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A large number of studies suggest that the integration of multisensory signals by humans

is well-described by Bayesian principles. However, there are very few reports about

cue combination between a native and an augmented sense. In particular, we asked

the question whether adult participants are able to integrate an augmented sensory

cue with existing native sensory information. Hence for the purpose of this study, we

build a tactile augmentation device. Consequently, we compared different hypotheses of

how untrained adult participants combine information from a native and an augmented

sense. In a two-interval forced choice (2 IFC) task, while subjects were blindfolded and

seated on a rotating platform, our sensory augmentation device translated information

on whole body yaw rotation to tactile stimulation. Three conditions were realized:

tactile stimulation only (augmented condition), rotation only (native condition), and both

augmented and native information (bimodal condition). Participants had to choose one

out of two consecutive rotations with higher angular rotation. For the analysis, we

fitted the participants’ responses with a probit model and calculated the just notable

difference (JND). Then, we compared several models for predicting bimodal from

unimodal responses. An objective Bayesian alternation model yielded a better prediction

( 2χred = 1.67) than the Bayesian integration model ( 2χred = 4.34). Slightly higher

accuracy showed a non-Bayesian winner takes all (WTA) model ( 2χred = 1.64), which

either used only native or only augmented values per subject for prediction. However,

the performance of the Bayesian alternation model could be substantially improved

( 2χred = 1.09) utilizing subjective weights obtained by a questionnaire. As a result, the

subjective Bayesian alternation model predicted bimodal performance most accurately

among all tested models. These results suggest that information from augmented and

existing sensory modalities in untrained humans is combined via a subjective Bayesian

alternation process. Therefore, we conclude that behavior in our bimodal condition is

explained better by top down-subjective weighting than by bottom-up weighting based

upon objective cue reliability.
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INTRODUCTION

Humans sample information from their environment by many

senses. In most circumstances (i.e., outside of the lab), behavior

is not guided by a single modality but by a combination of

several modalities. In the last decade many studies have shown
that this process follows optimal Bayesian principles (Ernst and

Bülthoff, 2004; Körding andWolpert, 2004, 2006). A core concept
of Bayesian integration is that perceptional noise (variance)

is reduced in multimodal conditions, improving the precision

of later decision processes. Many studies concentrated on the
combination of visual and haptic cues. Ernst and Banks (2002)
showed that visual and haptic information about object sizes are
statistically optimally integrated. Extending this idea, Helbig and
Ernst (2007) demonstrated optimal integration between vision
and touch also for the shape of objects. Similarly, Reuschel and
colleagues showed that visual and proprioceptive information are
integrated in a statistically optimal manner for the perception
of geometric trajectory (Reuschel et al., 2010). Moreover, several
other combinations of senses have been investigated. Battaglia
and colleagues found that visual and auditory information are
optimally integrated in a spatial localization task (Battaglia
et al., 2003). Frissen and colleagues reported optimal integration
between proprioceptive and vestibular information for spatial
updating (Frissen et al., 2011). Accordingly, Butler and colleagues
argued that visual and vestibular signals are integrated in a
Bayesian way for heading estimation (Butler et al., 2010). All in
all, there is rich evidence that sensory information from different
modalities is integrated following optimal Bayesian statistical
principles.

While the concept of Bayesian optimal integration has been
confirmed throughout several experimental paradigms, recent
studies showing that integration happens only for redundant
sensory information, i.e., both signals have to “describe” the
same physical property. In this respect, Körding and colleagues
demonstrated that the perceived causal relationship of two
sensory signals is a prerequisite for sensory integration (Körding
et al., 2007). Wozny et al. (2010) provided further evidence,
sowing that the majority of their subjects used a probability
matching strategy in a perceptual decision task. Furthermore,
the integration of two sensory modalities requires a mapping
between the two kinds of information. Mapping in this context
refers to the cross-modal associations or correspondences of
the sensory cues. For instance, there is a certain mapping of
how it feels to hold an object in your hand and how it looks
like. This association changes with the softness or weight of
the object. Importantly, people can learn such a mapping, even
if no prior coupling existed before. In particular, Ernst (2007)
showed that subjects were able to optimally integrate visual cues
(brightness) and haptic cues (stiffness). Similarly, Kaliuzhna and
colleagues demonstrated that subjects integrated arbitrary co-
occurring self-motion (vestibular) and visual cues (Kaliuzhna
et al., 2015). Furthermore, Kuang and Zhang introduced a new
visual-olfactory mapping. In their study the researchers linked
two different smells to opposite movement directions in a dot
movement discrimination task. After establishing such a pairing
the presentation of the olfactory cues biased the perception of

visual motion direction (Kuang and Zhang, 2014). For a detailed
review regarding cross-model mappings also see Ernst (2006).

If new sensory-mappings are optimally integrated without or
after very short training sessions one could ask the question, do
humans innately integrate two co-occurring signals? If not, what
would be possible alternatives? In 2008, Nardini and colleagues
tested the concept of Bayesian optimal integration in a navigation
task with three different age groups: children of 4–5 years of age,
children of 7–8 years of age, and adults. Interestingly, they found
that both groups of children did not integrate optimally between
visual and proprioceptive cues but rather alternated between
them. In contrast, adults performed the same task in a “Bayesian
optimal” manner (Nardini et al., 2008). Similarly, Gori and
colleagues reported that integration of vision and touch before
8 years of age is far from optimal (Gori et al., 2008). According
to the authors, this was the case even when the dominating sense
was made far less precise than the neglected sense. These results
provide evidence that the capability of integrating information
in a Bayesian optimal way requires several years of experience
and is not an inherent property of our brain. More recently,
Chen and McNamara tested how people integrate visual and
self-motion cues during spatial navigation and found evidence
for Bayesian Alternation even for some adult subjects (Chen
and McNamara, 2014). Besides Bayesian Alternation, there is
of course the possibility that people only use one cue and
completely neglect the other. However, in such a case there is no
cue combination, or multisensory processing at all. In fact also
other recent studies provide evidence for cue alternation behavior
(de Winkel et al., 2013, 2015; Adams, 2016). The general idea
behind Bayesian cue alternation is that both cues are used for
the task; however, they are never used at the same time. Instead,
the subject switches between one and the other cue based on a
Bayesian probability selection mechanism. Hence for each trial
one or the other cue is selected while the probability for selecting
one cue over the other is given by the respective relative weight
for each cue. In summary, several studies in the last decade found
evidence for cue alternation behavior. To our understanding this
deviates from themajority of findings regarding Bayesian optimal
integration and needs to be investigated in more detail.

The mechanisms that underlie the transition from cue
alternation to cue integration are usually observable only in
children or when sensory signals are explicitly manipulated (i.e.,
adding sensory noise). However, it is unclear what happens
when adult subjects are equipped with a new sense (or an
augmented sensory-like cue). Are we able to integrate such new
information with the cues we receive from our native modalities
or do we have to choose and rather alternate between the two
(similar as children do)? In other words, it is most interesting
to examine adults’ performance when they are provided with
a new, augmented sense which they have to combine with
information from their existing (native) senses. We specifically
ask the question: Is such a process similar or different to the
ones observed in children? Throughout this paper we use the
term “native modality” to refer to the information mediated
by angular rotation through native sensors like the vestibular
system, and augmented modality to information mediated by a
sensory augmentation device, even as the subjects did not receive
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a formal training. Angular rotation in our setup was implemented
by a rotaing platform on which the subjects were seated, while
the augmented information was mediated via tactile stimulations
(for details see the Section Experimental Paradigm). Although
different combinations of sensory modalities are imaginable
for sensory augmentation, tactile augmentation devices have
preferentially been used in many research setups (Bach-y-Rita
et al., 1969; van Erp and van Veen, 2003; Tsukada and Yasumura,
2004; Lindeman et al., 2005; Nagel et al., 2005). Besides academic
research, the field of sensory augmentation recently also gained
a lot of interest from industry. Many big companies lately
introduced devices for augmented reality (e.g., Google Glasses,
Microsoft Hololens, BMW Augmented Vision). However, while
more products hit the market, there is a poor understanding
of the underlying behavioral and neuronal mechanisms that
reflect the process of combining the augmented and native
senses.

Recently, Kaspar et al. (2014) performed a longitudinal study
with a tactile augmentation device (the feelSpace belt) and
reported that subjects developed an altered perception of space
after a few weeks of training. Furthermore, it has been shown
that tactile augmentation is particularly useful both in a visual
search task (Wahn et al., 2016) as well as when participants are
deprived of visual information (Faugloire and Lejeune, 2014).
Hence, for the purpose of the current study, we built a rotating
platform that was linked to a tactile augmentation device. In
particular, we aimed to investigate whether people instantly
combine an augmented tactile sense with vestibular information
on whole body yaw rotation. Also none of the participants
received any training with the augmentation device, as we
intended to investigate the ability to instantaneously integrate
augmented and native sensory information, rather than long-
term training effects. As the main goal, we then compared
prediction performance for the bimodal condition between a
“winner takes all” (WTA) model and three more complex
models: The Bayesian optimal integration model, and two types
of Bayesian alternation models, one using objective measured

weights and the other using subjective weights obtained via a
questionnaire.

METHODS

Tactile Augmentation Device and Rotating
Platform
Altogether we tested our participants in three conditions:
rotating on the platform (native condition), receiving tactile
vibrations around their waist (augmented condition), and both,
rotating on the platform with simultaneous tactile vibrations
(bimodal condition). Similarly to other setups in multimodal
research, we employed a two-interval forced choice paradigm
and tested participants in the two unimodal conditions (native
or augmented) and the one bimodal condition (native plus
augmented). Importantly, the tactile augmentation device and
the rotating platform were precisely synchronized such that
both signals provided redundant information. The tactile
augmentation device (hereafter referred to as “tactile belt”) can,
as the name suggests, be worn around the waist. An external
computer controlled all 32 vibro-motors remotely via a serial port
connection. The belt itself (Figure 1A) is made of a flexible fabric
such that people with different abdominal sizes could wear it
comfortably and the angular distance between two neighboring
vibro-motors remained constant (∼11.25◦). During the whole
experiment, all participants wore the belt just above their t-
shirt or undershirt so that the elicited vibrations could be felt
easily. When the tactile belt was switched on, at all times exactly
one vibro-motor was active. For example, a rotation of 180◦

was accompanied by successive activation of half of the vibro-
motors. Belt design and technology have been described in detail
before (Nagel et al., 2005; Kärcher et al., 2012). To experimentally
control angular rotation, we built a rotating platform with a
chair fixed in the middle of it (Figure 1B). The platform could
be remotely controlled, and precise parameters about angle and
speed were adjusted on a trial-to-trial basis. Importantly, in

FIGURE 1 | Sensory augmentation device and rotating platform. (A) Shows the tactile sensory augmentation device with its main components. (B) Illustrates

the experimental setup. A participant is sitting on the chair fixed on the rotating platform and is wearing the tactile belt. He is additionally provided with an eye mask

and headphones for noise cancelation. The participant is holding the response box in his hands.
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the bimodal condition the vibration direction of the tactile belt
was opposite to the rotation direction of the platform. In our
setup, participants sat on the chair, were blindfolded, and wore
headphones through which we played pink noise. Additionally,
all participants held a response box with both hands, which was
used for giving the required responses. They either pressed the
left or the right button (indicating selection of the first or second
rotation, respectively). A consecutive press on a button in the
middle started the next trial.

Experimental Paradigm
Overall, the trial design was similar for all three experimental
conditions. Importantly, the task and the information provided
was identical, however, what varied between conditions was
the type of sensory modality by which the information was
provided. In the augmented (tactile-only) condition, only the belt
vibration was activated. Here, participants had to judge angular
differences purely based upon the successive tactile vibrations.
In the native condition, only the platform rotated, so that the
subjects had to rely only on rotational information. In the
bimodal condition both the tactile belt and the platform were
switched on synchronously and, therefore, subjects could use
both sources of information. In all conditions, a trial consisted
of two consecutive rotations (in the augmented condition only
successive vibrations) with different angular sizes, with a one-
second inter stimulus interval in between. The participants’ task
was to choose either the first or the second rotation (2 IFC
task) depending on which of the two rotation angles was bigger.
The participants had to press the left button to indicate that
the first rotation was larger or the right button to indicate that
the second rotation was larger. In fact, in half of the trials the
first rotation was larger, and in the other half the second one
was larger. After making their choice, the participants confirmed
it by pressing the center button, whereupon which the next
trial started immediately. Each trial consisted of a reference
and a comparison stimulus. The reference stimulus was fixed
at 146.25◦ (equivalent to a distance of 13 intervals between
the vibro-motors) and kept constant throughout the whole
experiment. The comparison stimulus varied in steps of 11.25◦,
the distance between two adjacent vibro-motors. The order of
the reference and the comparison stimulus (i.e., which of the
two was the first rotation) switched randomly on a trial-to-trial
basis and was balanced overall for each subject and condition.
We implemented 11 different combinations of rotation angles,
ranging from five steps less than to five steps greater than the
reference value (90◦–202.5◦), plus the condition in which both
reference and comparison stimuli were identical. Each of these
angle combinations was repeated 10 times in a random sequence
within one modality condition. For all these trials, the speed was
set constant to about 42◦/s and the direction of the rotation was
the same within a trial, but varied (in a balanced way) across
trials. Additionally, we included 10 catch trials in each condition,
for which we changed the speed between the two rotations (42◦

vs. 32◦/s). Contrary to the “normal” trials, in the catch trials the
shorter rotation (in time) was associated with a wider rotation (in
rotational angle) and vice versa. This was used to evaluate how
much each condition was influenced by cognitive strategies (e.g.,

counting time). Catch trials and normal trials were randomly
intermixed. Altogether, each condition consisted of 120 trials that
were recorded in a block. Participants were offered a chance to
take a short break after each set of 40 trials and a larger break
after each block (condition). The breaks within one block ranged
from about 20 s to about 2min depending on the subjects arousal
level. The breaks between blocks ranged between 1 and 5min
also depending on the subject. Each session, including all three
conditions, lasted for about two and a half hours. All participants
came to the lab three times, and on each visit all three conditions
were measured. The order of the conditions was balanced across
subjects.

Participants, Data Cleaning, and
Questionnaire
Overall, 30 subjects were recorded within a period of about 5
months. However, two subjects did not complete all sessions,
which left us with 28 complete data sets (16 participants were
females). The age grand average of these participants was 24.03
years (SD = 3.3 years). All of the participants were students at
the University of Osnabrück and each subject received either
40 euros or eight “participant hours” (which are mandatory for
psychology and cognitive science students) as reimbursement for
their participation. Prior to the recordings all participants were
informed about the purpose of the study and signed information
and consent forms. Furthermore, ethical approval was obtained
by the university institutional review board. Although, we tried
to make the experience with the tactile belt as comparable
as possible for all participants, subjective tactile sensation was
arguably rather diverse. Hence, we removed the data of five
participants for which the just noticeable difference (JND) could
not be determined or could be determined only with very
high uncertainty. These participants presumably had difficulties
processing the tactile stimulus or misunderstood the task and the
inclusion of their data would thereby decrease the plausibility of
consecutive analysis. This procedure ensured that later analysis
was based on robust measures. This left a total of 23 participants
for the remaining analysis.

In addition to the two-interval forced choice task, all
participants were required to fill out a questionnaire after each
condition. The questionnaires were designed to find out how
intuitive and difficult each condition was and how participants
judged the reliability and relevance of the provided signals.
Almost all questions were defined on a Likert scale (1–5) such
that participants had to choose how much they agreed with
a certain statement. The questionnaire was identical for the
three sessions and most of the questions were also identical
between conditions. For instance: “the task was difficult,” or
“I was confident about my answers.” A few other Likert
questions varied slightly between conditions, e.g., “The belt’s
signal was intuitively understandable” vs. “The rotation signal
was intuitively understandable,” “The belt’s signal was prominent
in my perception” vs. “The rotation signal was prominent in my
perception.” Besides the Likert based questions we also asked the
participants to tell us which strategy they used from a fixed set
of options (the complete questionnaire is provided in Section
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questionnaires in the Appendix of Supplementary Material).
Completing a questionnaire after each condition and session all
subjects filed out nine questionnaires in total.

Analysis
The main analysis procedure can be summarized in three main
steps: First, the JND, the Point of subjective Equality (PSE),
and the uncertainty of the JND for each condition and subject
were estimated using a probit model. Second, based on the
observed unimodal JNDs, we calculated the predicted bimodal
JND (individually for each subject) for all tested models. Third,
using observed and predicted bimodal JNDs, we calculated
the reduced chi-squared statistic (χred

2) for each model. The
next two paragraphs will explain these steps in more detail.
Furthermore, we describe the questionnaire analysis in Section
Questionnaire Analysis.

Curve Fitting
In order to calculate the JND, we fitted for each subject and
condition a GLM with a probit link to the behavioral data.
The function is formalized in Equation (1), where β1 and
β2 are the two (optimized) parameters of the model fit and
the “norminv” function computes the inverse of the normal
cumulative distribution function (cdf). We needed to invert
Equation (1) in order to obtain the corresponding value of
angular difference (x) for a specific performance level. Then,
we used the asymptotic threshold of one standard deviation
of a cumulative binominal distribution function (84%) as the
corresponding angular difference of Equation (2) (y) and,
consequently, calculated the JND. This gave us a direct measure
of how precise each subject was able to distinguish the two
angular stimuli from each other, separately for each condition.
Next, we estimated the quality of the estimate of JNDs. Hence,
we applied the error propagation method using the matrix
formalism as described by Equation (3). Here, UJND represents
the uncertainty of the JND estimation, Vβ is the covariance
matrix of the betas, and Ji,j(β), shown in Equation (4), is the
Jacobian matrix. As an example plot Figure 2 demonstrates that
most of the participants showed a behavior well-described by
typical sigmoidal psychometric function.

β1 + x · β2 = norminv (y) (1)

xJND(β2) =
norminv (ythreshold)

β2
(2)

UJND =

√

diag
(

J(
−→
β )Vβ · JT(

−→
β )

)

(3)

Ji,j(β1, β2) =
∂xJND

∂βj
(β1, β2), j ∈ {1, 2} (4)

Model Comparison
The different models varied in their mathematical complexity
for predicting bimodal performance. The simplest model was a
static/intercept model which predicted always the same (mean)
value for all subjects. The next one was a WTA model, which
took either the native or the augmented JND (depending which
of them was smaller) to predict bimodal JND. The Bayesian

FIGURE 2 | Example logistic fit (native condition). The figure

demonstrates the performance of one participant in the native condition as an

example. The abscissa illustrates the difference between the two angular

rotations (reference—comparison angle) in degrees. The ordinate indicates the

probability to choose the reference angle. The green circles show the recorded

behavioral data, the solid red curve shows the logistic fit, and the dashed red

lines indicate the uncertainty of the fit. The magenta line depicts the Point of

subjective Equality, while the blue line depicts the sensory threshold, at one

standard deviation (84%) of the psychometric function. The distance between

the PSE and the intersection of the blue line with the abscissa represents the

JND.

optimal integration model and the Bayesian alternation models
were more complex. The Bayesian optimal integration model
can be expressed as shown in Formula (5), while the Bayesian
alternation model is described in Formula (6). µ illustrates
the PSE of the psychometric function while P stands for the
probability (i.e., relative weight) of each modality. In both
Formulas (5) and (6), σ represents the JND, na is the abbreviation
for the bimodal (native plus augmented) condition, n equals
the native-only condition, and a stands for the augmented-only
condition.

σ2na =
σ2n · σ

2
a

σ2n + σ2a
(5)

σ2na = Pn(µ
2
n + σ2n)+ Pa(µ

2
a + σ2a)− (Pn · µn + Pa · µa)

2 (6)

An interesting question regarding the Bayesian alternationmodel
is how to determine the probabilities for the two unimodal
modalities, Pn and Pa. We decided to implement two different
approaches. On the one hand, we used the observed objective
(although subject specific) reliabilities such that the native
probability could be formulated as described in Equation (7) and,
analogously, the augmented probability as in Equation (8).

Pn =

1
σ2n

1
σ2n

+ 1
σ2a

(7)

Pa =

1
σ2a

1
σ2a

+ 1
σ2n

(8)
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On the other hand, we calculated native and augmented weights
on the basis of the individual questionnaire responses. For
this procedure, we selected the following eight performance
relevant questions of the native and the augmented parts of the
questionnaire (“I have done similar tasks before,” “The task was
intuitive,” “The task was difficult,” “I think I performed well in the
task,” “I was confident about my answers,” “I felt comfortable with
the task,” “The belt / the rotation gave me relevant information
to solve the task,” “The belt/the rotation signal was prominent in
my perception”). As all these questions were answered on a Likert
scale, we could directly apply mathematical operations on them.
First, we averaged the responses of the three different sessions
separately for each question and then subtracted answers relating
to the native condition from those relating to the augmented
condition. As a result, for each question we knew whether
the augmented or the native task was more intuitive, difficult,
and so on (positive numbers indicated higher agreement in the
augmented task, negative numbers indicated higher agreement
in the native task). In order to combine the responses of all
questions, we applied a principal component analysis resulting
in eight different components. To further reduce dimensionality
and to calculate subjective weights we then considered only the
first component for further processing. Through this procedure
we reduced all questionnaire responses to one scalar per subject.
Finally, we normalized this number to the range of zero to
one using a logistic function. These values were then used as
augmented weights Pa. The native weights Pn were then defined
as the inverse 1 − Pa. Although the complexity in terms of
the mathematical expression varied between the models, we
want to emphasize that we did not optimize free parameters for
any model. In summary, we optimized the estimation for the
observed JND, but we did not fit/improve unimodal to bimodal
prediction performance by adjusting model parameters. Hence
the amount of free parameters (k) was zero, and consequently
the degrees of freedom (v = 22 = N − k − 1) were constant
throughout all investigated models.

Questionnaire Analysis
Themain goal of the questionnaire analysis was to create a deeper
understanding of the quantitative measurements. Therefore,
we first looked at single questions in the unimodal parts and

examined possible differences between the augmented and native
ratings. Second, we analyzed the categorical responses about
strategy use in all conditions in order to get a better estimate of
how each participant subjectively approached the task. Here, all
subjects had to choose one out of the following options: (a) tactile
cue only, (b) rotation only, (c) combination of both cues, (d)
counting time, (e) visualization, (f) random guessing, (g) other.
We decided to focus only on these two analyses in order to keep
a clear structure.

RESULTS

Control Statistics
First of all, we aimed to investigate whether the subjects exhibited
non-stationarities within and/or between sessions, for example,
in the form of learning or fatigue effects. Hence, we split the data
for each condition and session into the first and second “block-
half ” and performed three separate repeated measures analyses
of variance (one for each condition) with session and block-half
as independent (repeated) variables and the number of correct
responses as dependent variable. Catch trials were not considered
in this analysis. However, as shown in Figure 3, neither session
nor block-half nor the interaction of both factors revealed a
significant influence in any of the three conditions (please find
the analysis of variance tables in the Appendix in Supplementary
Material). This indicates that the subjects’ performances were
constant within and between sessions. As the data did not reveal
any indication of learning or fatigue effects, we then collapsed the
data over all three sessions and calculated the amount of correct
responses separately for each angle combination.

Comparing Conditions
After calculating the JNDs and PSEs (see Section Curve Fitting),
we compared both measures between experimental conditions.
Figure 4A displays the results for the PSE. First we applied
separate t-tests for each condition to test whether the PSE was
different from zero. While for the augmented condition [t(22) =
0.109, p = 0.914] and the bimodal condition [t(22) = −1.726,
p = 0.098] the PSE was not significantly different from zero, the
native condition revealed a significant difference [t(22) =−7.422,
p=< 0.001]. Furthermore, we analyzed the PSE using a repeated

FIGURE 3 | Investigation of learning effects. The abscissa divides the data of the three different sessions and the data of each session between the first half and

second half of the block, separated by condition. The ordinate indicates the performance as a percentage. The error bars illustrate the average performance with the

error bars representing the standard error of the mean.
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FIGURE 4 | Comparing conditions. (A) Shows the PSE (on the ordinate)

separately for the three different conditions on the abscissa as a mean over

subjects. The asterisks below indicate the significance level for the difference

of the SPE to zero. The asterisks above show the significance level for the

comparisons between conditions. (B) Shows the JND again separately for the

three different conditions on the abscissa and as a mean over subjects. The

asterisks illustrate the level of significant differences between conditions.

measures ANOVA for the factor condition, which revealed a
significant effect [F(2, 44) = 7.976, p = 0.001, partial η2 =

0.266]. Post-hoc comparisons confirmed a significant difference
between the native and the augmented PSE (p = 0.001), but no
significant difference between the augmented vs. bimodal PSE
(p = 0.101). The native vs. bimodal contrast was borderline
non-significant (p = 0.051). Importantly, as a measure of the
subjects’ performance we analyzed the JND; Figure 4B illustrates
these results. For the statistical analysis of the JND we also
applied a repeated measure ANOVA. The result revealed a main
effect of condition [F(2, 44) = 17.869, p < 0.001, partial η2 =

0.448]. Post-hoc pair-wise comparisons confirmed that the JND
in the augmented condition was higher than in the native (p <

0.001) and the bimodal (p = 0.010) conditions. The JND in
the bimodal condition was, in turn, higher than in the native
condition (p = 0.003). Hence, the native condition resulted
in the best performance, followed by the bimodal condition;
the augmented (tactile) performance was the worst. This rather
compelling result indicates that native and augmented sensory
modalities were not combined in a “Bayesian optimal way,” as
this would require that the bimodal JND is less or equal than
in either single modality. This raises the question of alternative
models to be compared in the following investigation. As it is
the gold standard in many studies on multisensory integration,
we kept the Bayesian integration model in the model comparison
procedure and compared it to several alternatives as described in
the next paragraph.

Model Comparison
The main goal in our study was to determine the cognitive
mechanism that underlies the combination of the augmented and
native sensory cues provided. To address this central question
of the study, we compared the five different models in their
accuracy to predict the bimodal JND given the unimodal JNDs
[Intercept,Winner Take All (WTA) optimal Bayesian integration,
objective Bayesian alternation, subjective Bayesian alternation].
In particular, we combined the model prediction with the
uncertainty measurement to calculate the reduced chi-squared
value (χred

2), as shown in Formula (9).

χ2
red =

1

v

n
∑

k= 1

(JND2
observed

− JND2
estimated

)2

(JND2
uncertainty)

2
(9)

This gave us a measure of how much variance each model could
explain compared to the optimum (χred

2 = 1), when all structure
is explained and the residual variance is due to noise only. Our
results show that the intercept model is a poor fit for the data
(χred

2 = 10.95) and leaves a lot of variance to be explained.
Figure 5 summarizes the result for the other four models of
interest. Although the Bayesian integration model (Figure 5A) is
clearly a better model than the intercept model, it also leaves quite
some variance to be explained (χred

2 = 4.34). While the objective
Bayesian alternation model outperformed the integration model
(Figure 5C, χred

2 = 1.67), the WTA model predicted bimodal
behavior even slightly better (Figure 5B, χred

2 = 1.64). However,
using subjective weights for the Bayesian alternation model,
prediction performance could be significantly improved such
that it had the highest prediction rate and lowest residual variance
among all tested models (Figure 5D, χred

2 = 1.09). In fact, the
χred

2 of the subjective Bayesian alternation model is very close to
the optimum of χred

2 = 1.00.

Subjective vs. Measured Reliabilities
To better understand the differences between the two types of
Bayesian alternation models, using different unimodal weights
Pn and Pa, we implemented an optimization procedure to find
the weights that yielded the optimal prediction accuracy for
each subject (referred to as the “optimal predicted weights”).
That is, we did not investigate how subjects could perform
optimally, but which type of weights for native and augmented
modality (per subject) would optimally explain the data as
they were observed. The two weights that were used in the
model comparison procedure (objective and subjective) were
then analyzed against these optimal predicted weights using a
linear regression. As shown in Figure 6A, the comparison of the
optimal predicted weights and the objective (based on unimodal
performance) weights were uncorrelated [r(22) = 0.0008, p =

0.887]. In constrast, the subjective (questionnaire-based) weights
showed a strong and significant correlation with the optimal
predicted weights [r(22) = 0.4782, p < 0.001, Figure 6B].
This result indicates that compared to the objective/measured
reliabilities, the subjective evaluations (weights) better captured
the intersubject variability of cue preferences.

Strategy Assessment
All participants were deprived of visual information and could
not use auditory information due to the pink noise played on
the earphones. As angular rotation activates the semicircular
canals, which are part of the vestibular system, the main sensory
input here was the vestibular modality (for that reason we
use the term native modality). However, processing angular
rotation without visual information might have been a rather
unusual experience for many of our participants. In theory,
participants could therefore have also used some more cognitive
strategies like counting time or visualizing images. In order
to address this question, we analyzed the catch trials and the
subjective questionnaire data (directly asking for the strategy
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FIGURE 5 | Model comparison. The abscissa shows the predicted squared JND; the ordinate shows the observed squared JND in the bimodal condition. Each

black dot shows the predicted vs. the observed value for one subject. The error bars around the black dots illustrate the uncertainty of the observed bimodal values.

The gray dashed diagonal line represents the ideal prediction. The resulting χred
2 is plotted for each model. (A) Bayesian integration. (B) Winner takes all. (C)

Bayesian alteration (objective weights). (D) Bayesian alteration (subjective weights).

employed). For the catch trial analysis, as shown in Figure 7A,
we compared the performance in three types of trials: first, the
performance in the catch trials itself, which had reversed angular-
time differences; second, the performance in trials with the same
angular difference as in the catch trials (11.25◦) but a much
shorter time difference (∼250ms); and third, the performance
in trials with 45◦ angular difference, as they were most similar
in the time domain to the catch trials (∼1100ms difference), but
very different in the angle domain. Figure 7B shows that in the
augmented tactile task, performance in the catch trials (blue) was
more similar to the trials with the same angle difference (green),
compared to the trials with the same time difference (red).
This supports the view that subjects used angular but not time
information in this condition. However, this pattern was reversed
in the native task, such that catch trial performance in the native
task was more similar to same-time trials. Hence, the native
task was clearly influenced by time (counting) information. The
bimodal task performance was again in between these two, with
a trend toward the angle-based trials, supporting the idea that
signal/strategy usage alternated on a trial-to-trial basis. Figure 7C

illustrates the results of the subjective strategy assesment. In the
respective (bimodal) question “Which strategy did you use to
solve the task?” all subjects had to choose one out of following
the options: belt only, rotation only, combination of belt and
rotation, time counting, visual imagination, random guessing,
other strategy. As the last three options (visual imagination,
random guessing, and other strategy) were chosen only rarely
(each <8%) we summarized them to “other strategies.” Overall,
the results of the questionnaire analysis are in line with the catch
trial analysis. Subjects reported to have used the time information
in only 8 out of 69 sessions for the augmented tactile task. In
the bimodal condition, subjects reported that counting time was
their preferred strategy in 12 out of 69 sessions. Again, the native
task showed a reversed picture. Here, participants reported that
they were counting time in 38 out of 69 sessions (23 subjects ∗

3 sessions = 69 total sessions). Overall, both questionnaire and
catch results indicate that most subjects relied on cue processing
in the augmented and bimodal tasks and suggest that counting
time and other cognitive strategies played a major role in the
native condition.
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FIGURE 6 | Correlation of measured and computed weights. The ordinate shows the individual tactile weights that lead to the best possible model fit of the

Bayesian alternation model. (A) Shows the correlation of the best weights and the actual measured weights based on measured reliability. (B) Shows the correlation of

these estimated weights and the weights calculated from the questionnaire data. Each black dot represents one participant. The gray lines show the least square

linear fit to the data.

Relevance and Dominance of the Signals
As a final step, we investigated differences between augmented
and tactile questionnaires for individual questions. Most
questions did not reveal interesting or significant differences
between the augmented condition and the native condition.
Figure 8 contrasts the agreement (mean over subjects) for the
following four questions between the native and the augmented
condition: 1. “The belt/the rotation gave me relevant information
to solve the task,” 2. “The belt/the rotation signal was prominent
in my perception,” 3. “The task was intuitive,” 4. “The task
was difficult.” The analysis showed that the native task was
perceived as more difficult; however, the difference from the
augmented task was not significant [t(22) = −0.91, p = 0.373].
In line with this observation, subjective decision confidence was
higher in the augmented condition, but again failed to reach
significance [t(22) = 1.21, p = 0.2402]. However, two other
questions showed clear effects; the first was signal relevance, the
other was probing signal dominance. Participants judged the
tactile belt as providing information with higher task relevance
compared to the angular rotation of the platform [t(22) = 3.34,
p = 0.0030]. Similarly, the belt was rated to be perceptually
more dominating [t(22) = 4.36, p = 0.0002] than the native
information.

DISCUSSION

Summary
We tested whether untrained adult participants are able to
use augmented tactile information in a two-interval forced
choice task and examined how such augmented information is
combined with information from native senses. Psychometric
data and consecutive statistical analysis show that all subjects
were able to solve the task using only the tactile information from
the augmented sense. Hence, even without prior information
or experience the participants were able to use the supplied

augmented tactile information for the current task. The
model comparison demonstrated that the subjective Bayesian
alternation model had the highest prediction performance. This
model reflects the idea that on each trial a subject is using one
or the other sensory signal provided, caused by a (probability
based) Bayesian selection mechanism. This finding is in line with
earlier findings on Bayesian Alternation observed in children
(Gori et al., 2008; Nardini et al., 2008). However, a more
precise look at the data revealed that about half of the subjects
strongly preferred one of the cues (native or augmented) while
the other half used both cues more evenly. As a result, the
respective weights for subjects with such strong preferences are
matching a simple winner take all (WTA) strategy where these
weights are set to one and zero, respectively. Although such
behavior could be described with a much simpler WTA model,
the Bayesian alternation model yields clearly higher prediction
performance on a group level. This was due to the fact that
the other half of the subjects alternated between both cues
more often so that this behavior was better captured with the
Bayesian alternation model. Altogether one can say that the
spectrum of cue preferences was rather continuous between
subjects. Some subjects preferred the augmented cue, some
others preferred the native cue, and again many others were in-
between these extremes. To put it differently, one can consider
the subjective Bayesian alternation model as an extension of a
WTA strategy. In particular it is more flexible as it allows to
alternate signal usage on each trial compared to each subject
(but doesn’t require it). Moreover, we would like to point out
that this does not involve fitting free parameters, but is purely
based on observed unimodal performance and questionnaire
data. The difference in prediction performance between objective
and subjective alternationmodel is of further interest. Hereby, we
demonstrated that a combination of qualitative and quantitative
data represents an interesting and advantageous method in the
field of multimodal research.
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FIGURE 7 | Strategy assessment. (A) Displays the velocity profiles of the different trial types that were analyzed in the catch trial analysis. The green line represents

a “hard trial,” with small angular difference. The red line shows an easy trial with large angle (and time difference). The blue line illustrates the catch trial with inverted

angle-time difference (the shorter rotation took more time). (B) Displays the result of the catch trial analysis. The abscissa separates the three experimental conditions.

The ordinate illustrates average performance across subjects. The blue error bars show the performance in the catch trials, the red error bar shows the performance

for the easy trials (same time difference as catch trials), and the green error bars show the performance for the hard trials (same angular difference as the catch trials).

(C) Shows the result of the questionnaire analysis regarding subjective strategy use. The abscissa again separates the three experimental conditions and the ordinate

indicates the proportion of subjects using a particular self-assessed strategy. The different strategy types are color coded and labeled.

Potential Shortcomings of the Study
One concern in the current study is related to the native modality
condition. Although sensory input was provided only to the
vestibular system, roughly half of the participants presumably
involved a cognitive strategy such as counting time. However,
the vestibular system necessarily has to integrate information
over time and cannot provide an absolute reference. Hence, it
would not be reasonable to assume that time information does
not play any role for the vestibular system. From this perspective,

we argue that the vestibular sense is to some extent a “time-angle
integrator.” This idea was also discussed in a study by Berthoz
et al. (1995). Furthermore, the catch trials were the hardest trials
to solve with an angle-based strategy, as they not only had a
very small angular difference, but also particularly long rotations
(202.25◦ vs. 191◦). Hence, subjects who aimed to use angular
information in catch trials basically had to guess. As a result,
some subjects might have used the counting strategy mostly in
the catch trials in order to avoid guessing. Grondin and colleagues
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FIGURE 8 | Signal perception. The abscissa separates the tactile and the

vestibular condition. The ordinate indicates the level of agreement for a certain

question. The error bars are standard errors of the mean. The asterisks

indicate the level of significant difference between the two conditions.

showed that humans benefit from a time counting strategy
especially when judging intervals longer than 2.5 s (Grondin
et al., 1999). Similarly, Clément and Droit-Volet showed that
adults temporal sensitivity increases with explicit time counting,
while this is not the case for children (Clément and Droit-Volet,
2006). In fact, fewer participants subjectively claimed in the
questionnaire to have used a time-counting strategy as the catch
trial analysis suggested. In conclusion, we argue that the native
condition was influenced by both vestibular signals as well as
higher cognitive strategies, in particular counting time. However,
cognitive strategies did not make a major contribution in the
augmented (tactile) or in the bimodal condition. Altogether,
the investigation of signal/strategy use supports the idea that
the majority of subjects used a subjective Bayesian alternation
process to combine both sensory stimuli.

A second issue concerns the tactile belt and differences among
individuals. Although, we tested the augmentation device before
each session, some subjects reported that they sometimes did
not properly feel the vibration. Differences in waist size, position
of the vibro-motors, undershirt material, and the participant’s
ability to differentiate tactile stimulations might have altered
perception of the tactile sensation. Due to technical limitations,
in some cases one or the other vibro-motor might also have
vibrated less strongly than others. To counteract these issues, we
removed participants for whom we could not reliably estimate
the psychometric performance (JND) that was later needed
in the model comparison and other analysis (as described
in the Method Section). Our results clearly show that most
subjects follow a subjective Bayesian alternation strategy for the
combination of native and augmented sensory cues. However,
differences among individuals were strong enough that our
conclusion is reasonable for the majority of the subjects, but not
for each and every individual. Weights that led to an optimal
prediction showed that many participants strongly preferred the
augmented cue, while other subjects had a clear bias in favor
of the native signal, and still others lay in between these two
extremes. Importantly, the subjective questionnaire data helped

to better understand those individual differences in performance
measures and time-counting strategies. All in all, subjective
and objective measurements nicely match and complement each
other and hereby create a more complete picture of the reported
findings.

Integration vs. Alternation
Many studies suggest that human multimodal processing
involves “optimal integration.” Without arguing against such an
overwhelming and high quality amount of empirical evidence,
our findings qualify this statement to some extent. In fact, a
closer look into the literature reveals that several studies reported
deviations from the “standard” Bayesian integration model. One
of best examples were reported by Nardini and colleagues as
well as Gori and colleagues, both providing clear evidence
that optimal integration is not present in children until the
age of 8 years (Gori et al., 2008; Nardini et al., 2008). Most
recently, Adams compared different integration models with an
audio-visual temporal judgment task and similarly reported that
older participants employed a partial integration strategy while
younger participants (<8 years) did not integrate, but instead
switched between the two sensory signals provided (Adams,
2016). Besides research with infants, there is evidence that under
certain circumstances even adults do not integrate, but instead
alternate between two sensory cues. In particular, de Winkel
et al. (2013, 2015) performed a visual-vestibular cue combination
task in which adult participants were rotated around the yaw
axis, given either additional visual information or not. Most
interestingly, the authors reported that only about half of the
participants behaved in congruence with the Bayesian integration
model, while the others most likely alternated in the usage
between the two cues (de Winkel et al., 2013, 2015). One
of the possible explanations for both, our results as well the
experiments from de Winkel et al. (2013, 2015) would be that
the two sensory signals were not perceived to have a common
cause (Körding et al., 2007), although they were supplying
redundant information. As Ernst (2007) and Kaliuzhna et al.
(2015) showed, it is possible that humans (directly) integrate
two arbitrary associated sensory signals. However, combining
rotational information and (augmented) tactile stimulation
might require a more complex mapping than the visual-haptic
associations used in these studies. An interesting idea for a
follow up study of our paradigm might be to explicitly force
the integration, or at least comparison of both cues. In such a
scenario the information in the first interval could be provided
tactilely, while for the second interval the information would be
displayed via the platforms rotation (or vice versa). How well
participants can solve such a task needs to be addressed in future
research.

Multisensory Learning
The comparison of prediction performance between the Bayesian
integration model and the Bayesian alternation model showed
that participants in our study most likely alternated between
using augmented and native information. Research with infants
has provided evidence that optimal integration of sensory cues
is not a native mechanism, but instead has to be acquired (Gori
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et al., 2008; Nardini et al., 2008). Moving to the other side of
the age spectrum, Bates and Wolbers recently showed that the
combination of visual and self-motion cues becomes less than
optimal with age. The authors attribute this observation to neural
degeneration in entorhinal and hippocampal regions (Bates and
Wolbers, 2014). Accordingly, neural degeneration and atrophy
were shown to increase with age (Dickerson et al., 2001). In
general, recent studies have shown that multisensory influences
arise relatively early and by a variety of mechanisms (Driver and
Noesselt, 2008). In a review from 2008, Stein and Stanford argued
that many multisensory neurons exist in the superior colliculus.
Explicitly they showed that this region combines visual, auditory,
and somato-sensory input to control eye and head movements
(Stein and Stanford, 2008). Burnett and colleagues tested this
assumption by lesioning cats superior colliculus and conclude
that damage to this area directly causes a loss of multisensory
neurons which again led to a decrease of multisensory behavior
(Burnett et al., 2004, 2007). Hence, one can conclude that optimal
cue integration is experience dependent and relies on intact
neural structures.

While children presumably take a couple of years to
successfully integrate information originating from two native
modalities, it has been unclear until now how such a process
is established with an augmented sense in adults. Here, we
provide the first evidence that the majority of adult participants
combine augmented and innate sensory modalities using a
subjective Bayesian alternation strategy. However, we speculate
that intensive training with the sensory augmentation device
could lead to a shift in the cue combination strategy. Specifically,
over time Bayesian cue alternation might be replaced by optimal
Bayesian cue integration, which might be associated to casual
inference mechanisms described by Körding et al. (2007).
In such a scenario the augmented tactile stimulation would
improve overall performance. In line with this idea, several
studies showed that training alters the individual reliabilities
in a cue combination paradigm (Jacobs and Fine, 1999; Atkins
et al., 2001). Furthermore, Shams and Seitz (2008) provided
striking evidence that multimodal learning is more effective than
unimodal learning. Hence, as a next step we plan to conduct
a longitudinal study and investigate how training with the
augmentation device will change cue combination strategies in
adults.

Cue Combination and Attention
There has been a long debate whether attentional resources share
a common reservoir (Jolicoeur, 1999; Arnell and Larson, 2002) or
whether each modality has its own attentional resources (Potter
et al., 1998; Talsma et al., 2006; Martens et al., 2010; Wahn and
König, 2015a,b, 2016). In fact, attention might have played an
important role also in our study. Subjects reported that the tactile
stimulation dominated their perception to a significantly stronger
degree than did the angular rotation. Hence the participants’
attention was driven toward the tactile stimulation. The observed
Bayesian alternation process can therefore also be understood
as an attentional mechanism. In this view, both cues rivaled for
attentional focus such that it switched on a trial-to-trial basis,
with a probability that was based on subjective reliability. In

conclusion, our results support the idea of a shared reservoir of
attention for native and augmented sensory cues.

A second issue is concerned with the attentional load. Several
studies suggested that attentional or perceptual load modulates
multisensory integration (Alsius et al., 2005; Mozolic et al.,
2008; Klemen et al., 2009). Oppositely, Helbig and Ernst (2008)
demonstrated that haptic cue weighting is independent of
modality-specific attention. Similarly,Wahn andKönig (2015a,b)
showed the existence of optimal integration between visuotactile
and audiotactile cues even under high attentional load. In our
study, attentional load was not modulated; however, considering
the fact that cognitive strategies such as counting time played
a major role only for the native but not for the augmented
condition, future investigations with varying attentional load
might reveal interesting new insights.

Subjective vs. Objective Measurements of
Reliability
Our results demonstrate that objective measured reliability was
higher in the native condition compared to the augmented
condition. Similarly, Fetsch and colleagues demonstrated that
vestibular cues are overweighted in low-reliability conditions
(Fetsch et al., 2009, 2011). However, our participants reported
(subjectively) that the tactile belt provided the more relevant
information for the task, and the confidence ratings were slightly
higher in the tactile condition. This discrepancy between the
subjective awareness of a signal’s reliability and its objective
reliability based on the performance measurement is surprising.
A direct conclusion from such an observation is that participants
in our study arguably did not represent an “objective ideal
observer,” which many studies have proposed as a general
mechanism of sensory cue combination (Blake et al., 1993; Ernst
and Bülthoff, 2004; Landy et al., 2011). Opposed to that, Knill
and Saunders (2003) introduced the concept of a “subjective
ideal observer” who behaves optimally according to subjective
certainty. To test such an assumption, we analyzed the subjective
strategy use during the presence of both signals (bimodal
condition). Interestingly, most subjects claimed to have used only
the belt’s signal. In that sense, subjects did not behave optimally
with respect to external measurements of reliability, but indeed
behaved optimally with respect to the internal subjective rating
of the signal’s reliability. The signal that was rated to be more
relevant in the unimodal conditions was used with a higher
probability in the bimodal condition.

Nevertheless, the question remains as to why subjective and
objective reliability measurements differ in the first place and why
the subjective reliability led to increased behavioral prediction
accuracy for the bimodal task. One idea would be to look at how
easily and precisely the reliabilities of the two modalities can be
estimated. In particular, we assume that it is advantageous to use
information which is less reliable compared to information with
unknown or almost-unknown reliability (no prior), even though
in the end the latter might turn out to have been more reliable. In
this respect, a signal’s reliability might be positively biased if it can
be estimated easily and quickly. On the other hand, if a signal’s
reliability is difficult or time-consuming to estimate (e.g., due to
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the lack of feedback), it might be underestimated. We argue that
the belt’s reliability was relatively easy to estimate for the subjects
as it provides information in an absolute coordinate system
and it dominated perception according to the subjective reports
(as opposed to the native condition). In contrast, the reliability
of the rotation information might have been quite difficult to
estimate, as the vestibular system needs to integrate information
over time without an absolute reference point (Barnett-
Cowan and Harris, 2009). As a result, participants might have
overestimated the belt’s reliability and underestimated reliability
based on rotation information. If such a hypothesis holds, we
believe that it can have significant consequences for research
investigating cue combination mechanisms and multisensory
processes.
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