-theory for co-H
spaces. In contrast to [49] where the comultiplication is the main ob-
ject of study, Arkowitz and Golasinski work with a section for the first
Ganea fibration instead. Following a suggestion of Ganea in [35], the
notion of a homotopy coalgebra of order r over ¥ is introduced which
plays the part of an A, space structure. The main theorem in [3] is
then that a finite 2-connected co-H space whose co-H structure satis-
fies all higher coherencies can be desuspended. In [49], the same result
is achieved. Apart from the connectivity hypothesis, this establishes
a perfect Eckmann-Hilton dual result to Stasheft’s classical delooping
theorem for A, spaces.

In [72], we generalize some of these results for spaces X with cat(X) >
2. In doing so, we follow the route laid out by Arkowitz and Golasinski
as we study sections of the n-th Ganea fibration. The functor X2 is
generalized by the n-th Ganea space functor G,,(—) defined by Ganea’s
fibre-cofibre construction [37] (or equivalently up to homotopy B,2).
This functor defines a cotriple [19]. The key notion is that of a (weak)
homotopy coalgebra of order r for this cotriple. This structure encodes
higher homotopies to some sort of coassociativity. Homotopy coalge-
bras of order 1 over the Ganea cotriple were studied by Deligiannis in
his thesis [20]. These make up the second layer of structure. On the
other hand, we followed the authors of [49] in that we used higher doses
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of A,,-theory in a form which was pioneered by Boardman and Vogt [g].
The new ingredient is that A,-theory for H-spaces enters the picture.

In the definition of a homotopy coalgebra over G, (—), some of the
structure maps are only A,-maps, not A,-homomorphisms. That means
they commute with the A,-actions up to m-coherent homotopy. The
combinatorial description of A,-maps is a good deal more complicated
than the one of the associahedra making up the Stasheff A,-operad. In
order to deal with this fact, it was appropriate to relate A,-structures
to partial monoids.

To make this more precise, we need the next.

Definition 1.7. A filtration of a space M with M; C My C ... C
M, = M with a partial monoid structure such that

M(Q) = U Mz X Mj
i+j<n
is called an A,, rectification of M; if the inclusion of M,;_; into M, is a
homotopy equivalence for 1 <i—1<n —1.

The name (and the definition) is justified by:

Theorem 1.8. A well pointed space X admits an A,, structure if, and
only if, there is an A,, rectification with X = M;.

The description of A,,-stuctures through partial monoid thickenings
is used in the proof of the following theorem which is essential for the
deduction of the main results below.

Theorem 1.9. Let (X, F') be a well pointed A,, space and g : X — N
an A, map to a monoid N. Moreover, let f : K — N be a map of
monoids. Then in the homotopy pullback square

Pyt K
f

g
X N.

there exists an induced A,-structure on the space P, ;.

The theorem below generalizes Ganea’s theorem quoted above for all
n.



10

Theorem 1.10. Let X be of the homotopy type of an (I —1)-connected
CW -complex for some | > 2. Assume furthermore that cat(X) = n
and dim(X) < 2(n+ 1)l = 5. Then Cat(X) = n if and only if X is a
homotopy coalgebra of order 1 over B,f).

The next theorem generalizes the main results in [3] and [14] from
n =1 to all n and from r =1 to all r, respectively .

Theorem 1.11. Let X be of the homotopy type of a CW -complex.
Suppose that cat(X) = n and that X admits a weak homotopy coalgebra

over B, of order r. Furthermore, suppose that X is (I —1)-connected
[>2 and

dim(X) < (2n+ 1)+ (r—1)(n(l—-1)—1) — 3.
Then cat(X) =Cat(X) holds.

Remark 1.12. As was shown by Cornea in [16], there exists for every
space X with cat(X) = n a space Z such that Cat(X vV ¥"Z) = n. So,
in a way, we are looking for conditions which make it possible to cancel
the summand X" Z.

2. N-FOLD LOOP SPACES AND N-FOLD MONOIDAL CATEGORIES

Algebraicly structured categories show up in homotopy theory, alge-

bra, and physics. For example, the fact that the nerves of monoidal,
braided, and symmetric monoidal categories give rise to loop spaces,
2-fold loop spaces, and infinite loop spaces upon group completion is
central in K-theory. Braidings on categories play a role in the repre-
sentation theory of quantum groups and in knot theory.
There are algebraic structures on categories which interpolate between
monoidal and symmetric monoidal structures. These k-fold monoidal
categories were introduced in [4] where it was shown that the classifying
space of an k-fold monoidal category is acted on by an Ej-operad. An
k-fold monoidal structure on a category is given by k£ monoidal struc-
tures which commute with each other up to some appropriate kind of
homotopy. An operad M, in the category of small categories Cat (do
not mix up this category with strong category!) was introduced, such
that k-fold monoidal categories are exactly the algebras over M. Be-
fore, the class of braided monoidal categories was already well studied
[30],]48]. A braiding on category is a special case of a 2-fold monoidal
structure.
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In the late 90’s, Thomason proved that every infinite loop space

comes up to homotopy from a symmetric monoidal category [76]. For
the argument he relied on his former work on homotopy colimits in
symmetric monoidal categories [75]. Motivated by this, Zig Fiedorow-
icz and Rainer Vogt conjectured that a generalization of Thomason’s
theorem should hold true, i.e. that every k-fold loop space comes from
an k-fold monoidal category. Generalizations of this conjecture were
proved in the papers [31],[32], jointly with Zig Fiedrowicz and Rainer
Vogt.
Let C, be the little k-cubes operad [8]. We write Cat™* and Top* for
k-fold monoidal categories and E} spaces, respectively. For any operad
M in Cat, a map in Cat™ is defined to be a weak equivalence if its
image under the classifying space functor B is a weak equivalence of
spaces.

Theorem 2.1. For 1 < k < oo, the classifying space functor B and
change of operads induce equivalences of homotopy categories.

CatMr[we™) ~ TopPMrlwe™] ~ Top®* [we™]

Remark 2.2. A much more general theorem was proved in [31]. One
can replace the operad M, by any >-free operad whose underlying cat-
egories satisfy one additional factorization condition. Very roughly, this
condition gives a weak substitute for the terminal objects in the cate-
gories which make up the categorical Barratt-Eccles operad modeling
symmetric monoidal categories. It was important to find a condition
weak enough so that non-contractible operads such as My could be
treated.

Let Br be the operad which models braided categories. It satisfies
the factorization condition. Hence we get:

Theorem 2.3. The classifying space functor and the change of operads
functor induce equivalences of categories

Cat® we™] ~ Top®Fwe™ '] ~ Top® [we™"].

Let 3 be the Cat-version of the Barratt-Eccles operad modeling per-
mutative categories Perm. It satisfies the factorization condition. We
obtain a version of Thomason’s theorem before group completion:

Theorem 2.4. The classifying space functor and the change of operads
functors induce equivalences of categories

Perm[we™] = Cat™ [1;6\/_1] ~ TopP® [we™] ~ Top®=[we™].
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In the approach taken in [31], we define homotopy colimits in alge-
bras Cat™ for a suitable Cat operad M and compare them with the
homotopy colimits in BM-algebras in Top. The construction of these
homotopy colimits by generators and relations is a bit technical and
too complex to be given here. To formulate the correct universal prop-
erty of hocolim, one needs to introduce categories of lax algebras over
an operad in Clat. It is not possible to rely on the general literature on
model categories since there is no suitable model structure known on
algebras over a C'at operad. The point is that Thomason’s model struc-
ture on Cat is not well behaved with respect to the monoidal structure
since a subdivision functor is involved. In order to accomplish this
comparison, objects are replaced by simplicial resolutions. One is thus
reduced to the study of diagonals and to the case of free diagrams. The
following result is an essential step in the proof of

Theorem 2.5. Let M be a reduced X-free operad satisfying the fac-
torization condition. Then for each diagram X : £ — Cat™ there is a
natural weak equivalence

a(X) : hocolimPMBstr X — B(hocolim™ X).

The strictification functor str can and should be thought as some
kind of cofibrant replacement. It is defined as the homotopy colimt of
a diagram from the trivial category.

There are modifications of the theorems above which apply to iter-
ated loop spaces. The weak equivalences are modified to the class of
morphisms we, which become weak equivalences after a group com-
pletion functor is applied. For any k¥ < oo let Q¥Top stand for the
category of k-fold loop spaces.

Theorem 2.6. The classifying space functor composed with the group
completion induces equivalences of categories:

Cat"*[we, '] ~ QFToplwe™]
Cat®" [we, '] ~ Q*Toplwe™ ']
Cati[weg’l] ~ Q®Toplwe™].

In order to make sense out of the homotopy categories of algebras
above, we construct in [71] a model category on algebras in simplicial
sets over a cofibrant E,-operad M with some desireable properties.
The weak equivalences are the maps which become weak equivalences
of simplicial sets after group completion X — @QX, and the fibrant
objects are the group complete algebras.
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Theorem 2.7. Let M be a cofibrant Ej-operad in simplicial sets. The
category SSM of pointed algebras over M with the Q-structure is a left
proper simplicial model category. Moreover, a morphism f : X — Y
in SSM is a Q-fibration if it is a fibration and

X2 0x

1 e

Y —— QY

1s a homotopy fibre square. In case moQ f is onto this condition is also
necessary.

Remark 2.8. The cofibrancy of the operad M is used to construct a
group completion map X — (X which is a genuine M-homomorphism.
This is needed in order to apply general results on Bousfield-Friedlander
model structures.

A different approach to the main results of [31] was developed in
[32]. Recall that May and Thomason defined the notions of a category
of operators M associated to a topological operad M and of algebras
TopM over it [54]. They used this structure in the comparison of the
delooping machine based on spaces with an E.-operad action with Se-
gal’s machine which involves a weakening of the cartesian product and
the notion of product up to equivalell\ce. A rectification construction
was created which associates to an M-algebra a genuine M-algebra.
In [32], a rectification

M : C’atf‘/‘\ — CatM

which works in Cat is given. This construction should be seen as a
Cat-version of the classical M-construction, of Boardman and Vogt
[8]. This functor associates with a topological algebra over a cofibrant
model W (M) of a given operad M an algebra over the original operad.
The functor M is defined as the Grothendieck construction

MG =T / F¢
of a certain category 7 made of trees and a functor
FC:T = Cat.

So in the investigation of its properties in homotopy, one can rely on
Thomason’s classical homotopy colimit theorem for the Grothendieck
construction [74]. The rectification can be used to give a substitute
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for the homotopy colimit construction in the case of simplicial algebras
over a Y-free Clat-operad M. To be more precise, one defines a functor

Heu Cat™®” = catM

by How (D) = ’Tf FA? [CG where G is the algebra over M\ associated
with the M-algebra G. It is then shown that Hg,; induces an equiv-
alence on homotopy categories. This suffices since, by former work of
Fiedorowicz and Vogt [33], the homotopy category CatM*” [we™!] of
simplicial algebras is known to be equivalent to the homotopy category
of topological B(M)-algebras.

3. UNSTABLE MODULES AND (CO)ALGEBRAS

The mod p cohomology H*(X) of a topological space X is an unsta-
ble module over the Steenrod algebra A,. Moreover, the cup product
interacts with the A,-module action to define the structure of an un-
stable algebra on H*(X). Questions on the realizability of a given
Ap-module as the cohomology of a space are classical and central in
algebraic topology. Examples of small modules which can not be real-
ized show up in the famous Hopf and Kervaire invariant one problems.
In contrast, the modules which underly a polynomial unstable algebra,
are rather large and not finitely generated. Steenrod asked for a clas-
sification which has been achieved recently.

In the mid-90’s, Nick Kuhn made the following conjecture:

If H*(X) is finitely generated as an A,-module, then it is finite di-
mensional as an F,-vector space.

Kuhn proved his conjecture under the assumption that the Bockstein
operator acts trivially on H*(X) in high degrees using some heavy guns
from classical homotopy theory [50]. A little later, Lionel Schwartz gave
a proof of Kuhn’s conjecture at the prime 2 [68]. A new idea invented
by Schwartz is to study the implications of a finitely generated but
non-finite module structure on M = H*(X), for H*(Q2"(X)) via the
Eilenberg-Moore spectral sequence and deduce a contradiction from
them. In a later paper [51], Kuhn gave a streamlined proof in which he
replaced the iterated use of the Eilenberg-Moore spectral sequence by
a single application of a spectral sequence constructed from the Good-
willie tower of the functor X — X>°Q"(X). The argument reduces the
non realizability of M to the non-realizability of certain finite modules.
These non-realizability results are interesting in themselves. An at-
tempt of a generailzation for odd primes p faces some difficulties which
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are well known in the theory of unstable modules and algebras. Only
in even dimensions are the top odd primary operations directly related
to the algebra structure. In odd dimensions, there is only an inter-
pretation of the top operation in terms of higher symmetric Massey
products. As a consequence, the module of indecomposables in an
unstable algebra may fail to desuspend, and the whole desuspension
theory of unstable modules is more complicated at odd primes than
at 2. In classical desuspension theory, a similar complication arises,
which is reflected by the fact that there are two EHP sequences at odd
primes and one at 2. In [12], together with Sebastian Biischer, Fabian
Hebestreit, and Oliver Réndigs, we partially extend the results in [50]
for odd primes.

Let ®(k, k + 2) be the unstable module given as the subquotient of
H*(K(Z/pZ,1) with F,-base {t" , t**"" """} where t is a generator in
H*(K(Z/pZ,1).

Theorem 3.1. Let M be an unstable module of finite type, concentrated
in degrees between | and m. Suppose that M contains a desuspension
class of even origin. If X s a topological space such that

0 (X)= M@ ok, k+2)
as A,-modules, then 2pF < (p* — 1)+ (p — 1)(m —1).

The proof uses the interplay of operations dual to the Dyer-Lashof
operations with the Steenrod action on the Goodwillie spectral se-
quence. As a corollary, we obtain a new proof of Kuhn’s theorem
without reference to the Hopf invariant 1 mod p theorem.

Theorem 3.2. Let X be a topological space such that H*(X) is finitely
generated as an A,-module and the Bockstein operator acts trivial in
high degrees. Then H*(X) is finite dimensional as an F,-vector space.

Only recently, Gaudens and Schwartz were able to show that a fast
generalization of the conjecture at all primes holds [38]. The new ap-
proach uses Lannes’ theory and gives no information on finite modules.
It is an open question whether there is a version of for modules
which contain only desuspesion classes of odd origin.

In case one knows that a given unstable (co)algebra has a toplogical
realization X, one may ask further how many such spaces are there
up to equivalence. In joint work with Georg Biedermann and George
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Raptis [5], we construct moduli spaces attached to the topological re-
alizations of an unstable coalgebra C. The set of realizations is in
bijection with the path components of the moduli space. Moreover, a
tower of fibrations which approximate the moduli space is constructed,
and the extensions in the tower are linked to cohomological data.

Moduli spaces which parametrize homotopy types with a given co-
homology algebra or homotopy Lie algebra were first constructed in
rational homotopy theory. The case of cohomology was treated by
Félix [24], Lemaire-Sigrist [52], and Schlessinger-Stasheff [67]. These
moduli sets turn out to be the quotient of a rational variety by the ac-
tion of an unipotent proalgebraic group. Of course, the moduli schemes
which are studied in algebraic geometry by the method of geometric
invariant theory [56] also admit such a representation.

An obstruction theory for unstable coalgebras was developed by
Blanc in [6]. He defined obstruction classes for a coalgebra C' and
proved that the vanishing of these classes is nessecary and sufficient for
the existence of a realization. He went on and defined difference classes
which may differentiate two given realizations. Both classes live in cer-
tain André-Quillen cohomology groups associated to C'. For very nice
unstable algebras, an obstruction theory using the Massey-Peterson
machinery was developed by Harper [44] and McCleary [55] already in
the late seventies. In a landmark paper, Blanc, Dwyer, and Goerss
[7] constructed moduli spaces for realizations of a given IT-algebra over
the integers. The components of the moduli space correspond to dif-
ferent realizations. A decomposition into a tower of fibrations which
allows an inductive approach is achieved by means of simplicial reso-
lutions. The authors relied on earlier work of Dwyer, Kan, and Stover
[23] on resolution model categories which, later on, was generalized by
Bousfield [I0]. Along the same lines, the moduli spaces of realizations
of a commutative algebra in comodules over a Hopf algebroid by an
E-algebra in spectra are treated by Goerss and Hopkins in a series
of papers [40], [41], and [39]. These results gave rise to some profound
applications in stable homotopy [57].

Fix a prime field F and an unstable coalgebra C over it. The space
of realizations Mr.,(C') is the nerve of the category whose objects are
all spaces with F-homology isomorphic to C' as unstable coalgebra and
whose morphisms are the F-homology equivalences between these ob-
jects. In order to break this space into pieces which allow an inductive
approach, the spaces realizing C' are replaced by cosimplicial resolu-
tions. These resolutions are products of Eilenberg-MacLane spaces of
type IF in each cosimplicial degree. There is a notion of Postnikov tower
with respect to the cosimplicial direction for such resolutions. The
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stages are characterized by an approximation and a vanishing condi-
tion similar as in the classical situation. A potential n-stage for C' is
then defined to be a cosimplicial space which satisfies this condition
up to level n. This definition makes also sense for n = oo giving rise
to the notion of an oco-stage. The category whose objects are potential
n-stages of C' defines a moduli space M,,(C), and the skeleton functor
induces a map
sk, : M, (C) = M, _1(C).

The following theorem addresses the relation between the moduli spaces
of co-stages and actual realizations of C"

Theorem 3.3. Let C' be a simply-connected unstable coalgebra, i.e.
Cy = 0 and Cy = F. Then the totalization functor induces a weak
equivalence

Moo (C) = Moy (C).
A further step towards an inductive approach is:

Theorem 3.4. Let C' be an unstable coalgebra. Then there is a weak
equivalence

Mo(C) =~ holim M,,(C).

Associated with an abelian unstable coalgebra M which is also a C-
comodule, there is an Eilenberg-MacLane object K¢(M,n) in cosimpli-
cial unstable coalgebras. We define André-Quillen spaces as the derived
mapping spaces in the simplicial resolution model category, due Bous-
field, of cosimplicial unstable coalgebras under C'

TAQH(C; M) = mapf(eé/CA)(KC(M, n),cC),

where ¢C' is the constant cosimplicial object defined by C'. The homo-
topy groups of this mapping space define André-Quillen cohomology of
C' with coefficients in M. Let us write C[n] for the C-comodule and
unstable module obtained by shifting C' n-steps up with respect to the
internal degree.

The difference between M,,(C) and M,,_1(C) can be understood by
the theorem below. The two spaces on the right in the diagram are
moduli spaces of certain diagrams of Eilenberg-MacLane objects:

Theorem 3.5. For every n > 1, there is a homotopy pullback square

M, (C) M(Ke(Cln],n+2) - K(C,0))

- -

%o M(K(C,0) « Ko(Clnl,n +2) — K(C,0)).




18

where the map on the right is induced by the functor (V « U) — (V «
U—1V).

From this we obtain the promised cohomological description of the
sections in the tower of moduli spaces.

Theorem 3.6. Let X*® be a potential n-stage for an unstable coalgebra
C. Then there is a homotopy pullback square

TAQE (C; Clnl)

¥ o X M1 (C).

Notice that the Eilenberg-MacLane objects which define the layers
vary in a much more transparent way than in the classical Postnikov
decomposition of spaces.

A main tool in the proof of the results quoted above is an excision
theorem in the resolution model category of cosimplicial spaces. There
is also a version for cosimplicial unstable coalgebras from which the
former is deduced.

Theorem 3.7. Let
E*—X*

|
Y. L Z.
be a homotopy pullback square of cosimplicial spaces where f is m-

connected and g is n-connected. Then the square is homotopy (m+n)-
cocartesian.
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