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☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* hazem.toutounji@zi-mannheim.de

Abstract

Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and

synaptic conductances, to predator/pray population interactions. The evidence is mounting,

not only to the presence of delays as physical constraints in signal propagation speed, but

also to their functional role in providing dynamical diversity to the systems that comprise

them. The latter observation in biological systems inspired the recent development of a

computational architecture that harnesses this dynamical diversity, by delay-coupling a sin-

gle nonlinear element to itself. This architecture is a particular realization of Reservoir Com-

puting, where stimuli are injected into the system in time rather than in space as is the case

with classical recurrent neural network realizations. This architecture also exhibits an inter-

nal memory which fades in time, an important prerequisite to the functioning of any reser-

voir computing device. However, fading memory is also a limitation to any computation that

requires persistent storage. In order to overcome this limitation, the current work introduces

an extended version to the single node Delay-Coupled Reservoir, that is based on trained

linear feedback. We show by numerical simulations that adding task-specific linear feed-

back to the single node Delay-Coupled Reservoir extends the class of solvable tasks to

those that require nonfading memory. We demonstrate, through several case studies, the

ability of the extended system to carry out complex nonlinear computations that depend on

past information, whereas the computational power of the system with fading memory

alone quickly deteriorates. Our findings provide the theoretical basis for future physical real-

izations of a biologically-inspired ultrafast computing device with extended functionality.

Introduction

Some neuron types are endowed with extensive dendritic trees. Each dendrite is characterized
by its spatial location within the tree, and the delay required for a postsynaptic action potential
to propagate to the soma. While several studies investigate the computational role of the den-
drites’ spatial distribution [1–3], the functionality of dendritic propagation delays is scarcely
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probed. One suggestion is that propagation delays enrich the dynamics of recurrent neural net-
works by turning them into infinite-dimensional dynamical systems [4]. The latter observation
was the basis of a neurally-inspired computational paradigm, the single node Delay-Coupled
Reservoir (DCR), where a single nonlinear neuron is delay-coupled to itself [5, 6]. Inputs are
multiplexed in time across the delay, and are nonlinearly processed at the neural site. The DCR
provides a promising testing bed to theories of neural computations with delays. For instance,
some of the authors have shown that applying homeostatic plasticity [7] directly to the delays
dramatically improved the computational capabilities of the DCR [8].

In this article, we demonstrate that adding a trained feedback, or teacher forcing, to the DCR
endow the latter with the ability to store stable memories. The DCR is a specific realization of
Reservoir Computing (RC) [9–12], which is a flexible framework for capturing temporal depen-
dencies in time series of complex natural systems. This ability is a necessary ingredient in neu-
ral information processing [13–16], in addition to spawning a wide range of applications,
including time series forecasting [17], signal generation [18] and robot navigation [19].

RC models are large, driven, nonlinear dynamical systems, such as a recurrent neural net-
work, which map their input to a high-dimensional space. On the one hand, the recurrency
allows input to travel within the dynamical system, or reservoir, for a certain period of time,
resulting in a form of short-term memory. On the other hand, random nonlinear motifs within
the reservoir nonlinearly mix past and present inputs. Together, memory and the nonlinear
mixing allow a desired output to be linearly combined from the activity of the reservoir by out-
put units, using linear regression.

Teacher forcing is a technique originally used in training recurrent neural networks to
approximate trajectories of dynamical systems [20, 21]. Output units are clamped to their tar-
get value during training, which assures a low amount of training error that, otherwise,would
limit the neural network’s ability to learn target trajectories. The same principle was also
applied successfully to RC with sigmoidal recurrent neural networks and has shown to improve
the ability of predicting chaotic trajectories by several orders of magnitude [17]. An alternative
training mechanism avoids large training error and the resulting instability of learning by
enforcing a rapid decrease in output error at early stages of learning [22, 23]. This procedure,
called FORCE, requires chaotic dynamics in the spontaneous activity of the recurrent neural
network. The current paper, however, only considers fixed point spontaneous DCR dynamics
in concord with previous studies [5, 8, 24], and exploring a setup similar to FORCE will be car-
ried out elsewhere. In addition, in its original form, a DCR only retains temporal dependencies
on a short time scale. The goal of the current paper is to extend the DCR’s applicability to cases
that require stable memories, while enhancing its ability to encode and predict dynamical sys-
tems by teacher forcing or FORCE is beyond its scope. In classical RC based on sigmoidal and
spiking recurrent neural networks, stable memories were shown to be realizable by the aid of
teacher forcing and dedicated output units [25, 26], which is the approach we follow to endow
the DCR with this capability.

As in classical RC, a DCR receives an input stream that perturbs its autonomous dynamics.
Instead of the spatial distribution of input across many neurons, computation in the DCR is
implemented by using time-multiplexing at several dendritic arbors across the delay line [27].
This leads to virtual nodes, at which the dynamics of the single delay-coupled neuron is sam-
pled. Despite these differences, a DCR is approximately equivalent to a recurrent neural net-
work with constrained connectivity [5, 6, 8]. This translates to comparable performance [5], as
well as similar principles of self-organization based on plasticity [28–30] that can improve the
DCR in an unsupervised fashion [8]. At the same time, the simple architecture of the DCR
allows for a largely reduced complexity in physical implementation, which has already been
demonstrated on electronic [5], optoelectronic [31, 32] (with the input either in synchrony
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with [31] or asynchronous to [32] the delay line), and ultrafast all-optical hardware [33].
Hence, DCRs have the potential for dramatic changes in the field of biologically-inspired ultra-
fast computation, based on new physical realizations, which is reflected in the fast growing
attention paid to this field of research [6].

A standard RC architecture, including the DCR, undergoes rapid washout of previous
inputs, a property that is termed fading memory [34]. This property assures the execution of
computations that demand input retrieval for several time steps in the immediate past. How-
ever, systems with fading memory fail at computations that require stable storage of relevant
features for arbitrary length of time. Luckily, as pointed out above, this limitation can be over-
come by teacher forcing [25]. The latter leads to a stabilization of a finite number of memorized
states, and therefore extends the class of executable computations. Here, we demonstrate that
such feedback can also be employed to stabilize memory in DCRs. Based on simulations, we
show that DCRs which incorporate trained feedback are able to have memory traces of an arbi-
trary length.

The article is structured as follows. We start with describing the RC architecture that is
based on a single nonlinear node with delayed feedback, i.e., the DCR.We then present how
the DCR can be extended by linear feedback. This is followed by numerical simulations, which
demonstrate the role of teacher forcing in stabilizing memory, while preserving the system’s
ability to perform nonlinear computations. These simulations consist of three experiments,
showing that the enhanced system is able to learn complex nonlinear tasks requiring long-term
memory that cannot be learned by classical DCRs. At last, we demonstrate that this memory
can be maintained for practically infinite time.

Materials and Methods

Delay-based Reservoir Computing

In a DCR, the recurrent neural network in classical RC is replaced by a single nonlinear node
with delayed feedback. Past and present inputs u 2 Rm undergo nonlinear mixing via injection
into the nonlinear node. Formally, the dynamics can be modeled by a forced (or driven)Delay
Differential Equation (DDE) of the form

_xðtÞ ¼ � xðtÞ þ f xðt � tÞ; uðtÞð Þ; ð1Þ

where τ is the delay time, and xðtÞ; xðt � tÞ 2 R are the current and delayed DCR activities.
Fig 1 illustrates the full DCR setup with trained feedback.

DCRs were successfully implemented both virtually and physically. Despite variable perfor-
mance of different implementations, the principal computational properties remain invariant.
Here, we restrict our simulations to the Mackey-Glass system [35]. This choice of nonlinearity
is motivated by its superior performance, and the possibility of approximating it by electronic
circuits [5]. After a proper transformationM of the input (see below), the input-driven
Mackey-Glass DCR is modeled by:

_xðtÞ ¼ � xðtÞ þ
Z xðt � tÞ þ gMuðtÞð Þ

1þ xðt � tÞ þ gMuðtÞð Þ
r ð2Þ

where γ, η and ρ are model parameters, the latter regulating the chaoticity of the system.
Solving the system (1) for t� 0 requires specifying an appropriate initial value function

�0 : ½� t; 0� ! R. This suggests that the phase space in which the solution resides is a Banach
space C1;t ¼ Cð½� t; 0�;RÞ which is infinite dimensional [36]. This entails that using a DDE as a
reservoir provides the high-dimensional expansion of input, usually achieved by using a large
number of neurons.
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Instead of distributing anm-dimensional input spatially across neurons, input to the DCR
is time-multiplexed, which is carried out as follows:

The DCR receives a constant input uð�tÞ 2 Rm in each reservoir time step �t ¼ dt
t
e, corre-

sponding to one τ-cycle of the system. The input is then linearly transformed by a maskM that
is piecewise constant for short periods θi. These represent the delays between sampling points
of i = 1, . . ., n virtual nodes along the delay line. Accordingly, the delays between the virtual
nodes satisfy

Pn
i¼1

yi ¼ t, where n�m is the effective dimensionality of the DCR.Here, the
maskM is binary with random mask bits Mi 2 {−μ, +μ}m, so that the virtual node i receives a
weighted input Miuð�tÞ. In order to assure that the DCR possesses fading memory of the input,
the system (1) is set to operate, when unforced, in a single fixed point regime. Thus, the mask-
ing procedure effectively prevents the driven dynamics of the underlying system from saturat-
ing to the fixed point.

Following the time-multiplexing of input, a sample of the DCR’s response is read out at the
end of each θi. This yields n predictors xi per time step �t , corresponding to the virtual nodes’
activity. Computations are performed on the predictors using a linear regression model for
some scalar target time series y, given by ŷð�tÞ ¼

Pn
i¼1

aixið�tÞ. The coefficientsαi are deter-
mined by using the least squares solution, minimizing the sum of squared errors
P

�t ðyð�tÞ � ŷð�tÞÞ2. These linear readouts are called feedforward readouts to distinguish them
from feedback readouts of the extended DCR.

Feedback readouts for stabilizing memory

In an RC architecture, parameters need to be tuned such that it possesses fading memory. This
is achieved in DCRs by setting the nonlinearity to operate in a fixed point regime, in addition
to masking the input as outlined above. Similar to classical RC, possessing fading memory
alone restricts the class of computations a DCR can carry out to those that depend on relatively
recent inputs only. In order to overcome this restriction, we rely on an important theoretical
result for conventional RC [25]. This result states that under certain conditions, augmenting

Fig 1. DCR with trained feedback (fDCR) and its extended functionality. (A) In a fDCR, the input u and

trained feedback signals φ are temporally multiplexed across a delay line of length τ, by using random binary

masks M of n bits each (only one mask shown). Each mask bit Mi is held constant for a short delay θi, such

that∑θi = τ. The masked input is then nonlinearly transformed and mixed with past input by the nonlinear

node with delayed feedback. At the end of each θi, resides virtual nodes with activity xi. Feedback

coefficients βi are estimated through teacher forcing to allow storing stable memories, and feedforward

coefficients αi are then trained to perform computations through linear regression. (B) With no trained

feedback (top), the DCR is not capable of retaining cue information (dashed vertical line) beyond the bounds

of fading memory (*10τ). With trained feedback (bottom), memory of the cue is stabilized, allowing the

fDCR’s output (orange) to track the change in the target function (blue) beyond the bounds of fading

memory.

doi:10.1371/journal.pone.0165170.g001
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the system with trained feedback allows it to store nonfading memory. The same extension can
be applied to the DCR, leading to similar boost in its computational capability.

More precisely, input is extended by additional channels φð�tÞ 2 Rq, which are the fed back
outputs ẑð�t � 1Þ ¼

Pn
i¼1

bixið�t � 1Þ at the previous reservoir time step �t � 1 of a subset of lin-
ear readouts. The resulting DCR with trained feedback (fDCR) is shown in Fig 1. The regres-
sion coefficients βi of these feedback readouts are estimated offline at the end of initial teacher
forcing phase that precedes the training of feedforward readouts: The reservoir is fed with
training data ðuð�tÞ; ~φð�tÞÞ 2 Rmþq, where training feedback signals are replaced by a noisy ver-
sion of their target values ~φð�tÞ ¼ ~zð�t � 1Þ ¼ zð�t � 1Þ þ �ð�t � 1Þ. Adding noise � assures that
at later phases, the feedback readouts are robust to noise, i.e., prediction errors in the trained
feedback are not amplified due to overfitting [25]. The feedback coefficients βi are determined
by using the least squares solution, minimizing the sum of squared errors

P
�t ð~zð�tÞ � ẑð�tÞÞ2.

Following teacher forcing, feedforward coefficientsαi are estimated offline at the end of the
training phase, outlined in the previous section. The model is then validated on new input and
feedback time series. Feedback signals in both training and validation phases are computed by
φ̂ð�tÞ ¼

Pn
i¼1

bixið�t � 1Þ. The full procedure is shown in Fig 2.

Computational tasks

In order to examine the ability of the fDCR to retain memory traces for time spans which
exceed fading memory, we designed three tasks whose proper execution requires the presence
of long-term memory. The exact experimental setups and typical results are presented in the
Results section.

In the first two tasks the target function switches between two computations on one or
more input streams where each of these computations on its own does not require long-term
memory. The switch between the two distinct computations is triggered by short cues, which
are received alternately via two additional input streams. A cue in the first cue channel triggers
a switch from one task to the other, while the second cue triggers the opposite switch. In order
to learn the described tasks, the fDCR has to preserve a memory trace of the last cue at every
point in time. This is an easy task if the duration between cues is within the bounds of fading
memory, i.e., smaller than around 10 reservoir time steps. If, instead, time gaps between two
successive cue signals exceed this limit, the resulting long-term memory dependent task cannot
be learned by the standard DCR. This in mind, experiments here are designedwith gaps
between cues which exceed the fading memory trace by at least tenfold. In order to control for
the possibility that feedback readouts are only learning to generate periodic signals, indepen-
dent of cue time, cues are irregularly spaced.

In the third experiment, more complex feedback signals are trained to encode the time since
last cue. This task is designed to demonstrate that the fDCR is not only capable of registering
the binary information of a cue’s presence or absence, but also the time since the last cue has

Fig 2. Training and validation of fDCR. Input-output pairs are split into three consecutive phases. In the

teacher forcing phase, the feedback readouts are trained. In the training phase, feedforward readouts are

trained to solve computational tasks that require both fading and nonfading memory. in the validation phase,

the model performance is assessed with unseen data. Each phase is preceded by a brief offset for the fading

memory of the fDCR to wash out.

doi:10.1371/journal.pone.0165170.g002
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been shown, and to use this information in computation. This information is stored in the
value of a ramping feedback signal. The time scale at which time is stored is defined by slope of
the ramp length. Longer ramps corresponds to higher sensitivity to the time of older cues.

We follow these three experiments with a longitudinal simulation, that serves to demon-
strate how stable cue storage is.

Model parameters

Mackey-Glass parameters as they appear in Eq (2) in addition to all other fDCR parameters are
fixed across all simulations, and are summarized in Table 1.

Consecutive cue onsets are separated by gaps that are uniformly drawn from the ranges [50,
400] and [100, 800] reservoir time steps for teacher forcing and for training and validation,
respectively. The gaps during teacher forcing are shorter to assure that the regression sees more
cues. Otherwise, the sparsity of cues would lead the regression for feedback weights to minimize
square errors by assuming that no cues exist. Cues have a duration of 5 reservoir time steps.

Simulation

The DDE Eq 1 was numerically solved using the recursivemethod of steps for handling delays,
andHeun’s method for numerical integration. Heun’s method assures quadratic decay of errors
with respect to discretization time step. The numerical solution is evaluated at 600 simulation
points across the overall delay τ. The latter contains 300 virtual nodes, distributed randomly
over the simulation points, such that ∑i θi = τ.

Each experiment follows the training and testing procedure outlined in Fig 2. Table 2 shows
the number of reservoir time steps in each simulation phase.

Results

Experiment 1: Switching between a sine function and a constant value

The setup of the fDCR for this experiment is depicted in Fig 3A. The target output d is either
the oscillatory usin (a sine wave 100 sin ð�tÞ þ 1=3, filtered by a Gaussian kernel with std = 5τ)
after the cue onset in the input channel u+, or is constant at 5 after cue onset in input channel
u−. The trained feedback signal dtf represents the fourth input stream.

A closer look at the output signal immediately following cue u− onset in the top panel of Fig
3B demonstrates that the standard DCR produces output that is fairly close to the desired con-
stant value. However, only after a few reservoir time steps the cue’s fading memory vanishes,
and the input-driven system returns to oscillate in synchrony with its input. Thus, the desired

Table 1. Parameter values of the Mackey-Glass system and the fDCR.

Parameter Value Description

γ 0.01 scaling factor of input

η 0.5 scaling factor of delayed nonlinearity

ρ 1a regulating parameter of chaoticity

±μ ±0.1 values of mask bits

n 300 number of virtual nodes

τ 600 delay time

The first group of parameters corresponds to the parameters of the Mackey-Glass system 2, while the

second corresponds to the parameters of the fDCR.
aThis choice of ρ sets the unforced Mackey-Glass system to operate in a single fixed point regime.

doi:10.1371/journal.pone.0165170.t001

Persistent Memory in Delay-Coupled Reservoir

PLOS ONE | DOI:10.1371/journal.pone.0165170 October 26, 2016 6 / 15



signal could not be retained over the entire time span between two consecutive cues. This insta-
bility is due to the fact that the readout neuron has to transform transient information (caused
by permanent input) into a stable output. Yet, approximating constant output is very difficult
for reservoir computing [10]. The mismatch between the desired and observedoutput signals
is also demonstrated by the divergence from diagonal of their corresponding scatter plots
(upper panel in Fig 3C), particularly when the desired output is at the constant value.

The fDCR, on the other hand, overcomes this limitation, as shown in the bottom panel of
Fig 3B. The close match between desired and observed signals demonstrates that trained feed-
back is successfully utilized in order to stabilize the memory of the last cue (also see lower

Table 2. Number of reservoir time steps within each phase of simulation.

Phase Duration (in reservoir time steps)

Experiments 1 and 2 Experiment 3

offset 50 50

teacher forcing 50000 50000

training 10000 20000

validation 10000 20000

doi:10.1371/journal.pone.0165170.t002

Fig 3. Experiment 1: Switching between a sine wave and the constant value 5. (A) Schematic of the

experiment. Input consists of four streams: two cue channels u+ and u−, a sine wave usin, and the additional

trained feedback signal d tf. First, feedback weights (orange) are learned by teacher forcing, followed by the

feedforward weights (gray). Successful learning is achieved when the output signal d (magenta) matches its

target value. (B) Comparison between the output signal (orange) and target value (blue) with (bottom) and

without (top) trained feedback. (C) Scatter plots of the target signal y verses observed output ŷ with (bottom)

and without (top) trained feedback, and (D) their correlation coefficient for training (brown) and validation

data sets (yellow).

doi:10.1371/journal.pone.0165170.g003
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panel in Fig 3C). We also note that the fDCR approximates the desired output with increasing
accuracy over time.

Finally, to quantify these observations, we compute correlation coefficients between the
desired and observed signals for both training and validation sets (Fig 3D). We particularly
note that, in addition to significantly higher correlation in the case of fDCR, the correlations
for training and validation data are very similar (see lower panel in Fig 3D). This demonstrates
that the fDCR generalizes well and better than standard DCR (upper panel in Fig 3D).

Experiment 2: Concurrent linear and nonlinear tasks

We demonstrated that including trained feedback stabilizes memories of cue signals. We now
show that the computational resources of the fDCR are not fully depleted by the demands of
learning these signals. Mainly, we show that the fDCR is still capable of performing several
(potentially nonlinear) computations concurrently, some of which are cue-independent.

Experiment 2 is designedwith this goal in mind, as shown in Fig 4A. Input to the fDCR con-
sists of two cue channels u+ and u−, two streams of bounded and filtered uniformly distributed
noise uarb

1
and uarb

2
, and the additional trained feedback signal dtf. Input signals uarb

1
and uarb

2
are

filtered with a Gaussian kernel (std = 5τ) to improve performance after being drawn uniformly
from the range [−5, 15]. Nevertheless, the fDCR is still capable of learning computations on
uniform white noise as well. The fDCR is trained to perform three computations diðuarb

1
; uarb

2
Þ

for i = 1, 2, 3. These computations are given by:

d1ð�tÞ ¼
uarb

1
ð�tÞ when uþ

2uarb
2
ð�tÞ when u�

(

ð3Þ

d2ð�tÞ ¼
uarb

1
ð�tÞ þ uarb

2
ð�tÞ when uþ

juarb
1
ð�tÞ � uarb

2
ð�tÞj when u�

(

ð4Þ

d3ð�tÞ ¼ 0:1 uarb
1
ð�tÞ

� �3
þ 0:2uarb

1
ð�tÞ � uarb

2
ð�tÞ ð5Þ

The first computation d1 (Eq 3) is cued and linear. The second computation d2 (Eq 4) is also
cued but is nonlinear, due to the absolute value computation upon the onset of u−. These two
computations are performed concurrently using the same cue signals. The third computation d3

(Eq 5) is a nonlinear function of the two random input signals, and is independent of the cues.
As Fig 4B shows, feedforward linear readouts (orange) are able to closely track the desired

signals. Only in the highly nonlinear u−-cued d2 computation, the scatter plot between the
desired and observed signals diverges slightly from the diagonal (see middle panel in Fig 4C).
This divergence results, however, in a minuscule reduction in correlation between the two sig-
nals, as shown in the middle panel of Fig 4D. The bottom panels of Fig 4B–4D show that,
despite its independence from the trained feedback signal, the nonlinear d3 computation is per-
formed with remarkable precision. This suggests that the fDCR dynamics is rich enough to
support concurrent nonlinear computations, with no detectable interference between a trained
feedback signal and those computations not dependent on it.

Experiment 3: Feedback depending on time since last cue

Experiment 3 assesses different aspects which go beyond experiments 1 and 2. Here, the fDCR
is simultaneously required to learn and maintain two feedback loops. Each feedback loop stores
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the time of last cue up to a certain threshold, one corresponding to fast dtf
f and the other to

slow dtf
s forgetting of the time since last cue. This allows for computations that are not only a

function of cue onset, but of its time, such as delayed response tasks.
This effect is implemented as follows. A cue triggers a sudden downward shift from ampli-

tude 9 to 5 in each of the feedback signals. Instead of a sudden upward shift, feedback signals
linearly increase back to a threshold value; i.e., a cue triggers a rising ramp. The two ramps are
of different time scales, corresponding to 300 and 600 reservoir time steps for the short and a
long ramp, respectively, as shown in Fig 5A. These time scales are larger than the fading

Fig 4. Experiment 2: Concurrent linear and nonlinear tasks. (A) Schematic of the experiment. Input

consists of five streams: two cue channels u+ and u−, two streams of bounded, uniformly distributed noise

uarb
1

and uarb
2

that are filtered by a Gaussian kernel, and the additional trained feedback signal d tf. In addition

to the trained feedback signal, the fDCR computes three desired outputs d1, d2, and d3, corresponding to a

linear cued task, nonlinear cued task, and nonlinear cue-independent task, respectively. (B) Comparison

between desired (blue) and observed (orange) fDCR output signal d1 (top), d2 (middle), and d3 (bottom). (C)

Scatter plots of the target verses observed output for both training (yellow) and validation (brown) data sets,

when the target is d1 (top), d2 (middle), and d3 (bottom). (D) Correlation coefficient between desired and

observed fDCR outputs for both training (brown) and validation (yellow), when the target is d1 (top), d2

(middle), and d3 (bottom).

doi:10.1371/journal.pone.0165170.g004
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memory capacity of the standard DCR in order to assess long-term stable memory of the time
since last cue onset.

In contrast to the previous two experiments, the feedback signal itself is manipulated by cue
onset in Experiment 3. Particularly, the target function d3 nonlinearly combines the random
input stream uarb with the fast ramp dtf

f :

d3ð�tÞ ¼ ju
arbð�tÞj� 2:5�dtf

f ð
�t Þ

ð6Þ

As shown in Fig 5B shows, the output d3 is learned with high precision. A little mismatch
occurs when the target signal y< 1, as the scatter plot Fig 5C demonstrates. However, the effect
of this mismatch on the correlation between the target and desired signals is very little, as
shown in Fig 5D, and does not result in overfitting the training data. In fact, the inability of the
readout to track the target signal when y< 1 indicates that the readout mechanism is robust to
outliers, since events where y< 1 are only sparsely present in the target time series (see S1 Fig).
Further simulations demonstrate, as shown in S2 Fig, that the ability to carry out computations
that depend on the time of cue onsets are not restricted to the function d3.

Experiment 4: How stable is cue memory?

In order to answer this question, we ran a longitudinal simulation of a final experiment. It
assesses how long the information of latest cue (as in Experiments 1 and 2) can be stored stably
in the fDCR via the trained feedback loop.

Fig 5. Experiment 3: Feedback depending on time since last cue. (A) Schematic of the experiment.

Input consists of four streams: one cue channel u+, a stream of bounded, uniformly distributed noise uarb that

is filtered by a Gaussian kernel, and the additional fast dtf
f and slow dtf

s trained feedback signals that are

ramps of duration 600 and 300 Reservoir time steps, respectively. In addition to the trained feedback signals,

the fDCR computes three desired outputs d1, d2, and d3, corresponding to the sum of the feedback signals,

their difference, and nonlinear function of the fast ramp and the random input, respectively. (B) Comparison

between desired (blue) and observed (orange) fDCR output signal d3. (C) Scatter plots of the target verses

observed output for both training (yellow) and validation (brown) data sets, when the target is d3. (D)

Correlation coefficient between desired and observed fDCR output for both training (brown) and validation

(yellow), when the target is d3.

doi:10.1371/journal.pone.0165170.g005
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The input to the fDCR for this experiment is similar to that of Experiment 1 (see Fig 3A),
but with the sinusoidal input usin replaced by bounded random noise uarb as in Experiment 2.
This is to assure that long-term memory is robust to noise coming from that input channel.

Only one readout is trained by teacher forcing to generate the feedback signal. The ability of
the fDCR is then tested for a number of time steps on generating the feedback signal in
response to the two cues. Eventually, no cues were shown anymore in order to test how long
the last cue may be maintained stably by the trained feedback.We term this phase of simula-
tion the stability test phase. Simulation is canceled automatically if the feedback signal deviated
beyond a certain error margin from its desired value.

Fig 6 illustrates the results of this experiment. Following the teacher forcing and testing of
trained feedback, the stability test was run for a day of physical time. Afterwards, simulation
was interrupted manually, because the error margin was never exceeded.At this point, the
fDCR has maintained its memory of the cue for *336M reservoir time steps. The feedback sig-
nal shows slight downward and upward shift due to modulation by the random input, but it
never shows overall drift away from the desired value. Instead, the feedback signal seems to
maintain a constant average value with no time limit.

Discussion

As proven theoretically and confirmed through simulation by Maass and colleagues [25],
trained feedback can overcome the limitations of fading memory in conventional reservoir
computing. While the latter is modeled by a system of ordinary differential equations, here we
show through simulation that this applies to single node Delay-Coupled Reservoirs,which are
modeled by a single delay differential equation. The resulting fDCR (Fig 1A) successfully learns
nonlinear long-term-memory-dependent tasks concurrently, and with high accuracy (Figs 3–
5). We also show that memory storage is not only extended by an order of magnitude beyond
fading memory, but is practically infinite (Fig 6). These simulations serve to demonstrate that
with the added trained feedback, the fDCR combines sensitivity and stability. That is, the
fDCR’s high-dimensional dynamics consists of transient input-sensitive representations, and
attractor states where stable memories are stored.

Fig 6. Experiment 4: stable storage of the cue through a longitudinal simulation. (A) A noisy version of

the desired feedback signal (teacher forcing). (B) Trained feedback operating on input data with randomly

timed cues. (C) Stability test phase where no more cues are input to the fDCR.

doi:10.1371/journal.pone.0165170.g006
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A few issues remain to be addressed in the future. First, all tasks (Figs 3–5) require long-
term memory and knowledge of the current input value only, with no demands for fading
memory (in the exception of the feedback signal, which requires computing the highly-nonlin-
ear exclusive-nor operation between the current and previous cue values [30]). The perfor-
mance for more complex tasks, for which the target function depends on both long-term
memory and fading memory, remain to be explored. We expect, as in the case of conventional
reservoirs, that more complex computations require more complex systems. However, while
complexity in conventional reservoirs can be controlled by the number of neurons, simply
increasing the number of virtual nodes in a DCR does not immediately lead to improvement.
This is because increasing the number of virtual nodes within constant delay τ also increases
cross-correlations, since the delays between virtual nodes become shorter. The complexity of a
DCR can only be controlled by understanding the tight interplay between the number of virtual
nodes and their location, the total delay, the mask structure, and the nonlinearity responsible
of mixing past and current inputs [8].

Furthermore, the error margin was exceeded between the desired and target feedback sig-
nals in some longitudinal simulations (as in Fig 6). The feedback signal does approach the
desired feedback value shortly after a cue. However, it directly starts drifting towards the sec-
ond desired feedback value within a relatively short timespan of about 2000 reservoir time
steps, which is much higher than the limits of fading memory. This drift may be due to subopti-
mal choice of reservoir parameters or to the mask structure, which may result in insufficient
fDCR effective dimensionality to support both stable storage of cue signals and fading memory
of input. No parameter optimization was carried out here, since the main goal of demonstrat-
ing the potentials of trained feedback was met. Parameter optimization methods are currently
under development, and a technique for improving mask structure through plasticity is now
available [8]. These tools could provide the way to circumvent the above issue of feedback sig-
nal drift.

The current results are only based on numerical simulations, while a rigorous proof of the
universal computational power of fDCR remains to be shown. Following the same line of proof
as in ODE based reservoirs [25] is not feasible, since sufficient analytical tools to deal with non-
linear delay differential equations are still unavailable [36]. A direct benefit to such analytical
tools is providing a theoretical basis to the generalizability of the current findings to other non-
linearities. This, in its turn, is highly relevant to successful physical realizations of fDCRswith
naturally occurringnonlinearities [33].

Finally, it is tempting to relate delay-based computational architectures such as the DCR to
computational biology, especially that delays are abundant in nature. One noted similarity is
that both the DCR and single neurons function on multiple time scales. A neuron receives, at
different delays, hundreds of signals in the form of postsynaptic potentials (PSPs) from its
afferents and integrates these subthreshold PSPs nonlinearly as action potentials emitted at a
slower time scale. Similarly, the DCR nonlinearly integrates faster time scale activity of its vir-
tual nodes to generate its output at a slower time scale. The correspondence, however, is not
one-to-one, since the DCR, following a high level of activity, does not undergo a reset of its out-
put. Given the current choice of saturating nonlinearity, the DCR acts more as a mean-field
[37] or a firing rate model [38], rather than as a single spiking neuron, and DCRs with resetting
nonlinearities similar to spiking neurons remain to be tested. In addition, computations at
even slower time scales, corresponding to neural networks can be envisaged in a DCR setting
by adding extra delay lines [39, 40] or coupling multiple DCRs to one another. In summary,
the DCR architecture provides a fertile ground for studying neural computations based on
delays, the harvest of which will occupy research for years to come.
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Supporting Information

S1 Fig. The readout training procedure avoids overfitting the target. (A) Comparison
between desired (blue) and observed (orange) fDCR output signal d3 in Experiment 3
(zoomed-in, different run from Fig 5). The training procedure results in a readout that is both
robust against outliers (y< 1) and is capable of tracking the desired target accurately. (B) Scat-
ter plots of the target verses observedoutput for both training (yellow) and validation (brown)
data sets. (C) Correlation coefficient between desired and observed fDCR output for both train-
ing (brown) and validation (yellow).
(TIF)

S2 Fig. Computing the product of random input and ramping feedback signal. (A) Com-
parison between desired (blue) and observed (orange) fDCR output signal dð�tÞ ¼ dtf

f � ju
arbð�tÞj.

(B) Scatter plots of the target verses observedoutput for both training (yellow) and validation
(brown) data sets. (C) Correlation coefficient between desired and observed fDCR output for
both training (brown) and validation (yellow).
(TIF)
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