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1 Introduction

1.1 Outline

We start Section 2 by recapitulating the linear Poisson equation. However when
describing non-Newtonian fluids, the viscosity may depend on the shear rate. In
the model of those fluids, a generalization of the Laplace operator is needed. This is
done by the non-linear p-Laplacian, which will be introduced in the further discus-
sion of Section 2.1. After that we present the solution spaces for the simplest form
of an equation containing the p-Laplace operator. Following, we use the structure
of the problem to deduce our Kačanov based algorithm for the approximation of so-
lution of the p-Poisson equation. Note that this approach as already been discussed
for example in [Wei95] and [HJS97]. However, these results are not applicable to
the p-Poisson problem.

In Chapter 3 we discuss a necessary relaxation that is introduced in Chapter 2.
This relaxation is based a relaxation interval ε = (ε−, ε+) for two parameters
0 < ε− ≤ 1 ≤ ε+ < ∞. We are mostly interested in the behaviour of ε− → 0 and
ε+ →∞ and show convergence results of the solutions of the relaxed problems to
the solution of the original problem. Mainly we discuss two different approaches.
At first we use the notion of Γ-convergence in Section 3.1 to deduce the required
results. This techniques advantage is that it is able to be used for the most general
case of the p-Poisson equation. However, no quantitative results will be available
in this generality. In Section 3.2 we present estimates for the relaxation error
introduced by ε. To do so, we will need to restrict ourselves to some classes of
special cases of the equation that are known to provide certain regularity of the
solutions of the original problem.

After discussing the error introduced by the relaxation we fix the relaxation
parameters in Chapter 4 and discuss the error decay of the iterative part of our
algorithm introduced in Chapter 2, where in each iteration step a linear equation
needs to be solved. We will give an estimate yielding convergence at the cost of rates
that depend badly on the relaxation parameters ε = (ε−, ε+). Subsequently we will
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present a fully computable example pointing out some details of the iteration for
fixed relaxation parameters.

Finally, in Chapter 5 we combine the results of the previous chapters. In Sec-
tion 5.1 we will present a strategy for the relaxation parameter combined with the
iterative Kačanov approach that will lead to an algebraic error decay. Comparing
this decay with the rates obtained in Chapter 4 we see that adaptive strategies
might be much more suitable than a fixed strategy. We will present error esti-
mators for a fully adaptive scheme in Section 5.2. In the last section we discuss
numerical experiments for three different model problems.

1.2 Notation

The next table gives a small overview over the used notation. However, in the most
cases we try to use widely accepted standard notation.

Expression Explanation

Ω an open and bounded subset of Rd with Lipschitz con-
tinuous boundary

|A| the Lebesgue measure of A ⊂ Rd

f . g there is a constant c > 0 such that f ≤ c g pointwise
f & g there is a constant c > 0 such that f ≤ c g pointwise
f h g f . g and f & g
C∞0 space of test functions
L1

loc the space of locally integrable functions
Lp the space of p-integrable functions
W 1,p the Sobolev space with p-integrable weak derivatives

W 1,p
0 the Sobolev space with p-integrable weak derivatives and

zero boundary values
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In this chapter, we will introduce the p-Poisson equation. The theory of solutions
of the classical formulation of this partial differential equation is “too narrow”,
even for the homogeneous version (see [Lin06, Chapter 2]). Hence, it is much
more convenient to study its weak formulation which will be introduced in the first
section. The p-Laplace operator, the p-Poisson equation and its solution spaces –
the Sobolev spaces – are known and described very well. Therefore, we will not
prove most of the statements in Section 2.1 but refer to the respective literature.

After introducing the original problem, we will make a little detour through the
field of Orlicz spaces. Although they are very well described, too, they are not as
“famous” as their special cases Lp. Combining the integration properties of Orlicz
functions and the concept of weak derivatives we will end up with the notion of
the Orlicz Sobolev Spaces W 1,ϕ

0 (Ω).

2.1 The p-Poisson Equation and its Solution Space

First of all, we want to recall the Laplace operator very briefly:

∆ : C2(Ω)→ C0(Ω)

w 7→ ∆w :=
n∑
i=1

∂2

∂x2
i
w.

This linear operator arises in very many applications. Hence, it is natural to be
interested in its inverse. This is mostly stated as a partial differential equation in
the following way: For a given open domain Ω ⊂ Rd and f ∈ C0(Ω) one searches
for a function u : Ω→ R satisfying the Poisson equation{

−∆u = f in Ω and

u = 0 on ∂Ω.
(2.1)
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With Gauss’s Divergence Theorem it is easy to see that if additionally f ∈ L2(Ω)
and u being a solution to (2.1) we get for any ξ ∈ C1(Ω) the identity∫

Ω

fξ dx =

∫
Ω

(−∆u)ξ dx =

∫
Ω

∇u∇ξ dx. (2.2)

Only looking at the beginning and the end of the above equation one sees that
much lower requirements on f and u are necessary. Most interesting in this formu-
lation is that one only needs first order derivatives of u. Moreover, these derivatives
do not need to exist in every point of Ω. The suitable function spaces to solve the
weak Poisson equation will be defined later in this section.

As already pointed out, the Laplacian is a very important differential operator
and the Poisson equation is the standard example for a linear elliptic partial differ-
ential equation. However, it has a very natural generalization, namely the strong
p-Laplacian ∆s

p which is defined for any p ∈ [1,∞) by

∆s
pw := div(|∇w|p−2∇w).

Just as in that very case one can use Gauss’s Divergence Theorem to show that
every solution u of −∆s

pu = f ∈ Lp′(Ω) satisfies the weak p-Poisson equation∫
Ω

|∇u|p−2∇u∇ξ dx =

∫
Ω

fξ dx, (2.3)

provided f and ξ are “nice enough”. This is exactly the equation we are going to
study in this thesis. As in (2.2) we see that also in (2.5) it is enough to have first
order derivatives. For the integral on the left hand side to exist we need certain
integrability requirements. All of them are combined in the next definition.

Definition 2.1. A function w ∈ L1
loc(Ω) is called weakly differentiable with weak

derivative in i-th direction w̃i iff if for all functions ξ ∈ C∞0 (Ω) and every index
i ∈ {1, . . . , d} the identity ∫

Ω

w( ∂
∂xi
ξ) dx =

∫
Ω

w̃iξ dx

holds. We denote the weak derivative in i-th direction by ∂
∂xi

. For p ∈ [1,∞], the
Sobolev space is defined by

W 1,p(Ω) := {w ∈ Lp(Ω) : w is w. d. and ∀i ∈ {1, . . . , d} : ∂
∂xi
w ∈ Lp(Ω)}.
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Note that it is easy to see that differentiable functions in the classical sense are
also weakly differentiable.

Sobolov spaces, which also exist for higher order derivatives, are known very well
and there is very much literature about them (see for example [AF03]). Hence, we
just recapitulate the most important results in the next theorem. The cases p = 1
and p =∞ – which are also the crucial integrability indices for the Lp spaces – are
not relevant for this work, so we do not take them into account.

Theorem 2.2. For p /∈ {1,∞} the Sobolev spaces W 1,p(Ω) have the following
properties:

1. W 1,p(Ω) is normed with ‖w‖W 1,p(Ω) := p

√
‖w‖pLp(Ω) +

∑d
i=1 ‖

∂
∂xi
w‖pLp(Ω).

2. W 1,p(Ω) is complete.

3. W 1,p(Ω) is uniformly convex.

4. W 1,p(Ω) is separable.

5. W 1,p(Ω) is reflexive.

With choosing u, ξ ∈ W 1,p(Ω) we get well-definedness of the term∫
Ω

|∇u|p−2∇u∇ξ dx.

If p′ is the Hölder conjugate exponent of p meaning 1
p

+ 1
p′

= 1 and choosing

the function f ∈ Lp
′
(Ω) we also have well-definedness of the right hand side of

(2.3), but there are some right hand sides that can not be covered by this integral
representation. We will discuss the generalization of the right hand side later in
this section.

An other part of (2.4) is not yet covered by (2.3), too: The boundary values in
the second line. Even for nice examples of Ω – by means of a very regular boundary
– it is not clear by definition how to deal with “u = 0 on ∂Ω” if u is just member
of W 1,p(Ω): The Sobolev space is just a subspace of Lp(Ω). Hence, its elements are
only defined almost everywhere. In particular, there is no point evaluation of u.
However, we can come around that with the following definition that “hides” the
boundary values in the function space.
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Definition 2.3. We define the Sobolev space with zero boundary values as the
W 1,p-closure of the test functions:

W 1,p
0 (Ω) := C∞0 (Ω)

‖ · ‖W1,p(Ω) .

Indeed, the boundary values of Sobolev functions are understood better as they
exist in a ∂Ω almost everywhere sense with a suitable measure on ∂Ω – at least
when we may assume the boundary of Ω to be nice enough.

Theorem 2.4 (Trace Theorem). Let Ω ⊂ Rd with d ≥ 2 and Lipschitz boundary
and p ∈ [1,∞). Then, there exists an unique linear and bounded trace operator
T : W 1,p(Ω)→ Lp(∂Ω) with

w ∈ C0(Ω) ∩W 1,p(Ω) =⇒ Tw = w|∂Ω.

The proof of this statement is not trivial. Since it is a classical result for Sobolev
spaces we will not state it here but refer to [AF03]. Indeed, there is a completely
different characterization of W 1,p

0 (Ω).

Theorem 2.5. For p ∈ [1,∞) the space W 1,p
0 (Ω) coincides with the kernel of the

trace operator:

W 1,p
0 (Ω) = ker(T ) = {w ∈ W 1,p(Ω) : Tw = 0}.

In particular, W 1,p
0 (Ω) is a closed subspace of W 1,p(Ω). Historically, at that time

not including boundary values, this results goes back to the seminal paper [MS64]
titled “H = W”. A proof of the result stated in this form can be found in [AF03,
Theorem 5.37].

Now that we can handle boundary values we can use the trace theorem to see
that any function satisfying the strong p-Poisson equation{

−∆s
pu = f in Ω and

u = 0 on ∂Ω.
(2.4)

is actually not only a function in W 1,p(Ω) but even in W 1,p
0 (Ω).

To have the most general formulation of the p-Poisson equation we need to
understand the p-Laplacian not only as a differential operator but as a map defined
on the suitable Sobolev space. We recall the expression∫

Ω

|∇u|p−2∇u∇ξ dx
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to see that it is well-defined for u, ξ ∈ W 1,p
0 (Ω) and that the boundary values are

preserved in the trace sense. Furthermore, it is linear in ξ due to the linearity of
integration. Hence, the above term can also be seen as map

−∆p : W 1,p
0 (Ω)→ (W 1,p

0 (Ω))∗

u 7→
∫
Ω

|∇u|p−2∇u∇ · dx,

where (W 1,p
0 (Ω))∗ denotes the dual of W 1,p

0 (Ω). This shows clearly that when one
studies the equation −∆pu = f the restriction to f ∈ Lp′(Ω) is not necessary – the
most general case is f ∈ (W 1,p

0 (Ω))∗.

We combine everything up to now to formulate the p-Poisson problem: Given
Ω ⊂ Rd with d ≥ 2 and Lipschitz boundary and f ∈ (W 1,p

0 (Ω))∗ find u ∈ W 1,p
0 (Ω)

such that ∫
Ω

|∇u|p−2∇u∇ξ = 〈f, ξ〉. (2.5)

holds for all ξ ∈ W 1,p
0 (Ω).

Note that the p-Laplacian and its p-Poisson equation has the same model char-
acter for nonlinear elliptic partial differential equations as its linear special case
one gets by setting p = 2.

For the existence theory of a solution of the p-Poisson problem one can use
the so called direct method in the calculus of variations. Therefore, we define the
energy functional (or just energy)

J : W 1,p
0 (Ω)→ R

w 7→ 1
p

∫
Ω

|∇w|p dx− 〈f, w〉.

Following this direct method of calculus of variations one can obtain the following
theorem (compare [Arn07, Section 5.2] and subtract the linear term 〈f, · 〉).

Theorem 2.6. For each f ∈ (W 1,p
0 (Ω))∗ there is a unique minimizer of J .

One should mention that the uniqueness of the minimizer is due to the strict
convexity of J : Assume that there are u 6= ũ minimizers of J . Then,

J (1
2
(u+ ũ)) < 1

2
J (u) + 1

2
J (ũ) = J (u)
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which obviously contradicts the minimization property of u.

Interestingly, there is a one-to-one relation of minimizers of this energy and
solutions to (2.5) as stated in the theorem below.

Theorem 2.7. We have

u = arg min
w∈W 1,p

0 (Ω)

J (w) ⇐⇒ ∀ξ ∈ W 1,p
0 (Ω) :

∫
Ω

|∇u|p−2∇u∇ξ dx = 〈f, ξ〉.

The implication “=⇒” can be obtained by calculating the Euler-Lagrange equa-

tion of J by means of d
dt
J (u+tξ)|t=0

!
= 0. On the other hand it is shown in [Růž06,

Theorem 1.30 and following remark] that the equation admits an unique solution.
Since J also has an unique minimizer, the minimizer and the solution have to
coincide.

Note that Theorem 2.7 also carries the linear Poisson equation as a special case
for p = 2.

An other interesting property of J is that it can be described by a norm on
W 1,p

0 (Ω) and a linear term. To see that, we need the following inequality (see for
example [Dzi10, Theorem 3.23]).

Theorem 2.8 (Poincaré’s Inequality). For p ∈ [1,∞), there is a constant c > 0
such that for all w ∈ W 1,p

0 (Ω) the inequality∫
Ω

|w|p dx ≤ c

∫
Ω

|∇w|p dx

holds.

It is clear that this inequality can not hold for all w ∈ W 1,p(Ω). One can
construct a contradiction by simply adding a large number to w. One important
feature of this inequality is that for all w ∈ W 1,p

0 (Ω) we can deduce

‖∇w‖Lp(Ω) . ‖w‖W 1,p(Ω) . ‖∇w‖Lp(Ω),

so ‖∇·‖Lp(Ω) is a norm on W 1,p
0 (Ω) that is equivalent to the norm of Definition 2.3.

Furthermore, J carries norm structure since it can be rewritten as

J (w) = 1
p
‖∇w‖pLp(Ω) − 〈f, w〉.

We will use that in Chapter 3.
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2.2 Further Function Spaces

For our discussions in Section 2.3 the Sobolev spaces as defined in Section 2.1 are
not enough. To introduce Orlicz spaces we need the notion of N-functions. A
very detailed introduction to N-functions and Orlicz spaces is [KR61]. This section
bases very much on that book.

2.2.1 N-functions

This and the next subsection mainly deal as base for the more interesting Subsec-
tion 2.2.3 and for referring to some statements later. We will directly start with
the definition of N-functions as in [KR61, Chapter I, §1, 1.].

Definition 2.9. A function ϕ : R≥0 → R≥0 is said to be an N-function iff there
is a right-continuous, for t > 0 positive, non-decreasing function ϕ′ : R≥0 → R≥0

with ϕ′(0) = 0 and limt→∞ ϕ
′(t) =∞ such that

ϕ(t) =

t∫
0

ϕ′(τ) dτ.

It is clear by definition that in particular every differentiable function ϕ is an
N-function, if its derivative has the above mentioned properties. Furthermore,
N-functions are continuous, ϕ(0) = 0, are strictly increasing away from zero and
convex (see [KR61, Chapter I, §1, 4.]).

Later it will turn out that the following property of N-functions is fundamental.

Definition 2.10. An N-function ϕ satisfies the ∆2-condition iff there is a constant
c > 0 such that for all t ≥ 0 the estimate ϕ(2t) ≤ cϕ(t) holds.

When dealing with N-functions, one is oftentimes interested in the relation
ϕ(t) h ϕ′(t)t. This can be characterized by the Simonenko indices as introduced
in [Sim64].

Definition 2.11. For an N-function ϕ we define the Simonenko indices via

p− := inf
t>0

tϕ′(t)

ϕ(t)
≤ sup

t>0

tϕ′(t)

ϕ(t)
=: p+.
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A simple consequence is the following estimate. It shows the relation of growth
of an N-function and yields a sufficient condition for the ∆2-condition.

Lemma 2.12. Let ϕ be an N-function with Simonenko-indices 1 < p− and p+ <∞.
Then for all s, t ≥ 0, the inequalities

min{sp− , sp+}ϕ(t) ≤ ϕ(st) ≤ max{sp− , sp+}ϕ(t) (2.6)

hold. In particular, ϕ satisfies the ∆2-condition if p+ <∞.

Proof. We restate the sketch of the proof in [Wan13] and only prove the upper
bound in the case s ≥ 1 since all other bounds can be proven similarly. The
statement is clear for t = 0, so let t 6= 0. Directly by the definition we get

ln(ϕ(t))′ =
ϕ′(t)

ϕ(t)
≤ p+

t
.

Hence,

ln(ϕ(st))− ln(ϕ(t)) =

st∫
t

ln(ϕ(τ))′ dτ

≤
st∫
t

p+

τ
dτ

= p+(ln(st)− ln(t))

= ln(sp
+

).

Applying the exponential function, the statement follows directly.

To formulate the concept of duality of Orlicz spaces nicely, we use the next
definition.

Definition 2.13. For an N-function ϕ, we define the right inverse of ϕ′ by

(ϕ∗)′ : R≥0 → R≥0

t 7→ sup
ϕ′(s)≤t

s

and the complementary N-function by

ϕ∗ : R≥0 → R≥0

t 7→
t∫

0

(ϕ∗)′(τ) dτ.
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Note that (ϕ∗)′ is the inverse of ϕ′ if ϕ′ is invertible. Additionally one can
show that (ϕ∗)′ satisfies all the requirements of ϕ′ in Definition 2.9. Hence, ϕ∗ is
an N-function, too. Even the Simonenko indices of ϕ∗ can be calculated by the
Simonenko indices of ϕ, as shown in [FK97, Proposition 2.1].

Lemma 2.14. Let ϕ be an N-function with Simonenko indices p−, p+ ∈ (1,∞).
Then,

(p−)∗ := inf
t>0

(ϕ∗)′(t)t

ϕ∗(t)
≤ sup

t>0

(ϕ∗)′(t)t

ϕ∗(t)
:= (p+)∗.

In particular, ϕ∗ satisfies the ∆2 condition.

An important tool where one can see how an N-function and its complementary
N-function go hand in hand is Young’s Inequality as for example stated in [KR61, I,
§2, 2.]

Lemma 2.15 (Young’s Inequality). Let ϕ be an N-function, ϕ∗ its complementary
N-function and s, t ≥ 0. Then,

st ≤ ϕ(s) + ϕ∗(t).

More often, we will use a properly weighted version:

Lemma 2.16 (Young’s Inequality – Weighted Version). Let ϕ be an N-function,
ϕ∗ its complementary N-function, both satisfying the ∆2-condition and s, t ≥ 0.
Then, for each δ > 0 there is cδ > 0 such that

st ≤ δϕ(s) + cδϕ
∗(t).

Proof. The statement is a consequence of the unweighted version when δ ≥ 1,
so let δ ∈ (0, 1). As already stated on page 9, ϕ is convex and ϕ(0) = 0 and
therefore ϕ(δs) ≤ δϕ(s). Now, choose Nδ ∈ N, such that δ2Nδ ≥ 1. Then,
ϕ∗( t

δ
) ≤ cNδϕ∗( t

2Nδ δ
) ≤ cNδϕ∗(t) by induction where c is the constant of the ∆2-

condition of ϕ∗. Hence, by the unscaled version of Young’s Inequality we get

st = δs t
δ

≤ ϕ(δs) + ϕ∗( t
δ
)

≤ δϕ(s) + cNδϕ∗(t).

Of course one can refine the last estimate when one knows the Simonenko indices
of ϕ and ϕ∗, respectively.
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2.2.2 Shifted N-functions

The concept of shifted N-function goes back to [DE08] (respectively a preprint from
2005) and [RD07]. Certainly, the definition in these papers is slightly different –
where we use a∨t, the shifted N-functions in these papers had the term a+t. Once
more we will see later, namely in Chapter 4, why our definition is more suitable
for the use in our case, although one looses differentiability of ϕa.

Definition 2.17. For a given N-function ϕ and a shift a ≥ 0 we set

ϕ′a(t) :=
ϕ′(a ∨ t)
a ∨ t

t

and define the shifted N-function of ϕ via

ϕa : R≥0 → R≥0

t 7→
t∫

0

ϕ′a(τ) dτ.

Note that ϕ′a(t) satisfies all the properties of ϕ′ as in Definition 2.9. Hence, ϕa is
an N-function, too. It has quadratic growth for small arguments and coincides with
ϕ for large arguments. The main strength of those shifted N-function lies in its
relation with certain other terms appearing naturally when minimizing functionals
like the one we defined in Section 2.1. We will define these quantities now.

Definition 2.18. For P ∈ Rd we define Aϕ, Vϕ : Rd → Rd by

Aϕ(P ) :=

{
ϕ′(|P |)
|P | P if P 6= 0 and

0 if P = 0
and Vϕ(P ) :=

{√
ϕ′(|P |)
|P | P if P 6= 0 and

0 if P = 0.

The most important relation between ϕa, Aϕ and Vϕ is stated as the consequence
in the following lemma.

Lemma 2.19. Let ϕ be an N-function with p−, p+ ∈ (1,∞). Furthermore, let there
exist constants c1, c2 > 0 such that for all P,Q ∈ Rd the estimates

(Aϕ(P )− Aϕ(Q)) · (P −Q) ≥ c1
ϕ′(|P |+ |P −Q|)
|P |+ |P −Q|

|P −Q|2 and

|Aϕ(P )− Aϕ(Q)| ≤ c2
ϕ′(|P |+ |P −Q|)
|P |+ |P −Q|

|P −Q|2
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hold. Then,

(Aϕ(P )− Aϕ(Q))(P −Q) h |Vϕ(P )− Vϕ(Q)|2

h ϕ|P |(|P −Q|)

h
ϕ′(|P | ∨ |Q|)
|P | ∨ |Q|

|P −Q|2.

Proof. The lemma was firstly stated in the preprint of [DE08, Lemma 3] with the
additional assumption the ϕ ∈ C2((0,∞)). However, this was only a technique
issue. A proof of the statement without that assumption can be found in [RD07,
Lemma 6.16]. Both versions only state the equivalences for the shifted N-function
defined as in these papers. Note that for t, a ≥ 0 we have a+ t h a ∨ t. Hence by
the Definition of the Simonenko indices and Lemma 2.12 we get

ϕ′(a+ t)

a+ t
h
ϕ(a+ t)

(a+ t)2
h
ϕ(a ∨ t)
(a ∨ t)2

h
ϕ′(a ∨ t)
a ∨ t

. (2.7)

Therefore, the shifted N-function of [DE08, Lemma 3] and [RD07, Lemma 6.16]
is equivalent to our definition, so the result can also be applied to our version of
shifted N-functions.

It can be useful to change the shift. How this can be done is explained by the
preprint of [DK08, Corollary 26], respectively in [RD07, Lemma 5.15]. Since the
shift introduced here is pointwise equivalent to the shift used in these papers (see
(2.7)), we can use the result without any further proof.

Lemma 2.20 (Change of Shift). Let ϕ be an N-function such that both ϕ and its
complementary N-function ϕ∗ satisfy the ∆2 condition. Then, for all δ ∈ (0, 1)
there is a constant cδ such that for all P,Q,∈ Rd and t ≥ 0 the estimate

ϕ|P |(t) ≤ cδϕ|Q|(t) + δϕ|Q|(|P −Q|) (2.8)

holds.

2.2.3 Orlicz and Orlicz Sobolev Spaces

After all the results we learned on N-functions we are finally ready to define a
generalization of the usual Lp spaces. As [KR61] is a very good and detailed book
about that topic, we only restate the important results.
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Definition 2.21. Let ϕ be an N-function. We define

Lϕ(Ω) := {w : Ω→ R : w measurable and

∫
Ω

ϕ(|w|) dx <∞}.

Furthermore we say

w ∼ w̃ : ⇐⇒ w = w̃ almost everywhere.

Then, we define the Orlicz class as

Lϕ := L̃ϕ/∼ .

Note that when choosing ϕ(t) := 1
p
tp one ends up the usual Lp spaces. Note that

for an arbitrary N-function it is not necessarily true that it is a vector space, the
next theorem (see [KR61, Chapter II, §8, 3., Theorem 8.2]) gives a characterization
for that.

Theorem 2.22. Lϕ(Ω) is a vector space if and only if ϕ satisfies the ∆2-condition.

We collect some properties of Orlicz spaces.

Theorem 2.23. Let ϕ be an N-function such that both ϕ and its complementary
N-function ϕ∗ satisfy the ∆2 condition. Then, the following statements are true:

1. Lϕ(Ω) is normed with ‖w‖Lϕ(Ω) := inf{λ > 0 :
∫

Ω
ϕ( |w|

λ
) dx ≤ 1}, see [KR61,

Chapter II, §9, 7.].

2. A sequence of functions (wn)n in Lϕ(Ω) converges to w ∈ Lϕ(Ω) with respect
to ‖ · ‖Lϕ(Ω) if and only if

∫
Ω
ϕ(|wn−w|) dx

n→∞−−−→ 0, see [KR61, Chapter II,
§9, 6., Theorem 9.4].

3. Lϕ(Ω) is complete, see [KR61, Chapter II, §9, 2., Theorem 9.2].

4. Lϕ(Ω) is separable, see [KR61, Chapter II, §10, 3. & 4.].

5. Lϕ(Ω) is reflexive, see [KR61, Chapter II, §9, 5. and Chapter II, §14].

For the Lp spaces there are good comparison criteria, provided |Ω| < ∞ which
we are assuming in this work. This can be generalized for Orlicz spaces as well, for
a proof see [KR61, Chapter II, §8, 3.].
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Theorem 2.24. The inclusion Lϕ1(Ω) ⊆ Lϕ2(Ω) holds if and only if there are c, t0
such that ϕ2(t) ≤ cϕ1(t) for all t ≥ t0.

With this result and Lemma 2.12 it is easy to deduce the following relations as
already shown in [Wan13, Corollary 1.7].

Corollary 2.25. Let ϕ be an N-function with p−, p+ ∈ (1,∞). Then

Lp
+

(Ω) ⊆ Lϕ(Ω) ⊆ Lp
−

(Ω).

At this point it is natural to combine the notion of weak differentiability and
non-standard growth.

Definition 2.26. For an N-function satisfying the ∆2 condition we define the
Orlicz Sobolev space via

W 1,ϕ(Ω) := {w ∈ Lϕ(Ω) : ∀i ∈ {1, . . . , d} we get ∂
∂xi
w ∈ Lp(Ω)}

where ∂
∂xi
w denotes the weak derivative in i-th direction.

If one combines not only the definitions of weak differentiability and integrability
but also the properties of the underlying function spaces, one ends up with the
following theorem.

Theorem 2.27. Let ϕ be an N-function with p−, p+ ∈ (1,∞). Then, the following
statements are true:

1. W 1,ϕ(Ω) is normed with ‖w‖W 1,ϕ(Ω) := ‖w‖Lϕ(Ω) +
∑d

i=1 ‖
∂
∂xi
w‖Lϕ(Ω).

2. A sequence of functions (wn)n in W 1,ϕ(Ω) converges to w ∈ W 1,ϕ(Ω) with
respect to ‖ · ‖W 1,ϕ(Ω) if and only if

∫
Ω
ϕ(|wn − w|) dx n→∞−−−→ 0 and for all

i ∈ {1, . . . , d} also
∫

Ω
ϕ(| ∂

∂xi
(wn − w)|) dx n→∞−−−→ 0.

3. W 1,ϕ(Ω) is complete.

4. W 1,ϕ(Ω) is separable.

5. W 1,ϕ(Ω) is reflexive.

As for the Sobolev spaces we can equip W 1,ϕ(Ω) with zero boundary values.
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Definition 2.28. We define the Orlicz Sobolev space with zero boundary values as
the W 1,ϕ(Ω)-closure of the test functions:

W 1,ϕ
0 (Ω) := C∞0 (Ω)

‖ · ‖W1,ϕ(Ω) .

Note that Poincaré’s Inequality also holds in the Orlicz Sobolev setting.

Theorem 2.29 (Poincaré’s Inequality – Orlicz version). For for any N-function ϕ
with p−, p+ ∈ (1,∞) there is a constant c > 0 such that for all w ∈ W 1,ϕ

0 (Ω) the
inequality ∫

Ω

ϕ(|w|) dx ≤ c

∫
Ω

ϕ(|∇w|) dx

holds.

Proof. From [DRS10, Theorem 6.5] we know that for all w ∈ W 1,ϕ(Ω) with mean
zero, i. e.

∫
Ω
w dx = 0, we have – additionally using that ϕ satisfies the ∆2 condition

– the estimate ∫
Ω

(|w|) dx .
∫
Ω

ϕ(|∇w|) dx.

Without loss of generality we may assume that there is R > 1 such that Ω ⊂ [1, R]d

due to the translation invariance of the Lebesgue measure and since we always
assume Ω to be bounded. Now suppose w ∈ W 1,p

0 (Ω) arbitrary. Then, we define
Ω̃ := {x − (R + 1)1 : x ∈ Ω} where 1 is the Rd-vector only containing ones. It
is clear that Ω̃ ∈ [−R,−1]d. Hence, Ω ∪ Ω̃ ⊂ [−R,R]d and Ω ∩ Ω̃ = ∅. Since the
boundary of Ω is Lipschitz continuous and W 1,ϕ(Ω) ⊆ W 1,p−(Ω) we know that the
function

w̃ : (−R,R)d → R

x 7→


w(x) for x ∈ Ω,

−w(x+ (R + 1)1) for x ∈ Ω̃ and

0 for x ∈ (−R,R)d \ (Ω ∪ Ω̃)

is weakly differentiable (see for example [AF03, Theorem 5.29]). Furthermore, it is
clear that w̃ ∈ W 1,ϕ((−R,R)d), since we have∫

(−R,R)d

ϕ(|w̃|) dx = 2

∫
Ω

ϕ(|w̃|) dx

<∞,
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1
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1 2 3−1−2−3

Ω

Ω̃

Figure 2.1: Exemplary picture for d = 2 and R = 3 showing Ω and Ω̃.

and the same argument applies to | ∂
∂xi
w̃| instead of |w̃| for any i ∈ {1, . . . , d}.

Additionally, ∫
(−R,R)d

w̃ dx = 0.

This yields that we can use the first inequality of this proof on (−R,R)d to deduce∫
Ω

ϕ(|w|) dx = 1
2

∫
(−R,R)d

ϕ(|w̃|) dx

. 1
2

∫
(−R,R)d

ϕ(|∇w̃|) dx

=

∫
Ω

ϕ(|∇w|) dx.

With that, we can state a theorem which is well-known for ϕ(t) := 1
p
tp, respec-

tively W 1,ϕ
0 (Ω) = W 1,p

0 (Ω).

Theorem 2.30. For for any N-function ϕ with p−, p+ ∈ (1,∞) and all functions
w ∈ W 1,ϕ

0 (Ω) we have

‖w‖W 1,ϕ(Ω) h ‖∇w‖Lϕ(Ω).
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In particular, ‖∇ · ‖Lϕ(Ω) is a to ‖ · ‖W 1,ϕ(Ω) equivalent norm on W 1,ϕ
0 (Ω).

Proof. It is clear from the definition in Theorem 2.23 and from the monotonicity
of ϕ that for w, w̃ ∈ Lϕ(Ω) the estimate |w| ≤ |w̃| almost everywhere implies
that ‖w‖Lϕ(Ω) ≤ ‖w̃‖Lϕ(Ω). Hence, for all i ∈ {1, . . . , d} we get the estimate
‖ ∂
∂xi
w‖Lϕ(Ω) ≤ ‖∇w‖Lϕ(Ω), where Theorem 2.29 yields ‖w‖Lϕ(Ω) . ‖∇w‖Lϕ(Ω).

Therefore,

‖w‖W 1,ϕ(Ω) = ‖w‖Lϕ(Ω) +
d∑
i=1

‖ ∂
∂xi
w‖Lϕ(Ω)

. ‖∇w‖Lϕ(Ω).

On the other hand, all norms on Rd are equivalent, so |∇w| .
∑d

i=1 |
∂
∂xi
w|. So

‖∇w‖Lϕ(Ω) .
d∑
i=1

‖ ∂
∂xi
w‖Lϕ(Ω)

≤ ‖w‖W 1,ϕ(Ω).

With this and since W 1,ϕ
0 (Ω) is a closed subspace of W 1,ϕ(Ω) by definition, we

can restate Theorem 2.27 for Orlicz Sobolev spaces with zero boundary values.

Theorem 2.31. Let ϕ be an N-function with p−, p+ ∈ (1,∞). Then, the following
statements are true:

1. W 1,ϕ
0 (Ω) is normed with ‖∇ · ‖Lϕ(Ω).

2. A sequence of functions (wn)n in W 1,ϕ
0 (Ω) converges to w ∈ W 1,ϕ

0 (Ω) with
respect to ‖∇ · ‖Lϕ(Ω) if and only if

∫
Ω
ϕ(|∇(wn − w)|) dx n→∞−−−→ 0.

3. W 1,ϕ
0 (Ω) is complete.

4. W 1,ϕ
0 (Ω) is separable.

5. W 1,ϕ
0 (Ω) is reflexive.

2.3 Presentation of the Algorithm

As we have seen in Section 2.1 there are two legitimate views on weak partial
differential equations: The equation an the energy point of view. We will discuss



2.3 Presentation of the Algorithm 19

the derivation of the algorithm from an equation point of view in the first subsection
whereas we will find an energy point of view in the subsection after that.

From now on we restrict ourselves to the case where p ∈ (1, 2). We will see in
Section 4.2 that this is not only a problem of the technique of the proof but show
an example where our algorithm fails in parts and totally for p > 2 and p > 3,
respectively.

2.3.1 Derivation of the Algorithm

We recall the p-Poisson problem from page 7: Given Ω ⊂ Rd with d ≥ 2 and
Lipschitz boundary and f ∈ (W 1,p

0 (Ω))∗ find u ∈ W 1,p
0 (Ω) such that∫

Ω

|∇u|p−2∇u∇ξ = 〈f, ξ〉. (2.5)

holds for all ξ ∈ W 1,p
0 (Ω).

If one pretends to know u already and one “hides” the term |∇u|p−2 which
is responsible for the non-linearity of the equation in a := |∇u|, equation (2.5)
becomes ∫

Ω

ap−2∇u∇ξ = 〈f, ξ〉. (2.9)

Note that this equation is linear in u and well known as a weighted Poisson problem.
In particular, many numerical approaches are known for this problem such as the
Finite Element Method. The representation in (2.9) now suggests to define a
sequence (vn)n recursively as solutions to∫

Ω

|∇vn|p−2∇vn+1∇ξ = 〈f, ξ〉 ∀ξ ∈ W 1,2
0 (Ω). (2.10)

For the weighted Poisson equation to be well defined, the weight needs to be in
L∞ and away from zero in the sense that there is a constant c > 0 such that ap−2 > c
almost everywhere. As the solutions and therefore the iterated vn will be elements
of W 1,2

0 (Ω) it is not possible to assume even one of those two requirements: the
weight |∇vn|p−2 degenerates for |∇vn| = 0 and |∇vn| = ∞. The fact that for our
choices of p we have W 1,2

0 (Ω) ⊆ W 1,p
0 (Ω) ensures that f ∈ (W 1,p

0 (Ω))∗ ⊆ (W 1,2
0 (Ω))∗.
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Hence, the right hand side does not need to be modified to ensure (2.10) to be well-
defined.

We will cope the task of degenerating weights by introducing a relation param-
eter. Therefore, let 0 < ε− ≤ 1 ≤ ε+ < ∞ and we define the relaxation interval
ε := (ε−, ε+) ⊂ R (for ε− = ε+ = 1 we define ε := {1}). We will truncate a to the
closure of that interval which is nothing but the projection onto ε:

Πε(a) := ε− ∨ a ∧ ε+ := min{max{ε−, a}, ε+}

which is illustrated in Figure 2.2 as well as the affect on the weight.

aε
−

ε+

Πε(a)

aε
−

ε+

Πε(a)
p−2

Figure 2.2: Plot of the constraint and the weight for p = 1.1.

Replacing ap−2 by Πε(a)p−2 in (2.10) we get an admissible inductive clause and
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formulate the following algorithm.

Algorithm: The relaxed p-Kačanov algorithm

Data: f ∈ (W 1,p
0 (Ω))∗

Result: Approximate solution of the p-Poisson problem (2.5).
n := 0;
ε−1,− := 1;
ε−1,+ := 1;
while desired accuracy is not achieved yet do

Calculate vn by means of∫
Ω

(an−1)p−2∇vn · ∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2
0 (Ω);

Choose a new relaxation interval εn ⊇ εn−1;
Define an := Πεn(|∇vn|);
Update n n+ 1;

end

Note that it is not a problem not to initialize a−1 since we have chosen the initial
values for ε such that ε−1,− ∨ a−1 ∧ ε−1,+ = 1 ∨ a−1 ∧ 1 = 1 anyway. In particular,
v0 solves the linear Poisson equation∫

Ω

∇v0 · ∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2
0 (Ω).

2.3.2 The Algorithm from an Energy Point of View

As we have already seen weak formulated partial differential equations can often-
times be linked to energy minimizing problems. In this section we aim for such an
energy formulation for the algorithm presented in Subsection 2.3.1. For the ease of
readability we fix εn ≡ ε.

Similar to Theorem 2.7 it is known from the theory for the weighted Poisson
equation that ∫

Ω

Πε(|∇vn|)p−2∇vn+1∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2
0 (Ω)
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with vn+1 ∈ W 1,2
0 (Ω) is equivalent to

vn+1 = arg min
w∈W 1,2

0

1
2

∫
Ω

Πε(|∇vn|)p−2|∇w|2 dx− 〈f, w〉. (2.11)

The theory for this problem does not respect changes of the weight – it is mostly
hidden in the scalar product. Therefore, it does not fit very well when the weight
changes from iteration step to iteration step, i. e. when you want to compare∫

Ω

Πε(|∇vn|)p−2∇vn+1∇ξ dx to

∫
Ω

Πε(|∇vn+1|)p−2∇vn+1∇ξ dx.

Furthermore, the equation for vn does not yield pointwise information, so it can
not be plugged in the inductive clause iteratively.

To overcome this problem we want to have the energy to provide some minimiza-
tion property for a change in the weight. Therefore, we add a function h : R≥0 → R
to the energy as defined in (2.11) such that

vn+1 = arg min
w∈W 1,2

0

∫
Ω

1
2
Πε(|∇w|)p−2|∇vn+1|2 + h(|∇w|) dx− 〈f, w〉. (2.12)

We will see that the function h : R≥0 → R with h(t) := (1
p
− 1

2
)Πε(t)

p is a proper
choice and define

J s
ε : W 1,2

0 (Ω)× L1
loc(Ω)→ R

(w, a) 7→
∫
Ω

1
2
Πε(|a|)p−2|∇w|2 + (1

p
− 1

2
)Πε(|a|)p dx− 〈f, w〉.

First, we need to prove a technical lemma.

Lemma 2.32. For β : Ω× R→ R measurable we consider the functional

K :M→ R

a 7→
∫
Ω

β(x, a(x)) dx

where M is a vector space of equivalence classes of functions mapping Ω to R with
∼ as in Definition 2.21. Then,

m ∈ arg min
a∈M

J (a)⇐⇒ ∀a ∈M : β(x,m(x)) ≤ β(x, a(x)) a.e.



2.3 Presentation of the Algorithm 23

Proof. The implication ”⇐=” is easy to see by integration over Ω. We prove
”=⇒” by proving the contra position. Therefore, we assume there is r ∈ M and
ω ⊆ Ω with |ω| 6= 0 such that for almost every x ∈ ω we have the inequality
β(x,m(x)) > β(x, r(x)). Now, we define

s(x) :=

{
r(x) x ∈ Ω′

m(x) x ∈ Ω \ Ω′

and get the contradiction K(s) < K(m) by direct calculation.

With the aid of the last lemma we are able to prove the required minimization
property for the weight.

Lemma 2.33. Let p ∈ (1, 2). Then, for fixed w ∈ W 1,2
0 (Ω) there is a global min-

imum of J s
ε (w, · ) in L1

loc(Ω). Under the additional constraint that the minimizer
satisfies a = Πε(a), the minimizer is unique and admits the representation

arg min
a∈L1

loc(Ω)
a=Πε(a)

J s
ε (w, a) = Πε(|∇w|).

Proof. Using Lemma 2.32 we reduce the minimization problem to a minimization
problem in one real variable. Therefore, we define

β(x, a) := 1
2
Πε(|a|)p−2|∇w(x)|2 + (1

p
− 1

2
)Πε(|a|)p

with the aim of minimizing β in the variable a for a.e. x ∈ Ω. This leads to an a.e.
defined function a : Ω→ R. So let x ∈ Ω be fixed. Thus, we can rewrite

β(x, a) =


1
2
εp−2|∇w(x)|2 + (1

p
− 1

2
)εp for |a| ≤ ε−

1
2
|a|p−2|∇w(x)|2 + (1

p
− 1

2
)|a|p for |a| ∈ ε

1
2
ε2−p|∇w(x)|2 + (1

p
− 1

2
)ε−p for |a| ≥ ε+

to see that β(x,R) = β(x, ε). Together with continuity of β(x, · ) this already
yields the existence of a minimizer. Furthermore, β(x, · ) is differentiable a.e. (i.e.
on R \ {±ε−,±ε+}) and we get

dβ

da
(x, a) =


0 for |a| < ε−
2−p

2
|a|p−4a(|a|2 − |∇u(x)|2) for |a| ∈ ε

0 for |a| > ε+.
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|∇w(x)| aε
−

ε+

Figure 2.3: Plot of β(|∇w(x)|, a) for |∇w(x)| ∈ ε.

To get the desired representation of the minimizer under the assumption a = Πε(a)
it is sufficient to search for minimizers in ε. We have to distinguish three cases to
determine the minimizer uniquely:

|∇u(x)| ≤ ε−: Then, dβ
da

(x, a) > 0 on ε. Due to continuity of β(x, · ) the unique
minimum is attained in a = ε−.

|∇u(x)| ∈ ε: Then, dβ
da

(x, a) < 0 on the interval (ε−, |∇u(x)|) and dβ
da

(x, a) > 0 on
(|∇u(x)|, ε+). So the unique minimum is attained in a = |∇u(x)|.

|∇u(x)| ≥ ε+: Then, dβ
da

(x, a) < 0 on ε. Due to continuity of β(x, · ) the unique
minimum is attained in a = ε+.

In deed, this procedure leads to a minimizer since β(x,R) = β(x, ε).

Note that the last lemma is not interesting for the case p = 2 since J s
ε (w, · )

is constant then. For p > 2 the statement is not true. This is due to the fact
that β(x, · ) is increasing on −ε := (−ε+,−ε−) and decreasing on ε and hence
±ε+ = arg min{a∈R} β(x, a).

As a consequence of Lemma 2.33 we can rewrite the algorithm presented in
Subsection 2.3.1 on page 21 based on alternatingly minimizing

J s
ε : W 1,2

0 (Ω)× L1
loc(Ω)→ R

(w, a) 7→
∫
Ω

1
2
Πε(|a|)p−2|∇w|2 + (1

p
− 1

2
)Πε(|a|)p dx− 〈f, w〉.
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in each argument.

Algorithm: The relaxed p-Kačanov algorithm

Data: f ∈ (W 1,p
0 (Ω))∗

Result: Approximate solution of the p-Poisson problem (2.5).
n := 0;
ε−1,− := 1;
ε−1,+ := 1;
while desired accuracy is not achieved yet do

Calculate vn by means of

vn = arg min
w∈W 1,2

0 (Ω)

Jεn−1(w, an−1);

Choose a new relaxation interval εn ⊇ εn−1;
Calculate vn by means of

an = arg min
a∈L1

loc(Ω)
a=Πε(a)

J s
ε (vn, a);

Update n n+ 1;
end

2.3.3 The Constrained p-Poisson Equation and Its Relaxed
Energy

For the further discussion, we neglect the iteration of εn and look at a fixed ε. As
we already observed, our algorithm is based on alternatingly minimizing J s

ε . Fur-
thermore we have already seen that convexity yields good minimization properties.

Lemma 2.34. J s
ε is strictly convex on the set

W 1,2
0 (Ω)× {a ∈ L1

loc(Ω) : a = Πε(a)}.

Proof. It suffices to show strict convexity of

f : R>0 × R→ R
(x, y) 7→ xp−2y2.
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We can calculate the Hessian matrix

Hf (x, y) =

(
(p− 2)(p− 3)xp−4y2 2(p− 2)xp−3y

2(p− 2)xp−3y 2xp−2

)
and will show that it is positive definite for all (x, y) ∈ R>0 × R. For a, b ∈ R we
get

〈( ab ), Hf (x, y)( ab )〉 = xp−4((p− 2)(p− 3)a2y2 − 4(2− p)abxy + 2b2x2)

which is positive if and only if

4(2− p)abxy < (p− 2)(p− 3)a2y2 + 2b2x2. (2.13)

Applying Young’s inequality we get

4(2− p)abxy ≤ 2(2− p)2a2y2 + 2b2x2

and since 2(2 − p)2 < (p − 2)(p − 3) for p ∈ (1, 2) inequality (2.13) holds for all
a, b ∈ R. The application of convexity of R>0 × R finishes the proof.

Although one could now already argue with the direct method of variations
to get a minimizing tuple of Jε we first restrict the problem to a smaller set of
functions. As we already have seen in Lemma 2.33 minimizing with respect to the
weight yields a special representation for the minimum, namely a = Πε(|∇w|). We
will see that this is enough to give reason to define

Jε : W 1,2
0 (Ω)→ R

w 7→ J s
ε (w, |∇w|) =

∫
Ω

κε(|∇w|) dx− 〈f, w〉 (2.14)

where κε : R≥0 → R admits the representation

κε(t) :=


1
2
εp−2
− t2 + (1

p
− 1

2
)εp− for t ≤ ε−,

1
p
tp for t ∈ ε and

1
2
εp−2

+ t2 + (1
p
− 1

2
)εp+ for t ≥ ε+.

(2.15)

The next theorem can be seen exactly like the existence of the unique minimizer
of J for Theorem 2.6.

Theorem 2.35. For each f ∈ (W 1,p
0 (Ω))∗ there is a unique minimizer of Jε.
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As we will see in the next theorem Jε and the minimizer of Jε will play an
important role so we define

uε := arg min
w∈W 1,2

0 (Ω)

Jε(w). (2.16)

It is also the unique solution of the Euler Lagrange equation of Jε:∫
Ω

κ′ε(|∇uε|)
|∇uε| ∇uε∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2

0 (Ω). (2.17)

We want to state one nice property of Jε(uε).

Lemma 2.36. The function

ρ : (0, 1)× (1,∞)→ R
(ε−, ε+) 7→ Jε(uε)− J (u)

(2.18)

is convex.

Proof. We show this basically by proving that

κ : [0,∞)× (0, 1)× (1,∞)→ R≥0

(t, ε−, ε+) 7→ κε(t)

is convex. Therefore, let θ ∈ (0, 1) and choose two arbitrary triples

(t, ε−, ε+), (t′, ε′−, ε
′
+) ∈ [0,∞)× (0, 1)× (1,∞).

For P,Q ∈ Rk we use the notation

[P,Q]θ := θP + (1− θ)Q

and define θ− as solution to [ε−, ε
′
−]θ− = [t, t′]θ− and θ+ as solution to [ε+, ε

′
+]θ+ =

[t, t′]θ+ – in case only one or none of those values exists the proof is easier and
similar to this one. Note that θ− and θ+ are unique. Without loss of generality we
may assume that θ− ≤ θ+.

We already know from the proof of Lemma 2.34 that xp−2y2 is convex. Hence,
the terms

1
2
εp−2
− t2 + (1

p
− 1

2
)εp−,

1
p
tp and 1

2
εp−2

+ t2 + (1
p
− 1

2
)εp+
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are convex with respect to (t, ε−, ε+) and in particular with respect to θ when one
plugs in ([t, t′]θ, [ε−, ε

′
−]θ, [ε+, ε

′
+]θ). This implies that κ([t, t′]θ, [ε−, ε

′
−]θ, [ε+, ε

′
+]θ)

is convex with respect to θ on [0, θ−], [θ−, θ+] and [θ+, 1]. Furthermore, κ is C1 in
each component and hence C1 with respect to θ. Since any piecewise convex and
continuously differentiable function in one variable is convex on the whole domain
we get

κ([t, t′]θ, [ε−, ε
′
−]θ, [ε+, ε

′
+]θ) ≤ [κ(t, ε−, ε+), κ(t′, ε′−, ε

′
+)]θ.

To deduce the statement it is enough to show that Jε(uε) is convex in (ε−, ε+).
This follows by

J([ε−,ε′−]θ,[ε+,ε
′
+]θ)(u([ε−,ε′−]θ,[ε+,ε

′
+]θ)) ≤ J([ε−,ε′−]θ,[ε+,ε

′
+]θ)([uε, uε′ ]θ)

≤
∫
Ω

κ([ε−,ε′−]θ,[ε+,ε
′
+]θ)([|∇uε|, |∇uε′ |]θ) dx− 〈f, [uε, uε′ ]θ〉

≤
∫
Ω

[κε(|∇uε|), κε′(|∇uε′ |)]θ dx− [〈f, uε〉, 〈f, uε′〉]θ

≤ [Jε(uε),Jε′(uε′)]θ,

where we used the triangular inequality and the monotonicity of κε(t) in t.

The next theorem shows the relation between minimizing J s
ε and Jε.

Theorem 2.37. A tuple (w, a) ∈ W 1,2
0 (Ω) × {a ∈ L1

loc(Ω) : a = Πε(a)} mini-
mizes J s

ε if and only if (w, a) = (uε,Πε(|∇uε|)). In particular, there is a unique
minimization tuple of J s

ε .

Proof. Let (wm, am) ∈ W 1,2
0 (Ω)×{a ∈ L1

loc(Ω) : a = Πε(a)} be a minimizing tuple
of J s

ε . We know by Lemma 2.33 that this already implies am = Πε(|∇wm|). Hence
for any w ∈ W 1,2

0 (Ω)

Jε(w) = J s
ε (w, |∇w|)

= J s
ε (w,Πε(|∇w|))

≥ J s
ε (wm, am)

= J s
ε (wm,Πε(|∇wm|))

= Jε(wm),

so wm is minimizer of Jε. Due to the uniqueness of the minimizer Jε we get
wm = uε and therefore am = Πε(|∇wm|) = Πε(|∇uε|).
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On the other hand let (wm, am) = (uε,Πε(|∇uε|)). Then, for any w ∈ W 1,2
0 (Ω)

and a ∈ {ã ∈ L1
loc(Ω) : ã = Πε(ã)} we have

J s
ε (w, a) ≥ J s

ε (w,Πε(|∇w|))
= J s

ε (w, |∇w|)
= Jε(w)

≥ Jε(uε)
= J s

ε (uε, |∇uε|)
= J s

ε (uε,Πε(|∇uε|))
= J s

ε (wm, am),

so (wm, am) is the minimizer of J s
ε on W 1,2

0 (Ω)× {a ∈ L1
loc(Ω) : a = Πε(a)}.

For a fixed relaxation interval ε we may hope that alternatingly minimizing J s
ε

leads to a minimizing tuple of J s
ε and therefore to a minimizer of Jε.

First of all we note that κε not an N-function since κε(0) = (1
p
− 1

2
)εp− 6= 0. But

κε ∈ C1(R≥0) with

κ′ε(t) =


εp−2
− t for t ≤ ε−,

tp−1 for t ∈ ε and

εp−2
+ t for t ≥ ε+.

Note that the identity

ϕ′ε(t)

t
=


εp−2
− for t ≤ ε−

tp−2 for t ∈ ε and

εp−2
+ for t ≥ ε+

= Πε(t)
p−2

(2.19)

holds. Furthermore, the derivative κ′ε satisfies all requirements on ϕ′ as in Defini-
tion 2.9, hence

ϕε(t) :=

t∫
0

κ′ε(τ) dτ

is an N-function. Obviously, ϕ′ε(t) = κ′ε(t) so (2.17) reads as∫
Ω

ϕ′ε(|∇uε|)
|∇uε| ∇uε∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2

0 (Ω). (2.20)
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We will use this formulation more often than (2.17) since it fits better to the general
ϕ-Laplace setting.

Furthermore, ϕε(t) = κε(t)− κε(0). Hence,

ϕε : R≥0 → R

t 7→


1
2
εp−2
− t2 for t ≤ ε−,

1
p
tp − (1

p
− 1

2
)εp− for t ∈ ε and

1
2
εp−2

+ t2 + (1
p
− 1

2
)(εp+ − ε

p
−) for t ≥ ε+.

(2.21)

As we already know about the importance of the Simonenko indices it is mean-
ingful to calculate them.

Lemma 2.38. For ϕε as defined above we get

p− =
p

1− 1
2
(2− p)( ε−

ε+
)p

and p+ = 2.

In particular, ϕε and ϕ∗ε satisfy the ∆2 condition.

Proof. We calculate the quantities

inf
0<t≤ε−

tϕ′ε(t)

ϕε(t)
= inf

0<t≤ε−

εp−2
− t2

1
2
εp−2
− t2

= 2

as well as

inf
t∈ε

tϕ′ε(t)

ϕε(t)
= inf

t∈ε

tp

1
p
tp − (1

p
− 1

2
)εp−

= inf
t∈ε

1
1
p
− (1

p
− 1

2
)εp−t

−p

=
p

1− (1− p
2
)( ε−
ε+

)p

and

inf
t≥ε+

tϕ′ε(t)

ϕε(t)
= inf

t≥ε+

εp−2
+ t2

1
2
εp−2

+ t2 + (1
p
− 1

2
)(εp+ − ε

p
−)

= inf
t≥ε+

εp−2
+

1
2
εp−2

+ + (1
p
− 1

2
)(εp+ − ε

p
−)t−2

=
2

1 + (2
p
− 1)(1− ( ε−

ε+
)p)
.
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so

p− = min

{
2,

p

1− (1− p
2
)( ε−
ε+

)p
,

2

1 + (2
p
− 1)(1− ( ε−

ε+
)p)

}
.

For our choices of p and ε it is clear that

2 ≥ 2

1 + (2
p
− 1)(1− ( ε−

ε+
)p)
.

Furthermore

p

1− (1− p
2
)( ε−
ε+

)p
=

2

1 + (2
p
− 1)(1− ( ε−

ε+
)p)

⇐⇒ p+ (2− p)(1− ( ε−
ε+

)p) = 2− (2− p)( ε−
ε+

)p

⇐⇒ 1− ( ε−
ε+

)p + ( ε−
ε+

)p = 1

which also holds obviously true. Analogue, we get

sup
0<t≤ε−

tϕ′ε(t)

ϕε(t)
= sup

0<t≤ε−

εp−2
− t2

1
2
εp−2
− t2

= 2,

as well as

sup
t∈ε

tϕ′ε(t)

ϕε(t)
= sup

t∈ε

tp

1
p
tp − (1

p
− 1

2
)εp−

= sup
t∈ε

1
1
p
− (1

p
− 1

2
)εp−t

−p

= 2

and

sup
1
ε
≤t

tϕ′ε(t)

ϕε(t)
= sup

1
ε
≤t

εp−2
+ t2

1
2
εp−2

+ t2 + (1
p
− 1

2
)(εp+ − ε

p
−)

= sup
t≥ε+

εp−2
+

1
2
εp−2

+ + (1
p
− 1

2
)(εp+ − ε

p
−)t−2

= 2.

which clearly proofs p+ = 2.

That ϕε and ϕ∗ε satisfy the ∆2 condition is a simple consequence of the Lem-
mas 2.12 and 2.14.



32 2 Setting

As p ≤ p

1− 1
2

(2−p)( ε−
ε+

)p
we can use Lemma 2.12 to deduce the following lemma.

Lemma 2.39. For all ε ⊂ R≥0 and s, t ≥ 0, the inequalities

min{sp, s2}ϕε(t) ≤ ϕε(st) ≤ max{sp, s2}ϕε(t) (2.22)

hold.

Note that it is not surprising that the Simonenko indices of ϕε are close to p
for ε− small and ε+ large and 2 since ϕε has quadratic growth at 0 and ∞ and
p-growth on ε.

Up to now we always understood Jε as an energy defined on W 1,2
0 (Ω). By the

definition of ϕε we have

Jε(w) =

∫
Ω

ϕε(|∇w|) dx− |Ω|κε(0)− 〈f, w〉.

Hence, it is much more natural to imagine Jε : W 1,ϕε
0 (Ω) → R. From a set

theoretical point of view we have W 1,2
0 (Ω) = W 1,ϕε

0 (Ω) which is due to the quadratic
growth of ϕε(t) for t ≥ ε+ and Theorem 2.24.

Now that we know some things about the “right” N-function ϕε we want to use
it to deduce on of our central equivalences. To do so, we need the following central
statements.

Due to the importance of the expression Aϕε we write according to Defini-
tion 2.18

Aε(P ) := Aϕε(P ) and Vε(P ) := Vϕε(P ).

By ϕε,a := (ϕε)a we denote the shifted N-function of ϕε.

We want to show that ϕε satisfies the requirements of Lemma 2.19 uniformly in
the relaxation interval ε – meaning that the constants do not depend on ε – to use
it in the later chapters.

This will also imply that all statements care ε = (0,∞) as a special case.

Lemma 2.40. Let ϕε be as defined above. Then,

ϕ′ε(s ∨ t)
s ∨ t

|t− s| ≤ 1

p− 1
|ϕ′ε(t)− ϕ′ε(s)| ≤

1

p− 1

ϕ′ε(s ∨ t)
s ∨ t

|t− s|

for all s, t ≥ 0. In particular, ϕ′ε is locally Lipschitz continuous.
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Proof. Without loss of generality we assume s ≤ t and distinguish six cases.

s ≤ t ≤ ε−: It follows directly that also s ≤ ε. Then,

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
=

εp−2
− t

t
(t− s)

εp−2
− (t− s)

= 1.

s ≤ ε− ≤ t ≤ ε+: Now εp−2
− ≥ tp−2 implies tp−2(t− s) ≥ tp−1 − εp−2

− s and hence

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
=

tp−2(t− s)
tp−1 − εp−2

− s
≥ 1.

On the other hand,

tp−2(t− s)
tp−1 − εp−2

− s
≤ 1

p− 1
⇐⇒ tp−1 − stp−2 ≤ 1

p−1
(tp−1 − εp−2

− s)

⇐⇒ s ≤
2−p
p−1

tp−1

1
p−1

εp−2
− − tp−2

⇐⇒ s ≤ (2− p)tp−1

εp−2
− − (p− 1)tp−2

=: hε(t).

The function hε is increasing since εp−2
− ≥ tp−2 implies

h′ε(t) =
(2− p)(p− 1)tp−2(εp−2

− − (p− 1)tp−2) + (p− 1)(p− 2)tp−3(2− p)tp−1

(εp−2
− − (p− 1)tp−2)2

=
(2− p)(p− 1)tp−2(εp−2

− − (p− 1)tp−2 + (p− 2)tp−2)

(εp−2
− − (p− 1)tp−2)2

=
(2− p)(p− 1)tp−2(εp−2

− − tp−2)

(εp−2
− − (p− 1)tp−2)2

≥ 0

In particular, hε(t) ≥ hε(ε−) = ε−. But s ≤ ε− by assumption.

s ≤ ε− ≤ ε+ ≤ t: In this case we use −εp−2
+ ≥ −εp−2

− to get

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
=

εp−2
+ (t− s)

εp−2
+ t− εp−2

− s
≥ 1.
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On the other hand we write ε− = σε+ and s = θt. The assumptions on this case
imply θ ≤ σ ≤ 1. Hence

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
=

εp−2
+ (t− s)

εp−2
+ t− εp−2

− s

=
εp−2

+ t(1− σ)

εp−2
+ t(1− σp−2θ)

≤ 1− θ
1− θp−1

For p < 2 this is increasing in θ. Therefore we get by L’Hôpital’s rule

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
≤ lim

θ→1

1− θ
1− θp−1

= lim
θ→1

−1

−(p− 1)θp−2

=
1

p− 1
.

ε− ≤ s ≤ t ≤ ε+: With s ≤ t we get

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
=
tp−2(t− s)
tp−1 − sp−1

≥ 1.

By concavity of t 7→ tp−1 we get sp−1 ≤ tp−1 − (p− 1)tp−2(t− s) and so

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
=
tp−2(t− s)
tp−1 − sp−1

≤ 1

p− 1
.

ε− ≤ s ≤ ε+ ≤ t: Wit s ≤ ε+ we get sp−1 ≥ εp−2
+ s and so

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
=

εp−2
+ (t− s)

εp−2
+ t− sp−1

≥ 1.

ε2−p(t− s) ∼ ε2−pt− sp−1.

On the other hand we have

εp−2
+ (t− s)

εp−2
+ t− sp−1

≤ 1

p− 1
⇐⇒ (p− 1)εp−2

+ (t− s) ≤ εp−2
+ t− sp−1

⇐⇒ sp−1 − (p− 1)εp−2
+ s ≤ (2− p)εp−2

+ t.
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This holds true since ∂
∂s

(sp−1 − (p− 1)εp−2
+ s) = (p− 1)(sp−2 − εp−2

+ ) ≥ 0 and so

sp−1 − (p− 1)εp−2
+ s ≤ (2− p)εp−1

+ = (2− p)εp−2
+ ε+ ≤ (2− p)εp−2

+ t.

ε+ ≤ s ≤ t: We get

ϕ′ε(s∨t)
s∨t |t− s|

|ϕ′ε(t)− ϕ′ε(s)|
=

ε2−p(t− s)
ε2−pt− ε2−ps

= 1.

Building the minima and maxima of all constants we obtain the statement.

With that we will first of all show that Aε admits so called ϕε-structure, which
is stated in the next lemma.

Lemma 2.41. The N-function ϕε satisfies the requirements of Lemma 2.19 in the
sense that

(Aε(P )− Aε(Q))(P −Q) h
ϕ′ε(|P |+ |P −Q|)
|P |+ |P −Q|

|P −Q|2.

In particular,

(Aε(P )− Aε(Q))(P −Q) h |Vε(P )− Vε(Q)|2

h ϕε,|P |(|P −Q|)

h
ϕ′ε(|P | ∨ |Q|)
|P | ∨ |Q|

|P −Q|2.

Proof. We plug t = a+ t̃ and s = a in Lemma 2.40 to deduce that

ϕ′ε(a+ t)t

a+ t
h ϕ′ε(a+ t)− ϕ′ε(a).

As shown in [RD07, Lemma 6.14] this is a sufficient condition for the first statement.
The second estimates are a direct consequence of Lemma 2.19.

The next theorem is fundamental for the proofs in the next two chapters. It
allows us to switch between energy differences and differences of equations.

Theorem 2.42. Let uε be the minimizer of Jε and w ∈ W 1,ϕε
0 (Ω). Then,

Jε(w)− Jε(uε) ≤
∫
Ω

(Aε(∇w)− Aε(∇uε))∇(w − uε) dx . Jε(w)− Jε(uε).
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Proof. We define

f : [0, 1]→ R
t 7→ Jε(tw + (1− t)uε).

Since ϕε is in C1(R≥0), f has the same properties with

f ′(t) =

∫
Ω

ϕ′ε(|∇(tw + (1− t)uε)|)
|∇(tw + (1− t)uε)|

∇(tw + (1− t)uε) · ∇(w − uε) dx− 〈f, w − uε〉

=

∫
Ω

Aε(∇(tw + (1− t)uε)) · ∇(w − uε) dx− 〈f, w − uε〉.

In particular,

f ′(1) =

∫
Ω

Aε(∇w) · ∇(w − u) dx− 〈f, w − u〉.

The convexity of f implies f(0) ≥ f(1) − f ′(1) . With the equation for uε (see
(2.20) on page 29) we get

Jε(w)− Jε(uε) = f(1)− f(0)

≤ f ′(1)

=

∫
Ω

Aε(∇w) · ∇(w − u) dx− 〈f, w − u〉

=

∫
Ω

Aε(∇w) · ∇(w − u) dx−
∫
Ω

Aε(∇uε)∇(w − uε) dx

=

∫
Ω

(Aε(∇w)− Aε(∇uε))∇(w − uε) dx.

Due to the definition of the Simonenko indices and Lemma 2.39 we have for any
s ∈ [0, 1]

ϕ′ε(st) ≥
pϕε(st)

st
≥ ps2ϕε(t)

st
≥ p

2
sϕ′ε(t).

With this, the first equivalence of Lemma 2.41 and the monotonicity of ϕ′ε(t)
t

we
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can deduce

(Aε(∇(sw + (1− s)uε))− Aε(uε))∇(w − uε)
= (Aε(uε)− Aε(∇(sw + (1− s)uε)))∇(uε − w)

h
ϕ′ε(|∇uε|+ |∇uε − s∇w − (1− s)∇uε|)
|∇uε|+ |∇uε − s∇w − (1− s)∇uε|

|∇uε − s∇w − (1− s)∇uε|2

=
ϕ′ε(|∇uε|+ s|∇(w − uε)|)
|∇uε|+ s|∇(w − uε)|

|∇(w − uε)|2s2

≥ ϕ′ε(s|∇uε|+ s|∇(w − uε)|)
s|∇uε|+ s|∇(w − uε)|

|∇(w − uε)|2s2

&
ϕ′ε(|∇uε|+ |∇(w − uε)|)
|∇uε|+ |∇(w − uε)|

|∇(w − uε)|2s2

& s2(Aε(∇w)− Aε(∇uε))∇(w − uε).

This implies

Jε(w)− Jε(uε) = f(1)− f(0) =

1∫
0

f ′(s) ds

=

1∫
0

∫
Ω

(Aε(∇(sv + (1− s)uε))− Aε(uε)) · ∇(v − uε) dx ds

&

1∫
0

∫
Ω

s2(Aε(∇w)− Aε(∇uε))∇(w − uε) dx ds

&
∫
Ω

(Aε(∇w)− Aε(∇uε))∇(w − uε) dx.





3 Convergence in the Relaxation
Parameter

As explained in the last chapter, we introduced a relaxation interval into the p-
Poisson equation for our iteration to be well defined. As suggested by Theorem 2.37
we may hope that this leads to a minimizer of Jε. However, to solve the p-Poisson
equation we want to minimize J . It is clear that the minimizer uε of Jε and the
minimizer u of J may not coincide. We will describe the relation between uε and
ε in this chapter.

The right space to measure the distance of uε and u is W 1,p
0 (Ω) and not W 1,2

0 (Ω)
or W 1,ϕε

0 (Ω) since u /∈ W 1,2
0 (Ω) = W 1,ϕε

0 (Ω) for certain f ∈ (W 1,p
0 (Ω))∗. A further

disadvantage of W 1,ϕε
0 (Ω) is that its norm depends on ε.

But first of all we will prove one important property of Jε, namely its mono-
tonicity in ε.

Lemma 3.1. Let ε ⊆ δ ⊆ (0,∞). Then for all w ∈ W 1,ϕε
0 (Ω) we have

Jε(w) ≥ Jδ(w) ≥ J (w).

Proof. Due to the definition of Jε it suffices to show κε(t) ≥ κδ(t) ≥ ϕ(t) := 1
p
tp.

t ≤ δ− ≤ ε−: We easily see

κ′ε(t) = εp−2
− t ≤ δp−2

− t = κ′δ(t) ≤ tp−1 = ϕ′(t).

δ− ≤ t ≤ ε−: In this case

κ′ε(t) = εp−2
− t ≤ tp−1 = κ′δ(t) = ϕ′(t).

ε+ ≤ t ≤ δ+: Here

κ′ε(t) = εp−2
+ t ≥ tp−1 = κ′δ(t) = ϕ′(t).
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ε+ ≤ δ+ ≤ t: Under these assumptions we get

κ′ε(t) = εp−2
+ t ≥ δp−2

+ t = κ′δ(t) ≥ tp−1 = ϕ′(t).

Combining the first two cases imply the estimates κ′ε(t) ≤ κ′δ(t) ≤ ϕ′(t) for
t ∈ [0, ε−]. Additionally we have κε(ε−) = κδ(ε−) = ϕ(ε−). Hence for those choices
of t

κε(t) = κε(ε−)−
ε−∫
t

κ′ε(τ) dτ

≥ κδ(ε−)−
ε−∫
t

κ′δ(τ) dτ

= κδ(t).

For t ∈ [ε−, ε+] we have κε(t) = κδ(t) = ϕ(t) by definition.

If t ∈ [ε+,∞) we have κ′ε(t) ≥ κ′δ(t) ≥ ϕ′(t) and κε(ε+) = κδ(ε+) = ϕ(ε+) and
therefore

κε(t) = κε(ε+) +

t∫
ε+

κ′ε(τ) dτ

≥ κδ(ε+) +

t∫
ε+

κ′δ(τ) dτ

= κδ(t).

The proof of κδ(t) ≥ ϕ(t) is analogue to κε(t) ≥ κδ(t).

To show the convergence results in this section we will need a tool which is based
on another tool known from the harmonic analysis, see for example [SM93, I, §1.].

Definition 3.2. For w ∈ L1(Rd) we define the Hardy-Littlewood maximal function

M(w)(x) := sup
r>0
−
∫
Br(x)

|w(y)| dy := sup
r>0

1
|Br(0)|

∫
Br(x)

|w(y)| dy.
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For p ∈ (1,∞] the Hardy-Littlewood maximal operator M is continuous from
Lp(Rd) to Lp(Rd), i.e. there is a constant cp such that for all w ∈ Lp(Rd)

‖M(w)‖Lp(Rd) ≤ cp‖w‖Lp(Rd). (3.1)

The Hardy-Littlewood maximal function is of weak type (1,1), i.e. there exists
a constant c > 0 such that for all w ∈ L1(Rd)

sup
λ>0

λ|{M(w) > λ}| ≤ c‖w‖L1(Rd). (3.2)

Now, for w ∈ W 1,p
0 (Ω) ⊂ W 1,1

0 (Ω) we may assume w ∈ W 1,1
0 (Rd) by extending

w by zero on Ω{ (see for example [AF03, Theorem 5.29]) since we assumed Ω to be
bounded and having Lipschitz boundary.

Definition 3.3. For w ∈ W 1,p
0 (Rd) and λ ∈ (0,∞) we define the bad set

Oλ(w) := {x ∈ Rd : M(|∇w|)(x) > λ}.

Note that we will write Oλ instead of Oλ(w) if the choice of w is clear.

We will use the Lipschitz truncation provided by [DKS13, Subsection 3.5].

Theorem 3.4. There is a constant c > 1 such that for any λ > 0 and w ∈ W 1,p
0 (Ω)

there is wλ ∈ W 1,∞
0 (Ω) with the following properties:

(i) {w 6= wλ} ⊂ Oλ(w) ∩ Ω,

(ii) ‖wλ‖Lp(Ω) . ‖w‖Lp(Ω),

(iii) ‖∇wλ‖Lp(Ω) . ‖∇w‖Lp(Ω),

(iv) |∇wλ| ≤ cλχOλ(w)∩Ω + |∇w|χOλ(w){∩Ω ≤ cλ almost everywhere on Ω and

(v) ‖∇(w − wλ)‖Lp(Ω) . ‖∇w‖Lp(Oλ(w)) .

The constant in (iv) is mentioned explicitly since it will be of importance later.
Note that (v) was not proven in this work but is a consequence of (i) and (iii).
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3.1 Γ-Convergence

First of all, we will use the concept of Γ-convergence to show uε
ε→(0,∞)−−−−−→ u, although

we will prove the same result later again. We use a definition that is only equivalent
to the general definition in the literature, if the underlying topological space satisfies
the first axiom of countability (see [dM93, Proposition 8.1]).

Definition 3.5. Let X be a topological space, Fn, F : X → R. We say F is
the Γ-limit of (Fn) or F = Γ- limn→∞ Fn iff if the lim inf-condition (i) and the
lim sup-condition (ii) are satisfied.

(i) If xn → x, then F (x) ≤ lim infn→∞ Fn(xn).

(ii) For any x ∈ X there is (xn) with xn
n→∞−−−→ x and F (x) ≥ lim supn→∞ Fn(xn).

The sequence in (ii) is called recovering sequence.

Note that if (i) holds we have that (ii) is equivalent to F (x) = limn→∞ Fn(xn)
since

F (x) ≥ lim sup
n→∞

Fn(xn) ≥ lim inf
n→∞

Fn(xn) ≥ F (x).

For the rest of this chapter, let (εn) be a monotone sequence of intervals con-
verging to (0,∞) in the sense that εn+1 ⊇ εn for each n and limn→∞ ε−,n = 0 and
limn→∞ ε+,n =∞.

Although we are aware that the weak topology on W 1,p
0 (Ω) is not first countable

we will show that, according to our definition, J = Γ- limn→∞ Jεn on W 1,p
0 (Ω)

endowed with the strong as well as the weak topology. Indeed, there is no canonical
statement that Γ-convergence with respect to one topology implies Γ-convergence
with respect to the other topology. This is due to the fact that the lim inf-condition
is easier to prove for the strong convergence, whereas the lim sup-condition is easier
to prove for the weak convergence.

It remains to extend Jε via

Jε : W 1,p
0 (Ω)→ R

w 7→

{
Jε(w) for w ∈ W 1,2

0 (Ω) and

+∞ for w ∈ W 1,p
0 (Ω) \W 1,2

0 (Ω).
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where we wrote W 1,2
0 (Ω) instead of W 1,ϕε

0 (Ω) since this is more robust under the
process ε+,n

n→∞−−−→ ∞ and at that point only the set theoretical point of view is
important – the topology is induced by W 1,p

0 (Ω) anyway.

Theorem 3.6. J = Γ- lim
n→∞

Jεn with respect to both, the strong and the weak topol-

ogy on W 1,p
0 (Ω).

Proof. to prove the lim inf-condition let w,wn ∈ W 1,p
0 (Ω) with wn ⇀ w (which is

also sufficed if wn → w). Then, using the monotonicity of Jεn and the weak lower
semi-continuity of the norm we can directly estimate

lim inf
n→∞

Jεn(wn) ≥ lim inf
n→∞

J (wn) ≥ J (w).

It remains to show the existence of a recovery sequence that satisfies the lim sup-
condition with respect to the strong topology. We choose a sequence (λn)n ⊂ (0,∞)
with λn

n→∞−−−→∞ satisfying cλn ≤ ε+,n where c is the constant of Theorem 3.4, (iv).
We proof that the sequence of Lipschitz truncations wn := wλn is an admissible
recovering sequence for each function w ∈ W 1,p

0 (Ω), so we need to show

Jεn(wn)− J (w) =

∫
Ω

κεn(|∇wn|)− 1
p
|∇w|p dx− 〈f, wn − w〉

n→∞−−−→ 0. (3.3)

We split the domain of integration into Oλn ∩Ω and O{λn ∩Ω. For the latter one we
have ∇wn = ∇w, |∇wn| ≤ cλn ≤ ε+,n and for t ∈ [ε−,n, ε+,n] we have κεn(t) = 1

p
tp,

so ∣∣∣ ∫
O{
λn
∩Ω

κεn(|∇wn|)− 1
p
|∇w|p dx

∣∣∣ =
∣∣∣ ∫
O{
λn
∩Ω

κεn(|∇wn|)− 1
p
|∇wn|p dx

∣∣∣
=

∫
O{
λn
∩{|∇wn|<εn}∩Ω

κεn(|∇wn|)− 1
p
|∇wn|p dx

≤
∫
Ω

κε(ε−,n) dx

≤ 1
p
|Ω|εp−,n

n→∞−−−→ 0.

On the bad set we have |∇wn| . λ < M(|∇w|). From (3.1) we know that
M(|∇w|) ∈ Lp(Ω). Beside that (3.2) ensures

|Oλn| .
‖∇w‖L1(Ω)

λn

n→∞−−−→ 0.
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Therefore,∣∣∣ ∫
Oλn∩Ω

κεn(|∇wn|)− 1
p
|∇w|p dx

∣∣∣ ≤ ∫
Oλn∩Ω

κεn(|∇wn|) + 1
p
|∇w|p dx

.
∫

Oλn∩Ω

λp + |∇w|p dx

≤
∫

Oλn∩Ω

(M(|∇w|))p + |∇w|p︸ ︷︷ ︸
∈L1(Ω)

dx
n→∞−−−→ 0

by dominated convergence theorem. By Theorem 3.4, (v) we deduce that wn → w
in W 1,p

0 (Ω). Hence, wn ⇀ w and therefore, 〈f, wn − w〉
n→∞−−−→ 0. Altogether, this

yields (3.3), so the lim sup-condition.

With the Γ-convergence we can prove the following corollary.

Corollary 3.7. limn→∞ Jεn(uεn) = J (u).

Proof. Let (wn) be the recovering sequence of u according to Theorem 3.6. Then,
with the aid of Lemma 3.1 we can directly estimate

J (u) = lim
n→∞

Jεn(wn)

≥ lim
n→∞

Jεn(uεn)

≥ lim inf
n→∞

Jεn(uεn)

≥ lim inf
n→∞

J (uεn)

≥ J (u).

The functional J carries norm structure. Hence, we can get the first convergence
result without using the whole theory of Γ-convergence.

Corollary 3.8. uε
ε→(0,∞)−−−−−→ u in W 1,p

0 (Ω).

Proof. It is easy to see that for any N-function ϕ that if it is shifted by the argument
this yields ϕt(t) =

∫ t
0
ϕ′(t∨s)
t∨s s ds = 1

2
ϕ′(t)t ≤ cϕ(t). Now, we use Lemma 2.20 for

ϕ(t) := 1
p
tp to get for any δ > 0 that

ϕ(t) ≤ cδϕ|P |(t) + δ
c
ϕ|P |(|P |)

≤ cδϕ|P |(t) + δϕ(|P |).
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With ϕ(t) := 1
p
tp we get by Lemma 2.41 and Lemma 3.1 that∫

Ω

|∇(uε − u)|p dx . cδ

∫
Ω

ϕ|∇u|(|∇(uε − u)|) dx+ δ

∫
Ω

|∇u|p dx

. J (uε)− J (u) + δ

∫
Ω

|∇u|p dx

≤ Jε(uε)− J (u) + δ

∫
Ω

|∇u|p dx.

Now choosing δ, ε− sufficiently small and ε+ sufficiently large yields that the gra-
dient norm ‖∇(uε − u)‖Lp(Ω) h ‖u− uε‖W 1,p

0 (Ω) is arbitrary small.

There are also two other approaches leading to the convergence result as stated
in Corollary 3.8. We will just sketchy note them here. Note that we need Γ-
convergence with respect to the weak topology for this argumentation since the
family (Jε) is equi-coercive (which we will need afterwards) if and only if there is a
lower semi-continuous and coercive Φ : W 1,p

0 (Ω)→ R with Φ ≤ Jε. This is satisfied
for Φ = J but only when W 1,p

0 (Ω) is endowed with the weak topology as it is well
known that bounded sets in Lp are only weakly compact.

The first approach is showing that Jε is decreasing and converges pointwisely
to the functional J̃ , where J̃ = J on W 1,2

0 (Ω) and J̃ ≡ ∞ on W 1,p
0 (Ω) \W 1,2

0 (Ω).
This implies by [dM93, Proposition 5.7] that Γ- limε→(0,∞) Jε = sc– J̃ . Then one

can show that with respect to the weak topology we have sc– J̃ = J .

The other approach deals with the sequential characterization as we stated it.
But to be precise, this characterization is only equivalent to Γ-convergence if the un-
derlying topological space satisfies the first axiom of countability – which W 1,p

0 (Ω)
does not with respect to the weak topology. One can get around this problem by
choosing a bounded X ⊂ W 1,p

0 (Ω) carrying all minimizers and all recovering se-
quences. Then, the induced weak topology on X is metrizable (see [dM93, Propo-
sition 8.7]) which implies the first axiom of countability.

After performing one of those two approaches one uses the equi-coercivity and
the uniqueness of the minimizer of J to deduce that uε ⇀ u in W 1,p

0 (Ω) directly
(see [dM93, Proposition 7.24]). Now one can use Jε(uε) → J (u) to get the con-
vergence ‖∇uε‖Lp(Ω) → ‖∇u‖Lp(Ω) – at this point we used again that J carries

norm structure. But ‖∇ · ‖Lp(Ω) is a uniformly convex norm on W 1,p
0 (Ω), so weak

convergence and the convergence of the norm imply uε → u in W 1,p
0 (Ω).
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3.2 Error Bounds

In this section we want to overcome that we only achieved qualitative results in
the last section. As we already have used in the last section we have

J (uε)− J (u) ≤ Jε(uε)− J (u)

so it obviously suffices to show bounds for the latter term.

We will immediately start with the following estimate.

Lemma 3.9. For all λ ≤ ε+
c

with c from Theorem 3.4 we have

Jε(uε)− J (u) . εp− +

∫
Oλ(u)

|∇u|p dx. (3.4)

Proof. Let λ > 0 be as required and let Tλu be the Lipschitz truncation of u. Since
uε minimizes Jε and due to the equation for u (2.5) we may estimate

Jε(uε)− J (u) ≤ Jε(Tλu)− J (u)

=

∫
Ω

κε(|∇Tλu|)− 1
p
|∇u|p dx− 〈f, Tλu− u〉

=

∫
Ω

κε(|∇Tλu|)− 1
p
|∇u|p dx−

∫
Ω

|∇u|p−2∇(Tλu− u) dx

Now we use |∇Tλu| ≤ cλ ≤ ε+, κε(t) = 1
p
tp on ε and ∇Tλu = ∇u on Ω \ Oλ(u) to

see

κε(|∇Tλu|)− 1
p
|∇u|p ≤


1
p
εp− on {|∇Tλu| ≤ ε−},

0 on
(
Ω \ Oλ(u)

)
∩ {|∇Tλu| > ε−} and

1
p
|∇Tλu|p on Ω ∩ Oλ(u) ∩ {|∇Tλu| > ε−}.

Combining this with the last estimate, the Hölder Inequality and Theorem 3.4, (v)
we deduce

Jε(uε)− J (u) ≤ |Ω| 1
p
εp− +

∫
Oλ(u)

1
p
|∇Tλu|p dx+

∫
Oλ(u)

|∇u|p−1|∇(Tλu− u)| dx

. εp− +

∫
Oλ(u)

|∇Tλu|p dx+

∫
Oλ(u)

|∇u|p dx+

∫
Oλ(u)

|∇(Tλu− u)|p dx

. εp− +

∫
Oλ(u)

|∇u|p dx.
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Note that Lemma 3.9 also implies Corollary 3.7 almost directly with the weak
type estimate for the Hardy-Littlewood maximal function (3.2) on page 41.

The estimate (3.4) clearly separates the impact of ε− and ε+. The ε−-term can
not be improved, at least not for the energy difference Jε(uε) − J (u): imagine
given data f and Ω and just extend uε and u to BR(0) with R > 0 large enough.
Then you will obtain

|BR(0) \ Ω|εp− . Jε(uε)− J (u).

Of course, this argument does not hold for the energy difference J (uε)− J (u).

However, the second summand can be estimated in different ways. Therefore,
we will need additional regularity assumptions on f and Ω. These estimates depend
on the decay of the level sets of |∇u|. This is perfectly described by the weak Lp

spaces as a special case of Lorentz spaces. We set

‖w‖Lq,∞(Ω) := sup
t>0
‖tχ{|w|>t}‖Lq(Ω) (3.5)

and

Lq,∞(Ω) := {w ∈ L1
loc(Ω) : ‖w‖Lq,∞(Ω) <∞}. (3.6)

With

‖w‖Lq,1(Ω) := q

∞∫
0

‖tχ{|w|>t}‖Lq(Ω)
dt
t

(3.7)

and

Lq,1(Ω) := {w ∈ L1
loc(Ω) : ‖w‖Lq,1(Ω) <∞} (3.8)

we have (Lq,1(Ω))∗ ' Lq
′,∞(Ω) for q ∈ (1,∞) and 1

q
+ 1

q′
= 1 (see [Gra08, Theorem

1.4.17]). With that we can prove the following lemma.

Lemma 3.10. Let |∇u| ∈ Lq,∞(Ω) for some q > p. Then,

Jε(uε)− J (u) . εp− + ε
−(q−p)
+ ‖∇u‖Lq,∞(Ω).

Proof. From [CUMP04, Theorem 1.1] we deduce that M : Lq,∞(Ω) → Lq,∞(Ω) is
bounded. In particular,

‖∇u‖Lq,∞(Ω) & ‖M(|∇u|)‖Lq,∞(Ω)

= ‖λχ{M(|∇u|)>λ}‖Lq(Ω)

= λ|Oλ(u)|
1
q
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and hence |Oλ(u)| . ‖∇u‖qLq,∞(Ω)λ
−q. Furthermore we have

‖χ{|χOλ(u)|>t}‖
q
q−p

L
q
q−p (Ω)

= |{|χOλ(u)| > t}|

=

{
|Oλ(u)| for t ∈ [0, 1) and

0 for t ≥ 1

implying that

‖χOλ(u)‖
L

q
q−p ,1(Ω)

= q
q−p

∞∫
0

‖tχ{|χOλ(u)|>t}‖L q
q−p (Ω)

dt
t

h
1∫

0

|Oλ(u)|
q−p
q dt

= |Oλ(u)|
q−p
q .

Now, the last equivalence combined with |Oλ(u)|
q−p
q . ‖∇u‖q−pLq,∞(Ω)λ

−(q−p) yields∫
Oλ(u)

|∇u|p dx .
∥∥|∇u|p∥∥

L
q
p ,∞(Ω)

‖χOλ(u)‖
L

q
q−p ,1(Ω)

h ‖∇u‖pLq,∞(Ω)|Oλ(u)|
q−p
q

. ‖∇u‖qLq,∞(Ω) λ
−(q−p).

Applying Lemma 3.9 with λ := ε+
c

yields the statement.

Now that we know that Lq,∞-regularity of |∇u| can be directly transferred into
estimates for Jε(uε)− J (u) we give to examples how to derive rates for Jε(uε)−
J (u) based on the regularity results in [CM10] and [Ebm02].

The first result can be found in [CM10, Theorem 1.3 and Theorem 1.4].

Theorem 3.11. Let Ω ⊂ Rd be convex or let its boundary ∂Ω ∈ W 2Ld−1,1 (for
example ∂Ω ∈ C2 suffices) and additionally f ∈ Ld,1(Ω). Then, ∇u ∈ L∞(Ω).

An other example is not as directly applicable as this one.

Theorem 3.12. Let Ω be a polyhedral domain where the inner angle is strictly less

than 2π and f ∈ Lp′(Ω) and 1
p

+ 1
p′

= 1. Then ∇u ∈ L
pd
d−1

,∞.
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Proof. It is shown in [Ebm02, (4.3)] that |∇u| p2 ∈ N 1
2
,2(Ω) which denotes the

Nikolskĭı space. We will not recapitulate the definitions of the occurring function

spaces but show the embedding N 1
2
,2(Ω) ↪→ L

2d
d−1

,∞(Ω). First of all, we use

N
1
2
,2(Ω) = B

1
2
2,∞(Ω)

as stated in [KOF77, Remark 8.4.5], where Bs
p,q(Ω) denotes the standard Besov

spaces. With [Tri78, Theorems 1 and 2 in 4.3.1] we find the interpolation couple

{B
1
4
2,1(Ω), B

3
4
2,1(Ω)} to see that

B
1
2
2,∞(Ω) = (B

1
4
2,1(Ω), B

3
4
2,1(Ω)) 1

2
,∞

holds. The embeddings (see [EEK06] respectively [Pee66])

B
1
4
2,1(Ω) ↪→ L

4d
2d−1 (Ω) and B

3
4
2,1(Ω) ↪→ L

4d
2d−3 (Ω)

yield

(B
1
4
2,1(Ω), B

3
4
2,1(Ω)) 1

2
,∞ ↪→ (L

4d
2d−1 (Ω), L

4d
2d−3 (Ω)) 1

2
,∞.

Finally, by [Tri78, Theorem 2 in 1.18.6] we get

(L
4d

2d−1 (Ω), L
4d

2d−3 (Ω)) 1
2
,∞ = L

2d
d−1

,∞(Ω).

Hence, |∇u| p2 ∈ L
2d
d−1

,∞(Ω), so

∞ > ‖|∇u|
p
2‖

L
2d
d−1

,∞
(Ω)

= sup
t>0
‖t

p
2χ{|∇u|

p
2>t

p
2 }‖L 2d

d−1 (Ω)

= sup
t>0
‖tχ{|∇u|>t}‖

p
2

L
pd
d−1 (Ω)

= ‖∇u‖
p
2

L
pd
d−1

,∞
(Ω)
.

So we may finish this chapter with the next two corollaries.

Corollary 3.13. Let Ω ⊂ Rd be convex or let its boundary ∂Ω ∈ W 2Ld−1,1 (for
example ∂Ω ∈ C2 suffices) and additionally f ∈ Ld,1(Ω). Then for ε+ large enough
one gets

Jε(uε)− J (u) . εp−.



50 3 Convergence in the Relaxation Parameter

Proof. As shown in Theorem 3.11 in that case |∇u| ∈ L∞(Ω) so we have that
M(|∇u|) ∈ L∞(Ω), too, by using (3.1). Therefore, Oλ(u) = ∅ for λ large enough
so an application of Lemma 3.9 yields the statement.

Corollary 3.14. Let Ω be a polyhedral domain where the inner angle is strictly
less than 2π and f ∈ Lp′(Ω) and 1

p
+ 1

p′
= 1. Then,

Jε(uε)− J (u) . εp− + ε
− p
d−1

+ .

Proof. Combining Theorem 3.12 and Lemma 3.10 yields the statement directly.



4 The Kačanov Iteration

In this chapter, we discuss the convergence of the Kačanov iteration and see a very
important but academic example in the second part. As we already have used in
the last section we have

J (uε)− J (u) ≤ Jε(uε)− J (u)

so it obviously suffices to show bounds for the latter term.

In this section we study the convergence of the Kačanov-iteration for fixed re-
laxation parameter ε = (ε−, ε+).

4.1 Exponential Convergence

We recapitulate: for v0 ∈ W 1,2
0 (Ω) arbitrary we calculate recursively vn+1 as solu-

tion to∫
Ω

Πε(|∇vn|)p−2∇vn+1∇ξ dx =

∫
Ω

ϕ′ε(|∇vn|)
|∇vn| ∇vn+1∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2

0 (Ω)

as introduced in Section 2.3.

We will show that un converges to the minimizer uε of the relaxed energy Jε
with exponential decay of the energy error Jε(vn)−Jε(uε). The proof is based on
the following theorem that says that in each iteration we reduce the energy by a
certain part of the remaining energy error.

Theorem 4.1. There is a constant c > 1 such that

Jε(vn)− Jε(vn+1) ≥ δ (Jε(vn)− Jε(uε))

holds for δ := 1
c
( ε−
ε+

)2−p.
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Proof. Using Theorem 2.42, the equation for uε and ab ≤ 1
2γ
a2 + γ

2
b2 for arbitrary

a, b ≥ 0 and γ > 0

Jε(vn)− Jε(uε) ≤
∫
Ω

(Aε(vn)− Aε(uε))∇(vn − uε) dx

=

∫
Ω

ϕ′ε(|∇vn|)
|∇vn| ∇(vn − vn+1)∇(vn − uε) dx

≤ 1
γ

1
2

∫
Ω

ϕ′ε(|∇vn|)
|∇vn| |∇(vn − vn+1)|2 dx

︸ ︷︷ ︸
=:I

+ γ 1
2

∫
Ω

ϕ′ε(|∇vn|)
|∇vn| |∇(vn − uε)|2 dx︸ ︷︷ ︸

=:II

.

We use (2.19), the equation for ∇vn+1 twice, Lemma 2.33 and the fact that Πε

is a projection to deduce

I = 1
2

∫
Ω

ϕ′ε(|∇vn|)
|∇vn| |∇(vn − vn+1)|2 dx

= 1
2

∫
Ω

Πε(|∇vn|)p−2(|∇vn|2 − |∇vn+1|2 − 2∇vn∇vn+1 + 2|∇vn+1|2) dx

=

∫
Ω

1
2
Πε(|∇vn|)p−2|∇vn|2 + (1

p
− 1

2
)Πε(|∇vn|)p−2 dx− 〈f, vn〉

−
∫
Ω

1
2
Πε(|∇vn|)p−2|∇vn+1|2 + (1

p
− 1

2
)Πε(|∇vn|)p−2 dx+ 〈f, vn+1〉

= J s
ε (vn, |∇vn|)− J s

ε (vn+1, |∇vn|)
≤ J s

ε (vn, |∇vn|)− J s
ε (vn+1,Πε(|∇vn+1|))

= J s
ε (vn, |∇vn|)− J s

ε (vn+1, |∇vn+1|)
= Jε(vn)− Jε(vn+1).

Since ϕ′ε(t)
t

= Πε(t)
p−2 is decreasing we have εp−2

+ ≤ ϕ′ε(t)
t
≤ εp−2

− for all t. There-

fore, ϕ′ε(t)
t
≤ ( ε+

ε−
)2−p ϕ′ε(s)

s
for all s, t ≥ 0. Using this, Lemma 2.41 and Theorem 2.42
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we obtain that there is c′ = c1c2
2

independent of ε such that

II = 1
2

∫
Ω

ϕ′ε(|∇vn|)
|∇vn| |∇(vn − uε)|2 dx

= 1
2
( ε+
ε−

)2−p
∫
Ω

ϕ′ε(|∇vn|∨|∇uε|)
|∇vn|∨|∇uε| |∇(vn − uε)|2 dx

≤ c1
2

( ε+
ε−

)2−p
∫
Ω

(Aε(∇vn)− Aε(∇uε))∇(vn − uε) dx

≤ c1c2
2

( ε+
ε−

)2−p(Jε(vn)− Jε(uε))
≤ c′( ε+

ε−
)2−p(Jε(vn)− Jε(uε))

Putting all estimates together we get

Jε(vn)− Jε(uε) ≤ 1
γ
(Jε(vn)− Jε(vn+1)) + γc′( ε+

ε−
)2−p(Jε(vn)− Jε(uε)),

so

γ(1− cγ( ε+
ε−

)2−p) (Jε(vn)− Jε(uε)) ≤ Jε(vn)− Jε(vn+1).

Now, maxγ>0 γ(1− c′γ( ε+
ε−

)2−p) = 1
4c′

( ε−
ε+

)2−p yields the statement.

A direct consequence of the last theorem is the following corollary.

Corollary 4.2. For vn generated by the algorithm, uε being the minimizer of Jε
and δ := 1

c
( ε−
ε+

)2−p we get

Jε(vn)− Jε(uε) ≤ (1− δ)n(Jε(v0)− Jε(uε)).

Proof. We prove this by induction. The case when n = 0 is clear. So let the
statement be true for n− 1. Then, with Theorem 4.1 we get

Jε(vn)− Jε(uε) = Jε(vn−1)− Jε(uε) + Jε(vn)− Jε(vn−1)

≤ (1− δ)(Jε(vn−1)− Jε(uε))
≤ (1− δ)(1− δ)n−1(Jε(v0)− Jε(uε))
= (1− δ)n(Jε(v0)− Jε(uε)).

As for the limit with respect to the relaxation parameter ε we want to state the
convergence with to the underlying space W 1,ϕε

0 (Ω).
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Corollary 4.3. vn
n→∞−−−→ uε in W 1,ϕε

0 (Ω).

Proof. As in the proof of Corollary 3.8 we deduce for any t ≥ 0, γ > 0 and P ∈ Rd

the estimate

ϕε(t) ≤ cγϕε,|P |(t) + γϕε(|P |).

Again with Lemma 2.41 and Lemma 3.1 we get

∫
Ω

ϕε(|∇(vn − uε)|) dx ≤ cγ

∫
Ω

ϕε,|∇uε|(|∇(vn − uε)|) dx+ γ

∫
Ω

ϕε(|∇uε|) dx

.
∫
Ω

(Aε(∇vn)− Aε(∇uε))∇(vn − uε) dx+ γ

∫
Ω

ϕε(|∇uε|) dx

. Jε(vn)− Jε(uε) + γ

∫
Ω

ϕε(|∇uε|) dx.

Choosing γ sufficiently small and n sufficiently large yields convergence with respect
to the modulus, that is

∫
Ω
ϕε(|∇(vn − uε)|) dx

n→∞−−−→ 0. With Theorem 2.27, 2. we
get the statement.

4.2 An Example

As in the previous section we fix ε such that 1 ∈ ε. Furthermore, let Ω := B1(0)
and f ∈ (W 1,p

0 (Ω))∗ such that u(x) = 1− |x|. That is achieved by the distribution
f(x) = − div( x

|x|) /∈ L1(Ω). Since |∇u| ≡ 1, the factor |∇u|p−2 in the non-linear
weight does not appear for the minimizer:

∫
Ω

∇u∇ξ dx =

∫
Ω

|∇u|p−2∇u∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,ϕε
0 (Ω). (4.1)
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Furthermore, for all w ∈ W 1,ϕε
0 (Ω) we get

Jε(u) =

∫
Ω

κε(|∇u|) dx− 〈f, u〉

=

∫
Ω

1
p
|∇u|p dx− 〈f, u〉

= J (u)

≤ J (w)

≤ Jε(w).

So in this case u also minimizes every Jε with 1 ∈ ε, so uε = u.

We want to elaborate how the Kačanov iteration performs in this academic
example for v0 = 0. We show directly, that we have vn = anu where an is recursively
defined via

a0 := 0 and an+1 := Πε(an)2−p. (4.2)

This follows with (4.1) and since then∫
Ω

Πε(|∇vn|)p−2∇vn+1∇ξ dx =

∫
Ω

Πε(an|∇u|)p−2an+1∇u∇ξ dx

=

∫
Ω

Πε(an)p−2Πε(an)2−p∇u∇ξ dx

=

∫
Ω

∇u∇ξ dx

= 〈f, ξ〉.

Note that this representation also holds true for p ≥ 2. We will discuss this case
later.

So let p < 2. Then for 1 ∈ ε and any t ∈ ε we get ε− ≤ ε2−p
− ≤ t2−p ≤ ε2−p

+ ≤ ε+.
So if an ∈ ε we directly get an+1 ∈ ε. With a0 = 0 we get a1 = Πε(0)2−p = ε2−p

− ∈ ε
since ε2−p

− ≥ ε− and ε2−p
− ≤ 1 ≤ ε+. In particular we get

a0 = 0 and an = ε
(2−p)n
− ∈ ε for n ≥ 1

directly by (4.2).
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With that we can calculate for n ≥ 1

Jε(vn)− Jε(uε) = Jε(vn)− J (u)

=

∫
Ω

κε(|∇vn|)− 1
p
|∇u|p dx− 〈f, vn − u〉

=

∫
Ω

κε(an)− 1
p
dx−

∫
Ω

∇u∇(vn − u) dx

= (α
p
n

p
− 1

p
)

∫
Ω

1 dx− (αn − 1)

∫
Ω

∇u∇u︸ ︷︷ ︸
=1

dx

= 1
p
|B1(0)|(αpn − 1− p(αn − 1))

= 1
p
|B1(0)|(εp(2−p)

n

− − 1− p(ε(2−p)n
− − 1)).

and similar to above

Jε(vn)− Jε(uε) = Jε(v0)− J (u)

=

∫
Ω

κε(0)− 1
p
|∇u|p dx+ 〈f, u〉

= |B1(0)|((1
p
− 1

2
)εp− + 1− 1

p
)

for completion.

The interesting part is of course the (asymptotic) behaviour for n ≥ 1. It is
stated in the following lemma.

Lemma 4.4. The estimate

1
p
(ε
p(2−p)n
− − 1− p(ε(2−p)n

− − 1)) ≤ p−1
2

ln(ε−)2(2− p)2n

holds true and is asymptotic in the sense that

1
p
(ε
p(2−p)n
− − 1− p(ε(2−p)n

− − 1))
p−1

2
ln(ε−)2(2− p)2n

n→∞−−−→ 1.

Proof. Let t ∈ (0, 1]. We introduce the functions g, h : (0, 1]→ R via

g(t) := p−1
2

ln(t)2 − 1
p
(tp − 1) + (t− 1) and h(t) := 1− ln(t)− tp.
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Since h′(t) = −1
t
− ptp−1 ≤ 0 and h(1) = 0 we get that h(t) ≥ 0. The first and

second derivative of g are calculated as

g′(t) = (p− 1) ln(t)1
t
− tp−1 + 1 and

g′′(t) = (p− 1)( 1
t2
− ln(t) 1

t2
− tp−2)

= (p− 1)t−2(1− ln(t)− tp)
= (p− 1)t−2h(t)

≥ 0.

So g is convex. This implies g(1)−g(t)
1−t ≤ g′(1). Now by g(1) = g′(1) = 0 and 1−t ≥ 0

we get g(t) ≥ 0. In particular,

0 ≤ g(ε
(2−p)n
− )

= p−1
2

ln(ε
(2−p)n
− )2 − 1

p
(ε
p(2−p)n
− − 1) + (ε

(2−p)n
− − 1)

= p−1
2

(2− p)2n ln(ε−)2 − 1
p
((ε

p(2−p)n
− − 1)− p(ε(2−p)n

− − 1))

which shows the estimate.

The asymptotic behaviour follows from applying l’Hôpital’s rule twice and choos-
ing tn = ε

(2−p)n
−

n→∞−−−→ 1 in

lim
t→1

1
p
(tp − 1− p(t− 1))

p−1
2

ln(t)2
= lim

t→1

tp−1 − 1

(p− 1) ln(t)1
t

= lim
t→1

tp − t
(p− 1) ln(t)

= lim
t→1

ptp−1 − 1

(p− 1)1
t

= 1.

So indeed, the energy differences J (vn)−J (u) = Jε(un)−J (u) asymptotically
behave like 1

2
|B1(0)|(p− 1) ln(ε−)2(2− p)2n for large n. In particular, the estimate

J (vn)− J (u) = Jε(un)− J (u)

= Jε(un)− J (u)

≤ 1
2
|B1(0)|(p− 1) ln(ε−)2(2− p)2n

is sharp.
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This asymptotic shows that in this particular case

Jε(un)− Jε(uε) ≤ cε (1− δ)n

with δ = 1− (2− p)2 < 1 independent of ε. Therefore, it remains open if such an
estimate holds in the general case.

Note that even the energy difference J (vn)−J (u) truly depends on ε – where
J (w)−J (u) in general does not. Furthermore, it is possible to deduce the following
theorem with this example. Note especially that it even holds for Jε(v0)− Jε(uε)
arbitrarily small (but not equal to zero), so the ε-dependence of δ is not due to a
bad choice of the initial value.

Theorem 4.5. There is no γ > 0 such that there is a factor δ ∈ (0, 1) independent
of ε satisfying

Jε(vn)− Jε(vn+1) ≥ δ(Jε(vn)− Jε(uε))

for all v0 ∈ Xγ := {w ∈ W 1,ϕε
0 (Ω) : Jε(w)− Jε(uε) < γ} and n ≥ 0.

Proof. We assume the existence of such a γ > 0, define w0 := 0 and (wn) as the
sequence generated by our algorithm. We already know that Jε(wn)

n→∞−−−→ Jε(w),
so there is Nγ ∈ N≥1 such that wNγ ∈ Xγ. Now we choose v0 := wNγ . It is clear

that this implies vn = wn+Nγ = ε
(2−p)n+Nγ

− . With that we deduce

δ ≤ Jε(v0)− Jε(v1)

Jε(v0)− Jε(uε)

=
Jε(v0)− Jε(uε)− (Jε(v1)− Jε(uε))

Jε(v0)− Jε(uε)

= 1− Jε(v1)− Jε(uε)
Jε(v0)− Jε(uε)

.

Since δ is independent of ε we get

δ ≤ lim
ε−↘0

1− Jε(v1)− Jε(uε)
Jε(v0)− Jε(uε)

= 1− lim
ε−↘0

Jε(w1+Nγ )− Jε(uε)
Jε(wNγ )− Jε(uε)

= 1− lim
ε−↘0

ε
p(2−p)1+Nγ

− − 1− p(εp(2−p)
1+Nγ

− − 1)

ε
p(2−p)Nγ
− − 1− p(εp(2−p)

Nγ

− − 1)

= 0.

This obviously contradicts δ ∈ (0, 1).
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Also note that this statement holds true when replacing the the relaxed energies
by the p-Poisson energy

J (vn)− J (vn+1) ≥ δ(J (vn)− J (uε)),

since the gradients of the constructed sequence satisfy |∇vn| ∈ ε.

Although our considerations are all under the assumption 1 < p ≤ 2 it is
interesting to check how our algorithm performs in the case p > 2 for our example.
Note that (4.2) holds true for any p > 1.

First, we consider the case p ≥ 3. We chose ε+ := 1
ε−

for some arbitrary ε− < 1.
We show by induction, that

a0 = 0 and an = ε
(−1)n(p−2)
− for n ≥ 1.

Note that p ≥ 3 implies ε2−p
− ≥ ε−1

− = ε+ and εp−2
− ≤ ε−. Then, the base clause is

given by

a0 = 0,

a1 = Πε(a0)2−p = Πε(0)2−p = ε2−p
− and

a2 = Πε(a1)2−p = Πε(ε
2−p
− )2−p = ε2−p

+ = εp−2
− .

Now, let n be an even number. By induction hypothesis we get an = ε
(−1)n(p−2)
− =

εp−2
− . Therefore,

an+1 = Πε(an)2−p = Πε(ε
p−2
− )2−p = ε2−p

− = ε
(−1)n+1(p−2)
− .

If n is an odd number we get an = ε
(−1)n(p−2)
− = ε2−p

− by induction hypothesis.
Then,

an+1 = Πε(an)2−p = Πε(ε
2−p
− )2−p = ε2−p

+ = εp−2
− = ε

(−1)n+1(p−2)
− .

To study the convergence of the sequence (vn) the energy is not a suitable tool
anymore since it deduced for p ∈ (1, 2). So consider ‖ · ‖ to be a norm on W 1,p

0 (Ω),
W 1,2

0 (Ω) or on W 1,ϕε
0 (Ω). Then, for n ≥ 1

‖vn − uε‖ = ‖vn − u‖
= |1− ε(−1)n(2−p)

− |‖u‖

=

{
(ε2−p
− − 1)‖u‖ for n even and

(1− εp−2
− )‖u‖ for n odd

= (−1)n(ε
(−1)n(2−p)
− − 1)‖u‖.

Hence, we can formulate the following corollary.
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Corollary 4.6. For p ≥ 3 and ε− ∈ (0, 1), the by∫
Ω

Πε(|∇vn|)p−2∇vn+1∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2
0 (Ω)

recursively defined sequence does not converge in general.

Proof. This follows directly by ε2−p
− − 1 6= 1− εp−2

− for ε− 6= 1.

For p ∈ (2, 3) we show that

a0 = 0 and an = ε
(2−p)n
− for n ≥ 1,

too. It is easy to see that a1 = Πε(a0)2−p = Πε(0)2−p = ε
(2−p)1

− . For the induction

step we use ε− ≤ ε
(2−p)n
− ≤ ε−1

− = ε+ which is due to the fact that −1 ≤ (2−p)n ≤ 1
for all n ≥ 1 and calculate

an+1 = Πε(an)2−p = Πε(ε
(2−p)n
− )2−p = ε

(2−p)n+1

− .

As already mentioned, the relaxed energy is not suitable for p > 2. But since
|vn| ∈ ε for n ≥ 1 the relaxed energies coincide with the unrelaxed ones which are
suitable indeed. So

J (vn)− J (u) = Jε(vn)− J (u)

= Jε(vn)− Jε(uε)

=

∫
Ω

κε(ε
(2−p)n
− |∇u|)− 1

p
|∇u|p dx− 〈f, vn − u〉

= 1
p
(ε

(2−p)n
− − 1)

∫
Ω

1 dx− (ε
(2−p)n
− − 1)

∫
Ω

∇u∇u dx

= 1
p
|B1(0)|(εp(2−p)

n

− − 1− p((ε(2−p)n
− − 1))).

for n ≥ 1. Note that still ε
(2−p)n
−

n→∞−−−→ 1, hence as in Lemma 4.4 we get

lim
n→∞

J (vn)− J (u)
p−1

2
ln(ε−)2(2− p)2n

= 1

for p ∈ (2, 3), too. In particular, the algorithm converges for this example also for
these choices of p.
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5.1 An Algebraic Rate

As we learned in the last section the Kačanov Iteration converges, but the rate
depends badly on the choice of the relaxation interval ε = (ε−, ε+). Furthermore,
we have algebraic decay of the error induced by the relaxation – at least under
certain regularity assumptions. We will assume that |∇u| ∈ Lq,∞(Ω) for some
q > p and combine the results for both errors to deduce an algebraic rate over all.

To do so we introduce a quantity Gn that carries both errors and satisfies

(Gn − G∞) ≤ (G1 − G∞)
n−1∏
i=1

(1− δi).

As we are going to use Theorem 4.1 we will have the dependency δn h ( ε−,n
ε+,n

)2−p.

Hence, we will need to ensure that this ration tends to zero slow enough.

To use the convergence in the relaxation parameter we assume – as already
mentioned – that |∇u| ∈ Lq,∞(Ω) for some q > p. Lemma 3.10 ensures the existence
of a constant cR > 0 such that

Jε(uε)− J (u) ≤ cR(εp− + ε
−(q−p)
+ ). (5.1)

Hence, it is reasonable to define

Gn := Jεn(vn) +M(εp−,n + ε
−(q−p)
+,n ) and G∞ := J (u), (5.2)

where M > 0 will be determined later. This definition allows to work with the
relaxed energy to use the decay of the Kačanov iteration and implies

J (vn)− J (u) ≤ Jεn(vn)− J (u)

. Gn − G∞,
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so any decay rate for Gn − G∞ is a decay rate of the global energy error of the
iteration. The first result of this section shows how the main statement of Theo-
rem 4.1 can be transferred to Gn for a special choice of (ε−,n) and (ε+,n). To be
more precise, we choose α, β > 0 with α + β = 1

2−p and εn = (n−α, nβ). We will
see later, why this coupling is necessary.

With our choice of the relaxation parameters the algorithm reads as follows.

Algorithm: The non-adaptive relaxed p-Kačanov algorithm

Data: Ω ⊂ Rd and f ∈ (W 1,p
0 (Ω))∗ such that |∇u| ∈ Lq,∞(Ω) for q > p;

α, β > 0 such that α + β = 1
2−p ;

Result: Approximate solution of the p-Poisson problem (2.5).
n := 1;
while desired accuracy is not achieved yet do

Calculate vn+1 as solution of∫
Ω

Π(n−α,nβ)(|∇vn|)p−2∇vn+1∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2
0 (Ω);

Update n n+ 1;
end

Note that it is not necessary to define v1, since for any v1 ∈ W 1,2
0 (Ω) we have

Π(1−α,1β)(|∇v1|)p−2 = 1, so v2 is the solution to the related 2-Poisson problem. For
an easier readability of the proof we first prove the following lemma. It shows that
for an algebraic sequence, its difference with its index shifted version decays at
most with an additional factor of n−1.

Lemma 5.1. Let γ > 0. Then for all n ≥ 1 we have

n−γ − (n+ 1)−γ ≥ n−γ−1 min{γ
2
, 1− 2−γ}.

Proof. We define h : [0, 1
2
]→ R via h(t) := 1−(1−t)γ. Note that h′(t) = γ(1−t)γ−1

and h′′(t) = γ(1− γ)(1− t)γ−2. For γ ≥ 1 this implies that h is concave, so

h(t) ≥ t(
h( 1

2
)−h(0)
1
2

)

= 2th(1
2
)

= 2(1− 2−γ)t
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On the other hand, if γ ∈ (0, 1), the function h is convex. Therefore,

h(t) ≥ h(0) + th′(0)

= γt.

Since 2(1− 2−γ) is concave in γ and since 2(1− 2−0) = 0 as well as 2(1− 2−1) = 1
we see

min{γ, 2(1− 2−γ)} =

{
γ for γ ∈ (0, 1) and

2(1− 2−γ) for γ ≥ 1.

Overall, this implies h(t) ≥ min{γ, 2(1− 2−γ)}t. Therefore, we get

n−γ − (n+ 1)−γ = n−γ(1− (n+1
n

)−γ)

= n−γ(1− (1− 1
n+1

)γ)

= n−γh( 1
n+1

)

≥ n−γ min{γ, 2(1− 2−γ)} 1
n+1

≥ n−γ−1 min{γ
2
, 1− 2−γ}.

With that, we can prove an estimate similar to Theorem 4.1. Therefore, we
choose M in the definition of Gn – see (5.2) – such that

M + cR
McK

≥ max{αp
2
, βp

2
, 1− 2−αp, 1− 2−βp}.

Since M+cR
McK

is not bounded as M > 0 gets small, this is always possible.

Theorem 5.2. Let |∇u| ∈ Lq,∞(Ω) for some q > p. Then, the sequence (vn)
generated by the algorithm on page 62 satisfies

Gn − Gn+1 ≥ 1
ncK

(Gn − G∞) (5.3)

where cK is the constant of Theorem 4.1.

Proof. With Lemma 5.1 for γ ∈ {αp, β(q − p)} and our choice of M we get

Mn−γ −M(n+ 1)−γ ≥ M+cR
cK

n−γ−1

or for δn := 1
ncK

−cRδnn−γ ≥Mδnn
−γ −M(n−γ − (n+ 1)−γ),



64 5 Overall Convergence Analysis

respectively. Summing up this inequality for the two choices of γ we get

−cRδn(n−αp + n−β(q−p)) ≥Mδn(n−αp + n−β(q−p))

−M(n−αp + n−β(q−p))

+M((n+ 1)−αp + (n+ 1)−β(q−p)).

(5.4)

We write εn := (n−α, nβ). For the next estimate, we use Theorem 4.1 and our
choice of α, β > 0 with α+ β = 1

2−p . That implies δn = 1
ncK

, so together with (5.1)
we directly deduce the estimate

Jεn(vn)− Jεn+1(vn+1) ≥ Jεn(vn)− Jεn(vn+1)

≥ δn(Jεn(vn)− Jεn(uεn))

= δn(Jεn(vn)− J (u))− δn(Jεn(uεn)− J (u))

≥ δn(Jεn(vn)− J (u))− δncR(n−αp + n−β(q−p)).

Now the statement follows by applying (5.4) to the last estimate.

With that we can perform similar steps as in the proof of Corollary 4.2 to obtain
the following result.

Corollary 5.3. Let |∇u| ∈ Lq,∞(Ω) for some q > p (for example f ∈ Lp
′
(Ω)

and Ω rectangular with inner angle less than 2π, see Corollary 3.14). Then, the
non-adaptive algorithm on page 62 satisfies

Gn − G∞ ≤ (G1 − G∞)n−c
−1
K

where cK is the constant of Theorem 4.1. In particular,

J (vn)− J (u) . n−c
−1
K .

Proof. From Theorem 5.2 we directly deduce Gn+1 − G∞ ≤ (1 − δn)(Gn − G∞) for
n ≥ 1. This inductively implies

Gn − G∞ ≤ (G1 − G∞)
n−1∏
i=1

(1− δi).

With the integral test for convergence of series we get

n−1∑
i=1

δi ≥
n∫

1

1
tcK

dt

= ln(nc
−1
K ).
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Using this in

n−1∏
i=0

(1− δi) = exp

( n−1∑
i=0

ln(1− δi)
)

≤ exp

(
−

n−1∑
i=0

δi

)
≤ exp(− ln(nc

−1
K ))

= n−c
−1
K .

we get the statement.

However, with this technique one can not proof better results. This is due to
the fact that the estimate

n−γ − (n+ 1)−γ & n−1n−γ

is needed to cover

n−αp − (n+ 1)−αp & δnn
−αp.

Hence, with this technique δn may not tend to zero slower than n−1. This is also
the reason, why we need the relation α + β = 1

2−p .

Also note that the estimate

Gn − Gn+1 ≥ 1
ncK

(Gn − G∞)

does not improve when q becomes larger. Anyway, if q is known, we can optimize
the stabilization of

Gn = Jεn(vn) +M(n−αp + n−β(q−p))

in the sense that αp = β(q − p). Since we need to ensure α + β = 1
2−p , too, this

reads as (
1 1
p p− q

)(
α
β

)
=

(
1

2−p
0

)
which is solved by(

α
β

)
= 1
−q

(
p− q −1
−p 1

)(
1

2−p
0

)
=

(
q−p
q(2−p)
p

q(2−p)

)
.
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Then, Gn = Jεn(vn)+2Mn
−
p(q−p)
q(2−p) . Hence, the impact of the stabilization decreases

as q increases.

As we have seen before, we also get convergence in the norm on W 1,p
0 (Ω) and

state this here for completion.

Corollary 5.4. Under the assumptions of Corollary 5.3, the sequence (vn) of the
non-adaptive algorithm on page 62 satisfies vn

n→∞−−−→ u in W 1,p
0 (Ω).

Proof. With the same estimate as in Corollary 3.8 we get for any δ > 0 the estimate∫
Ω

|∇(vn − u)|p dx ≤ cδ(J (vn)− J (u)) + δ

∫
Ω

|∇u|p dx.

Choosing δ sufficiently small and n sufficiently large the term on the right hand
side becomes arbitrary small.

5.2 Outlook On Adaptive Strategies for the
Relaxation Parameter

In the last section we saw an example for a strategy to couple a certain behaviour of
the relaxation parameter to the Kačanov iteration to deduce an algebraic rate. Of
course we do not recommend to implement this version of the algorithm. Instead,
one should prefer a generalization of the adaptive finite element method. The well
known adaptive finite element method always follows the loop

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

where one solves the problem on the current discretization, estimates the error,
locates the error in mark and refines the discretization in the last step.

We suggest a generalization in the following sense: In the estimate step one does
not only calculate error estimators of the spatial discretization but of the errors
coming from not running the Kačanov iteration long enough and from choosing the
relaxation interval not large enough. After comparing these four estimators

1. η2
ε− h J(ε−,ε+)(u(ε−,ε+))− J(0,ε+)(u(0,ε+)),

2. η2
ε+

h J(ε−,ε+)(u(ε−,ε+))− J(ε−,∞)(u(ε−,∞)),
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3. η2
h h Jε(uhε )−Jε(uε) where uhε is the minimizer of Jε on a finite-dimensional

solution space Xh ⊂ W 1,ϕε
0 (Ω) and

4. η2
Kač h Jε(vn)− Jε(uε).

one decides either to

1. decrease ε− or to

2. increase ε+ or to

3. refine the discrete solution space or to

4. do a further Kačanov step without changing anything.

The decision will be done according to the largest error estimator. Note that all
quantities above are not computable. We will derive reliable error estimators in
Section 5.3. Unfortunately, we can not prove efficiency for all of the estimators, in
particular for the Kačanov estimator.

We start with an estimate that will be used for η2
ε− and η2

ε+
. Let 0 < ε− < 1 <

ε+ <∞ and δ := (σε−, θ
−1ε+) for some σ, θ ∈ (0, 1]. Then,

Jε(uε)− Jδ(uδ) h Jε(uε)− Jδ(uε)

where the constants depend on θ and σ. This equivalence basically states that the
gain of switching from Jε(uε) to Jδ(uδ) behaves like the gain of just switching the
energy from Jε to Jδ with the solution uε.

To prove this, we start with the following lemma. It basically states that the
in the sense of Subsection 2.2.2 shifted N-function of ϕε is just another N-function
with changed relaxation interval.

Lemma 5.5. For a > 0 we have ϕε,a(t) = ϕε̃(t), where ε̃ = (ε− ∨ a ∧ ε+, ε+) =
(Πε(a), ε+).

Proof. Comparing

Πε(a ∨ t) = ε− ∨ (a ∨ t) ∧ ε+

t ≤ ε− t ∈ [ε−, ε+] t ≥ ε+

a ≤ ε− ε− t ε+

a ∈ [ε−, ε+] a a ∨ t ε+

a ≥ ε+ ε+ ε+ ε+
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to

Πε(a) ∨ t ∧ ε+ = (ε− ∨ a ∧ ε+) ∨ t ∧ ε+

t ≤ ε− t ∈ [ε−, ε+] t ≥ ε+

a ≤ ε− ε− t ε+

a ∈ [ε−, ε+] a a ∨ t ε+

a ≥ ε+ ε+ ε+ ε+

we see that ε−∨ (a∨ t)∧ε+ = (ε−∨a∧ε+)∨ t∧ε+. Hence, for ε̃ = (ε−∨a∧ε+, ε+)
we get

ϕ′ε,a(t)

t
=
ϕ′ε(a ∨ t)
a ∨ t

= (ε− ∨ (a ∨ t) ∧ ε+)p−2 = (ε− ∨ (a ∨ t) ∧ ε+)p−2

= ((ε− ∨ a ∧ ε+) ∨ t ∧ ε+)p−2 =
ϕ′ε̃(t)

t
,

so ϕ′ε,a = ϕ′ε̃. Since additionally ϕε,a(0) = ϕε̃(0) we get the statement.

Note that this nice representation only holds with the shift as defined in this
work but not with the shifts introduced in [DE08] or [RD07].

We will also need a representation of the complementary N-function ϕε, which
is presented in the next lemma.

Lemma 5.6. The complementary N-function of ϕε is given by

ϕ∗ε(t) =


1
2
ε2−p
− t2 for t ≤ εp−1

−
1
p∗
tp
∗

+ (1
2
− 1

p∗
)εp− for εp−1

− ≤ t ≤ εp−1
+

1
2
ε2−p

+ t2 − (1
2
− 1

p∗
)(εp+ − ε

p
−) for t ≥ εp−1

+ .

Proof. ϕ′ε is strictly monotone and therefore invertible. We recall

ϕ′ε(t) =


εp−2
− t for t ≤ ε−

tp−1 for ε− ≤ t ≤ ε+

εp−2
+ t for t ≥ ε+

to see

(ϕ′ε)
−1(t) =


ε2−p
− t for t ≤ εp−1

−

t
1
p−1 for εp−1

− ≤ t ≤ εp−1
+

ε2−p
+ t for t ≥ εp−1

+ .

With ϕ∗ε(t) =
∫ t

0
(ϕ′ε)

−1(τ) dτ we get the representation.
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Combining the last to lemmas we end up with the following technical lemma.

Lemma 5.7. For σ, θ ∈ (0, 1), ε− ≤ 1 ≤ ε+, δ− = σε− and ε+ = θδ+ we have

(ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|) . κε(t)− κδ(t)

where the constant depends on the choices of σ and θ.

Proof. By the last Lemmas we get

(ϕδ,t)
∗(s) =


1
2
(δ− ∨ t ∧ δ+)2−ps2 for s ≤ (δ− ∨ t ∧ δ+)p−1

1
p∗
sp
∗

+ (1
2
− 1

p∗
)(δ− ∨ t ∧ δ+)p for (δ− ∨ t ∧ δ+)p−1 ≤ s ≤ δp−1

+

1
2
δ2−p

+ s2 − (1
2
− 1

p∗
)(δp+ − (δ− ∨ t ∧ δ+)p) for s ≥ δp−1

+ .

Case t ∈ [0, δ−]: Under this assumption,

|ϕ′δ(t)− ϕ′ε(t)| = δp−2
− t− εp−2

− t ≤ δp−1
− = (δ− ∨ t ∧ δ+)p−1.

Hence,

(ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|) = 1

2
δ2−p
− (δp−2

− − εp−2
− )2t2

≤ 1
2
δ2−p
− (δp−2

− − δp−2
− σ2−p)2δ2

−

= 1
2
(1− σ2−p)2δp−.

On the other hand,

κε(t)− κδ(t) = 1
2
(εp−2
− − δp−2

− )t2 + (1
p
− 1

2
)(εp− − δ

p
−)

≥ 1
2
(εp−2
− − δp−2

− )δ2
− + (1

p
− 1

2
)(εp− − δ

p
−)

≥ ((1
p
− 1

2
)(σ−p − 1)− 1

2
(1− σ2−p))δp−.

This implies (ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|) ≤ c (κε(t)− κδ(t)) with

c =
(1− σ2−p)2

2((1
p
− 1

2
)(σ−p − 1)− 1

2
(1− σ2−p))

=
(σp − σ2)2

2σp((1
p
− 1

2
)(1− σp)− 1

2
(σp − σ2))

.

Case t ∈ [δ−, ε−]: Here,

|ϕ′δ(t)− ϕ′ε(t)| = (tp−1 − εp−2
− t) ≤ tp−1 = (δ− ∨ t ∧ δ+)p−1.
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Therefore,

sup
t∈[δ−,ε−]

(ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|)
κε(t)− κδ(t)

= sup
t∈[δ−,ε−]

1
2
t2−p(tp−2 − εp−2

− )2t2

1
2
εp−2
− t2 + (1

p
− 1

2
)εp− − 1

p
tp

= sup
τ∈[σ,1]

1
2
τ 2−pε2−p

− (τ p−2εp−2
− − εp−2

− )2τ 2ε2
−

1
2
εp−τ

2 + (1
p
− 1

2
)εp− − 1

p
τ pεp−

= sup
τ∈[σ,1]

pτ 4−p(τ p−2 − 1)2

pτ 2 + (2− p)− 2τ p

= sup
τ∈[σ,1]

pτ p − 2pτ 2 + pτ 4−p

pτ 2 + (2− p)− 2τ p︸ ︷︷ ︸
:=h(τ)

Note that

lim
τ→1

h(τ) = lim
τ→1

pτ p − 2pτ 2 + pτ 4−p

pτ 2 + (2− p)− 2τ p

= lim
τ→1

pτ p−1 − 4τ + (4− p)τ 3−p

2τ − 2τ p−1

= lim
τ→1

p(p− 1)τ p−2 − 4 + (4− p)(3− p)τ 2−p

2− 2(p− 1)τ p−2

=
p2 − p− 4 + 12− 3p− 4p+ p2

4− 2p

=
p2 − 4p+ 4

2− p
= 2− p.

Hence, h is continuous on [σ, 1] and therefore admits a maximum.

Case t ∈ [ε−, ε+]: Since |ϕ′δ(t)− ϕ′ε(t)| = 0 we get (ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|) = 0.

Case t ∈ [ε+, δ+]: In this case, we have

|ϕ′δ(t)− ϕ′ε(t)| = εp−2
+ t− tp−1 = (εp−2

+ − tp−2)t

which is strictly increasing and hence |ϕ′δ(t)−ϕ′ε(t)| ∈ [0, (θp−2− 1)δp−1
+ ]. We need

to consider subcases.

Subcase 0 ≤ (εp−2
+ − tp−2)t ≤ tp−1: Since t ≥ ε+ we can write t = τε+ for some

τ ≥ 1. Hence,

(εp−2
+ − tp−2)t ≤ tp−1 ⇐⇒ (1− τ p−2)τ ≤ τ p−1 ⇐⇒ 2

1
2−p ≤ τ.
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Therefore,

sup

t∈[ε+,2
1

2−p ε+]

(ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|)
κε(t)− κδ(t)

= sup

t∈[ε+,2
1

2−p ε+]

1
2
t2−p(εp−2

+ − tp−2)2t2

1
2
εp−2

+ t2 + (1
p
− 1

2
)εp+ − 1

p
tp

= sup

τ∈[1,2
1

2−p ]

1
2
τ 2−pε2−p

+ (εp−2
+ − τ p−2εp−2

+ )2τ 2ε2
+

1
2
εp−2

+ τ 2ε2
+ + (1

p
− 1

2
)εp+ − 1

p
τ pεp+

= sup

τ∈[1,2
1

2−p ]

1
2
τ 2−pε2−p

+ (εp−2
+ − τ p−2εp−2

+ )2τ 2ε2
+

1
2
εp−2

+ τ 2ε2
+ + (1

p
− 1

2
)εp+ − 1

p
τ pεp+

= sup

τ∈[1,2
1

2−p ]

1
2
τ 2−p(1− τ p−2)2τ 2

1
2
τ 2 + (1

p
− 1

2
)− 1

p
τ p

= sup

τ∈[1,2
1

2−p ]

pτ p − 2pτ 2 + pτ 4−p

pτ 2 + (2− p)− 2τ p

Note that this is the supremum over the same function as in the case t ∈ [δ−, ε−].
Hence, we already know limτ→1 h(τ) = 1. Additionally, the denominator satisfies
pτ 2 + (2− p)− 2τ p > 0 for τ > 1 since it is strictly increasing in τ and is zero for

τ = 1. Therefore, h is continuous and attains a maximum on [1, 2
1

2−p ].

Subcase tp−1 ≤ (εp−2
+ − tp−2)t ≤ δp−1

+ : Again, we use t = τε+ for θ ≥ 1 to see that

(εp−2
+ − tp−2)t ≤ δp−1

+ ≤ δp−1
+ ⇐⇒ (1− τ p−2)τ ≤ θ1−p.

Since (1− τ p−2)τ is increasing as the product of two non-negative increasing func-
tions this is equivalent to the existence of a Tθ such that τ ≤ Tθ. Hence,

sup
t w.r.t. subcase

(ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|)
κε(t)− κδ(t)

= sup

τ∈[2
1

2−p ,Tθ]

1
p′

(εp−2
+ − tp−2)p

′
tp
′
+ (1

2
− 1

p′
)tp

1
2
εp−2

+ t2 + (1
p
− 1

2
)εp+ − 1

p
tp

= sup

τ∈[2
1

2−p ,Tθ]

1
p′

(εp−2
+ − εp−2

+ τ p−2)p
′
εp
′

+τ
p′ + (1

2
− 1

p′
)εp+τ

p

1
2
εp−2

+ ε2
+τ

2 + (1
p
− 1

2
)εp+ − 1

p
τ pεp+

= sup

τ∈[2
1

2−p ,Tθ]

2p((τ − τ p−1)p
′
+ (1

2
− 1

p′
)τ p)

1
2
τ 2 + (1

p
− 1

2
)− 1

p
τ p

.

Again, the denominator is not zero. Hence, the fraction is continuous in τ and
therefore admits a maximum depending on p and and θ only.
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Subcase δp−1
+ ≤ (εp−2

+ − tp−2)t ≤ (θp−2 − 1)δp−1
+ : With the same argumentation as

in the last subcase we write t = τε+ for τ ≥ 1 and get that the subcase condition
is equivalent to τ ∈ [Tθ, Rθ]. Hence,

sup
t w.r.t. subcase

(ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|)
κε(t)− κδ(t)

= sup
t w.r.t. subcase

1
2
δ2−p

+ (εp−2
+ − tp−2)2t2 − (1

2
− 1

p′
)(δp+ − tp)

1
2
εp−2

+ t2 + (1
p
− 1

2
)εp+ − 1

p
tp

= sup
τ∈[Tθ,Rθ]

1
2
ε2−p

+ θp−2(εp−2
+ − εp−2

+ τ p−2)2ε2
+τ

2 − (1
2
− 1

p′
)(εp+θ

−p − εp+τ p)
1
2
εp−2

+ τ 2ε2
+ + (1

p
− 1

2
)εp+ − 1

p
τ pεp+

= sup
τ∈[Tθ,Rθ]

1
2
θp−2(1− τ p−2)2τ 2 − (1

2
− 1

p′
)(θ−p − τ p)

1
2
τ 2 + (1

p
− 1

2
)− 1

p
τ p

Again, the fraction is continuous in τ on a compact domain and therefore admits
a maximum depending on p and θ.

Case t ∈ [δ+,∞): Now,

|ϕ′δ(t)− ϕ′ε(t)| = εp−2
+ t− δp−2

+ t = tδp−2
+ (θp−2 − 1) ≥ δp−1

+

and so

sup
t≥δ+

(ϕδ,t)
∗(|ϕ′δ(t)− ϕ′ε(t)|)
κε(t)− κδ(t)

= sup
t≥δ+

1
2
δp−2

+ (θp−2 − 1)2t2

1
2
(θp−2 − 1)δp−2

+ t2 − (1
p
− 1

2
)(1− θp)δp+

= sup
t≥δ+

1
2
δp−2

+ (θp−2 − 1)2

1
2
(θp−2 − 1)δp−2

+ − (1
p
− 1

2
)(1− θp)δp+t−2

≤
1
2
δp−2

+ (θp−2 − 1)2

1
2
(θp−2 − 1)δp−2

+ − (1
p
− 1

2
)(1− θp)δp+δ−2

+

=
1
2
(θp−2 − 1)2

1
2
(θp−2 − 1)− (1

p
− 1

2
)(1− θp)

.

With that, we can prove the following theorem.

Theorem 5.8. Let 0 < ε− < 1 < ε+ < ∞ and δ := (σε−, θ
−1ε+) for some

σ, θ ∈ (0, 1]. Then,

Jδ(uε)− Jδ(uδ) . Jε(uε)− Jδ(uε)

where the constants additionally depend on σ and θ.
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Proof. We use Theorem 2.42, the equations for uε and uδ and Young’s Inequality
to deduce for γ > 0 the estimate

Jδ(uε)− Jδ(uδ) h
∫
Ω

(Aδ(∇uε)− Aδ(∇uδ))∇(uε − uδ) dx

=

∫
Ω

(Aδ(∇uε)− Aε(∇uε))∇(uε − uδ) dx

≤ γ

∫
Ω

ϕδ,|∇uε|(|∇(uε − uδ)|) dx

+ cγ

∫
Ω

(ϕδ,|∇uε|)
∗(|ϕ′δ(|∇uε|)− ϕ′ε(|∇uε|)|) dx

Choosing γ small enough, applying Lemma 2.41, Theorem 2.42 and Lemma 5.7 we
get

Jδ(uε)− Jδ(uδ) .
∫
Ω

κε(|∇uε|)− κδ(|∇uε|) dx

=

∫
Ω

κε(|∇uε|)− κδ(|∇uε|) dx− 〈f, uε − uε〉

= Jε(uε)− Jδ(uε).

We use the last theorem to deduce a corollary describing the relation as stated
on page 67.

Corollary 5.9. Let 0 < ε− < 1 < ε+ < ∞ and δ := (σε−, θ
−1ε+) for some

σ, θ ∈ (0, 1]. Then,

Jε(uε)− Jδ(uδ) h Jε(uε)− Jδ(uε)

where the constants additionally depend on σ and θ.

Proof. With Theorem 5.8 and the minimization property of uδ we directly get

Jε(uε)− Jδ(uδ) = Jε(uε)− Jδ(uε) + Jδ(uε)− Jδ(uδ)
. Jε(uε)− Jδ(uε) + Jε(uε)− Jδ(uε)
h Jε(uε)− Jδ(uε)
≤ Jε(uε)− Jδ(uδ).
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5.3 Numerical Examples

5.3.1 Estimators and the Adaptive Algorithm

In this subsection we want to give the heuristics for the estimators we used to
run the fully adaptive Kačanov algorithm as stated on page 62. We are interested
in three types of estimators. They shall cover the distances between the solution
u, the solution to the relaxed problem uε, the finite element solution of the re-
laxed problem uhε and the current approximation to the solution computed by the
algorithm vn:

vn
η2

Kač←−−−−→ uhε
η2
h←−−−→ uε

η2
ε− and η2

ε+←−−−−−−−−−→ u

For the error introduced by the relaxation interval we use heuristics based on
Corollary 5.9 (for an interpretation see page 67) stating

Jε(uε)− Jδ(uδ) h Jε(uε)− Jδ(uε)

=

∫
{|∇uε|<ε−}

κε(|∇uε|)− κδ(|∇uε|) dx

+

∫
{|∇uε|>ε+}

κε(|∇uε|)− κδ(|∇uε|) dx,

because 〈f, uε − uε〉 = 0 and κε and κδ coincide on ε. Unfortunately, this is not
computable during the iteration since uε is not known. We replace it by the best
approximation that is available – namely the current iterated which approximates
uε actually better than u – and define

η2
ε−(v) :=

∫
{|∇v|<ε−}

κε(|∇v|)− κδ(|∇v|) dx

and

η2
ε+

(v) :=

∫
{|∇v|>ε+}

κε(|∇v|)− κδ(|∇v|) dx.

Note that with these definitions we get

Jε(v)− Jδ(v) = η2
ε−(v) + η2

ε+
(v).
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For the calculation of the estimators η2
ε−(v) and η2

ε+
(v) we used δ− := 10−5ε− and

δ+ := 105ε+).

For the discretization error we use the error estimators presented in [DK08].
Note that the results in this paper not only apply to to the p-Poisson equation,
but more general to the ϕ-Poisson equation. In particular, the error estimators
are valid for the error between uε and uhε where uhε is the minimizer of Jε on a
discrete space Xh ⊂ W 1,p

0 (Ω). We will use the space of piecewise linear functions
P1. For each triangle T of the discretization the definition of the error estimator
for a function vh ∈ Xh reads as

η2
h(vh, T ) :=

∫
T

(ϕε,|∇vh|)
∗(hT |f |) dx+

∑
γ⊂∂T

∫
γ

hγ|Vε(∇vh)|2 dx

where the sum over γ ⊂ ∂T describes the sum over all faces of T , hT being the
diameter of T and hγ being the diameter of the face γ. Finally, we use

η2
h(vh) :=

∑
T∈Th

η2
h(vh, T )

as an estimator for the global discretization error. For a more detailed description
we refer to [DK08]. Note that this estimator requires that f is a function but not
just a functional.

Finally, we need an estimator for the gain that can be achieved by just doing a
Kačanov step without changing ε− or ε+. So let us assume that vn+1 admits∫

Ω

ϕ′ε(|∇vn|)
|∇vn| ∇vn+1∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2

0 (Ω).

Using this, the equation of uε, Theorem 2.42 and Young’s Inequality we obtain for
any γ > 0 the estimate

Jε(vn)− Jε(uε) ≤
∫
Ω

(Aε(∇vn)− Aε(∇uε))∇(vn − uε) dx

=

∫
Ω

(ϕ
′
ε(|∇vn|)
|∇vn| ∇vn −

ϕ′ε(|∇vn|)
|∇vn| ∇vn+1)∇(vn − uε) dx

≤ γ

∫
Ω

ϕε,|∇vn|(|∇(vn − uε)|) dx

+ cγ

∫
Ω

(ϕε,|∇vn|)
∗
(
ϕ′ε(|∇vn|)
|∇vn| |∇(vn − vn+1)|

)
dx.
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Choosing γ small enough and applying Lemma 2.41 we deduce

Jε(vn)− Jε(uε) .
∫
Ω

(ϕε,|∇vn|)
∗
(
ϕ′ε(|∇vn|)
|∇vn| |∇(vn − vn+1)|

)
dx. (5.5)

Note that Jε(vn+1)−Jε(uε) ≤ Jε(vn)−Jε(uε) and that the right hand side of (5.5)
is computable. Hence, up to a constant we have a computable upper bound for
the gain that can be achieved by just performing Kačanov steps arbitrarily often.
This gives reason to define

η2
Kač(vn+1) :=

∫
Ω

(ϕε,|∇vn|)
∗
(
ϕ′ε(|∇vn|)
|∇vn| |∇(vn − vn+1)|

)
dx.

Of course, the calculation of η2
Kač(vn+1) requires a function vn. Due to the lack of

v−1 we define η2
Kač(v0) := 0 manually.
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Now having estimators for the relaxation parameters, the remaining Kačanov
error and the discretization we suggest the following algorithm.

Algorithm: The adaptive relaxed p-Kačanov algorithm

Data: Ω ⊂ Rd; f ∈ L1
loc(Ω); finite-dimensional Xh ⊂ P1 ⊂ W 1,2

0 (Ω);
Result: Approximate solution of the p-Poisson problem (2.5).
n := 0; costs = 0; ε− := 1; ε+ := 1;
Calculate v0 as solution of∫

Ω

∇v0∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2
0 (Ω) ;

while desired accuracy is not achieved yet do
Calculate η2

Kač(vn), η2
ε−(vn), η2

ε+
(vn), η2

h(vn) as defined above;

if η2
ε−(vn) = max{η2

Kač(vn), η2
ε−(vn), η2

ε+
(vn), η2

h(vn)} then

Update ε−  0.8 · ε−;
if η2

ε+
(vn) = max{η2

Kač(vn), η2
ε−(vn), η2

ε+
(vn), η2

h(vn)} then

ε+  1.25 · ε+;
if η2

h(vn) = max{η2
Kač(vn), η2

ε−(vn), η2
ε+

(vn), η2
h(vn)} then

Perform Dörfler marking with refine fraction 0.2;
Perform red/green refinement to obtain finer Xh;

Calculate vn+1 as solution of∫
Ω

Πε(|∇vn|)p−2∇vn+1∇ξ dx = 〈f, ξ〉 ∀ξ ∈ W 1,2
0 (Ω);

Update costs costs + degrees of freedom of Xh;
Update n n+ 1;

end

To ensure a reasonable performance, we multiplied the estimators η2
ε+

by 102

and η2
h by 10−2 in all the following experiments. The algorithm was implemented

using DUNE PDELab combined with DUNEs grid manager UG grid. The Dörfler
marking strategy goes back to the fundamental paper [Dör96]. One can find a
description of the red/green refinement in [Cer04].

Furthermore we want to note that in each experiment we chose a very coarse
initial triangulation of Ω corresponding to a very small space Xh on purpose. The
reason to point out this explicitly is that at least the theory for adaptive schemes
sometimes requires a sufficiently fine initial triangulation.

http://www.dune-project.org/modules/dune-pdelab/
http://www.dune-project.org/modules/dune-uggrid/
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Usually, the x-axis is marked with the degrees of freedom. However, this is
not suitable in this setting, since each iteration that is not a refinement produces
computation costs but does not increase the degrees of freedom. Hence, we think
it is more adequate to mark the x-axis with the computational costs for solving the
linear systems. As defined in the algorithm, the costs are the sum over all degrees
of freedom calculated up to the recent iteration step.

The next table gives the mathematical expressions for the terms in the legends
of the graphs in the examples.

legend term

Jeps Jε(vn)− J (u)
est decLo η2

ε−(vn)

est incUp η2
ε−(vn)

est refine η2
h(vn)

est kacanov η2
Kač(vn)

lowerShift ε−
upperShift ε+

inv costs costs−1

The quantity costs−1 is additionally plotted in the figures to make it possible
to compare the data to linear decay in the double-logarithmic scaling. It is mul-
tiplied with a suitable constant to translate the image to a suitable height. The
factor is chosen identically over the range of p for each example to keep the graphs
comparable easier.

For every example we use p ∈ {3
2
, 4

3
, 8

7
, 16

15
} since this corresponds to the choices

p′ ∈ {3, 4, 8, 16}.
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5.3.2 Example: Bump

The first example is given on Ω := (−1, 1)2 by the solution “bump”

u : Ω→ R
x 7→ (x2

1 − 1)(x2
2 − 1).

This is a relatively nice example meaning that u ∈ C∞(Ω) and u = 0 on ∂Ω.
Nevertheless, we have |∇u(0)| = 0, so the lower constraint will strike anyway. One
can see very well that even for p = 16

15
= 1.06 the algorithm almost produces a linear

decay of Jε(vn)−J (u), where J (u) was calculated numerically as the integral over
the projection of the exact solution to a finer finite-dimensional space.

The linear parts of η2
ε+

(vn) (for example in Figure 5.1 between 102 and 104)
always indicate that the quantity is equal to zero which can not be represented due
to the logarithmic scale of the y-axis.

Figure 5.1: Performance of the algorithm for the bump and p = 3
2
.

Note that η2
Kač(vn) always jumps, when ε− is decreased. This is due to the

fact that after changing ε−, the next iterated approximates a different uε than the
previous iterated. Hence, the difference between those to solutions and therefore
η2

Kač(vn) is relatively large. This effect will occur in all examples.
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Figure 5.2: Performance of the algorithm for the bump and p = 4
3
.

Figure 5.3: Performance of the algorithm for the bump and p = 8
7
.
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Figure 5.4: Performance of the algorithm for the bump and p = 16
15

.
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5.3.3 Example: Needle

For Ω := (−1, 1)2 we define the function “needle”

u : Ω→ R

x 7→ |x|1−
1
p − 1.

Note that in this case u does not admit zero boundary values. Hence, this example
can be interpreted as a test for the conjecture, whether the algorithm does need
zero boundary values or not.

The exponent is chosen depending on p. This is done to reach the borderline
case for |V (∇u)| h |x|− 1

2 ∈ W 1
2L2,∞(Ω) meaning that a half derivative of |V (∇u)|

is still in the Lorentz space L2,∞(Ω). This refers to an example in [BDK12] where it
is shown in Figure 3 that adaptive mesh refinement admits the optimal convergence
rate in terms of degrees of freedoms for this regularity of the solution. Note that
this is the same regularity as the p-harmonic function on the slit domain admits.
Again, J (u) was calculated by integrating the projection of u onto a finer finite
element space.

Furthermore, it is interesting to test our algorithm with this example since

|∇u| h |x|−
1
p /∈ L∞(Ω). Therefore, ε+ plays an important role.

One can see over all chosen values of p that Jε(vn)−J (u) roughly behaves like
costs−1. Since we have costs−1 ≤ dofs−1 this implies that our algorithm converges
with the same speed as the optimal adaptive finite element method. This is a great
achievement since – contrarily to the test performed in [BDK12] – our algorithm
does not need to solve a non-linear system in each step.

Additionally one can see in the graphs that ε+ needs to be adjusted regularly.
Note that ε+ starts to be raised later if p gets smaller (compare Figure 5.9 to

Figure 5.12). Indeed, the singularity of |∇u| h |x|−
1
p becomes worse, but the

domain where |∇u| is large becomes smaller as p gets smaller. Hence, the impact
of the singularity of |∇u| to the energy decreases as p gets smaller. Furthermore,
the non-linearity gets stronger as p decreases such that it might be necessary to
perform more Kačanov steps.
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Figure 5.5: Performance of the algorithm for the needle and p = 3
2
.

Figure 5.6: Performance of the algorithm for the needle and p = 4
3
.
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Figure 5.7: Performance of the algorithm for the needle and p = 8
7
.

Figure 5.8: Performance of the algorithm for the needle and p = 16
15

.
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5.3.4 Example: Constant Force

For Ω := (−1, 1)2 \ [0, 1]2 we define u ∈ W 1,p
0 (Ω) as the solution of∫

Ω

|∇u|p−2∇u∇ξ dx = 〈2, ξ〉 ∀ξ ∈ W 1,p
0 (Ω).

This is outstanding because of two reasons. Firstly, we chose Ω as the L-shaped
domain and secondly, u is not known for this choice of f . The energy J (u) was
estimated by running the algorithm up to costs = 2 · 107.

This model problem is widely used in the numerics of elliptic partial differential
equations. It is known that the gradient of the solution admits a singularity in the
corner 0 ∈ R2.

Figure 5.9: Performance of the algorithm for constant force and p = 3
2
.

The sequence of peaks of the Kačanov estimator behaves interestingly, too. It
seems to decrease linearly in the double logarithmic scale but again much slower as
p gets smaller. Furthermore one could think that η2

Kač(v) overestimates every time
ε− was updated.

Compared to the example with the needle, once more the impact of ε+ seems
to decrease as p gets small. An extreme example is shown for constant force and
p = 16

15
in Figure 5.12.
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Figure 5.10: Performance of the algorithm for constant force and p = 4
3
.

In this example, Jε(vn) − J (u) behaves linear on the double logarithmic scale
very nice but Jε(vn)−J (u) . costs−1 does not seem to hold (whereas the estimate
Jε(vn) − J (u) . costs−α could still be possible). However, marking the x-axis
with dofs instead of costs it seems that Jε(vn) − J (u) . dofs−1 does hold true
(compare Figure 5.12 to Figure 5.13), so neglecting the steps where Xh is not
refined compensates this effect.
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Figure 5.11: Performance of the algorithm for constant force and p = 8
7
.

Figure 5.12: Performance of the algorithm for constant force and p = 16
15

.
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Figure 5.13: Performance of the algorithm for constant force and p = 16
15

. In this
plot, the x-axis is marked with dofs instead of costs.
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5.3.5 Short Summary of the Experiments

The example “bump” shows that for nice data – that is Ω convex, u ∈ C∞(Ω) and
u = 0 on ∂Ω – the fully adaptive Kačanov iteration yields linear convergence of
Jε(vn)− J (u) on the double logarithmic scale.

The effect of |∇u| /∈ L∞(Ω) can be studied in the example “needle”. Also in
this experiment we observe optimal rates.

In the last example “constant force” on the L-shaped domain two problems
arise. Firstly, (although the energy difference still admits linear decay on the
double logarithmic scale) the estimate Jε(vn) − J (u) . costs−1 does not seem to
hold true anymore. However, the estimate Jε(vn)− J (u) . dofs−1 seems to hold.
This indicates that the number of non-refinement steps between two refinements
grows. Secondly, the Kačanov estimator always jumps to a large value when ε−
is decreased. It seems that in both cases the Kačanov estimator overestimates.
Therefore, a future goal is to find a more suitable Kačanov error estimator.
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