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Abstract

This thesis addresses visual tracking of a non-cooperative as well as a partially cooper-

ative satellite, to enable close-range rendezvous between a servicer and a target (client)

satellite. The servicer satellite approaches the target to capture its region of interest

(e.g. its nozzle) and perform orbital life extension operations such as refueling and re-

pairing. Tracking and estimation of relative motion between the servicer and the client

is a critical ability for rendezvous and proximity operation. For this purpose, LIDAR

has been widely employed in cooperative rendezvous and docking missions. However,

LIDAR has high weight and rotating parts, and consumes more power. On the other

hand, inexpensive on-board cameras can provide an effective solution, working at a wide

range of distances. However, conditions of space lighting are particularly challenging

for image-based tracking algorithms, because of the direct sunlight exposure, and due

to the glossy surface of the satellite that creates strong reflection and saturation which

leads to difficulties in tracking procedures.

In order to address these difficulties, the relevant literature is examined in the fields

of computer vision, and satellite rendezvous and docking. Two classes of problems are

identified and relevant solutions, implemented on a standard computer are provided.

Firstly, in the absence of a geometric model of the satellite, the thesis presents a robust

feature-based method with prediction capability in case of insufficient features, relying

on a point-wise motion model. Secondly, we employ a robust model-based hierarchical

position tracking method to handle change of image features along a range of distances,

and localize an attitude-controlled (partially cooperative) satellite. For this purpose, a

histogram-based foreground and background segmentation is directly integrated into the

position optimization loop in 3D space at mid-range, followed by an edge-based local-

ization of the nozzle of the satellite at close-range. Moreover, the thesis presents a pose

tracking method addressing ambiguities in edge-matching and pose detection algorithm

based on appearance model learning. For the validation of the algorithms, real camera

images and ground truth data are used, which have been generated with a laboratory

test bed that provides illumination conditions, satellite motion and optical characteris-

tics similar to space. Comparisons with state of the art methods are performed.

In conclusion, both motion and pose tracking approaches are extensively validated using

ground hardware and software systems simulating space environment, optical character-

istics and motion of a full scale satellite. The experimental results indicate that camera

based methods provide robust and accurate tracking for the approach of malfunction-

ing satellites in spite of the difficulties associated with specularities and direct sunlight.

Also exceptional lighting conditions associated to the sun angle are discussed, aimed at

achieving fully reliable localization systems in a certain mission.
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Zussammenfassung

Diese Doktorarbeit befasst sich mit dem visuellen Tracking eines nicht-kooperativen

sowie eines teilweise kooperativen Satelliten, um Rendezvousmanöver zwischen einem

Servicer- und einem Target-Satelliten (Client-Satelliten) im Nahbereich zu ermöglichen.

Hierfür nähert sich der Servicer- dem Target-Satelliten um einen Zielbereich zu

erfassen (z.B. dessen Düse) um Maßnahmen zur Lebensverlängerung wie z.B. Auf-

tanken oder Reparaturen durchzuführen. Tracking und relative Bewegungsschätzung

zwischen dem Servicer- und dem Client-Satelliten sind essentiell für Rendezvous-

und Annäherungsoperationen. Zu diesem Zweck wurde und wird meist LIDAR in

kooperativen Rendezvous-und Docking-Missionen eingesetzt. Die Nachteile von LIDAR

sind unter anderem ein hohes Gewicht, rotierende Teile und der hohe Energieverbrauch

des aktiven Sensors. Im Gegensatz hierzu können kostengünstige Onboard-Kameras

eine effektive Lösung bieten, da sie ebenfalls bei einer Vielzahl von Aufnahmedis-

tanzen funktionieren. Allerdings sind die Beleuchtungsbedingungen im Weltraum eine

besondere Herausforderung für Algorithmen zum bildbasierten Tracking. Die direkte

Sonneneinstrahlung und zahlreiche glänzende Oberflächen eines Satelliten, die starke

Reflexionen und gesättigte Bildbereiche hervorrufen, führen zu Schwierigkeiten beim

Tracking.

Um Lösungen hierfür zu finden, wird die relevante Literatur in den Bereichen Com-

puter Vision und Satelliten-Rendezvous und -Docking untersucht. Zwei Klassen von

Problemen werden identifiziert und für diese relevante Lösungen werden auf einem

Standard-Computer implementiert. Zuerst wird in dieser Arbeite, ohne Nutzung eines

geometrischen Modells des Satelliten, ein robustes merkmalbasiertes Verfahren mit

Vorhersagefähigkeit bei ungenügenden Merkmalen gezeigt, welches auf ein punktweises

Bewegungsmodell zurückgreift. Als Nächstes verwendet der Autor eine robuste,

modellbasierte, hierarchische Positionstracking-Methode um die Veränderungen von

Bildmerkmalen über einen Distanzbereich zu handhaben, damit ein teilweise ko-

operativer Satellit mit funktionierender Lageregelung lokalisiert werden kann. Für

den mittleren Distanzbereich wird eine auf Histogrammen basierende Vordergrund-

und Hintergrundsegmentierung direkt in die Optimierungsschleife für die Position,

welche im 3D-Raum durchgeführt wird, integriert. Für den Nahbereich wird eine

kantenbasierte Lokalisierung der Satellitendüse verwendet. Des weiteren wird in dieser

Arbeit eine Methode zum Tracking der Pose gezeigt, welche auch Mehrdeutigkeiten

berücksichtigt, die beim Kantenmatching und bei Erkennungsalgorithmen für die Pose

mittels Erscheinungsmodell-Lernen auftreten. Für die Validierung der Algorithmen

werden Kamerabilder sowie Referenzdaten aus einem Testlabor genutzt, welches

Beleuchtungsbedingungen, Satellitenbewegungen und optische Eigenschaften ähnlich zu



vii

denen im Weltraum bietet. Vergleiche mit Methoden des aktuellen Stands der Technik

werden durchgeführt.

Abschließend werden sowohl Ansätze zur Bewegungs- als auch Lageschätzung um-

fassend validiert, indem bodengestützte Hardware- und Software-Systeme genutzt

werden, welche die Weltraumumgebung, die optischen Eigenschaften und die Bewegung

eines maßstabsgetreuen Satelliten simulieren. Die experimentellen Ergebnisse zeigen,

dass kamerabasierte Methoden, trotz der Schwierigkeiten mit Spiegelungen und direkter

Sonneneinstrahlung, robustes und genaues Tracking für die Annäherung an einen nicht

funktionierenden Satelliten ermöglichen. Zudem werden in der Arbeit außergewöhnliche

Lichtbedingungen aufgrund des Sonneneinstrahlwinkels behandelt um ein komplett

zuverlässiges Lokalisierungssystem für eine bestimmte Mission zu erreichen.
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Chapter 1

Introduction

Ever since satellites have been placed in orbits, the capability to access and service such

precious space assets has remained a growing interest. The success of servicing the Hub-

ble telescope and the International Space Station has been an important milestone for

unmanned on-orbit servicing (OOS) technology. In particular, spectacular success has

been achieved in rendezvous and docking (RVD) for the experimental mission Gemini,

where Gemini 6 maneuvered to and kept in station with Gemini 7 within a few centime-

ter distance (Fig. 1.1). Subsequent missions further validated rendezvous and docking,

followed by a successful boosting of docked spacecrafts into higher orbits. Thus, the

rendezvous and docking capability demonstrated since 1960s has played a key role in

today’s ambition of potential on-orbit satellite servicing (see Table A.1 in Appendix A

for brief history of RVD missions).

Figure 1.1: Rendezvous of Gemini-VII, as approached by Gemini-VI (left) and rear
view of the Gemini-VII (right).

1
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Currently, on-orbit servicing capability is crucial as the number of aging satellites has

continued to increase dramatically and they occupy precious orbits, such as the geo-

stationary Earth orbit (GEO) which is a limited resource for communication satellites.

OOS requires orbital manipulation of resident objects, including on one hand the ca-

pability to remove orbital debris in order to free and reuse the orbit, and on the other

hand to repair, maintain and upgrade the client satellite, thus extending its lifetime.

On-orbit servicing activities consist in an approach phase, where rendezvous and prox-

imity operations are performed, and capture phase, which brings the servicer and target

satellite in contact. In this context, the client satellite can be cooperative or non-

cooperative; cooperative satellites provide features that make servicing activities easier,

such as fiducial markers to help localization, or active guidance facilities to help ren-

dezvous maneuvers. In this thesis, we consider instead non-cooperative satellites which

are not pre-designed for on-orbit servicing, passive and markerless, as well as those with

near end of their lifespan but still able to keep a controlled attitude (partially cooperative

satellite).

In approach and capture phase, the relative position and attitude between the client

and servicer must be determined. Since decades, LIDAR based measurements have been

intensively employed to estimate range and pose of cooperative satellites for rendezvous

and docking missions, for example videometer for Automated Transfer Vehicle (ATV),

advanced video guidance sensor for DART, and rendezvous and docking sensor for ATV

Jules Verne. However, LIDAR has a relatively high weight and a rotating part which

wears during time, and it consumes relatively much power. In contrast, a camera is

a passive and static device, with a low weight and low power consumption. The two

technologies operate differently in the harsh space environment: while the LIDAR can

scan texture-less surfaces and operate under relatively strong lighting, it has a limited

accuracy and cannot easily take advantage of local features (such as surface edges and

texture). The camera, on the other hand, relies on surface features mainly provided by

the object contours, as the surface is mostly texture-less and glossy.

There exists an intense and highly directional sunlight in the space environment which

results in several bright and dark shadows, i.e. easily saturates the camera sensor. On

the other hand, the Earth’s albedo provides a source of diffuse light that can reduce

image contrast. Moreover, the surface of a satellite is usually wrapped in multilayer
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insulation (MLI) material for thermal protection. Thus, the optical characteristics of

the client and the space environment result in strong specular reflections, posing non-

trivial difficulties for visual tracking.

This thesis aims at robust camera based tracking and motion estimation methods for

rendezvous of a space object under such space lighting condition. The camera mounted

on a servicer satellite is used to determine relative position and orientation (pose) of

the client in the presence of strong reflection, shadow and image saturation. This work

investigates and proposes an appropriate robust method to localize and estimate poses

using various features of the client, for example nozzle of the satellite at close-range,

sparse features, and a general satellite model depending on the structure and shape of

the satellite.

1.1 Objectives

The goal of this thesis is to provide and validate robust motion estimation methods for

on-orbit servicing under difficult space environment and highly reflective surface. In the

present work, two possible scenarios are independently addressed; partially cooperative

and non-cooperative clients. Partially cooperative targets, are temporarily functioning

and under full control, but they miss a few important parts, or are about to run out of

fuel. On the other hand, non-cooperative targets, instead, are full satellites or debris

completely out of control, freely tumbling or spinning in space. While both targets have

common optical characteristics to the space illumination, targets with tumbling motion

pose further difficulty for tracking because of arbitrary motion. Regardless of the type

of the target, the client motion has to be reliably estimated, tracked and predicted for

on-orbit servicing mission. In this context, the overall objective of the thesis includes:

• generating realistic ground truth data and images for extensive evaluation of the

state of the art and novel vision-based localization methods using RVD mock-up

system [1]. The mock-up consists of terrestrial setup that reproduces satellite

dynamics (such as trajectory of tumbling motion), space environment (spectrum

and intensity of the Sun) and optical characteristics of the client satellite or debris.

• providing a novel and accurate motion estimation method which is relatively robust

to specular reflection of the multilayer insulation (MLI) of the satellite,
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• integrating robust vision based pose estimation and tracking methods particularly

for close-range rendezvous and manipulation of a client satellite.

1.2 State of the Art

The success of rendezvous and docking of a satellite depends highly on relative posi-

tion and orientation measurements [2]. In general, rendezvous sensors are employed to

estimate relative states of satellites from far- and close-range. In many cases, ranging

and GPS are used for far-range absolute navigation (up to 1 km) in Low Earth Orbit

(LEO). However, GPS data may not be observable in GEO, hence ranging is mostly

employed. For non-cooperative targets, a RADAR tracking from the ground provides

effective solution allowing similar accuracy. For relatively lower ranges, relative nav-

igation sensors such as RGPS, RADAR, LIDAR and Camera can be used. RADAR

and LIDAR are appropriate technologies for OOS missions to reduce the relative range

between the servicer and the client satellites to orders of 10 m [3].

However, the high power consumption and relatively heavy mass and volume of these

sensors constrain the power and mass budget of the servicing satellite. Consequently,

a camera based navigation is preferable particularly for close-range relative navigation

because of its lower mass, volume and power consumption. The camera based navigation,

however, depends on the distinguishable image features of the client satellite, which are

limited within a relative distance of several tens of meters between servicer and client.

For this reason, the state of the art rendezvous of a satellite relies on the LIDAR and

cameras with retro-reflectors on the client. However, the client satellite in orbit servicing

missions is assumed either non-cooperative or partially cooperative, hence not accessible

for mounting visual aids for camera based navigation.

On the other hand, camera based markerless 3D motion estimation has been widely

practiced in robotics and industrial application. For this purpose, model based meth-

ods [4, 5] which, match re-projected model edges to observed edges in the image, have

been used for tracking of texture-less objects. Stereo camera based tracking that exploits

optical flow methods [6] and descriptor matching [7] serves the same purpose in the ab-

sence of geometric model. These methods provide desirable accuracy and robustness

under normal illumination. However, as stated earlier, illumination condition in space
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Figure 1.2: DEOS: German on-orbit satellite servicing robotic mission for rendezvous,
capture and docking of client satellite. After the servicer (right) approaches the client
(left), a robot arm mounted on the servicer grasps the client and performs the desired

operations.

and the reflective property of the surface of the satellite hinders to exploit the state of

the art vision based methods for 3D motion estimation.

This thesis, inspired by DEOS on-orbit servicing mission (Fig. 1.2), aims to mitigate the

problem of camera based 3D motion estimation and tracking due to illumination and

reflective surface properties using an utmost realistic test environment.

1.3 Thesis Outline

This work addresses motion estimation and tracking methods, for on-orbit satellite ser-

vicing. The targets of the visual tracking include malfunctioned satellites or debris in

the absence of their geometric models and partially or fully non-cooperative satellites

in the presence of geometric models. Motion estimation and tracking hereafter refers to

the visual tracking in the absence of a computer-aided design (CAD) model, while pose

tracking refers to visual tracking in the presence of the CAD model of the satellite.

1.3.1 Contributions

The thesis consists in novel contributions to the development of vision-based localization

for on-orbit servicing. It focuses on realistic images similar to space scenario as a part

of applied research in the challenging space environment.

From an experimental point of view, this thesis provides extensive ground truth data

and real camera image sequences for evaluation of vision-based localization algorithms
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for rendezvous and capture of a satellite based on a ground hardware system, consisting

of satellite motion, its optical characteristics and space environment. The experimental

data which consists of image sequences and associated ground truth motion trajectories,

is built so as to reflect various satellite poses including spinning and tumbling, specular

reflections and shadows. Moreover, to account for hardware constraint for providing ide-

ally noiseless ground truth and accurate spectrum of the Sun, photo-realistic rendering

is employed.

From the methodological point of view, the thesis on the other hand, explores model-free

feature-based tracking and model-based localization methods and makes advancements

in the regard to robustness and accuracy. Moreover, we follow the current space standard

and rely on a standard computer with a single thread implementation for real-time

application.

Firstly, we present a novel model-free motion tracking method in 6 degrees of freedom,

with predictive capability in the absence of sufficient features. Previous model-free ap-

proaches such as [8] attempt to recover relative pose, from set of 3D points reconstructed

with stereo and register [9–11] them, or from structure and motion estimation (for exam-

ple, [12]). The former, is well known in ego-motion estimation and provides reasonable

accuracy and robustness for relatively low noise camera images and objects rich in tex-

ture, while the later is highly prone to local minimum due to large free parameters

during minimization. The present work, in contrast, takes account of relatively less

textured satellite and employ stereo tracking approach, by integrating point-wise kine-

matics model of each feature into Bayesian filter such as Kalman filter to help predict

the motion, also in case of any missing measurements.

Secondly, we provide a robust model-based hierarchical position localization method

to handle change of image features along a range of distances, and localize a partially

cooperative satellite. A histogram-based foreground and background segmentation is

directly integrated into the position optimization loop in 3D space at mid-range, followed

by an edge-based localization of the thrust engine (nozzle) of the satellite at close-range.

A robust model-based nozzle detection method, relying on stereo images is also provided.

Moreover, we adapt the state of the art model and image edge alignment methods to

handle strong specular reflection and shadow for pose tracking of fully non-cooperative

and tumbling satellite. The proposed method adapts an edge-based tracking method [4]
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Figure 1.3: Graphical illustration of the main Chapters of the thesis.

by introducing adaptive search length for edge matching, and handling specularity. The

related model-based satellite tracking approach [13] also employed [4] to demonstrate

the performance with a scaled satellite mock-up. However, the mock-up consists of

several contours (edges) and little multilayer insulation, which is relatively easier for

model-based tracking. Similarly, during writing this thesis, [14] presented a satellite

tracking method combining edges [15] and color statistics [16], however relying on GPU

for real-time performance.

Thirdly, the thesis presents a global pose detection method, based on appearance learn-

ing which is not in literature to the best of our knowledge. The features of a mock-up

satellite are used to learn the appearance under several illumination direction and views.

We employ the concept of bag-of-words realized in a vocabulary tree for fast retrieval of

observed image, to estimate the 3D pose from the 3D-2D feature correspondences. The

3D points are computed off-line by re-projecting training features stored in database,

using Z-buffer rendering of the CAD model. The summary of the Chapters of the main

contributions is presented in Fig. 1.3.
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1.3.2 Overview

Literature that addresses 3D motion estimation and tracking in the context of a satellite

rendezvous, docking and proximity operations are presented in Chapter 2. Moreover,

the chapter explores the methods commonly used for tracking objects under normal

illumination, and points the current camera based methods proposed for on-orbit satellite

servicing. Chapter 2 is intended to provide general review of related literature, however

the most related literature to this thesis may be repeated in the corresponding chapter.

Some background explanations are provided in Chapter 3 in order to introduce readers

from various background such as aerospace engineering. This Chapter also offers a basic

theoretical framework for the subsequent chapters.

Realistic data to validate and verify the methods is emphasized in the thesis. Chapter 4

details how the space environment, satellite motion and optical characteristics of its

surface are terrestrially simulated using both hardware and software. The final data

consists of ground truth trajectory in 6 DOF and calibrated image sequences under

various illumination and motion.

The fragmented parts of a satellite (debris) need to be de-orbited in order to re-use the

important satellite orbits such as GEO. Mostly such satellite debris may not have geo-

metric model. In such cases, we have to address the 3D motion estimation problem solely

based on image features. The standard method includes stereo based tracking relying

on some textures. However such methods may fail in the absence of sufficient textural

features. To cope with such difficulty, point-wise kinematics for feature prediction in

the frame work of stereo based tracking is introduced in Chapter 5.

Despite the challenges that could be faced due to illumination and reflectance properties

of satellite surfaces, the motion estimation and tracking problem is relatively relaxed in

the presence of simple model (Chapter 6) or CAD model (Chapter 7). In Chapter 6, the

thesis addresses position localization of a partially cooperative satellite (active attitude

and orbit control system), whose attitude measurement sensors can be used to align

its attitude to that of the servicer satellite. Moreover, full 6 DOF pose tracking of

a tumbling satellite under various illumination is thoroughly addressed in Chapter 7.

Global pose detection method is also discussed. Finally the thesis summarizes the main

ideas in Chapter 8, concludes and points out the future perspectives.



Chapter 2

Related Work

The development of an accurate and robust 3D tracking system for space application such

as an approach of a satellite for on-orbit servicing, requires a good understanding of the

space environment, optical and dynamic characteristics of the object. The knowledge

in the fields of computer vision, optimization and aerospace are vital for design and

implementation of a camera based navigation system. In the context of this work,

the overall objective is to provide a robust camera based localization methods for the

approach phase of the on-orbit servicing. The localization succeeds either by estimating

the incremental motion of the target or the current object absolute pose. These choices

depend on the available geometric information of the client satellite.

The full localization system incorporates detection, (re)initialization and tracking of the

object. In general detection is a global method mostly achieved by brute force approaches

to search and locate the desired object of interest. However, this thesis focuses mainly

on the problem of localization generally subsumed to:

• 3D motion tracking,

• 3D pose tracking.

The 3D motion tracking addresses the challenges of estimating relative position and

orientation in time from image data in the absence of geometric information of the

client satellite. This involves generally image processing, camera calibration and high-

level interpretation of the image to extract valuable geometric information. On the

9
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other hand, 3D pose tracking serves the same purpose while exploiting the geometric

information of the client satellite to estimate the absolute pose. The model of the

satellite in general provides a priori information to constrain the pose estimation process

by reducing the search space.

The following sections review the relevant scientific literature in the above described

areas. In particular section 2.1 reviews the technology mostly used in ranging and state

estimation during cooperative rendezvous and docking missions, highlighting potential

problems as applied to non-cooperative systems. The general visual tracking problem

in computer vision is addressed in section 2.2 by classifying the approach into feature-

based and model-based. Each approach is thoroughly reviewed with respect to on-orbit

servicing under space lighting condition.

2.1 Rendezvous and Capture of a Satellite

The major idea of on-orbit servicing of a tumbling satellite is initiated since space de-

bris (see A.2 in Appendix A) has been concern for satellites. The successful satellite

rendezvous and docking capability has also built strong confidence for possible realiza-

tion. For example, the LIDAR based measurements have been technologically proved

for estimating range and pose of a cooperative satellite. To name a few specific missions,

videometer was used for rendezvous mission of the Automated Transfer Vehicle (ATV),

advanced video guidance sensor (AVGS) for DART mission, rendezvous and docking

sensor for the mission of ATV Jules Verne, and LIDAR based autonomous navigation

of Hayabusa for rendezvous of asteroid Itokwa (Hayabusa is a remote sensing mission, a

lander and a sample return). Most recently PRISMA in-orbit test bed [17] was launched

to demonstrate technologies for formation flying, rendezvous and on-orbit servicing ca-

pabilities. A vision based sensor (VBS), in addition to GPS based relative and absolute

navigation system and radio frequency (RF), was employed for various maneuvers and

approach of Mango (servicer) and Tango (client) satellites of PRISMA.

LIDAR based navigation for rendezvous and docking of a satellite in several missions

is, thus a well established method. However, as stated earlier, the constraint of limited

power and mass budget as well as the smaller field of view (particularly at close range)

motivates to look for better solutions such as vision based methods [18–20].
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Figure 2.1: On-orbit servicing missions: ASTRO and NEXTsat satellites of Orbital
Express (left), and Hikoboshi and Orihime satellites of ETS-VII (right).

In a few robotic satellite missions such as ETS-VII (Fig. 2.1), camera based navigation

for proximity operations and docking [18] is technologically proved. In this mission,

optical markers were mounted on the client satellite to aid 6 DOF pose tracking for

visual servoing. These markers were well localized in the known model of the client,

hence can be easily extracted in the image. On the other hand, SMART-OLEV [20] on-

orbit servicing system conceptualized stereo camera based navigation (far-, mid-, and

close-range). Particularly a vision system for guidance and approach from 5 m consists

of a stereo camera target illumination system to illuminate the client when in shadow

or within the apogee engine nozzle.

The experimental mission of Orbital Express [19] conducted by DARPA demonstrated

successful rendezvous and capture experiments using a servicer (ASTRO) and target

(NextSat) satellites (Fig. 2.1). NextSat was pre-designed for on-orbit servicing, which

facilitates relative navigation by providing essential features for tracking. The vis-STAR

tracking software [21], which integrates various rendezvous and capture sensors such as

laser range finder, visible cameras, infrared cameras along with laser-based advanced

video guidance sensor, provided primary relative navigation at mid- to long ranges. The

vis-STAR software is a real-time image correlation algorithm which exploits a priori

knowledge about the client, enabling a relative navigation to a passive client. At short

range (60 m approach to capture) rendezvous sensor data was combined with AVGS

data to provide fully redundant measurements of bearing, range and relative attitude.

In addition to the far- and close-range approaches, the camera is used by a robot arm

for vision-feedback to capture the client (NextSat).

The successful demonstrations made so far by employing redundant vision based navi-

gation for formation flying and on-orbit servicing, have indicated that a camera based

navigation can substitute laser and radio frequency based rendezvous sensor methods.
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These successful missions however rely on either navigation aiding markers or clients pre-

designed for an on-orbit servicing . Therefore, a vision based tracking methods should

be experimentally proved in general on non-cooperative clients, not designed for on-orbit

servicing and without vision aiding markers. The next section presents review of com-

puter vision methods for motion estimation and tracking, and addresses the challenges

as they are applied to mostly specular objects such as satellites.

2.2 Motion Estimation and Tracking

Camera based tracking extracts 3D motion or pose of an object from sequence of images.

In the context of ego-motion, which refers to the motion of the camera, 6 degrees of free-

dom (DOF) motion of the object needs to be estimated to localize the object relative

to the environment. Similarly, when the object of interest for tracking is the moving

target, the 6 DOF motion is estimated relative to either a fixed camera frame or another

moving object. Despite the difference of what is to be tracked (an external target or

self), the approach of the tracking shares a similar methodology. There exist several

established tracking methods developed by the computer vision community under nom-

inal illumination conditions. Based on the available a priori information of the object,

these methods can be broadly classified into model-free and model-based methods.

2.2.1 Model-free Motion Tracking

Model-free 3D tracking methods utilize 2D image information to recover motion of the

object. In the context of robot navigation using a monocular camera, SLAM (real-time

structure from motion) methods [22–24] simultaneously estimate structure and motion,

while other methods such as [25] split the tracking (motion) and mapping (structure)

into separate tasks processed in parallel. On the other hand, fully dense tracking and

mapping [26] has been employed relying on general purpose GPU for real-time camera

motion estimation. More recently a semi-dense monocular visual SLAM and odometry

techniques [27, 28] use intensity values in the image.

Monocular SLAM approaches are widely used for weight and power critical applications

such as micro aerial vehicles (MAV). Such methods cannot provide the scale of the esti-

mated structure due to monocular view. Consequently, stereo based approaches [29–31]
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are employed in robot visual odometry. The multiview approach benefits in two ways;

it reduces the number of free parameters to be estimated, and provides more data in

wide base line for geometric interpretation and is less sensitive to noise than monoc-

ular approach, despite the difficulty of finding correspondences. In order to improve

matching accuracy and robustness more than two views are employed [32, 33]. In [32],

features are detected in each incoming frame and matched using normalized sum of

squared differences (SSD). The trinocular cameras, mounted two horizontally and one

vertically above, provide improved matching accuracy. On the other hand, a quadrifocal

method [33] which uses a stereo camera but performs dense spatial matching between

temporal stereo image pairs. Inspired by [33], ego-motion estimation [34] based on Lie

algebra transformation representation, exploits bilateral symmetric transfer function to

propagate the last 3D set of points to the current with relative motion parameters, while

the structure is estimated from stereo cameras.

Dense SLAM and odometry methods are generally believed to provide an accurate and a

robust motion and structure estimation in spite of computational inefficiency. However,

in the context of motion and structure, [35] argues for feature-based methods. This is

because of photometric and geometric invariance, optimal estimation due to uncorre-

lated errors between features and computational efficiency and convergence. Moreover,

feature-based methods are natural choice when the imaged object loses its dense struc-

ture due to specular reflection, sensor saturation and shadow. Therefore, this thesis

focuses on feature-based methods of motion estimation.

Feature-based approaches focus on tracking 2D features such as geometric primitives

(segments, circles), distinct point features, object contours and regions of interest. The

primary motivation for adapting feature-based method is due to its geometric and pho-

tometric invariance and real-time capability on standard processors. Point features

are relatively easy for 3D tracking and pose estimation in the absence of an object

model. For this purpose, there exist several point feature extraction approaches, which

are good in localization accuracy [6, 36, 37], computational efficiency [38], scale invari-

ance [7, 39, 40] and recently developed methods based on scale invariance for efficient

matching and tracking [41, 42] as well as for memory critical applications [43]. However,

the performance of each detector and descriptor depends on the context of application

such as recognition and tracking as well as content of textural information of the object

or the scene.
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The standard approach of stereo motion estimation follows a common structure as em-

ployed in [8]; first image points are detected and matched across stereo pairs, which

results in disparity image. The disparity image is used for reconstruction in Euclidean

space. Then the rigid motion estimation is performed based on 3D correspondences us-

ing SVD [44], quaternion [45], quaternion supported with bootstrap [11], dual-number

quaternion [9] and based on least squares minimization of two 3D point sets [10]. These

3D point registration approaches assume the reconstruction error is independent, and

minimize the least square error incurred during registration to estimate 6D Motion pa-

rameters. On the other hand, [46] derived motion estimation method in disparity space

which leads to optimal minimization of disparity and feature detection errors based

on the fact that unlike Euclidean space, noise in disparity image is homogeneous and

isotropic. Also a hybrid stereo tracking approach [47] exploited ICP for registration of

the 3D point sets and normal flow to constrain the motion to handle noisy depths, and

small and large movements.

Rendezvous and Docking Applications

Despite several of the camera based methods (real-time monocular SLAM, visual odome-

try, and stereo-based methods) are employed for robot navigation under normal lighting,

there exist a few related articles [12, 48, 49] which employ similar techniques for satellite

rendezvous and docking. The stereo based method in [48] provided 3D measurement

and motion tracking in the absence of geometric model by considering two cases. In

the first case, a reference frame is built as soon as Euclidean coordinates of 3 points in

camera frame are available. The origin of this reference frame is the first point, and the

second point defines the X-axis and the third point defines the X-Y plan. The motion

description is then provided by the centroid of these points, and quaternion associated

with SO(3) map related to this built reference frame. Secondly, the stereo camera system

itself builds the possible object model in the camera reference frame. The model is de-

fined, by using target measurements during the time interval in which the object is kept

still. However, this method has drawbacks; the 3 point features may not be visible and

tracking with the minimum three features is not robust to change of lighting and noise.

Furthermore, the built model may not be accurate enough due to specular reflection. A

better technique, instead, employed a stereo system aided with a pattern projector [50]

to estimate the structure of the satellite for modeling. The pattern projection is used to



Chapter 2. Related Work 15

tackle reconstruction problems due to specular reflection in spite of introducing active

system.

On the other hand, particle filter based structure and motion estimation method [49]

provided a frame-to-frame tracking of a tumbling object, relying on GPU for real-time

efficiency and SIFT features. A hybrid method of prediction is introduced to tackle the

problem arising due to the unknown center of mass of the target. The Rao-Blackwellised

Particle filter uses the process model for prediction of rotation and translation is pre-

dicted through measurement inversion to avoid large covariance of process model. How-

ever, the experiments did not indicate any validation on satellite images or simulation.

Related to SFM, [12] employs a stereo camera (without stereo matching) to recover pose,

velocities and structure as well as inertial parameters of a non-cooperative satellite us-

ing EKF filtering scheme. In this scheme, inertial parameters are identified through a

hypothesis-based likelihood score, over a finite set of possibilities, and numerical simu-

lation have been presented, assuming exactly 10 feature points of which the locations

are uniformly spread over the target surface. The main disadvantage of this method is

estimating several parameters in large search, which can often fall in to local minima.

2.2.2 Model-based Pose Tracking

The robustness and accuracy of visual tracking can be enhanced by incorporating a

priori information of the object. Model-based methods rely on geometric information

(CAD model) of the object for robust tracking. The knowledge about the scene provides

implicit 3D information which allows improvement of performance by enabling to predict

hidden movement of the object and reduce effects of outlier during tracking.

There exist several 3D model-based tracking methods which arise mostly due to the

employed:

• feature type, e.g point, edge, texture,

• pose parameter parametrization,

• registration method.

Various images features have been used in literature for model-based tracking, includ-

ing point features [51–53] and contours [4, 54, 55]. Moreover segments, conical and
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cylindrical objects [56–58] have been used for 3D pose tracking and estimation. While

primitive features such as conics and cylinders are rarely available in the object, most

human-made objects consist of contours and internal edges, which is widely used for

model-based tracking. Furthermore, image edges are robust to illumination and view

variation, and therefore this thesis focuses on contour (edges, lines) based tracking in

particular for texture-less objects with a given 3D model.

Early edge-based pose tracking traces back to the so called RAPiD tracker [59], where

the 3D object model consists of high contrast edges such as surface markings, folds and

profile edges. RAPiD uses only a few selected control points along the edge. At these

control points, the search region for the edge is normal to the edge. The pose parameters

are computed by linearizing with respect to image motion. Later [4] introduced Lie alge-

bra to represent motion [60] since the group SE(3) exactly represents the space of poses

that form the output of the system. The Lie algebra is the tangent space to the group at

the identity and, is therefore the natural space to represent differential quantities such

as velocities and small motions. Related to this method [15] introduced a visual servoing

concept to pose estimation based on virtual visual servoing framework [56] through full

scale non-linear optimization, using numerical iterative algorithm such as Gauss-Newton

and Levenberg Marquadt.

Various efforts have been made to improve the robustness and accuracy of model-

based tracking by employing direct methods [61], currently based on mutual informa-

tion [62, 63] by utilizing all image-pixels directly in the minimization process. Such

methods mainly serve for the purpose of textured object tracking under illumination

changes. On one hand, to improve the pose priors for edge-based tracking, there have

been various attempts to enhance the pose accuracy by incorporating: textural informa-

tion and interest points [64–66], optical flow [67–69], lines with keypoint features [70],

dense and sparse methods [71], model-based and model-free methods [72]. On the other

hand, multiple hypothesis approaches [64, 73, 74] and [75] have been developed for robust

tracking to background misleading information such as clutters.

Similarly, in order to make the tracker robust to motion blur and occlusion, region

based methods [76–78] and [79, 80] as well as contour based methods that integrate

color statistics around edge control points [81, 82] have been proposed.
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Rendezvous and docking application

CAD model-based tracking is one of the most studied area for industrial applications.

However, unlike the fully controlled environment in industrial application such as bin

picking and welding, the space environment as well as optical characteristics of the

satellite for the on-orbit servicing is more difficult. In order to address this problem,

several attempts have been made. In literature, the solution to this problem has been

approached by:

• reconstructing the 3D structure of the satellite with stereo camera and registering

with its CAD model [83, 84] using iterative ICP algorithm based on [85],

• registering 2D image directly to a generic 3D model [13, 14, 86] and 2D prototype

model [87], to special primitives such as apogee engine nozzle and Launch vehicle

interface ring [88], partially or fully visible rectangular shapes [89], and line model

and segments [90, 91] of the satellite,

• estimating inertial parameters, i.e. relative magnitude of the inertia matrix and

center of mass along with the position, orientation, velocity [92] from range images.

These approaches rely heavily on structures of a satellite, paying less attention to the

main problem of specular reflection associated with the multilayer insulation. An ex-

ception to these methods is [84] which attempts to reconstruct the 3D points and match

with the CAD model. However, an edge-based tracking method is a better approach in

the presence of the CAD model of the satellite [13, 14].

2.3 Handling of Illumination and Specularity

A practical approach used to deal with illumination variation is usually to impose certain

assumptions on the scene or object so that the motion estimation algorithm [93–102]

handles perturbations. The assumptions address surface reflectivity, by decoupling irra-

diance variation from viewer position. In particular, the scene or the object is assumed

as a perfectly Lambertian surface which is usually a good working approximation. Mo-

tion estimation, strictly speaking however, depends on available distinctive features such
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as corners and edges in case of feature-based tracking, or texture of the object for tem-

plate tracking. In spite of plenty of such features, accuracy of motion estimation also

depends on the pose of the object. The perceived image, however, depends on illumina-

tion, surface reflectivity and view direction. Typically, visual tracking methods assume

nominal illumination condition, which is not always the case in practice. However, in

literature several strategies have been devised to handle mild illumination variations.

In general, motion estimation of Lambertian and specular objects under illumination

variation can be handled differently. The illumination change for a Lambertian object

can be addressed [103] by:

• robust estimation of motion,

• joint estimation of motion and illumination,

• estimation of motion invariant to illumination.

2.3.1 Robust Motion Estimation

This approach handles implicitly the effect of illumination, as generally employed to

reduce the effect of perturbations at all image processing levels. Hence, estimation is

not completely insensitive to the change in illumination. In particular, robust estima-

tors are employed to suppress unwanted signals from various sources and processes such

as, inconsistency between assumptions of scene reconstruction and the reality, noise

during image acquisition, discrepancy between real image formation and the assumed

image formation. In the context of robust estimation on feature-based visual tracking,

the perturbations are mainly attributed to the position of extracted features. The ac-

curacy of the extracted feature depends on illumination. Thus, the robust estimation

implicitly handles to some extent the effect of illumination. Well known approaches

are based on RANSAC [104], which search a subset of features that is consistent with

the model. On the other hand, M-estimator methods are highly popular, and tend to

reject measurements that are not within the common variance [4, 5, 15, 64, 105–107].

In contrast, descriptor-based motion estimation methods achieve robustness with his-

tograms as appearance descriptors by varying the bin size according to the expected

perturbations. On the other hand, appearance-based motion estimation methods pay

special attention to the matching criteria between the patches, for example normalized
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cross correlation [64], mutual information [108–110] and local intensity ordering criteria

[104, 111] to compensate for illumination effects. Statistically robust methods such as

M-estimators [112] are applied for appearance-based methods [113, 114].

2.3.2 Estimation of Motion and Illumination

This method explicitly models the acquired information to be dependent on both mo-

tion and illumination. The effect of illumination are compensated by computing the

free parameters of illumination simultaneously to the parameters of motion. A simple

method, however limited to planar patches and moderate illumination change, exploits

global brightness and contrast [109, 115] of the image. In contrast, surface reflectivity

and illumination change can be taken into account resulting in a complex model. In

practice however, such models end up with only a reduced set of parameters that can

be estimated [116]. On the other hand, illumination subspace method shows popular-

ity for motion estimation in the image plane [117–119] and in three-dimensional space

[61, 113, 116, 119–126].

2.3.3 Estimation Invariant to Illumination

Image features such as keypoints and edges are to some degree illumination invariant.

Appearance invariance is usually obtained by separating the method from illumination

dependent pre-processing steps using such features. Appearance-descriptor methods

based on contour or area moments [127–129] rely on a correct image segmentation.

This segmentation is a difficult task for inhomogeneous objects. Accordingly feature

extraction is expected to be in large extent invariant to illumination changes. Point

features such as used in [119, 130, 131] and contour or edge features as employed in

the methods [81, 98, 132–134] as well as combination of these features as employed

in [64, 66, 72, 135] are invariant to illumination changes, however the detection of these

features is usually variant to illumination effects. On the other hand, motion estimation

based on appearance is generally variant to illumination. As the object or camera moves,

the irradiance can vary over time. In particular, radiance perceived from surface of non-

Lambertian objects depends on the view-point due to specular reflection. Thus, there

exist no method in general that is completely illumination invariant.
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2.3.4 Pose Estimation under Specular Reflection

In the context of pose estimation [136–138] and surface reconstruction [139–143], there

exist several contributions that deal with specular objects. A specular geometry de-

scribes that image features exist as either real or virtual; real features are directly used

by vision algorithms such as matching, tracking and structure from motion. On the

other hand, virtual features (specular cues), which are specular reflections of a scene or

an object due to change of viewpoint, create ambiguity for visual interpretation [140].

Various methods have been proposed to utilize these virtual features for surface re-

construction and pose estimation. For example, shape and reflectance parameters are

simultaneously estimated from multiple views of an object made of single material with

known lighting [139]. Similarly, Phong reflectance model is used to compute reflectance

of the object shape modeled with triangular mesh, and minimize non-linear least square

cost function over the shape and reflectance parameters. In contrast, specular reflections

produce 2D image motion (specular flow) [140] in dynamic objects. This specular flow is

related to the 3D structure of textured object or scene and parametric mixture models

are used to recover a surface [141]. Shape from specular reflection usually assumes a lim-

ited number of surfaces, in which its structure is known or sparse, and the environment

is calibrated. In contrast, [142] presented a reconstruction approach which considers

general surfaces under unknown real world environments. They recovered 3D shape

from optical flow induced by relative motion between a specular object, an observer and

their environment. Similarly, [143] presented variational optical flow technique, which

accounts for characteristics of specularity including parabolic singularities related to

surface curvature.

On the other hand, tracking an object with specular highlights [144] exploits Phong’s

model, by approximating general photometric changes with a continuous and differ-

entiable function, represented with first order Taylor approximation at a pixel point

in the neighborhood. This approach extends sparse optical flow tracking method [6],

compensating for illumination changes and specular highlights. In the context of pose

estimation, unlike classical methods which discard lighting information, [136] refined

coarse pose estimates by incorporating lighting information in texture and specular cues

to improve accuracy of standard template matching algorithm. In this approach an en-

vironment map is retrieved from the specular pixels of shiny objects and registration is
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performed in both image and lighting environment space. Contrastingly, [137] utilized

specular highlights that appear on the shiny object, which are easy to detect and robust

to changes in background, texture variation and occlusion of non-highlighted parts, as

cues for pose estimation.

More practical pose estimation method [138], exploited environment map, specular re-

flections and specular flow, background clutter and inter-reflections. However, it requires

to use a calibration object such as a mirror sphere in the target scene to capture the

environment map. Thus, it is inappropriate for human inaccessible environments such

as satellite orbits. Despite the existence of certain reflectance models of specular ob-

jects, they are in general rarely exploited for real world problems, mainly due to their

complexity and underlying assumptions such as placement of a calibration object in the

scene.

2.4 Summary

The approach and manipulation of a malfunctioning satellite relies on measurements

of rendezvous sensors such as LIDAR. The LIDAR based rendezvous and docking is

very matured technology frequently used in several missions. However, it is well known

that a LIDAR is an expensive device in terms of power and mass budget in satellite

design. Hence, an attempt to exploit inexpensive camera for rendezvous of a cooperative

satellite has recently increased. The visual markers on the cooperative satellite aid for

an accurate and a robust vision-based tracking. In contrast, a camera based tracking of

a marker-less non-cooperative satellite is yet challenging due to harsh space illumination

and reflective surface of the satellite.

On the other hand, camera based motion estimation methods are widely used for appli-

cations such as robot navigation and industrial bin picking and placing. For this purpose,

a model-free methods such as multiview camera (e.g stereo camera) or structure from

motion, and CAD model-based methods are well known to operate under nominal illu-

mination conditions. Several attempts have been made to improve the tracking methods

by handling illumination variation and specular reflection, and introducing robust esti-

mators into the optimization. Despite those efforts to improve vision-based methods, it

is still far from direct application for space due to harsh illumination condition.
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Recently a number of works have been introduced to vision-based tracking of a non-

cooperative satellite. On one hand, stereo camera based motion estimation is introduced

to simultaneously estimate inertial parameters of a non-cooperative satellite. Such ap-

proach risks to failure because of the need to estimate several parameters (rotation,

translation, mass center, inertial matrix) and also lacks practical experimental vali-

dation that considers sunlight illumination and reflective multilayer insulation of the

satellite. On the other hand, a model-based tracking of a non-cooperative satellite that

matches projected CAD model lines to gradients of image (represented by line segments)

is introduced. This model-based approach exploits internal and silhouette edges, and is

shown to be robust to nominal space illumination, but relies heavily on GPU for pro-

cessing of the CAD model. The considered non-cooperative target is either scaled or at

relatively far range, thus is fully in the field of view of the camera. This property favors

model-based edge tracking because of the available several features. Most importantly,

the approach fails to demonstrate the influence of reflective multilayer insulation (MLI)

which is difficult particularly when tracking region of interest at close-range, and limited

to single illumination condition. We remark also here that graphics processing currently

is not in the space software standard due to safety issues.

Therefore, this thesis presents a real-time motion estimation and tracking of a satellite

with dominant MLI at close range, which is implemented on a standard processor with

realistic test environment. Computer vision methods depend on the features of the

object to be tracked, hence a general method of a vision-based tracking of a satellite

appears to be infeasible in light of a space application. Therefore, in this thesis three

conditions of the client satellite are considered: in the absence of the geometric model, in

the presence of geometric model of attitude controlled and a freely tumbling satellite. In

the next chapters, we provide a new stereo camera based method of motion estimation

of a model-less satellite that relies on strong keypoints and provide prediction capability

in the absence of missing features (chapter 5). Then we introduce a robust model-based

localization methods (chapter 6 and 7) validated with realistic test bed (chapter 4) under

various illumination direction.
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Background

This chapter introduces to image processing and 3D localization which help readers from

different background better understand subsequent chapters of the thesis. We use often

image processing techniques to extract unique features that can be efficiently used for

localization. In 3D localization, we estimate spatial position and orientation (pose) of an

object; this includes detection of an object such as a satellite in global space and frame

to frame tracking in time. A camera-based pose estimation depends on several factors

such as lighting, surface and geometry of the object, camera and lens system, camera

projection model and calibration as well as image features. In the following sections we

discuss these factors which affect a 3D localization.

In Section 3.1 we present lighting and reflection models. Section 3.2 describes principles

of image sensors, image formation and the widely used pinhole camera model. A camera

calibration is discussed in Section 3.3. Section 3.4 presents image features often used

for localization. Pose estimation and geometric models of an object are presented in

Section 3.5 and 3.6 respectively. Finally, we briefly summarize the chapter in Section 3.7.

3.1 Lighting and Reflectance Model

Lighting and material reflectance as well as geometry of an object determine intensity

and color of an image. The visual perception of light depends on wavelength; a spectral

density is often used to refer the dependence of light density on wave length λ, which

is typically between 400 nm to 700 nm. Related to lighting and surface reflectance are

23
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Figure 3.1: Distant source of light and surface of an object. The rays of a distant
source of light such as the Sun are approximately parallel.

irradiance and radiance. Irradiance is a measure of light arriving at a surface per unit

surface area and is central to camera sensor measurements, while radiance describes the

light emitted or reflected from a surface as a function of direction.

3.1.1 Distant Light Source

For a light source that is far away such as the Sun, in unit direction L with small

angular extent, the light rays are approximately parallel (Fig. 3.1). A surface patch

with a surface normal Np in the same direction of light maximizes the amount of light

on it.

For a small patch of area dAp, irradiance is the power that passes through the area of

the patch projected onto a plane perpendicular to L (Fig. 3.2), i.e. dAL = dAp|cosθ| =

|Np.L|dAp. An opaque surfaces will be in shadow for Np.L < 0.

Fig. 3.1 and 3.2 illustrate the configurations that are encountered also for on-orbit ser-

vicing scenarios, where the direction of the sun and the surface normals of the client

satellite affect the camera-based localization. This is because the amount of light re-

flected back to the camera sensor depends on the direction of the sun and the orientation

of the satellite. As the sun direction and normal of the surface of satellite coincide, much

light is reflected to the camera sensor, and may result in over-saturation of the imaging

sensor. The over-saturation is one of the difficult problems to address in camera-based
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Figure 3.2: The angle of incidence of a distant source of light on a tilted surface of
an object. A surface receives maximum light when the surface normal and the light

direction are parallel.

tracking. On the other hand, the effect of shadow is higher when the angle between

the surface normal and sun direction is close to 90◦. In contrast to over-saturation,

under-illumination can be ameliorated by an additional artificial source of light. In this

case, irradiance from different light sources at a camera sensor is simply integrated. For

example, in addition to the sun light, a target illuminant mounted on a servicer satellite

contributes irradiance to a visual tracking camera. This integrated irradiance increases

the contrast of the image of a satellite in shadow.

In addition to the geometrical configuration of the object with respect to the direction

of the source of light, the reflective property of an object or its material plays a crucial

role. A Bidirectional Reflection Distribution Function (BRDF) is used to model a wide

range of material reflectance properties. It captures the dependence of reflectance on

the directions of incidence and reflection. The BRDF is a basic radiometric concept

used in computer graphics for rendering of photo-realistic images from a 3D model of

a scene or an object. The BRDF can be measured from real objects using a camera

and a light source. There exist, however several analytical and phenomenological BRDF

models, for example Lambertian (for perfectly diffuse surface), Phong (for combination
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of diffuse and specular surface) and Torrance–Sparrow model (for isotropic materials).

From a theoretical perspective of the BRDF, the reflectance of a surface can be classified

as diffuse and specular.

3.1.2 Diffuse and Specular Reflection

In diffuse reflectance, light is absorbed and re-emitted from the object, scattering in all

directions. The pigmentation of the object determines the distribution of the reflected

light. Diffusely reflecting objects appear similar from all viewing directions, i.e. radiance

is independent of viewing direction. The Lambertian model is used to represent perfectly

diffuse surfaces by constant BRDF.

In contrast, in specular reflection, the spectral distribution of the reflected light is the

same as that of incident light. The specular reflection creates glare to the visual per-

ception of human eye and saturation in the image sensor, hence makes it challenging for

camera-based localization. The surface of a satellite can be partly diffuse and specular.

A combination of the diffuse reflection of rough surfaces with the specular reflection of

shiny surfaces is efficiently represented with the Phong reflectance model. The Phong

reflectance model is a simplified BRDF model commonly used in computer graphics for

rendering, particularly specular surfaces.

3.2 Camera and Lens System

A camera-based pose estimation and tracking along various ranges relies on a carefully

selected camera and lens system. The resolution of the image, the sensitivity of the image

sensor and characteristics of the lens of the camera, among many others, influence the

performance of a 3D localization. In order to select and design an appropriate camera

system for visual-localization, it is highly desirable to understand the basic principles of

the image sensor and image formation process.

3.2.1 Camera Image Sensor and Optical Lens

An image sensor is a light sensitive electronic device that converts the light received on

the camera into an electronic signal and records the image of a scene or an object. The
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charge-coupled device (CCD) and complementary metal-oxide semiconductor (CMOS)

are widely used image sensors. Both CCD and CMOS imagers convert light into electric

charge and process it into electronic signals (voltage). A digital camera sensor is gener-

ally made up of three different layers; sensor substrate, a Bayer filter and a microlens.

The sensor substrate is a silicon material, which measures the light intensity. The sensor

has tiny cavities like wells, that collect the incoming light and allow it to be measured.

Each well or cavity that appears flat is a pixel. The sensor is composed of millions of

light sensitive areas or pixels. These light sensitive areas or wells can be thought of

as a set of buckets, into which the light falls and is collected. The brightness level at

each pixel is determined by the amount of light rays falling into each bucket. Once

the bucket is full, the light level is saturated, resulting in maximum intensity (white

saturated image).

The buckets measure only the intensity of the light. Specific light of a certain color can

be captured by placing a different color primary filter on each well. The filter basically

allows passing of specific light wavelengths. One specific color filter array is called Bayer

filter. The Bayer filter acts as a screen, only allowing light photons of a certain color

into each pixel on the sensor; each row or column of an image has only two of the three

primary colors, either red and green or blue and green (Bayer pattern). In practice,

pixels of an image are not precisely placed next to each other, therefore there exists a

small gap between two pixels. Consequently any light that falls into this gap is wasted

light. A microlens is used to enhance the ability of light gathering by directing the light

that falls between two pixels into one or other of them. This increases the response

(quantum efficiency) of the sensor particularly at shorter wavelength. This small lens is

placed above the Bayer filter and helps each pixel to capture as much light as possible.

The Microlens, discussed earlier is an optional tiny lens placed on a gap between pixels

to improve light capturing efficiency of the image sensor, however it does not replace

the main optical lens of a camera. Most cameras use a lens to focus light onto the view

plane to capture enough light in a sufficiently short period of time. This is a desirable

property particularly since the objects may move appreciably, and the image needs to be

bright enough to show significant detail over a wide range of intensities and contrasts.

An optical lens is primarily characterized by its focal length, aperture and resolution

which determine a field of view and magnification, amount of light entering to the image

sensor and resolution of the image respectively.
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Digital Images

The output of an image sensor, such as CCD is a continuous electronic signal, generated

by scanning photo-sensors in a given order and reading out their voltages. The signal is

sent to a frame grabber, which digitizes it into a 2D rectangular N ×M array integer

values, stored in the frame buffer. In a CCD camera, the physical image plane is the

CCD array of N ×M rectangular grid of photo-sensors.

The digitization process involves converting analog image data into a numerical rep-

resentation through discrete sampling and quantization methods. Sampling converts

continuous image signal into discrete data. The image signal is sampled at regular inter-

vals as a grid of pixels to represent a digital image. The quantization process then assigns

each sample a numerical value from a defined range (e.g. for 8-bit gray scale image, the

range is 0 to 255). In image processing, this quantized values are often represented as

an image intensity I(x, y) at each pixel position (x, y).

3.2.2 Image Formation

Image formation depends on geometry and physics of light. The light determines bright-

ness of a pixel in an image plane as a function of illumination and surface properties

( Section 3.1). The geometry of image formation is used to determine where the pro-

jection of a 3D point is located in the image plane. Simply, when an object or a scene

is illuminated by a single source, the scene or the object reflects radiation towards the

camera and the camera senses it via photosensitive sensors (CCD or CMOS), as shown

in Fig. 3.3. A pinhole camera model is used to describe the geometry of image formation.

Pinhole Camera Model

The pinhole camera model defines the geometric relationship between a 3D point and its

corresponding 2D projection onto the image plane. It is the simplest model to form an

image of a 3D object or scene on a 2D plane. The rays of light pass through a pinhole

and form an inverted image of the object on the image plane. The pinhole camera

approximates well the physical model of a real camera, enabling a linear mapping (in

homogeneous coordinate) of a 3D to 2D between a scene and an image. Therefore,



Chapter 3. Background 29

������

���	
����	�

�����
���������

�����
��������

���	��
�

����������

	
����
���������������
�

�

������

Figure 3.3: Image formation principle.

the pinhole camera model which is a perspective projection, is widely used in computer

vision. The aperture is in practice larger a tiny hole (pinhole) to admit more light. Lenses

are placed in the aperture to focus rays from each scene point onto the corresponding

point on the image plane.

Given the scene points (X,Y, Z) and the image points (x, y), the perspective projection

of a pinhole camera of focal length f is given by x = f XZ and y = f YZ . According to

this perspective projection, the central projection of the pinhole camera is the linear

mapping of the scene and image points in homogeneous coordinates, given by


u′

v′

w′

 =


f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 . (3.1)

where the image points are x = u′

w′ and y = v′

w′ . The origin of the image plane coordinate

(0, 0) is at the image center.
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In practice, the origin of the pixel coordinate in an image is at the top left corner

(Fig. 3.5). Therefore, the perspective projection of a 3D scene point onto image plane

in pixel coordinates (xpix, ypix) is


u

v

w

 =


fx s cx 0

0 fy cy 0

0 0 1 0



X

Y

Z

1

 . (3.2)

where the image points in pixel coordinate are xpix = u
w and ypix = v

w , (cx, cy) is the

principal point (image center), (fx, fy) is focal length in pixel and s is a skew parameter.

Notice that the metric focal length f is converted to pixel using the scaling factors kx

and ky, i.e. fx = fkx and fy = fky, where kx × ky is the resolution of an image sensor.

The principal point and focal length can be estimated through a camera calibration.

3.3 Camera Calibration

A Camera calibration is a process of estimating the parameters of a pinhole camera

model, which approximates the camera that produced a given image. The camera in-

trinsic parameters consists of the image center (principal point), focal length, skew factor

and lens distortion parameters. The intrinsic camera parameters can be also represented

in a matrix form as

K =


fx s cx

0 fy cy

0 0 1

 (3.3)

where the upper triangular, the five degrees of freedom matrix K, is known as calibration

matrix.

The camera calibration procedure reduces to the estimation of a 3 × 4 general matrix

using scene points and corresponding image points, and estimate interior and exterior

parameters from this matrix. This estimation can be achieved with a known geometry of

a calibration plate (target object), which consists of several corners of a known position

in the target coordinate frame, and corresponding images in different views.
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If p is a surface point expressed in the object frame, then the general perspective pro-

jection in homogeneous coordinate onto an image plane is u, such that

u = KΠcT oop (3.4)

where K is a calibration matrix, cTo is a homogeneous transformation matrix related to

a rigid transformation from an object frame to a camera frame, and

Π =


1 0 0 0

0 1 0 0

0 0 1 0

 (3.5)

The camera calibration involves estimating the intrinsic parameters K and extrinsic

parameters cTo. The calibration consists of solving a set of equations derived from cor-

respondences of 3D scene points and image points for a general matrix P = KΠcTo.

The matrix P is then decomposed to intrinsic camera calibration matrix K and extrin-

sic rotation and translation parameters. One of the most used calibration method in

computer vision is one proposed by Tsai [145].

The pinhole camera model assumes a perfect lens system that enables to image lines to

lines. In practice, the lens distorts the image particularly for cheap camera optics and

short focal length cameras (wide field of view). A radial distortion is the main cause of

image deformation, and can be modeled with a polynomial function [146],

x =x′(1 + k1r
2 + k2r

4) (3.6)

y =y′(1 + k1r
2 + k2r

4)

where (x′, y′) is the distorted point, k1 and k2 are distortion coefficients, and r2 =

x′2 + y′2.

More than one camera can be simultaneously calibrated. Calibration of two cameras in

stereo configuration is common in computer vision. The stereo calibration is performed

by taking images from two views at the same time. The intrinsic parameters of each

camera and relative position and orientation of the second camera with respect to the
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Figure 3.4: The scene point projected onto the image plane of pinhole camera, which
is at a distance f from the center of projection C.
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Figure 3.5: Image plane and pixel coordinate frames.

first is estimated based on synchronized images and a known geometry of the calibra-

tion plate. The camera calibration plate often consists of a checkerboard pattern and

reference points (Fig. 3.6), which are precisely measured.

Hand-Eye Calibration

A camera calibration is necessary, for example to recover the geometry of a scene or

tracking an object in 3D space. A hand-eye calibration is required whenever a camera is
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Figure 3.6: A calibration plate. The corner points of the checkerboard are extracted
using a corner detector. The corresponding 3D points of the calibration plate are

measured. The circles in the middle are used as a reference.

mounted on a robot hand (end effector). Determining the transformation between the

camera and the hand-tool center point (TCP) of a robot is called hand-eye calibration.

The hand-eye calibration is also necessary when the motion of a satellite is simulated

with the robot motion (for detail, Chapter 4), consequently the associated ground truth

can be used for the evaluation of vision-based motion estimation methods. Therefore,

the relative orientation and position of the camera with respect to the TCP of the

robot should be estimated through a hand-eye calibration procedure such as [147]. A

common approach to estimate the camera sensor to robot TCP transformation is solving

a matrix equation of the form AiX = XBi, where X is a 4 × 4 desired homogeneous

transformation matrix (hand-eye), Ai and Bi, for i=1,..N are movements of the robot

and induced camera motion respectively.

3.4 Local Appearance Cues

Local features of an image are robust to occlusion and clutter, and are suitable for

a real-time tracking. The sparse distinctive set of features, which are to some extent

invariant to a geometric and a photometric change are widely used for camera calibration,

pose estimation and tracking. For this purpose, the image of an object is commonly

represented by its features such as keypoints, edges and lines.
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3.4.1 Image Features

Features are distinctive points or regions of an image despite change of view and lighting.

The core idea in detecting keypoints and edges is to calculate gradients of an image at

each pixel. There exist three possibilities for image regions around the pixel [36]. The

image regions around the pixel can be:

• a flat region: both horizontal and vertical gradients are small, indicating no dis-

tinctive image feature at this pixel,

• an edge: one of the gradients (perpendicular to the edge) are big and the other

(along the edge) is small; notice that line segments are also edges,

• a keypoint or corner: both gradients are big.

Keypoints

Keypoints are the most suitable image features for tracking. They exist on textured

objects or at the intersection of segments in an image. There are several types of key-

point detectors. Some feature detectors are more suitable for tracking in video sequence

because of their localization accuracy such as Harris [36] and Good features to track [6],

others for real-time efficiency such as FAST [148]. There exist also a number of keypoint

detectors more suitable for matching images with variable scale, for example SIFT [7].

Edges

Edges of an image are relatively robust to variation of illumination. The well known

Canny edge detector [149] is often used for detection of edges in a given image because of

its properties to reject noise and localize edges accurately (1-pixel precision). However,

for object tracking edges such as straight line segments at a single orientation suffer

from aperture problem, i.e. it is only possible to align the patches along the direction

normal to the edge. Therefore, it is difficult to track an object based on edge features in

the absence of the 3D model of the object. In contrast, edges are powerful visual cues

in model-based tracking. The presence of the model of an object enables to efficiently

search matches along 1D (along edge normal), as applied in Chapter 6.
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3.4.2 Feature Descriptors

Scale and rotation invariance are desirable in several applications such as image matching

and object recognition. Therefore, instead of finding stable and distinctive locations, it is

more effective to extract features that are more stable in location and scale [7]. Lowe [7]

proposed to look for a space-scale maximum in the structure computed from a set of

sub-octave difference of Gaussian (DoG) filters. The scale selection criteria was based on

the work of [150], who first used extrema in the Laplacian of Gaussian (LoG) function.

Image matching and object recognition algorithms also need to deal with large image

rotation.

The rotation invariance can be achieved by estimating a dominant orientation at each

detected keypoint. The dominant orientation can be obtained by computing a histogram

of orientations around the keypoint. This calls for necessity of feature descriptors around

each keypoint. Feature descriptors are a set of feature vectors computed for an image

at scaled and oriented patches around keypoints. Among feature descriptors SIFT [7]

is widely used for its reliable image matching and object recognition. Fast feature

descriptors include SURF [39] and also binary descriptors BRISK [42], BRIEF [41] and

ORB [151].

3.5 Pose Estimation

One of the goals of this thesis is to estimate the rigid transformation between the client

satellite and a camera based on the features extracted from camera images. The pose

estimation in this context determines a coordinate transformation between an object and

the camera coordinate frames. Closely related to pose estimation is motion estimation,

which is the object motion between two time instants. In this thesis, motion estimation

refers to pose estimation in the absence of a geometric model of the object.
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3.5.1 3D-2D Alignment

Pose estimation from the correspondences between 3D points of an object and 2D points

on image is based on a projection model. The common projection models used in pose es-

timation include full perspective projection, homography mapping, orthographic projec-

tion and weak perspective projection. With the full perspective model in Equation (3.1),

3D feature points are projected onto an image plane with perspective rays originating

at the center of projection C, which lies within the physical camera as illustrated in

Fig. 3.4. For planar surfaces, the non-linear constraint of the perspective projection

reduces to a linear homography mapping. In orthographic projection, object points are

perpendicularly projected onto the image plane neglecting any perspective distortion

and scale of the object. Similar to the orthographic projection is a weak perspective

projection, which estimates scale or overall distance. The orthographic and weak per-

spective models are valid when the depth of the object is very small with respect to the

distance to the camera. In the following, we assume a more accurate full perspective

projective model to describe the 3D-2D registration in image plane.

The pose estimation from a given set of 3D and 2D points is generally called Perspective-

n-Point (PnP) problem. The PnP problem attempts to estimate [152–154] the orien-

tation and position of a camera or an object, provided intrinsic parameters and a set

of n correspondences between 3D points and their 2D projection. In order to reject

spurious features in the correspondences, the robust RANSAC algorithm can be used

with minimal sets of points for pose estimation (P3P problem) but at a cost of higher

computational burden. The recently developed method [154] efficiently rejects outliers

algebraically by back-projecting all points using estimated pose.

The pose estimation with unknown correspondences between 3D and 2D point sets is one

of the most difficult problems in computer vision. This is a sub-problem of a global pose

detection, which is addressed in Chapter 7. In the case of tracking, the problem of pose

estimation with unknown correspondences may be relaxed, because the last estimated

pose is used as a priori information for the current pose.
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3.5.2 3D-3D Alignment

A 3D-3D registration usually arises when 3D data are obtained from range images such

as time of flight cameras or stereo algorithms. The methodology to address the 3D-3D

registration problem (estimation of a rigid transformation) depends on the relationship

between the point sets. Iterative closest point (ICP) algorithm and its variant [155, 156]

are commonly used to register the two 3D point sets which are irregular samples of the

object with varying size. On the other hand, for the simpler case where the points sets

are of equal size and known correspondences, the motion estimation can be achieved

with [9, 45].

3.6 Geometric Models for Localization

A geometric model of an object such as a CAD model is useful for a vision-based local-

ization, particularly the aperture problem associated with edge matching is efficiently

exploited in the presence of the CAD model for the tracking of the object. Edges or line

models of the object are used to estimate the camera pose by aligning the edges or line

segments with edges found in the image.

3.6.1 Simple and Complex Satellite Models

The geometric model of a satellite may exist in two forms; simple 2D drawings of physical

components and a CAD model. The 2D drawing describes the physical dimension of each

component of the object. In this case, the 2D model drawing can be used either directly

for tracking or is converted to a simplified 3D model. In addition to a CAD model, we

use in this thesis a simple 2D drawing model of the engine nozzle and the boundary of

a satellite for localization of an attitude-controlled satellite (Chapter 6). On the other

hand, a CAD model is a 3D mesh used to design the object using computer graphics.

The model may be wire-frame, surface or solid model. It may also consist of a texture

model. The CAD model of a satellite (e.g. Fig. 3.7) is mostly complex, and cannot be

used directly for tracking. In order to use the CAD model for a real-time tracking, some

of the polygons (triangular meshes) have to be reduced by removing dense triangular

meshes, while maintaining a few of them up to the desired accuracy. The wire-frame
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Figure 3.7: The 3D model of a satellite in 2D view from two view points.

Figure 3.8: The normals of a model for edge-based tracking should point to uniform
direction. The arrows indicate the direction of the normals, here all pointing outward.

model is used for the tracking, therefore most of the contours of the satellite are retained

during the model pre-processing. Moreover, all the normals of the model should point

to a uniform direction, either outward or inward for edge-based tracking as shown in

Fig. 3.8. Notice that normals of polygonal faces and 3D features of the model such as

edges are desirable for model-based tracking.

3.6.2 Model Features for Tracking

Image edges are relatively robust to illumination change, hence often used for model-

based tracking. The model edges are used to match with the image edges to find the

correct pose during tracking. Therefore, the model pre-processing pays attention to

these edges and keep the most prominent contours. The model lines may be explicitly
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Figure 3.9: Model edge extraction. The model edge (p1p2) can be computed from
the normals n1 and n2 of the polygons. An edge is defined when the angle between the

two normals exceeds a certain threshold.

extracted from the CAD model by applying the Laplacian filter to the depth values

computed with Z-buffer as in [157]. On the other hand, the angle between normals of

two polygonal faces can be also used to determine the edge between the faces (Fig. 3.9).

In this case, an edge is defined when the angle between the normals of the two faces is

greater than a certain threshold.

3.7 Summary

Vision-based localization of an object depends on lighting, surface reflectance, image

sensor, camera lens as well as the configuration and motion of an object. In order

to localize the object in 3D space, a pinhole perspective camera model, a calibrated

camera and the correspondences of image features and 3D features are widely used.

Image features play a crucial role for the performance of localization as well as for

camera calibration. Image features such as keypoints (e.g corners) and edges are used

for image to image (2D-2D) or image to object (3D-2D) matching due to their robustness

to occlusion, clutter as well as real-time efficiency.

The Perspective-n-Point (PnP) methods attempt to align the re-projected 3D features of

an object to the corresponding 2D image features. This alignment results in an estimate

of position and rotation (pose) parameters associated to the object motion with respect

to the camera coordinate frame. On the other hand, a model-based tracking exploits

model edges to align with image edges along the edge normal. Hence, model-based
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edge tracking simultaneously searches for the 2D-3D correspondences and the pose by

minimizing the re-projection error using local optimization methods such as Gauss-

Newton. For real-time efficiency, the model of the object is pre-processed to reduce

some details. The model edges are useful 3D features, which can be extracted either

explicitly by filtering the Z-buffer or from the normals of adjacent faces.



Chapter 4

Ground Test Setup for On-orbit

Servicing

Designing and implementing on-orbit servicing robotic space mission is a very complex

and expensive endeavor. Hence it is absolutely necessary to perform on-ground vali-

dation and verification of subsystems before deployment. For the validation of camera-

based tracking methods, we employ a ground based test facility, which simulates in-orbit

space environment, satellite motion and its optical characteristics. The facility, which

mainly serves for rendezvous and docking simulates:

• space environment such as illumination of the sun,

• optical characteristics of the satellite surface,

• motion of the satellite.

In particular, a visual tracking is validated using ground truth data, generated through

hardware simulation systems and software (e.g rendering). Both methods may be able,

albeit to a different extent, to provide realistic camera optics, motion of the client,

sun illumination and optical characteristics of the client surface. On one hand, the

software simulation relies on physical models, and is suitable for generating a trajectory

with accurately known ground truth, despite the difficulty of simulating actual surface

properties. On the other hand, hardware simulation (e.g. robotic) is more practical,

41
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despite some ground-truth inaccuracies due to random and systematic errors of robot-

based measurements and camera calibration, and less realistic sunlight and background

illumination conditions.

Effect of Scaling the Client Mock-up

Scaling down the satellite size to fit to the maximum carrying capacity and workspace

of the robot is often necessary. In this case, several factors should be incorporated in the

analysis of the method. In particular, the field of view of the camera, which is designed

for full-scale satellite tracking, introduces full satellite shape at close range. This in turn,

enables the important satellite features which are not visible in full scale, will be available

for good pose estimation. Thus, the reported result is far from reality. Furthermore, the

dynamics are also affected as relative motion between servicer and target are scaled by

some factor. In this study, we consider mock-ups of full scale satellite surface models

for the validation of our algorithm, using robotic hardware facility and photo-realistic

rendering. Moreover, our tracking algorithm does not rely on dynamic parameters such

as inertia matrix and center of mass.

4.1 Hardware

We use the European Proximity Operation Simulator (EPOS), a robotic rendezvous

and docking platform at DLR for ground-truth generation and testing [1, 158]. The

EPOS facility reproduces a complete satellite rendezvous system, space environment

and optical characteristics by using:

• mock-ups of servicer and client satellites,

• motion trajectory using two 6 DOF robots,

• multilayer insulation (MLI) on the satellite surface,

• high power floodlight with the sunlight spectrum (Fig.4.3).
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Figure 4.1: Satellite mock-ups reproducing full scale satellite used in various chapters
of this thesis: DLR satellite mock-up with golden foil (left) in Chapter 5 and the Kayser-

Threde mock-up with real MLI (right) in Chapter 6 at the EPOS facility.

Figure 4.2: Satellite mock-ups reproducing full scale satellite used in Chapter 7: Rear
part of TerraSAR-X satellite with reflective foil (left) and Airbus DS GmbH satellite

mock-up (right).

4.1.1 Satellite Mock-ups

We consider various mock-ups, serving for different purposes. Firstly, we focus on the

rendezvous of the client satellite which is predominately specular surface due to reflective

golden foil (Fig.4.1) which reproduces MLI. This satellite mock-up (Fig.4.1 left) is used

to evaluate tracking methods, for the spinning motion of a satellite around its major

axis under strong specular reflection. Furthermore, a similar satellite mock-up but with

larger size and real MLI provided by the company Kayser-Threde GmbH (Fig.4.1) is used

to track position of an attitude-controlled satellite, handling small attitude fluctuations.

The latter, is used to evaluate a satellite nozzle detection and tracking method. In this

case, external guidance, navigation and control sensors such as star trackers are assumed

available, and used to align servicer and client attitudes at predetermined range.

Moreover, in order to validate and verify vision based methods at very close-range, the

rear part of a full scale TerraSAR-X Earth observation satellite (Fig.4.2 left) is built at

the Robotics and Mechatronics Center, DLR. This mock-up consists of various structural



Chapter 4. Ground Test system 44

Figure 4.3: High-power floodlight simulates the sun at the EPOS facility.

elements and MLI, and can be used to assess camera based pose estimation and tracking

methods. On the other hand, the full tumbling motion of a satellite is considered in this

thesis. For this purpose, a DEOS client mock-up built by Airbus DS GmbH (Fig.4.2

right) is at the EPOS facility.

4.1.2 Optical Environment

The sun spectrum cannot be accurately reproduced with hardware. Furthermore, the

source of light cannot be placed at infinity in practice. However, the characteristics of

the illumination condition can be reproduced. In practice, high power floodlights provide

sufficient spectrum to simulate space environment. In fact there exist other sources of

light from distant stars and planets, but they affect the optical environment of space

insignificantly.

4.2 Photorealistic Rendering

In addition to hardware-based simulation of space environment and satellite for visual

tracking, we employ a rendering software (developed by SpaceTech GmbH) that produces

realistic images through ray tracing. It consists of stereo cameras with a baseline of

40cm, a simple servicer satellite model, and a complex, photo-realistic client model.

The program simulates camera optics, material properties of the client and sunlight

spectrum. Both satellites are at 400 km altitude, and the Earth is modeled as a sphere
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Figure 4.4: Photo-realistic rendering setup simulating servicer, client and the sun
used in Chapter 7.

Figure 4.5: Renderered images

with constant albedo of 0.3 (Fig. 4.4). Since ray tracing is computationally intensive,

we employed cloud computing parallelism using a computing cluster, to implement a

desired trajectory in a relatively short time. The outputs of the renderer from each

cluster computer (partial solution of the rendering equations) are collected from each

cluster computer and averaged, to produce the desired image quality (Fig. 4.5). Each

renderer produces 64 samples/pixel. The render program accepts as inputs the absolute

poses of the servicer and client, the sunlight direction, the desired number of bins (that

determines the image quality) and the integration time of the sensor (shutter time).

In order to render a complete trajectory, we generate a script that consists of a given

number of bins, and a set of poses. This script is executed in a batch; as a result, each

camera view is rendered in separate nodes of the cluster.
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4.2.1 Optical Environment and Satellite MLI Simulation

The simulation of the space environment in computer graphics, unlike that of the

hardware-in-the-loop system, is relatively easy. The main components that build the

environment is creating the sun’s illumination and shadows. However, it is hardly pos-

sible to reproduce MLI of the satellite in computer graphics accurately. In general there

exist two methods to create MLI model; 3D scanning of the real MLI and mapping to

the geometric model, and imaging the real MLI with camera and texture mapping to the

model. The disadvantage of these two methods are that scanning and imaging the MLI,

which is highly reflective, do not capture the surface property properly. Nevertheless it

represents approximately the reflective characteristics of the MLI.

4.2.2 Satellite Motion

One of the advantages of computer graphics simulation is that the motion of the satellite

can be fully realized without any constraint. In contrast, motion of the client satellite in

hardware simulation systems such as robots is restricted with robot workspace and joint

limits. We have the capability to simulate the actual satellite motion, such as spinning

and tumbling about any of its axes, freely in time and space.

4.3 Summary

Realistic space environment and optical characteristics of a satellite needs to be sim-

ulated on-ground for validation and verification of a vision-based tracking and motion

estimation. The simulation system should reproduce at least three basic elements: the

sunlight, motion of the satellite, optical characteristics of the MLI as well as satellite

geometric structures. In this thesis, the space environment and optical characteristics

of the satellite are reproduced with both, hardware and software system.

The hardware simulation consists of two six DOF robots to reproduce the relative motion

of the servicer and client satellites, a high power floodlight to simulate the Sun and a

full scale client satellite mock-up with multilayer insulation. Although a hardware-based

simulation system provides an accurate representation of the real system, it has a few

drawbacks. The first drawback is that the floodlight as a non-distant light source unlike
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the Sun emits non-parallel light rays near the sun spectrum, and its intensity diminishes

against distance quadratically. However, this drawback can be compensated to some

extent by moving the light source according to the range of the experiment. The second

drawback is, inaccuracy of the ground truth used for evaluation as the result of the robot

positioning error (about 4 mm), which is generally acceptable for the task of on-orbit

servicing.

On the other hand, a computer graphics based simulation reproduces the sunlight illu-

mination and the ground truth trajectory more accurately. In spite of achieved photo-

realistic camera images, reproducing the optical characteristics of MLI through rendering

is difficult and less accurate compared to the hardware simulation. Therefore, it is an

essential that both hardware and software based test bed should be employed in order

to exploit strengths and avoid weaknesses of each method.





Chapter 5

Model-free Motion Estimation

under Space Lighting

The geometric model of an object provides useful a priori information for accurate and

robust motion estimation. However, the CAD model may not exist or is inappropriate

due to various reasons. Although the satellite model is usually available, there are certain

cases that it can be lost or badly handled. In particular, lack of geometric information of

fragmented satellite debris and asteroids is quite imminent. Therefore, it is necessary to

provide a 3D motion tracking method to address such scenario for on-orbit servicing. In

this chapter, we propose and demonstrate a robust feature-based 3D tracking method in

the absence of a geometric model. Although image edges are generally robust to change

of illumination, they are difficult to track in the absence of the geometric model of an

object because of the aperture problem.

5.1 Predictive Rigid-body Motion Tracking

Feature-based tracking methods have been successfully employed for various applications

(for example, robot navigation, industrial object picking) under slightly variable lighting

conditions. Under this condition of illumination, keypoints such as corners [6] can be

selected in the first frame and tracked over the next frame (sparse optical flow tracking),

with a multiresolution implementation satisfying most of the required real-time efficiency

and accuracy. Since the above mentioned work, several extensions appeared. A few of

49



Chapter 5. 3D Motion Estimation 50

them incorporated photometric and geometric cues of a scene [159], improving compu-

tational efficiency through an inverse compositional approach [160, 161]. Among the

optical flow based tracking methods, [144] incorporated specular highlights and bright-

ness variations by reformulating brightness constancy assumption. On the other hand,

instead of utilizing extracted features directly for tracking, a scale and rotation invari-

ant feature descriptor such as SIFT [7] is used to describe each incoming image. Then,

the tracking proceeds by matching descriptors of each frame based on geometric dis-

tance. The later approach is computationally demanding, therefore it may be currently

inappropriate for real-time tracking.

On the top of such image-level tracking, 3D relative pose tracking is achieved by in-

troducing more than one camera so that spatial feature correspondences across the

second view can be established to retrieve 3D spatial information. Thus, the standard

feature-based approach to 3D tracking is to triangulate tracked and matched points,

and register corresponding 3D points using relative pose estimation algorithms, based

on SVD [10, 44], quaternions [45] or dual quaternions [9].

This chapter is based on our work [162, 163], which is motivated by the existing corre-

lation between image flow and disparity as in [164], and stereo-motion fusion, using the

ratio of disparity rate to disparity, for recovering the rigid motion parameters [165]. We

show a novel method for 3D sparse structure recovering and tracking, that exploits key-

points of a rigid object (satellite), with the capability of predicting features in absence of

image measurements. Prediction capability is particularly essential since sufficient im-

age features may not exist because of sensor saturation, shadow and unstable specular

features of the satellite. The approach is based on a bank of iterated, extended Kalman

filters (IEKF), using point-wise kinematic models, therefore not requiring any model of

global target geometry or dynamics.

5.1.1 Point-wise Kinematics of Rigid-body Motion

The motion of 3D surface points p = [X,Y, Z]T of a rigid body, translating and rotating

with velocity V and ω in camera frame respectively, is expressed by

ṗ = V + ω × p (5.1)
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while the projection onto camera pixel coordinates, through a pinhole model, is given

by

x =fx
X

Z
+ cx (5.2)

y =fy
Y

Z
+ cy

where fx, fy are the focal length, and cx, cy the principal point coordinates in pixels.

By taking the total time derivative of Eq.(5.2) and substituting into Eq.(5.1), the motion

field and rigid body velocities are related by

u = MTΩ (5.3)

where u =
[
u v

]T
is the feature velocity in the image plane

M =



−fx/Z 0

0 −fy/Z

(x− cx)/Z (y − cy)/Z

(x− cx)(y − cy)/fy fy(1 + ((y − cy)/fy)
2)

−fx(1 + ((x− cx)/fx)
2) −(y − cy)(x− cx)/fx

fx(y − cy)/fy fy(x− cx)/fx


and

Ω =
[
Vx Vy Vz ωx ωy ωz

]T
(5.4)

is the velocity vector.

At each frame detected features are tracked over the sequence; consequently, the rigid

body velocity, which is used in the prediction stage of the Kalman filter, is estimated by

minimizing

argmin
Ω

∥∥MTΩ− u
∥∥2
. (5.5)

Estimating Depth Z

The matrix M in Equation (5.4) consists in an unknown parameter Z at each feature

point, which can be determined in two possible methods. The first method is obviously

matching across stereo views to estimate depth at each feature point. The prediction

phase of extended Kalman filter depends on the accuracy of the estimated rigid body
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velocity, which in turn relies on estimated depth. Therefore, so as to estimate depth

as accurately as possible, every few frame new features are detected in one view and

matched in the second view. This regular detection guarantees an accurate depth es-

timate in spite of insignificantly increased computation time. The alternative to this

approach on the other hand, is to exploit tracked features over the sequence as well for

stereo matching. However, the latter approach is inaccurate and not robust to specular

reflection.

The proposed second method to depth estimation assumes a constant velocity model

between two consecutive frames. Under such assumption, the last velocity from previous

frame is used to propagate the 3D points to the current frame. Hence the current a priori

state, predicted from the last state using the estimated rigid body velocity, is combined

with current measurement (tracked features) to refine the posterior state estimate. At

the current frame and filtered 3D points, the current velocity is estimated to be used for

the state model in order to propagate the next 3D points. This method, unlike the first

approach, can be used with a monocular camera although it requires initialization.

5.1.2 Iterated Extended Kalman Filter

The Kalman filter is a family of the Bayesian estimator commonly used for state esti-

mation, filtering, and prediction. The general Bayesian estimator is

p(sk|zk) ∝ p(zk|sk)
∫

sk−1

p(sk|sk−1)p(sk−1|zk−1)dsk−1 (5.6)

with state statistics sk, measurements zk, and the last posterior distribution p(sk|zk) is

determined through state dynamics and measurement likelihood.

The predictor-corrector filter arises from the Bayesian equation(5.6) is split into

• predictor:

p(sk|zk−1)

∫
sk−1

p(sk|sk−1)p(sk−1|zk−1) (5.7)

• corrector:

p(sk|zk) ∝ p(zk|sk)p(sk|zk−1) (5.8)
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The Kalman filter is a specialized form of the Bayesian estimator with certain assump-

tions on dynamics and likelihood. In particular, the Kalman filter addresses state es-

timation problem, by assuming linear process dynamics and normally distributed in-

dependent process and measurement noise. If all noise is Gaussian, the Kalman filter

minimizes the mean square error of the estimated parameters, resulting in optimal state

estimation.

The state x of a process that is governed by a stochastic difference equation of the form:

xk = Akxk−1 +Bkuk + ρk (5.9)

with measurement z

zk = Hkxk + ν (5.10)

where Ak is a matrix relating the previous state xk−1 with the current state xk, Bk is

a control input of the system, and ρ is the process noise. Hk is related to the current

state, with the measurement zk while ν is measurement noise.

The Kalman filter provides an optimal state estimate. However, when the system model

(either process or measurement model) deviates from linearity as it occurs in most real

world problems, only a sub-optimal state estimate is guaranteed using the variant of

Kalman filter (an extended Kalman filter). The extended Kalman filter linearizes model

and measurement equations about an estimate of the current mean and covariance. In

contrast, in our problem where the measurement equation introduces a non-linear sys-

tem, iterated extended Kalman filter outperforms EKF because it uses the measurement

to linearize the measurement function. Thus, after the prediction stage the iteration

starts by first setting for i=0, x0
k = xk,k−1 and xi+1

k = xk,k

H i
k =

∂h

∂x

∣∣∣∣
x=xi

k

(5.11)

where h is a non-linear measurement equation relating to the state and the measurement.

As a result, the Kalman gain, state covariance and state are updated respectively as

Ki
k = Pk,k−1H

iT

k (R+H i
kPk,k−1H

iT

k )−1

Pk,k−1 = Pk,k−1 −Ki
kH

i
kPk,k−1

xi+1
k = xik +Ki

k(zk − h(xik)).

(5.12)
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5.1.3 Integrating Point-wise Kinematics and Image Motion

Assuming a small rotation of the rigid-body, a single-point kinematics (Eq.5.1) at dis-

crete time k can be represented by

pk = Akpk−1 + BVk−1 + ρk (5.13)

with

Ak =


1 ∆tωzk −∆tωyk

−∆tωzk 1 ∆tωxk

∆tωyk −∆tωxk 1

 (5.14)

B =


−∆t 0 0

0 −∆t 0

0 0 −∆t

 (5.15)

Vk =
[
Vxk Vyk Vzk

]T
. (5.16)

The measurement model is

zk = h(pk/k−1) + νk (5.17)

where ∆t is the time interval between two consecutive image captures and zk are feature

pairs of the stereo camera, tracked over the sequence and reprojected under the pin-hole

model (5.2). Measurement and motion model errors, νk and ρk respectively are assumed

Gaussian zero-mean additive vectors.

p(ρk) ≈ N(0, Q)

p(νk) ≈ N(0, R)
(5.18)

where Q and R are the process and measurement noise covariances respectively. For

rectified cameras, with baseline Tx, we have

h =


fxlX/Z + cxl

fylY/Z + cyl

fxr(X + Tx)/Z + cxr

fyrY/Z + cyr

 (5.19)
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For the rectified stereo cameras the y coordinate is common, hence one element of h is

redundant and can be discarded. The Jacobian Hk is computed as

Hk =
∂h

∂p

∣∣∣∣
p=pk|k−1

(5.20)

∂h

∂p
=


fxl/Z 0 −fxlX/Z2

0 fyl/Z −fylY/Z2

fxr/Z 0 −fxr(X + Tx)/Z2

0 fyr −fyrY/Z2

 (5.21)

where, l and r indicate left and right stereo camera, respectively.

For each point, we iterate the updated stage of the filter until convergence. The main

advantage of Bayesian filtering here is that, when a complete occlusion occurs, or the

target moves momentarily out of the field of view, motion can be still predicted and

used later on to re-initialize the tracking. Furthermore, at each step features may be

selected independently of those chosen from the previous image, for dynamic occlusion

handling.

The pose is finally estimated based on the dual quaternion [9], which is fast and numer-

ically stable. Tukey M-estimator along with median statistics is applied to tracked 3D

points to reject spurious features. This robust M-estimation allows to provide the track-

ing system, the available inliers for pose estimation and to signal the failure detection

in case of insufficient inlier features.

5.2 Evaluation

In the following, the experimental results of the method described in Section 5.1 is

presented and discussed. In this study, the extreme conditions such as strong reflection

and shadow are stressed out. We consider the critical phase of a close-range approach

(0.6 m to 1.5 m), where accuracies of less than 1◦ in rotation and 10 mm in translation

are required. The goal of this experiment is thus to demonstrate and assess the feature

based 3D tracking method for motion estimation of the satellite under harsh illumination

condition and in the absence of a geometric model.
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Figure 5.1: Typical ground truth trajectory for testing the motion estimation algo-
rithm. The target spins at angular velocity of 2 deg/s and linear velocity of 10 mm/s

In the implementation point of view, a gray-scale image is acquired with a progressive

scan CCD Camera sensor at a resolution of 1024×768 pixels and a field of view 87◦×71◦.

For the stereo based method, a baseline of 120 mm is employed. The main parameters

that affect convergence and efficiency are the number of iterations in IEKF. The algo-

rithm converges to the solution in 10 iterations. The measurement and process noise

covariances are set constant over all the sequences. In order to evaluate and compare

performances, a standard 3D stereo tracking method is also implemented with the same

parameter setting of our method.

To study the effect of motion on the tracker, various translation and rotation speeds are

considered; a typical trajectory is given in Fig. 5.1. Furthermore, the effect of nutation

rate on the tracker is investigated. For purpose of evaluation of the method, we analyze

frame-to-frame pose estimation and as well as the poses referred to the first pose of the

target. The latter is used to analyze the drift of the features. Moreover, we compare to

a standard stereo tracking method as well as to a monocular camera based method.
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(a) frame 1 (b) frame 15 (c) frame 40

(d) frame 55 (e) frame 66 (f) frame 74

Figure 5.2: Some frames of the image sequences, with the client motion at a velocity
of 2 deg/s and 10 mm/s and nutation angle of 5◦. The overlapping circles (red and
green) centered on the re-projected and tracked feature points respectively indicate

successful matching.

5.2.1 Results and Discussion

The first set of experiment is to evaluate the performance of the method with respect to

the ground truth poses under various motion trajectories. The image sequences as can

be observed in Fig. 5.2 are very challenging for camera-based algorithms, depending on

the reflection and shadow (dark) due to the multilayer insulation. Tracking features over

long sequences is very limited, since detected features disappear even if the target is in

frontal view. In this context, tracking each feature with its kinematics model in 3D helps

predict the motion. We note here that the accuracy of the motion model depends on the

estimated depth from stereo matching which provides object velocity. Thus inaccuracy

in the motion model is mainly carrying from errors in depth estimation. In fact, the

deviation of the kinematics model is modeled as Gaussian noise to represent uncertainty.

Observing the overall distribution of the error (Fig. 5.3) using frame-to-frame motion

tracking, it indicates the feasibility of the method, at least in this critical range. This

can be noted with very low errors in Fig. 5.3. Relatively large motion was around roll-

axis (Z) in which the client was spinning at an angular and translational velocity of 2
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deg/s and 1 cm/s respectively.

On the other hand, the translation and rotation error provided by a monocular cam-

era are comparable to that of the stereo camera as can be observed in Fig. 5.4. The

monocular camera can be employed for slightly less accuracy and robustness than that

of stereo, however the monocular camera depends on good initialization. In fact, in

space system hardware redundancy is usually employed, hence we can take advantage

of such redundant camera view to initialize the monocular camera tracking.

On the other hand, standard stereo 3D tracking provides comparable accuracy as that of

our method for some frames in the test sequence (Fig. 5.7 and at relatively higher velocity

in Fig. 5.8), except in situations where the image saturation is very strong as observed

in Z-translation in Fig. 5.7. While our method is as accurate as the standard stereo

method, it is robust due to the prediction capability in case of dominant specularity and

mild image saturation. In this case, the advantage of our method (new stereo method)

can be noticed in Fig. 5.5, where rotation and translation errors of the main longitudinal

axis are shown. Here, the new method is able to predict the motion for a few seconds

(25 frames, up to a distance of 25 cm) when a few or no image features exist (Fig. 5.6).

The known drawback of model-free motion estimation is drift of features from the correct

location because of accumulation of small errors. The drift is reduced by predicting

feature location, using point-wise kinematics model (Fig. 5.9). To verify that as shown

in this graph, features are detected in the first frame and tracked over the sequence,

while each 3D point is registered with the corresponding first frame points. The drift is

predominantly in spinning axis and camera optical axis (roll-axis) along the longitudinal

motion. We remark that no feature rejection and replacement are performed during the

2D tracking, as we need to estimate the poses relative to its initial position, where the

first frame has been acquired. However, spurious features are effectively rejected at the

higher level, by the robust pose estimator. When the pose estimator runs out of the

minimum required number of points, a new reference frame is taken, its keypoints are

detected, and the resulting pose estimations are performed relative to the new frame.
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Figure 5.3: Rotation and translation error of the developed method as evaluated to
ground truth. The target spins at angular velocity of 2 deg/s and linear velocity of 10

mm/s and frontal to the camera.
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Figure 5.4: Comparison of stereo and monocular camera based methods, when the
target spins at angular velocity of 4 deg/s and linear velocity of 10 mm/s and frontal

to the camera.
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Figure 5.5: Predictive motion estimation based on a point-wise kinematic model. The
estimated last velocity is used also in case of insufficient features to predict the motion.

The new method is able to predict the motion accurately.

Figure 5.6: A few frames of the error plot of the predicted motion in Fig. 5.5. The
features in these images are unstable for tracking because of the glare and saturation

of the camera sensor.

5.2.2 Summary

In the absence of the CAD model of a satellite, only a relative frame-to-frame motion

can be estimated. The accuracy of the relative motion estimation depends on distinctive

image features. For the tracking of a satellite at close range, the wrinkle of the multilayer

insulation and corners (intersection of satellite structures) provide useful cues for an

accurate motion estimation and tracking. However, sufficient features may not always

exist due to harsh space illumination (poor lighting and over-illumination), hence the

tracking is prone to sudden failure.

To alleviate this problem, the thesis presented a predictive motion model that enables

to track the motion even under worst illumination. For this purpose, the 3D points

related to visual image features are predicted based on a point-wise kinematic motion

model. The prediction of sparse 3D points is based on an accurate motion model which

relies on the linear and angular velocity, which in turn depends on accurate estimation

of depth at each feature point. The depth estimation is obtained from stereo cameras,
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Figure 5.7: Comparison of the proposed stereo (new) and standard stereo tracking
methods, when the target spins at angular velocity of 2 deg/s and linear velocity of
10 mm/s and, is frontal to the camera. The new stereo tracking method outperforms
the standard stereo method when insufficient features exist, as can be observed on the

graph of translation error along spinning axis (Z).

which is sufficiently accurate for close range approach and manipulation. In case of a

failure of one of the camera electronics due to radiation, our method is able to proceed

the tracking under the assumption of constant frame to frame velocity.

The motion tracking is demonstrated to be an accurate and more robust using a realistic

satellite mock-up, motion trajectories and a high power floodlight to simulate the space

lighting. The prediction capability of the tracker is, however, limited to a short-term

scenario where under-and over-saturation of the image due to poor or strong lighting

is tolerated for a few seconds. Moreover, an abrupt change of motion particularly with

monocular tracking that relies on constant frame-to-frame velocity, is not guaranteed.
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Figure 5.8: Comparison of the new stereo and standard stereo camera based methods
with higher velocity, when the target spins at angular velocity of 4 deg/s and linear

velocity of 20 mm/s and frontal to the camera.
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Figure 5.9: Drift of feature under various motion 2 deg/s and 10 mm/s. (Top row)
roto-translation about spinning axis frontal to camera, and bottom the target nutated

5◦



Chapter 6

Model-based Position

Localization under Specular

Reflection

In chapter 5, we have presented motion estimation and tracking in the absence of a

geometric model (CAD model) of a client satellite, solely relying on image data and

motion model. In this chapter, we present a model-based localization of the client

satellite. Localization of a rigid-body in 3D space in the presence of the geometric

model provides two major advantages. Firstly, it provides a priori information about

the object for absolute pose estimation, enabling drift-free visual tracking. Secondly, the

CAD model enables to exploit edge features for tracking which are robust to lighting,

thanks to a model and an image edge matching along the edge normal (1D search). In

this chapter, we address two configurations of a target satellite which occur in practice.

First, we present position detection and tracking (position localization) of an attitude-

controlled satellite (Section 6.1). The position localization here refers to estimation

of the three translation parameters of a partially cooperative satellite in a sequence of

images. In this configuration, the attitudes of servicer and client satellites are aligned by

on-board sensors such as star tracker. The point here is that, the on-orbit servicing can

be effectively performed just before the life span of the client (target) satellite comes to

an end. Consequently, on-board attitude measurement sensors of the client satellite can

be exploited. The second scenario will be presented in Chapter 7, which is orientation

65
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and position (pose) tracking of a fully malfunctioning target satellite. The target satellite

in this case tumbles freely about any of its axes.

6.1 Position Localization of a Partially Cooperative Satel-

lite

In general satellites undergo translational and rotational motion in space. Under nor-

mal operating condition of a satellite, where Attitude and Orbit Control System (AOCS)

are functional, the servicer and client satellites can be aligned with an aid of on-board

attitude measurement sensors. In this scenario, position localization considers only

translational motion. In fact, state of the art camera pose estimation methods are not

robust for all object geometries and orientations (views). For instance, they have prob-

lems in case of object symmetry or frontal planar surface where in-depth rotations are

ill-conditioned. Therefore, instead of tracking the full 6D motion parameters, we exploit

the AOCS for alignment of the two satellites and localize position of the client with

respect to the servicer. On the other hand, sensor fusion is well known in compen-

sating drawbacks of measurement errors from sensors, however attitude measurement

from AOCS is sufficiently accurate and robust in our particular application. Hence, the

benefit of fusion of measurements from various sensors here is not feasible.

The main contribution of the thesis in this regard (based on our work [166, 167]) is,

firstly it provides a model-based hierarchical position tracking method to handle change

of image features along a range of distances, and localize an attitude controlled (par-

tially cooperative) satellite. For this purpose, a robust histogram-based foreground and

background segmentation is directly integrated into the position optimization loop in

3D space at mid-range, followed by an edge-based localization of the nozzle of the satel-

lite at close-range. Furthermore, the performance of the classical edge-based tracking

method is improved by integrating a simple motion model. Secondly, it provides a robust

nozzle detection method, which adapts and integrates state of the art techniques which

otherwise alone fail, addressing a real world challenging problem. Finally, the thesis

contributes by providing realistic data sets similar to space scenario, and analyzes the

tracking performance in terms of change of illumination, intensity, sun direction, motion

and image compression.
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6.1.1 Partially Cooperative Satellite

A partially cooperative satellite is defined here as a client satellite near its end of opera-

tional lifetime, but able to be controlled, hence on-board attitude measurement sensors

are active and can be used to align with the attitude of the servicer satellite. Fully

operational satellites maintain their orbit and are stable in space. This orbit control is

achieved by providing fuel to maintain the orbit position, otherwise the external forces

such as atmospheric drag ( in LEO) and pull of the Moon and the Sun slow down,

eventually lowering the orbit altitude. Similarly, the pointing of antennas is provided by

attitude controllers and actuating devices such as reaction wheel, thruster or magnetic

torquer. In contrast, when the satellite runs out of fuel or electronics fails, it becomes

dysfunctional and inactive, corresponding to the term non-cooperative satellite. Also no-

tice that a satellite can be a cooperative if markers are mounted on it to aid vision-based

localization.

On-orbit servicing of a partially cooperative satellite provides several advantages. Firstly,

the client satellite is active and one is able to communicate to assess the status of the

satellite. Secondly, the active satellite means the on-board attitude measurement sen-

sors are operational, i.e. an accurate on-board attitude measurement is possible, subse-

quently the relative attitude of the servicer satellite can be aligned. Thus, only position

estimation and tracking is required to approach and manipulate the client satellite. In

point of view of computer vision, this is equivalent to reducing pose estimation from 6

DOF to 3 DOF which enables to find search space efficiently during optimization.

6.1.2 Hierarchical Tracking and Detection

For the localization of the client satellite with respect to the servicer, we assume a

partially cooperative client satellite, and the servicer is in a forced r-bar approach (the

motion orthogonal to orbital velocity of the client) so that attitudes of the servicer and

the client are aligned during the last 75 m. The on-board sensors of the spacecrafts

provide necessary attitude measurements in this range. Here, we address only the most

critical approach phase from 20 m. Beyond the range of forced r-bar approach, an

autonomous rendezvous is generally feasible from a telemetry or a far-range camera,

where measurements of only line of sight and range are required. Notice that the forced
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r-bar rendezvous along the whole range of approach of the client is possible but consumes

much fuel, therefore we restrict to the last tens of meters.

For a successful detection and tracking of the client, we employ two camera systems: a

monocular and a stereo camera. The monocular camera is used for mid-range rendezvous

(20 m to 5 m), with a larger focal length and smaller field of view, due to the higher

distance to the target. On the other hand, stereo cameras are suitable for an efficient

and robust localization at close range (from 5 m to 0.5 m), where a larger field of view

and a significant disparity dramatically increase accuracy. During the approach, the

localization system automatically switches between mid- and close-range.

We employ a hierarchical localization approach, by integrating robust detection and

tracking methods because of the different image properties and camera system at each

range. The algorithms in both ranges are based on the detection and tracking work-flow

(Fig. 6.1):

• Detection block: beginning with the initial frame, or if the tracking fails at a

certain frame, we perform a global search to find the client in the whole 3D viewing

volume, at the given range. If detection has been successful, initialize the pose and

go to local tracking, otherwise, report a failure.

• Tracking block: if a valid initial pose is available (either from the previous frame

or from the detector), it is used to start a local search for the current frame. In

case of failure, the detector will be called at the next frame.

However, internally they differ in the way the three main tasks (global search, local

search and loss detection) are performed, concerning employed models, visual cues and

search strategies. For example, loss detection at close range is performed by computing

residual statistics, after matching contour points at the estimated pose and monitoring

the percentage of outliers.

Good Visual Features for Localization

The performance of the detection and tracking algorithm in general depends on existing

image features. For the localization of a satellite, we rely on contour and internal

edges which are known to be robust to illumination variation. We exploit the silhouette
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Figure 6.1: Hierarchical localization approach at mid- and close range. Both mid-
range (left) and close range (right) localization consists of global detection and local

tracking blocks.

contour (boundary) of the satellite within the field of view of the camera at sufficient

range, otherwise the localization method relies on internal edges and primitive features.

In the case of an attitude-controlled satellite, only the position (translation parameters)

should be estimated. The most suitable features for tracking are parts of the satellite

which contain an engine thrust (nozzle), a launcher interface ring or a bracket (see

Fig. 6.2). One of our goals here is to develop a tracking method that exploits the

most common satellite features. In this regard, the silhouette contour of the satellite

and thrust nozzle are readily obtainable features of most satellites. Therefore, we use

the outer contour and nozzle of the satellite for mid-range and close-range tracking

respectively. In fact, the nozzle of the satellite in both ranges is in a frontal view,

despite slight attitude deviation, because of the attitude alignment of the servicer and

the client satellites. We remark that the interface ring (the bigger circle) in Fig. 6.2 is

a non-generic feature to track, as it may not exist universally in all satellites, hence we
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Figure 6.2: Features for satellite localization. The boundary contour and the nozzle
are the most common elements of most satellites, and can be considered general features

for visual tracking.

restrict to track the engine nozzle of the satellite.

6.2 Mid-range Localization

The localization of the contour of the satellite starts at about 20 m because of limited

space in our facility. We employ a monocular camera with a small field of view, in

order to increase the object resolution and allow a sufficient accuracy for model-based

matching. In contrast, at such distances stereo cameras would require a large baseline

and consequently a large field of view, resulting in a less accurate system due to the

limited resolution. Moreover, such a setup would be very sensitive to calibration errors.

However, in order to cover the full range (down to 5 m) the field of view cannot be

reduced too much, and therefore even a monocular system cannot reliably show some

features on the surface, such as the launcher interface ring. Therefore, in this mid-range

we rely on the outer satellite shape (silhouette contour), that can be identified as a

bright region against a dark background, thus very suitable to a foreground segmentation

approach. However, the boundary between the foreground and background may not be

well separated due to shadow and poor lighting.
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Figure 6.3: Edge-map at a distance of 6 m. The contours of the satellite are sparse and
difficult for edge-based tracking, instead foreground and background statistics provide

strong cues than contour edges.

The result of the position estimation cannot be expected to be as accurate as the close-

range approach, however it will be certainly more robust and accurate than an edge-

based approach. The whole satellite region offers a strong contrast against the back-

ground because of the specular nature of the multilayer insulation (MLI). In contrast,

the reflection of MLI causes the nozzle to be almost undetectable in this range, as it can

be observed from the related edge map in Fig. 6.3.

During this approach phase the required absolute accuracy is not as high as during the

close-range approach: in fact, the main system requirement is to keep, at any range, a

relative accuracy of in-depth translation of 1%. Therefore, at 20 m an error of less than

20 cm can be tolerated.

6.2.1 Contour Detection

We assume the client satellite is approximately known beyond the current mid-range

through a far-range localization method, which is beyond the scope of the thesis. In

order to find the silhouette contour of the satellite, we employ a brute-force global search

on a large but a regular (x, y, z) grid covering the desired range to estimate the position

(the Algorithm 1). The estimated translation parameters are then locally refined using

the Nelder-Mead simplex algorithm [168].
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Algorithm 1 Global Detection

1: Initialize the bounding box with minimum and maximum range in 3 dimension
2: Divide the bounding box into n number of grids in all the dimensions
3: for each grid n do
4: Weight minimum and maximum range according to the divided grid
5: Project the 3D parameters of the rectangle to 2D
6: Evaluate histogram-based segmentation and return cost
7: if cost < minimum cost then
8: Return best estimate of 2D rectangle parameters that result minimum cost

function evaluation
9: Back-project the 2D best estimate and compute 3D coordinates of the center of the

rectangle

6.2.2 Contour Tracking

Since the geometric model of the client satellite exists, instead of a generic foreground and

background segmentation a more effective model-based matching can be performed. In

order to estimate the 3 translational degrees of freedom, the shape at any pose hypothesis

(in this case translation and scale) is projected onto an image plane, collecting interior

and exterior image statistics from the respective regions, and computing the divergence

between statistics to be maximized (see Fig. 6.4).

In particular, at position T = (Tx, Ty, Tz) the corresponding foreground and back-

ground regions f(T ), b(T ) are computed, and a gray-value statistics using histograms

P hf (T ), P hb (T ), h = 1, . . . , Nc, where Nc is the number of histogram cells are collected.

Here we use a power of two Nc = 2n, typically Nc = 64, in order to quickly compute

the histogram cell, h = b(g/28)Ncc = g � (8− n), where g ∈ [0, 255] is any integer gray

value.

Then, the Bhattacharyya divergence coefficient between the densities, defined by

B(f(T ), b(T )) =

Nc∑
h=1

√
P hf (T )P hb (T ) (6.1)

is evaluated, where B(T ) ∈ [0, 1] has to be minimized w.r.t. T , in order to enforce

foreground and background separation. To keep a better shape for the objective function,

rather logB(T ) is maximized. In absence of derivatives, and in a few dimensions, local

optimization is effectively performed by a direct search method, using the Nelder-Mead

simplex algorithm [168]. Although the model used for tracking is the outer boundary of

the object, the required output always refers to the position of the nozzle. In fact, since
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Figure 6.4: Perspective projection of a contour of a satellite at a given position
hypothesis. Divergence of histogram statistics between foreground and background is
maximized. After a few iteration, the re-projection of the rectangle fits to the image

rectangle (green)

the relative location of the latter on the client body is known, the constant translation

vector is simply added to the estimated position of the satellite contour.

6.3 Close-range Localization

The hand-over between mid- and close-range localization approaches takes place at about

5m distance. The mid-range tracking automatically switches to the close-range localiza-

tion, that looks directly for the satellite nozzle, modeled as a 3D circular feature. Here,

a stereo camera is employed for both detection and tracking, providing more accurate

and robust measurements. The detection and tracking of the nozzle are based on edge

extraction, where both location and orientation of edge pixels are determined through

Canny detector [149] and Sobel filter respectively.
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Figure 6.5: Nozzle detection of an attitude controlled satellite.

6.3.1 Nozzle Detection

After the hand-over between the two localization modules, the nozzle tracker is initialized

by using the last pose estimated by the mid-range tracker. However, for more safety also

in this case we need a general target detector, able to initialize the local nozzle tracker in

case of failure. The detection module is thus responsible for a global recognition of the

client nozzle in the incoming images. Therefore, localization robustness against clutter

and noise, as well as sufficient accuracy, are vital in order to successfully initialize the

tracker.

The client satellite produces strong background clutter (region outside nozzle rim), due

to a specular reflection of the glossy and irregular surface under direct sunlight. The

cluttered edge map (see Fig. 6.3) poses challenges to detection as well as tracking. We

assume a frontal position and rectified stereo images, while both assumptions are relaxed

during tracking, that work with arbitrary cameras and nozzle attitudes, and perform a

robust bottom-up processing as depicted in Fig. 6.5. The bottom-up processing includes

mainly edge detection, linking, circle detection, stereo matching, triangulation of the

center and least square error (LSE) refinement.

Binary edge maps are first obtained by the Canny detector [149]. Subsequently, edge

linking [169] is performed to recover connected, 1-pixel wide lines, which are broken at



Chapter 6. Model-based Position Localization 75

detected junction points where two or more lines intersect, obtaining a set of labeled

contours. This procedure may be computationally intensive, especially in a cluttered

scenario, however it provides a reliable information for shape detection. Each connected

line is then tested for circularity, that is, how well it fits an arc of a circle. The standard

LSE fitting of a circle (L2 norm),

LSE : arg min
xc,yc,r

∑
i

(√
(xi − xc)2 + (yi − yc)2 − r

)2

(6.2)

is not robust against outliers, that in our case are given by false edges, erroneously linked

to the correct ones. A better strategy considers instead the L1 norm of the geometric

re-projection error

AGE : arg min
xc,yc,r

∑
i

∣∣∣∣√(xi − xc)2 + (yi − yc)2 − r
∣∣∣∣ (6.3)

where (xc, yc) and r are the center and radius of the circle respectively, and (xi, yi) are

the measurements.

Despite generally a higher difficulty of L1 (absolute geometric error) optimization, in this

case the result can be obtained efficiently through a recently developed algorithm [170],

by partitioning the points into three sets: outside points, inside points and points on

the circumference. This method performs at best when inliers have a low measurement

noise, which is the case of the Canny detector that, at least in relatively low-noise images,

shows a pixel accuracy.

The circle detection rate is further enhanced by first applying a RANSAC strategy (3

point circle fitting) for outlier detection by thresholding against a reasonable percentage,

e.g. 30%, before performing the L1 (AGE) optimization. Although this may increase

the computational cost, especially in case of high clutter, in practice the RANSAC takes

very few iterations to converge, again because of the low inlier noise, thus resulting in

a negligible additional cost. A clear advantage of RANSAC is the fact that it explicitly

selects inliers, resulting not only in an improved robustness, but also allowing to rule

out non-circles, by thresholding the percentage of outliers.

After fitting, candidate arcs are pruned against a minimum spanned angle of 45 deg,

and against an allowed range of radii, that are computed from the range of observable

nozzle depths. That means, the radius of the 3D circle of the nozzle is re-projected onto
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the image plane, using known maximum and minimum distance of the tracking range.

Thus, the allowed range of the radii rmin and rmax are respectively,

rmin = f
Rc
Zmax

(6.4)

rmax = f
Rc
Zmin

(6.5)

where Rc, radius of the 3D circle, f focal length, Zmin and Zmax are closest and furthest

distance of the nozzle from the camera respectively. The remaining circles are matched

pair-wise between stereo images, by further setting thresholds determined by stereo

constraints to exclude spurious matches. In particular, for a given nozzle radius and

camera parameters, we test against the epipolar constraint between the two centers

(approximately same y), the allowed disparity range corresponding to observable depths,

the similarity of estimated radii as well as the known radius of the nozzle.

After the pruning, either none (in case of missing detection) or very few candidate circles

will remain, each one leading to a hypothetical position, first computed by triangulation

of the image centers. Those hypotheses often cluster together around the correct posi-

tion, due to the fact that the detected nozzle edge splits into multiple arcs. Therefore, in

order to obtain a more robust and accurate position estimation, we merge all candidate

arcs (on both images), and perform a final nonlinear LSE, by minimizing the overall

re-projection error, initialized by the average of triangulated centers. This method is in

general robust to background clutter and illumination variation.

6.3.2 Nozzle Tracking

Assuming the nozzle position has been initialized with sufficient precision, the local

tracking refines and updates the estimate in real-time, still relying on the Canny edge

map, but this time minimizing geometric re-projection errors, after sampling the model

into a set of points, to be projected onto both images. In contrast, extracting a circle

under strong specular reflection and shadow is not robust enough for tracking, therefore

instead of circle to point matching, we adapt the general point to point matching, without

looking for special geometric features. This procedure is faster for real-time purposes and

also more accurate and robust, because it is a local nonlinear least-squares estimation

that minimizes a re-projection error, unlike a global, bottom-up search. Moreover, it
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Figure 6.6: Re-projected nozzle contour at a given pose hypothesis in frontal view
and contour of the nozzle in the image. (Left) the image and model edges (circle) are
uniformly sampled for matching along the normal of the edge at each sample point.
(Right) the nozzle contour re-projected at a given pose hypothesis in frontal view and
edge map under good illumination. The optimization is a 1D search along the edge

normal at each sample point.

does not anymore rely on the assumption of parallel cameras, thus avoiding the need for

image rectification.

For the local tracking, model points at a given pose hypothesis (pose at last frame)

are re-projected and associated to candidate edge pixels, which are determined by the

Bresenham line drawing algorithm by sampling the Canny edge map, along the respective

normals (as illustrated in Fig. 6.6), up to a constant maximum distance (validation gate),

while also considering the corresponding edge directions as measured by the Sobel filter,

that should be similar up to a 180◦ ambiguity, within a reasonable threshold of about

±15◦. In Section 7.1, we present an adaptive validation gate which enables to handle

apparently small targets in the image at relatively far distance.

As a comparison, it could be noticed here that the two most well-known model-based

tracking methods [4] and [15], although both based on edges, perform pose estimation

in rather different ways. The former samples 3D contour points and projects each

point to the image in order to compute and minimize re-projection error. The latter

samples model contours in 2D, after projecting lines on the image plane, and looks for

point-wise edge correspondences between frames, similar to optical flow, in this context,

referred to as “moving edges” approach, followed by pose estimation from 2D-2D point

correspondences.
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Despite similar performances under normal illumination condition, the two approaches

may have different advantages and disadvantages, that have been explored in some detail

in [5]. We adapt the former approach because of a more direct and accurate formulation,

in that it minimizes directly the re-projection error from 3D to 2D. It is known that edges

do not maintain a stable contrast over subsequent frames due to the glossy and specular

surface properties on the boundary of the nozzle rim. In this regard, the former approach

is more robust to this local illumination change than the moving edge approach.

The local tracking relies on the maximum-likelihood solution provided by the edge fitting,

starting from the previously estimated pose [4, 59]. By assuming a Gaussian noise

statistics for detected edges, we have a nonlinear least-squares problem, that can be

solved by Gauss-Newton or Levenberg Marquardt optimization, improved for robustness

by using an M-estimator (Section 6.3.2). Although we mainly deal with translational

motion, let us first consider the more general setting of rigid body motion, given by the

Euclidean group SE(3) based on Lie algebra ([60])

Tg =

 R t

0 1

 (6.6)

where R is a (3 × 3) rotation matrix and t a translation vector. Unlike Euler angles

R(φ, θ, α) representation (see B.1 in Appendix B), a singularity-free parametrization (at

least around the current estimate of Tg) is obtained by taking the tangent space SE(3)

to the manifold at Tt−1, given by an arbitrary vector µt

Tt = Tt−1δT (µt) (6.7)

where the local incremental transform is a singularity-free around µ = 0.

More concisely, µ = (ω,v) represents linear and angular velocity in local coordinates of

Tt−1, and defines through the exponential map (see [60] for further details),

σT = exp

(
6∑
i=

Giµi

)
(6.8)

where Gi are 4×4 basis generators. Each 3D model point x = [x y z 1]T , sampled along

the circular nozzle rim, is expressed in homogeneous coordinates and projected onto a
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given camera y = [u v]T by computing

y = π(K · T · δT (µ) · x) (6.9)

where the operator π() transforms from homogeneous to Euclidean 2D coordinates un-

der perspective camera model and K is a projection matrix, obtained through camera

calibration.

For pose estimation, we seek the minimizer of the cost function

µ̂ = arg min
µ

np∑
i

||ei||2 (6.10)

= arg min
µ

np∑
i

||si − yi(µ)||2 (6.11)

where e is the residual, s is the 2D image coordinates of the matching edge to the

projected point y, and np is the number of matching pairs. This size may reduce, if

some of the projected points do not have a correspondence within the search range, or

they fall out of screen in one or both cameras. These points are counted as outliers:

they do not influence the partial derivatives of residual (Jacobian J), however they are

counted as a mismatch with maximum residual in the above cost function.

By minimizing the linearized residuals along the contour normals, at each Gauss-Newton

iteration local pose parameters µ,

µ =
(
JTJ

)−1
JTe (6.12)

are estimated and the Tt−1 matrix is updated by Equation (6.7), until the increment

µ becomes sufficiently small or a maximum number of iterations is reached. Upon

convergence the final norm of residuals and the estimated error covariance
(
JTJ

)−1

provide a useful metric to detect a tracking failure. Since our method is suitable for

monocular and multi-camera system, it can work also in case of failure of one camera,

albeit a reduced accuracy and robustness compared to stereo camera tracking.

The above general formulation can also be applied to cases with reduced degrees of

freedom, for example in presence of geometric symmetries. This is easy to accomplish
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because of the local (object-related) parametrization: for example, since the axial ro-

tation of a circle cannot be estimated, we can simply suppress the Jacobian column

related to the respective generator Gi, and set µi = 0 during Gauss-Newton iterations.

As the attitude of the client satellite is aligned with that of the servicer using on-board

attitude measurement sensors (e.g. star tracker and sun sensor), the formulation for the

pose tracking given above reduces to position tracking by fixing the rotational part R

to a known value and keeping only the last three generators (basis vectors) associated

to translation in Equation (6.8).

Robust Tracking using M-estimator

As it can be observed in Fig. 6.6, several background clutters because of specular re-

flection result in false positives on the edge map that may be dense and very close to

the nozzle edge. Robustness to such outliers is critical for the local tracking as well as

detection. However, the latter case is even worse because local matching is performed

independently point-wise, without the reduced ambiguity provided by continuous edge

linking (Sec. 6.3.1).

Also in this context, we could apply a RANSAC strategy under a stereo re-projection

model. However, for real-time efficiency we rather choose an M-estimator as adopted in

the context of 2D vision-based control (visual servoing) [171], that adaptively thresholds

outliers based on robust median statistics, while re-weighting inliers according to the

Tukey bi-weight function

wi =

(
b2 −

(
ei − ē
σ

)2
)2

(6.13)

and wi = 0 for |ei − ē| > bσ. Here, b = 4.6851 is the standard threshold for Tukey’s

function, and the scale σ is the standard deviation of inlier data, estimated using the

median of absolute deviations (MAD) from the median residual ē, and used to compute

the inlier weights. The Gauss-Newton update in Equation (6.12) is then replaced by

µ̂ =
(
JTWJ

)−1
JTWe (6.14)

where W is a diagonal matrix containing the weights.
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Temporal Constraint for Motion Prediction

In spite of introducing the robust estimator into a maximum-likelihood solution to edge

fitting, it is likely to lose track because of a higher number of outliers than inliers.

The procedure can be easily improved for robustness by using a Kalman filter with a

simple motion a priori. This is vital, although the global detector can provide again the

absolute pose when local tracking fails, this is not always the case: low-contrast edges,

severe background clutter and shadows may cause a long sequence of failures.

To address this problem, we adopt a simple motion model to predict the client satellite

pose based on Kalman filtering. To this end, we assume the client satellite undergoes a

constant translation velocity v and a constant rotation velocity ω between two camera

frames. Notice that the satellite attitude is controlled and the trajectory is smooth,

therefore the motion can be modeled with a constant velocity and small uncertainty.

Let µ = [ΩT tT vT ωT ]T be the state of the system, where Ω ∈ <3 is the rotation vector

associated to the rotation matrix R, then

The state dynamics of the satellite can be described by a non-linear motion model,

Ωk+1 = logSO(3) e
ω̂keΩ̂k

tk+1 = eω̂ktk + vk

ωk+1 = ωk + αk

vk+1 = vk + ak

(6.15)

where ω̂ and Ω̂ are skew-symmetric matrices corresponding to the respective vectors,

logSO(3) is the inverse of rotation matrix exponential, that gives the rotation vector

corresponding to rotation matrix R through the Rogrigues’ formula.

The relative accelerations αk and ak between the servicer and the client are modeled as

a Gaussian additive noise of zero-mean. The motion model used for state propagation

in Equation 6.15 has been shown to be robust and stable [172]. In order to compute

state update through an extended Kalman Filter, the above dynamics are linearized

by differentiating the logarithmic function in SO(3). On the other hand, the measure-

ment equation of the filter relies on pose estimates provided by the localization system

described above. Hence, an identity measurement matrix is assumed for the position
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part, H = [I 0]. As described in the previous Section, the client is well-controlled and

attitude is aligned with that of the servicer with the aid of on-board sensors. Therefore,

prediction concerns only the three translation parameters.

6.4 Evaluation

In the following the localization methods described in Sections 6.1 to 6.3 are experimen-

tally evaluated using a satellite mock-up (Fig. 6.2). We employed a versatile Optical

Rendezvous, Docking and Landing (RVDL) camera system, including an illumination

subsystem, developed by Kayser-Threde GmbH shown in Fig. 6.7.

Figure 6.7: The VIBANASS equipment employed to evaluate the tracking system.
Image courtesy of OHB System AG (former Kayser-Threde GmbH).

The equipment consists of stereo Camera Systems (CS), the Target Illumination System

(TIS) with two illumination units (LDA) and a Ground Operation System (GOS) in

flight configuration. The equipment contains three camera systems (a mid-range camera,

and close-range stereo cameras), communication interfaces, hardware controller and a

power supply module. At close-range, two CS are used as a stereo system with a 50

cm baseline. In addition to the hardware, the GOS comprises software to command the

equipment, to receive and compress images, and finally to estimate the position of the

target in real-time.

Fig. 6.8 shows a schematic diagram of the general test setup, comprising the target mock-

up (left robot) and the Vision Based Navigation Sensor System (VIBANASS) equipment

mounted on the right robot. This robot is mounted on a rail for the movement in the
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Figure 6.8: Schematic diagram of proximity operations test setup at EPOS facility
(DLR). Two six degrees of freedom robots are employed to simulate servicer and client
satellites. To achieve near micro-gravity and floating, a control strategy is used to

compensate gravitational acceleration.

Figure 6.9: Mock-up of a full-scale client satellite at the EPOS facility. It consists of
a thrust engine (nozzle) and a launcher interface ring (big circle).

line of sight direction. The sun simulator shown on the right is a 12 kW floodlight with

a sun like spectrum and optical power.

The goal of the experiment is to evaluate the proposed methods to a real world problem

under harsh illumination condition. To verify the functionality of the whole system,

pre-recorded images are used as input for the localization algorithm and the estimated

position of the client was compared to the measured position. The VIBANASS camera

system is used to record monocular images at mid-range (>5 m) and stereo images

at close-range (<5 m). At close-range, the client is additionally illuminated by the

TIS. Results of the visual tracking algorithm are computed in different reference frames,

located on the the left camera center at close-range, and on the monocular camera center

at mid-range, but later transformed to same reference frame. Fig. 6.9 shows the target

satellite mock-up, illuminated by the sun simulator.
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Figure 6.10: Positions of the sun simulator with respect to the target, measured by
the angle between the camera line of sight and the sunlight direction. Image courtesy

of OHB System AG (former Kayser-Threde GmbH).

Figure 6.11: Approach, as seen by a surveillance camera at a distance of 15 m (left)
and 0.5 m (right).

A number of trajectories are tested, starting from a distance of 20 m and ending at a

parking position of 0.5 m, measured between the camera and the target frame (center

of the nozzle rim). Those trajectories cover a linear and non-linear motion (Table 6.1)

and are used under various illumination conditions. Moreover, in order to assess the

performance of the tracking method, the trajectories are evaluated with four sunlight

directions. Fig. 6.10 shows four positions of the sun simulator. The positions of the

sun simulator differ in the angle between the camera line of sight and the sun direction.

In addition, a test case without sunlight (source of light 100% provided by TIS) is

defined. In order to show a wide variety of environmental conditions several test cases

are selected, with varying trajectory, sun position and intensity of an artificial source of

light. Fig. 6.11 shows the approach trajectories at a distance of 15 m and 0.5 m, as seen

by a surveillance camera. In the following, we present results and discussion of the mid-

and close-range localization.
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Figure 6.12: Mid-range tracking error. A servicer approaches a client at a nominal
motion, approximately at a constant speed, at the sun direction of 90◦.
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Figure 6.13: Mid-range tracking error at the sun direction 45◦. Unlike the close-
range tracking, the influence of the illumination at this angle is insignificant due to the

effective foreground and background segmentation.

6.4.1 Mid-range Position Localization

A gray-scale image is acquired with a CMOS Camera sensor at a resolution of 1024×1024

pixels and a lens aperture of F-number 4 and focal length of 20.4 mm. Since the mid-

range is approximately pre-determined from far range, detection is approximately semi-

global, meaning the range of initial position is roughly known in the order of a few

meters. Therefore, the detection algorithm can effectively search accurate position in a

few iterations. For this purpose, the search box is defined initially as −1 m ≤ Tx ≤ 1 m,

−1 m ≤ Ty ≤ 1 m, and 5 m ≤ Tz ≤ 22 m. In fact, the position detection works beyond

the given specification, but it becomes slower.

The mid-range tracking, which is model-based separation of histogram statistics between

the object foreground and background is robust to poor illumination condition (see

Fig. 6.15). Here we consider, a typical trajectory where a servicer approaches the client

at a nominal motion profile, approximately constant speed. It appears that the change

of the illumination direction in the mid-range does not affect the localization algorithm

significantly due to the effective foreground and background segmentation. However,
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Figure 6.14: Effect of image compression on mid-range localization.

Figure 6.15: Model based foreground and background segmentation. The alignment
of image contour with projected model contour (marked with green around the contour)
at correctly estimated position. Images (left to right) are at positions 19m, 18m, 16m

and 10m.

we observe a minor difference along the optical axis. This is, for example, evident in

Fig. 6.13 where the client was tracked at the sun direction of 45◦ for the same trajectory

in Fig. 6.12 at the sun angle of 90◦.

On the other hand, the effect of quality of image in terms of compression, while resolution

was maintained, on tracking in the mid-range was analyzed. The goal of this evaluation

was to assess how accurately we can track compressed images. Notice that transmission

of compressed images to ground enables to save bandwidth. As we can observe in

Fig. 6.14, the compression did not affect the tracking. The evaluation includes lossy

compression with a low, medium and high compression ratio and lossless compression.

As it can be noticed in Fig. 6.14, the error suddenly increased at distances near to 5

m, when the switching occurred between mid- and close-range cameras. This effect was

significant in the case of tracking with the lossless compressed images.

6.4.2 Close-range Position Localization

Gray-scale image sequences are acquired with a stereo CMOS Camera at a resolution of

1024× 1024 pixels, and a lens of aperture with F-number 4 and focal length 6 mm. The
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approach of the client satellite during the last 5 m are generally a critical phase, therefore

various motion profiles at four illumination direction are evaluated. For this purpose,

five types of motion trajectories (Table. 6.1) under various illumination conditions and

sun directions are analyzed. In order to capture the real scenario, attitude disturbances

acting on the servicer side, that cause oscillations of the camera (planar and pan-tilt

rotation) with a given amplitude and frequency are introduced to the trajectories. It

can be noticed that especially the pan-tilt rotation, although being small on the servicer

side, introduce significant horizontal and vertical motion of the client nozzle in camera

coordinates.

Table 6.1: Motion profiles used for evaluation of localization at close-range under
various illumination condition

Motion Profile Motion Description

1 Linear translation along Z

2 Linear translation along Z, plus a small rotation with sinu-
soidal oscillations about the Y axis

3 Linear translation and a small linear rotation about Z, plus
linear translation disturbance and small rotation (the latter
with sinusoidal oscillation) about Y

4 Station keeping, fixed at 5m distance, plus oscillating trans-
lation disturbance along Y and a small oscillating rotation
about Y

5 Station keeping, fixed at 0.8m distance, plus the same dis-
turbances of motion profile 4

In the following, the experimental results of the nozzle detection and tracking are dis-

cussed.

Nozzle Detection

In order to verify the accuracy and robustness of the nozzle detection method and com-

pare with the state of the art, several trajectories and illumination direction were used.

The performance evaluation is based on errors generated in 3D localization (accuracy),

as well as percentage of correct detections (robustness) under conservative parameter

settings. The detector parameters are important to remove undesired false positives.

These include maximum disparity, the ratio of radii of the corresponding circles in the

stereo images (ideally one), ratio of estimated radius to actual radius in 3D space (ide-

ally one), the angle subtended by an arc of a circle (arc angle), and the threshold of



Chapter 6. Model-based Position Localization 88

Table 6.2: Comparison of nozzle detection

Method L1 L2 RANSAC RANSACL1 RANSACL2
Correct detections 92 109 74 106 114
Total detections 139 147 87 114 165
Correct localization[%] 66.19 74.15 85.06 92.98 69.09

stereo re-projection error after merging all candidate arcs. To compare various detec-

tion approaches, we fix the same parameters for all fitting methods shown in Fig. 6.16.

Particularly, the arc angle and threshold of re-projection error required a careful tun-

ing to avoid false detection. In this work, a minimum arc angle of 45◦ and an overall

re-projection error of 6 pixels were used for all the experiments.

The state of the art methods for the detection of nozzle in a frontal view (circle) are com-

pared. The basic strategy of the detection is similar (Fig. 6.5), but differ in metric of the

cost function, namely absolute error(L1), least square error (L2), RANSAC, hierarchical

RANSAC and L1 (RANSACL1) and hierarchical RANSAC and L2 (RANSACL2). It is

known that RANSAC is robust to outliers. Moreover, when it is combined with an other

robust metric L1 (RANSACL1), the performance of localizing the nozzle of the satellite

improves over all test sequences (see Fig. 6.16 and 6.17 as well as Table. 6.2). This is

because of the complementary effect of the two robust methods (see Fig. 6.2). In partic-

ular, RANSAC performs poorly when there exist more outliers than inliers, in this case

introducing L1 improves the detection performance. This combination is better in that

it provides less position errors and a few false detections (false positive) consistently. It

is worth noting in Fig. 6.16 that the RANSACL1 and RANSACL2 localized the nozzle

position accurately (relatively a few errors), however the errors of RANSACL2 in the

first five frames, are too high to initialize the local tracker (absolute errors more than

100 mm in Z-axis).

Nozzle Tracking

Based on the trajectories in Table 6.1 and associated ground truth, the nozzle tracking

is evaluated and the influence of the following are analyzed:

• effect of the sun direction,

• effect of a Target Illumination System (TIS),

• effect of a compression artifact.



Chapter 6. Model-based Position Localization 89

20 40 60 80

−250

−200

−150

−100

−50

0

50

100

frame 

t z
 [
m

m
]

Translation error (Optical axis)

 

 

L1

L2

RANSAC

RANSCL1

RANSACL2

10 20 30 40 50 60

−400

−300

−200

−100

0

100

200

frame

t z
 [
m

m
]

Translation error (Optical axis)

 

 

L1

L2

RANSAC

RANSCL1

RANSACL2

20 40 60 80

−80

−60

−40

−20

0

20

40

60

frame 

t y
 [
m

m
]

Translation error (Vertical)

 

 

L1

L2

RANSAC

RANSCL1

RANSACL2

10 20 30 40 50 60

−20

−10

0

10

20

30

frame

t y
 [
m

m
]

Translation error (Vertical)

 

 

L1

L2

RANSAC

RANSCL1

RANSACL2

20 40 60 80

−60

−40

−20

0

20

40

frame

t x
 [
m

m
]

Translation error (Lateral)

 

 

L1

L2

RANSAC

RANSCL1

RANSACL2

10 20 30 40 50 60

−80

−60

−40

−20

0

20

40

frame

t x
 [
m

m
]

Translation error (Lateral)

 

 

L1

L2

RANSAC

RANSCL1

RANSACL2

Figure 6.16: The translation error of the nozzle detection. The client satellite was
illuminated 20% (left) and 100 % (right). The motion trajectory is linear along Z-axis

(motion profile 1).

Effect of Sun Direction

The direction of the sun affects visual tracking. This effect is higher particularly for spec-

ular objects. Therefore, it is desirable to assess the tracking algorithm under certain

critical illumination direction. It is impractical to evaluate under all possible illumi-

nation directions. However, typical direction from the on-orbit servicing mission can

be retrieved. The orbit of the satellite may be pre-determined and can be detected

from which range of direction the sun appears during on-orbit servicing. Therefore,

we consider here four directions, which are obtained by dividing latitudinal space into

90◦, 66◦, 45◦ and 15◦. The direction of the sun on the client satellite (nozzle) in this
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Figure 6.17: Nozzle detection. Translation errors for motion profile 2 (left column)
and 3 (right column) at illumination level of 10% and 5% respectively.

experiment, particularly at close-range, varied from perpendicular to near parallel with

respect to camera line of sight.

In order to perform a comparison at various sun directions, each motion profile was at

the same illumination level of 10% (ratio of intensity of laser diode arrays (LDA) to

that of the sunlight simulator). Accordingly, we compare effects of illumination for each

motion profile. In motion profile 1 (pure translation along Z), as we can see in Fig. 6.18,

the translation error at the sun direction of 90◦ is higher, particularly in the first few

meters. This is evident for the dominant motion along the camera optical axis (Z). This

is because, the sunlight at an angle of 90◦ was not sufficient to illuminate the interest

region (nozzle), which is in a shadow in spite of an additional target illumination system.

In fact, the level of the TIS could be increased to improve the tracking accuracy (for
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Figure 6.18: Effect of sun direction on estimation of position. Motion profile 1 (left)
and motion profile 2 (right).

Figure 6.19: Effect of Target Illumination System. A 10% TIS saturates the image
at a sunlight direction of 45◦.

example by 20%, see Fig. 6.21). In contrast, at the sun direction of 45◦ and the same

TIS level of 10% (Fig. 6.18), the images are completely over-saturated (see Fig. 6.19),

consequently the tracking fails to track the position until the servicer approached to 1.5

m, in which case nozzle edges are distinctive to track despite over-saturation.



Chapter 6. Model-based Position Localization 92

0 1 2 3 4 5
−1000

−500

0

500

1000

1500

distance [m]

t z
 [
m

m
]

Translation error (Optical axis)

 

 

90
°

66
°

45
°

15
°

0 100 200 300 400
−2000

−1500

−1000

−500

0

500

frame

t z
 [
m

m
]

Translation error (Optical axis)

 

 

90
°

66
°

45
°

15
°

0 1 2 3 4 5
−150

−100

−50

0

50

100

150

distance [m]

t y
 [
m

m
]

Translation error (Vertical)

 

 

90
°

66
°

45
°

15
°

0 100 200 300 400
−200

−100

0

100

200

frame

t y
 [
m

m
]

Translation error (Vertical)

 

 

90
°

66
°

45
°

15
°

0 1 2 3 4 5
−200

−100

0

100

200

300

distance [m]

t x
 [
m

m
]

Translation error (Lateral)

 

 

90
°

66
°

45
°

15
°

0 100 200 300 400
−100

−50

0

50

100

frame

t x
 [
m

m
]

Translation error (Lateral)

 

 

90
°

66
°

45
°

15
°

Figure 6.20: Effect of sun direction on estimation of position. Motion profile 3 (left)
and motion profile 4 (right).

Similar observations related to poor illumination (90◦) and over-saturation ( 45◦) oc-

curred also for the remaining of the motion profiles (Fig. 6.18 (right) and 6.20). However,

in these cases the accuracy of the tracking improved at the sun direction of 90◦ and 45◦

because of the motion profiles which consist of lateral motion, that enable to change

view point of the camera. In particular, the over-saturation at sun angle of 45◦ im-

proved significantly for motion profiles which consist of lateral motions (translation and

oscillation).

On the other hand, the tracking errors at the sun directions 66◦ and 15◦ are lower for

all motion profiles. Notice that at the sun directions 90◦ and 45◦, the tracking error is

relatively high. Therefore, we expect that for a given TIS setting of 10%, the tracking

performance improves at the sun direction close to 90◦ and 15◦. The experimental result



Chapter 6. Model-based Position Localization 93

is consistent with our expectation in that the error is lower at sun directions 66◦ and

15◦.

Effect of Target Illumination

Depending on the direction of the sun to the region of interest of the satellite during

on-orbit servicing, the target illumination system is essential particularly at a close-

range approach for an accurate and robust tracking. TIS should provide as much light

as necessary for poorly illuminated targets due to shadow. As described above, when

the sun is perpendicular to the line of the sight of camera, it is very difficult to track

a poorly illuminated client satellite. Therefore, we employed the Target Illumination

System mounted on the servicer, which can be controlled from ground to change the

level of illumination as necessary. In our experiment, the level of TIS is described relative

to that of the sun simulator, which is 12 KW metal halide lamp with a spectrum near

the real sun spectrum, i.e the percentage of the target illumination system to sunlight.

Accordingly, we considered four levels of TIS setting: 5%, 10%, 20% and 100%. For

example, 10% TIS represents that the LDA of TIS provides 1
10 th of the sun illumination,

and 100% TIS, lighting is fully provided by TIS ( full shadow or eclipse condition). We

evaluated the nozzle tracker at various levels of illumination and the sun direction of

90◦ for motion profile 1 and 3 (Fig. 6.21).

As it can be observed in Fig. 6.21 (left), a higher tracking error at the illumination level

of 10%, is mainly due to shadow that is created by side illumination. The additional

illumination provided by TIS seems to be not sufficient. On the other hand, the tracking

accuracy improves significantly as the illumination level is increased (Fig. 6.21). When

fully illuminated with TIS (100%), the performance of the tracker significantly increases.

Thus, the effect of the shadow is minimized because of the TIS, consequently the tracking

performance improved.

The motion profile influences the performance of the nozzle tracking under the same

condition of illumination. For example, the tracking error for motion profile 3 (Fig. 6.21),

which consists of oscillatory motion in two of the axes, all the TIS level result in similar

tracking performance, at least during the last few meters. This is because, the oscillation

of the client satellite promotes an appearance change as a result of specular reflection.

However, as we can observe in Fig. 6.21 (right), at lower illumination level (5% and
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Figure 6.21: Effect of a Target Illumination System (TIS) on the tracking at the sun
direction of 90◦. Motion profile 1 (left) and motion profile 3 (right). The error is higher

in the case of low level TIS.

10%) the tracking error is slightly higher as in the case of motion profile 1. This means,

in general it seems that the intensity of the TIS should be higher irrespective to the

motion profile.

Effect of Compression Artifacts

Some missions require sending image sequences down to ground for processing and re-

send the processed higher level information such as 3D position of the satellite. In

this case, compression of the images saves a large bandwidth, thus the impact of image

compression settings on visual localization errors is a topic of great interest. Similar to
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Figure 6.22: Effect of an image compression on close-range tracking. The error is
comparable to the values achieved with good illumination.

section 6.4.1 discussed for mid-range tracking, we analyze the effect of various compres-

sion factors for the close-range approach. Several trajectories, under good illumination

conditions, have been repeated with different compression settings. The resulting error

has shown to be almost equal to the error achieved under good conditions, and appears

to be independent of the compression rate. This is evident in Fig. 6.22, and it appears

that the effect of image compression has less impact on accuracy of the tracking.

On the other hand, the worst case scenarios were handled by introducing a simple

motion model to predict the position. When the nozzle contour is not discernible from

the background, both detector and tracker fails. Therefore, an integrated motion model

based on temporal constraint (constant velocity model) prevented the tracker from loss

of tracking (see Fig. 6.23). The performance of the tracking under various illumination

condition and image compression are shown in Table. 6.3. Notice that the nozzle tracking

is severely affected by lighting, while resilient to image compression (mean error of

approximately 2%).

Table 6.3: Effect of illumination and image compression on tracking accuracy (per-
centage error)

Test Case maximum mean standard deviation

Lossless compression 4.78 2.50 1.40

Low compression 4.20 2.20 0.66

Medium compression 8.90 2.29 0.88

High compression 4.26 2.18 0.49

Good illumination 6.90 1.47 0.69

Mean Illumination 15.50 4.70 2.99

Bad illumination 23.90 8.53 6.40
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Figure 6.23: Integrating predictive simple motion model improves the performance of
the tracking. The tracking without Kalman filter (first row) and the tracking integrated

into Kalman filter (last row). The prediction prevents the loss of tracking.

6.5 Summary

On-orbit servicing may be performed on a client satellite that is controllable, even if

some of its parts are malfunctioning. It is quite effective to exploit on-board sensors

of the client for the approach phase of the on-orbit servicing task. In this regard, the

attitude of the client satellite can be aligned with the servicer at the range where both

attitude and position tracking are required. A vision-based system can be employed

to estimate and track the position of the client relative to the servicer in 3 degrees

of freedom (DOF), while attitude measurement is provided by the on-board attitude

sensors. This is a great advantage for vision-based methods which may fail to recover

6 DOF pose in certain configurations of the client satellite (e.g symmetric and planar

object).

In spite of a reduced DOF, position tracking is yet a challenging problem because of

the severe space lighting and the reflective multilayer insulation of the satellite. This

problem is not addressed in the literature despite a few attempts without considering

the space lighting and reflective property of the surface of the satellite. In this section,

we provide a novel hierarchical localization system from mid-range up to the contact

point and prove the developed methodology.

The tracking of the client along a range of distances is handled by considering different

image features. Silhouette contours with a dark background under poor lighting are

difficult for tracking because of weak edges. Furthermore, the silhouette contours are

invisible at close range in the field of the camera view. Therefore, we employed a
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hierarchical model-based foreground and background segmentation at mid-range and

nozzle tracking at close range.

At mid-range (20 m to 5 m), a simple model of the satellite is re-projected at a position

hypothesis, while collecting the background and foreground histograms, and iteratively

optimized using the simplex algorithm. The initial pose is determined by a brute-force

search in a grid of boxes divided equally and refined by a simplex algorithm.

Once the servicer approaches the pre-determined close-range, the tracking switches au-

tomatically to edge-based nozzle tracking. The tracking then proceeds with a point to

point matching, points sampled uniformly from the rep-projection of the 3D circle at

a position hypothesis to the image edge along the edge normals. The translation pa-

rameters are estimated by iteratively optimizing using the Gauss-Newton algorithm. In

case of mistracking, we employ a nozzle detector which globally searches and computes

the nozzle position. For this purpose, the nozzle in a frontal view (circle) is detected by

integrating RANSAC and absolute geometric error cost function, and refined by stereo

constraints and the least squares optimization using the circle model. Furthermore,

the Kalman filter is employed to handle a short-term poor lighting condition by intro-

ducing a non-linear motion model which reduces to linear constant velocity model for

attitude-aligned satellites.

An extensive evaluation of the localization system was performed using by using one of

the most realistic proximity operations simulator that reproduces the satellite surface

properties and motion as well as the space lighting. The tracking at the mid-range is

shown to be accurate and robust even with compressed images and poor lighting. A

particular attention was given to the critical close-range approach where we thoroughly

evaluated the effect of the sun direction, image compression and target illumination

system on the performance of the tracking. The tracking performance depends on the

direction of the sun and the satellite with respect to the camera axis. When the sun angle

approaches to 90◦ with respect to the client satellite, a reliable tracking of the nozzle can

be achieved with an additional source of light mounted on the servicer satellite because

of the poor illumination and shadow, otherwise mistracking may occur which may be

difficult to recover by detection. Therefore, a target illumination system is required to

enhance the contrast of the image. The level of the target illumination is also critical and

should be reduced as the sun angle approaches to 45◦. On the other hand, the effect of
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compression on the tracking is evaluated; the tracking can be performed without loosing

much accuracy with a lossy compression of 12.5% and lossless compression of 50%.



Chapter 7

Model-based Pose Localization

under Specular Reflection

In Chapter 6, we have considered a client satellite near end of its life and exploited

on-board attitude measurement sensors to align the orientation to that of the servicer.

Thus, a vision-based method is used only for estimation of the three translation pa-

rameters, while handling small attitude disturbance due to camera motion induced by

the servicer. However, on-board attitude sensors are not always accessible. There are

several satellites which are already fully non-cooperative, thus out of control and are

freely tumbling or spinning in space. We rely on external sensors for the approach of the

non-cooperative satellites. In this Chapter, a pose tracking of a tumbling satellite in six

degrees of freedom (DOF) based on its CAD model and camera images is discussed. We

adapt the state of the art edge-based tracking methods [4, 15], while improving with the

search distance along the edge normal to match ambiguous edges [173] for long range

tracking (Fig. 7.1 and Fig. 7.2). Multiple hypothesis tracking [74, 86] considers differ-

ent hypotheses corresponding to potential edges to avoid problems due to ambiguities

between edges. However, the multiple hypothesis solution may increase computational

cost, and is limited to ambiguous edges at a certain pose, which does not address the

problem for long distance tracking. Moreover, we speed up the model-based tracking by

partitioning the CAD model of the satellite into its connected parts.

The pose tracking is presented in Section 7.1. The Section 7.1 is related to the Sec-

tion 6.3.2 of Chapter 6, hence the details of some equations and related literature may

99
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Figure 7.1: Ambiguous edges for matching along their normals. From far (right), the
distance between two edges such as df1 and df2 is smaller than that of dn1 and dn2
from a close distance (left). A constant search length along the edge normals (lines
perpendicular to the red, blue or green line) for both far and close distance creates
ambiguity, i.e. the normals to the blue line may be also the normals to red line or green

line particularly from far distance(right).

not be repeated here, therefore the reader may refer to earlier Chapter. Related to the

pose tracking is pose detection, which is used to initialize the tracker at the beginning

and in case of loss of tracking. While a satellite with several structures (edges) such as

in Section 7.1 and 7.2 can be detected with the state of the art pose detection meth-

ods [174, 175], a satellite fully covered with the multilayer insulator (MLI) is a difficult

and challenging problem. In Section 7.3, we address the problem of pose detection of a

highly specular satellite by an appearance learning.

7.1 Pose Tracking in Six Degrees of Freedom

In this Chapter, we deal with a fully malfunctioning client satellite, without on-board

attitude sensor and vision aid markers. We rely solely on vision-based methods to track

the full 6 DOF pose (rotation and translation) of a non-cooperative client satellite.

Moreover, we assume the CAD model of the client satellite is available, so that its

absolute pose can be estimated.
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The pose tracking methodology follows the same formulation as in Section 6.3.2, however

in this case the number of parameters (six) to be estimated and visibility determination

increase computational complexity. This is because we need to determine visible views

and sample points in this views at a given pose hypothesis in real-time. In presence of

a model of the object, pose tracking is achieved by projecting visible model edges at

a pose hypothesis (last pose) onto the image plane, and aligning them with detected

edges on the image, by searching along the edge normal and computing the minimizer

of the cost function. The geometric model of the satellite is primarily used as a prior

to predict the current motion at previous known pose for robust tracking. Real-time

tracking can be achieved using an efficient implementation in a stand-alone computer,

by partitioning a simplified CAD model of the satellite to its connected components. In

fact, for space applications we rely on standard CPUs, simplifying the complex model

provided by the original design files, in order to remove tiny surface details that are

invisible at the desired range of distances, so that we could sample visible model lines

with real-time efficiency.

The pose estimation and tracking approach is generally similar to Section 6.3.2 and

minimizes the re-projection error

µ̂ = arg min
µ

np∑
i

||si − yi(µ)||2 (7.1)

where y is the projection of visible 3D sample points onto a camera image plane at pose

parameters µ, s is 2D image point of the nearest edge corresponding to the projected

2D point of the model, and np is the number of valid sample points respectively. The

Jacobians can be easily computed from the re-projection error, and the pose parame-

ters µ are determined using Gauss-Newton optimization, iteratively refining the pose

estimate until it converges. In this case, we estimate the 6D motion parameters while

the client satellite is in arbitrary motion. Arbitrary motion in turn calls for visibility

determination during the tracking. Thus, before projecting model edges onto the image

plane, it is required to determine which part of the CAD model is visible at the last

pose.



Chapter 7. Model-based Pose Localization 102

7.1.1 Visibility Determination for Pose Estimation

A rotating object changes views from the camera. If we project the 3D model of the

object onto the image plane at a pose hypothesis, the corresponding 2D image may not

match at all with observed camera image. In tracking, the pose hypothesis is mostly

a pose estimate from the last frame. Therefore, we first determine which faces of the

object are visible at last pose, and it is likely that most of those faces are visible at the

current pose.

Unlike attitude-aligned client satellites, the computation of the visible geometry from a

view point is crucial for model-based tracking of a freely tumbling satellite. This compu-

tation is normally expensive and prohibits real-time tracking. GPU based methods are

widely employed to accelerate the computation [86]. Alternative to GPU based methods

is the parallelization with multi-core computers. However, the standard in space appli-

cations is mostly restricted to single thread programs running on CPU due to safety. In

this thesis we limit ourselves to the current space standard. For this purpose, thanks

to a part-based model representation and a model reduction, the visibility of a certain

face of the model can be quickly determined by computing the Z-buffer using CPU and

without parallelization. The Z-buffer is a simple hidden surface removal method, which

is used to determine visible faces during tracking. A Part-based model representation is

a description of an object model with one or several parts of the object which are con-

nected, i.e. instead of the single CAD model of the object we use several parts (structural

elements composing the model). This representation speeds up the determination of the

visible views, because the Z-buffer rendering is restricted only to the relevant part of the

model that is closest to the last view or pose.

7.1.2 Adaptive Search Distance

As described in Section 6.3.2 of Chapter 6, the model-based tracking relies on searching

the correspondences along the perpendicular component of the motion because of the

aperture problem [4, 15, 59]. The appropriate search length along the edge normal

requires to be selected, and fixed once it is selected. This is usually sufficient for small

range tracking, as in industrial application. However, a constant search length along the

edge normal may not be robust for tracking in long range.
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Figure 7.2: Pose estimation process. Top row: Iterative (here shown only six iter-
ations) optimization along edge normals. Bottom row: Tracking at far (7 m) to near
distance (2.5 m). The distance between two edges in the image varies according to the
range (see first image and the last image of the same row), therefore variable search

distance along the edge normal is necessary.

Therefore, in order to alleviate this problem we employ an adaptive search length based

on the range of the target satellite to the camera and size of the object. The concept

of variable search distance is also mentioned in [13], although it is not described how

it could be adaptive. Here we assume that the camera lens system is properly selected

according to the distance of the object from the camera. Let the maximum length of

the object be Lo, the distance of the object from the camera d and the focal length of

the camera f , then the maximum size of the object in the the image is given by

l =
fLo
d
, (7.2)

which can be easily derived from similar triangles of the geometry of image formation.

The search distance along the edge normal is proportional to the object size l in the

image plane. The proportionality constant may be determined from the slope of the

curve in the Equation (7.2). The slope of the function l(d) describes how fast the curve

given by graphing image size versus distance falls. This fall of the curve can be an

indicative of variation of the search length in the image against range of the object from

the camera (Fig. 7.3).

7.1.3 Pose Prediction with Kalman Filter

The pose tracking at current frame depends on the previous pose; it is assumed that the

edges from the previous frame do not move significantly. This assumption often holds

true for smooth motion and at low speed of a satellite. However, the pose tracking is

prone to failure at large inter-frame motion of the satellite. Moreover, a single frame
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Figure 7.3: The relationship between the size of an object in image plane and the
object distance to a camera. The maximum size of the object here is 2 m and focal

length 6 mm.

drop-out due to image saturation could not be handled. The better approach is to

predict the pose at the next frame using motion model of the satellite. We assume a

constant velocity motion between two camera frames and formulate the pose prediction

in terms of inter-frame motion parameters in the framework of Kalman filter.

The Kalman filter provides:

• a frame-to-frame prediction capability for pose tracking of a satellite,

• reduction of noise by temporal integration of the pose estimate.

The inter-frame motion v at time interval ∆t and the current known pose Ek is used

to predict the pose Ek+1,k at the next frame as Ek+1,k = exp(v∆t)Ek. The states

are represented as an inter-frame velocity vector v and the associated transformation

matrix Ek. This is an equivalent to the classical EKF, where the pose parameters are

represented by LogSO(3)(E). The former representation effectively linearizes the filter

around the current pose estimate and simplifies the calculation [176].

The filter estimate x of the true state is given by

xk = {exp(vk∆t)Ek,vk} (7.3)
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and the state estimate Ek is related to the true state Ēk as

Ēk =exp(ρpose)Ek (7.4)

v̄k =vk + ρv

where the state error vectors ρpose and ρv at discrete time k can be modeled as multi-

variate normally distributed Gaussian noise of zero mean and state error covariance Σk.

The process noise, which is deviation from the constant velocity model (acceleration) has

a state noise covariance matrix Qk = diag(Σv,Σω), with Σv and Σω are respectively

diagonal covariance matrices associated to the standard deviations of the translation

and rotation parameters.

The pose prediction is based on the constant velocity model over a time interval ∆t,

with the corresponding transition matrix F . The state covariance is determined by

Σk+1,k = FΣkF
T + Q. (7.5)

The measurements are provided in the form of pose estimates of the transformation

matrix Em with measurement covariance R. The residual covariance (innovation) S

which describes the motion from a priori state to the measurement pose is

S = Emk+1E
−1
k+1,k (7.6)

where Ek+1,k is the predicted pose (a priori) and Emk+1 is the current pose measurement

in matrix form.

The Kalman gain is given by

Kk = Σk+1,kH
T (H + Σk+1,kH

T +R)−1 (7.7)

where the observation model H = [I6 0]. Finally, similar to [176] the a posterior

estimate Ek+1 is determined using a priori pose, and weighting the innovation by the

kalman gain

Ek+1 = exp(Klog(S))Ek+1,k (7.8)
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and the covariance is

Σk+1 = (I6 −KkH)Σk+1,k. (7.9)

The Equation (7.8) gives the smoothed pose estimate at the current frame based on

the state prediction (a priori) from the last pose and the current measurement. The

uncertainty of this pose estimate is given by Equation (7.9), which could provide a

measure of reliability of the pose tracking at each camera frame.

7.2 Evaluation

We evaluate the 6 DOF pose tracking against the ground truth generated both with

a robotic hardware-in-the-loop and a computer graphics-based simulator described in

Chapter 4. The hardware-in-the-loop simulator at the European Proximity Operations

Simulator (EPOS) facility of DLR is used for evaluation of rendezvous and proximity

operations. Here we use the EPOS facility to validate the pose tracking method described

in Section 7.1 with real image sequences. Moreover, we evaluate the algorithm with

photo-realistic images generated through a ray tracing with more accurate sun simulator

and ground truth. Notice that the hardware-based experiment reproduces the multilayer

insulation (MLI) of the satellite accurately, while the computer graphics simulates the

sunlight more precisely than high power floodlight. Therefore, evaluating the tracking

algorithm with both methods could complement the shortfall. We focus more on the

hardware-based test platform because the accurate modeling of the MLI highly influences

the tracking.

7.2.1 Results on a Hardware-in-the-Loop Simulator

The motion of a tumbling target satellite (Fig. 7.4) is simulated with a 6 DOF robot

motion. The goal of this evaluation is to verify the model-based tracking described

above under various motion and illumination. Two sun directions are considered in this

experiment (0◦ and 45◦) for all motion profiles. The first type of motion considered is

in-plane roto-translation; the client satellite undergoes a planar motion (rotation and

translation mainly about/along the optical axis). The second type of motion is out-

of-plane roto-translation at a nutation angle of 45◦ about the yaw-axis (vertical axis),
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Figure 7.4: A mock-up of a target satellite (right) mounted on a six degrees of freedom
(DOF) robot and stereo camera mounted on another six DOF robot-servicer (left). The

target satellite undergoes a tumbling motion while the servicer approaches it.

Figure 7.5: Images taken at the same distance to show the motion types used for
evaluation. The in-plan motion frame (left), out of plane motion at a nutation angle
of 45◦ (middle) about yaw axis and out of plane motion at a nutation angle of 90◦ and

10◦ (right) about yaw- and roll-axis respectively.

and the last motion considered is out-of-plane motion at a nutation angle of 90◦ about

yaw-axis and 10◦ about the roll-axis (see Fig. 7.5). These are exemplary trajectories

reported here. Indeed, more trajectories have been tested by varying the angular and

linear speed slightly (maximum, 4 deg/s and 50 mm/s respectively). However, in our

experiment the influence of the satellite speed on the tracking was insignificant because

of the assumed small maximum speed.

A stereo camera of image resolution 640×480 and a focal length of 6 mm is used to record

image sequences. The baseline between the two stereo camera is 28 cm. The average

processing time of a monocular image with Intel Xeon (R) 2.8 GHz CPU is 100 ms.

The performance analysis is based on the ground truth trajectories obtained from the

measurements of the two six DOF robots at EPOS facility, German Aerospace Center

(DLR). Furthermore, we estimate the transformation from the Tool Center Point (TCP)

of the robot to the camera frame through a hand-eye calibration procedure. Thus, we

obtain the ground truth poses through robot measurement and hand-eye calibration.

Regarding the experimental results, we evaluate the effect of the sun direction for the
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same motion profiles (in-plane, out-of-plane and a large nutation out-of-plane roto-

translations) at the same illumination condition. Both rotation and translation errors

are higher for the in-plane motion at the sun direction of 0◦ (Fig. 7.6), because the client

satellite is frontal to the sun light and several edges in the image are over-illuminated

resulting in less features for matching (see images in Fig. 7.7). In contrast, the tracking

accuracy improves when the sun rays strike the satellite in frontal view at an angle (45◦).

Notice that the error along the optical axis is exceptionally higher and comparable for

both cases in the first few meters. One of the reasons may be the fact that an accurate

estimation of the translation of an object in frontal view along the optical axis is difficult

in both illumination directions.

In contrast to in-plane motion, the translation errors are higher for the out-of-plane

motion at the sun direction of 45◦ (Fig. 7.8). This is because the client satellite changes

view, resulting in shadow and under-illuminated edge features (see images in Fig. 7.9).

In contrast, the tracking accuracy improves at an angle of 0◦ due to direct light in the

direction of camera line of sight. This effect appears to be true for a tumbling satellite

which changes views and create self-shadow, however slightly exaggerated because of the

non-parallel ray of the sun simulator.

On the other hand, the rotation and translation errors are slightly higher for the out-

of-plane motion with large nutation angle (90◦) at the sun direction of 45◦ (Fig. 7.10).

However, in this case due to large the nutation angle (Fig. 7.11) the satellite drifts from

the main rotation axis, and some views become parallel to the sun direction of 45◦.

Thus, the effect of the two sun directions in some satellite poses is equal, resulting in a

comparable error.

The above discussion and comparisons are based on the evaluation of the pose tracking,

which relies on the adaptive search length for the long range (in our experiment up to

7 m) and Kalman filtering for large inter-frame motion. At close-range (5 m to contact

point), the variable search distance does not influence the pose tracking.

7.2.2 Results on Photo-realistic Rendered Images

The pose tracking is also evaluated with photo-realistic synthetic images (Fig. 7.12)

rendered from the 3D model of a full scale satellite. Despite the differences in the
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Figure 7.6: Effect of the sun direction on pose tracking for in-plane roto-translation
motion. The sun simulator was placed at angles of approximately 0◦ and 45◦ to the

camera optical axis.

structure of the satellite, the same motion trajectory is used to evaluate the ground

truth error. In this case the ground truth and the sun simulator are more accurate

than hardware based simulation. However, the simulation of the multilayer insulation

was difficult and less accurate. Here, we present the results of the pose tracking for

two motion trajectories. Both motions are out-of-plane roto-translation but at different

nutation angles. The angle of the sun in both cases is 90◦ with respect to client satellite

local vertical local horizontal frame (LVLH).

Fig. 7.13 shows the pose tracking error evaluated with the synthetic photo-realistic
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Figure 7.7: Image sequences of in-plane motion for the sun direction 0◦ (first row)
and 45◦ (second row).

images (Fig. 7.14) for the out-of-plane roto-translation motion with a nutation angle of

45◦.

The computer graphics and hardware based evaluations here may not be compared as

they are not at the same condition in terms of the intensity of light and satellite geometry.

However, the error distribution of the tracking with rendered images appears similar to

that of the hardware based evaluation (Fig. 7.8 and 7.13). This similarity may have

arisen because of the same motion trajectory and the quality of rendered images.

Similarly, the tracking error of the out-of-plane roto-translation with a larger nutation

angle of 90◦ is shown in Fig. 7.15. One may question which evaluation best describes

the pose tracking error. We assert that a hardware-based evaluation is more reliable

than the photo-realistic rendering because the reflective MLI influences the performance

of the image based tracking significantly. In this regard, the satellite mock-up repro-

duces the MLI more accurately than computer graphics based modeling. However, the

photo-realistic rendering is useful to analyze the effect of the sun direction without any

constraint.

7.2.3 Summary

A fully malfunctioning client satellite may undergo spinning and tumbling motion. For

an approach and a manipulation of a tumbling satellite, we rely on pose estimation and
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Figure 7.8: Effect of the sun direction on pose tracking for out-of-plane motion. The
sun simulator was placed at angle of approximately 0◦ and 45◦.

tracking in six DOF. Mostly we have the knowledge of the CAD model of the malfunc-

tioning satellite during design. The CAD model of the satellite is a great advantage

for the tracking and pose estimation. The pose estimation is achieved by aligning the

visible model and image edges along edge normal at a given pose hypothesis, provided

by the last pose. However, matching edges by 1D search along the edge normal from far

distance creates ambiguity for closely located image edges. To alleviate this problem,

we implemented an adaptive search distance along the edge normal that depends on the

distance and object size.

The pose tracking in a six DOF are evaluated based on the realistic proximity operations
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Figure 7.9: Image sequences of out-of-plane motion at the sun direction 0◦ (first row)
and 45◦ (second row).

hardware facility. The angle between the sun and the camera line of sight (the sun di-

rection) with respect to the client satellite significantly influences the tracking accuracy.

The experimental results indicate that the performance of the tracking depends on the

direction of the sun as well as the type of motion (rotation). The tracking error increases

for in-plane motion (satellite in frontal view) as the sun direction approaches to 0◦ due to

over-illumination. In contrast, the tracking accuracy decreases for out-of-plane motion

(satellite nutates from main axis) as the sun direction approaches 45◦ because of the

shadow and poor illumination. On the other hand, as more nutation is introduced to

two of its axes for the out-of-plane motion, the pose tracking accuracy barely decreases

at the sun direction of 45◦ because of a large change of view.

On the other hand, a photo-realistic rendering, which simulates the sun spectrum more

accurately based on computer graphics, was used to evaluate the pose tracking. Despite

imprecise simulation of the MLI, a photo-realistic image can be used to evaluate the

tracking methods at more accurate sun simulation.

7.3 Pose Detection of a Satellite

Detection of a satellite in our context refers to determining a region of interest (satellite)

in an image. Here we assume the image contains a single satellite, and we estimate

position and orientation (pose) of the satellite in 3D space based on images and CAD
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Figure 7.10: Effect of the sun direction on pose tracking for out-of-plane motion and
a nutation angle of 90◦. The sun simulator was placed at angle of an approximately 0◦

and 45◦.

model. Pose detection is generally used for the initialization of any tracking method,

which is based on a local optimization. A global detection of an object poses difficulties

because of the large search space in six DOF. This global search is even worse in the case

of a satellite pose estimation due to the harsh space lighting. Here we assume further

that the specific location (orbit) of the desired satellite in space is pre-determined from

ground or space based observation, i.e. no more object recognition is required .

There exist a number of object detection methods. View-based approaches [174, 175,

177, 178] compare a search image with the 2D views of the object precomputed from
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Figure 7.11: Image sequences of out-of-plane motion with a nutation angle of 90◦ at
the sun direction 0◦ (first row) and 45◦ (second row)

Figure 7.12: Mock-up of the satellite in various views used to evaluate pose tracking
with a computer graphics based sun simulator.

its 3D model by clustering views. Related to these methods, [179] uses no train-

ing templates instead adapts the template through on-line learning. The view-based

methods represent the views with an aspect graph either through a hierarchical clus-

tering [175, 177, 178] or pyramid search of images [174]. [175] employed a foreground

and background segmentation of the image as a pre-processing step, assuming static

background and a few sequence of images. The experimental results demonstrated

in [174, 175] appears relevant to a 3D detection of a space object, however such methods

require prominent edges of the object to succeed in accurate pose detection.

On the other hand, in order to tackle the problem of a large search space, feature-based

approaches [180–183] exploit image features such as corners, lines, intersection of lines

and complex features from grouping of various image features. The corresponding 3D
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Figure 7.13: Pose tracking error with photo-realistic rendered images. The trajectory
is the same as that of Fig. 7.8, i.e. roto-translation with a nutation angle of 45◦. Notice

that the client satellite in this case is different, and shown in Fig. 7.12.

Figure 7.14: Photo-realistic image sequences of roto-translation with a nutation angle
of 45◦.

5 5.5 6 6.5 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

distance [m]

R
o

ta
ti
o

n
 e

rr
o

r 
[d

e
g

]

 

 

Lateral

Vertical

Optical axis

5 5.5 6 6.5 7
−40

−30

−20

−10

0

10

distance [m]

T
ra

n
s
la

ti
o

n
 e

rr
o

r 
[m

m
]

 

 

Lateral

Vertical

Optical axis

Figure 7.15: Pose tracking error with the photo-realistic rendered images. The motion
trajectory is a roto-translation with a nutation angle of 90◦, as in Fig. 7.10. The client

satellite is shown in Fig. 7.12.
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Figure 7.16: Photo-realistic image sequences of roto-translation with a nutation angle
of 90◦.

features are assumed to be on the 3D model of the object in consideration. Thus, the

extracted image features (edges, corners and lines) are matched to the 3D features, and

the 3D pose is computed. The main drawback of such method lies on dealing with

the possible large search space related to establishing the correspondence between the

image and object features. Moreover, background clutter in the image makes the feature

extraction difficult.

Descriptor-based methods such as [184] learn local or semi-local features extracted from

training images. The advantage of the descriptor-based approaches is that their run-time

is independent of the size of the geometric search space. They show a good performance

in recognition of textured objects. [184] uses at least one training image, while many

others are generated through computer-graphics techniques such as texture mapping

and rendering of the 3D model. However, the texture mapping from a given image and

3D rendering of specular object under a direct sunlight is inaccurate.

We provide a novel appearance-based pose detection method, which learns both lighting

and view points, creating a large database of feature points to cluster and learn in a

vocabulary tree based on [185]. The observed image is then queried in real-time and

the corresponding pose is computed based on descriptor matching. The training images

are obtained from a camera system mounted on six degrees of freedom robot. The

operational workspace of the robot is limited, which poses difficulty to reach all the

necessary view points. Therefore, we employ a 3D image warping to complement those

missing views because of the robot workspace constraint during acquisition of training

data.
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Figure 7.17: Images of the TerraSAR-X mock-up (rear part). The satellite surface
is fully covered with a multilayer insulation (MLI) and consists of weak edges, difficult

for pose detection.

7.3.1 Pose Detection by Appearance Learning

The appearance of a satellite changes significantly with the change of the direction of

the sun because of the reflective property of the surface. In the absence of strong edges,

detection of the satellite with edge templates under space lighting is difficult and hard to

achieve the desired accuracy for an initialization of a local tracking. The detection of the

satellite with distinctive edges can be achieved as demonstrated in [175]. However, when

the most surface of the satellite is covered with a multilayer insulation (e.g. TerraSAR-X

in Fig. 7.17), it is hardly possible to detect the pose using edge based methods because

of several clutters created by the MLI and severe illumination.

In contrast, the wrinkles of the MLI and satellite structures such as blobs and junctions

provide useful cues for the detection of the satellite. Indeed, we exploited such features

for tracking in the absence of the CAD model of the satellite in Chapter 5. The main

disadvantage of such point features is a drift in tracking over a long sequence; this is a

general problem in a model-free feature tracking and even worse with a strong change

of lighting. We are here concerned with the global detection of the satellite pose, which

relies on a feature description of a region around each point feature. The feature drift

unlike the model-free tracking is not an issue because the pose detection is not used

in a long sequence, instead only to (re)-initialize in case of loss of tracking. Moreover,

we assume the CAD model of the satellite exists, therefore a drift-free model-based

detection as well as tracking is ensured.

Therefore, we employ a feature based pose detection of the satellite by computing a

descriptor vector for each region of interest. We adapt an appearance learning, in which

we learn appearances of the satellite under various view points and lighting directions.

To efficiently retrieve the observed image in a large number of views stored in a database,
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Figure 7.18: The overview of the pose detection method. The blocks in the diagram
represent offline processing (in blue) and the online processing (pale green).

the appearance (feature) learning builds up on the popular technique of the vocabulary

tree [185]. The representative keypoints from several views and different direction of

the sun can be incorporated into the learning scheme. In the context of satellite pose

detection, the strength of such approach is its robustness against occlusion, background

clutter and illumination.

The work-flow (see Fig. 7.18) for the pose detection in the presence of the CAD model

of the satellite is as follows:

• sampling view points at different sun direction,

• feature detection and description,

• descriptor quantization in a vocabulary tree,

• depth map computation from the CAD model,

• image retrieval and pose estimation by 3D-2D registration.
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Photo-realistic training images can be obtained in two different ways depending on the

existing information about the client satellite. In either case, we assume there exists a

CAD model and a number of image archives of the satellite are readily obtainable. The

CAD model of the satellite consists of geometric parts in a mesh form, and no material

properties such as multilayer insulation (MLI). In the perspective of image processing,

the MLI is highly determinant of the performance of the tracking, therefore has to be

modeled accurately. Reproducing the specular property of the MLI is very difficult and

by itself a research area in computer graphics. One way to obtain training images is the

photo-realistic rendering based on a ray-tracing. The distant parallel sun light can be

simulated with the computer graphics accurately, and the MLI can be modeled by texture

mapping of the image of the satellite and its 3D model. However, the texture mapping

of a reflective specular surface may not accurately reproduce the original material and

optical property of the satellite surface, hence represents less reliable training data.

Therefore, we reproduce the MLI more accurately with a hardware (a satellite mock-up)

for training images. The MLI of the satellite can be reproduced by taking account of

the geometry and material property. The advantage of the satellite mock-up is that the

true MLI can be wrapped around the surface of the satellite. We take the advantage of

this method to get training images with the mock-up of the TerraSAR-X satellite. View

points are first generated by placing the object in a center of virtual sphere and moving

the camera around the surface of the sphere at an interval of 8◦ in latitude and longitude.

The trajectories generated in this manner, but in a hemisphere were implemented using

a real stereo camera mounted on a six DOF robot. The robot moves in pre-planned

trajectories, repeating those views at different sun directions, where the actual sunlight

was simulated with a high power flood light.

The disadvantage of this method is that the workspace of the robot is constrained, and

it was not possible to reach the desired view points. In order to address this problem, we

employ an image-based rendering technique based on the 3D warping. A virtual camera

image at a desired view point can be synthesized from at least one reference image, by

back-projecting each pixel of the reference views using the depth map and re-projecting

to the new view, as shown in Fig. 7.19.

An image rendered by the 3D warping has problems of holes or gaps due to round off

error resulting from the decimal to integer conversion of pixels, magnification when the
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Figure 7.19: Image-based rendering using the 3D warping. The reference image pixels
are back-projected to the 3D space using depth map computed from the 3D model of
the object. The 3D points P are then re-projected onto the desired view to synthesize

the desired image.

camera moves closer and depth discontinuity causing dis-occlusion [186]. Post-processing

the newly synthesized image has been proposed to handle the problems of gaps or holes

due to sub-pixel location of the desired image. However the post-processing blurs the

image, which is an undesirable property for feature-based matching. We employ a simple

but effective morphological dilation, which does not blur the image to fill the small gaps.

Moreover, using the second view (Fig. 7.19) helps to reduce depth discontinuities caused

by occlusion. Fig. 7.20 shows the rendered image using the reference image, which is

rotated 16◦ about the camera optical axis.

Once the training images are acquired, we apply a key point detector on each image

to extract and describe regions suitable for robust detection. In order to detect the

satellite pose at a range of scales, scale-invariant features are learned during the training.

Therefore, we employ the SIFT feature detector and descriptor [7] and represent each

training image in a database of features. The SIFT descriptor is invariant to scale,
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Figure 7.20: Image-based rendering for missing views during the training. The ren-
dered image (left) is used for unreachable view points with the robot base.

rotation and to some extent to illumination. The scale-invariance of the SIFT is very

important to handle the change of scale during matching with the query image, which

may be far or close to the object. Each training image is represented by a text file

containing the feature descriptor for each point and the location, orientation and scale

of feature points. The vocabulary tree is built with feature descriptors, while scale and

orientation can be in general used to check the geometric consistency.

Training in a Vocabulary Tree

The feature descriptors of all the training images are hierarchically clustered with the K-

means clustering and built into the vocabulary tree of branch Bf and depth Lf according

to [185]. At the root level each bag-of-feature is initially quantized to Bf branches. Each

branch Bf is then sub-quantized sequentially and repeated until arriving the maximum

depth (level). Each node within the tree is linked to its associated features as well as

the images. Notice that the K-means clustering is continuously applied at each level

of the tree to split the parent features and distribute them to Bf children nodes. We

employ the square root kernel distance metric (Bhattacharyya distance) to measure the

similarity between the feature descriptors as rootSIFT in [187]. The branch factor and

the depth of the tree influence the retrieval result, however increasing these values does

not necessarily improve the retrieval results.

Weighting of the nodes of the tree are applied to determine how each feature descriptor

(word) from the quantized descriptors (code book) votes for each view. We employ a

hierarchical weighting of the node, which depends on the number of features assigned to

the node and its depth Lf . Therefore, the weight for each node and view relationship is
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the normalized product of the feature histogram and level of the node. This weighting

enables a depth-bounded search and is useful to reduce retrieval time. Related to the

hierarchical weighting is a flat weighting, where only the leaf nodes are weighted with

normalized histogram of features.

Retrieval and Scoring

Each feature of the query image searches for the nearest node on each level, applying the

same distance metric used for the training. Thus, for each feature of the query image a

path of selected nodes traverses the whole tree from the root node to the leaf node. The

weights of the selected nodes and training image provide a similarity measure, which is

used for retrieval of the best views for the query image.

The best match is retrieved based on the accumulated weights of each training image. We

create a histogram with the list of weights of the related nodes to those selected by the

bag of features from the training images. Finally images with the highest accumulated

weight in the histogram are returned as the best match. In our experiment, we take the

histogram of weights as a confidence measure in retrieving the corresponding image.

7.3.2 Feature Matching and and Pose Estimation

We extract and describe features of a query image with the Harris detector and the

SIFT descriptor respectively. For each feature descriptor of the query image, we search

the corresponding feature descriptor in the tree. After a successful retrieval of the

corresponding image, we match features (Fig. 7.21). Notice that Harris feature detector

is used for the online phase of the image matching and pose estimation due to its higher

localization accuracy and robustness [188] as well as speed. Therefore, we employ Harris

detector for both retrieved and query image while SIFT is used for the description of

the region around the features. We remark that the SIFT features of the retrieved

image, already stored and used for the training, could be used for online phase, however

SIFT detector is less accurate and slower than Harris in our images. Speed up can be

achieved by detecting new features at the expense of memory which requires to store

Harris features of the training images.
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Figure 7.21: The feature matching for pose estimation. The features of the query
image (right) are matched with the retrieved image (left) in the database.

Once we have the Harris features and SIFT descriptors of both query and retrieved

image, we apply descriptor matching using a fast KD tree. Moreover, we compute

the 3D points corresponding to the feature points of the training images, by back-

projection using the depth map computed with the known pose and the CAD model.

Then, given matched 2D features and the 3D points of the retrieved image, we can

estimate the pose using the 2D-3D registration method (PnP problem). We adapt

iterative efficient PnP [152] and RANSAC, because of the fact that after the matching

not all the correspondences are correct. Therefore RANSAC is used to reject the false

correspondences (outliers) while estimating the pose.

7.3.3 Evaluation

The appearance based pose detection method described in Section 7.3.1 is evaluated

with real image sequences of gray image 780 × 582. We use feature descriptors, ex-

tracted from 2500 images and hierarchically quantized to build the vocabulary tree.

The average processing time for image retrieval and pose estimation with Intel Xeon 2.8

GHz CPU is 0.8 second. The computation time depends on the number of keypoints

and can be limited to improve the efficiency, but at the cost of reduced accuracy. The

evaluation criteria is based on a ground truth obtained through the measurements of

robot kinematics, a hand-eye and robot calibration. The experimental setup consists

of a mock-up of the rear part of the TerraSAR-X satellite in full scale (Fig. 7.22), a

camera mounted on a six DOF robot and the sun simulator. The TerraSAR-X satellite

is placed in a fixed position and orientation, and the motion trajectories of the satellite

are simulated by the six DOF robot motion. In this experiment, the sun simulator is

placed in three main directions for the appearance training phase: 90◦, 30◦ and −30◦

from the satellite mock-up. For the testing, the sun direction is rotated approximately

15◦ from the corresponding sun directions of the training phase, i.e. 75◦, 45◦ and −15◦
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Figure 7.22: Mock-up of the TerraSAR-X satellite (rear part with the launcher inter-
face brackets) under normal illumination (color image) and space lighting (gray image).

respectively. A calibrated camera of resolution 780 × 582 pixel and a lens with focal

length 6 mm was used to capture images. This choice of camera system ensures the

required field of view within the close range of 1.5 m.

During training the vocabulary tree, a branch factor (width of the tree) of 6 and a level

of 10 was selected. The goal of the experiment is to evaluate how accurately the pose

of the satellite can be estimated. Here we present three image sequences that consider

three scenarios; firstly we evaluate the pose estimation at two distances (1.3 m and 0.7

m) (Fig. 7.23 and 7.24), but with the same sun direction. This performance evaluation

enables to determine how the algorithm behaves with different scale, in addition we study

the effect of the sun direction at angle of 45◦. The ground truth rotation and translation

errors in most frames are 1◦ (Fig. 7.23) and 25 mm (Fig. 7.24) respectively, therefore the

estimated pose can be obviously used to initialize a model-based tracking. The larger

errors (spikes) in the plot are the frames which fail to be detected accurately. The pose

estimation in this case results in a large error because of the inaccurately retrieved image

which corresponds to a query image and insufficient valid feature correspondences. The

detection failure is reported when the retrieval score is low (<45) or the number of

correctly matched features is below the minimum (<4).

On the other hand, when the sun direction is about 75◦, which is near to the normal (90◦)

to the line of sight of the camera, the distribution of the pose detection error (Fig. 7.25)

is similar to Fig. 7.23 and 7.24 in spite of change of illumination. Similarly, the pose

errors with the sun direction −15◦ (Fig. 7.26) indicate a comparable error distribution

to that of the sun direction 75◦. This is because of the fact that the sun direction for

the appearance learning is close to that of the testing (differences of 15◦), consequently

the influence of illumination change is insignificant. However, it is necessary to train
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Figure 7.23: The rotation error in pose detection. The ground truth rotation error
as evaluated 1.3 m (left column) and 0.7 m (right column).

the illumination at a sufficient interval in order to reduce the effect of the change of

illumination on the pose detection. For example, in our experiment the pose detection

fails completely when the test sequence was at the direction of 60◦, i.e. the nearest

training direction to the test sequence was 90◦ and 30◦.

In general, sampling the sun direction in 3D space at an interval of 15◦ results in the

desired accuracy in pose detection. However, such fine sampling creates hundreds of

training sun directions, which may be unacceptable in terms of memory requirement

to store respective features. Moreover, it increases the query time during retrieval. In
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Figure 7.24: The translation error in pose detection. The ground truth translation
error as evaluated at a distance of 1.3 m (left column) and 0.7 m (right column).

practice however, the sampling of the full sun angle is not necessary since the range of the

sun direction will be known during a particular on-orbit servicing mission. Therefore,

we restrict the possible directions of sun to a certain range provided by the on-orbit

servicing mission. This in turn reduces the memory requirement for storing database

features and query time.
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Figure 7.25: The accuracy of the pose detection compared to ground truth with the
sun direction of 75◦. The ground truth rotation (left column) and translation (right

column) error at a distance of 1.3 m.

7.3.4 Summary

The model-based tracking relies on the last pose to estimate the current pose using local

optimization. Therefore, it is essential to detect the satellite in an image and estimate its

pose. The initial pose estimation, i.e. pose detection is generally a challenging problem

in computer vision and image processing. The problem of pose detection is more difficult

under space lighting. The geometry of the object also determines the performance of

the detection. On one hand, the pose of an object with several distinctive edges is
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Figure 7.26: The accuracy of the pose detection compared to ground truth with the
sun direction of −15◦. The ground truth rotation (left column) and translation (right

column) error at a distance of 1.3 m.

estimated with edge-based methods. On the other hand, feature-based methods are

used to initialize textured objects. However, in certain cases the region of interest of

the satellite may consist of highly reflective multilayer insulation (MLI) and dominates

useful features such as edges. The MLI poses difficulty in edge-based detection because

of reflection and virtual unmodeled edges. In this thesis, we address the pose detection

of the TerraSAR-X satellite fully covered with an MLI in close-range. The rear part of

the TerraSAR-X satellite consists of launcher interface brackets, which are suitable for

grasping during robotic manipulation.
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The pose detection is based on the appearance learning of the full scale mock-up of the

TerraSAR-X satellite. We use several images under various view points and sun direc-

tion for the training of a vocabulary tree. The vocabulary tree is a tree structure used

to represent the training images by quantizing respective feature descriptors with the

hierarchical K-means clustering. We employ a 3D image warping to synthesize missing

images because of the limited workspace of the robot, which simulates the motion tra-

jectory of the satellite. After successful retrieval of the corresponding image to the query

image, we match feature descriptors with the fast KD tree. The 3D points corresponding

to the training features are computed using the depth map; the depth map is in turn

obtained by rendering the 3D model with the Z-buffer. The pose is estimated from the

correspondence based on iterative 3D-2D registration and RANSAC.

We validate the proposed pose detection method with a challenging space lighting con-

dition. The evaluation criteria is based on the accuracy of the estimated poses with

respect to the ground truth. The pose detection is evaluated at three sun directions,

which deviate 15◦ from the sun direction of the training, and indicates 90% detection

rate. Moreover, we observe that as the disparity between training and testing sun di-

rections becomes greater than 15◦, the detection rate decreases significantly.





Chapter 8

Conclusion

The increasing number of space debris as well as malfunctioning satellites in orbit has

recently attracted attention of major space agencies to mitigate the congestion. An

on-orbit servicing is a mitigation technique of orbital debris which has congested the

precious orbits and has endangered satellites. The on-orbit servicing task includes re-

pairing, maintenance, refueling and de-orbiting of the malfunctioning client satellite.

Motion estimation and tracking of the malfunctioning satellite is required for the ap-

proach and capture phase of the on-orbit servicing. This thesis addresses the problem

of vision-based motion estimation and tracking of a client satellite for the on-orbit ser-

vicing. We rely on camera images to estimate the position as well as orientation of

the client satellite pursuing novel approaches to deal with various image properties at

various ranges under harsh lighting conditions and highly reflective multilayer insulation

(MLI).

LIDAR based measurements are relatively robust to space lighting and have been often

used for formation flying and rendezvous to ISS. However, the LIDAR has high mass and

volume, and consumes more power; this is against the stringent requirements of a satellite

design and increases the costs significantly. In this regard, a camera based localization is

an inexpensive solution for an on-orbit servicing mission, although the camera sensor is

highly sensitive to space lighting and the reflective surface of the multilayer insulation.

The vision-based localization of a highly reflective satellite is still a difficult problem in

spite of a number of efforts in current literature. The camera based localization of a

satellite with a predominantly MLI surface is barely addressed for the on-orbit servicing

131



Chapter 8. Conclusion 132

from a practical point of view and this thesis contributes in this context in three main

areas.

Among our main contributions [162, 163, 166, 167, 173] is the point-wise predictive

model used for tracking and prediction of 3D points associated to each visual feature

in the absence of a CAD model of the satellite, discussed in Section 8.1. The second

contribution of the thesis is a novel hierarchical position localization of nearly malfunc-

tioning satellites relying on a model-based foreground and background segmentation,

and edge tracking (Section 8.2.1). Related to the model-based contribution is a real

time pose tracking in six degrees of freedom by representing the CAD model into parts,

and adaptive search distance along the edge normals to disambiguate a set of edges

(Section 8.2.2). The third contribution is a model-based appearance learning for pose

detection of a satellite fully covered with MLI using a vocabulary tree (Section 8.2.3).

Our contributions are effectively demonstrated experimentally with realistic images and

full scale satellite mock-ups using the most realistic European rendezvous and proximity

operations simulator at DLR. The experimental findings are chapter specific and are

summarized according to the sequence of the Chapters presented in the thesis. Finally

we present future perspectives.

8.1 Model-free Motion Estimation

The geometric model of a malfunctioning client satellite may not exist or is not any more

usable. In this case, we can estimate only relative frame-to-frame motion of the satellite

in a camera coordinate frame. The motion estimation and tracking in the absence of the

CAD model of the satellite poses challenges because of the reflection of the MLI and lack

of geometric a priori information. Stereo based methods provide accurate solutions to

this problem if sufficient stable features are available. The MLI of the satellite surface

wrinkles provide sparse features for tracking. However, these features may disappear

shortly and new features appear because of reflection and under- or over-illumination.

This thesis presents a novel motion prediction method for 3D point features, which is

used in case of temporary missing feature measurements (Chapter 5). The algorithm

builds up on sparse stereo matching, visual feature tracking and motion prediction.

The motion of each 3D point associated with a visual feature is predicted based on a
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point-wise kinematic model. The point-wise kinematic motion model is derived from the

rigid-body velocity. The velocity is in turn estimated from an image motion and depth.

We employ the iterated Kalman filter to estimate the motion of each 3D point, predict

according to this motion model and update with the tracked low-level features.

The proposed method is demonstrated on real images of a client satellite in the presence

of at least minimum features for pose estimation. In the absence of minimum features,

this thesis shows that the motion of the client satellite can be estimated using a novel

motion prediction method based on the motion model derived from the rigid-body ve-

locity. The motion prediction relies on the last estimated velocity, which is used for the

next few frames. However, the prediction capability of the motion model is limited and

cannot handle long-term motion prediction, which is beyond the scope of this thesis.

8.2 Model-based Pose Estimation

In many cases, the CAD model of client satellites can be obtained from the satellite

designers and manufacturers. The geometric model of the satellite provides a priori

information about the shape of the satellite. Incorporating the shape model into the

pose estimation greatly helps to avoid drift and provide poses in absolute Cartesian

frame. In this thesis, we address two practical problems related to model-based tracking

under harsh space lighting condition. Firstly, we present a novel position detection

and tracking method of a partially cooperative satellite in the presence of a simple

model (Section 8.2.1). In this case, the client satellite has functional attitude sensors

(partially cooperative). Secondly, we provided position and orientation (pose) tracking

of a tumbling satellite in the presence of the CAD model (Section 8.2.2).

8.2.1 Position Localization of a Partially Cooperative Satellite

Localization of a partially cooperative satellite is of great benefit for on-orbit servicing

because of the on-board attitude measurement sensors. The attitude sensors of the

client can be used to align with attitude of the servicer so that only position estimation

is required during the approach phase. However, the localization of the client satellite

with MLI is yet challenging because of the specular reflection and direct sun lighting.

In particular the problem of position localization in various ranges poses a number of
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difficulties. For example, the image properties at mid- and close-range varies significantly

because of reflective MLI, under- and over-illumination. To address this problem, the

thesis introduces a hierarchical localization method that takes account image properties

at various ranges (Chapter 6). The hierarchical tracking is based on a model-based

foreground and background segmentation in the mid-range and edge-based tracking

at close-range. The main contribution lies in the mid-range that uses the model of

the silhouette contour of the satellite and image histograms to simultaneously estimate

the position, and segment foreground from background. At close-range, we use rather

universal primitive features of the satellite such as the engine nozzle for edge-based

localization. The close-range approach is a critical phase and requires higher accuracy

and robustness in tracking. Therefore, the performance evaluation takes into account the

effect of image compression, sunlight direction and level of target illumination system on

the tracking. In case of tracking failure due to unpredicted motion and over-saturation of

the image at close-range, the thesis also provides a novel nozzle detection method that

integrates RANSAC and absolute geometric error fitting into the model based stereo

matching (Chapter 6, Section 6.3.1).

We have performed an extensive evaluation of the position localization system using

a realistic proximity operations simulator that reproduces the satellite surface proper-

ties and space lighting. The position tracking based on a foreground and background

segmentation at mid-range is shown to be accurate and robust even with compressed

images and poor lighting. The thesis pays particular attention to the evaluation of the

critical close-range approach. The tracking performance depends on the direction of the

sun and the satellite with respect to the camera axis. The empirical results indicate that

when the sun angle approaches normal to the client satellite and the line of sight of the

camera, an additional source of light should be mounted on the servicer satellite for reli-

able tracking of the nozzle because of the poor illumination and shadowing. In contrast,

the level of the target illumination is also critical and should be reduced or removed as

the sun angle drifts significantly from the normal. These findings are strictly concerned

with attitude controlled client satellites in frontal position, and does not generalize to

tumbling satellites, because the change of view during tumbling changes illumination

conditions (discussed in Section 8.2.2).
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8.2.2 Pose Tracking of a Tumbling Satellite

A client satellite may undergo spinning and tumbling motion about any of its axes freely

because of the failure of the control system. On-orbit servicing of a tumbling satellite

is particularly challenging because of the arbitrary motion and reflection of the MLI.

Mostly we have the knowledge of the mesh model of the satellite. The CAD model of

the satellite is of great benefit for an accurate and robust tracking. In the presence of

the full CAD model, the pose estimation is achieved by aligning the visible model and

image edges along the edge normal at a given pose hypothesis, provided by the last pose.

However, matching edges by 1D search along the edge normal from far distance creates

ambiguities for closely located image edges. This thesis provides a novel method to solve

edge ambiguities by introducing an adaptive search length along the edge normal which

depends on the object distance from the camera, object size and properly selected focal

length of the lens (Chapter 7).

We have evaluated the pose tracking in six DOF based on the realistic proximity oper-

ations hardware facility as well as photo-realistic images obtained from rendering. The

adaptive search length is demonstrated to be more effective to ambiguous edges. Sim-

ilar to the partially cooperative satellite, the sun direction significantly influences the

tracking performance. The experimental results also indicate that the performance of

the tracking depends on the type of motion (rotation) of the client satellite. It implies

that the performance of the tracking is not linear in terms of the sun angle, and rather

depends on the type of motion (in-plane, out-of-plane, nutation angles).

8.2.3 Pose Detection of a Satellite with a Dominant MLI Surface

The tracking based on a local optimization requires an initial pose estimation. The

problem of pose detection is generally more difficult because of the large search space and

several local optima. In particular, the MLI poses difficulties with edge-based detection

because of reflection and virtual edges associated with specular reflection. In this thesis,

we present a method for the pose detection of a satellite fully covered with an MLI

at close range. The pose detection is based on the appearance learning of a full scale

mock-up of the TerraSAR-X satellite. Real representative images under various view

points and sun direction are used to train a vocabulary tree. The 3D image warping is
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employed to obtain some of the missing views due to limited workspace of the six degrees

of freedom robot that carries camera to sample view points. The vocabulary tree is used

to represent the training images by quantizing respective feature descriptors with the

hierarchical K-means clustering. After successful retrieval of the corresponding image to

the query image, the 3D points corresponding to the training features are computed by

rendering the 3D model. The 3D pose is then estimated from the 3D-2D correspondence.

The pose detection method has been evaluated with a challenging space lighting condi-

tion, based on the ground truth obtained from the calibrated robot and camera system.

The experimental results indicate that the pose detection rate increases significantly as

the sun direction of test image is closer to that of the training images. This implies

that at the expense of a memory for storage of several image features under more illu-

mination direction, the accuracy and the robustness of pose detection can be improved.

The main assumption in this approach is the fact that the training with photo-realistic

images can be obtained by re-building a mock-up of the client satellite. Notice that only

the outer structure of the satellite would be used as a mock-up, hence it should not be

too expensive. In case of large satellites, beyond the robot carrying capacity, a scaled

mock-up can be still used for the training of the pose detection algorithm.

The thesis has demonstrated that inexpensive camera based localization methods can be

effectively employed for the approach and capture phase of on-orbit servicing mission.

The thesis attempts to focus on real typical problems that occur in on-orbit servicing

missions, related to reflective multilayer insulation (MLI), sun lighting and satellite mo-

tion. A target illumination system is required under very poor illumination condition,

increasing overall mass and power consumption of the camera based localization. Nev-

ertheless, the mass, volume and power consumption of the whole camera system can be

designed lower than that of a typical LIDAR based system. The new developments in

both camera and LIDAR technologies in terms of mass, volume, power and sensitivity to

space lighting may continue to compete for space applications. In this regard, plenoptic

cameras provide better depth of field independent of aperture than that of conventional

cameras, and could be promising for future developments.
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8.3 Prospective Questions

The thesis has addressed practical problems of visual tracking for the approach and ma-

nipulation of a satellite in the context of an on-orbit servicing. It focused on the specific

application scenarios that encounter in real on-orbit servicing missions. In particular, it

addressed the challenging space lighting and satellites covered fully with a multilayer in-

sulation under certain assumptions. The main assumptions include low tumbling rate of

the non-cooperative client satellite, smooth maneuver and a calibrated camera system.

In spite of these achievements within the mentioned assumptions, potential improve-

ments can be performed.

In the absence of a CAD model, the 3D point tracking relies on low-level visual fea-

tures which are tracked based on optical flow. While the optical flow provides accurate

localization of features, it relies on the classical constant brightness assumption. This

assumption holds for slowly tumbling satellite, where the frame-to-frame motion is small

and a sufficient number of features satisfy the constraint. However, for satellite tumbling

at a higher rate the change of illumination is significant and the assumption does not

hold any more. The method could be improved by more illumination invariant feature

descriptors such as SIFT and SURF and metric-based matching, but at the expense of

computation time.

The localization of a partially cooperative satellite is one of the most reliable approaches

for rendezvous and on-orbit servicing. The thesis addressed the localization under dif-

ficult space lighting conditions and highly reflective MLI by carefully selecting image

features at various ranges and hierarchically integrating robust tracking and detection

methods. The satellite dynamic parameters such as inertia matrix of such a client satel-

lite may be known, and therefore could be used for accurate prediction of the motion.

These would help the localization system in case of sudden unexpected motion, and even

under bad illumination conditions. Thus, the future research could be directed into the

exploitation of the known dynamic parameters in the localization system which might

be profitable for vision-based rendezvous of a partially cooperative satellite.

The thesis has demonstrated the pose detection based on appearance learning assuming

the mock-up of the client satellite can be precisely reproduced. The real camera images

taken from the mock-up were used for the training view points at various sun direction.
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Instead of using the mock-up, photo-realistic images should be obtained by rendering the

CAD model of the satellite. However, the current technology does not allow to accurately

model MLI. Therefore, a possible area in future investigations includes modeling of the

reflective property of the MLI for more accurate photo-realistic rendering. The accurate

modeling of MLI in computer graphics opens vast opportunities in research for better

tracking and detection algorithms.



Appendix A

Space Rendezvous and Orbital

Debris

A.1 Satellite Rendezvous: Brief History

A space rendezvous is an orbital maneuver in which two spacerafts approach to a very

close distance in the same orbit. The rendezvous may be followed by docking or berthing,

which brings the two spacecrafts to physical contact [2]. Table A.1 lists some of the

rendezvous and docking missions.

Table A.1: Brief history of satellite rendezvous missions.

Year Rendezvous mission

1965 Gemini VII, NASA’s manned space mission to effect rendezvous and
docking and to demonstrate extravehicular activity and other technolo-
gies.

1967 The first autonomous rendezvous, by Soviet vehicles Cosmos 186 and
187

1969 The rendezvous and docking with an exchange of crew by Soyuz 4 and
5

1971-1999 Soyuz manned and progress unmanned spacecrafts of Russia performed
autonomous docking to the first space station Salyut and Mir

1975 International docking mission (Russia,USA) between the Apollo and the
Soyuz spacecrafts

1984 The first US space shuttle, designed for space transportation system
(STS), repaired solarMax Satellite and provide crew exchange missions
with Mir space station in 1990s until 1999
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Year Rendezvous mission

1993-2009 Manned satellite servicing of Hubble space telescope involving space
shuttle to repair or replace optical instruments.

1997 NASDA robotic mission aimed to carry out several experiments related
to rendezvous, docking and space robotics

1998 The space shuttle mission to the international space station

2007 DARPA mission to demonstrate several satellite servicing operations and
technologies including rendezvous, proximity operations, station keep-
ing, capture and docking using ASTRO and NEXTsat satellites

2008 The Automated Vehicle (ATV) of ESA has successfully delivered sup-
plies to ISS with fully autonomous docking capabilities

2009 Japanese H-II Transfer vehicle (HTV) delivered supplies to ISS with
partially autonomous docking

2010 PRISMA mission by Swedish space corporation for autonomous ren-
dezvous and proximity operation between Mango and Tango satellites

2012 The first privately owned commercial craft by SpaceX supplied to the
ISS fully autonomously with its Dragon spacecraft

A.2 Orbital Debris

Orbital debris is man-made object in orbit around the Earth which is no longer used.

Such debris includes malfunctioning spacecraft, mission related debris, fragmentation

debris and abandoned launch vehicle stages such as rocket bodies. The debris is increas-

ing, occupying useful orbits and endangering satellites. The quantitative data presented

by NASA, shown in Fig. A.1 indicates the debris will drastically increase and congest

the Low Earth and Geostationary Orbits in future. In particular, most orbital debris

resides within a few thousand km from the Earth’s surface. The amount varies signifi-

cantly with altitude. The highest concentrations of orbital debris are found around 800

km. In Low Earth Orbit, the debris orbits at speed of up to 8 km/s, which involves

significant energy during collision 1.

1http://orbitaldebris.jsc.nasa.gov/
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Figure A.1: The trend of space debris, current and the predicted for the next few
years. Image courtesy of NASA.

Figure A.2: Orbital debris in LEO and GEO. The most concentration of debris in
LEO (left) and debris in geosynchronous region near GEO (Right). Image courtesy of

NASA.





Appendix B

Rotation Parametrization

There exist well known parametrizations for the special orthogonal group SO(3) of

rotations in R3. The SO(3) group consists of orthogonal matrices R3, with RT3 R3 = I3

and det(R3)= 1. The orthogonality constraint helps reduce the degrees of freedom of

a rotation matrix with respect to the total number of parameters, i.e. the number

of parameters in rotation matrix is 9 (Equation (B.1)), while in SO(3) we have only

3 free parameters. However, parametrization in SO(3) is complex because of several

possible solutions with different properties. There exist three common representation of

a rotation matrix: Euler angles, axis-angle and quaternion.

R3 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (B.1)

B.1 Euler angle

Euler angle is the most intuitive representation of a rotation matrix. However, the

representation has singular configurations called gimbal lock. The rotation matrix is

expressed as a cascade of three elementary rotations around each axis of Cartesian

frame, for example rotation R(φ, θ, α) in the order x, y, and z is represented by

R(φ, θ, α) = Rx(φ)Ry(θ)Rz(α) (B.2)
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where rotation about each axis is

Rx(φ) =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 , Ry(θ) =


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

 and (B.3)

Rz(α) =


cosα −sinα 0

sinα cosα 0

0 0 1

 . (B.4)

The singular configuration arises while computing the inverse problem, i.e. the pose

parameters from the rotation matrix R. For example, for θ = π
2 any pair φ = α provides

the same rotation matrix, hence there exist infinite solutions.

B.2 Axis-angle

Rotation is parametrized by the pair (u, θ), where θ is a rotation angle and u =

[u1 u2 u3]T rotation axis. The three-parameter representation is given by the ro-

tation vector ρ = uθ. Any rotation matrix R has a unit eigenvalue corresponding to a

given eigenvector u such that Ru = u. R is given by the Rodrigues rotation formula:

R(ρ) = I + Usinθ + U2(1− cosθ) (B.5)

where U=[u]× is a skew-symmetric matrix given by

U =


0 −u3 u2

u3 o −u1

−u2 u1 0

 . (B.6)

For small angle θ → 0, the rotation is approximated by

R(ρ) = I + [ρ]× (B.7)

and corresponds to the Lie algebra representation of the tangent space SO(3). The

advantage of the angle-axis representation is that the inverse problem R → ρ always
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provides a single solution, given by

θ = cos−1

(
trace(R)− 1

2

)
, u =

1

2sinθ
[r32 − r23 r13 − r31 r21 − r12]T (B.8)

except for θ = π which has two solutions, ±ρ. Obviously, for θ=0, ρ=0.

B.3 Quaternion

Quaternions are hypercomplex numbers, given by (qs + qxi + qyj + qzk), where i2 = j2 =

k2 = ijk =-1. The 4-tuple quaternion has scalar qs and vector q = (qx, qy, qz) compo-

nents. The unit quaternion is defined by introducing the Euclidean norm ‖q‖2=q2
s +

q2
x + q2

y + q2
z and ‖q‖=1. The unit quaternions are commonly used to parametrize 3D

rotations, and are related to rotations in SO(3).

Let r be a vector, and (0, r) be the imaginary quaternion associated with r. The unit

quaternion q is given by q = (cos( θ2),qsin( θ2)), with ‖q‖ = 1 for some (θ,q),

and we compute the product

r′ = q
⊗

r
⊗

q̄ (B.9)

where
⊗

represents internal product (Hamilton product) and q̄ is the conjugate of

quaternion q. This operation is equivalent to rotating r into r′ around the angle-axis

(θ,q). The unit quaternion is equivalent to a rigid rotation matrix,

R(q) =


q2
s + q2

x − q2
y − q2

z 2qxqy − 2qsqz 2qsqy + 2qxqz

2qsqz + 2qxqy q2
s − q2

x + q2
y − q2

z 2qyqz − 2qsqx

2qxqz − 2qsqy 2qsqx + 2qyqz q2
s − q2

x − q2
y + q2

z

 (B.10)

and numerically stable for pose estimation. It is a non-singular representation of 3D

rotation, with a one-to-two correspondence between rotation and a unit quaternion

(R ↔ ±q). However, it introduces one more parameter, increasing dimension and the

constraint ‖q‖=1 must be enforced to prevent infinite solutions.
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