
Authors’ version of paper appearing in KI 2015 proceedings, see
http://www.springer.com/us/book/9783319244884.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-24489-1_28.

Hierarchical Hybrid Planning in a Mobile
Service Robot

Sebastian Stock1,2, Masoumeh Mansouri3, Federico Pecora3, and Joachim
Hertzberg1,2

1 DFKI-RIC Osnabrück Branch, D-49069 Osnabrück, Germany
2 Osnabrück University, D-49069 Osnabrück, Germany

3 Örebro University, SE-70182 Örebro, Sweden

Abstract. Planning with diverse knowledge, i.e., hybrid planning, is es-
sential for robotic applications. However, powerful heuristics are needed
to reason efficiently in the resulting large search spaces. HTN planning
provides a means to reduce the search space; furthermore, meta-CSP
search has shown promise in hybrid domains, both wrt. search and on-
line plan adaptation. In this paper we combine the two approaches by
implementing HTN-style task decomposition as a meta-constraint in a
meta-CSP search, resulting in an HTN planner able to handle very rich
domain knowledge. The planner produces partial-order plans and if sev-
eral goal tasks are given, subtasks can be shared, leading to shorter
plans. We demonstrate the straightforward integration of different kinds
of knowledge for causal, temporal and resource knowledge as well as
knowledge provided by an external path planner. The resulting online
planner, CHIMP, is integrated in a plan-based robot control system and
is demonstrated to physically guide a PR2 robot.4

Keywords: Robot Planning, Hierarchical Task Networks, Cognitive Robotics

1 Introduction

Robot task planning has to be hybrid, i.e., span over temporal, spatial, and re-
source reasoning, in addition to task sequence and condition achievement. Con-
sider a waiter robot as used as the demo example throughout the paper (Fig. 1).
To serve sugar and a hot coffee, it must reason about the consequences of each
action’s duration (reasoning about time), explore alternative ways of bringing
coffee and sugar considering available resources (reasoning about method de-
composition and resources), and obtain a kinematically feasible path (reasoning
about space). A solution to each subproblem has to take into account the solu-
tions of the others. In fact, any feasible plan fulfilling the high-level requirements
(e.g., serve a “hot” coffee) is a solution in the cross-product of the individual
search spaces. Note that many of these search spaces correspond to domain-
dependent knowledge that varies among different robot platforms. Therefore, as

4 This work was supported by the EC Seventh Framework Program theme FP7-ICT-
2011-7, grant agreement no. 287752. (project-race.eu)

guest1
sugar2

milk1

coffee1

table2table1

counter1

Fig. 1. Demo scenario. Photo: PR2 carrying milk pot and coffee jug. Sketch: Part of
the fake restaurant layout and initial situation. Another counter2 is located far away.

proposed by [8], the different sub-spaces should be integrated in a general way
to avoid designing a new integrated algorithm for each new application.

In response to this challenge, we use a meta-CSP approach [8] for achieving
hybrid problem solvers. It is based on principles of constraint reasoning and
the notion of abstraction through meta-constraints, which represent high-level
requirements. However, as casting hybrid robot planning as a meta-CSP means
searching for a plan in the cross-product of the different representation sub-
spaces (time, space, resources, etc.), a powerful means for guiding the search is
needed to keep this feasible. In this paper, we propose to use HTN planning [4] as
this means. It focuses dramatically the search through the cross-product search
space by its decomposition rules. We show how to integrate HTN planning in a
straightforward way in the disguise of a meta-constraint in the meta-CSP; this
is done in our new planner CHIMP (“Conflict-driven Hierarchical Meta-CSP
Planner”). The resulting plans are hybrid owing to the meta-CSP representation,
and they are hierarchical owing to the HTN decomposition structure, which
keeps being visible in the final plan representation.

2 Related Work

Integrating HTN planning with other forms of reasoning has been attempted in
several ways. ANML [10] is an expressive planning language supporting temporal
relations, resource usage, and HTN methods. The first planner to integrate most
of ANML, including HTN task decomposition, is the recently introduced planner
FAPE [3]. It interleaves deliberative acting, plan repair and re-planning.

Attaching a theory procedurally to a set of symbols (e.g., a task or state) is
common practice in combining task and motion planning, and is essential for on-
line planning. Predicates act as interfaces between the discrete space of high-level
specification and the continuous space of robot configuration. Many application
systems use HTN planning as a means of high-level domain modeling for task
planning. [9] interleave geometric planning and HTN-based task planning. Pred-
icates are shared between the two planners, allowing them to backtrack to a
certain level in the joint search space. [5] integrate task and motion planning
with a hierarchical planner. It uses the hierarchy not only as a heuristic, but

commits to choices at an abstract level and starts to execute parts of the hierar-
chy without creating a full plan. This assumes that actions are reversible, which
is not required by our approach, and it does not include temporal and resource
reasoning, and it creates only total-order plans. [6] verifies kinematic feasibility
of choices made by HTN planning through geometric backtracking.

While the mentioned approaches aim at integrating specific forms of knowl-
edge, we argue that the problem should be solved in a more general way. There-
fore, we extend the work by [8], which casts the problem of reasoning about action
into a meta-constraint. Although capable of combining task planning with other
forms of reasoning, it does not leverage sophisticated planning heuristics, nor
does it provide hierarchical decomposition capabilities in its domain specifica-
tion language, an issue we address explicitly in this paper.

3 Approach

A meta-CSP [8] is a high-level CSP representing a hybrid problem in different
levels of abstraction. Meta-constraints impose high-level requirements on a com-
mon constraint network that is called a ground-CSP. Parts of this constraint
network that do not adhere to these requirements are called meta-variables.
Meta-variables represent flaws, the resolution of which are meta-values, i.e., dif-
ferent ways of resolving a flaw. Meta-constraints and their meta-variables define
a meta-CSP, i.e., a constraint network at a higher abstraction level.

Therefore, our planner CHIMP uses a constraint-based representation for its
state and tasks. This allows CHIMP to impose requirements by adding con-
straints or variables. Its variables in the ground-CSP are fluents that consist of a
predicate symbol, a set of symbolic variables, a flexible temporal interval, within
which the predicate evaluates to true, and a function that indicates the fluent’s
use of reusable resources. We distinguish state fluents and task fluents. They can
be bound by three types of constraints: temporal, binding and causal constraints.
We use convex relations in Allen’s Interval Algebra (IA) [1, 7] as temporal con-
straints. Binding constraints restrict the domain of symbolic variables of fluents.
They are used to ground methods and operators. Causal constraints represent
the causal relations of the resulting plan. For details we refer to [11].

To do HTN planning in the meta-CSP approach, we represent standard HTN
task decomposition as a meta-constraint. Its meta-variables are the set of un-
planned task fluents with no unplanned predecessors. These conflicts get resolved
either by applying an operator or method to the unplanned task, or by unifying
the unplanned task to a previously planned task fluent. In both cases additional
constraints or variables are added to the ground-CSP. As usual in the meta-CSP
approach, propagation in the underlying constraint networks is applied. If this
leads to an inconsistency in one of those constraint networks, we backtrack.

Fig. 2, left, shows an example. The constraint network consists of two flu-
ents representing the initial situation (the robot is at counter1 and mug1 is on
counter1) and a fluent for the task of getting some mug. Applying a method
to get object results in the right constraint network of Fig. 2. The method con-

[1,600][1,600]

[0,0] [2,599]

[1,600][1,600]

DC e

[0,0] [inf,inf]
 PRE

 PLANNED

d

o
= =

On mug1 counter1

RobotAt counter1 get_object mug1

!grasp mug1

PRE

=

d
[0,0] [inf,inf]On mug1 counter1

[0,0] [inf,inf]RobotAt counter1

[1,600][1,600]get_object ?mug

=

Fig. 2. Left: Constraint network of the initial situation. Predicates and variables of a
fluent are green, time intervals are red. Right: Result of applying a method. Causal
constraints are black, binding constraints are green and temporal constraints are red.

�✁✂✄☎✆✝�✞✂✆✟✟✝

�✟✂✟✝ �✠✂✄☎✡✝

☛☞✌

�✁✂✄☎✆✝�✞✂✆✟✟✝

✍✎
✏

✎✑✒✓✌✓

�✟✂✟✝ �✔✕✖✂✔✕✖✝

�✗✂✄☎☎✝ �✔✕✖✂✔✕✖✝

✒☛✌✘✓

☛☞✌

☛☞✌

☛✑✙✘✘✌✍

☛✑✙✘✘✌✍

✚

✛

✜

✜

✜

✜

✜

✢✕ ✣✤✥✁ ✦✛✤✕✧✏★✁

✩✛✪✛✧✫✧ ✦✛✤✕✧✏★✁ ✥✏✧✬✛✪✭✏✦✧ ✣✤✥✁

✮✥★✯✰✱

✣✤✥✁

✣✤✥✁

✲✛✳✚✔✕✥

✛

✛

☛☞✌

✚

Fig. 3. Result of applying a method and an operator.

nects the RobotAt and On fluents as preconditions to the task fluent. This adds
binding and temporal constraints, too, by which the symbolic variables of the
get object fluent are ground. Furthermore, the new task fluent !grasp is created
and connected to get object with a decomposition relation (dc) and temporal
and binding constraints. As the robot is already at counter1, the task get object
is decomposed to the single subtask !grasp. If the robot were at a different po-
sition, another method that involves driving would be used.

Next, we can apply an operator to the fluent !grasp (cf. Fig. 3). Analogously
to the previous method, it adds constraints for the preconditions. The fluent On
is a negative effect of grasping. Therefore, the causal relation closes is added. As
a positive effect the robot is now Holding mug1. The finish times of both effects
are updated according to the temporal relations they have with the operator.

Fig. 4 gives an example for unifying a task to a task that was already planned.
There are two goal tasks for getting mugs: one for mug1 and another for mug2.
Initially, the conflict is the second task for driving, which is unplanned. This can
be resolved by adding a unification constraint to the other driving tasks that
has already been planned. This way the second drive need not be decomposed.

Whereas the HTN approach as such provides a very powerful means to reduce
the search space, choosing appropriate value-ordering heuristics is important.
The value-ordering heuristic used in our scenario favors, first, unification of tasks;
second, a low number of subtasks; and third, binding preconditions to fluents
with a late starting time. Details of this are out of the scope of this paper.

DC

 OPENS

 PLANNED
 PLANNED PLANNED

[1,594][4,600]

[3,599][4,600]

DC PLANNED

[1,594] [2,595] MATCHES

... ...

get_object mug1

drive counter1 mug1
mug2

mug2!graspcounter1

get_object

drive

!grasp

[1,594][7,600]

[3,596][7,600]

DC
 PLANNED

DC
ORDERING

[1,594] [2,595]

ORDERING

 OPENS

Fig. 4. Constraint network after unifying the tasks for driving. The Binding and tem-
poral constraints and preconditions and effects are omitted for simplicity.

An advantage of the meta-CSP approach is that we can enforce other kinds
of high-level requirements by adding further meta-constraints. In our demon-
stration scenario it is important for the robot to estimate the time it takes to
drive from one area to another to make sure that tasks that have a deadline will
not take too long. This depends on the restaurant layout itself but also objects
like unforeseen chairs that block the robot’s path. An appropriate source for this
kind of knowledge is the robot’s path planner. Therefore, a meta-constraint is
created whose meta-variables are tasks of type !move base for which no duration
was assigned. Such a conflict is resolved by setting its expected duration based
on a the distance between the start and goal poses calculated by the robot’s
path planner by way of procedural attachment.

Resource reasoning becomes crucial when generating partial-order plans. To
ensure resource feasibility a meta-constraint is added like in [8], who use a prece-
dence constraint posting method as proposed by [2].

4 Performance example

We demonstrate our approach in the restaurant scenario shown in Fig. 1. Our
robot gets the goal task of serving a coffee to guest1, The latest finish time is
set to 600 sec. to make sure that the coffee is served hot. Serving a coffee implies
that a sugar pot and a milk jug have to be on the table, too. We model this
requirement as subtasks in the method for serving coffee.

The initial situation has two sugar pots, one on counter2 and one on table1.
The only milk jug is on counter1. Standard HTN planning could create a plan
that involves driving to counter2 in the kitchen to get the sugar. This is causally
feasible, but the guest would get served cold coffee. As CHIMP is aware of time,
it notices that this plan takes too long, i.e., is temporally infeasible. Therefore,
it tries alternative HTN methods that lead to using the other sugar from table2.

An estimate of the expected duration of driving is added to the constraint
network as a meta-value posted by the meta-constraint encapsulating the path
planner (see previous section). This duration accounts for the actual restaurant
layout and provokes the search to choose method decompositions that do not
conflict with the temporal requirement. This is but one example of other kinds of
external knowledge that the planner can use, thanks to the meta-CSP approach.

A domain representation consisting of 11 operators and 28 methods was used.
After sending the goal to the robot, it generated a plan containing 39 operators,
of which Listing 1.1 shows the first 8 with their predicates and flexible temporal
intervals in milliseconds. The time points indicate that the plan is partially
ordered, e.g., !move torso and !tuck arms have the same earliest start time, and
both arms may be moved to the side in parallel. By using resource constraints
we made sure that it can only manipulate one object at a time, as the robot has
to look at the object. Therefore, it picks up coffee1 after picking up milk1. In
the remainder of the plan the robot completes the goal task, using sugar2 from
table1. Note that the domain contained no methods for moving multiple objects.
The planner used its partial-order planning capability and the task unification
to already planned tasks for interleaving the tasks of moving the coffee and the
milk. As a result of its limited holding capacity it was planned to bring the sugar
after the first two objects.

The complete plan-based execution cycle was run on a physical PR2 robot.
CHIMP’s planning time was 20.5 seconds. For plan execution, a time-line based
dispatching approach was employed. The constraint network is permanently up-
dated as the time proceeds and actions are finished. An action is dispatched as
soon as its earliest start time is less than the robot’s time. For details about
the integration on the real robot and an evaluation of the runtime for various
demo problems we refer to [11], which also describes how plans for additional
goal tasks can be merged online into an existing plan that is being executed.

!move_base(preMAreaECnt1) [12, 464970] , [30012 , 494970]
!move_torso(TorsoUpPosture) [30013 , 498972] , [34013 , 502972]
!tuck_arms(UnTucked UnTucked) [30013 , 494971] , [34013 , 498971]
!move_arm_to_side(lArm1) [34014 , 498972] , [38014 , 502972]
!move_arm_to_side(rArm1) [34014 , 498972] , [38014 , 502972]
!move_straight(mAreaEastCnt1) [38015 , 502973] , [42015 , 506973]
!pick_up_object(milk1 rArm1) [42016 , 506974] , [46016 , 510974]
!pick_up_object(coffee1 lArm1)[46016 , 510974] , [50016 , 514974]

Listing 1.1. First 8 operators of the plan for serving a hot coffee with milk and sugar.

5 Conclusion and Outlook

We have presented the hierarchical hybrid planner CHIMP that combines the
advantages of HTN planning and meta-CSP reasoning; and have integrated it
on a physical PR2 robot. With HTN task decomposition as a meta-Constraint it
employs a powerful tool to restrict the huge hybrid search space – a part that was
lacking in the meta-CSP approach. It produces partial-order plans with actions
that can be executed in parallel. This and the sharing of subtasks may lead to
shorter plans without the need of modeling further HTN methods.

More kinds of knowledge may be introduced by attaching further meta-
Constraints. We demonstrated this by example of an external path planner;
we will extend it with spatial knowledge as done in [8]. In other future work we
will investigate means for repairing parts of the plan and we will explore value
ordering heuristics for meta-values in more detail.

References

1. Allen, J.: Towards a general theory of action and time. Artif. Intell. 23(2), 123–154
(1984)

2. Cesta, A., Oddi, A., Smith, S.F.: A constraint-based method for project scheduling
with time windows. Journal of Heuristics 8(1), 109–136 (January 2002)

3. Dvorak, F., Bit-Monnot, A., Ingrand, F., Ghallab, M.: A flexible ANML actor and
planner in robotics. In: Proc. of Planning and Robotics Workshop at ICAPS (2014)

4. Erol, K., Hendler, J., Nau, D.: HTN Planning: Complexity and expressivity. In:
Proc. AAAI. pp. 1123–1128 (1994)

5. Kaelbling, L.P., Lozano-Pérez, T.: Hierarchical planning in the now. In: IEEE
Conference on Robotics and Automation (ICRA) (2011)

6. Lagriffoul, F., Dimitrov, D., Saffiotti, A., Karlsson, L.: Constraint propagation on
interval bounds for dealing with geometric backtracking. In: Proc. of IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems (2012)

7. Ligozat, G.: A new proof of tractability for ORD-Horn relations. In: AAAI Work-
shop on Spatial and Temporal Reasoning (1996)

8. Mansouri, M., Pecora, F.: More knowledge on the table: Planning with space,
time and resources for robots. In: IEEE International Conference on Robotics and
Automation (ICRA) (2014)

9. de Silva, L., Pandey, A.K., Alami, R.: An interface for interleaved symbolic-
geometric planning and backtracking. In: IROS. IEEE (2013)

10. Smith, D.E., Cushing, W.: The ANML language. In: Proc. of the Scheduling and
Planning Applications Workshop at ICAPS (2008)

11. Stock, S., Mansouri, M., Pecora, F., Hertzberg, J.: Online task merging with a
hierarchical hybrid task planner for mobile service robots. In: Proc. IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems (IROS) (2015), in press

