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Introduction
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Let η be a stationary and isotropic Poisson line process in the Euclidean
plane R2. For each line H ∈ η, we consider the half-space H− supported
by H and containing the origin. The intersection Zo = ∩H∈ηH− is called
the zero cell of the line tessellation associated to η. D.G. Kendall recalled
in 1987 in the foreword of [SKM87, first edition] a conjecture that he made
a few decades ago:

‘[...] the conditional law of the shape of Zo, given the area V2(Zo)
of Zo, converges weakly, as V2(Zo)→∞, to the degenerated law
concentrated at the circular shape.’

This conjecture was later proved by Kovalenko [Kov97, Kov99] and many
contributions to this problem and very broad generalisations of it have been
done by Miles, Goldman, Mecke, Osburg, Hug, Reitzner and Schneider.
See Note 9 of Section 10.4 in [SW08] for precise references. One of the
broadest generalisations was presented and solved by Hug and Schneider
in [HS07]. They considered the higher dimensional case d ≥ 2, diminished
the isotropy and stationarity conditions to a condition of homogeneity of
degree r ≥ 1, and replaced the volume Vd by any size functional Σ satisfying
mild properties. It is quite remarkable that they succeeded to solve the
problem in such a high level of generalities. A cornerstone in this thesis is a
new proof of the theorems proved by Hug and Schneider, with some slight
improvements on the results.
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2 CHAPTER 1. INTRODUCTION

In this introduction, we will briefly present the setting and explain this
result. Then we will describe the most important steps of the proof, which
are themselves highlights of the manuscripts. Next we will present additional
related results we obtained. Finally we will give an outline of the thesis.

1.1 Generalized Kendall’s problem

We consider the tessellation associated to a Poisson hyperplane process η
with an intensity measure of the form

γµ(·) = γ

∫

Sd−1

∞∫

0

1 (H(u, t) ∈ ·) tr−1dtdϕ(u),

where γ > 0, r ≥ 1, ϕ is a probability measure on Sd−1, and H(u, t) =
{x ∈ Rd : 〈x,u〉 = t} denotes the hyperplane orthogonal to u at distance t
from the origin. The cell containing the origin o is called the zero cell and
denoted Zo. One motivation for such a general setting is that it includes
two classical random polytopes: the zero cell of a stationary hyperplane
tessellation (not necessarily isotropic) when r = 1, and the typical cell of a
Poisson Voronöı tessellation when r = d and ϕ rotation invariant.

A size measurement is any real function Σ on the set of convex bodies
which is continuous, not identically zero, homogeneous of degree k > 0, and
increasing under set inclusion. One specific size measurement, which will be
of great importance in this manuscript, is the so called Φ-content :

Φ(K) := µ ({H ∈ H : H ∩K 6= ∅}) =

∫

Sd−1

∞∫

0

1 (H(u, t) ∩K 6= ∅) tr−1dt dϕ(u).

For a given size measurement Σ, we characterise the shape of a convex body
by the isoperimetric ratio Φ(K)Σ(K)−r/k. It is easy to see that

τ := min
K∈K

Φ(K)

Σ(K)
r
k

> 0.

Convex bodies minimizing this ratio are called extremal. For example, in
the original setting of D.G. Kendall’s problem, Φ is proportional to the
perimeter, Σ is the area, r = 1 and k = 2. Thus the classical isoperimetric
inequality tells us that the extremal bodies are precisely the balls. Hug and
Schneider showed that there exist constants C and C ′ such that, for any
ε > 0 and a > 0,

P
(

Φ(Zo)

Σ(Zo)
r
k

> τ + ε | Σ(Zo) > a

)
≤ C exp

(
C ′εγa

r
k

)
,
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where C ′ depends only on τ and C on ϕ, r and ε. To rephrase it in a
similar way as Kendall’s original conjecture, we can say that the conditional
law of the shape of Zo, given the size Σ(Zo), gets concentrated weakly, as
Σ(Zo)→∞, on the set of extremal bodies. In this manuscript we will prove
the slightly stronger following result. If there exists a convex body K such
that Φ(K)Σ(K)−r/k > τ + ε, then

lim
a→∞

a−
r
k ln

(
P
(

Φ(Zo)

Σ(Zo)
r
k

> τ + ε | Σ(Zo) > a

))
= −εγ. (1.1)

1.2 Major steps in the proof

Our proof is based on essentially three steps, which correspond to parts of
chapter 3, 5 and 6, respectively. We believe that the decomposition into
these three steps makes the proof clearer.

The first step is the complementary theorem, which states that under
the condition {f(Zo) = n},

• The size Φ(Zo) is Γγ,n distributed,

• The size Φ(Zo) and the shape Φ(Zo)−1/rZo are independent.

Similar results have been proved before, see e.g. Miles [Mil71b], Møller and
Zuyev [MZ96], Cowan [Cow06] and Baumstark and Last [BL09]. Most of the
results in these references correspond to more general settings than the one
we consider. This makes their statements more complicated to work with.
Also, for our purposes we need a very detailed description, adapted to our
situation, which we could not find in the literature. Therefore and for the
sake of completeness we state them explicitly and give proofs in Chapter 3.

In the second step we give an asymptotic estimation for the probability
P(f(Zo) = n), when n→∞, and where f(P ) denotes the number of facets
of P . Really little is known about the distribution of the number of facets
of Zo. In dimension 2 and 3 one can deduce the mean number of facets
from the mean number of vertices, see the comments after Corollary 3.3 in
[HHRC15] or the last remarks of [Sch09]. As a special case of a formula due
to Schneider [Sch09, Sec. 5] we also know the relation Ef(Zo) = γEΦ(Zo),
which we will recover as a simple corollary of the complementary theorem.
In the 2-dimensional and isotropic case, Calka and Hilhorst [HC08] obtained
a really precise asymptotic estimate of P(f(Zo) = n), as n → ∞. To the
knowledge of the author, no significant additional results are known about
the distribution of f(Zo). We fill this gap by showing that, under a mild
condition, the quantity

n
2
d−1 n
√

P(f(Zo) = n)
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is bounded from above and from below. In the two dimensional isotropic
case, we recover the first order terms of the estimate of Calka and Hilhorst.
Our proof relies on the complementary theorem and results about approxi-
mation of a polytope by a polytope with fewer facets. These latter results
are described in Chapter 4.

In the final step, by combining the results of the two first steps, we obtain
estimations of probabilities of the form

P
(

Σ(Zo) > a , Φ(Zo)−
1
rZo ∈ S

)
,

when a → ∞ and where Σ is an arbitrary size measurements and S a set
of shapes. These estimations lead directly to the solution of the generalised
D.G. Kendall’s problem.

1.3 Related problems

Although, (1.1) is a really strong and general result, there are still some
cases which are not covered. When Σ = Φ, all convex bodies are extremal
and thus (1.1) does not give any information. If ϕ has finite support, then
the shape of cells with big Φ-content converges weakly to a random polytope
(explicitly: Φ(Zo)−1/rZo conditioned on {f(Zo) = |suppϕ|}), because of the
complementary theorem. One example of this form has been considered in
[HS07, Sec. 7]. In the isotropic case, or more generally when ϕ has infinite
support, the limit shape distribution of cells with big Φ-content is unknown.
Actually, even the existence of a limit shape distribution is unknown. This
problem is directly related to the problem of the existence of a limit shape
of Zo conditioned on {f(Zo) = n}, as n → ∞. At this point the author
cannot resist to present his own conjecture, which he believes has not yet
been officially formulated. We formulate it in the stationary and isotropic
case, i.e. ϕ is the Haar measure on Sd−1 and r = 1, but we could also consider
generalisations of this conjecture to the non isotropic or non stationary cases.
In this conjecture c denotes the center of mass.

Conjecture. In the stationary and isotropic case, the conditional law of
the centered shape Φ(Zo)−1(Zo− c(Zo)), given the number of facets f(Zo),
converges weakly, as f(Zo) → ∞, to the degenerated law concentrated at
Bd.

Proving this conjecture would be a great step in understanding even
better the shapes of big cells, and a really interesting result on its own. We
are not able to prove this conjecture, but we were able to describe partially
the shape distribution of cells with many facets. Instead of showing that
cells with many facets tend to have a specific shape, we show, under a mild
condition, that they are not too elongated, meaning that they are not close
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to a lower dimensional convex body: There exists ε > 0 such that for any
1 ≤ 1 <

⌈
d−1

2

⌉
,

P
(
dH

(
Φ(Zo)−

1
rZo , Ki

)
< ε | f(Zo) = n

)
→ 0, as n→∞,

where Ki denotes the set of convex bodies of dimension i in Rd, and
dH
(
Φ(Zo)−1/rZo , Ki

)
= infK∈Ki dH

(
Φ(Zo)−1/rZo , K

)
. In order to get

this result, we improved bounds from polytopal approximation theory. The
specificity of our bounds is to take into account the elongation of convex
bodies. These purely geometric results are presented and proved in Chap-
ter 4.

Another important part of this work is that in addition the case of Zo
we also cover the case of the typical cell Ztyp of a stationary hyperplane
tessellation. All the results above concerning Zo apply in a similar form to
Ztyp.

In contrast with D.G. Kendall’s problem, we also investigate the shape
distribution of small typical cells, with respect to a given size measure-
ment Σ. The behavior of small cells depends on properties of ϕ and Σ.
When ϕ is absolutely continuous, e.g. in the isotropic case, we show that
the limit shape is a random simplex with a distribution depending on Σ.
We also show that the speed of convergence of

P(f(Ztyp) > d+ 1 | Σ(Ztyp) < a)→ 0

is at most of order a
1
k , which is the case when Σ = Φ, and at least of order

− ln
(
a

1
k

)
a

1
k , which is the lower bound obtained when considering the worst

case, i.e. Σ is the inradius. In the general case, we give a technical criterion
which tells us if the limit shape of small cells, with a fixed number of facets, is
degenerated (i.e. concentrated on lower dimensional shapes) or not. Finally,
we apply this criterion to a specific case, namely the 2-dimensional case
where the lines are either horizontal or vertical. We improve a result due to
Beermann, Redenbach and Thäle [BRT14].

1.4 Outline

In order to avoid repetitions in this section, we will write Z whenever a
result is obtained for both Zo and Ztyp.

In the second chapter we introduce some basic notations and give some
background material needed for this thesis.

In the third chapter we give the complete setting for this thesis. We
introduce some specific sets of convex bodies and polytopes and equip them
with measures. We study some basic properties of these objects. This leads
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us naturally to the complementary theorems, which are essential tools for
this thesis.

In the fourth chapter we develop geometric tools which are both needed
in the further chapters and are of interest themselves.

The first four sections deal with polytopal approximation theory. We
give bounds for the Hausdorff distance between a convex body K and its
best approximation by a polytope P ⊃ K with a given number of facets. In
the case where K is elongated, i.e. some isoperimeter is close to zero, our
bound is better then the previously known ones. We also consider the case
where K is a polytope and each facet of P contains a facet of K.

The fifth section generalises tools of integral geometry to the general
setting considered in this thesis.

In the fifth chapter we show that n
2
d−1 n
√
P(f(Z) = n) is bounded from

above, and under a mild condition on ϕ also bounded from below. The
upper bound is the result of a recurrence relation between the probabilities
P(f(Z) = n) and P(f(Z) = n+1), which also implies that n 7→ P(f(Zo) = n)
is decreasing for n big enough. Under an elongation condition we refine the
upper bound.

The sixth chapter focuses on D.G. Kendall’s problem, which asks for
the asymptotic shape distribution of Z conditioned on Σ(Z) → ∞. More
generally, in this chapter we are interested in the asymptotic behaviour of
any probabilities of the form P(B) and P(A | B) where B is either {f(Z) =
n}, or {Φ(Z) > a}, or {Σ(Z) > a}, and A is usually an event about the
shape of Z. Thus, in this chapter we also recall some results obtained in the
previous ones.

In the first section we consider cells with many facets. We recall the
bounds on the tail distribution of f(Z), provide upper and lower bounds
for probabilities of the form P(s(Z) ∈ S | f(Z) = n), recall the Gamma
distribution of Φ(Z) when Z is conditioned on the event {f(Z) = n}, and
finally we study the tail distribution of Σ(Z) when Z is conditioned on the
event {f(Z) = n}.

In the second section we are interested in cells with a big Φ-content. We
give bounds for the tail distribution of Φ(Z) and a partial result describing
the shape distribution of Z conditioned on the event {Φ(Z) > a}.

In the last section we study cells with big Σ-content. We give precise
estimation P (Σ(Z) > a, s(Z) ∈ S), for specific sets of shapes S and when
a → ∞. From these bounds we derive easily our result answering D.G.
Kendall’s problem.

The seventh, and last, chapter deals with the opposite problem, namely
to characterise the shape of small typical cells.

In the first section we characterise the set N = {n ∈ N : P(f(Ztyp) =
n) > 0}. Indeed we will need later the fact that if |N | > 1, then nmin+1 ∈ N ,
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where nmin = minN .
In the second section we cover the case of cells with small Φ-content.

The complementary theorem makes this case easy to deal with.
In the third and fourth sections we consider the case where ϕ is absolutely

continuous, and where Σ can be any size functional. First we show that the
shape of small cells are random simplices and we describe the asymptotic
shape distribution. Second we give a rate of convergence for P(f(Ztyp) >
d+ 1 | Σ < a)→ 0, as a→ 0.

Finally, in the last section we consider the most general case.

1.5 Underlying papers

The two first sections of Chapter 4 are taken from [Bon16]. Sections 3.3,
4.3, 4.4 and 5.2 as well as Theorems 6.1.1, 6.2.1 and 6.2.5 are taken from
[BCR16], with a slight generalisation in order to consider the non stationary
case and Zo in Sections 4.3 and 4.4 and Theorems 6.1.1, 6.2.1 and 6.2.5.
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Chapter 2

Preliminaries and basic
notations

Contents

2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 General setting . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Set of convex bodies . . . . . . . . . . . . . . . . . 10

2.1.3 Real functions on the set of convex bodies . . . . . 10

2.2 Poisson Hyperplane Mosaic . . . . . . . . . . . . 12

2.2.1 Space of hyperplanes . . . . . . . . . . . . . . . . . 12

2.2.2 Poisson hyperplane process . . . . . . . . . . . . . 13

2.2.3 Poisson hyperplane tessellation . . . . . . . . . . . 13

2.2.4 Slivnyak-Mecke formula . . . . . . . . . . . . . . . 14

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Approximation . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Stirling approximation . . . . . . . . . . . . . . . . 14

2.3.3 Gamma distribution . . . . . . . . . . . . . . . . . 15

2.3.4 Convention about the constants . . . . . . . . . . . 15

For a general reference about convex geometry we refer the reader to
[Gru07] and [Sch14]. For tools from stochastic and integral geometry the
most important reference is [SW08].

2.1 Geometry

2.1.1 General setting

We work in the euclidean space Rd of dimension d ≥ 2, with origin o, scalar
product 〈·, ·〉 and associated norm ‖ ·‖. We denote the vectors in Rd by bold
letters, e.g. u,v,x,y . . . . Vectors of vectors are denoted with a bar above

9
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them, e.g. ū = (u0, · · · ,ud) ∈
(
Rd
)d+1

. The vectors of the canonical base
of Rd are denoted by ei, i = 1, . . . , d. We denote by B(x, r) and Sd−1(x, r),
respectively, the ball and the sphere of center x and radius r. The unit ball
Bd = B(o, 1) has volume κd and the unit sphere Sd−1 = S(o, 1) has surface
area ωd = dκd. The Lebesgue measure is denoted by λd and the spherical
Lebesgue measure on Sd−1 by σ. The normalised spherical Lebesgue measure
ω−1
d σ is called Haar measure. The interior and the boundary of a set A are

denoted by Ao and ∂A, respectively. We denote by f(P ) the number of
facets of a polytope P . We denote by R+ = [0,∞) the set of non negative
numbers.

2.1.2 Set of convex bodies

A convex body in Rd is a compact and convex set with non empty interior.
We denote by K the set of convex bodies. Because sometime we need to
consider convex bodies of lower dimension we denote by K′ the set of convex
and compact sets with at least two points. The set K have an algebraic
structure, with scale and translation action,

tA := {ta : a ∈ A}, A+ x = x+A := {a+ x : a ∈ A},

for any A ∈ K, t ∈ R \ {0} and x ∈ Rd, and also a sum called Minkowski
sum,

A+B := {a+ b | a ∈ A, b ∈ B},
for any A and B in K.

The set K is equipped with the Hausdorff distance

dH(K,L) = min
r≥0

(
K ⊂ L+ rBd, L ⊂ K + rBd

)

and its associated topology and Borel structure.
The following useful theorem is due to Blaschke, see Theorem 6.3 in

[Gru07] for two different proofs of it.

Theorem 2.1.1 (Blaschke Selection Theorem). Any bounded sequence of
convex bodies in Rd contains a convergent subsequence.

2.1.3 Real functions on the set of convex bodies

Invariance

Let f : K → R be a map. If there exists k ∈ R such that f(tK) = tkK for
any K ∈ K and t > 0, we say that f is homogeneous (of degree k). We say
that f is scale invariant if f is homogeneous of degree 0. If f(K+x) = f(K)
for any K ∈ K and x ∈ Rd, we say that f is translation invariant. We say
that f is a shape factor if f is scale and translation invariant.
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The Steiner Formula and Intrinsic Volumes.

We denote by Vd(·) the volume, i.e., the d-dimensional Lebesgue measure.
The Steiner formula tells us that there exist functionals Vi : K → [0,∞), for
0 ≤ i ≤ d, such that for any K ∈ K and ε ≥ 0

Vd(K + εBd) =
d∑

i=0

εd−jκd−jVj(K).

Vi(K) is called the i-th intrinsic volume of K. Some of the intrinsic volumes
have a clear geometric meaning. Vd is the volume. If K has non-empty
interior, then

Vd−1(K) =
1

2
Hd−1(∂K),

where Hd−1(∂K) is the (d−1)-dimensional Hausdorff measure of the bound-
ary of K. Thus, 2Vd−1 is the surface area. V1 is proportional to the mean
width b. More precisely,

dκd
2
b(K) = κd−1V1(K) =

∫

Sd−1

h(K,u)σ(du),

where σ is the spherical Lebesgue area measure on Sd−1 and h(K,u) :=
max{〈x,u〉 | x ∈ K} is the value of the support function of K at u. V0(K) =
1 is the Euler characteristic. For 1 ≤ i < j ≤ d and K ∈ K, we call the

shape factor
Vj(K)1/j

Vi(K)1/i the (i, j)-isoperimetric ratio of K.

The Isoperimetric Inequality.

Let B ⊂ Rd be a d-dimensional ball. For any K ∈ K and for any 1 ≤ i <
j ≤ d,

Vj(K)1/j ≤ Vj(B)1/j

Vi(B)1/i
Vi(K)1/i, (2.1)

with equality if and only if K is a ball.

A Steiner-type Formula.

For any K ∈ K

Vd−1(K +Bd) =

d−1∑

k=0

(d− k)κd−k
2d

Vk(K). (2.2)

The isoperimetric inequality and the Steiner-type formula imply the next
fact.
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Fact :

Let d ≥ 3, I be an interval (convex hull of two distinct points), B be a ball,
and K ∈ K neither an interval nor a ball. Assume that V1(I) = V1(K) =
V1(B). Note that V1(I) is just the length of the segment I. Then, we have

Vd−1(I +Bd) < Vd−1(K +Bd) < Vd−1(B +Bd). (2.3)

2.2 Poisson Hyperplane Mosaic

2.2.1 Space of hyperplanes

A hyperplane is a set of the form

H(u, t) = {x ∈ Rd : 〈x,u〉 = t} ⊂ Rd−1,

with u ∈ Sd−1 and t ∈ R. We denote by H the space of hyperplanes.
The surjection Sd−1 × R → H, defined by (u, t) 7→ H(u, t) induces on H a
topology. We equip H with this topology and the corresponding σ-algebra.
Let Θ be a homogeneous (of degree r > 0) measure on H. The homogeneity
property means that Θ(tB) = trΘ(B) for any Borel set B ⊂ H and t > 0,
and is equivalent to the fact that it is of the form

γµ(·) = γ

∫

Sd−1

∞∫

0

1 (H(u, t) ∈ ·) tr−1dtdϕ(u), (2.4)

where γ > 0 and ϕ is a Borel probability measure on Sd−1. We call γ, ϕ, and
r, respectively, the intensity, the directional distribution, and the distance
exponent, associated to Θ.

We denote by ℵ the set of Borel probability measure on Sd−1 with support
not contained in some closed hemisphere, by ℵe the set of measures ϕ ∈ ℵ
which are even, i.e. ϕ(−·) = ϕ(·), and by ℵe,c the set of measures ϕ ∈
ℵe which are absolutely continuous with respect to the spherical Lebesgue
measure σ. We say that ϕ is well spread (resp. strongly well spread) if
it is lower bounded by a multiple of spherical Lebesgue measure on some
spherical cap (resp. on the whole unit sphere).

From now on and for the rest of the manuscript, we assume the following
two assumptions.

• Θ = γµ is homogeneous of degree r > 0, and thus is of the form (2.4).
After Chapter 3 we will be even more restrictive and consider that
r ≥ 1, since otherwise some geometric arguments would fail.

• ϕ ∈ ℵ, and when we are in the stationary setting ϕ ∈ ℵe.
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We will often restrict the setting in order to have stationarity. This is needed
when considering the typical cell (which will be defined in the next chapter).
Therefore an important observation is the following:

Θ is stationary ⇔ r = 1 and ϕ ∈ ℵe . (2.5)

Similarly, Θ is isotropic if and only if ϕ is the Haar measure.

2.2.2 Poisson hyperplane process

Recall that a discrete real random variable Y is Poisson distributed with
parameter θ ∈ (0, 1) if

P(Y = k) =
θke−k

k!
, k ∈ N.

The definition extends to the case θ = 0 (resp. θ =∞), in which case Y = 0
(resp. Y = ∞) almost surely. A Poisson hyperplane process η of intensity
measure Θ is a discrete random set in H such that

• for any Borel set B ⊂ H, the random variable |η ∩ B| is Poisson
distributed with parameter Θ(B).

• for any pairwise disjoint Borel sets B1, . . . , Bn ⊂ H, the random vari-
ables |η ∩B1|, . . . , |η ∩Bn| are independent.

We say that η is stationary (resp. isotropic) when Θ is stationary (resp.
isotropic).

2.2.3 Poisson hyperplane tessellation

A polyhedron is a finite intersection of halfspaces. A polytope is a bounded
polyhedron. A tessellation is a collection of polytopes which are covering
the whole space and have pairwise disjoint interiors. The polytopes forming
a tessellation X are called the cells of X.

Let η be a Poisson hyperplane process of intensity measure Θ. The
closure of each of the connected components of the complement Rd \∪H∈ηH
is almost surely a polytope. They are the cells of the so called Poisson
hyperplane tessellation X = Xη associated to η.

Almost surely the origin o is not contained in any hyperplane of η. The
cell of X containing o is called the zero cell and denoted by Zo. Note that
the assumption we made on the degree of homogeneity r of the intensity
measure Θ, namely that r > 0, is a sufficient and necessary condition for
that Zo is almost surely not reduced to {o}.

In the stationary case, i.e. r = 1 and ϕ even, we can define the typical
cell Ztyp. It will be done rigorously in Section 3.3 of the next chapter.



14 CHAPTER 2. PRELIMINARIES AND BASIC NOTATIONS

2.2.4 Slivnyak-Mecke formula

A really useful tool in stochastic geometry when dealing with Poisson pro-
cesses is the Slivnyak-Mecke formula. We present it in the context of a
Poisson hyperplane processes η of intensity Θ = γµ as described above, but
it holds as well for general Poisson processes.

Let N be the set of all locally finite sets of hyperplane equipped with
the σ-algebra generated by the maps N → N ∪ {∞}, η 7→ |η ∩ B|, where B
ranges over all sets in H.

Let n ∈ N. The Slivnyak-Mecke formula states that for any non negative
measurable map f : N×Hn → R

E
∑

(H1,...,Hn)∈ηn6=

f(η,H1, . . . ,Hn)

= γn
∫

Hn
Ef

(
η ∪

n⋃

i=1

Hi, H1, . . . ,Hn

)
dµn(H), (2.6)

where ηn6= denotes the sets of n-tuples (H1, . . . ,Hn) with Hi 6= Hj if i 6= j.

2.3 Analysis

2.3.1 Approximation

Here we collect the notations used to compare functions asymptotically.
Most of them are very standard.

Symbol Definition

f ∼ g f
g → 1

f ∼< g f ∼ g and f < g

f = o(g) f
g → 0

f = O(g) lim sup
∣∣∣fg
∣∣∣ <∞

f = Θ(g) 0 < lim inf
∣∣∣fg
∣∣∣ ≤ lim sup

∣∣∣fg
∣∣∣ <∞

2.3.2 Stirling approximation

Occasionally we refer to the Stirling approximation:

√
2π nn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n,

for any n ∈ N. We will actually only need the following weaker form:

nne−n ≤ n! ≤ nn
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2.3.3 Gamma distribution

Let n > 0, and γ > 0. A positive real random variable is Γγ,n distributed, or
Γ distributed with shape parameter n and rate parameter γ, if its probability
density function is

t 7→ γn

Γ(n)
e−γttn−1,

where

Γ(n) =

∞∫

0

e−ttn−1dt,

and in particular
Γ(n) = (n− 1)!,

when n ∈ N.

2.3.4 Convention about the constants

In this manuscript, unless explicitly stated, all constants are strictly positive.
Most of them are of the form ci, ci or Ci, where i is an index which varies.
The table below indicates on which parameter(s) each of these 3 families of
constants depend.

Constants Dependence

ci universal
ci depends only on d
Ci depends on d, ϕ, r, i, j, Σ, . . .
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We recall that we consider a Poisson hyperlane mosaic X associated to
a Poisson hyperplane process η of intensity measure

γµ(·) = γ

∫

Sd−1

∞∫

0

1 (H(u, t) ∈ ·) tr−1 dt dϕ(u),

where γ > 0, r > 0 and ϕ ∈ ℵ. Apart from this chapter we will actually
consider only the more restrictive case where r ≥ 1, since otherwise some
geometric arguments would fail. We recall as well that the cell of X which
contains the origin is called the zero cell and denoted Zo. In the stationary
case (r = 1 and ϕ ∈ ℵe) we will define, in Section 3.3, the so called typical
cell Ztyp.

Essential tools in this thesis are the Complementary Theorems. Note the
plural form. The first one is a result about Zo while the second concerns Ztyp.
Similar results have been proved before, see e.g. Miles [Mil71b], Møller and
Zuyev [MZ96] and Cowan [Cow06]. Most of the results in the references cited
above correspond to more general settings than the one we consider. This
makes their statements more complicate to work with. Also, for our purposes

17
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we need a very detailed description, adapted to our situation, which we could
not find in the literature. Therefore and for the sake of completeness we state
them explicitly and give proofs in Sections 3.2 and 3.3 of the present chapter.

3.1 Setting and Notation

In this section we introduce various functions on the set of convex bodies,
subsets of the set convex bodies, homeomorphisms decomposing such sub-
sets, and measures on such subsets, see Subsections 3.1.1, 3.1.2, 3.1.3, and
3.1.4, respectively. Along the way, we will also study basic properties of
these objects.

3.1.1 Functions

Although, we will exhaustively introduce notations for various sets of con-
vex bodies in Subsection 3.1.2, we start by giving the few notations already
needed in the present subsection. Recall that K and K′ denote the set of
convex bodies and the set of compact and convex sets with at least two
points, respectively. Sometimes we restrict our considerations to sets con-
taining the origin. For this purpose we introduce Ko := {K ∈ K : o ∈ Ko}
and K′o := {K ∈ K′ : o ∈ Ko}.

Φ-content

The Φ-content of a convex set K ⊂ Rd is defined by

Φ(K) := µ ({H ∈ H : H ∩K 6= ∅})

=

∫

Sd−1

∞∫

0

1 (H(u, t) ∩K 6= ∅) tr−1dt dϕ(u).

In the stationary case (r = 1 and ϕ ∈ ℵe) or when o ∈ K, it can be written
in a simpler form

Φ(K) =
1

r

∫

Sd−1

h(K,u)rdϕ(u),

where h(K,u) := max{〈x,u〉 : x ∈ K} is the value of the support function
of K at u. In the literature, e.g. [HS07], Φ is called the parameter functional
of the process η. It is due to the fact, that for any K ∈ K′ the number of
hyperplane of the process η hitting K is a Poisson random variable with
parameter γΦ(K),

P (|{H ∈ η : H ∩K 6= ∅}| = n) = exp (−γΦ(K))
(γΦ(K))n

n!
.
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In special cases Φ has a simple geometric description. In the station-
ary case, it is the directional mean of the widths of K, where the mean is
weighted by the directional distribution ϕ. More precisely, we can write

Φ(K) :=
1

2

∫

Sd−1

b(K,u)dϕ(u),

where, b(K,u) := |h(K,u) − h(K,u)| is the width of K is direction u. In
the stationary and isotropic case, i.e. when ϕ is the Haar measure on Sd−1

and r = 1, the Φ-content of a set K ∈ K′ is half of the mean width, and
also, up to a constant the first intrinsic volume V1(K).

Note that Φ is homogeneous of degree r, Φ(tK) = trΦ(K) for any K ∈ K′
and t ≥ 0. In the stationary case, Φ is also stationary, Φ(K + x) = Φ(K)
for any K ∈ K′ and x ∈ Rd.

Constants related to the Φ-content

Because of the Blashke Selection Theorem 2.1.1, we have that the sets

K′o,Φ = {K ∈ K′o : Φ(K) = 1}

and
K′o,V1

= {K ∈ K′o : V1(K) = 1}
are compact. By continuity on a compact, and by homogeneity of degree 1
of V1, and Φ1/r, and h(·,u) for any u ∈ Sd−1, we see that

cΦ := max
K∈K′o

V1(K)

Φ(K)
1
r

= max
K∈K′o,Φ

V1(K) <∞,

and

ch := max
K∈K′o,u∈Sd−1

h(K,u)

V1(K)
= max

K∈K′o,V1
,u∈Sd−1

h(K,u) <∞.

Thus, for any K ∈ Ko and any u ∈ Sd−1,

V1(K) ≤ cΦΦ(K)
1
r and h(K,u) ≤ chcΦΦ(K)

1
r . (3.1)

Note that, in the stationary case case, (3.1) holds for any K ∈ K, i.e. when
we remove the condition o ∈ K.

Continuity of the Φ-content

We will also use some kind of uniform continuity of Φ. In the case r = 1, it
is easy to see from the definition that |Φ(K) − Φ(L)| ≤ dH(K,L), for any
K,L ∈ K. The following lemma generalizes this property in two directions.
First, it holds for any r ≥ 1. Second, it takes into account the range of
directions for which the support functions h(K, ·) and h(L, ·) are distinct.
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Lemma 3.1.1. Let U ⊂ Sd−1 and K ⊂ L ∈ Ko such that, for any u ∈ Sd−1,

0 ≤ h(L,u)− h(K,u) ≤ 1(u ∈ U)δ,

where δ = δ′cΦΦ(K)1/r > 0. Then

Φ(L)− Φ(K) ≤ δ′(ch + δ′)r−1crΦΦ(K)ϕ(U),

where ch is the constant, dependent on d, defined in (3.1).

In particular, for any K ⊂ L ∈ Ko,

Φ(L)− Φ(K) ≤ dH(K,L)
(
dH(K,L) + chcΦΦ(K)

1
r

)r−1
.

Note that in case r = 1, one can replace the condition K ⊂ L ∈ Ko by
K ⊂ L ∈ K in the Lemma above, because of stationarity.

Proof. First observe that since o ∈ K ⊂ L and r ≥ 1, we have

h(L,u)r − h(K,u)r =

h(L,u)∫

h(K,u)

rtr−1dt ≤ [h(L,u)− h(K,u)]rh(L,u)r−1

≤ 1(u ∈ U)δrh(L,u)r−1.

But, by assumption and using (3.1), we have

h(L,u) ≤ h(K,u) + δ ≤ (ch + δ′)cΦΦ(K)
1
r .

Thus

h(L,u)r − h(K,u)r ≤ 1(u ∈ U)δr
(

(ch + δ′)cΦΦ(K)
1
r

)r−1

= 1(u ∈ U)rδ′(ch + δ′)r−1crΦΦ(K).

Therefore,

Φ(L)− Φ(K) =
1

r

∫

Sd−1

h(L,u)r − h(K,u)rdϕ(u)

≤
∫

U

δ′(ch + δ′)r−1crΦΦ(K)dϕ(u)

= δ′(ch + δ′)r−1crΦΦ(K)ϕ(U),

which is the first part of the lemma.

For the second part, we only have to set δ′ = dH(K,L)c−1
Φ Φ(K)−1/r and

U = Sd−1, and apply the first part.
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Centring function

A centering function is a function c : K → Rd which is translation and scale
homogeneous, i.e.

c(tK + x) = tc(K) + x.

We naturally call c(K) the center of K.
There exist many common choices for such function. Here we list a few

examples: the center of mass, the center of the circumball (the smallest
ball containing the body), and the point inside the body with the lowest
coordinates with respect to the lexicographic order.

In Section 3.3, we are going to make use of a centering function to define
the typical cell Ztyp. But most of the time, the particular choice for c has
no influence. So when we talk about c, the reader can usually think of his
favourite centering function. The only restriction to this remark concerns a
few proofs where it is simpler to assume that c(K) ∈ K for any K ∈ K, and
that the 1-Lipschitz property holds, i.e. ‖c(K) − c(L)‖ ≤ dH(K,L). Note
that all the examples above have both properties.

Shape

In complementarity to the size measurement Φ and a centering function c,
we define shape functions. Informally the shape of a convex body is the
information that remains when we ignore some of its characteristics, like its
size, position or orientation. When studying the zero cell, we sometime look
at polytopes up to scale transformation. Hence we define, for any convex
body K ∈ K,

sΦ(K) :=
1

Φ(K)
1
r

K.

Similarly, with the typical cell, we occasionally consider polytopes up to
translation and scale transformation. So we set

sc,Φ(K) :=
1

Φ(K)
1
r

(K − c(K)).

We call both sΦ(K) and sc,Φ(K) shape of K.

3.1.2 Sets of convex bodies

K′ ⊃ K ⊃ P ⊃ Pn denote, respectively, the set of compact and convex sets
with at least 2 points, the set of convex bodies, the set of polytopes, and the
set of n-topes (polytopes with n facets) in Rd. Here we define in a systematic
way a series of subsets of K′. For a set X ⊂ K′ of convex bodies, e.g. P, Pn,
K or K′, we define the corresponding subset of convex bodies

• containing the origin in its interior

Xo := {K ∈ X : o ∈ Ko},
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• with Φ-content equal to 1

XΦ := {K ∈ X : Φ(K) = 1},

• centered at the origin

Xc := {K ∈ X : c(K) = o}.

We can combine the indices, e.g. Pn,c,Φ is the set of n-topes centered at the
origin and of Φ-content equal to 1. All these sets are equipped with the
Hausdorff distance and the induced Borel σ-algebra.

3.1.3 Homeomorphisms

We define homeomorphisms decomposing any convex body into size and
shape

hΦ : K → (0,∞)×KΦ

K 7→ (Φ(K), sΦ(K)) ,

or size, center and shape

hc,Φ : K → Rd × (0,∞)×Kc,Φ

K 7→ (c(K),Φ(K), sΦ(K)) .

Later we will restrict the domain and the codomain of hΦ or hc,Φ according
to the context. We are going to ignore it in the notation of the homeomor-
phisms but it will be clear from the situation. For example, in the context
of n-topes containing the origin, the homeomorphism hΦ is defined by

hΦ : Pn,o → (0,∞)× Pn,o,Φ
P 7→ (Φ(P ), sΦ(P )) .

3.1.4 Measures

Measure on the set of half spaces

We consider two different representations of half spaces in Rd. The first
takes into account whether or not the half space contains the origin. For
any H ∈ H not containing o,

H− is the half space supported by H and containing o,

H+ is the half space supported by H and not containing o.

This representation is undefined for half spaces with supporting hyperplane
containing the origin, but for the purpose of this thesis, this is a negligible
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set of half spaces, i.e. a set of measure zero. In the second representation,
by allowing t to be negative, we can omit the exponent ±.

H̃(u, t) := {x ∈ Rd : 〈x,u〉 ≤ t},

for any u ∈ Sd−1 and t ∈ R.
The measure µ gives rise to the measure

µ̃(·) :=

∫

H

∑

ε∈{±1}
1(Hε ∈ ·) dµ(H)

=

∫

Sd−1

+∞∫

−∞

1
(
H̃(u, t) ∈ ·

)
|t|r−1dtdϕ(u) (3.2)

on the set of halfspaces H̃.

Measures on sets of polytopes

The measure µ̃ on H̃ naturally induces a measure µn on Pn via

µn(·) :=
1

n!

∫

H̃n

1

(
n⋂

i=1

Hεi
i ∈ ·

)
dµ̃n (Hε) , (3.3)

where µ̃n := µ̃⊗· · ·⊗µ̃ denotes the product measures andHε := (Hε1
1 , . . . ,H

εn
n ).

Note that, when we restrict µn to Pn,o, we get a simpler representation due
to the fact that ∩ni=1H

εi
i /∈ Pn,o as soon as εi = +1 for one i,

µn(·) =
1

n!

∫

Hn
1

(
n⋂

i=1

H−i ∈ ·
)

dµn (H) . (3.4)

Splitting of the measures on sets of polytopes

Because the measure µn and the functional Φ are homogeneous of degree nr
and r, respectively, we obtain

hΦ (µn) ((0, b)× C) = bnhΦ (µn) ((0, 1)× C),

for any Borel sets C ⊂ Pn,Φ and b > 0. In the stationary case, the measure
µ is stationary invariant and so is µn. This implies, similarly as above, that
in the stationary case,

hc,Φ (µn) (A× (0, b)× C) = λd(A)bnhΦ (µn)
(

[0, 1]d × (0, 1)× C
)
,

for any b > 0 and any Borel sets A ⊂ Rd and C ⊂ Pn,c,Φ.
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To simplify our notations we introduce on Pn,Φ the normalized pushfor-
ward measure

µn,Φ(·) = hΦ(µn) ((0, 1)× ·) = µn
(
h−1

Φ ((0, 1)× ·)
)
.

Similarly, we define on Pn,c,Φ the normalized pushforward measure

µn,c,Φ(·) = hc,Φ(µn)
(

[0, 1]d × (0, 1)× ·
)

= µn

(
h−1
c,Φ

(
[0, 1]d × (0, 1)× ·

))
.

We define on R+ the measure

λ
(n)
1 (B) =

∫

B

ntn−1 dt, λ
(n)
1 ((0, b)) = bn

which is, up to a constant, the unique homogeneous measure of degree n on
R+. With these notations the pushforward measure hΦ(µn) splits into the
following product of measures:

hΦ (µn) = λ
(n)
1 ⊗ µn,Φ. (3.5)

In the stationary case we also have

hc,Φ (µn) = λd ⊗ λ(n−d)
1 ⊗ µn,c,Φ. (3.6)

Because µn,Φ(Pn,o,Φ) and µn,c,Φ(Pn,c,Φ) are finite, µn,Φ(·)/µn,Φ(Pn,o,Φ) and
µn,c,Φ(·)/µn,c,Φ(Pn,c,Φ) define probability measures on Pn,o,Φ and Pn,c,Φ, re-
spectively. The Complementary Theorems 3.2.1 and 3.3.1 in the next sec-
tions say, among other things, that these are the distributions of sΦ(Zo), the
shape of the zero cell, and s(Ztyp), the shape of the typical cell, respectively.

3.2 Complementary Theorem for the zero cell

For any r > 0, we have

Theorem 3.2.1. Let n ≥ d+ 1 be an integer.

1. For any Borel set of shapes S ∈ Pn,o,Φ we have

P (f(Zo) = n , sΦ(Zo) ∈ S)

= n!

∫

Pn,o

1 (Φ(P ) < 1)1 (sΦ(P ) ∈ S) dµn(P ). (3.7)

2. (Complementary Theorem for the zero cell) If we condition the
zero cell Zo to have n facets, then

(a) Φ(Zo) and sΦ(Zo) are independent random variables,
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(b) Φ(Zo) is Γγ,n distributed, and

(c) sΦ(Zo) has probability distribution µn,Φ(·)/µn,Φ(Pn,o,Φ).

Proof. The number of cells of the mosaic X in a subset D ⊂ Pn is

X(D) =
1

n!

∑

(H1,...,Hn)∈ηn6=

∑

ε∈{±1}n
1

(
n⋂

i=1

Hεi
i ∈ D

)
1

(
η ∩

( n⋂

i=1

Hεi
i

)o
= ∅
)
,

because there are n! possibilities of ordering a list of n different halfspaces.
The Slivnyak-Mecke formula (2.6), gives for P[n] =

⋂n
i=1H

εi
i that

EX(D) =
γn

n!

∫

Hn
1
(
P[n] ∈ D

)
P
(
η ∩ P o[n] = ∅

)
dµn (H)

= γn
∫

Pn

1 (P ∈ D)P (η ∩ P o = ∅) dµn(P )

by the definition of µn. Because η is a Poisson process, the probability in
the integrand is equal to e−γΦ(P ). So, we can write

EX(D) = γn
∫

Pn

1 (P ∈ D) e−γΦ(P )dµn(P ) (3.8)

In the following we are interested in the case where D = (hΦ)−1(B × C)
with Borel sets B ⊂ [0,∞) and C ⊂ Pn,o,Φ. By (3.5) we obtain in this case

EX
(
(hΦ)−1(B × C)

)
= γn

∫

Pn,o

1
(
P ∈ (hΦ)−1(B × C)

)
e−γΦ(P )dµn(P )

= γn
∫

C

∫

B

e−γt dλ
(n)
1 (t) dµn,Φ(P ).

For the first part of Theorem 3.2.1, observe that

P(f(Zo) = n, sΦ(Zo) ∈ C) = EX({P ∈ Pn,o, sΦ(P ) ∈ C})

= γn
∫

C

∞∫

0

e−γt dλ
(n)
1 (t) dµn,Φ(P ).

Because the integration with respect to t gives γ−n n!λ
(nr)
1 ([0, 1]) by elemen-

tary computations, the right-hand side equals

n!µn({P ∈ Pn,o, Φ(P ) < 1, sΦ(P ) ∈ C}).
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by the definition of µn. This proves the first part of the theorem.

Analogously, for the second part we have

P(f(Zo) = n, Φ(Zo) ∈ B, sΦ(Zo) ∈ C) = γn
∫

C

∫

B

e−γt dλ
(n)
1 (t)dµn,Φ(P )

= γnµn,Φ(C) n

∫

B

e−γttn−1dt.

Thus, if we condition Zo to have n facets, we have that sΦ(Zo) and Φ(Zo)
are independent random variables with distributions

P(sΦ(Zo) ∈ C | f(Zo) = n) =
µn,Φ(C)

µn,Φ(Pn,o,Φ)

and

P(Φ(Zo) ∈ B | f(Zo) = n) =
γn

(n− 1)!

∫

B

e−γttn−1dt.

As a direct corollary we recover the following relation, which is a special
case of a formula due to Schneider [Sch09, Sec. 5].

Corollary 3.2.2.

EΦ(Zo) = γ−1Ef(Zo).

Proof. Using the fact that, under the condition f(Zo) = n, we have that
Φ(Zo) is Γγ,n distributed, we get

EΦ(Zo) =
∑

n

E(Φ(Zo) | f(Zo) = n)P(f(Zo) = n)

=
∑

n

n

γ
P(f(Zo) = n)

= γ−1Ef(Zo)

3.3 Complementary Theorem for the typical cell

We consider in this section that we are in the stationary case (r = 1 and
ϕ ∈ ℵe). Due to the natural homeomorphism

P → Rd × Pc
P 7→ (c(P ), P − c(P )) ,
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we consider from now on X as a germ-grain process in Rd with grain space
Pc. Since η is stationary, this is also the case for X. That implies the
existence of a probability measure Q on Pc such that the intensity measure
of the germ-grain process X decomposes into Q and Lebesgue measure λd,

EX({P − c(P ) ∈ C, c(P ) ∈ A}) = γ(d)λd(A)Q(C) (3.9)

for C ⊂ Pc. We call Q the grain distribution, and the constant γ(d) =
EX({P ∈ P, c(P ) ∈ [0, 1]d}) the intensity of X.

Note that it is easy to see that γ(d) is a multiple of γd, where γ is the
intensity of the Poisson hyperplane process. The reader can find in [SW08,
Thm. 10.3.3] an expression of the factor γd/γ(d) in term of the volume of
the so called zonoid of the hyperplane process η, but this is not in the scope
of our manuscript.

A random centered polytope Ztyp ∈ Pc with distribution Q is called
typical cell of X (with respect to c).

Theorem 3.3.1. Let n ≥ d+ 1 be an integer.

1. For any Borel set of shapes S ∈ Pn,c,Φ we have

P(f(Ztyp) = n , sc,Φ(Ztyp) ∈ S) (3.10)

=
γd

γ(d)
(n− d)!

∫

Pn

1
(
c(P ) ∈ [0, 1]d

)
1 (Φ(P ) < 1)1 (sc,Φ(P ) ∈ S) dµn(P ).

2. (Complementary Theorem) If we condition the typical cell Ztyp to
have n facets, then

(a) Φ(Ztyp) and sc,Φ(Ztyp) are independent random variables,

(b) Φ(Ztyp) is Γγ,n−d distributed, and

(c) sc,Φ(Ztyp) has probability distribution µn,c,Φ(·)/µn,c,Φ(Pn,c,Φ).

Proof. The proof is similar as the one of the Complementary Theorem 3.2.1
for the zero cell. Applying (3.8) to sets of the form D = (hc,Φ)−1([0, 1]d ×
B × C) where B ⊂ [0,∞) and C ⊂ Pn,o,Φ are Borel sets, gives

EX
(

(hΦ)−1([0, 1]d ×B × C)
)

= γn
∫

Pn

1
(
P ∈ (hc,Φ)−1([0, 1]d ×B × C)

)
e−γΦ(P )dµn(P )

= γn
∫

C

∫

B

∫

[0,1]d

dλd(c) e
−γt dλ

(n−d)
1 (t) dµn,c,Φ(P ), (3.11)

where the second equality is induced by the splitting (3.6) of the pushforward
measure hc,Φ(µn).
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For the first part of Theorem 3.3.1, observe that by the definition (3.9)
of the intensity measure Q and using (3.11) we have

P(f(Ztyp) = n, sc,Φ(Ztyp) ∈ C) =
γ(d)

γ(d)
λd

(
[0, 1]d

)
Q
(
Pn,c ∩ s−1

c,Φ(C)
)

=
1

γ(d)
EX

(
{P ∈ Pn, c(P ) ∈ [0, 1]d, sc,Φ(P ) ∈ C}

)

=
γn

γ(d)

∫

C

∞∫

0

∫

[0,1]d

dλd(c) e
−γt dλ

(n−d)
1 (t) dµn,c,Φ(P ).

Because the integration with respect to t gives γ−(n−d) (n− d)!λ
(n−d)
1 ([0, 1])

by elementary computations, the right-hand side equals

γd

γ(d)
(n− d)!µn

(
{P ∈ Pn, c(P ) ∈ [0, 1]d, Φ(P ) < 1, sc,Φ(P ) ∈ C}

)
.

by the definition of µn. This proves the first part of the theorem.

Analogously, for the second part we have

P(f(Ztyp) = n, Φ(Ztyp) ∈ B, sΦ(Zo) ∈ C)

=
γn

γ(d)

∫

C

∫

B

∫

[0,1]d

dλd(c) e
−γt dλ

(n−d)
1 (t) dµn,c,Φ(P )

=
γn

γ(d)
µn,c,Φ(C) (n− d)

∫

B

e−γttn−d−1dt.

Thus, if we condition Ztyp to have n facets, we have that sc,Φ(Ztyp) and
Φ(Ztyp) are independent random variables with distribution

P(sc,Φ(Ztyp) ∈ C | f(Ztyp) = n) =
µn,c,Φ(C)

µn,c,Φ(Pn,c,Φ)

and

P(Φ(Ztyp) ∈ B | f(Ztyp) = n) =
γn−d

(n− d− 1)!

∫

B

e−γttn−d−1dt.

As a direct corollary we get that the mean of the Φ-content of Ztyp is
independent from the directional distribution ϕ.

Corollary 3.3.2.

EΦ(Ztyp) = γ−1d.
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Proof. Using the fact that, under the condition f(Ztyp) = n, we have that
Φ(Ztyp) is Γγ,n−d distributed, we get

EΦ(Ztyp) =
∑

n

E(Φ(Ztyp) | f(Ztyp) = n)P(f(Ztyp) = n)

=
∑

n

n− d
γ

P(f(Ztyp) = n)

= γ−1 (Ef(Ztyp)− d) .

Since E(Ztyp) = 2d, see e.g. Theorem 10.3.1 of [SW08], this proves the
corollary.
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Chapter 4

Geometric tools
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Apart from the Complementary Theorems, an other essential tool to
get our main results in Chapter 5 is the Polytopal Approximation Theory.
The problem is the following: Given a convex body K, how good can we
approximate K by a polytope P? There exists many way to consider this
question, depending on how we measure the distance between K and P and
which constraints on P , or even on K, we assume. We refer the reader to
the well known surveys of P. M. Gruber [Gru93, Gru94] and E. M. Bronstein
[Bro08] for an excellent overview of the huge amount of results and literature
about polytopal approximation. In the following 4 sections we prove a few
new results which fit the setting of the proofs of Chapter 5.

In our setting, we always assume K ⊂ P , and most of the time fix the
number of facets of P . In Section 4.1, we give upper bounds for dH(K,P ).
Section 4.2 improves these bounds when K is sufficiently ‘elongated’, mean-
ing that for some 1 ≤ i < j ≤ d the isoperimeter Vi(K)1/kVj(K)−1/j is small.
In Section 4.3 the convex body K is already a polytope and we approximate
it by ‘deleting’ one facet. There, the distance is measured both with the
Hausdorff distance and the difference of Φ-content. Our work on polytopal

31



32 CHAPTER 4. GEOMETRIC TOOLS

approximation ends with Section 4.4 where we approximate elongated poly-
topes by polytopes with less facets.

In the fifth section we generalise tools of integral geometry to the general
setting of this manuscript.

4.1 δ-net and polytopal approximation of convex
bodies

First, let us set some notation. Assume that M is a metric space with
distance dM , i.e. a set M and a function dM : M ×M → [0,∞) such that,
for any x, y, z ∈M , dM (x, y) = 0 if and only if x = y, dM (x, y) = dM (y, x),
and dM (x, z) ≤ dM (x, y) + dM (y, z). We write

BM (x, r) := {y ∈M | dM (x,y) ≤ r}.

Definition 4.1.1. Let M be a metric space and S a discrete subset of M .
We say that

• S is a δ-covering of M if ∪x∈SBM (x, δ) = M ,

• S is a δ-packing of M if BM (x, δ) ∩BM (y, δ) = ∅ for any x 6= y ∈ S,

• S is a δ-net of M if it is both a δ-covering of M and a (δ/2)-packing
of M .

Note that, in the poset of (δ/2)-packings ordered under inclusion, a
maximal element is a δ-net. Zorn’s lemma shows that, for any metric space
M , there exists a δ-net.

In the following lemma, under some general assumptions, we give bounds
for the cardinality of a δ-net. The construction of these bounds is adapted
from the proof of the following well known result, see e.g. [Gru07, Prop.
31.1]. If C ⊂ Rd is a convex body with non empty interior such that C = −C,
then there exists a packing of translated copies of C in Rd of density at least
2−d, where, roughly speaking, density means the proportion of Rd covered
by the translated copies of C.

Lemma 4.1.2. Let M be a space equipped with a measure ψ and a measur-
able metric dM . Assume that ψ(M) < ∞. Let δ0 > 0 and S be a δ-net of
M with δ ∈ (0, δ0). Let k > 0.

1. Assume there exists a constant c > 0 such that, for any x ∈ M and
r ∈ (0, δ0), it holds that crk > ψ(BM (x, r)). Then |S| > c−1ψ(M)δ−k.

2. Assume there exists a constant c′ > 0 such that, for any x ∈M and r ∈
(0, δ0), it holds that c′rk < ψ(BM (x, r)). Then |S| < 2kc′−1ψ(M)δ−k.
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Proof. To prove (1), we only have to observe that since S is a δ-covering,
we have that

ψ(M) ≤
∑

x∈S
ψ(BM (x, δ)) < |S| cδk

because M = ∪x∈SBM (x, δ). The proof of (2) is similar. Since S is a
(δ/2)-packing, we have that

ψ(M) ≥
∑

x∈S
ψ(BM (x, δ/2)) > |S|c′δk2−k

because, for any distinct x,y ∈ S, we have BM (x, δ/2)∩BM (y, δ/2) = ∅.

In Lemma 4.1.4, we will apply the previous lemma to the space M =
∂(K+Bd), where K is an arbitrary convex body and M is equipped with the
surface area measure and the restriction of the euclidean distance. In this
space the balls are caps on the boundary of the convex body D = K +Bd,
where a cap is defined as follows. For a convex body D, a point d ∈ D
(usually d ∈ ∂D), and a positive radius δ > 0, we define the cap of D of
center d and radius δ to be the set

cap (D,d, δ) = {y ∈ ∂D | |d− y| < δ}.

Note that our definition differs slightly from the more usual one, where a
cap is the intersection of the boundary ∂D with a half-space. In the next
lemma we give bounds for the surface area of caps of radius δ ∈ (0, δ0), of
bodies of the form K+Bd, with δ0 = 1 independent from K. Precise bounds
for spherical caps are known, see e.g. Lemma 2.1 in [BGK+01], Lemmas 2.2
and 2.3 in [Bal97] or Remark 3.1.8 in [AAGM15]. Lemma 6.2 in [RVW08]
gives bounds for more general bodies than the sphere, namely those with
C2 boundary of positive curvature, but with a δ0 depending on K. It does
not seem to the author that we can deduce easily Lemma 4.1.3 from these
results.

Lemma 4.1.3. Let K ∈ K and D = K + Bd. Let d ∈ ∂D and δ ∈ (0, 1).
Then

δd−1κd−12−(d−1) < Hd−1(cap (D,d, δ)) < δd−1κd−1d.

Proof. For the lower bound, we approximate the cap by a (d−1)-dimensional
disc of radius δ

√
1− δ2/4 (see Figure 4.1). Let H be the tangent hyperplane

to D at d. We have

Hd−1(cap (D,d, δ)) ≥ Hd−1(H ∩B(d, d(d, e)))

= δd−1κd−1

(
1− δ2

4

)(d−1)/2

> δd−1κd−1

(
3

4

)(d−1)/2

> δd−1κd−12−(d−1).



34 CHAPTER 4. GEOMETRIC TOOLS
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f

Figure 4.1: Hd−1(cap (D,d, δ)) ≥ δd−1κd−1

(
1− δ2

4

)(d−1)/2

For the upper bound, we approximate the cap by the union of a (d − 1)-
dimensional disc of radius δ and the spherical boundary of a cylinder of
radius δ and height δ2 (see Figure 4.2). Thus

Hd−1(cap (D,d, δ)) < Hd−1(H ∩B(d, δ)) +Hd−2(H ∩ S(d, δ))δ2

= δd−1κd−1 + δd−2ωd−1δ
2

= δd−1κd−1 (1 + δ(d− 1)) < δd−1κd−1d.

Set c1 := 2d−1κ−1
d−1 = Θ(d1/2)d and c2 := 4dκ−1

d−1 = Θ(d1/2)d. As a direct

consequence of the two previous lemmas and the fact that Hd−1(∂D) =
2Vd−1(D), we have the following lemma. We omit the proof.

Lemma 4.1.4. Let K ∈ K and D = K + Bd, δ ∈ (0, 1) and S a δ-net of
the boundary ∂D. We have that

c1Vd−1(D)δ−(d−1) < |S| < c2Vd−1(D)δ−(d−1).

For a convex body K with boundary ∂K of differential class C 1 and
x ∈ ∂K, we denote by v(x) the outer unit normal vector of K at x. Us-
ing Lemma 4.1.4, we prove the two following lemmas in a similar way as
Propositions 2.4 and Proposition 2.7 of [RSW01].

Lemma 4.1.5. Let K ∈ K with ∂K of class C 1 and δ ∈ (0, 1). There exists
a δ-net of ∂K, with respect to the distance dm(x,y) = max(|x− y|, |v(x)−
v(y)|), of cardinality at most c2Vd−1(K +Bd) δ−(d−1).
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δ
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∈ (δ2/2, δ2) when δ ∈ (0, 1)

Figure 4.2: Hd−1(cap (D,d, δ)) < δd−1κd−1 + δd−2ωd−1δ
2

Note that, in the lemma above, the condition that ∂K is of class C 1 is
equivalent to the fact that all boundary points of K have a unique outward
normal vector, see e.g. [Sch14, Ch. 2].

Proof. Set D = K + Bd. Let S be a δ-net on the boundary ∂D (with
respect to the euclidean distance in Rd). Lemma 4.1.4 tells us that |S| <
c2Vd−1(D)δ−(d−1). Since ∂K is of class C 1, we have that each point of ∂D
has a unique representation x+v(x), where x ∈ ∂K and v(x) is the outward
unit normal vector of K at x. Observe that the projections

πK : ∂D → ∂K and ∂D → Sd−1

x+ v(x) 7→ x x+ v(x) 7→ v(x)

are both 1-Lipschitz. This implies that the set πK(S) is a δ-covering of
∂K, with respect to the distance dm(x,y) = max(|x− y|, |v(x)− v(y)|), of
cardinality |πK(S)| = |S| < c2Vd−1(K+Bd) δ−(d−1). Observing that for any
δ-covering there exists a sub-δ-covering which is also a (δ/2)-packing (and
thus a δ-net) yields the proof.

Set c3 := 3(d−1)/4c2 = Θ(d1/2)d.

Lemma 4.1.6. Let K ∈ K and 0 < ε < 1. Then, there exists a polytope
Pε ⊃ K with

dH(K,Pε) < ε

and with number of facets at most

c3Vd−1(K +Bd) ε−(d−1)/2.
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Proof. Without loss of generalities, we assume that ∂K is of class C 1. Set
δ = 3−1/4ε1/2. Consider the δ-net S built in Lemma 4.1.5. We have that
|S| ≤ c2Vd−1(K + Bd) δ−(d−1) = c3Vd−1(K + Bd) ε−(d−1)/2. Construct the
circumscribed polytope P ⊃ C with one facet tangent to C at each point of
S. Elementary geometric estimation gives that dH(C,P ) < 31/2δ2 = ε.

Set c4 := c
2/(d−1)
3 = Θ(d). From the previous lemma, we can now prove

easily the following theorem.

Theorem 4.1.7. There exist absolute constants c1 and c2, independent of
d, such that the following holds. Let K be a convex body. Then, for any
integer n > cd1d

d/2Vd−1(K + Bd), there exists a polytope P ⊃ K with n
facets such that

dH(K,P ) < c2dVd−1(K +Bd)2/(d−1)n−2/(d−1).

Proof. Let n > c3Vd−1(K +Bd).
Set ε = c4Vd−1(K +Bd)2/(d−1)n−2/(d−1). By the assumption made on n, we
have ε < 1. Hence, we can apply Lemma 4.1.6. There exists a polytope
Pε ⊃ K with dH(K,Pε) < ε and such that its number of facets is at most

c3Vd−1(K +Bd) ε−(d−1)/2 = n.

The approximations of the constants ci using the Landau notation tells us
that there exist absolute constants c1 and c2 such that c3 < cd1d

d/2 and
c4 < c2d for any d. This yields the proof.

Theorem 4.1.7 will be a key ingredient for the proof of Theorem 4.2.1.
We also use it to recover the following well known result.

Lemma 4.1.8. There exist constants c5 and c6, depending on d, such that
the following holds. For any integer n > c5 and any K ∈ K, there exists a
polytope P ⊃ K with n facets such that

dH(K,P ) < c6V1(K)n−
2
d−1 .

Note that the dependence on d of the constants is not explicit in
Lemma 4.1.8. There are two reasons for that. First, it is know that the
result holds with c6 independent from the dimension, see e.g. [RSW01, Cor.
2.6], and our proof gives a weaker result. Second, we will ignore the depen-
dence on d for the remaining of the manuscript.

Proof. Apply Theorem 4.1.7 to K ′ = V1(K)−1K. It shows that there exists
a polytope P such that

dH(K ′, P ) < c2dVd−1(K ′ +Bd)2/(d−1)n−2/(d−1), (4.1)
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if n > cd1d
d/2Vd−1(K ′ +Bd). By a compactness argument, we have that

c7 := max
{
Vd−1(K ′ +Bd)2/(d−1) : K ′ ∈ K, V1(K ′) = 1

}
<∞.

Indeed, since Vd−1 is translation invariant, we can take the maximum above
over sets K ′ with center of mass at the origin and first intrinsic volume equal
to 1. Because of the Blaschke Selection Theorem 2.1.1 the set of such sets
is compact. Hence c7 <∞, since the map K ′ 7→ c2dVd−1(K ′ +Bd)2/(d−1) is
continuous.

Observing that dH(K,V1(K)P ) = dH(K ′, P )V1(K), equation (4.1) im-
plies the lemma with c5 := cd1d

d/2c7 and c6 := c2dc7.

4.2 Polytopal approximation of elongated convex
bodies

Let 1 ≤ i < j ≤ d and K ∈ K. Recall that the isoperimetric inequality (2.1)
says that the (i, j)-isoperimetric ratio Vj(K)1/jVi(K)−1/i of K is maximized
when K is a ball. On the other hand, Vj(K)1/jVi(K)−1/i ' 0 precisely
when the normalized body Vi(K)−1/iK is close to a (j − 1)-dimensional
convex body. If an isoperimetric ratio of K is close to zero, we say that K is
elongated. The following theorem gives a bound for the Hausdorff distance
between a convex body K and its best approximating polytope. This bound
can be arbitrarily small if K is sufficiently elongated.

Theorem 4.2.1. Assume 1 ≤ i < j ≤ d(d−1)/2e. Set α = 2d(d−1)/2e(d−
1)d−1 and β = d(d− 1)/2e(d− 1)−1d−1. There exist constants δi,j and ni,j,
both depending on d, such that the following holds. For any ε > 0 and any
convex body K

if
Vj(K)1/j

Vi(K)1/i
< ε then dH(K,P ) < δi,jε

β V1(K)

n2/(d−1)
for any n ≥ ni,jε−α,

where P = PK,n ⊃ K is a circumscribed polytope, with at most n facets,
minimizing the Hausdorff distance dH(K,P ).

This theorem will be prove in Subsection 4.2.2. We will need a shape
factor which we will describe in Subsection 4.2.1.

4.2.1 Shape factor

In this subsection we define gl, a shape factor, i.e. a scale and translation
invariant function on K. Lemma 4.2.3 tells us how gl(K) describes the
elongation of a given convex body K.

Set c8 := c3Vd−1(Bd), where c3 is the constant defined before Lemma 4.1.6.
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Definition 4.2.2. For any fixed parameter l > c8 we define the functions
bl, fl, gl : K → (0,∞) by

bl(K) = sup{t ∈ (0,∞) | l > c3Vd−1(tK +Bd)},

fl(K) = inf
t∈(0,bl(K))

Vd−1(tK +Bd)2/(d−1)

t
,

and

gl(K) =
fl(K)

V1(K)
.

It is clear that the three functions are translation invariant. One can
check that bl is homogeneous of degree −1, fl is homogeneous of degree 1
and gl is homogeneous of degree 0. Therefore, for any fixed l, gl is a shape
factor. The next lemma gives a geometric interpretation of gl.

Lemma 4.2.3.

1. For any K ∈ K, the function l 7→ gl(K) is decreasing.

2. If d = 2 and l > c8 is fixed, then gl is constant on K.

3. If d ≥ 3, l > c8 is fixed, and K ∈ K is neither an interval nor a ball,
then

gl(I) < gl(K) < gl(B) for any l > c8,

where I denotes an interval and B a ball.

4. Assume that 1 ≤ i < j ≤ d(d − 1)/2e. There exist constants δi,j
and ni,j, both depending on d, such that the following holds. For any
convex body K ∈ K and ε > 0, we have

if
Vj(K)1/j

Vi(K)1/i
< ε then gNi,j(ε)(K) ≤ δi,jεβ, (4.2)

where Ni,j(ε) := ni,jε
−α with α = 2d(d − 1)/2e(d − 1)d−1, and β =

2d(d− 1)/2e(d− 1)−1d−1.

Proof. (1) is a direct consequence of the definition of gl. (2) comes from the
fact that in this case Vd−1 = V1 is additive. (3) is implied by (2.3). It only
remains to prove (4).

For the rest of the proof we write vi := Vi(B
d)1/i for i = 1, . . . , d. Thanks

to point 3 of the present lemma, we have that gNi,j(ε)(K) ≤ gNi,j(ε)(B). This
implies that, without loss of generality, we can assume that ε < c, for c > 0
as small as one need. We also reduce the proof to the case i = 1 and
j = j0 = d(d− 1)/2e. Because of the isoperimetric inequality (2.1), we have

Vj0(K)1/j0

V1(K)
≤ ci,j

Vj(K)1/j

Vi(K)1/i
where ci,j :=

vj0vi
vjv1

. (4.3)
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Assume that there exist constants δ1,j0 and n1,j0 such that (4.2) holds for i =

1 and j = j0. Let 1 ≤ i < j ≤ j0 and (i, j) 6= (1, j0). We set δi,j := δ1,j0c
β
i,j

and ni,j := n1,j0c
−α
i,j . In particular, Ni,j(ε) = ni,jε

−α = n1,j0(ci,jε)
−α =

N1,j0(ci,jε). Assume that K is such that Vj(K)1/jVi(K)−1/i < ε. By
(4.3) we have Vj0(K)1/j0V1(K) < ci,jε. This implies that gNi,j(ε)(K) =

gN1,j0
(ci,jε)(K) ≤ δ1,j0(ci,jε)

β = δi,jε
β. This shows that we only have to

consider the case i = 1 and j = j0.
Since both parts of (4.2) are scale invariant, we also assume without loss

of generalities that V1(K) = 1. Let ε ∈ (0, 1) and l > c8. From now on, we
assume that

Vj0(K)1/j0 < ε.

Set

pC(t) := Vd−1(tK +Bd)
(2.2)
=

d−1∑

k=0

(d− k)κd−k
2d

Vk(K)tk.

Observe that it is a strictly increasing and continuous function and that

gl(K) = fl(K) =

(
inf

t∈(0,bl(K))
t−(d−1)/2pC(t)

)2/(d−1)

(4.4)

and bl(K) = p−1
C (c−1

3 l).

Observe that j0 − 1− (d− 1)/2 ≤ −1/2. Hence, for t > 1,

t−(d−1)/2pC(t) ≤ S1(K)t−1/2 + S2(K)t(d−1)/2,

where

S1(K) :=

j0−1∑

k=0

(d− k)κd−k
2d

Vk(K) and S2(K) :=

d−1∑

k=j0

(d− k)κd−k
2d

Vk(K).

The isoperimetric inequalities (2.1) gives that

S1(K) ≤ κd
2

+

j0−1∑

k=1

(d− k)κd−k
2d

(
vk
v1

)k
=: c9.

It also implies that, for k = j0, . . . , d−1, we have Vk(K) ≤ (vk/vj0)kVj0(K)k/j0 .
And since Vj0(K)k/j0 < εk ≤ εj0 , it follows that

S2(K) ≤
d−1∑

k=j0

(d− k)κd−k
2d

(
vk
vj0

)k
εj0 =: c10ε

j0 .

Therefore, for t > 1,

t−(d−1)/2pC(t) ≤ c9t
−1/2 + c10ε

j0t(d−1)/2 =: qε(t). (4.5)



40 CHAPTER 4. GEOMETRIC TOOLS

Since we want t−(d−1)/2pC(t) small, we define tε > 0 such that qε(tε) is
minimal. But it holds that the derivative of qε is

q′ε(t) =
−c9

2
t−3/2 +

c10ε
j0(d− 1)

2
t(d−3)/2.

Thus,

tε =

(
c10ε

j0(d− 1)

c9

)−2/d

= c11ε
−2j0/d

with c11 := (c10(d− 1)/c9)−2/d. Now, we observe that

t−(d−1)/2
ε pC(tε)

(4.5)

≤ qε(tε) = c9(c11ε
−2j0/d)−1/2+c10ε

j0(c11ε
−2j0/d)(d−1)/2 = c12ε

j0/d

with c12 := c9c
−1/2
11 + c10c

(d−1)/2
11 . This implies that if bN1,j0

(ε)(K) > tε then

gN1,j0
(ε)(K)

(4.4)

≤
(
t−(d−1)/2
ε pC(tε)

)2/(d−1)
≤
(
c12ε

j0/d
)2/(d−1)

≤ δ1,j0ε
β

with δ1,j0 := c
2/(d−1)
12 and β := 2j0(d− 1)−1d−1.

It remains only to set N1,j0(ε) such that bN1,j0
(ε)(K) > tε. Set

c13 :=
κd
2

+

d−1∑

k=1

(d− k)κd−k
2d

(
vk
v1

)k
and p̃(t) := c13t

d−1.

Again because of the isoperimetric inequality, we have that pC(t) < p̃(t), for
any t > 1. Hence if u > p̃(1) = c13 then p−1

C (u) > p̃−1(u). Set

N1,j0(ε) := c3c13t
d−1
ε = n1,j0ε

−α

with n1,j0 := c3c13c
d−1
11 and α := 2j0(d− 1)d−1. Thus we have

bN1,j0
(ε)(K) = p−1

C (c−1
3 N1,j0(ε)) = p−1

C (c13t
d−1
ε ) > p̃−1(c13t

d−1
ε ) = tε

whenever tε > 1. But tε > 1 when ε < c
−1/α
11 . This completes the proof.

4.2.2 Proof of Theorem 4.2.1

Theorem 4.2.1 is a direct consequence of the following lemma and point 4
of Lemma 4.2.3. Let c14 > c4.

Lemma 4.2.4. Let K ∈ K. For any n > c8, there exists a polytope P ⊃ K
with n facets such that

dH(K,P ) < c14gn(K)
V1(K)

n2/(d−1)
.
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Proof. The condition n > c8 implies that bn(K) and gn(K) are well defined.
Let t ∈ (0, bn(K)). We have defined bn(K) precisely such that the convex
body tK and the number n satisfy the conditions required to apply Theorem
4.1.7. So there exists a polytope Pt with n facets such that

dH(tK, Pt) < c4Vd−1(tC +Bd)2/(d−1)n−2/(d−1).

Therefore, for any t ∈ (0, bn(K)), we see that

dH

(
K,

1

t
Pt

)
< c4

Vd−1(tK +Bd)2/(d−1)

t
n−2/(d−1).

Since c14 > c4, there exists t0 ∈ (0, bn) such that

dH

(
K,

1

t0
Pt0

)
< c14

(
inf

t∈(0,bn)

Vd−1(tK +Bd)2/(d−1)

t

)
n−2/(d−1).

But it holds that

inf
t∈(0,bn)

Vd−1(tK +Bd)2/(d−1)

t
= fn(K) = gn(K)V1(K),

which yields the proof.

4.3 Deleting facets of polytopes

The starting point of this subsection is [RSW01] from Reisner, Schütt and
Werner. Our goal is to show that if a polytope P has many facets, then a
good proportion of them has only a tiny influence. This will be a key ingre-
dient to obtain a recurrence relation between the probabilities P(f(Zo) =
n) and P(f(Zo) = n − 1) in Theorem 5.1.1 (resp. P(f(Ztyp) = n) and
P(f(Ztyp) = n − 1) in Theorem 5.2.1). More precisely, for I ⊂ N and a set
of halfspaces Hεi

i , i ∈ I, we define

PI := ∩i∈IHεi
i .

Throughout the manuscript we use the notation

[n] = {1, . . . , n}.

For j ≤ n we have P[n] ⊂ P[n]\{j}. We will measure the distance be-
tween P[n] and P[n]\{i}, both with the Hausdorff distance and the ratio
V1

(
P[n]\{i}

)
/V1

(
P[n]

)
> 1. We will show in the crucial Lemma 4.3.2 that

for a subset J ⊂ [n] of size at least n/4 we have good upper bounds of the
distances between P[n] and P[n]\{j} for j ∈ J .

In the first lemma we approximate a polytope P = ∩ni=1H
−
i by the

intersection PI of suitable supporting halfspaces of P . Its proof is similar to
the proof of Lemma 4.3 in [RSW01].
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Lemma 4.3.1. There exist constants c15 and c16 > 0, such that the following
holds. For any integer k > c15 and any simple polytope P with n facets, there
exists a subset I ⊂ [n] with |I| ≤ k such that

dH(P, PI) < c16cΦΦ(P )
1
r k−

2
d−1 .

Proof. We set c15 := d(c5 + 1) and c16 := c6

(
d(c5 + 1)c−1

5

)2/(d−1)
, where c5

and c6 are the constants of Lemma 4.1.8. We apply Lemma 4.1.8 to P and
m = bk/dc > c5. We obtain a polytope Q ⊃ P with bk/dc facets and

dH(P,Q) < c6V1(K)

⌊
k

d

⌋− 2
d−1

< c16cΦΦ(K)
1
r k−

2
d−1 ,

where the second inequality is a direct consequence of the definition of cΦ,
see (3.1), and the simple following computation

k⌊
k
d

⌋ < k

k − dd <
c15

c15 − d
d =

c5 + 1

c5
d.

By eventually shifting and rotating the facets of Q slightly, we can assume
that each of the facets of Q meets exactly one vertex of P in its interior. Let
I be the set of indices of facets of P with one vertex in a facet of Q. Since
P is simple, we have

|I| ≤ d f(Q) = d

⌊
k

d

⌋
≤ k.

Finally, we observe that P ⊂ PI ⊂ Q, which implies dH(P, PI) ≤ dH(P,Q).

The crucial step is to prove that also the Φ-content of P and P[n]\{j} are
almost the same for j ∈ I.

Lemma 4.3.2. Assume that r ≥ 1. There exist constants c17, C1 and C2

such that the following holds. For any n > c17 and any simple polytope
P = ∩ni=1H

−
i ∈ Pn,o, there exists a subset J ⊂ [n] of cardinality at least n/4

such that for any j ∈ J we have

dH
(
P, P[n]\{j}

)
< C1Φ(P )

1
rn−

2
d−1 , (4.6)

and
Φ
(
P[n]\{j}

)
< exp

{
C2n

− d+1
d−1

}
Φ(P ). (4.7)

Moreover c17 depends only on d, and C1 = c18cΦ and C2 = cr19c
r
Φ, with c18

and c19 depending only on d.

Note that in the stationary case the lemma extends to any simple poly-
tope P ∈ Pn, not only the ones containing the origin.
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Proof. The first part is just a suitable reformulation of Lemma 4.3.1. Set
c′17 := 2c15+4, where c15 is constant of Lemma 4.3.1, and put k = n−2dn/4e
which implies k ≥ c15 when n > c′17. Note that we will set the value of
c17 ≥ c′17 later in the proof. By Lemma 4.3.1 there is a set I ⊂ [n] of
cardinality k such that

dH(P, PI) < c16cΦΦ(P )k−
2
d−1 ≤ (4d)−1c18cΦΦ(P )

1
rn−

2
d−1 ,

where c18 := 4dc16

(
maxn>c17(n/(n− 2dn/4e))2/(d−1)

)
. Hence for any j /∈ I,

dH
(
P, P[n]\{j}

)
≤ dH (P, PI) < (4d)−1c18cΦΦ(P )

1
rn−

2
d−1

which gives (4.6). It remains to show that, for at least half of the j not in
I, equation (4.7) holds as well. Set

δ′ := (4d)−1c18n
− 2
d−1

and
Uj = cl

{
u ∈ Sd−1 : h

(
P[n]\{j},u

)
6= h(P,u)

}
.

Also, set c17 = max
{
c′17,

(
(4d)−1c18

)(d−1)/2
}

, so we have c17 ≥ c′17 and

δ′ < 1 for n > c17. Applying Lemma 3.1.1 with K = P , L = P[n]\{j},

δ = δ′cΦΦ(P )
1
r and U = Uj , gives

Φ
(
P[n]\{j}

)
− Φ(P ) < δ′(ch + 1)r−1crΦΦ(P )ϕ (Uj) . (4.8)

We need to estimate the ϕ-measure of the set Uj . Denote by v1, . . . ,vm the
vertices of the polytope P . Since the polytope is simple, each vertex is the
intersection of precisely d hyperplanes. Denote by N(vl) the unit vectors in
the normal cone of P at vl, i.e.

N(vl) =
{
u ∈ Sd−1 : h(P,u) = vl · u

}
.

The essential observation is that

Uj =
⋃

vl∈Hj
N(vl).

Observe that the sets N(vl) have pairwise disjoint interiors and cover Sd−1.
Thus for almost all u ∈ Sd−1 we have

n∑

j=1

1(u ∈ Uj) =
n∑

j=1

m∑

l=1

1(vl ∈ Hj)1(u ∈ N(vl))

=

m∑

l=1

1(u ∈ N(vl))

︸ ︷︷ ︸
=1

n∑

j=1

1(vl ∈ Hj)

︸ ︷︷ ︸
=d

= d.
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This yields
∑n

j=1 ϕ(Uj) = d and in particular

∑

j /∈I
ϕ(Uj) ≤ d.

This implies that, for at least half of the j /∈ I, we have

ϕ(Uj) ≤ d
(
n− k

2

)−1

= d
⌈n

4

⌉−1
≤ 4dn−1.

Otherwise we would have at least half of the j /∈ I with the reverse inequality
and, because |I| = k = n− 2dn/4e, that would imply

d ≥
n∑

j /∈I
ϕ(Uj) >

1

2
(n− k)

2d

n− k = d.

Combined with equation (4.8), it shows that there exists a set J ⊂ [n] \ I of
cardinality (n− k)/2 = dn/4e such that, for any j ∈ J , we have

Φ
(
P[n]\{j}

)
− Φ(P ) < δ′(ch + 1)r−1crΦΦ(P )4dn−1

= c18(ch + 1)r−1crΦΦ(P )n−
d+1
d−1

≤ cr19c
r
ΦΦ(P )n−

d+1
d−1 ,

where c19 = max(c18, 1 + ch). This implies equation (4.7).

4.4 Deleting facets of elongated polytopes

When a polytope is sufficiently elongated the approximation results of the
previous section can be improved. This is a consequence of Theorem 4.2.1.

Lemma 4.4.1. Assume that 1 ≤ i < j ≤ d(d − 1)/2e. There exist positive
constants C3 and C4, both depending on i, j and d, such that the following
holds. For any ε > 0, any integer k ≥ bC3ε

−(d−2)c and any simple polytope
P = ∩ni=1H

εi
i ∈ Pn with n ≥ k facets and Vj(P )1/jVi(P )−1/i < ε, there exists

a subset J ⊂ [n] with |J | ≤ k, such that

dH(P, PJ) < C4ε
1
2dV1(P )k−

2
d−1 .

Proof. Assume 1 ≤ i < j ≤ d(d − 1)/2e. Because of Theorem 4.2.1, there
exist constants ci,j and ni,j (both depending on d), such that the following
holds. For any ε > 0, any m ≥ ni,jε−(d−2), and any convex body K with

Vj(K)
1
j

Vi(K)
1
i

< ε,
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there exists a polytope Q ⊃ K with at most m facets satisfying

dH(K,Q) < ci,j ε
1
2d V1(K)m−

2
d−1 .

Assume that P is a simple polytope with isoperimetric ratio
Vj(P )1/jVi(P )−1/i < ε and f(P ) = n > k ≥ dm facets with m = bk/dc >
ni,jε

−(d−2). Then there exists a polytope Q ⊃ P with m+ 1 facets and

dH(P,Q) < ci,jε
1
2d V1(P ) (m+ 1)−

2
d−1 < d

2
d−1 ci,jε

1
2d V1(P ) k−

2
d−1 .

We can assume that each of the facets of Q meets exactly one vertex of P
in its interior. Let J be the set of indices of facets of P with one vertex in
a facet of Q. Since P is simple, we have

|J | ≤ d f(Q) ≤ k.

And PJ ⊂ Q implies

dH(P, PJ) ≤ dH(P,Q).

In the following lemma we prove the uniform continuity of the isoperi-
metric ratio. To our surprise we could not find any results in this direction,
this seems to be an open problem. We state the partial solution to this
problem which we need for our purposes.

Lemma 4.4.2. Let 1 ≤ i < j ≤ d. There exists a constant c20 such that for
any δ ∈ (0, 1) and for any K,L ∈ K with K ⊂ L and dH(K,L) < δV1(K),
we have

Vj(L)
1
j

Vi(L)
1
i

<
Vj(K)

1
j

Vi(K)
1
i

+ c20δ
j−i

ij(j−1) .

Proof. A first easy bound is obtained using Vi(L)j−1 ≥ cijV1(L)j−iVj(L)i−1

which is a consequence of the Alexandrov-Fenchel inequality, see [Sch14],
p.401, (7.66) therein.

Vj(L)
1
j

Vi(L)
1
i

≤ c21

(
Vi(L)

1
i

V1(L)

) j−i
j(i−1)

<
Vj(K)

1
j

Vi(K)
1
i

+ c21

(
Vi(L)

1
i

V1(L)

) j−i
j(i−1)

(4.9)

A more precise bound uses Steiner’s formula. Due to the isoperimetric
inequality (2.1), Vi(K)1/i ≤ c1,iV1(K) with c1,i := Vi(B

d)1/iV1(Bd). Since

dH(K,L) < δV1(K),
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we have that L ⊂ K+δV1(K)Bd. The monotonicity of the intrinsic volumes
and Steiner’s formula shows for δ ≤ 1

Vj(L) < Vj

(
K + δV1(K)Bd

)

≤ Vj(K) +

j∑

i=1

(
d− j + i

i

)
κd−j+i
κd−j

cj−i1,j−iV1(K)j−i(δV1(K))i

≤ Vj(K) + δV1(K)j
j∑

i=1

(
d− j + i

i

)
κd−j+i
κd−j

cj−i1,j−i

≤ Vj(K) + c22 δV1(L)j .

Because a + b ≤
(
a

1
j + b

1
j

)j
, for a, b > 0, and because of the monotonicity

of the intrinsic volumes this yields

Vj(L)
1
j

Vi(L)
1
i

≤ Vj(K)
1
j

Vi(K)
1
i

+ c
1
j

22δ
1
j
V1(L)

Vi(L)
1
i

. (4.10)

Note that min
{
x, x−(j−i)/(j(i−1))

}
≤ 1 for all x > 0. We define c20 =

max{c21, c
1/j
22 } and combine (4.9) and (4.10).

Vj(L)
1
j

Vi(L)
1
i

≤ Vj(K)
1
j

Vi(K)
1
i

+ δ
j−i

ij(j−1) min



c

1
j

22δ
i−1
i(j−1)

V1(L)

Vi(L)
1
i

, c21

(
δ

i−1
i(j−1)

V1(L)

Vi(L)
1
i

)− j−i
j(i−1)





≤ Vj(K)
1
j

Vi(K)
1
i

+ c20δ
j−i

ij(j−1) .

Recall that we use the notation PI = ∩i∈IHεi
i , for any set of integers I.

For integers k ≤ n and a permutation σ ∈ Sn we write σ[k] = {σ(i) : i ∈
[k]}. In particular Pσ[k] = ∩i∈IH

εσ(i)

σ(i) . We call hyperplanes Hi in generic
position, if the intersection of any d+ 2 of them is empty. The constants C3

and C4 have been defined in Lemma 4.4.1.

Lemma 4.4.3. Assume that 1 ≤ i < j ≤ d(d− 1)/2e and let C3 and C4 be
the constants, depending on i, j and d, of Lemma 4.4.1. There is a constant

C5, depending on i, j, and d, such that for any ε < C
2/(d−1)
3 C−1

4 c−1
Φ the

following holds. For any polytope P[n] ∈ Pn,o with n > m = bC3ε
−(d−2)c

facets in generic position and Vj(P[n])
1/jVi(P[n])

−1/i < ε there exist at least
2−n(n− 2m)! permutations σ ∈ Sn such that
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(1) dH
(
Pσ[k], Pσ[k−1]

)
< C5cΦε

1
2d4 Φ

(
Pσ[m]

) 1
r k−

2
d−1 for all k ∈ [n] \ [2m],

(2)
∥∥c
(
Pσ[n]

)
− c
(
Pσ[m]

)∥∥ < Φ
(
Pσ[n]

) 1
r ,

(3) Φ
(
Pσ[m]

)
<
(
1 + (1 + cΦ)r−1

)
Φ
(
Pσ[n]

)
.

Note that, similarly as in Lemma 4.3.2, in the stationary case, the the-
orem extends to any polytope P ∈ Pn, not only the ones containing the
origin.

Proof. We set

m =
⌊
C3ε

−(d−2)
⌋
.

By Lemma 4.4.1 there exists a subset I ⊂ [n] with |I| = m, such that for all
subsets J with I ⊂ J ⊂ [n] we have

dH(P[n], PJ) < C4ε
1
2dV1(P[n])m

− 2
d−1 < C

− 2
d−1

3 C4ε V1(P[n]).

By Lemma 4.4.2 this implies for all such sets J that

Vj(PJ)
1
j

Vi(PJ)
1
i

< ε+ c20

(
C
− 2
d−1

3 C4ε

) j−i
ij(j−1)

< c23ε
1
d3 . (4.11)

We denote by S(Pn) ⊂ Sn the set of those permutations σ such that

(a) σ[m] = I, and

(b) dH
(
Pσ[k], Pσ[k−1]

)
< 2

2
d−1C4c

1
2d
23 ε

1
2d4 V1

(
Pσ[k]

)
k−

2
d−1 for all k ∈ [n]\[2m].

To estimate |S(Pn)| note first that there are m! possibilities such that σ[m] =
I. Second, assume that σ(n), . . . , σ(k + 1) ∈ [n] \ I are already chosen
satisfying Condition (b). Then by (4.11) and by Lemma 4.4.1 applied to the

polytope P ′ = Pσ[k], the integer k′ = k
2 ≥ m and ε′ = c23ε

1
d3 , there is a set

Jk ⊂ σ[k] of size |Jk| ≤ k/2 such that

dH
(
Pσ[k], PJk

)
< C4c

1
2d
23 ε

1
2d4 V1

(
Pσ[k]

)(k
2

)− 2
d−1

.

If we choose σ(k) /∈ Jk, Condition (b) is thus satisfied. Because we need in
addition σ(k) /∈ I there are at least k/2 − m possibilities to choose σ(k),
and thus to determine σ[k − 1]. Continuing until k = 2m+ 1 gives at least∏n

2m+1(k/2−m) possibilities to choose σ(n), . . . , σ(2m+ 1). We obtain

|S(Pn)| ≥ m!

n∏

k=2m+1

(
k

2
−m

)
= m!2−n+2m(n− 2m)! > 2−n(n− 2m)!
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Using (3.1), we observe that Condition (1) of our lemma is satisfied by

choosing C5 = 2
2
d−1C4c

1
2d
23 in Condition (b). Condition (2) follows from the

Lipschitz continuity of c and

dH(P[n], Pσ[m]) < C
− 2
d−1

3 C4cΦΦ
(
P[n]

) 1
r ε < Φ

(
P[n]

) 1
r ,

since C
− 2
d−1

3 C4cΦε < 1. To check Condition (3) we apply the second part of

Lemma 3.1.1 with K = Pσ[n] = P[n], L = Pσ[m] and dH(K,L) < Φ
(
P[n]

) 1
r ,

Φ
(
Pσ[m]

)
− Φ

(
P[n]

)
< Φ

(
P[n]

) 1
r

(
Φ
(
P[n]

) 1
r + cΦΦ

(
P[n]

) 1
r

)r−1

= Φ
(
P[n]

)
(1 + cΦ)r−1.

4.5 Integral transformation formulae

4.5.1 Integration over the simplices of Rd

In this subsection we present with Theorem 4.5.2 a direct construction of
a random polytope equivalent to Ztyp. It is a generalisation to the non
isotropic case of Theorem 10.4.6 of [SW08], which itself generalises results
from Miles, Ambartzumian, Mecke, and Calka. See the second note of Sec-
tion 10.4 in [SW08] for precise references. First, we need to show an easy
extension of a theorem due to Calka.

We denote by P the set of (d+ 1)-tuples of unit vectors which are not all
in one closed hemisphere of Sd−1, and by ∆d(ū) the volume of the convex
hull of the unit vectors u0, . . . ,ud. In the following theorem the measure µ
on H is of the form

µ(·) =

∫

Sd−1

∞∫

0

1 (H(u, t) ∈ ·) dt dϕ(u).

Theorem 4.5.1. Let ϕ ∈ ℵe,c. If f : Hd+1 → R is a non negative measurable
function, then

∫

Hd+1

f(H) dµd+1(H) = d!

∫

Rd

∞∫

0

∫

P

f(H(u0, 〈z,u0〉+r), . . . ,H(ud, 〈z,ud〉+r))

×∆d(ū) dϕd+1(ū) dr dλd(z).

Proof. When ϕ is the Haar measure, Theorem 4.5.1 is Theorem 7.3.2 of
[SW08], which is itself taken from the doctoral thesis of Pierre Calka [Cal02]
(in French).
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The result extends easily to the more general case where ϕ is absolutely
continuous. We only need to insert the density function of σ into the formula.
We write ϕ = gσ, where g : Sd−1 → R is a measurable function and σ the
spherical Lebesgue measure. We have

∫

Hd+1

f(H) dµd+1(H)

=

∫

(Sd−1)d+1

∫

Rd+1
+

f(H(u0, t0), . . . ,H(ud, td))g(u0) · · · g(ud) dt̄dσd+1(ū)

= d!

∫

Rd

∞∫

0

∫

P

f(H(u0, 〈z,u0〉+ r), . . . ,H(ud, 〈z,ud〉+ r))

×∆d(u) g(u0) · · · g(ud) dσd+1(u) dr dλd(z)

= d!

∫

Rd

∞∫

0

∫

P

f(H(u0, 〈z,u0〉+ r), . . . ,H(ud, 〈z,ud〉+ r))

×∆d(u) dϕd+1(u) dr dλd(z).

For a (d+ 1)-tuple of unit vectors ū ∈ P we denote

∆(ū) := ∩di=0H(ui, 1)−,

the simplex circumscribed to Sd−1 and with facets with outward normal
vectors ui. In the following theorem, η is a stationary Poisson hyperplane
process of intensity γ and directional distribution ϕ ∈ ℵe,c, and Ztyp is the
typical cell, with respect to the inball center, of the mosaic induced by η.

Theorem 4.5.2. For Borel sets A ⊂ K,

P(Ztyp ∈ A) =
γd+1

(d+ 1)γ(d)

∫

P

∞∫

0

e−γrP


 ⋂

H∈η∩FrBd
H− ∩ (r∆(ū)) ∈ A


dr

×∆d(ū) dϕd+1(ū),

where η ∩ FrBd denotes the set of hyperplanes of the process which do not
hit the ball rBd.

Proof. In the isotropic case Theorem 4.5.2 is Theorem 10.4.6 of [SW08] (note
that the quantity γ̂ in [SW08] is half the quantity γ in the present thesis).
To prove the non isotropic case, one only needs to follow precisely the same
lines of the proof in [SW08], except for the transformation at the end of
the proof. One should use the transformation of Theorem 4.5.1 instead of
Theorem 7.3.2 in [SW08].
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4.5.2 Integration over a d-tuple of points on a sphere

We present here a theorem due to Miles, see [Mil71a, Thm 4] where he
gives a sketch of a proof. It is mentioned in the book of Schneider and Weil
[SW08, note 6 page 286] as a spherical counterpart to the affine Blaschke-
Petkanschin formula. We will give a proof of the formula since we did not
find in the literature a complete proof of it.

In the following, we denote by H(v, t) = {x ∈ Rd : 〈x,v〉 = t} the
hyperplane orthogonal to v at distance t from the origin, by σ′v,t the surface

area measure on the (d − 2)-dimensional sphere (H(v, t) ∩ Sd−1), and by
∆d−1(ū) the (d− 1)-dimensional volume of the convex hull of u1, . . . ,ud.

Theorem 4.5.3 (Miles,1971). Let d ≥ 2. If f : (Sd−1)d → R is a measurable
function, then

∫

(Sd−1)d

f(ū) dσd(ū)

= (d− 1)!

∫

Sd−1

1∫

0

∫

(H(v,t)∩Sd−1)d

f(ū) ∆d−1(ū) dσ′v,t(ū)
dt

(1− t2)
d
2

dσ(v).

Proof. As suggested in [SW08, note 6 page 286], our proof will follow the
lines of the proof of Theorem 8.2.3 in [SW08]. Without loss of generalities
we assume that f is continuous. Set the function f̃ : (Rd \ o)d → R defined
by

f̃(x̄) = f

(
x1

‖x1‖
, . . . ,

xd
‖xd‖

)
.

For 0 ≤ ρ < 1 we denote Bd
ρ := {x ∈ Rd : ρ ≤ ‖x‖ ≤ 1} and

Jρ :=

∫

(Bdρ)d

f̃(x̄) dλdd(x̄). (4.12)

The affine Blaschke-Petkanschin formula [SW08, Thm. 7.2.7], applied to
f̃ · 1(Bdρ)d and with q = d− 1, gives

Jρ = (d− 1)!

∫

Sd−1

1∫

0

∫

(H(v,t)∩Bdρ)d

f̃(x̄)∆d−1(x̄) dλdH(v,t)(x̄) dtdσ(v),

where λH(v,t) denotes the (d − 1)-dimensional Lebesgue measure on the
hyperplane H(v, t). By introducing spherical coordinate in (4.12) we also
get

Jρ =

(
1− ρd
d

)d ∫

(Sd−1)d

f(ū)dσd(ū).
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From the two last equations, we get

∫

(Sd−1)d

f(ū)dσd(ū) = (d− 1)!

∫

Sd−1

1∫

0

Iρ(v, t) dt dσ(v),

with

Iρ(v, t) =

(
d

1− ρd
)d ∫

(H(v,t)∩Bdρ)d

f̃(x̄)∆d−1(x̄) dλdH(v,t)(x̄).

Observe that H(v, t)∩Sd−1 is a (d−2)-dimensional sphere of radius
√

1− t2.
Using spherical coordinates in H(v, t) ∩ Sd−1 and the mean value theorem
of integral calculus (and denoting by a+ the positive part of a), we get

Iρ(v, t)

=

(
d

1− ρd
)d ∫

(H(v,0)∩Sd−1)d

∫

Rd+

1
(√

(ρ2 − t2)+ ≤ si ≤
√

1− t2,∀i ∈ [d]
)

f̃(tv + s̄ · ū)∆d−1(tv + s̄ · ū) sd−2
1 · · · sd−2

d ds̄ d(σ′v,0)d(ū)

=

(
d

1− ρd
)d

(1− t2)

d−1
2 − (ρ2 − t2)

d−1
2

+

d− 1



d ∫

(H(v,0)∩Sd−1)d

f̃(tv + s̄ · ū)

∆d−1(tv + s̄ · ū) d(σ′v,0)d(ū)

=

(
d

d− 1

)d

(1− t2)

d−1
2 − (ρ2 − t2)

d−1
2

+

1− ρd



d ∫

(H(v,0)∩Sd−1)d

f̃(tv + s̄ · ū)

∆d−1(tv + s̄ · ū) d(σ′v,0)d(ū),

for a suitable choice of s̄ ∈
[√

(ρ2 − t2)+ ,
√

1− t2
]d

. Here we denoted by

tv + s̄ · ū the d-tuple of vectors (tv + s1u1, . . . , tv + sdud). But

(1− t2)
d−1

2 − (ρ2 − t2)
d−1

2
+

1− ρd
ρ→1−−−→ d− 1

d

(
1− t2

) d−3
2 .

Hence, with ρ→ 1 and the dominated convergence theorem, we now deduce
that

Iρ(v, t)
ρ→1−−−→

(
1− t2

) d(d−3)
2

∫

(H(v,0)∩Sd−1)d

f̃(tv +
√

1− t2ū)

∆d−1(tv +
√

1− t2ū) d(σ′v,0)d(ū)

=
(
1− t2

)− d
2

∫

(H(v,t)∩Sd−1)d

f̃(ū)∆d−1(ū) d(σ′v,t)
d(ū),
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and therefore
∫

(Sd−1)d

f(ū) dσd(ū)

= (d− 1)!

∫

Sd−1

1∫

0

(
1− t2

)− d
2

∫

(H(v,t)∩Sd−1)d

f̃(ū)∆d−1(ū) d(σ′v,t)
d(ū).
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Cells with many facets
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Combining the Complementary Theorems of Chapter 3 with the Poly-
topal Approximation Theory developed in Chapter 4 leads to one of our
main results: bounds for the tail distribution of the number of facets of Zo
and Ztyp.

We organized this chapter in two sections, the first focuses on Zo and
the second on Ztyp. The structure and strategies for the proofs are the same
in both cases and both sections are divided in similar subsections. Therefore
Subsections 5.1.X can be compared with Subsection 5.2.X. Many differences
between the two cases appear at a technical level because of the different
settings. We believe that keeping things together about Zo (resp. Ztyp) in
one section makes it is easier for the reader to keep in mind the specificities
of the setting.

Each section has the following structure. In the first subsection we show
a recurrence relation for the probability that Zo (resp. Ztyp) has n facets,
and this implies a general upper bound. In the second subsection we prove
an upper bound for the probability that Zo (resp. Ztyp) has n facets and
is elongated. In the last subsection we establish a lower bound for the
probability that Zo (resp. Ztyp) has n facets.

53
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5.1 Bounds for the zero cell

5.1.1 Upper bound for the zero cell

The Complementary Theorem 3.2.1 combined with Lemma 4.3.2 about poly-
topal approximation implies our main upper bounds. By seeing a polytope
with n facets as a polytope with n−1 facets cut ‘a little bit’ by one halfspace,
we obtain the following recurrence relation.

Theorem 5.1.1. Assume that r ≥ 1. There exist constants C6 and C7 such
that for n > C6,

P(f(Zo) = n) ≤ C7n
− 2
d−1P(f(Zo) = n− 1).

Moreover, C6 := max
(
c17, c

r
24c

r(d−1)/2
Φ

)
and C7 := c25c

r
hc
r
Φ, where c24 and

c25 are constants depending only on d.

We prove Theorem 5.1.1 at the end of the subsection. Iterating the
recurrence relation of Theorem 5.1.1 gives us the following general upper
bound.

Theorem 5.1.2. Assume that r ≥ 1. There exists a constant C8 > 0,
dependent on r and ϕ, such that

P(f(Zo) = n) < Cn8 n
− 2n
d−1

for any n. Furthermore, there exists an integer nΦ such that P(f(Zo) = n)
is either vanishing or strictly decreasing for n ≥ nΦ.

Proof. Set n0 := dC6e. Iterating Theorem 5.1.1, gives us that for any n ≥ n0,

P(f(Zo) = n) ≤ Cn−n0
7

(
n!

n0!

)− 2
d−1

.

And Stirling’s approximation n! > nne−n implies for any n ≥ n0,

P(f(Zo) = n) < C−n0
7 (n0!)

2
d−1

(
e

2
d−1C7

)n
n−

2n
d−1 ,

from which the first part of the theorem follows.
For the second part of the theorem, we only have to observe that for

n > C
2/(d−1)
7 , Theorem 5.1.1 gives P(f(Zo) = n) < P(f(Zo) = n− 1).

We need to state the following elementary but useful lemma. We denote
by Sn the set of permutations of [n]. For x = (x1, . . . , xn) and σ ∈ Sn, we
write xσ := (xσ(1), . . . , xσ(n)). It is clear that the following holds.

Lemma 5.1.3. Let (X,Σ, ψ) be a measured space, m,n > 0 be integers,
f : Xn → [0,∞) be a measurable function and S, T ⊂ Xn measurable sets.
Assume that
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• f is symmetric: for any σ ∈ Sn and any x ∈ Xn, we have f(xσ) =
f(x);

• S is symmetric: for any σ ∈ Sn, and any x ∈ Xn we have 1(xσ ∈
S) = 1(x ∈ S);

• for any x ∈ S, there exist at least p permutations σ ∈ Sn such that
xσ ∈ T .

Then

p

n!

∫

Xn

1(x ∈ S)f(x)dψn (x) ≤
∫

Xn

1(x ∈ T )f(x)dψn (x) .

In the next two lemmata we investigate the influence of changes of P[n] =

∩ni=1H
−
i . The first lemma deals with the measure of those polytopes P[n]

which are close to P[n−1] in the Hausdorff distance. The second lemma
clarifies the dependence of the measure of polytopes P[n] on the Φ-content.

Lemma 5.1.4. Assume that r ≥ 1. For any α > 0 and any measurable
function f : Hn−1 → [0,∞), it holds that

∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
dH
(
P[n], P[n−1]

)
< α

)
f(H1, . . . ,Hn−1)dµn (H)

< αcr−1
h cr−1

Φ

∫

Hn−1

Φ
(
P[n−1]

) r−1
r 1

(
P[n−1] ∈ Pn−1,o

)
f(H)dµn−1 (H) .

Proof. The essential part of the proof is to bound

IK =

∫

H

1
(
K ∩H−n ∈ Ko

)
1
(
K ∩H−n 6= ∅

)
1
(
dH(K,K ∩H−n ) < α

)
dµ(Hn),

for any K ∈ Ko. We will then apply it in the case K = P[n−1] = ∩n−1
i=1 H

−
i ∈

Pn−1,o.
By definition of µ

IK =

∫

Sd−1

∞∫

0

1
(
K ∩H(u, t)− 6= ∅

)
1
(
dH(K,K ∩H(u, t)−) < α

)
tr−1dtdϕ(u)

=

∫

Sd−1

h(K,u)∫

max(0,h(K,u)−α)

tr−1dtdϕ(u).

But since r ≥ 1, the integrand is increasing with t and hence bounded by
h(K,u)r−1. Therefore

IK < α

∫

Sd−1

h(K,u)r−1dϕ(u).



56 CHAPTER 5. CELLS WITH MANY FACETS

With (3.1) this gives

IK < α

∫

Sd−1

(
chcΦΦ(K)

1
r

)r−1
dϕ(u) = αcr−1

h cr−1
Φ Φ(K)

r−1
r . (5.1)

Let us fix now (H1, . . . ,Hn−1) ∈ Hn−1. We observe that for every Hn ∈ H,

1
(
P[n] ∈ Pn,o

)
1
(
dH
(
P[n], P[n−1]

)
< α

)
(5.2)

≤ 1
(
P[n−1] ∈ Pn−1,o

)
1
(
P[n−1] ∩H−n ∈ Ko

)
1
(
P[n−1] ∩Hn 6= ∅

)

× 1
(
dH(P[n−1], P[n−1] ∩H−n ) < α

)
.

Integrating (5.2) over Hn ∈ H and combining it with (5.1) applied to K =
P[n−1], we obtain

∫

H

1
(
P[n] ∈ Pn,o

)
1
(
dH(P[n], P[n−1]) < α

)
dµ(Hn)

≤ 1
(
P[n−1] ∈ Pn−1

)
αcr−1

h cr−1
Φ Φ

(
P[n−1]

) r−1
r .

We end the proof by multiplying the previous inequality by f(H1, . . . ,Hn−1)
and integrating it with respect to (H1, . . . ,Hn−1) ∈ dµn−1 (H).

Lemma 5.1.5. For any β > 0 we have
∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ(P[n]) < β

)
dµn (H)

= βn
∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ(P[n]) < 1

)
dµn (H) .

Proof. The proof consists of simple computations. By definition of µn, see
(3.4), we have
∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ(P[n]) < β

)
dµn (H) = n!

∫

Pn,o

1 (Φ(P ) < β) dµn(P ).

But equation (3.5) tells us that µn can be decomposed into a product λ
(n)
1 ⊗

µn,Φ. This gives
∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ(P[n]) < β

)
dµn (H)

= n!

∫

Pn,o,Φ

β∫

0

ntn−1dtdµn,Φ(P ) = βnn!

∫

Pn,o,Φ

1∫

0

ntn−1dt dµn,Φ(P )

where the last equality follows from trivial computation. Using (3.5) and
(3.4) again yields the proof.
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We are now in the position to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Set α = c18cΦn
−2/(d−1) and β = cr19c

r
Φn
−(d+1)/(d−1),

where c18 and c19 are the constants of Lemma 4.3.2. Setting S′ = Pn,o,Φ in
(3.7) gives

P (f(Zo) = n) = n!

∫

Pn,o

1 (Φ(P ) < 1) dµn(P ).

By (3.4) this can also be written

P (f(Zo) = n) =

∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ
(
P[n]

)
< 1
)

dµn (H) ,

where P[n] = ∩ni=1H
−
i . We want to use now Lemma 4.3.2 which, roughly

speaking, tells us that the variable Hn has a ‘small influence’. Set

S =
{
H ∈ Hn : ∩ni=1H

−
i ∈ Pn,o and ∩ni=1H

−
i is a simple polytope

}
,

and

T =
{
H ∈ S : dH

(
P[n], P[n−1]

)
< αΦ

(
P[n]

) 1
r , Φ

(
P[n−1]

)
< exp (β) Φ

(
P[n]

)}
.

Lemma 4.3.2 tells us that, when n > c17, for any H ∈ S, there exists at
least n!/4 permutations σ ∈ Sn such that Hσ ∈ T . Hence, Lemma 5.1.3
implies

1

4
P (f(Zo) = n) ≤

∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
dH
(
P[n], P[n−1]

)
< α

)

× 1
(
Φ
(
P[n−1]

)
< exp (β)

)
dµn (H) .

Using Lemma 5.1.4 with f(H1, . . . ,Hn−1) = 1
(
Φ
(
P[n−1]

)
< exp (β)

)
, we

have

1

4
P (f(Zo) = n) ≤ αcr−1

h cr−1
Φ

∫

Hn−1

Φ
(
P[n−1]

) r−1
r 1

(
P[n−1] ∈ Pn−1,o

)

× 1
(
Φ
(
P[n−1]

)
< exp (β)

)
dµn−1 (H)

≤ αcr−1
h cr−1

Φ exp

(
r − 1

r
β

) ∫

Hn−1

1
(
P[n−1] ∈ Pn−1,o

)

× 1
(
Φ
(
P[n−1]

)
< exp (β)

)
dµn−1 (H) .
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Applying now Lemma 5.1.5 with n′ = n− 1 and β′ = exp(β), we get

1

4
P (f(Zo) = n) ≤ αcr−1

h cr−1
Φ exp

((
r − 1

r
+ n− 1

)
β

)

×
∫

Hn−1

1
(
P[n−1] ∈ Pn−1,o

)
1
(
Φ
(
P[n−1]

)
< 1
)

dµn−1 (H)

= αcr−1
h cr−1

Φ exp

((
r − 1

r
+ n− 1

)
β

)
P (f(Zo) = n− 1) .

And since
(
r−1
r + n− 1

)
β < nβ = cr19c

r
Φn
− 2
d−1 < 1, for n > (cr19c

r
Φ)

d−1
2 , we

have
P (f(Zo) = n) ≤ 4ec18c

r−1
h crΦn

− 2
d−1P (f(Zo) = n− 1) ,

for n > max
(
c17, (c

r
19c

r
Φ)(d−1)/2

)
. Hence the theorem holds with c24 =

c
(d−1)/2
19 and c25 := 4ec18c

−1
h .

5.1.2 Upper bound for the elongated zero cell

Theorem 5.1.6. Assume r ≥ 1 and 1 ≤ i < j ≤ d(d − 1)/2e. For any
δ > 0, there exist ε and C9, dependent on ϕ, r, i, j, and δ, such that

P

(
f(Zo) = n,

Vj(Zo)
1
j

Vi(Zo)
1
i

< ε

)
< δnn−

2n
d−1 ,

for any n > C9.

Proof. We will proceed in a similar way as in the proof of Theorem 5.1.1 with
one main difference. In order to take into account the elongation condition,
we will use Lemma 4.4.3 instead of Lemma 4.3.2. This explains why we have
directly a general upper bound without passing through the intermediate
step of a recurrence relation similar as the one of Theorem 5.1.1.

Let δ′ = δ/(4e2/(d−1)C11) where C11 is a positive constant dependent on
r and ϕ which will be set at the end of the proof. Let C3, C4 and C5 be the
constants dependent on i, j and d, used in Lemma 4.4.3. Set ε = ε(δ′, ϕ, i, j)
such that

δ′ = C5cΦε
1

2d4 .

Without loss of generality we can assume that δ′ is small enough such that

ε < C
2/(d−1)
3 C−1

4 c−1
Φ . Set m = m(δ, ϕ, i, j) = bC3ε

−(d−2)c. By (3.7), we have

P

(
f(Zo) = n,

Vj(Zo)
1
j

Vi(Zo)
1
i

< ε

)

= n!

∫

Pn,o

1 (Φ(P ) < 1)1


Vj

(
P[n]

) 1
j

Vi
(
P[n]

) 1
i

< ε


dµn(P ).
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By (3.4) this can also be written

P

(
f(Zo) = n,

Vj(Zo)
1
j

Vi(Zo)
1
i

< ε

)

=

∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ
(
P[n]

)
< 1
)
1


Vj

(
P[n]

) 1
j

Vi
(
P[n]

) 1
i

< ε


 dµn (H) ,

where P[n] = ∩ni=1H
−
i . Roughly speaking, we will now use Lemmata 5.1.3

and 4.4.3 to order the halfspaces such that integrating step by step, starting
by Hεn

n , the integrals can well be bounded. Recall that a collection of hy-
perplanes is said to be in generic position when the intersection of any d+ 2
of them is empty. Set

S =





H ∈ Hn :

H1, . . . ,Hn are in generic position,

P[n] ∈ Pn,o,

Vj
(
P[n]

) 1
j

Vi
(
P[n]

) 1
i

< ε





,

and

T =




H ∈ Hn :

P[n] ∈ Pn,o,
Φ
(
P[m]

)
<
(
1 + (1 + cΦ)r−1

)
Φ
(
P[n]

)
,

dH
(
P[k], P[k−1]

)
< δ′Φ

(
P[m]

) 1
r k−

2
d−1 for 2m < k ≤ n




.

Lemma 4.4.3 tells us that, for any H ∈ S, there exist at least 2−n(n− 2m)!
permutations σ ∈ Sn such that Hσ ∈ T . Hence, Lemma 5.1.3 implies

2−n(n− 2m)!

n!
P

(
f(Zo) = n,

Vj(Zo)
1
j

Vi(Zo)
1
i

< ε

)

≤
∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ
(
P[n]

)
< 1
)
1
(
Φ
(
P[m]

)
<
(
1 + (1 + cΦ)r−1

)
Φ
(
P[n]

))

× 1
(
dH
(
P[k], P[k−1]

)
< δ′Φ

(
P[m]

)
k−

2
d−1 for 2m < k ≤ n

)
dµn (H)

≤
∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ
(
P[m]

)
< 1 + (1 + cΦ)r−1

)

× 1
(
dH(P[k], P[k−1]) <

(
1 + (1 + cΦ)r−1

)
δ′k−

2
d−1 for 2m < k ≤ n

)
dµn (H) .

Now, observing that for any k = n, n − 1, . . . , 2m + 1, we have Φ
(
P[k]

)
<

Φ
(
P[2m]

)
, and using n− 2m times Lemma 5.1.4, we have

2−n(n− 2m)!

n!
P

(
f(Zo) = n,

Vj(Zo)
1
j

Vi(Zo)
1
i

< ε

)
< C10(C11δ

′)n−2m

(
n!

(2m)!

)− 2
d−1

.
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where C10 = C10(δ, ϕ, i, j, r) and C11 = C11(ϕ, r) are defined by

C10 :=

∫

H2m

1
(
P[2m] ∈ P2m,o

)
1
(
Φ(P[m]) <

(
1 + (1 + cΦ)r−1

))
dµ2m (H)

and

C11 := cr−1
h cr−1

Φ

(
1 + (1 + cΦ)r−1

)1+ r−1
r .

Simple computations end the proof. Using Stirling approximation n! ≥
nne−n, the trivial inequality n!

(n−2m)! ≤ n2m and the fact that we defined

δ′ = δ/(4e2/(d−1)C11), we have

P

(
f(Zo) = n,

Vj(Zo)
1
j

Vi(Zo)
1
i

< ε

)
<

(
C10[(2m)!]

2
d−1

(C11δ′)2m
n2m2−n

)
δnn−

2n
d−1 ,

which implies the theorem.

5.1.3 Lower bound for the zero cell

Let us recall that we call cap the intersection of a small ball with the bound-
ary of a convex body. In this subsection we deal with caps on the unit sphere
and use the notation

C = C(x, R) = Sd−1 ∩B(x, R)

for the cap C ⊂ Sd−1 of center x ∈ Sd−1 and radius R > 0.
In Theorem 5.1.7 we give a lower bound for the probability that Zo

has n facets. The argument relies on the particular assumption that the
directional distribution ϕ is well spread, i.e. there exists a constant cϕ > 0
and a cap C ⊂ Sd−1 such that

ϕ(·) > cϕH d−1(·) on C.

In the following theorem, c27 is constant which depends only on d and which
will be defined in Lemma 5.1.8.

Theorem 5.1.7. Assume that ϕ is well spread. Then there exists a constant
C12 > 0, such that

P(f(Zo) = n) > Cn12n
− 2n
d−1 ,

for any n > c27. Moreover, if ϕ(·) > cϕHd−1(·) on a cap of radius Rϕ, then
C12 = cϕc

r
26R

d+r+1
ϕ , where c26 is a constant depending only on d.

The proof of Theorem 5.1.7 is based on the following strategy: we con-
struct a set of polytopes with n facets and with bounded Φ-content which we
obtain by slightly perturbating a deterministic polytope which is as regular
as possible. We do so in a way which ensures that Zo is one of these poly-
topes with a high enough probability. In Lemma 5.1.8, we proceed with the
construction of the deterministic polytope and in Lemma 5.1.9, we estimate
the probability that Zo is a perturbation of this deterministic polytope.
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Lemma 5.1.8. Let R ∈ (0, 1) and C ⊂ Sd−1 be a cap of radius R. There
exist a constant c27 = c27(d), and m = m(d,R) < c27 points yi ∈ C ∪ −C,
i = 1, . . . ,m such that the caps C(yi, r/12) are pairwise disjoint and

m⋂

i=1

H(vi, 1)− ⊂ B(o, 4r−1)

for any vi ∈ C(yi, R/12) ∩ (C ∪ −C), i = 1, . . . ,m.

Proof. Without loss of generalities, we assume that C is centered at the point
ed = (0, . . . , 0, 1). We choose a saturated packing of caps C(yi, Rϕ/12) with
yi ∈ C ∪ −C, i = 1, . . . ,m. Here we call a packing saturated if there is no
possibility for adding another ball of radius Rϕ/12. Since the curvature of
the sphere become negligible when Rϕ → 0, we have that m is of the same
order as a saturated packing of (d − 1)-dimensional balls of radius Rϕ/12
in RϕB

d−1. Clearly this is independent from Rϕ and therefore m < c27 for
some constant c27 depending only on d.

This implies first that
⋃
C(yi, Rϕ/6) is a covering of C∪−C, and second,

that each cap C(z, Rϕ/4), z ∈ C contains one of the caps C(yi, Rϕ/12),
because z ∈ C(yi, Rϕ/6) for some i = 1, . . . ,m.

The rest of the proof follows from explicit geometric calculations. As-
sume in the contrary that there are vi ∈ C(yi, Rϕ/12) ∩ (C ∪ −C) such
that

m⋂

i=1

H(vi, 1)− * B(o, 4R−1
ϕ ).

This in particular implies that either

e⊥d ∩
⋂

vi∈C
H(vi, 1)− * B(o, 4R−1

ϕ ) or e⊥d ∩
⋂

vi∈−C
H(vi, 1)− * B(o, 4R−1

ϕ ).

Recall that C is a cap with center ed. Without loss of generality assume
that x = (4R−1

ϕ , 0, . . . , 0) is a point with ‖x‖ = 4R−1
ϕ which is contained

in
⋂
vi∈C H(vi, 1)−. Let us define x0 = (Rϕ/4, 0, . . . , 0,

√
1−R2

ϕ/16). By

elementary trigonometric calculations the line through x and x0 is tangent
to the sphere at x0. Because x is contained in

⋂
H(vi, 1)−, none of the

points vi may be contained the cap Cx = C(e1, ‖e1 − x0‖).
Next observe that the point xC = (

√
1− h2, 0, . . . , 0, h) with h = 1 −

R2
ϕ/2 is on the relative boundary of C and in Cx, and

‖xC − x0‖ ≥
√

1− h2 − 1

4
Rϕ ≥

3

4
Rϕ −

1

4
Rϕ ≥

1

2
Rϕ.

Hence C ∩Cx contains a cap of radius Rϕ/4. Yet this cap must contain one
of the caps B(yi, Rϕ/12) and thus one of the points vi, a contradiction.
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In the following lemma, c27 is the constant depending only on d of
Lemma 5.1.8.

Lemma 5.1.9. Assume that ϕ is well spread. There exists a constant C13

such that for any n > c27 there are subsets S1, . . . , Sn ⊂ H with

µ(Si) > C13n
− d+1
d−1

and for H1 ∈ S1, . . . ,Hn ∈ Sn we have

⋂

i

H−i ∈ Pn

and ⋂

i

H−i ⊂ Bd.

Moreover if ϕ(·) > cϕH d−1(·) on a cap of radius Rϕ, then C13 = cϕc
r
28R

d+r+1
ϕ ,

where c28 depends only on d.

Proof. Consider them < c27 caps C(yi, Rϕ/12) which have been constructed
in Lemma 5.1.8, and fix n > c27. In each of the sets C(yi, Rϕ/12)∩(C∪−C)
we produce an optimal packing of dn/me smaller caps C(zj , ρ) where we can
choose ρ such that it satisfies C(zj , ρ)

c29n
− 1
d−1Rϕ ≤ ρ ≤

Rϕ
12

with a constant c29 depending only on d. Observe that the number of caps
constructed in this way is between n and n + m. We choose precisely n of
these caps C(zi, ρ) in such a way that in each set C(yi, Rϕ/12)∩ (C ∪−C)
there is at least one cap C(zi, ρ).

As already used above, a cap of radius t has height t2/2. Let vi be
arbitrary points in C(zi, ρ/2) ∩ (C ∪ −C), i = 1, . . . , n. Since each cap

C
(
vi,

ρ

2

)
= H

(
vi, 1−

1

2

(ρ
2

)2
)+

∩ Sd−1

is contained in the cap C(zi, ρ), it is disjoint from all other caps C(zj , ρ),
and thus also disjoint from all other caps C(vj , ρ/2). Hence for arbitrary
Ri with 0 ≤ Ri ≤ ρ/2, all points (1 − R2

i /2)vi are on the boundary of
∩ni=1H(vi, 1−R2

i /2)− and thus this intersection has n facets.
Since each set C(yi, Rϕ/12) contains a cap C(zi, ρ), there are m points

vi, v1, · · · ,vm say, which belong to C(y1, Rϕ/12), · · · , C(ym, Rϕ/12) re-
spectively. Combining Lemma 5.1.8 applied to v1, · · · ,vm and the consid-
erations above, we obtain: there are pairwise disjoint sets

Ti =

{
H(v, t) : v ∈ C

(
zi,

ρ

2

)
, t ∈

[
1− 1

2

(ρ
2

)2
, 1

]}
⊂ H, i = 1, . . . , n,
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such that for an arbitrary n-tuple H(vi, ti) ∈ Ti, i = 1, . . . , n, we have

n⋂

i=1

H(vi, ti)
− ⊂

m⋂

i=1

H(vi, ti)
− ⊂ B

(
o, 4R−1

ϕ

)
and

n⋂

i=1

H(vi, ti)
− ∈ Pn.

We normalize such that B
(
o, 4R−1

ϕ

)
is replaced by the unit ball and define

Si =

{
H(v, t) : v ∈ C

(
zi,

ρ

2

)
, t ∈ Rϕ

4

[
1− 1

2

(ρ
2

)2
, 1

]}
=
Rϕ
4
Ti ⊂ H

for i = 1, . . . , n.
It only remains to get lower bounds for the measures of the sets Si. By

definition of the sets, we have

µ(Si) =

∫

C(zi, ρ2 )

Rϕ
4∫

Rϕ
4

(
1− 1

2( ρ2 )
2
) t

r−1dt ϕ(du)

≥ ϕ
(
C
(
zi,

ρ

2

))
Rϕ
4∫

Rϕ
4

(
1− 1

2( ρ2 )
2
) t

r−1dt.

Using the the assumption ϕ(·) > cϕH d−1(·), we bound the first factor of
the expression above. There exists a constant c30, depending only on d, such
that

ϕ
(
C
(
zi,

ρ

2

))
≥ cϕH d−1

(
C
(
zi,

ρ

2

))
> cϕc30ρ

d−1,

where the second inequality comes from the fact that the Hausdorff measure
of a cap of radius ρ/2 can be approximated by (ρ/2)d−1κd−1, see e.g. Lemma
4.1.3. Simple computation give us a bound of the integral factor

Rϕ
4∫

Rϕ
4

(
1− 1

2( ρ2 )
2
) t

r−1dt >

Rϕ
4∫

Rϕ
4

(
1− 1

2( ρ2 )
2
)
[
Rϕ
4

(
1− 1

2

(ρ
2

)2
)]r−1

dt

=

(
Rϕ
32

)r
ρ2
(
8− ρ2

)r−1
.

And since ρ ≤ Rϕ/12 ≤ 1/12, we have
(
8− ρ2

)r−1
> 1, and therefore the

last equations imply

µ(Si) > cϕc30ρ
d+1

(
Rϕ
32

)r
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which gives

µ(Si) > cϕc30c
d+1
29 Rd+1

ϕ

(
Rϕ
32

)r
n−

d+1
d−1 ,

because ρ > c29n
− 1
d−1Rϕ. Setting c28 = min(1,c30)

32 gives

µ(Si) > cϕc
r
28R

d+r+1
ϕ n−

d+1
d−1 .

This yields n sets Si with the desired properties.

Proof of Theorem 5.1.7. As we have seen in the beginning of the proof of
Theorem 5.1.1, (3.7) and (3.4) gives

P (f(Zo) = n) =

∫

Hn
1
(
P[n] ∈ Pn,o

)
1
(
Φ
(
P[n]

)
< 1
)

dµn (H) ,

where P[n] = ∩ni=1H
−
i . Let S1, . . . , Sn be as in Lemma 5.1.9, we then have

P (f(Zo) = n) ≥ n!

∫

Hn
1 (H1 ∈ S1) · · ·1 (Hn ∈ Sn) dµn (H)

= n!

n∏

i=1

µ(Si)

≥ n!
(
cϕc

r
28R

d+r+1
ϕ n−

d+1
d−1

)n
.

Therefore, with Stirling approximation n! ≥ nne−n, we have

P (f(Zo) = n) ≥
(
e−1cϕc

r
28R

d+r+1
)n
n−

2n
d−1 .

Setting c26 = e−1cr28 yields the proof.

5.2 Bounds for the typical cell

We assume in this section that we are in the stationary case (r = 1 and
ϕ ∈ ℵe). As already explained at the beginning of the chapter, this section
follows the same structure as the previous one, with really similar subsec-
tions and theorems. The proofs follow analogous strategies but many dif-
ferences appear at a technical level and therefore we write completely the
main proofs.
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5.2.1 Upper bound for the typical cell

Theorem 3.3.1, combined with the geometric arguments developed in Chap-
ter 4, implies our main results. By seeing a polytope with n facets as a
polytope with n− 1 facets cut ‘a little bit’ by one halfspace, we obtain the
following recurrence relation.

Theorem 5.2.1. There exist constants C14 and C15 depending on ϕ, such
that for n > C14,

P(f(Ztyp) = n) ≤ C15n
− 2
d−1P(f(Ztyp) = n− 1).

Moreover C14 = max
(
c17, c31c

2/(d−1)
Φ

)
and C15 = c32cΦ, where c17, c31 and

c32 are constants depending only on d.

We prove Theorem 5.2.1 at the end of the subsection. Iterating the
recurrence relation of Theorem 5.2.1 gives us the following general upper
bound.

Theorem 5.2.2. There exists a constant C16 > 0, dependent on ϕ, such
that

P(f(Ztyp) = n) < Cn16 n
− 2n
d−1

for any n. Furthermore, there exists an integer nΦ such that P(f(Ztyp) = n)
is either vanishing or strictly decreasing for n ≥ nΦ.

Proof. We omit the proof which follows exactly the same lines as the proof
of 5.1.2.

We need the following two lemmata. They are analogous of Lemmata
5.1.4 and 5.1.5, and their proofs are similar. The main difference is that the
polytopes, convex bodies and half spaces considered do not need to contain
the origin o, so in particular we now use the notation P[n] = ∩ni=1H

εi
i . Also

in Lemma 5.2.4 we take into account the center c
(
P[n]

)
. These differences

make some notation a bit more heavy. On the other hand we have now r = 1
and ϕ ∈ ℵe, which simplifies some part of the proofs. For completeness we
include both proofs.

Lemma 5.2.3. For any α > 0 and any measurable function f : H̃n−1 →
[0,∞), it holds that

∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
dH
(
P[n], P[n−1]

)
< α

)
f(Hε1

1 , . . . ,H
εn
n−1)dµ̃n (Hε)

< α

∫

H̃n−1

1
(
P[n−1] ∈ Pn−1

)
f(Hε)dµ̃n−1 (Hε) .
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Proof. The essential part of the proof is to bound

IK =

∫

H̃

1 (K ∩Hεn
n ∈ K)1 (K ∩Hεn

n 6= ∅)1 (dH(K,K ∩Hεn
n ) < α) dµ̃(Hεn

n ),

for any K ∈ K. We will then apply it in the case K = P[n−1] = ∩n−1
i=1 H

εi
i ∈

Pn−1.

To get an upper bound of IK , it is more convenient to use the following
representation of half spaces: H̃(u, t) = {x ∈ Rd−1 : 〈x,u〉 ≤ t}. By
definition (3.2) of µ̃

IK =

∫

Sd−1

∞∫

−∞

1
(
K ∩ H̃(u, t) 6= ∅

)
1
(
dH(K,K ∩ H̃(u, t) < α

)
dtdϕ(u)

≤
∫

Sd−1

h(K,u)∫

h(K,u)−α

dt dϕ(u) = α. (5.3)

Let us fix now
(
Hε1

1 , . . . ,H
εn
n−1

)
∈ H̃n−1. We observe that for every Hεn

n ∈ H̃,

1
(
P[n] ∈ Pn

)
1
(
dH
(
P[n], P[n−1]

)
< α

)
(5.4)

≤ 1
(
P[n−1] ∈ Pn−1

)
1
(
P[n−1] ∩Hεn

n ∈ K
)
1
(
P[n−1] ∩Hn 6= ∅

)

× 1
(
dH(P[n−1], P[n−1] ∩Hεn

n ) < α
)
.

Integrating (5.4) over Hεn
n ∈ H̃ and combining it with (5.3) applied to

K = P[n−1], we obtain

∫

H̃

1
(
P[n] ∈ Pn

)
1
(
dH(P[n], P[n−1]) < α

)
dµ̃(Hεn

n )

≤ 1
(
P[n−1] ∈ Pn−1

)
α.

We conclude by multiplicating the previous inequality by f(Hε1
1 , . . . ,H

εn−1

n−1 )
and integrating it with respect to (Hε1

1 , . . . ,H
εn
n−1) ∈ dµ̃n−1 (Hε).

Lemma 5.2.4. For any β > 0 and any Borel set A, we have

∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[n]

)
∈ A

)
1
(
Φ
(
P[n]

)
< β

)
dµ̃n (Hε)

= λd(A)βn−d
∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[n]

)
∈ [0, 1]d

)
1
(
Φ
(
P[n]

)
< 1
)

dµ̃n (Hε) .
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Proof. The proof consists of simple computations. By definition of µn, see
(3.3), we have

∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[n]

)
∈ A

)
1
(
Φ
(
P[n]

)
< β

)
dµ̃n (Hε)

= n!

∫

Pn

1 (c (P ) ∈ A)1 (Φ (P ) < β) dµn(P )

But equation (3.6) tells us that µn can be decomposed into a product λd ⊗
λ

(n−d)
1 ⊗ µn,c,Φ. This gives

∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[n]

)
∈ A

)
1
(
Φ
(
P[n]

)
< β

)
dµ̃n (Hε)

= n!

∫

Pn,Φ

β∫

0

∫

A

(n− d)tn−d−1dcdtdµn,Φ(P )

= λd(A)βn−dn!

∫

Pn,Φ

1∫

0

∫

[0,1]d

(n− d)tn−d−1dcdtdµn,Φ(P )

where the last equality follows from trivial computation. Using (3.6) and
(3.3) again yields the proof.

We are now in the position to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. Set α = c18cΦn
−2/(d−1) and β = c19cΦn

−(d+1)/(d−1),
where c18 and c19 are the constants of Lemma 4.3.2. Let

In =
γ(d)

γd
n!

(n− d)!
P(f(Ztyp) = n).

Setting S′ = Pn,Φ in (3.10) gives

In = n!

∫

Pn

1
(
c(P ) ∈ [0, 1]d

)
1 (Φ(P ) < 1) dµn(P ).

By (3.3) this can also be written

In =

∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c(P ) ∈ [0, 1]d

)
1
(
Φ
(
P[n]

)
< 1
)

dµ̃n (Hε) ,

where P[n] = ∩ni=1H
εi
i .
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We want to use now Lemma 4.3.2 which, roughly speaking, tells us that
the variable Hεn

n has a ‘small influence’. For that we define sets S and T
similar to the ones of the proof of Theorem 5.1.1, with the only difference
that the built polytopes do not have to contain the origin now. Set

S =
{

(H, ε) ∈ H̃n : ∩ni=1H
εi
i ∈ Pn and ∩ni=1H

εi
i is a simple polytope

}
,

and

T =
{

(H, ε) ∈ S : dH
(
P[n], P[n−1]

)
< αΦ

(
P[n]

)
, Φ

(
P[n−1]

)
< exp (β) Φ

(
P[n]

)}
.

Lemma 4.3.2 tells us that, when n > c17, for any (H, ε) ∈ S, there exists
at least n!/4 permutations σ ∈ Sn such that (H, ε)σ ∈ T . Hence, Lemma
5.1.3 and the Lipschitz continuity of c imply

In
4
≤
∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[n]

)
∈ [0, 1]d

)
1
(
dH
(
P[n], P[n−1]

)
< α

)

× 1
(
Φ
(
P[n−1]

)
< exp (β)

)
dµ̃n (Hε)

≤
∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[n−1]

)
∈ [−α, 1 + α]d

)

× 1
(
dH
(
P[n], P[n−1]

)
< α

)
1
(
Φ
(
P[n−1]

)
< exp (β)

)
dµ̃n (Hε) .

Using Lemma 5.2.3 applied with

f(Hε1
1 , . . . ,H

εn
n−1) = 1

(
c
(
P[n−1]

)
∈ [−α, 1 + α]d

)
1
(
Φ
(
P[n−1]

)
< exp (β)

)
,

gives

In
4
≤ α

∫

H̃n−1

1
(
P[n−1] ∈ Pn−1

)
1
(
c
(
P[n−1]

)
∈ [−α, 1 + α]d

)

× 1
(
Φ
(
P[n−1]

)
< exp (β)

)
dµ̃n−1 (Hε) .

Applying now Lemma 5.2.4 with n′ = n− 1 and β′ = exp(β), we get

In
4
≤ α(1 + 2α)d exp {β(n− d− 1)}

∫

H̃n−1

1
(
P[n−1] ∈ Pn−1

)

× 1
(
c
(
P[n−1]

)
∈ [0, 1]d

)
1
(
Φ
(
P[n−1]

)
< 1
)

dµ̃n−1 (Hε)

= α(1 + 2α)d exp {β(n− d− 1)} In−1.

Therefore,

P(f(Ztyp) = n) ≤ 4α(1 + 2α)d exp {β(n− d− 1)} (n− d)

n
P(f(Ztyp) = n− 1)

≤ 4α exp {2dα+ β(n− d− 1)}P(f(Ztyp) = n− 1).
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And since α = c18cΦn
−2/(d−1) and

2dα+ β(n− d− 1) =

(
2dc18 + c19

n− d− 1

n

)
cΦn

− 2
d−1 < 1,

for n > [(2dc18 + c19)cΦ]2/(d−1), the theorem holds with c31 = (2dc18 +
c19)2/(d−1) and c32 = 4ec18.

5.2.2 Upper bound for the elongated typical cell

Theorem 5.2.5. Assume 1 ≤ i < j ≤ d(d − 1)/2e. For any δ > 0, there
exist ε and C17, dependent on ϕ, i, j, and δ, such that

P

(
f(Ztyp) = n,

Vj(Ztyp)
1
j

Vi(Ztyp)
1
i

< ε

)
< δnn−

2n
d−1 ,

for any n > C17.

Proof. We will proceed in a similar way as in the proof of Theorem 5.2.1 with
one main difference. In order to take into account the elongation condition,
we will use Lemma 4.4.3 instead of Lemma 4.3.2. This explains why we have
directly a general upper bound without passing through the intermediate
step of a recurrence relation similar as the one of Theorem 5.2.1.

Let C3, C4 and C5 be the constants dependent on i, j and d, used in
Lemma 4.4.3. Set δ′ = δ/(8e2/(d−1)) and ε = ε(δ, ϕ, i, j) such that

δ′ = C5cΦε
1

2d4 .

Without loss of generality we can assume that δ is small enough such that

ε < C
2/(d−1)
3 C−1

4 c−1
Φ . Set m = m(δ, ϕ, i, j) = bC3ε

−(d−2)c. Set

In =
γ(d)

γd
n!

(n− d)!
P

(
f(Ztyp) = n,

Vj(Ztyp)
1
j

Vi(Ztyp)
1
i

< ε

)

By (3.10), we have

In = n!

∫

Pn

1
(
c
(
P[n]

)
∈ [0, 1]d

)
1
(
Φ
(
P[n]

)
< 1
)
1


Vj

(
P[n]

) 1
j

Vi
(
P[n]

) 1
i

< ε


dµn(P ).

By (3.3) this can also be written

In =

∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[n]

)
∈ [0, 1]d

)
1
(
Φ
(
P[n]

)
< 1
)

× 1


Vj

(
P[n]

) 1
j

Vi
(
P[n]

) 1
i

< ε


 dµ̃n (Hε) ,
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where P[n] = ∩ni=1H
εi
i . Roughly speaking, we will now use Lemmata 5.1.3

and 4.4.3 to order the halfspaces such that integrating step by step, starting
by Hεn

n , the integrals can be well bounded. Recall that a collection of hy-
perplanes is said to be in generic position when the intersection of any d+ 2
of them is empty. Set

S =





(H, ε) ∈ H̃n :

H1, . . . ,Hn are in generic position,

P[n] ∈ Pn,

Vj
(
P[n]

) 1
j

Vi
(
P[n]

) 1
i

< ε





,

and

T =





(H, ε) ∈ H̃n :

P[n] ∈ Pn,∥∥c
(
P[n]

)
− c
(
P[m]

)∥∥ < Φ
(
P[n]

)
,

Φ
(
P[m]

)
< 2Φ

(
P[n]

)
,

dH
(
P[k], P[k−1]

)
< δ′Φ

(
P[m]

)
k−

2
d−1 for 2m < k ≤ n




.

Lemma 4.4.3 tells us that, for any (H, ε) ∈ S, there exist at least 2−n(n−
2m)! permutations σ ∈ Sn such that (H, ε)σ ∈ T . Hence, Lemma 5.1.3
implies

2−n(n− 2m)!

n!
In

≤
∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[n]

)
∈ [0, 1]d

)
1
(
Φ
(
P[n]

)
< 1
)

× 1
(∥∥c
(
P[n]

)
− c
(
P[m]

)∥∥ < Φ
(
P[n]

))
1
(
Φ
(
P[m]

)
< 2Φ

(
P[n]

))

× 1
(
dH
(
P[k], P[k−1]

)
< δ′Φ

(
P[m]

)
k−

2
d−1 for 2m < k ≤ n

)
dµ̃n (Hε)

≤
∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c
(
P[m]

)
∈ [−1, 2]d

)
1
(
Φ
(
P[m]

)
< 2
)

× 1
(
dH
(
P[k], P[k−1]

)
< 2δ′k−

2
d−1 for 2m < k ≤ n

)
dµ̃n (Hε) .

Now, using n− 2m times Lemma 5.1.4, we have

2−n(n− 2m)!

n!
In < C18(2δ′)n−2m

(
n!

(2m)!

)− 2
d−1

.

where C18 = C18(δ, ϕ, i, j) is defined by

C18 :=

∫

H̃2m

1
(
P[2m] ∈ P2m

)
1
(
c
(
P[m]

)
∈ [−1, 2]d

)
1
(
Φ(P[m]) < 2

)
dµ̃2m (Hε) .
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This gives

P

(
f(Ztyp) = n,

Vj(Ztyp)
1
j

Vi(Ztyp)
1
i

< ε

)

<
γd

γ(d)

(n− d)!

n!

n!

2−n(n− 2m)!
C18(2δ′)n−2m

(
n!

(2m)!

)− 2
d−1

< C19n
2m−d(4δ′)n(n!)−

2
d−1 ,

where

C19 := C19(δ, ϕ, i, j) =
γd

γ(d)
C18(2δ′)−2m((2m)!)

2
d−1 .

Hence, with Stirling approximation n! ≥ nne−n and because δ′ = δ/(8e2/(d−1)),
we get

P

(
f(Ztyp) = n,

Vj(Ztyp)
1
j

Vi(Ztyp)
1
i

< ε

)
<
(
C19n

2m−d2−n
)
δnn−

2n
d−1 ,

which implies the theorem.

5.2.3 Lower bound for the typical cell

In this subsection, we will show the following lower bound. Note that c27

below is the constant depending only on d of Lemma 5.1.8.

Theorem 5.2.6. Assume that ϕ is well spread. Then there exists a constant
C20 > 0, such that

P(f(Ztyp) = n) > Cn20n
− 2n
d−1 ,

for n > c27. Moreover, if ϕ(·) > cϕH d−1(·) on a cap of radius Rϕ, then
C20 = cϕc33R

d+2
ϕ , where c33 is a constant depending only on d.

Proof. As we have seen in the beginning of the proof of Theorem 5.2.1,
(3.10) and (3.3) gives

P (f(Ztyp) = n)

=
γd

γ(d)

(n− d)!

n!

∫

H̃n

1
(
P[n] ∈ Pn

)
1
(
c(P ) ∈ [0, 1]d

)
1
(
Φ
(
P[n]

)
< 1
)

dµ̃n (Hε)

where P[n] = ∩ni=1H
εi
i . Let S1, . . . , Sn be as in Lemma 5.1.9, we then have

P (f(Zo) = n) ≥ γd

γ(d)
(n− d)!

∫

Hn
1 (H1 ∈ S1) · · ·1 (Hn ∈ Sn) dµn (H)

=
γd

γ(d)
(n− d)!

n∏

i=1

µ(Si),
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But Lemma 5.1.9 also says that µ(Si) > cϕc
r
28R

d+r+1
ϕ n−

d+1
d−1 . And since here

r = 1, we have

P (f(Ztyp) = n) ≥ γd

γ(d)
(n− d)!

(
cϕc28R

d+2
ϕ n−

d+1
d−1

)n

=
γd

γ(d)

(n− d)!

nn

(
cϕc28R

d+2
ϕ

)n
n−

2n
d−1 .

But, because of Stirling approximation n! ≥ nne−n and the inequality n1/n ≤
e1/e, we have

(n− d)!

nn
=
n!

nn
· (n− d)!

n!
≥ e−nn−d ≥

(
e−1− d

e

)n
.

Thus

P (f(Ztyp) = n) =
γd

γ(d)

(
e−1− d

e cϕc28R
d+2
ϕ

)n
n−

2n
d−1 ,

which implies the theorem with c33 = e−1− d
e c28 min

(
1, γd

γ(d)

)
.
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D.G. Kendall’s problem and
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D.G. Kendall conjectured that, in the stationary and isotropic planar
case, the conditional law of the shape sc,Φ(Zo), given the area V2(Zo), con-
verges weakly, as V2(Zo) → ∞, to the degenerate law concentrated at the
circular shape. A short history and an exhaustive list of references for this
problem and its very general variants can be found in the book of Schneider
and Weil [SW08, Note 9 of Sec. 10.4]. We also refer to the more recent lec-
tures notes [Spo13] and in particular the chapters [Hug13, Sec. 7.2.1] from
Hug and [Cal13, Sec. 6.2] from Calka.

In the present chapter we consider D.G. Kendall problem in the same
general setting as in the previous chapters, namely d ≥ 2, r ≥ 1 and ϕ ∈ ℵ.
We will also consider both the cases of Zo and Ztyp. Since most of the
statements and their proofs are either identical or really similar in both
cases, we introduce the following convention.

73
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Convention 6.0.1. One can use consistently in the full chapter either

Z = Zo, s(Z) = sΦ(Zo), Ks = Ko,Φ, r ≥ 1, ϕ ∈ ℵ and d̃ = 0

or

Z = Ztyp, s(Z) = sc,Φ(Ztyp), Ks = Kc,Φ, r = 1, ϕ ∈ ℵe and d̃ = d.

Nevertheless the main results of the chapter are stated in an explicit way
such that the reader do not need to refer to this convention.

Following the setting of [HS07] we will consider arbitrary size functional,
i.e. a functional Σ: K → R satisfying the following four axioms

1. increasing under set inclusion: K ⊂ L⇒ Σ(K) ≤ Σ(L),

2. homogeneous of some degree k > 0: Σ(tK) = tkΣ(K),

3. continuous,

4. not identically zero.

Most of the functions commonly used to measure convex bodies are size
functionals, including the intrinsic volumes Vi, i > 0 and Φ. A notable
exception is f , the number of facets, which only satisfies the last axiom.

We will characterise the shapes of cells with big Σ-content by the isoperi-
metric ratio Φ(Z)Σ(Z)−

r
k . It is easy to see that τ = infK∈K Φ(K)Σ(K)−

r
k >

0. Hug and Schneider considered the problem in the case of the zero cell and
proved in [HS07] that the conditional law for this isoperimetric ratio, given
the size Σ(Zo), converges weakly, as Σ(Zo) → ∞, to the Dirac measure
concentrated at τ . They also gave an exponential upper bound for the rate
of convergence. At the really end of the chapter, we will recover their result
with a slight improvement about the rate of convergence: we prove an equiv-
alence rather then only an upper bound. Also, our result apply both for Zo
and Ztyp. In order to reach this goal we study various tail distributions and
conditional laws. Some of them are not directly linked to Kendall’s problem,
but because of their similarities, it is appropriate to include them here.

In the first section we consider cells with many facets. We recall the
bounds on the tail distribution of f(Z), provide upper and lower bounds
for probabilities of the form P(s(Z) ∈ S | f(Z) = n), recall the Gamma
distribution of Φ(Z) when Z is conditioned on the event {f(Z) = n}, and
finally study the tail distribution of Σ(Z) when Z is conditioned on the event
{f(Z) = n}.

In the second section we are interested in cells with a big Φ-content. We
give bounds for the tail distribution of Φ(Z) and give partial result describing
the shape distribution of Z conditioned on the event {Φ(Z) > a}.

In the last section we study cells with big Σ-content. We give precise
estimation P (Σ(Z) > a, s(Z) ∈ S), for specific sets of shapes S and when
a → ∞. From these bounds we derive easily our result answering D.G.
Kendall’s problem.
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6.1 Big number of facets

6.1.1 Tail distribution of the number of facets

The tail distribution of the number of facets has been investigated in Chap-
ter 5. In this subsection we summarize the results obtained in the previous
chapter by writing bounds which hold for all n and both Zo and Ztyp. The
price of making these bound holding in this general setting is that we lose
the explicit dependency of the constants on ϕ and r.

We say that ϕ is well spread if there exists a cap on the unit sphere
where ϕ is bounded bellow by a multiple of the spherical Lebesgue measure.
Under the condition that ϕ is well spread, Theorems 5.1.7 and 5.2.6 give
lower bounds of P(f(Zo) = n) and P(f(Ztyp) = n), respectively. As a
corollary of both theorems, we have that if ϕ is well spread there exists a
constant C21, depending on ϕ and r, such that for any n,

Cn21n
− 2n
d−1 < P(f(Z) = n), (6.1)

where Z can be replaced by Zo or, in the stationary case, by Ztyp. Note
that the lower bounds in Theorems 5.1.7 and 5.2.6 do not hold for small n.
By setting the constant C21 small enough, the lower bound holds for small
values of n as well.

Similarly Theorems 5.1.2 and 5.2.2 give upper bounds of P(f(Zo) = n)
and P(f(Ztyp) = n), respectively. As a corollary of both theorems, there
exists a constant C22, depending on ϕ and r, such that for any n,

P(f(Z) = n) < Cn22n
− 2n
d−1 , (6.2)

where Z can be replaced by Zo or, in the stationary case, by Ztyp. Note
that the upper bounds in Theorems 5.1.2 and 5.2.2 do not hold for small
n. By setting the constant C22 big enough, the lower bound holds for small
values of n as well.

6.1.2 Shape of cells with many facets

Similarly as in Kendall’s problem a natural question is to describe the
asymptotic shape distribution of cells with many facets. We conjecture
that when ϕ is well spread, it concentrates on a deterministic shape. We
present, with Theorem 6.1.1 below, a partial result in that direction.

Upper bound for the elongated cells with many facets

We say that a convex body K is (ε : i, j)-elongated if Vj(K)1/jVi(K)−1/i < ε,
with i < j. For small ε, the geometrical interpretation is the following: K is
(ε : i, j)-elongated if the rescaled body Vj(K)1/jK is close, with respect to
the Hausdorff distance, to a (i−1) dimensional convex body. Theorem 6.1.1
says that cells with many facets are not (ε : i, j)-elongated if ε is small.



76 CHAPTER 6. D.G. KENDALL’S PROBLEM

Theorem 6.1.1. Assume that ϕ is well spread and that 1 ≤ i < j ≤
d(d − 1)/2e. For any δ > 0, there exists ε > 0, depending on δ, ϕ and r,
such that

P

(
Vj(Z)

1
j

Vi(Z)
1
i

< ε
∣∣∣f(Z) = n

)
< δn

for all n, where Z can be replaced by Zo or, in the stationary case, by Ztyp.

Proof. Recall that Theorems 5.1.6 and 5.2.5 tells us that, for 1 ≤ i < j ≤
d(d − 1)/2e and any δ′ > 0, there exist ε > 0 and C23, depending on δ′, ϕ
and r, such that

P

(
Vj(Z)

1
j

Vi(Z)
1
i

< ε, f(Z) = n

)
< (δ′)nn−

2n
d−1 , (6.3)

for any n > C23. By setting ε ∈ (0, ε′) small enough, the inequality holds
for all n. Thus, with the lower bound (6.1), we have

P

(
Vj(Z)

1
j

Vi(Z)
1
i

< ε | f(Z) = n

)
<

(
δ′

C21

)n
.

Therefore setting δ′ = C21δ yields the proof.

For i ∈ [d], we denote by Ki the set of i-dimensional convex bodies in
Rd, meaning that K ∈ Ki if there exists a i-dimensional flat F , such that
K ⊂ F is a convex and compact set with non empty interior (with respect
to the topology of F ). We extend the definition of the Hausdorff distance
in the following way:

dH(K,Ki) := inf
L∈Ki

dH(K,L).

We have the following corollary, which has a clearer geometric meaning.

Corollary 6.1.2. Assume that ϕ is well spread and that 1 ≤ i < d(d−1)/2e.
For any δ > 0, there exists ε′ > 0, depending on δ, ϕ and r, such that

P
(
dH(Φ(Z)−

1
rZ,Ki) < ε′

∣∣∣f(Z) = n
)
< δn

for all n, where Z can be replaced by Zo or, in the stationary case, by Ztyp.

Proof. Set j = i + 1, so we have 1 ≤ i < j ≤ d(d − 1)/2e. Because of
Theorem 6.1.1, there exists ε > 0 such that

P

(
Vj(Z)

1
j

Vi(Z)
1
i

< ε
∣∣∣f(Z) = n

)
< δn,
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for all n. One just need to observe that (using continuity on a compact)
there exists ε′ > 0 such that, for any K ∈ K,

dH

(
Φ(Z)−

1
rZ,Ki

)
< ε′ ⇒ Vj(Z)

1
j

Vi(Z)
1
i

< ε.

Lower bound for cells with many facets and shape in a given set

In the previous theorem we gave an exponential upper bound for probabili-
ties of the form

P (s(Z) ∈ S | f(Z) = n) (6.4)

with

S =

{
K ∈ Ks :

Vj(K)1/j

Vi(K)1/i
< ε

}
⊂ Ks.

We will now consider more general set of shapes S. We cannot give a
non trivial general upper bound of the probabilities (6.4), but the following
theorem and corollary give a lower bounds exponential in n.

Theorem 6.1.3. Assume that ϕ is strongly well spread, i.e. there exists a
constant C such that ϕ > CH d−1.

Zo : For any shape K ∈ Ko,Φ and ε > 0, there exist constants CK,ε ∈ (0, 1)
and NK,ε such that, for n > NK,ε,

P (dH (sΦ(Zo),K) < ε | f(Zo) = n) > (CK,ε)
n.

Ztyp : For any shape K ∈ Kc,Φ and ε > 0, there exist constants CK,ε ∈ (0, 1)
and NK,ε such that, for n > NK,ε,

P (dH(sc,Φ(Ztyp),K) < ε | f(Ztyp) = n) > (CK,ε)
n.

We will prove Theorem 6.1.3 at the end of the current subsubsection,
but first let us present a straightforward corollary.

Corollary 6.1.4. Assume that ϕ is strongly well spread, i.e. there exists a
constant C such that ϕ > CH d−1.

Zo : Let S ⊂ Ko,Φ be an open set. There exist constants CS and NS such
that, for n > NS,

P (sΦ(Zo) ∈ S | f(Zo) = n) > (CS)n.
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Ztyp : Let S ⊂ Kc,Φ be an open set. There exist constants CS and NS such
that, for n > NS,

P (sc,Φ(Ztyp) ∈ S | f(Ztyp) = n) > (CS)n.

Proof. The proof of both cases Zo and Ztyp are almost identical. Thus we
will only consider the case of the zero cell. We only have to observe that
there exist K ∈ Ko,Φ and ε > 0 such that {L ∈ Ko,Φ : dH(K,L) < ε} ⊂ S.
The corollary follows directly from Theorem 6.1.3.

In order to prove Theorem 6.1.3, we need first to establish the next four
lemmas.

The first considers a convex body K in which a ball rolls. It gives a
lower bound for the distance between a point x ∈ ∂K and the hyperplane
tangent to K at a point y. The lower bound is given in term of the distance
between the outward normal vectors at x and y.

In the second lemma we consider a convex body K which rolls into a
ball. From a δ′-covering V = {vi}i of Sd−1, we build the polytope P =
∩iH(vi, h(K,vi))

− with facets supported by the tangent hyperplanes of K
with directions in V . Lemma 6.1.6 gives a bound for the distance between
K and P .

The third lemma provides a set U ⊂ Sd−1 of cardinality precisely n which
is both a covering and a packing of the unit sphere.

The last lemma is the key point in the proof of Theorem 6.1.3 and is
analogous to Lemma 5.1.9. It uses the three first lemmas and provides n
sets of hyperplanes satisfying suitable properties.

Lemma 6.1.5. Let R > 0 and K a convex body of the form K = L+RBd

where L ∈ K is strictly convex. Let δ ∈ (0, R) and v1,v2 ∈ Sd−1 with
‖v1 − v2‖ > δ. Let xK,v1 ∈ ∂K be the point on the boundary of K with
outward normal vector v1. It holds that

h(K,v2)− 〈xK,v1 ,v2〉 ≥
R

2
δ2

Proof. The lemma holds with an equality when K is the unit ball. It extends
to the more general case since

h(L+RBd,v2)− 〈xL+RBd,v1
,v2〉

= h(L,v2)− 〈xL,v1 ,v2〉︸ ︷︷ ︸
≥0

+R
(
h(Bd,v2)− 〈xBd,v1

,v2〉
)

︸ ︷︷ ︸
= δ2

2

.
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Lemma 6.1.6. Let R′ > 0 and K ∈ Ko a convex body of the form R′Bd =
K+L′ where L′ ∈ K is strictly convex. Let δ′ ∈ (0, R′). For any δ′-covering
{vi}i ⊂ Sd−1 of Sd−1, we have

K +
√
δ′R′Bd ⊃

⋂

i

H(vi, h(K,vi))
− ⊃ K.

Proof. We only have to show the first inclusion since the second is trivial.
For any unit vector u, we denote xK,u the point on the boundary of K
with outward normal vector u. And reciprocally, for any point y ∈ ∂K, we
denote by uK,y the outward vector of K at y.

Simple geometric computations, similar as those of Figures 4.1 and 4.2,
show that the lemma is true if, for any y ∈ ∂K, there exists i such that

max {‖xK,ui − y‖ , ‖ui − uK,y‖} < δ′R′.

When K is a ball, this is trivially true. It extends to the more general setting
by observing that the map

∂(R′Bd) → ∂K

R′u 7→ xK,u

is 1-Lipschitz because K is a summand of R′Bd.

Lemma 6.1.7. There exists constants c34, c35 and c36 such that for any

n > c34, there exists a set U ⊂ Sd−1 with |U | = n which is both a (c35n
− 1
d−1 )-

packing and (c36n
− 1
d−1 )-covering of Sd−1.

Proof. Let c1 < c2 be the constant of Lemma 4.1.4. Set c34 = c2Vd−1(Bd).
Apply Lemma 4.1.4 with D = Bd and

δ1 =

(
c2Vd−1(Bd)

n

) 1
d−1

< 1.

We get a set U1 with

|U1| < c2Vd−1(Bd)δ
−(d−1)
1 = n,

which is a δ1-net of Sd−1 and in particular a δ1-covering of Sd−1. We apply
again Lemma 4.1.4, but this time with D = Bd and

δ2 =

(
c1Vd−1(Bd)

n

) 1
d−1

< 1.

We get a set U2 with

|U2| > c1Vd−1(Bd)δ
−(d−1)
1 = n,
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which is a δ2-net of Sd−1, i.e. a δ2-covering and δ2
2 -packing of Sd−1. In

particular for each x ∈ U1 there exists y = y(x) ∈ U2 with ‖x − y‖ < δ2.
And since |U1| < n < |U2|, we can set U3 ⊂ Sd−1 such that |U3| = n and
{y(x) : x ∈ U1} ⊂ U3 ⊂ U2.

Since U3 ⊂ U2 it is a δ2
2 -packing of Sd−1. And by construction, U3 is

also a (δ1 + δ2)-covering of Sd−1. Therefore the lemma holds with c35 =
1
2(c2Vd−1(Bd))−

1
d−1 and c36 = (c1Vd−1(Bd))−

1
d−1 + (c2Vd−1(Bd))−

1
d−1

Lemma 6.1.8. Assume that ϕ is strongly well spread. Let K ∈ Ko smooth
and strictly convex and ε > 0. There exist positive constants C ′K,ε and NK,ε

such that for any n > NK,ε there exist disjoints subsets S1, . . . , Sn ⊂ H with

µ(Si) > C ′K,εn
− d+1
d−1

and for H1 ∈ S1, . . . ,Hn ∈ Sn, we have

⋂

i

H−i ∈ Pn, (6.5)

and

dH

(
K ,

⋂

i

H−i

)
< ε. (6.6)

Proof. Since K is smooth and strictly convex there exist 0 < R < R′ and
L,L′ ∈ K strictly convex such that K = L+RBd and R′Bd = K + L′. Let
c34, c35 and c36 be the constants of Lemma 6.1.7, and set

NK,ε = max

{
c34,

(
R(c35)2

8 minu∈Sd−1 h(K,u)

) d−1
2

,
(c35

2R

)d−1
,

(
R(c35)2

8ε

) d−1
2

,

((
c36 + c35

4

)
R′

ε2

)d−1


 .

For n > NK,ε ≥ c34, we apply Lemma 6.1.7 and get a set {ui}i∈[n] ⊂ Sd−1

which is both a (c35n
− 1
d−1 )-packing and (c36n

− 1
d−1 )-covering of Sd−1. Set

ρ = c35n
− 1
d−1 , and for i ∈ [n], set

Si =

{
H(u, t) : u ∈ C

(
ui,

ρ

4

)
, t ∈

[
h(K,u)− Rρ2

8
, h(K,u)

]}
.

Note that, since n > NK,ε ≥
(

R(c35)2

8 min
u∈Sd−1 h(K,u)

) d−1
2

and ρ = c35n
− 1
d−1 , we

have Rρ2

8 < minu∈Sd−1 h(K,u), and thus ti > 0 for any H(ui, ti) ∈ Si. We
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have

µ(Si) =

∫

Sd−1

∞∫

0

1
(
u ∈ C

(
ui,

ρ

4

))
1

(
h(K,u)− Rρ2

8
≤ t ≤ h(K,u)

)
tr−1dtϕ(du)

≥H d−1
(
C
(
ui,

ρ

4

)) Rρ2

8
min
u∈Sd−1

(
h(K,u)− Rρ2

8

)r−1

≥ C ′K,εn−
d+1
d−1 ,

for an appropriate constant C ′K,ε independent from n.
Let Hi = H(vi, ti) ∈ Si, for i = 1, . . . , n. It remains to show that (6.5)

and (6.6) hold.
For i ∈ [n], let xK,vi ∈ ∂K be the point of the boundary of K with

outward normal vector vi. Observe the following implications,

(6.5)⇔ Hi

⋂
∩j 6=iH−j 6= ∅, for any i,

⇐ H(vi, h(K,vi))
⋂
∩j 6=iH

(
vj , h(K,vj)−

Rρ2

8

)−
6= ∅, for any i,

⇐ xK,vi ∈ H
(
vj , h(K,vj)−

R

8
ρ2

)−
, for any i 6= j, (6.7)

But, by construction of Si and with the triangular inequality,

‖vi − vj‖ > ‖ui − uj‖ − ‖ui − vi‖ − ‖uj − vj‖ >
ρ

2
.

Therefore, since ρ
2 <

c35
2 N

− 1
d−1

K,ε < R, we can apply Lemma 6.1.5 with δ =
ρ/2, which gives (6.7), and therefore (6.5).

By construction we have that

K ⊂
⋂

i

H−i +
Rρ2

8
Bd ⊂

⋂

i

H−i + εBd,

since Rρ2

8 <
Rc235

8 N
− 2
d−1

K,ε ≤ ε. Observe that since {ui}i∈[n] is a (c36n
− 1
d−1 )-

covering of Sd−1 and that for any i ∈ [n], ‖vi − ui‖ < ρ
4 = c35

4 n
− 1
d−1 , we

have that {vi}i∈[n] is a
((
c36 + c35

4

)
n−

1
d−1

)
-covering of Sd−1. Thus, applying

Lemma 6.1.6 with

δ′ =
(
c36 +

c35

4

)
n−

1
d−1 <

(
c36 +

c35

4

)
N
− 1
d−1

K,ε ≤ ε2

R′

gives

K + εBd ⊃ K +
√
δ′R′Bd ⊃

⋂

i

H(vi, h(K,vi))
− ⊃

⋂

i

H−i .

Therefore (6.6) holds.



82 CHAPTER 6. D.G. KENDALL’S PROBLEM

Proof of Theorem 6.1.3. Here, we prove Theorem 6.1.3 in the case of the
zero cell. We omit the proof in the case of the typical cell since it follows the
same lines with the same adaptations as the one made between the proofs
of Theorem 5.1.7 and 5.2.6.

Let K ′ ∈ Ko smooth and strictly convex such that dH(K,K ′) < ε/2. Set
ε′ > 0 such that for any convex body L ∈ Ko with dH(K ′, L) < ε′ we have
dH(K ′, sΦ(L)) < ε/2. With this setting, we only have to prove that there
exist constants CK,ε > 0 and NK,ε such that

P
(
dH
(
sΦ(Zo),K ′

)
< ε′ | f(Zo) = n

)
> (CK,ε)

n,

for n > NK,ε.

Similarly as in the beginning of the proof of Theorem 5.1.1, (3.7) and
(3.4) gives

P
(
dH
(
sΦ(Zo),K ′

)
< ε′, f(Zo) = n

)

=

∫

Hn
1
(
dH
(
sΦ(Zo),K ′

)
< ε′

)
1
(
P[n] ∈ Pn,o

)
1
(
Φ
(
P[n]

)
< 1
)

dµn (H) ,

where P[n] = ∩ni=1H
−
i . Let C ′K,ε, and NK,ε, and S1, . . . , Sn be as in Lemma

6.1.8, we then have

P
(
dH
(
sΦ(Zo),K ′

)
< ε′, f(Zo) = n

)

≥ n!

∫

Hn
1 (H1 ∈ S1) · · ·1 (Hn ∈ Sn) dµn (H)

= n!
n∏

i=1

µ(Si)

≥ n!
(
C ′K,εn

− d+1
d−1

)n
.

Therefore, with Stirling approximation n! ≥ nne−n, we have

P
(
dH
(
sΦ(Zo),K ′

)
< ε′, f(Zo) = n

)
≥
(
e−1C ′K,ε

)n
n−

2n
d−1 . (6.8)

Thus, with the upper bound (6.2), we have

P
(
dH
(
sΦ(Zo),K ′

)
< ε′ | f(Zo) = n

)

=
P (dH (sΦ(Zo),K ′) < ε′, f(Zo) = n)

P (f(Zo) = n)
>

(
e−1C ′K,ε
C22

)n
.

Setting CK,ε = e−1C ′K,εC
−1
22 yields the proof.
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6.1.3 Φ-content of the cells with many facets

The Complementary Theorem 3.2.1 (resp. 3.3.1) tells us that, under the
condition that Zo (resp. Ztyp) has n facets, its Φ-content is Γγ,n (resp.
Γγ,n−d) distributed. With respect to the Convention 6.0.1 it says that,
under the condition that Z has n facets, its Φ-content is Γ

γ,n−d̃ distributed.

6.1.4 Σ-content of the cells with many facets

Let

τ = τ(Φ,Σ) := inf
K∈K

Φ(K)

Σ(K)
r
k

,

so that Φ(K) ≥ τΣ(K)r/k for any K ∈ K. A convex body Kext for which
Φ(Kext) = τΣ(Kext)

r/k is call extremal. Thanks to the Blaschke selection
Theorem 2.1.1, there exists extremal bodies. We give now two examples
to make the reader familiar with the notion. In the isotropic case, Φ is
proportional to V1, hence if Σ = Vk with k ≥ 2, the Isoperimetric Inequality
(2.1) says that the balls are the only extremal bodies. If, in the situation
we just described, we have Σ = V1 instead, then Φ(K)Σ(K)−

r
k is constant

and every convex body is extremal.

Now we give bounds for the distribution of the Σ-content under condition
on the number facets.

Theorem 6.1.9. For a > (γτ)−k/r,

P(Σ(Zo) > a | f(Zo) = n) < exp
(
−γτa rk + 1

)(
γτa

r
k

)n−1
,

and

P(Σ(Ztyp) > a | f(Ztyp) = n) < exp
(
−γτa 1

k + 1
)(

γτa
1
k

)n−d−1
.

For any ε > 0, there exists constants Cε and Nε such that for n > Nε and
a > 0,

P(Σ(Zo) > a | f(Zo) = n)

>
(Cε)

n

n!
exp

(
−γ(τ + ε)a

r
k

)(
γ(τ + ε)a

r
k

)n−1
,

and

P(Σ(Ztyp) > a | f(Ztyp) = n)

>
(Cε)

n

n!
exp

(
−γ(τ + ε)a

1
k

)(
γ(τ + ε)a

1
k

)n−d−1
.
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Proof. This proof covers both Zo and Ztyp by using the Convention 6.0.1.
We start by proving the upper bound. By definition of τ we trivially have

P(Σ(Z) > a | f(Z) = n) < P
(

Φ(Z) > τa
r
k | f(Z) = n

)
,

which can be written

P(Σ(Z) > a | f(Z) = n) <
γn−d̃

(n− d̃− 1)!

∞∫

τar/k

e−γttn−d̃−1dt,

because of the Complementary Theorems 3.2.1 and 3.3.1. Now observe that,
iterated integrations by part give, for any a′ ∈ R,

γn−d̃

(n− d̃− 1)!

∞∫

a′

e−γttn−d̃−1dt = e−γa
′
n−d̃−1∑

m=0

(γa′)m

m!
. (6.9)

Thus, for a > (γτ)−k/r,

P(Σ(Z) > a | f(Z) = n) < exp
(
−γτa rk

)


n−d̃−1∑

m=0

1

m!



(
γτa

r
k

)n−d̃−1

< exp
(
−γτa rk + 1

)(
γτa

r
k

)n−d̃−1
,

which is the upper bound of the theorem.

The proof of the lower bound is similar. Set Kext ∈ Ks to be an extremal
body, i.e. such that Φ(Kext) = τΣ(Kext)

r/k. Set ε′ > 0 small enough such
that

sup

{
Φ(K)

Σ(K)
r
k

: K ∈ K , dH(s(K),Kext) < ε′
}
< τ + ε.

With this setting we have

P(Σ(Z) > a | f(Z) = n)

> P
(
Σ(Z) > a, dH(s(Z),Kext) < ε′ | f(Z) = n

)

> P
(

Φ(Z) > (τ + ε)ar/k, dH(s(Z),Kext) < ε′ | f(Z) = n
)
,

which can be written

P(Σ(Z) > a | f(Z) = n)

> P
(
dH(s(Z),Kext) < ε′ | f(Z) = n

) γn−d̃

(n− d̃− 1)!

∞∫

(τ+ε)ar/k

e−γttn−d̃−1dt.
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because of the Complementary Theorems 3.2.1 and 3.3.1. But Theorem 6.1.3
tells us that there exist positive constants CKext,ε′ and NKext,ε′ such that,
for n > NKext,ε′ ,

P
(
dH(s(Z),Kext) < ε′ | f(Z) = n

)
> (CKext,ε′)

n.

And with (6.9) we have that

γn−d̃

(n− d̃− 1)!

∞∫

(τ+ε)ar/k

e−γttn−d̃−1dt > e−γ(τ+ε)ar/k
(
γ(τ + ε)ar/k

)n−d̃−1

(n− d̃− 1)!
.

Combining the three last inequalities implies the theorem since n−d̃ ≤ n.

6.2 Big Φ-content

6.2.1 Tail of the distribution of the Φ-content

In this subsection we will prove the following bounds for the tail distribution
of the Φ-content of Zo and Ztyp.

Theorem 6.2.1. There exist constants C24 > C25 > 0 and C26 > 0 depend-
ing on ϕ, such that the following holds. For a > 0, we have

P(Φ(Z) > a) < exp
{
−γa+ C24(γa)

d−1
d+1

}
,

where Z can be replaced by Zo or, in the stationary case, by Ztyp. Assume
that ϕ is well spread. Then, for a > γ−1C26, we also have

P(Φ(Z) > a) > exp
{
−γa+ C25(γa)

d−1
d+1

}
,

where Z can be replaced by Zo or, in the stationary case, by Ztyp.

In the rest of the subsection, in order to treat at once both the case of
Zo and Ztyp we use the Convention 6.0.1.

We start with three intermediary lemmas: Lemma 6.2.2 builds upon the
Complementary Theorems to get a rewriting of the distribution tail of Φ(Z)
as a function of the distribution tail of f(Z). In Lemma 6.2.3 we deduce
upper and lower-bounds for the tail distribution of f(Z) from (6.1) and (6.2).
Finally, Lemma 6.2.4 contains analytical estimates for some subexponential
power series.

In the sequel we use the abbreviations

qn := P(f(Z) = n) and rn :=
∑

k≥n
qk.

Note that for n ≤ d, qn = 0.
In the following lemma, we rewrite the probability P(Φ(Z) > a) as a

power series in a. Recall that d̃ = 0 when Z = Zo and d̃ = d when Z = Ztyp.
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Lemma 6.2.2. For every a > 0, we have

P(Φ(Z) > a) = e−γa
∑

n≥0

r
n+d̃+1

(γa)n

n!
.

Proof. Because of the Complementary Theorems 3.2.1 and 3.3.1 we have for
every a > 0

P(Φ(Z) > a) =
∑

n≥d+1

qnP(Φ(Z) > a | f(Z) = n)

=
∑

n≥d+1

qn

∞∫

a

e−γt
γn−d̃tn−d̃−1

(n− d̃− 1)!
dt.

Now we recall that iterated integrations by parts show that for every n ≥
d+ 1,

∞∫

a

e−γt
γn−d̃tn−d̃−1

(n− d̃− 1)!
dt = e−γa

n−d̃−1∑

m=0

(γa)m

m!
.

Consequently, we obtain that

P(Φ(Z) > a) = e−γa
∑

n≥d+1

n−d̃−1∑

m=0

qn
(γa)m

m!

= e−γa
∑

m≥0

∑

n≥max(d+1,m+d̃+1)

qn
(γa)m

m!
.

But since qn = 0 for n ≤ d, it holds that
∑

n≥max(d+1,m+d̃+1)
qn = r

m+d̃+1

even when m+ d̃+ 1 ≤ d. Therefore

P(Φ(Z) > a) = e−γa
∑

m≥0

r
m+d̃+1

(γa)m

m!

which yields the proof.

The relation from Lemma 6.2.2 indicates that in order to bound P(Φ(Z) >
a), we need to find bounds for rn+d+1. This is done in the next lemma.

Lemma 6.2.3. There exists a constant C27 depending on ϕ such that for
n ≥ 0 we have

r
n+d̃+1

< Cn27(n!)−
2
d−1 .

Assume that ϕ is well spread. Then there exists a constant C28 > 0 depend-
ing on ϕ such that for n ≥ 0 we have

r
n+d̃+1

≥ Cn28(n!)−
2
d−1 .
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Proof. We start with the upper-bound. Recall the upper bound (6.2)

qn < Cn22n
− 2n
d−1 .

This gives

r
n+d̃+1

<
∑

k≥n+d̃+1

Ck22 k
− 2
d−1

k

< Cn22n
− 2
d−1

n
∑

k≥d̃+1

Ck22 k
− 2
d−1

k.

We use n−n ≤ (n!)−1, and observe that the remaining sum is convergent
and independent of n. Hence in order to get the upper-bound, it suffices to
set

C27 := C22 max



1,

∑

k≥d+1

Ck22 k
− 2
d−1

k



 .

We assume now that ϕ is well spread and prove the lower-bound for
r
n+d̃+1

. The lower bound (6.1) tells us that when ϕ is well spread, for every
n ≥ 0,

qn+d+1 > Cn+d+1
21 (n+ d+ 1)−

2(n+d+1)
d−1

Consequently, using Stirling’s approximation n−n > e−n(n!)−1 and the sim-
ple inequality r

n+d̃+1
≥ rn+d+1 > qn+d+1, we get

r
n+d̃+1

>
(
C21e

− 2
d−1

)n+d+1
[(n+ d+ 1)!]−

2
d−1

>
(
C21e

− 2
d−1

)n+d+1
[(n+ d+ 1)d+1 · n!]−

2
d−1

>
(
C21(d+ 1)−

2
d−1 e−

2
d−1

)n+d+1
(n!)−

2
d−1

because (n+ d+ 1)d+1 < (d+ 1)n+d+1 for n+ d+ 1 ≥ d+ 1 ≥ 3.

Taking C28 = C21(d + 1)−
2
d−1 e−

2
d−1 min(1, (C21(d + 1)−

2
d−1 e−

2
d−1 )d+1),

we get the required result.

The combination of the two previous lemmas implies that eγaP(Φ(Z) >
a) is well approximated by subexponential power series of type

∑
n≥0

xn

(n!)α .
The next lemma, which is purely analytical, investigates the behaviour of
such power series.

Lemma 6.2.4. For any α > 1, we have

exp

(
1

2
αx

1
α

)
<
∑

n≥d+1

xn

(n!)α
<
∑

n≥0

xn

(n!)α
< exp

(
αx

1
α

)

where the first inequality holds for x ≥ (2(3d + 5))α and the second for all
x > 0.
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Proof. The right-hand side inequality follows immediately from the following
simple computations.

∑

n≥d+1

xn

(n!)α
<
∑

n≥0

(
(x

1
α )n

n!

)α
<


∑

n≥0

(x
1
α )n

n!



α

= exp
(
αx

1
α

)
.

For the left-hand side inequality, Hölder’s inequality gives for any finite
I ⊂ N \ [d+ 1]

∑

n≥d+1

(
(x

1
α )n

n!

)α
≥
∑

n∈I

(
(x

1
α )n

n!

)α
≥ |I|−(α−1)

(∑

n∈I

(x
1
α )n

n!

)α
. (6.10)

For Y a Poisson distributed random variable with mean λ it is well
known, and can be proved e.g. by Chebishev’s inequality, that for I = (λ−√

2λ, λ+
√

2λ) ∩ N, we have

∑

n∈I
e−λ

λn

n!
= 1− P

(
|Y − λ| ≥

√
2λ
)
≥ 1

2
.

I has at most 2
√

2λ + 1 < 4
√
λ elements, when λ ≥ 1. Putting this for

λ = x1/α into (6.10) yields

∑

n≥d+1

(
(x

1
α )n

n!

)α
≥
(

4x
1

2α

)−(α−1)
(
ex

1
α 1

2

)α
≥
(

8−αx−
1
2

)
eαx

1
α

as long as the condition x1/α −
√

2x1/α ≥ d + 1 is fulfilled. Observe that
x ≥ (3d + 5)α implies x1/(2α) ≥

√
d+ 2 + 1 which in turn implies x1/α −

2x1/(2α) + 1 ≥ d+ 2 which gives the required condition.
For t ≥ 3 we have 2 ln 8 + t ≤ 1 + t+ t2/2 ≤ et, or equivalently

−α ln 8− 1

2
lnx ≥ −1

2
αx

1
α , i.e. 8−αx−

1
2 ≥ e− 1

2
αx1/α

for x1/α ≥ e3. The inequality 2(3d+ 5) > e3 concludes the proof.

We are now ready to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. We start by proving the upper bound. Combining
Lemma 6.2.2 and the upper bound of Lemma 6.2.3, we get

P(Φ(Z) > a) < e−γa
∑

n≥0

Cn27

(γa)n

(n!)
d+1
d−1

.

Applying now Lemma 6.2.4 to x = C27γa and α = d+1
d−1 , we obtain that

P(Φ(Z) > a) < exp

(
−γa+

d+ 1

d− 1
(C27γa)

d−1
d+1

)
.
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Setting C24 = d+1
d−1C

d−1
d+1

27 yields the proof of the upper bound.

The proof of the lower bound is nearly identical. Combining Lemma
6.2.2 and the lower bound of Lemma 6.2.3, we get

P(Φ(Z) > a) > e−γa
∑

n≥0

Cn28

(γa)n

(n!)
d+1
d−1

.

Applying now Lemma 6.2.4 to x = C28γa and α = d+1
d−1 , we obtain that

P(Φ(Z) > a) > exp

(
−γa+

d+ 1

2(d− 1)
(C28γa)

d−1
d+1

)

for C28γa > (2(3d + 5))(d+1)/(d−1). Setting C25 = d+1
2(d−1)C

d−1
d+1

28 and C26 =

C−1
28 (2(3d+ 5))(d+1)/(d−1) yields the proof of the lower bound.

6.2.2 Shape of cells with big Φ-content

In this subsection we show

Theorem 6.2.5. Assume that ϕ is well spread and that 1 ≤ i < j ≤
d(d− 1)/2e. Then for any ε > 0 sufficiently small we have

lim
a→∞

P

(
Vj(Z)

1
j

Vi(Z)
1
i

< ε | Φ(Z) > a

)
= 0,

where Z can be replaced by Zo or, in the stationary case, by Ztyp.

It is a direct corollary of the lower bound

P(Φ(Z) > a) > exp
{
−γa+ C25(γa)

d−1
d+1

}
,

of Theorem 6.2.1, and the following theorem, which must be applied with
δ < C25.

Theorem 6.2.6. Assume 1 ≤ i < j ≤ d(d − 1)/2e. For any δ > 0, there
exists ε > 0 such that for any a > 0

P

(
Φ(Z) > a,

Vj(Z)
1
j

Vi(Z)
1
i

< ε

)
≤ exp

(
−γa+ δ(γa)

d−1
d+1

)
,

where Z can be replaced by Zo or, in the stationary case, by Ztyp.

In the rest of the subsection, in order to treat at once both the case of
Zo and Ztyp we use the Convention 6.0.1.
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Assume 1 ≤ i < j ≤ d(d − 1)/2e. In the sequel, we use the notation

qεn := P
(
f(Z) = n,

Vj(Z)
1
j

Vi(Z)
1
i
< ε

)
and rεn :=

∑
k≥n q

ε
k, for every n ≥ d + 1

and ε > 0. The proof follows along the same lines as the upper bound of
Theorem 6.2.1 with minor adaptations. Indeed, we need some analogues to
the statements of Lemmas 6.2.2 and 6.2.3 when qn is replaced by qεn, i.e.
when the extra-condition that Z is (ε : i, j)-elongated is added.

The lemma below is a rewriting of the joint distribution of (s(Z),Φ(Z))
as a power series.

Lemma 6.2.7. For any measurable set of shapes S and a > 0, we have

P(s(Z) ∈ S, Φ(Z) > a) = e−γa
∑

k≥d+1

P(s(Z) ∈ S, f(Z) = k)
k−d̃−1∑

n=0

(γa)n

n!

= e−γa
∑

n≥0

P(s(Z) ∈ S, f(Z) ≥ n+ d̃+ 1)
(γa)n

n!
.

The proof of this result is fully analogous to that of Lemma 6.2.2 and is
therefore omitted.

As in Lemma 6.2.3, we require now an upper-bound for rεn+d+1.

Lemma 6.2.8. Assume 1 ≤ i < j ≤ d(d − 1)/2e. For any δ > 0, there
exists ε > 0 such that

rε
n+d̃+1

< δn(n!)−
2
d−1

for n ≥ 0.

Proof. Set ε such that (6.3) holds, that is

qεn < δnn−
2n
d−1

for n bigger than a constant C23. Since for any n, qεn → 0 when ε → 0, we
can assume that it holds for any n. Hence

rε
n+d̃+1

<
∑

k≥n+d̃+1

δk k−
2k
d−1

≤ δn n− 2n
d−1

∑

k≥d̃+1

δkk−
2k
d−1 .

But without loss of generality we can assume that δ is small enough such
that the series is smaller than 1. Thus, the trivial bound n−n ≤ (n!)−1

concludes the proof.
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Let us now proceed with the proof of Theorem 6.2.6. Applying Lemma
6.2.7 to the set S = {K ∈ Kc,Φ : Vj(Z)1/jVi(Z)−1/i < ε}, we get

P

(
Φ(Z) > a,

Vj(Z)
1
j

Vi(Z)
1
i

< ε

)
= e−γa

∑

n≥0

rε
n+d̃+1

(γa)n

n!
.

We combine this with Lemma 6.2.8 to deduce

P

(
Φ(Z) > a,

Vj(Z)
1
j

Vi(Z)
1
i

< ε

)
≤ e−γa

∑

n≥0

(δγa)n

(n!)
d+1
d−1

.

Lemma 6.2.4 applied to x = δγa and α = d+1
d−1 ends the proof:

P

(
Φ(Z) > a,

Vj(Z)
1
j

Vi(Z)
1
i

< ε

)
≤ exp

(
−γa+

d+ 1

d− 1
(δγa)

d−1
d+1

)
.

6.3 Big Σ-content

6.3.1 Tail distribution of the Σ-content.

Hug and Schneider proved in [HS07, Thm. 2] that

lim
a→∞

a−
r
k ln (P (Σ(Zo) > a)) = −τγ.

In this subsection, we prove the following theorem, which is a slightly
stronger result (see Corollary 6.3.2 for an easy comparison with the result
of Hug and Schneider) and which also cover the case of Ztyp.

Theorem 6.3.1. For any ε ≥ 0 the following holds.
Upper bound. For any a > 0, we have

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)

< exp

(
−(τ + ε)γa

r
k + C24

(
(τ + ε)γa

r
k

) d−1
d+1

)
,

where C24 is the constant from Theorem 6.2.1, and where Z can be replaced
by Zo or, in the stationary case, by Ztyp.

Lower bound. Assume there exists K ∈ K with Φ(K)Σ(K)−r/k > τ+ε.
For any ε′ > ε there exists Aε,ε′ such that for any a > Aε,ε′,

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)
> exp

(
−(τ + ε′)γa

r
k

)
,

where Z can be replaced by Zo or, in the stationary case, by Ztyp.
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From this theorem we get the following corollary.

Corollary 6.3.2. For any ε ≥ 0, if there exists K ∈ K such that
Φ(K)Σ(K)−r/k > τ + ε, then we have

lim
a→∞

a−
r
k ln

(
P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

))
= −(τ + ε)γ, (6.11)

where Z can be replaced by Zo or, in the stationary case, by Ztyp. In par-
ticular, it always holds that

lim
a→∞

a−
r
k ln (P (Σ(Z) > a)) = −τγ, (6.12)

where Z can be replaced by Zo or, in the stationary case, by Ztyp.

Proof. From the lower bound of Theorem 6.3.1, we get

lim
a→∞

a−
r
k ln

(
P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

))
≥ −(τ + ε′)γ,

for any ε′ > ε. Thus

lim
a→∞

a−
r
k ln

(
P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

))
≥ −(τ + ε)γ. (6.13)

And using the upper bound of the same theorem, we see that (6.13) holds
as well if we replace the lower bound by an upper bound. Thus we get the
first part of the corollary.

To prove the second part we need to distinguish two cases. In the first
case, there exists K ∈ K with Φ(K)Σ(K)−r/k > τ , and thus by setting
ε = 0, (6.11) implies (6.12).

In the second case Φ(K) = Σ(K)
r
k for any K ∈ K. Thus, Theorem 6.2.1

implies (6.12).

In the rest of the subsection, in order to treat at once both the case of
Zo and Ztyp we use the Convention 6.0.1.

Upper bound

Observe that Σ(Z) > a and Φ(Z)Σ(Z)−r/k ≥ τ+ε imply Φ(Z) > (τ+ε)ar/k.
Thus

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)
< P

(
Φ(Z) > (τ + ε)ar/k

)
.
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Therefore, with the upper bound of the tail distribution of the Φ-content in
Theorem 6.2.1, we have

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)

< exp

(
−γ(τ + ε)ar/k + C24

(
γ(τ + ε)ar/k

) d−1
d+1

)
,

which proves the upper bound of Theorem 6.3.1.

Lower bound

The proof of the lower bound is more complicate to get because the ratio
Φ(K)Σ(K)−r/k has a lower bound but no upper bound. The first part of
the proof consists in restricting the problem to cells with n facets and for
which this ratio is upper bounded by (τ + ε′). The rests of the proof has
many similarities with the proof of the lower bound of the tail distribution
of Φ(Z) in Theorem 6.2.1.

Set Kε,ε′ ∈ Ks such that

τ + ε <
Φ(Kε,ε′)

Σ(Kε,ε′)
r
k

< τ + ε′,

and let ε′′ > 0 such that, for any K ∈ K,

dH(s(K),Kε,ε′) < ε′′ ⇒ τ + ε <
Φ(K)

Σ(K)
r
k

< τ + ε′.

Thus,

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε, f(Z) = n

)

≥ P
(
Σ(Z) > a, dH(s(Z),Kε,ε′) < ε′′, f(Z) = n

)

≥ P
(

Φ(Z) > (τ + ε′)ar/k, dH(s(Z),Kε,ε′) < ε′′, f(Z) = n
)
.

This implies

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)

=
∑

n≥d+1

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε, f(Z) = n

)

≥
∑

n≥d+1

P
(

Φ(Z) > (τ + ε′)ar/k, dH(s(Z),Kε,ε′) < ε′′, f(Z) = n
)
. (6.14)
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In order to bound the terms of this sum we use the Complementary The-
orems 3.2.1 and 3.3.1, which tells us that for a fixed number of facets, the
Φ-content and the shape of Z are independent, and that Φ(Z) is Γ

γ,n−d̃
distributed. Hence by setting A = (τ + ε′)ar/k we have

P
(
Φ(Z) > A, dH(s(Z),Kε,ε′) < ε′′, f(Z) = n

)

≥ P
(
dH(s(Z),Kε,ε′) < ε′′, f(Z) = n

)
P (Φ(Z) > A | f(Z) = n)

= P
(
dH(s(Z),Kε,ε′) < ε′′, f(Z) = n

)
e−A

n−d̃−1∑

l=0

Al

l!
.

Therefore with (6.8) from the proof of Theorem 6.1.3, there exists constants
Cε,ε′ and Nε,ε′ such that, for n ≥ Nε,ε′ , we have

P
(
Φ(Z) > A, dH(s(Z),Kε,ε′) < ε′′, f(Z) = n

)

≥
(
Cε,ε′

)n
n−

2n
d−1 e−A

n−d̃−1∑

l=0

Al

l!
,

and thus (6.14) implies

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)
>

∑

n≥Nε,ε′

(
Cε,ε′

)n
n−

2n
d−1 e−A

n−d̃−1∑

l=0

Al

l!

= e−A
∑

l≥0

∑

n≥max(Nε,ε′ ,l+d̃+1)

(
Cε,ε′

)n
n−

2n
d−1

Al

l!

a→∞∼ e−A
∑

l≥0

∑

n≥l+d̃+1

(
Cε,ε′

)n
n−

2n
d−1

Al

l!
.

(6.15)

We now bound
∑

n≥l+d̃+1

(
Cε,ε′

)n
n−

2n
d−1 in the same way as we bounded

r
n+d̃+1

in Lemma 6.2.3. First we observe the trivial inequality l + d + 1 ≥
l + d̃+ 1 implies

∑

n≥l+d̃+1

(
Cε,ε′

)n
n−

2n
d−1 >

(
Cε,ε′

)(l+d+1)
(l + d+ 1)−

2(l+d+1)
d−1 ,

which, with Stirling approximation n−n ≥ e−n(n!)−1, gives

∑

n≥l+d̃+1

(
Cε,ε′

)n
n−

2n
d−1 >

(
Cε,ε′e

− 2
d−1

)(l+d+1)
[(l + d+ 1)!]−

2
d−1

>
(
Cε,ε′e

− 2
d−1

)(l+d+1) [
(l + d+ 1)d+1l!

]− 2
d−1

>
(
Cε,ε′e

− 2
d−1 (d+ 1)−

2
d−1

)(l+d+1)
(l!)−

2
d−1
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because (l + d+ 1)d+1 < (d+ 1)l+d+1. By setting

C ′ε,ε′ = Cε,ε′e
− 2
d−1 (d+ 1)−

2
d−1 min

(
1,
(
Cε,ε′e

− 2
d−1 (d+ 1)−

2
d−1

)d+1
)

we have

∑

n≥max l+d̃+1

(
Cε,ε′

)n
n−

2n
d−1 > (C ′ε,ε′)

l(l!)−
2
d−1 .

Therefore (6.15) gives that for a big enough we have

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)
> e−A

∑

l≥0

(
C ′ε,ε′A

)l

(l!)
d+1
d−1

.

Applying Lemma 6.2.4 with x = C ′ε,ε′A and α = d+1
d−1 we get

P
(

Σ(Z) > a,
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)
> exp

(
−A+

d+ 1

2(d− 1)

(
C ′ε,ε′A

) d−1
d+1

)
.

Set C29 = d+1
2(d−1)

(
C ′ε,ε′

) d−1
d+1

and recall that A = (τ+ε′)ar/k. We have shown

that, for any ε′ > ε′′′ > ε ≥ 0 and a big enough,

P
(

Σ > a),
Φ(Z)

Σ(Z)
r
k

≥ τ + ε

)
> exp

(
−γ(τ + ε′)ar/k + C29

(
γ(τ + ε′)ar/k

) d−1
d+1

)

> exp
(
−γ(τ + ε′′′)ar/k

)

which is the lower bound of Theorem 6.3.1.

6.3.2 Shape of the cells with big Σ-content

In this section we derive similar results as in the papers on big cells from
Hug, Reitzner and Schneider [HRS04] and Hug and Schneider [HS07]. Note
that our result is stronger since it is an equivalence and not only an upper
bound, and that it holds both for Zo and Ztyp.

Theorem 6.3.3. Let ε ≥ 0. Assume that there exists K ∈ K such that
Φ(K)Σ(K)−r/k > τ + ε. It holds that

lim
a→∞

a−
r
k ln

(
P
(

Φ(Z)

Σ(Z)
r
k

> τ + ε | Σ(Z) > a

))
= −εγ,

where Z can be replaced by Zo or, in the stationary case, by Ztyp.
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Proof. It is a corollary of Corollary 6.3.2. We have

a−
r
k ln

(
P
(

Φ(Z)

Σ(Z)
r
k

> τ + ε | Σ(Z) > a

))

= a−
r
k lnP

(
Φ(Z)

Σ(Z)
r
k

> τ + ε, Σ(Z) > a

)
− a− rk lnP (Σ(Z) > a)

a→∞−−−→ −(τ + ε)γ + τγ = −εγ.
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We restrict the scope of this chapter to the typical cell, which implies
that we are in the stationary case: r = 1 and ϕ ∈ ℵe. In contrast with
the previous chapter, we are now interested in small cells of the tessella-
tion. More precisely, we are interested in the conditional law of the shape
sc,Φ(Ztyp), given that Σ(Ztyp) < a and a → 0. Here Σ is a size functional
satisfying the same four axioms as the one described at the beginning of
Chapter 6. This question can be divided into two sub-questions:

(Q1) What is the number of facets of small cells?

(Q2) Let n be such that P(f(Ztyp) = n) > 0. What is the shape distribution
of small cells conditioned on the event {f(Ztyp) = n}?

We will give answer to both questions in many cases, covering the isotropic
case or the case when Σ

1
k is of the same order as Φ, i.e. there exist positive

constants C and C ′ such that CΣ(K)
1
k ≤ Φ(K) ≤ C ′Σ(K)

1
k for any K ∈ K.

In the first section we characterise the set N = {n ∈ N : P(f(Ztyp) =
n) > 0}. Indeed we will need later the fact that if |N | > 1, then nmin+1 ∈ N ,
where nmin = minN . In the second section we cover the case of cells with
small Φ-content. The complementary theorem makes this case easy to deal
with. In the third and fourth sections we consider the case where ϕ ∈ ℵe,c,
i.e. is absolutely continuous, and where Σ can be any size functional. First

97
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we show that the shape of small cells are random simplices and we describe
the asymptotic shape distribution. Second we give a rate of convergence for
P(f(Ztyp) > d + 1 | Σ < a) → 0, as a → 0. Finally, in the last section we
consider the most general case.

Before starting with Section 1, we want to give a few references to the
literature. Miles gave heuristic arguments in [Mil95] that small cells in a
stationary isotropic line tessellation are triangles with a random shape, and
that the random shape depends on Σ.

Beermann, Redenbach and Thäle in [BRT14] considered the planar case
where ϕ is concentrated in two couples of antipodal points. Thus after a
linear transformation, this reduces to the case where all the lines are either
horizontal or vertical and the intensity of the subproceses of horizontal lines
and of vertical lines are the same. In that case all the cells are rectangles.
They consider two size measurements, the perimeter and the area. It turns
out that the perimeter is proportional to the Φ-content, so conditioning
on it does not affect the shape distribution, because of the complementary
theorem and the fact that all cells have the same number of facets. The
case of the area is more interesting. They show that the shape of cells with
small area tends a degenerated shape, i.e. the shape of a line segment. They
also provide a rate of convergence, which is incorrect and was corrected
in Beermann doctoral thesis [Bee15]. At the really end of the chapter we
recover their result as a corollary applying to a much broader setting. We
also slightly improve the approximation of the rate of convergence.

Finally we want to mention that Schulte and Thäle in [ST12, Ex. 6 of
Sec. 2], and Chenavier and Hemsley in [CH15, remark above Thm. 2], both
considered a related problem. They gave some results about the smallest
cell in a window of increasing size.

7.1 Possible number of facets

In this section we characterise the set {n ∈ N : P(f(Ztyp) = n) > 0} for
general directional distribution ϕ ∈ ℵe. Let supp(ϕ) ⊂ Sd−1 denotes the
support of ϕ and

Vϕ := {v ∈ supp(ϕ) : supp(ϕ) \ {v,−v} is concentrated in a great circle}.
Theorem 7.1.1. With respect to the notation above,

{
1

2
|Vϕ| : ϕ ∈ ℵe

}
= {0, 1, . . . , d− 2, d},

and for any ϕ ∈ ℵe,
{n ∈ N : P(f(Ztyp) = n) > 0}

=

{
{2d} if |Vϕ| = 2d[
d+ 1 + 1

2 |Vϕ| , |supp(ϕ)|
]
∩ N if |Vϕ| < 2d

.



7.1. POSSIBLE NUMBER OF FACETS 99

Proof. Clearly Vϕ = −Vϕ, i.e. if v ∈ Vϕ, then −v ∈ Vϕ. For any v ∈ Vϕ, the
linear space Hv spanned by supp(ϕ)\{v,−v} is a hyperplane which does not
contain v. It does not contain v because supp(ϕ)\{v,−v} is concentrated in
a great circle. It is a hyperplane since otherwise ϕ would be concentrated in
a great circle. From this we get that

⋂
v∈Vϕ Hv is a

(
d− 1

2 |Vϕ|
)
-dimensional

space. This implies that 1
2 |Vϕ| ∈ {0, . . . , d}. Set

ϕ0 := ϕ−
∑

v∈Vϕ
ϕ({v})δv,

where δv is the Dirac measure concentrated at v. It is the restriction of
ϕ to the

(
d− 1

2 |Vϕ| − 1
)
-dimensional sphere Sd−1 ∩ ⋂v∈Vϕ Hv. In the last

sentence, we used the convention dim ∅ = −1.
We will show by contradiction that 1

2 |Vϕ| 6= d− 1. Assume the contrary.
Then ϕ0 is concentrated in the (d − (d − 1) − 1) = 0-dimensional sphere
Sd−1 ∩ ⋂v∈Vϕ Hv. This 0-dimensional sphere is of the form {u,−u}, with

u /∈ Vϕ. But then, supp(ϕ) \ {u,−u} = Vϕ. And since, in this situation,
Vϕ spans a hyperplane, we have that supp(ϕ) \ {u,−u} is concentrated in
a great circle. Thus u ∈ Vϕ, which is a contradiction.

Thus we proved
{

1

2
|Vϕ| : ϕ ∈ ℵe

}
⊂ {0, 1, . . . , d− 2, d}.

We prove the reverse inclusion by construction. Let k ∈ {0, 1, . . . , d− 2, d}.
Consider Sd−k := {u = (u1, . . . , ud) ∈ Sd−1 : u1 = · · · = uk = 0} ' Sd−k−1,
and σk the (d−k−1)-dimensional spherical Lebesgue measure concentrated

on Sd−k. Set the measure ϕ̃ := σk+
∑k

i=1(δei+δ−ei), and ϕ := ϕ̃
(
Sd−1

)−1
ϕ̃

its normalization. Here δei denotes the Dirac measure concentrated at the
canonical unit vector ei. In this case Vϕ = {ei,−ei : i ∈ [k]}, and therefore
1
2 |Vϕ| = k.

Now we will prove the second part of the theorem. If |Vϕ| = 2d, then Vϕ
is the support of ϕ and all the cells of the the tessellation are parallelepipeds,
and thus have 2d facets. We assume from now that |Vϕ| < 2d. Observe that

P(f(Ztyp) = n) > 0⇔ µ

({
H ∈ Hn :

n⋂

i=1

H−i ∈ Pn
})

> 0

⇔ ∃u1, . . . ,un ∈ supp(ϕ) and ∃t1, . . . , tn ∈ R+,

such that

n⋂

i=1

H(ui, ti)
− ∈ Pn

⇔ ∃u1, . . . ,un ∈ supp(ϕ),

such that
n⋂

i=1

H(ui, 1)− ∈ Pn.
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But the intersection
⋂n
i=1H(ui, 1)− is bounded if and only if the vectors vi

do not all belong to one half sphere, which implies that Vϕ ⊂ {ui : i ∈ [n]}
(and that n ≥ |Vϕ|). With this observation we can reduce the problem to
the

(
d− 1

2 |Vϕ|
)
-dimensional space

⋂
v∈Vϕ Hv,

P(f(Ztyp) = n) > 0⇔ n ≥ |Vϕ| and ∃u1, . . . ,un−|Vϕ| ∈ supp(ϕ0), such that
n⋂

i=1

H(ui, 1)− ∩
⋂

v∈Vϕ
Hv ∈ Pn−|Vϕ|

(
∩v∈VϕHv

)
,

where Pn−|Vϕ|
(
∩v∈VϕHv

)
denotes the set of polytopes with n − |Vϕ| facets

in the linear space ∩v∈VϕHv. It gives,

P(f(Ztyp) = n) > 0⇔ n ≥ |Vϕ| and n− |Vϕ| ∈
[
d− 1

2
|Vϕ|+ 1 , |supp(ϕ0)|

]
,

which yields the proof.

7.2 Cells with small Φ-content are nmin-topes with
random shape

Because of the Complementary Theorem 3.3.1, it is easy to study cells with
small Φ-content. Let nmin := min{n ∈ N : P(f(Ztyp) = n) > 0}. The
next theorem gives an equivalence for the asymptotic of P(Φ(Ztyp) < a),
as a → 0, and describes the conditional law of the shape sc,Φ(Ztyp), given
Φ(Ztyp). In particular f(Ztyp) = nmin with high probability when Φ(Ztyp)
is small.

Theorem 7.2.1. When a→ 0, it holds that

P(Φ(Ztyp) < a) ∼ P(f(Ztyp) = nmin)

(nmin − d)!
(γa)nmin−d,

and

(γa)−1P(f(Ztyp) > nmin | Φ(Ztyp) < a)

→
(

P(f(Ztyp) = nmin + 1)

P(f(Ztyp) = nmin)(nmin + 1− d)

)
,

and, for any open set of shapes A ⊂ Kc,Φ,

P(sc,Φ(Ztyp) ∈ A | Φ(Ztyp) < a)→ P(sc,Φ(Ztyp) ∈ A | f(Ztyp) = nmin).
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Proof. With the Complementary Theorem, we have for any n,

P(f(Ztyp) = n , sc,Φ(Ztyp) ∈ A , Φ(Ztyp) < a)

= P(f(Ztyp) = n , sc,Φ(Ztyp) ∈ A)
γn−d

(n− d− 1)!

a∫

0

e−γttn−d−1dt

∼<
P(f(Ztyp) = n , sc,Φ(Ztyp) ∈ A)

(n− d)!
(γa)n−d, (7.1)

when a→ 0, where f ∼< g, means f ∼ g and f < g. This implies that, for
any n such that P(f(Ztyp) = n) > 0, and any open set of shape A ∈ Kc,Φ,
we have

P(f(Ztyp) ≥ n , sc,Φ(Ztyp) ∈ A , Φ(Ztyp) < a)

∼ P(f(Ztyp) = n , sc,Φ(Ztyp) ∈ A , Φ(Ztyp) < a). (7.2)

In particular, by setting n = nmin and A = Kc,Φ, (7.1) and (7.2) give the
first equivalence of the Theorem.

For the second point we need first to consider the set N := {n ∈ N :
P(f(Ztyp) = n) > 0}. If N = {nmin}, then we trivially have 0 → 0.
Otherwise, Theorem 7.1.1 tells us that P(f(Ztyp) = nmin +1) > 0. Therefore
applying (7.2) and then (7.1), both with n = nmin + 1 and A = Kc,Φ, and
using the first equivalence of the theorem gives

P(f(Ztyp) > nmin | Φ(Ztyp) < a)

=
P(f(Ztyp) ≥ nmin + 1 , Φ(Ztyp) < a)

Φ(Ztyp) < a)

∼
(
P(f(Ztyp) = nmin + 1)

(nmin − d+ 1)!
(γa)nmin+1−d

)(
P(f(Ztyp) = nmin)

(nmin − d)!
(γa)nmin−d

)−1

,

which gives immediately the second point of the theorem.

For the last point of the theorem, observe that

P(sc,Φ(Ztyp) ∈ A | Φ(Ztyp) < a)

=
P(f(Ztyp) ≥ nmin , sc,Φ(Ztyp) ∈ A , Φ(Ztyp) < a)

P(f(Ztyp) ≥ nmin , Φ(Ztyp) < a)
.

With (7.2), this gives

P(sc,Φ(Ztyp) ∈ A | Φ(Ztyp) < a)

∼ P(f(Ztyp) = nmin , sc,Φ(Ztyp) ∈ A , Φ(Ztyp) < a)

P(f(Ztyp) = nmin , Φ(Ztyp) < a)

= P(sc,Φ(Ztyp) ∈ A | f(Ztyp) = nmin , Φ(Ztyp) < a).

This yields the proof since the Complementary Theorem tells us that, when
we condition on f(Ztyp) = nmin, the random variables sc,Φ(Ztyp) and Φ(Ztyp)
are independent.
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7.3 Absolute continuous case: Cells with small Σ-
content are simplices with random shape

Now we are interested by the more general situation where the cells are
measured by an arbitrary size measurement Σ instead of Φ. In order to give
precise answers to the questions (Q1) and (Q2), we assume in this section
and the following one that ϕ ∈ ℵe,c, i.e. is even and absolutely continuous.
Also, we consider that Ztyp is defined with respect to the inball center.

Recall that Theorem 4.5.2 tells us that for any Borel A ⊂ K,

P(Ztyp ∈ A) =
γd+1

(d+ 1)γ(d)

∫

P

∞∫

0

e−γrP


 ⋂

H∈η∩FrBd
H− ∩ (r∆(ū)) ∈ A


 dr

×∆d(ū) dϕd+1(ū),

where η ∩ FrBd denotes the set of hyperplanes of the process η with empty
intersection with the ball rBd, and

P =
{
ū ∈ (Sd−1)d + 1 : u0, . . .ud are not all in one closed half sphere

}
,

and

∆(ū) =

d⋂

i=0

H(ui, 1)−, and ∆d(ū) = λd(ConvexHull(u0, . . . ,ud)).

This can be rewritten in the following form,

(d+ 1)γ(d)

γd+1
P(Ztyp ∈ A) (7.3)

=

∫

P

∞∫

0

e−γrP


r


 ⋂

H∈r−1η∩FBd
H− ∩∆(ū)


 ∈ A


 dr∆d(ū) dϕd+1(ū),

where r−1η := {r−1H : H ∈ η} is the dilatation of ratio r−1 of η and
therefore has intensity rγ. Observe that, for any ū ∈ P,

Σ(r∆(ū)) < a⇔ r <

(
a

Σ(∆(ū))

)1/k

,

and

f


 ⋂

H∈r−1η∩FBd
H− ∩∆(ū)


 = d+ 1⇔ rη ∩

(
∆(ū) \Bd

)
= ∅. (7.4)
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Thus, (7.3) applied to the set

A = {P ∈ P : f(P ) = d+ 1 , sc,Φ(P ) ∈ S , Σ(P ) < a},

where a > 0 and S ⊂ Pc,Φ is an open set of shapes, it gives

(d+ 1)γ(d)

γd+1
P(f(Ztyp) = d+ 1 , sc,Φ(P ) ∈ S , Σ(Ztyp) < a)

=

∫

P

(
a

Σ(∆(ū))

)1/k

∫

0

1 (sc,Φ(∆(ū)) ∈ S) e−γr P
(
r−1η ∩

(
∆(ū) \Bd

)
= ∅
)

× dr∆d(ū) dϕd+1(ū). (7.5)

Since the intensity of r−1η tends to 0 when r → 0, we have that

P
(
r−1η ∩

(
∆(ū) \Bd

)
= ∅
)

r→0−−−→ 1,

for any ū ∈ P, where the convergence is monotonically increasing. Hence

1

a
1
k

(
a

Σ(∆(ū))

) 1
k

∫

0

e−γrP
(
r−1η ∩

(
∆(ū) \Bd

)
= ∅
)

dr
r→0−−−→ 1

Σ(∆(ū))
1
k

,

for any ū ∈ P, where the convergence is monotonically increasing. Therefore,
(7.5) and the monotone convergence theorem give

1

γa
1
k

P(f(Ztyp) = d+ 1 , sc,Φ(P ) ∈ S , Σ(Ztyp) < a)

a→0−−−→ γd

(d+ 1)γ(d)

∫

P

1 (sc,Φ(∆(ū)) ∈ S)
∆d(ū)

Σ(∆(ū))
1
k

dϕd+1(ū). (7.6)

Now, we will consider the probability P(f(Ztyp) > d + 1 , Σ(Ztyp) < a).
Observe that the trivial inclusion

rBd ⊂ r


 ⋂

H∈r−1η∩FBd
H− ∩∆(ū)


 ,

gives the following implication

Σ


r


 ⋂

H∈r−1η∩FBd
H− ∩∆(ū)




 < a⇒ r <

(
a

Σ(Bd)

) 1
k

. (7.7)
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Therefore (7.3) applied to the set A = {P ∈ P : Σ(P ) < a} implies

(d+ 1)γ(d)

γd+1
P(Σ(Ztyp) < a) ≤

∫

P

(
a

Σ(Bd)

) 1
k

∫

0

e−γrdr∆d(ū) dϕd+1(ū)

≤ a 1
kΣ(Bd)−

1
k

∫

P

∆d(ū) dϕd+1(ū)

≤ a 1
k

(
Σ(Bd)−

1
kκd

)
.

We will use this bound to apply the dominated convergence theorem to the
integral representations of a−1/kP(f(Ztyp) > d+1 , Σ(Ztyp) < a), when a→
0. Equation (7.3) applied to A = {P ∈ P : f(Ztyp) > d + 1 , Σ(Ztyp) < a},
(7.4) and (7.7) give

(d+ 1)γ(d)

γd+1
P(f(Ztyp) > d+ 1 , Σ(Ztyp) < a)

≤
∫

P

(
a

Σ(Bd)

)1/k

∫

0

e−γrP
(
r−1η ∩

(
∆(ū) \Bd

)
6= ∅
)

dr∆d(ū) dϕd+1(ū).

Since the intensity of r−1η tends to 0 when r → 0, we have that

P
(
r−1η ∩

(
∆(ū) \Bd

)
6= ∅
)

r→0−−−→ 0,

for any ū ∈ P. Hence

1

a
1
k

(
a

Σ(∆(ū))

) 1
k

∫

0

e−γrP
(
r−1η ∩

(
∆(ū) \Bd

)
6= ∅
)

dr
a→0−−−→ 0,

for any ū ∈ P. Therefore, (7.5) and the dominated convergence theorem
give

1

γa
1
k

P(f(Ztyp) > d+ 1 , Σ(Ztyp) < a)
a→0−−−→ 0. (7.8)

Thus, with (7.8) and (7.6) we proved the following theorem.

Theorem 7.3.1. Let ϕ ∈ ℵe,c. For any open set of shapes S ⊂ Kc,Φ,

P(f(Ztyp) = d+ 1 , sc,Φ(P ) ∈ S , Σ(Ztyp) < a) ∼ cϕ(S)γa
1
k ,
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when a→ 0, and

P(f(Ztyp) > d+ 1, Σ(Ztyp) < a) = o
(
γa

1
k

)
,

where

cϕ(S) :=
γd

(d+ 1)γ(d)

∫

P

1 (sc,Φ(∆(ū)) ∈ S) Σ(∆(ū))−
1
k∆d(ū) dϕd+1(ū).

As a direct corollary, we get that the conditional law of the shape
sc,Φ(Ztyp), given Σ(Ztyp), converges weakly to a random simplex.

Corollary 7.3.2. Let ϕ ∈ ℵe,c. For any open set of shapes S ⊂ Kc,Φ,

P(f(Ztyp) = d+ 1 , sc,Φ(P ) ∈ S | Σ(Ztyp) < a)→ cϕ(S)

cϕ(Pd+1,c,Φ)
,

when a→ 0.

7.4 Absolute continuous case: Speed of conver-
gence

In this section, as in the previous one, we assume that ϕ ∈ ℵe,c, i.e. is even
and absolutely continuous. Our goal is to find how fast P(f(Ztyp) = d+ 1 |
Σ(Ztyp) < a) tends to 1 when a→ 0. Since Theorem 7.3.1 gives us a precise
estimation of P(f(Ztyp) = d + 1 , Σ(Ztyp) < a), the question is reduced to
study how fast does the joint distribution P(f(Ztyp) > d+ 1 , Σ(Ztyp) < a)
tends to 0.

We denote by r(Ztyp) the inradius of Ztyp, that is the maximal radius of
a ball B = B(Ztyp) inscribed in Ztyp. The inclusion B(Ztyp) ⊂ Ztyp implies
Σ(Ztyp) ≥ Σ(B(Ztyp)) = r(Ztyp)kΣ(Bd). Therefore

P(f(Ztyp) > d+ 1, Σ(Ztyp) < a)

≤ P
(
f(Ztyp) > d+ 1, r(Ztyp) < Σ(Bd)−

1
k a

1
k

)
. (7.9)

This shows that it is essential to study the case of the inradius. By (7.3),
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we have

(d+ 1)

γ

γ(d)

γd
P(f(Ztyp) > d+ 1, r(Ztyp) < a)

=

∫

P

a∫

0

e−γrP
(
r−1η ∩

(
∆(ū) \Bd

)
6= ∅
)

dr∆d(ū) dϕd+1(ū)

=

∫

P

a∫

0

e−γr
(

1− e−γr(Φ(∆(ū))−1)
)

dr∆d(ū) dϕd+1(ū),

<

∫

P

a∫

0

1− e−γrΦ(∆(ū))dr∆d(ū) dϕd+1(ū).

It is tempting to upper bound the integrand 1− e−γrΦ(∆(ū)) by γrΦ(∆(ū)),
since for r → 0 these quantities are equivalent. This would lead us to

P(f(Ztyp) > d+ 1, r(Ztyp) < a)

< (γa)2 1

2(d+ 1)

γd

γ(d)

∫

P

Φ(∆(ū))∆d(ū) dϕd+1(ū),

but this is useless since the integral
∫
P Φ(∆(ū))∆d(ū) dϕd+1(ū) turns out

to diverge. We need to consider more carefully the contribution of simplices
∆(ū) which have a big Φ-content. The factor ∆d(ū) is not important to get
the order of the integral. We upper bound it by ∆max = maxū∈P ∆d(ū). So
we have

(d+ 1)

γ∆max

γ(d)

γd
P(f(Ztyp) > d+ 1, r(Ztyp) < a)

<

∫

P

a∫

0

1− e−γrΦ(∆(ū))dr dϕd+1(ū) (7.10)

In order to go further, we need to prove the following essential lemma.

Lemma 7.4.1. Let ϕ ∈ ℵe,c. There exists a constant C30, depending on ϕ,
such that for any increasing function f : R→ R, we have

∫

P

f(Φ(∆(ū)))dϕd+1(ū) < C30

∞∫

1

f(t)
1

t2
dt.

Proof. In this proof we set

Pk := {ū ∈ P : Φ(∆(ū)) ∈ [k − 1, k]}.
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Observe that, since f is increasing,

∫

P

f(Φ(∆(ū)))dϕd+1(ū) ≤
∑

k≥1

∫

Pk

f(k)dϕd+1(ū) =
∑

k≥1

f(k)ϕd+1(Pk),

and

∑

k≥1

f(k)

k2
≤ 4

∑

k≥1

f(k)

(k + 1)2
≤ 4

∑

k≥1

k+1∫

k

f(t)
1

t2
dt ≤ 4

∞∫

0

f(t)

t2
dt.

Thus we only have to show that there exists a constant C ′30 > 0, such that
ϕd+1(Pk) < C ′30k

−2, for any k ≥ 1.

Since ϕ is absolutely continuous with respect to the spherical Lebesgue
measure σ, there exists a constant cϕ such that ϕ < cϕσ. Thus we can
reduce the problem one step further. We only have to show that there exists
a constant C ′′30 > 0 such that σd+1(Pk) < C ′′30k

−2.

For any ū ∈ P and i ∈ {0, . . . , d}, we consider

v(ū, i) :=
⋂

j∈{0,...d}\{i}
H(uj , 1),

the vertex of the simplex ∆(ū) which is not contained in the face with
outward normal vector ui, see Figure 7.4. With respect to this notation we
define

P′k := {ū ∈ Pk : ‖v(ū, i)‖ ≤ ‖v(ū, 0)‖ for any i ∈ [n]} .

It is easy to see that σd+1(Pk) = (d + 1)σd+1(P′k). Let p : (Sd−1)d+1 →
(Sd−1)d+1 be the permutation defined by p(u0, . . . ,ud) = (u1, . . . ,ud,u0).
We have Pk = ∪di=0p

i(P′k) and ϕ(pi(P′k)∩pj(P′k)) = 0 for any i 6= j. Therefore
σd+1(Pk) = (d+ 1)σd+1(P′k).

Using Theorem 4.5.3, we have

σd+1
(
P′k
)

=

∫

Sd−1

∫

(Sd−1)d

1
(
ū ∈ P′k

)
dσd(u1, . . . ,ud) dσ(u0)

= (d− 1)!

∫

Sd−1

∫

Sd−1

1∫

0

∫

(H(v,t)∩ Sd−1)d

1
(
ū ∈ P′k

)
∆d−1(u1, . . . ,ud)

d(σ′v,t)
d(u1, . . . ,ud)

dt

(1− t2)
d
2

dσ(v) dσ(u0),

where σ′v,t denotes the surface area measure on the (d − 2)-dimensional

sphere H(v, t) ∩ Sd−1. For any u0,v ∈ Sd−1 and t ∈ (0, 1), considering the
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o

u0

u1

u2

u′
1

u′
2

v
v(ū, 0)

v(ū, 2)

v(ū, 1)

t

Figure 7.1: Construction of ∆(ū) (red thick triangle).

diffeomorphism

H(v, 0) ∩ Sd−1 → H(v, t) ∩ Sd−1

u′ 7→ u = tv +
√

1− t2u′,

we get
∫

(H(v,t)∩Sd−1)d

1
(
ū ∈ P′k

)
∆d−1(u1, . . . ,ud)d(σ′v,t)

d(u1, . . . ,ud)

=

∫

(H(v,0)∩Sd−1)d

1
(
ū ∈ P′k

)
(1− t2)

d−1
2 ∆d−1(u′1, . . . ,u

′
d)

(
(1− t2)

d−2
2

)d
d(σ′v,0)

d
(u′1, . . . ,u

′
d),

where

ū = (u0, . . . ,ud) =
(
u0, tv +

√
1− t2u′1, . . . , tv +

√
1− t2u′d

)
.

Thus

σd+1(P′k)

= (d− 1)!

∫

Sd−1

∫

Sd−1

∫

(H(v,0)∩ Sd−1)d

∆d−1(u′1, . . . ,u
′
d) (7.11)

×
1∫

0

1
(
ū ∈ P′k

)
(1− t2)

d2−2d−1
2 dt d(σ′v,0)d(u′1, . . . ,u

′
d) dσ(v) dσ(u0).
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Fix u0,v ∈ Sd−1 and u′1, . . . ,u
′
d ∈ H(v, 0)∩ Sd−1. We want to investigate

the asymptotic of

1∫

0

1
(
ū ∈ P′k

)
(1− t2)

d2−2d−1
2 dt

when k →∞.
For this, we need to get a good approximation of Φ(∆(ū)), as t → 0.

The first step to get this approximation is to describe the vertices of ∆(ū).
Recall that we denote

v(ū, i) :=
⋂

j∈{0,...d}\{i}
H(uj , 1).

Simple geometric computations give v(ū, 0) = t−1v. Since uj → u′j as
t→ 0, we have that

v(ū, i)→ v′i := H(u0, 1) ∩


 ⋂

j∈[d]\{i}
H(u′j , 1)


 , when t→∞.

Set ∆o,t := [o,v(ū, 1), . . . ,v(ū, d)] and ∆o := [o,v′(ū, 1), . . . ,v′(ū, d)],
where [S] denotes the convex hull of the set S. We have

Φ(∆(ū)) = µ({H ∈ H : H ∩∆(ū) 6= ∅})
= µ({H ∈ H : H ∩ [o, t−1v] 6= ∅})

+ µ({H ∈ H : H ∩∆o,t 6= ∅ , H ∩ [o, t−1v] = ∅})
= t−1Φ([o,v]) + µ({H ∈ H : H ∩∆o,t 6= ∅ , H ∩ [o, t−1v] = ∅}).

This implies that

Φ(∆(ū))− t−1Φ([o,v])→ C = C(uo,v,u
′
1, . . . ,u

′
d)

= µ({H ∈ H : H ∩∆o 6= ∅ , H ∩ {tv : t > 0} = ∅}).
In particular, when t is small enough, we have

t−1Φ([o,v]) + C − 1 < Φ(∆(u)) < t−1Φ([o,v]) + C + 1.

Thus, for k big enough,

u ∈ P′k ⇔ Φ(∆(u)) ∈ [k − 1, k]⇒ t ∈
[

Φ([o,v])

k − C + 1
,

Φ([o,v])

k − C − 2

]
.

Hence, for k big enough,

1∫

0

1
(
ū ∈ P′k

)
(1− t2)

d2−2d−1
2 dt

≤
1∫

0

1

(
t ∈
[

Φ([o,v])

k − C + 1
,

Φ([o,v])

k − C − 2

])
(1− t2)

d2−2d−1
2 dt.
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But, for t ∈ (0, 1
2),

(1− t2)
d2−2d−1

2 ≤ (1− t2)−
1
2 ≤

(
3

4

)− 1
2

< 2.

Therefore, for k big enough,

1∫

0

1
(
ū ∈ P′k

)
(1− t2)

d2−2d−1
2 dt ≤

√
2

1∫

0

1

(
t ∈

[
Φ([o,v])

k + C + 1
,

Φ([o,v])

k + C − 2

])
dt

= 2Φ([o,v])

(
1

k − C − 2
− 1

k − C + 1

)

< 7Φ([o,v])
1

k2

Consequently, with (7.11), and the dominated convergence theorem, we get
that for k big enough

k2σd+1(P′k) < C,

where

C = (d− 1)!

∫

Sd−1

∫

Sd−1

∫

(H(v,0)∩ Sd−1)d

∆d−1(u′1, . . . ,u
′
d)

× 8Φ([o,v]) d(σ′v,0)d(u′1, . . . ,u
′
d) dσ(v) dσ(u0)

< ω2
dω

d
d−1 max

(u′1,...,u
′
d)∈(Sd−2)d

∆d−1(u′1, . . . ,u
′
d)8 max

v∈Sd−1
Φ([o,v])

<∞.

This implies that there exists a constant C ′′30 such that σd+1(P′k) < C ′′30k
−2

for any k ≥ 1, which ends the proof.

Now that we proved Lemma 7.4.1, we go back to our original problem
which is to get a upper bound for P(f(Ztyp) > d+1, r(Ztyp) < a). Equation
(7.10) and Lemma 7.4.1 give

(d+ 1)

γ∆max

γ(d)

γd
P(f(Ztyp) > d+ 1, r(Ztyp) < a)

<

∫

P

a∫

0

1− e−γrΦ(∆(ū))dr dϕd+1(ū)

<

∞∫

1

a∫

0

1− e−γrtdr C30

t2
dt

= C30 (I1 + I2 + I3) ,
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where

I1 =

1
γa∫

1

a∫

0

1− e−γrt
t2

drdt <

1
γa∫

1

a∫

0

γrt

t2
drdt =

γa2

2
ln

(
1

γa

)
,

I2 =

∞∫

1
γa

1
γt∫

0

1− e−γrt
t2

drdt <

∞∫

1
γa

1
γt∫

0

γrt

t2
drdt =

γa2

4
,

and

I3 =

∞∫

1
γa

a∫

1
γt

1− e−γrt
t2

drdt =

a∫

0

∞∫

1
γr

1− e−γrt
t2

dtdr =



∞∫

1

1− e−t
t2

dt


 γa2

2
<
γa2

2
.

Therefore, by setting C31 := C30

(
1
2 + 1

4 + 1
2

)
= 5

4C30, we have

P(f(Ztyp) > d+ 1, r(Ztyp) < a) < C31(γa)2 ln

(
1

γa

)
,

for a < e−1γ−1. And with (7.9), we obtain

P(f(Ztyp) > d+ 1, Σ(Ztyp) < a) ≤ C31(γΣ(Bd)−
1
k a

1
k )2 ln

(
1

γΣ(Bd)−
1
k a

1
k

)
,

for a < Σ(Bd)e−kγ−k. This implies the existence of a constant C32, depend-
ing on ϕ and Σ, such that

P(f(Ztyp) > d+ 1, Σ(Ztyp) < a) ≤ C32(γa
1
k )2 ln

(
1

γa
1
k

)
, (7.12)

for a < e−kγ−k. Now, we easily get the following theorem.

Theorem 7.4.2. Let ϕ ∈ ℵe,c. For any size measurement Σ, there exists a
constant C33, depending on ϕ and Σ, such that

P(f(Ztyp) > d+ 1 | Σ(Ztyp) < a) < C33

(
γa

1
k

)
ln

(
1

γa
1
k

)
,

for a < e−kγ−k.
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Proof. Theorem 7.3.1, says that, when a→ 0,

P(f(Ztyp) = d+ 1 | Σ(Ztyp) < a) ∼ cϕγa
1
k ,

where cϕ is a constant. In particular, it exists a constant C34, depending on
ϕ and Σ, such that

P(Σ(Ztyp) < a) > P(f(Ztyp) = d+ 1 | Σ(Ztyp) < a) > C34γa
1
k ,

for any a < e−kγ−k. Thus, with (7.12), we get

P(f(Ztyp) > d+ 1 | Σ(Ztyp) < a) =
P(f(Ztyp) > d+ 1 , Σ(Ztyp) < a)

Σ(Ztyp) < a)

<

C32

(
γa

1
k

)2
ln

(
1

γa
1
k

)

C34γa
1
k

=
C32

C34

(
γa

1
k

)
ln

(
1

γa
1
k

)
,

for a < e−kγ−k. This yields the proof.

7.5 General case

In the previous chapter, when studying cells with big Σ-content, we have
seen the importance of polytopes P for which the isoperimetric ratio Σ(P )

Φ(P )k
is

close to the minimum τ = infK∈K
Φ(P )

Σ(P )
1
k

. In contrast, when studying small

cells, polytopes with isoperimetric ratio Σ(P )
1
k

Φ(P ) ‘close to 0’ are essential.
Set the measure µn,Σ on the shape space Pn,c,Φ defined by

µn,Σ(A) :=
γd

(n− d)γ(d)

∫

A

Σ(P )−
n−d
k dµn,c,Φ(P ), (7.13)

for any Borel set of shapes A ⊂ Pn,c,Φ. The following lemma will be used in
several proofs.

Lemma 7.5.1. Let n be such that P(f(Z) = n) > 0, and A ⊂ Pn,c,Φ a Borel
set.

1. If inf{Σ(P ) : P ∈ A} > 0, then µn,Σ(A) <∞.

2. If µn,Σ(A) <∞, then when a→ 0,

P(sc,Φ(Ztyp) ∈ A , Σ(Ztyp) < a) ∼ an−dk µn,Σ(A).
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Proof. Assume that CA = inf{Σ(P ) : P ∈ A} > 0, and recall that

µn,c,Φ(A) ≤ µn,c,Φ(Pn,c,Φ) = µn

({
P ∈ Pn : c(P ) ∈ [0, 1]d , Φ(P ) < 1

})
<∞.

We have

µn,Σ(A) =
γd

(n− d)γ(d)

∫

A

Σ(P )−
n−d
k dµn,c,Φ(P )

<
γd

(n− d)γ(d)
µn,c,Φ(A)C

−n−d
k

A <∞,

which proves the first point.

Now assume that µn,Σ(A) <∞. By the Complementary Theorem 3.3.1,
we have

P(sc,Φ(Ztyp) ∈ A , Σ(Ztyp) < a)

=
γn

γ(d)

∫

A

∞∫

0

1(Σ(tP ) < a)e−γttn−d−1dtdµn,c,Φ(P ).

But for any P ∈ A,

∞∫

0

1(Σ(tP ) < a)e−γttn−d−1dt =

a
1
k Σ(P )

1
k∫

0

e−γttn−d−1dt∼<
a
n−d
k Σ(P )−

n−d
k

n− d ,

where f ∼< g means f ∼ g and f < g. Thus, with the dominated conver-
gence theorem, we get

a−
n−d
k P(sc,Φ(Ztyp) ∈ A , Σ(Ztyp) < a)

→ γn

(n− d)γ(d)

∫

A

Σ(P )−
n−d
k dµn,c,Φ(P ) = µn,Σ(A),

which is the second point of the lemma.

If infK∈K
Σ(K)

1
k

Φ(K) > 0, then Σ
1
k is of the same order as Φ and the behaviour

of cells with small Σ-content is similar to the one of cells with small Φ-
content, which we studied in Section 7.2. Theorem 7.5.2 gives a precise
result for this case.

Theorem 7.5.2. Assume that infK∈K
Σ(K)

1
k

Φ(K) > 0. Let nmin = min{n ∈ N :

P(f(Ztyp) = n) > 0}. When a→ 0,

a−
1
kP(f(Z) > nmin | Σ(Z) < a)→ µnmin+1,Σ(Pnmin+1,c,Φ)

µnmin,Σ(Pnmin,c,Φ)
,
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and for any Borel set of shape A ⊂ Kc,Φ,

P(sc,Φ(Z) ∈ A | Σ(Z) < a)→ µnmin,Σ(A ∩ Pnmin)

µnmin,Σ(Pnnmin ,c,Φ
)
.

Proof. Let A ⊂ Pn,c,Φ be a Borel set of shapes of polytopes with n facets.
By the Complementary Theorem 3.3.1, we have

P(sc,Φ(Ztyp) ∈ A , f(Ztyp) = n , Σ(Ztyp) < a)

=
γn

γ(d)

∫

A

∞∫

0

1(Σ(tP ) < a)e−γttn−d−1dtdµn,c,Φ(P ) (7.14)

<
γn

γ(d)

∫

A

∞∫

0

1

(
t < a

1
k sup
K∈K

Φ(K)

Σ(K)
1
k

)
tn−d−1dt dµn,c,Φ(P ).

Integrating over t gives

a−
n−d
k P(sc,Φ(Ztyp) ∈ A , f(Ztyp) = n , Σ(Ztyp) < a)

<
γn

γ(d)(n− d)

(
sup
K∈K

Φ(K)

Σ(K)
1
k

)n−d
µn,c,Φ(A) <∞.

Therefore the dominated convergence theorem and (7.14) gives

a−
n−d
k P(sc,Φ(Ztyp) ∈ A , f(Ztyp) = n , Σ(Ztyp) < a)→ µn,Σ(A). (7.15)

In particular,

P(f(Ztyp) = n , Σ(Ztyp) < a) ∼ an−dk µn,Σ(Pn,c,Φ),

which implies the first part of the theorem. The second part of the theorem
follows directly from the first part and (7.15).

In the next theorem, we consider a set A ⊂ Pn,c,Φ. The set A is such
that there exist polytopes P ∈ A with Σ(A) arbitrarily small. The theorem
gives asymptotic lower and upper bounds of the probability P(sc,Φ(Ztyp) ∈
A , f(Ztyp) = n , Σ(Ztyp) < a), as a → 0. The bounds depend on the
asymptotic of µn,c,Φ ({P ∈ A : Σ(P ) < a}).

Theorem 7.5.3. Let A ⊂ Pn,c,Φ be a Borel set. Assume that α ≥ β are
positive constants such that

C35 := lim inf
a→0

a−αµn,c,Φ ({P ∈ A : Σ(P ) < a}) ∈ (0,∞),

and
C36 := lim sup

a→0
a−βµn,c,Φ ({P ∈ A : Σ(P ) < a}) ∈ (0,∞).
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1. If α < n−d
k , then

lim inf a−αP(sc,Φ(Ztyp) ∈ A , Σ(Ztyp) < a) ≥ C35
Γ(n− d− αk)

γn−d−αk
.

2. If β < n−d
k , then

lim sup a−βP(sc,Φ(Ztyp) ∈ A , Σ(Ztyp) < a) ≤ C36
Γ(n− d− αk)

γn−d−αk
.

3. If α = n−d
k , then

lim inf
(
− ln(a)a

n−d
k

)−1
P(sc,Φ(Ztyp) ∈ A , Σ(Ztyp) < a) ≥ C35k

−1.

4. If β = n−d
k , then

lim sup
(
− ln(a)a

n−d
k

)−1
P(sc,Φ(Ztyp) ∈ A , Σ(Ztyp) < a) ≤ C36k

−1.

5. If α > n−d
k , then there exists a constant C37 such that

lim sup a−
n−d
k P(sc,Φ(Ztyp) ∈ A , Σ(Ztyp) < a) ≥ C37.

6. If β > n−d
k , then µn,Σ(A) <∞ and

P(sc,Φ(Ztyp) ∈ A , f(Ztyp) = n , Σ(Ztyp) < a) ∼ an−dk µn,Σ(A).

Proof. For any a > 0, set

Aa := {P ∈ A : Σ(P ) < a}.

Let ε > 0 and δ > 0 such that for any a < δ,

(C35 − ε)aα ≤ µn,c,Φ (Aa) ≤ (C36 + ε)aβ. (7.16)

By Lemma 7.5.1,

P(sc,Φ(Ztyp) ∈ A \Aδ , f(Ztyp) = n , Σ(Ztyp) < a) ∼ an−dk µn,Σ(A \Aδ).

Therefore we only have to study the asymptotic behaviour of P(sc,Φ(Ztyp) ∈
Aδ , f(Ztyp) = n , Σ(Ztyp) < a). By the Complementary Theorem 3.3.1, we
have

P(sc,Φ(Ztyp) ∈ Aδ , f(Ztyp) = n , Σ(Ztyp) < a)

=
γn

γ(d)

∫

Aδ

∞∫

0

1(Σ(tP ) < a)e−γttn−d−1dtdµn,c,Φ(P ).
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With Fubini, and using the k-homogeneity of Σ,

P(sc,Φ(Ztyp) ∈ Aδ , f(Ztyp) = n , Σ(Ztyp) < a)

=
γn

γ(d)

∞∫

0



∫

Aδ

1(Σ(P ) < at−k)dµn,c,Φ(P )


 e−γttn−d−1dt.

Observe that Σ(P ) < at−k, for any P ∈ Aδ and t <
(
a
δ

) 1
k . Therefore

γ(d)

γn
P(sc,Φ(Ztyp) ∈ Aδ , f(Ztyp) = n , Σ(Ztyp) < a)

= µn,c,Φ(Aδ)

(aδ )
1
k∫

0

e−γttn−d−1dt

+

∞∫

(aδ )
1
k



∫

Aδ

1(Σ(P ) < at−k)dµn,c,Φ(P )


 e−γttn−d−1dt.

Thus, when a→ 0,

γ(d)

γn
P(sc,Φ(Ztyp) ∈ Aδ , f(Ztyp) = n , Σ(Ztyp) < a)

∼ µn,c,Φ(Aδ)

(n− d)δ
n−d
k

a
n−d
k

+

∞∫

(aδ )
1
k



∫

Aδ

1(Σ(P ) < at−k)dµn,c,Φ(P )


 e−γttn−d−1dt,

which can be written

γ(d)

γn
P(sc,Φ(Ztyp) ∈ Aδ , f(Ztyp) = n , Σ(Ztyp) < a)

∼ µn,c,Φ(Aδ)

(n− d)δ
n−d
k

a
n−d
k +

∞∫

(aδ )
1
k

µn,c,Φ (Aat−k) e−γttn−d−1dt, (7.17)

By elementary computations we get that, for α ∈ R and a→ 0 with a > 0,

∞∫

(aδ )
1
k

(
at−k

)α
e−γttn−d−1 dt ∼





aαγ−n+d+αkΓ(n− d− αk) if α < n−d
k

− ln(a)a
n−d
k k−1 if α = n−d

k

a
n−d
k

δ
n−d
k
−α

−n+d+αk if α > n−d
k

.
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Thus, with (7.16), we get for a small enough

∞∫

(aδ )
1
k

µn,c,Φ (Aat−k) e−γttn−d−1dt

≥ (C35 − 2ε)





aαγ−n+d+αkΓ(n− d− αk) if α < n−d
k

− ln(a)a
n−d
k k−1 if α = n−d

k

a
n−d
k

δ
n−d
k
−α

−n+d+αk if α > n−d
k

,

and

∞∫

(aδ )
1
k

µn,c,Φ (Aat−k) e−γttn−d−1dt

≤ (C36 + 2ε)





aβγ−n+d+βkΓ(n− d− βk) if β < n−d
k

− ln(a)a
n−d
k k−1 if β = n−d

k

a
n−d
k

δ
n−d
k
−β

−n+d+βk if β > n−d
k

.

Since these inequalities hold for any ε > 0, with (7.17) they imply the
inequalities of the theorem.

It remains to prove the point 6. Assume that β > n−d
k .

µn,Σ(A) =
γd

(n− d)γ(d)

∫

A

Σ(P )−
n−d
k dµn,c,Φ(P )

=
γd

(n− d)2γ(d)

∫

A

Σ(P )−
1
k∫

0

tn−d−1dtdµn,c,Φ(P ).

Using Fubini,

µn,Σ(A) =
γd

(n− d)2γ(d)

∞∫

0

∫

A

1
(

Σ(P ) < t−k
)

dµn,c,Φ(A)tn−d−1dt

=
γd

(n− d)2γ(d)

∞∫

0

µn,c,Φ(At−k)tn−d−1dt.

But, by assumption, there exists t0 such that

µn,c,Φ(At−k) ≤ 2C36t
−kβ,
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for t > t0. Therefore

(n− d)2γ(d)

γd
µn,Σ(A) ≤

t0∫

0

µn,c,Φ(At−k)tn−d−1dt+

∞∫

t0

2C36t
n−d−1−kβdt.

The first integral above is finite because µn,c,Φ(At−k) < µn,c,Φ(A) < ∞ and
n ≥ d+1. The second integral is also finite since n−d−1−kβ < −1. Hence
µn,Σ(A) <∞ and we can apply Lemma 7.5.1, which ends the proof.

We present now two corollaries of the cases 3 and 4 of Theorem 7.5.3.
The second is a specific case of the first.

Corollary 7.5.4. Let n be such that P(f(Ztyp) = n) > 0, and assume that
there exists a constant C38 such that

∫

Pn,c,Φ

1 (Σ(P ) < a) dµn,c,Φ(P ) ∼ C38a
n−d
k ,

when a→ 0. Then, for any ε > 0 and a→ 0,

P

(
Σ(Ztyp)

1
k

Φ(Ztyp)
> ε | f(Ztyp) = n , Σ(Ztyp) < a

)
∼ Cε
− ln(a)

,

where
Cε := kC−1

38 µn,Σ

({
P ∈ Pn,c,Φ : Σ(P ) > εk

})
.

Proof. Lemma 7.5.1 gives us that

C ′ε := µn,Σ

({
P ∈ Pn,c,Φ : Σ(P ) > εk

})
<∞,

and that

P

(
Σ(Ztyp)

1
k

Φ(Ztyp)
> ε , f(Ztyp) = n , Σ(Ztyp) < a

)
∼ C ′εa

n−d
k . (7.18)

With the setting of Theorem 7.5.3, we have α = β = n−d
k and C35 = C36 =

C38. Therefore the cases 3 and 4 of the theorem tells us that

P (f(Ztyp) = n , Σ(Ztyp) < a) ∼ k−1C38(− ln a)a
n−d
k . (7.19)

Combining (7.18) and (7.19) ends the proof.

As announced above the next corollary is a specific case of the previous
one. Basically it shows that in a planar line tessellation with only horizontal
and vertical lines, cells with small area tend to be degenerated, meaning that
their shape converges weakly to the shape of a line segment. It is a result
which was proved first by Beermann, Redenbach and Thäle in [BRT14], but
with an incorrect rate of convergence. The correct rate was presented in
the doctoral thesis of Beermann [Bee15]. Our result is slightly more precise
since we provide an explicit constant Cε.
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Corollary 7.5.5. Set d = 2, γ = 1 and ϕ = 1
4 (δe1 + δ−e1 + δe2 + δ−e2) .

Then, for any ε > 0,

P

(
V2(Ztyp)

1
2

V1(Ztyp)
> ε | V2(Ztyp) < a

)
∼ C4ε

− ln(a)
,

when a→ 0, where

C4ε = 16 ln

(
1 +
√

1− 4ε2

1−
√

1− 4ε2

)
∼ −32 ln(ε),

when ε→ 0.

Proof. Let us first describe the model. We have a planar line mosaic with
lines either horizontal or vertical. Each cell is a rectangle with sides sup-
ported by lines of equations x = x1, x = x2, y = y1 and y = y2 with x1 < x2

and y1 < y2. Therefore we consider the following identification

P4 = {(x1, x2, y1, y2) ∈ R4 : x1 < x2 , y1 < y2},

and

µ4(·) =

∫

P4

1((x1, x2, y1, y2) ∈ ·)dx1

4

dx2

4

dy1

4

dy2

4
.

The Φ-content of such a cell is 1
4 [(x2−x1) + (y2−y1)]. Thus Φ = 1

4V1 in the
setting of the corollary. We set the center to be the lower left corner, i.e.
the point of coordinate (x1, y1). By definition, the space of shapes P4,c,Φ is

{
(x1, x2, y1, y2) ∈ R4 : 0 = x1 < x2 , 0 = y1 < y2 ,

1

4
(x2 + y2) = 1

}
.

To simplify the notation, we do the following identification,

P4,c,Φ =

{
(x, y) ∈ R2 : 0 < x , 0 < y ,

1

4
(x+ y) = 1

}
.

Then the measure on P4,c,Φ can be written

µ4,c,Φ(·) =

∫

P4

1
(
(x1, y1) ∈ [0, 1]2

)
1

(
1

4
[(x2 − x1) + (y2 − y1)] ≤ 1

)

× 1
((

4(x2 − x1)

(x2 − x1) + (y2 − y1)
,

4(y2 − y1)

(x2 − x1) + (y2 − y1)

)
∈ ·
)

× dx1

4

dx2

4

dy1

4

dy2

4
,
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which can be written in a shorter form

µ4,c,Φ(·) =
1

16

4∫

0

4−x∫

0

1

((
4x

x+ y
,

4y

x+ y

)
∈ ·
)

dx

4

dy

4

Using the isomorphism

[0, 1]× [−1, 1] → {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x+ y ≤ 4}
(s, t) 7→ (x, y) = (2s(1 + t), 2s(1− t)) ,

we get

µ4,c,Φ(·) =
1

16

1∫

0

1∫

−1

1 ((2 + 2t , 2− 2t) ∈ ·) dt sds

=
1

32

1∫

−1

1 ((2 + 2t , 2− 2t) ∈ ·) dt. (7.20)

Now that we set up the model and that we presented the measure µ4,c,Φ

in a explicit simple form, we want to measure the importance of the quadri-
laterals P with a low isoperimetric ratio V2(P )1/2Φ(P )−1. For any a > 0,
we have

∫

P4,c,Φ

1 (V2(P ) < a) dµ4,c,Φ(P ) =
1

32

1∫

−1

1 ((2 + 2t)(2− 2t) < a) dt

=
1−

√
1− a

4

16

∼ a

128
.

Applying Corollary 7.5.4 gives, for a→ 0,

P

(
V2(Ztyp)

1
2

V1(Ztyp)
> ε | V2(Ztyp) < a

)
= P

(
V2(Ztyp)

1
2

Φ(Ztyp)
> 4ε | V2(Ztyp) < a

)

∼ C4ε

− ln(a)
,

with C4ε = 128 k µn,Σ
({
P ∈ Pn,c,Φ : Σ(P ) > (4ε)k

})
, where n = 4, Σ = V2

and k = 2. It only remains to compute explicitly the constant C4ε. By
definition of µn,Σ, see (7.13),

C4ε =
128γ2

γ(d)

∫

P4,c,Φ

1
(
V2(P ) > (4ε)2

)
V2(P )−1dµ4,c,Φ(P ).
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Recall that γ = 1. It is easy to get γ(d) = 1
16 . Thus, with (7.20), we have

C4ε =
128

32 1
16

1∫

−1

1
(
(2 + 2t)(2− 2t) > (4ε)2

)
[(2 + 2t)(2− 2t)]−1dt

= 32

√
1−4ε2∫

0

(1− t2)−1dt

= 32

[
1

2
ln

(
1 + t

1− t

)]√1−4ε2

t=0

= 16 ln

(
1 +
√

1− 4ε2

1−
√

1− 4ε2

)
.

Asymptotically we get, as ε→ 0,

C4ε ∼ 16 ln

(
2

1−
√

1− 4ε2

)

= 16 ln

(
2

2ε2 +O(ε4)

)

∼ −32 ln(ε),

which yields the proof.
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∆(ū) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
dH Hausdorff distance . . . . . . . . . . . . . . . . . . . 10, 76
dM distance of the space M . . . . . . . . . . . . . . . . . 32

ei canonical base vector of Rd . . . . . . . . . . . . . . 10
η Poisson hyperplane process . . . . . . . . . . . . . . 13
ηn6= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

f(·) number of facets . . . . . . . . . . . . . . . . . . . . . . . . . 10
Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ϕ directional distribution . . . . . . . . . . . . . . . . . . 12
fl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

γ intensity of η . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

γ(d) intensity of X . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Γγ,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Γ(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
gl shape factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

H set of hyperplanes . . . . . . . . . . . . . . . . . . . . . . . 12
hc,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Hd−1 (d− 1)-dimensional Hausdorff measure . . . 11
hΦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
h(K,u) support function of K evaluated in the direc-

tion u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
H− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
H+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

H̃ set of half spaces . . . . . . . . . . . . . . . . . . . . . . . . 23
H(u, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

H̃(u, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

κd surface area of the unit sphere Sd−1 . . . . . . 10
K set of convex bodies in Rd . . . . . . . . . . . . . . . 10
Kc,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Ki set of i-dimensional convex bodies in Rd . 76
K′ set of convex and compact sets in Rd with at

least two points . . . . . . . . . . . . . . . . . . . . . . . . . . 10



List of Notations 125

Kext extremal body . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
KΦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Ko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Ko,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

λ
(n)
1 homogeneous measure of degree n on R . . 24
λd d-dimensional Lebesgue measure . . . . . . . . . 10

µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
µn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
µn,c,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
µn,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
µn,Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
µ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
nmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

O(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
o origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ωd volume of the unit ball Bd . . . . . . . . . . . . . . . 10
o(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

P set of polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Pc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Pc,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Pn set of n-topes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
P[n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Pn,c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Pn,c,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Pn,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Pn,o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Pn,o,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Po . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Po,Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
P′k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Q grain distribution . . . . . . . . . . . . . . . . . . . . . . . . 27
qn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



126 List of Notations

qεn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

R+ non negative numbers. . . . . . . . . . . . . . . . . . . . 10
r distance exponent . . . . . . . . . . . . . . . . . . . . . . . 12
r inradius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Rd euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
rεn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

sc,Φ shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
sΦ shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Σ size measurement . . . . . . . . . . . . . . . . . . . . . . . . 74
σ surface area measure. . . . . . . . . . . . . . . . . . . . . 10
Sn set of the permutations of n elements . . . . 46
σ′v,t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

s shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Sd−1(x, r) sphere of center x and radius r . . . . . . . . . . 10
Sd−1 unit sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Θ intensity measure of η . . . . . . . . . . . . . . . . . . . 12
Θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Vϕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Vi(K) i-th intrinsic volume of K . . . . . . . . . . . . . . . . 11
Vj(K)1/j

Vi(K)1/i (i, j)-isoperimetric ratio of K . . . . . . . . . . . . 11
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