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Chapter 1
What is Transport?

Transport is related to the (re-)distribution of matter (or other properties of space) with time.
Formally, in the simplest case this is described by a partial differential equation (PDE), in
the more interesting applications by a system of PDEs. This introduction gives some general
ideas of transport processes, the underlying physics and the mathematical description.
Goals: after working through this chapter you should be able:

• to give examples for transport processes and to appreciate the manyfold of different trans-
port processes as well as the manyfold of applications of one particular transport process
to entirely different (physical) problems.

• to get a first glimpse on models embedded in models embedded in models embedded in
models .... and to understand the importance of well defined goals and boundaries of a
model.

• to classify transport problems.

1.1 What is transport? – A Guided Tour

Give me a break – let’s start with a more basic question: What can be transported? That is
(a) matter, (b) momentum and energy, and (c) information. For a start, let us limit ourselves
to the transport of matter and browse through a few examples with a short pictorial guide.

In it’s daily meaning, transport most likely is associ-
ated with traffic; an autobahn can serve as illustration
for transport. This kind of transport is basically 1D (co-
ordinate is the autobahn-km) and directed. The particle
flow can be described in different ways. In the most sim-
ple case, we assume that all particles move at the same
speed. This approach resembles a cold fluid, thus the flow
can be described by Bernoulli’s law. Consequently, the
flow will speed up at an obstruction and slow done if the
autobahn widens (e.g. an additional lane). No traffic jam will ever occur.

A different approach should consider the particles individual speeds. These can be de-
scribed by some distribution added to the average flow speed. The resulting transport can
be modeled as a 1D-diffusion–convection model – and this model even allows for the build-up
of a traffic jam.1 If your special interest in transport is in this kind of transport, you might
consider a closer look into Modeling Transport by Ortúzar and Willumsen [124].

1Amazingly, traffic jams do not necessarily require a construction site or an accident that slows down the
traffic flow but can build-up out of nothing just due to the gradients in speed. Information on traffic modeling
can be obtained at http://www.traffic.uni-duisburg.de/; traffic jams as a form of a phase transition will
be briefly discussed in sect. 4.6.3; project 2 allows you to study this topic in more detail.

1
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2 CHAPTER 1. WHAT IS TRANSPORT?

Side question 1 Is traffic a continuous, incompressible fluid or made up of discrete cars?
Is the requirement for a fluid/gas to be in equilibrium fulfilled in traffic?

A pipeline also is an example for directed transport.
As in an autobahn, the goal is to move matter from A
to B as fast as possible. But not too fast: if the flow be-
comes turbulent, energy is converted from bulk motion via
turbulence into heat. Thus pumping becomes expensive.
Although we are still in a 1D geometry, Bernoulli probably
would not be sufficient to describe this mode of transport:
first of all, all the twists and bends in a pipeline will gen-
erate a certain amount of turbulence. And secondly, the
fluid transported through the pipeline might sediment its more solid parts eventually mod-
ifying the flow. This is of particular concern in oil raffineries; the interested reader might
consult Advanced transport phenomena [157].

Side question 2 Recapitulate Bernoulli and related laws. Are they sufficient to explain the
turbulence created in the bend of a pipe? Do they account for turbulence at constrictions or
behind obstacles?

A very similar, although natural system is the cardio-
vascular system. Again, a fluid is transported through
pipes which vary in diameter. These pipes also branch
and connect. In addition, the problem of congestion by
‘fall-out’ from the fluid is also known; here it is called arte-
riosclerosis. The main challenges in modeling the cardio-
vascular system are the time-dependent complex pumping
system (heart, supportive indirect pumping by valves in
the extremities) and the varying diameter of the vessels:
in the main aorta blood certainly can be regarded as a
liquid; the small capillary vessels, however, have diame-
ters of the order of the diameter of a red blood cell – thus
blood no longer is a fluid but consists of discrete vehicles.
Some of the more interesting topics on the subject are dis-
cussed in The physics of heart and circulation by Strackee
and Westerhoff [161].

Some in-between calculation 1 If blood in some vessels can be regarded as simple flow
and in others as particulate matter – how is it described in vessels with diameters in between.
Or in other wording: where does the transition happen, what are the consequences of this
transition for modeling?

But not even such a simple liquid as pure water be-
haves always as a fluid if transport is concerned. In-
stead, interesting transport phenomena can be created if
a droplet of water hits the surface of a body of water:
surface waves travel from the impact site outwards. They
transport energy and the information about the impact
to remote sites. Thus we get an entirely different physical
situation: first, the droplets potential energy is converted
to kinetic energy during its fall. After impact this energy
is converted to wave energy. The energy transport in the
first part is coupled to the motion of the droplet (and its heating since friction cannot be ne-
glected). In the second part, energy is also coupled to the motion of water, nonetheless, while
the energy is transported away from the impact site the matter stays at rest – except for small
motions around the rest position to allow for wave propagation. Formally, this is described
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by a 2D wave equation – a transport mode that will not be discussed in more detail in this
text. Although the Indian ocean tsunami has drawn the public attention to surface waves
only recently, coastal engineers consider them an important topic, in particular at times of
climate change. This interest is also reflected in the large number of good textbooks on ocean
surface wave, such as [38, 39, 108, 111]. Freak waves are another special version of ocean
surface waves and also make it into the press sometimes: for a long time they were regarded
as sailor’s folk tale, however, they occasionally swallow even larger ships and their existence
has been confirmed by automatized measuring buoys; for further information you might con-
sult http://www.math.uio.no/∼karstent/waves/index en.html, which also offers pdf’s
of some papers, or the more popular site http://www.saevert.de/2freakwaves.htm. A
pretty good resource, also in Norwegian only, is Dysthe’s talk in modeling of freak waves
(http://www.math.uio.no/∼karstent/waves/vitenskapsakademiet.pdf).

Although also related to water and surfaces, an en-
tirely different transport phenomenon can be observed
at a window pane when droplet meets droplet during
a rain shower. Here the transport is not as simple as
one might expect. Naively, the dominating force on the
droplet should be gravitation, pulling it down. However,
intermolecular forces between the water molecules and the
pane’s surface determine not only shape and size of any
of the droplet individually but also influence its motion.
As a droplet follows the pull of gravity it often follows
the path left by an earlier droplet. And a droplet might not necessarily stay a droplet but
interact and coalescence with another droplet.

Side question 3 Is it possible to model such kind of processes? And if so, what would be
a reasonable approach – deterministic or stochastic?

While the last example had the individual droplet in its fo-
cus, this example for transport in some respect resembles the
autobahn – but still contains the droplet aspect. At least in its
upper parts (almost hidden from the view) the flow is channeled
by the structure of the underlying rock. Although this is a chan-
neled transport, it is also turbulent transport. With increasing
fall, the flow divides into a large number of partially interacting
sub-streams which partly even resolve into droplets. Here the
boundary condition, that is the surface of the rock beneath the
stream, determines the structure and character of the flow. Al-
though it looks pretty difficult to model, this is a very simple
example for a natural water flow: the rock is a static boundary
condition, at least on time scales that are not concerned with
the erosion of mountain ranges. Thus this boundary condition can be implemented into any
numerical model easily even if the expenditure of work is large. If the stream passes over
porous rock or runs in a sand bed the situation is different: fluid can be exchanged across
this boundary, thus the bottom of the stream is not a closed boundary but right in the
middle of the simulation volume and the medium below the stream bed must be considered.
This is one prominent example for transport modeling related to human needs: fresh water,
which often is groundwater. Such a reservoir should not be depleted faster than nature can
replenish it; thus transfer through porous rocks and soil is an important topic in resources
management. The basics have been described by Bear [9] in its legendary Dynamics of fluids
in porous media; standard textbooks on modeling groundwater reservoirs and pollution are
[10, 62, 95, 96].

Side question 4 Is the turbulence in the flow required for droplet formation or could an
accelerating stream resolve into droplets without its aid? Think about it – Bernoulli’s law
and the tap in you kitchen might help you with the answer.
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The water resources manager at your local wa-
terworks might be happy with one of the above
models. However, these models need some addi-
tional input: the flow carried by the stream. This
can be taken as average of the observations dur-
ing the last three decades.2 A concerned water re-
sources manager might decide that nature does not
necessarily know about three-decade-standards and
follows its own path. Thus he orders a different set
of data to be fed into his model: the simulation of
the present-day global hydrological cycle. Since climate change and the looming climate
catastrophe has become a concern to him, he also orders the model results for the future
hydrological cycle.

Note, we are starting to encounter intertwined models: the hydrological cycle (model 1)
feeds the rivulet feeding the reservoir (model 2), however, that flow is determined by the
interaction between water and rock bed (model 3). All models run on different spatial scales.
And if we model for long enough a time, we even need more sophisticated models, because
model 3 leads to erosion which in turn influences run-off into the reservoir (model 2).

But not only the water resources manager is concerned
about the river’s runoff – also the dike-reeve is interested
in water runoff and water level. Dikes are not only a con-
cern at the low-lying marshes of the Netherlands and the
German North Sea coast but also at rivers. Sea dikes are
damaged during a storm surge by waves washing over the
dike and undermining it from the back. This is a mechan-
ical problem rather than a transport phenomenon. The
situation is quite different for river dikes: wave activity is
unimportant but high water levels last for days or weeks, soaking the dike and making it
less stable. In addition, the water might contain an extremely high amount of pollutants
from flooding urban or industrial areas or even waste pits somewhere upstream. Thus not
only the dike-reeve looks at the flood but also the farmer living behind the dike: he not only
dislikes the idea of the river flooding his living room but also is concerned whether pollutants
might infiltrate the dike in such an amount that his sheep cannot grace it after the flood has
receded. These combined points, water and pollutant diffusion into the dike, are treated in
a numerical model in [37]. We will turn back to this topic in detail in chapter 6.

The hydrological cycle simulation, at least on a global
scale, becomes tricky because water exists in different
states: as liquid and vapor but also as solid, kept in
the arctic ice shields and in glaciers. A closer look on
a glacier reveals that it also flows and, at least in Mark
Twain’s opinion, can be used as a means of transporta-
tion.3 Whether a means of transportation or not, glaciers
move. And they move in a particular way, first described
by Tyndall [168]: slower at the sides and faster in the mid-
dle – resembling the velocity distribution in a river. But glaciers also show a discontinuous
behavior with their bergschrunds and crevasses. They modify the rock bed and transports

2Three decades often are used to define averages in natural systems, in particular in weather and climate.
Unfortunately, this standard does not relate to any typical time scales of the systems. Instead, as scientists
decided to describe average quantities in climate and water management, at most locations observations were
available for only a few decades – thus the three decades magically appeared as standard.

3‘... so I resolved to take passage for Zermatt on the great Gorner Glacier. .... and took up as good a
position as I could upon the middle of the Glacier – because Baedeker said the middle part travels the fastest.
As a measure of economy, however, I put some of the heavier baggage on the shoreward parts, to go as slow
freight. ... the passenger-part of the glacier, – the central part, – the lightning-express part, so to speak, –
was not due Zermatt till the summer of 2378, and the baggage, coming along the slow edge, would not arrive
until some generations later.’ [167]
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debris and boulders, depositing it in moraines. Thus modeling glaciers is modeling transport,
but in a complex way: we are modeling the flow of a crystalline material that also modifies
its boundary conditions. The relevant physical concepts and models are described in Hooke
[63].

Side question 5 Make a simple sketch of the hydrological cycle containing the different
spatial and temporal scales (including the polar ice caps and the glaciers). Think about
questions to be answered with such a model. Which part should be modeled in detail? What
about the other parts/scales of the model?

Who limited water’s states to solid, liquid and vapor?
Asides from the fact that solid might be quite fluid as in a
glacier, solid might also be quite granular and water can
become a powder. Powder snow is a thrill for skiers and
snowboarders (and occasionally even for snowshoe-goers)
but it is also a threat to them if all the powder suddenly
follows the gravitational pull. Avalanches and avalanche
prediction also are topics for transport modelers. Predic-
tion is requested on different spatial and temporal scales: the daily prediction for the outdoor
activities, which might tell people to stay indoors to avoid getting caught in one of the likely
avalanches, normally is made on a crude spatial grid such as a region and considers basically
only the snowfall of the last days and the stability conditions of the underlying snow pack.
The long term prediction on the other hand uses refined topographic models to understand
the spatial evolution of an avalanche [148] and the risk of avalanches at certain places which
are prone to avalanches. This information is relevant for development plans – not everybody
likes the thrill of living in an avalanche path. The Eidgenössisches Institut für Schnee- und
Lawinenforschung SLF in Davos provides not only a wealth of information for the layman
but also is active in avalanche research and modeling and has examples on its web page:
www.slf.ch. A good overview on numerical methods for equations relevant to avalanche
simulation is given in [92].

Stability on a slope of granular matter is not only a
problem in avalanches but also in dunes and in particular
in shifting sand dunes. Dunes are a common feature at
places with lots of sand and wind to move it around. Most
dunes are rather stationary because vegetation develops
fast enough to stabilize the dune. Only if sand transport
is faster than vegetation development, the dune becomes
a shifting dune. This is the case in desserts and in some
parts of the Baltic, in particular the Kurische Nehrung and the Frische Haff. There sand
supply is abundant because the sand delivering currents in the Baltic are deflected from their
west–east orientation towards the north and, on being slowed down, deposit large amounts
of sand at the coast. The prevailing western winds than blow this sand onshore creating high
dunes which march along and swallow cultivated land and the occasional village. A readable
primer on dunes is provided by Herrmann [60].

A related problem is coastal evolution. Here the dom-
inating processes are erosion, transport of sand with the
flow and deposition. Coastal evolution [26, 27, 114] is an
important topic because human settlement on coastlines
and in particular at river mouths is dense and vulnerable
to both a retreating coast (your living room moves from
the top of the cliff with the nice views suddenly to the bot-
tom of the sea) as well as an advancing coast (a formerly
busy harbor suddenly sits high and dry in the middle of the land). Consequently, coastal
defence [35, 46, 153] is an important topic. But since one man’s erosion is another man’s
deposition, subsisting coastal defence requires advanced modeling considering large stretches
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of a particular shoreline to avoid the negative side effects of a working coastal stabilization
[45]. In addition, dunes can exist on both sides of the shore line: on the land in the sense
discussed above and on the sea bed. Close to the shoreline, these latter are visible as small
ripples in the sand, at the ocean bottom they can extend for kilometers. Recently shorelines
have gained even more interest because climate variability with changing ocean flows, winds,
and rising sea levels threat costal habitats even more.

From a more philosophical point, coastal evolution also is interesting: it is still not un-
derstood whether coastal evolution is a continuous process (the daily dose of sand removed
or added) or a catastrophic one (the cliff collapsing during a winter storm. This is not even a
neither–nor scenario: the occasional catastrophe might be required to allow the daily trans-
port to become effective which in turn allows for the next catastrophe. For modelers, this
problem is quite a threat and leads to fundamentally different approaches on coastal models.

Transport processes are not limited to liquids but are also
common in gases. Liquids and gases are fluids in the sense
that the adjust the shape to the vessel that contains them.
They differ in such that a gas fills the entire space provided
by its container while liquids only use that part of space that
corresponds to their volume. The expansive behavior of gases
leads to one fundamental difference in all transport models:
while the basic processes of diffusion and convection are the
same as in liquids, transport in gases always is three-dimensional – and the diffusion part
normally is isotropic. While the latter certainly is good news, the former requires some
additional efforts in modeling. The examples in this text therefore show a strong preference
for liquids over gases.

So far, we have only transported matter. What with energy and information? Both have
been mentioned in connection with the surface wave, thus waves are suitable to transport
these immaterial properties. But energy transport also can be related to the transport of
matter. For instance, all climate models basically are energy transport models, combining
material and immaterial aspects of energy transport.

Earth’s only source
of energy is the Sun;
geothermal energy and
the heat conduction from
the core to the surface
make up less than 1 in
1000 of the energy inci-
dent from the Sun. The
energy flux incident on
the top of the terrestrial
atmosphere is the solar
constant. All the energy
absorbed by Earth and
its atmosphere must be
radiated back into space because otherwise Earth would heat up or cool down. Thus the
atmosphere basically can be understood as a medium in which energy transport occurs from
the top of the atmosphere to the surface of Earth and back to the top of the atmosphere. The
incident energy is electromagnetic radiation with short wave lengths. Its transport has to be
modeled as radiation transport including reflection, absorption and scattering, as suggested
in the left part of the figure. Part of the short wave radiation is directly reflected back into
space (contributing to the terrstrial albedo), part is absorbed in the atmosphere (heating it
and being radiated isotropically into space and towards the terrestrial surface) and the bulk
of the incident energy is absorbed by the terrestrial surface. The resulting heating leads to
evaporation of water, convective motions and the emission of long-wave thermal radiation.
Thus energy transport out of the atmosphere is not only limited to radiation transport but
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also includes sensible heat (convection) and latent heat (water vapor). In these cases energy
transport is related to the transport of matter.

But that is only ver-
tical transport. The
non-homogenous distri-
bution of energy be-
tween equator (high so-
lar zenith angle, most of
the radiation is absorbed
by oceans and rainfor-
est) and poles (low so-
lar zenith angle, most
of the incident radia-
tion is reflected by the
ice caps) drives a re-
distribution of energy,
normally called the global
circulation. The at-
mosphere contributes to
about 2/3 of the energy transport, the remaining 1/3 is redistributed by the oceans, in
particular the thermohaline circulation – in middle and northern Europe we appreciate the
heat transport by the Gulf stream that leads to rather mild winters. The energy balance
of the atmosphere therefore also requires to model the global circulation and thus also the
driving forces for weather, in particular the polar front that guides the pressure systems. In
addition, modeling the energy balance of the atmosphere requires an ocean model. Thus a
climate model automatically becomes a global coupled ocean–atmosphere model. To make
modeling more interesting (and challenging), we should also add a hydrological cycle to the
model and some aspects of human activity, such as deforestation and carbon dioxide emis-
sion. And finally our simple energy transport model requires Tokyo’s Earth Simulator for
even the simplest estimates.

There are also some less pictorial but very common transport phenomena. One has
already been mentioned in connection with the transport of energy in the atmosphere: heat
transport. Heat transport has many technical applications (power plants, chemical reactions,
heating engineering [115, 182]) but is also related to our comfort inside the building: the
radiative heat exchange with the walls and the radiator, the exchange of sensible heat by
convection and the cooling effects of evaporation. Basically these are the very same processes
also considered in the atmosphere’s energy balance. Since the governing equations are rather
simple (heat transport and diffusion can be described by the same equation4) there exists
a wealth of literature on heat transport. Modern and accessible texts for instance are the
books by Jaluria and Torrance [76] and Potting [133].

Momentummomentum transport transport is a common phenomenon on boundary layers.
Momentum is transferred from the wind to the sand (as e.g. in dunes) or from the ocean
flow to the sand (as e.g. in dunes on the ocean floor or erosion and deposition). We have
encountered this idea already in the context of sand transport in dunes and coastal evolution.
But momentum is also transported from the atmosphere to the ocean to drive surface waves
and surface currents. And momentum is also transported between the oil spill on a lake and
the lake’s water.5 Thus also invisible, momentum transport is quite frequent and can be
considered as driving force in the subsequent transport of matter. But this driving occurs
at the expense of the flow, thus momentum transport results in the redistribution of kinetic
energy in the two media. Part of the energy, however, is lost during the process, resulting

4Both processes rely on stochastic collisions between molecules – so why expect a difference? See also
chap. 4

5Oil often has been used to dampen surface waves on the sea by a vessel in distress or by rescuers trying
to aid a grounded or wrecked ship. However, oil would not help to fight a freak wave.
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in heating (and partly also in damaging structures as the coherence between sand grains or
even between molecules on a rock bed).

Side Remark: Are all Transport Modelers Catastrophists?

Our tour through transport phenomena included some less pleasant examples like avalanches,
dike breaks, tsunamis, nuclear explosions etc. Thus modelers, at least modelers concerned
with the natural environment, apparently have a preference for catastrophe. But do modelers
like catastrophe? “YES, of course,” many modelers do, and “NO, of course not,” the same
modelers do not like catastrophe. Personally, modelers do not have more preference for
catastrophe than other people because they have the same fears and like a quiet live.6 But
modelers take advantage of catastrophe as do many geophysicists. Nature is a complex system
and any observable, such as the flow speed of an glacier, is influenced by many present (and
often also past) observables and partly also unobservables. Thus cause and consequence are
not directly related in a natural system. In contrast, in any natural process there is a lot
of (often quite loud) noise from undesired side effects. The study of the influence of one
observable on the system becomes much more simple if this one sticks far out of the noise
such that it determines most of the systems reaction. In that case, a rather direct cause–effect
relation can be established (and hopefully also quantified). But any natural quantity which
clearly sticks out of its usual range often leads to catastrophe.7

In a more mathematical terminology we can also say that nature is a roughly stable
system with lots of noise in any quantity. In such a system, catastrophe provides some kind
of δ-stimulus and nature’s reaction gives its Green’s function. In addition, it gives a good
test case for our model results. In this case, catastrophe is very welcome to the modeler (as
well as to the observer). This understanding only comes by a price: both modelers as well as
observers have to be patient and to take the answers nature gives voluntarily. But they are
not experimentalists: they might be a catastrophe in themselves but they do do not cause
catastrophe or even long for it. Often it is not the modeler that looks for catastrophe but the
catastrophe that looks for the modeler. Fire simulationfire simulation is a good example: in
principle, it can be done experimentally. But what was the influence of the open kitchen door
in this particular case? Or the bursting of the front window? How the hell can a flash-over
occur and how can a fire-fighter survive in the hell of such an event. Simulation is slightly less
expensive and more controlled than the experiment; it also allows for some kind of parameter
study.

In addition, modelers help to avoid that an inevitable natural catastrophe (in the sense of
a signal sticking out of its natural variation, a Jahrhundert event) becomes a human disaster
by deriving the parameters for a suitable protection against damage from this Jahrhundert
event. For instance, the high risk of a flooding of New Orleans in a class 5 hurricane had
been predicted already in 2001, even with detailed calculations of the weak spots in the
dike system. Katrina only confirmed the model results – although the modelers would have
preferred a different scenario: believe the predictions of the model, take the advised steps
and never get your bad prediction confirmed because the weak spots have been strengthened.

6In contrast, the awareness of the risk of catastrophe also contributes to survival. This well-known relation
between fear and the ability to survive in uncomfortable environments also drives some of our leisure activities:
“Wenn ich in der Natur allein bin und über Gletscher gehe, bin ich ununterbrochen wach - die Angst hilft
mir, nicht umzukommen. In der Wildnis wird man mit einer sehr greifbaren Form der Furcht konfrontiert.”
(R. Messner)

7Please keep in mind, catastrophe is not the correct term: catastrophe always implies harm to humans –
thus a strong earthquake in some remote areas which does not affect humans is not a catastrophe while an
earthquake of much smaller magnitude in a densely populated area with inadequately constructed housing
and thus a large number of fatalities is termed catastrophe. The same is true for avalanches: a typical small
avalanche in the Himalaya shifts a certain mass/volume over a pretty large height range – but most of these
avalanches are not even observed let alone harm some unexpecting mountaineer. In the Alps, a much smaller
avalanche almost inevitably would swallow some skiers or even a village and therefore would be regarded as
catastrophe. In such sense, the modeler does not use catastrophe but only large signals. Only in a fragile
and densely populated habitat these strong signals also (can) turn to catastrophe.
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Catastrophe not only shapes our world but also our view of the world – in the layman’s
terms as well as in the modeler’s view.

Sneer remark: Modeling supports itself

Experience shows that autobahns create traffic and thus the requirement for more autobahns.
Or for short: autobahns create the need for autobahns. The above examples suggest some-
thing quite similar: (transport) models in natural systems create the need for (transport)
models. Presently, the looming threat of climate catastrophe fuels the research in conse-
quences of climate change. Thus models for coastal evolution and protection, recession of
glaciers and the resulting landslides and consequences for water resources, stability of dikes
against unusual water levels and many other models are motivated by the results from cli-
mate models: increasing temperatures, redistribution of precipitation, increased frequency of
extreme weather and climate events, the rising sea level and many other predictions.

1.2 Help, I still can’t define Transport

Ok, let’s try to be a little more systematically.

1.2.1 Definition

The above examples allow for a brief glance at transport only. They are examples, the only
thing in common is that a property ε(~r, t), which might be a scalar such as mass or energy
or a vector such as momentum, is redistributed in space and time.

Definition 1 Transport is the redistribution of a property ε of space ~r with time t.

The definition makes the mathematical requirements obvious: since ε = ε(~r, t), any change
in ε will be described by a partial differential equation (PDE) – except in the limit of a 1D
geometry in steady-state. Solutions of such a transport model (TM) therefore can be viewed
in two ways, representing cross-sections in different ‘dimensions’ of the model:

• the temporal development ε(t) at a fixed position ~r = const or
• the spatial distribution ε(~r) at fixed time t = const.

Solutions of PDEs can be obtained analytically only under special circumstances, in par-
ticular in steady-state, limiting geometries or under the (oversimplifying) assumption that
parameters are constant. Often these attempts use convolutions of Green’s functions because
the systems response can be determined only for a δ-forcing. Under more realistic conditions,
numerical solutions are required.

Numerical solutions also can circumvent some physical nonsense evident in some analytical
ones. For instance, the analytical solution of the isotropic diffusion equation

∂U

∂t
= D∆U

for a δ-injection at position ~r = 0 and time t = 0 is

U(r, t) =
U0

√
4πDt

3 exp
(
− r2

4Dt

)
.

For t > 0, the particle number density U is different from zero at all points ~r, even if t = 0.1 s
and r = 300 000 km, implying a propagation speed of 10c – which might frustrate Einstein
a little bit. A numerical solution, on the other hand, advances in the grid provided by the
numerical scheme and thus leads to finite propagation speeds, although these sometimes have
to be adjusted by flux correction techniques (flux corrected transport FCT).

Side question 6 Think about this problem. What is the mistake? Is the transport equation
wrong? Is the solution wrong? Does the problem result from the unphysical δ-injection? Is
the problem academic?

c© M.-B. Kallenrode 13th November 2006



10 CHAPTER 1. WHAT IS TRANSPORT?

1.2.2 Classification – Questions on our Way to a Transport Model

First of all we should define the property ε(~r, t) to be transported. Thus we have to ask the
question What is transported?. We can classify this as

• matter,
• energy/momentum,
• information.

Our second question regards the mode of transportation, that is How is ε transported?
Answers can be classified into three main categories:

• directed transport, for instance with a flow,
• stochastic transport, e.g. diffusion,
• wave-like transport: information and energy is transported but no matter.

A fourth category arises from the human infrastructure: the spread/transport of diseases as
well as rumors can be traced along the pathways of humans (such as flight routes in SARS)
or information (such as the Web). We will come back to this point in chap. 9.

Our third question is concerned with sources and sinks, or Can ε change inside a volume
without being transported across its boundaries? Sources and sinks can be chemical reactions,
(radioactive) decay, adsorption or removal from the fluid due to a phase transition. From the
viewpoint of a running river, the oozing away of water through the silt into the groundwater
also can be regarded as a sink. The groundwater reservoir, of course, would regard this
water as a source. However, if the transport from the river to the groundwater is our main
concern, we would model the transport of exactly these water molecules – may be with the
river parameterized as a source.

This remark introduces our last question: What are the scales, spatial as well as temporal,
of our transport problem? This question probably is the most relevant question and should
be asked right as second question when starting to model.8 The temporal scale often is
obvious: as Mark Twain already realized, glacier motion should be modeled on time scales
of decades to centuries rather than on time scales of minutes to hours.9 On the other hand,
modeling a tsunami on time scales of days to weeks also is not useful because in this case the
modeling time extends well beyond the live time of the phenomenon to be modeled.

The choice of the spatial scale is less obvious, as can be demonstrated with the hydrological
cycle or coastal evolution. The hydrological cycle is a global phenomenon including also
glaciers, rivers and the oozing off of water into groundwater reservoirs. While glaciers and
groundwater reservoirs can be modeled for themselves, it certainly would be too much detail
to use these models as submodels in the hydrological cycle. Instead, their results will be
parameterized in some suitable way and fed into the global model. Coastal evolution is
similar: one can model the processes of erosion and deposition on a molecular level – but
not for a 50 km long stretch of coast. In the latter case, the flow is modeled and erosion and
deposition are parameterized.

Thus before we start any modeling, we have to define the purpose of the model precisely
and then develop it accordingly.

1.2.3 Why should I Model at All?

But why should we be interested in modeling? Some applications of modeling are rather
technical, for instance drag on a new car design or the thermal balance of a building. These
models are used as aid in construction or to determine threshold values. Such models are
well established and often approved by the government, for instance models to calculate the
radiative exposure of aircraft crews or the energy efficiency of a building.

8The first question always is a task: define your goals (or better the goals to be achieved with your model.
9This could be of interest only in a model with sufficiently fine spatial scales that also treats all individual

seracs and aims to predict icefall or changes in smaller structures close to the glacier’s snout. Or in model
concerned with the run-off of melting water and the associated risk of a glacier lake suddenly emptying
through a crevasse into a lower-lying, unsuspecting valley.
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Other models are developed to gain a better understanding into a complex system. For
instance, systematic variation in different parameters might help to determine whether a
given process has a strong influence on the system or not. This kind of modeling is a tricky
business: modeling might be simple but the test of the model is quite difficult or almost
impossible. If it were not, we would not have any need to model.

For a large natural system modeling serves a similar purpose as experiments do in lab-
oratory physics. It is not possible to do the ‘experiment’ climate change or river runoff in
a laboratory setting. With a working numerical model, however, it is possible to test the
reaction of the system to certain stimuli or to determine changes in its state for changes
in boundary conditions or initial conditions. These large models sometimes are also used
for predictions, for instance of climate change or on a much shorter time scale for weather
forecast: most climate models have evolved from weather forecast models.

Thus models can be basic as well as applied science – and in case of environmental
modeling even can have a strong, sometimes controversially discussed impact on society. In
particular in the climate debate but also in insurance cases this is a fundamental problem:
modeling is only the minor part of the job – model validation and communication of the
results can be much more time consuming.

Modeling also has an educational aspect: the modeler has to learn to view the natural
system under study in its entire complexity and then to reduce the system to the relevant
processes and the relevant parameters. Thus modeling combines a rather holistic approach
with brute-force reductionism. But this is also the salient part of science: realizing the
complexity (and beauty) of nature and still being able to create working models to cope with
it. This is the same process we do in social interactions – albeit there we do it instinctively.
But in both spheres the emphasis is on ‘working model’: the model must contain enough
aspects of the system to allow for reliable prediction but also must be as small as possible to
be executed fast enough: normally, a partner in a social interaction is not prepared to wait
two hours to get my answer to a question such as “milk and sugar with your tea or better
lemon?”. As in social interaction, modeling requires a lot of abstraction and generalization
– otherwise a model can be as autistic as a person.

Sneer Remark: Does Modeling allow for Predictions?

But can modeling have an impact on society? Can modeling really allow or predictions?
Isn’t there Lorentz’ butterfly effect10 [106]: “Does the flap of a butterfly’s wing in Brazil set
off a tornado in Texas?”

While Lorentz made the experience of the small error in initial conditions, Alan Turing
[165] had made a similar statement about two decades earlier out of reasoning about com-
puters and in particular the later so-called Turing test: “The system of the ‘universe as a
whole’ is such that quite small errors in the initial conditions can have an overwhelming effect
at a later time. The displacement of a single electron by a billionth of a centimeter at one
moment might make the difference between a man being killed by an avalanche a year later,
or escaping.”

Turing’s statement is even more fatal than Lorentz’ because it retracts to the quantum
mechanical level. If the world model or the general model of the universe including details
down to the atomar and sub-atomar level is the target, Turing’s objections most likely are
correct. However, wether a model allows for a prediction or not, depends on the question
and the model. A dike reeve, for instance, wants to know wether a certain stretch of dike
will hold or break – it does not matter in detail where and how it will break.11 Thus if we

10The tale goes that Lorentz discovered this effect after a computer breakdown in his lab at MIT. Lorentz
was a pioneer in numerical weather forecast. One day, he restarted a run after a computer breakdown with
the last saved data set as initial conditions for the run’s continuation. When he compared the results to the
results from a complete run, obvious differences appeared. He concluded that the rounding errors made as
the saved data werde fed back into the program were large enough to affect the program’s output strongly.
To illustrate that such a small deviation can make a strong effect, he created the above statement.

11Probably nobody in New Orleans cared about which part of the dike broke – the fact that some dike
broke was fatal enough.
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judge a model in its ability to reproduce the intimate details of the process under study,
most models probably will fail. But if we ask the more general question, the model, at least
if it is a good working model, probably will give a reasonable answer. The same is true for
climate models. The large number of different climate models also can be used to confirm
the trends in the results: although all models lead to different predictions about the exact
temperature evolution until 2100 under the constraint of increased carbon dioxide levels,
all models agree on the warming effect and all models lead to predictions in a rather small
range of temperature changes, see e.g. [69]. And this agreement despite the differences in
the models suggests that it might be time to think about measures to take even if models
are not perfect. This problem is discussed in detail in Pollack’s book Uncertain science ...
uncertain world [130].

In sum, although models do not predict the future in all detail, good models give quite
reasonable ideas about it. For instance, weather forecast is well advanced and gives pretty
reliable predictions for the general weather pattern over Germany for about five days in
advance – also it always almost fails to tell me wether I will need an umbrella on my way to
the mensa or not. The path of hurricane Katrina has been predicted fairly well – as had been
the inability of New Orleans’ dike system to withstand such a hurricane. Tsunami prediction
in the pacific works reasonably well and is greatly appreciated by the surrounding countries.
And even the rather crude models two decades ago made reasonable predictions about the
fall our following the Chernobyl accident and the burning oil fields in the first Iraqi war.

1.3 Orientation

The goal of this text is not to give you a comprehensive overview over all transport models.
Instead, its aim is to introduce into some models in more detail.

The script is structured as follows: chapter 2 introduces some general aspects of modeling.
It should guide you through the process of abstraction and formalization; some examples for
the abstraction process will be given. The chapter also addresses the limitations of modeling.

Chapter 3 describes a very simple approach on modeling, the compartment approach.
Because this is a rather graphical kind of model, it also repeats and illustrates the fundamen-
tals of model building. Examples are chemical reactions in a steady flow (some of these ideas
later will be needed in groundwater and dikes) and atmospheric chemistry. The compart-
ment approach allows for 1D models and thus relatively clearly arranged numerical schemes.
Therefore we can limit ourselves to finite difference models and introduce the centered finite
difference scheme for the spatial and the Crank–Nicolson scheme for the combined spatial
and temporal transport.

The most important transport process, diffusion, is discussed in detail in chapter 4. We
will start from the basics of the process and a simple diffusion model and continue to the
diffusion-convection model. Examples will be the propagation of pollutants and heat transfer;
in fact, even the simple example from chapter 3 has been a diffusion–convection model. The
heat conduction equation also will introduce the Stefan problem: heat conduction in a liquid
might reduce temperatures in parts of the liquid such that a phase transition to a solid occurs.
Thus the simulation volume contains an inner boundary that shifts in time. Such a Stefan
problem also can be used to describe and model the development of a traffic jam.

Chapter 5 picks up a particular transport equation for the propagation of energetic
charged particles from the Sun through the interplanetary medium. Again, the model is
1D because particle propagation essentially is along the magnetic field. Using this transport
equation we will illustrate the method of finite differences in detail, in particular the splitting
into different schemes if different types of PDEs are involved in the TM.

Chapter 6 discusses a model to evaluate the stability of dikes during sustained high water
levels. As in chapter 5, we will learn about the underlying physics and construct the model
from the basic equations. In this case, the solution is obtained by a finite-element method
which will be described in detail. Thus this chapter also serves as an introduction into finite
element modeling.
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Chapter 7 briefly introduces into computational fluid dynamics (CFD): the flow is not
prescribed as in chapters 3 and 6 but the equation of motion has to be solved in three
dimensions instead. We will solve some rather simple problems using finite difference and
finite element schemes. CFD finds its applications in natural systems (ocean and atmosphere
models, coupled ocean–atmosphere models, global climate models), in technical design (drag
of a flow around a body, car design) as well as in accident investigation (fire modeling).

Chapter 8 introduces a different kind of numerical modeling, Monte-Carlo modeling. We
will introduce this method with the example of energetic particles in the atmosphere. Part of
that chapter also will be devoted to more general remarks on Monte-Carlo methods. Monte
carlo methods rely on throwing a dice. Consequently, they are useful only of the underlying
process is stochastic rather than deterministic. Since this is the case in e.g. diffusion, heat
conduction and turbulent transport, Monte–Carlo methods face a vast array of applications
in transport modeling.

In chapter 9 we will encounter some entirely different transport processes, such as the
spread of diseases or rumors or the path of ants across a stretch of land.

The remaining chapter 10 summarises some open problems that can be used for end-of-
term projects. The closure in chapter 11 loops back to this introduction and summarizes
some of the more important aspects of this text.

Modeling requires knowledge in physics, mathematical methods and numerical methods.
To keep the text readable, detailed explanations or derivations of equations are missing as
are some basic numerical or mathematical methods. The appendices try to cover up for a
few of these omissions. Appendix A contains the usual lists of symbols and abbreviations,
some useful numbers and a little bit vector calculus. Appendix B contains some useful math-
ematical basics such as analytical solution strategies for ordinary differential equations, the
classification of partial differential equations, and the Laplace transform. Appendix C con-
tains some physical basics, that is a list of standard equations and a formal introduction into
(and recapitulation of) some fundamental concepts of statistical mechanics, such as distrib-
ution functions, averaging and basic transport equations, e.g. the Fokker–Planck equation.
Appendix D gives some background on numerical methods, such as discretization, numerical
integration, standard numerical schemes for ODEs and PDEs. And finally appendix E gives
solutions to a few of the questions and exercises.

Literature

I do not have a recommendation for a book that can cover the entire lecture. Instead, I
will give recommendations at the end of each chapter. And I strongly recommend to consult
literature beyond this text. As a lecture note it suffers from some limitations: it reflects my
personal preferences on the topic, it has been written under deadline pressure and it contains
a large number of smaller and larger errors.

Good scientific conduct requires credit not only for the text sources but also for pictures.
Normally this should not be done in a footnote.12

12This figures in the pictorial guide are taken from the following sources: (1) autobahn from http://

www.hotskiing.com/photogallery.htm, (2) pipeline from http://www.arisi.it/images/imptec/Pipeline-.

jpg, (3) cardiovascular system from http://www.tc-interlaken.ch/fundgrube/pic anatomie/kreislauf

gewebearten aladin.JPG, (4) falling drop from http://www.3dhifi.de/pics/tropfen.jpg, (5) drops on a
window pane from http://twoday.net/static/desideria/images/tropfen.jpg, (6) cascade at a tributary
to the Mattmark reservoir, Valais, (7) hydrological cycle from http://archiv.greenpeace.de/wassergeist/

images/wasserkreislauf100.gif, (8) dike break during the Mulde flood from http://muldehw.ufz.de/

album/fotos/foto11.jpg, (9) Eigergletscher, Bernese Alpes, (10) induced avalanche, SLF Davos, from
http://www.slf.ch/, (11) Hohe Düne at Nidden from http://home.arcor.de/ralf.brandstetter/neringa/

hoheduen.jpg, (12) Darss from http://www.hansaluftbild.de/, (13) nuclear explosion from http://www.

worldthreats.com/images/nuclear-bomb-explosion.jpg, (14) the energy balance of the atmosphere from
IPCC [69], (15) components of a climate model from IPCC [69]. The choice of sources does not reflect any
personal preferences for or opinions about these pages – instead most of them were Google’s choices.
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Chapter 2
Modeling

To see a world in a grain of sand
And a heaven in a wild flower

Hold infinity in the palm of the hand,
and eternity in an hour.

Blake – Auguries of Innocence

This chapter deals with modeling in general. It will present some guidelines on how to develop
a model as well as a few examples. The latter will be described qualitatively without delving
into equations or the underlying physics more deeply than absolutely necessary.

For model development I will adhere to my personal view on the modeling of natural
processes. And this includes two seemingly contradictory definitions

Definition 2 Modeling requires the apprehension of nature in its entire complexity.

In face of this complexity modeling might appear to be the impossible. It would be, were it
not for the second definition:

Definition 3 Modeling is brute (but hopefully intelligent) reductionism.

Thus successful modeling requires the awareness of complexity with the simultaneous reduc-
tion to the essential. And the modeler has to be aware of this reductionism. The examples
discussed in the chapter should help to understand these points.

A second focus in this chapter is the test of a model. We will learn that a model is
worthless as long as it is not tested. First tests might be against simple physical concepts
such as the conservation of mass or energy; more advanced tests include the comparison to
experiments and/or reality.
Goals: after working through this chapter you should be able:

• to analyze and describe a (physical) problem in such a way that it can be converted into a
mathematical model (at least if the relevant equations are known and a numerical scheme
has been developed).

• to develop a test procedure for a model.
• to develop a checklist for the modeling process from the very onset of the verbal description

of the problem to the communication of the result. This can be regarded as quality
assurance.

14
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2.1 Outline

Compared to the above definitions, Basmadjian [5] offers a more conventional approach on
modeling:

Definition 4 Modeling is the assembling of mathematical expressions as a description of a
system or process. A mathematical model therefore consists of the assembled equations that
describe a physical system or process.

To get the essence of modeling let us forget about the details of equations for a moment:
assume we have a construction kit of equations, some kind of Lego set. We are not concerned
with the details of the bricks but we know what they are for: wheels are for driving, the
slanted bricks are ideal for roofs and rounded bricks are a poor choice for plain walls that
intersect at right angles. Thus our first step is to identify which kind of bricks is required:
we want to build a house, thus we discard everything that has wheels on it since as middle
Europeans we are not used to mobile homes. We than can specify which slanted bricks and
which standard bricks are needed, assemble them and check whether the assembly meets our
pre-occupations regarding the essential features of a house.

Side question 7 What are the essential features of a house? Right-angled walls? Hundert-
wasser would be disappointed. Slanted roofs? Doors and Windows? Who defines what an
essential feature is?

Successful modeling is pretty similar to playing with Lego. It requires the following
ingredients:

• an understanding of the underlying physics of the system and the laws that govern them.
Conservation laws always are a good starting point; some fundamental laws are summarized
in appendix A in table C.1, conservation laws are also discussed in section 2.4.

• the ability to make suitable simplifying assumptions to reduce the system’s complexity
while retaining a valid and realistic description of its behavior. For instance: a house
needs some top boundary against sun, rain and so on. But this must not be a slanted roof.

• expression of the model in mathematical terms. This part often can be delegated to a
textbook or a handbook.

• analytical or numerical solutions. This often can not be delegated to standard schemes.
• closure: analysis of the results obtained. If you forget about this, you did not model at

all!

Of these requirements, the simplification process is the most difficult one. Often it only
leads to bracketing the solution, that is only lower and upper bounds can be given. This
often is also called a best-case–worst-case scenario: a process depends on a parameter which
cannot be determined exactly. But the upper and lower bounds of the parameter are known
and thus two model runs can be performed, bracketing the solution.

Side question 8 Is this approach valid for all kinds of models or only under special assump-
tions/limitations? Justify your answer.

Basmadjian [5] links simplifying to an art as much as to science: it requires a certain
feel for the importance of parameters and processes. Such skill cannot be learned from a
text(book), however, examples from many different fields of science might help the reader
to get at least an idea about it. Such an advantage comes only by a price: some examples
might require a little bit additional reading to understand them because the physical basics
are rather unfamiliar. On the other hand, this approach also illustrates that often different
physical processes lead to similar, if not identical, mathematical models. This chapter is
concerned mainly with the first two points: underlying processes and suitable simplification.
In the subsequent chapters, models with increasing complexity will be discussed.

Note that simplification might lead to different models of a system depending on the
problem under study. The atmosphere is a suitable example. A researcher in the field of
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16 CHAPTER 2. MODELING

climate change needs a different model atmosphere than a researcher in air pollution: the
relevant processes are different, the spatial and temporal scales also, as are the suitable aver-
aging procedures. But neither the climatologist nor the researcher in air pollution are happy
with a model atmosphere that focuses on numerical weather forecast:1 the meteorologist at-
tempts to predict the weather on time scales of a view days with a spatial resolution of a few
hundred km. Thus the meteorologist assumes the properties of the ocean and the terrestrial
surface to be constant during the simulation interval. The climatologist, on the other hand,
is concerned with the very changes in exactly these parameters and thus requires a model
with larger spatial scales and in particular longer time scales. Thus the oceans and their
variation are important to him – as a consequence, all modern climate models are coupled
ocean–atmosphere models. For an introduction to climate modeling see e.g. von Storch et al.
[173] or Washington and Parkinson [174].

The next two steps, the expression in terms of equations and their numerical solution,
are specific to a certain model. Thus we will not discuss these steps in general, except
for very fundamental processes, such as diffusion. Instead we will discuss the details of
the mathematical model and its numerical treatment in an exemplary way in the following
chapters.

The last step, the closure, loops back to the first two steps: only if the results make
sense and fit to the underlying physics, the model can be valid – otherwise, at least one of
the steps must be wrong. Testing or validating of models is at least as important as model
development. A battery of tests is much better than one test only because neither expected
nor unexpected results proof a model right or wrong: a single agreement between model and
expectation might be accidental. In addition, an agreement between model and expectation
might result from our interpretation of the scenario: the processes we think are relevant in the
system under study determine our expectations – but if the processes are wrongly identified,
model and expectations both are wrong. Thus a comparison to fundamental physical laws and
observations is helpful. On the other hand, a disagreement between model and expectation
might not necessarily prove the model wrong: our expectations might be wrong but the
model is correct. Again, an experiment or observations might be helpful. Thus testing is not
only important but also a tricky business.

2.1.1 Types of Models

Models can be divided into three different types, representing different modeling philosophies.
Models based on first principles are derived from first principles such as the conservation

laws. The typical example is the energy conservation

∂ε

∂t
+∇~S = q (2.1)

with ε being the energy density [J/m3], ~S being the energy flux density [J/(m2s)] and q
being sources and sinks [J/m3s]. Such models preferentially are used to understand the
inner relationships in a system or to perform a sensitivity analysis. The latter shows the
dependence of system variables on certain parameters and therefore allows to identify the
parameters most important for the understanding of a system.

From a philosophical point of view (at least from one school), models based on first
principles are the best ones since they work in an axiomatically closed space. Thus they
do not rely on assumptions and observations and other stuff involving the human and its
imperfect brain. Modeling than is clean, almost sterile, and axiomatic – (un)fortunately,
nature is complex and resists such a perfect axiomatic description.

Although many simple physical models fall into this category, often first principle models
are combined with a phenomenological ansatz: relations between physical quantities derived

1This is certainly true for the present state of modeling. Nonetheless, most climate models have been
developed from meteorological models. The relation between climate and weather is described by Pollack
[130] as: “Climate is what you expect ... weather is what you get.”
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from experiment instead of first principles are added. The energy equation is an example for
such phenomenological model, now in the form of the heat conduction equation

%c
∂T

∂t
= −λ∆T . (2.2)

Here we consider the phenomenologically derived energy density ε = c%T with % as mass
density and c as specific heat. The second phenomenological ansatz is the energy flux density
−λ∇T as being proportional to the gradient of the temperature and the thermal conductivity.
Most models used for predictions, in particular in natural systems, belong to the group of
phenomenological models.

A third kind of model is neither concerned with predictions nor phenomenological rela-
tionships but starts from the data. These data models basically are a skillful visualization and
combination of data to obtain phenomenological laws from observations. They are required
for instance in oceanography to describe the global circulation which cannot be modeled in
other ways owing to the complexity of the boundary conditions such as sea floor topography
and continents. These data models then enter into a coupled ocean–atmosphere model to
predict the future climate.

Within this text we will encounter models of the first two classes. They lead to mathe-
matical models and can be solved analytically or numerically.

2.1.2 When Not to Model

Although modeling often is the only means to understand a complex system such as climate,
modeling is not the panacea to solve problems. Instead, owing to the modeling process
outlined above, modeling bears its own problems. As a consequence, there are also a lot of
occasions when modeling is not advised (see also [5]):

1. the answer is required within hours.
2. the answer may be obtained by a simple and inexpensive experiment.
3. the client is suspicious of theory and prefers the experiment, such as in court cases.
4. the system is too complex to be modeled in a meaningful way, for instance the determi-

nation of drag or transport coefficients.
5. the answer is self-evident.
6. modeling for the sake of modeling (sterile or post-facto modeling).

Asides from being a general problem (if I only hat time, only hat time), the lack of time
(1) might be of particular importance in an industrial process or during catastrophe – it is
to late to set up, run and validate a model if a river already is running high water or when
Katrina is approaching New Orleans. Although a detailed model certainly is out of range in
such a case, a very simple model might allow for some guideline or lower and upper bound.
For instance, in the high running river in- and outflow still might be in balance: thus water
levels will not rise above dike level (no need for immediate evacuation) but dikes might break
after a few days due to soaking (keep an eye on them). But such a result does not require an
advanced dike model as discussed in chap. 6. Instead, the equation of continuity is sufficient;
and this can be solved analytically.

If a simple and inexpensive experiment (2) is possible within the time frame and cost
limits, it is preferable to modeling because a model or its mathematical solution might be
faulty. Although this can also be the case in an experimental setting, skilled experimentalists
and the repetition of the experiment should avoid errors (or at least discover existing ones)
much easier than this can be done in a numerical model because to code is to err. And this
also implies: to model is to err. And an error in modeling can have more sources than than
only the errors in coding. The error also might be on the side of the identification of the
relevant processes, their mathematical description or the parameters entering them.

Modeling is not only limited to scientific questions but model results also are used in
political decisions (all the climate debate) or in court. In the latter case often experiments
are preferred to modeling as mentioned in point (3). Consider an insurance case in a fire
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or explosion. Judge and jury know about law but not about the physics and chemistry
of a spreading fire and the possibility of a flash-over or even a backdraft. Thus a model
is very abstract and the results of the prosecutor’s model contradict that of the defender’s
model. While scientists might be able to sort this problem out by going into the details
of both models, the layman will not be able to follow their reasoning and might prefer the
experiment. Selling new regulations to the public is a similar situation: the motion of a crash
test dummy is a better motivation to use the safety belt than any refined model could be.

An illustrative example has been given by nobel laureate Richard Feynman in the in-
vestigation of the explosion of space shuttle Challenger in 1986. Almost all aspects of the
space shuttle are modeled to the last detail: in manned spaceflight the crew’s safety is of
utmost importance, thus detailed knowledge of the shuttles behavior is required. Since the
demands of the payload require a crew on board, unmanned flights with the shuttle were
not reasonable (although in principle possible). For the safety of the crew modeling to un-
derstand the system Space Shuttle was important. Despite these efforts, in 1986 Challenger
exploded 73 s after launch – embrittlement in a gasket in the liquid fuel boosters allowed
a small flame to burn like a welding torch into the hydrogen tank and ignite it. This se-
quence even could be reconstructed from the photos/films taken during launch and prior
and during the explosion. Temperatures at the launch pad had been below zero centigrade,
nonetheless, the technicians had approved the launch. In the subsequent investigation the
embrittlement in the gasket was easily identified as the cause of the accident. A debate arose
on whether this was forseeable or not. Without relying on any modeling, Richard Feynman,
a member of the investigation panel, just took a sample of the gasket under question and
held it into his glass of iced water to demonstrate that the gasket looses all its elasticity
even at temperatures around zero centigrade. A short version of the accident investigation
is given in http://de.wikipedia.org/wiki/STS-51-L#Das Challenger-Ungl.C3.BCck or
http://en.wikipedia.org/wiki/Space Shuttle Challenger disaster.

The complexity of the system (4) is of particular importance in the simulation of large
natural systems. For instance in modeling coastal dynamics one of the main problems is the
deposition and pick-up of sand by the current. This process depends on the currents speed,
turbulence and the composition of the sediment. It is difficult to obtain these coefficients
experimentally: on the one side, they depend on too many parameters and on the other
hand, experiments in some kind of flow tunnel are not useful because the grain sizes cannot
be scaled to the flow speed like a ship or an automobile. Thus one might be tempted to
model the molecular processes at the ocean’s bottom. Such a model is way to complex for
two reasons: (a) the underlying physical processes are very complex and (b) the parameter
depends on many other parameters (see above). And since these parameters cannot be
determined experimentally, the model cannot be validated. In a coastal dynamics model this
problem can be overcome by some stochastic trick: the parameter is varied stochastically.
Variation of a parameter in bracketing the solution gives upper and lower boundaries. In
the stochastic version, the parameter is varied in time and/or space stochastically to reflect
its natural variability. We will turn back to this topic in chap. 8. In other cases, such as
reaction rate constants in chemical modeling, the parameters cannot be modeled (otherwise
we would have to model the atom and the interaction between electrons of different atoms)
but are known fairly well from experiment.

Post-facto or sterile modeling addresses the following situation: the physics of the system
is understood, all parameters are measured experimentally and the system has been studied
experimentally. Thus modeling does not provide any new insight. Modeling for the sake
of modeling also occurs if a model cannot be implemented in practice, either because its
output cannot be compared to the real system or because it is too complex. Modeling for
the sake of modeling has only one useful purpose: education. Since in such case everything is
known and measured, we can focus completely on the mathematical model and its analytical
or numerical solution. And both even can be tested against each other as well as against
observations.
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2.2 Creating a model

Although the creation of a model is as much art as science, as in art a systematic approach
can be helpful. Basic steps are:

1. Make a sketch.
2. Draw an envelope.
3. Introduce simplifying assumptions.
4. Closure.

2.2.1 Make a Sketch

The first step is essential to identify the relevant variables and the relation between them, in
particular flows of mass end energy. In particular a novice might be so concerned with the
mathematical description of individual processes that he thinks the sketch might be trivial.
But this is not true. The sketch is the flow chart of the system, it allows to classify variables
of the system according to input, output and system variables. Note that input and output
variables also can be system variables while the system variables often are internal variables
that describe the evolution of the system but do not show up for an observer outside the
system.

Two examples can illustrate this point: a low pass filter can be realized as a series of
resistor and capacitor with the input signal lying over the series and the output over the
capacitor. In- and output variables are the signal to be filtered and the filtered signal.
System variables are, for instance, the voltage drops at the resistor and the capacitor – the
latter is also the output signal. Instead of the voltage drop at the resistor also the current
through ist could be used as system variable. Both do not show up at the outside but each
of them can be used to describe the evolution of the system completely – at least if an initial
condition is given.

The second example is from chemistry. In a chemical reaction, the input might be hydro-
gen and oxygen and the expected output is water vapor. The corresponding system variables
then are the concentrations of these components. Nonetheless, since the reaction is exother-
mal, the temperature T of the tank also is an important system variable: it defines the
amount of input material reacting to give the output.

If you feel uncomfortable with a formal flow chart as sketch, start with a graphical sketch
– in time it often develops into a flow chart.

2.2.2 Draw an Envelope

The second step, the envelope, defines the system and its exchange of matter and energy
with the environment. Occasionally, the envelope is directly suggested by the system, for
instance the tank in which the reaction happens.

In other cases, no obvious envelope can be identified. If a conservation law is involved in
the model, a differential segment can be drawn into this envelope and all in- and outgoing
quantities can be marked. Note that this is not necessarily unambiguous because envelopes
sometimes can be divided into sub-envelopes or can be put together into a larger envelope.

An envelope might be subdivided into compartments which can be defined as subsystems,
for instance because they do not exchange mass or energy with the environment. The heating
system in the thermal balance of the building in section 2.3.4 is an example for such a closed
subsystem: do we really need to model the burning of oil and oxygen and the convection of
the heated water through the pipes or do we treat this subsystems just as a source of heat
at a given (time-dependent) rate.

2.2.3 Simplifying Assumptions

Once the subsystems and system variables are established, simplifying assumptions can be
made. These can either make or break the model. The main tools include:
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1. Reduce the number of unknown dependent variables.
2. Reduce the number of independent variables.
3. Reduce the number of terms in an equation.
4. Simplify the terms in the equation.
5. Bracketing the solution.
6. Dimensional analysis.

Successful simplifying allows an efficient handling of the mathematical model while still re-
taining all relevant features of the system. Even if the simplification is not required to
formulate the numerical model and its solution it might be useful because it leads to a much
faster code without too much loss in accuracy.

Reduce the number of unknown dependent variables

Formally, the reduction of the number of unknown dependent variables is equivalent to a
reduction in the number of equations because the number of variables generally matches
the number of equation. This process requires the identifications of variables that do not
change the outcome of the process significantly: either because the variable itself is almost
constant or because the system’s behavior does not change significantly with a variation of
this particular variable. For instance, the rate of a chemical reaction in most cases depends
on temperature. Temperature can be dropped as a variable if (a) our system stays at almost
constant temperature or (b) the reaction rate only weakly depends on temperature.

The latter approach might hold for the atmosphere: here the chemical reactive species
also are the minor constituents and thus do not affect the thermal balance. The situation
is different in a chemical plant. Here the reaction between the two species is the dominant
process and thus modifies the temperature – which in turn modifies the reaction rates. Thus
asides from the mass balances of the two species an energy balance must be considered. Here
a reduction of variables is possible if the reaction is carried out with a large excess of one of
the species: the reaction will lead to only minor variations in that species and thus the mass
balance of that species can be dropped, reducing the system to one mass balance and the
energy balance. The large water tank in section 2.3.2 is an example.

Whether this simplification is justified or not requires careful judgement – that is the art
of modeling.

Reduce the number of independent variables

Formally, the reduction of the number of independent variables is equivalent to a lower
dimension of the model – for instance, a PDE of two independent variables might be reduced
to an ODE. Typical examples are the stirred tank concept and the one-dimensional pipe.
Both reduce the spatial dimension of the problem. The stirred tank concept often is used in
heat transfer, modeling of chemical processes or in mixing processes, such as in the examples
in sect. 2.3.1 and 2.3.2.

The stirred tank, also called compartment concept, is applied in situation where spatial
gradients can be neglected. In sect. 2.3.1 we will discuss a chemical plant that releases an
effluent containing copper into a river. While in reality the concentration of Cu will vary
around the discharge, we will assume that mixing with the environment is instantaneous – the
river is stirred well. Models of chemical processes often also use the stirred tank: reactants
as well as the products are well mixed in the entire volume. In heat transfer the stirred tank
concept might be reasonable, too. Although it is difficult to stir a copper rod, a high thermal
conductivity has the same effect: heat is distributed evenly in the metal body although heat
losses occur only on the surface.

The one-dimensional pipe model also reduces the number of independent variables. Here
we allow for one spatial variable, the length s along the pipe and assume steady-state con-
ditions: there is no variation with time. In such a model, a stream carrying mass, energy
or momentum enters a conduit and the associated variables (temperatures, concentration,
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pressure) undergo a continuous variation in the direction of the flow. Changes in radial di-
rection (perpendicular to the flow) are summarized into a boundary layer or effective film
near the wall. In this film, gradients are assumed to be linear. Thus the differential operator
‘gradient’ is replaced by a simple difference, reducing the dimensionality of the problem.

And of course, the limitation to the steady-state always is a means to reduce the number
of independent variables – here time t is omitted.

Reduce the number of terms in an equation

The former two steps are formal simplifications. The reduction of the number of terms digs
more deeply into the physics: neglecting a term in an equation omits the physical effect
formalized by it.

A good modeler with a broad scope of applications in mind attempts to work with a few
general equations instead of a large number of equations only applicable in special cases.
Thus the transport equation for a continuous medium (ocean, atmosphere, river, bath tub)
will contain, for instance, the pressure gradient, friction, gravitation, the centrifugal force
and the coriolis force. In the atmosphere the Coriolis force certainly is important: combined
with the pressure gradient, it allows the generation of the weather systems, in particular high
and low pressure regions. Ocean currents, too, are subject to the Coriolis force. However,
the distribution of cream in my mug of tea (or coffee) certainly is an entertaining problem
in transport processes in a continuous medium, however, the scale is way too small to allow
Coriolis to become effective – thus the force (and the corresponding term in the equation)can
be omitted.

Friction also is a process that should be evaluated carefully. A frictional term is part of
the equation of motion. Nonetheless, the relevance of friction for the system often can be
evaluated much easier in terms of an energy balance: if the kinetic energy is much larger
than the losses due to friction, friction can be ignored. If we drop a stone from a bridge,
we can neglect friction – if we drop a parachutist from an airplane it is more sensible to
consider friction. Both are clear-cut examples, the tricky business are the cases in between.
For instance, what about the parachutists in free fall before the parachute opens?

Scale analysis is a tool to judge the relative importance of different terms in an equation
as demonstrated for the equation of motion in oceans and in the atmosphere in sect. C.5.

Simplify the terms in the equation

The basic tool for simplifying terms is linearizing. This can be done in two ways. In the
simplest case, we find a suitable linear relation for our problem and assume that this linearity
is valid in the pertinent range of operation. Some typical linear relations are Ohm’s law,
Fick’s law, Fourier’s law, Newton’s viscosity law, Hooke’s law, Stoke’s law, the convective
heat transfer or the equation for a first-order chemical reaction.2.

If the dynamical range is small, it might be useful to assume some parameters as constant:
for instance, if reaction rates depend on temperature but temperature can be kept fairly
steady in the experiment, it might be useful to assume the reaction rates as constant.

The most common way of linearizing is the simple mathematical approach to expand the
nonlinear term and to discard all higher order terms.

Bracketing the solution

As mentioned before, the procedure of bracketing the solution does not reduce the complexity
of the model but attempts to determine upper and lower boundaries of the solution. In an
industrial process, these boundaries might be a sufficient information for the design of a plant
and thus modeling of the full complexity of the system is not even required.

Bracketing the solution also can be considered as a best-case–worst-case scenario. How-
ever, we must be careful with this term: using the upper and lower bounds of a parameter

2These equations all are well-known, most of them are also given in Tab. C.1
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gives upper and lower (or vice versa) bounds of the solution only in a linear system. In a
non-linear system, upper and lower bounds might lead to almost the same results while some
value in between gives an entirely different solution.

Dimensional analysis

This is a tool that should be considered if a problem becomes too complex to be modeled in
a quantitative way. One of the first examples of dimensional analysis encountered in physics
is the Reynolds’ number, the ratio of viscous and inertia forces. The Reynolds’ number is a
dimensionless quantity which allows a qualitative description of processes. For instance, we
introduce a critical Reynolds’ number that indicates when a flow changes from laminar to
turbulent. Thus with the dimensional analysis we describe the basic processes qualitatively
without considering all the nasty details of, for instance, drag on a body as a car is exposed
to a turbulent flow.

As can be guessed from the above example, this technique is quite common in fluid
dynamics (see e.g. [42]). It is helpful to determine not only one solution of the differential
equation but an entire manifold of solutions which can be scaled to the situation under study.
This is particularly helpful in hydrodynamics when the solution for a certain size of syringe
or nozzle is known and we are looking for a dynamically similar flow on a different scale. It
is also the formal equivalent for experimental design aids such as flow channels.

The idea is quite simple: all equations representing scientific laws can be expressed such
that both sides are dimensionless. In its simplest case, just divide one side of the equation by
the other: the result, one, is dimensionless. To take advantage of dimensionless variables, first
identify the physical variables relevant to the problem and combine them into dimensionless
groups A,B,C.... These groups have to be independent of one another. If the groups are
dimensionless, combinations of groups such as AB or A/B2 are dimensionless, too. But they
are not independent of either A or B, though any one of them might be included instead of
A or B if this seems advantageous. If the groups are chosen in such a way that the quantity
of interest occurs in only one of them, it can be expressed by the function A = f(B,C, ...).
The nature of this unknown function can be determined analytically or by computational
methods. In an analytical solution, the advantage of the use of dimensionless variables
is small; it only shows which parameters are important in scaling. If the solution has to
be obtained by numerical simulations, the advantage of this method is more obvious: the
procedure to determine a solution for one particular set of parameters can be quite time
consuming. Each other set of parameters would require a new run. If dimensionless variables
are used instead, the nature of the solution becomes obvious and it can be scaled to suit
different sets of parameters.

2.2.4 Closure

Closure is as important as identifying the relevant processes and simplifying the equations.
It is required to test the model. The validation of the model should not rely on one test only
but an a larger number of tests. Reasons are twofold: in one test only, agreement might be
accidental, that is a wrong model might provide roughly correct results for this special case
and in consequence is adapted to model all other cases were results are completely nonsense.
In addition, the final test might require an expensive or time-consuming experiment; thus it
should be performed only if we are pretty sure that the model is corrected, that is, if we have
tested it with a large number of basic tests..

Before starting an overkill of expensive and/or time-consuming tests, we should check
very simple crucial points:

1. dimensions,
2. unphysical results,
3. order of magnitude,
4. asymptotic behavior,
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5. unusual behavior for certain values of variables or parameters,
6. unexpected results.

The first question, ‘are the dimensions correct?’ should not only be asked at the end of the
modeling process but during the entire process of model building from the very first sketches
up to the final solution. Basically, a disagreement in dimensions implies that something is
wrong with the equations or the values and parameters inserted into them. In particular
during the reduction of the number of variables or linearization some parameters might not
have been adjusted to the new conditions and still carry their original dimensions and values.
Here the check on the dimensions points to an error – which hopefully might help to detect
the error in the number, too.

The second question, ‘is the solution physically possible?’, is concerned with the funda-
mental laws of physics. For instance, flow speeds exceeding the speed of light suggest a faulty
model. As do total masses of products of a chemical reaction exceeding that of the reactants.
Both questions are basic and can be answered easily. They therefore should be checked
frequently during model development, in particular also during validation of the numerical
code. And, of course, in the interpretation of the results obtained with the model.

The third question, ‘is the order of magnitude reasonable?’, can be answered only after a
solution is obtained from the model. Often experience or rough calculations help to answer
the question; an example is given in sect. 2.3.1.

All three of the above questions are important also from the viewpoint of scientific rep-
utation: only a very few things are more embarrassing than to present results that are
patently absurd. And since the above question tackle very basic problems, all interested
readers/listeners can ask them and simply estimate whether the model has obvious flaws or
not. In fact, a good scientist might not even ask the question consciously but might identify
a model as faulty simply by her gut feeling [49]. If the modeler has failed at this point, his
reputation is seriously damaged: not because of the mistake in the model but because of his
apparent un-ability to evaluate and validate his own work.

The asymptotic behavior can be studied by asking the question ‘what is the behavior of
the result for large or small values of the variables or parameters?’. The procedure is similar
to the upper- and lower-bounds method. A special case arises for t → ∞: this often gives
the steady-state solution. This case often can be checked easily: all temporal derivatives
in the governing equations vanish and thus an ODE might become an algebraic equation.
Or a PDE might become an ODE which can be solved analytically; see the example of the
longitudinal tank in sect. 3.1. If the steady-state is not met by our model, the simulation
of the transient phase, the development towards the steady-state, will be faulty, too. If the
modeler discovers only at this state that the steady-state solution is the only solution he is
interested in, he might re-think his approach on the problem: a model should be as complete
as necessary but as small and simple as possible. And if only steady-state interests, the full
transient solution is overkill and the governing equations should have been simplified long
before starting their numerical or analytical solution.

The quest for unusual behavior for some parameters also is some kind of asymptotic
analysis. Assume a solution that contains a difference in the denominator, such as

f(x) ∼ 1
x− a

.

A critical situation arises if x approaches a: f(x) will increase enormously. Such runaway
may be a beneficial or catastrophic event, such as a resonance catastrophe. These runaways
should be checked carefully: since they are easily observed in a system, they can validate or
disproof the numerical solution. An exponential term eax also leads to a runaway and should
be checked carefully.

The last question is a little bit more tricky: unexpected results might disproof a system
(in particular if they do not make any sense physically) but they also can be the salt of
modeling: it is the unexpected that provides new insight.3 Unexpected results therefore

3Always remember that information I is defined by probability p: the least expected signal has the highest
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tell us that a model is either flop or top: flop if the unexpected result points to an error
in modeling and top if it points to a new fact or phenomenon. This is better than just a
working descriptive model because the encounter with the new is what drives science. Thus
an expected result has to be analyzed carefully: even if the gut feeling suggests that the
unexpected result points to a flaw in the model, it might be a correct result (and model), as
is illustrated in sect. 2.3.3.

2.3 Examples

We will now start to sketch very simple models to get a feeling for the first two steps of
modeling: describing the underlying physics and simplifying the model.

2.3.1 Discharge of a Plant Effluent into a River

The problem: a chemical plant discharges an effluent containing a concentration cCU =
10 mg/l of copper at a rate of fCu = 150 l/min into a nearby river with a flow fR varying
between 2300 and 5000 l/s. Environmental regulations allow for a maximum concentration of
cCu,max = 1.0 µg/l in the river. Is the river flow sufficient to reduce the effluent’s concentration
below the permitted values?

Analysis of the Problem

c

fR

f Cu

fR + f Cu

f Cu

fR + f Cu

cCu

( )R

Figure 2.1: Mass and
copper balance

Here we can start with a graphical sketch. The spatial target is a
part of the river containing the plant’s discharge – this is also our
envelope. Our target property is the copper concentration, thus the
conservation law under consideration is the mass balance for copper.

To set up the basic equation we will simplify our model. The
copper concentration inside the envelope will vary locally in a rather
complex manner but with the highest values close to the discharge.
The rivers flow rate suggests a fast running river which implies enough
turbulence for efficient mixing. Thus we can use the concept of the
stirred tank or compartment and work with an average concentration,
ignoring all the local fluctuations. And in a slow moving river? Lo-
cally we will have large aberrations from the average concentration,
however, further downstream the mixing process was efficient enough
to keep copper values below permitted values.

Another simplification regards the river flow. Since the regulatory
limit must be met at all time we only have to consider the lower flow
of 2300 l/s.

And our target quantity? We are only interested whether the copper concentration stays
below the permitted value. Thus we can start from the simplified mass balance:

Rate of copper in− Rate of copper out = 0 . (2.3)

Mathematical Formulation and Analytical/Numerical Solution

Equation 2.3 is a simple algebraic equation, thus its solution should pose no difficulties. We
only have to be careful to write the terms correctly:

cCu fCu − cR(fR + fCu) = 0 ; . (2.4)

Just a moment: where is the inflowing flow? Since this is not a mass balance for the water,
it is not required. But if you want to see it written down add it to the first term in 2.3:

cCu,clean river fR + cCu fCu − cR(fR + fCu) = 0 (2.5)

information: I = −ld p.
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with cCu,clean river = 0. cR is the unknown quantity, the copper concentration in the well
stirred river. Inserting the values given in the problem description, we obtain

cR = 10.9 µg/l � cCu,max . (2.6)

The river’s flow is not sufficient to dilute the effluent below the permitted value. Thus
copper must be removed before discharging the effluent into the river – or the effluent must
be diluted.

Some in-between calculation 2 How do the results change if the upstream flow already
carries a substantial copper concentration cCu,clean river?

2.3.2 Newton’s Law of Cooling

The problem: A copper ball has a diameter of 1 cm and a temperature of 100◦C. At time
t = 0 the ball is dropped into a large water basin with a temperature of 30◦C. The water
basin is large enough to retain this temperature. After 3 min the ball’s temperature has
dropped to 70◦C. After which time has the temperature dropped to 31◦C, that is just 1◦

above the water’s temperature?

Analysis of the Problem

E
Ef

δ

The sketch is a simple one: we have a large water reservoir with the
ball inside and heat exchange between water and ball. There is no
exchange between the water and its surroundings. Since the prob-
lem description suggests that the water retains its temperature, we
can apply the concept of the stirred tank: the water is at constant
temperature everywhere in the tank and thus the temperature gra-
dient at the ball’s surface, which drives the heat transport, only changes due to changes in
the ball’s temperature. Although we do not apply any stirring to the tank, the high ther-
mal conductivity of water supports this assumption. We make the same assumption for the
copper ball: while it transfers heat to the water its temperature shows no spatial gradient
although the transport occurs only on the surface – but copper also has a very high thermal
conductivity, thus the approximation is valid.

The basic concept in our model is a conservation law, the energy balance. The envelope
can be drawn around the ball and we can formulate the required equation verbally as

Rate of energy in− Rate of energy out = Rate of change in energy content , (2.7)

with the first term on the left hand side vanishing.

Mathematical Formulation

We can either derive the heat transfer equation by inserting the relevant terms from Tab. C.1
into (2.7) or by directly referring to Newton’s law of cooling

− κ(T − Ts(t)) =
dT
dt

(2.8)

with k being the rate with which heat is absorbed by the body and Ts(t) being the temperature
of the surroundings, in our case Ts = const.

Analytical/Numerical Solution

Since (2.8) is an ordinary differential equation of first-order it can be solved analytically.
Both an exponential ansatz or separation of variables will work. With the latter approach
we can rewrite (2.8):

− dT
T − TS

= k dt . (2.9)
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We can now proceed in different ways, depending on our personal preferences. For instance,
we can first obtain the general solution, than insert the 3 min value to obtain the value of k
and finally insert this and the end temperature to obtains the time required for cooling. Or
we do the same steps without the first one by choosing the integration limits accordingly. In
the latter case we get

−
340∫

370

dT
T − 300

= k

3∫
0

dt ⇒ ln
370− 340
340− 300

= 3k ⇒ k = 0.187 h−1 . (2.10)

Here all temperatures are absolute temperatures, units are omitted to avoid typos from my
side. Changing the integration limits yields the time required to cool the ball down to the
given value of 31◦:

−
31∫

100

dT
T − 300

= 0.187 h−1

t∫
0

dt ⇒ ln
370− 300
31− 30

= 0.187 t , (2.11)

and solved for t

t =
ln 70
0.187

h ≈ 22.8 min . (2.12)

Side question 9 Would it make a difference if degrees centigrade were used instead of ab-
solute temperatures?

Closure

Reasoning: cooling down is a kind of decay, thus it follows an exponential law. We should
see this from the structure of the differential equation; it would be more obvious if we had
first obtained the general solution of (2.8) and performed our calculations afterwards – if you
don’t ‘see’ the exponential, just obtain the general solution. Thus a drop by 69 K instead of
30 K should require significantly more time than the 69

30 × 3 minutes. Thus 23 min does not
contradict our expectations.

Experimental confirmation: just do it.

2.3.3 Evaporation of a Pollutant into the Atmosphere

The problem: a pollutant in a body of water may be partly released into the atmosphere.4

For simplification we assume that at time t = 0 the pollutant’s concentration in the water is
cpoll. It is well mixed with the water and there is no in- or outflow of water and/or pollutant.
Which amount of the pollutant remains in the water?

Analysis of the Problem, Mathematical Formulation & Analytical Solution
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x, W

y, DThe problem is incomplete. Normally, we would simply determine
the pollutant concentration with time, cpoll(t). But that would
require data on evaporation rates which in turn depend on temper-
ature and wind speed. Thus detailed modeling is not possible.

What else to do? Let us start with a sketch and check wether
we can eliminate the unknown data from the problem. Therefore
let us start with something very fundamental, in this case the mass balances. Here they
are formulated for moles rather than mass because the physical laws involved here, such as
the ideal gas law or the phase equilibrium relations, are formulated for moles. Balances are
obtained for the total mass/moles and the pollutant mass/moles:

Rate of moles in− Rate of moles out = Rate of change of moles . (2.13)

4Other processes of pollutant removal from the water such as absorption on or reaction with the bottom
sediment or biodegradation through bacterial action are ignored in this scenario.
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With D as the total moles evaporating per unit time and W as the total moles in the water
body, we obtain for the total mole balance

D =
dW
dt

. (2.14)

The pollutant mole balance is

yD =
dxW
dt

(2.15)

with y and x being the pollutant concentrations in the vapor and aqueous phase. So far, we
have four dependent variables but only two equations. One variable, D, can be eliminated
by dividing both equations:5

y = x+W
dx
dW

. (2.16)

If we assume that the water vapor leaving the liquid is locally in equilibrium with the
liquid, we get a third equation: y = f(x). This is permissable because the thermodynamics
of phase equilibria suggest for sparsely soluble, low volatility substances

pp =
xpw

xs
(2.17)

with p being the partial pressure of the pollutant in the vapor phase, pw the vapor pressure
of the pure pollutant and xs the solubility of the pollutant in water. Thus the pollutant
concentration p in the vapor increases with the liquid phase concentration x and with the
water pressure of the pure pollutant. Partial pressure can be converted into moles using the
ideal gas law, p ∼ n. Using Dalton’s law we get

y =
n

ntot
=

p

p+ p0,H2O
≈ p

p0,H2O
(2.18)

with n being the number of moles of the pollutant, ntot the total number of moles, and p0,H20

the pure component water pressure. Thus (2.16) can be written as

xp

xsp0,H2O
= x+W

dx
dW

. (2.19)

Integration yields[
p

xsp0,H2O
− 1
]

ln
W

W0
= ln

x

x0
. (2.20)

We will examine the solution for one particular pollutant, mercury, with a solubility of
3 · 10−2 mg/l and a vapor pressure of 0.173 Pa, both values taken at 25◦. Water has a vapor
pressure of 3170 Pa.

Since we still do not have any information about evaporation rates, we start with an
assumption: a small fraction of the water basin, 0.01%, evaporates. Substitution into (2.20)
yields

x

x0
= 0.133 , (2.21)

thus 87% of the original mercury has evaporated into the atmosphere – although only 0.01%
of the water pool has evaporated.

5Both equations are first-order ODEs, therefore this procedure is permitted.
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Closure

This result certainly is unexpected. Without any further assumptions we would not be
surprised to get values of about 0.01% evaporated Mercury; values an order of magnitude
different, that is 0.1% or 0.001% probably would surprise us, but still are somehow plausible
– at least, we would try to make up some explanation for them. The calculated disagreement
of about 4 orders of magnitude, on the other hand, is unexpected and unplausible. At first
hand, it suggests a fault in the model. Alternatively, it can suggest some new insight (at
least new to us). Looking into the properties of mercury, we can justify the result on physical
grounds: Mercury has an extremely low solubility in water and consequently exhibits an
unusual high fugacity or “escaping tendency” – therefore the high rate of transfer into the
atmosphere.

The lesson to be learned from this example: results that appear to be completely out of
the ordinary should not call for automatic disbelief or dismissal. Instead, a careful review of
the solution process should be undertaken and if the result persists, the underlying physical
processes should be closely scrutinized.

2.3.4 Thermal Balance of a Building

The following problem is much more complex and requires a full-fledged numerical model.
However, since it has some application in ordinary life and digs a little bit deeper into a more
complex problem, we will discuss it here.

The problem: the heating system in a public building, such as a seminar room in an
university building, shall be optimized to conserve energy while simultaneously providing the
necessary comfort for the user. The standard method is either night- and weekend-setback
or even night- and weekend-set off. In the latter case, the heating system is switched-
off completely for the night hours or the weekend while in the former case only the flow
temperature is reduced.
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Abbildung 2.1: Einflußgrößen für die Behaglichkeit im Raum [47]

geringem Energieeinsatz ermöglicht. Ziel der Bauphysik ist daher eine Aufrechterhaltung der
Behaglichkeit bei guter Luftqualität unter möglichst geringem Einsatz an Energie (Optimie-
rungsproblem).

2.2 Behaglichkeit

Behaglichkeit kann einfach als das Wohlbefinden des Raumbenutzers verstanden werden. In
die Behaglichkeit gehen die folgenden Parameter ein, vergl. auch Abbildung 2.1:

• Nutzerspezifische und zeitliche veränderliche Parameter, wie z.B. Alter, Geschlecht,
Bekleidung, Aktivitätsgrad sowie Tages- und Jahresrythmus.

• Raumklima, wie z.B. Luftqualität, Luftfeuchte, Raumlufttemperatur und Temperatur
der Umschließungsflächen.

• weitere Parameter, z.B. Lärm, Beleuchtung, Farbgebung.

Allerdings ist Behaglichkeit nicht, wie vielleicht auf den ersten Blick erscheinen mag, ein
rein subjektiver Parameter. Behaglichkeit läßt sich messen über die Leistungsfähigkeit, z.B.
Konzentrations- und Reaktionsvermögen. Daher legt die Arbeitsmedizin auch gewisse Richt-
werte für das Raumklima für verschiedene Arten von Tätigkeiten fest [14, 22]. Diese Richtwer-
te haben das Ziel, die Unfallgefahr zu verringern und die Leistungsfähigkeit zu erhalten, nicht
jedoch unbedingt ein subjektives Behaglichkeitsgefühl zu erzeugen (Beispiel: Sie mögen sich
im Sommer am Strand in der Sonne rekeln und subjektiv dabei recht wohl fühlen, allerdings
würde ich als ‘Arbeitgeber’ Ihre Leistungsfähigkeit, die sich z.B. im Lösen der Übungsaufga-
ben überprüfen ließe, als zu gering einstufen).

Figure 2.2: Parameters influenc-
ing comfort [129]

The goal: keep the user thermally comfortable6 (as
e.g. defined in Figs. 2.2 and 2.3) in the seminar room un-
der the constraint of minimizing the energy input into the
building/heating system. The user exchanges heat with
the room trough different processes. The room as part
of the building experiences the very same heat exchange
processes with the remaining parts of the building while
the building exchanges heat with the environment – its
a system of nested subsystems and we have to evaluate
quite carefully down to which detail each (sub-)system
is simulated. The optimization problem requires to de-
termine a temporal dependence of the flow temperature
Tflow such that energy consumption is small and during
working hours room conditions are within the comfort range.

The processes determining the comfort range can be summarized as follows:

• heat conduction to the surrounding air or contact surfaces (such as chair, desk, floor).
• convection which is related to the motion of the air.
• radiative heat transfer, in particular with walls, floor and ceiling but also with windows

and radiators,
• evaporation.

6Comfort in this case is not defined as the subjective impression of comfort but on a physiological basis:
a person always has to adjust his metabolism to his surroundings with the main goal to keep his body
temperature constant. In the comfort zone neither excessive heat production by the body to keep the person
warm nor excessive sweating to cool down an overheated body is required. Physiological adaption processes
to the environment are different from person to person, nonetheless, comfort ranges can be defined for at least
a certain percentage of the population. For a more detailed discussion see e.g. [129, 182] or the regulations
in the DIN.
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Abbildung 2.6: Optimale Raumtemperatur (Empfindungstemperatur, definiert als der Mittel-
wert aus der Raumlufttemperatur und der mittleren Temperatur der Umschließungsflächen)
[65]

Person bei 21◦C, einer Luftgeschwindigkeit von 0.1 m/s und einer relativen Feuchte von 50%
als thermisch behaglich empfunden wird.2

Abbildung 2.6 gibt die optimalen Raumtemperaturen in Abhängigkeit von der Bekleidung
Icl und der Aktivität M . Die Temperaturen sind bestimmt für eine relative Luftfeuchte von
50% und eine Luftgeschwindigkeit von 0 m/s für M ≤ 1 (d.h. ruhig entspannt sitzend oder
noch ruhiger und damit weniger Energie umsetzend) bzw. 0.3 · (M − 1) für M > 1. Letzteres
bedeutet, daß im Falle größerer Aktivität M eine linear ansteigende Luftgewegung ange-
nommen wird, was auch dadurch sinnvoll ist, da die höhere Aktivität meist mit Bewegung
verbunden ist, wodurch sich der Mensch relativ zur Luft bewegt (wichtig z.B. im Zusammen-
hang mit Erhalt bzw. Unterbrechung des Wärmefilms um den Körper). Die durchgezogenen
Linien in Abb. 2.6 geben optimale Raumtemperaturen, bei denen sich mindestens 95% der
Raumnutzer thermisch behaglich fühlen. Hier ist die Raumtemperatur definiert als die Emp-
findungstemperatur, d.h. den Mittelwert aus der Raumlufttemperatur und der Temperatur

2Physiologisch bedeutet dies, daß der Isolationsgrad für die genannten Umgebungsbedingungen so groß
ist, daß der Ruheumsatz der Person genau die Wärmemenge erzeugt, die durch die Kleidung nach außen
abgegeben wird.

Figure 2.3: Comfort temperature depending on activity and clothing [182]

These processes relate to different parameters of the room. In heat conduction, the heat flux
depends on air temperature and on the temperatures of the contact surfaces. The heat flux
in convective transport is related to air temperature and speed; for outdoor applications the
latter is referred to as wind-chill. Radiative transfer is determined by the surface temperatures
of all objects within sight. Heat fluxes due to evaporation, in turn, depend on temperature
and humidity. The different room parameters influencing the comfort range are summarized
qualitatively in the left panel of Fig. 2.2.

Figure 2.3 shows the necessary ambient temperature for a person in a room to feel ther-
mally comfortable. This ambient temperature depends on the persons activity M (unit met
for metabolism, 1 met corresponds to 60 W/m2) and clothing Icl (unit clo for clothing, 1
clo corresponds to a thermal resistance of 0.155 m2 k/W; 1 clo roughly corresponds to the
insolation provided by the clothing for a thermally comfortable person sitting still at an am-
bient temperature of 21◦C, a relative humidity of 50% and an air speed of 0.1 m/s.). The
temperatures given in Fig. 2.3 are determined for a relative humidity of 50% and an air speed
of 0 m/s for M ≤ 1 and 0.3(M − 1) m/s for M > 1. Such an approach is reasonable because
a person totally at rest will not feel comfortable in the presence of convective cooling (except
for ambient temperatures exceeding body temperature). On the other hand, with increasing
M the mechanical work load on the person increases and thus its own motion will induce air
motion. The solid lines in Fig. 2.3 give optimum ambient temperatures: 95% of the persons
in the room should feel thermally comfortable under these conditions. The shaded areas
show the allowed deviation from the optimum ambient temperature where less than 10% of
the population will feel thermally uncomfortable.

It should be noted that ambient temperature is not the air temperature in the room. Since
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Figure 2.4: Thermal
balance of a building as
matryoshka problem
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radiative exchange with the walls and any other surfaces in the room contributes as much
to the heat exchange as heat conduction, ambient temperature is defined as the average
of air temperature and temperature of the room’s surfaces. It should be noted that this
approximation is valid if ambient temperature and temperature of the surfaces differ by a
few degrees only. Even in a well-insulated building, this requirement only is met if temporal
variations (time scales of hours to days) in temperature are small. Short-term temperature
fluctuations are less important: walls have a rather high heat capacity and therefore a rather
long time scale to adjust to changes in air temperature. Thus the short-term fluctuations are
averaged out.

Analysis of the Problem

The problem resembles a little bit a Russian matryoshka: the only processes are heat exchange
processes. In the target room, it is the heat exchange between the user of the room and its
walls, air, window and radiator. Kindly note the wording in German and English: the English
word radiator describes the main heat exchange process while the German word Heizkörper
describes the function but not how it is performed. Thus we often forget that a radiator only
works if it views most of the room but not if it is hidden under a desk or behind a couch.

But the room is not thermally isolated from the other rooms in the building: heat fluxes
here are mainly due to heat conduction but convection and radiative transport also con-
tribute. And the outer shell of the building exchanges heat with the environment: heat
conduction to the ground, radiative transport, heat conduction and evaporative losses to the
atmosphere. This nesting is sketched in Fig. 2.4.

Figure 2.4 however is not the sketch we are asked to start with in modeling. Before we
draw that sketch we have to simplify our problem. Thus lets ask some questions:

1. do we need to simulate the heat transfer between a user and the room in all details?
2. do we need to consider heat transfer to adjacent rooms or from the building’s shell to

the environment?
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die Wärmeleitung von der heißen Herdplatte über den Kessel in dessen Henkel und von
dort auf die Hand des Menschen. Wärmeleitung kann durch Isolation unterbunden werden:
entweder können die Stoffe getrennt werden (wer faßt schon im Winter gerne kaltes Metall
an) oder ein Isolator mit geringer Wärmeleitfähigkeit kann eingefügt werden (Topflappen in
Abb. 2.2).

Abbildung 2.2: Prinzip des
Wärmetransports durch
Wärmeleitung [47]

Durch Wärmeleitung wird sowohl die Bekleidung als auch
die direkt an der Hautoberfläche befindliche Luft erwärmt, so
daß sich ein Wärmefilm um den Menschen herum bildet.
Konvektion ist ebenfalls mit der Bewegung von Materie ver-
bunden, allerdings sind hier nicht die irregulären Zitterbewe-
gungen einzelner Moleküle von Bedeutung sondern die kollek-
tive Bewegung von Luftmassen (Luftstrom, Zug). Dabei wird
die Wärme von der bewegten Materie mitgeführt, vergl. Abb.
2.3. Das ist das Prinzip der Zentralheizung, es ist ebenso ein
wichtiger Bestandteil des Wärmetransports vom Heizkörper zu
den Personen im Raum. Da Konvektion mit der Luftbewegung
verbunden ist, wird sie durch Zwangs- und Fugenlüftung beein-
flußt. Starke Luftbewegung, insbesondere kalter Luft, zerstören
den Wärme- und Feuchtefilm, der sich in ruhiger Luft um den
Menschen bildet, und bewirken damit eine erhöhte Wärmeab-
gabe (Frieren bei Zugluft).

Abbildung 2.3: Prinzip des
Wärmetransports durch
Konvektion [47]

Wärmestrahlung ist eine Eigenschaft jeden Körpers mit ei-
ner Temperatur oberhalb des absoluten Nullpunktes. Die abge-
gebene Wärmemenge steigt mit der Temperatur des Körpers
(Stefan–Boltzmann Gesetz), sie ist ferner von den Material-
eigenschaften abhängig. Unter ‘normalen’ Bedingungen trägt
der Wärmetransport durch Strahlung ungefähr zu 50% zum
Wärmeverlust des Menschen bei. Im Gegensatz zu allen an-
deren Wärmetransportprozessen ist der Strahlungstransport
nicht an Materie gebunden: Wärmestrahlung ist elektromagne-
tische Strahlung und kann sich selbst im Vakuum ausbreiten
(bestes Beispiel: Strahlung von der Sonne), allerdings kann
sich Wärmestrahlung durch relativ komplizierte Strahlungs-
transportprozesse (Absorption und Emission) auch in Materie
ausbreiten, d.h. die simple Existenz von Materie verhindert
der Strahlungstransport nicht (bestes Beispiel: Wärmeverlu-
ste durch die Verglasung eines Fensters, in Infrarotaufnahmen
von Gebäuden besonders gut zu erkennen).

Abbildung 2.4: Prinzip der
Wärmestrahlung [47]

Verdunstung oder Transport latenter Wärme beruht dar-
auf, daß bei der Verdunstung der verdunstenden Flüssigkeit
Wärme zugeführt bzw. diese dem Körper entzogen werden muß
(Verdunstungskälte). Verdunstung unterscheidet sich von den
vorangegangenen Prozessen. Zwar ist auch hier wieder die Be-
wegung von Materie von Bedeutung (Übergang von Wasser-
molekülen aus Körpergewebe wie Haut oder Schleimhäute an
die Luft, Bildung eines Feuchtefilms), jedoch wird dabei die
umgebende Luft nur feuchter, nicht jedoch wärmer. Die Be-
deutung der Verdunstung am Wärmetransport ist hochgradig
variabel: in sehr feuchter Luft kann durch die Verdunstung
nicht einmal 10% der Wärme abgeführt werden (in schwüler

Figure 2.5: Heat con-
duction [129]

To decide on these questions, it might be worthwhile to look at
the feasibility of their modeling as well as on their relative impor-
tance and relevance to the problem under study. Thus we have to
scrutinize each transport mechanism and decide whether modeling
in detail is both possible and reasonable.

Heat conduction is based on collisions between particles in fluids
or the vibration of atom rumps around their rest position in solids.
Thus a direct contact is required for heat conduction to become
effective. For a person in a room, heat conduction can be divided
into two parts: (1) the heat transfer to solid bodies such as chair,
floor and desk (see also Fig. 2.5) and (2) the heat transfer to the
air directly in contact with the body and the clothing. While the first part of this heat
transfer in principle can be modeled easily, the second part becomes more tricky. If a person
is completely at rest in a room where air motion is negligible, a thin film of heated air will
develop around her reducing the heat flux and increasing the person’s thermal comfort. With
increasing motion relative to the ambient air, this thermal film is destroyed and heat fluxes
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increase. The motion can be due to draught, the convective motion of the air or the person’s
motion. Thus the latter part is difficult to model: either assumptions have been made and
average parameters are used or this process has become too complex to be modeled, see also
sect. 2.1.2. In addition, that process would not be heat conduction but turbulent transport
with a flow. The other part of the heat transfer is rather conventional, however, compared
to the body’s surface, the contact surfaces to solids are rather small and normally also well
insulated.

The situation is different if we do not consider the person in the room but the room as
part of a building or the building’s outer shell as boundary to the environment. In these cases
the direct heat conduction dominates over convective cooling and thus a formal description
is simple and possible. In addition, since the wall strongly reduces convective exchange
between the room and the atmosphere, heat conduction from the inside of the wall/window
to its outside will be a pretty relevant process.

Heat conduction is described by Fick’s or Fourier’s law (see also Table C.1). In general
form the heat flow density ~jQ is given as

~jQ = −λ∇T (2.22)

with λ as thermal conductivity and T as temperature.
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dort auf die Hand des Menschen. Wärmeleitung kann durch Isolation unterbunden werden:
entweder können die Stoffe getrennt werden (wer faßt schon im Winter gerne kaltes Metall
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flußt. Starke Luftbewegung, insbesondere kalter Luft, zerstören
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ner Temperatur oberhalb des absoluten Nullpunktes. Die abge-
gebene Wärmemenge steigt mit der Temperatur des Körpers
(Stefan–Boltzmann Gesetz), sie ist ferner von den Material-
eigenschaften abhängig. Unter ‘normalen’ Bedingungen trägt
der Wärmetransport durch Strahlung ungefähr zu 50% zum
Wärmeverlust des Menschen bei. Im Gegensatz zu allen an-
deren Wärmetransportprozessen ist der Strahlungstransport
nicht an Materie gebunden: Wärmestrahlung ist elektromagne-
tische Strahlung und kann sich selbst im Vakuum ausbreiten
(bestes Beispiel: Strahlung von der Sonne), allerdings kann
sich Wärmestrahlung durch relativ komplizierte Strahlungs-
transportprozesse (Absorption und Emission) auch in Materie
ausbreiten, d.h. die simple Existenz von Materie verhindert
der Strahlungstransport nicht (bestes Beispiel: Wärmeverlu-
ste durch die Verglasung eines Fensters, in Infrarotaufnahmen
von Gebäuden besonders gut zu erkennen).

Abbildung 2.4: Prinzip der
Wärmestrahlung [47]

Verdunstung oder Transport latenter Wärme beruht dar-
auf, daß bei der Verdunstung der verdunstenden Flüssigkeit
Wärme zugeführt bzw. diese dem Körper entzogen werden muß
(Verdunstungskälte). Verdunstung unterscheidet sich von den
vorangegangenen Prozessen. Zwar ist auch hier wieder die Be-
wegung von Materie von Bedeutung (Übergang von Wasser-
molekülen aus Körpergewebe wie Haut oder Schleimhäute an
die Luft, Bildung eines Feuchtefilms), jedoch wird dabei die
umgebende Luft nur feuchter, nicht jedoch wärmer. Die Be-
deutung der Verdunstung am Wärmetransport ist hochgradig
variabel: in sehr feuchter Luft kann durch die Verdunstung
nicht einmal 10% der Wärme abgeführt werden (in schwüler

Figure 2.6: Convection
[129]

Convection (convective cooling, transport of sensible heat) al-
ready has been mentioned in connection with the difficulties in mod-
eling heat conduction between the person and the ambient air. It is
related to the bulk motion of air. It is the basic principle of the heat-
ing system: first, convection transports heat from the boiler through
the pipes to the radiator (in modern heating systems supported by
a pump) with water as the transporting medium. Secondly, convec-
tion transports heat from the radiator through the room, creating
a kind of convection cell with heated air rising close to the radiator
and sinking at the opposite wall. All kinds of draught or opening
that allow for air motion (door, windows) modify this convection
pattern. The presence of people in the room can also modify it: the people themselves form
obstacles for the air flow and their motion might add turbulence and momentum to the flow.
Thus the difficulties in modeling the second part of heat conduction also appear in modeling
convective effects. The general formal description of convection is quite simple: the heat flow
density is

jconv = α(T2 − T1) (2.23)

with α being the heat transfer coefficient and T2−T1 the difference between the temperatures
of the surface and the air. The problem is that the heat transfer coefficient α depends on flow
speed and surface properties. The formal simplicity of convection suggests its consideration
in modeling. The high variability of α can be circumvented bei either using average values
or by bracketing the solution.
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Wärmeleitung [47]
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gungen einzelner Moleküle von Bedeutung sondern die kollek-
tive Bewegung von Luftmassen (Luftstrom, Zug). Dabei wird
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deutung der Verdunstung am Wärmetransport ist hochgradig
variabel: in sehr feuchter Luft kann durch die Verdunstung
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Figure 2.7: Radiative
transfer [129]

The last mechanism is radiative heat transfer. Every body ra-
diates heat. Its amount depends on temperature and the prop-
erties of the surface of the body. The radiative flow of a black
body is given by Stefan–Boltzmann’s law as q = σT 4 with σ =
5.67 · 10−8 W/(m2K4) as Stefan–Boltzmann constant. Stefan–
Boltzmann’s law can be extended to non-black bodies. Here we
introduce an effective temperature Teff , also called mean radiant
temperature. This is the temperature, a black body must have, to
emit the same total radiation flow as the body under considera-
tion. It can be related to the temperature by a modified version of
Stefan–Boltzmann’s law for the gray body:

q = σT 4
eff ≈ εσT 4 (2.24)
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with ε being the average emissivity.7
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Abbildung 3.7: Strahlungsaustauschkoeffi-
zienten [24]

Dabei sind β1 und β2 die Richtungswinkel zwi-
schen der Strahlungsrichtung und der Senkrech-
ten auf dem abstrahlenden Flächenelement. Die-
ser letzte Ausdruck ist es, der die geometri-
sche Konfiguration zwischen den beiden strah-
lenden Flächen berücksichtigt. Anschaulich den-
ken sie wieder an die ‘Eistüten’ bei der Defini-
tion der differentiellen Intensität. Was Sie mit
Stefan–Boltzmann bestimmen, ist der Gesamt-
strahlungsstrom integriert über alle Richtungen,
d.h. die Summe aller Eistüten, die Sie auf dem
strahlenden Körper befestigen können. Für den
Strahlungsaustausch zwischen zwei Körpern in-
teressieren jedoch nur die Eistüten, die auf den
jeweils anderen Körper blicken, die Strahlung
von den restlichen Eistüten geht am zweiten
Körper vorbei. Die Klimmzüge in Gleichung
3.37 und 3.38 dienen nur dazu, die Zahl die-
ser für den Austausch wichtigen Eistüten im
Verhältnis zur Gesamtzahl der Eistüten zu be-
stimmen, d.h. den Strahlungsanteil, der über-
haupt nur am Austausch teilnimmt.

Die Bestimmung der Einstrahlzahlen nach
Glg. (3.38) kann je nach Geometrie ein recht auf-
wendiges Verfahren werden. Für einige häufig
auftretende idealisiert Geometrien sind die Ein-
strahlzahlen und die sich daraus ergebenden
Strahlungsaustauschkoeffizienten tabelliert. Ab-
bildung 3.7 zeigt einige Beispiele. Im oberen
Teilbild sind zwei unendlich ausgedehnte par-
allele Flächen betrachtet. Diese Geometrie läßt
sich auch dann anwenden, wenn der Abstand
zwischen den beiden Flächen klein ist gegenüber
ihren Ausdehnungen. Das ist z.B. bei zwei Fen-
sterscheiben in einer Mehrfachverglasung der
Fall, vergl. auch das Beispiel in Abschnitt 3.2.8.
Das zweite Teilbild betrachtet im wesentlichen
einen Körper in einem Hohlraum. Als Anwen-
dungsbeispiele könnte man jeden beliebigen Ge-
genstand in einem Raum verwenden, sei es ein
Mensch oder ein Schrank. Anhand dieses Bei-
spiels läßt sich die Bedeutung der Wandtempe-
ratur für die Behaglichkeit noch einmal rechne-
risch illustrieren. Setzt man den Strahlungsaus-
tauschkoeffizienten in den Wärmestrom ein, so
ergibt sich für diese Geometrie

Q̇12 =
σ

1
ε1

+ A1
A2

( 1
ε2
− 1)

·A1 · (T 4
1 − T 4

2 ) . (3.39)

Für einen Menschen können wir die folgenden Parameter annehmen: Oberfläche A1 = 1.8 m2,

Figure 2.8: Radiation exchange
coefficients [59]

The emission of radiation is not coupled to the pres-
ence of an environment as is the process of radiative trans-
fer does not require matter. This is most obvious in the
radiation received from the Sun – the thermal conduc-
tivity of interplanetary space is almost zero due to the
extremely low densities. Since the emission of radiation
does not require an environment it also does not depend
on the properties of the environment: while the heat flows
in convection and conduction are determined by a temper-
ature gradient or a difference between temperatures at a
boundary, the radiative flux emitted from a body is only
determined by its temperature.

Nonetheless, there is also heat exchange with the envi-
ronment due to radiative transfer. The radiation emitted
by body B1, e.g. a person in a room, hits body B2, for in-
stance a wall of that room. The heat transfer from B1 to
B2 then is determined by that part of B1’s radiation that
hits B2 and by the absorption coefficient of B2. And in
turn, part of the radiation emitted by B2 is also absorbed
by B1.

The heat flow Q̇12 from body B1 at higher Tempera-
ture T1 to body B2 at T2 < T1 is given by

Q̇12 = c12A1 (T 2
1 − T 2

2 ) . (2.25)

Here A1 is the area of the emitting surface of B1 and c12
is the radiation exchange coefficient. The latter considers
the average emissivities of the bodies and their geometry,
that is the relative amount of B1’s emitted radiation ab-
sorbed by B2 and vice versa. The general form of the
radiation exchange coefficient is

c12 =
ε1 ε2 σ ϕ12

1− (1− ε1) (1− ε2) A1
A2
ϕ2

12

. (2.26)

The difficult part of the geometry is concealed in the ‘einstrahlzahl’

ϕ12 =
1

πA1

∫
A1

∫
A2

cosβ1 cosβ2

r2
dA1 dA2 (2.27)

with βi being the ‘richtungswinkel’ between the beam’s direction and the normal to Ai.
Figure 2.8 shows radiation exchange coefficients for some simple geometries. Before at-

tempting to calculate the radiation exchange coefficients for each situation by hand, we should
have a look at that table to identify situations that can be described by these special geome-
tries. The parallel surfaces in the upper example are not relevant for our particular problem
but they are relevant for instance in the calculation of heat transfer coefficients for windows
with double or triple glazing (see example in [84]). The convex surface enclosing a concave
surface can be used as a very simple model for a person inside a room – at least in cases
where radiation transfer is not strongly influenced by furniture and window area is small
compared to the surface of the entire room. We can use this coefficient also to illustrate the

7Many building materials (e.g. wood, concrete, stone, glass, lacquer, roofing felt or synthetic materials)
have average emissivities above 0.9 – a crude approximation thus might even use Stefan–Boltzmann’s law for
the black body. Water has an average emissivity of 0.95. Metallic surfaces, however, have a smaller average
emissivity; here Stefan–Boltzmann’s law for the black body should only be used if an emergency estimate is
required.
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Abbildung 3.18: Wirkung von Rolläden auf den Wärmeverlust durch ein Fenster [57]

bei 7◦C). Das Absinken der Temperatur bis ca. 23 h wird durch die Wärmeverluste durch die
Kombination Fenster/Rolladen sowie in geringerem Maße durch die Wärmeverluste durch
die Wände bewirkt. Mit dem Aufziehen der Rolläden um 23:10 h sinkt die Temperatur deut-
lich ab, und zwar schneller als es dem durch die gestrichelte Linie angedeuteten Verlauf mit
Rolläden vor den Fenstern entspricht.

Der k-Wert eines Fensters ist allerdings nicht alleine nur durch den der Verglasung be-
stimmt. Beim k-Wert eines Fensters sind zusätzlich die Wärmeverluste durch den Rahmen,
Verluste an den Übergängen zwischen Rahmen und Mauerwerk sowie Rahmen und Ver-
glasung, sowie Verluste über den Glasrandverbund11 zu berücksichtigen. Da diese Verluste
oftmals größer sind als die durch die Verglasung (insbesondere bei Wärmeschutzverglasun-
gen), ist es insbesondere bei kleinen Fenstern häufig herausgeworfenes Geld, eine zu gute
Wärmeschutzverglasung zu verwenden – dort ist eine konventionelle zweifach-Verglasung oh-
ne Beschichtung oftmals ausreichend. In den k-Wert eines Fensters, auch als äquivalenter
k-Wert bezeichnet, gehen die folgenden Größen ein: der k-Wert kR des Fensterrahmens, die
Fläche AR des Rahmens (genaugenommen die Projektionsfläche, d.h. der Teil der Rahmen-
fläche, der ausschließlich Rahmen ist und nicht bereits die Scheibe umfaßt oder in die Wand
eingelassen ist, der k-Wert kG der Verglasung sowie deren Fläche AG, der k-Wert klin

12 des
Glasrandverbundes sowie dessen Länge L, sowie die Gesamtfläche AF des Fensters:

kF =
kR ·AR + kG ·AG + klin · L

AF
. (3.70)

In einigen Büchern wird zusätzlich der Anschluß zwischen Fenster und Wand durch einen
zusätzlichen Summanden klin,W · U im Zähler berücksichtigt, wobei klin,W der k-Wert des
Anschlusses Fensterrahmen-Wand ist und U der Umfang des Fensterrahmens.

11Der Glasrandverbund ist der (Metall)rahmen, der bei einer Mehrfachverglasung die Scheiben zusam-
menhält. Eben weil er Metall ist, ist hier die Wärmeleitung sehr groß.

12Dieser k-Wert hat den Index ‘lin’ weil er sich nicht auf eine Fläche sondern eine Strecke bezieht. Daher ist
die Einheit W/mK, entsprechend wird auch nicht mit einer Fläche sondern nur mit einer Strecke multipliziert.

Figure 2.9: Changes
in room temperature
due to radiative
losses through a
window during night
(solid curve). The
dashed curve shows
higher temperatures
(and thus increased
losses) if darkening
is used [150]

importance of radiative transfer for thermal comfort. The heat flow for this special geometry
is

Q̇12 =
σ A1 (T 4

1 − T 4
2 )

1
ε1

+ A1
A2

(
1
ε2
− 1
) . (2.28)

The person’s parameters are: surface area A1 = 1.8 m2, average emissivity ε1 = 0.95 and
surface temperature T1 = 32◦ C (only shorts and light T-shirt). The room has the following
parameters: surface area A2 = 68 m2 (height 2.5 m, floor 3 × 4 m2), average emissivity
ε2 = 0.93 and surface temperate T2 = 16◦C. The heat flow from the person to the room’s
surface then is 162.3 W. Increasing the room’s surface temperatures to 20◦C gives a heat
flow of 124 W; a decrease to 12◦C increases the heat flow to 199 W – the excess heat flow
has to be created by internal heating, that is an increased metabolism and/or shivering.

The third geometry in Fig. 2.8 describes heat exchange between a surface and a half-sphere
above. This geometry is a good approximation on any radiation exchange with the outer
world: the exchange between a solar collector and the night sky or the exchange between
the buildings outer shell and the sky. The remaining two geometries can be applied to many
different situations. Examples are the radiative exchange between a radiator and a wall,
between different surfaces in the room or between a person in the room and the night sky
visible through the window. Figure 2.9 illustrates the importance of radiative losses through
a window during nighttime.

Mathematical Formulation and Solution

We have described and discussed all processes qualitatively and quantitatively but still we
have not decided on the model. But from the discussion of thermal comfort we can learn
that the relevant parameters which can be influenced by the operator of the heating system
is the ambient temperature, defined as the average of the surface temperature and the air
temperature. Air temperature is regulated automatically by the thermostat; the temperature
of the surfaces is regulated by heat conduction to adjacent rooms, radiative losses through
windows and losses to the atmosphere through the buildings outer shell. In the latter case, the
relevant processes are heat conduction and radiative losses. The most problematic process,
convection, is not considered inside a room because it strongly depends on the behavior of
the people inside the room (and, at least to a certain extend, can be regulated by them).
In addition, convection inside a room can be regarded as advantage in modeling: convection
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tend to equalize the spatial distribution of temperature and thus allows to treat each room
like a stirred tank. Thus the details of the room do not enter the simulation. Convection is
also not important for heat transfer inside the building because for a public building we can
assume all doors and windows to be closed during night and weekends. The convective losses
only are relevant at the outer shell of the building.

Our main problem is that we have to model at different scales. We can attempt some
finite difference or finite element model for the entire building by the price of huge grids
and computational efforts. Or we can use nested models, that is we model the inside of
the seminar room separately from the rest of the building. In each time step, the surface
temperatures of our target room are used to calculate the heat transfer to adjacent rooms
and afterwards are adjusted accordingly.

Before going into more detail let us take a step back and start with some simple esti-
mates. What is more important: heat conduction through the wall between two rooms or
heat conduction through an outer wall? Basically all heat transfer processes depend on the
difference in temperature: either as gradient in conduction, as difference in convection or
as difference of the forth powers of temperatures in radiative exchange. Inside a building
temperature gradients in general are small, the largest gradient in general is that between a
person and the building. Temperature gradients to the outside, however, can be quite large.
In a cold and clear winter night, air temperatures are well below zero and almost all emitted
thermal radiation escapes through the atmosphere without being reflected back. Thus ra-
diative losses are very large. The consequence for modeling: we have to start with the outer
shell. Thus our model must consider the floor plan and the properties of all walls, roofs and
the building’s ground plate.

In a very simple approach, the entire inside of the building is assumed to be in thermal
equilibrium. For a more detailed approach, we can specify the rooms according to the ground
plan or make a compromise and identify zones inside the building: there are some rooms with
relatively low temperatures (bed rooms, corridors, landings, porches), some well-tempered
rooms (living rooms, offices) and some rather warm rooms (bathroom, kitchen). Heat ex-
change is only considered between zones: heat exchange is only relevant in the presence of
temperature gradients but since the rooms inside a zone are at comparable temperature,
gradients vanish and consequently also the heat exchange.

For the physics building such zoning would be very simple, almost concentric: the well-
tempered offices all view the inner court. This inner ‘ring’ is surrounded by a ring of low-
tempered corridors which in turn is surrounded by a ring of low-tempered laboratories. Thus
why should we distinguish between corridor and laboratory? They are different zones for two
reasons: in contrast to corridors, laboratories are connected to the heating systems. And,
more important, laboratories (as offices) have users (any person emits roughly 100 W and thus
has to be considered as a heat source) and often also other internal heat sources (machines
running inside the laboratories, even computers and printers). Such internal heating sources
should be considered in a transient simulation of a building, too. In addition to these internal
heat sources we also have to consider the heat provided by the heating system and, if relevant,
the removal of heat by ventilation.

Thus the building is specified. Since we have argued that heat exchange across the outer
shell is the most important process regulating the ambient temperature inside a room and
thus the thermal comfort, we also have to consider the local weather or climate parameters
such as air temperature (important for heat conduction), cloudiness (important for radiative
transfer), wind speeds (important for convective losses from the building’s outer shell and
for undesired heat losses by air leakage through joints) and average precipitation (important
for evaporative losses – these should not be underestimated because the large heat capacity
of water absorbs quite a large amount of heat).

With these parameters and boundary conditions, the relevant equations discussed above
can be solved numerically. Such a model cannot be developed within the framework of a lec-
ture although it might be an interesting end-of-term project. To give an example for a result
of such kind of simulation, we resort to a commercial program, in this case TRNSYS/IISiBat.
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Abbildung 3.21: Nachtabsenkung: Beispiele aus einem Simulationsprogramm [57]. Gezeigt
sind jeweils die Raumluft- und die Wandtemperaturen, betrachtet ist eine Nachtabsenkung
von 20◦C auf 16◦C bei mildem Wetter und (oberes Bild) mit einem Anheizbeginn um 6 Uhr
und bei kaltem Wetter mit einem Anheizbeginn um 2 Uhr

Figure 2.10:
Transient simula-
tion of a building:
air and wall tem-
peratures for night
setbacks [150]

Figure 2.10 shows a sample result related to the question of this section. The model was used
to calculate room and wall temperatures for two scenarios of night- and weekend setbacks. In
both panels, setbacks reduce air temperature from 20◦ to 16◦; both simulation runs start at a
Monday morning after a weekend setback to 16◦. The target air temperature is 20◦ because
the operator of the heating system does not distinguish between ambient temperature and
air temperature.

The upper panel is for relatively mild outside temperatures: wall temperatures are around
15◦ at night. Setback mode has been set back to normal mode at 6 in the morning. This
leads to a rapid rise in air temperature and, owing to their larger heat capacity, a slower rise
in the temperature of the walls. Target air temperature is acquired at 8 in the morning –
right at the start of the working hours. Nonetheless, since wall temperatures still are well
below 20◦, ambient temperatures are only around 18◦. According to Fig. 2.3 this is ok for
normal clothing with Icl = 1 clo and M ≈ 1 met, corresponding to instruction.

The lower panel of Fig. 2.10 starts from the same assumptions except that the outside
temperature does not correspond to a mild but to a cold day. To compensate for this, the
heating is switched on at 2 in the morning instead of 6: the control of the heating panel
includes a temperature sensor for outside temperatures. The system thus can adapt its
setback times and the switching-on of the heating automatically. However, in spite of this
adaption results are a little bit disappointing: the target air temperature is not met during
the entire working day. In addition, the wall temperature has dropped below 13◦C during
the weekend and rises only slowly during the day. Monday at noon, ambient temperatures
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thus are only slightly above 16◦C, which according to Fig. 2.3 requires an increase in clothing
and/or metabolism. The target air temperature only is acquired Tuesday afternoon. Since
also the walls start to heat up, the ambient temperature now exceed 17◦, approaching a
reasonable value for lessons.

Side remark: The old german regulations (Wärmeschutzverordnung) only ask for the total
energy consumption during the year. To calculate the heat fluxes, stationary models are
sufficient and average climate parameters are assumed. This is absolutely no problem for
very conventional architecture and materials. However, if a building involves a different ar-
chitecture (large windows for passive heating combined with automatic darkening to reduce
radiative losses during nighttime), a different usage pattern (long periods of setbacks because
of only periodical use, strong temperature gradients within the building due to special usage
in some parts) or different materials (such as transparent thermal insulation), a more de-
tailed analysis is required. Thus the modeling of heat transfer in buildings has gained much
attention during the recent two decades because on the one side regulations become stronger
and stronger and on the other side the architecture and materials become increasingly varied
and unconventional. And the introduction of the Gebäudepass will increase the demand for
(and probably also on) the simulation of buildings.

2.4 If Inspiration Refuses to Help

Sometimes a problem seems to be to complex to be squeezed into a model. Or the modeler
finds that she has not a very good intuitive understanding of the problem. Thus the approach
on modeling as art fails – or the modeler feels not very confident with it. In this case she
should resort to the simple fundamentals: the conservation laws. Good choices always are
mass (or charge), energy and momentum.8

Independent of the property ε under study, a conservation law always has the same form:
a change in the property ε inside a volume V can result from the convergence of a flux
~C(ε) = ε~u into or out of the volume or sources and sinks S(ε) inside the volume. It can be
written as:

∂ε

∂t
+∇~C(ε) = S(ε) . (2.29)

With the relation between partial and total differential obtained with the chain rule

dε
dt

=
∂ε

∂t
+

dx
dt

∂ε

∂x
+

dy
dt
∂ε

∂y
+

dz
dt
∂ε

∂z
=
∂ε

∂t
+ ~u∇ε (2.30)

the left hand side can be rewritten as
∂ε

∂t
+∇(ε~u) =

∂ε

∂t
+ ~u∇ε+ ε∇~u =

dε
dt

+ ε∇~u , (2.31)

giving the equation of continuity in the form

dε
dt

+ ε∇~u = S(ε) . (2.32)

2.4.1 Mass Conservation

Mass conservation is described by an equation of continuity. Since we are dealing with
continuous media, the mass balance is formulated for the mass density % instead of mass m.

8Note that there is a qualitative difference between these quantities: mass and energy are scalars while
momentum is a vector. In the more conventional German literature, conservation laws often are limited to
scalar quantities. The conservation of momentum or momentum balance always is termed transport equation.
I will adhere to the modern international approach and consider the transport equation also as a conservations
law. Even if the reader does not adhere to this approach, he probably agrees with me that the transport
equation is rather fundamental in transport modeling.
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The equation of continuity for the mass then reads

d%
dt

+ %∇~u = S(%) . (2.33)

Mass balances come in different disguise, depending on the situation under study. In the
simplest case, we are only concerned with the motion of a fluid without consideration of
different components. Then we have one mass balance for the total mass of the fluid. In
addition, the sources/sinks term vanishes and the mass balance reduces to

d%
dt

+ %∇~u = 0 or
∂%

∂t
+∇(%~u) = 0 . (2.34)

More often, however, the fluid consists of more than one component and the components
have different fates, for instance different rates of evaporation or absorption. In this case, a
mass balance for each component exists:

d%i

dt
+ %i∇~ui = Si(%i) . (2.35)

Here the mass balances of all n components are decoupled (no component is a sink or source
for another component) and we obtain n independent equations.

Side question 10 Why (or under which assumptions) are evaporation and absorption loss
terms? In the latter case, the matter even stays inside the volume element, in the former it is
transported as vapor across the simulation volume. Shouldn’t it show up as the flux instead
of a sink?

The situation is different if chemical reactions couple different components. In this case
a sink for component A might be the source for component B with the transfer regulated by
component C which is the reaction partner of A: A+ C → B. In this case, again we obtain
a mass balance for each of the n components but these mass balances are coupled by the
sources/sinks term:

d%i

dt
+ %i∇~ui = Si(%1, %2, ...%i..., %n) . (2.36)

Thus we have to solve a coupled system of partial differential equations.
As mentioned above, such a system of equations often can be simplified if one reactant is

overabundant. In that case, its concentration is assumed to be constant and the mass balance
of the second reactant can be described by some kind of loss factor or decay constant. This
approach will be used in the stationary compartment model in sect. 3.1 and in its time-
dependent extension in sect. 3.2.

Note that (2.36) also covers the simpler situation of the chemical tank: in that case the
terms %i∇~ui are prescribed flows ji and the system of coupled PDEs reduces to a system of
coupled ODEs.

Charges also obey an equation of continuity. If only one charge is considered, the standard
equation of continuity is used with the charge density %c instead of mass density %. Such a
charge balance is sufficient in one-fluid magnetohydrodynamics. In two-fluid magnetohydro-
dynamics two separate charge balances are obtained without coupling:

∂%c,i

∂t
+∇(%c,i ~u) = 0 , i = i, e . (2.37)

There is neither ionization out of a neutral component nor recombination, thus the source
term vanishes. If the components are coupled by such a process, this coupling is provided by
the source term. An additional mass balance for the neutral component is required, too.
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2.4.2 Energy Conservation

We have encountered energy conservation already in this chapter, although not in the con-
ventional way as conservation of mechanical energy but in connection with the conservation
of internal energy, that is heat. Formally, the energy balance is written in the same way
as the mass balance by substituting the energy density ε for the mass density %, see also
sect. C.1. The crucial point is the correct identification of all kinds of energy involved in the
system. The main forms of energy are mechanical, electromagnetic and inner energy (heat).
Energy conversion occurs into the direction of inner energy: in a flow, turbulence and friction
convert energy from the directed flow to heat. The relevant equations for the different forms
of energy are given in Tab. C.2.

Since we are often dealing with fluids, you should keep in mind that Bernoulli’s law also
is a consequence of energy conservation:

p+ 1
2%u

2 + %gh = const . (2.38)

Note that Bernoulli’s law corresponds to the conservation of mechanical energy – it does not
consider the conversion of energy into heat and thus it is reversible.

Energy conservation becomes more tricky if heat is concerned. Here we do not only have
to consider the heat fluxes and inner energies but also friction as source of additional heat
and the heat released or required for phase transitions. We will come back to this in detail
in sect. 4.6.2. Some energy transport processes have already been introduced in sect. 2.3.4.
A very detailed discussion of heat, heat transfer and heat exchange is given in [157].

2.4.3 Conservation of Momentum (Equation of Motion)

The conservation of momentum is expressed in Newton’s second law and thus in the equation
of motion. This equation is fundamental to all transport processes. However, the terms used
in this equation strongly depend on the situation under study and thus no general form for the
transport equation can be given. One example, the momentum balance for the atmosphere
and the oceans, is briefly described (and discussed in connection with a scale analysis) in
sect. C.5; it is introduced in more detail in chapter 7.

Conservation of momentum gives the equation of motion. This should not be confused
with transport of momentum, a typical phenomenon in boundary layers: momentum is trans-
ported from the atmosphere to the ocean’s surface creating wind-driven waves. Momentum
also is transported from a coast-parallel current to the seabed leading to erosion or from one
fluid layer to another as described in sect. 7.2.

2.5 Selling and Borrowing

Once a model has been developed and tested, the modeler will be keen to apply it to the
particular question that gave rise to model development. However, a look beyond one’s own
nose might be worthwile: a model is a simplification and thus an abstraction. Abstraction
is important to develop an understanding not of details but underlying processes. Physics
itself is an example for abstraction. And the strength of abstraction (as of physics) lies in the
existence of basic concepts that can be applied in different situations/circumstances. Such
as Newton’s realization that Earth’s orbit around the Sun is governed by the same basic
process as the fall of an apple. As a consequence, models often can be applied to different
systems. The best know example probably is Bohr’s model of the atom: it is just recycling
of Newton’s model of the solar system (and thus even his apple) on a slightly different scale.

With some awareness of physical processes working in other fields, a modeler might be
able to apply his model to an entirely different problem. For instance, homogeneous heat
conduction is essentially the same as isotropic diffusion – asides from the different symbols in
the governing equations. Thus a modeler might be able to ‘sell’ his model. We will encounter
another example for ‘selling’: phase transitions occur if a substance is heated or cooled down.
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Basically, phase transitions are due to a change in mobility of the molecules. On an autobahn,
such phase transitions occur if the mobile phase suddenly converts to a solid phase in a traffic
jam. We will come back to this example in sect. 4.6.3.

But a modeler might also be able to ‘borrow’: either an existing and already validated
model that can be applied to his problem without or after only slight adaption. Or he might
be able to borrow observations to test his model. For instance, since it can be performed
with solids and simple instruments, it might be easier to use temperature distributions in a
metal block to validate the diffusion model than to use a water volume and allow the diffusion
process to work.9

Literature

This text is on modeling in physics. Since it occasionally traverses to geophysics and natural
systems, models become complex. Thus some models extend beyond a simple system of
partial differential equations and require different approaches. A very readable (and not
necessarily academic) text is Modeling Reality – How Computers mirror Life by Bialynicki-
Birula and Bialynicki-Birula [15]: its just fun to read and points out possibilities.

A more conservative text is Mathematical Modeling – Case Studies and Projects by Cald-
well and Ng [20]. As the subtitle states, the book is organized around case studies. For
each case study, model development as well as solution is described. Most models are rather
simple, nonetheless, it is a nice text for training the model developer skills.

And since modeling of natural processes requires a good look at the processes themselves,
some texts of earlier scientists such as Humboldt [65], Minnaert [113] or Tyndall [168] might
help to step back from the equations to descriptions – the important part in the first two steps
of model development: The physics is in the description and understanding – the equation
is important for the abstraction and transfer to other applications but it is not the physics!

Questions

Frage 1 Sketch the relevant steps in model development.

Frage 2 Recapitulate standard methods for the simplification of a model.

Frage 3 What to do in case a model gives an unexpected result?

Frage 4 Discuss differences and similarities for models based on first principles and phe-
nomenological models.

Frage 5 Can a model of a natural system ever be complete or is there always some ef-
fect/influence to add? If so, is this really necessary?

Frage 6 Explain the concept of dimensional variables and dimensional analysis. Give ex-
amples for its application (ask Google or a physics textbook).

Frage 7 Explain the stirred tank concept. Give examples and limits.

Frage 8 Discuss implications of Lorentz’ butterfly and Turing’s avalanche for modeling.
Give examples in which these statements pose a problem and in which they do not.

Frage 9 Review test methods for models.

9Sorry, this is an oversimplified example: in a fluid asides from the diffusion there is also turbulent motion.
Thus strictly heat conduction and diffusion work on a different scale. However, the transport by turbulent
motion in a fluid often can be described as eddy diffusion – thus again a diffusive process albeit at a different
scale.
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Problems

Aufgabe 1 Shortly after the explosion of the first atomic bomb in New Mexico in 1945,
Nobel laureate Enrico Fermi went outside the protective dugout with some paper strips. As
the explosions blast wave arrived, he released the strips and allowed them to be carried away
until they fell to the ground. He measured the distance to where the strips came to rest,
made some quick calculations and announced a yield of the bomb remarkably close to the
later established value of 10 000 t of TNT. Was any modeling involved? If so, what were
the principles used in the model? Was modeling necessary? Or was Fermi’s result just lucky
coincidence?

Aufgabe 2 Return to section 2.3.1 and calculate the maximum allowed concentration of
copper in the effluent under the assumption that its flow stays the same. Also calculate the
maximum allowed discharge under the assumption that the concentration of the copper does
not change.

Aufgabe 3 Develop a simple mathematical model for population growth according to Malthus’
law: a population p(t) growth with a rate a as long as it is not too large. If a population
becomes sufficiently large, its evolution is described by the logistic law, which adds a “loss
term” proportional to p2 and a decay constant b. Formulate the mathematical law, classify
the equation and solve it.

Aufgabe 4 Develop a simple model for the following situation (from [139]): At 7 a.m. in
the morning I make my partner a cup of tea using boiling water. After adding some milk it
is about 90◦C. When we leave for the station at 7:30 a.m. the tea is still drinkable at about
45◦C. When I get back home at 8 a.m. the neglected tea has cooled to about 30◦C. Determine
the temperature in the house.

Aufgabe 5 Develop a simple model for the following situation (also from [139]: a dead
body is found outside on a winter’s morning at 7 a.m.; its temperature is measured to be
20◦. Measured an hour later it has dropped to 15◦. The air temperature fluctuation was
T (t) = 3 − 5 cos(ω(t − 2)) with t measured in hours after midnight (t=0) and ω = π/12.
Determine the time of death (assuming a body temperature of 37◦C at that time).

Aufgabe 6 Develop a simple model for the following situation: a continuous flow of a fluid
has to be heated from a temperature T1 to a temperature T2 while the flow is inside a limited
length of a shell-and-tube heat exchanger. In the latter, the cold fluid pipe is surrounded by
a pipe containing the hot fluid; both fluids are streaming into opposite directions.
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Chapter 3
Constant Flow with Reactions: Stacked
Compartment Models

We have encountered compartment models in the examples in the last chapter. Basically,
a compartment model is the equation of continuity inside a limited volume: the change in
a quantity inside the volume is defined by in- and outflow as well as sources and sinks.
Compartment models often use the stirred tank concept to avoid spatial gradients. As a
consequence, the resulting equations are either algebraic or simple ODEs; in most cases
solutions can be obtained analytically. Alternatively, the stirred tank concept might be
applied such that compartments are aligned along one axis (stacked compartments). Thus
the model is 1D and the transport equation is a PDE. Here we will also present the centered
difference method as one example for a finite difference method (FDM); a solution with a
finite element method (FEM) will be given in sect. 6.2.2.

This chapter starts with an example from chemical engineering. A reactor is designed such
that a reaction can take place in a safe and well defined way. We will discuss and analyze the
model, formulate the PDE and solve it for both steady-state and the time-dependent version.
We will discuss this model in detail to introduce the concept of a compartment model and the
basic ingredients and assumptions. The chapter continues with examples for compartment
models in natural systems. These examples also provide some graphic introduction to the
extensions required to solve the full PDE.
Goals: after working through this chapter you should be able:

• to sketch and apply simple numerical schemes to ODEs and 1D-PDEs,
• to explain the centered difference scheme, the FTCS scheme and the Crank–Nicolson

scheme,
• to evaluate the accuracy of the scheme, in particular its order and stability.

3.1 Chemical Reactor in Steady-State

As introductory example we will take the mass balance of a reactor in steady state, closely
following the same example in [20]. With a reactor in steady-state we are concerned with
the change of the concentration c a substance in a volume (the reactor). The substance can
flow into the volume at a certain rate, flow out of it at a different rate, and can be generated
inside the reactor at another rate.

Here we assume a cylindrical reactor of length L with a single exit and a single entry
point, extending from x = 0 (entry) to x = L (exit). The reactor is a well stirred tank,
thus any radial and lateral gradients vanish. To ensure mixing, turbulence is required. The
motion of individual water volumes therefore results from the direct flow as well as turbulent
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42 CHAPTER 3. CONSTANT FLOW WITH REACTIONS

mixing. To simplify the problem, we do not attempt to simulate a complex reaction but only
calculate the mass balance of one of the reactants by formulating its reduction as a decay.

Side question 11 Explicitly state the assumptions about reactants and reaction products
inherent in this approach.

3.1.1 The Problem

Problem: Give the variation of the concentration c of the chemical substance with length
along the cylindrical axis. Instead of using the set of basic equations in table C.1, we first
derive the governing equation.

In the general approach assume that until t = 0 the reactor is filled with water without
the chemical. From t = 0 on the chemical is injected into the reactors inflow at a constant
rate cin.

For a start assume steady-state conditions. Thus the above initial condition is not required
and the PDE reduces to an ODE.

3.1.2 The Model

L0 ∆x

To derive the governing equation, we start with a segment
of the tube of width ∆x (that is one well-stirred compart-
ment) and apply the mass balance to it. For the most
general case, any change of concentration inside this vol-
ume element is due to (a) the in- and outflow, (b) dispersion due to turbulent mixing and (c)
decay. We will come back to dispersion in sect. 4.1.3. For the moment it should suffice that
dispersion is related to turbulence. Dispersion is required in our model because it assures
that the fluid is well mixed inside the compartment and thus the radial and lateral gradients
vanish.

With these processes the mass balance for the length element or compartment becomes

V
∆c
∆t

= F c(x)− F

[
c(x) +

∂c(x)
∂x

∆x
]

−DAc
∂c(x)
∂x

+DAc

[
∂c(x)
∂x

+
∂

∂x

∂c(x)
∂x

∆x
]
− γV c . (3.1)

Here V [L3] ist the volume, c [moles/L3] the concentration, F [L3/T] the flow rate, D [L2/T]
the dispersion coefficient, γ [T−1] the first-order decay coefficient, and A [L2] the tank’s cross-
sectional area. The dispersion term is based on Fick’s first law: ~J = −D∇c [moles/(L4T)]. It
specifies that turbulent mixing tends to move mass from regions of high to low concentration.

The partial differential equation can be obtained from (3.1) by letting ∆x and ∆t approach
zero:

∂c

∂t
= D

∂2c

∂x2
− u

∂c

∂x
− γc (3.2)

with u = F/Ac [L/T] being the speed of the water flowing through the tank. The mass
balance (3.1) thus has let us to a parabolic PDE.1 The particular equation (3.2) sometimes is
referred to as the advection-dispersion equation with first-order reaction. We will encounter
most of its terms again in the diffusion–convection equation in sect. 4.3.

In steady-state, the left hand side of (3.2) vanishes and we are left with a second order
ODE:

D
∂2c

∂x2
− u

∂c

∂x
− γc = 0 for 0 < x < L . (3.3)

1According to the characteristics of their solutions, PDEs are classified as hyperbolic, elliptic or parabolic,
see also sect. B.2. The purpose of this text is modeling not PDEs. Thus if the classification of (3.2) as a
parabolic PDE does not mean anything to you, either consult sect. B.2 or ignore it as an irrelevant bit of
information – you will still be able to understand the text.
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3.1. CHEMICAL REACTOR IN STEADY-STATE 43

Boundary conditions are

Fcin = Fc(0)−DAc
dc(0)
dx

⇒ cin = c(0)− D

u

dc(0)
dx

and c′(L, t) = 0 . (3.4)

The first conditions considers that the flow at the inlet is determined by the external flow
and the flow due to dispersion. The second condition indicates that the chemical leaves the
reactor as a function of flow through the outlet pipe only and that dispersion does not affect
the exit rate.

3.1.3 Solving the Problem

A differential equation can be solved by different means. While an analytical solution is
not always possible, numerical solutions, such as finite difference or finite element methods,
always work. Because this example is simple enough to be understood and solved easily,
we will use it to briefly recapitulate the first two methods; we will encounter other methods
throughout the text in sect. 6.2.2 and chap. 8. The finite difference method FDM will be
discussed in detail in the more complex examples in later sections.

Analytical Solution

The focus of this text is on numerical models. However, we will also consider analytical
solutions because they can be used to test the numerical model.

An exponential ansatz c(x) = eλx is a general tool to solve a 2nd order ODE. With it we
obtain from (3.3) the characteristic equation

Dλ2 − uλ− γ = 0 . (3.5)

The solution is a real one:

c(x) = B1eλ1x +B2eλ2x with λ1,2 =
u

2D
±
√

u2

4D2
+
γ

D
. (3.6)

The integration constants B1 and B2 can be determined from the boundary conditions (hope-
fully without too many typos):

B1 =
2Dλ2 eλ2L

N
ucin ,

B2 =
2Dλ1 eλ1L

N
ucin ,

N = eλ2L
(
u2 − u

√
u2 + 4Dγ + 2Dγ

)
− eλ1L

(
u2 + u

√
u2 + 4Dγ + 2Dγ

)
. (3.7)

As expected, the concentration decreases along the length of the tank due to the decay
reaction. The gradient of the decrease is modified by turbulent mixing: in case of weak
mixing (D → 0), the decay term dominates and the decrease is almost exponential. With
increasing turbulent mixing, this gradient become flatter.

Side question 12 Explain why!

The flux can be derived using Fick’s law:

J = −D ∂c

∂x
= −D

(
B1λ1eλ2x +B2λ2eλ1x

)
. (3.8)

Numerical Solution: Finite Differences

A finite difference scheme divides the simulation volume into n equidistant steps of size ∆x.
Some possible numerical solvers for finite differences are sketched in sect. D.3. The simple
forward or backward discretizations are accurate to first order only, the simplest second order
scheme is an implicit centered difference. Here we will adopt this latter scheme to discretize
the ODE, see also Fig. 3.1. The basic ideas in discretization are sketched in sect. D.1. The
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44 CHAPTER 3. CONSTANT FLOW WITH REACTIONS

Figure 3.1: Centered fi-
nite difference scheme −1 0 1 k−1 k k+1 n−1 n n+1

x=0 x=L

derivatives are obtained by Taylor expansion, which is also sketched in sect. D.1. With this
additional information we obtain for from the stationary differential equation the following
difference equation:

D
ck+1 + 2ck + ck−1

(∆x)2
− u

ck+1 − ck−1

2 ∆x
− γck = 0 . (3.9)

Ordering by nodes, the equation can be rewritten as

−
(

1
2

+
D

u∆x

)
ck−1 +

(
γ∆x
u

+
2D
u∆x

)
ck −

(
−1

2
+

D

u∆x

)
ck+1 = 0 (3.10)

or in a more compact form

Ack−1 +Bck + Cck+1 = 0 (3.11)

with the abbreviations

A = −
(

1
2

+
D

u∆x

)
, B =

γ∆x
u

+
2D
u∆x

and C = −
(
−1

2
+

D

u∆x

)
. (3.12)

All nodes of the system from c0 at x = 0 to cn at x = L must be center of such a step.
Thus the method introduces two additional nodes outside the system: c−1 at the inflow and
cn+1 at the outflow, as also indicated in Fig. 3.1. In the resulting difference equation at the
inflow

−
(

1
2

+
D

u∆x

)
c−1 +

(
γ∆x
u

+
2D
u∆x

)
c0 −

(
−1

2
+

D

u∆x

)
c+1 = 0 (3.13)

the outside node c−1 can be removed using the first boundary condition (3.4) and replacing
the derivative by a finite difference:

Fcin = Fc0 −DAc
c1 − c−1

2∆x
⇒ c−1 = c1 +

2u∆x
D

cin −
2u∆x
D

c0 . (3.14)

Inserting into (3.13) yields(
γ∆x
u

+
2D
u∆x

+
u∆x
D

+ 2
)
c0 −

(
2D
u∆x

)
c1 =

(
u∆x
D

+ 2
)
cin (3.15)

or in a more compact form

Binc0 + Cinc1 = Rincin (3.16)

with the abbreviations

Bin =
γ∆x
u

+
2D
u∆x

+
u∆x
D

+ 2 , Cin = − 2D
u∆x

and Rin =
u∆x
D

+ 2 . (3.17)

A similar procedure for the difference equation at the outlet and the boundary condition
there yields cn−1 = cn+1. Thus the difference equation at the outlet becomes

−
(

2D
u∆x

)
cn−1 +

(
γ∆x
u

+
2D
u∆x

)
cn = 0 (3.18)

or in a more compact form

Aoutcn−1 +Boutcn = 0 (3.19)

with the abbreviations

Aout = − 2D
u∆x

und Bout =
γ∆x
u

+
2D
u∆x

. (3.20)
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3.1. CHEMICAL REACTOR IN STEADY-STATE 45

Equations (3.10), (3.15) and (3.18) form a system of n+1 equations with n+1 unknowns

Binc0 Cinc1 = Rincin
Ac0 Bc1 Cc2 = 0

Ac1 Bc2 Cc3 = 0
Acn−2 Bcn−1 Ccn = 0

Aoutcn−1 Boutcn = 0 .

(3.21)

A more compact formulation results in tridiagonal matrix:
Bin Cin

A B C
A B C
. . . . . . . . .

Aout Bout



c0
c1
c2
...
cn

 =


Rincin

0
0
...
0

 . (3.22)

Thus the solution of the ODE is reduced to the inversion of a sparse matrix, that is a matrix
that contains mainly zeros.

Before we apply the scheme, we have to decide on the step-size δx. On the one hand, the
step size should be small enough, to assure numerical accuracy and the stability of the scheme,
on the other hand it should be as large as possible to allow for a fast model. Mathematically,
the centered difference scheme is of second-order accuracy2 in space; stability3 of the scheme
is obtained for

∆x ≤ 2D
u

. (3.23)

Is there also some physics hidden in the stability criterion? The mathematical expression
basically is the ratio between the dispersion coefficient and the flow speed. The dispersion
coefficient is the product of a characteristic length scale L (in diffusion, this would be the
mean free path λ) and the flow speed u (see also sect. 4.1.3):

D =
1
2
Lu in 1D or D =

1
3
Lu in 3D .

Thus from the viewpoint of physics the stability criterium suggest the step size to be less
equal to the characteristic scale length of the physical process. As a consequence, we should
code the scheme in such a way, that the spatial step size ∆x is not fixed but determined from
the parameters flow speed u and dispersion coefficient D such that the stability criterion
is met. A fixed ∆x would require an extremely small step size to account also for some of
the rare occasions in which the scale length is unusually small. This extremely small fixed
∆x would lead to very long execution times of the code for the (hopefully more frequent)
situations with average or even large scale length – just a waste of resources.

3.1.4 Closure

Here we can divide the test into two clearly distinguishable parts: implementation of the
solution and development of the model. Since we have developed two different solutions for
our model, their comparison will point to any errors made in the analytical solution or in
coding the numerical solutions. Exercise 7 is concerned with this problem.

Here we will presume a successful comparison of the different solutions and now use one
of them to check whether the results of our model are reasonable.4

Figure 3.2 shows concentration versus distance along the vertical axis of the cylindrical
reactor in steady-state for a chemical that decays with first-order decay kinetics. It is a

2The order of accuracy basically means that if you cut the step size in half, the scheme will be more
accurate by a factor of 2 to the power of the accuracy’s order. Or in other words, the same increase in
accuracy can be obtained by dividing the spatial step in a first-order scheme by a factor of 4 or in a second
order scheme by a factor of 2. Accuracy is determined by Taylor expansion of the numerical scheme, see also
sect. D.1.2.

3Stability means that the truncation error can be kept in charge by the scheme. The stability criterion
normally relates the step sizes in the discretization scheme to each other and the coefficients in the equation;
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Figure 3.2: Concentration versus dis-
tance along vertical axis of a cylindri-
cal reactor in steady-state for different
values of the dispersion coefficient
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numerical solution (centered finite differences as described above) for u = 1 m/h, ∆x =
0.25 m, L = 10 m, cin = 100 moles/m3, and γ = 0.2 h−1. The dispersion coefficient is
D = 1 m2/h for the crosses and D = 5 m2/h for the circles. Results for a fixed dispersion
coefficient are reasonable: the concentration decreases with increasing distance from the
inflow due to the decay. This decrease is roughly exponential because the constant flow speed
u translates distance into time. It is not exactly the decay function because dispersion mixes
neighboring volume elements and thus tends to smear out the gradient along the cylinder
axis. This can be seen best in the comparison between the runs for different dispersion
coefficients because dispersion reduces the spatial gradients. In case of a strong gradient,
a volume with a high concentration is transferred from cell k to cell k + 1 while a volume
with only low concentration is transported into the opposite direction. Thus the gradient is
reduced efficiently, leading to a flatter profile along the spatial coordinate as is obvious in
Fig. 3.2.

Some in-between calculation 3 Solve the numerical scheme for different ∆x. What hap-
pens, if the stability criterion is violated? Is the resulting error obvious or would it probably
go unnoticed during testing?

Side question 13 Imagine you are a designer for chemical plants and have to defend the
assumptions/methods of your model to the production company. State all the relevant as-
sumptions, try to anticipate the critical questions and defend against them – or develop a
more elaborate model to meet the criticism.

Side question 14 What happens if dispersion goes to zero. Discuss consequences for the
PDE and the numerical scheme. Can the latter still be applied, can it be modified or is an
entirely different scheme required? Substantiate your answer.

3.2 Time-Dependent Reactor

Let us now turn back to the problem and consider the time-dependent solution. In con-
sequence, we have to solve the PDE rather than an ODE. We briefly repeat the model
assumptions: (1) the chemical being modeled is subject to first-order decay. (2) The tank is
well mixed vertically and laterally. (3) Dispersion in the reactor does not affect the reaction
rate. (4) For t < 0 the reactor is filled with water that contains no chemical. (5) For t ≥ 0
the chemical is added to the reactors inflow at a constant rate cin.

see also sect. D.1.3
4This approach is ok for a lecture. In real model development one should not sketch a model, find more

than one solution and decide that the technical aspects of the solutions are ok only to find afterwards that
the model does not describe the situation under study.
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The resulting PDE, the boundary conditions (5) and the initial condition (4) than can
be summarized as the initial boundary value problem

∂c
∂t = D ∂2c

∂x2 − u ∂c
∂x − γc 0 < x < L

c(0, t) = cin + D
u c

′(0, t) t > 0
c′(L, t) = 0 t > 0
c(x, 0) = 0 0 < x < L .

(3.24)

As in the steady-state ODE, the parabolic5 PDE can be solved by a finite difference
method. In this case, however, spatial as well as temporal derivatives must be discretized.

3.2.1 Numerical Method 1: Implicit Method
t

t

x

l+1

l

xx k−1 k k+1

Figure 3.3: FTCS scheme

Numerical integration must be performed in two dimensions,
space and time. In the implicit method, the spatial derivatives
are approximated at an advanced time step k+1; the forward in
time and centered in space or FTCS scheme, see also sect. D.4.4.
The concentration (or more generally the quantity under study)
thus has two indices clk: a lower one, k, indicating the position
in space and an upper one, l, indicating that in time.

The time derivative is approximated by a forward finite dif-
ference with an error of O(∆t):

∂c

∂t
=
cl+1
k − clk

∆t
. (3.25)

The spatial derivatives again are approximated by centered finite differences. This method
is accurate to second order O((∆x)2). The discretized PDE can be written as

cl+1
k − clk

∆t
= D

cl+1
k+1 − 2cl+1

k + cl+1
k−1

(∆x)2
− u

cl+1
k+1 − cl+1

k−1

2∆x
− γcl+1

k . (3.26)

As in the steady-state case, this difference equation contains several unknowns and cannot be
solved by simple algebraic rearrangement. Again, the entire set of linear algebraic equations
must be solved simultaneously under consideration of the boundary conditions.

Rearrangement of (3.26) according to nodes yields(
D

(∆x)2
+

u

2∆x

)
cl+1
k−1−

(
1

∆t
+

2D
(∆x)2+γ

)
cl+1
k +

(
D

(∆x)2
− u

2∆x

)
cl+1
k+1 = − 1

∆t
clk

or in a short form

Acl+1
k−1 +Bcl+1

k + Ccl+1
k+1 = Eclk (3.27)

with the abbreviations

A=
D

(∆x)2
+

u

2∆x
, B=−

(
1

∆t
+

2D
(∆x)2+γ

)
, C=

D

(∆x)2
− u

2∆x
and E=− 1

∆t
.

The structure of this equation is similar to the equation (3.11) for steady-state except for the
term on the right hand side containing the concentration c at the earlier time step – which
is irrelavnt in a steady-state solution – and the details of the coefficients A, B and C.

Since this equation is valid for all nodes of the tank, we get an additional outer node
at each end: cl−1 and cln+1. As demonstrated for the centered finite differences in sect. 3.1,
these additional nodes can be eliminated by considering the boundary conditions. Thus the
difference equations for the first and last node read

−
(

1
∆t

+
2D

(∆x)2
+γ+

2u
∆x

+
u2

D

)
cl+1
0 +

2D
(∆x)2

cl+1
1 =−

(
2u
∆x

+
u2

D

)
cin−

1
∆t

cl0 (3.28)

5The classification of PDEs in parabolic, hyperbolic etc. follows their characteristics and is discussed in
more detail in sec., B.2.2.
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and

2D
(∆x)2

cl+1
n−1−

(
1

∆t
+

2D
(∆x)2

+γ
)
cl+1
n =− 1

∆t
cln . (3.29)

The equations in short form can be written as

Binc
l+1
0 + Cinc

l+1
1 = Rincin + Einc

l
0 and Aout

2D
(∆x)2

+Boutc
l+1
n = Eoutc

l
n (3.30)

with the abbreviations

Bin = −
(

1
∆t

+
2D

(∆x)2
+γ+

2u
∆x

+
u2

D

)
, Cin =

2D
(∆x)2

, Rin =−
(

2u
∆x

+
u2

D

)
(3.31)

and

Ein = E , Aout =
2D

(∆x)2
Bout =−

(
1

∆t
+

2D
(∆x)2

+γ
)

and Eout = E . (3.32)

As in the corresponding steady-state situation we get a system of n+ 1 equations for the
n+ 1 unknowns:

Bin Cin 0 0 . . . 0 0
A B C 0 . . . 0 0
0 A B C . . . 0 0
. . . . . . . . . . . .

...
...

...
0 0 0 0 . . . Aout Bout



c0
c1
c2
...
cn

 = Rin


cin
0
0
...
0

+ E


c−o
c−1
c−2
...
c−n

 . (3.33)

The main difference to the steady-state system of equations (3.22) is the second term on the
right hand side that contains the concentrations c− at the earlier time step.

The matrix (3.33) is tridiagonal and thus again can be solved by the Thomas algorithm
under consideration of the initial condition c(x, 0) = 0 or expressed in terms of nodes clk = 0
for all k = 0, 1, . . . n and l = 0.

3.2.2 Numerical Method 2: Crank–Nicolsen

l+1/2

t

t

x

l+1

l

xx k−1 k k+1

t

Figure 3.4: Crank–
Nicolson scheme

An alternative numerical scheme is the Crank–Nicolson method.
It has the advantage of being of second order in both space and
time O((∆t)2, (∆x)2); see also sect. D.4.2. To get this accuracy,
spatial approximations are derived at the midpoint of the time
interval, tl+1/2

k . The time derivative than is approximated as in
the implicit method by

∂c

∂t
≈
cl+1
k − clk

∆t
. (3.34)

The spatial derivatives at the midpoint are determined as the average of the difference ap-
proximations at the beginning and at the end of the time step as follows:

∂c

∂x
≈ 1

2

(
clk+1 − clk−1

2∆x
+
cl+1
k+1 − cl+1

k−1

2∆x

)
(3.35)

and

∂2c

∂t2
≈ 1

2

(
clk+1 − 2clk + clk−1

(∆x)2
+
cl+1
k+1 − 2cl+1

k + cl+1
k−1

(∆x)2

)
. (3.36)

Substituting into (3.24) yields

cl+1
k − clk

∆t
=

D

2

(
clk+1 − 2clk + clk−1

(∆x)2
+
cl+1
k+1 − 2cl+1

k + cl+1
k−1

(∆x)2

)
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−u
2

(
clk+1 − clk−1

2∆x
+
cl+1
k+1 − cl+1

k−1

2∆x

)
− γ

clk + cl+1
k

2
(3.37)

or ordered by node(
D

2(∆x)2
+

u

4∆x

)
cl+1
k−1 −

(
1

∆t
+

D

(∆x)2
+
γ

2

)
cl+1
k +

(
D

2(∆x)2
− u

4∆x

)
cl+1
k+1

= −
(

D

2(∆x)2
+

u

4∆x

)
clk−1−

(
1

∆t
− D

(∆x)2
− γ

2

)
clk−

(
D

2(∆x)2
− u

4∆x

)
clk+1 .(3.38)

In short form, this equations reads

Aadvc
l+1
k−1 +Badvc

l+1
k + Cadvc

l+1
k+1 = Aclk−1 +Bclk + Cclk+1 (3.39)

with the abbreviations

Aadv =
D

2(∆x)2
+

u

4∆x
, Badv = −

(
1

∆t
+

D

(∆x)2
+
γ

2

)
, Cadv =

D

2(∆x)2
− u

4∆x

and

A = −Aadv B = −
(

1
∆t

− D

(∆x)2
− γ

2

)
and C = −

(
D

2(∆x)2
− u

4∆x

)
.

Since the scheme for the spatial coordinates remains unchanged, we get additional outer
nodes that can be eliminated using the boundary conditions as described above. The resulting
difference equations are for the inlet node

−
(

1
∆t

+
D

(∆x)2
+
γ

2
+

u

∆x
+
u2

2D

)
cl+1
0 +

D

(∆x)2
cl+1
1

= −
(

1
∆t

− D

(∆x)2
− γ

2
− u

∆x
− u2

2D

)
cl0 −

D

(∆x)2
cl1 − 2

(
D

∆x
+
u

2

)
u

D
cin (3.40)

and for the outlet node

D

(∆x)2
cl+1
n−1−

(
1

∆t
+

D

(∆x)2
+
γ

2

)
cl+1
n = − D

(∆x)2
cln−1−

(
1

∆t
− D

(∆x)2
− γ

2

)
cln .(3.41)

In short form, these equations read

Badv,inc
l+1
0 + Cadv,inc

l+1
1 = Binc

l
0 + Cinc

l
1 +Rincin (3.42)

and

Aadv,outc
l+1
n−1 +Badv,outc

l+1
n = Aoutc

l
n−1 +Boutc

l
n (3.43)

with the abbreviations

Badv,in = −
(

1
∆t

+
D

(∆x)2
+
γ

2
+

u

∆x
+
u2

2D

)
, Cadv,in =

D

(∆x)2
,

Bin = −
(

1
∆t

− D

(∆x)2
− γ

2
− u

∆x
− u2

2D

)
, Cin = − D

(∆x)2
,

Rin = −2
(
D

∆x
+
u

2

)
u

D
, Aadv,out =

D

(∆x)2
, Badv,out = −

(
1

∆t
+

D

(∆x)2
+
γ

2

)
,

Aout = − D

(∆x)2
and Bout = −

(
1

∆t
− D

(∆x)2
− γ

2

)
.
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Again we get a system of linear equations that can be described by a tridiagonal matrix
and thus can be solved efficiently:

Badv,in Cadv,in 0 0 . . . 0 0
Aadv Badv Cadv 0 . . . 0 0

0 Aadv Badv C . . . 0 0
. . . . . . . . . . . .

...
...

...
0 0 0 0 . . . Aadv,out Badv,out



c0
c1
c2
...
cn



= Rin


cin
0
0
...
0

+


Bin Cin 0 0 . . . 0 0
A B C 0 . . . 0 0
0 A B C . . . 0 0
. . . . . . . . . . . .

...
...

...
0 0 0 0 . . . Aout Bout



c−o
c−1
c−2
...
c−n

 . (3.44)

Stability requires for the step sizes

∆t ≤ (∆x)2

2D + γ(∆x)2
. (3.45)

If we neglect decay, that is γ → 0, the stability condition is exactly the same as for the
steady-state reactor in (3.1.3):

∆x ≤ 2D
u

=
2D

∆x/∆t
↔ ∆t ≤ (∆x)2

2D
. (3.46)

Spatial and temporal step sizes thus are not decoupled but coupled by the speed u = ∆x/∆t.
And stability in the presence of decay: the reaction term γ tends to make the time step

smaller. The denominator in (3.45) contains the sum of (twice) the dispersion coefficient
and γ(∆x)2. Consequently, the latter term also can be interpreted as some kind of transport
coefficient with ∆x as the relevant length scale and γ∆x as a velocity, although here the
velocity is a measure for the importance of decay during one spatial interval ∆x.

Side question 15 Is the stability criterion (3.45 also valid for the FTCS solution?

3.2.3 Closure

As in the steady-state case, we have different mathematical solutions for one model; thus
we can easily check for coding errors by comparing the solutions (see also exercise 10). The
model also can be tested by letting t approach infinity, which technically means for late times:
in this case, the tank should be in steady-state and the solution should be the same as in
sect. 3.1.

Figure 3.5 shows concentrations along the x-axis for different times calculated with the
implicit scheme. For comparison, the blue crosses give the steady-state solution. The results
are reasonable: with increasing time the chemical is transported into the tank: therefore for
early times concentrations decay fast with distance. In addition, the concentration at the
inlet is rather small since the large spatial gradients are smeared out by dispersion – at the
cost of reduced concentrations. The result must be correct for late times because we obtain
the same solution as in steady state.

Some in-between calculation 4 Test the model for different step sizes in ∆t and ∆x,
different combinations of both and in particular step sizes violating the stability criterion.
Again, are the errors obvious in the latter case?

Further validation of the numerical model could come from a comparison of solutions ob-
tained with the implicit and with the Crank–Nicolson schemes. It should be noted, however,
that these tests only check the numerical implementation but not the mathematical model.
The latter can be checked by studying the behavior of solutions for different parameters as
sketched for the steady-state model.
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Figure 3.5: Concentration versus dis-
tance along the vertical axis of a cylin-
drical reactor for different times after
begin of the injection

Figure 3.6: 0D compartment models: water (left) and atmosphere (right) [52]

Side question 16 Further checks should be performed varying D, γ and u. Before you do
this ask yourself: which results would I expect?

3.3 Compartment Models in Natural Systems

The early models for chemistry in an natural environment (atmosphere or a body of water)
also have been compartment models. The simplest model is the 0D compartment model, see
the left side in Fig. 3.6, here depicted for a body of water. Again, the main assumption is
a well-stirred volume: all components are distributed equally. The 0D compartment model
is the direct application of the equation of continuity: any change of a quantity inside the
compartment is determined by advection with the river’s flow (in- and outflow), precipitation
(snow or rain), evaporation and dry deposition. Sources and sinks inside the volume are
deposition at the bottom layer and solution of particles from the bottom layer. Wether both
processes are considered as sources or sinks depends on the question: are we interested in
the total amount of the pollutant in the flow or in the volume.

The 0D compartment model for the atmosphere basically has the same structure, see right
side in Fig. 3.6. The main difference is the inclusion of chemical reactions (transformations)
inside the volume. Since most of these reactions require energy, also the energy flow into
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the volume has to be considered. Atmospheric chemistry is driven by the incoming solar
radiation, in particular its hard part, such as UV.

Both examples exhibit one difference compared to classical compartment models such as
the tank in a chemistry model: the volume can be variable because the body of water/air
might expand or contract, depending on in-and outflows, precipitation or evaporation or
on temperature. This variability exists in the vertical only (the horizontal dimensions of
the compartment are fixed). For the atmosphere one can get rid of this “breathing” of the
volume element due to temperature changes by using a certain pressure as the top of the
volume instead of a geometrical height. This is the standard procedure in all modern models
of the atmosphere in chemistry, meteorology and climatology: the vertical structure of the
atmosphere/ocean is determined by pressure levels rather than by geometrical height.

Side question 17 The use of pressure levels instead of geometrical height gives the at-
mosphere a structure in which the amount of matter (kg/m2 is the unit of pressure!) above
a certain pressure level serves as relevant physical quantity. Does this make any sense for
modeling, meteorology or atmospheric physics? Why?

A compartment model mathematically is simple because in- and outflow are prescribed
and the compartment is well stirred. While such an approach is valid in a fish pond or to
a certain extend in a small segment of a river, see for instance the example in sect. 2.3.1, it
certainly does not allow to describe the entire river or even an ocean self-consistently. This
would require the solution of the equation of motion, see also chapter 7. Nonetheless, also a
longer stretch of a river can be described by a series of compartments: each compartment is
described as above, the coupling between the compartments is due to the in- and outflows:
the outflow from compartment j into the direction of compartment j+1 also is the inflow into
compartment j+1 from the direction j. Thus a compartment model also can be understood as
some kind of graphical version of a finite difference scheme with mathematically unaccaptable
large step sizes. Nevertheless, compartment models can be quite useful, in particular if
in relatively large spatial segments properties are only weakly variable compared to the
variation between adjacent components. A typical natural example are the different layers in
the atmosphere: the temperature inversion between troposphere and stratosphere prevents
mixing across the tropopause thus both atmospheric layers can be regarded as decoupled, at
least as long as transport of matter is concerned. Energy (and also momentum) is transported
across the tropopause nonetheless.

Figure 3.7: 1D atmosphere model [52]

For the atmosphere, a division into layers is
indicated, see Fig. 3.7, because the atmospheric
density decreases with height. Such a model is
a 1D model because it covers one spatial coor-
dinate, height. Although the atmosphere might
be vertically well-stirred, it certainly is not ho-
mogenous. Thus one compartment will not be
sufficient. In addition, absorption of chemical
constituents and emission occurs only in the
boundary layer due to human activity, wind or
natural emissions. Thus this layer is somehow
special, making it a likely candidate for a sepa-
rate compartment. Due to friction wind speeds
increase with increasing height and therefore in-
and outflows increase with height, too. This also
calls for a stack of compartments, in this case
with different advection terms. While Fig. 3.7
relates to a more local (and also height limited problem) of atmospheric chemistry, a very
similar approach is used in climate modeling. In the simplest models, the quantity trans-
ported is heat with radiation transfer as the main transport mechanism. Only if transport
by convection or the transport of latent heat comes into play, also the transport of matter
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has to be considered.
A 2D model results if one horizontal coordinate is added. In a simple 2D climate model

this is the latitude because the temperature gradient between equator and pole is the ultimate
driver of all transport processes. Thus meridional transport has to be covered in a 2D model.
In a chemistry model, such as sketched in Fig. 3.8, also horizontal transport is considered.
Here we do not have a ‘natural’ coordinate as in case of a river but are free to choose
one. The best choice is the prevailing wind direction because this defines the direction and
magnitude of in- and outflow.6 Naturally, model results will be useless for entirely different
weather patterns. However, summer smog is a typical application for such kind of model.
And summer smog also is related to particular weather patterns. Thus the prevailing wind
direction is well-defined and consistent – the requirement for the limitation to a model as
sketched in Fig. 3.8 instead of a full 3D solution is fulfilled.

Figure 3.8: 2D atmosphere model [52]

Present day climate and atmosphere models still
are some kind of compartment models: the simula-
tion volume is too large to be divided accurately to
fit in a finite difference scheme. On the other hand,
spatial scales are quite large, making such a small-
scale mathematical division superfluous. Climate
models are 3-D models considering most terms in
the transport equation. Nonetheless, the simple
models as sketched above are very educational: for
instance a 1D-atmosphere allows pretty good esti-
mates on the greenhouse-effect as long as increases
in global temperature are concerned. Since it does not contain a horizontal coordinate, it
certainly is not able to model regional changes in temperature, wind or precipitation.

Literature

The use (or better the history) of compartment models in atmospheric chemistry is described
in [52]. An entirely different field for compartment models, steady-state or time-dependent, is
the material flow management (Stoffstrommanagement) as described, for instance, in Baccini
and Brunner [4] or Baccini and Bader [3].

Questions

Frage 10 Sketch the centered difference scheme. Describe its differences to the methods
known from the Rechenmethoden lecture, such as Euler, Leapfrog and Runge-Kutta (these
methods briefly are recapitulated in sect. D.3).

Frage 11 Explain the differences between the implicit scheme and the Crank-Nicolson scheme.

Frage 12 Can you develop a scheme that does not require matrix inversion? Hint: start
with the steady-state problem: the spatial scheme calls for matrix inversion, not the temporal
one. If lost, recheck the simple numerical methods in sect. D.3.

6Note that this is not necessarily a 2D model. The prevailing wind gives a 1D model. The horizontal
direction perpendicular to the prevailing wind can be omitted because turbulence close to the surface of Earth
in general is large enough to ensure good mixing – a well stirred atmosphere results. The same is true in
the planets boundary layer: this is defined as the lower portion of the atmosphere were friction between the
moving atmosphere and the ground leads to turbulence which in turn assures mixing.
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Exercises

Aufgabe 7 Insert any numbers for the relevant parameters and compare the analytical and
numerical solutions for the steady-state reactor in sect. 3.1. Use different step-sizes for the
numerical method. Before starting, recheck the integration constants B1 and B2 in the
analytical solution.

Aufgabe 8 The rate of change of the concentration of a pollutant in a lake equals the
difference between the concentration of the polluted water entering the lake and that leaving
the lake. Assume that water containing a constant concentration C of pollutants enters the
lake at a rate of 150 km3/year. Water leaves the lake at the same rate; the lake’s constant
volume is 5000 km3.

1. formulate the mathematical model to find the rate of change of the pollutants concen-
tration in the lake.

2. find the general mathematical solution.
3. find the solution for an initial condition of a pollutant’s concentration of 40 kg/m3.
4. the fastest possible clean-up of the lake will occur if the inflow of the pollutant suddenly

ceases: C = 0. How long will it take to reduce pollution to 50% of its current value?

Aufgabe 9 Apart from inflow and outflow, another method by which mass can enter or
leave a reactor is by a chemical reaction. If the chemical decays, the reaction can sometimes
be characterized as a first order reaction with r = −RV c with V as the Volume, c as the
concentration and R as reaction rate which can be interpreted as the fraction of the chemical
removed from the solution per unit time. Substitution of the reaction into the mass balance
yields with the flow rate F

V
dc
dt

= Fcin − Fc−RV c . (3.47)

1. Find the steady-state concentration of the reactor in the case where R = 0.25 min−1,
cin = 50 mg/min3, F = 10 m3/min and V = 200 m3.

2. Calculate the transient concentration response for c0 = 20 mg/m3. Validate the results
using Euler’s numerical method from t = 0 to 30 min.

Aufgabe 10 Compare the numerical solutions for the longitudinal tank in sect. 3.2. Imple-
ment both algorithms in a programm package or a programming language of your choice.
Perform runs with different step sizes; compare accuracy and computing time in both schemes.
Note that a comparison to the analytical solution for the steady-state model in sect. 3.1 is
possible at late times.

Aufgabe 11 Determine accuracy and stability conditions for the centered difference method.

Aufgabe 12 Determine accuracy and stability conditions for the implicit scheme.

Aufgabe 13 Determine accuracy and stability conditions for the Crank-Nicolson scheme.
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Chapter 4
Diffusion and Heat Conduction

Diffusion is the fundamental stochastic transport process. It can be applied to the transport
of matter or energy (heat transport). The mathematical description is rather simple and
analytical solutions are available for simplified geometries. Thus numerical solutions can be
tested against the analytical ones. Nonetheless, in heat transfer even rather simple problems
often require more than one spatial coordinate. Numerical schemes thus have to be adapted to
accommodate additional spatial coordinates. The introduction of such a scheme in sect. 4.2
will be the numerical focus of this chapter; most other applications only give supportive
information on the physical background or straightforward extensions of numerical methods
encountered sofar.

In addition, in many natural conditions, diffusion is just one of many transport mecha-
nisms. In this chapter, we will also consider directed transport which leads to the diffusion–
convection equation already encountered in chap. 3 as well as some basics of transport in
porous media and transport including reactions. Simple numerical models will be discussed
in this chapter, the application to more complex situations is topic of chapters 5 and 6.

The last section, sect. 4.6.3, introduces the Stefan problem: here the boundary condition
changes with time, such as in solidification of a body of a fluid as it cools down. A traffic
jam is a practical application for the modeling of such a phase transition.
Goals: after working through this chapter you should be able:

• to develop numerical schemes for diffusive transport (including other processes such as
advection/convection and chemical reaction/decay) in 2 or 3D and discuss the special
problems arising in the discretization/solution of the spatial transport term.

• to describe the physical basis of diffusion and dispersion for different situations accordingly
and to sketch applications of diffusion and diffusion related transport equations under
different circumstances.

• to compare a Stefan problem with a boundary value and explain the common features as
well as the differences and give examples for Stefan problems in different fields.

4.1 Diffusion – The Basics

Definition 5 Diffusion is the formal description of a stochastic transport process.
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4.1.1 Examples

If you are asked to explain diffusion to a non-physicist, you probably
will resort to examples from daily life. A drop of ink in a glass of
water stays put only for a short time. Then thin streaks start to
spread out from the drop, wiggling through the water until the ink
is evenly distributed in the glass.

If the same process happens in a fast running rivulet, two ad-
ditional processes happen. First, the ink (and the water volume
it fell into) will be advected with the rivulet’s flow. Thus the sto-
chastic motion diffusion is superposed by a systematic motion, the
convection with the flow. The resulting transport is described in a
diffusion–convection model, already encountered in chapter 3. Sec-
ondly, eddies present in the rivulet will also spread the ink around its original drop. This
dispersion will even work faster than diffusion: diffusion is a property of the ink molecules
while dispersion is related to small-scale flows in the surrounding medium. Thus although
dispersion is a stochastic process, too, the spatial scales covered within a time interval are
larger and thus the process is more efficient.

Side question 18 Is the spread of the ink in the above example really diffusion? What
about cold cream in hot coffee?

The diffusive process is not limited to liquids. In air it is also well
known: even if the only person smoking a cigarette is banned into
a remote corner of the room, with time the smoke will be smelled
everywhere in the room: first with a higher intensity close to its
source, the smoker, later everywhere.

A smokestack in principle is not very different from the smoker:
it injects a marked gas which in time mixes with the atmosphere.
But the smokestack also brings a few additions to diffusion to mind.
First of all, in calm weather the smoke from a smokestack rises rather straight into the air
owing to the upward motion of the heated gas. Thus again a directed motion is superposed
on the diffusive process. Another directed motion might be superposed if wind drives the
smoke from the chimney almost horizontally. Again, this process can be described by a
diffusion–convection model – but, as always in the atmosphere, the process is 3D and cannot
be approximated by a 1D model as easily as in a rivulet. Such processes consisting of
a diffusive part and a superposed directed motion are described by a diffusion–convection
model, sometimes also called diffusion plus advection.

A diffusive process also works in solids. Only here, it is not matter that is transported
but momentum. Or if you prefer to think in terms of corpuscular transport, phonons are
transported. This process also is called heat conduction. Thus it is a familiar process,
although the layman will not necessarily make the connection between diffusion and heat
conduction.

Heat conduction in a solid is based on the thermal motion of the atoms: they vibrate
around their rest position with an displacement increasing with increasing temperature.
Eventually, two neighboring atoms collide and momentum is transferred between them. Al-
though the momentum transfer itself is strongly deterministic, depending only on the relative
momenta of the collision partners, the likelihood for such a collision depends on the momen-
tary positions and velocities of the atoms as does the amount and direction of momentum
transfer. Consequently, the momentum transfer can be described as a stochastic process.

The situation is exactly the same for the smoke particles or the ink droplet – asides
from the fact that the atoms do not stay in the vicinity of some rest position but can move
rather freely since coherence is only weak. Owing to this freedom, not only momentum
is transported but together with the momentum also matter. Thus diffusion can also be
described as stochastic motion of particles under the influence of (stochastic) collisions with
the ambient medium.
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4.1.2 Formal Description of Diffusive Processes

The formal treatment of stochastic processes can follow two lines of thought:

• matter can be treated as particular, that is we will follow the individual particles and
record their fate individually.

• matter can be treated as a continuum which leads to a description in terms of a fluid.

The former approach is used in statistical mechanics and Monte Carlo simulations as discussed
in chap. 8. It only makes sense if a sufficiently large number of particles is considered and
suitable averages are taken. Otherwise we would never get the description of the fate of an
ink droplet but only one particular of the almost infinite number of possible paths of in ink
molecule in water. Thus almost each ink molecule has to be simulated and the results for
each droplet have to be superposed. Still we would not get the fate of an actual droplet
but only a subset of the possible pathes of droplets inside the water. But since this subset
is representative, the simulated tracks give a representative description of the fate of the
ink droplet. And normally we are rather interested in the expected size of the droplet after
a certain time then in the actual position of the individual molecules. But since we only
get a representative description, we can also resort to the statistical or fluid description.
Nonetheless, the particle approach allows for some simple illustration of the basics of the
diffusive process.

Spatial Diffusion

Diffusion is the consequence of frequent, stochastically distributed collisions – some gen-
eral considerations regarding collisions are given in sect. C.4. Thus diffusion is a stochastic
process. Therefore, it is not reasonable to discuss the motion of individual particles; instead
one has to consider an assembly of particles, described by the distribution function (some
general comments on distribution functions are given in sect. C.2).

But diffusion is not only spatial diffusion. If we carefully drip a drop of ink into a glass of
water, in time the drop will spread and eventually ink and water will be mixed completely:
the thermal motion leads to collisions between ink and water molecules, distributing both
species uniformly. This is spatial diffusion. If we carry out the same experiment with a
good drop of cold cream and a cup of steaming hot tea, we find a second consequence of
the collisions: after some time, tea and milk have the same temperature – or more accurate,
the distrubutions of thermal speeds have become undistinguishable. Thus thermal energy is
transferred from the faster molecules to the slower ones, leading to diffusion in momentum
space.

Let us start with spatial diffusion alone. All particles have the same speed and collisions
lead to changes in the direction of motion only. To describe the effect of diffusion, we have to
keep track of a larger number of small spatial steps for a large number of particles. Because
the stochastic aspect is important, we can borrow some concepts from probability calculus
and use simple games with coins as illustrations.

Side question 19 Does “cold” diffusion make any sense from the physical point of view?
Does it really happen or is it a mathematical fiction. If it is the latter, why then introduce
it?

Tumbling Drunkards and Tossed Coins �

D

Spatial diffusion, or more correctly, the motion of a particle in spatial
diffusion, occasionally is called drunkards walk. To get the picture, imagine
a couple of drunkards, happily lingering around a distiller. As they hear a
police siren in the distance, they start to stagger away, everyone in his own
direction. They all make steps of equal length λ but random direction. As
a police helicopter arrives at the scene, every drunkard has made N steps.
The spatial distribution of the drunkards, as seen from the helicopter, is
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shown in the figure. None of the drunkards has covered the maximum possible distance Nλ.
Instead, they are still relatively close to the distiller. How close, compared with the maximum
distance, can be described by a quantity called the expected distance or, mathematically more
correct, the average squared distance. This average displacement λ

√
N is indicated by the

circle.

Figure 4.1: Gain and loss chart for 100
tosses (top) and 10 000 tosses of a coin

Let us now reduce the problem to the one-
dimensional case: the test objects can only move
along a straight line, again with constant step
length λ. We can simulate the resulting motion by
flipping a coin: a head leads to a step in the positive
direction, a tail to a step in the negative one. Let
us consider one particle only. At first glance one
might expect the expected distance to be close to
the starting point. In particular, after a large num-
ber of tosses, we would expect the number of heads
and tails to be roughly equal and therefore the net
displacement to be small. This, however, is a faulty
reversion of the law of large numbers, which is of-
ten observed in people gambling only occasionally:
if the coin has shown tails 9 times in succession,
the chance of heads in the next toss is exactly the
same as in all previous tosses, 50%, because the coin just does not remember the results from
the last tosses. Thus in a long series of tosses, there can be quite a large deviation from a
deadlock between heads and tails. This has been known since the middle of the seventeenth
century when game theory was quite popular, in particular in the Bernoulli family. Thus if
for a long time one side of the coin can be dominant, as indicated in Fig. 4.1, then a large net
gain for the one and a large loss for the other gambler results. Or, in case of one-dimensional
motion, the displacement from the starting position can become quite large.

The average squared distance 〈∆x〉2, or the expected distance for short, can be determined
easily. The total squared displacement of the particle is the sum of the displacements dxi in
each individual step:

(∆x)2 =

(
N∑

i=1

dxi

)2

= (dx1 + dx2 + ...+ dxN )2 =
N∑

i=1

N∑
j=1

dxidxj . (4.1)

The individual displacements dxi are either +λ or −λ, both with a probability of 0.5. Thus
the product dxidxj is either λ2 or −λ2. For i 6= j, dxi and dxj are independent and both
positive and negative values of the product have the probability 0.5. In the sum (4.1) these
terms cancel and only products with i = j remain. They are always +λ2 and there are N
such products. Equation (4.1) then becomes

〈∆x〉2 = Nλ2 . (4.2)

Thus with increasing number N of steps, the average displacement from the starting point
increases as

√
N .

If the particle has a speed v, the total distance s traveled during a time t is s = vt. If N
is the number of direction reversals during this time interval, the distance also can be written
as s = Nλ. Therefore in (4.2) we can substitute N by vt/λ:

〈∆x〉2 = Nλ2 = vλt = 2Dt . (4.3)

Here D is the diffusion coefficient:

D = 1
2vλ . (4.4)

Note that this diffusion coefficient has been defined for one-dimensional motion. For three-
dimensional motion, the diffusion coefficient is

D = 1
3vλ . (4.5)
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Figure 4.3: Broadening of a Gauß
distribution with increasing standard
deviation. Physically, this is equiva-
lent to the diffusive broadening of a
distribution with time

Galton Board and Bell Curve (Gauß Distribution)

The average distance is a statistical term which refers to a large assembly of particles. The
individual particles scatter around the starting point. Their distribution can be described by
the bell curve (Gauß distribution).

Figure 4.2: Galton board

The Galton board is a graphical way to derive this dis-
tribution. It consists of rows of pins, indicated by dots in
Fig. 4.2, and models the scattering the particles experience:
as a ball hits a pin, it is deflected either to the left or to
the right. Then it hits a pin in the next row, which leads to
another deflection and so on. The solid line indicates a sam-
ple path. Below the lowest row, the particles are collected in
slots. The slot in which a ball finally comes to rest, results
from a large number (equal to the number of rows) of sto-
chastic interactions of comparable strength. If we use a large
number of balls, the distribution in the slots will be a bell
curve or Gauß distribution:1

P (x) =
1√
2πσ

exp
(
− (x− x0)2

2σ2

)
. (4.6)

Here x0 is the average and σ is the standard deviation. P (x) describes the probability of a
ball to be found in the slot at position x. The standard deviation σ defines the width of the
distribution: 68.3% of all balls will be inside the interval [x0 − σ, x0 + σ] and 95.4% inside
[x0 − 2σ, x0 + 2σ]. The standard deviation is given as

σ2 =
1
n

∑
(x− x0)2 =: 〈∆x〉2 , (4.7)

and therefore describes the widening of the particle distribution or the expected displacement
from the origin.

We can rewrite (4.6) and (4.7) to find an expression depending on the diffusion coefficient.
With (4.3) and (4.4) we find for the standard deviation

σ =
√
〈∆x〉2 =

√
2Dt =

√
vλt , (4.8)

and therefore for the bell curve

P (x) =
1√

2πvλt
exp

(
− (x− x0)2

2vλt

)
. (4.9)

Note that the maximum stays fixed while the distribution broadens with time, as described
by (4.3) and shown in Fig. 4.3.

1The number of balls in each slot is proportional to the number of possible pathes from the start to that
particular slot. The probabilities of all pathes are equal. Thus the resulting distribution can be determined
from counting the number of good pathes to get the ball from the start to the target. This task fits well into
the framework of statistical distribution functions and in particular Gauß’ distribution.
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The Diffusion Equation

Figure 4.4: Transport by dif-
fusion requires a gradient

If collisions happen in a homogeneous gas enclosed in a fixed
volume, the relevant quantity to describe the diffusive process
is the mean free path, see also sect. C.4.1 for its definition.
It does not make sense to talk about a diffusion coefficient or
an expected displacement because, viewed from the outside,
the collisions do not change the properties of the gas, only
the individual molecules change positions. This could be de-
picted by something similar to the Galton board: while in the
Galton board the pins are arranged to form a triangle with
the input only at the tip of the triangle, the modified board
would consist of pins arranged in a rectangle with the input
all over the top line. For each input slot, the spatial distribu-
tion is the same as for a Galton board. But the superposition
of all the different input slots leads to the same number of
particles in each output slot. For a gas this implies that on
average for each particle leaving a volume element another
one enters, see also the lower panel in Fig. 4.4.

The situation is different if there is a gradient, as in the
top panel in Fig. 4.4. Then there are more particles of the species under study in one part
of the volume than in the other. Accordingly, a random walk carries more particles out of
the volume with high density than particles are carried in from the lower density region.
Thus a net transport results, reducing the gradient and eventually leading to the equalized
distribution shown in the bottom panel. The streaming ~S of particles can be described as

~S = −D∇U , (4.10)

with D being the diffusion tensor for anisotropic diffusion and U the particle density. The
gradient is the driving force for the flow, a larger gradient leading to a larger flow. The flow
also depends on the mobility of the particles, described by the diffusion tensor. If diffusion is
isotropic, the diffusion tensor reduces to the diffusion coefficient and the streaming becomes
~S = −D∇U . Since the diffusion coefficient depends on particle speed and mean free path,
for a given gradient the flow as well as the average displacement are largest for fast particles
undergoing only few collisions (having a large mean free path) and smallest for slow particles
undergoing many collisions.

The diffusion equation can be derived from the equation of continuity. Equation (2.32)
gives for a volume element

∂N

∂t
+
∮

O(S)

~Sd~o = 0 . (4.11)

Here N is the number of particles and ~S is the flux of particles through the surface ~o of the
volume element V . If U is the particle density, (4.11) yields

∂

∂t

∫
V

Ud3x+
∮

O(V )

~Sd~o = 0 . (4.12)

With Gauß’ theorem (A.21) this is

∂U

∂t
+∇~S = 0 . (4.13)

With (4.10) we can write the diffusion equation as

∂U

∂t
= ∇ · (D∇U) . (4.14)
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If the diffusion is independent of the direction (isotropic diffusion), we can use the diffusion
coefficient (4.4) instead of the diffusion tensor and get

∂U

∂t
= ∇ · (D∇U) . (4.15)

If the diffusion coefficient is also independent of the spatial coordinate, as for example in a
homogeneous medium, the equation can be reduced further:

∂U

∂t
= D∆U . (4.16)

Solutions of the Diffusion Equation.

The solution of the diffusion equation depends on the boundary conditions. In the general
case we shall consider propagation from the source at a position r0. Thus we have to consider
a source Q in the diffusion equation:

∂U

∂t
−D∆U = Q(r0, t) . (4.17)

For a spherical symmetric geometry this can be written as

∂U

∂t
− 1
r2

∂

∂r

(
r2Dr

∂U

∂r

)
= Q(r0, t) (4.18)

with Dr being the radial diffusion coefficient.
The simplest case is a pulse-like injection of N0 particles at the position r0 = 0 at time

t0 = 0; the Galton board and the drunkards are examples for such an initial condition. A
typical example is the injection of solar energetic particles (SEPs) into the interplanetary
medium, as will be discussed in chapter 5. The solution of the diffusion equation for a
radial-symmetric geometry then reads

U(r, t) =
N0√

(4πDrt)3
exp

(
− r2

4Drt

)
. (4.19)

�

�
t

�logU

� large

� small

Figure 4.5: Typical diffusive pro-
files for small and large λs

Two typical diffusive profiles are shown in Fig. 4.5.
The intensity rises fast to a maximum and than decays
slowly as t−3/2. The time of maximum tm can be deter-
mined by setting the first temporal derivative to zero:

tm(r) =
r2

6Dr
. (4.20)

The time of the maximum decreases with increasing mean
free path and increasing particle speed. That is what we
expect from our experience with gases and liquids: the
diffusion of a minor constituent is faster with increasing
temperature (corresponding to a higher particle speed) and decreasing density (corresponding
to an increase in particle mean free path). The time of the maximum increases quadratically
with increasing distance. This can be understood easily from (4.8): the average distance
increases with

√
t.

Graphically, the time to maximum can be interpreted as follows: if we write (4.20) in
the form tm = (r/2λ) (r/v), we have r/v as the direct travel time for the distance r and can
interpret r/2λ as a measure of the number of mean free paths between the origin and the
observer at r. The quantity r/2λ therefore characterizes the delay due to diffusion.

Inserting (4.20) into (4.19) gives the density at the time of maximum:

U(r, tm) =
N0√

(4πr2/6)3
exp

(
−3

2

)
∼ N0

r3
. (4.21)

The intensity at the time of the maximum thus decreases with increasing radial distance but
it is independent of the diffusion coefficient.
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Equation (4.20) is used frequently as a simple estimate of the radial mean free path from
the time of maximum of a particle profile observed in interplanetary space. Rewriting (4.20)
we obtain

λr =
r2

2vtm
. (4.22)

Solutions of the diffusion equation so far have been obtained for the spherically symmetric
case, assuming that particles propagate radially from one shell at r to the next one at r+∆r.
The mean free path λr then refers to the radial mean free path. In interplanetary space,
the geometry is different: particles propagate along the magnetic field line, thus it is more
reasonable to use a particle mean free path λ‖ parallel to the magnetic field line. In addition,
the field is not radial but Archimedian, as shown in Fig. 5.1. The solution, however, is
identical to the radial one as long as the relation

λr = λ‖ cos2 ψ or Dr = D‖ cos2 ψ (4.23)

is obeyed. Here ψ is the spiral angle between the radial direction and the Archimedian
magnetic field line. Note that here it is assumed that diffusion perpendicular to the magnetic
field is negligible.

4.1.3 Diffusion and Dispersion

Sofar, we have described diffusion by its basic property, the particle mean free path λ.
The latter is the average distance a particle travels between two successive collisions, see
sect. C.4.1. The less graphical but more formal description is the diffusion coefficient D.
Diffusion is based on stochastic collisions; the particle path therefore is determined by a large
number of small stochastically distributed collisions. These collision frequency is determined
by the motion of the individual particles. Diffusion thus works on the molecular level.

Figure 4.6: Isotropic tur-
bulence

Dispersion resembles diffusion in such that transport is
a stochastic process: particles are convected with the tur-
bulent motion of the fluid. The stochastic part in this
process is the turbulence: eddies, such as indicated in Fig. 4.6
(from http://www.efluids.com/efluids/gallery/gallery
pages/iso turbulence page.htm) move particles back and
forth through the volume. Dispersion therefore is a process work-
ing on the level of the eddies. Consequently, it is also called eddy
diffusion.

The transport coefficient, the dispersion coefficient, is linked
to the properties of the eddies. Thus it is linked not to mi-
croscopic but macroscopic properties of the fluid. A standard
method to derive the dispersion coefficient is mixing length the-
ory; here the mixing length has a meaning similar to the mean free path in ordinary diffusion.
Assume a fluctuating flow speed ~u. The flow can be decomposed into a directed part ~u0 = 〈~u〉
and a fluctuating part ~u′ with 〈~u′〉 = 0: ~u = ~u0 + ~u′. The kinetic energy contained in these
fluctuations is proportional to (u′x)2+(u′y)2+(u′z)

2. Turbulent motion can only exist down to
a finite scale. Molecular diffusion will eventually wipe out variations in the flow properties.

The transport of a property ε with the turbulent flow, also called the turbulent mixing,
is determined by the average flux of this property. For each component we get 〈u′iε〉 with
i = x, y, z. Turbulent flux tends to diffuse properties of the medium. Thus as in diffusion it
is linked to the spatial gradient of the property ε:

〈u′iε〉 = Ki

〈
∂ε

∂i

〉
with i = x, y, z (4.24)

with Ki being the turbulent diffusion coefficient, also called eddy diffusion coefficient or
dispersion coefficient.

13th November 2006 c© M.-B. Kallenrode

http://www.efluids.com/efluids/gallery/gallery_pages/iso_turbulence_page.htm
http://www.efluids.com/efluids/gallery/gallery_pages/iso_turbulence_page.htm


4.2. DIFFUSION/HEAT CONDUCTION – SIMPLE CASES 63

Side question 20 Explain the formal and physical similarities (and differences) between
diffusion und dispersion coefficient.

The dispersion coefficient can be derived from a simple scale analysis. The diffusion
coefficient is the product of a propagation speed, in that case the particle speed v, and a
typical scale length of the motion, the mean free path λ. In analogy, the dispersion coefficient
should be the product of a typical speed and a scale length L. For the speed we choose a
typical turbulent speed ut,i and obtain

Ki ∼ ut,i L . (4.25)

The lowest limit for the scale length is the Kolmogoroff scale

Lk = 2π
(
ν3

ε

)1/4

(4.26)

with ν being the kinematic viscosity and ε the rate of turbulent energy dissipation. Below
the Kolmogoroff scale, molecular diffusion will wipe out variations in the flow properties and
dispersion becomes diffusion. In a slightly circular manner (as in the definition of the mean
free path and diffusion coefficient), the rate of energy dissipation is related to the length scale
of turbulence and the energy density in the flow by ε ∼ u3

i /L.

4.2 Diffusion/Heat Conduction – Simple Cases

As in chapt. 3 we will start with an example that allows for an analytical solution for the
stationary case. This allows the introduction to a FDM for 2D as extension of the centered
finite difference scheme already encountered.

4.2.1 Stationary Heat Transport in a Plate

Consider a rectangular plate with width a and b. The Temperature at the edges is prescribed
by the boundary conditions. We are interested in the temperature distribution in the plate.

The Transport Equation

The general transport equation is the heat conduction equation. Here we are only interested
in steady-state conditions, thus the equation is reduced to

∂2T

∂x2
+
∂2T

∂y2
= 0 für 0 < x < a and 0 < y < b . (4.27)

The boundary conditions require a temperature of zero at three edges. At the fourth edge,
the temperature is prescribed by a function f(x):

T (x, 0) = T (0, y) = T (a, y) = 0 und T (x, b) = f(x) . (4.28)

As example, we will use a temperature profile

f(x) = T0 x (a− x) . (4.29)

The Analytical Solution

An analytical solution of the Laplace equation (4.27) can be obtained by a separation ansatz
T (x, y) = X(x)Y (y). Inserting this ansatz yields

Y X ′′ +X Y ′′ = 0 . (4.30)

Rearrangement gives

X ′′

X
+
Y ′′

Y
= 0 . (4.31)
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Figure 4.7: Temperature distribution in a
rectangular plate
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The first term depends on x only, the second on y only. The equation is valid for all values
of x and y. Thus both terms must be constant. With the separation constant −β2 (4.31)
can be rewritten as

X ′′ + β2X = 0 und Y ′′ − β2Y = 0 . (4.32)

Both equations are second order ODEs describing an oscillation. They general solutions are

Xn(x) = γ1 sin
(nπx

a

)
+ γ2 cos

(nπx
a

)
, n = 1, 2, . . . , und

Yn(y) = γ3 sinh
(nπy

a

)
+ γ4 cosh

(nπy
a

)
, n = 1, 2, . . . . (4.33)

The boundary conditions (4.28) with T = 0 yield γ2 = γ4 = 0. Thus a part of the solution
of the PDE is

Tn(x, y) = γn sin
(nπx

a

)
sinh

(nπy
a

)
, n = 1, 2, . . . . (4.34)

The entire solution is the superposition of all these partial solutions:2

T (x, y) =
∞∑

n=1

Tn(x, y) =
∞∑

n=0

γn sin
(nπx

a

)
sinh

(nπy
a

)
. (4.35)

The remaining boundary condition T (x, b) = f(x) yields

T (x, b) = f(x) =
∞∑

n=0

γn sin
(nπx

a

)
sinh

(
nπb

a

)
. (4.36)

Side question 21 In contrast to the solution of the wave equation, in the heat equation the
separation constant β is positive in one spatial coordinate and negative in the other one. Is
this an arbitrary choice or has it some mathematical/physical significance?

Since the sin(nπx/a) are orthogonal functions, this can be rewritten as

γn sinh
(
nπb

a

)
=

2
a

a∫
0

f(x) sin
(nπx

a

)
dx . (4.37)

With f(x) = T0x(a− x) we obtain

γn sinh
(
nπb

a

)
=

2
a

a∫
0

T0x(a− x) sin
(nπx

a

)
dx

2This superposition formally is the same as in the solution of the wave equation. A fundamental difference,
however, remains: the individual solutions of the wave equation are eigenmodes of the vibrating string and
can exist in itself. In case of the heat conduction equation, the solution only is complete if the entire space
of eigenfunctions is considered. Thus only the sum over all eigenfunctions yields a valid solution but not one
eigenfunction in itself.
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= 4T0a
2 1− (−1)n

n3π3
. (4.38)

The entire solution

T (x, y) =
8T0a

2

π3

∞∑
n=1

1− (−1)n

n3

sinh
(

nπy
a

)
sinh

(
nπb
a

) sin
(nπx

a

)
. (4.39)

is shown in Fig. 4.7.

The Numerical Solution

The numerical solution is based on the centered finite difference scheme in two dimensions,
see Fig. 4.8. As in the analytical solution, the system at hand is a cartesian coordinate
system. Discretization of the PDE yields

Ti+1,k − 2Ti,k + Ti−1,k

(∆x)2
+
Ti,k+1 − 2Ti,k + Ti,k−1

(∆y)2
= − Q̇(x, y)

λ
(4.40)

with Q̇ being a heat generation function and λ the thermal conductivity. Q̇ is evaluated at
(i,k). The boundary conditions are given by an energy input q at the edges.

i+1,k+1

T T T

T T T

TTT

i−1,k−1

i−1,k

i−1,k+1

i,k−1

i,k

i,k+1

i+1,k−1

i+1,k

Figure 4.8: Discretiza-
tion in 2D

For equal spatial step sizes in both directions, ∆x = ∆y, this
can be rewritten as

Ti+1,k + Ti−1,k + Ti,k+1 + Ti,k−1 − 4Ti,k +
Q̇

λ
(∆x)2 = 0 .

The temperature at the reference point Ti,k thus is determined by
the temperatures in the four adjacent grid points.

As in the 1D example, grid points can be interior points, edge
points and corner points. The discretization scheme leads also to
outer nodes: one for each edge point and two for the corner points.
These outer nodes again are eliminated using the boundary condi-
tions.

The problem, including its boundary conditions thus can be formulated as a set of alge-
braic equations. In matrix form these can be written as

A~T = ~F (4.41)

with ~F containing both the heat generating function Q̇ and the boundary conditions q. In
contrast to the 1D problem in chap. 3, the resulting matrix is not tridiagonal, thus the
inversion of the matrix is more difficult. To explore the structure of the matrix, let us take
one step back: how do we write the vector ~T? Since T = T (x, y), the direct approach would
suggest to write T as a matrix instead of a vector. To put T in vector form, we have to define
some ordering of the matrix components, for instance3

~T =



T1,1

T1,2

T1,3

...
T1,k

T2,1

...
Ti,j

...
Ti,k



. (4.42)

3Such ordering sometimes is termed lexicographical ordering. The matrix elements uij are ordered as
vector components Uk such that k = iN + j with N being the number of the matrix columns.
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The corresponding matrix than has at most five non-zero entries on each line, it is a penta-
diagonal matrix. Its structure is a consequence of the mesh used in the discretization of the
PDE.

The target quantities ~T can be determined by inversion of the matrix A:

~T = A−1 ~F . (4.43)

Although the matrix is sparse, that is most of its elements are zero, inversion and storage of
the entire matrix is very demanding on computer resources. While in the 1D problem the
system matrix is a (n+1)× (n+1) matrix with n being the number of spatial steps, here the
target vector ~T has the length (n+ 1)2 if x and y are divided into the same number of steps
or (n+ 1)× (m+ 1) for different numbers of steps in both directions. As a consequence, A is
a ((n+ 1)× (m+ 1))2 matrix.

Standard solving tools for systems of linear equations, such as Cramer’s rule, are very
inefficient. For instance, for an ((n + 1) × (m + 1))2 matrix, Cramers rule would require
(n+1)×(m+1)+1)! steps – so take a break after starting the program. Gaussian elimination,
although faster, still would require about ((n+ 1)× (m+ 1))3 operations.

Iterative Methods

Instead of these methods, a number of iterative methods is available, that allow for an efficient
solution of the problem. All iterative methods construct a sequence ~Tn that satisfies (4.41)
for n → ∞ For sufficiently large n, the approximation can be considered good enough to
terminate the iteration process.

As the iteration proceeds, vector states ~Tn are generated with n iterations out of the
arbitrary initial vector ~T 0. The iteration process is assumed to be low-level: state n+1 only
depends on state n. The iteration itself is described by a non-singular conditioning matrix H
such that

~Tn+1 − ~Tn = H(A, ~Tn − ~F ) . (4.44)

Note that for H = −A−1 the exact solution is determined within one single step. Note also
that the notation for the iterative step is the same as that for the time step in chap. 3. We
will see later, that not only the notation is similar but that there is also a deeper relation
between the two.

Iteration of the recurrence formula (4.44) yields

~Tn+1 = (E + H A)n+1 ~T 0 −
∞∑

m=0

(E + H A)m H~F . (4.45)

Formally, the last term represents an expansion of −A−1 into a series of matrices, similar to
that performed for a scalar quantity:

−a−1 = −1
a

=
h

1− (1 + ha)
= (1+(1+ha)+(1+ha)2 + . . .)h =

∞∑
m=0

(1+ha)mh .(4.46)

Let us have a look at the implications of (4.45). To obtain a solution, we require ~Tn → ~T

for n→∞. Since ~T 0 is arbitrary, this requires (E + H A)n+1 → 0. It must also be true that
∞∑

m=0

(E + H A)m H~F → A−1 ~F for n→∞ . (4.47)

Jacobi Method

To understand the method of Jacobi, let us start from the form

Tn
i+1,k − 2Tn+1

i,k + Tn
i−1,k

(∆x)2
+
Tn

i,k+1 − 2Tn+1
i,k + Tn

i,k−1

(∆y)2
= fi,k . (4.48)
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This equation is valid for all interior nodes, only at the edge and corner nodes, different
coefficients arise from the implementation of the boundary conditions.

The new value of the unknown Tn+1
i,k is obtained from the central terms of the scheme;

all other unknowns are kept at their old values. With (4.44) we get

1
h2

(
un+1

i,k − un
i,k

)
=
Tn

i+1,k − 2Tn
i,k + Tn

i−1,k

(∆x)2
+
Tn

i,k+1 − 2Tn
i,k + Tn

i,k−1

(∆y)2
− fi,k (4.49)

or in matrix form
~Tn+1 − ~Tn = h2

(
A~Tn − ~F

)
. (4.50)

This is true for H−1 = h−2E. Thus the conditioning matrix is H = h2E.
Von Neumann has suggested an approach on this problem which treats the iteration

process as an advance in the temporal direction. With the ansatz

Tn
i,k = gn eiiα eikβ (4.51)

(4.48) can be rewritten as
g

h2
=

1
(∆x)2

(
eiα + e−iα

)
+

1
(∆y)2

(
eiβ + e−iβ

)
. (4.52)

Solving for g gives

g =
cos α
(∆x)2 + cos β

(δy)2

1
(∆x)2 + 1

(∆y)2

. (4.53)

g is real and it is −1 ≤ g ≤ 1∀α, β.
The speed of convergence for the iteration process is determined by the maximum of g.

Since the mesh size determines how many wave modes can be supported (α and β are a
multiples of π∆x and π∆y, respectively), we get an amplification factor

|gmax| = 2h2

(
cos(π∆x)

(∆x2
+

cos(π∆y)
(∆y)2

)
≈ 1− 2π2h2 . (4.54)

After n discretization steps, the error is reduced to |gmax|n. Thus for a small |gmax| conver-
gence is faster than for a larger one. For the Jacobi method |gmax| is close to one for fine
meshes, thus the method is very slow.

The interpretation of Jacobi’s method as an evolution process is rather straight forward
from (4.49). If we choose the time step ∆t = h2, Taylor expansion yields

∂u

∂t
=
∂2T

∂x2
+
∂2T

∂y2
+O(∆t, (δx)2, (∆y)2) (4.55)

which is the two-dimensional time-dependent heat equation. The time step ∆t = h2 is the
limit of the stability condition for the heat conduction equation using in explicit centered
five-point scheme in space and an advanced scheme in time.

Gauss-Seidel Method

The Gauss–Seidel method starts from a slightly different algorithm as (4.48):

Tn
i+1,k − 2Tn+1

i,k + Tn+1
i−1,k

(∆x)2
+
Tn

i,k+1 − 2Tn+1
i,k + Tn+1

i,k−1

(∆y)2
= fi,k . (4.56)

Here the Ti−1,k and Ti,k−1 are new values in the scheme. In spite of these advanced values
the scheme is not implicit and thus does not require a simultaneous solution of algebraic
equations. Instead, the grid points can be swept with increasing values in i and j, the
corresponding values at the grid points than can be calculated from previously computed
points. The only unknown variable in the scheme, Tn+1

i,j , can be calculated from

− 1
(∆x)2

(
Tn+1

i−1,k − Tn
i−1,k

)
− 1

(∆y)2
(
Tn+1

i,k−1 − Tn
i,k−1

)
+

1
h2

(
Tn+1

i,k − Tn
i,k

)
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=
Tn

i+1,k − 2Tn
i,k + Tn

i−1,k

(∆x)2
+
Tn

i,k+1 − 2Tn
i,k + Tn

i,k−1

(∆y)2
− fi,k . (4.57)

By identification one finds

H−1 =
[
. . . 0 − 1

(∆x)2 0 . . . 0 − 1
(∆y)2

1
h2 0 0 . . .

]
. (4.58)

H−1 is a lower triangular matrix and its coefficients are the opposite of the corresponding
coefficients in A.

Although the Gauss-Seidel method is more complex to analyze than Jacobi’s method, it
is simpler to implement in a code and does not require any storage space in addition to the
basic areas.

Over-relaxation Method

The Gauss–Seidel method is a particular case of the over-relaxation method. it consists of
two steps:

1. compute a provisional value T̃i,k with the Gauss-Seidel algorithm:

Tn
i+1,k − 2T̃i,k + Tn+1

i−1,k

(∆x)2
+
Tn

i,k+1 − 2T̃i,k + Tn+1
i,k−1

(∆y)2
= fi,k . (4.59)

2. Extrapolate the new value using the relation

Tn+1
i,k = Tn

i,k + ω
(
T̃i,k − Tn

i,k

)
. (4.60)

Here ω is the relaxation factor.

Depending on the value of ω, the method has different properties. For ω > 1 the method
is called over-relaxation method. This method is stable in most linear cases, however, for
non-linear equations stability might require 0 < ω < 1. It is then called under-relaxation
method. For ω = 1 the Gauss-Seidel method results.

The two steps (4.59) and (4.60) can be combined into one step by eliminating the pro-
visional value T̃i,k in (4.59) using (4.60). The resulting iterative process can be expressed
as

− 1
(∆x)2

(
Tn+1

i−1,k − Tn
i−1,k

)
− 1

(∆y)2
(
Tn+1

i,k−1 − Tn
i,k−1

)
+

1
ωh2

(
Tn+1

i,k − Tn
i,k

)
=
Tn

i+1,k − 2Tn
i,k + Tn

i−1,k

(∆x)2
+
Tn

i,k+1 − 2Tn
i,k + Tn

i,k−1

(∆y)2
− fi,k . (4.61)

The inverse of the conditioning matrix thus can be written as

H−1 =
[
. . . − 1

(∆x)2 0 . . . 0 − 1
(∆y)2

1
ωh2 0 . . .

]
. (4.62)

The stability of the method again can be judged with the von Neumann method with
f = 0 and the complex wave mode as in (4.51). Some algebra yields(

1− cosα
(∆x)2

+
1− cosβ
(∆y)2

+
1− ω

2ωh2
+ i
(

sinα
(∆x)2

+
sinβ
(∆y)2

))
g =

−
(

1− cosα
(∆x)2

+
1− cosβ
(∆y)2

− 2− ω

ωh2

)
+ i

(
sinα
(∆x)2

+
sinβ
(∆y)2

)
. (4.63)

Stability of the method requires |g| ≤ 1. Solving the above equation for g shows that this is
obtained for 0 < ω < 2.
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ADI

The alternating direction implicit (ADI) method treats transport by advancing the scheme
into the two directions not simultaneously but alternatingly. The corresponding scheme thus
consists of two steps.

The ADI principle is adopted for different schemes. One of them, the Peaseman–Rachford
ADI scheme, suggests for the first step

u
n+ 1

2
i,k = un

i,k + ρn

un+ 1
2

i+1,k − 2un+ 1
2

i,k + u
n+ 1

2
i−1,k

(∆x)2
+
un

i,k+1 − 2un
i,k + un

i,k−1

(∆y)2
− fi,k

 (4.64)

and for the second step

un+1
i,k = u

n+ 1
2

i,k +ρn

un+ 1
2

i+1,k − 2un+ 1
2

i,k + u
n+ 1

2
i−1,k

(∆x)2
+
un+1

i,k+1 − 2un+1
i,k + un+1

i,k−1

(∆y)2
− fi,k

 .(4.65)

The scheme thus advances first by a half-step with an implicit scheme in y at the old grid
points and an implicit scheme in x at the new gridpoints. Thus the y-part can be solved
directly and only the x-part contains unknowns and requires the simultaneous solution of
all algebraic equations. In the half of the step, the scheme is reversed: the solution in x is
performed with known quantities while the solution in y is at the new step and requires the
simultaneous solution of all algebraic equations. The individual schemes thus correspond to
the FTCS method.

The scheme is convergent for solutions of the Laplace equation on a square for any choice
of the iteration parameters ρn. Nonetheless, maximum computational efficiency requires a
proper choice of the ρn.

The total amplification factor is the product of the amplification factors of both steps:
g = g1g2. With the abbreviations σx = ρn/(∆x)2 and σy = ρn/(∆y)2, the amplification
factor for the first step is

g1 =
1− 2σy(1− cosβ)
1 + 2σx(1− cosα)

. (4.66)

For the second step we get

g1 =
1− 2σx(1− cosα)
1 + 2σy(1− cosβ)

(4.67)

and thus for the total amplification factor

g = g1g2 =
(1− 2σy(1− cosβ))(1− 2σx(1− cosα))
(1 + 2σx(1− cosα))(1 + 2σy(1− cosβ))

. (4.68)

Thus |g| ≤ 1∀α, β. The ADI scheme therefore is unconditionally stable.
ADI schemes are used in rather complex problems such as time-dependent solutions for

transonic potential flows or solutions to the Euler or Navier–Stokes equations. For time-
dependent solutions they are more efficient then the schemes described above. In addition,
the ADI has the advantage that in certain simple situations the exact solution can be obtained
in a finite number of steps.

4.2.2 The Time-Dependent Problem

The time-dependent problem requires the full solution of the heat conduction equation

∂T

∂t
= λ∆T . (4.69)

Formally, time is added as an additional dimension. This does not pose a new numerical
challenge to us. For the 1D case, we have already encountered this equation in chap. 3. The
additional variable time was considered in an implicit scheme as well as in the Crank–Nicolson
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scheme. In both cases, the spatial dependence was treated similar as in steady-state by some
numerical scheme spatialsolver and the temporal scheme was wrapped around it:

sol(0) = initval
for t=1,tsteps

spatialsolver(t,sol(t-1))
sol(t) → sol(t-1)

end

The situation is not different in the 2D or 3D-case, although spatialsolver is more
complex. Thus we do not face any principal problems in moving from the steady-state to
the time-dependent solution; our only challenges concern the resources: the required memory
is not much larger than in the steady-state model because only the vector sol(t-1) for an
earlier time must be stored in addition to the other vectors and matrices encountered in
that scheme. But computational times rise: for each time-step, the modified steady-state
scheme has to be solved, requiring the inversion or expansion of the matrix. Thus the total
computing time is more than that for the steady-state scheme multiplied by the number of
time steps in the transient solution.

Comment on Climate Modeling

This demand on computational resources in time dependent schemes is the main reason
why early climate models, say up to the middle of the 1990s, always showed simulations for a
doubling in CO2 concentration. In this case, only one steady-state simulation was performed,
reducing demand on computational resources, in particular time. Although such steady-state
simulation gives excellent first hints, it is not really helpful in understanding climate change.
First of all, it implies some basic semi-linear behavior of the climate system: with increasing
CO2 concentration, the system behaves consistently and there is no critical concentration or
accumulation that might cause one system parameter to change in such a manner that the
entire development changes. For instance, a moderate increase in CO2 concentration might
cause the Greenland glaciers to melt. This would supply fresh water to the northern Atlantic
and thus the thermohaline circulation might be inhibited. This would drive rapid glaciation
of the northern hemisphere and the heating trend would be reversed. Such a process would
not necessarily show up in a steady-state simulation because there temperatures would be
much higher and again might be associated with a stable thermohaline circulation.

The second problem is concerned with predictability: the time of CO2 doubling is dif-
ficult to predict because atmospheric CO2 concentrations depend on CO2 emission (which
also implies some basic ideas about global economic development and production of fossil
fuels), CO2 sinks (uptake of the biosphere and chemical reactions binding the CO2, both also
depending on temperature) and CO2 storage (oceans, but CO2 solubility also depends on
temperature).

And finally, the steady-state model makes tests difficult since all comparisons between
model and reality have to be postponed until CO2 doubling has occurred. It is also difficult
to judge whether present day climate change is due to natural or anthropogenic effects or a
combination of both. From a transient model, typical patterns of climate change (temporal,
spatial, temperature, precipitation, wind systems) can be derived even for moderate changes
in CO2. These fingerprints can be compared to observed changes in the climate system to
support or reject the hypothesis of anthropogenic climate change.

Side question 22 So far, we have limited ourselves to the 2D model by adapting the 1D
scheme to a second spatial dimension. Could we extend this procedure also into 3D (or even
into higher dimension)? How does the demand on computational resources increase with
each added dimension?
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4.3 Diffusion–Convection Model

A typical extension to a diffusion process is a superposed directed motion. The chemical
reactor in sect. 3.1 is such an example; other examples are a spill of chemicals in a river
or the propagation of pollutants in the atmosphere. All these processes are governed by
the same equation, the one we have already derived as (3.2). Diffusion may be molecular
(such as discussed above or in heat conduction) or turbulent (such as the dispersion in the
chemical reactor example) or a combination of both (which is most often the case in natural
systems). Convection also is called advection, thus a diffusion–convection equation and a
dispersion–advection equation are identical.

Side question 23 What happens in a situation in which both dispersion and diffusion are
effective? How does the presence of both processes change the transport equation as well as
the numerical scheme? And what is the influence on the solution?

4.3.1 The Transport Equation

The streaming in (4.10) has to be supplemented by the convective streaming ~Sconv = U~u,
giving ~S = U~u− D∇U . Here ~u is the velocity of the convective flow.

As above, the streaming can be inserted into the equation of continuity (2.32), giving the
diffusion–convection equation

∂U

∂t
+∇(U~u) = ∇(D∇U) . (4.70)

If ~u and D are independent of the spatial coordinate, (4.70) reads

∂U

∂t
+ ~u∇U = D∆U . (4.71)

4.3.2 Simple Analytical Solution

In the radial-symmetric case, the solution for a δ-injection then is

U(r, t) =
N0√

(4πDrt)3
exp

{
− (r − ut)2

4Drt

}
. (4.72)

The only difference is the ut-term in the exponential. This just gives the offset from the source
during the time t. But that is exactly the convective motion. Thus basically the solution for
a simple diffusion model results, only the center of the distribution is not stationary at the
injection site but shifted with the convective flow.

For small bulk speeds ~u of the medium the transport equation as well as its solution
converge towards the simple diffusion equation.

4.3.3 Numerical Solutions

Numerical solution for the 1D diffusion-convection model have been described in detail in
chap. 3, only the reaction term −γc has to be omitted from the solution. That does not
change the properties of the numerical scheme such as accuracy, stability and convergence.

Before attempting numerical solutions of a diffusion–convection model in more than one
spatial dimension, the modeler should ask himself whether a second or even third spatial
direction really is required. We should keep in mind that convection is tied to a flow ~u. This
flow is prescribed. A natural choice always would be to adjust the coordinates such that
one axis points along the flow. Then the problem is a 1D problem. This is also possible
for a flow changing direction as is the case for a river. In that case, the spatial coordinate
is length along the flow-direction; the same procedure as described for energetic particles in
interplanetary space in chap. 5. Turbulence on small-scales is advantageous in such that it
ensures mixing perpendicular to the flow on small spatial scales. In that case, the diffusion
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coefficient must be replaced by a dispersion coefficient. Turbulence on large scales, that is
scales comparable to the length scale covered by the flow, however, is not treated in the frame-
work of a diffusion-convection model. Here the convective part vanishes and all transport is
due to turbulence. This has two consequences: (a) no preferred direction exists, the model
therefore cannot be limited to one spatial dimension, and (b) all transport is by dispersion
and the multi-dimensional diffusion/heat conduction equation has to be solved as discussed
in sect. 4.2.

4.4 Diffusion–Reaction Model

Figure 4.9: Snow Leopard

Leopards (Fig. 4.9, from http://www.bergoiata.org/
fe/felins/Calculation,SnowLeopard.jpg) also can be
treated as a transport problem. In this text we are neither
dealing the the transport problem posed by a living leop-
ard to a smuggler of exotic animals or the oil companies
advertisement slogan “put the tiger in your tank”. We
will treat the leopard in terms of transport in a diffusion–
reaction model. And it is not the leopard that diffuses
but chemicals inside the animal coat the diffuse and re-
act, forming typical animal coat patterns. Turing [166]
was the first to suggest that these patterns can be de-
scribed in a diffusion–reaction model.

We already have encountered a diffusion–reaction model. The diffusion–convection equa-
tion is the limiting case of the longitudinal compartment model in chap. 3 for a vanishing loss
term. The other limiting cases, the diffusion–reaction model, arises for a vanishing convection
term. The diffusion–reaction model in chap. 3 is very simple in such that it only contains a
loss term as reaction term:

∂c

∂t
= D

∂2c

∂x2
− γc . (4.73)

The general diffusion reaction model might be written in the form

∂~c

∂t
= D∆~c+ ~F (~c) . (4.74)

Here we use a vector ~c of concentrations of different species ci to allow for reactions between
species and track all of them, a diffusion tensor D to allow for different diffusion coefficients
for the different species,4 the Laplace operator to allow for three-dimensional transport and a
vector function ~F (~c) that contains losses and reactions. This function mathematically couples
the different balances because the reactions provide the coupling between the different species:
the losses in ci might be the sources in ci+1 or vice versa. The basic equations describing
these reactions are summarized in sect. C.1.

The main differences in the numerical treatment compared to the simpler model (4.73)
discussed in chap. 3 are: (1) the convection-term is neglected (as already indicated in (4.73).
This does not influence the numerical treatment because the schemes had been chosen to
accommodate diffusion but were not optimized for convection. (2) The spatial scheme is
not limited to one dimension but can work in up to three dimensions. The consequences
for the numerical treatment are the introduction of a five-point scheme (for 2D) or a seven-
point scheme (for 3D) instead of the centered scheme. This has already been discussed in
connection with the heat conduction equation in sect. 4.2.1. (3) The problem does not consist
of just one PDE but a scheme of coupled PDEs. This is the new aspect; it will be discussed
in this section.

4D thus becomes a diagonal tensor – diffusion is assumed to be isotropic for each species, the tensor only
is required to allow for different diffusion coefficients for each species.
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4.4.1 Turing Patterns

As an example we will discuss here a simple diffusion–reaction model proposed by A. Turing
in the early 1950s [166] as a possible mechanism for biological pattern formation.

Turing suggested that pattern development in plants and animals could be understood
from the interaction of basic processes. He showed that stable processes could combine to
produce an instability. The particular example he took was of diffusion-driven instability.
This phenomenon has now been found in chemistry but it is still controversial in biology.
However, the model does produce patterns that are intriguingly similar to those observed in
animals and has stimulated a number of laboratories to carry out experiments to test the
model. A more recent overview is given in [104] and [105].

The model involves a low-range diffusing activator and a wide-range diffusing inhibitor:
the activator A stays close to its injection site while the inhibitor H disperses trough a much
larger volume. Activator production is enhanced by the presence of the activator while it is
inhibited by the presence of inhibitors. The inhibitor production is linked to the presence
of activators, but it does not depend on the presence of the inhibitor: the inhibitor is not
self-enhancing. The temporal change in local activator concentration,

∂A

∂t
=
kA,1A

H
− kA,2 + kA,1kA,3 +DA

∂2A

∂x2
, (4.75)

is determined, from left to right, by activator production from existing activator at a pro-
duction rate kA,1, activator decay with a decay rate kA,2, basic activator production (does
not require the presence of the activator) as described by a production rate kA,3, and the
diffusion of the activator, described by the diffusion coefficient DA. Here the production of
the activator is a second order process.

The change in concentration of the inhibitor,

∂H

∂t
= kH,1A

2 − kH,2H + kH,3 +DH
∂2H

∂x2
, (4.76)

is determined by the second-oder production of H regulated by a production rate kH,1, in-
hibitor decay regulated by the decay rate kH,2, basic inhibitor production without an activator
present regulated by the production rate kH,3, and the diffusion of the inhibitor, regulated
by the diffusion coefficient DH.

For this special case, the inhibitor has a wide-range while the activator has a small-range
only, thus it is DA < DH. Stable patterns arise for kA,1 ≈ kA,2 ≈ kH,2, kH,3 ≈ kA,1kA,3 and
kH,1 � kA,1.

Different problems lead to slightly different versions of the two coupled diffusion–reaction
equations (4.75) and (4.76). The mathematical treatment, in particular the introduction of
dimensionless variables is described and discussed in detail in [180], although the focus of
that paper is material sciences rather than animal coats. Here the transition to dimension-
less variables has the advantage that the same equations can be scaled for different geome-
tries/reaction constants. The topic of Turing patterns and the mathematical treatment of
the resulting equations will not be discussed in detail in this text but is the topic of project
1 as described in sect. 10.2.

4.4.2 Other Application of Diffusion–Reaction Models

Diffusion–reaction equations in biological matter face applications not only in patterns on
animal coats but also in neurological imaging. Here the aim is functional imaging, that is a
tracer material is transported by the blood stream into the brain. The brains metabolism
strongly depends on its activity. Thus the brains activity is reflected in the reaction coeffi-
cients. Using tracer that can be detected from the outside (either because they are emitting
hard radiation that can be detected at the outside as in PET and SPECT) or strongly modify
incident X-rays (such as in CT), the brains activity patterns can be studied. Examples are
given on (http://www.bocaradiology.com/cases/neuro/).

c© M.-B. Kallenrode 13th November 2006

http://www.bocaradiology.com/cases/neuro/


74 CHAPTER 4. DIFFUSION AND HEAT CONDUCTION

A more general introduction to the topic of Turing pattern in biology and to different
mathematical methods is given at (http://zool33.uni-graz.at/schmickl/Self-organization/
Pattern formation/Reaction-diffusion/reaction-diffusion.html)

A non-biological application of coupled diffusion–reaction equations are material sciences,
in particular the development of low-dimensional layers on surfaces. Papers [105] and [179]
give excellent overviews on this topic; [180] a carefully discussed and described example. The
BA thesis [138] introduces a slightly different but compact and fast model to solve these
equations for nucleation on vicinal layers.

4.5 Diffusion in Porous Media

Diffusion of a substance in a fluid is based on the molecular motion of fluid and chemical and
transport parameters can be derived in a rather simple model. Water resources management
is interested in this problem, for instance, to determine countermeasures to be taken in the
event of an oil spill. But water resources management also is interested in a related problem:
the transport of water and/or pollutants through porous media. This process converts surface
water to groundwater but also allows pollutants to leak from the surface into the ground
water, spoiling valuable resources. The related buzzword is transport through porous media
and a wealth of literature and models exists, such as [9, 10, 41, 62, 95, 96].

SoilFluid Air

Figure 4.10: Porous medium

A porous medium such as sketched in
Fig. 4.10 consist of matter in all three phases.
The base is the solid phase, such as soil par-
ticles or fractured rock. Since this matter is
not continuous but particulate, pores build be-
tween the particles. These pores can either be
filled with a fluid, in general water, or air. The
porosity ε is defined as the ratio of the volume of
the pore compared to the total volume. Some
of these pores, however, are irrelevant for the
subsoil flow: some are entirely closed (isolated
pores), thus no fluid can penetrate into them. Others are dead-end pores: they are only par-
tially relevant for fluid transport. Thus the efficient porosity, which is relevant for transport,
is smaller than the porosity.

Soil is saturated, that is saturation S = 1, if the entire pore volume is filled with water:
the saturated zone is the realm of groundwater. The zone between the saturated zone and
the terrestrial surface is the unsaturated or vardose zone. Here the pores are filled partly
with fluid and partly with air.

The flow of water through a porous medium is regulated by the volume flow Q through
the surface A:

vfilter =
Q

A
. (4.77)

This speed, also called the filtration speed or D’Arcy speed, can be determined from obser-
vational studies. It is related to the particle speed u by

u =
vfilter

εS
or v =

Q

AεS
(4.78)

because εS describes the efficient surface available for the flow. In case of a saturated medium,
the effective surface is εA; if the medium is partly saturated, it becomes εS A.

The subsoil flow (Sickerströmung) is described by D’Arcy’s law [34]. It is an empirical
law, derived from experiments with columns of sand. The filter speed is proportional to the
pressure difference ∆p at the inflow and outflow of the pipe, the effective permeability K
and it is inversely proportional to the vertical length of the pipe (here only the difference in
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height is relevant, not a path length along a slanted pipe):

v = K
∆p
L

. (4.79)

The effective permeability K is related to the viscosity µ and the density % of the fluid and
the permeability k of the soil:

K =
k%g

µ
(4.80)

with g being the acceleration of gravity. D’Arcy’s law is valid in a large number of circum-
stances, however, it fails for high velocities (Reynolds’ numbers exceeding 10), large pressure
differences and clefted rock. The empirical part is the efficient permeability; the structure of
D’Arcy’s law also can be derived from the Navier–Stokes equation [62].

The more general form of D’Arcy’s law allows for a three dimensional flow. Thus the
scalar quantity permeability K has to be substituted by a tensor K and the fraction ∆p/L
by a gradient

~v = −K∇p . (4.81)

In this section we will limit ourselves to a very simple example; we will encounter D’Arcy’s
law again in a more complex problem in chap. 6.

Side question 24 What are similarities and differences both formally and physically be-
tween D’Arcy’s law and conventional diffusion?

4.5.1 A Simple Example: Ground Penetration from an Oil Spill

In an oil spill on soil, the main question is concerned with the dependence of penetration
depth from time: how much soil has to be removed to remove all oil. In our example, an oil
slick of depth h0 is deposited. It begins to seep into the ground, the vertical distance z is
measured from the soil’s surface downwards.

In the simplest model, we start from the mass balance in the soil:

Rate of oil in − Rate of oil out = Rate of change of oil content
%vA − 0 = ε%Adz

dt .
(4.82)

Figure 4.11: Oil layer above
soil

Here ε is the porosity of the soil and v the penetration veloc-
ity. A is a surface, % the density. The speed can be expressed
using D’Arcy’s law in the form

v =
K

µ

∆p
L

(4.83)

with K as the efficient permeability of the soil and µ the
viscosity of the oil. ∆p is the driving force for the process,
which is a pressure difference. It can be expressed as the
weight per unit area of the oil column: ∆p = %g(z + h) with
h being the variable thickness of the oil column covering the
top surface of the soil. L is the depth of the porous medium in contact with the oil and thus
corresponds to penetration depth z. D’Arcy’s law (4.83) thus can be rewritten as

v =
K

µ
%g

z + h

z
. (4.84)

The penetration depth z appears in both numerator and denominator because v increases
with column weight %g(z + h) while further seeping is hindered by an increase in the soil
column z already filled with oil.

To describe the system completely, a third equation is required, and that is the total oil
balance:

Initial oil amount in layer = Oil left in layer + Oil in soil
h0%A = h%A + z%εA

(4.85)
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or

h = (h0 − εz) . (4.86)

The equations (4.84), (4.82) and (4.86) can be combined into one differential equation

dz
dt

=
K%g

εµ

[
h0

z
+ (1− ε)

]
. (4.87)

This is an ordinary differential equation that can be integrated by separation of variables:

t =
εµ

K%g

[
L

1− ε
− h0

(1− ε)2
ln
(

1 +
L(1− ε)

h0

)]
(4.88)

with L being the penetration depth at time t.
For a simple test we assume an initial height of the oil layer of h0 = 6 cm, a porosity of the

ground ε = 0.7, a permeability of the ground K = 10−6 cm2, an oil viscosity µ = 0.02 Pa s,
and an oil density % = 800 kg/m3. The time it takes the oil to penetrate 4 cm into the
ground then is 210 s, that is a time scale of minutes. This fast penetration into the ground
results from the rather high permeability. For dense soils, it can be lower by about 2 orders.
In addition, the porosity in dense soil can be as low as 0.1. The time scale then is of the
order of hours rather than the minutes derived for the values above.

4.6 Phase Transitions: The Stefan Problem

Heat conduction basically can be linked to a diffusion process. The fundamental difference
between heat being transferred in a liquid and a chemical diffusing through that liquid is the
energetics: while in diffusion the temperature does not change and thus the process is kept
alive through the thermal motion of the molecules, in heat conduction the heat is transported
through the medium by collisions. If we consider a container with a liquid (such as chicken
soup) and put it into a cooler environment (such as a refrigerator) heat transfer will occur
from the container to its surroundings but also inside the container. And as heat is removed
from the container, in parts of the liquid the temperature will drop below freezing point and
the liquid will solidify. Thus heat transport can invoke a phase transition – which is related
to a drastic change in inner energy.

Phase transitions are a topic in many industrial processes (e.g. steel production), in
crystal growing or in traffic modeling because a traffic jam also can be viewed as a phase
transition from the mobile liquid phase to the solid phase. The reverse process also can be
considered, e.g. an evaporating droplet or a burning particle/beam. Oxidative degrading of
organic particles in the atmosphere is an environmentally sound example.

4.6.1 The Shrinking Core Model and Quasi-Steady State

To get a first idea, we will start with a simple moving boundary problem. The general aim
in modeling such processes is the temporal evolution of the system. For instance, we might
be interested in a rate for crystal growth or dissolution or the time needed for a reacting
particle to be consumed completely. Since the state variables of such systems in principle are
functions of distance and time, normally the system is described by coupled nonlinear PDEs.
Occasionally, such a system can be reduced to a set of simple algebraic equations and ODEs.
This is possible if the following simplifying concepts can be fulfilled:

• the shrinking (or growing) core refers to the material contained by the moving front.
Examples are a burning particle (e.g. coal dust), an evaporating droplet or a growing
crystal seed. The core is assumed to have uniform properties and can be treated as an
unsteady stirred tank.

• the movement of the front is slow enough to allow the transport rates outside the core to
attain a quasi-steady state. This implies that as the core front slowly recedes or grows,
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the rate of diffusion or conduction through the external layer quickly adjusts itself to a
steady-state value given by Fick’s law or Fourier’s law.

• the processes involved (phase change, transport, reaction) are dominated by a single rate-
controlling step.

Under these assumption, distance and time are no longer independent variables but distance
(expressed through the changing size or mass of the core) becomes a dependent variable for
the core’s unsteady balance but is retained as an independent variable for the external, quasi-
steady state balance. Time only appears in the core balance. The model thus is composed
of unsteady core balances and quasi-steady-state external balances. When both mass end
energy changes are involved, two such balances constitute the complete model. When there
is a change in mass only, single equations suffice with the reaction rates entering the system
as auxiliary relations.

Figure 4.12: Reacting solid par-
ticle with external ash layer

After these general remarks let us turn to the problem:
a solid spherical particle undergos a reaction according to
the scheme

Ag + bBs → Products (4.89)

with reaction rates rA and rB which are related by the
stoichiometry of the reactions as follows

rA =
1
b
rB . (4.90)

The reaction rate is fast enough to assure that all the
reactant arriving at the surface of the particle is consumed
instantaneously: CA|r=rc = 0. The core front, on the
other hand, moves slowly enough to permit the external layer of solid products to be in
steady-state.

We are now looking for the time dependence of the particle radius rC. The first task is
to collect the relevant equations. The unsteady core balance can be written as

Rate of B in − Rate of B out = Rate of change of B
0 − rB = 4πr2C %B

drC
dt

(4.91)

with the unknown reaction rate rB and the particle density %B. The second relevant equation
is the steady-state mass balance in the product layer:

Rate of A in at r − Rate of A out at rC = 0
4πr2Deff

dCA
dr − rA = 0 .

(4.92)

Here Deff is the effective diffusivity of reactant A in the product layer. This equation can be
separated and integrated

4πDeff

rA

CA0∫
0

dCA =

r0∫
rC

dr
r2

(4.93)

giving

4πDeffCA0

rA
=

1
t0
− 1
rC

(4.94)

with r0 being the initial radius of the particle, see also Fig. 4.12.
Equations (4.90), (4.91) and (4.94) describe the system completely. They can be combined

into one ODE for rC(t):

− 4πDeffbCA0

1/rC − 1/r
= 4πr2C%B

drC
dt

. (4.95)

c© M.-B. Kallenrode 13th November 2006



78 CHAPTER 4. DIFFUSION AND HEAT CONDUCTION

Separation of variables and integration yields

t =
%Br

2
0

6bDeffCA0

[
1− 3

(
rC
r0

)2

+ 2
(
rC
r0

)3
]
. (4.96)

The time required for the particle to be consumed completely by the reaction then is

tend =
%br

2
0

6bDeffCA0

. (4.97)

Side question 25 The model is based on some assumptions. Discuss for each of them how
the model must be modified if the assumption assumption cannot be met by reality.

4.6.2 Solidification in Heat Transfer

This example attempts to model a Stefan problem for a few specialized geometries. Solidifi-
cation in heat transfer is one example for a phase change problem. An ordinary heat transfer
problem is a boundary-value problem: the equations and conditions on a prescribed fixed
boundary are known. In case of solidification/melting the boundary of the problem is not
known. Thus we must solve the diffusion or heat equation in an unknown region which has
to be determined as part of the solution.

In this case, analytical solutions are possible only for extremely restricted geometries and
initial and boundary conditions. Thus modeling requires numerical methods.

Problem 1: Melting in Simple Geometry

A material at its freezing temperature Tf fills the space above the x-plane. It is subject to
variable temperatures T (t, 0) at x = 0. In this case, the governing equation is

∂T

∂t
=
∂2T

∂t2
; 0 < x < s(t) and t > 0 (4.98)

with the boundary condition

T (t, 0) = f(t) and T (s(t), t) = Tf . (4.99)

The latter equation states that at the boundary s(t) between solid and liquid the temperature
always is exactly at the freezing temperature. The position s(t) of the moving boundary
between solid and liquid phase has to be determined in this problem. The condition for this
boundary (which is a second boundary condition to our problem) can be described as

ds
dt

= −α
(
∂T

∂x

)
x=s(t)

. (4.100)

Here α = c(Tf −Tref)/L is the Stephan number with c being the specific heat capacity, L the
latent heat, and Tref some reference temperature. The reference temperature can be selected
such that f(t = 0) = 1 or max

0≤t≤tfinal
|f(t)| = 1.

Although this geometry is extremely simple, it is also instructive because it allows for
simple approximations and is also applies to entirely different situations such as the traffic
jam in sect. 4.6.3.

Problem 2: Outward Spherical Solidification

Consider a sphere of a saturated liquid. Temperatures at its boundary are low enough to
allow solidification to start. Again the governing equation is (4.98), only now it is given in
spherical coordinates:

∂T

∂t
=

1
r

∂2(rT )
∂r2

1 < r < s(t) and t > 0 . (4.101)
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Boundary conditions also have to be written in spherical coordinates

T (r = 1, t) = f(t) , T (r = s(t), t) = Tf (4.102)

and for the moving boundary

ds
dt

= α

(
∂T

∂r

)
r=s(t)

. (4.103)

Summary of Methods

To solve one of the above problems, a number of different methods is available:

• the enthalpy method is a popular fixed-domain method. An enthalpy function is introduced
such that the flux condition is automatically satisfied across the phase front because this
can easily be recognized as a jump in enthalpy. Thus the solution is identical to the position
of the jump in enthalpy.

• the boundary immobilization method (BIM) requires a suitable transformation such that
the moving boundary is fixed. The solution than can be obtained by a finite difference
method.

• the perturbation method only works for problems described by small Stefan numbers.
• the nodal integration method (NIM) is a semi-analytical method. The space-time domain is

first discretized into space-time nodes. Then space-averaged, time dependent temperatures
and time-averaged space-dependent temperatures are defined for each node, reducing the
problem to a simple first-order ODE.

• the heat balance integral method (HBIM) requires a good guess for a temperature profile
to start with. The heat equation than is integrated over limited parts of space to obtain a
set of heat balance equations. The main idea is to subdivide the dependent variable and
assume a linear profile within each subdivision.

All methods have their pros and cons (and also their limitations). They are discussed in
more detail and applied to the two examples given above in [20].

4.6.3 Traffic Jam and Phase Transition

Traffic jams can be modeled in different ways, for a review see e.g. [117]. One possibility is
to view a traffic jam as a phase transition. In free flowing traffic, vehicles can overtake or are
outrun by others, resembling particle motion in a directed flow. In a traffic jam, however,
vehicles are almost equally spaced, resembling a crystal lattice.

Within this lecture we will not dig deeper into this problem, however, one of the end-
of-term-projects is concerned with the traffic jam as special form of the Stefan problem, see
sect. 10.3.

Literature

The classical introduction to diffusion is Crank [32]; the chapters in Bird et al. [16] also give
introductions to diffusion and heat transfer. Both books do not deal with numerical methods
but provide large samples for solutions of the relevant equations for limited geometries or
boundary/initial conditions. Nonetheless, they allow for a good understanding of the physical
basics. Other references, in particular more specialized ones, have been given throughout the
text.

A standard journal regarding transport (including theory, experiments, applications and
numerics) is Transport in Porous Media (Springer), which is available in electronic form at
the UB (click your way from the UB homepage throught the steps EZB → Geologie und
Paläontologie → Transport in Porous Media).
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Questions

Frage 13 The diffusion coefficient is given in units of area/time. Explain why (the state-
ment, that is is the product of a mean free path ad a speed is not sufficient).

Frage 14 Explain similarities and differences between diffusion and dispersion

Frage 15 How can the diffusion coefficient be derived, how the dispersion coefficient.

Frage 16 What is the relation between diffusion and a bell curve (Gauß distribution)?

Frage 17 Can diffusion and dispersion co-exist?

Frage 18 Is diffusion limited to spatial diffusion? Why not? Give other examples.

Frage 19 Imagine milk in a cup of tea. The tea is well-stirred. Do milk molecules diffuse in
this liquid? Do they move at all?

Frage 20 Sketch the derivation of a diffusion equation. What are the relevant ingredients?

Frage 21 Sketch the derivation of a dispersion equation. What are the relevant ingredients?

Frage 22 Sketch the derivation of a diffusion–convection equation. How does this differ
from the derivation of a simple diffusion equation?

Frage 23 How do solutions to a diffusion problem and to a diffusion–convection problem
differ? What does this tell us about the relation between the two processes.

Frage 24 A common tool for PDEs is the separation ansatz. Sketch the idea of this ansatz.
Give physical examples for the application of this principle.

Frage 25 Describe the discretization of a PDE in 2D. Discuss advantages and disadvantages.
Compare to methods in 1D.

Frage 26 Sketch the idea of iterative methods in the inversion of large matrices. What is
the conditioning matrix?

Frage 27 Briefly sketch the ideas of convergence and amplification factor (either a general
discussion or one related to the iterative methods).

Frage 28 Discuss advantages and disadvantages in the conventional approach in climate
modeling: calculate atmospheric parameters for CO2 doubling.

Frage 29 Try to develop a graphical description for the generation of Turing patterns.

Frage 30 Discuss D’Arcy’s law as one example for a phenomenological model. Try to derive
it from Navier–Stokes. This basically is a decision on which terms can be neglected.

Frage 31 Discuss porosity and relative porosity.

Frage 32 What is a Stefan problem in general? Give examples. Which challenges offers a
Stefan problem in modeling? Or even simpler: which quantity is the target quantity in a
Stefan problem?
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Chapter 5
Focused Transport: Finite Difference
Model with Splitting Scheme

This chapter is not easy reading but allows a glimpse on the problems in real world model-
ing. It starts from a simple one-dimensional diffusion–convection equation as encountered in
chapter 4. However, since the transport equation contains additional terms, a time splitting
scheme has to introduced and the terms have to be treated differently according to the type
of PDE they represent. The example is focused transport in interplanetary space, that is
the equation governing the propagation of energetic charged particles from the Sun to an
observer in interplanetary space, for instance Earth. The numerical schemes employed in
this solution differ from the ones encountered sofar in such that the transport schemes do
not require a simultaneous solution of all the difference equations but solutions can advance
step by step – although this comes at the expense of accuracy (most schemes are accurate to
second-order only), the advantage is a very compact scheme requiring only limited compu-
tational resources. The extended version of the transport equation including the shock as a
moving source of energetic particles (or formally as a moving boundary condition – a Stefan
problem) is also discussed briefly.
Goals: after working through this chapter you should be able:

• to separate a complex transport PDE into subequations and discretize these according to
the type of the sub-PDE.

• to explain (and apply) the concept of a splitting scheme.
• to describe the relevant transport processes in interplanetary space and their physical basis.

5.1 The Problem

Energetic charged particles from different sources populate the interplanetary medium. Some
sources, such as planetary magnetospheres or the galactic cosmic radiation are continuous.
Solar energetic particles (SEPs), on the other hand, are a more or less δ-like particle injection
from the Sun. The motion of these particles through interplanetary space is modified by a
number of processes, namely pitch angle scattering at magnetic field turbulence, focusing in
the diverging interplanetary magnetic field, field parallel propagation, convection with the
solar wind and adiabatic deceleration with the expansion of the solar wind. All processes
combined lead to a rather complex transport equation – with a correspondingly complex
numerical model.

Fits of this transport equation to solar energetic particle events observed in interplane-
tary space allow us to determine propagation parameters, such as the pitch angle diffusions
coefficient. These results, in turn, help to understand the propagation for particles from
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the continuous sources and thus allows to estimate their source strength. Therefore solar
energetic particles allow us to determine Green’s function of the interplanetary medium.

5.2 The Model

Our transport model is concerned with energetic charged particles, namely electrons, pro-
tons, and α-particles in interplanetary space. To develop the transport model we have to
consider the interactions between particles and the interplanetary medium – thus we must
help ourselves to some knowledge about the interplanetary medium. A legendary text, in-
sightful although based on only sparse observations, is Hundhausen’s Solar Wind [66], a more
recent tutorial is given by Russell [145].

Figure 5.1: Interplanetary mag-
netic field [147]

The basic features of the interplanetary medium are
the solar wind and the interplanetary magnetic field
(IMF). The solar wind is a continuous plasma flow di-
rected radially outward from the Sun. Its basic character-
istics are a density of a few particles per cm3 at Earth’s
orbit, an average speed of 400 km/s and a temperature of
about 1 Mio K [151, 158].

The interplanetary magnetic field has its origin in the
solar magnetic field. In the equatorial plane, the coronal
magnetic field is directed radially – the entire solar mag-
netic field topology more closely resembles a monopole
than a dipole. In interplanetary space the field geometry
can be described by an Archimedian spiral:1 the footpoint
of the magnetic field line rotates with the Sun at constant angular speed. On the other hand,
the magnetic field is frozen-in into the radially expanding solar wind. Thus the field line is
deflected from the radial into a spiral, see Fig. 5.1. The figure also might help to reduce
some objections against the radial solar magnetic field: it is not a monopole field because
the polarity changes – it is just a complex field with a topology that in the equatorial plane
is best described as radial.

Figure 5.2: Magnetic field power-
density spectrum [36]

As a consequence of the Archimedian shape, the field
does not decrease as r−2 but as

B(r) =
Bor

2
o

r2

√
1 +

(
ω�r

ur

)2

. (5.1)

Here ro and Bo are distance and magnetic field at the
solar surface, ur is the radial solar wind speed and ω� is
the Sun’s angular speed.

Fluctuations in the solar wind parameters and the su-
pergranular motion on the Sun’s surface create turbulence
in interplanetary space. Since the magnetic field is frozen-
in into the solar wind, the magnetic field is turbulent, too.
This turbulence leads to pitch angle scattering, thus the
basic process of interplanetary propagation is a stochastic
process.

The magnetic field fluctuations can be described by a
power density spectrum

f(k‖) = C · k−q
‖ . (5.2)

Here k‖ is the wave number parallel to the field, q the slope, and C a constant describing the
level of the turbulence.

1The Archimedian spiral is the superposition of two motions: a mass moves along a rod at constant speed
while the rod rotates around it starting point with constant angular speed.
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The power density spectrum in Fig. 5.2 shows magnetic field fluctuations on different
scales. Its slope is distinct in different parts of the spectrum, indicating different sources and
modes of turbulence. Basically, four regimes can be distinguished: (1) Large-scale structures
lasting a few days up to a solar rotation are related to the stream structure of the solar
wind and to solar wind expansion. Both processes are the sources of turbulence on smaller
scales; the frequencies of the large-scale turbulence are below 5 × 10−6 Hz. (2) Meso-scale
fluctuations are associated with the flux-tube structure of the interplanetary medium which
originates in the photospheric supergranulation. Frequencies range between 5 × 10−6 and
about 10−4 Hz. (3) In the inertial range, mainly Alfvén waves with periods between some
20 min and more than 15 h are found, corresponding to frequencies between 10−4 and 1 Hz.
The slope q varies between −1.5 and −1.9. Magnetic field fluctuations in the inertial range
seem to be responsible for the scattering of protons in interplanetary space. (4) The smallest
scales are in the dissipation range above 1 Hz. Here the spectrum is steeper with a slope
close to −3. The observed fluctuations can be attributed to ion cyclotron waves, ion acoustic
waves, and Whistlers.

5.2.1 Physical Basis

The propagation of a particle in an electromagnetic field is determined by Lorentz’ force

~F = q
(
~E + ~v × ~B

)
. (5.3)

Since the interplanetary plasma is completely ionized and densities are low, electric fields are
canceled almost immediately. The Lorentz’ force therefore reduces to

~F = q~v × ~B . (5.4)

In a slowly varying field2 the particle motion can be decomposed into two parts: a field
parallel motion described by v‖ = µv = v cosα and a motion perpendicular to the field,
described by v⊥ = v sinα. Here α is the pitch angle, that is the angle between the particle’s
direction of motion and the magnetic field line.

The magnetic field thus introduces a special frame of reference into the description of
charged particle motion: the direction of the field line. The description of the motion thus
will use the length s along the interplanetary magnetic field line as spatial coordinate. The
motion of the particle along the field line then is determined by a systematic process, that is
focusing in the diverging interplanetary magnetic field, and by a stochastic process, namely
resonant pitch angle scattering at superposed magnetic field irregularities.

5.2.2 Focusing in the Large Scale Interplanetary Magnetic Field

Focusing is related to the constancy of the magnetic moment

µ =
Ekin,‖

B
=
mv2

‖

2B
=
mv2 sin2 α

2B
= const (5.5)

or for two different positions and magnetic field strengths

sin2 α1

B1
=

sin2 α2

B2
. (5.6)

2Slowly varying field here means (a) the temporal variation is small compared to the gyration time, (b)
the spatial variation perpendicular to the field is small within a Larmor radius, and (c) the spatial variation
along the field is small within the field-parallel distance traversed by the particle during one gyration. If these
conditions are fulfilled, the particle motion can be described by adiabatic invariants. Most prominent example
for such an invariant is the constancy of the magnetic moment. It explains magnetic mirrors and magnetic
bottles and thus includes the foundations of plasma confinement. The concept of adiabatic invariants and
single particle motion is briefly introduced in [88]; classical texts on this topic are Alfvén and Fälthammar
[2] and Northrop [122].
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This short form is valid because the Lorentz force acts perpendicular to the particle’s velocity.
Thus particle acceleration implies a change in direction but not in speed and thus also not
in kinetic energy: Ekin = const ⇒ v = const.

From (5.6) we can determine the change of pitch angle along the interplanetary magnetic
field line because we know the variation of B with s (see (5.1)).

5.2.3 Pitch Angle Diffusion

Thus far we have not discussed the physical process of scattering. In the graphical description
we have tacitly assumed that we are dealing with large-angle interactions: either the particle
continues to propagate in its original direction of motion or it is turned around by 180◦. Fast
particles in a plasma are more likely to encounter small-angle interactions. Thus to turn a
particle around, a large number of interactions is required.3

In space plasmas small-angle interactions are not due to Coulomb scattering at the back-
ground plasma but due to scattering at plasma waves. The physical processes is briefly
sketched in Sect. 5.2.5; the formal description is similar to the one in spatial diffusion.

If the energy density of the magnetized plasma exceeds that of the energetic particles, the
latter can be regarded as test particles gyrating around the lines of force. A particle has a
pitch angle µ = cosα. Each interaction leads to a small change in µ, i.e. a diffusion in pitch
angle space. We can derive a scattering term strictly analogous to spatial diffusion. Equation
(4.14) can be rewritten easily: he driving force for spatial diffusion, the spatial gradient, is
replaced by the driving force for pitch angle diffusion, the gradient in pitch angle space. The
spatial derivatives have to be replaced by a derivative to µ and the scattering term reads

∂

∂µ

(
κ(µ)

∂f

∂µ

)
, (5.7)

with κ as pitch angle diffusion coefficient and f as phase space density. Note that the
scattering depends on µ, and thus the scattering can be different for different pitch angles,
depending on the waves available for wave–particle interaction. The pitch angle diffusion
coefficient can be related to the particle mean free path parallel to the magnetic field

λ‖ :=
3
8
v

+1∫
−1

(1− µ2)2

κ(µ)
dµ . (5.8)

Here λ‖ does not describe the average distance traveled between two consecutive small-angle
scattering but the distance traveled before the particle’s pitch angle has been changed by
90◦, i.e. the direction of motion has been reversed. Thus for the overall motion, λ‖ has a
meaning comparable to the mean free path in ordinary spatial diffusion.

The term (5.7) also can be used to describe spatial diffusion if we also consider the field-
parallel motion µv of the particles. Thus as in the diffusion–convection equation we have
to consider the streaming of particles with respect to the scattering centers. The transport
equation then can be written as

∂f

∂t
+ µv

∂f

∂s
=

∂

∂µ

(
κ(µ)

∂f

∂µ

)
. (5.9)

Here ∂f/∂s is the spatial gradient along the magnetic field line. This dependence is sufficient,
because the motion of the guiding center is one-dimensional along the magnetic field line and
the particle gyrates around it. We will encounter this equation again as part of the focused
transport equation (5.14) for particles in interplanetary space.

3Collisions and the relative amount of large and small-angle interactions in Coulomb collisions are discussed
in sect. C.4.2.
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5.2.4 Diffusion in Momentum Space

Collisions not only change a particle’s direction of motion but also its energy. This is a basic
requirement in the establishment of a thermal distribution. Momentum transfer can happen
by collisions between particles as well as by wave–particle interaction. If the energy gain in
each interaction is small compared with the particle energy, this can be described as diffusion
in momentum space. Instead of particle flow, streaming Sp in momentum results in

Sp = −Dpp
∂f

∂p
+

dp
dt
f . (5.10)

Here Dpp is the diffusion coefficient in momentum space. The second term describes non-
diffusive changes in momentum, such as ionization, and corresponds to the convective term in
the spatial diffusion equation. It therefore can also be described as convection in momentum
space. Again, the physics of the scattering process is hidden in Dpp.

5.2.5 Wave–Particle Interactions

Here we shall briefly introduce some of the basic processes of wave–particle interactions which
are an example of the non-linearity of plasma physics. While for the linear aspects treated
above a well-developed mathematical description is available, in the non-linear theory no
general algorithms exist. Only few analytical methods are known, most of them relying on
approximations. One of them is the limitation to lowest-order perturbations.

Quasi-Linear Theory

Quasi-linear theory is based on perturbation theory; interactions between waves and particles
are considered to first order only. Thus all terms of second order in the disturbance should
be small enough to be ignored. Only weakly turbulent wave–particle interactions can be
treated this way: the particle distribution is only weakly affected by the self-excited waves
in a random-phase uncorrelated way. This requirement not only corresponds to small distur-
bances but even directly results from it because the waves are described in the framework
of perturbation theory. The waves generated by the particles will affect the particles in a
way which will tend to reduce the waves. Thus we assume the plasma to be a self-stabilizing
system: neither indefinite wave growth happens nor are the particles trapped in a wave well.

The basic equation is the Vlasov equation4 (C.39). We split all quantities into a slowly
evolving average part, such as f0, ~E0 = 0, and ~B0, and a fluctuating part f1, ~E1, and ~B1.
The long-term averages vanish: 〈f1〉 = 〈 ~E1〉 = 〈 ~B1〉 = 0. Note that here the quantities with
index ‘0’ are not constant background quantities but slowly evolving average properties of
the system. These are the quantities we are interested in – the fluctuating quantities are of
interest only in so far as they give rise to the evolution of the phase space density.

With the above ansatz, the average Vlasov equation reads

∂f0
∂t

+ ~v · ∇f0 +
q

m
~v × ~B0 ·

∂F0

∂~v
= − q

m

〈(
~E1 + ~v × ~B1

)
· ∂f1
∂~v

〉
. (5.11)

The term on the right-hand side contains the non-vanishing averages of the fluctuations
and describes the interactions between the fluctuating fields and the fluctuating part of
the particle distribution. These interactions combined with the slowly evolving fields on
the left-hand side of (5.11) lead to the phase space evolution of the slowly varying part of
the distribution. Note that we have not made any assumptions about the smallness of the
fluctuations, the only limitation is a clear separation between the fluctuating part and the
average behavior of the plasma.

Equation (5.11) is the fundamental equation in non-linear plasma physics. Solutions,
however, are difficult to obtain because they require an a priori knowledge of the fluctuating

4As the Boltzmann equation, the Vlasov equation is a transport equation for phase space density in case
of collisions. The Vlasov equation is the limitation to electromagnetic forces, see also sect. C.3.
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fields to calculate the average term on the right-hand side. This term has the nature of a
Boltzmann collision term. Note that these collisions are not particle–particle interactions but
result from the non-linear coupling between the particles and the fluctuating wave fields.

If the particles and the fluctuating fields are known, the term on the right-hand side can
be calculated. It can then be used to derive an expression for the scattering coefficients
mentioned above which depends on particle properties, in general the rigidity,5 and the
properties of the waves, in particular their power density spectrum as shown in Fig. 5.2.

Resonance Scattering

The scattering of particles by waves can be described as a random walk process if the in-
dividual interactions lead to small-angle scattering only. Thus a reversal of the direction of
motion requires a large number of these small-angle scatters. If we assume a particle to be
in resonance with the wave, the scattering is more efficient because the small-angle changes
all work together into one direction instead of trying to cancel each other. Thus pitch angle
scattering will mainly occur from interactions with field fluctuations with wavelengths in res-
onance with the particle motion along the field. Such a resonance interaction can formally be
understood from a simple mechanical or electrical analogy, such as a light torsion pendulum
in a turbulent gas or a resonant circuit excited by noise.

Figure 5.3: Resonance scat-
tering

The idea is sketched in Fig. 5.3. Assume a simple model
of magnetic field fluctuations (the slab model): the (relevant)
waves propagate only along the magnetic field (~k‖ ~B0) and the
fluctuating quantities are symmetric around the wave vector.
Single out a certain wave number k. A particle is in resonance
with this wave if it propagates a wave length λ‖ along the
magnetic field during one gyration: λ‖ = v‖ Tc = µv Tc. With
k‖ = 2π/λ‖ and Tc = 2π/ωc the resonance condition can be
written as

k‖ =
ωc

v‖
=
ωc

µv
. (5.12)

The amount of scattering a particle with pitch angle α experiences basically depends on the
power density f(k‖) of the waves at the resonance frequency. This dependence clearly shows
why the pitch angle diffusion coefficient κ depends on µ: particles with different pitch angles
are scattered by different wave numbers with different power densities.

Figure 5.4: Resonant wave–
particle interaction

The pitch angle diffusion coefficient is related to the mag-
netic field power density spectrum in interplanetary space by

κ(µ) = A(1− µ2)|µ|q−1 , (5.13)

with A being a constant related to the level C of the turbu-
lence. The particle mean free path can then be determined
by (5.8). The mean free path depends on particle rigidity as
λ‖ ∼ P 2−q, as long as q < 2.

An even more graphical example for resonant wave–
particle interaction is stochastic acceleration. In contrast to
spatial scattering here the interaction leads to scattering in
momentum space. The particle interacts with the fluctuat-
ing electric field of a wave, in particular if this field rotates
around the magnetic field line as in a circularly polarized wave. A particle is in resonance
with the wave if its gyration frequency equals the frequency of the wave. In that case, the
particle is either accelerated or decelerated continuously. Figure 5.4 shows a particle gyrating

5Rigidity is momentum per charge. This quantity is introduced to help in the description of the motion
of particles in electromagnetic fields: particles with the same rigidity follow the same path although their
momentum/speed/energy might be different. Or in other words: once a solution for the particle trajectory in
an electromagnetic field has been obtained, it also describes the motion of all particles with the same rigidity.
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around ~B0 together with the fluctuating electric field. To make the figure readable, the fluc-
tuating magnetic field is not shown. In the lower panel, the two extreme cases are illustrated:
depending on the phase between wave and gyro-orbit, the particle either moves parallel or
anti-parallel to the electric field. Thus, either deceleration or acceleration results. In the
latter case, the wave energy is converted into particle energy, and in the former case the
particle energy is converted into wave energy. The resulting acceleration is called stochastic
acceleration because the result (acceleration or deceleration) depends on the random phase
between wave and particle.

Since the acceleration or deceleration changes the particle speed perpendicular to the
average magnetic field, its pitch angle changes too. Stochastic acceleration can be described
as diffusion in momentum space if the energy gain is small compared with the particle’s
energy (see Sect. 5.2.4). Then the accompanying change in pitch angle is small, too.

5.2.6 Solar Wind Effects

Solar wind effects can be divided into two parts: convection with the solar wind and adia-
batic deceleration. Convection with the solar wind is slightly different from a conventional
diffusion–convection equation for two reasons: first, the diffusion is anisotropic with a pref-
erence for the direction of the magnetic field while convection with the expanding solar wind
occurs along the radial. With increasing distance from the Sun, the interplanetary mag-
netic field line becomes more and more oblique with respect to the radial direction. Thus
convection leads to a particle transport oblique to is original direction of propagation.

The second difference to a typical diffusion–convection equation regards the relative
speeds. In a standard diffusion–convection problem as described in chapter 4 the typical
distances traveled per unit time by a particle during the diffusive process are small compared
to the ones traveled due to advection. In interplanetary space this is true only for the slowest
particles; particles with higher energies travel almost at the speed of light which is pretty
fast compared to the 400 km/s average solar wind.

Adiabatic deceleration is related to solar wind expansion: as the solar wind expands,
the distance between the scattering centers frozen into the solar wind increases. Thus, the
“cosmic ray gas” expands too, and, therefore, cools. Adiabatic deceleration differs from the
other transport processes, insofar as it changes particle momentum.

5.2.7 The Transport Equation

The transport equation has developed in two steps. The first model was developed by Roelof
[140] under the name of focused transport. It only included the effects of pitch angle scat-
tering, field-parallel motion and focusing. The applicability of the model was limited to high
energetic particles: if particles are much faster than the solar wind, convection with the solar
wind can be neglected. Based on this approach, Roelof gave the following transport equation:

∂f

∂t
+ µv

∂f

∂s
+

1− µ2

2ζ
v
∂f

∂µ
− ∂

∂µ

(
κ(µ)

∂f

∂µ

)
= Q(r, v, t) . (5.14)

Here s is the length along the magnetic field spiral, and ζ = −B(s)/(∂B/∂s) is the focusing
length. The terms from left to right describe the field parallel propagation, focusing in
the diverging magnetic field, and pitch angle scattering. The term on the right-hand side
describes the particle source.

From solutions of the transport equation we can determine the phase space density as
a function of time, location and pitch angle. Thus, for a fixed location not only can we
determine the intensity–time profile but also the temporal evolution of the pitch angle dis-
tribution. The latter can be described as an anisotropy: if the anisotropy vanishes, particles
are streaming isotropically from all directions, while for a large anisotropy particles predom-
inately come from one direction. An example is given in Fig. 5.5. The time development of
the anisotropy can be understood quite easily. If we would look at the spatial distribution
of the particles, it would spread in a similar way as suggested in Fig. 4.3. Thus the first
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Figure 5.5: Example for a fit with the fo-
cused transport model [91]

particles always arrive from solar direction, leading to the high anisotropy early in the event.
With time, more particles have reached the observer’s site. Since also more particles are
already swept behind the observer, the spatial gradient is reduced and therefore also the net
streaming away from the Sun ceases. This can be seen as the reduction of the anisotropy
with time.

The extended version, including the solar wind effects, was suggested by Ruffolo [144]. In
a simplified form this equation reads

∂F

∂t
+

∂

∂s

([
µ′v′ +

{
1− (µ′v′)2

c2

}
vsowi sec ψ

]
F

)
− ∂

∂p′

(
p′vsowi

[
secψ
2ζ

(1− µ′2) + cosψ
d
dr

secψµ′2
]
F

)
+

∂

∂µ′

(
v′

1− µ′2

2ζ
F − κ(s, µ′)

∂F

∂µ′

)
= Q(t, s, µ′, p′) . (5.15)

The distribution function F (t, s, µ′, p′) depends on time t, distance s along the field line, pitch
angle µ′ and momentum p′. The primes indicate that the latter two quantities are measured
in the solar wind frame. Note that F is not the phase space density but a distribution
function: in contrast to phase space density, it depends on momentum but not energy.

Equation (5.15) considers, in addition to the terms already covered in (5.14), the convec-
tion with the solar wind (the additional term in the first set of parentheses) and adiabatic
deceleration (the ∂/∂p′ term). This term makes numerical solutions to the transport equation
even more complex since momentum is added as an additional dimension [85, 144].

5.2.8 Boundary and Initial Conditions

The model attempts to describe particle transport along the interplanetary magnetic field
line, thus the model is essentially 1D: the relevant coordinate is the distance s along the
field line. Spatial boundary conditions thus are relevant only for the inner and outer ends
of the field line. At the inner end, that is the fieldline’s footpoint on the Sun, reflection
is a reasonable assumption for the boundary condition: particles propagating towards the
Sun encounter a converging magnetic field and thus are likely to be reflected. Alternative as-
sumptions could include absorption or partial reflection. Once the numerical code is running,
different assumptions can be tested and compared to each other. For the outer boundary,
we can either assume free escape or partial reflection. If the outer boundary is far beyond
the observer’s position, almost no particles come back to the observer once encountering
the outer boundary. Therefore, the choice of the outer boundary’s properties is almost ir-
relevant. To save memory and computing time, however, an outer boundary closer to the
observer might be useful: in that case, a partial reflecting boundary is a reasonable choice
with its reflectivity adjusted such that it roughly reflects the relative amount of particles
scattered back by turbulence.
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The initial conditions at time t = 0 are f = 0 ∀ r 6= rinj : space is empty except at the
injection site. Note that the injection Q(t, s, µ′, p′) can be extended in time or move trough
interplanetary space to reflect the continuous particle injection from a propagating shock.

5.3 The Numerical Scheme

Both focused transport equations are solved by finite difference schemes. We will discuss
here the numerical scheme for (5.15); a numerical scheme for (5.14) can be derived from it
by neglecting the additional terms in (5.15) and their discretization. The important part of
the numerical solution is the splitting scheme.

5.3.1 The Splitting Scheme

Equation (5.15) is solved with a numerical scheme based on an enhanced fractional time step
and time splitting method (e.g. [107]). The basic idea of such a splitting scheme can be
understood for the simplified example consisting of only spatial and pitch-angle transport.
The arbitrary decision to transport first in s and then in µ′ or vice versa gives two different
numerical solutions, see Fig. 5.6. Obviously, transporting first in s and then in µ (triangles
in Fig. 5.6) should yield different results than transporting first in µ and then in s (squares
in Fig. 5.6). The differences are small for the omnidirectional intensity and more pronounced
in the anisotropies. In general such an approximation is only of first order in ∆t. A better
result can be achieved by alternating the order of fractional time steps and hence get an
approximation of second order in ∆t:

L(t, s, µ′, p′)=
1
2
L(s)+

1
2
L(µ′)+

1
2
L(p′)+

1
2
L(p′)+

1
2
L(µ′)+

1
2
L(s)+O((∆t)2) . (5.16)

The steps of the transport therefore are
(1) the spatial transport is advanced by half a step
(2) the pitch-angle transport is advanced by half a step
(3) momentum transport happens in two half steps
(4) the pitch-angle transport is advanced by the second half step
(5) the spatial transport is advanced by the second half step.

5.3.2 The Spatial Transport L(s)

The spatial transport is described by a hyperbolic differential equation:

∂F

∂t
+

∂

∂s
(a(s)F ) = 0 where a(s) = µ′v′ +

(
1− (µ′v′)2

c2

)
vsw secψ . (5.17)

In case of vsw = 0 the equation is a well known model problem with a large variety of numerical
schemes solving it. Here it is discretized by a flux limiter method, which is under optimal
circumstances (low spatial gradient) of second order in space. Both a detailed discussion and
a comparison to other methods can be found in [56, 57]. The advantage to other methods
(e.g. [144]) is the good accuracy combined with a low computational effort.

5.3.3 The Pitch-Angle Transport L(µ′)

The transport in pitch angle is described by a parabolic convection-diffusion equation. The
difficulty in solving numerically this equation comes from the two pitch-cosine terms which
can be relative to each other of different magnitude. Close to the sun the focusing term dom-
inates while far away the pitch-angle diffusion becomes dominant. The same problem occurs
when cases with large and small scattering or a pitch-angle diffusion coefficient D(µ′) with
a pronounced shape shall be calculated. Usually in literature this is called a singular per-
turbed problem which needs special numerical treatment (e.g. [142]). A scheme constructed
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Figure 5.6: Time splitting, simplified example considering only s and µ transport. From top
to bottom: omnidirectional intensity, and anisotropies of orders 1 to 4. Squares: µ transport
first, then s transport; triangles: s-µ transport; circles: half step s, two half steps µ, second
half step s [56]

for this type of problem is the Iljin scheme. Here the following implicit scheme, which is
under optimal circumstances of second order in pitch-cosine, is used:

L∆µ′Fi =
ai+1/2(Fi+1 − Fi)− ai−1/2(Fi + Fi−1)

∆µ′

− 1
(∆µ′)2

[
χi+1/2 bi+1/2(Fi+1 − Fi)− χi−1/2 bi−1/2(Fi − Fi−1)

]
(5.18)

with the abbreviations

ai+1/2 = 1− µ
′2
i+1/2ã , ã =

v′

2L(s)
, χi+1/2 =

ã∆µ′

2b̃i+1/2

coth(
ã∆µ′

2b̃i+1/2

)

and

bi+1/2 =1− µ
′2
i+1/2b̃ , b̃i+1/2 =

 1
∆µ′

µ′i+1∫
µ′i

dµ′

κ̃(µ′)


−1

and κi+1/2 =1− µ
′2
i+1/2κ̃(µ

′) .
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If an isotropic pitch angle coefficient κ(µ′) = A(1 − µ
′2) is considered, the scheme is a

pure Iljin scheme. In case of a pronounced shape of κ(µ′), a so called resonance gap around
µ′ = 0, the averaging of κ̃(µ′)−1 per ∆µ′-interval gives better results. It is motivated by
an integro-interpolation scheme (e.g. [146]), which leads to the definition of b̃i+1/2. For a
very pronounced κ(µ′) the following choice, where the focus is on the integro-interpolation
scheme, gives even better results:

χi+1/2 =
ai+1/2∆µ′

2bi+1/2
coth

(
ai+1/2∆µ′

2bi+1/2

)
and bi+1/2 =

(
1

∆µ′

∫ µ′i+1

µ′i

dµ′

κ(µ′)

)−1

5.3.4 The Momentum Transport L(p′)

The momentum transport also is described by a hyperbolic differential equation:

∂F

∂t
− 1
τD

∂

∂p′
(p′F ) = 0 (5.19)

with
1
τD

= vsw

[
secψ
2L(s)

(1− µ′2) + cosψ
d
dr

(secψ)µ′2
]
. (5.20)

As the spatial transport it is discretized by a flux limiter method. The step size in ∆p′ is
chosen to be constant on a logarithmic scale of momentum p′. Compared to the geometric
interpolation used by Ruffolo [144], the flux limiter method has the advantage of particle
number conservation even if the momentum spectrum cannot be described by a power law –
which will be the case during the course of a particle event, even if the initial spectrum is a
power-law, cf. Fig. 5.8.

5.4 Closure

Model tests take place in two parts. The numerical scheme can be tested for each transport
mode separately by comparison to analytical solutions or established numerical codes. The
combined transport modes also can be tested in such that the different transport modes are
compared to each other. In the extreme case of one or two vanishing transport modes the
scheme should arrive at the analytical/numerical solution of the remaining mode.

The mathematical model itself, that is the transport equation, is more difficult to test.
Two aspects should be considered: (a) the reproduction of observations for reasonable para-
meters, such as shown for the simple model in Fig. 5.5; and (b) does the relative importance
of the effects meets our expectations. Since part (a) already has been performed in connec-
tion with Fig. 5.5, we will focus on the latter part. Basically, this implies a comparison of
the numerical solutions of (5.14), that is focused transport without solar wind effects, to the
solution of (5.15).

Figure 5.7 demonstrates the influence of solar wind effects at different energies (20 KeV,
66 KeV, 220 keV, 730 KeV, 2.4 MeV, 8 MeV, 26 MeV, 85 MeV, 260 MeV, 711 MeV, 1.7 GeV).
The observer is located at 1 AU, the radial mean free path λr is 0.1 AU. Two effects can be
separated:

• if solar wind effects are considered (solid lines), the intensities rise earlier and consequently
show an earlier maximum. This becomes most obvious in the lowest energy bands where the
average particle speed is comparable to the solar wind speed. The effect can be understood
as mainly due to convection with the solar wind, adiabatic deceleration contributes only a
small part to this because of the energy spectrum.

• the intensity decays faster because of adiabatic deceleration which, owing to the energy
spectrum, adds a rather small number of particles from the higher energies while removing a
larger number to lower energies. In the lower energy ranges, convection with the solar wind
also contributes to the faster removal of particles from the observer’s position. Because
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Figure 5.7: Intensity
time profiles with (solid)
and without (dashed)
solar wind effects for
different energies (20,
66, 220, and 730 keV,
2.4, 8, 26, 85, 260, and
711 MeV, and 1.7 GeV;
the highest energies rise
first, the lowest last), a
δ-injection at t = 0, and
a radial mean free path
λr = 0.1 AU [58]

Figure 5.8: Temporal evolu-
tion from t=0 h to t=60 h
of the energy spectrum in the
range 20 keV to 1.7 GeV after
a solar injection at t=0 [58]

low energetic particles acquire maximum intensity at rather late times, this removal also
leads to a lower maximum intensity.

In the anisotropies (not shown in the figure) consequently a faster decay towards isotropy
can be seen, at late times anisotropies even can become negative as the – in the solar wind
frame isotropic – particle distribution is convected across the observer, leading to an inward
directed intensity gradient and thus a streaming of particles towards the Sun.

Figure 5.8 shows the temporal evolution of the energy spectrum I(E) = I0(E/E0)−γ at
the observer’s site. The injection spectrum has a power-law index γ = 2.5 in energy. At early
times, due to the late arrival of slow particles, the spectrum turns over at lower energies.
Only with the arrival of the bulk of the slow particles, the spectrum turns to roughly a
power-law, however, its slope is much steeper than the slope of the injection spectrum, even
bending to a steeper slope at late times and high energies. Thus for most of the time of
the event the description of the spectrum in interplanetary space by a power-law would be
a crude simplification. Note that a similar behavior would be observed if solar wind effects
were neglected, in particular the turn-over of the spectrum at low energies would be observed
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up to much later times, owing to the later arrival of the low energies. If a decreasing slope
has been established it would even be steeper than under consideration of solar wind effects.

5.5 Extensions

The above transport equation has been modified to accommodate interplanetary shocks.
Basically, the inclusion of the shock does not change the transport equation and its numerical
solution but introduces an additional boundary condition: for the shock as source of particles,
the source term has been modified accordingly. To accommodate the modified focusing
related to the passage of the shock and the magnetic cloud driving it, the focusing length
cannot be kept constant in time but becomes time-dependent.

5.5.1 The Shock as a Moving Source of Particles

The transport equation (5.15) contains a source term on its right hand side. Normally, this
source is assumed to be fixed on the Sun, extending only in time. Observations show that
interplanetary shocks are efficient particle accelerators and thus also inject energetic particles.
Such extensions have been proposed for Roelof’s simple transport equation (5.14) for instance
in [90] and tested in a multi-spacecraft study [82] as well as in a statistical study [83].

A similar extension also has been applied to Ruffolo’s transport equation (5.15) for in-
stance in [89, 85]. The idea is quite simple: just modify the source term such that it emulates
the properties of a shock as particle accelerator. It should be noted, that this leads only to
a black box model: the details of the acceleration process are not simulated. Instead, some
acceleration and injection efficiency of the shock is assumed.

Specifying the Source

For modeling, the following details of the shock have to be specified in the model:
(1) the shock is spherical symmetric and expands at a constant speed. Although this is physi-
cally incorrect, in particular as the shock speed decreases towards the flanks and with increas-
ing radial distance, the results are not strongly influenced by this assumption, see also Fig. 6
in [90]. However, if we attempt to relate the inferred injection from the shock front to shock
speed, this assumption has to be dropped and replaced by a more realistic motion of the cob-
point (footpoint of the observer’s magnetic field line on the shock front) along the shock front.

Figure 5.9: Geometry shock [85]

(2) the acceleration efficiency depends on radial distance
r and angular distance φcon(t) from the nose of the shock
and is described by a separation ansatz

Q = Qo ·
(
r

ro

)α

· exp
{
−φcon(t)

φc

}
, (5.21)

with φc being the e-folding angle of the intensity along
the shock front. The injection is isotropic at the shock
front, that is particles are injected into the upstream and
downstream medium. In addition, a separate solar injec-
tion can be assumed, if necessary.
(3) additional upstream turbulence (self generated turbu-
lence) can be included (but not self-consistently).
(4) the background magnetic field is assumed to be Archimedian. Obviously, this is not valid
in the downstream medium. However, variations with downstream focusing and downstream
scattering show that the assumptions about the downstream medium do not strongly influ-
ence the results of the model, see also Fig. 3 in [90].
The relevant parameters to be specified in the model then are (1) the radial particle mean
free path λr (in a more advanced version this depends on particle rigidity: λ ∼ P 0.3), (2) the
injection S(r, φ) from the shock front, and (3) a solar injection S�, if required.
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Figure 5.10: Intensity
time profiles with (solid)
and without (dashed)
solar wind effects for dif-
ferent energies (20, 66,
220, and 730 keV, 2.4,
8, 26, 85, 260, and
711 MeV), a radial mean
free path λr = 0.1 AU, a
shock speed of 800 km/s,
and constant accelera-
tion efficiency along the
observer’s magnetic field
line. The shock passes
the observer at t = 48 h
[89]

Figure 5.11: Same as
Fig. 5.10 but the shock
efficiency decreases as
r−2 along the observer’s
magnetic field line [89].

Results

Figure 5.10 shows a comparison of the results for the standard shock of [90] (shock speed
800 km/s, observer at a radial distance of 1 AU, particle mean free path λr = 0.1 AU
independent of particle speed, no turbulent upstream region, particle energies from 20 keV
to 700 MeV, the injection from the shock is constant along the entire field line, its spectral
index γ is 3.5) under consideration of solar wind effects (solid lines) and neglecting solar wind
effects (dashed). The shock arrives after 48 h, the small peak in the lowest energy channel
marks its arrival.

As in the case of a solar injection, the consideration of solar wind effects leads to an
earlier onset. This is most obvious in the lower energies where average particle speeds are
comparable to the solar wind speed. Correspondingly, the intensity increase upstream of the
shock is much flatter than without consideration of solar wind effects. The typical faster
decay of the intensity, however, is much less pronounced than in case of a solar injection (see
also Fig. 5.7): in particular in the higher energies this decay is predominately due to adiabatic
deceleration. To become effective, this process takes time, the characteristic time constant
at 1 AU is a few days. In case of the continuous injection of particles from the shock, always
a fresh supply of particles is added on top of the previous injections. These later injections
therefore suffer less from adiabatic deceleration. As a consequence, solar wind effects are of
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Figure 5.12: Spatial
variation of particle
events at shocks [23]

minor importance for energies in the MeV range or higher. This belately justifies the use of
the more simple model by [90] for fitting particle events observed in the MeV range [82, 83].

However, we should be aware that the above statement is made for a shock with constant
acceleration efficiency along the observer’s magnetic field line. If the acceleration efficiency
increases, the same reasoning is true. In case of a decreasing acceleration efficiency, the situa-
tion is in between the solar injection and the situation depicted in Fig. 5.10, that is although
solar wind effects become more prominent they still are less pronounced than for a solar
injection, as can be seen from Fig. 5.11. Note that an increase in scattering conditions leads
to more pronounced solar wind effects mainly for a shock acceleration efficiency decreasing
along the observer’s field line but does not enhance the differences in case of constant or
increasing shock efficiency. In addition, solar wind effects will increase with increasing radial
distances because of the longer time scales.

Figure 5.13 shows 4 sets of intensity profiles for different locations of the observer relative
to the nose of the shock. Again, shock speed is 800 km/s, the shock efficiency is assumed to
not depend on radius (α = 0) but only on azimuthal distance from the nose of the shock with a
characteristic e-folding angle of 15◦. These profiles reproduce the basic relations known from
the observations: at the eastern flank of the shock, the intensity rises to an early maximum
with the time of maximum decreasing with increasing particle energy and decreases towards
the approaching shock while at the western flank the intensity continues to rise towards the
shock, even in the higher energies; see also Fig. 5.12. The differences between the different
locations would be more pronounced if a smaller e-folding angle is chosen (as e.g. the 10◦

suggested in [90]). Note that in this model the profiles further to the east/west are similar to
the E80/W80 profiles except for the absolute intensity. This is a direct consequence of the
separation ansatz.

5.5.2 Magnetic Cloud and Modified Focusing

A magnetic cloud is a closed magnetic blob that is ejected from the Sun. If its speed exceeds
the signal speed of the medium, a shock develops. While not all magnetic clouds are fast
enough to drive an interplanetary shock, all shocks are driven by magnetic clouds.

These closed magnetic structures squeeze somehow through the average interplanetary
magnetic field, leading to its deformation and thus to local changes in focusing length. The
focusing length enters into the pitch-angle transport term of the transport equation. In stan-
dard solutions, the focusing length ζ is determined under the assumption of an Archimedian
interplanetary magnetic field. Thus ζ depends on the spatial coordinate, in this case the
length s along the magnetic field line: ζ = ζ(s). But ζ does not depend on time. This
changes if we allow a shock to propagate through the interplanetary medium. Then ζ(s, t) is
different from the local value in an undisturbed interplanetary medium and also depends on
time.
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Figure 5.13: Intensity time
profiles for observer at differ-
ent locations with respect to
the nose of the shock: for an
observer on the eastern flank
of the shock, the intensity rises
to an early maximum and de-
creases towards the shock while
an observer on the western
flank sees a continuous inten-
sity increase towards the shock
[85]

Figure 5.14: Geometry of the interplanetary
magnetic field around a magnetic cloud [86]

13

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

Figure 1

15

Figure 3

17

Figure 5

Figure 5.15: Modification of intensity time profiles by magnetic clouds [86]
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Results of the numerical simulation indicate that the magnetic cloud acts as an barrier for
the propagation of energetic particles, partly decoupling the media upstream and downstream
of the cloud. These results have consequences for our interpretation of energetic particle
events as well as our understanding of particle acceleration and interplanetary shocks and in
particular the generation of extremely large events between converging magnetic clouds.

The left hand side of Fig. 5.15 shows the simulation for a standard situation: solar ener-
getic particles (SEPs) and a magnetic cloud are injected from the Sun simultaneously. The
cloud is fast enough to drive an interplanetary shock. If the deformation of the interplane-
tary medium by the magnetic cloud is not considered, intensity profiles as in Fig. 5.10 are
expected. This is the case for the solid profiles. For the dashed profiles, the modified focusing
was considered; the two profiles represent different modifications in focusing length. As a
consequence, particle intensities show a depression as the cloud passes by. Downstream of
the cloud, intensities are markedly reduced compared to the solid profile: particles with very
small pitch angles are able to pass the cloud into the solar direction, the others are reflected
back outwards. The the magnetic cloud partly decouples both parts of the medium.

The idea of the magnetic cloud as a barrier to particle propagation is employed further
in the right panel of Fig. 5.15. A magnetic cloud has started at t = 0 from the Sun and
propagates through interplanetary space. As a slow cloud it does not drive a shock: the
cloud has just the barrier function but is not combined with the shock as a particle source.
A day later, a conventional particle event as in the left panel starts at the Sun. The solid
line gives the resulting intensity profiles if no cloud were present in the medium. These solid
profiles are the same as the solid ones in the left panel. The dashed profiles are obtained
under consideration of the cloud: again its barrier function is obvious: before the arrival
of the cloud intensities are reduced while after cloud passage they are increased because
particles are stored in the medium behind the cloud.

5.5.3 The Numerics behind the Shock

In both schemes the numerical solution of the transport equation is retained. The shock as
source of energetic particles is considered in the source term on the right-hand side of the
transport equation as described in the separation ansatz (5.21). This method has one general
disadvantage: it can create large gradients at the injection site. For the numerical scheme
presented here, large gradients do not pose a problem because the difference equations all
contain a flux limiter. In addition, the stability conditions have been taken to extremes.
Thus any numerical diffusion that might arise from the steep gradient is counter-balanced
by small step-sizes and a flux-limiter.

An alternative scheme could treat the shock as a moving inner boundary. Formally, this
corresponds to the Stefan problem. Such a solution is numerically more elegant and poses less
challenge to the numerical code. But that scheme has the disadvantage that the downstream
medium between shock and Sun vanishes completely. In consequence, no particles can pass
through the shock and their motion has to be accounted for by introducing some arbitrary
partial reflection off the shock. Thus the more consistent numerical scheme would not meet
the physics. And since the downstream medium is ignored completely, such a scheme also
would not be able to cover the magnetic cloud behind the shock. Its inclusion is simple,
because one of the constants of the transport equation, the focusing length ζ, has to be
varied in a prescribed manner in each time step of the scheme. This poses no problems to
a numerical scheme as long as stability conditions are not violated. Thus again a sensible
choice of the step sizes of the scheme is important.

5.5.4 Extension: Perpendicular Diffusion

One main objection against the transport equation (5.14 is the limitation in the scattering
term: particle scattering is described as pitch angle scattering uns thus leads, combined with
the field parallel motion, to spatial diffusion along the magnetic field line only. No transport
perpendicular to the field line is considered. This assumption is true as long as the only
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scattering process in interplanetary space is resonant wave particle interaction as described
in sects. 5.2.3 and 5.2.5.

If we also allow for conventional scattering due to (Coulomb) collisions between the par-
ticles (see also sect. C.4), transport perpendicular to the magnetic field line arises. To test
the influence of such a perpendicular transport, a very simple 2D approach is made, allowing
for perpendicular transport inside the plane of ecliptic only [99]. The resulting transport
equation is

∂f

∂t
+ µv

∂f

∂s
+

1− µ2

2ζ
v
∂f

∂µ
− ∂

∂µ

(
κ‖(µ)

∂f

∂µ

)
− ∂

∂z

(
κ⊥

∂f

∂z

)
= Q(r, v, t) (5.22)

with the additional term describing the perpendicular diffusion along coordinate z.
Although the transport equation not considers diffusion in two dimensions, this is not

isotropic diffusion as for instance in a lake or in heat transport. Instead, the diffusion is
anisotropic with different mechanisms and strength in the different spatial coordinates. Con-
sequently, it is not necessary to solve transport in both directions simultaneously as discussed
in sect. 4.2 but we can resort to the ADI scheme, solving transport in both spatial coordi-
nates separately. This method has the advantage that the perpendicular transport is solved
in a separate implicit scheme which later can be transported easily from the simple focused
transport model (5.14) to the more advanced model (5.15) considering also the solar wind
effects.

5.6 Particle Motion going Extreme

Figure 5.16: Wendelstein

The transport of energetic charged parti-
cles through interplanetary space certainly
is a very special transport problem. Is it
worth to work in this field, can I sell my
diploma thesis or PhD thesis to a prospec-
tive employer? Probably not under the name
of interplanetary transport. But most of
the numerics is not specific to interplane-
tary transport, only the actual numbers are
taken for interplanetary transport. Instead,
the process of focusing is relevant in any spa-
tially varying magnetic field as the process of pitch angle scattering is relevant in any turbulent
plasma. Thus in fact the thesis was concerned with charged particle in complex and variable
electromagnetic fields rather than with interplanetary transport. This topic also interests
all people working with the confinement of a plasma, for instance in chemical reactions or
even more ambitious in plasma fusion. Roman Hatzky, who coded the numerical solution of
(5.15), went on to a permanent position with the MPI for Plasma Physics to work on particle
trajectories in the German fusion project Wendelstein (see Fig. 5.16). If a beam of energetic
particles is required, such calculations also are helpful. Applications here range from plasma
welding and cutting to radiation therapy with particles (see also project 5 in sect. 10.5).

Literature

This chapter is not meant as an introductory course into interplanetary propagation. Instead,
it shall show that even rather simple transport equations can become more complex than
described in the earlier chapters and introduce some additional topics related to PDEs. Good
introductory texts to PDEs and their numerics are Pinchover and Rubinstein [128] with an
approach strongly based on examples and application; a bit more formal is Knabner and
Angermann [94]. More classic texts are Rubinstein and Rubinstein [143] which formerly was
some kind of bible for PDE-addicts. A simpler, but also classical text is Großmann [53]; a
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more modern version is Tveito and Winther [164]. The topic of flux corrected transport is
discussed in detail in Kuzmin et al. [98]. The physical background to the model described
here is summarized in Kallenrode [88].

Questions

Frage 33 Explain the idea behind a splitting scheme.

Frage 34 Is a splitting scheme useful in a diffusion–convection equation? What about a
diffusion–convection model including decay?

Frage 35 Explain the idea of a flux-limiter.

Frage 36 Is diffusion in pitch angle space always related to spatial diffusion?

Frage 37 Explain and illustrate diffusion in momentum space.

Frage 38 Explain and illustrate wave–particle interaction.

Frage 39 Explain and illustrate the concept of resonance interaction.
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Chapter 6
Dikes: Finite Element Modeling

From the viewpoint of physics, this chapter is concerned with dikes at rivers. Here high water
levels can be sustained for a rather long time period. Thus the dike soaks with water (an
application of transport in porous media) and eventually might become instable. In addition,
the water often is contaminated by pollutants resolved in flooded upstream areas.

Formally, this problem becomes more complex than the previous ones: we are not only
concerned with losses. Thus the transport model is not limited to one equation but consists
of a set of equations. This set of equations will be solved simultaneously by a finite element
method instead of finite differences because finite elements provide a better approach to
rather complex geometries. Most computational fluid problems (see chap. 7) also are solved
by finite element methods (FEM). Since FEMs rely more strongly on software packages rather
than just on a programming language, we will only sketch the principle of FEM modeling
but will not go into too much detail. However, one of the projects (see sect. 10.4) also is
concerned with this method. And since it is used in many interesting problems (see also
chap. 7), at least you should be aware of the existence of this method.
Goals: after working through this chapter you should be able:

• to sketch the basic ideas of finite element methods and compare them to finite difference
methods.

6.1 Finite Elements

Sofar, we have solved PDEs by the method of finite differences: the simulation volume is
divided into steps of equal length in the relevant spatial coordinate (e.g. the three cartesian
coordinates or the distance along the interplanetary magnetic field line in chap. 5). In a time-
dependent solution, time also is divided into a grid of equal-sized time steps. This approach
has two disadvantages:

• realistic geometries are difficult to describe,
• the equal-sized steps can be a hinderance in case of strongly varying gradients: while small

step sizes are required in the presence of a strong gradient, large ones will suffice for small
gradients. Thus if regions of large/small gradients fixed in space exist, a change in grid
size might be desirable.1

1The desire for different grid sizes also can be stimulated by the geometry: in modeling ocean currents,
large cells will suffice in the middle of the ocean while the terrain becomes more variable closer to the shore
and thus requires simulation on a finer grid. In chap. 5 we have encountered a rather simple geometry and
solved the problem with a finite difference method. However, stability dictates small spatial steps of the
scheme because focusing is very strong close to the Sun. But it is weak at larger distances; stability there
could be obtained with much larger step sizes. Thus either an adaptive grid or a finite element method could
be chosen instead. Another example is weather prediction: an accurate prediction is required of land while
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The finite element method FEM is much more suit-
able in cases which call for variable and non-rectangular
grids. Basically, FEM divides the simulation volume into
many finite elements of variable shape and size. Thus
these elements can be adapted such that the relevant phys-
ical processes in this particular geometry can be described
most accurately. A bending knee, such as shown to the
right, involves not only a relative complex structure of fi-
nite elements. Its motion also requires, that the finite el-
ements belonging to different parts of the simulation vol-
ume can be shifted with respect to each other. An an-
imated version of the figure to the right can be found
at http://fam.uni-paderborn.de/Forschung/Biomechanik/
FE-Simulation des menschlichen Bewegungsapparates.html

FEM thus often is applied in situations in which geometry
calls for flexibilty:

• structural design and stability, for instance bridges, crane booms or artificial hips;
• flows in realistic geometries, such as

– heat conduction in any 2D geometry more complicated than a rectangle (and in 3D of
course), for instance the temperature distribution in a building or a motor block;

– diffusion in complex geometries such as naturally arising in aquifiers,
– computational fluid dynamics (CFD), see also chap. 7, that is all solutions to the Navier–

Stokes equation in realistic geometries. This includes engineering problems (flows around
an obstacle, drag on a moving body, spread of smoke from a fire in a buildings) as well
as applications to natural systems (all motion in oceans and the atmosphere).

• Maxwell’s equations in electrodynamics and even more complex in magnetohydrodynamics.

6.1.1 Introductory Example

Figure 6.1: FEM: Room with
boundaries [80]

Let us have a look at a rather simple daily problem related
to the heat conduction equation. Assume a room with a
window and a radiator beneath, such as sketched in 2D in
the figure to the right. Basically we are talking about heat
conduction in a rectangular plate, such as discussed earlier in
sect. 4.2.1. The main differences are the assumptions about
the boundaries: D1 is an (infinitely thin) window that allows
for heat escape, D2 an infinitely thin radiator that provides
heat, N1 are partially isolated walls and N2 is the totally
isolated floor. The room is the total simulation volume Ω,
the relevant variables are the temperature T = T (x1, x2) and the heat flow ~j. Both are
connected by the heat transport equation

∇~j =
∂j1
∂x1

+
∂j2
∂x2

in Ω , t > 0 . (6.1)

This equation allows for any heat flow ~j due to conduction, convection or radiation transfer.
If we limited ourselves to heat conduction, the heat flow becomes ~j = ∇T . If we further limit
ourselves to stationary conditions, dT/dt = 0, (6.1) is reduced to the elliptical PDE

∆T = 0 in Ω . (6.2)

The boundary conditions verbally can be summarized as

• the temperature of the window Tw is assumed to be constant: if the room temperature T
exceeds Tw, heat is lost through the window.

the prediction over the oceans can be less accurate. Thus the grid size must be much smaller over land than
over the oceans. This is more easily be incorporated in a FEM than in a FDM.
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102 CHAPTER 6. DIKES: FINITE ELEMENT MODELING

• the radiator has a constant temperature Tr.
• the floor is totally isolating. Thus any heat flow through the floor vanishes. Or more

formally: the normal component of the heat flow ∇T ~n vanishes, with ~n being the normal
vector on the floor.

• the walls are partially isolated, thus heat loss is possible.

Formally, these conditions read

T = Tw on D1 ,
T = Tr on D2 ,
0 = ∇T · ~n on N2 ,
0 = ∇T · ~n+ α(T − Tw) on N1 . (6.3)

Equations (6.2) and (6.3) describe an elliptical boundary problem.

Figure 6.2: Temperature distribution in
room from Fig. 6.1 [80]

This boundary system has a simple solution
for Tr = Tw: in that case, the result is T = Tw =
const. in Ω. More realistic boundary conditions,
such as Tw = 10◦C, Tr = 70◦C and α = 0.05
lead to a solution like the one shown at the right
– the resulting room temperature of 20◦ in the
right part of the room also is a reasonable result.

Note an artefact in the figure: the pattern-
ing from the FEM still is visible (at least at
certain combinations of screen/printer and en-
largement).

This example is meant to illustrate the prin-
ciple and to introduce the boundary conditions
(see below). We will not go into deeper detail
here, but project 3 (see sect. 10.4) also is concerned with this problem.

Boundary Value Problem

Before we dig deeper into the details of FEM, let us briefly have a look at the boundary
conditions. As mentioned above, FEM hast the advantage that it can accommodate rather
complex geometries and thus also complex boundary conditions. Even in the simple example,
we have allowed for two different types of boundary conditions: (a) the prescribed value of
the temperature at the window and at the radiator) and (b) the normal component of the
heat flow through the walls.

With u being the unknown quantity and Ω being the simulation volume, the boundary
conditions can be classified as

• Dirichlet boundary condition: the value of the unknown is prescribed on the boundary ∂Ω:
u = g(x) on ∂Ω;

• Neumann boundary condition: the flow of the unknown normal to the boundary is pre-
scribed: ∇u · ~n = g(x) on ∂Ω;

• Robin boundary condition: ∇u · ~n+ α(x)u = g(x) on ∂Ω.

Boundary conditions also can be combined. For instance, in the above example we have
mixed Dirichlet–Neumann boundary conditions with u = g1(x) on Γ1 and ∇u · ~n = g2(x) on
Γ2 under the condition δΩ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅.

6.1.2 FEM – The Idea

Divide the simulation volume (or the region of interest) Ω into n elements Ωe:

Ω =
n⋃

e=1

Ωe . (6.4)
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Within Ωe an ansatz of m functions is made. These functions are different from zero only in
a finite number of Ωe. A linear combination of the ansatz functions within the element fixes
the possible solutions of the numerical approximation:

y|Ωe ≈
m∑

i=1

ce,n ψe,n . (6.5)

Both, the differential equation and the boundary conditions, are multiplied by weighting
functions and integrated in Ω. The integral now can be substituted as a sum of integrals over
the individual finite elements Ωe; the integration often will be approximated by numerical
integration. Since the ansatz function often vanishes in most of the elements, the result is a
large sparse system of linear equations with unknown coefficients. Such a system in principle
could be solved by Gaussian elimination. However, as discussed in sect. 4.2.1, Gaussian
elimination is too slow and iterative methods such as the Jacobi method or the Gauss-Seidel
algorithm should be used instead.

6.1.3 FEM – The Scheme

To derive a solution with FEM, the following scheme is helpful:

• find a weak form of the differential equation under study. Little to no computarization is
usually required for this step, the transformation is done by hand on paper.

• fractionalize/discretize the weak form over the simulation volume and determine size and
shape of the basic elements. This can be done by hand in a simple 1D problem (as will be
described below) but requires computational aid in a more complex problem. The result
is a large but finite dimensional linear problem.

• Solve it – basically you encounter the same techniques of matrix inversion as already
discussed for the finite difference methods.

Weak Form and Weak Solution

Most PDEs involve the Laplace operator ∆, that is we are looking for a function that has
to be differentiated twice. The weak form of such a problem implies the reduction of the
original PDE to a form in which the unknown function has to be differentiated only once.
Let us start from the elliptical boundary problem

∆u = f in Ω with u = 0 on ∂Ω . (6.6)

Let us now multiply this equation with a function v with v = 0 on ∂Ω. Application of Gauss’
divergence theorem then yields∫

Ω

fv dx =
∫
Ω

∇(∇u)v dx =
∫
Ω

∇(v∇u) dx−
∫
Ω

∇u · ∇v dx

=
∮

∂Ω

v∇u · v dx−
∫
Ω

∇u · ∇v dx = −
∫
Ω

∇u · ∇v dx = −Φ(u, v) . (6.7)

Thus we are looking for a function u that vanishes on the boundary ∂Ω such that for any
function v that vanishes on ∂Ω the relation∫

Ω

∇u · ∇v dx = −
∫
Ω

fv dx . (6.8)

is fulfilled. Since now we use the ∇-operator instead of the Laplace operator ∆, our solution
has to be differentiated once and not twice. This is called the weak form of the PDE.

Thus one aspect of FEM is the reduction of the problem: the solution approach is based on
either eliminating the differential equation completely (steady–state problems) or rendering
the PDE into an equivalent ODE which then can be solved using standard techniques such
as finite differences.
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Figure 6.3:
Discretization in 1D
FEM (left) and basis
functions (right)

Figure 6.4: Tessellation according to Es-
cher: although the irregular shape and the
different sizes of the individual elements in
FEM is possible, such an elaborate tessel-
lation in general is not required

Fractionalization/Discretization

Fractionalization is concerned with the division of the space Ω in which the equation is defined
into a number of subsets. It is essentially the same process as the discretization in FDM;
consquently, the terms fractionalization and discretization can be used interchangeably.

The simplest approach is the use of piecewise linear subspaces. Figure 6.3 shows this
approach for a 1D problem. The function (blue) vanishes at the boundaries of the interval
[0,1]: u(0) = u(1) = 0. It is approximated in the interval [0,1] by a function (red) that is
piecewise linear between the nodes (vertical dashed lines). A similar method of piecewise lin-
ear approximation also can be applied to higher dimensional problems: an area, for instance,
can be divided into triangles (triangulation).2

The discretization in the 1D case on the left hand side in Fig. 6.3 is quote similar to the
discretization known from FDM. Formally, this discretization creates a finite dimensional
subspace V with n x values such that the interval is covered continuously and that the function
is linear between adjacent nodes. Note that this requirement implies that the function is not
differentiable in the nodes.

To complete the discretization, we must select a basis of V . In this 1D case we chose a
piecewise linear function (Zeltfunktion in German) that is 1 at the corresponding node and
decreases to 0 at the two adjacent nodes. Thus this function is a unique function in V in
such that is 1 at one node and 0 at all other nodes.3

Owing to this choice of the basis functions, their inner products

〈vj , vk〉 =

1∫
0

vjvk dx and Φ(vj , vk) =

1∫
0

v′jv
′
k dx (6.9)

2Note that the linear in piecewise linear is not necessarily required: elements also can have a curved shape.
But for the understanding of the method, the assumption of piecewise linear elements is sufficient. And it is
really not necessary to try tessellations like the ones typically associated with M.C. Escher, see also Fig. 6.4

3The term finite element in FEM is used not unambiguously: some authors refer with element just to the
element obtained from the discretization while others refer to the basis functions and a third group refers to
the combination of element and basis functions.
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Figure 6.5: Finite ele-
ment method to deter-
mine π

vanishes for almost all j, k. In the 1D case, the support of vk is in the interval [xk−1, xk+1].
Thus the integrands of 〈vj , vk〉 and Φ(vj , vk) are identical to zero whenever |j − k| > 1.

The Linear System of Equations

With the series

u(x) =
n∑

k=1

ukvk(x) and f(x) =
n∑

k=1

fkvk(x) (6.10)

we can rewrite (6.8) as

−
n∑

k=1

ukΦ(vk, vj) =
n∑

k=1

fh

∫
vkvj for j = 1, . . . n . (6.11)

The linear set of equations can be written as

− L~u = M~f (6.12)

with L being the stiffness matrix (Steifigkeitsmatrix) and M being the mass matrix (Lade-
vektor). ~f = (f1, . . . , fn)T and ~u = (u1, . . . , un)T are column vectors and L and M are
matrices with

L = (Lij) = (Φ(vi, vj)) and M = (Mij) =
(∫

vivj

)
. (6.13)

6.2 Simple 1D Examples

In this section two 1D examples are presented as introduction to FEM. Since a 1D geometry is
very simple, our attention is not absorbed by the geometrical definition of the finite elements
but by the method how these elements are connected and thus how the equation is solved.

6.2.1 First Encounter with π

π is defined by the relation between the perimeter or the area of a circle and its radius. Thus
to determine π we need a measure for these quantities. While the method using the area is
used as illustration for a Monte Carlo simulation in sect. 8.1.1, we will use the perimeter as
an illustration for the finite element method.

The method is illustrated in Fig. 6.5. To calculate the perimeter of the circle with radius
R, follow these steps:

1. Finite element discretization: discretize (or fractionalize) the circle into a mesh with n
nodes and n elements; in the middle panel in Fig. 6.5 n is chosen to be 6.

2. Determine a local approximation on the solution: since we are interested in the length
of the arc of each element, the length of the chord

h = 2R sin
θ

2
(6.14)

is a reasonable approximations.
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3. Assemble the finite element equations: we have to collect all elements to get a represen-
tation of the whole system:

Pn =
n∑

i=1

hi =
n∑

i=1

2R sin
θi

2
=

n∑
i=1

2R sin
π

n
= 2nR sin

π

n
. (6.15)

4. Obtain the solution: inserting n = 6 gives P6 = 6R.
5. Test/analyse the solution: since we know the expected result, an increase in n might be

the most reliable test: P10 = 6.1803, P50 = 6.2791, P100 = 6.2822 und P1000 = 6.2832.
For the limiting case n→∞ we will obtain

lim
n→∞

Pn = 2πR . (6.16)

6.2.2 Longitudinal Tank

The longitudinal tank has been discussed in detail in chap. 3, its steady-state solution in
sect. 3.2. We can solve this example also with a finite element method.

With p = −u/D and q = −γ/D we obtain for the standard form of ODE (3.2)

c′′ + pc′ + qc = 0 (6.17)

with the boundary conditions

cin = c(0)− D

u
c′(0) or c′(0) = −p(c(0)− cin) (6.18)

and

c′(L) = 0 . (6.19)

Since the tank is well mixed vertically and laterally, the relevant coordinate again is length
along the axis of the tank. This extension is divided into n steps of length h. As in the finite
difference scheme, the resulting system consists of n elements and n+1-nodes from x0 to xn.

We now multiply the ODE (6.17) with a smooth function ν and integrate over the simu-
lation interval [0, L]:

0 =
L∫
0

(c′′pc′ + qc) ν dx = [c′ν]L0 −
L∫
0

c′ν′ dx+
L∫
0

pc′ν dx+
L∫
0

qcν dx

= c′(L)ν(L)− c′(0)ν(0)−
L∫
0

c′ν′ dx+
L∫
0

pc′ν dx+
L∫
0

qcν dx .
(6.20)

Let us now write c(x) as a series with

c(x) =
N∑

k=0

αkΦk(x) and ν(x) = Φi(x) (6.21)

with

Φi(xk) =
{

0 for i 6= k
1 for i = j

and ci ≈ c(xi) . (6.22)

This series is defined at all nodes; the smooth function ν(x) just serves in a similar fashion
as the Kronecker-δ: it defines which term in an integrand vanishes for a certain node and
which not.

Inserting the series into (6.20) yields

−
n∑

k=0

αkΦ′k(0)Φi(0)−
n∑

k=0

αk

L∫
0

Φ′iΦ
′
k dx+ p

n∑
k=0

αk

L∫
0

ΦiΦ′kdx+ q
n∑

k=0

αk

L∫
0

ΦiΦkdx = 0 .
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The first term can be evaluated directly, giving

p(c(0)− cin)Φi(0)−
n∑

k=0

αk

L∫
0

Φ′iΦ
′
k dx+ p

n∑
k=0

αk

L∫
0

ΦiΦ′kdx+ q
n∑

k=0

αk

L∫
0

ΦiΦkdx = 0 .

Rearrangement of the terms gives

pα0Φi(0) +
n∑

k=0

αk

− L∫
0

Φ′iΦ
′
j dx+ p

L∫
0

ΦiΦ′k dx+ q

L∫
0

ΦiΦk dx

 = pcinΦi(0) . (6.23)

The terms Φk and Φ′k directly are related to the elements of the FEM:

Φk =
{

(x− xk−1)/h x ∈ (xk−1, xk)
(xk+1 − x)/h x ∈ (xk, xk+1)

Φ′k =
{

1/h x ∈ (xk−1, xk)
−1/h x ∈ (xk, xk+1)

k = 1, 2, . . . n− 1 .
(6.24)

Thus (6.23) can be rewritten as a system of n + 1 algebraic equations which again can be
written in the form of a tridiagonal matrix

a0,0 a0,1 0 0 . . . 0
a1,0 a1,1 a1,2 0 . . . 0

...
. . . . . . . . . . . .

...
0 0 0 . . . an,n−1 an,n



c0
c1
...
cn

 =


pcin
0
...
0

 (6.25)

with

a0,0 = an,n = − 1
h + p

2 + qh
3 ,

ak,k = − 2
4 + 2qh

3 k = 1, 2, . . . n− 1
ak,k−1 = 1

h −
p
2 + qh

6 k = 1, 2, . . . n− 1
ak,k+1 = 1

h + p
2 + qh

6 k = 0, 1, . . . n− 2 .

(6.26)

Again, the problem of solving the ODE is reduced to the inversion of a matrix.
Note that all numerical methods for the longitudinal tank problem become inaccurate if

dispersion is decreased. The stability criterion again is

h ≤ 2D
u

. (6.27)

Side question 26 Is it surprising that this is the same stability criterion as in FEM? Sub-
stantiate your answer.

6.3 Application: Dikes

FEM has its advantage in geometries deviating from equidistant rectangular grids. In this
section we will discuss dikes as an application for FEM because (a) most of the physics is
already known from previous chapters and (b) although not rectangular, the dike still has a
rather simple shape and consequently does not require very complex shapes for its elements.
In addition, we still limit our analysis to a prescribed flow and are not forced to solve the
Navier–Stokes equation selfconsistently.

6.3.1 The Problem

For most people, a dike simply is a hill made of sand. Dikes exists at the coast (in particular
the German and Dutch tidelands) and at rivers. These applications require different kinds
of dikes because the forces applied to the dikes are different. A coastal dike is subject to
occasional strong forces during storm tides with a high water level lasting on the dike for
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Figure 6.6: Dike during normal and high water levels [37]

some hours. Here the main risk is mechanical damage due to surges that sweep over the
dikes top and might wash out its steeper back slope.

The situation is entirely different at a river. Here the flood lasts for days to weeks,
e.g. due to heavy precipitation as in the Oderflut in 1997, the Weichselflut in 2001 or the
Elbeflut in 2002 – all consequences of a particular weather pattern called Vb which also
caused the flooding in Switzerland in 2005 – or due to heavy spring snow melt. The flood is
not accompanied by high waves, thus mechanical damage as in coastal dikes is not expected.
Instead, the main problem is soaking of he dike, that is the intrusion of water into the
pores of the dike. Consequences are twofold: the short term problem is a weakening of the
mechanical structure which eventually might lead to a total failure of the dike. The long
term consequence regards pollutants: with the water also pollutants infiltrate the dike which
in turn might be absorbed by the dikes grass cover and then enter the human food chain via
sheep grazing on the dike to keep the grass short and thick to protect the dike.

Figure 6.6 illustrates the problem: under normal conditions (upper panel) the dike is not
saturated while the soil below it is saturated up to water level. Open water (which defines this
level) is the river and the flow in the run-off ditch (Vorfluter). During a flood, however, open
water levels on the water side are much higher than usual. As the dike gets soaked with water,
the saturation line (Sickerlinie) moves upwards, still connecting the water levels in the river
and in the run-off ditch. When the saturation line intersects the landwards embankment,
water leaks out of the dike at the Sickerpunkt, eventually forming a embankment spring
(Hangquelle).

6.3.2 The Model

The model is constructed such that both questions can be answered: (a) dike stability against
mechanical failure and (b) concentrations of toxic matter in different layers of the dike – a
toxic in the dikes very core would not be harmful because it would not be absorbed by
vegetation and just stay there. Both questions are interrelated because they depend on how
fast and how far water infiltrates the dike.
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The Problem: Processes of Dike Failure

To answer these questions, we also must be aware of the factors that might cause dike failure.
This is a rather large number of processes; the most important ones include:

• breaking or sliding of the embankment (Böschungsbruch, Böschungsrutschen): this is of
particular importance as water retreats. Soaked sand looses its stability because the grains
no longer interlock – the water serves as some kind of lubricant. As long as the water level
is high, the pressure exerted by the water guaranties the dike’s stability. As the pressure is
reduced, the embankment follows the pull of gravity and just slides down the dike’s slope.
The consequences for the remaining dike (and the chance that this process occurs) increase
with increasing infiltration depth and decreasing water pressure from the outside. Thus
both quantities must be known to evaluate this effect.

• surface erosion of the embankment: as the water infiltrates larger and larger parts of the
dike, it might seep through the entire dike and leave it on the land side in an embankment
spring (Hangquelle). Since the water is moving fast, erosion is strong and might lead to
mechanical failure. In particular, since water leaks from the dike in its lower portion,
erosion might lead to a failure of the entire landside embankment which reduces dike
stability strongly.

• suffosion in the dike’s body and underground: sand and soil are a collection of grains of
very different sizes. If only large grains were present, large cavities would form between
the grains. In reality, such cavities do not exist but are filled to a large part with smaller
grains. But smaller grains are mobile and can be carried away by a strong subsoil flow
(Sickerströmung). Thus instable cavities might form which in time collapse and weaken
the mechanical structure of the dike.

• contact erosion at the boundary of layers with different grain sizes: a subsoil flow parallel
to such a boundary might wash out fine grains from the cavities of the coarse-grained soil.
In consequence, course-grained soil might collapse into the fine-grained part, leading to a
mechanical instability. Again, to describe this effect, the subsoil flow must be known.

• shear failure due to erosion, hydraulic base failure (Erosionsgrundbruch, hydraulischer
Grundbruch): if flow speeds below the dike are large, in particular close to the run-off
ditch (Vorfluter) erosion sets in. In time, a layer underneath the dike will be washed out
and collapse, leading to a complete mechanical failure of the dike.

• buoyancy (artesian pressure): in certain dike geometries (see Fig. 6.7) a layer of Klei4

lies underneath the dike. Since water cannot penetrate through this layer, in time a high
pressure might build up below this layer just lifting the dike. Don’t lean on it – you might
push it a few meters away from its original side (in particular in case of closed Klei-layers
as in geometry 4).

• overpressure of water: this again is a problem related to retreading water levels: while the
high water level persist, in time the water pressure in the dike rises as it is soaked with
water. When the water retreats, the outer water pressure drops down while the water
pressure inside the dike still is high, eventually lifting the embankment from below and
allowing it to slide down the dikes side.

Note that a successful model must be able to cover all these possible mechanisms of failure
in such a way that it returns the relevant parameters such as pressure heights and speed of
the subsurface currents that are required to access the risk for a certain failure.

Dike Geometries

Dikes are not manufactured at a plant and then placed in nature. Instead, they are build
from material locally available and suitable for dikes. Thus albeit from the outside dikes all
look the same, their internal structures can be quite different. This holds in particular for
the distribution of water blocking layers, such as Klei. Figure 6.7 shows different internal

4Sorry, I did not find an Englisch word for this. But you can check LEO’s discussion forum on this topic:
http://dict.leo.org/cgi-bin/dict/urlexp/20050427151856.
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Figure 6.7: Different dikes, for explanation see text [37]

structures of dikes. Note that the external geometry always is the same, only the usage of
building material has been different.

1. the topmost dike is a simple hill of homogeneous sand with the typical street (Deichvertei-
digungstraße) on its landside. The sand hill is covered with grass (except for the street,
of course).

2. the second dike is covered by a Klei-layer which reduces water transfer into the dike and
thus prevents the dike from soaking during heavy rain. It also prevents soaking during
high water levels.

3. owing to the topography of that particular region, in the third case the dike geometry
is essentially the same as in the second one – asides from a continuous natural layer of
Klei below the entire dike – and also below NN. Note that the Klei layers do not form a
closed envelope but the natural layer below and the artificial layer on top of the dike are
separate layers.

4. similar geometry as in case 3 but the natural bottom Klei-layer and the top Klei-layer
form a closed envelope around the dike. Thus basically no water will be able to enter the
dike – doesn’t that sound good?

5. again a similar geometry but below the street the bottom Klei-layer is removed and
substitued by coarse gravel (just for the sake of the street’s stability in case it is required
to defend the dike).

6. the last dike again has a closed Klei-envelope – only here the bottom Klei-layer does not
extend beyond the run-off ditch (Vorfluter).

Physical Basis

To account for the different possible mechanisms of dike failure as discussed above, the
physical model of the dike must keep track of the following quantities

• the total pressure level in- and outside the dike,
• the water pressure level in- and outside the dike,
• the subsoil flow speeds,
• the relative amount of water inside the dike,
• as well as concentrations and flow speeds of pollutants.

The Model Equations

• the equations of continuity for
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Figure 6.8: Boundary
conditions at the dike
[37]

– water:
∂

∂t
(Sne%w) +∇(Sne%e~vs) +∇(%w~vrs) = 0 (6.28)

with S being the saturation, ne the effective porosity, %w the density of water, ~vrs the fluid
speed relative to the soil matrix and ~vs the speed of the deformable granular structure
of the soil.

– soil:
∂

∂t
ne −∇~vs +∇(ne~vs) . (6.29)

• the equation for the velocity field ~vrs, that is the D’Arcy speed (4.79:

~vrs = ~vD = −−%wg

µw
k∇H = −K∇(h+ z) (6.30)

with µrmw as the viscosity of water, k as the permeability and ∇H as hydraulic gradient.
• Constituting equations:

– density of water %w and fluid pressure height h:

h =
1
%wg

(p− p0) =
1
%wg

σ (6.31)

with p0 as a reference pressure (normally p0 = 0) and σ as an incremental fluid pressure
(tension).

– velocity vs of the soil:

∇~vs =
∂e

∂t
= α

∂σ

∂t
= α%wg

∂h

∂t
(6.32)

with αs as coefficient for the consolidation of the soil and e as volume dilation.
– effective porosity, saturation and moisture content (Feuchtigkeitsgehalt):

Θ = neσ = Θ(h) (6.33)
with Θ(h) describing the specific properties of the porous soil.

Equations (6.28)–(6.33) are a set of 6 equations for the 6 variables h, %w, S, ne, ~vD and ~vs.
Note that the pressure field is not included as separate equation in the above set of

equations but can be derived from the equation of continuity for the water.
A similar set of equations has to be considered for the infiltration with pollutants, assum-

ing that the substances are advected with the flow, are allowed to diffuse into the surrounding
medium and also are allowed to decay. The latter is not meant in the sense of radioactive
decay but to allow for losses due to chemical reactions without involving a self-consistent
chemistry module. This assumption can be validated easily: normally, all potential reaction
partners in the soil have much higher concentrations than the toxic advected with the flow.
Thus the removal depends only on the rate of the toxic and the reaction rate – as discussed
already as one possible aspect for simplification.
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Figure 6.9:
Discretization of a
dike with 1376 finite
elements and 1469 nodes
[37]

Boundary Conditions

The boundary conditions on the dike certainly cannot be the same all over the simulation
volume: on the river side, for instance, water pressure will be exerted which is not the case
on the land side. In fact, all three kinds of boundary conditions mentioned above will be
encountered with the dike, see also Fig. 6.8.

On the water side, the total pressure height is the relevant parameter. This leads to a
Dirichlet boundary condition:

H = HD(yb), zb, t . (6.34)

For stationary high water levels, the total pressure height on the waters surface is constant
while it is variable in case of a rising tide.

Cauchy boundary conditions, on the other hand, are relevant at all points where a flow
normal to the simulation surface might occur. In this particular problem, they can be written
as

− ~n (K∇h+ K∇z) = qc(yb, zb, t) . (6.35)

Special attention must be paid to the boundary conditions at the land side, in particular in
places where an embarkment spring might form. Thus the intersection of the saturation line
with the embankment leads to a shift in boundary conditions from Dirichlet to Neumann.

6.3.3 Finite Elements Applied

As usual, the finite element approach requires the discretization or fractionalization of the
simulation volume and the formulation as a weak problem.

Figure 6.9 shows the discretization of the dike with 1376 finite elements and 1469 nodes.
For the actual simulation an even finer grid with 5504 finite elements and 5689 nodes was
chosen, however, the actual layout of the elements is the same. Note that the elements in
this model still have a quite regular shape and do not differ too much in size.

Extensive tests with this grid, and also smaller grids, have been performed: for lower
resolution grids, numerical artefacts in the sense of a discontinues patterning become visible:
between the high fluid pressure on the embankment and a region of high fluid pressure inside
the dike, for instance, regions with reduced fluid pressure exist (for details see [37]). Since
such a result does not make any sense physically, the model is not useful. However, since
the problem vanishes with increasing number of nodes, the un-physical result just reflects
the inappropriate size of the finite elements. Or suggests to use a different kind of weighting
function, which does not force the linear relation between adjacent nodes. Nonetheless, the
grid mentioned above leads to physical sound results without numerical artefacts and thus
appears to be a reasonable (and managable) choice.

The interpolation inside the finite elements is described by the following weighting func-
tions:

N1(r, s) =
1
4
(1 + r)(1 + s) ,

N2(r, s) =
1
4
(1− r)(1 + s) ,

N3(r, s) =
1
4
(1− r)(1− s) ,
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Figure 6.10: Fluid height levels for the dike geometries of Fig. 6.7 for stationary conditions
[37]

N4(r, s) =
1
4
(1 + r)(1− s) , (6.36)

with r and s ((r, s) ∈ {(1, 1), (−1, 1), (−1,−1), (1,−1)}) being the local coordinates in each
finite element.

The next step is to find the weak form of the problem. As mentioned in the general
description of the problem, this does not require the usage of a computer but can be done by
hand. Nonetheless, we do not want to repeat all this calculation here, the interested reader
is referred to [37].

6.3.4 Results

As mentioned in connection with the discretization (and also mentioned frequently in the
first chapters), tests of the results are relevant. Thus in the following we will briefly scan
through the results for the stationary simulation for all sixdike geometries of Fig. 6.7. While
individual results sometimes appear to be a little bit far fetched, the comparison between
the different geometries aids the interpretation of the results. Thus more confidence into the
model can be gained.

Fluid Pressure Height

The first set of results (see Fig. 6.10; dike geometries in the same order as in Fig. 6.7) is
concerned with the fluid pressure height for stationary conditions. Fluid pressure height
informs us about

• saturation: which regions are saturated, which still are unsaturated,
• the free water surface,
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Figure 6.11: Subsoil flow speeds for the dike geometries of Fig. 6.7 for stationary conditions
[37]

• the location of the embankment spring,
• the distribution of pore pressure in the different layers.

The overall picture of total fluid pressure is quite similar in all geometries: fluid pressure
is highest close to the bottom and decreases with increasing height (not really a surprise).
Independent of the dike geometry, fluid pressure is largest below the river bed (that is to
the left in each figure). Water pressure decreases towards the right in geometries 1 and
2 (top row) while it stays constant in geometries 3 and 4 (middle row). In geometry 5 the
decrease to the land side is rather small, while it is again well pronounced in geometry 6. The
reason is quite simple: pressure is isotropic. In the saturated zone below the dike pressure is
everywhere the same is the pressure on top stays constant. That is the case in geometries 3
and 4 where the Klei-layer beneath the dike continues through the entire simulation volume.
It acts as a mechanical barrier, keeping the pressure below at constant level. On top of the
Klei-layer, pressure decreases towards the right, that is towards the land side, as in the other
figures. This unloading basically is due to the run-off ditch. A similar effect happens in
geometries 5 and 6. Although in both cases a bottom Klei-layer exists, it is not a closed
boundary: in geometry 5 pressure is released by water flowing through the gravel stretch into
the dike. And in geometry 6 pressure release occurs at the land side because the Klei-layer
does not continue beyond the run-off ditch.

Embankment springs form at 2.5 m above the base of the run-off ditch in geometry 1 and
at 1.5 m in geometry 2. In geometry 3, no embankment spring forms but the pressure on the
bottom of the Klei-layer exceeds the pressure due to the soil on top of it: in principle, this
might lead to a fountain discharging into the run-off ditch – which might have more serious
consequences than just a small embankment spring. The situation in geometry 4 is quite
similar. In geometry 5, pressure release occurs through the gravel stretch in the Klei-layer:
since this water is pushed up like a fountain, almost the entire dike soaks. Nonetheless,
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underneath the run-off ditch, the risk for a failure in the Klei-layer, although smaller than in
geometries 3 and 4, still persists. Since pressure is released in geometry 6, this risk does not
persist there.

Subsoil Flow Speed

Fluid pressure heights are concerned with mechanical loads on the system. Erosion, however,
is a consequence of running water. Thus a look at the subsoil flow speeds should help
to appreciate other aspects of dike stability. Figure 6.11 shows the results for stationary
conditions for all three geometries.

In contrast to the fluid pressure heights in Fig. 6.10, the subsoil flow speeds show a much
stronger variation with geometry. In addition, the effects of the Klei-layer (and also its
location) are easily to be identified.

Geometry 1 basically is the sand hill. Subsoil flow speeds increase from left to right: they
are almost vanishing in the river bed and in the dike’s foreland (Deichvorland) and show a
small increase below the dike. However, the highest flow speeds are observed at and just
below the saturation line at the regions of water entry (embankment on the river side), below
the street and in particular around the run-off ditch. Thus such a dike is vulnerable to erosion
in particular at its back where the rather strong flow easily might wash out large parts of the
embankment close to the Deichfuß. The resulting instability might lead to a collapse of the
entire structure. In addition, the high flow speeds and the resulting erosion below the street
are a source of concern: in case of high water levels, this street will be filled with trucks and
people trying to support the dike with sandbags. Such a mechanical load on a street with
vanishing support certainly is not a good idea.

A Klei-layer on the dike, such as in geometry 2, leads to a different flow pattern. Since
water does not path through the Klei, all the flow squeezes through the sand just at the ends
of the Klei layers leading to strong local erosion. Again, at the land side, the erosion occurs
at the run-off ditch, however, there is no erosion below the street. The regions of high flow
speed extend well below the dike.

Geometry 3 is quite similar except for the Klei-layer below the dike. As a consequence, a
small flow channel between the bottom Klei-layer and the Klei-layer on top of the dike forms
with relative high subsoil flow speeds in large parts of the dike. Such a construction is most
suitable to lead to an shear failure (hydraulic base failure, Erosionsgrundbruch, hydraulischer
Grundbruch). Thus this kind of design might not be regarded as a clever design. The problem
is that this is a rather common design. Not because it has been designed like this but because
a natural Klei-layer exists at the bottom and the dike has been covered with Klei to reduce
soaking. The risk of this problem in existing dikes is difficult to evaluate because normally
no information about the extend, location and thickness of the natural Klei-layer exists.

And the location and consistency of the natural Klei-layer matters, as can be seen from
the flow speeds in the remaining three geometries. If no flow channels forms, as in geometry
4, there is no significant flow and erosion is not a concern. But before suggesting to build all
dikes in this geometry keep in mind that the pressure is pretty high below the Klei-layer –
in fact, it might be high enough to lift the entire dike.5 And since the bottom Klei-layer is
a natural layer, nobody can be sure whether it is a continuous layer or not. If it is not, such
as in geometry 5, water will seep with pretty high velocity through this gap and again create
an erosion channel. And if the bottom Klei-layer does not extend beyond the run-off ditch,
a nice flow will form along it, again leading to erosion at the run-off ditch.

5While presenting his results to a group of engineers and dike reeves from the port and dike authorities
in Hamburg, the modeler tried to apologize for this in his opinion obvious nonsense only to learn that his
results could be explain one never understood observation from a few years earlier: a harbor dike, which is
basically a sand core in a closed concrete envelope had been offset ba a couple of meters landward during a
strong flood.
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Figure 6.12: Moisture content for the dike geometries of Fig. 6.7 for stationary conditions
[37]

Moisture content

Figure 6.12 shows the moisture content for the different geometries under study. In the sand
hill of geometry 1 almost all of the dike is saturated, only a small region at the crown and
around the street stays unsaturated. If the dike is covered with an additional Klei-layer as in
geometry 2, the unsaturated region is larger, basically because the Klei soaks with water but
does not transport it. This result is independent on whether there is a natural layer below
the dike (as in geometry 3) or not (as in geometry 2). If the Klei-layer is closed around the
dike as in geometry 4, however, most of the dike is in the unsaturated zone. This is the case
for a bottom Klei-layer extending through the entire simulation volume (geometry 4) as well
as a shorter layer that terminates at the run-off ditch (geometry 6). But this holds only as
long as the bottom Klei-layer is closed: if water is passes through it (as in geometry 5), again
almost the entire dike will be in the saturated zone, except for the crown.

Pollutants

Figure 6.13 shows relative toxic concentrations (left) for geometries 1 (top) and 2 (bottom)
and the flux of pollutants (right). The concentrations are relative to the ones in the water.
In both geometries the relative concentrations are 1 in the river side region of the dike and
decrease down to 0.5 at the land side surface. The distribution follows the total pressure
height. In both models flow speeds of pollutants are highest close to the run-off ditch. Note
that this distribution basically reflects the flow speeds already shown in Fig. 6.11.
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Figure 6.13: Concentrations and flow speeds for pollutants for the dike geometries 1 and 2
for stationary conditions [37]

Literature

Simple introductions into FEM are given in Jüngel [80] and Baumann and Stein [7]. FEM
also is covered in many books on numerical mathematics or numerical physics. There is also
a wealth of special books devoted to FEM, such as [6].

A popular tool for FEM is z88, distributed for instance with the SUSE-Linux versions or
available from the www under http://www.z88.org/ for both Linux and Windows. CAMM-
PUS (http://www.haw-hamburg.de/rzbt/dnksoft/cammpus/cammpus.html) is a free tool
(for educational purposes only) for DOS machines. MatLab itself does not provide the tools
for FEM, however, two of the solvers in MatLab are based on FEM: fem1ode and fem2ode;
for further information consult the MatLab help. The PDE toolbox for Matlab includes tools
for FEM, however, it is not contained in the standard distributions of MatLab.

Questions

Frage 40 Describe the principle of FEM

Frage 41 What is the weak form of a problem? What is the advantage of introducing a
weak form?

Frage 42 What is the meaning of the basis functions/weight function?

c© M.-B. Kallenrode 13th November 2006

http://www.z88.org/
http://www.haw-hamburg.de/rzbt/dnksoft/cammpus/cammpus.html


Chapter 7
Panta Rei: Computational Fluid
Dynamics (CFD)

In this text we have frequently encountered a flow: in the compartment models in chapter 3
the flow was prescribed, in the diffusion–convection model in sect 4.3 the flow was added to
the diffusive process but also in a prescribed way. Not even in the temperature distribution
in sect. 4.2 we have solved the equation for the flow but have limited us to a stationary
situation. And the flowing river soaking the dike in sect. 6.3 was not even a prescribed flow
but only a prescribed level of water pressure/height. In this chapter, some aspects related to
the modeling of a flow will be briefly introduced.

The fundamental equation in computational fluid dynamics (CFD) is the Navier–Stokes
equation. It will be introduced in detail in sect. 7.1. For most applications, a set of addi-
tional equations is required, for instance the equation of continuity or reaction equations. In
sect. 7.3 we will introduce a few sets of equations for typical CFD problems such as fire and
smoke modeling and magnetohydrodynamics. Most sets of equations are, at least for realis-
tic geometries, easier solved in a finite element scheme than with a finite difference method.
However, the treatment of the numerics of these problems is well beyond the scope of this
paper.

A careful numerical treatment in this chapter is limited to a rather simple boundary layer
problem, that is the motion of fluid layers as discussed in sect. 7.2.
Goals: after working through this chapter you should be able:

• to describe the equations relevant for CFD and to explain the special physical and numerical
difficulties in CFD problems.

• to model simple physical problems occurring at boundaries/interfaces.

7.1 The Physics of the Flow: Navier–Stokes Equation

The motion of a fluid element in hydrodynamics can be described by Euler’s equation or
the Navier–Stokes equation. All these different equations of motion or momentum balances
have one basic ingredient, the pressure-gradient force. In single-body motions, only external
forces act on the body. In a fluid, on the other hand, regions of different pressure, for instance
related to temperature differences, can exist, exerting forces on fluid elements. Thus, before
inserting the external forces into the equation of motion, let us have a look at this internal
force, the pressure-gradient force.
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7.1.1 Pressure-Gradient Force

Regions of different pressure in a gas exert forces: particles move from the high pressure
towards the low one. This force is proportional to the pressure gradient −∇p and is called
the pressure-gradient force. Here we give its derivation, closely following Chen [30].
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Figure 7.1: Normal
forces p and shear
stresses τ

Pressure is related to the thermal motion of particles. The pressure-
gradient force leads to a transport in momentum resulting from the
motion of particles in and out of a fluid element V |x0 = ∆x∆y∆z at
position x0 (see Fig. 7.1). If the random thermal motion is limited
to the x-axis, particles enter and leave the volume through surfaces A
and B only. The fluid particles are characterized by their mass m, their
speed ~v and their number density n. During a time interval

∆n = ∆nv vx∆y∆z (7.1)

particles with speed vx pass through surface A with area A = ∆y∆z
into the positive x-direction. Here

∆nv = ∆vx

∫ ∫
f(vx, vy, vz) dvy dvz (7.2)

is the number density of particles with speed vx, with f being the distribution function (see
sect. C.2.1).

Each particle carries a momentum mvx. The total momentum P+
A transported through

A into the positive x-direction is

P+
A =

∑
∆nvmv

2
x∆y∆z = ∆y∆z

[
1
2m〈v

2
x〉n
]
x0−∆x

. (7.3)

Here the sum over ∆nv is expressed by the average 〈v2
x〉 of the distribution times the particle

number density. The factor 1/2 indicates that only half of the particles in the adjacent
volume element V |x0−∆x at x0 −∆x have a speed in the positive x-direction and transport
momentum through A into V |x0 . But particles inside V |x0 also have a momentum in the
positive x-direction which is carried out of the volume through the surface B. Their number
is given as

P+
B = ∆y∆z

[
1
2m〈v

2
x〉n
]
x0

. (7.4)

Therefore, the net gain of the positive x-momentum in V |x0 is

P+
A − P+

B = ∆y∆z 1
2m(−∆x)

∂n〈v2
x〉

∂x
. (7.5)

Particles moving into the negative x-direction double the momentum gain in (7.5) because
the negative x-momentum is transported into the negative x-direction:

∂

∂t
(nmvx)∆x∆y∆z = −m ∂

∂x
(n〈v2

x〉)∆x∆y∆z . (7.6)

The particle speed vx = ux + vxth consists of two parts, the bulk speed ux of the fluid
element with ux = 〈vx〉 and the superimposed thermal speed vxth with 〈vxth〉 = 0. The latter
is described by a one-dimensional Maxwell distribution (see sect. C.2.3). The relationship
between average thermal speed and temperature is:

1
2m〈v

2
xth
〉 = 1

2kBT . (7.7)

With (7.6) we obtain

∂

∂t
(nmux) = −m ∂

∂x

[
n(〈u2

x〉+ 2〈uxvxth〉+ 〈v2
xth
〉)
]
. (7.8)

The last term on the right-hand side can be substituted by (7.7). The term in the middle is
zero because ux is constant and thus 〈uxvxth〉 = ux〈vxth〉 = 0:

∂

∂t
(nmux) = −m ∂

∂x

(
nu2

x +
nkBT

m

)
. (7.9)
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The partial differentiation on the right-hand side with nu2
x = nux ux gives

mn
∂ux

∂t
+mux

∂n

∂t
= −mux

∂(nux)
∂x

−mnux
∂ux

∂x
− ∂(nkT )

∂x
. (7.10)

The second term on the left-hand side and the first term on the right-hand side cancel (see
the equation of continuity (2.29)). With the pressure p defined as p = nkBT rearrangement
leads to

mn

(
∂ux

∂t
+ ux

∂ux

∂x

)
= mn

dux

dt
= −∂p

∂x
. (7.11)

Generalization to three dimensions gives the pressure-gradient force density

mn

(
∂~u

∂t
+ ~u(∇ · ~u)

)
= mn

d~u
dt

= −∇p . (7.12)

Since n is a number density (unit m−3), the product nm gives the density % and we can write
alternatively for the acceleration due to the pressure gradient force

d~u
dt

= −1
%
∇p . (7.13)

7.1.2 Equation of Motion: Euler and Navier–Stokes

The simplest equation of motion for a fluid considers the acceleration due to the pressure-
gradient force and gravitation

d~u
dt

= −1
%
∇p+ ~g . (7.14)

This equation is known as Euler’s equation and often is used for simple estimates in at-
mospheric or oceanic motion. Euler’s equation can be applied to ideal fluids only. In a real
fluid, viscous forces have to be considered too. Here the Navier–Stokes equation is useful:

d~u
dt

= −1
%
∇p+ ν∇2~u (7.15)

with ν being the kinematic viscosity. Often, other forces, depending on the situation under
study, are added to this equation. Some of these forces will be discussed below where we also
shall have a closer look at the viscous forces.

7.1.3 Stress Tensor and Viscosity

In the generalization of (7.11) we tacitly assumed that xi-momentum is transported in xi-
direction only and that the fluid is isotropic. This is true in an ideal gas or fluid but not in a
viscous one, where momentum can be transported in directions perpendicular to the particle
motion, and momentum transport is not necessarily isotropic. Then the scalar property p has
to be replaced by a tensor P, and the pressure-gradient force ∇p has to be replaced by ∇P.
P not only considers the pressure, which is orthogonal to the surface of a volume element,
but also shear stresses, which are forces parallel to the element’s surface (see Fig. 7.1). The
stress tensor P has the dimensions of a pressure or an energy density. It is symmetric with
six independent components Pij for each point: Pij = mnvivj ; i being the direction of the
momentum transport and j the component of the momentum involved. A more compact
method to write the stress tensor is

P = mn〈~vth~vth〉 . (7.16)

Here ~vth~vth is not a shorthand for a scalar product but the tensor product (dyad) of two
vectors: such tensor products ~a~b of two vectors are tensors T with

T = ~a~b =

 ax

ay

az

  bx
by
bz

 =

 axbx axby axbz
aybx ayby aybz
azbx azby azbz

 . (7.17)
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Its obvious from its definition (7.16) that this tensor is symmetric with six independent
components.

In the simplest case, the particle distribution is an isotropic Maxwellian and the stress
tensor P can be written as

P =

 p 0 0
0 p 0
0 0 p

 = pE , (7.18)

where E is the unit tensor. Here ∇P equals ∇p. In the presence of a magnetic field, a plasma
can have two different temperatures T‖ and T⊥ parallel and perpendicular to the magnetic
field, leading to different pressures p‖ = nkBT‖ and p⊥ = nkBT⊥. In a coordinate system
oriented with its z-axis parallel to B, the stress tensor can be written as

P =

 p⊥ 0 0
0 p⊥ 0
0 0 p‖

 . (7.19)

This tensor is diagonal and it is isotropic in a plane perpendicular to ~B.
The off-diagonal elements of the stress tensor in an ordinary fluid are associated with

viscosity. Viscosity results from collisions between particles and tends to make the flow
more uniform. Quantitatively, the effect of viscosity is described by a kinematic viscosity
coefficient ν = vth λ where vth is the thermal speed and λ the mean free path between
collisions. Alternatively, a viscosity coefficient η = ν% can be used. In a fluid, friction is
described by

~ffrict = η∇2~u+
1
3
η∇(∇× ~u) . (7.20)

In an incompressible fluid, the second term on the right-hand side vanishes:

~ffrict = η∇2~u = ν%∇2~u . (7.21)

This can be interpreted as the collisional part of ∇P−∇p. Note that the inclusion of viscosity
into the momentum balance has two consequences: (a) in agreement with the irreversible
character of the transport process, the transport equation is no longer time-reversible: if
~u(~r, t) is a solution of the transport equation, then ~u(~r,−t) is not. (b) Viscosity increases
the order of the partial differential equation. Therefore, to determine solutions we need more
boundary conditions than in the case of a non-viscous fluid.

In a plasma, off-diagonal elements can arise without collisions: gyration brings particles
into different parts of the plasma, a process which tends to equalize the fluid speeds. The
scale of this collisionless viscosity is given by the Larmor radius rather than by the particle
mean free path.

7.1.4 Fictitious Forces in Rotating Systems

The forces discussed so far are sufficient to give the equation of motion for a plasma in
the laboratory setting. In large-scale natural plasmas, such as the ionosphere or stellar
atmospheres, additional forces act: the Coriolis force and the centrifugal force.

Consider two frames of reference C and C′, with C rotating with an angular velocity ~Ω
with respect to C′. A vector ~r fixed in C, in C′ moves with a speed ~Ω × ~r. The temporal
derivative of ~r in C′ s(

d~r
dt

)
C′

=
(

d~r
dt

)
C

+ ~Ω× ~r or ~v′ = ~v + ~Ω× ~r . (7.22)

The temporal derivative gives the acceleration in the rotating frame:

~a′ =
(

d~v′

dt

)
C′

=
d′~v′

dt
=

d~v′

dt
+ ~Ω× ~v′ = d~v

dt
+ 2~Ω× ~v + ~Ω× (~Ω× ~r) . (7.23)
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Thus the density of the fictitious forces in a rotating frame of reference is

~frot = −%2 ~Ω× ~v − % ~Ω× (~Ω× ~r) (7.24)

with the first term on the right-hand side describing the Coriolis force and the second term
the centrifugal force.

In the near-Earth environment the Coriolis force has to be considered in the atmospheric
motion and in the ionospheric and magnetospheric current systems; it is of vital importance
in the dynamo process inside the Sun and the planets. The influence of the Coriolis force
can be illustrated by its effect on the atmospheric motion. In the northern hemisphere, wind
is deflected towards the right. On a global scale, this deflection leads to the break-up of the
Hadley cell driven by the temperature gradient between the equator and the pole into three
separate cells, which determine the global atmospheric circulation and govern the energy
transport from equator to pole. The Coriolis force, and therefore the size of the deflection,
depends on the wind speed: with increasing speed, the distance travelled by a volume of air
during a time interval increases. A longer trajectory also means a larger displacement. The
Coriolis force becomes effective only if the scales of the system are large enough. Contrary
to popular belief, the eddy at the outflow of a bath-tub is not due to the Coriolis force: its
direction depends on residual motions in the water or the motion induced by pulling the
plug.

7.1.5 Electromagnetic Forces

A charged particle in an electromagnetic field experiences the Lorentz force. With n being
the number density, the force on a volume element can then be written as

mn
d~u
dt

= mn

[
∂~u

∂t
+ (~u · ∇)~u

]
= qn

(
~E + ~u× ~B

)
. (7.25)

The dimension of n is m−3, thus (7.25) can also be written as a force density

~felmag = %
d~u
dt

= %

[
∂~u

∂t
+ (~u · ∇)~u

]
= %c

~E +~j × ~B , (7.26)

with % = mn being the density, %c = qn the charge density, and ~j = nq~u the current density.
Equation (7.26) gives the force density of the electromagnetic field. For infinite conductivity,
the charges immediately rearrange and cancel out the electric field. The force density then
reduces to

~felmag = ~j × ~B . (7.27)

7.1.6 Putting it all Together

Adding these forces gives the equation of motion or momentum balance:

%
d~u
dt

= %

(
∂~u

∂t
+ (~u · ∇)~u

)
= −∇P + % ~E +~j × ~B + %~g − 2%~Ω× ~u− %~Ω× (~Ω× ~r) . (7.28)

If we neglect the electric field and the fictitious forces and split the stress tensor into the
pressure-gradient force and friction, (7.28) can be written as

%
d~u
dt

= %

[
∂~u

∂t
+ (~u · ∇)~u

]
= −∇p+ %ν∇2~u+~j × ~B + %~g . (7.29)

This equation is the Navier–Stokes equation used in hydrodynamics complemented by the
forces exerted by the electromagnetic field.

The momentum balance (7.28) still is relatively simple: (a) it does not consider sources
and sinks, e.g. due to ionization or recombination, which might involve a net gain or loss of
momentum; (b) it does not consider momentum transport due to Coulomb collisions between
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charged particles; and (c) it does not consider momentum transport arising from the forces
exerted by a particle component of opposite charge inside the plasma. The latter will be
discussed briefly in the two-fluid description of a plasma (see sect. 7.3.3).

7.2 Boundary Layer Problem: Motion of Fluid Layers

This example is a very simple problem from CFD – basically it is defined by a prescribed
boundary condition and there is not much adjustment required from the flow. Nonetheless,
it is numerically simple (thus we can obtain a complete solution) and it is also instructive
from the viewpoint of physics because it describes a boundary layer problem. Such boundary
layers occur frequently in natural systems and are the very layers in which transport between
two distinct media, such as atmosphere and ocean, atmosphere and ground, or ocean and
bottom topology occur.

Imagine a layer of oil on a body of water. Wind acts on the oil’s surface, driving it into
the wind direction. The wind only acts on the boundary between air and oil. The moving
upper layer of the oil film exerts a stress on the oil layer underneath. Thus inside the oil
film a vertical velocity gradient develops, its steepness determined by the oil’s viscosity. This
gradient does not continue to the bottom of the water but only to the boundary between oil
and water. Physically, at this interface the same things happen as at the air–oil interface and
a vertical velocity gradient develops in the water, too. Its steepness depends on the water’s
viscosity. The aim is to determine the vertical velocity profiles for different times.

7.2.1 The Model

The physical problem can be described by a layer of oil and one of
water sandwiched between two parallel horizontal plates. The top
plate is moving at constant speed vd. The governing equations are
the equation of motion including only the stresses:

∂uo

∂t
= µo

∂2uo

∂x2
and

∂uw

∂t
= µwater

∂2uw

∂x2
(7.30)

with the index ‘o’ indicating oil and ‘w’ indicating water. As the fluid layers both equations
are coupled at the oil–water interface:

uo = uw and µo
∂uo

∂x
= µw

∂uw

∂x
. (7.31)

The first equation describes the positional continuity of the velocities of the two fluids at the
interface. The second refers to the tangent at the interface: if both viscosities are the same,
this equation again confirms the tangential continuity of the velocities at the interface. With
different viscosities, the ratio of the tangents is described by the inverse of the ratio of the
viscosities.

Mathematically, we have two parabolic PDE boundary value problems involving the ve-
locities of the two fluids. For the water we have

∂vw
∂t

= µw
∂2vw
∂x2

, 0 ≤ x ≤ xi (7.32)

with the boundary conditions

vw(x, 0)=0 , vw(0, t)=0 , vw(xi, t)=vo(xi, t) and µo
∂vo
∂x

∣∣∣∣x=xi =µw
∂vw
∂x

∣∣∣∣
x=xi

. (7.33)

For the oil we get

∂vo
∂t

= µo
∂2vo
∂x2

, xi ≤ x ≤ xt (7.34)
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with the boundary conditions

vo(x, 0)=0 , vo(xt, t)=vd , vo(xi, t) = vw(xi, t) and µo
∂vo
∂x

∣∣∣∣x=xi =µw
∂vw
∂x

∣∣∣∣
x=xi

. (7.35)

Here we have chosen our frame of reference such that x = 0 is at the bottom plate, xi is the
height of the oil–water interface and xt is the top of the oil layer.

Equations 7.32 and 7.34 are simple parabolic PDEs. However, we cannot solve them
separately. Instead, these equations are coupled by the boundary conditions at their interface,
given in red in (7.33) and (7.35).

7.2.2 Numerical Solution: Finite Centered Differences in Time and
Space

For this example the numerical scheme again will be implicit but this time with finite centered
differences in both space and time. The entire height x is divided into n equidistant steps
∆x. The first m nodes are within the water layer, the remaining nodes in the oil-layer. Node
m is at the interface. The difference equations then read

vl+1
w,k − vl

w,k

∆t
= µw

vl+1
w,k+1 − 2vl+1

w,k + vl+1
w,k−1

(∆x)2
, k = 1, 2, . . .m (7.36)

and

vl+1
o,k − vl

o,k

∆t
= µo

vl+1
o,k+1 − 2vl+1

o,k + vl+1
o,k−1

(∆x)2
, k = m,m+ 1, . . . n . (7.37)

Rearrangement yields

µw

(∆x)2
vl+1
w,k−1−

(
2µw

(∆x)2
+

1
∆t

)
vl+1
w,k +

µw

(∆x)2
vl+1
w,k+1 =− 1

∆t
vl
w,k , k=1, 2, . . .m (7.38)

and
µo

(∆x)2
vl+1
o,k−1−

(
2µo

(∆x)2
+

1
∆t

)
vl+1
o,k +

µo

(∆x)2
vl+1
o,k+1 =− 1

∆t
vl
o,k , k=m,m+1, . . . n .(7.39)

Since we have centered differences, nodes outside the simulation volume are introduced.
Again, these nodes can be expressed by using the boundary conditions. At node k = 1 at
the bottom the difference equation

−
(

2µw

(∆x)2
+

1
∆t

)
vk+1
w,1 +

µw

(∆x)2
vl+1
w,2 = − 1

∆t
vw,1 −

µw

(∆x)2
vw,0l+1 (7.40)

the last term on the right hand side vanishes because vw(0, t) = vl+1
w,0 = 0. At the top plate a

similar manipulation of the difference equation using the boundary condition vl+1
o,n = vd gives

the difference equation

µo

(∆x)2
vl+1
o,n−2 −

(
2µo

(∆x)2
+

1
∆t

)
vl+1
o,n−1 = − 1

∆t
vl+1
o,m+1 −

vdµo

(∆x)2
. (7.41)

At the interface, the original difference equations are

µw

(∆x)2
vl+1
w,m−1 −

(
2µw

(∆x)2
+

1
∆t

)
vl+1
w,m +

µw

(∆x)2
vl+1
w,m+1 = − 1

∆t
vl
w,m (7.42)

and
µo

(∆x)2
vl+1
o,m−1 −

(
2µo

(∆x)2
+

1
∆t

)
vl+1
o,m +

µo

(∆x)2
vl+1
o,m+1 = − 1

∆t
vl
o,m . (7.43)

The outside nodes vl+1
w,m+1 and vl+1

o,m−1 can be removed using the second boundary condition.
Since this is still written with differentials, we first have to rewrite it as a difference equation

µw =
vl+1
w,m+1 − vl+1

w,m−1

2∆x
= µo

vl+1
o,m+1 − vl+1

o,m−1

2∆x
(7.44)
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or after rearrangement

vl+1
w,m+1 =

µo

µw

(
vl+1
o,m+1 − vl+1

o,m−1

)
+ vl+1

w,m−1 . (7.45)

Substituting into (7.42) yields

2µw

(∆x)2
vl+1
w,m−1 −

(
2µw

(∆x)2
+

1
∆t

)
vl+1
w,m +

µo

(∆x)2
(
vl+1
o,m+1 − vl+1

o,m−1

)
= − 1

∆t
vl
w,m (7.46)

With the first boundary condition at the interface, vl+1
w,m = vl+1

o,m, combination of both differ-
ence equations yields

2µw

(∆x)2
vl+1
w,m−1−

(
2(µw+µo)

(∆x)2
+

2
∆t

)
vl+1
w,m+

2µo

(∆x)2
vl+1
o,m+1 =− 1

∆t
vl
w,m−

1
∆t

vl
o,m . (7.47)

Equations (7.38)–(7.41) and (7.47) form a system of (n−1) difference equations for (n−1)
unknowns. The system can be written in a tridiagonal matrix:

a2 a0

a0 a2 a0

a0 a2 a0

. . . . . . . . .
a0 a2 a0

b0 −2(b0+a0+a1) 2a0

b0 b2 b0
. . . . . . . . .

b0 b2 b0
b0 b2





v1
v2
v3
...

vm−1

vm

vm+1

...
vn−1

vn


=a1



v−1
v−2
v−3
...

v−m−1

v−m
v−m+1

...
v−n−1

v−n


−b0



0
0
0
...
...
...
...
...
vd


with the abbreviations

a0 =
µw

(∆x)2
, a1 =− 1

∆t
, a2 =−2a0 +a1 , b0 =

µo

(∆x)2
and b2 =−2b0 +a1 .(7.48)

Again, this system can be solved by the Thomas algorithm.

7.2.3 Closure

Figure 7.2 shows the velocity profiles for different times. The driving velocity is 10 cm/s, the
water layer 6 cm and the oil layer 4 cm. The results are as expected: after a short time interval
(black curve), the velocity of the topmost oil layers has increased significantly, however, the
velocity gradient still is very steep. Since the oil’s speed at the boundary layer still is zero,
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the water is not moving at all. With increasing time, momentum is transferred to the lower
part of the oil layer. As the interface starts to move, momentum also is transported into
the water layer. With increasing time, gradients become linear and approach steady-state
(indicated by the crosses).

7.3 Typical Examples from CFD

CFD (http://www.cfd-online.com/) has its strength in complex situations. The above
introductory example was rather simple, the more applied cases all rely on a much larger set
of equations. These equations somehow have to be combined into a numerical scheme. This
section does not attempt to train you to solve such a problem,. Instead, it will allow a brief
glance on a few current problems in CFD.

7.3.1 Flow around a Body

One rather simple application of CFD is the flow around a body. This application is simple
in such that only a limited set of equations is required. In addition, it faces a broad range of
applications: all design problems in transport are concerned with the relative motion between
a solid body and a fluid. CFD for these problems leads to nice figures which are frequently
presented in the mass media, the internet or in advertising (see also the linke below).

The governing equations for such a problem are the Navier–Stokes equation and the
equation of continuity; reaction equation or thermal balances are normally not required.
Thus the mathematical problem is rather simple. The main question to be answered is: how
and where do eddies develop that lead to frictional forces?1 In earlier times, such problems
have been solved in a flow channel. This is still true for present day problems, for the example
of an airplane see e.g. [136]. Nonetheless, a flow channel simulation under realistic conditions
(pressure and temperature at flight level, changes in these parameters during take-off and
landing, reactions to potentially lethal shear winds) are difficult and extremely expensive.

CFD provides a much less expensive and more flexible environment for such kind of design
studies. Some first impressions on industrial advertisement and CFD can be found at the fol-
lowing links: http://www-berkeley.ansys.com/testimonials/ICEM-TESTIMONIAL-AIRBUS.
pdf, http://www-berkeley.ansys.com/optimesh/examples/747 examples/747 solution.
html, http://www.cerfacs.fr/cfd/REPORT-0001/cfd00-1010.html, or, last but not least,
http://www.hypercomp.net/Technologies/CFD/cfd low.html. Non-airplane related ex-
amples can be found, for instance, under http://www.cmis.csiro.au/cfd/fem/index.htm,
http://www.fluent.com/solutions/examples/x179.htm, http://www.modelbasin.com/
CFD.htm or http://www.eng.uab.edu/me/CSLab/research.html.

Accident investigation (oh no, catastrophe again) for airplanes under certain circum-
stances also strongly relies on CFD: if a flight became fatally instable due to eddies pro-
duced by an earlier plane, it is difficult to simulate the situation in a flow channel or
to test this hypothesis experimentally. Instead, a CFD might be the solution, see for
example www.ntsb.gov/events/2001/AA587/presentations/02 airplane perf.ppt. The
flow speeds (and resulting temperatures) in the region of wing damage at the space shut-
tle Columbia also have been subject to CFD simulations (see e.g. investigation report at

1In the discussion of this problem we should be aware of the fact the friction in fluid motion has two
sources: the viscous forces lead to friction on a molecular level. Thats similar to friction between the soles
of your shoes and the pavement. But for a car, the friction between tire and pavement cannot be reduced
any further (how would you accelerate?); here the drag comes from the different pressure levels in front and
behind the car: air piles up in front of the car, corresponding to a high pressure. On the other hand, eddies
at the car’s rear end reduce pressure at that side. This pressure difference is what cases drag. And note,
the drag can be reduced by increasing the viscous forces. The best example is the golf ball. All the dents
on its surface increase he drag by viscous forces. Bat the increased drag slows down the air flowing around
the ball. Thus the flow sticks to the ball for a longer time and the eddies behind the ball are smaller. As a
consequence, the pressure difference between the ball’s front and rear side is reduced and therefore also drag
is reduced.
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Figure 7.3: CFD simulations also
helped to understand the break-up of
the shuttle Columbia during re-entry
into the atmosphere after some foam in-
sulation had damaged the heat shield
at the left wing. The resulting hole
permitted flow speeds of almost 6000
mph, corresponding to temperatures in
the order of 5000 K. This highly ef-
fective welding torch led to fast struc-
tural desintegration (from caib report
(see text))

Reynolds Number Example

Consider the flow over an obstacle with a square cross section in an infinitely wide channel
for Reynolds numbers of 1, 10, 100, and 1000.

Figure 7.4: Flow around an obstacle for different Reynolds’ numbers [110]

http://usgovinfo.about.com/gi/dynamic/offsite.htm?site=http://www.caib.us/ or
Fig.

Although all these links shows the colorful side of CFD (and require a large computer
and, in most cases, expensive commercial software), we should not forget, that even with
CFD we can save time by first reducing the problem to dimensionless variables, as briefly
discussed in sect. 2.2.3. The Reynolds’ number describe the basic properties of the flow as
a relation between the viscous and the inertial forces. Thus it depends on a characteristic
length scale, a characteristic flow speed and viscosity but not on actual length and flow speed.
A solution obtained for one geometry thus also is valid for a different geometry – as long as
the other parameters are adjusted such that the Reynolds’ number is the same. Figure 7.4
should serve as an example for the variation of the properties of a flow around an obstacle
with the Reynolds’ number.

7.3.2 Fire and Smoke Modeling

Fire and smoke modeling is an extended version of the above problem. It contains the above
problem because the propagation of smoke (and heat) are typical flow problems. But it also
contains many more equations, in particular all the reaction equations related to the burning
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process: for instance, a fire in a sealed room would keep on smoldering for some time but
would eventually die out because it lacks oxygen. If oxygen supply to the same room was
large, the fire would burn brightly and spread rather fast. But what if a fire is smoldering
in an (almost) sealed room and somebody suddenly opens the door: the sudden supply of
oxygen certainly would fuel the fire. But how much depends strongly on how long the fire
has smoldered before. If time was sufficiently long, pyrolysis would have supplied a lot of
easily inflammable substances to the air which suddenly ignite in a flash-over, posing a series
risk to the person that opened the door.

But fire often is not the main hazard in a fire – it is the smoke instead.2 Thus in the
design of escape routes, in evacuation plans as well as in accident investigation smoke plays
an important role. Thus the generation and spread of smoke often are a more serious question
in fire modeling than the spread of the fire itself.

On the web there are quite a lot resources on fire modeling. A very mathematical
introduction is given in [110] (http://fire.nist.gov/fds/docs/fds class notes.pdf).
A little less black and white (and also less mathematical) and a bit more animated is
the introduction by the University of Maryland Department of Fire Protection Engineer-
ing (www.fpe.umd.edu/department/modeling/index.html). Also an university page is
http://fseg.gre.ac.uk from the Fire Safety Engineering Group at the University of Green-
wich which is concerned with quite famos accidents such as 9-11 or the burning Swiss MD
before New Foundland. An overview regarding fire simulation models with all relevant links
also is given at www.fire.nist.gov/ and www.firetactics.com/FIRE-MODELING.htm. A
fire and smoke simulator is provided by http://fire.nist.gov/fds/refs/readme.html;
a collection of fire modeling software can be found at http://www.bfrl.nist.gov/866/
fmabbs.html. It is interesting to just browse through this list because different models focus
on very different topics. And understanding and appreciating these differences explains very
much regarding the underlying physical processes. and if you want to dig into an example
for an accident investigation, you might try http://www.firetactics.com/3120.pdf.

As the thermal balance of a building in sect. 2.3.4, fire and smoke modeling is also
applied during the design phase of a building. A very illustrative example is the simulation
of smoke distribution and extraction in Terminal 2 of Munich Airport by P. Vogel (available
at http://www.fluent.co.jp). Here even rather small details such as the influence of open
or closed doors or latches on fire and smoke propagation are considered to validate the design
of the building and its escape routes.

7.3.3 Magnetohydrodynamics

After all these catastrophe, let us now turn to an entirely different topic in CFD, that is
magnetohydrodynamics (MHD). MHD is concerned with a plasma.

A plasma differs from a neutral gas in so far as it (also) contains charged particles. The
number of charged particles is large enough to allow for electromagnetic interactions. In
addition, the number of positive and negative charges is nearly equal, a property which is
called quasi-neutrality: viewed from the outside the plasma appears to be electrically neutral.
The reason for this quasi-neutrality can be understood from the electrostatic forces between
charged particles. For instance, in a gas discharge a typical length scale is L = 0.01 m and
a typical number density number density of the electron gas is ne = 1020 m−3. The electric
field on the surface of a sphere with r = L containing only the electron gas but no ions is
then E ≈ 1010 V/m. Such a strong field will immediately cause a rearrangement of charges
and quasi-neutrality will be restored. In the rarefied plasmas in space, number densities
are smaller by many orders of magnitude; however, since the spatial scales are measured
in kilometers or even thousands of kilometers, the same argument can be applied: on the
relevant spatial scales the plasma is quasi-neutral even in the rarefied plasmas in space,

2In a fire accident, most fatalities are by smoke poisoning rather than by direct contact with the flames.
Or in other wordings: most burnt corpses found after a fire have died from smoke inhalation before the fire
reached them.
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although this is not necessarily the case on the centimeter scale.
Because a plasma (partly) consists of free charges, it is a conductor. Moving electric

charges are currents. These currents induce magnetic fields which in turn influence the
motion of the very particles forming the field-generating currents. Thus the particle motion
in a plasma is not only controlled by external electric and magnetic fields, but also creates
fields which add to the external ones and modify the motion of the particles: a plasma can
interact with itself. Consequently, dynamics in a plasma are more complex than in a neutral
gas. This is most obvious in the large number of different types of plasma waves.

Side question 27 Can a similar problem of self-interaction also be found in the neutral
flow as described e.g. by the Navier–Stokes equation? In that case, the ∇p causes motion
which in turn modifies ∇p which in turn modifies the motion. Is that already sufficient for
self-interaction?

In apparently simple situations, a plasma can behave counter-intuitively. Pouring milk
into our coffee, we expect the milk to heat up and mix with the coffee. A sunspot is a
sharply bordered volume of cool gas embedded in the hot solar photosphere; but it stays
stable for several months prevented by strong magnetic fields from warming or mixing with
its environment. A cold and dense volume of gas or liquid in a hot environment sinks. A
solar filament is cold and dense compared with the ambient corona but it is held in position
against gravity by strong magnetic fields. Such discrepancies between our daily experience
and the behavior of ionized gases clearly show that plasmas do not form a significant part of
our environment. Why then do we study such exotic phenomena? Are there applications for
plasmas?

First, plasmas are not exotic but quite common. The interplanetary and interstellar
medium and the stars are made of ionized gases. Thus about 99% of matter in the universe
is plasma. Nearest regions dominated by plasmas are the magnetosphere with its radiation
belts, the ionosphere, lightning bolts in the atmosphere, and, in a wider sense, the Earth’s
core; thus even in the system Earth plasmas are not uncommon. Plasma physics, therefore,
contributes to the understanding of our environment. In turn, the natural plasma labora-
tories, i.e. the ionosphere, the magnetosphere, and interplanetary space, help to test the
concepts of plasma physics on spatial scales and at densities unattainable in a laboratory.

Even some everyday materials can be described as plasmas because they show similarities
to the free-electron plasma described above: the conduction electrons in metals and electron–
hole pairs in semiconductors are charges which can move quasi-freely and lead to a behavior
of the matter which can be described in the same way as for a plasma.

Second, plasmas can be used for quite worldly applications. One of the most ambitious
projects is nuclear fusion: to merge hydrogen atoms to helium, imitating the processes inside
the Sun and the stars, in order to create a clean and long-lasting power source. The main
aspects of this project are the production of a plasma with suitable properties (density,
temperature, losses) and its confinement inside a magnetic field.

There are also less spectacular applications of plasma physics. Chemistry utilizes the
different chemical reactions in plasmas and neutral gases: for instance, cyan gas can be
synthesized by burning coal dust in a nitrogen electric arc plasma. Plasma beams are used for
ion implantation in microchip production. Plasma burners and pistols are used to cut, weld,
or clean metals. Other technical applications of plasmas are as diverse as lasers, capacitors,
oscillators, and particle accelerators.

Another interesting application of MHD is the magnetohydrodynamic dynamo. Such a
dynamo is the source of the geomagnetic field (and also of other planetary magnetic fields
as well as the Sun’s magnetic field). These dynamos convert rotational energy (that of the
Earth’s or planet’s rotation) into electromagnetic energy.

Formally, we need to assemble a set of equations that allows us to describe a plasma in
hydrodynamical terms – that the reason to talk about magnetohydrodynamics.
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One-Fluid Description

We shall start with the one-fluid description of a plasma, i.e. the fluid consists of one particle
species only. This is entirely sufficient to introduce the basic concepts. In a real plasma, quasi-
neutrality suggests the existence of two fluids with positive and negative charges, respectively.
For certain phenomena, such as ion waves, a description in the framework of a two-fluid theory
will be required.

In magnetohydrodynamics some assumptions about the properties of the system are made:
(a) The medium can be neither polarized nor magnetized: ε = µ = 0. (b) Flow speeds and
speeds of changes in field properties are small compared with the speed of light: u/c� 1 and
vph/c� 1. As a consequence, electromagnetic waves cannot be treated in the framework of
MHD theory. (c) Conductivity is high, thus strong electric fields are immediately canceled
out: E/B � 1. As a consequence, the displacement current ∂E/∂t can be ignored compared
with the induction current. MHD is a theory linear in u/c, vph/c, and E/B and ignores
all terms of higher order in these quantities. MHD considers the conservation laws of fluid
mechanics which are concerned with mass, momentum, energy, and magnetic flux. The
formal description is then based on the following set of equations:

• Maxwell’s equations:

∇ · ~E = %c/ε0 , (7.49)

∇ · ~B = 0 , (7.50)

∇× ~E = −∂B
∂t

, (7.51)

∇× ~B = µ0
~j ; (7.52)

• Ohm’s law:

~j = σ
(
~E + ~u× ~B

)
; (7.53)

• equation of continuity:

∂%c

∂t
+∇(~u%c) = 0 ; (7.54)

• equation of motion (momentum balance):

%
∂~u

∂t
+ %(~u · ∇)~u = −∇p+~j × ~B + %~g + %ν∇2~u ; (7.55)

• equation of state:

d
dt

(
p

%γa

)
= 0 . (7.56)

This set of partial non-linear differential equations can be solved for given boundary condi-
tions. For certain applications only a part of the equations is required, or some equations can
be used in a simplified form: in magnetohydrostatics the left-hand side of the momentum
balance vanishes while in magnetohydrokinematics an external velocity field is prescribed
and therefore the momentum balance can be ignored completely.

The momentum balance gives us hints on the kind of motion: in certain slow motions
the inertial term %~̇u can be ignored while in weak magnetic fields the Lorentz force can be
ignored. The relative strength of these two forces is determined by the ratio

S =
B2/2µ0

%u2/2
=

magnetic field energy density
kinetic energy density

. (7.57)

For S � 1 the magnetic field determines the motion of the particles and the single-particle
approach can be used. For S � 1, the magnetic field is swept away by the plasma motion, in
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accordance with the concept of the frozen-in field. S is another expression for the plasma-β,
giving the ratio between the gas dynamic pressure and the magnetic pressure: β = 2µ0p/B

2.
It should be noted that these two definitions are useful only for an isotropic plasma. If

the plasma is anisotropic, frequently a parallel and a perpendicular plasma-β are defined as

β‖ =
2µ0p‖

B2
and β⊥ =

2µ0p⊥
B2

. (7.58)

In a low-β plasma (β � 1), the energy density in the thermal motion is much larger that in
the magnetic field, while in a high-β plasma (β � 1) the opposite is true.

Two-Fluid Description

So far, we have treated the plasma as a fluid consisting of one kind of charged particles only.
A real plasma, however, contains electrons, ions, and possibly also neutral particles. Each
particle component has its own speed, temperature, and partial pressure.

Since a plasma is expected to be quasi-neutral, the number of positive and negative
charges has to be equal. The charge density is %c = niqi + neqe = %i + %e with ni and ne

being the number densities of ions and electrons with charges qi and qe. The current density
is ~j = niqi~ui + neqe~ue = ~ji + ~je. If we limit ourselves to a two-fluid plasma, we have to
deal with an electron and an ion component; the neutral component is ignored. In addition
to the assumptions made in the one-fluid description we assume: (a) the fluid is in thermal
equilibrium (Ti = Te), and (b) the plasma is quasi-neutral (%i = %e). The basic equations in
two-fluid MHD are

• Maxwell’s equations

∇ · ~E = (%i + %e)/ε0 , (7.59)

∇ · ~B = 0 , (7.60)

∇× ~E = −∂
~B

∂t
, (7.61)

∇× ~B = µ0(~ji +~je) + ε0µ0
∂ ~E

∂t
; (7.62)

• Ohm’s law

me

e2n

∂~j

∂t
= ~E + ~u× ~B −

~j × ~B

en
+
∇pe

en
−
~j

σ
; (7.63)

• equation of continuity

∂nj

∂t
+∇ · (nj~uj) = 0 , j = i, e ; (7.64)

• momentum balance (equation of motion)

mjnj
d~uj

dt
= qjnj

(
~E + ~uj × ~B

)
−∇pj ± β(~ui − ~ue) , j = i, e ; (7.65)

• equation of state

pj = pj(%j , Tj) , j = i, e . (7.66)

Compared with the equations in one-fluid MHD we find the following differences: (a) The
equations of state, motion and continuity are given for each component separately. (b) The
equation of motion contains an additional term coupling the two components to consider
momentum transfer arising from Coulomb collisions. The force between the two components
depends on their relative speed, therefore ~fi = −~fe = β(~ui − ~ue). (c) Gauss’s law for the
electric field contains both charge densities as Ampére’s law contains both current densities.
(d) Ohm’s law has become unrecognizable. The left-hand side gives the current acceleration.
The first, second and last terms on the right-hand side are expressions already known from
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Figure 7.5: Structure of the corona during a
solar eclipse. The loop-like structures indicate
closed magnetic field lines inside the corona
where plasma is trapped while the streamer
like structures indicate plasma (and magnetic
field) streaming into interplanetary space

Figure 7.6: Sequence of four soft
X-ray images of the Sun indicating
the restructuring of coronal magnetic
fields during flares and coronal mass
ejections [101]

Ohm’s law in one-fluid MHD. The ~j × ~B term is called the Hall term and describes the
Hall effect: in a magnetic field the current created by the moving charges is deflected by the
Lorentz force, resulting in an additional electric field perpendicular to both ~j and ~B. The
fourth term on the right-hand side gives the pressure diffusion: in the presence of a pressure
gradient, both particle species diffuse with respect to each other, creating a current along
∇p.

Simple Application of MHD in Space

Many important concepts of magnetohydrodynamics such as magnetic pressure or the concept
of frozen in magnetic fields already encountered in the description of the interplanetary
spiral field can be derived from the basic set of equations without touching the core of fluid
dynamics: magnetic pressure and tension do not even require a motion but are a static
problem, frozen in magnetic fields can be derived assuming a prescribed flow.

Although these concepts are quite valuable to understand the basics of MHD and can be
applied to quite a large number of simple phenomena, their use is limited by some assump-
tions. For instance, in a frozen in flow the energy density must exceed that of the magnetic
field by orders of magnitude. This is the case in free interplanetary space, but the assump-
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tion is violated at boundaries. In the lower corona, for instance, the energy density of the
magnetic field exceeds the one in the plasma flow by orders of magnitude, see also Fig. 7.5.
And here all the interesting phenomena such as flares and coronal mass ejections happen
when magnetic field energy is converted to plasma motion and heating, such as indicated in
the sequence in Fig. 7.6. Modeling of these processes requires the simultaneous solution of
the full set of MHD equations.

A similar dynamical situation arises at the front of the terrestrial magnetosphere in the
interaction between the geomagnetic field and the solar wind. Although the general shape of
the magnetosphere can be described in a static model based on a pressure equilibrium between
the interplanetary plasma and the plasma in geospace, a dynamical approach requires the
solution of the full set of MHD equations.

Graphical Description of the MHD Dynamo

Some aspects of the MHD dynamo can be derived analytically, see e.g. [88]. A few ideas are
sketched below (taken from [88]).

In principle, a dynamo consists of a permanent magnet and a rotating circuit loop in
which the current is induced. In the hot interior of the Sun and the planets, permanent
magnets cannot exist. Thus the static magnetic field must be created by a current, too. Part
of the current induced into the circuit loop than is fed back into the system to support the
static field. Without such a feedback, the MHD dynamo would not work.

In the core of the Sun or the planets such well-defined parts as coils or rotating wires do
not exist. Instead, we find a homogeneous and highly conductive fluid, rotating with the star
or planet. Thus the dynamo also is called a homogeneous dynamo. Since the matter inside
the core is liquid, the question of how to create a magnetic field can be reduced to a simpler
form: What is the nature of the plasma flow that allows to support the required currents?

Since we want to apply the dynamo to planets and stars, the model has to explain the most
important features of their magnetic fields, such as: (a) the magnetic flux density increases
with increasing rotation speed, (b) to first-order, the field is dipole like, (c) the dipole axis
and the axis of rotation are nearly parallel, (d) the dynamo should allow for fluctuations in
the magnetic field direction and flux density, and (e) polarity reversals with quasi-periodic
but nonetheless stochastic character should be allowed. This latter point means that the
reversal period can be identified (for instance 11 years for the Sun and about 500 000 years
for the Earth), but that the individual cycle lengths are distributed stochastically around
this average.

Since the fields are axial-symmetric, a configuration as the uni-polar inductor in tempting.
There a metal cylinder rotates parallel to a homogeneous magnetic field, leading to a potential
difference between the center and the mantle of the cylinder. But in the uni-polar inductor
the field cannot be amplified. For astrophysical plasmas this is expressed by Cowling’s
theorem, dating back to 1934: there is no finite velocity field that can maintain a stationary
axial-symmetric magnetic field. The proof of this theorem is based on the induction equation
which, under the conditions cited in Cowling’s theorem, would allow for decaying magnetic
fields only.

The situation is different in a statistical magnetic field: on the Sun, for instance, the
turbulent motion in the convection zone modifies the field. The average field ~B0 = 〈 ~B〉 still
is axial-symmetric but it is modified by fluctuations ~B1 with 〈 ~B1〉 = 0 – we have encountered
a similar approach already in the discussion of quasi-linear theory in sect. 5.2.5. Thus the
magnetic field is ~B = ~B0 + ~B1 and the velocity field is ~u = ~u0 + ~u1. The cross product of the
speed and the magnetic field reads

〈~u× ~B〉 = ~u0 × ~B0 + 〈~u1 × ~B1〉 . (7.67)

The products 〈~u1 × ~B0〉 and 〈~u0 × ~B1〉 vanish because the quantities with index ‘o’ are
constant and the average of the other quantity equals zero. The product 〈~u1 × ~B1〉, which
is the correlation function, does not vanish because the fluctuations are not independent:
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Figure 7.7: αΩ dynamo: differential
rotation (Ω effect) converts a poloidal
field to a toroidal one which in turn is
converted into a poloidal field of oppo-
site polarity by turbulent motion (α
effect)

because the matter has a high conductivity, the magnetic field is frozen-into the plasma, and
a change in the velocity field leads to a corresponding change in the magnetic field. To first
order, the correlation function can be approximated as

〈~u1 × ~B1〉 = α~B0 − β∇× ~B0 . (7.68)

The basic idea of the MHD dynamo can be applied to different geometries and to sta-
tionary as well as periodically varying magnetic fields. Because we are interested in axially
symmetric fields, it is reasonable to describe the magnetic field as consisting of a toroidal
and a poloidal part:

〈 ~B〉 = 〈 ~Btor〉+ 〈 ~Bpol〉 = B~eΦ +∇×A~eΦ , (7.69)

where ~eΦ is the unit vector in the toroidal direction. Thus two scalar quantities, A and B,
determine the three field components. With this ansatz, the induction equation gives two
equations: one describing the ohmic dissipation of B and the generation of B out of A due
to the α-effect and the differential rotation ∇Ω, the other describing the ohmic dissipation
of A combined with the generation of A out of B.

Differential rotation can occur for various reasons. The Sun, for instance, has a higher
angular speed at the equator than at higher latitudes, and thus the rotation depends on
latitude. The differential rotation inside the Earth is due to the differences in angular speed
between the faster inner and the slower outer core. In both cases, because the field is frozen
into the plasma, a deformation of the field line arises from the differential rotation.

The α-effect, on the other hand, is associated with the turbulent motion of the plasma,
in particular the upward and downward motions associated with convection. Although this
motion is stochastic, its combination with the Coriolis force leads to a turbulent motion
which introduces a systematic twist into an originally toroidal field. The resulting magnetic
field coil allows a current parallel to the undisturbed toroidal field.

The combination of the effects of α and Ω allows us to describe the MHD dynamo. We
start with a poloidal field in the Sun at t = 0. The differential rotation deforms the magnetic
field, leading to a toroidal field (t = T/4). The α-effect leads to electromagnetic forces
parallel to the field, and thus a toroidal current flows (dashed lines). Although the magnetic
field directions are opposite in the two hemispheres, the asymmetry of the Coriolis force leads
to an asymmetric α-effect and therefore parallel currents in both hemispheres. This current
leads to a magnetic field directed opposite to the original field (t = T/2). Half a cycle is
now finished. This dynamo is called the αΩ dynamo because both the α-effect and the
differential rotation contribute to the dynamo process. The dynamos inside the Sun and the
Earth are based on this principle.

If the α-effect was not at work, the differential rotation would still transform the poloidal
magnetic field into a toroidal one. However, no polarity reversal would occur and, in time,
the entire field would dissipate. The differential rotation, on the other hand, is not essential
to the MHD dynamo. The α-effect can also work with turbulent motions which, for some
reason, have a preferred direction of motion; this is often an upwelling of magnetic flux
combined with a particular direction of rotation of the flux tubes.

The MHD dynamo requires an initial magnetic field which is amplified by a suitable
feedback mechanism. Thus at first glance the MHD dynamo violates Lenz’s rule which states
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that all fields, currents and forces are directed so as to hinder the process that leads to their
induction. For instance, an increase in the magnetic field leads to currents which create a
magnetic field opposite to the original one. Lenz’s rule thus stabilizes the system; it does
not allow for the positive feedback required in the MHD dynamo. Were we to build such
a dynamo on the basis of one process only, Lenz’s rule would be violated. But the MHD
dynamo has the remarkable feature that although all individual processes obey Lenz’s rule,
their sum allows for positive feedback.

CFD

Analytical approaches allow us to describe he main aspects of the MHD dynamo – and
thus to identify its principle ingredients and to understand the basic processes. However, all
analytical approaches do not allow to model a dynamo self-consistently. A particular problem
are the detail os the polarity reversal: it is easy to model (and to understand) the build-up
of magnetic flux but the reversal process, that is basically the break down of the flux and
the start with opposite sign, are difficult to model.

A full CFD model of the relevant MHD equations (7.49)–(7.57), leads to promising re-
sults. Some examples can be found on the web. A Japanese group gives a report on
the FEM implementation of the problem on http://geofem.tokyo.rist.or.jp/report
common/GeoFEM02 004.pdf and a second report on the optimization of the code for the Earth
Simulator on http://geofem.tokyo.rist.or.jp/report common/GeoFEM02 009.pdf. The
preference for ES might explain why we do not do MHD dynamos as end-of-term projects.
Results from the simulations can be found in a picture gallery on http://www.tcsc.nifs.
ac.jp/kage/gallery/gallery-dynamo.html. Glatzmeier’s famous dynamo makes its ap-
pearance on http://www.es.ucsc.edu/∼glatz/geodynamo.html; at this page, also links
to other dynamo projects are given. From the German side, the AIP dynamo could be
mentioned (http://www.aip.de/groups/mhd/index.engl.html) – these are rather simple
descriptions that do not go into technical details.

7.4 Literature

A very good introduction into the basics of fluid dynamics and also into some technical
aspects of the equations is given in Faber’s book [42]; a classical text on the same topic is
Pedlowsky [127], an interesting side aspect is added to the physics in Massel [109]. A very
readable and concise text on the basics of CFD is Chattot [29]. That text also gives a good
introduction into the different types of PDEs.

Since the atmosphere and the oceans are fluids and play an important role in the merid-
ional energy transport, CFD also plays an important role in oceanography and atmospheric
science, in particular also in climate modeling.

Exercises

Aufgabe 14 Use a different algorithm for the numerical solution of the problem in sect. 7.2.
Compare solutions regarding accuracies and runtime for different step of the numerical
schemes.

c© M.-B. Kallenrode 13th November 2006

http://geofem.tokyo.rist.or.jp/report_common/GeoFEM02_004.pdf
http://geofem.tokyo.rist.or.jp/report_common/GeoFEM02_004.pdf
http://geofem.tokyo.rist.or.jp/report_common/GeoFEM02_009.pdf
http://www.tcsc.nifs.ac.jp/kage/gallery/gallery-dynamo.html
http://www.tcsc.nifs.ac.jp/kage/gallery/gallery-dynamo.html
http://www.es.ucsc.edu/~glatz/geodynamo.html
http://www.aip.de/groups/mhd/index.engl.html


Chapter 8
Energetic Particles in the Atmosphere:
Monte Carlo Simulation

The Monte Carlo method is a statistical method. The first encounter with Monte Carlo sim-
ulations often is numerical integration. Here a Monte Carlo method is the modern version
of the old method of weighting a graph of the function to be integrated. Since the solution
of a differential equation also invokes integration (as can be seen best in the method of sep-
aration of variables), Monte Carlo methods also can be applied to the solution of differential
equations.

Monte Carlo aspects also enter into transport problems if transport parameters cannot
be determined reliably. Here a solution of the transport equation might invoke statistical
variations in the relevant parameter, according to its observed distribution.
Goals: after working through this chapter you should be able:

• to explain the basic ideas of Monte Carlo simulations and compare the method to the more
conventional approaches of FDM and FEM.

• to develop and run Monte Carlo models for simple problems.

8.1 Monte Carlo – A first Encounter

As mentioned in the introduction, the first encounter with Monte Carlo methods often is
numerical integration.

8.1.1 Numerical Integration

π is not a rational number. So how can π be determined? While the Euler number e can be
introduced (and calculated) as a series, π is defined by the circle in such that it described the
relation between the circumfence of or the area inside a circle and its radius. Consequently,
π only can be determined by comparison between the radius and other properties of a circle
(ok, Archimedes introduced a series that led to π, thus a definition of π by a series also is
possible).

A simple approach could start with drawing a large circle on a sheet of graph paper. If we
than count the number of squares inside the circle, we get some approach on the circle’s area
and by relating this to its radius also on π. A different ‘hands on’ version relies on drawing a
circle on a plank with known area, weighting the plank, sawing out the circle and weighting
it. The relative weight of the circle compared to the weight of the plank yields the area of
the circle relative to that of the plank. Thus π can be determined.

The Monte Carlo approach is quite similar, although neither paper nor plank is required.
Take a square in number space, for instance [−1 ≤ x ≤ 1,−1 ≤ y ≤ 1]. This square occupies
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Figure 8.1: Monte Carlo method to determine π: (left) points picked out arbitrarily; (right)
development of the result as the number of points increases

on area of 4 AU.1 All points inside this space either belong to a circle of unit radius around
the origin or do not belong to it: for

√
x2 + y2 ≤ 1, the point (x, y) belongs to the circle, for√

x2 + y2 > 1 it does not belong to it. We know select arbitrarily points (x, y) in the number
space and check whether they belong to the circle or not. If they do, the counter incircle
is incremented; for each selection, the counter number is incremented. This gives as π:

incircle

number
=
π

4
⇒ π = 4

incircle

number
. (8.1)

A less formal description of this method (may be even suitable for a Terminator) might
be such: draw a circle on a large square of plywood. Take a machine gun with broad scatter.
Fire. Count the impacts inside the circle and the number of impacts on the board. Ask
somebody to evaluate the ratio between the two to compute π.

The left part of Fig. 8.1 shows a sample result for such an experiment with 1000 shots
fired, although this particular experiment was performed with the computer. The right panel
shows how the result evolves towards π. For small numbers of shots, the deviation from π
can be quite large: with one shot, the result is either hit or miss. Or in numbers: 0 or 4.
With the second shot, we might have two hits, one hit or zero hits. Or in numbers 0, 2 or 4.
And so on. For the sample in the figure, the initial shot was a hit on the circle, the next a
miss and all 8 following shots were hits. Thus the first ten results on π read

1 2 3 4 5 6 7 8 9 10
4. 2. 2.6667 3. 3.2 3.3333 3.4286 3.5 3.5556 3.6

As expected from this series and also visible in the right panel in Fig. 8.1, the accuracy
of the result increases as the number of shots becomes larger. However, accuracy does not
increase linearly with number of shots. Instead, there can be deviations from the true value
into one direction for an extended number of shots in a row. Similarly, sustained deviation
into the other direction might arise. We have encountered this behavior of random processes
already in connection with the drunkards walk, see in particular Fig. 4.1.

The situation does not improve too much if the number of shots is increased. Figure 8.2
shows the development of the result with the number of shots for 1000 (left), 10 000 (middle)
and 100 000 (right) shots. The 1000-shot panel (left) is a good example for the strong
variability of the result. Note that the right panel in Fig. 8.1 also has been obtained for 1000
shots: here the scatter is much smaller and after about 400 shots the result does not change
very much. With the 1000 shot panel in Fig. 8.2 the situation is different: the result at shot
880 would be larger by 0.5 than the result at shot 960 – and even that is larger than the
target number π. Thus one round with 1000 shots apparently does not necessarily give a
reliable result.

1AU here is not meant as astronomical unit but as area unit (or as arbitrary unit for the area).
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Figure 8.2: Variation in the result for π depending on the number of shots

Figure 8.3: Variation in the result for π depending on the number of shots

Strategies to improve the results obviously rely on strategies improving the statistics.
One might suspect, that a larger number of shots yields better results. A comparison of
the 1000 shot and the 10 000-shot panels in Fig. 8.2 suggests scattering to be reduced as
the number of shots increases, however, the results still deviates from the target and it also
shows varying trends that allow for rather large deviations from the target value. The result
only becomes slightly better when we look at the 100 000-shot panel. Nonetheless, even its
variation allows for sustained deviations from the target result – although the number of
shots and thus the computing time has been increased by a factor of 100 compared to the
1000-shot panel.

A different approach on improving statistics is the repetition of the shooting process and
subsequent averaging of the results. To get some feeling for the process, we can analyze a
106-shooting package in different ways. First, the points are broken into 10 000 parcels with
100 points each. The distribution of results for π is shown in the left panel of Fig. 8.3. The
distribution is rather broad; simulated values for π can be as low as 2.5 and as large as 3.7.
Thus one might be tempted to argue that 100-shot series are too inaccurate to be useful.
However, a closer look at the distribution shows that about 46% of the 100-shot runs yield
values in the interval (3.1, 3.2) and thus are relatively close to the target value of 3.1416. The
average value of π from this shooting is 3.1446.

For the middle panel in Fig. 8.3 the same vector of 106 points is broken into 1000 parcels
with 1000 shots each. The distribution is narrowed down to values between 3.0 and 3.35;
again, about 85% of the values lie in the interval (3.1, 3.2). The lack of values with strong
deviation from the target value, such as observed in the left panel, is partly caused by the
higher accuracy and partly by the lower total number of trials.

In the right panel of Fig. 8.3 the distribution of 100 parcels with 10 000 shots each is
shown. All values lie within the interval 3.1 to 3.2.

It should not come as a surprise to you that the average values of π in all three versions
is 3.1446. Assume a vector of n elements. Its average is

〈x〉 =
1
n

n∑
i=1

xi . (8.2)

Let us now break the vector into k subvectors of length nk with n = k nk. The average of
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each part then is

〈xnk
〉 =

1
nk

nk∑
i=1

xi . (8.3)

Since all nk are equal, the average of the subvectors then is

〈xsubs〉 =
1
k

k∑
i=0

〈xnk
〉 =

1
k

k∑
i=0

(
1
nk

nk∑
i=1

xi

)
=

1
k

1
nk

k∑
i=0

(
nk∑
i=1

xi

)
=

1
n

n∑
i=0

xi = 〈x〉 .

8.1.2 Accuracy of a Monte Carlo Result

Tossing a coin is a statistical process. Here we are interested in the number X of hits (e.g.
heads) in n tosses with Xi being the result in the nth toss. The variate (or random variable)
Xi obeys a Bernoulli distribution with parameter (probability for a positive result) p. In this
case, we get for the expected value µ = p and for the standard deviation σ2 = p(1− p). The
difference between the Monte Carlo approximation Y and the parameter µ to be determined
is according to the 3σ-rule

P

(
−3

σ√
n
< Y − µ < 3

σ√
n

)
≈ 0.997 . (8.4)

This equation can be used to determine the number n of trials required to obtain with a
probability of 99.7% an approximation on µ with a given accuracy ε.

The ansatz

ε = 3
σ√
n

⇔ n =
(
3
σ

ε

)2

(8.5)

yields the approximation

n ≥ 9
σ2

ε2
. (8.6)

8.1.3 How Random are Random Numbers?

Compared to rolling a dice or tossing a coin, a random number generator never is random.
Instead, it is based on an algorithm. Normally, this is a simple algorithm: a seed number is
multiplied by a large number, another large number is added and everything is normalized
to the maximum possible number that can be handled during the process. The new un-
normalized number serves as seed for the next random number and so on. The seed is either
a fixed variable or can be taken e.g. from the system clock. If the seed is a fixed variable,
the same sequence of random numbers is generated when the random number generator is
started. If a different number is taken as seed, either provided by the user or some system
variable, each initialization of the random generator creates a different series of random
numbers.

In MatLab, the state of the random number generator is set at the start of MatLab. If
not provided with a seed, the random number generator always yields the same sequence
of random numbers. However, if rand is called repeatedly during one MatLab session, the
individual series will show different sequences because the last value of the first series is the
seed for the second series and so on. However, the total sequence of numbers will be the
same.

The process is supposed to generate equally distributed numbers in the range [0,1] (if
normalized) or in some other prescribed range.2 Even simple random generators tend to
fulfill this requirement of yielding equally distributed numbers. A more series problem arising
from the algorithm is repetition: once the random generator yields a number that (during

2In Matlab, the range is not exactly [0,1] but instead [eps,1-eps] with eps being 2−53. If you think it is
relevant to correct the code for this deviation, please feel free to do it.
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Figure 8.4: Test of a
random number genera-
tor [159]

this run) already has been used as a seed number, the entire sequence from that seed to its
first repetition will be repeated endlessly – the random number generator will never deviate
from the sequence but stick to it. If that happens, random numbers no longer are statistically
independent. A simple way to check for this dependence is to generate two vectors of random
numbers and plot one versus the other. If the number are statistically independent, the points
are distributed stochastically, as can be seen for a small part of the number space in the right
panel of Fig. 8.4.

MatLab provides three different modes for the random number generator (see rand.m
in the Matlab directory .\toolbox\matlab\elmat). The right panel of Fig. 8.4 has been
obtained from the standard version of the random number generator, for the left panel the
older version implemented in Matlab 4 and earlier has been used. Here the patterns indicate
that the random numbers are not statistically independent – the random number generator
starts to repeat itself.

8.2 Monte Carlo Simulation – First Steps

A Monte Carlo simulation tracks the fate of individual particles (or volume elements) during
the simulation. Thus as in numerical integration, the accuracy of the result depends on the
number of particles under study – as does the computing time. To illustrate the process of
a Monte Carlo simulation let us start with some simple physical problems that are suitable
for such a simulation.

8.2.1 Radioactive Decay

Radioactive decay obviously is a problem most suitable for Monte Carlo simulation. We
are interested in the number N(t) of particles left at time t. Formally, this process can be
described by a simple ODE

Ṅ = −λN (8.7)

with λ being the decay probability. Thus the process is stochastic. As in a finite difference
solution, the simplest approach divides time in steps ∆t. For each particle we now follow
the time line: after each time step ∆t, we throw a dice/coin and decide whether the particle
decays or not. If it decays, the particle cannot be tracked any longer.

The main challenge in this procedure is the tracking of the large number of particles.
Depending on the problem under study, we can try different approaches:

• if we are interested in the number of remaining particles at a certain time tend, we can
simulate each particle along the time line: either it arrives at tend or not. The number of
particles arriving at tend then gives the desired result.
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Figure 8.5: Comparison of three Monte Carlo simulations and the analytical solution (green)
for the radioactive decay (left). In the right panel, the distribution of results at t = 2.5 is
shown for a set of 1000 different Monte Carlo runs; the expected value is 41

• if we are interested in the development of N(t), a different approach might be successful.
Create a vector of ones with its length corresponding to the number of particles considered
in the simulation. At the end of each time step, a stochastic vector is created, containing
a zero if the particle decays or a one if it survives. Pointwise multiplication gives the fate
of the particles at the end of the interval, the number of ones in this new vector gives the
desired N(t).

Of course, both methods also can be applied to the other problem. The first method is fast in
such that it does not consider a particle any longer ones it has decayed. However, it requires
to keep track of the fates of all particles. The second method is simple in the tracking of the
fate of all particles, however, with increasing time the number of zeros in the particle vector
increases and the subsequent mathematical manipulation is not required.3

The result of such a Monte Carlo simulation can be compared to the analytical solution
for the decay. But what is the advantage of the Monte Carlo simulation? Its disadvantage is
obvious: the Monte Carlo simulation is time consuming because a large number of particles
must be tracked through a rather large number of time steps. And the result of an individual
run does not even give the exact analytical solution as can be seen from the left hand side of
Fig. 8.5. Thus as in numerical integration a number of Monte Carlo simulations is required
to obtain a stable result. So what is the advantage of this numerical effort? The deviation
of the Monte Carlo simulation from the analytical solution reflects the underlying physical
process better than the analytical solution: the analytical solution gives the average value of
a large number of different possible versions of reality. Each Monte Carlo simulation gives
one of these possible realities. Thus the combined results from a number of Monte Carlo
simulations gives an approximation on the average result (which also is the analytical result)
and on the distribution of results around this average as shown on the right hand side in
Fig. 8.5. Thus we do not only get the expected result but also some information about the
likelihood and size of deviations from this result. In consequence, the additional numerical
efforts in the Monte Carlo simulation also give additional information.

As sideeffect of this reasoning we should realize that a Monte Carlo simulation consumes
too many computational resources to be useful for the simulation of a deterministic process
but provides additional information in case of a stochastic process.

Side question 28 Is this true? Discuss pros and cons of Monte Carlo simulations in deter-
ministic processes.

3One might modify this approach in such that only the ones in the vector are tracked: thus the length of
the vector (as the length of the vector with the random numbers indicating decay or survival) decreases with
increasing time.
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8.2.2 Convection and Decay

Let us now expand our model from an ODE to a PDE, that is we will introduce a spatial
coordinate in addition to time. To describe the idea, we will simply assume that the particle
population is advected with speed v along the x-axis.

The details of the model depend on our problem, for instance whether we are concerned
with a δ-injection or a continuous injection. Let us start with a δ-injection. Again, we
divide time in steps of size ∆t. During each time step, two things happen: (a) the particle
is advected a distance ∆s = v∆t4 and (b) at the end of the time step the particle might
decay or not (as in the previous section). Since space and time are directly coupled, we can
recycle the results from the simple decay model by just scaling the time axis on N(t) by v:
in that case, we get N(s) not as a dependence of particle number on spatial coordinate at a
fixed time but as particle number that would be observed at position s at time t = s/v as
the particle peak is advected across the observer.

Is the situation of a continuous particle injection really different from the δ-injection?
Physically, the situation is different because at a fixed distance we will not observe a pulse of
particles propagated over the observer but instead a roughly constant intensity: on average
the number of particles advected from the upstream medium is the same as the sum of the
decaying particles and the particles advected into the downstream cell.

How would we simulate this? Basically we can adopt the N(t)-method from the simple
decay: define a matrix N(s) of particles with each column i containing the existence-index
of particles at the position xi. At the end of each time step ∆t a random decay matrix is
determined and multiplied pointwise with N(s). Then the columns are advanced from xi to
xi+1 and the fresh injection is added at x0. Thus for each time step N(s) is determined.
An approximation on the steady-state solution is acquired as soon as the first particle pulse
arrives at the end of the simulation volume.

Side question 29 Is this true? Does this depend on the properties of the boundary? What
in case of a (partially) reflecting boundary?

As in case of the radioactive decay, this is an approximation only: while the steady-
state obtained from the analytical solution represents some expected state, the individual
realizations of the particle distribution can be quite different. Thus again, the Monte Carlo
simulation gives not only an approximation on the analytical solution but has the added
benefit of providing information about the variations.

8.2.3 Longitudinal Tank

The above model becomes more interesting (and more realistic) if we allow for dispersion in
addition to the advection. Physically, we have the same situation as discussed in detail in
chap. 3. The Monte Carlo simulation differs from the one described above in such that a
second stochastic process is added, the dispersion. Thus at the end of each time interval, the
particle is advected (systematic process), it is determined wether it decays or not (stochastic,
see above) and a coin is thrown to determine whether it is transported backwards or forwards
by dispersion. The development of an implementation of this simulation and its test is the
goal of project 4 as described in sect. ??.

Side question 30 Re-evaluate all physical examples discussed in this text for their suitabil-
ity in Monte Carlo simulations.

8.3 Energetic Charged Particles in the Atmosphere

Within in the framework of the two DFG-Special Programs ‘Geomagnetic Variations’ (http:
//www.geophys.tu-bs.de/spp/index en.html) and ‘CAWSES’ (http://www.iap-kborn.

4In consequence, spatial and temporal step size are coupled. This is also the case in FDMs.
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Figure 8.6: Right: Intensity–time profiles for the Bastille Day event (July 14, 2000); Left:
variation in ozone concentration on the northern hemisphere [75]

de/cawses/index e.htm) our group studies the consequences of precipitating energetic par-
ticles in the atmosphere. Sources of these particles are the magnetosphere and the Sun. The
primary consequence of their precipitation is ionization of the atmosphere at heights between
about 15 km and 100 km where the atmosphere under normal conditions is neutral. The
secondary consequence of such ionization is a change in atmospheric chemistry, in particular
the depletion of ozone.

The left panel in Fig. 8.6 shows the intensity time profiles for the July 14, 2000, solar
energetic particle (SEP) event (Bastille Day event) as observed in geostationary orbit. The
profiles correspond to different proton energy range with the topmost profile (blue) repre-
senting the lowest energy (15–44 MeV) and the lowermost profile (magenta) representing
the highest energies (640–850 MeV). The points at the left boundary represent background
intensities. Thus during the event an increase in the lower energetic protons lasts for more
than 1 day and amounts to more than 5 orders of magnitude. Thus a solar energetic particle
(SEP) event is a strong forcing signal onto the atmosphere.

The right panel in Fig. 8.6 shows ozone concentrations above 0.5 hPa, that is above about
45 km, in the northern hemisphere. The left part is observed on July 13 prior to the event.
The normal latitudinal pattern with higher concentrations at low latitudes (ozone production
regions) and lower concentrations at high latitudes is apparent. Observations directly over
the pole are not available due to the inclination of the satellite orbit. The thin white ring
marks the polar cap: here SEPs are not deflected by the geomagnetic field and can precipitate
down into the atmosphere.

The right part of the right panel of Fig. 8.6 shows the result of such particle precipitation:
ozone concentrations inside the polar cap drop by 30–40% while they stay at constant level
at lower latitudes.

Our interest in energetic particles and ozone lies in three domains, see also the more
detailed description in sect. 8.3.3:

• individual events: they are required for calibration of the model because the signal is large
(see left panel in Fig. 8.6) and thus atmospheric responses are well defined and can be
identified easily in the observational record. Therefore these events can be used to validate
the model.

• atmospheric consequences in case of a weakening geomagnetic field or even a field reversal.
In this case, particle precipitation would not be limited to the polar cap but would occur
over a more extended spatial region. Would this also cause a stronger depletion in ozone?
The question is not as far fetched as it appears because polarity reversals often also are
accompanied by climate change and the extinction of species. This question is topic of
our project ‘Numerical simulation of the atmospheric ionization and the generation of
cosmogenic nuclides for different topologies of the geomagnetic field’ within the framework

c© M.-B. Kallenrode 13th November 2006

http://www.iap-kborn.de/cawses/index_e.htm
http://www.iap-kborn.de/cawses/index_e.htm


144 CHAPTER 8. MONTE CARLO SIMULATION

of the DFG Schwerpunktprogramm ‘Geomagnetic Variations’.
• climate consequences: ozone has radiative properties. Thus ozone concentrations determine

the local absorption and emission coefficients of the atmosphere. In consequence, thermal
patterns in the atmosphere can be modified which in turn influences the circulation. This
question is topic of a common project with the Max–Planck Institute for Meteorology
(Hamburg) ‘The atmospheric response to solar variability: simulations with a general
circulation and chemistry model for the entire atmosphere’ within the framework of the
DFG Schwerpunktprogramm ‘CAWSES – Climate and Weather in the Sun–Earth System’.

While the latter two projects are the more ambiguous ones, the first is the most important
one: only if that model sequence works correctly, also the more interesting questions can be
tackled. Thus we will here briefly discuss its main steps.

8.3.1 Modeling Individual Events

First observations of SEP event related ozone decreases date back to the 1970s, in particular
to the large event in August 1972. Paul Crutzen and coworkers [33] were the first to identify
the reactions involved in this effect: basically, the ionization by precipitating charged particles
leads to the formation of NOx and HOx. Both species ar highly reactive. In particular, both
destroy ozone. These observations led Crutzen conclude that nitrite oxides play an important
role in ozone chemistry – this discovery earned him 1/3 of the nobel prize in 1995.

While the qualitative description of the process is well established, its quantitative de-
scription suffers some problems. The observed quantities are, as indicated in Fig. 8.6, the
energetic particle flux outside the atmosphere and magnetosphere on the one hand and the
temporal/spatial variation of ozone in the atmosphere. The quantitative description of this
process requires a sequence of three models:

• a model to understand the particle transfer through the geomagnetic field: SEPs are pre-
cipitating almost homogeneously onto the magnetosphere and then are either deflected by
the magnetic field or allowed to precipitate down to the atmosphere. In a static magne-
tosphere, particle orbits can be calculated by integration of the equation of motion. In
a dynamic magnetosphere, the same approach can be used, although it is pretty time
consuming and requires an additional, time-dependent CFD-model of the dynamical mag-
netosphere, such as briefly mentioned in sect. 7.3.3.
The result of this model is a spatial pattern of precipitating particles on top of the at-
mosphere.

• a model to describe the ionization of the atmosphere by precipitating charged particles.
This will be described in detail below.
The result of such a model is an ion–pair production rate in the atmosphere, depending
on the horizontal coordinate (as inferred from the model magnetosphere above) and the
vertical coordinate (depending on the energy spectrum of the precipitating particles).

• a model to describe the chemistry of the atmosphere. Such a model includes a large number
of chemical reactions as well as some prescribed (or even self-consistently solved) transport
and needs the ion–pair production rates as input.
The result is a 2D or 3D (depending on the dimensionality of the model atmosphere) ozone
concentration that can be compared to the observations.

Thus the chain from observation 1 (SEPs in space) to observation 2 (ozone) leads through 3
models.

For the present day magnetosphere, the horizontal pattern of precipitation and therefore
also ion–pair production is simple: SEPs precipitate inside the polar cap but not outside.
Here the instruments on polar orbiting satellites can be used to derive a detailed description
of the precipitating particles and the (variable) size of the polar cap.

The vertical pattern of ion–pair production is regulated by the spectrum of the incident
particles. The primary energy loss mechanism for charged protons in the energy range under
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Figure 8.7: Specific energy loss
according to the Bethe–Bloch
equation for protons [134]

study is ionization. Formally, this process is described by the Bethe–Bloch equation

dE
dx

= − e4

4πε20me

Z2

v2
ne

[
ln

2mev
2

〈EB〉
− ln(1− β2)− β2

]
. (8.8)

The specific energy loss dE/dx is the energy dE deposited per unit path length dx along
the particle track. It depends on (1) a number of constants (first fraction; the elementary
charge e, the electron mass me and the absolute permeability ε0), (2) the parameters of the
incident particle (second fraction: charge Z and speed v), and (3) the electron density ne of
the absorber. The first term in the bracket contain the relative kinetic energy compared to
the average bond energy 〈EB〉 in the target material. The remaining terms are relativistic
corrections with β = v/c.

Figure 8.7 shows the specific energy loss depending on the particle energy for protons.
The specific energy loss decreases with increasing particle energy (interval 3) because the
time for interaction decreases with increasing speed. dE/dx becomes minimum around the
particles rest energy, afterwards it increases slightly due to relativistic effects (interval 4).
Since this is a general behavior, Fig. 8.7 also can be applied to other particle species as long
as the horizontal axis is scaled in units of the particle’s rest energy (938 MeV in case of the
proton) instead of its energy.

The specific energy loss is maximum at low energies (interval 2). In consequence, the
specific energy loss becomes largest close to the end of the particle’s range. Thus the deposited
energy as well as the resulting ion–pair production becomes maximum at the end of the range,
the so-called Bragg peak. For very low energies (interval 1), the Bethe–Bloch equation is no
longer valid: here the main physical processes are collisions between thermal particles and
attachment of the electron to an ion. Both processes are not described by the Bethe–Bloch
equation.

The energy loss of a particle along its track can be calculated by numerical integration
of (8.8). Figure 8.8 shows in its right panel the calculated ion–pair production rates (that is
specific energy loss divided by average ionization energy) for three subsequent 12 h intervals,
the first one starting at the time marked by the left horizontal line in the left panel. During
this interval (blue curve), ion–pair production occurs down to about 15 km because particle
energies are rather high (the magenta curve has already acquired its maximum while the blue
curve still is rising). With increasing time (going from blue to red to green), the ion–pair
production rate shifts to higher altitudes because the intensities at higher energies already are
decreasing. In addition, ion–pair production at altitudes around 70 km is increased because
the intensities in the lower proton energies (blue curve in the left panel) still are increasing.
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Figure 8.8: Bastille Day event: Particle intensities (left) and ionization rates (right) [134]

Figure 8.9: Bastille Day event: observed (right) and modeled (left) NOx (top) production
and ozone (bottom) depletion (M. Sinnhuber, U. Bremen, priv. comm.)

For the total model chain, these data now are fed into the model atmosphere. Figure 8.9
shows the modeled (left) and observed (right) NOx production (top) and ozone depletion
(bottom). Although the modeled results tend to overestimate both the NOx production and
the ozone depletion, the overall temporal and spatial pattern is reproduced quite well.

8.3.2 Monte Carlo Simulation of Atmospheric Ionization

Sofar, we have used a direct numerical integration of (8.8). But that approach has two disad-
vantages. First of all, the Bethe–Bloch equation is an empirical law derived from observations
at the ground, that is in a standard atmosphere. And secondly, it neither allows to track
the secondary electrons correctly nor to calculate ionization rates for incident electrons. The
reason is simple: if a proton ionizes an atom, the collision is between a heavy incident particle
and the electron. Thus the primary particle is not deflected as it knocks the electron out of
its orbit. In case of an incident electron, however, the collision partners have equal mass and
the primary electron will be deflected from its path, too. As a consequence, it does not travel
a straight line through matter but is subject to multiple scattering. While the Bethe–Bloch
equation still gives a reasonable approach on the specific energy loss along the particle track,
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it does not allow to calculate the energy loss within a certain slab of target material. The
same problem also holds for the secondary electron.

To model the total inventory of precipitating particles, which in addition to protons also
contains electrons and heavier nuclei, a different approach is required. Since the very nature
of the ionization process is stochastic, a Monte Carlo simulation is a reasonable approach.
Here we need a list of all physical processes and their relevant cross sections/probabilities
and then follow the particle along its track in small steps. At the end of each step, the
particle either experiences an interaction with the ambient medium or not. The probability
for such an interaction directly depends on the interaction cross section. Such an approach
allows the consideration of all possible interaction processes, as long as the energy-dependent
cross sections are known. This allows also the tracking of electrons: in each interaction not
only the energy loss is taken from an energy loss distribution function but also the angle
of deflection can be taken from some distribution. And in addition to the simple process
of ionization, we also can allow for processes such as the generation of bremsstrahlung and,
provided the energy of the incident particle is large enough, pair production.

The Problem

Before digging into too much detail, let us formulate the problem: the particle motion involves
the following steps:

• during each time step, the particle is transported by a spatial step ∆s = v∆t with v being
the particle speed. This almost corresponds to the advective term in sect. 8.2.2 – it does
not correspond to it exactly because in particular for electrons deviations from the direct
travel path of the incident particle occur.

• at the end of each time step, a dice is thrown to decide whether the particle interacts with
the matter or not. The likelihood of this process is determined by the total interaction
cross section. If an interaction happens, a second throw of the dice determines the kind of
interaction (for instance, ionization, hadronic interaction, production of Bremsstrahlung)
depending on the relative interaction cross sections. If no interaction occurs, the next time
step starts. If an interaction happens, we have to throw the dice again to determine the
energy loss from the energy loss distribution. The particle properties (energy, eventually
also direction of motion) will be updated and the particle’s energy loss is added as an
energy gain to the volume. Alternatively, it is also possible to just count the ionization
processes in each volume element (or along each line element of the travel path). If fast
secondaries are produced, they are treated as additional particles and also have to be
tracked by a Monte Carlo simulation.

The Model

Our model atmosphere is plane-parallel because the height of the atmosphere is small com-
pared to Earth’ radius. Up to a height of 100 km it is divided into 29 equidistant layers;
its remaining mass is condensed into a 30th layer, 10 km thick: thus details of the energy
deposit above 100 km are lost.

The composition of the atmosphere is homogeneous with 23.3 wt% O2, 75.5 wt% N2 and
1.3 wt% Ar. For numerical studies, pressure, density and temperature height profiles are
taken from the equatorial June atmosphere in the SLIMCAT/TOMCAT model [31]. This
approach ignores the pronounced seasonal variability of the polar atmosphere and gives an
average ionization profile instead [135]. For individual SEP events the corresponding polar
atmosphere is used.

During a SEP event protons, electrons, and α-particles are accelerated (for a recent
summary see e.g. [87]). Electron to proton ratios as well as energy spectra depend on the
parent flare, in particular whether it is impulsive or gradual, the properties of the coronal
mass ejection, and the geometrical relation between observer and solar activity.

Particle precipitation is assumed to be isotropic from the upper hemisphere: particle
distributions in interplanetary space tend to be isotropic for electrons (see e.g. Fig. 5.5) and
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Figure 8.10: Monte Carlo simulation: Tracks of a 50 MeV electron (right) and a 300 MeV
proton (left) in a model atmosphere [149]

become isotropic for protons during the time course of the event (e.g. examples in [82]).
Observations by the MEPED (Medium Energy Proton and Electron Detector) instrument
on board POES (Polar Orbiting Environmental Satellite) even suggest a slight preference for
larger pitch angles inside the polar cap at altitudes of 900 km (Bornebusch, priv. comm.).

Energy spectra of precipitating SEPs can be described by a broken power law [51, 44, 78]:
I(E) = I0 · (E/E0)−γ with I0 being the differential intensity at a reference energy E0, E
the energy, and γ the spectral index. Around some 100 MeV the spectrum flattens and
intensities increase due to the background of galactic cosmic rays [50]. Observed spectra are
fitted simultaneously by up to three power-laws; the breaks between the power laws are not
at fixed energies but are determined such that the best fit over the entire spectrum results.

Monte Carlo Simulation

The Monte Carlo simulation is performed using the GEANT 4 toolbox developed at CERN.
GEANT 4 [1, 47] allows for a multitude of interactions between the precipitating particle
and the absorber atmosphere. Our model considers as subset of particles protons, electrons,
positrons, αs, and photons. Interactions are limited to electromagnetic ones: multiple scat-
tering, Compton-scattering, ionization, photo electric effect, gamma conversion, annihilation,
pair production, and production of bremsstrahlung. Secondaries produced in such interac-
tions are tracked up to a cut-off length for particle propagation of 1 m. If particle energies
are lower, the model switches to continuous energy loss.

Precipitating particles have an angular distribution and an energy spectrum. The Monte-
Carlo simulation itself is performed for mono-energetic pencil-beams of 100 particles; angles
of incidence vary between 0◦ and 80◦ in steps of 10◦. The energies range from 1 MeV to
500 MeV in 109 logarithmic equidistant steps for protons and 1 MeV to 50 MeV in 340 steps
for electrons. Statistics are tested by increasing the number of incident particles by a factor
of 10 – the results are essentially the same.

The total energy input into each layer is the sum of the energy depositions of the individual
particles; a division by the layer’s thickness yields the linear energy transfer (LET) dE/dx.
Thus the primary result of the simulation is the LET as function of altitude, initial kinetic
energy and impact angle.

Ion pair production rates for individual particle events are obtained by folding the LETs
with the observed particle spectrum and angular distribution and assuming an average ion-
ization energy of 35 eV per ion pair [131].
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Figure 8.11: Energy
losses of 1–500 MeV
protons calculated with
a Monte Carlo sim-
ulation (circles) and
Bethe–Bloch (solid line)
[149]

Results

Figure 8.10 shows sample tracks for a 300 MeV proton (left) and a 50 MeV electron (right).
Production of secondaries is marked by dots, at the lines continuous energy losses occur with
the line styles dashed, solid and dashed-doted indicating neutral, negatively or positively
charged particles, respectively.

The proton trajectory basically is a straight line. Only in the extremely rarefied upper
atmosphere a trace of a secondary electron with significant path length is visible. Such long
tracks occasionally occur in the upper atmosphere, because a low density implies a small
interaction probability between the secondary and the atmosphere, leading to a long track.
At lower altitudes secondary electrons are quickly stopped by the dense atmosphere and do
not show up as separate tracks.

The straight path of the primary proton combined with the short range of the secondaries
yields energy loss distributions comparable to those acquired in the conventional way without
consideration of secondaries: Fig. 8.11 shows energy losses for proton spectra with four
different power law indices γ with (dots) and without (line) consideration of the secondaries.
With increasing γ the spectrum steepens and the ion production rate at lower altitudes
decreases. Note that γ = 0 implies that the particle intensity is independent of energy while
γ = 2 represents a SEP spectrum fairy well.

The situation is quite different for electrons, see left hand side of Fig. 8.10: instead of a
straight line the path is randomly twisted because the primary’s mass is the same as that of
the shell electron and thus deflection occurs during interaction. This multiple scattering is
not considered in a continuous loss model based on the Bethe–Bloch equation; thus such mod-
els underestimate the LET and consequently overestimates penetration depth. In addition,
not all secondaries keep close to the track of the primary: aside from the secondary electrons
produced during ionization, a primary electron also produces bremsstrahlung (dashed lines).
These X-rays propagate large distances before depositing their energy due to Compton scat-
tering and photoionization in denser layers of the atmosphere. Ionization thus can be shifted
by several kilometers below the end of the primary track. The resulting energy transmission
to altitudes less than 20 km with (dots) and without (lines) consideration of the secondaries
is shown in Fig. 8.12, again for four different power law spectra and γ = 2 being a fair
representative for SEP spectra.

To demonstrate the implications of the Monte Carlo simulation for ion–pair production,
two different events are analyzed: one prominent event (October 22, 1989) and for compari-
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Figure 8.12: Energy
losses of 1–50 MeV
electrons calculated
with a Monte Carlo
simulation (circles) and
Bethe–Bloch (solid line)
[149]

Figure 8.13: Ionization rates of electrons and protons combined for a gradual solar energetic
particle event (left) and an impulsive one (right) [149]

son a large impulsive event (June 14, 1989). Electron spectra in the range 0.5 to 2.5 MeV are
obtained from the CPME (Charged Particle Measurement Experiment) on board IMP (In-
terplanetary Monitoring Platform). Comparison with the higher energy electron instrument
on IMP shows that in both events the electron spectrum can be extended down to at least
5 MeV. For the June event, proton spectra in the range 0.29 MeV to 440 MeV are obtained
from the same instrument; for the October event proton spectra in the range 0.8 MeV to 500
MeV were taken from GOES (Geostationary Operations Environmental Satellite) because
IMP measurements are less reliable due to failure of the anticoincidence scintillator.

The left hand side of Fig. 8.13 shows the modeled ion pair production rates for protons
(dotted), electrons (dashed) and the sum of both (solid line) in the 4 October event for
6 hours containing the high energy maximum; at later times the instrument is saturated.
Ionization of the electrons can amount to up to about 1/3 of that of protons in the height
range 50 to 70 km, at lower altitudes electron contribution is insignificant – which is partly
due to our abrupt cut off of the electron spectrum at 5 MeV.

The ion pair production rates for the main phase (1 day) of the impulsive June event are
shown on the right hand side of Fig. 8.13. Again the contribution of electrons is visible only
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above 50 km, however, around 70 km the ion pair production by electrons even exceeds that
of the protons.

Conclusions

The main results of the Monte Carlo simulation are:
R1 for 1 MeV to 500 MeV protons ionization rates are essentially the same in the Monte
Carlo simulation and in a continuous energy loss model.
R2 for 1 MeV to 50 MeV electrons the consideration of bremsstrahlung shifts the ionization
well beyond the Bragg peak to lower altitudes.
R3 electrons in SEP events contribute to ion pair production rates in the height range 50
to 70 km; the amount depends on whether the particle event originated in an impulsive or a
gradual flare.

As a consequence of R1, the consideration of secondaries in the Monte Carlo simulation
cannot explain the difference between the observed and modeled electron densities in the
October 1989 event as suggested by Verronen et al. [172]. Instead, R3 suggests that the
inclusion of electrons in the analysis of SEP events might explain such differences. It should
be noted that implications of R3 depend on the focus of research: in the very large events
electron contributions are more or less a 10% effect and thus might be neglected as suggested
in [74]. For long term studies such as variations over the solar cycle or possible climate
impacts, however, also the much larger number of electron-rich impulsive SEPs has to be
considered and thus ionization rates (and atmospheric consequences of precipitating particles)
can be evaluated only if also electrons are considered.

R2 also has implications for modeling atmospheric effects of precipitating electrons. So
far, magnetospheric electrons have been considered as a source of NOx which, owing its long
life-time, sinks down from the mesosphere into the stratosphere and affects ozone chemistry
[21, 22]. Our results suggest a modification to their model in such that part of the ionization
is directly transferred downwards by Bremsstrahlung. However, consequences are difficult to
access since the produced NOx and HOx have different life times at different heights and thus
implications for chemistry only can be evaluated in combination with a chemistry model.

8.3.3 Applications of the Model

In this section some results of our work on the consequences of solar energetic particles for
atmospheric ionization and ozone depletion will be presented. The work is done in collabora-
tion with Miriam Sinnhuber and Holger Winkler from the Institute of Environmental Physics
at the University of Bremen.

Modeling of Atmospheric Consequences – Principle

The question under study already is demonstrated in Fig. 8.6: what is the relation between
solar energetic particles (left) and ozone depletion (right). Basically, the two figures present
the information available: intensity–time profiles for different particle species and energies
measured outside the atmosphere and ozone mixing ratios measured in the atmosphere above
a certain height. Modeling consists of three modules:

• where do the particles precipitate? The geomagnetic field regulates the spatial pattern of
particle precipitation such that it is limited to the polar cap (white ring in the left panel of
Fig. 8.6 in the present day atmosphere). For a modified geomagnetic field such as during
a field reversal, however, the spatial precipitation pattern has to be modeled.

• primary interaction: ionization. From the particle intensity–time profiles energy spectra
are calculated and from them the vertical profile of energy losses in the atmosphere, such
as shown in Fig. 8.8.

• from these ion–pair–production rates the generation of the chemically reactive components
NOx and HOx is determined. From a chemistry model such as the one used at the Uni-
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Figure 8.14: Ozone depletion following the series of large events in October/November 2003:
modeled and observed ozone variations in the northern and southern hemisphere [141]

versity of Bremen, then ozone depletions can be calculated as shown and compared to the
observations in Fig. 8.9.

Since three models stand between the observations, each model must be quite elaborate to
avoid a sum-up of the unavoidable errors.

Individual Events

Although modeling is performed with care, errors cannot be excluded. Thus extensive testing
is required. However, atmospheric ozone is not only influenced by solar energetic particles
but also by other factors such as the Sun’s hard electromagnetic radiation and atmospheric
temperature and circulation patterns. Thus any variation in ozone at the time of a particle
event can have many different sources – the particle event might not even contribute to ozone
variation.

Thus the first task is to show the causal relation between ozone depletion and solar
energetic particles and than to model it qualitatively. A reasonable approach might follow
this line of thought: if solar energetic particles have any non-vanishing influence on the
atmosphere, this should be most obvious in the largest events. This is also observed.

In addition, the largest events provide the best test case for modeling: if the effect is large,
its dilution due to natural variability is small. Thus a large solar particle event provides
some kind of δ-stimulus for the atmosphere and its response can be analyzed despite all the
natural noise underlying it. And solar energetic particle events can become quite large: in
the Bastille day event in Fig. 8.6, particle intensities increase by up to 6 orders of magnitude
above background thus providing a strong stimulus.

As a consequence, large solar energetic particle events can be used to calibrate the model
chain mentioned above before we attempt to derive more subtle effects from our models.
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Figure 8.15: Consequences of
the large October 1989 event in
the atmosphere at N75: HOx

production (top), NOx produc-
tion (middle) and ozone de-
pletion (bottom) (courtesy M.
Sinnhuber, U. Bremen)

To demonstrate the validity of the model chain, Fig. 8.14 shows comparisons between mea-
surements by SCIAMACHY (top and third panel) and modeled (second and fourth panel)
depletions in ozone following the large events in October/November 2003 for the northern (top
panels) and southern (bottom panels) hemisphere. Spatial and temporal patterns in both
hemispheres are reproduced quire reasonably, although as discussed before ozone depletion
in the mesosphere is overrated while it is underestimated for late times in the stratosphere.
However, these deviations between observations and model are small compared to the asym-
metry between the two hemispheres: while both model and observations indicate a strong
ozone depletion in the northern hemisphere, ozone variations in the southern hemisphere are
almost negligible. Reasons for this asymmetry will be discussed below.

Long–Term Effects of Solar Energetic Particle Events

While the modeling of the influence of individual particle events on ozone is a goal in itself,
our interest is concerned more with longer times scales, in particular time scales related to
magnetic field reversals, variations of the terrestrial climate and variations of the atmosphere,
in particular its composition.

These long-term questions can be analyzed with different scopes. For instance, we can
perform a single event analysis as described above but for modified boundary conditions. This
would be a suitable approach to understand ozone depletion in individual events during, for
instance, a magnetic field reversal or in a changing atmosphere. However, since magnetic
field reversals also are accompanied by climate change and mass extinction, we also might
ask wether ozone depletion might lead to climate change. Since large solar energetic particle
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events are rather rare (a few per solar cycle), such speculation only can be reasonable if a
single event has a sufficiently long influence on the atmosphere and thus the effects from
events might overlap and amplify in time.

Figure 8.15 shows atmospheric consequences following the large solar energetic particle
event in October 1989. The top panel shows vertical profiles of the HOx generation at 70 N,
the middle panel the same for NOx. Both species are highly reactive and lead to ozone
destruction. HOx is produced mainly at altitudes above 40 km. It is a short lived species
and is easily destroyed by photochemical reactions and during the ozone depletion reaction.
Thus HOx production during a solar energetic particle event certainly will not cause any long-
term effects. The situation is different in case of NOx: it is produced over a much broader
height range from about 20 km to the mesosphere, although the maximum production occurs
above about 40 km. The fundamental difference compared to HOx is the live-time: particle
precipitation is limited to a few days while high NOx levels persist for weeks to months.
With time, NOx is depleted in the mesosphere by photochemical reactions – its life time
in the stratosphere is much longer and with time it sinks slowly to lower altitudes with its
maximum around the height of the ozone layer.

Ozone depletion (bottom panel in Fig. 8.15) is regulated by both species: initially in
the event there is a strong depletion in the mesosphere above 60 km due to the combined
effects of HOx and NOx. The pronounced depletion around 40 km, on the other hand, is
due to NOx as can be inferred from the long time scales. Owing to different temperatures,
the NOx-induced ozone depletion is larger in the stratosphere than in the mesosphere. The
most remarkable effect, however, is the persistent ozone depletion by a few percent right in
the middle of the ozone layer around 25 km lasting for more than a year. Such a persistent
anomaly bears the seed for possible cumulative effects of solar energetic particle events – in
particular during magnetic field reversals where the effects of individual events will be even
larger than in the present day atmosphere.

Ionization through the Solar Cycle

The first approach on long–term studies is a view on the solar cycle. Figure 8.16 shows
ion–pair production rates from 1988 to 2005, that is almost 2 solar cycles. Times of high
solar activity are clearly visible as times with increased ion–pair production rates between
1989 and 1992 and again between 2000 and 2005. Solar minimum is around 1996. The
sharp drop in ionization rate at 20 km is ‘instrumental’: the highest energies observed by the
GOES particle detector are 800 MeV protons which stop at that height. At lower altitudes,
ionization expected from higher energies is ignored in this figure – this does not pose a
problem for modeling because the subsequent atmospheric chemistry model is limited to the
stratosphere and mesosphere and thus is not influenced by neglect of tropospheric ionization.5

Figure 8.17 shows the variation in total ozone from 1989 to the middle of 2001, that is
one solar cycle. The figure shows a couple of remarkable features:

• the general temporal behavior of the ozone depletion reflects the variation of ion pair
production rates with the solar cycle as shown in Fig. 8.16: pronounced ozone depletion is
observed between 1989 and 1992 and after 1999; the minimum of the solar cycle (and also
the ionization) occurs around 1996.

• to the left, at the end of 1989, a strong decrease in ozone of some percent is visible in the
northern hemisphere. This is related to the large solar energetic particle of October 1989
as discussed in connection with Fig. 8.15. As mentioned there, the effect lasts for some
month.

• the ozone depletion on the right (middle of 2000) is related to the Bastille day event
discussed in connection with Fig. 8.6.

5Such a limitation for a chemistry module is validated by the fact that the tropopause is a boundary
which strongly inhibits transport of matter and thus almost completely decouples the troposphere from the
atmosphere above.
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Figure 8.16: Ion–pair production due to energetic charged particles during the solar cycle

• in particular for the October 1989 event a strong hemispherical asymmetry is visible: the
ozone depletion is much more pronounced on the northern hemisphere than on the southern
one. In contrast, late in 1991 a solar energetic particle event causes an ozone depletion in
the southern hemisphere but has almost no influence on the northern hemisphere. This
hemispheric asymmetry basically is caused by two effects: (a) HOx and NOx life–times
are influenced by photochemical processes as are many other chemical processes in the
atmosphere. Thus even if all other conditions are equal, both hemispheres might exhibit
different patterns of ozone depletion because one is more strongly illuminated than the
other one. In the most extreme case, one hemisphere might be in polar night while the other
is in polar day. (b) Circulation patterns are very different in both hemispheres: while in the
northern hemisphere meridional transport happens all the year, in the southern hemisphere
a strong closed vortex persists in the stratosphere that inhibits meridional transport, in
particular in winter. In consequence, stratospheric temperatures can be extremely low
which influences ozone chemistry. This vortex also explains why an ozone hole is observed
at the southern pole while the northern hemisphere ozone hole is rather rudimentary.

• the spatial pattern of ozone depletion varies with the solar cycle: while during solar max-
imum ozone depletion due to precipitating particles occurs almost down to the equator,
during solar minimum ozone depletion is limited to latitudes poleward of about 60◦.

• ozone depletion occurs at latitudes where no particles precipitate: owing to the shape of the
geomagnetic field, particle precipitation is limited to the polar cap, that is to geographic
latitudes well polewards of 60◦. Ozone depletion is not limited to these high latitudes but
occurs also close to the equator. This shift reflects the atmospheric circulation patterns and
the spatial variation in ozone production: the main ozone production is at low altitudes,
leading to high ozone concentrations at low altitudes, see also the right panel in Fig. 8.6.
The ozone-rich air then is transported polewards at high altitudes. At high latitudes
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Figure 8.17: Changes
total ozone due to pre-
cipitating solar energetic
particles during the so-
lar cycle (courtesy M.
Sinnhuber, U. Bremen)

Figure 8.18: Variation
in total ozone during
the solar cycle without
geomagnetic field (cour-
tesy M. Sinnhuber, U
Bremen)

ozone is destroyed by photochemical reactions as well as energetic particles. The equation
of continuity requires also transport from the pole to low latitudes. This advects ozone
depleted air to equatorial latitudes and thus explains the reduction in equatorial ozone.

• in mid-latitudes (around 50◦) the solar-cycle variation in ozone due to precipitating ener-
getic particles is comparable to the observed variation – and it is opposite in sign to the
variation expected from the solar-cycle variation of the UV radiation.

Vanishing Geomagnetic Field

A worst case estimate for the ozone balance during a magnetic field reversal is obtained in
case of a vanishing geomagnetic field. Then particles precipitate into the atmosphere at all
latitudes and not only at high latitudes. Figure 8.18 shows model calculations or this case.
The results are quite similar to the ones obtained for the present day geomagnetic field in
Fig. 8.17:

• total ozone depletion is higher during solar maximum than during solar minimum,
• the effects of individual events are visible,
• ozone depletion in individual events shows a hemispheric asymmetry,
• the spatial pattern of ozone depletion varies with the solar cycle.

Despite all these similarities (in fact, there is one similarity too much) there is also a funda-
mental and surprising difference between the two figures: ozone depletion in high latitudes
is much more pronounced in case of a vanishing geomagnetic field although the number of
particles precipitating at high latitudes does not change! On the other hand, the difference
in particle precipitation between the present-day field and the vanishing field occurs at low-
and mid-latitudes: here the difference in ozone depletion between the two runs is less pro-
nounced than at polar latitudes where no difference would be expected. This again reflects
the complex relation between photochemical processes and atmospheric circulation.
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Figure 8.19: variation in ozone (top)
and temperature (bottom) at 75N fol-
lowing a large solar energetic particle
event during a magnetic field reversal
(based on [154])

A closer inspection of Fig. 8.18 suggests ozone depletion by 10–20% at high latitudes
lasting for a few month. Ozone has radiative properties, in particular, it absorbs UV radi-
ation and is also a greenhouse gas, that is, it affects the terrestrial long-wave emission. In
consequence, a local change in ozone concentration can cause a local change in temperature.
Since pressure gradients resulting from temperature gradients are the driving forces for at-
mospheric motion, a change in ozone concentration might cause a change in atmospheric
velocity fields and thus modify climate.

Consequences for Climate?

A first indication for such a process is given in Fig. 8.19: in the top panel ozone depletion at
75N is shown for a large solar energetic particle event at the time of polarity reversal, that
is for a vanishing geomagnetic field. Ozone depletion can amount to more than 50% in the
stratosphere and stay at such high levels for almost a year. The lower panel in Fig. 8.19 shows
the resulting changes in temperature (sorry for the color-coding – differences are differences,
but somehow its better to think about the reference point before calculating differences). Al-
though temperature changes are rather small (rarely larger than 5 K), temperature gradients
can become quite large. In consequence, wind fields change. And once the wind fields are
modified, the entire temperature distribution in the atmosphere is modified, which certainly
will affect climate.

The simulation in Fig. 8.19 can be regarded as a first indication for a solar energetic
particle induced modification of the climate. The model atmosphere used to obtain that
result has been build primarily for the study of atmospheric chemistry. The model is a 2D
model only, that is it considers the vertical coordinate and latitude as horizontal coordinate
because the relevant transport processes in the atmosphere are meridional. In consequence,
atmospheric circulation can not be treated self-consistently. Instead, it is parameterized
such that only the meridional component is allowed to vary while the azimuthal transport is
fixed. Such a model cannot adjust completely to a different temperature pattern driving the
circulation systems. Thus the results in Fig. 8.19 give an indication only.

Within the framework of CAWSES it is planned to use the MPI Hamburg model HAM-
MONIA (http://www.mpimet.mpg.de/en/depts/dep1/uma/hammonia/) to model possible
consequences of precipitating solar energetic particles for climate in more detail. It should
be noted that this implies a large amount of computational resources. Thus the simple first
estimate in Fig. 8.19 has been relevant in such that it has confirmed that the process under
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study is possible and worth further investigation. Without such a preliminary study it would
have been irresponsible to start the study with the full climate model.

8.4 Some other Examples

8.4.1 Nuclear Physics: GEANT 4

Processes in nuclear physics go down to the sub-atomar level and thus always are stochastic.
Therefore, Monte Carlo simulations face a broad range of applications in nuclear physics. The
GEANT 4 software from CERN [28] used in the Monte Carlo simulation described above is
a widely used tool in nuclear physics. It covers all aspects of particle propagation and inter-
action, including tracking of secondary particles and particle propagation in electromagnetic
fields.

All aspects of the simulation process have been included in the toolkit:

• the geometry of the system,
• the materials involved,
• the fundamental particles of interest,
• the generation of primary events,
• the tracking of particles through materials and electromagnetic fields,
• the physics processes governing particle interactions,
• the response of sensitive detector components,
• the generation of event data,
• the storage of events and tracks,
• the visualization of the detector and particle trajectories,
• and the capture and analysis of simulation data at different levels of detail and refinement.

Applications of the programm include all aspects of high–energy and nuclear physics.
Some examples include

• design and performance of particle detectors: detectors for energetic radiation often work
as stand-alone instruments on satellites or in supervision in nuclear industry. These in-
struments must be reliable and accurate, extensive testing and calibration in a well-defined
radiation field often is not possible. In addition, the detector elements show slight produc-
tion tolerances: thus despite the same design and use of the same elements, two particle
detectors might differ in performance parameters such as detected energy range, detection
threshold, or response. Here a Monte Carlo simulation is an extremely helpful tool: since
the geometries and materials of detector elements can be specified in detail, production
tolerances can be taken into account and each instrument can be simulated as individual
instrument. In addition, the incoming radiation field is well-defined and can be varied to
almost unlimited numbers. Thus the response of the detector can be defined quite well. In
addition, at least known aging effects can be taken into account in the simulation. This is
of particular importance for long–term surveillance because here it is important to identify
whether a change in counting rates corresponds to a change in the radiation environment
(for instance a small leak in the nuclear plant) or whether it does not result from a modified
environment but from the aging of the detector alone.

• collisions of high energetic particles: interactions of high energetic particles are not the sim-
ple ionization process described in the above example but can include hadronic interactions
or lead to the generation of cascades (simple examples for both processes follow below).
Thus out of the collision of two sufficiently large and energetic particles a large number of
secondaries can be produced which in turn might interact or decay. Such processes also
can be modeled with a Monte Carlo simulation.

• simulation of air showers: galactic cosmic rays with very high energies can cause an air
shower in the atmosphere, that is a chain reactions where the secondary particles pro-
duced by the incident particle again interact with atmosphere and produce tertiaries which
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again interact with the atmosphere and so on. For instance, a fast electron might cre-
ate bremsstrahlung as it interacts with the denser atmosphere in the stratosphere. If the
bremsstrahlung photon has a sufficiently high energy, it will lead to pair production, giving
an electron and a positron. The electron might create bremsstrahlung which in turn might
lead to pair production which in turn ... and so on. The positron, on the other hand, even-
tually will interact with some atmospheric particle causing decay radiation which in turn
might ionize which in turn ... and so on. Thus an avalanche of electrons and photons, called
an electromagnetic cascade, propagates downwards through the atmosphere. The photons
can be detected at the ground by Cerenkov detectors. Such an array exists, for instance,
at the Forschungszentrum Karlsruhe (Kaskade, http://www-ik.fzk.de/KASCADE/). The
number and spatial distribution of the photons is determined by the energy and direction
of the incident particle. Monte Carlo simulations of such cascades are used to infer from
the observation the properties of the incident particle.

• production of cosmogenic nuclides is an example for hadronic interactions. It is another as-
pect of the interaction of energetic particles, here galactic cosmic rays with the atmosphere.
Examples for cosmogenic nuclides are radiocarbon (capture of thermal neutrons by at-
mospheric nitrogen: 14N(n,p)14C) or 10Be (spallation of nitrogen or oxygen due to the
capture of fast protons or neutrons). These cosmogenic nuclides are stored in terrestrial
archives: 14C is accumulated in all living mater, for instance in tree trunks. 10Be is eas-
ily washed out from the atmosphere by precipitation. Storage occurs in the arctic and
antarctic ice sheets. Thus the time history of both substance provides information about
variations in the precipitation of galactic cosmic rays into the atmosphere, for instance due
to modified solar activity, a changing geomagnetic field or a variation in galactic cosmic
radiation. While the time history for the stable 10Be can be obtained directly from the
measurements, the 14C series has to be corrected for its decay (half life of about 5400 a),
for instance by matching tree ring patterns for independent dating.

A word of caution: a Monte Carlo simulation is a powerful tool in nuclear physics, but it is
also a tool which relies heavily on a large number of (accurate) observations and on theory.
Each Monte Carlo simulation is only as good as the underlying distributions (interaction
cross sections, energy loss statistics, etc.).

8.4.2 Medical Applications

A special subtopic is the application of the nuclear physics problem of particle interaction
with matter to medicine. This topic includes both diagnosis and therapy.

Diagnostics: CT, PET, SPECT

Modern diagnostic tools heavily rely on the interaction of energetic radiation with matter.
This holds not only for the simple X-ray but also for its more advanced 3D version of CT
(computer tomography). Also the 3D aspect of CT should not be underrated, it is simple in
such that it only gives a still live: it represents the topological features well but is does not
tell anything about their functionality.

Functional medical imaging is more interesting. For instance, it can show which parts of
the brain are active during reading, listening or writing. It also can show which parts of the
brain (or other body tissue) are inactive. Unusual levels of (in)activity often are pathologic
and thus a combination of CT and functional imaging might help in diagnostics. And a
more refined spatial diagnostics is the basis of modern therapy approaches, see the example
of radiation therapy below and in project 5.

But functional imaging is also of interest for a better understanding of the working of the
brain, see e.g. [25, 125].

Monte Carlo simulation comes in in two ways:

• The diagnostics relies on the interaction of the radiation with the tissue: if no absorption
occurs in an X-ray, no information is obtained. If total absorption occurs, also no informa-
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tion is obtained. Thus the energy and intensity of the beam has to be adjusted such that
part of its energy is absorbed and part of it passes to the screen. But the absorbed energy
is absorbed by the tissue – and thus the tissue is ionized, radiation damage has happened.
Basically the same is true for all other methods based on such interactions. Monte Carlo
simulation here comes in in tailoring the diagnostic beam: the required amount of energy
has to be inflicted onto the tissue but not more than that.

• In addition to tailoring the beam, the energy deposition (and the location of maximum
energy deposition) can be determined with such a simulation and alternative diagnostic
schemes can be suggested, for instance to move energy deposition from highly sensitive (or
important) tissue to less sensitive one.

As in case of detector design and simulation in nuclear physics, here the Monte Carlo simu-
lation has the advantage that the beam can be tailored individually because as in detector
elements also in human body parts production tolerances can be quite large and should taken
into account: for instance, a lean 80 kg and 190 cm marathon runner might prefer a slightly
smaller dose for a chest X-ray than the one used for the previous client, a 150 kg and 160 cm
couch potato.

Radiation Therapy

Basically, radiation therapy is optimization of the interaction between the energetic radia-
tion and the tissue in a direction opposite to that in diagnostics: it requires the delivery of a
high (or more correct a lethal) dose to the target volume (the tumor) while simultaneously
an almost vanishing (or at least only minimally damaging) dose should be delivered to the
surrounding tissue. While early approaches in radiation therapy heavily relied on electro-
magnetic radiation, presently also radiation therapy with protons or heavier nuclei is offered,
in particular for brain tumors where damage to the surrounding tissue should be kept as low
as possible. As in diagnostics, beam tailoring is an important aspect in therapy planning;
further information is given in connection with project 5 in sect. 10.5.

8.4.3 Complex Environments: Stochastic Differential Equations

In the natural environment, such as in the physics of atmospheres and/or oceans or in
coastal dynamics, not only some of the transport processes are stochastic but also the spa-
tial/temporal distribution of some transport parameters can be described by distributions
rather than by constants or functional dependence. In addition, boundary conditions (such as
prescribed flows or properties of the sea bed) often show spatially and temporally fluctuating
patterns.

Here a stochastic model often is not used to account for the stochastic processes: diffusion
and dispersion are universal transport processes of stochastic nature and are quite difficult
to avoid but within all the noise in a natural system the use of the expected values derived
from the transport equation often is sufficient. Instead, the stochastic aspects enter at the
transport parameters or boundary conditions.

In principle, such variations can be treated in the framework of Monte Carlo simulations.
For instance, variable parameters or boundary conditions can be varied according to their
respective distributions during the individual runs. However, in an extremely complex model,
such an approach is of limited use only because the model is complex and time consuming
and, as discussed above, Monte Carlo simulations require a rather large number of runs to
give representative results.

Instead of Monte Carlo simulations often Monte Carlo differential equations or stochastic
differential equations are used. Both approaches are not to be confused. Stochastic differ-
ential equations are an important topic for instance in climate modeling, see e.g. [173]. The
climate system comprises the atmosphere, oceans and the cryosphere. In recent times also
components such as chemo-physical processes in the atmosphere, land surface processes, in-
fluences from the biosphere or even socio-economic processes have been included. For part of
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these processes well worked out physical theories exist which in mathematical language lead
to parameterized partial differential equations, many of them nonlinear.

But even if all processes were clad in rather simple mathematical descriptions, a funda-
mental problem still would exist: the fluctuation of physical quantities in the climate system’s
different components takes place on tremendously different time scales. For instance, the ba-
sic set of equations (equation of motion, equation of state, equation of continuity) in the
atmosphere accommodates sound waves with time scales in the ms-range as well as the ther-
mohaline circulation with a time scale of order of thousand years. Weather patterns, on the
other hand, have time scales of days; the Southern Oscillation, of which El Nino is a part,
has time scales of years. How to model? The situation is quite simple, if only very short
time scales are concerned, such in weather forecast. Here we can prescribe the thermohaline
circulation, make a few different runs for different states of El Nino Southern Oscillation
(ENSO) and treatment of weather patterns. The only remaining problem is a careful judge-
ment wether patterns of sound waves might influence the results in such that enough energy
is redistributed to modify weather patterns – a simulation of such sub-second phenomena is
not reasonable if even the entire time span to be simulated is only some days. The problem
of the smaller times scales becomes more visible if we look at the next higher time scale, that
is the simulation of ENSO. Again, owing to its much longer time scales, the thermohaline
circulation or different states of it will be prescribed. But what about the weather patterns.
Persistent weather patterns might be a result of ENSO but also might influence ENSO. Thus
weather patterns should not be neglected. But a simulation of some years ENSO with a
temporal resolution suitable for weather simulation is not feasible – thus a description of the
weather patterns is required that allows to model their average influence on ENSO without
going into the details required for weather forecast. The keyword here is average. Remember,
we did a similar thing in QLT in sect. 5.2.5

If phenomena on very different scales appear in systems described by the same set of
nonlinear differential equations, averaging is a useful tool: long time averages over the fast
variables gives differential equations for the slow variables in which the influence of the fast
variables appears as a stochastic term. The coupling between slow and fast variables then
can be regarded as a form of forcing by a stochastic process with Gaussian fluctuations. The
general rule of the game is described as

Definition 6 Averaging transforms multi scale deterministic partial differential equations
into stochastic partial differential equations.

The averaging process is reasonable because the good mixing properties of the fast com-
ponents are guaranteed by the nonlinearities of the equations.

The most advanced type of climate models, the general circulation model (GCM) is limited
not only in temporal but also in spatial resolution. As in the time domain, the performance
of these models also can be improved in the spatial domain by stochastic representations of
sub-grid scale variability. In terms of modeling and understanding of the physical basis, the
introduction of stochastic terms also reduces the complexity of a model – and its is much
easier to learn from a simple model than from a complex one. At least in climate models
introducing stochasticity constitutes one of the key techniques in model reduction.

The physical laws governing the climate system are derived from conservations laws. They
constitute a set of coupled partial differential equations, boundary conditions and initial
conditions of the form

∂

∂t
Bϕ+ Lϕ+N [ϕ,ϕ] = Σ . (8.9)

The state of the system is described by ϕ(~r, t) which generally is a vector function. Linear
and nonlinear differential operators B, L and N act on the spatial dependence of ϕ. Sources
and sinks of ϕ are denoted by Σ. Externally prescribed forces and coefficients also may enter
into B, L and N . Nonlinearity, which is an essential property of the climate system, enters
through the N -term. It mostly arises from the advection of ϕ with the fluid motion: the
advection of heat with the atmospheric and oceanic currents is driven by the temperature
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distribution and also changes it. Nonlinearity introduces a coupling in the broad range of
scales and may lead to multiple equilibria and chaotic behavior.

The averaging (or filtering) mentioned above disregards the high-frequency wave-number
part of the spectrum of motions to describe the evolution of the slow manifold. If (8.9) is
considered the result of such averaging, ϕ is an averaged, slowly varying state. The source
term Σ then contains the contributions from the field ϕ′ representing the subrange of scales
which can be treated as some generalized form of turbulence. In addition, Σ contains terms
that couple the resolved component ϕ to the filtered variables χ which represent the fast
manifold:

Σ = −N [ϕ′, ϕ′]−N1[χ, ϕ]−N2[χ, χ] + F (8.10)

with F as external source and N [ϕ′, ϕ′] as the averaged fluctuating quantities. The latter can
be described by some parameterization relating the mean turbulent source to the resolved
field:

N [ϕ′, ϕ′] = P[γ, ϕ] . (8.11)

In most cases the parameterization operator P is a simple local and linear relation with a
constant parameter γ. For instance, the divergence of turbulent fluxes of heat frequently is
described by Fick’s law.

Stochastic elements enter the problem (8.9), (8.10) and (8.11) where variables or coeffi-
cients appear that are not well known and should be considered as members of some random
ensemble.

8.5 Summary

The above examples should have illustrated the strength of a Monte Carlo simulation: it is
able to treat stochastic processes in such a way that not only the average or expected solution
is determined but also the distribution of possible outcomes around this expected value is
determined. Thus although making higher demands on computational resources, a Monte
Carlo simulation offers an advantage compared to the analytical (or FDM or FEM) solution
of the problem.

Literature

A very similar model also is used in conformal radiation therapy planning, see e.g. the
textbook by Webb [178].

The literature on Monte Carlo methods often focuses on specific topics. Since Monte
Carlo implies something statistical, the most frequent application of Monte Carlo methods
is in statistical physics. Two relative recent textbooks on this topic are Landau and Binder
[100] and Newman and Barkema [120]. More general applications of Monte Carlo methods
in numerical physics are discussed in Milstein und Tretyakov [112]. As described in chapter 4
diffusion and heat transfer also can be understood as stochastic processes. Such applications
for Monte Carlo methods are described in Lapeyre et al. [102]. The application of stochas-
tic modeling to climate is discussed in Imkeller and von Storch [68]; stochastic differential
equations are discussed in [97] and [102].

Questions

Frage 43 Describe the similarities and differences between Monte Carlo Simulations and
Monte Carlo differential equations.

Frage 44 Describe advantages/disadvantages of Monte Carlo simulations compared to more
conventional numerical schemes such as FDM or FEM.
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Chapter 9
Unconventional Transport Processes

Sofar, the text was concerned mainly with problems from physics or geophysics. All transport
processes treated so far are conventional in such that the can be described as continuous
transport in a continuous medium. But as soon as transport uses living carriers, such as
humans (e.g., SARS, money, rumors, even the WWW) or (migrating) species (such as bird’s
flu, immigrant populations such as rabbits in Australia or certain kind of mussels in the North
Sea), spread suddenly is regulated by a rather complex net of pathways (for instance air travel
routes, underlying grid of the WWW) as well as the interaction of different individuals and/or
subspecies of the transporting population.

In fact, although at first glance these processes seem to be just transport processes, they
are more closely associated with buzzwords such as graph theory, dynamical systems, self-
organization and emergence. Consequently, they require a different description and are well
beyond the scope of this text. Nonetheless, we will discuss some simple examples. All exam-
ples are related to networks and small-world problems, thus some basics in graph theory (e.g.
the Wikipedia entry at http://en.wikipedia.org/wiki/Graph theory, Caldwell’s tutorial
at http://www.utm.edu/departments/math/graph/, for readers with an ample supply of
time and a strong interested in basic and clean definitions/explanations Mawata’s lessons on
http://oneweb.utc.edu/∼Christopher-Mawata/petersen/ or the electronic edition of Di-
estel’s Graph theory at http://www.math.uni-hamburg.de/home/diestel/books/graph.
theory/ ) complexity (e.g. the Wikipedia1 entries at http://en.wikipedia.org/wiki/
Complexity and http://en.wikipedia.org/wiki/Complex system, http://www.calresco.
org/themes.htm with a large number of subtopics including automata, chaos etc., http://
necsi.org/education/onlineproj.html with some tutorials and interactive examples, and
http://informatics.indiana.edu/rocha/complex/csm.html on complex system model-
ing) and the familiarity with the concept of a small world (http://en.wikipedia.org/
wiki/Small world phenomenon) might be helpful. Or for short: the following will be pretty
Goals: after working through this chapter you should be able:

• to sketch the basics of self-organizing systems,
• to explain some of the buzzwords like ... to the layman,
• to apply a mathematical model to some simple problems.

9.1 Small Networks

The small-world phenomenon describes the world as a coincidence of high local clustering
and short global separation. It has been suggested in the late 1960s by the sociologist S.
Milgram to describe the rather amazing experience of meeting a complete stranger with

1Note that Wikipedia itself is an example for a complex phenomenon – and a rather large number of
studies on the development of this complex system exists.
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Figure 9.1: A net can be
ordered (right) or con-
tain a certain degree of
randomness [176]
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Figure 1 (a) Schematic of the Watts-Strogatz model. (b) Normalized average shortest
path length L and clustering coefficient C as a function of the random rewiring parameter
p for the Watts-Strogatz model with N = 1000, and 〈k〉 = 10.

small-world networks2 to refer to networks in this class, in reference to
the early work of Pool & Kochen (1978), and subsequent experiments of
Milgram and colleagues (Korte & Milgram 1970; Milgram 1967; Travers &
Milgram 1969).

6. Because the conditions required for any network to belong to the small-
world class (some nontrivial local order, combined with just a small fraction
of long-range, random shortcuts) were relatively weak, Watts & Strogatz
(1998) predicted that many real-world networks—whether social networks

2Watts & Strogatz were not, in fact, the first to use the term small-world networks: that
distinction belongs to Eugene Garfield (1979), who used it in a review article on the topic
of small-world research. The term does not appear to have caught on, however, until Watts
& Strogatz defined it to refer to networks with high local clustering and short global path
lengths.
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whom we have apparently little in common and finding unexpectedly that we share a mutual
acquaintance is one with which most of us are familiar. The phenomenon gained broad public
attention as ‘six degrees of separation’: any two individuals from the world population are
connected by a chain of no more than six intermediate acquaintances. At first glance, this
effect appears to be rather anecdotal, however, after closer examination it turns out that it
has wide application. In particular, this small-world phenomenon appears to be a general
feature of sparse, decentralized networks that are neither completely ordered nor completely
random as discussed in detail in a simple formalization of the small-world concept by [175],
a more advanced formalization is given in [176].

Watts [175] gives a very graphical description of the small world such that it has to fulfill
four criteria:

1. The network is numerically large in the sense that the world contains n � 1 people. In
the real world, n is on the order of billions.

2. The network is sparse in the sense that each person is connected to an average of only
k other people, which is, at most, on the order of thousands – hundreds of thousands of
times smaller than the population of the planet.

3. The network is decentralized in that there is no dominant central vertex to which most
other vertices are directly connected. This implies a stronger condition than sparseness:
not only must the average degree k be much less than n, but the maximal degree kmax

over all vertices must also be much less than n.2

4. The network is highly clustered, in that most friendship circles are strongly overlapping.
That is, we expect that many of our friends are friends also of each other.

It is probably not difficult to recognize our world as a small world fulfilling the above criteria.
In a simple model, the network is represented as connected graph, consisting solely of

undifferentiated vertices and unweighted, undirected edges.3 In addition, the above condition
for sparseness must be satisfied. The relevant parameters in the description of the graph are

• the characteristic path length L, defined here as the average number of edges that must
be traversed in the shortest path between any two pairs of vertices in the graph.

• the clustering coefficient C is a measure of the local graph structure: it can be regarded
as the probability that two vertices will be connected, given that each is also connected to
a mutual friend.

Obviously, both parameters are of statistical nature and depend on the portion of the graph
under study as well as on n and k.

2In a more advanced version of the scale-free net (http://en.wikipedia.org/wiki/Scale-free network)
this assumption is modified and some nodes act as highly connected hubs (high degree), although most nodes
are of low degree. Flight routes, for instance, are described more adequately in such a scale-free net because
some airports such as Frankfurt, Amsterdam or London are such highly connected hubs while most airports
show a much smaller connectivity.

3A vertex is the fundamental unit of a network, also called a site (physics), a node (computer science),
or an actor (sociology). An edge is the line connecting two vertices, also called a bond (physics), a link
(computer science), or a tie (sociology) [119].
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Figure 9.2: (a) A food
web of predator-prey
interactions between
species in a freshwater
lake. (b) The network of
collaborations between
scientists at a private
research institution. (c)
A network of sexual
contacts between indi-
viduals infected with
HIV (from the aix-server
version of [119])

Both parameters also depend on whether a net is ordered or completely random. The left
hand panel in Fig. 9.1 shows an ordered net. It consists of a certain number of vertices. Each
vertex is connected to its two direct neighbors (along the circumfence of the circle) and to
the two neighbors over-next (arcs). In the figure, the number of nodes is n = 20, the number
of connections is k = 4 for all vortices. To the remaining 15 vortices no direct contact is
possible.

People are mobile and move or the break-up friendships and create new ones. Thus a
certain aspect of randomness must be included into such a net. This can be done in two
ways: in the middle panel of Fig. 9.1 a few points are randomly chosen and transferred to
a different position on the circumfence retaining the edges to their former neighbors. In the
right panel, edges are shuffled around arbitrarily, leading to an almost complete random net.
The quantification of this randomness and its consequences is discussed in more detail in
[176].

Note that such a graph is a snapshot of the net. How existing connections determine new
ones is a big part of the mystery. One might imagine a world in which people only become
acquainted through introduction by one or more mutual friends. It is easy to see that a
mechanism such as this leads inevitably to a locally ordered world (in the sense of C � k/n),
the extreme case being the caveman world. At the other extreme, one might also imagine a
world in which new friendships are made autonomously and at random, without regard for
current friendships. The end product of this tie formation process is a random graph. Of
course, the real world lies somewhere between these two extremes.

More realistic (and thus also more complex) examples for such nets are shown in Fig. 9.2.
All three nets show distinct patterns. The predator-prey net shows a very high degree of
connectivity and appears to be rather homogenous. The collaborating scientists in part (b),
on the other hand, form distinct subgroups as indicated by the different colors. The degree of
connectivity between different researches within each subgroup is variable, in particular there
are always some ‘outsiders’ which are connected to one other scientist only wile on the other
hand there are a few rather central figures which collaborate with a large number of colleagues
– and which often also are the ones that also ensure the collaboration between the subgroups.
Note that this structure leads to quite long path length and a low clustering coefficient. The
subfigure (c) again represents a different world. It cannot be decomposed into interacting
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subgroups but consists of some kind of backbone of interconnected individuals which interact
with more than one partner and branching away from this backbone connections to persons
that does interact with one partner (the one from the backbone) only.

9.1.1 Why do we need the Small World Concept?

If the world is organized as a small world (or in a more refined version as a scale-free net),
all properties transported by humans are regulated by this net. Part (c) in Fig 9.2 is such an
example: the spread of a disease certainly depends on the connectivity between individuals.
The same is true for rumors.

Disease and Rumor in the Old World

Prior to small worlds, modeling of the spread of a disease was quite simple – as are the
assumptions underlying such a model. The transmission of the disease requires a direct
contact. It is regulated by some transmission probability (a healthy individual transforms
into an infected individual). In addition, immune individuals must be considered: they might
be immune from the onset on (e.g. due to vaccination) or after they have recovered from the
disease.

In the old world, people stayed close to their ‘rest position’ (home) and had a limited
operating range from about 20 km at most. Thus they live in a population that can be
regarded as well mixed (again a well-stirred tank concept).

If we now inject a small seed of initiators into the homogenous, well-stirred population,
the disease basically spreads like in a diffusion (or diffusion–convection) model. The diffusion
coefficient then must be replaced by some coefficient that includes the transmission proba-
bility and spatial and temporal scales relevant for transmission such as the average distance
between two subsequent interactions of an infected individual with healthy individuals and
the time between these interactions.

Rapoport [137] was the first one to suggest that rumors might spread in the same way
as disease – albeit with a different ‘diffusion coefficient’. But Rapoport also realized that
the spread of a rumor is influenced by something else: the existence of a tight-knit small
community.

Disease and Rumor in the Small World

And such substructures exist in small world. Although the mechanisms of the transmission
of the disease from one individual to the other are exactly the same, the disease does not
spread homogenously as in the old world but its spread is regulated by the graph of small
world – or as Watts [176] puts it: dynamics becomes a function of structure.

Watts and Strogatz [177] simulated the spread of an infectious disease on a simple small-
world network model. At time t = 0 a single infective is introduced into an otherwise
healthy population. After one unit of time, the infective is removed (either because it dies
or becomes immune) but in that interval it can infect (with some probability) each of its
healthy neighbors. The process is then repeated until it reaches a steady state.

Their findings show three distinct regimes of behavior. In the first (for diseases with low
infectiousness), the disease infects little of the population before dying out. In the second,
a highly infectious disease infects the entire population regardless of its connective topology,
but the time taken to reach this steady state varies dramatically as a function of characteristic
path length of the network. (Shorter path length implies faster spreading of the disease.)
For intermediate levels of infectiousness, there is some complicated relationship between
structure and dynamics, which has not yet been completely characterized. Nevertheless,
there is a clear correlation between critical infectiousness—the point at which the disease
infects a macroscopic fraction of the population—and the amount of randomness in the
network. Beyond those conclusions, not much more can be said. However, it is clear that
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for this dynamical system the attractor for the global dynamics does depend on the coupling
topology.

In epidemiological terms, small-world networks imply that the level of infectiousness re-
quired for a disease to grow to epidemic proportions can be highly sensitive to the connective
topology of the population. This may change our way of looking at social diseases, which
are often perceived as confined to isolated subgroups of a population. The highly clustered
nature of small-world graphs can lead one to believe that a given disease is ”far away” when
in fact it is very close. In other words, when looked at on a local level, the change in struc-
ture that causes the disease to spread much further and faster may not be observable by an
individual who has access only to local information.

As Wikipedia (http://en.wikipedia.org/wiki/Rumor) notes (although indirectly), the
same change in approaches also has happend for rumors:

A rumor or rumour (see spelling differences) is a piece of purportedly true information
that circulates without substantiating evidence. The information content/payload of
rumors can range from simple gossip to advanced propaganda techniques.
Classically, rumors spread from person to person by word of mouth, as in gossip.
Cheap postage rates and then telephone services fomented the pace and range of the
swirling of rumors. With the advent of the Internet many rumors have started to
spread via email and more recently through blogging, as also occurs with various
hoaxes and urban legends.
While many rumors begin or continue to spread as a part of natural human commu-
nication that occurs when people discuss something they find funny or interesting,
some are started in an intentional attempt to disseminate specific information. Viral
marketing campaigns often depend on rumors, as do many political endeavors. Some
people in very public positions find rumors very troublesome, annoying or embarrass-
ing, when real or imaginary details about the personal lives they would prefer to keep
private start to spread among people who are interested in them. Rumors can have
a powerful motivational aspect on those who believe in them – among stock traders,
for example, hearing a rumor from a trusted source can lead one to believe that one
now has inside information. As rumors spread without corraborating evidence, it’s
not unusual for those who have heard the rumor to look for some on their own – a
rumor about a celebrity’s sexual preferences, for example, may cause those who hear
it to start judging the celebrity’s behavior against known stereotypes.

9.1.2 From Small World to Scale-Free Nets

The results from the Watts and Strongatz approach are a little bit disappointing because
they do not allow a simple risk assessment. The problem is not the approach, but – since
dynamics becomes a function of structure – the structure of the network. Their underlying
random network is quite similar to the network in panel (c) in Fig. 9.2. But such a network
does not reflect the world on a global scale – it does not even reflect the structure of the
network in a single country or city.

A more realistic approach is a scale-free network (http://en.wikipedia.org/wiki/
Scale-free network) – a concept which is not only a good description for the WWW but
instead was born from the analysis of connectivity inside the WWW. The scale free-net allows
for hubs as highly connected vertices in an ocean of vertices with low connectivity, such as
sketched in Fig. 9.3. Such hubs can be easily identified in a map of the world wide web such
as shown in Fig. 9.4 – a natural neural net in the sense of a net composed of neurons looks
quite similar. A nice figure of the connections during a denial of service attack can be found
at http://www.prolexic.com/zr/zombiereportq12.edit.png

In such a scale-free net a disease spreads differently, see Fig. 9.5: in the random small
world there is a well defined outbreak at a certain infectiousness. The situation is different
in a scale-free network. Here the slope in the graph of the fraction of infected individuals is
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Figure 9.3: Wikipedia as a hub http://upload.wikimedia.org/wikipedia/commons/b/
b9/WorldWideWebAroundWikipedia.png

Figure 9.4: The World
Wide Web is not re-
ally a small world net-
work but shows distinct
hubs and thus should
be described as a scale-
free network http://
www.opte.org/maps/
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Figure 9.5: Spread of a disease in ran-
dom and scale-free networks [176]

almost constant. Consequently, no outbreak of the disease shows up but rather an increase
in the number of infected people with increasing infectiousness.

And what about the spread of the disease in space? To qoute Watts [176]:

The correlation length regulates how far from its source a contagious influence must
spread before it feels the effect of the shortcuts. Hence an outbreak of disease can
be divided naturally into two stages: (a) a local growth phase in which its spread
is slowed by the redundancy present in the local topology of the network; and (b)
a global growth phase, in which it can spread exponentially throughout the network
via the random shortcuts. Because the correlation length governs the transition from
local to global growth, these models suggest that to be effective, strategies for prevent-
ing epidemics should focus on eliminating even very rare shortcuts, thus prolonging
local growth for as long as possible. The correlation length of networks may also be
important from an evolutionary perspective. Boots and Sasaki (1999) have observed
that vector-borne diseases such as malaria and cholera tend to be more virulent (that
is, they kill off their hosts rapidly) than infectious diseases spread by direct con-
tact. Their explanation was that vector-borne diseases have historically been able
to spread via long-range connections— transported by mosquitoes or flowing water,
for example—whereas human-to human infections have been more constrained by
geographical proximity and hence must survive a local growth phase before they can
reach epidemic status. Diseases that rely on direct contact will therefore evolve lower
virulence, they argued, in order not to burn themselves out before they reach the cor-
relation length, whereas diseases that are not constrained by an initial local growth
phase will evolve to be highly virulent. Boots and Sasaki then suggested that as
the correlation length of a network shrinks on account of the introduction of random
shortcuts—as the world becomes smaller—one might expect the evolution of more
virulent human-to-human diseases.

9.1.3 Not a Test: Disease and Money

A very simple connection in the spread of apparently different things such as viruses and
money has been published in January 2006: since both are transported by humans, their
travel patterns follow each other closely [19]. Or as the first sentence of their abstract
states: “The dynamic spatial redistribution of individuals is a key driving force of various
spatiotemporal phenomena on geographical scales.”

The authors study the statistics of human traveling by analysing the circulation of bank
notes in the United States, see also Fig. 9.6. The dispersal of bank note is found to be anom-
alous in two ways: (a) First, the distribution of traveling distances decays as a power law,
indicating that trajectories of bank notes are reminiscent of scale free random walks known
as Levy flights (http://en.wikipedia.org/wiki/L%C3%A9vy walk). (b) the probability of
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Figure 9.6: Spread of money:
since money is transported by
the same mechanisms as viruses,
a modern virus such as SARS
probably will spread in a similar
fashion (MPI press release to [19]

remaining in a small, spatially confined region for a time is dominated by algebraically long
tails that attenuate the superdiffusive spread.

Although their results confirm that the approaches made in graph theory as described
above are valid, the authors deal with these findings in a different way. Instead of resorting to
graph theory to model the spread of money (and disease), the authors use a two-parameter
continuous-time random walk model: that the dispersal of bank notes and human travel
behavior can be described by a continuous time random-walk process that incorporates scale-
free jumps as well as long waiting times between displacements. Unfortunately, the authors
compare their method only to standard diffusive models for the spread of a disease as used
for the old world but not to small world or scale-free networks.
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Chapter 10
Projects: Some Interesting Remaining
Problems

This chapter is not meant as a lecture. Instead, it contains some examples for end-term
student projects related to this course.

You can obtain an ECTS-Grade for the course ‘Modeling Transport’ by working on one
of the following projects:

1. Turing patterns in biology and material sciences;
2. Traffic jam as phase transition;
3. Finite element method: temperature distribution in an irregular shaped plate;
4. Monte Carlo simulation of the interaction between energetic charged particles and matter

with application in radiation therapy.

If you have ideas on your own, such as modeling along Rapoports lines for the spread of
rumors/desease, you can also suggest such a topic as project and we will discuss the details.

10.1 Rules of the Road

Projects can be worked in groups of two (except you really want to do it all by yourself). In
all projects, the following topics should be addressed:

• physical basics,
• mathematical formulation of the problem,
• numerical method (explain your choice and compare to methods not considered in your

project),
• coding of the numerical solution (programming language/programm package of your choice;

please explain your choice),
• test of the solution,
• closure,
• literature and other aids.

Section 2.3 or chap. 5 can serve as a guidance for the formal structure of your project paper
– you should certainly not meet the extend of chap. 5. More detailed hints are given with
the individual projects.

Assessment of the projects/relative levels of the projects: the difficulties encountered
in the projects are different. For instance, although the objective difficulties in project 3
are pretty low, subjective difficulties will be high because the method has been explained
only very briefly in chap. 6. Thus you will spend more time on technical basics than on
interesting science or coding. Thus I expect a more accurate and detailed description of these
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fundamentals than I would expect in project 1 where all basics has been explained throughout
chap. 3–4. The challenge in this project is the application and thus more emphasis should
be paid on the description of the physical basics and the test/application of the solution.

Projects have to be handed in at the beginning of the summer term (April 2007). In
addition to the elaboration the program files (including a brief documentation) should be
handed in.

10.2 Project 1: Turing Patterns in Biology

The aim of the project is the development of a numerical method for the solution of two
coupled diffusion–reaction equations. Examples for application are patters in animal skins
and structures of surfaces.

10.2.1 Idea

The patterns in animal skins on the one hand are highly deterministic (a tiger shows a
different pattern than a leopard or a trout). On the other hand, they are also accidental: two
leopards show distinct patterns which allow for identification (like a fingerprint). A formal
description of this problem goes back to Turing [166], see also sect. 4.4. He suggested a system
of coupled diffusion–reaction equations with one equation describing the development of an
activator, the other one that of an inhibitor. The coupling between the two is responsible for
pattern formation.

In recent times, Turing’s ansatz has found many applications; to name a few: biomath-
ematics studies pattern in the tidelands [8], chemistry is concerned with reactions [179].
Engineering [180] and surface science [14] also are interested in Turing patterns. The review
article by Wollkind and Stephenson [179] gives a good introduction into the topic and shows
many comparisons between theory and experiment. The relevant chapters in the dissertation
by Leppänen [104] also provide a good introduction to the topic.

10.2.2 Definition of the Project

Within the framework of this project you should be able to describe the basics of Turing
patterns, to develop a simple mathematical and numerical model, and to test it. In addition
to the general hints given above, you should consider the following:

• give some examples for applications (Google will be helpful).
• describe briefly the ‘geniality’ of Turing’s idea for the description of animal skin patterns.
• the coupled partial differential equations somehow have to be written in a form that is easily

transferable into a numerical scheme. You can use, for instance, the method detailed in
[180]. If you do so, please explain the method in detail and why it can be done so. If
you want, you can also chose a different numerical treatment. If so, please explain your
method in detail.

• your numerical scheme should start from discretized equations similar to (16) in [180].
Explain some numerical methods for the solution of such a scheme based on your knowledge
from chaps. 3 and 4.

• apply your code to an example. For testing, you can use for instance Fig. 1 in [180] (well,
it is not exactly a test, it rather allows some approximation on a test. Why? How can
you modify the figure or its results for a test?). Apply your code also to an animal skin
pattern: again, Google will help you to find relevant parameters for that problem.

10.2.3 Details

A reader of your project paper will certainly have some question when thinking about Turing
patterns. Your paper at least should provide him with the information relevant to answer
the following questions:
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• is a Turing pattern deterministic or stochastic?
• is a time dependent solution required or will a stationary solution be sufficient? Remember:

animal patterns can be used for the identification of individual animals.
• what kind of algorithms allow an efficient treatment of 2D problems? May be, you should

consult Google or a book on PDEs.
• is it possible to create Turing-like patterns along one line? Or more general: is there a 1D

version of the Turing pattern?
• does the initial distribution of the enzymes matter? Or more specifically: does it matter

for the exact pattern? Does it matter for the general rules of the pattern?

10.3 Project 2: Traffic Jam as Phase Transition

The intention of this project is to stimulate thinking about mathematical and numerical
basics of a Stefan problem. One example for an application is a traffic jam described as a
phase transition.

10.3.1 Idea

The solution of a PDE requires the consideration of both boundary and initial conditions.
In the examples discussed throughout the text, boundary conditions are given at a fixed,
prescribed boundary. In a Stefan problem, on the other hand, the boundary is moving.
Typical examples are, as already described in sect. 4.6, the evaporation or growth of a droplet,
the burning of a dust particle or crystal growth. While they share the moving boundary, the
models differ in the underlying PDE: in evaporation or solidification this is a heat conduction
equation, for the burning particle we encounter a reaction– or diffusion–reaction equation.

A comparison of different problems, albeit on a relatively high level, is given in [171];
different numerical models are compared in [77]. The application of a Stefan problem to a
diffusion equation containing evaporation is discussed in detail in [169]. A less obvious Stefan
problem is the treatment of a traffic jam as a phase transition [117]. Detailed descriptions
of this particular problem are given in [79, 93, 116]; a connection between a traffic jam and
emergent phenomena is discussed in [170].

10.3.2 Definition of the Project

Within the framework of this project, the traffic jam should be discussed as one example
for a Stefan problem. In addition, a simple numerical solution of the problem should be
developed. In addition to the general hints for the projects, the following points should be
considered:

• give an overview over Stefan problems, examples and the underlying formal classification
(based on the underlying PDE). You can use the literature above as starting point, other
literature or Google might also be helpful. Identify the kind of equation relevant for the
description of the traffic jam.

• give an overview about principal methods to solve a Stefan problem and in particular the
problem of a traffic jam. Sketch the methods briefly.

• develop a simple mathematical model for the description of a traffic jam as a phase transi-
tion. Use the papers mentioned above (or other papers or Google information) as a guide
line.

• develop a suitable discretization for the problem. Develop also a suitable numerical scheme.
Since your previous knowledge from the lecture is focused on finite difference schemes, it
might be plausible to develop the numerical solution based on one of them. The simple
example in sect. 4.6.1 might guide you through the process. If you have read a little bit
on Stefan problems and have encountered different solution methods, feel free to use one
of them instead.

• test your numerical solution (comparison with observations, plausibility consideration).
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10.3.3 Details

A reader of your project paper will certainly have some question when thinking about Stefan
problems and traffic jams. Your paper at least should provide him with the information
relevant to answer the following questions:

• Give a graphical description of the relation between a phase transition and a traffic jam.
• Common solutions to Stefan problems use finite element schemes or cellular automata

instead of finite difference methods. Please explain why? By the way, what are cellular
automata?

• Traffic flow on a highway basically is a 1D directed flow (frame of reference along the
highway). How would you describe such a flow formally? Is Euler’s or Bernoulli’s equation
sufficient? Is it possible to create a traffic jam in such a description?

• Does the formation of a traffic jam require an impediment of the flow, such as an an
obstacle or an accident? Why?

• A Stefan problem describes the evolution of a certain quantity. Which quantity exactly is
this?

10.4 Project 3: Finite Element Method: Temperature
Distribution in an Irregularly Shaped Plate

Finite element methods (FEM) are used in many 2- or 3D engineering questions, in particular
in mechanics and fluid dynamics. However, in contrast to FDM, FEM requires extensive use
of computer resources and is complicated by the fractionalization of the simulation space. The
aim of this project is to perform a simple FEM simulation using some freely available FEM
software such as z88 (http://www.z88.org/, available for both Linux and Windows) or
CAMMPUS (http://www.haw-hamburg.de/rzbt/dnksoft/cammpus/cammpus.html, DOS
machines only). Thus this project is more concerned with learning how to handle new
software and apply it to a relatively well-defined problem than with the physical background
as in some of the other projects.

10.4.1 Definition of the Project

FEM allows to model standard problems from physics (such as heat transport or fluid motion)
in complex geometries that are difficult to accommodate in a standard FDM because FEM
allows a subdivision of any arbitrarily shaped space in finite elements and does not require
fixed step sizes. In FDM the accuracy of the result depends on the discretization, in FEM it
depends on the fractionalization. Thus one aspect of the project is to estimate the accuracy
depending on fractionalization.

In the lecture, FEM has not been treated in as much detail as the other two methods.
In addition, its approach with the weighting functions is less obvious than FDM or Monte
Carlo simulations are, Thus other aspects of the project include your familiarization with
the fundamental of the method (as described e.g. in [80] or many other books on numerical
physics), with its technical aspects (as described e.g. in [7] and many books on numerical
physics) and with a standard tool in FEM, such as z88.

The standard tool of your choice than should be applied to some well-defined physical
problems. The description of the underlying physics in these problems is not part of the
project, thus this is more a mathematical and computational project.

The project thus should consider the following points:

• familiarize yourself with FEM; demonstrate your knowledge by writing a chapter describing
the mathematical basis of FEM.

• familiarize yourself with the most important technical aspect of FEM, that is the fraction-
alization; again demonstrate your knowledge by writing a chapter describing it.
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• choose any FEM tool; two are mentioned above with z88 being the more popular one.
However, you are free to use any other tool. Familiarize yourself with this by working
through its manual, in particular to examples given there. Feel free to write a short
section about one of the examples performed during this process.

• apply the FEM tool to the following physical questions:
– simulate the temperature distribution in a rectangular plate for different boundary con-

ditions. One example, which also can be used to test the result, is given in sect. 4.2.
Run your model with different shapes in the fractionalization and different sizes of the
elements and discuss the accuracy of your results depending on this choice.

– as a special case of the above problem simulate the temperature distribution in a room
as sketched in Figs. 6.1 and 6.2. The latter figure again can serve for validation.

– derive a solution for the time-dependent problem of room-temperatures by allowing
a temperature variation of the radiator between 20 and 70◦ for night and day-times
respectively.

– take a square plate and cut out a quarter of an circle from the lower right quadrant of
the plate. Again simulate the temperature distribution as in the first application. Vary
the boundary conditions at the side with T 6= 0.

– as an add-on (not required): try to simulate the flow in a 2D-tube (river) with a bar
blocking half of the tubes diameter (for instance a long pier in the river). What kind
of flow forms, what are the properties of the eddies behind the obstacle depending
on flow speed, viscosity and obstacle size? You can get some ideas on this ques-
tion (or formulate yourself a similar problem) by looking into fire-modeling pages,
such as www.fpe.umd.edu/department/modeling/index.html, http://fseg.gre.ac.
uk or http://fire.nist.gov/fds/refs/readme.html; an overview regarding fire sim-
ulation models with all relevant links also is given at www.fire.nist.gov/ and www.
firetactics.com/FIRE-MODELING.htm.

10.4.2 Details

A reader of your project paper will certainly have some question when thinking about FEM.
Your paper at least should provide him with the information relevant to answer the following
questions:

• are there any constraints on the shape, number or area of the elements chosen in fraction-
alization? In particular, must all elements have the same kind of shape or can different
shapes be combined?

• explain the meaning of the weight function. Why is it necessary to introduce such func-
tions?

• For the 1D case: is there any difference between FEM and FDM? If yes, explain which
and why. If no, explain why.

• The analytical solution for the temperature distribution (4.33) contains an infinite sum
(which can be terminated after a few terms). Why does such a solution necessarily lead to
a sum? Does such a sum also occur in the FEM solution?

10.5 Project 4: Monte Carlo Simulation of the Interac-
tion between Energetic Charged Particles and Mat-
ter with Application in Radiation Therapy

Within the framework of this project you should (a) study the physical basis of the interaction
of charged energetic particles with matter, (b) derive a simple Monte Carlo simulation for
such an interaction, and (c) apply it to a simplified geometry suitable for the development
of a radiation therapy plan.
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10.5.1 Idea

The goal of radiation therapy can be described in rather simple words: determine the prop-
erties of a beam of charged particles (or hard electromagnetic radiation) such that most of
the dose is delivered to the target to deliver a lethal dose to the tumor cells while the dose
in the ambient medium should be extremely low to reduce radiation damage.

Conventional radiation therapy uses hard electromagnetic radiation. This method has
the advantage that the radiation is readily available in the form of Brensstrahlung from an
accelerator or γ emitters. Its disadvantage is the spatial distribution of the radiation in the
tissue: its intensity I (and thus the deposited dose) decreases with increasing penetration
depth x as an exponential (Bougert–Lambert–Beer law): I(x) = I0e−µx with µ being the
absorption coefficient. In radiation therapy the target volume normally lies within the body.
Thus before reaching the target, the beam passes through healthy tissue, delivering a higher
doses to it than to the target. To avoid complete destruction of all tissue between body
surface and target, a number of different beams is used, all intersecting in the target volume.
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The situation is different in case of charged ener-
getic particles. The geometry of their interaction with
matter is governed by a different rule: energy loss (and
thus deposited dose) is largest close to the end of the
particles range (Bragg peak). Thus a high dose can
be delivered directly to the target volume without de-
stroying the tissue between skin and target.

The specific energy loss of charged particles in mat-
ter is described by the Bethe–Bloch equation (8.8)
from which one can derive that the energy loss in-
creases with decreasing particle energy (see also Fig. 8.7 and sect. 8.3.1). The aim if this
project is a solution of this equation with the help of a Monte Carlo simulation for a suitable
geometry. The required information on energy losses and other relevant papers should be
found in [24, 28, 126].

The basics of radiation therapy and the simulation of the radiation field are given in an
overview [55]; information also is provided in [73] and [178]. Applications of the ansatz de-
scribed in [55] and links to further sources can be found at http://www.llnl.gov/peregrine/
montecarlo.html. Links to scientific publications regarding Monte carlo simulations and ra-
diation therapy planing can be found at http://gray.mgh.harvard.edu/new/research/
Simulation/montecarlo.htm. A method for the verification of Monte carlo simulations for
radiation therapy planing is described in [11]. A slightly more complex method for the fast
optimization of radiation therapy planning is given in [43]. An introduction to Monte Carlo
simulations in medical treatment also can be found in the relevant chapters in [40], although
that thesis is concerned with photon therapy rather than energetic particles.

10.5.2 Definition of the Project

Within this project you should develop a Monte Carlo simulation that allows to determine the
energy loss and thus the deposited dose of energetic charged particles during their interaction
with matter. Radiation therapy should serve as an example for the application. In addition
to the general hints you should consider the following questions/hints:

• develop a sketch for a Monte Carlo simulation of the energy loss (dose distribution) of
energetic charged particles in matter. Develop the model in such a way, that you can
add later other physical processes in addition to the continuous energy loss due to ion-
ization. One example for such additional processes is the consideration of the secondary
electrons. Tutorials and other information regarding such a simulation can be found at the
GEANT 4 homepage at CERN (http://wwwasd.web.cern.ch/wwwasd/geant4/geant4.
html). Please also describe which parameters (for inastance material constants or interac-
tion cross sections) are required to run that kind of simulation.
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• begin with a simple simulation: the ionization due to protons in a homogenous medium,
for instance water because that is a good proxy for the human body. Take the stochastic
nature of the interaction process into account: do not calculate energy losses with the
Bethe–Bloch formalism but start from the interaction cross sections/probabilities. The
GEANT physics manual [28] might provide useful additional information. Compare the
results of your simulation with results obtained from the solution of the Bethe–Bloch
equation. How many particles are required to get a reasonable approximation on the
analytical solution?

• study the spatial distribution of the energy losses at the end of the particle range. To do
this, compare the results of the Monte Carlo simulation with the analytical solution. Use
this subproblem to discuss the fundamental differences between the Monte Carlo simulation
and Bethe–Bloch.

• expand your simulation to a more realistic geometry. Divide the matter into compartments,
corresponding to the healthy issue (water) and the target volume (water). Structure your
simulation such that you are able to insert a third compartment, for instance a bone, into
the path of the particle beam.

• Run your simulation with a geometry corresponding to 3 cm healthy tissue followed by a
1 cm target volume, again followed by healthy tissue. Derive the energy distribution of the
incident protons such that the dose is maximum in the target and before and behind only
a minimal dose is delivered.

• Position a 0.1 cm piece of bone between skin and target. Derive the properties of the new
proton beam suitable for radiation therapy. Does the result depend on the position of the
piece of bone?

• Try to extend your simulation such that also the secondary electrons are considered. Do
the results of your simulation change?

10.5.3 Details

A reader of your project paper will certainly have some question when thinking about Monte
Carlo simulations and radiation therapy. Your paper at least should provide him with the
information relevant to answer the following questions:

• is the effort put into a Monte Carlo simulation compared to the numerical solution of the
Bethe–Bloch equation validated in this case? Are there particular advantages in the use
of the MC simulation?

• the beam tailoring you have performed in your model has the advantage of a rather small
exposure of the healthy tissue surrounding the target. But does this method not also
invoke the risk of errors in therapy if there is unexpected tissue with different absorption
properties in the path of the beam? Discuss.

• I am the patient, you are the therapist. Can you give me a crude estimate on the exposure
of my healthy tissue in the particle therapy compared to conventional radiation therapy
with a γ emitter.

• There is some talk about radiation therapy with heavy ions, see e.g. http://www.gsi.de/
portrait/Broschueren/Therapie/Krebstherapie.htm). What are the advantages and
disadvantages of heavy ions compared to protons? Can you modify your Monte carlo
simulation such that it considers a certain species of heavy ions instead of the protons?
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Chapter 11
Closure

This text is neither a formal introduction into modeling nor into numerical methods. Most
concepts have been introduced in examples. As in modeling, this closure loops back to
the beginning: it summarizes some concepts and methods and rechecks with the beginning
whether our goals have been attained or not.

11.1 Transport Modeling in General

The first aspect of this lecture, the introduction into modeling, was focus of chap. 2. Here
we have learned about the basic ingredients of modeling, that are: (1) identification of the
relevant quantities and processes and the volume under study; (2) mathematical formulation
of the problem; (3) reduction and simplification, (4) formulation and solution of the numeri-
cal/analytical model, (5) test of the results and (6) closure. This scheme has been discussed
in some examples in chap. 2. In addition, many of the examples in later chapters, such as the
longitudinal tank in chap. 3, the focused transport in interplanetary space in chap. 5 or the
simulation of a dike in chap. 6 are introduced and discussed in the scheme outlined above.

Special emphasis has been paid to two aspects of simplification, the stirred tank concept
and the limitation to steady–state. Both concepts allow the reduction of a PDE to a ODE or
the reduction of an ODE to an algebraic equation because the reduce the dimensionality of
the problem: the stirred tank can be used to reduce spatial dimensionality, in steady–state
time vanishes as dimension.

Successful simplification thus often leads to a much simpler mathematica model – and
thus often allows for simpler methods to solve it. Solutions to a numerical model can be
analytical or numerical. Analytical solutions are preferable for models described by algebraic
equations or ODEs; for PDEs, and also for many ODEs, numerical solutions are preferable
because either no analytical solution is available or analytical solutions can be obtained only
for a few special cases and very restricted boundary conditions.

Another important aspect to consider in modeling, borrowing and selling, is not strongly
enough emphasized throughout the text. However, I hope that the examples in chap. 1 and
some of the comments/examples at the end of chap. 5, chap. 7 and chap. 8 might help you
to appreciate this important aspect of modeling: it is not necessary to derive any model new
but it might be more economic to adopt and modify an existing and tested (!) model to the
own problem.1

1Once the idea of the wheel was discovered and understood, many different realizations of the wheel
were manufactured, depending on the required size, the required strength and the materials available and
manageable. Although some high-tech wheels are quite exotic and advanced, hopefully none of its constructors
had to invent the wheel completely new.
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11.2 Numerical Methods

The second focus of this lecture was the introduction to different kinds of numerical methods.
The focus of this text was the introduction to finite difference methods (FDM) in chaps. 3–5.
These methods are most common in physics. However, the finite element method (FEM)
with its broad range of technical applications has been introduced in chaps. 6 and chap. 7.

Finite difference methods are the oldest standard methods in numerics. They divide
the simulation space into equidistant steps and evolve the solution from one node to the
next (Euler, Runge-Kutta) or by using the two adjacent nodes (centered differences). The
boundary conditions are considered in the difference equations for the outer nodes. FDMs are
robust, however, their usability is limited because at least in conventional methods equidistant
grids are required – and in higher dimensional problems the grids have to be rectangular. In
the numerical model, however, small step sizes are required in places were gradients are large
while for small gradients larger steps sizes will suffice. Some adaptive schemes have been
developed for ODEs, however, in a PDE with more than one spatial dimension, adaptive
methods in general are not very efficient. In addition, in FDMs the grid cannot easily be
adapted to boundary conditions and geometries not aligned with the grid.

A much better adaption to geometries and varying elements is provided by the finite
element methods (FEM). It requires some kind of tessellation pattern for the simulation
volume – triangles are a first good approach in a 2D problem but shapes can be much more
complex. Weighting functions that are 1 in one node and vanish in all other nodes have to
be defined on this grid and applied to the weak form of the equation. This finally leads to a
large set of algebraic equations that can be solved by conventional methods.

While FDM and FEM both are strongly deterministic methods leading to a unique solu-
tion to the problem (at least in case of successful model formulation and numerical imple-
mentation), Monte Carlo simulations follow an entirely different approach: here the modeler
just rolls the dice to determine what happens next. The number of faces of the dice as well
as the probabilities for each face depend on the interaction cross sections or probabilities of
the different processes under study. In simple cases, such as radioactive decay, the dice has
just two sides reflecting decay or survival of the particle. Since the approach basically is
stochastic, Monte Carlo simulations are useful if stochastic processes are involved (such as
diffusion, decay or heat transport) but are not useful in strongly deterministic processes, such
as advection or the motion of a charged particle in an electromagnetic field under influence
of the Lorentz force only.

The stochastic approach in the Monte Carlo simulation leads to a fundamental difference
to FDM and FEM: the solution cannot be repeated because you will never exactly repeat
the results from multiple throws of a dice.2 Thus the solution of a Monte Carlo simulation
is not exact. But this non-exactness also is an advantage of the method:different runs give
an average result that is close to the real one and the distribution of the results gives the
variability of the expected results.

11.3 Finite Difference Method: Schemes

Some standard finite difference methods for ODEs are graphically depicted in Fig. 11.1. The
accuracy of the methods depends on the step size ∆x or the number n of steps. These
accuracies and the occurrence of the methods throughout this text are given in Table 11.1.

The basic classification of the methods is that into explicit or implicit. Explicit methods
only uses the known values at the begin of the interval to calculate the value at its end.
Thus the scheme can advance straight forward. In consequence, compact schemes result that
advance step by step without requiring excessive storage space or even matrix inversion. The
situation is different in the implicit schemes: here also nodes not considered sofar enter the

2Well, thats not exactly true: if you gamble long enough, eventually the same row of results will be found
again. And in numerical methods of rolling a dice you also might be able to repeat the result if the random
number generator is initialized with the same value.
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Figure 11.1: Summary FDMs
for ODEs

Finite Differences

k−1 k k+1k−2 k+2
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k−1 k k+1k−2 k+2

k−1 k k+1k−2 k+2

Euler Backward

k−3/2 k−1/2 k+1/2 k+3/2 k+5/2

Leapfrog

Euler Forward
(explicit)

(implicit)

Implicit Centered

Table 11.1:
Summary
of FDM for
ODEs

Euler forward explicit O(∆x) (D.27)
Euler backward implicit O((∆x)2) (D.29
Leapfrog explicit, alternating O(∆x)2) (D.34), (D.35)
Runge–Kutta 4th order explicit O(∆x)4) (D.36)
centered diff implicit O(∆x)2) sect. 3.1

calculation of a given node. In case of the Euler backward method, the resulting problem
of iteration can be circumvented by introducing a predicator step using the Euler forward
method. Thus as in the explicit methods, the scheme advances step by step. In the cen-
tered difference scheme, on the other hand, the equations for all nodes have to be solved
simultaneously. Thus a rather large (but sparse) matrix must be in be inverted.

FDM schemes for PDEs differ from that for ODEs in such that the least a second in-
dependent variable: either time in addition to space or a second spatial coordinate. Some
schemes discussed in this text are presented in Fig. 11.2; their accuracy and their appearance
in the text are given in Table 11.2. All schemes discussed here are (at least partially) implicit
because they use the centered difference scheme already known from the ODEs for the spatial
coordinate. The simplest scheme is the FTCS scheme: forward in time and centered in space.
This scheme is a direct continuation from the centered difference scheme in the ODE: for
each time step, the centered scheme is solved while the advance in time is by a simple forward
process. This scheme, therefore is easily coded: once you have a numerical solution for the
simple centered difference scheme, time just is wrapped around it in a loop according to Euler
forward. The Crank-Nicolson scheme, on the other hand, also is a kind of centered scheme:
although time advances only from tl to tl+1, the centered aspects enters through the time at
which the spatial transport occurs: tl+

1
2 , that is in the middle of the time step. Although the

accuracy in transport in time is now increased, the numerical implementation still is similar
to the one in FTCS: we only need to solve the matrix for the centered differences in space
but the transport in time still is straight forward.

The five-point scheme (or seven-point scheme in a 3D problem) also is concerned with
two independent variables. In this case, however, both are spatial variables and the scheme

Table 11.2:
Summary FDMs
for PDEs

FTCS explicit/implicit O(∆t, (∆x)2 sect. 3.2.1
Crank–Nicolcon implicit O((∆t)2), (∆x)2) sect. 3.2.2
Five-point scheme implicit O((∆x)2), (∆y)2) sect. 4.2.1
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Figure 11.2: Summary FDMs for PDEs

is centered in both variables at the grid points and not in the middle of an interval. In
consequence, a 3D matrix would be required to solve the problem. Instead, the matrix is
given in lexicographical order. This leads to an extremely large five-diagonal matrix which
requires efficient solvers. Here iterative methods such as the Jacobi method or Gauß-Seidel
are used instead of the standard of Gaussian elimination.

11.4 Some Final Words

We have started this lecture boldly with a large set of examples, mainly from natural transport
problems. Thus some of the readers might feel disappointed that they still are not able to
develop a model of a glacier under changing climate conditions or to build a fine nice climate
model for their notebook.

However, if you have navigated carefully through the text, I hope that you have started
to develop some ideas regarding the complexity of natural systems and the requirements of
numerical modeling. Probably you will now start to develop a more critical view on complex
models, in particular models entering the political stage such as climate models. But I also
hope that you have started to think a little bit more about physics and the view of physics
on a problem: physics is based on reductionism. And in consequence, our experiments and
models do not reflect the world but only some aspects. If you start to think about these
aspects of your profession, you probably have learned something more important than just
coding a centered difference scheme.
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Appendix A
Useful Things

A.1 List of symbols

α pitch angle Pitchwinkel
α heat transfer coefficient Wärmeübergangszahl
β v/c speed in units of the speed of light c
γ spectral index Spektralindex
γ decay coefficient Zerfallskonstante
ε rate of energy dissipation Energiedissipationsrate
ε property of space Raumeigenschaft
ε energy density Energiedichte
ε porosity Porosität
ε0 absolute permeability absolute Permeabilität
ε ~B energy density in the magnetic field Energiedichte im magnetischen Feld
ε~E energy density in the electric field Energiedichte im elektrischen Feld
ε average emissivity mittleres Emissionsvermögen
ϕ12 Einstrahlzahl
κ pitch angle diffusion coefficient Pitchwinkeldiffusionskoeffizient
λ mean free path mittlere freie Weglänge
λ thermal conductivity Wärmeleitvermögen
λD Debye length debye-Länge
λr radial mean free path radiale mittlere freie Weglänge
λ‖ parallel mean free path parallele mittlere freie Weglänge
λc Coulomb logarithm Coulomb Logarithmus
λD Debye length Debye-Länge
µ Pitch cosine Kosinus des Pitchwinkels
µ absorption coefficient Absorptionskoeffizient
µ viscosity Viskosität
ν collision frequency Stoßfrequenz
ν kinematic viscosity kinematische Viskosität
ω angular speed Winkelgeschwindigkeit
ω relaxation factor Relaxationsfaktor
ω� angular velocity of the Sun Winkelgeschwindigkeit der Sonne
Ω solid angle Raumwinkel
ψ spiral angle Spiralwinke
ψ probability function Wahrscheinlichkeitsfunktion
ρ iteration parameter Iterationsparameter
% mass density Dichte

182
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%c charge density Ladungsdichte
σ scattering cross section Wirkungsquerschnitt
ζ focusing length Fokussierungslänge
~B magnetic field magnetische Flussdichte
~C velocity of a point in phase space Geschwindigkeit im Phasenraum
A area, cross section Fläche
c speed of light Lichgeschwindigkeit
c specific heat capacity spez. Wärmekapazität
c12 radiation exchange coefficient Strahlungsaustauschkoeffizient
c concentration Konzentration
D diffusion coefficient Diffusionskoeffizient
D rate of evaporation Verdunstungsrate
Dr radial diffusion coefficient radialer Diffusionskoeffizient
D‖ parallel diffusion coefficient paralleler Diffusionskoeffizient
D dispersion coefficient Dispersionskoeffizient
e elementary charge Elementarladung
E energy Energie
〈EB〉 average bond energy mittlere Bindungsenergie
~E electric field elektrische Feldstärke
f(~q, ~p, t) phase space density Phasenraumdichte
f flow
F flow rate
F distribution function Verteilungsfunktion
fx discharge rate of x
g amplification factor
h step size Schrittweite
H conditioning matrix Konditionierungsmatrix
I information Information
I differential intensity differentielle Intensität
i index for spatial coordinate (subscript)
i current (time dependent) Strom (zeitabhängig)
jconv convective heat flow density Wärmestromdichte
jQ heat flow density due to thermal conductivity Wärmestromdichte
J differential flux differentieller Fluss
k index for spatial coordinate (subscript)
k wave number Wellenzahl
k permeability Permeabilität
K efficient permeability effektive Permeabilität
K dispersion coefficient Dispersionskoeffizienz
l index for time (superscript)
L scale length Skalenlänge
Lk Kolmogoroff scale
L differential operator Differentialoperator
N particle number (density) Teilchenzahl(dichte)
n index iteration step (superscript)
ne electron density Elektronendichte
m mass Masse
me mass of the electron Elektronenmasse
~o surface of a volume element
~p momentum Impuls
pi generalized momentum generalisierter Impuls
~p momentum Impuls
p probability Wahrscheinlichkeit
p pressure Druck
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P (x) Gauß distribution Gauß-Verteilung
qi generalized coordinates generalisierte Koordinate
q charge Ladung
q radiation flow Strahlungsstrom
q spectral index Spektralindex
Q heat Wärmemenge
Q source term Quellterm
~Q point in phase space Punkt im Phasenraum
~r spatial coordinate räumliche Koordinate
r reacrion rate Reaktionsrate
R resistance Widerstand
s length along a path Länge entlang eines Pfades
S saturation Sättigung
~S streaming
~S energy flux density Energiestromdichte
t time Zeit
tm time to maximum Zeit zum maximum
T temperature Temperatur
Teff effective temperature Effektivtemperatur

mean radiant temperature Strahlungstemperatur
u voltage (time dependent) Spannung (zeitabhängig)
U particle number density Teilchenzahldichte
u bulk speed Strömungsgeschwindigkeit
u′ fluctuating speed component
ut turbulent speed
u unknown quantity (scalar, vector ...)
v‖ parallel speed 6 Geschwindigkeit parallel
v⊥ perpendicular speed Geschwindigkeit senkrecht
~v speed of a particle Geschwindigkeit
vth thermal speed thermische Geschwindigkeit
V volume Volumen
W total number of moles
x0 average Mittelwert
Z charge Ladung

A.2 List of Acronyms

ADI alternating direction implicit
CFD computational fluid dynamics
CFL Courant–Friedrichs–Lewy
ENSO El Nino Southern Oscillation
FCT flux corrected transport
FD finite difference
FDE finite difference equation
FDM finite difference method
FEM finite element method
FTCS forward in time centered in space scheme
GCM general circulation model
IMF interplanetary magnetic field
LET linear energy transfer
ODE ordinary differential equation
PDE partial differential equation
SEP solar energetic particles
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TE truncation error
TM transport model

A.3 Useful Numbers

Boltzmann constant kB 1.3807× 10−23 J/K
gravitational constant γ 6.67× 10−11 N m2/kg2

permittivity constant ε0 8.85× 10−12 C2/(N m2)
Stefan–Boltzmann constant σ 5.67× 10−8 W/(m2K4)

A.4 Exponential Function and Related Stuff

• Euler’s formula:

eix = cosx+ i sinx and e−ix = cosx− i sinx . (A.1)

• trigonometric functions:

cosx =
eix + e−ix

2
and sinx =

eix + e−ix

2i
. (A.2)

• hyperbolic functions:

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
and tanhx =

ex − e−x

ex + e−x
. (A.3)

A.5 Vector Calculus

• vector identities:
~A · ( ~B × ~C) = ~C · ( ~A× ~B) = ~B · (~C × ~A) (A.4)

~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) (A.5)

~A× ( ~B × ~C) + ~B × (~C × ~A) + ~C × ( ~A× ~B) = 0 (A.6)

( ~A× ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C) (A.7)

( ~A× ~B)× (~C × ~D) = ( ~A× ~B · ~D)~C − ( ~A× ~B · ~C) ~D (A.8)

• gradient

gradA =
∂A

∂x
~ex +

∂A

∂y
~ey +

∂A

∂z
~ez =

 ∂A/∂x
∂A/∂y
∂A/∂z

 = ∇A . (A.9)

gradA = ∇A =
∂A

∂%
~e% +

1
%

∂A

∂ϕ
~eϕ +

∂A

∂z
~ez . (A.10)

gradA = ∇A =
∂A

∂r
~er +

1
r

∂A

∂θ
~eθ +

1
r sin θ

∂A

∂ϕ
~eϕ , (A.11)

• divergence

div ~A = ∇ · ~A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
. (A.12)

div ~A = ∇ · ~A =
1
ρ

∂(ρAρ)
∂ρ

+
1
ρ

Aϕ

∂ϕ
+
∂Az

∂z
. (A.13)

div ~A = ∇ · ~A =
1
r2
∂(r2Ar)
∂r

+
1

r sinϑ
∂(sinϑAϑ)

∂ϑ
+

1
r sinϑ

∂Aϕ

∂ϕ
, (A.14)
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• Laplace operator

∆ = ∇2 =
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(A.15)

∆A =
1
ρ

∂

∂ρ

(
ρ
∂A

∂ρ

)
+

1
ρ2

∂2A

∂ϕ2
+
∂2A

∂z2
. (A.16)

∆A =
1
r2

∂

∂r

(
r2
∂A

∂r

)
+

1
r2 sinϑ

∂

∂ϑ

(
sinϑ

∂A

∂ϑ

)
+

1
r2 sin2 ϑ

∂2A

∂ϕ2
, (A.17)

• curl

curl ~A=∇× ~A=

 ∂/∂x
∂/∂y
∂/∂z

×
Ax

Ay

Az

=

 ∂Az/∂y − ∂Ay/∂z
∂Ax/∂z − ∂Az/∂x
∂Ay/∂x− ∂Ax/∂y

 . (A.18)

curl ~A = ∇× ~A =
(

1
%

∂Az

∂ϕ
− ∂Aϕ

∂z

)
~e% +

(
∂A%

∂z
− ∂Az

∂%

)
~eϕ

+
1
%

(
∂(%Aϕ)
∂%

− ∂A%

∂ϕ

)
~ez . (A.19)

curl ~A = ∇× ~A =
1

r sinϑ

(
∂(sinϑAϕ)

∂ϑ
− ∂Aϑ

∂ϕ

)
~er

+
1
r

(
1

sinϑ
∂Ar

∂ϕ
− ∂(rAϕ)

∂r

)
~eϑ +

1
r

(
∂(rAϑ)
∂r

− ∂Ar

∂ϑ

)
~eϕ (A.20)

• Gauss theorem∮
O(V)

~F · d ~A =
∫
V

div ~F dV . (A.21)

• Stokes theorem∮
C(A)

~F · d~r =
∫
A

rot~F · d ~A . (A.22)
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Appendix B
A Little Mathematical Reminder

B.1 Analytical Strategies for Ordinary Differential Equa-
tions

Ordinary differential equations (ODEs) are conditional equations for functions y = f(x) of
one variable in the form

f ′(x) = c(x) f(x) + g(x) (B.1)

for a first order ODE or

f ′′(x) = d(x) f ′(x) + c(x) f(x) + g(x) (B.2)

for a second order one.
ODEs can be solved by many different strategies, depending on the order of the ODE

and the coefficients and inhomogeneities. Solution strategies can be summarized as follows
(cf. [5]):

1. Separable ODEs are of the form

y′ =
f(x)
g(y)

or y′′ =
f(x)
g(y′)

. (B.3)

Note that the 2nd order ODE in fact is a first order ODE for y′.1

The solution is obtained by separation of the variables and subsequent integration:∫
g(y) dy =

∫
f(x) dx+ C or

∫
g(y′) dy′ =

∫
f(x)Dx+ C . (B.4)

2. Linear homogeneous 2nd order ODE with constant coefficients are of the form

ay′′ + by′ + cy = 0 . (B.5)

Eigenwerte λi can be determined with an exponential ansatz, giving the solution

y = c1 eλ1x + c2 eλ2x . (B.6)

3. A linear inhomogeneous 2nd order ODE with constant coefficients has an additional in-
homogenity g(x):

ay′′ + by′ + cy = g(x) . (B.7)

The solution is obtained as a superposition of the solution yH = c1 eλ1x + c2 eλ2x of the
homogeneous ODE and a particulate solution yp for the inhomogeneity. Some particulate
solutions are listed in table B.1.

1The standard example is linear motion with friction. The equation of motion then reads mẍ = −βv =
−βẋ or rewritten as 1st order ODE for v = ẋ: mv̇ = −βv.
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g(x) ansatz for yP coefficients of yP

a0 K = const K = a0
c

a0 + a1x+ a2x
2 + . . . anx

n A0 +A1x+A2x
2 + . . . Anx

n insert into ODE
a0 erx A0 erx A0 = a0

ar2+br+c

a0 sin(nx) + b0 cos(nx) A0 sin(nx) +B0 cos(nx) A0 = (c−n2a)a0+nbb0
(c−n2a)2+n2b2

B0 = (c−n2a)b0−nba0
(c−n2a)2+n2b2

Table B.1: Particulate integrals for a 2nd order ODE of form ay′′ + by′ + cy = g(x)

4. Linear homogeneous 2nd order ODE with variable coefficients of the form

a(x) y′′ + b(x) y′ + c(x) y = 0 . (B.8)

The standard solution is an ansatz by a power series yielding a solution

y = c1

∞∑
n=1

anx
n+k1 + c2

∞∑
n=1

bnx
n+k2 . (B.9)

5. Inhomogeneous intial value ODEs with variable coefficients can be solved by Laplace
transformation (cf. B.3).

Asides from these major schemes there are also some minor schemes for solving ODEs:

6. Linear inhomogeneous 1st order ODE with variable coefficients have the form

y′ + f(x) y = g(x) . (B.10)

Using the technique of variation of the constant, the general solution can be determined
to be

y = exp
{∫

−f(x) dx
[∫

g(x) exp
(∫

f(x) dx
)

dx+ C

]}
. (B.11)

7. A general 1st order ODE has the form

y′ + f(x, y)
g(x, y)

= 0 . (B.12)

There a two basic methods to derive a solution:
(a) A substitution y = vx might yield a separable ODE in v and x only with the solution

lnx = C −
∫

g(1, v) dv
f(1, v) + vg(1, v)

. (B.13)

(b) In case of an exact ODE, that is
∂f

∂y
=
∂g

∂x
(B.14)

the solution is directly given as∫
f(x, c) dx+

∫
g(c, y)

∂

∂y

∫
f(x, c) dxdy = C . (B.15)

8. A nonlinear 2nd order ODE with first derivative and terms in x missing has the form

y′′ = f(y) . (B.16)

It can be solved by multiplying with

2
dy
dx

dx

to obtain the equation

y′ =
[
2
∫
f(y) dy + C

] 1
2

. (B.17)
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This equation is separable and thus can be solved by separation of variables.
9. A nonlinear 2nd order ODE with missing dependent variable can be written as

f(y′′, y′, x) = 0 . (B.18)

The solution is obtained by reduction to a 1st order ODE by p-substitution

p =
dy
dx

.

Integration of the 1st order ODE can be done by any of the methods above and yields p.
A second integration is required to obtain y.

10. A nonlinear 2nd order ODE with missing independent variable can be written as

f(y′′, y′, y) = 0 . (B.19)

Again, the solution is obtained by reduction to a 1st order ODE by p-substitution

d2y

dx2
=

dp
dx

=
dp
dy

dy
dx

= p
dp
dy

. (B.20)

Subsequent procedure as in 9.

B.2 Partial Differential Equations – Classification

A nth-order ODE has a general solution depending on n arbitrary integration constants. The
general solution of a PDE, on the other hand, does not depend on arbitrary constants but on
arbitrary functions. Their number, in general, equals the order of the PDE. The arbitrary
functions depend on one variable less than the solution itself.

B.2.1 Characteristics of a PDE

A system of k PDEs for k unknown functions ~u = (ui) (i = 1 . . . k) of n independent variables
~x = (xν) (ν = 1 . . . n) can be written as

Lj(u) = aijν ∂u
i

∂xν
+ bj = rj = 0 j = 1, . . . k . (B.21)

Here repeated indices require summation. Coefficients aijν depend on ~x; coefficients bj

depend on ~x and eventually also on ~u. A shorthand notation is

~L(~u) = Aν ∂~u

∂ν
+~b = 0 with

∂~u

∂xν
=
∂~u

∂ν
. (B.22)

Here Aν is a k × k matrix (aij)ν ; the operators ~L and ~b are vectors. Equation (B.22) also is
called the matrix form of the system.

On a surface C: Φ(x) = 0 and ∇Φ 6= 0, the characteristic matrix is defined as

A =
∂Φ
∂ν

Aν . (B.23)

A characteristic determinant or characteristic form is defined as

Q

(
∂Φ
∂x1

, . . . ,
∂Φ
∂xn

)
= |A| . (B.24)

For a Cauchy problem, the initial value of ~u, also called the Cauchy data, is given on the
Cauchy surface C. If Q 6= 0 on C, (B.22) determines in a unique way all partial derivatives
∂~u/∂ν for arbitrary initial data. In this case, C is called a free surface. If Q = 0, C is a
characteristic surface and there exists a characteristic linear combination λL(~u) = λjLj(~u) =
Λ(~u) of the differential operators Lj such that in Λ the derivative of ~u on C depends only
on ~u on C. Since Λ(~u) imposes a relation between the initial data, these cannot be chosen
arbitrarily.
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B.2.2 Types of PDEs – Examples

We will know analyze the types and characteristics of some PDEs, using typical examples
for illustrations.

Linear Convection Equation – A Hyperbolic Equation

The linear convection equation

∂u

∂t
+ c

∂u

∂x
= r = 0 (B.25)

is a first-order PDE of hyperbolic type. Its characteristic matrix is the 1× 1-matrix

A =
(
∂Φ
∂t

+ c
∂Φ
∂x

)
. (B.26)

The characteristic form is

Q =
∂Φ
∂t

+ c
∂Φ
∂x

(B.27)

and the characteristic curve has the slope(
d~x
dt

)
C

= −
∂Φ
∂t
∂Φ
∂x

= c . (B.28)

The characteristics thus are straight lines C: x − ct = const. The compatibility relation,
r = 0, is the equation itself. The linear convection equation represents a derivative along the
characteristics. If uC is the value of u on C, the total derivative is(

du
dt

)
C

=
∂u

∂t
+
(

dx
dt

)
C

∂u

∂x
=
∂u

∂t
+ c

∂u

∂x
= 0 . (B.29)

The total derivative vanishes and thus uC = const. The solution to (B.25) thus can be written
as

u(x, t) = f(x− ct) (B.30)

with f(ξ) being an arbitrary function of the new variable ξ = x− ct.

Wave Equation – A Totally Hyperbolic Equation

The wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= 0 (B.31)

best can be studied after transformation into a system of first-order PDEs. With v = ∂u/∂t
and w = ∂u/∂x, the system reads

∂v

∂t
− c2

∂w

∂x
= r1 = 0 and

∂w

∂t
− ∂v

∂t
= r2 = 0 . (B.32)

The matrix form of the system depends on At and Ax:(
1 0
0 1

)
∂

∂t

(
v
w

)
+
(

0 −c2
−1 0

)
∂

∂x

(
v
w

)
= 0 . (B.33)

The characteristic matrix then reads

A =
(

∂Φ/∂t −c2∂Φ/∂x
−∂Φ/∂x ∂Φ/∂t

)
(B.34)

with the determinant |A| = Q:

Q =
(
∂Φ
∂t

)2

− c2
(
∂Φ
∂x

)2

=
(
∂Φ
∂t

− c
∂Φ
∂x

) (
∂Φ
∂t

+ c
∂Φ
∂x

)
= 0 . (B.35)
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The factors ofQ are known from (B.27). Following the procedure there, we obtain two families
of characteristic curves with slope (dx/dt)C = ±c. The characteristics C± are straight lines
x∓ ct = const; the equation is a totally hyperbolic PDE.

The compatibility relations are obtained from the determinant∣∣∣∣ r1 −c2 ∂Φ/∂x
r2 ∂Φ/∂t

∣∣∣∣ = 0 . (B.36)

Since ∂Φ/∂t = ∓c ∂Φ/∂x, we obtain two relations

∂(v − cw)
∂t

+ c
∂v − cw

∂x
= 0 on C+ and

∂(v + cw)
∂t

− c
∂v + cw

∂x
= 0 on C− . (B.37)

Integration yields

v − cw = f(x− ct) and v + cw = g(x+ ct) . (B.38)

Further integration yields d’Alembert’s solution for u(x, t)

u(x, t) = F (x− ct) +G(x+ ct) (B.39)

with F and G being arbitrary functions of a single argument ξi = x∓ ct.

Laplace Equation – An elliptic PDE

Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0 (B.40)

can be analyzed in the same way as he wave equation by substituting t for y and i for c. The
characteristic form then becomes

Q =
(
∂Φ
∂x

)2

+
(
∂Φ
∂y

)2

. (B.41)

In this case, Q = 0 cannot be satisfied by any real function except for the trivial solution. As
a consequence, no real characteristic directions exist. Laplace’s equation therefore is elliptic.

Heat Conduction Equation – A Parabolic PDE

The heat conduction equation

∂u

∂t
= α

∂2u

∂x2
for α > 0 (B.42)

can be rewritten into a first-order system using v = ∂u/∂x:

∂u

∂t
− α

∂v

∂x
= 0 and

∂u

∂x
= 0 . (B.43)

In matrix form we get(
1 0
0 0

)
∂

∂t

(
u
v

)
+
(

0 −α
1 0

)
∂

∂x

(
u
v

)
=
(

0
v

)
. (B.44)

The characteristic matrix is

A =
(
∂Φ/∂t −α∂Φ/∂x
∂Φ/∂x 0

)
. (B.45)

The characteristic form Q = |A| = −α(∂Φ/∂x)2 is degenerated because it does not contain
the derivative ∂Φ/∂t. Q = 0 requires ∂Φ/∂x = 0; ∂Φ/∂t is arbitrarily chosen to be 1,
which is a double root. The characteristics then are straight lines t = const and only one
compatibility relation can be obtained. The slope of the characteristic is (dx/dt)C = ±∞:
the speed of propagation is infinite in both directions along the x-axis.

The heat conduction equation is parabolic.

c© M.-B. Kallenrode 13th November 2006



192 APPENDIX B. A LITTLE MATHEMATICAL REMINDER

B.2.3 Summary 2D

The most general form of a 2D PDE is

a1(x, y)
∂2u

∂x2
+a2(x, y)

∂2u

∂x∂y
+a3(x, y)

∂2u

∂y2
+a4(x, y)

∂u

∂x
+a5(x, y)

∂u

∂y
+f(x, y, u) = 0 .(B.46)

The type of the PDE depends on the coefficients in front of the derivatives of highest order,
in this case on a1, a2 and a3. The classification then is∣∣∣∣ a1 a2/2

a2/2 a3

∣∣∣∣ =
> 0 elliptic (positive definit)

= 0 parabolic (positive definit but not definit)
< 0 hyperbolic (indeifnit)

(B.47)

Note that the type of the PDE depends on (x, y). Consequently, also mixed types of PDEs
are possible. or instance, the Euler–Tricomi equation

∂2

∂x2
= x

∂2u

∂y2

is an elliptic–hyperbolic PDE because it is elliptic in the region x < 0, hyperbolic in the
region x > 0 and degenrate parabolic on the line x = 0.

B.3 Laplace Transformation

The Laplace transformation, or Laplace transform for short, is one example of an integral
transform. Another example is the Fourier transform.

B.3.1 Integral Transforms

In in integral transform a function F (t) is multiplied by a kernel K(s, t) and integrated
between the limits a and b:

T{F (t)} =

b∫
a

F (t)K(s, t) dt = f(s) . (B.48)

The Kernel K and the integration limits (a, b) define the type T of transformation. For a
Laplace transform the kernel is e−st (with s ∈ C) and the integration interval is (0,∞):2

L{F (t)} =

∞∫
0

F (t) e−st dt = f(s) . (B.49)

The inverse transform is written as

L−1{f(s)} = F (t) . (B.50)

The function F (t) to be transformed can be any function, derivative of a function or even
an integral. The Laplace transforms for some important functions are listed in table B.2.

The Laplace transform is used to solve ODEs. If an ODE is transformed, each term of
the ODE is transformed. The transformed differential equation then is a simple algebraic
equation in s-space and can be solved easily. Note that the variables t and s are corresponding
variables, for instance spatial coordinate and momentum or time and energy/frequency. The
advantages of a Laplace transform over the methods discussed in Sect. B.1 are the following:

• an inhomogeneous ODE can be solved directly without first solving the homogeneous part
of the ODE.

• a wide range of inhomogeneities can be handled without recourse to particular integrals.
• even discontinuous inhomogeneities, such as described by a δ or Heavyside function, can

be solved.
• the initial conditions are automatically incorporated into the solution.

2For comparison, the Fourier transform has the kernel eiωt and the integration interval −∞ to +∞.
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F (t) f(s)

1 s−1

t s−2

e−at (s+ a)−1

tn n!/sn+1

sin(kt) k/(s2 + k2)
tn e−at n!/(s+ a)n+1

cos(kt) s/(s2 + k2)
sinh(kt) k/(s2 − k2)
e−at cos(kt) [s+ a]/[(s+ a)2 + k2]
cosh(kt) s/(s2 − k2)
e−at sin(kt) k/[(s+ a)2 + k2]

Table B.2: Laplace transforms for some
important functions

B.3.2 Properties of the Laplace Transform

The general properties of a Laplace transform can be summarized as:

1. Definition of the Laplace transform:

F (t) →
∞∫
0

F (t) e−st dt . (B.51)

2. Inverse transform:

1
2πi

lim
β→0

γ+iβ∫
γ−iβ

etz f(z) dz → f(s) . (B.52)

3. Transform of a constant:

C → C/s . (B.53)

4. Transform of a sum:

aF (t) + bG(t) → a f(s) + b g(s) . (B.54)

5. Transform of a derivative:

F ′(t) → s f(s)− F (0)
F ′′(t) → s2 f(s)− sF (0)− F ′(0)
F (n)(t) → sn f(s)− sn−1 F (0)− sn−2 F ′(0) . . . F (n−1)(0) .

(B.55)

6. Transform of an integral:
t∫

0

F (t) dt → f(s)
s

. (B.56)

7. Convolution theorem (inverse of a product):

t∫
0

F (τ)G(t− τ) dτ = F (t) ∗G(t) → f(s) g(s) . (B.57)

8. Heavyside expansion (inverse of a ratio of polynomials):
∞∑

n=1

(s− an)p(an)
q(an)

eant =
∞∑

n=1

p(an)
q′(an)

eant → p(s)
q(s)

(B.58)

with order of p(s) < q(s) and an being the roots of q(s).
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9. Inverse of derivatives:

−t F (t) → f ′(s)
(−1)n tn F (t) → f (n)(s) .

(B.59)

10. Inverse of an integral:

F (t)
t

→
∞∫

s

f(x) dx . (B.60)

11. Translation(shifting properties):

eat F (t) → f(s− a) (B.61)

and {
f(t− a) t > a
0 t < a

→ e−as f(s) . (B.62)

12. Initial value theorem:

F (0) → lim
s→∞

s f(s) . (B.63)

13. Final value theorem:

lim
t→∞

F (t) → lim
s→0

s f(s) . (B.64)

The harmonic oscillator with external forcing is a typical example for an inhomogeneous
2nd order ODE. With an arbitrary forcing F (t) the equation of motion is

ẍ+ ω2
0x = F (t)/m (B.65)

with ω0 =
√
k/m and the initial conditions v(0) = v0 and x(0) = x0. Its Laplace transform

is

s2 x(s)− sx0 − v0 + ω2
0x(s) = f(s)/m (B.66)

with the solution

x(s) =
x0s+ v0
s2 + ω2

0

+
f(s)
m

1
s2 + ω2

0

. (B.67)

Inversion yield the solution

x(t) = x0 cos(ω0t) +
v0
ω0

sin(ω0t) +
1

mω0

t∫
0

sin(ω0t)F (t− τ) dτ. (B.68)

The first two terms on the right are the well-known general solution for the harmonic oscillator
without external forcing. The last term contains the modification of this solution due to the
existence of an arbitrary external forcing F (t).

If the forcing function is F (t) = F0 sin(ωt), B.66 can be written as

s2 x(s)− sx0 − v0 + ω2
0x(s) =

F0

m

ω

s2 + ω2
. (B.69)

Its solution is

x(s) =
x0s+ v0
s2 + ω2

0

+
F0

m

ω

(s2 + ω2
0)(s2 + ω2)

. (B.70)

The inverse transform of the first term on the right is the same as used in (B.67), the second
term yields to a Heavyside expansion:

x(t) = x0 cos(ω0t) +
1
ω0

[
v0 +

F0ω

m(ω2 − ω2
0)

]
sin(ω0t)−

F0

m(ω2 − ω2
0)

sin(ωt) . (B.71)

A singularity (resonance) arises for ω = ω0.
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Exercises

Aufgabe 15 Solve the equation of motion

ẍ+ γẋ+ ω2
0x = F (t)/m

of an harmonic oscillator with damping and external forcing using a Laplace transform. Use
the above example as guideline.
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Appendix C
A Little Remainder on Some Physics
Basics

C.1 Some Fundamental Laws

Table C.1 lists some of the fundamental laws in physics together with some auxiliary relations.
The most fundamental laws are the conservation of mass, momentum and energy. Con-

versation laws can be written in different forms. To understand the idea, consider a volume
element. Any change of a property ε inside this volume is due to sources or sinks S(ε) and
the convergence ~C(ε) of the flow of mass across the volume’s boundary:

∂ε

∂t
+∇ · ~C(ε) = S(ε) . (C.1)

The flow density ~j of the flow across the boundary is the product of the density %ε and the
flow speed ~v: ~j = %ε~v:

∂%ε

∂t
−∇(%ε~u) = S or for S = 0 :

∂%ε

∂t
= −∇(%ε~u) = −∇~j . (C.2)

Mass conservation is a special case of the latter equation: at least on the macroscopic
level, mass has no sources and sinks. With % as mass density and under consideration of
relation (2.30) between partial and total derivative, mass conservation can be written as

d%
dt

=
∂%

∂t
+ ~v · ∇% = −%∇~v , (C.3)

Integration and consideration of Gauss’ law (A.21) leads to the integral form

∂

∂t

∫
V

%dV = −
∮

O(V)

~j · d ~A . (C.4)

If we use the charge density %e instead of the mass density %, these equation give the conser-
vation of charge which can also be written as Kirchhoff’s 1st law: for a node in an electrical
circuit, the sum of currents into and out of it must be zero.

Energy conservation can be described with the same formalism, replacing the mass density
% by the energy density ε:

dε
dt

=
∂ε

∂t
+ ~v · ∇ε = −ε∇~v , (C.5)

and in integral form
∂

∂t

∫
V

ε dV = −
∮

O(V)

~j · d ~A . (C.6)
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conservation of mass (eq. of continuity) d%
dt = ∂%

∂t + ~v · ∇% = −%∇~v
conservation of energy dε

dt = ∂ε
∂t + ~v · ∇ε = −ε∇~v

Newton’s law (conservation momentum) ~F = md~v
dt = dp

dt

Universal gravitation ~F = γm1m2
r2 ~er

Ohm’s law u = i
R

Kirchhoff’s law 1 (conservation charge) (
∑
i)junction = 0

Kirchhoff’s law 2 (conservation energy) (
∑
u)loop = 0

Coulomb’s law ~F = 1
4πε0

q1q2
r2 ~er

Fick’s law N = −DA dC
dx

Fourier’s law q = −kA dT
dx

Newton’s law of cooling d
dt∆T = −K∆T

Newton’s viscosity law τ = −µ dv
dx

Chemical reaction rate, 1st order r = krC

Chemical reaction rate, 2nd order r = KRC
2 or r = krCACB

Chem. reaction rate, Michaelis–Menton r = rmaxS
km+S

Interphase transport, mass N = kcA∆C
Interphase transport, heat q = hA∆T

frictional pressure drop in a pipe ∆pf = 4fp v2

2
L
d

drag in flow around a body FD = cD%Ac
v2

2

thermal enthalpy change ∆H = cp ∆T
enthalpy of reaction Hproducts −Hreactants

enthalpy of vaporization Hvapor −Hliquid

enthalpy of solidification Hliquid −Hsolid

Table C.1: Some
fundamental
laws of physics

Special cases are the conservation of mechanical energy or the conservation of thermal energy.
Also related to the conservation of energy is Kirchhoff’s 2nd law, which states that the sum
of the voltage drops u in a closed loop in an electric circuit is zero. This can be interpreted
as a special form of the conservation of potential energy. The mathematical expression for
some energy forms is given in Tab. C.2.

Newton’s 2nd law gives the equation of motion or momentum balance, that is the change in
momentum (or the acceleration) as a function of the acting forces. It leads to the conservation
of momentum∑

~p = 0 , (C.7)

the conservation of angular momentum∑
Iω = 0 (C.8)

εpot = %gh potential energy density
εkin = 1

2%u
2 kinetic energy density

ε ~B = 1
2µ0

B2 energy density in the magnetic field
ε~E = 1

2ε0E
2 energy density in the magnetic field

Table C.2: Mathematical expressions for different forms of energy
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and to the conservation of moment∑
~r × ~F = 0 . (C.9)

The remaining laws in table C.1, although fundamental, are not concerned with conser-
vations. Two laws are important for the interaction between bodies: Newton’s universal law
of gravitation gives the gravitational force between two masses m1 and m2 separated by a
distance r. Its direct counterpart in the realm of charged particles is Coulomb’s law which
gives the force between two charges q1 and q2 separated by r.

Fick’s law and Fourier’s law are transport equations related to diffusive processes. They
give the rate of flux of mass N (mol/s) and thermal energy q (J/s). In both laws the
driving force is a gradient (in concentration C or in temperature T ), which, together with
a coefficient D or k, can be interpreted as a kind of conductivity or the reciprocal of a
resistance to transport. Mathematically, both laws are equivalent. They are even equivalent
in the sense that the essence of the underlying physical process is described by the same law.
The details of the process and the physical quantities, however, are different.

C.2 Distributions and Phase Space Density

Transport processes deal with bulk transport. Thus we do not transport individual bodies
of mass m but volume elements with density %. But density inside a volume element might
change. And although the volume element moves at speed ~u into one direction, owing to the
thermal motion none of the particles inside the volume element might move at that speed.
For a formal description, we therefore have to agree an some terms such as phase space
density and velocity distribution.

C.2.1 Phase space density

When we are concerned with the transport of matter, we are aware of the fact that matter
is composed of smaller units. In a gas or liquid the smallest units relevant to transport are
the atoms or molecules. To extend our discussion later to other media, we can also use the
more general term particles.

Kinetic theory starts from the physics of individual particles (the microscopic approach).
The macroscopic phenomena then can be described by averaging over a sufficiently large
number of particles, an approach which also is used in statistical mechanics.

Phase Space and Distribution Function

The mechanical properties of each particle are described completely by its position and mo-
mentum. The phase space is a six-dimensional space defined by the three spatial coordinates
q1, q2, q3 and the three generalized momenta p1, p2, p3. Each particle is related unambiguously
to one point in phase space:

~Q = (q1, q2, q3; p1, p2, p3) = (~q, ~p) . (C.10)

The speed of the particle in phase space, i.e. the combined change in its position and mo-
mentum in ordinary three-dimensional space, then is

~C =
d ~Q
dt

=
(

dq1
dt

,
dq2
dt

,
dq3
dt

;
dp1

dt
,
dp2

dt
,
dp3

dt

)
=
(

d~q
dt
,
d~p
dt

)
. (C.11)

A particle ensemble of N particles thus occupies N such points in phase space. The
number NVi

of particles inside the phase space volume Vi can be used to define a phase
space density f(~q, ~p, t) that gives the number of particles inside a volume element Vi =
[(qi, qi + dqi), (pi, pi + dpi)]. This density function also is called a distribution function.
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C.2.2 Averaging

The ordinary particle density in 3D space can be obtained from the phase space density by
integration over the generalized momenta:

n(~q, t) =

+∞∫
−∞

f(~q, ~p, t) d3~p . (C.12)

The number density is used in the definition of averages. These describe the macroscopic
properties of the particle ensemble. If a(~q, ~p, t) is a function in phase space, its average is
defined as

〈a(~q, t)〉 =
1

n(~q, t)

∞∫
−∞

a(~q, ~p, t) f(~q, ~p, t) d3~p . (C.13)

The average or bulk speed of the particle ensemble, for instance, is given as

~u(~q, t) = 〈~v(~q, t)〉 =
1

n(~q, t)

∞∫
−∞

~v(~p, ~q, t) f(~q, ~p, t) d3~p . (C.14)

Application of this averaging scheme to the equation of motion yields the fundamental equa-
tions for the description of the particle ensemble. A prominent example is the Vlasov equation
which provides a statistical description of a plasma.

C.2.3 Maxwell’s Velocity Distribution

The average speed 〈~v〉 of the particles in the ensemble is defined by (C.14). This speed is
also the flow speed ~u of the gas or fluid. The speeds ~vi of individual particles, however, can
be substantially different; in particular, in a hot gas, such as a plasma, speeds of individual
particles can exceed the flow speed by orders of magnitude. In addition, a particle ensemble
might contain different particle species s which all have their own average speed ~us.

To derive the velocity distribution of the particles, let us first determine the kinetic energy
contained in a volume element. The kinetic energy of the flow is determined by the average
speed ~u, while the entire kinetic energy is the sum of the kinetic energies of all particles. Since
the latter always is larger, there is also kinetic energy contained in the stochastic motion of
the particles, which can be described by〈m

2
(~v − ~u)2

〉
=
∫
m(~v − ~u)2f(~r,~v, t)d~v

2
∫
f(~r,~v, t)d~v

. (C.15)

This random kinetic energy is related to the hydrostatic pressure by

p

n
=

2
N

〈m
2

(~v − ~us)2
〉
, (C.16)

where N is the number of degrees of freedom, normally three.
If the system is in thermal equilibrium, the velocity distribution is given by the Maxwell

distribution:

f(~r,~v, t) = n

√(
m

2πkBT

)3

exp
{
−m(~v − ~u)2

2kBT

}
(C.17)

where T is the temperature and kB is the Boltzmann constant. According to (C.17), the
relative number of particles with large stochastic speeds |~v − ~u| increases with T . The
distribution’s maximum is at the most probable thermal speed vth:

vth =

√
2kBT

m
. (C.18)
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Figure C.1: Maxwell distribution.
(a) Distribution g(~v, r) for the par-
ticle speeds in a plasma at rest.
(b) Maxwell distribution of one
velocity component for a plasma
at rest, the other velocity compo-
nents have been removed by inte-
gration. (c) Same as above but
for a plasma moving with aver-
age speed ux in the x-direction.
Note that an increase in temper-
ature would not affect the position
of the maximum in (b) and (c) but
would shift the maximum towards
the right in (a), combined with an
increase of the maximum
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In a one-atomic gas in equilibrium, the temperature is related to the kinetic energy of the
stochastic motion by〈

1
2m(~v − ~u)2

〉
= 1

2NkBT . (C.19)

Note that the combination of (C.16) and (C.19) yields the ideal gas law p = nkBT .
Occasionally, we are concerned only with particle speeds and not with the direction of

motion. This might be the case if the particle ensemble is at rest, i.e. ~u equals zero. The
distribution function (C.17) then is∫ ∫

f(~r,~v, t) dΩv v
2 dv = (4πf(~r, |v|, t)v2) dv = g(~r, v) dv (C.20)

where Ω is the solid angle. Equation (C.20) gives the number of particles inside a volume
element with speeds between v and v+dv. The function g(~r, v) gives the number of particles
per velocity unit, again with speeds between v and v + dv. For small speeds, this function
increases with the square of v while for large speeds it decreases exponentially (see upper
panel in Fig. C.1). If not the speed, but only one component of the velocity is considered,
the distribution is symmetric around zero if the ensemble is at rest (middle) or symmetric
around the flow speed in that particular direction if the ensemble is in motion (lower panel).

Reminder: the Maxwell–Boltzmann distribution requires a thermal equilibrium. If this is
not the case, it can not applied to the description of a particle population. For most terrestrial
examples given in this script, the assumption of thermal equilibrium is valid. Occasionally,
we will also use space plasmas or energetic particles in space as examples. The plasmas often
can be described as Maxwellian or bi-Maxwellian, too, while the energetic particle population
often can be described as an exponential tail on the Maxwellian. Such a distribution is called
kappa-distribution or Lorentz distribution.

C.2.4 Distribution Function and Measured Quantities

While the distribution function is important for our theoretical treatment of the particle
ensemble, it is a quantity which cannot be measured directly. Instead, observations give
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the differential flux J(E, ~Ω, ~r, t) of particles within a solid angle d~Ω and an energy interval
(E,E + dE). Thus the quantity

J(E, ~Ω, ~r, t) d ~Ad~Ω dtdE

is the number of particles in the energy band from E to E + dE coming from the direction
~Ω within a solid angle d~Ω, going through a surface d ~A perpendicular to d~Ω during the
time interval dt. The differential flux therefore can be measured in units of particles per
(m2 sr s MeV). Since J depends on ~Ω, it can also be interpreted as the angular distribution
of the particles. The omnidirectional intensity can be obtained from the differential flux by
averaging over all directions:

Jomni(E,~r, t) =
1
4π

∫
J(E, ~Ω, ~r, t) d~Ω . (C.21)

The number density of particles with velocity v in a phase space element is given as
dn = fv2d~vd~Ω. Multiplication by v gives the differential flux of particles with velocity v as
f(~v, ~p, t)v3d~vd~Ω. Comparison with the same quantity expressed by the differential flux yields

J(E, ~Ω, ~r, t) dE d~Ω = f(~r, ~p, t)v3 dv d~Ω . (C.22)

Since the energy is related to speed, dE is related to dv by dE = mvdv. The relation between
the differential flux and the distribution function therefore can be written as

J(E, ~Ω, ~r, t) =
v2

m
f(~r, ~p, t) . (C.23)

C.3 Fundamental Transport Equations in Phase Space

The basic equations that describe the evolution of the particle ensembles can be derived from
the equation of motion for the individual particle and application of the averaging scheme
C.13. The Boltzmann equation is the fundamental equation of motion in statistic theory, the
Fokker–Planck equation is most suitable when scattering is concerned. Thus we will meet
this latter one frequently during the script.

C.3.1 Boltzmann equation

The Boltzmann equation is the fundamental equation of motion in phase space. The only
assumption inherent in the Boltzmann equation is that only external forces ~F act on the
particles while internal forces vanish: there are no collisions between the particles.

The Boltzmann equation is a direct consequences of the equation of continuity in phase
space:

∂f

∂t
+∇6 · (f ~C) = 0 (C.24)

which also can be written as
∂f

∂t
+∇r · (~vf) +∇v · (~af) = 0 , (C.25)

where∇6, ∇r, and∇v are the divergence in phase space, in ordinary space, and in momentum
space, respectively, and ~v and ~a are velocity and acceleration. In phase space, ~r and ~v are
independent variables. If we further assume that the acceleration ~a, and therefore also the
force ~F , is independent of ~v, (C.25) can be simplified:

∂f

∂t
+ ~v · ∇rf + ~a · ∇vf = 0 (C.26)

or

∂f

∂t
+ ~v · ∇f +

~F

m
· ∂f
∂~v

= 0 . (C.27)
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Equation (C.27) is called the collisionless Boltzmann equation. It also can be written as

df
dt

= 0 , (C.28)

which states that the convective derivative of the phase space density is always zero for a
collisionless assembly of particles. Thus for an observer moving with the flow, the phase
space density is constant. Or, in other words: the substrate of points in phase space behaves
like an incompressible fluid. This is also called Liouville’s theorem.

The general form of the Boltzmann equation can be written as

∂f

∂t
+ ~v · ∇f +

~F

m
· ∂f
∂~v

=
(
∂f

∂t

)
coll

, (C.29)

where the term on the right-hand side is the rate of change in phase space density due to
collisions (see below).

If changes in f due to collisions are small, e.g. in the case of a thermodynamic equilibrium,
the reduced Boltzmann equation can be written as(

∂f

∂t

)
coll

= 0 . (C.30)

The solution of this equation is the Maxwell distribution.

C.3.2 Fokker–Planck equation

The Fokker–Planck equation considers the short-range, local interactions between particles.
In a plasma, collisions arise from many small Coulomb interactions between charged particles
The collision term has its mechanical analogy in the Brownian motion of particles in a gas;
however, both are not equivalent as will be discussed below.

Collisions are not a deterministic but a stochastic process. Thus for a given particle,
although we might know its momentary position and velocity, we cannot determine its future
motion. Only for an assembly of particles the collective behavior can be determined. This
can be done by means of probabilities. Let ψ(~v,∆~v) be the probability that a particle with
velocity ~v after many small collisions during a time interval dt has changed its velocity to
~v + ∆~v. The phase space density f(~r,~v, t) also is a probability function. At a time t it can
be written as the product of the phase space density at an earlier time t−∆t multiplied by
the probability of changes during this time interval and integrated over all possible velocity
changes ∆~v:

f(~r,~v, t) =
∫
f(~r,~v −∆~v, t−∆t) ψ(~v −∆~v,∆~v) d(∆~v) . (C.31)

Since we only consider scattering by small angles, i.e. |∆~v| � |~v|, Taylor expansion to second
order of the product fψ yields

f(~r,~v, t) =
∫ [

f(~r,~v, t−∆t)ψ(~v,∆~v)−∆~v · ∂(fψ)
∂~v

]
d(∆~v)

+
∫ [

∆~v∆~v
2

� ∂2(fψ)
∂~v∂~v

]
d(∆~v) . (C.32)

Note that the � in the last term indicates a product between two tensors.1 The resulting
matrix is the Hess matrix.

Because some interactions always take place, the probability can be normalized:
∫
ψd(∆~v) =

1. Equation (C.32) than can be simplified to

f(~r,~v, t) = f(~r,~v, t−∆t)− ∂(f〈∆~v〉)
∂~v

+
1
2

∂

∂~v∂~v
� (f〈∆~v∆~v〉) , (C.33)

1The product S�T of two tensors S and T itself is a tensor and can be obtained by application of the rules
of matrix multiplication.
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with

〈∆~v〉 =
∫
ψ∆~v d(∆~v) and 〈∆~v∆~v〉 =

∫
ψ∆~v∆~v d(∆~v) . (C.34)

By definition, the collision term as written down in (C.29) is(
∂f

∂t

)
coll

=
f(~r,~v, t)− f(~r,~v, t−∆t)

∆t
. (C.35)

Thus the Fokker–Planck equation can be written as(
∂f

∂t

)
coll

∆t = − ∂

∂~v
· (f〈∆~v〉) +

1
2

∂2

∂~v∂~v
� (f〈∆~v∆~v〉) . (C.36)

The first term on the right basically contains 〈∆~v〉/∆t, which is an acceleration. Thus the
term describes the frictional forces leading to an acceleration of the slower and a deceleration
of the faster particles, which tends to equalize the speeds. The negative divergence in velocity
space describes this narrowing of the distribution function. The second term, 〈∆~v∆~v〉/∆t,
is a diffusion in velocity space. This term describes the broadening of a narrow velocity
distribution, e.g. a beam, as a result of the collisions. The two terms therefore operate in
the opposite sense. They are in balance in an equilibrium distribution, e.g. the Maxwell
distribution. The physics of the collision processes is contained in the probability function
ψ.

Equation (C.36) also can be written as(
∂f

∂t

)
coll

∆t = −∇v · (D · ∇v · f) (C.37)

with the diffusion tensor D derived from the first- and second-order fluctuations of the particle
velocity.

C.3.3 Vlasov equation

The Vlasov equation is the basic equation in the kinetic theory of a plasma.
The Vlasov equation is the application of the Boltzmann equation to a plasma on which

only electromagnetic forces act. These forces are described by the Lorentz force

~̈r =
q

m

(
~E + ~v × ~B

)
. (C.38)

In the derivation of (C.27) we have made the assumption of a force independent on ~v. At
first glance, the Lorentz force violates this assumption and therefore should not be considered
in (C.27). Closer inspection, however, shows that this is not true. Since the Lorentz force
contains the cross product of speed and magnetic field, the resulting force is perpendicular
to the speed. Thus each individual component of the force does not depend on the same
component of the velocity. Since in (C.25) a scalar product is considered, the only derivatives
of ~a are of the form ∂ax/∂vx and therefore vanish. Thus the Lorentz force can be inserted
into (C.27):

∂f

∂t
+ ~v · ∇f +

q

m

(
~E +

~v × ~B

c

)
· ∂f
∂~v

= 0 . (C.39)

Equation (C.39) is called the Vlasov equation. Because of it simplicity, this is the equation
most commonly studied in kinetic theory.

The Vlasov equation is derived under the assumption of non-interacting particles. On
the other hand, interactions are the very essence of a plasma. Thus we have to discuss
whether the Vlasov equation can be applied as often as it is. As we shall see, the Vlasov
equation is a valid approach. It does not consider collisions in the sense of short-range, local
interactions, such as collisions between two billiard balls or Coulomb collisions between two
charged particles. Nonetheless, that kind of interaction, which is essential in a plasma, is
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Figure C.2: Collisions in a
plasma can shift the gyro-
center of a particle onto an-
other field line, here illustrated
for a collision of a charged par-
ticle with a neutral one
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considered: each particle moves in the average Coulomb field created by thousands of other
particles. Thus the fields in the Vlasov equation are due to the rest of the plasma and describe
the interaction of the particles. These fields often are called self-consistent fields. External
fields can be included in (C.39), too. Since the fields ~E and ~B are determined by the rest of
the plasma, they depend on the distribution function f .

The Vlasov equation thus is non-linear; analytical solutions in general are not possible.
But Jeans’ theorem identifies some solutions. It states: any function of the constants of
motion is a solution of the Vlasov equation. For instance, if there are no electric fields, the
kinetic energy is a constant of motion. Thus any function of mv2/2 is a solution of the Vlasov
equation. In particular, the Maxwell distribution (C.17) is a solution.

Jeans’ theorem therefore shows the equivalence of kinetic theory and orbit theory. Follow-
ing an approach given by Boyd and Sanderson [18], this equivalence can be shown easily. The
basic equation of orbit theory is Newton’s second law ~F = md2~r/dt. This is a second-order
differential equation in three dimensions and therefore the general solution must contain six
constants of integration, γ1, ..., γ6. Thus the solutions of Newton’s second law can be writ-
ten as ~r = ~r(γ1, ..., γ6, t) and ~v = ~v(γ1, ..., γ6, t). These six scalar equations can be solved
in principle to give the γi: γi = γi(~v, ~r, t). Jeans’ theorem then states that each function
f = f(γ1, ..., γ6) is a solution of the fundamental equation of kinetic theory, the Boltzmann
equation (C.27). This can be seen easily by inserting the γi into the Boltzmann equation:

∑
i

(
∂γi

∂t
+ ~v · ∇γi +

~F

m
· ∂γi

∂~v

)
=
∑

i

∂f

∂γi

dγi

dt
= 0 . (C.40)

The result is identically zero because the γi are constants.

C.4 Excursion: Collisions

We have mentioned collisions twice in this chapter. In Sect. C.2.3 we introduced the Maxwell
distribution. The basic requirement for such a distribution is thermal equilibrium, which
requires collisions between the particles. If we have a distribution with a suprathermal tail,
such as the kappa distribution, in time collisions will transform it into a Maxwellian. This
time scale depends, of course, on the time scales of the collisions. We have also mentioned
collisions in connection with the Fokker–Planck equation. We have even mentioned that the
collisions should lead to small changes in speed only. But we did not talk explicitly about
the nature of these collisions. This section is supplementary, briefly introducing some of the
basics of collisions.

Collisions are also important in the energy transfer between different components in a
plasma: imagine a plasma which also contains neutral particles. The charged particles might
be accelerated by an electric field. In time, collisions between charged and neutral particles
will equalize the two distributions, leading to an acceleration of the neutrals. Collisions also
are related to macroscopic properties of the plasma, such as conductivity, resistance and
viscosity.

As in a neutral gas, collisions in a plasma change the path of the individual particle.
In a magnetized plasma, collisions between a charged particle and a neutral can shift the
gyro-center of a particle onto another field line (see Fig. C.2). Collisions between charged
particles can also lead to a shift in the gyro-center and/or changes in pitch angle.
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Figure C.3: Statistical path of a par-
ticle under the influence of collisions
(left) with other particles (Brownian
motion) and distribution of the path
length between two collisions (right)

C.4.1 Collisions Between Neutrals

Collisions between neutral particles give rise to the Brownian motion in a gas. The individual
process is a collision between two hard spheres. The hard sphere model is a simple and
quite useful approximation. The full treatment of the collisions between neutrals requires
a quantum-mechanical approach considering the attracting van der Waals forces and the
repulsing Coulomb forces of the electron shells of the two atoms. The van der Waals potential
varies roughly with r−6, the repulsing potential with r−12 [181]. Combination of both leads
to an extremely steep potential surrounded by a very shallow potential depression in the
order of meV compared with the typical eV range in molecule formation. A hard sphere
therefore is a reasonable approach to describe the collision of neutrals.

The basic equations are the conservation of momentum and the conservation of energy.
The changes in momentum and direction depend on the masses and speeds of the particles
and on the angle between their velocities. The change in momentum is largest in a head-on
collision: when mass is equal, the particle loses twice its initial momentum as its velocity
is reversed. Thus scattering by a large angle up to 180◦ is possible in collisions between
neutrals.

The relevant parameters to describe the scattering process are the mean free path and
the scattering cross section. The particle mean free path λ is defined as the average distance
traveled by a particle between two subsequent collisions. If we could follow a smoke particle
in air, we would detect a path similar to the one depicted on the left-hand side of Fig. C.3.
The statistical motion is composed of many straight lines with different length L. The right-
hand side of Fig. C.3 shows the distribution of these L. This probability distribution can be
described by a function p(L) = a exp(−L/λ) with a being a constant depending on the total
number of collisions and λ being the particle mean free path.

The number of collisions, and therefore the mean free path, depends on the number
density of particles and on their ‘size’ as described by the scattering cross section. Consider
a fast particle with radius r1 moving in a gas of slow particles with radii r2. A collision
happens if the distance between the two particles has decreased below r1 + r2. Alternatively,
we can assume the fast particle to be a mass point. Then we have to attribute a radius of
r1 + r2 to the gas molecules. Thus for the fast particle, a gas molecule is equivalent to a disk
with the scattering cross section σ = π(r1 + r2)2.

Now consider a beam of particles incident on a slab of area A and thickness dx. The
number density of molecules in this slab is ns, the total number of molecules in the slab is
nsAdx. The fraction of the slab blocked by atoms therefore is σnsAdx/A = σnsdx. Out
of N particles incident on the slab, ∆N = Nnsσdx will experience a collision, leading to a
reduction in N according to dN/N = −σns dx. Integration yields

N(x) = N0 exp(−σnsx) = N0 exp(−x/λ) , (C.41)

where the mean free path λ is defined as

λ =
1
nsσ

. (C.42)
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Figure C.4: Coulomb scattering: orbit of
an electron in the Coulomb field of an ion
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Thus, the mean free path can also be interpreted as the distance over which the number of
particles decreases to 1/e of its initial value. After traveling a distance λ, the particle will
have a high probability of colliding. The average time between two collisions is

τ =
λ

〈v〉
=

1
nsσ〈v〉

. (C.43)

This also can be written as a collision frequency νc:

νc = nsσ〈v〉 . (C.44)

The formalism for interactions between a charged particle and a neutral is the same as
for a collision between two neutral particles because the charge on one collision partner only
does not change the forces during the collision.

C.4.2 Collisions Between Charged Particles

Collisions between charged particles do not require a direct contact, instead the interaction
takes place as each particle is deflected in the electric field of the other one. Since the Coulomb
force has a long range such an interaction leads to a gradual deflection. Nonetheless, one can
derive a kind of cross section for this process. Following the attempt given in Chen [30], we
shall only make an order-of-magnitude estimate.

The geometry of a Coulomb collision is shown in Fig. C.4: an electron with velocity ~v
approaches an ion with charge e. If no Coulomb force acts, the electron will pass the ion
at a distance r0, the impact parameter. But the Coulomb force F = −e2/(4πr2) leads to
a deflection of the electron from its original direction by an angle ϕ. The force acts on the
electron for a time T ≈ r0/v when it is in the vicinity of the ion. The change in electron
momentum then can be approximated by ∆p = |FT | ≈ e2/(4πr0v). For a 90◦ collision, the
change in momentum is of the order of mv. Thus it is ∆p ∼= mv ∼= e2/(4πr0v). A deflection
by 90◦ results for an impact parameter r90◦ = e2/(4πmv2). The cross section for a deflection
of at least 90◦ therefore can be written as

σ>90◦ = πr20 =
e4

16πm2v4
, (C.45)

leading to a collision frequency of

νei,>90◦ = nσv =
ne4

16πm2v3
. (C.46)

In a real plasma the situation is more complex. Let us consider the motion of one particle,
a test particle, in the field created by the other particles, the field particles. The fields
of these particles add to a stochastic field that changes continuously in time and space.
Therefore, the test particle will not move in a hyperbolic orbit as in the interaction between
two charged particles, instead it basically follows its original direction of motion, though not
on a straight line but on a jittery trajectory. Because of the stochastic nature of the collisions,
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test particles with nearly identical start conditions will diverge in space and velocity. Most
of these collisions result in small changes in the particle path only. Occasionally, also large
deviations of the original direction result. These are called large-angle collisions.

To understand the different types of collisions, we have to consider the typical spatial
scales. One characteristic scale is the Debye length λD: the test particle is screened from the
electric field of the charges outside the Debye sphere. The Debye length can be interpreted
as the range of microscopic electric fields and separates the field particles into two groups:
(i) particles at distances larger than the Debye length can influence the test particle by the
macroscopic fields only, leading to gyration, drift, and oscillations; and (ii) particles inside the
Debye sphere create a microscopic field leading to the stochastic motion of the test particle.

The other spatial scale is related to the scattering angle, which in turn is related to
the impact parameter. In the derivation of the Fokker–Planck equation we have assumed
scattering by small angles only. The deflection angle will be small if the kinetic energy
mTv

2
T/2 of the test particle is large compared with the electrostatic potential ZTZFe

2/r0,
where r0 is the impact parameter (see Fig. C.4). The test particle will be deflected by a small
angle only if the impact parameter r0 fulfills the condition r90◦ < r0 < λD, with r90◦ being
the impact parameter for a deflection by 90◦ defined as r90◦ = ZTZFe

2/(mTv
2
T). The ratio

for deflections by small and large angles can be determined from the ratio of cross sections
for both processes:

λ2
D − r290◦

r290◦
≤ λ2

D

r290◦
≈
(

9
ZTZF

)2(4π
3
nλ3

D

)2

=: Λ2 . (C.47)

The expression inside the second parentheses is the number of particles inside a Debye sphere.
If we assume this number to be large, (C.47) states that collisions leading to deflections by a
small angle by far outnumber the collisions with large-angle deflection. A careful calculation
shows that small-angle interactions are about two orders of magnitude more efficient in the
deflection of test particles than the few large-angle interactions [13]. Thus, the Fokker–Planck
formalism can be applied to the Coulomb collisions in a plasma too. The logarithm of the
above quantity, λc = lnΛ, is called the Coulomb logarithm.

C.5 Scale Analysis

Scale analysis is a method to judge the relative importance of different terms in an equation.
As an example we will use the general equation of motion in a fluid such as the atmosphere
or an ocean, that is the Navier–Stokes equation already encountered in chap. 7, in particular
in sect. 7.1.

C.5.1 Equation of motion in Oceans and in the Atmosphere

The general equation of motion for a mass density % and a force density ~f reads

~f = %
d~p
dt

. (C.48)

In a continuous medium the relevant forces are
d~u
dt

= −∇p (1) pressure gradient force

+~g (2) gravitation
+ν∇2~u (3) friction (incompressible)

+ 1
3∇(∇× u) (4) friction (kompressible)
−2~Ω× ~u (5) Coriolis force

−~Ω× (~Ω× ~r) (6) centrifugal force . (C.49)

For applications in oceanography and meteorology the equation often is rewritten for local
coordinates ~i and ~j in the horizontal plane pointing eastward and northward, respectively,

c© M.-B. Kallenrode 13th November 2006



208 APPENDIX C. A LITTLE REMAINDER ON SOME PHYSICS BASICS

and ~k pointing upwards. With u and v being speeds in the horizontal and w in the vertical
direction, the equation of motion can be written as

du
dt
− uv tanφ

a
+
uw

a
= −1

%

∂p

∂x
+ 2Ωv sinφ− 2Ωw cosφ+ Fx

dv
dt

+
u2 tanφ

a
+
vw

a
= −1

%

∂p

∂y
− 2Ωu sinφ+ Fy

dw
dt

− u2 + v2

a
= −1

%

∂p

∂z
− g + 2Ωu cosϕ+ Fz . (C.50)

Typical scales in the atmosphere (left) and in the oceans (right) are

10 m s−1 horizontal speed U 1 m s−1

1 cm s−1 vertical speed W 1 mm s−1

106 m horizontal length scale L 106 m
104 m vertical length scale D 104 m
103 m2 s−2 horizontal pressure fluctuations ∆p/% 102 m2 s−2

105 s time scales L/U 106 s
10−4 s−1 Coriolis parameter fo = 2Ω sinφ 10−4 s−1

Scale analysis for the atmosphere thus yields for the horizontal components of the equation
of motion

x− component du
dt −2Ωv sinφ +2Ωw cosφ +uw

a −uv tan φ
a = − 1

%
∂p
∂x

y − component dv
dt +2Ωu sinφ +uw

a +u2 tan φ
a = − 1

%
∂p
∂y

Scales U2

L foU foW
UW

a
U2

a
∆p
%L

OoM [m/s−2] 10−4 10−3 10−6 10−8 10−5 10−3

.

The last column gives the order of magnitude of the respective term: in the atmosphere,
therefore, pressure gradient force and the Coriolis force dominate. Both are one order of
magnitude larger than the inertia term. In fact, both forces are sufficient to describe the
fundamentals of air motion around pressure regions in the geostrophic approximation.

For the vertical component we obtain

z− component dw
dt −2Ωu cosφ −u2+v2

a = − 1
%

∂p
∂z −g

Scales UW
L foU

U2

a
Po
%H g

OoM [m s−2] 10−7 10−3 10−5 10 10

:

the dominating forces are pressure gradient force and gravitation – thus the essence of the
equation also is captured by the hydrostatic equation which consists of exactly these two
terms.

For the ocean we obtain for the horizontal component

x− component du
dt −2Ωv sinφ +2Ωw cosφ +uw

a −uv tan φ
a = − 1

%
∂p
∂x

y − component dv
dt +2Ωu sinφ +uw

a +u2 tan φ
a = − 1

%
∂p
∂y

Scales U2

L foU foW
UW

a
U2

a
∆p
%L

OoM [m/s−2] 10−6 10−4 10−7 10−10 10−7 10−4

and for the vertical one

z− component dw
dt −2Ωu cosφ −u2+v2

a = − 1
%

∂p
∂z −g

Scales UW
L foU

U2

a
Po
%H g

OoM [m s−2] 10−9 10−4 10−7 1 10

.

Thus the relevant terms in the equation of motion are the same as in the atmosphere.

Some in-between calculation 5 Apply a scale analysis to a cup of tea and to a bathtube.
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Questions

Frage 45 What is the relation between density, phase space density and flux?

Frage 46 Explain the equation of continuity in ordinary space and in phase space.

Frage 47 What is the mean free path? Explain formally and descriptive.

Frage 48 Describe the basic equations of statistical theory. Explain similarities and differ-
ences, state the underlying assumptions.

Frage 49 What does the Fokker–Planck equation describe?

Frage 50 What’s the meaning of a scattering cross section?

Frage 51 Explain the difference in scattering between neutrals and scattering between charged
particles.
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Appendix D
A Little Remainder on Some Numeric’s
Basics

Since this text deals with transport equations, at least in advanced model the basic equations
are PDEs. Their solution often requires numerical methods. In this chapter some simple,
although important methods are repeated briefly.

D.1 Discretization

The essence of numerical solutions of differential equations is discretization. In calculus we
have learned that the derivative is a difference quotient with the difference in the denominator
approaching zero. Infinitesimal small differences, however, cannot be handled numerically.
Thus at the beginning of numerical treatment of a differential equation, the differential
quotient has to be converted back to a difference quotient, a process called discretization.

Consider a function f(x) in an interval [a, b] A discretization divides the interval in M
constant steps of width h = (b−a)/M . The continuous interval thus is mapped onto a series
of M + 1 discrete supporting points xi = a+ (i− 1)h. The continuous function f(x) than is
evaluated only at these points, yielding a series of M + 1 values ui = f(xi).

D.1.1 First- and Second-Order Derivatives

A derivative in this supporting space can be introduced from a Taylor expansion of the
original function at a point xi:

ui+1 = f(xi+1) = f(xi + h) = f(xi) + h f ′(xi) +
h2

2!
f ′′(xi) +

h3

3!
f ′′′(xi) +O(h4) .(D.1)

Rewrite with f(xi) = ui as

ui+1 − ui

h
= f ′(xi) +

h

2!
f ′′(xi) +

h2

3!
f ′′′(xi) +O(h3) . (D.2)

As h → 0, the left hand side is the definition of the derivative. Thus is can be used as
a finite-difference approximation on the first derivative. The leading term in the error is
hf ′′(xi)/2! = O(h). Thus the scheme is accurate to first-order. Such as scheme can be used
as one-sided, advanced or forward finite-difference scheme.

Replacing h by −h yields

ui−1 = f(xi−1) = f(xi − h) = f(xi)− h f ′(xi) +
h2

2!
f ′′(xi)−

h3

3!
f ′′′(xi) +O(h4) .(D.3)

210



D.1. DISCRETIZATION 211

instead of (D.1). The resulting approximation on the derivative

ui − ui−1

h
= f ′(xi)−

h

2!
f ′′(xi) +

h2

3!
f ′′′(xi) +O(h3) (D.4)

again is of first-order accuracy and one-sided, although it is retarded or backward.
The average of the two previous schemes

ui+1 − ui−1

2h
= f ′(xi) +

h2

3!
f ′′′(x) +O(h4) (D.5)

is a centered difference and it is accurate of second-order with a remainder of forth-order.
The difference of (D.2) and (D.4) gives the second derivative

ui+1 − 2ui + ui−1

h2
= f ′′(xi) +

h2

4!
f ′′′′(xi) +O(h4) (D.6)

as a centered scheme of second-order accuracy.
Taylor expansion for a function of two or more variables can be obtained as Taylor ex-

pansion in one variable followed by a Taylor expansion in the other variable followed by ...
and so on. Performing the same calculations as above for a function f(x, y), we can show
that partial derivatives can be approximated in the same fashion as described above for the
total derivatives.

D.1.2 Consistency and Accuracy

The step back from the differential equation to the finite difference equation (FDE) implies
truncation of the higher order terms of the Taylor expansion.

Definition 7 The truncation error (TE) εn
i is obtained by putting the exact solution ûn

i in
the FDE in place of the approximate solution.

For instance, the PDE for diffusion or heat conduction can be written as

∂u

∂t
= α

∂2u

∂x2
with α > 0 . (D.7)

The FDE on the other hand reads
un+1

i − un
i

∆t
− α

un
i+1 − 2un

i + un
i−1

(∆x)2
= 0 (D.8)

with the subscript indicating the position in space and the superscript that in time. The
truncation error then is

εn
i =

ûn+1
i − ûn

i

∆t
− α

ûn
i+1 − 2ûn

i + ûn
i−1

(∆x)2
6= 0 . (D.9)

Taylor expansion of the original equation (the FDE cannot be expanded because it is defined
only in the supporting points) yields

εn
i =

(
∂ûn

i

∂t
− α

∂2ûn
i

∂x2

)
+

∆t
2
∂2ûn

i

∂t2
− α

(∆x)2

12
∂4ûn

i

∂x4
+O((∆t)2, (∆x)4) . (D.10)

The exact solution satisfies the PDE and the terms in the bracket cancel. The remaining
truncation error then is

εn
i =

∆t
2
∂2ûn

i

∂t2
− α

(∆x)2

12
∂4ûn

i

∂x4
+O((∆t)2, (∆x)4) . (D.11)

The leading terms in the truncation error are of first-order in time and second-order in space,
that is our accuracy is O(∆t, (∆x)2).

Definition 8 A finite-difference scheme is consistent if εn
i → 0 for ∆t → 0 and ∆x → 0

independently. If the TE is of form εn
i = O((∆t)p, (∆x)q) the scheme is said to be of the

order p in t and q in x.

Note that both, accuracy and consistency, are independent on the point chosen for Taylor
expansion.
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D.1.3 Stability

Consistency and accuracy are fundamental properties of a FDE in such that they define the
convergence of the finite difference scheme:

Definition 9 Lax’s Equivalence Theorem: given a properly posed initial value problem and
a finite difference approximation to it that satisfies the consistency condition, stability is the
necessary and sufficient condition for convergence.

Here convergence means that the difference between the exact and discrete solution will
tend to zero as the discretization step sizes tend to zero:

|û(xi, t
n)− un

i | → 0 for ∆t,∆x→ 0 . (D.12)

Asides from the truncation error, there is also a round-off error involved in a numerical
scheme because a computer only has a finite accuracy. Stability is concerned with this
problem; a simple and flexible tool at hand is Von Neumann analysis.1 Since the method
relies on the superposition of wave modes, its application is limited to (systems of) linear
homogenous equations. Nonlinear equations must be linearized by freezing the coefficients
of the partial derivatives.

Again the heat conduction equation will serve as example. In update form, the new values
of the unknowns can be calculated directly:

un+1
i = un

i + α
∆t

(∆x)2
(
un

i+1 − 2un
i + ui−1n

)
. (D.13)

Each Fourier mode will be analyzed separately in a complex fashion:

un
i = gn eiiβ = gn (cos(iβ) + i sin(iβ)) . (D.14)

Here g is the complex amplitude raised to the nth power with n corresponding to time and
β is the wave number corresponding to the Fourier mode. Substituting into (D.13) yields

gn+1 eiiβ = gneiiβ + σgn
(
ei(i+1)β − 2eiiβ + ei(i−1)β

)
with σ =

α∆t
(∆x)2

. (D.15)

Solving for the amplification factor

g = 1− 2σ(1− cosβ) (D.16)

allows to determine stability conditions. The scheme is stable, that is round-off errors are
damped, only if |g| ≤ 1∀β:

− 1 ≤ 1− 2σ(1− cosβ) ≤ 1 ∀β . (D.17)

Since σ ≥ 0, the right inequality is always satisfied. The left side requires σ(1 − cosβ) ≤ 1
or σ ≤ 1

2 . With the definition of σ in (D.15), stability is obtained if the following relation
between spatial and temporal step size is fulfilled:

∆t ≤ (∆x)2

2α
. (D.18)

For the linear convection equation
∂u

∂t
+ c

∂u

∂x
= 0 (D.19)

Lax’ scheme reads

un+1
i − un

i−1+ui+1n

2

∆t
+ c

un
i+1 − un

i−1

2∆x
= 0 , (D.20)

which is stable as long as the Courant–Friedrichs–Lewy (CFL) condition

∆t ≤ ∆x
|c|

(D.21)

is fulfilled.
1Other tools, such as matrix eigenvalue analysis methods exist, too. The interested reader is referred to

standard texts on numerical solutions of PDEs such as [53, 76, 94, 107, 128, 143, 146]
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D.2 Numerical Integration – The Basics

In most calculus courses the concept of integration is introduced as numerical integration:
integration is not introduced as the reverse operation to differentiation but as the area under
the graph of a function. And numerical integration comes in when the students are asked to
evaluate the area with the aid of rectangles or trapezoids.

Numerical integration is the formalized version of this game. Our goal is to determine
the definite integral of a function f(x) between the limits a and b:

I =

b∫
a

f(x) dx . (D.22)

As in its graphical counterpart, the integration interval [a, b] is divided into M steps of
length ∆x = (b−a)/M . In the central method the function is assumed to be constant within
∆x with the the functional characteristics f(xk− 1

2
taken in the middle of the respective

intervals [xk−1, xk]. The integral therefore is

Icm =
M∑

k=1

f(xk− 1
2
) ∆x with xk− 1

2
=
xk−1 + xk

2
. (D.23)

While the graphical description of the central method is the rectangle, the trapezoid inte-
gration uses, as its name suggests, the trapezoid. Thus the functional characteristics at the
lower and upper limit of each interval are taken into account and the integral can be written
as

Iti =
1
2

M∑
k=1

(f(xk) + f(xk−1)) ∆x . (D.24)

While the trapezoid method is a linear approximation on the function within each step,
Simpson integration uses a second-order polynomial as approximation:

ISi =
1
6

M∑
k=1

(
f(xk) + 4f(xk− 1

2
) + f(xk−1)

)
∆x . (D.25)

The most important technical aspects are the correct discretization of the relevant equa-
tions and an efficient choice of the step size ∆x: the latter has to be small enough to reduce
numerical uncertainties but large enough to avoid unreasonably long computation times.
While in classical numerical schemes the step size is constant, today often methods are used
that adapt step size: if the function does not vary very much, larger steps lead to satisfac-
tory and fast results. But in intervals with large variations, smaller step sizes are required
to preserve accuracy. Examples for adaptive methods are the MatLab functions quad that
uses an adaptive Simpson method and quad1 that uses an adaptive Lobotta method.

D.3 Numerical Solutions of ODEs – Finite Differences

The numerical solution of an ODE is a straightforward application of the numerical inte-
gration. Again, conventional methods start from equally space grid points while modern
programm package also use adaptive methods. And again, discretization, choice of a suitable
method, and choice of an adequate step size are the challenges presented to the modeler. The
conventional methods for numerical solutions of ODEs are closely related to the methods for
numerical integration.

Numerical methods for the solution of ODEs can be limited to first order ODEs since all
ODEs of higher order n can be decomposed into a set of n ODEs of first order. Therefore a
general formulation of the problem of obtaining a numerical solution of an ODE can follow
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these lines: find a numerical solution of the initial value problem ẋ = f(x, t) with initial value
x(0) = x0 in the interval a ≤ t ≤ b. Discretization yields for the ODE

∆x
∆t

=
xk − xk−1

∆t
= f(x, t) . (D.26)

The simplest scheme is Euler’s method which comes in the flavors of a forward and
a backward method. Both methods are comparable to the central method in numerical
integration in such that they assume one value, in the case the gradient ẋ, to be constant in
each step. In Euler’s forward method we take the gradient at the begin of each interval and
thus get

x(tk+1) = x(tk) + ∆t f(xk, tk) withx(0) = x0 and tk = t0 + k∆t . (D.27)

The right-hand side of the integration interval thus is evaluated from the initial values. The
truncation error in this scheme is

εi =
xi+1 − xi

h
− f(ti, xi) = ẋi +

h

2
ẍi − f(ti, xi) +O(h2) =

h

2
ẍi +O(h2) . (D.28)

The Euler scheme thus is accurate to first-order.
Euler’s backward method uses the rise at the end of the interval:

x(tk+1) = x(tk) + ∆t f(xk+1, tk+1) . (D.29)

The backwards method poses a problem: f(xk+1, tk+1) is required to calculate one of its
arguments, x(tk+1). The method therefore is termed implicit while the forward method
is explicit. The problem of the unknown gradient f(xk+1, tk+1) can be circumvented, for
instance, by using an Euler forward method als predicator step. This xP

k+1 than is inserted
into (D.29):

x(tk+1) = x(tk) + ∆t f(xP
k+1, tk+1) . (D.30)

Eliminating the provisional value xP
k+1 from the scheme, the TE becomes

εi =
xi+1 − xi

h
− 1

2
(f(ti, xi) + f(ti + h, xi + hf(ti, xi)))

= ẋi +
h

2
ẍi +

h2

3!
∂3xi

∂t3
+O(h3)− f(ti, xi)

−h
2
∂f(ti, xi)

∂t
− hf(ti, xi)

2
∂f(ti, xi)

∂x
+O(h2)

=
4
2

(
üi −

∂f(ti, xi)
∂t

− fi
∂f(ti, xi)

∂x

)
+O(h2) = O(h2) . (D.31)

The implicit Euler scheme thus is of second-order accuracy.
Both methods are combined in the explicit/implicit Crank–Nicolson method:

x(tk+1) = x(tk) + 1
2 (f(tk, xk) + f(tk+1, xk+1) (D.32)

with

x(0) = x0 and tk = t0 + k∆t . (D.33)

The Leapfrog method uses Euler’s forward method but with a two grids, offset by half a
step. The resulting equations are

xk+ 1
2

= xk− 1
2

+ f(ti, xi) ∆t with x− 1
2

= x0 − 1
2f(t0, x0) ∆t (D.34)

and

xk+1 = xk + f(tk+ 1
2
, xk+ 1

2
)∆t with x(0) = x0 . (D.35)

Both equations are iterated by turns.
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The Runge–Kutta method, 4th order, uses a higher order approximation on the gradient
in each step. The method comes in different flavors, depending on the order of the approxi-
mation. The most common method is a 4th order approximation using the gradient at both
limits and at the center of each interval:

xk = xk−1 +
1
6

(h1 + 2h2 + 2h3 + h4) (D.36)

with

h1 = f(tk−1, xk−1) ∆t ,
h2 = f(tk− 1

2
, xk−1 + 1

2h1)∆t ,
h3 = f(tk− 1

2
, xk−1 + 1

2h2)∆t ,
h4 = f(tk, xk−1 + h3) ∆t . (D.37)

The method is accurate to fourth order.

D.4 Numerical Solutions of PDEs – Finite Difference
Methods

A classification of PDEs already has been introduced in sect. B.2.2. Here some typical nu-
merical approaches for the corresponding equations are summarized and compared regarding
accuracy and stability.

D.4.1 Linear Hyperbolic Equations

The typical examples for hyperbolic equations are the linear convection equation and the
wave equation. Within the framework of this text, we will focus on the convection equation
and neglect the wave equation.

Linear Convection Equation

The linear convection equation, a hyperbolic PDE, can be written as

∂u

∂t
+ c

∂u

∂x
= 0 with c > 0 (D.38)

because the x-axis of our coordinate system always can be adjusted such that the convection
speed c is positive. To advance the solution in time, ul+1

k must appear in the time derivative;
the scheme for ∂u/∂t therefore must be a forward scheme.

Centered Scheme

In the centered scheme, discretization gives the difference equation

ul+1
k − ul

k

∆t
+ c

ul
k+1 − ul

k−1

2∆x
= 0 . (D.39)

The TE is

εl
k =

∆t
2
∂2ul

k

∂t2
+ c

(∆x)2

6
∂3ul

k

∂x3
+O((∆t)2, (∆x)4) = O(∆t, (∆x)2) , (D.40)

the scheme therefore is accurate of first-order in time and second-order in space. The scheme
is conditionally unstable because g = 1 − iσ sinα with σ = c(∆t/∆x) and thus |g| > 1 for
σ 6= 0. Although the scheme therefore is not useful for accurate analysis, it still is a simple
scheme suitable for first approaches on a problem.
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Upwind Scheme

A better numerical approach is the upwind scheme which is a retarded scheme. The difference
equation is

ul+1
k − ul

k

∆t
+ c

ul
k − ul

k−1

∆x
= 0 . (D.41)

The TE is

εl
k =

∆t
2
∂2ul

k

∂t2
− c

∆x
2

∂2ul
k

∂x2
+O((∆t)2, (∆x)2) = O(∆t,∆x) ; (D.42)

the scheme thus is first-order accurate in both space and time. In addition, the scheme is
consistent. Stability is given if the CFL criterion (D.21) is met. This is also the case if the
Lax scheme (D.20).

Lax–Wendroff Scheme

A second-order accurate scheme is the Lax–Wendroff scheme. It can be derived from a Taylor
expansion of ul+1

k and reads

ul+1
k − ul

k

∆t
+ c

ul
k+1 − ul

k−1

2∆x
− c2

∆t
2
ul

k+1 − 2ul
k + ul

k−1

(∆x)2
= 0 (D.43)

or in update form

ul+1
k = ul

k − c∆t
ul

k+1 − ul
k−1

2∆x
+ c2

∆t
2
ul

k+1 − 2ul
k + ul

k−1

(∆x)2
. (D.44)

D.4.2 Linear Parabolic Equations

The standard examples for linear parabolic equations are the diffusion equation and the heat
conduction equation:

∂u

∂t
= α

∂2u

∂x2
. (D.45)

The equation also allows to describe viscous effects. Exact solutions can be obtained by
separation of variables as demonstrated for the Laplace equation in sect. 4.2.

Simple Explicit Scheme

l+1/2

t

t

x

l+1

l

xx k−1 k k+1

t

Figure D.1: Explicit
scheme

A simple explicit scheme based on centered differences in space
and an upward step in time can be written as

ul+1
k − ul

k

∆t
= α

ul
k+1 − 2ul

k + ul
k−1

(∆x)2
. (D.46)

The scheme is similar to the implicit scheme used in sect. 3.2.1;
the difference is the time step at which the spatial difference
scheme is evaluated. Here we discuss an explicit scheme and
thus the centered time difference is evaluated from the known
quantities at time l. In sect. 3.2.1 and Fig. 3.1 we have discussed
an implicit scheme where the centered spatial difference is evaluated at the following time
step l + 1.

The explicit scheme is consistent and of first-order accuracy in time and second-order
accuracy in space, as can be seen from the TE

εl
k =

∂ul
k

∂t
+

∆t
2
∂2ul

k

∂t2
+

(∆t)2

3!
∂3ul

k

∂t3
+O((∆t)3)

− α

(
∂2ul

k

∂x2
+

(∆x)4

4!
∂4ul

k

∂x4
+O((∆y)4)

)
= O(∆t, (∆x)2) . (D.47)
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Since the stability conditions for this scheme is σ ≤ 1
2 , the relation between the step sizes

must be

∆t ≤ (∆x)2

2α
. (D.48)

Simple Implicit Scheme

The implicit scheme (Laasonen scheme), see also Fig. 3.1, differs from the explicit scheme in
such that the spatial derivative is derived at the target time step l + 1 and not at the lower
interval boundary l. The difference equation reads

un+1
k − un

k

∆t
= α

un+1
k+1 − 2un+1

k + un+1
k−1

(∆x)2
. (D.49)

The TE can be derived from (D.47) by substituting −∆t for ∆t. The implicit scheme thus
also is consistent and of first-order accuracy in time and second-order accuracy in space.

While the explicit scheme can be solved forward, the implicit scheme requires a simulta-
neous solution and therefore a matrix based algorithm as described in sect. 3.2.1.

Combined Methods, e.g. Crank-Nicolson

The simple explicit and implicit schemes are special cases of the more general scheme

ul+1
k − ul

k

∆t
= (1−ϑ)α

ul
k+1 − 2ul

k + ul
k−1

(∆x)2
+ϑα

ul+1
k+1 − 2ul+1

k + ul+1
k−1

(∆x)2
0 ≤ ϑ ≤ 1 .(D.50)

The general scheme thus takes a weighted average of the spatial derivatives at the time step
l and the following step l+ 1 with weight ϑ. The simple explicit scheme arises for ϑ = 0, the
simple implicit scheme for ϑ = 1. The combined method again is second-order in space and
first-order in time, except for a few special cases:

• the Crank–Nicolson scheme takes the arithmetic mean of the two spatial derivatives, thus
ϑ = 1

2 , and is of second-order accuracy in both time and space.
• a weight

ϑ =
1
2
− (∆x)2

12α∆t
(D.51)

gives a scheme of second order in time and fourth order in space.
• the same weight combined with a stability criterion, that is

ϑ =
1
2
− (∆x)2

12α∆t
and

(∆x)2

α∆t
=
√

20 , (D.52)

even yields a scheme of second order in time and sixth order in space.

Since the implicit scheme is included in this combined scheme, the equations have to be
solved simultaneously

D.4.3 Linear Elliptic Equations

The Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= f(x, y) (D.53)

is one example for an elliptic equation. It differs from the previous PDEs in such that we do
not encounter one spatial and one temporal derivative but two spatial derivatives.

If we choose the approach of centered finite differences for the scheme, the difference
equation reads

ui+1,k − 2ui,k + ui−1,k

(∆x)2
+
ui,k+1 − 2ui,k + ui,k−1

(∆y)2
= fi,k , (D.54)
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see also (4.40) and Fig. 4.8. Such a scheme also is called a five-point scheme. Taylor expansion
around the center point gives for the TE

εi,k =
∂2ui,k

∂x2
+

(∆x)2

4!
∂4ui,k

∂x4
+O((∆x)4) +

∂2ui,k

∂y2
+

(∆y)2

4!
∂4ui,k

∂y4
+O((∆x)4)

= O((∆x)2, (∆y)2) . (D.55)

Numerical solutions of this scheme are discussed in detail in sect. 4.2.

D.4.4 Diffusion–Convection Equation

The diffusion–convection equation has been discussed in detail in chap. 3. It can be written
as

∂u

∂t
+ c

∂u

∂x
+D

∂2u

∂x2
= 0 . (D.56)

The equation consists of a temporal derivative, a first spatial derivative and a second spatial
derivative. It consists of a hyperbolic part (the convection term) and a parabolic part (the
diffusion term).

A standard scheme here is the FTCS method (forward in time and centered in space)
method:

ul+1
k − ul

k

∆t
+ c

ul
k+1 − ul

k−1

2∆x
−D

ul
k+1 − 2ul

k + ul
k−1

(∆x)2
= 0 . (D.57)

The TE is

εl
k =

∂u2
k

∂t
+

∆t
2
∂2ul

k

∂t2
+O((∆t)2) + c

(
∂ul

k

∂x
+

(∆x)2

3!
∂ul

k

∂x3
+O(∆x)4)

)
−D

(
∂2ul

k

∂x2
+

(∆x)2

4!
∂4ul

k

∂x4
+O((∆x)3)

)
= O(∆t, (∆x)2) ; (D.58)

the scheme thus is of first-order in time and second-order in space.

D.5 Thomas Algorithm for Tridiagonal Matrices

We have encountered a tridiagonal matrix in the solution of the ODE in sect. 3.1. A tridiag-
onal matrix is any matrix which has elements only on the diagonal, the subdiagonal and the
superdiagonal. Such kind of matrix often results in solutions of ODEs. In principle, it could
be solved by Gaussian elimination but this would involve of the order O(n3/3) operations. In
addition, Gaussian elimination is an inefficient algorithm because the matrix is sparse, that
is many entries are zero.

Instead, the Thomas algorithm provides an efficient method which requires only O(n)
operations. The algorithm works on a tridiagonal system such as

A~x =



α1 γ1 0 . . . 0

β2 α2 γ2
. . .

...

0 β3 α3
. . . 0

...
. . . . . . . . . γn−1

0 . . . 0 βn αn




x1

x2
...

xn−1

xn

 =


b1
b2
...

bn−1

bn

 . (D.59)

The matrix A can be decomposed into two matrices with non-zero elements only on the
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diagonal and on either the sub- or the superdiagonal:

A =



α1 γ1 0 . . . 0

β2 α2 γ2
. . .

...

0 β3 α3
. . . 0

...
. . . . . . . . . γn−1

0 . . . 0 βn αn



=



l1 0 0 . . . 0

β2 l2 0
. . .

...

0 β3 l3
. . . 0

...
. . . . . . . . . 0

0 . . . 0 βn ln





1 µ1 0 . . . 0

0 1 µ2
. . .

...

0 0 1
. . . 0

...
. . . . . . . . . µn−1

0 . . . 0 0 1

 . (D.60)

This process is called LU decomposition. The coefficients of the original and the two new
matrices are related by

α1 = l1
αi = li + βiµi−1 i = 2, 3, . . . , n
liµi = γi i = 1, 2, . . . n .

(D.61)

The solution is obtained by forward and back substitution:

z1 = b1/l1 i = 2, 3, . . . n
zi = (bi − βizi−1)/li i = 2, 3, . . . n
xn = zn i = 1, 2, . . . n− 1
xi = (zi − µizi+1/l1 i = 1, 2, . . . n− 1
.

(D.62)
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Appendix E
Solutions to some questions

Chapter 2

Ex. 3: the logistic law can be written as

dp
dt

= ap− bp2 ,

which is a first-order ODE. Separation of variable yields∫
dt =

∫
dp

p(a− bp)
⇒ p(t) =

1
b

[
p(t0) ea(t−t0)

1
a − p(t0) + p(t0) ea(t−t0)

]
.
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Robin, 102

boundary conditions
Cauchy, 112

boundary immobilization method (BIM), 79
boundary value problem, 102
boundary-value problem, 78
bracketing the solution, 15, 21, 31
Bragg peak, 145, 151, 176
Bremsstrahlung, 147, 151
bremsstrahlung, 147, 149, 159
Brownian motion, 202, 205
brute-force reductionism, 11
bulk speed, 119, 199
buoyancy, 109
butterfly effect, 11
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calculated ion–pair production rate, 145
CAMMPUS, 174
cardiovascular system, 2
cascade, 158
Cauchy boundary conditions, 112
Cauchy data, 189
Cauchy problem, 189
Cauchy surface, 189
CAWSES, 142, 144, 157
cellular automata, 174
centered finite difference, 43
centered scheme, 215
central method, 213
centrifugal force, 121, 122
Cerenkov detector, 159
Challenger, 18
chaotic behavior, 162
characteristic determinant, 189
characteristic form, 189
characteristic matrix, 189
characteristic path length, 164
characteristic surface, 189
characteristics, 190

elliptic PDE, 191
hyperbolic PDE, 190
parabolic PDE, 191
totally hyperbolic PDE, 190

Chernobyl, 12
climate model, 6, 70
climate modeling, 160
clo, 29
closure, 16
clustering coefficient, 164
coastal defence, 5
coastal evolution, 5
cobpoint, 93
collision, 57, 204
collision frequency, 62, 206
collision term, 86, 203
collisionless viscosity, 121
collisions

large-angle, 207
comfort range, 28
compartment, 24
compartment concept, 20
compartment model, 41
compatibility relation, 190
compatibility relations, 191
Compton scattering, 149
computational fluid dynamics, 118
computer tomography, 159
conditioning matrix, 66–68
conductivity, 204
confinement of a plasma, 98

conservation
angular momentum, 197
charge, 197
energy, 196, 197, 205
mass, 196, 197
mechanical energy, 197
moment, 198
momentum, 197, 205
potential energy, 197
thermal energy, 197

conservation laws, 16, 36, 196
conservation of momentum, 38
conservations law, 161
consistency, 211
consolidation coefficient, 111
constituting equations, 111
contact erosion, 109
continuity

equation of
phase space, 201

convection, 7, 28, 31, 81, 87, 91
with the solar wind, 87

convection in momentum space, 85
convective cooling, 31
convective streaming, 71
convergence, 67, 212
convolution theorem, 193
Coriolis force, 121, 122, 208
corresponding variables, 192
cosmogenic nuclide, 159
cosmogenic nuclides, 143
Coulomb collision, 206, 207
Coulomb collisions, 84
Coulomb interaction, 202
Coulomb logarithm, 207
Coulomb scattering, 84

cross section, 206
Coulomb’s law, 197, 198
Courant–friedrich–Lewis, 216
Courant–Friedrichs–Lewy, 212
Cowling’s theorem, 133
Cramer’s rule, 66
Crank–Nicolson, 48, 50, 214
Crank–Nicolson scheme, 217
critical Reynolds’ number, 22
cross section, 205, 206

Coulomb scattering, 206
large-angle deflection, 206

Crutzen, 144
current acceleration, 131

d’Alembert’s solution, 191
D’Arcy speed, 74, 111
D’Arcy’s law, 74, 75
Dalton’s law, 27
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data models, 17
dead-end pores, 74
Debye length, 207
decay, 42
decay probability, 140
decay radiation, 159
degenerated, 191
Deichverteidigungstraße, 110
deposition, 5
derivative, 210

second, 211
difference quotient, 210
differential flux, 201
differential quotient, 210
differential rotation, 134
diffusion, 7, 56, 57, 62, 71, 76, 160, 166

anisotropic, 60
definition, 55
homogenous medium, 61
in momentum space, 57, 85
in pitch angle, 84
isotropic, 60, 61
pitch angle, 84
spatial, 57, 84

diffusion coefficient, 58–62, 166
eddy, 62
field parallel, 62
in momentum space, 85
pitch angle, 84
radial, 61, 62
turbulent, 62

diffusion equation, 9, 60, 216
solution for δ-injection, 61
source term, 61
spherical symmetric, 61

diffusion in momentum space, 57, 85, 86
diffusion plus advection, 56
diffusion tensor, 60, 61, 203
diffusion–convection, 166
diffusion–convection equation, 42, 55, 71, 81,

84, 87, 89, 218
diffusion–convection model, 1, 56
diffusion–reaction equation, 172
diffusion–reaction model, 72
dike, 4, 107

discretization, 112
fluid pressure height, 113

dimensional analysis, 22
dimensionless variable, 127
Dirichlet boundary condition, 102, 112
discretization, 103–105, 112, 210, 213
disease, 166
dispersion, 42, 56, 62, 71, 160
dispersion coefficient, 45, 62

dispersion–advection equation, 71
dissipation range, 83
distribution function, 57, 119, 198, 201
drunkards walk, 57, 137
dunes, 5
dyad, 120
dynamical systems, 163
dynamo

αΩ, 134
homogeneous, 133
MHD, 129

eddy, 56
eddy diffusion, 39, 62
eddy diffusion coefficient, 62
edge, 164
effective permeability, 75
effective porosity, 111
effective temperature, 31
efficient porosity, 74
einstrahlzahl, 32
El Nino, 161
Elbeflut, 108
electromagnetic cascade, 159
electron trajectory, 149
elliptic PDE, 101, 191

ADI, 69
centered finite difference, 217
characteristics, 191
five-point scheme, 218
numerical schemes, 217

elliptical boundary problem, 102
embankment

breaking, 109
sliding, 109
surface erosion, 109

embankment spring, 108, 109, 114
emergence, 163
emergent phenomena, 173
energy balance, 38
energy conservation, 16, 38, 196
energy density, 16, 17
energy flux density, 16, 17
energy loss distribution, 147
energy spectrum, 92
energy transport, 6
enhanced fractional time step and time split-

ting method, 89
enthalpy, 79
enthalpy method, 79
envelope, 19
eq. of continuity, 197
equation of continuity, 36, 41, 60

soil, 111
water, 111
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equation of motion, 38, 118, 122
erosion, 5, 109, 115
Erosionsgrundbruch, 109, 115
Euler’s backward method, 214
Euler’s equation, 118, 120, 174
Euler’s forward method, 214
Euler’s method, 214
Euler–Tricomi equation, 192
evaporation, 7, 26, 28
expected displacement, 59
expected distance, 58
expected value, 139
explicit, 214
explicit centered five-point scheme in space

and an advanced scheme in time, 67
explicit scheme, 216
exponential ansatz, 187
external force, 118

FDM, 41
FEM, 41
Fermi, 40
Feuchtigkeitsgehalt, 111
Feynman, 18
Fick’s law, 31, 42, 43, 162, 197, 198
field reversal, 143
filament

solar, 129
filtering, 162
filtration speed, 74
finite difference scheme

consistent, 211
finite difference equation, 211
finite difference scheme

accuracy, 211
advanced, 210
backward, 211
centered, 211
consistency, 211
convergence, 212
forward, 210
one-sided, 210, 211
retarded, 211

finite element, 101, 104
finite-difference approximation, 210
fire modeling, 128
fire simulation, 8
first principle, 16
five-point scheme, 218
flash-over, 128
flow speed, 199
fluid pressure height, 113
flux corrected transport, 9, 99
flux limiter, 97
flux limiter method, 89, 91

flux-tube structure, 83
focused transport, 81, 87
focused transport equation, 84
focusing, 81, 83, 87, 100
focusing length, 87, 95
Fokker–Planck equation, 201–204, 207
forward in time and centered in space, 218
Fourier transform, 192
Fourier’s law, 31, 197, 198
fractionalization, 103, 104, 112, 174, 175
friction, 121
frictional forces, 203
frozen-in field, 131
FTCS method, 69, 218
FTCS scheme, 47
functional imaging, 159

galactic cosmic rays, 148, 158, 159
Galton board, 59, 60
game theory, 58
Gauß distribution, 59
Gauß’ distribution, 59
Gauss–Seidel method, 67
Gauss-Seidel algorithm, 103
Gauss-Seidel method, 68
Gaussian elimination, 66, 103
GEANT 4, 148, 158, 176
general circulation model, 161
geomagnetic field, 143, 151
geostrophic approximation, 208
glacier, 4
global circulation, 7
global coupled ocean–atmosphere model, 7
global growth phase, 169
graph theory, 163
gray body, 31
Green’s function, 8, 9, 82
greenhouse gas, 157
groundwater, 74
growing core, 76
gyration, 83

Hadley cell, 122
hadronic interaction, 147, 158, 159
Hall effect, 132
HAMMONIA, 157
Hangquelle, 108, 109
heat

latent, 7
sensible, 7

heat balance integral method, 79
heat conduction, 28, 30, 56, 76, 101
heat conduction equation, 17, 63, 67, 191, 216

steady-state, 63
heat flow, 101
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heat flow density, 31
heat transfer coefficient, 31
heat transport, 7
Heavyside expansion, 193, 194
Heizkörper, 30
Hess matrix, 202
HIV, 165
HOx, 144, 151, 153, 154
holistic approach, 11
hub, 167
hydraulic base failure, 109, 115
hydraulic gradient, 111
hydraulischer Grundbruch, 109, 115
hydrological cycle, 4, 7
hydrostatic equation, 208
hydrostatic pressure, 199
hyperbolic PDE, 89, 91, 190

centered scheme, 215
characteristics, 190
Lax–Wendroff scheme, 216
numerical schemes, 215
totally, 190, 191

characteristics, 190
upwind scheme, 216

ideal fluid, 120
Iljin scheme, 90, 91
impact parameter, 206, 207
implicit, 214
implicit scheme, 90, 217
incompressible fluid, 121
inertial range, 83
information, 2, 23
initial boundary value problem, 47
initial distribution, 173
initial vector, 66
input variables, 19
integral transform, 192
integro-interpolation scheme, 91
interaction cross section, 147
internal force, 118
interplanetary magnetic field, 82
interplanetary propagation, 82, 98
interplanetary shock, 93
interplanetary space

diffusion coefficient, 62
intertwined models, 4
ion acoustic wave, 83
ion–pair production, 144, 145, 149
ion–pair production rate, 144
ionization, 143, 144, 147, 176
Iraqi war, 12
isolated pores, 74
isotropic diffusion, 61
isotropic turbulence, 62

iteration parameters, 69
iterative method, 66

Jacobi method, 66, 103
Jeans’ theorem, 204

kappa distribution, 204
kappa-distribution, 200
Katrina, 8, 12, 17
kernel, 192
kinematic viscosity, 120, 121
kinetic energy, 199, 200
kinetic theory, 198
Kirchhoff’s law, 196
Kirchhoff’s law 1, 197
Kirchhoffs law, 197
knee, 101
Kolmogoroff scale, 63

Laasonen scheme, 217
Ladevektor, 105
laminar, 22
Laplace equation, 63, 191, 216
Laplace transform, 188, 192, 193

properties, 193
large-angle collisions, 207
large-angle interactions, 84, 207
Larmor radius, 83, 121
latent heat, 7
law of large numbers, 58
Lax scheme, 216
Lax’ scheme, 212
Lax’s Equivalence Theorem, 212
Lax–Wendroff scheme, 216
Leapfrog method, 214
lexicographical ordering, 65
linear convection equation, 190, 215
linear energy transfer, 148
linear system, 22
linearizing, 21
Liouville’s theorem, 202
local growth phase, 169
logistic law, 40, 220
Lorentz, 11
Lorentz distribution, 200
Lorentz force, 203
Lorentz’ butterfly, 11
Lorentz’ force, 83
LU decomposition, 219

macroscopic phenomena, 198
magnetic bottle, 83
magnetic cloud, 95, 97
magnetic field fluctuations, 82
magnetic field reversal, 156
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magnetic mirror, 83
magnetic moment, 83
magnetic pressure, 131
Malthus’ law, 40
mass balance, 36
mass conservation, 196
mass matrix, 105
mathematical model, 15
matrix

pentadiagonal, 66
matrix form, 189
Maxwell distribution, 119, 121, 199, 202–204
Maxwell–Boltzmann distribution, 200
mean free path, 45, 60, 62, 121, 205, 206

and rigidity, 86
estimate, 62
parallel to the field, 62, 84
radial, 62

mean radiant temperature, 31
met, 29
metabolism, 29
MHD

one-fluid description, 130
two-fluid description, 131

MHD dynamo, 122, 129, 135
Michaelis–Menton, 197
microscopic approach, 198
mixed Dirichlet–Neumann boundary, 102
mixing length theory, 62
mobility, 60
model

data, 17
first principle based, 16
phenomenological, 17

modeling
definition, 15

moisture content, 111
momentum balance

two-fluid description, 131
momentum balance, 38, 118, 122

fictitious forces, 121
pressure-gradient force, 119
stress tensor, 120
viscosity, 121

momentum transport, 7, 91
Monte Carlo differential equation, 160
Monte Carlo simulation, 57, 105, 136, 176,

177
π, 136
accuracy, 137, 139
advection and decay, 142
radiactive decay, 140
radiation therapy, 175
radioactive decay, 141

moving boundary, 173
multiple equilibria, 162
multiple scattering, 146, 149

Navier–Stokes equation, 75, 118, 120, 122,
126, 207

Navier–Stokes equations, 69
network, 164
Neumann boundary condition, 102
Newton, 38
Newton’s law, 197
Newton’s law of cooling, 25, 197
Newton’s universal law of gravitation, 198
Newton’s viscosity law, 197
nitrite oxides, 144
NOx, 144, 146, 151, 153, 154
nodal integration method (NIM), 79
nonlinearity, 161
normal force, 119
nuclear physics, 158
number density, 199
numerical integration, 136

ODE, 41
1st order

general, 188
inhom, variable coeff., 188

2nd order
hom., const. coeff., 187
hom., variable coeff., 188
inhom., const. coeff., 187
nonlin, 188, 189

ansatz by a power series, 188
Crank–Nicolson, 214
Euler backwards, 214
Euler forwards, 214
Euler’s method, 214
exponential ansatz, 187
finite difference methods, 213
Laplace transform, 188
Leapfrog, 214
p-substitution, 189
particulate integral, 187
Runge–Kutta, 215
separable, 187
separation of variables, 187
startegies, 187
variation of the constant, 188

Oderflut, 108
Ohm’s law, 197

current acceleration, 131
Hall term, 132
pressure diffusion, 132
two-fluid description, 131

omnidirectional intensity, 201
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one-dimensional Maxwell distribution, 119
one-dimensional pipe, 20
one-dimensional pipe model, 20
output variables, 19
over-relaxation method, 68
ozone, 143, 144, 146, 153, 157

p-substitution, 189
pair production, 147, 159
parabolic PDE, 42, 89, 191

characteristics, 191
Crank–Nicolson, 217
explicit scheme, 216
Iljin scheme, 90
implicit scheme, 90, 217
Laasonen scheme, 217
numerical schemes, 216

parallel mean free path, 62, 84
parameter study, 8
partial differential equation, 9
particle, 198
particle number conservation, 91
particle precipitation, 143
particulate integral, 187, 188
PDE, 41

Cauchy problem, 189
characteristic determinant, 189
characteristic form, 189
characteristics, 189
classification, 190
elliptic, 101, 191

ADI, 69
centered finite difference, 217
characteristics, 191
five-point scheme, 218
numerical schemes, 217

finite differences, 215
FTCS method, 218
hyperbolic, 89, 91, 190

centered scheme, 215
characteristic, 190
Lax–Wendroff scheme, 216
numerical schemes, 215
upwind scheme, 216

parabolic, 42, 89, 191
characteristics, 191
Crank–Nicolson, 217
explicit scheme, 216
Iljin, 90
implicit scheme, 90, 217
Laasonen scheme, 217
numerical schemes, 216

totally hyperbolic, 190, 191
characteristics, 190

types, 190

Peaseman–Rachford ADI, 69
penetration depth, 75
pentadiagonal matrix, 66
permeability, 74, 75, 111

effective, 75
perturbation method, 79
perturbation theory, 85
phase space, 198

equation of continuity, 201
equation of motion, 201
point, 198
speed, 198

phase space density, 84, 85, 198
phase transition, 173
phenomenological model, 17
phonon, 56
photoionization, 149
pipeline, 2
pitch angle, 83, 84
pitch angle coefficient, 91
pitch angle diffusion, 84
pitch angle diffusion coefficient, 84, 86
pitch angle scattering, 81, 82, 87
pitch angle transport, 89
plasma, 129
plasma confinement, 83, 98
plasma fusion, 98
plasma-β, 131
point in phase space, 198
Poisson equation, 217
polar cap, 143, 151
polar front, 7
pores

dead-end, 74
isolated, 74

porosity, 74, 75, 111
efficient, 111

porous media, 100
positron, 159
post-facto modeling, 17
power density spectrum, 82, 86
power law, 148
precipitating particles

energy spectra, 148
pressure, 120
pressure diffusion, 132
pressure gradient force, 208
pressure-gradient force, 118–120
probability function, 203
proton trajectory, 149

quasi-linear theory, 85
quasi-neutral, 128

radial mean free path, 62
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radiation exchange coefficient, 32
radiation therapy, 175
radiation therapy planing, 176
radiation transport, 6
radiative heat exchange, 7
radiative heat transfer, 28, 31
radiator, 7, 30
radioactive decay

Mont Carlo simulation, 141
Monte Carlo simulation, 140

radiocarbon, 159
random kinetic energy, 199
random number, 139

repetition, 139
random number generator, 139
reaction rate, 54
real fluid, 120
reduced Boltzmann equation, 202
reduction, 161, 178
reflection, 6
relaxation factor, 68
reputation, 23
resistance, 204
resonance, 194
resonance catastrophe, 23
resonance condition, 86
resonance frequency, 86
resonance gap, 91
resonance interaction, 86
resonance scattering, 86
resonant wave–particle interaction, 86
Reynolds’ number, 22, 75, 127
rigidity, 86
Robin boundary condition, 102
room temperature, 101
round-off error, 212
rumor, 166
run-off ditch, 108–110, 114
runaway, 23
Runge–Kutta method, 4th order, 215

SARS, 170
saturated zone, 74
saturation, 74, 111, 113
saturation line, 108
scale analysis, 21, 63, 207

atmosphere, 208
scale-free net, 164
scale-free network, 167, 168
scattering, 6

resonance, 86
scattering at plasma waves, 84
scattering cross section, 205
scattering in momentum space, 86
secondary electron, 149, 176

secondary electrons, 146
sediment, 2
self generated turbulence, 93
self-consistent fields, 204
self-excited waves, 85
self-organization, 163
self-stabilizing system, 85
sensible heat, 7, 31
sensitivity analysis, 16
separable ODE, 187
separation ansatz, 63, 93
separation of the variables, 187
separation of variables, 189
shear failure, 109, 115
shear stress, 119, 120
shell-and-tube heat exchanger, 40
shock, 93, 95

acceleration efficiency, 93
as black box, 93
in interplanetary space, 93

shock in interplanetary space
as Stefan problem, 97

shrinking core, 76
Sickerlinie, 108
Sickerpunkt, 108
Sickerströmung, 74, 109
simplification, 15, 178
simplifying as an art, 15
simplifying assumptions, 19
Simpson integration, 213
singular perturbed problem, 89
six degrees of separation, 164
slab model, 86
SLIMCAT/TOMCAT model, 147
small world, 166
small-angle interactions, 84, 207
small-angle scattering, 86
small-world, 164
small-world phenomenon, 163
smokestack, 56
solar constant, 6
solar cycle, 154
solar energetic particle, 61, 81, 97, 143, 157

energy spectra, 148
solar energetic particle event, 81

ozone depletion, 143
solar wind, 82
solar wind effects, 91
solar wind expansion, 83, 87
sound wave, 161
Southern Oscillation, 161
spallation, 159
sparse, 218
sparse matrix, 45
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spatial diffusion, 57, 84
spatial scale, 10
spatial transport, 89
specific energy loss, 145
specific heat, 17
spectral index, 148
speed

average, 199
bulk, 199
flow, 199
relative to soil, 111
stochastic, 199
thermal, 199
turbulent, 63

speed in phase space, 198
spiral angle, 62
splitting scheme, 89
stability, 212

parabolic PDE
explicit scheme, 217

stability conditions, 97
standard deviation, 59, 139
statistical mechanics, 198
steady-state, 23, 42, 50
Stefan problem, 78, 81, 97, 173, 174

shock in interplanetary space, 97
Stefan–Boltzmann law, 31

gray body, 31
Steifigkeitsmatrix, 105
Stephan number, 78
sterile modeling, 17
stiffness matrix, 105
stirred tank, 20, 24, 25, 41, 76, 178
stochastic acceleration, 86, 87
stochastic differential equation, 160
stochastic motion, 199, 200
stochastic partial differential equation, 161
stochastic process, 56, 57, 82
stochastic speed, 199
stochastic transport process, 55
stochasticity, 161
Stoffstrommanagement, 53
stream structure, 83
streaming, 60, 71, 85

convective, 71
diffusive, 60

stress tensor, 120, 121
subsoil flow, 74, 109
suffosion, 109
sunspot, 129
supergranular motion, 82
supergranulation, 83
surface erosion, 109
surface temperature, 33

surface wave, 2, 6
system variables, 19

Taylor expansion, 210
TE, 211

Euler backwards, 214
Euler forward, 214
hyperbolic PDE

centered scheme, 215
upwind scheme, 216

parabolic PDE
centered finite difference, 218
explicit scheme, 216

PDE
FTCS method, 218

temperature, 119, 200
effective, 31
mean radiant, 31
room, 101

temporal scale, 10
tensor, 120
test, 22
thermal comfort, 33
thermal conductivity, 31
thermal equilibrium, 200, 204
thermal motion, 57, 119
thermal speed, 119, 121

most probable, 199
thermohaline circulation, 7, 70, 161
Thomas algorithm, 48, 125, 218
three-decade-standard, 4
time scale, 161
time splitting, 90
time splitting scheme, 81, 89
time to maximum, 61
total squared displacement, 58
totally hyperbolic PDE, 191
traffic, 2
traffic jam, 173
translation, 194
transmission probability, 166
transport

definition, 9
in momentum, 91, 119
in pitch angle, 89

transport model, 9
transport through porous media, 74
trapezoid integration, 213
triangulation, 104
tridiagonal matrix, 45, 48, 107, 125, 218
truncation error, 211, 212

Euler backwards, 214
Euler forward, 214
hyperbolic PDE

centered scheme, 215
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upwind scheme, 216
parabolic PDE

centered finite difference, 218
explicit scheme, 216

PDE
FTCS method, 218

tsunami, 3
turbulence, 2, 24, 82, 83, 162

isotropic, 62
turbulent, 22
turbulent diffusion coefficient, 62
turbulent energy dissipation, 63
turbulent mixing, 62
turbulent speed, 63
Turing, 11, 72
Turing pattern, 172, 173

1D, 173
initial distribution, 173

Turing’s avalanche, 11

unconditionally stable, 69
under-relaxation method, 68
unsaturated zone, 74
update form, 212
upwind scheme, 216

vardose zone, 74
variation of the constant, 188
vector-borne disease, 169
velocity distribution, 198, 199
vertex, 164
viscosity, 75, 111, 121, 204

collisionless, 121
kinematic, 120, 121

viscosity coefficient, 121
Vlasov equation, 85, 199, 203, 204

average, 85
volume dilation, 111
Von Neumann analysis, 212
von Neumann ansatz, 67
von Neumann method, 68
Vorfluter, 108–110

wave
Alfvén, 83
ion acoustic, 83
ion-cyclotron, 83
Whistler, 83

wave equation, 190
wave–particle interaction, 84, 85
weak form, 103
weak problem, 112
Weichselflut, 108
weight function, 175
weighting function, 103

Wendelstein, 98
Whistler, 83
wind-chill, 29
working model, 11
World Wide Web, 168

X-ray, 159

z88, 174
Zeltfunktion, 104
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