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Introduction

Recently, the handling of digital information becomes more and more important in
workaday life as well as in current research. The main idea is to reduce the huge
amount of data by using appropriate representations which need much less data but
provide nevertheless a good approximation of the original information. Highly effi-
cient algorithms to process huge data sets are therefore of fundamental interest. One
basic problem in numerical analysis and scientific computing is the approximation of
functions. A very famous and well known example is the fast Fourier transform (FFT)
introduced firstly by C. F. Gauß in [21] and most popularly published by J. Cooley and
J. W. Tukey in [9]. The FFT belongs to the algorithms with large impact on science
and engineering. It allows very efficient computations of trigonometric interpolation
polynomials to functions.
In this thesis, we consider fast and approximate algorithms to evaluate a function f
given by coefficients f̂k ∈ C and frequencies or nodes ξk ∈ Ω, k = 1, . . . ,M2, M2 ∈ N,
of the form

f(x) =

M2∑
k=1

f̂kκ(x, ξk), (1.1)

where κ : X × Ω→ C denotes a so called kernel function, X ⊂ Rd the spatial domain,
and Ω ⊂ Rd the frequency domain. A similar task is the continuous counterpart, i.e.
the computation of the integral transform

f(x) =

∫
Ω

f̂(ξ)κ(x, ξ)dξ,

where Ω is an open set and f̂ : Ω→ C.
Techniques for the computation of function values of f given by the integral transform
with a smooth kernel are fast multipole methods [26, 50, 59] as well as the concept
of hierarchical matrices [28, 3, 25, 4, 29]. In all cases, the concept in such schemes is
to trade exactness for efficiency; instead of precise computations up to machine preci-
sion, the proposed methods guarantee a given target accuracy. Neglecting logarithmic
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factors in the problem size and the target accuracy, the computational complexity of
all these algorithms scales linearly in the problem size. The idea of all above cited
works relies on a simple geometric condition for subsets of X and Ω where the kernel κ
can be approximated by a low rank approximation restricted to these subsets. We call
these geometric conditions admissible conditions and call the subsets admissible. Sub-
sequently, we deal with different kinds of exponential kernels. There are other methods
for the computation of fast function transforms which rely on asymptotic expansions
of functions as presented for example in [30, 51].

In the first part of this thesis, we study the univariate real valued exponential kernel
κ(y, ξ) = e−yξ which leads to a discrete Laplace transform. This transform has been
studied in [46, 49]. In the latter, the author uses a particular function approach by La-
guerre polynomials, whereas in [46] interpolations are used. We introduce the discrete
Laplace transform [46] in a modern form including a generalization to more general
kernel functions and an improvement in the error estimate. These more general kernels
lead to specific function transforms. We present a complexity analysis of the general-
ized version and illustrate the theoretical results by numerical experiments. All these
findings can be found in our preprint [36].

In the second part of this thesis, we consider the Fourier kernel κ(x, ξ) = e2πixξ with real
variables ξ,x ∈ Rd for nonequispaced nodes which has been already studied in [12, 11,
5, 48, 15, 33]. Yet another analysis-based fast algorithm is the butterfly approximation
scheme which can be traced back at least to [42] and has found a series of recent
applications in [60, 8, 43, 54, 10]. Moreover, it is well known that certain blocks of
the discrete Fourier transform are approximately of low rank [38, 57, 13]. Also, the
kernel function κ can be approximated by low rank approximations for certain blocks
which leads to the butterfly sparse fast Fourier transforms [2, 58]. In this thesis, we
follow [58] where the author uses a special interpolation scheme. This scheme factors
out the oscillatory part of the restricted Fourier kernel, interpolates the nonoscillatory
part, and remodulates the outcome. Based on a local error analysis, we develop a
rigorous error analysis for the whole butterfly scheme, which shows how the local
expansion degree depends on the target accuracy and the diameter of the frequency
set Ω. Moreover, we show that the original scheme becomes numerically unstable if
a large local expansion degree is used. We remove this problem by representing all
approximations in a Lagrange type basis instead of the previously used monomial type
basis. We adduce a complexity analysis of all versions and illustrate the theoretical
results by numerical experiments. These findings are published in our paper [35].

In the last part of this thesis, we discuss a fast Fourier transform for nonequispaced
complex evaluation nodes in the univariate case. This is already done in [1] as a
generalization of the nonequispaced FFT (NFFT). The author of [1] uses convolution
techniques and computations by FFTs. Our first idea to compute such sums consists of
a generalization of the local butterfly interpolation to complex evaluation nodes. Both
approaches allow only the evaluation in complex nodes in a very small strip around
the real line. To overcome this issue, we develop another idea which combines both
the Fourier and the Laplace transform by means of a multiplicative separation of the
oscillatory and the smooth part of the kernel function. We do this in a purely algebraic
fashion by decomposing the Laplace transform explicitly and by using a small number of
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generalized fast Fourier transforms as black box. Alternatively, we might interpret this
approach for equispaced frequencies as the fast evaluation of a polynomial given by its
monomial coefficients at many nodes in the complex unit disk. The theoretical results
on accuracy and computational complexity are illustrated by numerical experiments.
Finally, we refer the practically orientated reader to our toolbox [37] which consists of
the implementations of the algorithms presented here.

1.1 Outline of the thesis

The thesis is organized as follows.

Chapter 2 : Preliminaries and basic definitions.

We introduce most of our notations and give a short overview about tensor decomposi-
tions in Section 2.2. Tensors are multi-dimensional arrays and we use the concept [34]
to compute the butterfly sparse fast Fourier transform in higher dimensions. Moreover,
we summarize in Section 2.3 some facts about polynomial interpolation, in particular
the interpolation in Chebyshev nodes which provides a nearly best approximation, see
Theorem 2.16. Each local approximation of the kernel functions in our algorithms is
based on the interpolation in Chebyshev nodes. In addition, we shortly introduce low
rank approximations of matrices and kernel functions. Later, we will use interpolation
to create low rank approximations of kernel functions.

Chapter 3 : Laplace transform and generalizations.

We consider asymptotically smooth kernels κ : Y × Ω → R, Y,Ω ⊂ [0,∞), whose
q-th partial derivatives have a specified behavior depending on q. Furthermore, a
singularity of the kernel κ in yξ = 0 is allowed. Two examples of asymptotically
smooth kernels are given by the exponential kernel, which has no singularity, and by
the modified Bessel function of the second kind, which has a singularity in yξ = 0,
see Lemmata 3.2 and 3.3, respectively. An extension of the results in [46] of the
exponential kernel to asymptotically smooth kernels is presented. After introducing the
two-dimensional interpolation in a tensor Chebyshev grid, we prove in Theorem 3.5 that
the interpolation under an admissible condition leads to a good low rank approximation
with an exponentially decreasing error for increasing numbers of interpolation nodes.
Section 3.2 contains a summary of the Laplace transform given in [46], where the
kernel κ in Equation (1.1) denotes the exponential kernel κ(y, ξ) = e−yξ. We improve
the interpolation error [46, Equation (36)] of the whole algorithm by improving the
local interpolation error, see Corollary 3.6. Using a geometrical decomposition of the
domains Y and Ω gives admissible pairs of subsets. The exponential kernel takes the
value one if and only if one of the arguments is zero and the kernel is fast decreasing
to zero for large values y or ξ. The algorithm in Theorem 3.9 approximates the kernel
function by one, if one subset of Ω or Y of an admissible pair is near the origin and
by zero if one of the subsets of Ω or Y is far away from the origin. Between those
cases, we approximate the kernel function by interpolation and finally sum up the
developed approximations with respect to the coefficients f̂k. In addition, we show
that the fast Laplace transform, cf. Algorithm 1, scales linearly in the problem size
except logarithmic terms with respect to accuracy. We extend the Laplace transform
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to asymptotically smooth kernels in Remark 3.15, where we do exact computations in
the near fields and approximations otherwise. We close this chapter with numerical
experiments illustrating the theoretical results on accuracy and complexity.

Chapter 4 : Butterfly sparse fast Fourier transform.

Now, we aim to compute the sum (1.1) for the kernel κ(x, ξ) = e2πiξx/N . While the
naive computation scales quadratically in the problem size, the FFT for nonequispaced
data in spatial and frequency domain [15] or type-3 nonuniform FFT [27] reduces this
to a linear complexity in the problem size with an additional Nd logN term, where
N denotes the diameter of Ω or the length of the FFT. Let Nd−1-many frequencies ξ
and evaluation nodes x be given on smooth (d − 1)-dimensional manifolds for d ≥ 2,
then the above cited algorithms do not take any advantages of this sparsity constraint
on the frequencies and evaluation nodes. The here presented butterfly sparse fast
Fourier transform (BSFFT), reduces the complexity of computing the sum (1.1) to a
complexity scaling linearly in the problem size except logarithmic terms. We start by
introducing the butterfly algorithm in the univariate case. We follow the ideas in [58]
and use interpolation in Chebyshev nodes as low rank approximation. In contrast
to [58], where the author interpolates the kernel in the spatial and frequency domain
in Chebyshev nodes, we interpolate the kernel only in Chebyshev nodes in the spatial
domain and use equispaced nodes in the frequency domain. An explicit representation
and uniqueness result is stated in Lemma 4.4. In Theorem 4.8, a local error estimate is
proven under some admissible condition. An explicit representation of the interpolation
problem and an error estimate of the original approach [58] neither contained in [58]
nor [35] is declared in Definition 4.12 and Corollary 4.13, respectively. Afterwards, we
present the butterfly scheme with the corresponding BSFFT to compute (1.1). We
consider two different representations of the interpolating function itself, on the one
hand the monomial type basis, which is used in [58], and on the other hand a Lagrange
type basis. We discuss the computations of both variants and come up with stability
results in Theorem 4.15 and Theorem 4.16.
Section 4.2 presents the butterfly sparse fast Fourier transform in higher dimensions.
At first, we extend the interpolation to higher dimensions, declare the algorithm, and
discuss the computation of the two realizations of interpolating functions by using
tensor decompositions. In Theorem 4.22, we prove an error analysis for the whole
algorithm. It is shown that computing the sum (1.1) by the BSFFT reduces the
complexity from O(N2) to O(N logN(| log ε|+logN)2) floating point operations in the
one-dimensional case and from O(N2(d−1)) to O(Nd−1 logN(| log ε|+ logN)d+1) in the
d-dimensional case, where ε describes the target accuracy. Afterwards, we discuss the
space complexity of the algorithm and conclude the chapter with numerical experiments
illustrating the theoretical results. Finally, a simple application follows, where we
treat the vibrating string problem and approximate its solution with a two-dimensional
BSFFT.
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Chapter 5 : Fast Fourier transform for nonequispaced complex nodes.

In this chapter we consider the Fourier kernel κ(w, ξ) = e2πiwξ/N with a complex first
argument w ∈ C. A first idea is the extension of the interpolation operator given by
Definition 4.1 to a small complex strip around the real line. We prove a local error
estimate in Theorem 5.4 which allows for a certain target accuracy if one chooses a suf-
ficiently small strip depending on the approximation rank. To evaluate the sum (1.1)
for arbitrary complex nodes w on the nonnegative half-plane we develop Algorithm 7
which combines the Laplace and Fourier transform by means of a separation of the
oscillatory and the smooth part of the kernel function. Algorithm 7 takes at most
O
(
N logN log2 N

ε
log Ny1

ε
log 1

ε

)
floating point operations using the nonequispaced FFT

in time and frequency (NNFFT) or the BSFFT for the Fourier part, where y1 denotes
the diameter of the real part of the spatial domain. Furthermore, we state an error anal-
ysis in Theorem 5.8. Afterwards, we describe how to apply Algorithm 7 for evaluating
polynomials in the unit disk. We close this chapter with some numerical experiments.
In particular we compare Algorithm 7 with [1, Algorithm 2] for evaluating complex
polynomials in the unit disk.

Chapter 6 : Software library.

The Laplace Transform (Algorithm 1), the BSFFT for the dimensions d = 1, 2, 3, 4
(Algorithm 3 and 5), and the fast Fourier transform for complex evaluation nodes
(Algorithm 7) are implemented in one MATLAB toolbox called extended fast Fourier
transforms (XFFT). We give a short tutorial for using this toolbox.
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Preliminaries and basic definitions

In this chapter, we introduce some basic notations and definitions for this thesis. Fur-
thermore, an overview in the fundamentals of tensor decompositions, polynomial inter-
polation, in particular polynomial interpolation in Chebyshev nodes are given. Finally,
we introduce low rank approximations.

2.1 Notation

We denote the natural numbers, the natural numbers with zero, the integers, the real
numbers, the positive real numbers and the complex numbers by N, N0, Z, R, R+, and
C, respectively. Throughout this thesis, we set K ∈ {R,C}. Furthermore, the spaces
of polynomials of degree at most p ∈ N are defined by

Πp(C) :=

{
q : C→ C : q(z) =

p∑
j=0

cjz
j, cj ∈ C

}
,

Πp(R) :=

{
q : R→ R : q(x) =

p∑
j=0

cjx
j, cj ∈ R

}
,

Πp(R,C) :=

{
q : R→ C : q(x) =

p∑
j=0

cjx
j, cj ∈ C

}
.

Let d ∈ N and D ⊂ Kd compact. We denote the space of continuous functions
f : D → K by C(D) with the norm ‖f‖C(D) := maxx∈D |f(x)|. Moreover, we denote the
partial derivative of a function f : Rn → R in one variable x by ∂xf := ∂

∂x
f . For d = 1,

D ⊂ R, and m ∈ N, we define the space of all m-times differentiable and continuous
functions f : D → K by C(m)(D). Furthermore, we denote the m-th derivative of f by
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f (m). Let α ∈ C and k ∈ Z. The generalized binomial coefficient is defined by

(
α

k

)
:=


α(α−1)·····(α−(k−1))

k!
for k > 0,

1 for k = 0,

0 for k < 0.

We call a closed and bounded interval A = [a, b] box and define the diameter by
diamA := b − a. Moreover, we define the distance from the interval A to a point
d ∈ R by dist(A, d) := minx∈A |x− d|, and the center of the box A by cA := a+b

2
. A

d-dimensional box is given by A = A1×· · ·×Ad ⊂ Rd, where Ai, i = 1, . . . , d, are one-
dimensional boxes. The center of the d-dimensional box is given by cA :=

(
cA1 , . . . , cAd

)
and the diameter by diamA := maxi diamAi.
Let v ∈ Cd. The transpose of the vector v is denoted by v> and the conjugate
transpose by v∗. Moreover, let a ∈ C, and e := (1, . . . , 1)> ∈ Cd, then the shifted
vector v − a := v − ae is defined. Furthermore, diag(v) denotes the diagonal matrix
with vector v on the diagonal. Let a,b ∈ Cd, we define the scalar product ab := a∗b
and the norms

‖a‖p := p

√√√√ d∑
j=1

|aj|p and ‖a‖∞ := max
j=1,...,d

|aj|

for p ∈ N, p ≥ 1. Furthermore, we denote `p as the sequence space, which includes all

sequences a = (an)n∈N, such that ‖a‖p :=
(∑

j∈N |aj|p
)1/p

<∞.

Let A ∈ Km×n, m,n ∈ N, we denote by A> the transposed matrix, by A∗ the adjoint
matrix and by rank(A) the rank of the matrix A. Furthermore, we write ‖ · ‖2 for the
spectral norm and ‖ · ‖F for the Frobenius norm,

‖A‖2 := max
x∈Kn\{0}

‖Ax‖2

‖x‖2

and ‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

|ai,j|2.

Moreover, we define the absolute maximum entry of the matrix A by

‖A‖1→∞ := max
i=1,...,m
j=1,...,n

|ai,j|, (2.1)

and the Kronecker delta by

δk,j :=

{
1 for j = k,

0 otherwise

for k, j ∈ N.

Lemma 2.1. For A ∈ Cm×n, we have

‖A‖1→∞ = max
f∈Cn
‖f‖1=1

‖Af‖∞.
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Proof. We have

max
f∈Cn
‖f‖1=1

‖Af‖∞ ≤ ‖A‖1→∞ max
f∈Cn
‖f‖1=1

‖f‖1 = ‖A‖1→∞.

Choosing 1 ≤ k ≤ n, such that ‖A‖1→∞ = maxi=1,...,m |ai,k| implies with the k-th unit
vector ek := (δk,j)j=1,...,n the assertion,

max
f∈Cn
‖f‖1=1

‖Af‖∞ ≥ ‖Aek‖∞ = max
i=1,...,m

∣∣∣∣∣
n∑
j=1

ai,jδk,j

∣∣∣∣∣ = max
i=1,...,m

|ai,k| = ‖A‖1→∞.

For m = n and A invertible, we denote by κ(A) the condition number of A in the
spectral norm.
Furthermore, let x ∈ R, we define the floor, b·c : R→ Z, and ceil function, d·e : R→ Z,
by

bxc := max{k ∈ Z : k ≤ x},
dxe := min{k ∈ Z : k ≥ x}.

Let g : R→ R, we use the Landau notation O and o,

O(g) := {f : R→ R+ : ∃C > 0 ∃n0 ∈ R : f(n) ≤ Cg(n) ∀n ≥ n0},
o(g) := {f : R→ R+ : ∀C > 0 ∃n0 ∈ R : f(n) ≤ Cg(n) ∀n ≥ n0}.

2.2 Tensor decomposition

To expand the Fourier transforms to higher dimensions, we give a short introduction
to tensors which are multi-dimensional arrays. For simplicity, we start with some
definitions for matrices, which are two-dimensional tensors. Afterwards, we generalize
matrices to tensors and introduce some calculation rules.
We use the same notation for tensors as in [34]. The pointwise product of two matrices
A = (am,n)M,N

m,n=1, B = (bk,l)
M,N
k,l=1 ∈ CM×N is defined by

A�B := (am,nbm,n)M,N
m,n=1.

Moreover, we denote the Kronecker product for matrices A = (am,n)M,N
m=1,n=1 ∈ CM×N

and B = (bk,l)
K,L
k=1,l=1 ∈ CK×L in multi index notation by

A⊗B := (am,nB)M,N
m=1,n=1 = (am,nbk,l)

M,K;N,L
m=1,k=1;n=1,l=1 ∈ CMK×NL.

The vectorization of a matrix A = (am,n)M,N
m=1,n=1 is denoted by vec : CM×N → CMN ,

vec(A) := (am,n)n=1,...,N ;m=1,...,N = (a1,1 . . . am,1a1,2 . . . am,2 . . . a1,n . . . am,n) ∈ CMN

which means, that the row index runs first. The vectorization of a matrix is writing
the columns of the matrix one below the other.
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Example 2.2. Let A =

(
1 2 3 4
5 6 7 8

)
, then vec(A) =

(
1 5 2 6 3 7 4 8

)>
.

Lemma 2.3. (i) Let A ∈ CM×N , B ∈ CK×L, C ∈ CN×J , and D ∈ CL×G be given,
then it follows

AC⊗BD = (A⊗B)(C⊗D).

(ii) Two invertible matrices A ∈ CN×N , B ∈ CM×M , satisfy

(A⊗B)−1 = A−1 ⊗B−1. (2.2)

(iii) For A ∈ CM×N , B ∈ CK×L and U ∈ CL×N , we have

vec(F) = (A⊗B) vec(U)⇔ F = BUA>.

(iv) Let v, w ∈ CN and a matrix U ∈ CN×N be given, then it follows

(diag v ⊗ diag w) vec(U) = vec (wv> �U).

Proof. See [47, 1.3 Matrix Multiplication] for (i) and (ii) and [47, 1.12 Vec operator,
Theorem] for (iii). We prove (iv). From (iii), we conclude

(diag(v)⊗ diag(w)) vec(U) = vec(diag(w)U diag(v))

and hence the assertion follows since

(diag(w)U diag(v))i,j = wiui,jvj =
(
(wv>)�U

)
i,j
.

We generalize the Kronecker product to higher dimensions using tensors. At first, we
use the notation of a multi index vector f ∈ CN1···Nd given by

f = (fn1,...,nd)n1=1,...,N1,...,nd=1,...,Nd
∈ CN1···Nd ,

where the last index nd runs first and then the previous one, nd−1, and so on up to n1.
By abuse of notation, we write the usual Kronecker product for matrices A(j) ∈ CMj×Nj ,
Mj, Nj ∈ N, and j = 1, . . . , d, in a multi index notation

d⊗
ν=1

A(j) =

(
d∏

ν=1

A(ν)
mν ,nν

)M1,...,Md;N1,...,Nd

m1=1,...,md=1;n1=1,...,nd=1

∈ CM1···Md×N1···Nd .

For a fixed multi row index m1, . . . ,md the column index nd runs first from 1 to Nd

and afterwards nd−1 from 1 to Nd−1 and so on up to n1. The multi row indices are
traversed in the same way. The number of dimensions of a tensor is called order of a
tensor, also known as ways or modes. The next definition is a generalization of the
vectorization of matrices to tensors.
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Definition 2.4. Let d ∈ N, d ≥ 2, and N1, . . . , Nd ∈ N. We denote a d-tensor of
dimension N1 × · · · × Nd by F = (fn1,...,nd)

N1,...,Nd
n1=1,...,nd=1. The numbers fn1,...,nd ∈ C are

called tensor entries. The vec-operator is defined by

vec : CN1×···×Nd → CN1···Nd , vec(F) := (fn1,...,nd)nd=1,...,Nd,...,n1=1,...,N1
,

where the index n1 runs first and then n2, and so on up to nd.

From now on, we consider for simplicity only tensors where every mode is the same
size. Such tensors are called cubical tensors. We only need cubical tensors in this
thesis.

Definition 2.5. The pointwise product of two d-tensors F and U = (un1,...,nd)
N
n1,...,nd=1

is defined by

F � U := (fn1,...,nd · un1,...,nd)
N
n1,...,nd=1 .

Let k ∈ N and 1 ≤ k ≤ d. The k-mode product of a tensor F and a matrix
A := (am,nk)

M,N
m=1,nk=1 ∈ CM×N , M ∈ N, is defined by U ×k A ∈ CN×···×N×M×N×···×N ,

(U ×k A)n1...nk−1mnk+1...nd :=
N∑

nk=1

un1...ndamnk .

Furthermore, let 1 ≤ k ≤ d. The k-mode matricization of a d-tensor F ∈ CN×···×N

is denoted by F(k) ∈ CN×Nd−1
, where the tensor entry (n1, . . . , nd) is mapped to the

matrix entry (nk,m) with m = 1 +
d∑
j=1
j 6=k

(nj − 1)Aj, Aj :=

{
N j−2 for j ≥ k + 1

N j−1 for j < k.
.

Example 2.6 ([34]). (i) Let a matrix (a 2-tensor) A = (aij)
M,N
i=1,j=1 be given. The

mode n-foldings are

A(1) = A and A(2) = A>.

The vectorization coincides with the definition of the vectorization of a matrix.

(ii) Let U ∈ C2×2×2, where ui,j,k ∈ C for i, j, k = 1, 2 given by

U(:, :, 1) =

(
u1,1,1 u1,2,1

u2,1,1 u2,2,1

)
, U(:, :, 2) =

(
u1,1,2 u1,2,2

u2,1,2 u2,2,2

)
.

The three mode-n foldings are U(j) ∈ R2×4 for j = 1, 2, 3,

U(1) =

(
u1,1,1 u1,2,1 u1,1,2 u1,2,2

u2,1,1 u2,2,1 u2,1,2 u2,2,2

)
,

U(2) =

(
u1,1,1 u2,1,1 u1,1,2 u2,1,2

u1,2,1 u2,2,1 u1,2,2 u2,2,2

)
,

U(3) =

(
u1,1,1 u2,1,1 u1,2,1 u2,2,1

u1,1,2 u2,1,2 u1,2,2 u2,2,2

)
.

The vectorization of U is given by

vecU =
(
u1,1,1, u2,1,1, u1,2,1, u2,2,1, u1,1,2, u2,1,2, u1,2,2, u2,2,2

)>
.
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Lemma 2.7 ([34]). Let N, d ∈ N and d ≥ 2, a d-tensor U ∈ CN×···×N , and two
matrices A := (al,m)Nl,m=1 ∈ CN×N , B := (bl,m)Nl,m=1 ∈ CN×N be given.

(i) Let Ik := (δi,j)
Nk

i,j=1, k ∈ N0, be the identity, then it follows

(Ik−1 ⊗A⊗ Id−k) vecU = vec(U ×d−k+1 A) for k ∈ N, 1 ≤ k ≤ d.

(ii) The k-mode product of U and A satisfies

Y = U ×k A⇔ Y(k) = AU(k) for k ∈ N, 1 ≤ k ≤ d.

(iii) Let v(1), . . . ,v(d) ∈ CN with v(i) := (vni)
N
ni=1. Then it follows(

diag(v(1))⊗ · · · ⊗ diag(v(d))
)

vec(U) = vec(V � U),

where V :=
(
v

(1)
n1 · · · v

(d)
nd

)N
n1,...,nd=1

∈ CN×···×N .

(iv) Let d = 2 and U = U ∈ CN×N . The calculation rule of Kronecker products agrees
with the tensor calculation rules,

(A⊗B) vec(U) = vec(U×1 B×2 A) = vec(BUA>).

Proof. (i) The identities Ik ∈ CNk×Nk
, k ∈ N, can be written as k Kronecker prod-

ucts of the identity I1, Ik =
⊗k

j=1 I1 = (δr1,t1 · · · δrk,tk)
N
r1,...,rk;t1,...,tk=1. We obtain

Ik−1 ⊗A⊗ Id−k =
(
δr1,t1 · · · δrk−1,tk−1

A
)N ;N

r1,...,rk−1=1;t1,...,tk−1=1
⊗ Id−k

=
(
δr1,t1 · · · δrk−1,tk−1

al,m
)N ;N

r1,...,rk−1,l=1;t1,...,tk−1,m=1
⊗ Id−k

=
(
δr1,t1 · · · δrk−1,tk−1

atk,rkδrk+1,tk+1
· · · δrd,td

)N ;N

r1,...,rd=1;t1,...,td=1
.

Since vec(U) = (ut1 , . . . , td)td,...,t1=1,...,N , we change the indices k 7→ d− k+ 1 and
obtain

Ik−1 ⊗A⊗ Id−k = (atd−k+1,rd−k+1

d∏
j=1

j 6=d−k+1

δrj ,tj)
N ;N
rd,...,r1=1;td,...,t1=1

Setting f := (fr1,...,rd)rd,...,r1=1,...,N = (Ik−1 ⊗A⊗ Id−k) vecU ∈ CNd
, we have

fr1,...,rd =
N∑

t1,...,td=1

δrd,td · · · δrd−k+2,td−k+2
atd−k+1,rd−k+1

δrd−k,td−k · · · δr1,t1ut1,...,td

=
N∑

td−k+1=1

atd−k+1,rd−k+1
ur1,...,rd = (U ×d−k+1 A)r1,...,rd .

(ii) Cf. [34, 2.5 Tensor Multiplication: The n-Mode Product].
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(iii) The assertion follows since diag(v(1))⊗ · · · ⊗ diag(v(n)) = diag(v(1) ⊗ · · · ⊗ v(d))
and vecV = v(1) ⊗ · · · ⊗ v(d).

(iv) We prove that

U×1 B×2 A = BUA>

holds true. We set Z = Y ×2 A, where Y = U ×1 B. Applying (ii) and using
Y(1) = Y and Z(2) = Z> imply

Z> = AY>, Y = BU,

and finally

Z = YA> = BUA>.

Due to Lemma (iii), the assertion follows.

2.3 Polynomial interpolation

The following problem is called interpolation problem. We have given a set of p ∈ N
pairwise distinct points x = (xs)s=0,...,p−1 ∈ Kp as well as a vector of function values
f = (f(xs))s=0,...,p−1 ∈ Kp. The task is finding a polynomial r ∈ Πp−1(K) which satisfies
the interpolation condition

r(xs) = f(xs) for all s = 0, . . . , p− 1.

Definition 2.8. We denote the nodal polynomial to the nodes x by wx ∈ Πp(K),

wx(x) :=

p−1∏
s=0

(x− xs),

and the Lagrange polynomials to the nodes x by Lx,k ∈ Πp−1(K), k = 0, . . . , p− 1,

Lx,k(x) :=
w(x)

(x− xk)w′(xk)
=

p−1∏
s=0
s 6=k

x− xs
xk − xs

. (2.3)

Polynomial interpolation is unique.

Theorem 2.9 ([31, Satz 37.3 and 37.4.]). Let f : K → K. Under the above assump-
tions, the interpolation problem has a unique solution r ∈ Πp−1(K) given by

r(x) =

p−1∑
s=0

f(xs)Lx,s(x).

Moreover, let now K = R and f : [x0, xp−1] → R, f ∈ Cp[x0, xp−1]. For x ∈ [x0, xp−1]
exists ξ(x) ∈ (x0, xp−1), such that the interpolation error is given by

f(x)− r(x) =
f (p)(ξ(x))

p!
w(x).
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2.3.1 Interpolation in Chebyshev nodes

We introduce Chebyshev polynomials, which are orthogonal polynomials and very im-
portant in numerical analysis, see [17, 45, 40, 53]. Let p ∈ N. Interpolation in the
roots of Chebyshev polynomials provides a nearly best approximation as stated in [53,
Theorem 16.1]. The Chebyshev polynomials of the first kind are defined by Tp : R→ R,

Tp(x) :=

{
cos(p arccosx) for x ∈ [−1, 1],
(x+
√
x2−1)p+(x−

√
x2−1)p

2
otherwise.

The Chebyshev polynomials obey the following three-term recurrence relation

Tp+1(x) = 2xTp(x)− Tp−1(x), T0(x) = 1, T1(x) = x. (2.4)

It is obvious, that we obtain Tp ∈ Πp(R). We denote the roots of the Chebyshev
polynomial Tp by

t := (tj)j=0,...,p−1, tj := cos
2j + 1

2p
π,

and we call them Chebyshev nodes. Furthermore, the restricted Chebyshev polynomial
Tp : [−1, 1]→ R takes its extrema at the nodes

tmax
j := cos

jπ

p
, j = 0, . . . , p.

Moreover, we introduce the Chebyshev polynomials of the second kind by Up : R→ R,

Up(x) :=


sin((p+1) arccosx)

sin(arccosx)
for x ∈ (−1, 1),

(±1)p(p+ 1) for x = ±1,
(x+
√
x2−1)p+1−(x−

√
x2−1)p+1

2
√
x2−1

otherwise,

which obey the similar three-term recurrence relation (2.4) with different initial condi-
tions,

Up+1(x) = 2xUp(x)− Up−1(x), U0(x) = 1, U1(x) = 2x.

Lemma 2.10. Let A be a box and p ∈ N. We call

xA := (cA +
diamA

2
tj)j=0,...,p−1 (2.5)

the Chebyshev nodes in the box A. The Chebyshev polynomials, the Chebyshev nodes
and the corresponding nodal polynomial obey

T ′p(x) = pUp−1(x), (2.6)

‖wt‖C[−1,1] = 2−(p−1), (2.7)

‖wxA‖C(A) = 2

(
diamA

4

)p
, and (2.8)

p−1∏
j=0
j 6=r

|tj| =
p

2p−1
if p = 2r + 1, r ∈ N. (2.9)
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Proof. The first equation can be found in [45, (1.23)] and the second in [45, Theo-
rem 2.1]. The third equation follows from the second by mapping the interval [−1, 1]→
A via t 7→ cA − diamA

2
t =: x, which implies the assertion since

wxA(x) =

p−1∏
j=0

(x− xAk ) =

p−1∏
j=0

−diamA

2
(t− tk) =

(
−diamA

2

)p
wt(t).

Let p = 2r + 1, r ∈ N, it follows tr = 0 and Lr(0) = 1. Moreover, we have
T ′p(0) = pUp−1(0) = p, where Up−1(cos θ) = sin pθ

sin θ
denotes the Chebyshev polynomial

of second kind. Combining Tp(x) = 2p−1wt(x) with Equation (2.3), we conclude

Lr(x) =
Tp(x)

(x− tr)T ′p(tr)
. (2.10)

The assertion follows from x = 0.

Remark 2.11. The nodal polynomial wt to the Chebyshev nodes is optimal in the
sense, that for all polynomials r ∈ Πp(R) with leading coefficient 1, we have

‖r‖C[−1,1] ≥ ‖2−(p−1)Tp‖C[−1,1] = 2−(p−1)

with equality only if r = 2−(p−1)Tp. See [45, Theorem 2.1] for a proof.

For simplicity we denote the Lagrange polynomials for the Chebyshev nodes t and xA

by

Ls := Lt,s and LAs := LxA,s for s = 0, . . . , p− 1. (2.11)

Definition 2.12. Let A be a box and f : A→ K, f ∈ C(A), p ∈ N, p ≥ 2. We denote
the interpolation operator for Chebyshev nodes xA in A by

IAp : C(A)→ Πp−1(R,K), IAp f =

p−1∑
s=0

f(xAs )LAs .

Theorem 2.13. Let a box A, f : A→ R, f ∈ Cp(A), and p ∈ N, p ≥ 2, be given. The
interpolation error is bounded by

‖IAp f − f‖C(A) ≤ 2
(diamA)p

4pp!
‖f (p)‖C(A).

Proof. The polynomial interpolation error is given with some ξ(x) ∈ (xAp−1, x
A
0 ) by

|(IAp f − f)(x)| = 1

p!
|f (p)(ξ)||wxA(x)|,

see Theorem 2.9. Applying the maximum norm ‖ · ‖C(A) and using Inequality (2.8)
yields the assertion.
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Lemma 2.14. For p ∈ N, p ≥ 2, the Lagrange polynomials (2.11) obey

max
x∈[−1,1]

p−1∑
s=0

(Ls(x))2 ≤ 2, (2.12)

max
x∈[−1,1]

p−1∑
s=0

|Ls(x)| ≤ 1 +
2

π
log p, (2.13)

max
x∈[−3,3]

|Ls(x))| ≤ 34
p
2

4p
. (2.14)

Proof. The Gauss-Chebyshev quadrature yields the discrete orthogonality

p−1∑
s=0

Tk(ts)Tl(ts) =


0 for k 6= l,

p for k = l = 0,
p
2

for k = l 6= 0,

for k, l = 0, . . . , p − 1, see [45, Equation (1.141)], and since Ls(tj) = δs,j also the
expansion of the Lagrange polynomials

Ls(x) =
2

p

p−1∑′

j=0

Tj(ts)Tj(x) :=
1

p
T0(ts)T0(x) +

2

p

p−1∑
j=1

Tj(ts)Tj(x),

where the prime indicates that the first summand is weighted by 1
2
. Hence, we have

p−1∑
s=0

(Ls(x))2 =

p−1∑
s=0

4

p2

 p−1∑′

k=0

Tk(ts)Tk(x)

 p−1∑′

l=0

Tl(ts)Tl(x)


=

4

p2

p−1∑′

k=0

p−1∑′

l=0

Tk(x)Tl(x)

p−1∑
s=0

Tk(ts)Tl(ts)

and since |Tk(x)| ≤ 1 for x ∈ [−1, 1] the first claim by

≤ 4

p2

(
1

4
p+ (p− 1)

p

2

)
≤ 2.

The second estimate is the classical Lebesgue constant, cf. [45, Theorem 1.2]. Finally,
we note that Inequality (2.12) implies |Ls(x))| ≤

√
2 for |x| ≤ 1 and it remains to show

the bound for |x| ∈ [1, 3]. Since Ls is a polynomial and has all its zeros inside [−1, 1],
it attains its extrema at x = ±3. Combining Equation (2.10) with (2.6) we obtain

Ls(x) =
Tp(x)

(x− ts)pUp−1(ts)
.

The explicit formula

Tp(x) =
(x+

√
x2 − 1)p + (x−

√
x2 − 1)p

2
, |x| ≥ 1,
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implies |Tp(±3)| ≤ 34
p
2 . Applying the simple bound (±3− ts)2 ≥ 4, and

(Up−1(ts))
2 =

sin2
(

2s+1
2
π
)

sin2
(

2s+1
2p
π
) ≥ sin2

(
2s+ 1

2
π

)
= (−1)2s = 1, s = 0, . . . , p− 1,

finally yields the assertion.

Corollary 2.15 (Lebesgue constant). Let p ∈ N, p ≥ 2, and a box A be given. Then
the operator norm is bounded by the so called Lebesgue constant

‖IAp ‖ := max
f∈C(A)
‖f‖C(A)=1

‖IAp f‖C(A) = ‖I [−1,1]
p ‖ ≤ 1 +

2

π
log p.

Proof. Let the mapping A → [−1, 1] via x 7→ t := 2
diamA

(x − cA) be given. Since a
function f : A→ C, can be expressed by the function g : [−1, 1] → C, g(t) := f(x(t)),
and since we have LAs (x) = Ls(t), the norm of the interpolation operator can be written
as

‖IAp ‖ := max
f∈C(A)
‖f‖C(A)=1

‖IAp f‖C(A) = max
f∈C(A)
‖f‖C(A)=1

max
x∈A

∣∣∣∣∣
p−1∑
s=0

LAs (x)f(xAs )

∣∣∣∣∣
= max

g∈C[−1,1]
‖g‖C[−1,1]=1

max
t∈[−1,1]

∣∣∣∣∣
p−1∑
s=0

Ls(t)g(ts)

∣∣∣∣∣ = ‖I [−1,1]
p ‖.

Using the triangle inequality and estimate the function values |g(ts)| by the maximum
norm of g, we obtain

‖I [−1,1]
p ‖ ≤ max

t∈[−1,1]

p−1∑
s=0

|Ls(t)|

and thus the assertion follows with Inequality (2.13).

The next theorem states, that interpolation in Chebyshev nodes is nearly as good as
best approximation.

Theorem 2.16 ([53, Theorem 16.1]). Let f ∈ C[−1, 1] and p ∈ N. We denote by
q∗p ∈ Πp−1(R) the best approximation of f in the sense that

‖f − q∗p‖C[−1,1] = min
qp∈Πp−1(R)

‖f − qp‖C[−1,1].

Then, it follows

‖f − I [−1,1]
p f‖C[−1,1] ≤

(
2 +

2

π
log p

)
‖f − q∗p‖C[−1,1].

This theorem can be extended to all boxes A instead of [−1, 1].
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2.4 Low rank approximation

A matrix A ∈ CM×N with rank(A) = r ≤ min{M,N} can be represented with
ak ∈ CM , bk ∈ CN for k = 1, . . . , r by

A =
r∑

k=1

akb
∗
k.

Note, that the memory requirements are r(M +N) instead of MN . Furthermore, the
matrix-vector multiplication

Ax =
r∑

k=1

akb
∗
kx =

r∑
k=1

ak(b
∗
kx)

takes r(M + N) operations instead of MN floating point operations. Summarizing,
low rank matrices can be stored efficiently and the matrix can be applied efficiently.
That is why we are interested in the approximation of matrices by low rank matrices.
The most popular low rank approximation of a matrix K ∈ CM×N is given by the
truncated singular value decomposition. Furthermore, it is the best approximation for
the spectral and the Frobenius norm in the following sense.

Theorem 2.17 ([31, Definition und Satz 12.1.]). Let K ∈ CM×N of rank k > 0. Then
there exists two unitary matrices U ∈ CM×M , V ∈ CN×N , and a diagonal matrix

Σ =

(
Σk 0
0 0

)
∈ CM×N , Σk = diag(σ1, . . . , σk), where σ1 ≥ σ2 · · · ≥ σk−1 ≥ σk > 0

are called singular values, such that K = UΣV∗.

Theorem 2.18 ([29, Satz 2.4.1], Best rank k approximation). With the same assump-
tions as in the previous theorem, the best rank r approximation of K with respect to
‖ · ‖2 and ‖ · ‖F, for r ≤ k is given by B =

∑r
i=1 uiσiv

∗
i , where we denote the columns

of the matrices U,V by ui and vj, respectively. Furthermore, it follows

‖K−B‖2 = σr+1 and ‖K−B‖F =

√√√√ k∑
i=r+1

σ2
i . (2.15)

Let X, Y ⊂ K, k ∈ N and functions ϕν : X → C, ψν : Y → C, ν = 1, . . . , k, be given.
We call κ̃ : X × Y → C,

κ̃(x, y) =
k∑
ν=1

ϕν(x)ψν(y)

a low rank approximation with rank k to the function κ. The function Rk : X×Y → K,
Rk(x, y) := κ(x, y)− κ̃(x, y), is called error term and it follows

κ(x, y) = κ̃(x, y) +Rk(x, y).

In this thesis, we will use polynomial interpolation to obtain good low rank approxi-
mations.
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Laplace transform and generalizations

In this chapter, we treat the computation of sums (1.1) in the one-dimensional case for
so-called asymptotically smooth kernels. One example of such a kernel is the real valued
exponential kernel. In this case, the sums (1.1) lead to a discrete Laplace transform.
We study the fast Laplace transform [46] and improve slightly the error estimate of
this approach. Moreover, we generalize this method to the computation of sums (1.1)
for arbitrary asymptotically smooth kernels κ : Y × Ω→ R, Y,Ω ⊂ [0,∞).
To be more precise, let M1,M2 ∈ N, evaluation or spatial nodes y1 > . . . > yM1 > 0,
frequency nodes ξ1 > . . . > ξM2 > 0, and coefficients f̂k ∈ C for k = 1, . . . ,M2 be given.
We consider the computation of sums

fj := f(yj) =

M2∑
k=1

f̂kκ(yj, ξk), j = 1, . . . ,M1. (3.1)

Allowing only decreasing sequences yj and ξk is just to simplify the notation. The
computation of the sum is equivalent to compute the matrix vector product

f = Kf̂ , K :=
(
κ(yj, ξk)

)M1,M2

j=1,k=1
, (3.2)

where f = (fj)j=1,...,M1 and f̂ = (f̂k)k=1,...,M2 , respectively.

3.1 Asymptotically smooth kernels

At first, we introduce asymptotically smooth kernels similar to [29, Definition 4.2.5.].
Afterwards, we consider a low rank approximation by interpolation in Chebyshev nodes
in both variables of such kernels.

Definition 3.1. Let an infinitely often differentiable function κ : (0,∞)× (0,∞)→ R
be given. The kernel κ is said to be asymptotically smooth if there exist constants
C, µ, s ≥ 0, ν ∈ R such that for all q ∈ N the conditions∣∣yq∂qyκ(y, ξ)

∣∣ ≤ Cq!µqqν(yξ)−s and
∣∣ξq∂qξκ(y, ξ)

∣∣ ≤ Cq!µqqν(yξ)−s
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are fulfilled for all y, ξ ∈ (0,∞). Moreover, we call two intervals A,B ⊂ [0,∞) admis-
sible if

diam(A) ≤ dist(A, 0) and diam(B) ≤ dist(B, 0). (3.3)

We give two examples of asymptotically smooth kernels, one for s = 0 and one for
s = 1/2. Note that the parameter s characterizes the singularity of the kernel for
yξ = 0.

Lemma 3.2. The kernel κ : [0,∞)× [0,∞)→ R,

κ(y, ξ) := e−yξ,

is asymptotically smooth with∣∣yq∂qyκ(y, ξ)
∣∣ ≤ q!√

2πq
and

∣∣ξq∂qξκ(y, ξ)
∣∣ ≤ q!√

2πq
.

Proof. For y > 0, we have the necessary condition for a local maximum of |∂qyκ(y, ξ)|,
i.e., ∣∣∂ξ∂qyκ(y, ξ)

∣∣ = ξq−1e−ξy |q − ξy| = 0

if and only if ξ = q/y. Using Stirling’s approximation, we conclude the globally valid
bound∣∣∂qyκ(y, ξ)

∣∣ = ξqe−ξy ≤ qq

eqyq
≤ 1√

2πq
q!y−q. (3.4)

The proof is analogously for |∂ξqκ(y, ξ)| and the assertion follows.

Lemma 3.3. Let the modified Bessel function of the second kind Kη : R+ → R,

Kη(x) :=

∫ ∞
0

e−x cosh(t) cosh(ηt)dt,

for η ∈ R be given. In particular, we have K1/2(x) =
√

π
2x

e−x. Then, the kernel
κ : (0,∞)× (0,∞)→ R,

κ(y, ξ) := K1/2(yξ)

is asymptotically smooth with

|yq ∂
q

∂yq
κ(y, ξ)| ≤

√
π

2yξ
q! and |ξq ∂

q

∂ξq
κ(y, ξ)| ≤

√
π

2yξ
q!.

Proof. The modified Bessel function for η = 1
2

is stated in [56, 3.7.1, Formula (13)].
We prove per induction over q ∈ N0, that the q-th partial derivative of κ is given by

∂q

∂yq
κ(y, ξ) =

√
π

2
(−ξ)qe−yξ

q∑
k=0

(
q

k

)∏k−1
j=0(2j + 1)

2k
(yξ)−(2k+1)/2.



3.1 Asymptotically smooth kernels 21

For q = 0 we have ∂q

∂yq
κ(y, ξ) =

√
π

2yξ
e−yξ. It follows

∂q+1
y κ(y, ξ) = ∂y∂

q
yκ(y, ξ))

=

√
π

2
(−ξ)q+1e−yξ

q∑
k=0

(
q

k

)∏k−1
j=0(2j + 1)

2k
(yξ)−(2k+1)/2

+

√
π

2
(−ξ)qe−yξ

q∑
k=0

(
q

k

)∏k−1
j=0(2j + 1)

2k
−(2k + 1)

2
ξ(yξ)−(2(k+1)+1)/2

=

√
π

2
(−ξ)q+1e−yξ

(
q∑

k=0

(
q

k

)∏k−1
j=0(2j + 1))

2k
(yξ)−(2k+1)/2

+

q∑
k=0

(
q

k

)∏k
j=0(2j + 1)

2k+1
(yξ)−(2(k+1)+1)/2

)
.

Shifting the index in the last sum k → k + 1 and applying
(
q+1
k

)
=
(
q
k

)
+
(

q
k−1

)
implies

the assertion. Furthermore, using
∏k−1

j=0(2j+1) ≤
∏k

j=1 2j = 2kk! and shifting l = q−k
yields∣∣∣∣ ∂q∂yqκ(y, ξ)

∣∣∣∣ ≤√ π

2yξ
ξqe−yξ

q∑
k=0

(
q

k

)
k!(yξ)−k

=

√
π

2yξ
ξqe−yξq!

q∑
k=0

1

(q − k)!
(yξ)−k.

≤
√

π

2yξ
ξqe−yξq!(yξ)−q

∞∑
l=0

1

l!
(yξ)l

=

√
π

2yξ
ξqq!(yξ)−q.

The multiplication with yq implies the assertion for y. Since κ is symmetric, i.e.
κ(y, ξ) = κ(ξ, y), the proof can be done analogously for ξ.

3.1.1 Low rank approximation via interpolation

Interpolation in Chebyshev nodes in both variables leads to a good low rank approxi-
mation of asymptotically smooth kernels under some admissibility condition. At first,
we introduce the interpolation in a tensor Chebyshev grid.

Definition 3.4. Let A,B ⊂ (0,∞), κ : A × B → R, and q ∈ N. We denote by I the
identity, then we define the interpolations in one variable via

(IAq ⊗ I)κ(y, ξ) :=

q−1∑
s=0

LAs (y)κ(yAs , ξ),

(I ⊗ IBq )κ(y, ξ) :=

q−1∑
r=0

LBr (ξ)κ(y, ξBr ),
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and in two variables via

IA×Bq κ(y, ξ) := (IAq ⊗ IBq )κ(y, ξ) :=

q−1∑
s=0

q−1∑
r=0

LAs (y)κ(yAs , ξ
B
r )LBr (ξ).

The interpolation obeys the following error estimate.

Theorem 3.5. Let q ∈ N, q ≥ 2, A,B ⊂ (0,∞) be admissible, and κ : A× B → R be
asymptotically smooth with constants C, µ, s ≥ 0 and ν ∈ R, then we have

∥∥κ− IA×Bq κ
∥∥
C(A×B)

≤ Cµqqν

22q−1

(
2 +

2

π
log q

)
(dist(A, 0) dist(B, 0))−s .

Proof. For fixed ξ ∈ B and g : A → R, g(y) := κ(y, ξ), we apply the error formula of
Theorem 2.13 and obtain

‖g − IAq g‖C(A) ≤
diam(A)q

22q−1q!
‖g(q)‖C(A).

The asymptotical smoothness and the admissibility implies∣∣g(q)(y)
∣∣ ≤ Cq!µqqνy−q(yξ)−s ≤ Cq!µqqν(dist(A, 0))−q(yξ)−s

and in conclusion

‖g − IAq g‖C(A) ≤ Cµqqν21−2q sup
y∈A,ξ∈B

|(yξ)−s|.

The same estimate holds true with respect to ξ ∈ B. In particular, Definition 3.4 yields

(IAq ⊗ I)(I ⊗ IBq )κ(y, ξ) = (IAq ⊗ I)

q−1∑
r=0

κ(y, ξBr )LBr (ξ) = IA×Bq κ(y, ξ).

From this and together with the Lebesgue constant in Corollary 2.15, we conclude∥∥κ− IA×Bq κ
∥∥
C(A×B)

≤
∥∥κ− (IAq ⊗ I)κ∥∥C(A×B)

+
∥∥IAq ⊗ I∥∥∥∥κ− (I ⊗ IBq )κ∥∥C(A×B)

≤ Cµqqν

22q−1

(
2 +

2

π
log q

)
sup

y∈A,ξ∈B
|(yξ)−s|.

The conditions yξ ≥ dist(A, 0) dist(B, 0) and s ≥ 0 imply the assertion.
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3.2 Laplace transform

For the rest of this section, we consider the exponential kernel κ(y, ξ) = e−ξy. We call
the sums (3.1) discrete Laplace transform. The following results are a simplification
and minor improvement of [46].

Corollary 3.6 ([46, Equation (36)]). Let q ∈ N, q ≥ 2, A,B ⊂ [0,∞) be admissible,
then ∥∥κ− IA×Bq κ

∥∥
C(A×B)

≤ 21−2q.

Proof. Due to Lemma 3.2, the exponential kernel is asymptotically smooth with con-
stants C = 1/

√
2π, µ = 1, ν = −1/2, and s = 0. Let f : (0,∞)→ R,

f(q) := 2 +
2

π
log q −

√
2πq,

be given. Since f is continuous in (0,∞), limq→0+ f(q) = −∞ and has only one
extremal point in q = 8

π3 which is a maximum, it follows f(q) ≤ f( 8
π3 ) ≤ 0. This

implies (2 + 2
π

log q)/
√

2πq ≤ 1 and the assertion follows from Theorem 3.5.

Definition 3.7. For given ε, y1, ξ1 > 0, we define the geometrical decomposition of
Y := [0, y1] and Ω := [0, ξ1] by

M :=

⌈
log2

y1ξ1

ε

⌉
+ 1, m := 1, . . . ,M − 1,

YM :=
[
0,

y1

2M−1

]
, Ym :=

( y1

2m
,
y1

2m−1

]
,

ΩM :=

[
0,

ξ1

2M−1

]
, Ωm :=

(
ξ1

2m
,
ξ1

2m−1

]
.

For ease of notation in Algorithm 1, we moreover define

LΩ` :=
(
LΩ`
r (ξj)

)
ξj∈Ω`,r=0,...,q−1

, LYm :=
(
LYms (yi)

)
yi∈Ym,s=0,...,q−1

,

f̂Ω` :=
(
f̂j

)
ξj∈Ω`

, KYm,Ω` :=
(
κ(yYms , ξΩ`

r )
)q−1,q−1

s,r=0

for m, ` = 1, . . . ,M − 1.

0
y1

8
y1

4
y1

2 y1

Y4 Y3 Y2 Y1

Figure 3.1: Geometrical decomposition of the domain Y = [0, y1] for M = 4.

Lemma 3.8 ([46, Sect. 4]). Let ε, y1, ξ1 > 0 be given, use the notation of Definition 3.7
and Corollary 3.6 and set q := d1

2
+ log4 1/εe,

`m := max(1, blog2(y1ξ1)−m− log2(log 1/ε)c+ 1),

Lm := M −m

for all m = 1, . . . ,M − 1, then
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(i) y ∈ YM and ξ ∈ Ω (and analogously y ∈ Y and ξ ∈ ΩM) implies 1− e−yξ ≤ ε,

(ii) y ∈ Ym, m = 1, . . . ,M − 1, and ξ ∈ Ω`, ` < `m, implies e−yξ ≤ ε,

(iii) y ∈ Ym, m = 1, . . . ,M − 1, and ξ ∈ Ω`, `m ≤ ` ≤ Lm, implies∣∣e−yξ − IYm×Ω`
q κ(y, ξ)

∣∣ ≤ ε,

(iv) y ∈ Ym, m = 1, . . . ,M − 1, and ξ ∈ Ω`, ` > Lm, implies 1− e−yξ ≤ ε.

Proof. The individual estimates can be proven as follows. At first, let ξ ∈ [0, ξ1] and
y ∈ YM = [0, y1/2

M−1]. Using M ≥ log2
y1ξ1
ε

+ 1, we obtain 0 ≤ ξy ≤ y1ξ1/2
M−1 ≤ ε

and finally case i) since

1 ≥ e−yξ ≥ e−ε =
∞∑
k=0

(−ε)k

k!
≥ 1− ε.

Now let y ∈ Ym, ξ ∈ Ω`. The condition ` ≤ `m − 1 = blog2(y1ξ1)−m− log2(log 1/ε)c
implies

e−
y1ξ1
2m2` ≤ ε

and due to y ≥ y1

2m
, ξ ≥ ξ1

2`
assertion (ii). The third result follows from Corollary 3.6

since the intervals Ym, Ω`, `,m = 1, . . . ,M − 1, are admissible.
Finally, we have y ∈ Ym, ξ ∈ Ω`, `−1 ≥ Lm = M−m = dlog2(ξ1y1)+log2(1/ε)e−(m−1)
and thus

1− e−yξ ≤ 1− e−
y1

2m−1
ξ1

2`−1 ≤ 1− e−ε ≤ ε.

y

ξ
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Figure 3.2: Contour plot of the Kernel function and geometrical decomposition, the
cases in Lemma 3.8 (i), (ii), and (iv) are shown in black and white, respec-
tively.
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Theorem 3.9 ([46, Sect. 7]). Let M1,M2 ∈ N, ε > 0, y1 > y2 > . . . > yM1 > 0,
ξ1 > ξ2 > . . . > ξM2 > 0, f̂ ∈ CM2, and f = Kf̂ be given. Set M :=

⌈
log2

y1ξ1
ε

⌉
+ 1,

q := d1
2

+ log4 1/εe, and f̃ = (f̃(yi))i=1,...,M1 for the function f̃ : Y → C,

f̃(y) =

{∑M2

j=1 f̂j y ∈ YM ,∑Lm
`=`m

∑
ξj∈Ω`

f̂jIYm×Ω`κ(y, ξj) +
∑

`>Lm

∑
ξj∈Ω`

f̂j y ∈ Ym, 1 ≤ m < M.

(3.5)

Then the error estimate

‖f − f̃‖∞ ≤ ε‖f̂‖1

holds true and Algorithm 1 computes this approximation in

O
(

(M1 +M2) log
1

ε
+

(
log3 1

ε

)
log

y1ξ1

ε

)
(3.6)

floating point operations.

Proof. We start with the error estimate. For y ∈ YM , Lemma 3.8 (i) implies

∣∣∣f(y)− f̃(y)
∣∣∣ ≤ M2∑

k=1

|f̂k||e−ξky − 1| ≤ ε
N∑
k=1

|f̂k|.

Now let m = 1, . . . ,M − 1, y ∈ Ym, and partition the function f in three parts

f(y) =

(∑
`<`m

+
Lm∑
`=`m

+
∑
`>Lm

) ∑
ξj∈Ω`

f̂jκ(y, ξj).

The desired result follows by the application of Lemma 3.8 (ii) – (iv) and the approxi-
mation of the kernel κ by zero, by interpolation, or by one, respectively.
Regarding the computational costs, we first note that the last sum in Equation (3.5),
denoted by gm in Algorithm 1, is computed for all m = 1, . . . ,M by means of a
cumulative summation in O(M2) operations. In matrix notation, the spatial partitions
in Definition 3.7 yield a partition of the matrix in Equation (3.2) in admissible blocks.
Considering only the case when the kernel function is approximated by interpolation,
Algorithm 1 factors out row- and column bases by

K̃ =
(
LYmKYm,Ω`

(
LΩ`
)>)M−1,Lm

m=1,`=`m
(3.7)

=

LY1 0 0

0
. . . 0

0 0 LYM−1



. . .

... . .
.

· · · KYm,Ω` · · ·

. .
. ...

. . .


M−1,Lm

m=1,`=`m


(
LΩ`m

)>
0 0

0
. . . 0

0 0
(
LΩLm

)>
 .

Clearly, applying the rightmost block diagonal matrix takes at most
∑Lm

`=`m
q|Ω`| ≤ qM2

operations. The second matrix has at most Lm − `m ≤ 2 log(1/ε) blocks in its m-th
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block row, in total its application takes O(Mq2 log 1
ε
) operations and the multiplication

with the left block diagonal matrix takes at most qM1 operations. Finally, note that
we neglect the pre-computation of the necessary matrices LΩ` , LYm , and KYm,Ω` . This
sums up to a complexity of O((M1 +M2) log 1

ε
+Mq2 log 1

ε
). Applying M ∈ O(log y1ξ1

ε
)

and q ∈ O(log 1
ε
) completes the proof.

Algorithm 1 Laplace transform

Input:
ε ∈ (0, 1) . target accuracy
N ∈ N . number of sampling nodes
ξ1 > ξ2 · · · > ξM2 > 0 . nodes in frequency domain
y1 > y2 > · · · > yM1 > 0 . nodes in spatial domain
f̂ = (f̂j)

M2
j=1 ∈ CM2 . Fourier coefficients

Output:
f̃ ∈ CN , f̃ ≈K f̂ . samples in spatial domain

M =
⌈
log2

y1ξ1
ε

⌉
+ 1 . number of decompositions

q = d1
2

+ log4 1/εe . approximation rank

gM =
∑

ξj∈ΩM
f̂j

for m = M − 1, . . . , 1 do
gm = gm+1 +

∑
ξj∈Ωm

f̂j
end for
f̃YM = g1

for ` = 1, . . . ,M − 1 do

vΩ` =
(
LΩ`
)>

f̂Ω`

end for

for m = 1, . . . ,M − 1 do
hYm =

∑Lm
`=`m

KYm,Ω`vΩ`

f̃Ym = LYmhYm + gLm+11
end for

Remark 3.10. The approximation in Theorem 3.9 yields an entrywise error

‖K− K̃‖1→∞ = max
j,l
|Kj,l − K̃j,l| ≤ ε.

In particular, this implies

‖K− K̃‖2 ≤ ‖K− K̃‖F ≤ N‖K− K̃‖1→∞ ≤ Nε.

and introduces at most a logN-factor in the complexity estimate if we wish to achieve
accuracy ε with respect to the spectral norm. We note in passing, that the adaptive
cross approximation [4] of the matrix block KYm,Ω` takes the form

K̄ = KYmK̃−1
q KΩ` ,
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where all matrices on the right hand side evaluate the kernel κ at certain nodes. In case
of total pivoting, this leads to an error ‖K− K̄‖1→∞ ≤ (q + 1)σq+1, where σq denotes
the q-th singular value of K, cf. [22].

An application of Algorithm 1 is the evaluation of certain polynomials.

Remark 3.11. (i) Algorithm 1 can evaluate polynomials p ∈ ΠM2(R,C) of the form

p(x) =

M2∑
k=1

f̂kx
k

in 0 < x1 < · · · < xM1 < 1, where M1,M2 ∈ N. We set yj := − log(xj), which
reduces the evaluation of p to an evaluation of exponentials in the decreasing
sequence yj. In this case, the complexity (3.6) can be written as

O
(

(M1 +M2) log
1

ε
+ log3 1

ε
log

(
| log x1|M2

ε

))
.

See also [46, Remark 3.1].

(ii) Let K,M1,M2 ∈ N be given. Moreover, let

0 < x1 < · · · < xM1 < 1 and K ≥ ξ1 > · · · > ξM2 > 0

with ξk ∈ N be given. Another approach is the evaluation of sparse polynomials
p ∈ ΠK(R,C) of the form

p(x) =

M2∑
k=1

f̂kx
ξk .

Setting again yj := − log(xj), we can compute the values p(xj) for j = 1, . . . ,M1

by Algorithm 1 in O((M1 + M2) log 1
ε

+ log3 1
ε

log( | log x1|K
ε

)) floating point opera-
tions.

Remark 3.12. The truncated Laplace transform is given by

L0 : L2[1, 2]→ L2[1, 2], f 7→ g(ξ) =

∫ 2

1

f(x)e−ξxdx

and [39, Equation (3.105)] conjectures a singular value decay

σq ≈ C
√

2πe−
√

10.1189q(1+q)+6.12572,

which serves as an asymptotic lower bound on the best approximation of the real ex-
ponential kernel under the admissibility condition (3.3). A comparison between the
singular value decay and the local error is illustrated in Figure 3.3.
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Figure 3.3: The `2-approximation error (daggers) of the polynomial interpolation, see
Definition 3.4, together with its normalized theoretical upper bound (solid
line) given in Corollary 3.6, and the singular values (triangles), represent-
ing the best approximation in this case, together with the lower bound of
Remark 3.12 (dashed line).

3.3 Special function transforms

The Laplace transform can be extended to asymptotically smooth kernels. The gener-
alization of Algorithm 1 and Theorem 3.9 to other asymptotically smooth kernels reads
as follows. We suppose the kernel κ is asymptotically smooth with constants C > 0,
ν ∈ R, s ≥ 0 and µ ∈ (0, 4), which implies a local approximation

‖κ− IA×Bq κ‖C(A×B) ≤ C̃cq(dist(A, 0) dist(B, 0))−s,

with some constant C̃ ≥ 0 and c ∈ (0, 1). A bound for the interpolation error away
from the singularity yξ = 0 is given in the next corollary. We increase the number of
boxes M by a logN factor in the geometrical decompositions to obtain under some
further assumptions on the nodes later a constant number of nodes in the near fields
YM and ΩM .

Corollary 3.13. Let M :=
⌈
log2

y1ξ1N
ε

⌉
+ 1 and q ≥ | log(ε2s+1/((2y1ξ1)sN2sC̃))

log c
| be given.

For A 6= YM and B 6= ΩM , it follows∥∥κ− IA×Bq κ
∥∥
C(A×B)

≤ ε.

Proof. We have

‖κ− IA×Bq κ‖C(A×B) ≤ C̃cq(dist(A, 0) dist(B, 0))−s.

Since M − 1 ≤ log2
y1ξ1N
ε

+ 1
2
, it follows

dist(A, 0) dist(B, 0) ≥ y1

2M−1

ξ1

2M−1
≥ ε2

2y1ξ1N2
. (3.8)
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This implies

∥∥κ− IA×Bq κ
∥∥
C(A×B)

≤ C̃cq

(dist(A, 0) dist(B, 0))s

≤ C̃(2y1ξ1)s
(
N

ε

)2s

cq

and with q ≥ | log(ε2s+1/((2y1ξ1)sN2sC̃))
log c

| the assertion.

Example 3.14. Let κ be given by the modified Bessel function of the second kind,
κ(x, y) = 1√

2πxy
e−yξ, see Lemma 3.3. In other words, we have s = 1

2
. At first, we

determine the constants C̃ and c in the previous corollary. Combining the asymptotical
smoothness, Lemma 3.3, and Theorem 3.5 yields∥∥κ− IA×Bq κ

∥∥
C(A×B)

≤
√

2π

(
2 +

2

π
log q

)
1

4q
(dist(A, 0) dist(B, 0))−1/2.

From the proof of Corollary 3.6 it follows

√
2π(2 + 2

π
log q)

4q
≤

2π
√
q

4q
≤ 2π

3q
,

where the last estimate can be proven inductively. This leads to constants C̃ = 2π and

c = 1
3
. The approximation rank has to fulfill q ≥ 2

∣∣∣∣log ε
4
√

8N2π2y1ξ1

∣∣∣∣ to obtain a target

accuracy ε.

Remark 3.15. The generalization of Algorithm 1 and Theorem 3.9 to other asymp-
totically smooth kernels reads as follows. Let the assumptions of the previous Corollary
be given. Moreover, let the nodes

y1 > y2 > . . . > yN > 0 and ξ1 > ξ2 > . . . > ξN > 0

be quasi-uniform and y1, ξ1 > 0 be fixed for all N ∈ N. Since the domains Y and
Ω are geometrically decomposed, there are O( N

2M−1 ) nodes in the near fields YM and
ΩM . Applying M ∈ O(log N

ε
) leads to a constant number (O(ε)) of nodes in the near

fields. We apply direct computations in the near fields YM and ΩM . Of course the
approximations of the kernel by either zero or one as in Lemma 3.8 cannot be done
in general and thus we let run ` = 1, . . . ,M − 1 in Lemma 3.8 (iii). We obtain for
f(y) =

∑N
k=1 f̂kκ(y, ξk) an approximation

f̃(y) =

{
f(y) y ∈ YM ,∑M−1

`=1

∑
ξj∈Ω`

f̂jIYm×Ω`κ(y, ξj) +
∑

ξk∈ΩM
f̂kκ(y, ξk) y ∈ Ym, 1 ≤ m < M.

Algorithm 1 then takes O(Nε) floating point operations for the exact computations in
the near fields and O(qN+M2q2) operations for the approximation, see Equation (3.7).
Applying q ∈ O(log N

ε
) the total complexity is reduced to O(N log N

ε
+ log4 N

ε
) floating

point operations.
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3.4 Numerical experiments

The implementation of Algorithm 1 is realized in MATLAB 2013a. We use one node
of an Intel Xeon, 128GByte, 2.2GHz, Scientific Linux release 6.5 (Carbon) for all
numerical experiments.
We draw random uniformly distributed coefficients f̂k, and frequencies ξk ∈ [0, N ] for
k = 1, . . . , N , and we draw random nodes 0 ≤ yN ≤ yN−1 ≤ · · · ≤ y1 ≤ (2q − 1) log 2,

which ensures yj ∈ [0, log 1/ε] and M = dlog2
N log 1/ε

ε
e+ 1.

We consider the relative error

ε1 :=
‖f − f̃‖∞
‖f̂‖1

, (3.9)

where f , f̃ ∈ CN denote the exact result and its approximation, respectively, see The-
orem 3.9. Figure 3.4 shows the quantity ε1 and the corresponding upper bound in
dependence of the approximation rank q = 1, . . . , 20 for a fixed bandwidth N = 214.
In a second series of experiments we compare the computational times, measured by
the MATLAB functions tic and toc, of the naive evaluations and Algorithm 1 with
respect to the increasing problem size N . The theoretical complexity in (3.6) reduces

to O(N log 1
ε

+ log3 1
ε

log N log 1/ε
ε

) for our choice of sampling nodes. For large values of
N , the linear term in N dominates the complexity. Figure 3.5 shows the timings for
the naive matrix vector multiplication using entrywise and rowwise evaluations of the
matrix, both shown as diamonds, and Algorithm 1 is shown as plus. The complexity
of the approximate computation is linearly in the problem size as shown in Figure 3.5.
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Figure 3.4: Approximation error ε1 with respect to the local expansion degree q for a
fixed bandwidth N = 210 (left) and N = 214 (right). The daggers represent
the numerical errors, the solid line the theoretical estimate, cf. Corollary 3.6,
and the dashed line a least square fit ε1 ≈ C0C

−q, C > 4.

N

2
 1

2
 4

2
 7

2
10

2
13

2
16

2
19

2
22

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

(a) q = 4.

N

2
 1

2
 4

2
 7

2
10

2
13

2
16

2
19

2
22

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

(b) q = 8.

Figure 3.5: Behavior of the computational times of the naive computation (diamonds)
and Algorithm 1 (plus) for fixed approximation rank q = 4 (left) and q = 8
(right) with respect to the bandwidth N . The solid lines represents a least
square fit t ≈ C1N

2 to the times t of the exact computations and the dashed
lines a least square fit t ≈ C2N to the times t of the approximations.
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Butterfly sparse fast Fourier transform

Several applications in numerical analysis, signal processing, and imaging require the
computation of the well known fast Fourier transform (FFT). The FFT is a divide and
conquer algorithm which computes the coefficients of the trigonometric interpolation
polynomial for equispaced interpolation nodes in O(N logN) floating point operations.
The inverse FFT allows for the evaluation of the interpolation polynomial in equispaced
nodes. The evaluation of trigonometric polynomials in nonequispaced nodes led to the
NFFT [12, 11, 5, 48, 15, 33]. Moreover, the NNFFT [15] allows for the evaluation of a
non-harmonic function given by linear combinations of complex exponential functions
at nonequispaced frequencies in nonequispaced spatial nodes. Let now N be large and
a lot of Fourier coefficients be zero, neither the FFT nor its nonequispaced variants
do take any advantage of this sparse setting. One idea to overcome this issue is the
pruned FFT [19] which reduces the complexity for S nonzero Fourier coefficients to
O(N logS) floating point operations instead of O(NS) operations. A straightforward
discretization to higher dimensions leads to a serious growth in computational costs.
In this chapter, we present a fast Fourier transform for certain sparse discretizations.
To be more precise, let the bandwidth N := 2L, L ∈ N, and a dimension d ∈ N be
given. Furthermore, we define the spatial and frequency domain X := Ω := [0, N ]d,

respectively. We call X̃ := {xj ∈ X : j = 1, . . . ,M1} sampling nodes in the spatial

domain and Ω̃ := {ξk ∈ Ω : k = 1, . . . ,M2} sampling nodes in the frequency domain,
where M1,M2 ∈ N. The task is the computation of the sums

fj := f(xj) =

M2∑
k=1

f̂ke
2πiξkxj/N , j = 1, . . . ,M1, (4.1)

for a set of coefficients f̂k ∈ C, k = 1, . . . ,M2, which is equivalent the computation of
the matrix vector product

f = Ff̂ , F :=
(
e2πixjξk/N

)M1,M2

j=1,k=1
, (4.2)

where f = (fj)j=1,...,M1 and f̂ = (f̂k)k=1,...,M2 , respectively. We use a so-called butterfly
scheme to approximate nonharmonic exponential sums. This scheme relies on a low
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rank approximation of the kernel function under some admissibility condition. The
butterfly scheme is a multilevel approximation scheme and can be traced back at least
to [42] and has found a series of recent applications in [60, 8, 43, 54, 10]. Moreover, it
is well known that certain blocks of the discrete Fourier transform are approximately
of low rank [38, 57, 13]. Low rank approximation of high frequency exponential sums
has led to the butterfly sparse fast Fourier transforms [2, 58].
We follow the ideas of [58] and introduce the so called butterfly sparse fast Fourier
transform in the univariate case and afterwards for the multivariate case of the trigono-
metric sum (4.1). This chapter is based on the authors diploma thesis [41] which treats
a preliminary version of the butterfly fast Fourier transform, and on our paper [35].
Here, we present a local error analysis in Theorem 4.8 which relies directly on a Taylor
expansion in the complex plane, given in Lemma 4.7. A full error analysis is neither
contained in [58] nor in [42]. Note that a full error analysis is published in [10] for a
butterfly algorithm for the synthetic aperture radar imaging which leads to a general-
ized Fourier sum in the two-dimensional case. The here presented full error analysis,
cf. Theorem 4.22, is more specific and given for all dimensions. Moreover, we present
two different approaches for the computation of local interpolating functions. On the
one hand, we consider the original approach [58], the monomial type representation,
and on the other hand a new variant, the Lagrange type representation. For both
variants, we came up with stability results, cf. Theorems 4.16 and 4.15 based on [41,
Satz 43] and [41, Folgerung 58], respectively. In Section 4.4, we consider the time and
space complexity for all variants.

4.1 The univariate case

First, we consider a local approximation of the kernel via interpolation in Chebyshev
nodes under some admissibility condition. The main idea is to pre-factor out the oscilla-
tory component, interpolate the remaining nonoscillatory part, and finally remodulate
the outcome.

4.1.1 Low rank approximation via interpolation

We introduce function spaces of complex exponential functions. Furthermore, we define
a trigonometric interpolation operator for such complex exponential functions.

Definition 4.1. For boxes A,B ⊂ R we define the linear space of all finite expansions
of exponential functions

EB(A) :=

{
g : A→ C : g(x) =

K∑
j=1

ĝje
2πiξjx/N , K ∈ N, ĝj ∈ C, ξj ∈ B

}
,

the equispaced nodes

ξBj := cB + βj diamB, where βj :=
1

2
− j

p− 1
, j = 0, . . . , p− 1, (4.3)
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and the subspace with p ∈ N equispaced frequencies

Ep
B(A) :=

{
g : A→ C : g(x) =

p−1∑
j=0

ĝABj e2πiξBj x/N , ĝABj ∈ C

}
.

Moreover, we define for p ∈ N, p ≥ 2, the trigonometric interpolation operator

J AB
p : C(A)→ Ep

B(A), g 7→ J AB
p g =

p−1∑
s=0

ĝABs e2πixξBs /N , (4.4)

such that in the Chebyshev nodes xA ∈ Rp the interpolation condition

J AB
p g(xAr ) = g(xAr ) for r = 0, . . . , p− 1

holds true. Moreover, we call two intervals A,B ⊂ R admissible if

diamA diamB ≤ N (4.5)

holds true.

By the next definition, we introduce an interpolation on an arc in the complex plane
and show later an essential connection between Definition 4.1 and 4.2.

Definition 4.2. Let boxes A,B ⊂ R and p ∈ N, p ≥ 2, be given. Moreover, let the
mapping z : A→ C,

z(x) := e−2πix diamB
(p−1)N , (4.6)

and the Chebyshev nodes zABj := z(xAj )mapped on the arc ΓABp := z(A) be given. Under
the admissible condition in the sense of Inquality (4.5), the nodes are distinct and we

define the Lagrange polynomials L̃ABk : ΓABp → C as well as the interpolation operator
IABp : C(ΓABp )→ Πp−1(C),

L̃ABk (z) :=

p−1∏
j=0
j 6=k

z − zABj
zABk − zABj

, (4.7)

IABp g̃ :=

p−1∑
j=0

g̃(zABj )L̃ABj . (4.8)

Before we come up with an existence, uniqueness and boundedness theorem of the
trigonometric interpolation, we need the following estimates.

Lemma 4.3. For p ∈ N, p ≥ 3, and x ∈ R, |x| ≤ 2π
p−1

, we have

cos
2π

p− 1
≤ cosx, (4.9)

1− x2

2
≤ cosx, (4.10)(

1− cos
2π

p− 1

)
(p− 1)2

2π2
≤ 2(1− cosx)

x2
, (4.11)

4

π2
≤
(

2(1− cosx)

x2

)π
x
x→0−→ 1. (4.12)
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Proof. The first estimate follows since the cosine is decreasing in [0, 2π
p−1

] ⊂ [0, π] and
even. Integrating cosx ≤ 1 twice yields the second claim. The relations x ≤ tanx for
x ∈ [0, π

2
) and cosx ≤ 0, sinx ≥ 0, x ≥ 0 for x ∈ [π

2
, π], yield x cosx − sinx ≤ 0 and

by integration

x sinx− 2(1− cosx) ≤ 0, x ∈ [0, π].

Dividing by x3/2, x 6= 0, together with limx→0 f
′(x) = 0 this yields f ′(x) ≤ 0 for the

even function f(x) = 2(1−cosx)
x2 and thus f(x) ≥ f

(
2π
p−1

)
, |x| ≤ 2π

p−1
, which is the third

assertion. Considering x ∈ [−π, 0), we have 0 < f(x) ≤ 1, which implies (f(x))
π
x ≥ 1

for x ∈ [−π, 0) and with L’Hospitals rule

π

x
log f(x)→ 0, for x→ 0.

Setting g(x) = x
π

log 4
π2 and h(x) = log f(x) yields g(0) = h(0), g(π) = h(π), and

h′′(x) = − 1

1− cosx
+

2

x2
≤ 0, x ∈ [0, π].

Hence, the function h is concave and we obtain h(x) ≥ g(x). Since g is decreasing, this
yields π

x
h(x) ≥ log 4

π2 and finally the assertion (f(x))
π
x ≥ 4

π2 for x ∈ [−π, π].

Lemma 4.4. Let p ∈ N, p ≥ 3, two boxes A,B ⊂ R be admissible, and the Lagrange
functions lABr : A→ C,

lABr (x) := L̃ABr (z(x)), r = 0, . . . , p− 1, (4.13)

be given. Then, the interpolation (4.4) is unique, has the representation

J AB
p g(x) = e2πi(cB+ diamB

2 )x/N
p−1∑
r=0

g(xAr )e−2πi(cB+ diamB
2 )xAr /N lABr (x), (4.14)

and its operator norm is bounded by

‖J AB
p ‖ := sup

g∈C(A)\{0}

‖J AB
p g‖C(A)

‖g‖C(A)

≤ Cp, Cp := Kp

(
1 +

2

π
log p

)
, (4.15)

where

Kp :=

 2π2(
1− cos 2π

p−1

)
(p− 1)2


p−1

2

, 1 ≤ Kp ≤
π2

4
, lim

p→∞
Kp = 1. (4.16)

Proof. We set the function values g̃(zABr ) = g̃(z(xAr )) := e−2πi(cB+ diamB
2 )xAr /Ng(xAr ) for

r = 0, . . . , p− 1. The polynomial, which interpolates the points

(zABr , g̃(zABr )) ∈ C× C, r = 0, . . . , p− 1,
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is unique and given by

q(z) =

p−1∑
r=0

g̃(zABr )L̃ABr (z) =

p−1∑
r=0

g(xAr )e−2πi(cB+ diamB
2 )xAr /N lABr (x).

Using the monomial basis representation q(z) =
∑p−1

s=0 ĝ
AB
s zs with appropriate coeffi-

cients ĝABs ∈ C yields the assertion since

e2πi(cB+ diamB
2 )x/Nq(z(x)) =

p−1∑
s=0

ĝABs e2πiξBs x/N = J AB
p g(x)

lies in Ep
B(A). Furthermore, we have

max
x∈A
|J AB

p g(x)| = max
x∈A

∣∣∣∣∣e2πi(cB+ diamB
2 )x/N

p−1∑
r=0

g(xAr )e−2πi(cB+ diamB
2 )xAr /N lABr (x)

∣∣∣∣∣
≤ ‖g‖C(A) max

x∈A

p−1∑
r=0

|lABr (x)|.

Without loss of generality, let now the box B be such that diamA diamB = N . We
have xAr = cA + tr

2
diamA. We define the mapping y : A→ [−1

2
, 1

2
] by

y(x) :=
1

diamA
(x− cA) =

diamB

N
(x− cA). (4.17)

Using

z(x(y)) = e−2πi( N
diamB

y+cA) diamB
(p−1)N = e−2πi y

p−1 e−2πicA diamB
(p−1)N and

zAj = z(x(tj/2)) = e−πi
tj
p−1 e−2πicA diamB

(p−1)N ,

we obtain the normalized Lagrange functions lr : [−1
2
, 1

2
]→ C, r = 0, . . . , p− 1, which

are defined by

lr(y) := lABr (x(y)) =

p−1∏
j=0
j 6=r

e−πi 2y
p−1 − e−πi

tj
p−1

e−πi tr
p−1 − e−πi

tj
p−1

. (4.18)

For a, b ∈ R follows |eia − e−ib|2 = 2− 2 cos(a− b). This yields the relation

|lABr (x)|2 = |lr(y)|2 =

p−1∏
j=0
j 6=r

1− cos
(

π
p−1

(2y − tj)
)

1− cos
(

π
p−1

(tr − tj)
) .
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Since 2y − tj ∈ [−2, 2] and tr − tj ∈ [−2, 2], we apply Lemma 4.3, estimates (4.11)
and (4.10), to obtain

≤
p−1∏
j=0
j 6=r

2π2(
1− cos 2π

p−1

)
(p− 1)2

(2y − tj)2

(tr − tj)2

= K2
p

p−1∏
j=0
j 6=r

(
2y − tj
tr − tj

)2

= K2
p(Lr(2y))2.

The assertion follows by Lemma 2.14, estimate (2.13), in

max
x∈A

p−1∑
r=0

|lABr (x)| ≤ Kp max
x∈[−1,1]

p−1∑
r=0

|Lr(x)| ≤ Kp(1 +
2

π
log p).

Setting x = 2π
p−1

in Lemma 4.3 (4.12) finally yields limp→∞Kp = 1 and Kp ≤ π2

4
. Since(

2(1−cosx)
x2

)π
x ≤ 1 for x ∈ (0, π], see also the proof of Lemma 4.3, it follows Kp ≥ 1.

We present an error estimate for the interpolation J AB
p g of a function g ∈ EB(A) under

the admissibility condition (4.5). Its main ingredient is the following Taylor expansion
of the power function on the unit circle.

Lemma 4.5. Let fp ∈ C(R), p ∈ N, fp(α) := p!|
(
α
p

)
| =

∏p−1
j=0 |α− j|. It follows

(i) fp+1(p
2

+ α) = fp+1(p
2
− α) and

(ii) 1
p!

maxα∈[0,p−1] fp(α) ≤ 1
2πp

for p ≥ 5.

Proof. (i) For p even, it follows

fp+1

(p
2

+ α
)

=

p∏
j=0

∣∣∣p
2

+ α− j
∣∣∣ =

p
2∏

l=− p
2

|l + α| =
0∏

l=− p
2

|α + l|

p
2∏
l=1

|α + l|

= |α|

p
2∏
l=1

|α− l||α + l| = |α|

p
2∏
l=1

|α− l|
−1∏

l=− p
2

|α− l|

= fp+1

(p
2
− α

)
.

For p odd, we have

fp+1

(p
2

+ α
)

=

p∏
j=0

∣∣∣∣p+ 1

2
− 1

2
+ α− j

∣∣∣∣ =

p+1
2∏

l=− p+1
2

+1

∣∣∣∣l − 1

2
+ α

∣∣∣∣
=

∣∣∣∣α− 1

2

∣∣∣∣
 −1∏
l=− p+1

2
+1

∣∣∣∣l − 1

2
+ α

∣∣∣∣
 ∣∣∣p

2
+ α

∣∣∣ p+1
2
−1∏

l=1

∣∣∣∣l − 1

2
+ α

∣∣∣∣
=

∣∣∣∣α− 1

2

∣∣∣∣ ∣∣∣p2 + α
∣∣∣ p−1

2∏
l=1

∣∣∣∣l − 1

2
+ α

∣∣∣∣ · ∣∣∣∣−l − 1

2
+ α

∣∣∣∣
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and finally

fp+1

(p
2
− α

)
=

p∏
j=0

∣∣∣∣p− 1

2
+

1

2
− α− j

∣∣∣∣ =

p−1
2∏

l=− p+1
2

∣∣∣∣l +
1

2
− α

∣∣∣∣
=

−1∏
l=− p+1

2

∣∣∣∣l +
1

2
− α

∣∣∣∣
p−1

2∏
l=0

∣∣∣∣l +
1

2
− α

∣∣∣∣
=
∣∣∣−p

2
− α

∣∣∣ · ∣∣∣∣12 − α
∣∣∣∣
 −1∏
l=− p−1

2

∣∣∣∣l +
1

2
− α

∣∣∣∣
 p−1

2∏
l=1

∣∣∣∣l +
1

2
− α

∣∣∣∣
=
∣∣∣p
2

+ α
∣∣∣ · ∣∣∣∣α− 1

2

∣∣∣∣
p−1

2∏
l=1

∣∣∣∣l +
1

2
− α

∣∣∣∣ ∣∣∣∣−l +
1

2
− α

∣∣∣∣
=
∣∣∣p
2

+ α
∣∣∣ · ∣∣∣∣α− 1

2

∣∣∣∣
p−1

2∏
l=1

∣∣∣∣−l − 1

2
+ α

∣∣∣∣ ∣∣∣∣l − 1

2
+ α

∣∣∣∣
= fp+1

(p
2

+ α
)
.

(ii) We prove by induction. Since the function 1
5!
f5 takes its maximum in

α0 =
1

10

(
20 +

√
10(15−

√
145)

)
≈ 0.355567 ∈ [0, p− 1],

it follows

1

p!
max

α∈[0,p−1]
fp(α) ≈ 0.0302619 ≤ 1

2π · 5
for p = 5.

Furthermore, we have fp+1(p
2

+ α) = fp+1(p
2
− α) and [0, p

2
] ⊂ [0, p− 1] for p ≥ 2.

It follows for p+ 1,

1

(p+ 1)!
max
α∈[0,p]

fp+1(α) =
1

p+ 1
max
α∈[0, p

2
]

1

p!
|α− p|

p−1∏
j=0

|α− j|

≤ p

p+ 1
max
α∈[0, p

2
]

1

p!

p−1∏
j=0

|α− j| ≤ p

p+ 1

1

2πp
=

1

2π(p+ 1)
.

Definition 4.6. We define the principal value of the complex logarithm

Log : C \ (−∞, 0]→ C,

such that

Log(z) := log |z|+ iϕ, with z = |z|eiϕ, ϕ ∈ (−π, π)

and for α ∈ C, the principal value of complex power f : C \ (−∞, 0]→ C by

f(z) = zα := eαLogz.
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Lemma 4.7. Let p ∈ N, p ≥ 5, Γp := {z ∈ C : z = e−2πix/(p−1),−1
2
≤ x ≤ 1

2
}, and

α ∈ [0, p− 1], then we have for z ∈ Γp the estimate∣∣∣∣∣zα −
p−1∑
k=0

(
α

k

)
(z − 1)k

∣∣∣∣∣ ≤ cp

with the constant

cp :=
1

πp

(
π

p− 1

)p
. (4.19)

Proof. The function g : C \ (−∞, 0] → C, g(z) := zα, is holomorphic and can be
represented by its Taylor series at z = 1 in Γp for p ≥ 5. Using the estimate (4.10),
yields

|z − 1|2 = 2

(
1− cos

2πx

p− 1

)
≤
(

2πx

p− 1

)2

≤
(

π

p− 1

)2

< 1 (4.20)

and we finally follow the ideas in the proof of [52, Theorem 1]. We set ak := (−1)k
(
α
k

)
.

Due to ak+1 = k−α
k+1

ak, the coefficients ak have the same sign and this yields |ak+1| ≤ |ak|
for α ≤ p ≤ k. Due to |z − 1| < 1, the series

∑∞
k=0(z − 1)k is absolutely convergent.

Since the binomial series (1 + x)α =
∑∞

k=0

(
α
k

)
xk converges absolutely and uniformly

for α ≥ 0 and x ∈ [−1, 1], it follows that the series
∑∞

k=0

(
α
k

)
is absolutely convergent

too. Now, we can use Abel summation and obtain∣∣∣∣∣zα −
p−1∑
k=0

(
α

k

)
(z − 1)k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=p

(
α

k

)
(z − 1)k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=p

ak(1− z)k

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=p

(ak − ak+1)
k∑
l=p

(1− z)l

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=p

(ak − ak+1)
(1− z)p − (1− z)k+1

1− (1− z)

∣∣∣∣∣
≤ |z − 1|p

∞∑
k=p

|ak − ak+1|
|1− (1− z)k+1−p|

|z|
. (4.21)

Due to z ∈ Γp, we finally have

≤ 2|z − 1|p
∞∑
k=p

| sign(ak)(|ak| − |ak+1|)|

= 2|z − 1|p|ap| = 2|z − 1|p
∣∣∣∣(−1)p

(
α

p

)∣∣∣∣ .
The assertion follows by applying the estimate (4.20) and the previous Lemma 4.5.
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Theorem 4.8. Let p,N ∈ N, p ≥ 5, two boxes A,B ⊂ R be admissible in the sense

diamA diamB ≤ N,

and g ∈ EB(A), g(x) :=
∑M2

k=1 ĝke
2πiξkx/N , ĝk ∈ C, k = 1, . . . ,M2, then we have the

error estimate

‖g − J AB
p g‖C(A) ≤ (1 + Cp) · cp · ‖ĝ‖1,

where the constants are given by (4.15) and (4.19), respectively.

Proof. Without loss of generality, let the box B be such that diamA diamB = N . We
shift and dilate A 7→ [−1

2
, 1

2
] and ξ̃ : B → [−N

2
, N

2
] via the map in (4.17) and

ξ̃ := ξ̃(ξ) =
N

diamB
(ξ − cB) = diamA(ξ − cB), (4.22)

respectively. Inserting the maps for x and ξ in g yields with g̃ : [−1
2
, 1

2
]→ C,

g̃(y) :=

M2∑
k=1

ĝke
2πiξ̃kc

A/(N diamA)e2πiξ̃ky/N , (4.23)

the representation

g(x) = e2πicBx/N

M2∑
k=1

ĝke
2πiξ̃kx/(N diamA) = e2πicBx/N g̃(y).

Moreover, the interpolation operator fulfills a similar shift property

J AB
p g(x) = e2πicBx/NJpg̃(y), Jp := J [− 1

2
, 1
2

][−N
2
,N

2
]

p .

Now, we set z : [−1
2
, 1

2
]→ Γp, z := z(y) = e−2πiy/(p−1). Applying z to the interpolation

operator yields

Jpg̃(y) = z−
p−1

2

M2∑
k=1

g̃(ts/2)(z(ts/2))
p−1

2 L̃
[− 1

2
, 1
2

][−N
2
,N

2
]

s (z)

and setting h : Γp → C,

h(z) := z
p−1

2

M2∑
k=1

ĥkz
−(p−1)ξ̃k/N , ĥk := ĝke

2πiξ̃kc
A/(N diamA), (4.24)

leads to

g̃(y) = z−
p−1

2 h(z),

Jpg̃(y) = z−
p−1

2 Iph(z), Ip := I [− 1
2
, 1
2

][−N
2
,N

2
]

p .
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Both mappings leave the error unchanged, i.e.,

max
x∈A
|g(x)− J AB

p g(x)| = max
y∈[− 1

2
, 1
2

]
|g̃(y)− Jpg̃(y)| = max

z∈Γp
|h(z)− Iph(z)| .

We rewrite h(z) =
∑M2

k=1 ĥkz
ηk with ηk := (p− 1)(1

2
− ξ̃k

N
) ∈ [0, p− 1], and approximate

h by its truncated Taylor series hp ∈ Πp−1(C) at z = 1,

hp(z) :=

M2∑
k=1

ĥk

p−1∑
r=0

(
ηk
r

)
(z − 1)r. (4.25)

We conclude from the reproduction of polynomials, Iphp = hp, the boundedness of the
operator norm, cf. proof of Lemma 4.4,

‖Ip‖ := sup
h∈C(Γp)
‖h‖C(Γp)=1

‖Iph‖C(Γp) = ‖J AB
p ‖ ≤ Cp, (4.26)

and Lemma 4.7 the assertion by

max
z∈Γp
|h(z)− Iph(z)| ≤ max

z∈Γp
|h(z)− hp(z)|+ max

z∈Γp
|hp(z)− Iph(z)|

≤ (1 + ‖Ip‖) max
z∈Γp
|h(z)− hp(z)|

≤ (1 + Cp)cp

M2∑
k=1

|ĝk|.

Remark 4.9. Via the mapping A 7→ [−1
2
, 1

2
] 7→ Γp, see Figure 4.1, we rewrite the

trigonometric interpolation operator J AB
p as an polynomial interpolation operator Ip

in the complex plane by

J AB
p g(x) = e2πicBx/Nz−

p−1
2 Iph(z),

with z and h defined in the proof of the previous theorem. This result gives us a
connection between the trigonometric interpolation in Definition 4.1 and the complex
polynomial interpolation in Definition 4.2 with an appropriate function h.

Remark 4.10. Let B̃ := [−diamB
2

, diamB
2

] be a centrally located box around the origin
and g ∈ EB̃(A). If a Bernstein inequality holds true on a bounded domain of the form

‖g′‖C(A) ≤ C
diamB

N
‖g‖C(A) (4.27)

with some constant C > 0, the estimate in Theorem 4.8 can be reduced to

‖g − J AB
p g‖C(A) ≤ Dp‖g‖C(A)
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cA − diamA
2 cA + diamA

2
cA −1

2
1
2

0 0

i

1

π
p−1

Γp

Figure 4.1: The map A 7→ [−1
2
, 1

2
] 7→ Γp.

with a constant Dp := 2Cp

4p−1p!−Cp , see [41, Satz 26]. Moreover, the operatornorm can be
bounded by

‖J AB
p ‖ ≤ (Dp + 1),

see [41, Folgerung 27]. Here, the error can be estimated against the maximum norm
of the function g, whereas the error in Theorem 4.8 is estimated against the 1-norm
of the coefficients of the function g. The estimate against the maximum norm is a
stronger statement. But note that for g ∈ EB̃(A) a Bernstein inequality [61, p. 104]
has only been proven for A = R. This proof does not allow a restriction on a bounded
domain. The main consequence of Theorem 4.8 is an increase of the operator norm
from a constant to log p depending on the approximation rank p, which also has to be
expected in the context of interpolation in Chebyshev nodes.

Remark 4.11. In [58], the extremal points tmax
j , j = 0, . . . , p − 1, of the Chebyshev

polynomials Tp−1 were used in space and frequency domain.
In contrast, we use the Chebyshev nodes tj, j = 0, . . . , p− 1, in the spatial domain and
equispaced nodes βs, s = 0, . . . , p − 1, in the frequency domain. This choice of nodes
assures an explicit representation of the interpolating function J AB

p g by the trigono-
metric Lagrange functions lABr and finally a local error analysis for two admissible
boxes A,B as in the previous Theorem. An explicit representation for the interpola-
tion in both variables is given in Definition 4.12. From the error estimate given in
the previous Theorem 4.8, we deduce a local error estimate for interpolating in both
variables in Chebyshev nodes, see Corollary 4.13. An estimate for the original variant,
interpolating in both variables in the extremal points can be proven analogously.

We define the interpolation in both variables of the Fourier kernel.

Definition 4.12. Let A,B ⊂ [0,∞), κ : A × B → C, κ(x, ξ) := e2πixξ/N and p ∈ N,
p ≥ 2. We denote by I the identity, then we define the interpolations in one variable
via

(J AB
p ⊗ I)κ(x, ξ) := e2πi(cB+ diamB

2 )x/N
p−1∑
r=0

κ(xAr , ξ)e
−2πi(cB+ diamB

2 )xAr /N lABr (x),

(I ⊗ J BA
p )κ(x, ξ) := e2πi(cA+ diamA

2 )ξ/N
p−1∑
s=0

κ(x, ξBs )e−2πi(cA+ diamA
2 )ξAs /N lBAr (ξ),
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and in two variables via

(J AB
p ⊗ J BA

p )κ(y, ξ) := dAB(x, ξ)

p−1∑
r=0

q−1∑
s=0

lAr (x)dAB(−xAr ,−ξBs )κ(xAr , ξ
B
s )lBs (ξ),

where

dAB(x, ξ) := e2πi((cB+ diamB
2 )x+(cA+ diamA

2 )ξ)/N .

We have

(J AB
p ⊗ I)(I ⊗ J BA

p )κ(x, ξ) = (J AB
p ⊗ J BA

p )κ(y, ξ).

Corollary 4.13. Under the conditions and definitions in Theorem 4.8 and for p ∈ N,
p ≥ 5, we have

∥∥κ− (J AB
p ⊗ J BA

p )κ
∥∥
C(A×B)

≤ 961

900
·
(

π

p− 1

)p
.

Proof. Applying Theorem 4.8 yields∥∥κ− (J AB
p ⊗ I

)
κ
∥∥
C(A×B)

≤ (Cp + 1)cp.

Factorizing the interpolation operator and applying Theorem 4.8 yields∥∥κ− (J AB
p ⊗ J BA

p )κ
∥∥
C(A×B)

≤
∥∥κ− (J AB

p ⊗ I
)
κ
∥∥
C(A×B)

+
∥∥J AB

p ⊗ I
∥∥∥∥κ− (I ⊗ J BA

p

)
κ
∥∥
C(A×B)

≤ (1 + Cp)cp + Cp(1 + Cp)cp = (1 + Cp)
2cp.

Let f1, f2 : [5,∞) → R, f1(p) := 1 + π2

4
+ π

2
log p and f2(p) := 31

30

√
πp, be given. First

of all, we prove

1 + Cp ≤ f1(p) < f2(p). (4.28)

The first inequality follows from the definition of Cp, see Equation (4.15) and from

Kp ≤ π2

4
, see Equation (4.16). Moreover, we have f1(5) < f2(5). Due to p ≥ 5 ≥ π, it

follows 1
p
≤ 1√

πp
and finally

f ′1(p) =
π

2p
≤ π

2
√
πp

=

√
π

2
√
p
< f ′2(p).

Since f1 and f2 are continuously differentiable, Inequality (4.28) follows and this implies

(1 + Cp)
2cp ≤

(
31

30

)2(
π

p− 1

)p
.
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Summarizing, the interpolation in two variables by Chebyshev nodes has nearly the
same convergence behavior as interpolation in the first variable and using equispaced
frequencies.
Regarding the optimality of these error estimates, the following is known.

Remark 4.14. The frequency and time limited Fourier transform

F0 : L2[−1

2
,
1

2
]→ L2[−1

2
,
1

2
], f 7→ g(ξ) =

∫ 1
2

− 1
2

f(x)e−2πiξxdx,

fulfills

F∗0F0f(x) =

∫ 1
2

− 1
2

sinπ(x− y)

x− y
f(y)dy

and thus the singular values of F0 are

σp ≈ C
(π

8

)p 1

p!
≈ C ′

(
1.06

p

)p
see [57, Lemma 1]. In particular, this best possible approximation rate would be guaran-
teed when approximating by prolate spheroidal wave functions, cf. [38], or adaptive cross
approximation with total pivoting, cf. [55]. Corollary 4.13 implies σp ≤ 1

2
(π/(p − 1))p

and this slower rate cannot be improved by the current proof technique in Lemma 4.7.
However, note that the numerical observed rate of the interpolatory approximation
matches the optimal one, see Figure 4.8(a).

4.1.2 Butterfly algorithm

We present the whole approximation scheme and the corresponding algorithm to com-
pute the sums (4.1).

4.1.2.1 Dyadic decomposition and approximation scheme

For two admissible boxes, see Definition 4.1, Theorem 4.8 ensures a low rank approxi-
mation of the Fourier kernel κ(x, ξ) = e2πixξ/N via interpolation. We declare admissible
pairs (A,B) ⊂ X × Ω for a convenient decomposition of the domains X and Ω. Since
X = Ω = [0, 2L] a simple way is to decompose the domains dyadically, see Figure 4.2.

0 N

0 N/2 N

0 N/4 N/2 3N/4 N

0 N/8 N/4 3N/8 N/2 5N/8 3N/4 7N/8 N

Level ` = 0.
X00

Level ` = 1.
X10 X11

Level ` = 2.
X20 X21 X22 X23

Level ` = 3.
X30 X31 X32 X33 X34 X35 X36 X37

Figure 4.2: Dyadic decomposition of the spatial domain X.
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The dyadic decomposition is given by

X`,m :=
[
N/2`m,N/2`(m+ 1)

)
for m = 0, . . . , 2` − 1,

Ω`,n :=
[
N/2`n,N/2`(n+ 1)

)
for n = 0, . . . , 2` − 1,

(4.29)

for ` = 0, . . . , L, where the level of the butterfly scheme is denoted by ` and the
locations of the boxes by m and n, respectively. Moreover, note that we always in-
clude the point N in the rightmost sets X`,2`−1 and Ω`,2`−1, ` = 0, . . . , L. The pairs
(X`,m,ΩL−`,n) for m = 0, . . . , 2` − 1 and n = 0, . . . , 2L−` − 1 are admissible, which
is due to diamX`,m diam ΩL−`,n = N

2`
N

2L−`
= N . All admissible pairs in the sense of

Inequality (4.5) of the dyadic decomposition are illustrated for X = Ω = [0, 8] in Fig-
ure 4.3. The result of the dyadic decomposition of X and Ω is the formation of two

X

Ω

(a) Level ` = 0.

X

Ω

(b) Level ` = 1.

X

Ω

(c) Level ` = 2.

X

Ω

(d) Level ` = 3.

Figure 4.3: Admissible pairs of X = Ω = [0, 8].

trees TX and TΩ, where X00 = X is the root node of TX and Ω00 = Ω is the root node
of the tree TΩ. Let X`,m ∩ X̃ 6= ∅, m ∈ {0, . . . , 2` − 1}, be a node of the tree TX .

Then X`+1,2m is connected by an edge to X`,m, if X`+1,2m ∩ X̃ 6= ∅, analogously for
X`+1,2m+1. The tree TΩ is build up analogously. The complete trees are illustrated in
Figure 4.4(a), 4.4(b), where the tree TΩ is represented reverted from the major level
L (the leaf nodes) to the least level 0 (the root node). We define the butterfly graph
as the product of the two trees TX and TΩ, in which all admissible pairs (X`,m,ΩL−`,n)
are nodes in the butterfly graph. The nodes in the butterfly graph are given as combi-
nations of nodes in the `-th level of the tree TX and the (L− `)-th level in the tree TΩ.
An edge

{
(X`,m,ΩL−`,n), (X`+1,m′ ,ΩL−(`+1),n′)

}
is set, if and only if (X`,m, X`,m′) and

(ΩL−`,n,ΩL−`,n′) are edges in the trees TX and TΩ, respectively. The complete butterfly
graph has L + 1 levels and 2L = N nodes in each level, see Figure 4.4(c). Note that
neither the trees nor the butterfly graph have to be complete. This depends on the
position of the sampling nodes X̃ and Ω̃. The trees were realized as a recursive data
structure, see Algorithm 2. The data structure includes the level ` and the parameter
m of the box X`,m as well as the set of sons S, if they exist, as a set of trees. If X`,m is
a leaf node in the tree, then the index set I of nodes xj, such that xj ∈ X`,m, is stored.
To generate the tree TX for our setting, we have to call the constructor via

TX := tree(X̃, (1, . . . ,M1), 0, 0).
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X00

X10 X11

X20 X21 X22 X23

(a) X-tree.

Ω00

Ω10 Ω11

Ω20 Ω21 Ω22 Ω23

(b) Ω-tree.

X00,Ω20 X00,Ω21 X00,Ω22 X00,Ω23

X10,Ω10 X10,Ω11 X11,Ω10 X11,Ω11

X20,Ω00 X21,Ω00 X22,Ω00 X23,Ω00

(c) Butterfly graph.

Figure 4.4: Trees and butterfly graph for N = 4.

Algorithm 2 Constructor tree in 1D

Input:
N = 2L, L ∈ N . bandwidth
M1 ∈ N . number of sampling nodes
X̃ = {x1, . . . , xM1} ⊂ X . sampling nodes
I ⊂ {1, . . . ,M1} . index set
` ∈ {0, 1, . . . , L} . level
m ∈ {0, 1, . . . , 2` − 1} . position parameter

function tree(X̃, I, N, `,m)
T .` := `
T .m := m
if 2T .` = N or I = ∅ then
T .I := I

else
for r = 0, 1 do

Ir := {j ∈ I : xj ∈ X`+1,2m+r}
if Ir 6= ∅ then

s := tree(X̃, Ir, `+ 1, 2m+ r) . son of data type tree
T .S := {T .S, s} . set of sons

end if
end for

end if
end function

Output:
T . tree
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Algorithm 3 Butterfly sparse fast Fourier transform in dimension one (BSFFT)

Input:
L,M1,M2, p ∈ N, p ≥ 2, N = 2L,
f̂k ∈ C, k = 1, . . . ,M2,
Ω̃ = {ξk ∈ X : k = 1, . . . ,M2},
X̃ = {xj ∈ Ω : j = 1, . . . ,M1}.

1. Decompose the space and frequency domain X and Ω dyadically, see Equa-
tion (4.29).

2. Define the functions fΩL,n : X → C and the corresponding interpolants
fX0,0ΩL,n by

for n = 0, . . . , 2L − 1 do

fΩL,n(x) :=
∑

ξj∈ΩL,n∩Ω̃

f̂je
2πiξjx/N , (4.30)

fX0,0ΩL,n := J X0,0ΩL,n
p fΩL,n .

end for

3. Compute for the levels ` = 1, . . . , L the recursively defined interpolating
functions fX`,mΩL−`,n : X`,m → C.

for ` = 1, . . . , L do
for m = 0, . . . , 2` − 1 and n = 0, . . . , 2L−` − 1 do

fX`,mΩL−`,n := J X`,mΩL−`,n
p

[
fX`−1,bm/2cΩL−`+1,2n + fX`−1,bm/2cΩL−`+1,2n+1

]
end for

end for

4. The final approximation f̃ of f ∈ EΩ(X) is a composed function of approx-
imating functions from the L-th level and given by

for j = 1, . . . ,M1 do

m := bxjc
f̃(xj) := fXL,mΩ0,0(xj).

end for

Output:
Approximate function values f̃(xj), j = 1, . . . ,M1.



4.1 The univariate case 49

4.1.2.2 Algorithm

We quote Algorithm 3, which computes the function values f̃(xj) as an approximation
to the function values f(xj) for j = 1, . . . ,M1, f ∈ EΩ(X), by traversing the butterfly
scheme, see Figure 4.4(c). We denote Algorithm 3 as butterfly sparse fast Fourier
transform, short BSFFT, even though the one-dimensional set of nodes has not to be
sparse. Note that the approximate function f̃ : X → C is defined as a decomposed
function by f̃ |XL,m = fXL,mΩ0,0 ∈ EΩ(XL,m) for m = 0, . . . , 2L − 1, see Algorithm 3
Step 3.

4.1.3 Realization

In this section, we discuss how to compute the approximate function f̃ in Algorithm 3.
The local approximation by means of the interpolation operator needs to be realized
using a basis for the ansatz space Ep

B(A). Subsequently, we discuss a variant of the
original approach [58] which uses a monomial type basis and a new variant which
relies on a Lagrange type basis. While both approaches take approximately the same
amount of computation, the latter is much more stable. Moreover, note that the boxes
of the dyadic decomposition of X and Ω fulfill the relations X`,m ⊂ X`−1,bm/2c and
ΩL−`,n = ΩL−`+1,2n∪̇ΩL−`+1,2n+1. To shorten notation let A := X`,m and B := ΩL−`,n
for ` ∈ {1, . . . , L}, m ∈ {0, . . . , 2` − 1}, and n ∈ {0, . . . , 2L−` − 1}. In Step 3, we have
to compute the approximation fAB ∈ EB(A),

fAB := J AB
p

∑
S∈SB

fPS, (4.31)

where

SB :=

{[
cB − diamB

2
, cB
]
,

[
cB, cB +

diamB

2

]}
,

denotes the set of sons, at most two, of the set of frequencies

B =

[
cB − diamB

2
, cB +

diamB

2

]
and the interpolation error is small in each of the spatial sets, again at most two,

A =

[
cA − diamA

2
, cA +

diamA

2

]
,

which are subsets of their father

P :=

[
cP − diamP

2
, cP +

diamP

2

]
.

Subsequently, we rely on the admissibility condition diamA diamB = N and on the
dyadic decomposition which results in diamP diamB = 2N , see Figure 4.5 for an
illustration of the sets.
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P

A

cP − wP

2 cP cP + wP

2

{ Sleft Sright }= SB

B

cB − wB

2 cB cB + wB

2

Figure 4.5: Illustration of the spatial set A ⊂ P and frequency set B ⊃ SB.

4.1.3.1 Monomial type basis

Let g ∈ EB(A). The interpolating function J AB
p g in Definition 4.1 has a unique solution

in Ep
B(A) and can be represented in a monomial type basis,

J AB
p g(x) =

p−1∑
k=0

ĝABs e2πiξBs x/N

where the coefficient vector ĝAB =
(
ĝABs

)p−1

s=0
∈ Cp is the solution of the interpolation

problem

gAB = MABĝAB, where gAB :=
(
g(xAr )

)p−1

r=0
, (4.32)

with the interpolation matrix

MAB :=
(

e2πiξBs x
A
r /N
)p−1

r,s=0
, (4.33)

equally spaced nodes ξBs ∈ B, and Chebyshev nodes xAr ∈ A, cf. Equation (4.3) and
Equation (2.5). We have

e2πiξBs x
A
r /N = e2πi(cB+βs diamB)(cA+

tAr
2

diamA)/N = e2πicBxAr /Neπiβstre2πicAβs diamB/N

and using the two diagonal matrices

DAB
1 := diag

(
e2πixAr c

B/N
)p−1

r=0
, DAB

2 := diag
(

e2πicAβs diamB/N
)p−1

s=0
,

the matrix MAB ∈ Cp×p can be factorized as

MAB = DAB
1 GDAB

2 , G :=
(
eπitrβs

)p−1

r,s=0
, (4.34)

where the matrix G ∈ Cp×p is independent of A and B. Applied to Equation (4.31),
this yields

f̂AB =
(
DAB

2

)−1
G−1

(
DAB

1

)−1
fAB, (4.35)

where fAB =
(∑

S∈SB f
PS(xAr )

)p−1

r=0
. Given the coefficients f̂PS = (f̂PSs )p−1

s=0 ∈ Cp in

fPS(x) =
∑p−1

s=0 f̂
PS
s e2πiξSs x/N , we compute

fAB =
∑
S∈SB

NAS f̂PS, NAS :=
(

e2πiξSs x
A
r /N
)p−1

r,s=0
.
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Since diamS = diamB
2

and

e2πiξSs x
A
r /N = e2πi(cS+βs diamS)(cA+ tr

2
diamA)/N = e2πicSxAr /Ne

π
2

iβstre2πicAβs diamS/N

we have with the two diagonal matrices

EAS
1 := diag

(
e2πixAr c

S/N
)p−1

r=0
, EAS

2 := diag
(

e2πicAβs diamS/N
)p−1

s=0
,

the factorization

NAS = EAS
1 HEAS

2 , H :=
(
e
π
2

itrβs
)p−1

r,s=0
, (4.36)

where the matrix H ∈ Cp×p is independent of A and B. Moreover, note that

cS − cB =

{
−diamS

2
S is the left son of B,

diamS
2

S is the right son of B,

and we set CAS := (DAB
1 )−1EAS

1 = diag

(
e
∓πi

(
cA

diamA
+ tr

2

)
/2

)p−1

r=0

. Altogether, this gives

f̂AB = (DAB
2 )−1G−1

∑
S∈SB

CASHEAS
2 f̂PS, (4.37)

where the minus sign is used for the left son and the plus sign for the right son.

4.1.3.2 Lagrange type basis

Our new approach relies more directly on the representation in Equation (4.14) of
the interpolating function J AB

p g for a function g ∈ EB(A). In contrast to the variant
above using the monomial representation, we apply Equation (4.14) in Equation (4.31).
Hence, the functions fPS ∈ ES(P ), S ∈ SB, are given by their function values fPS(xPr ),
r = 0, . . . , p − 1, at the Chebyshev nodes in P and we compute the function values
fAB(xAr ), r = 0, . . . , p− 1, at Chebyshev nodes in A. More detailed, we have

fAB(xAr ) =
∑
S∈SB

e2πi(cS+ diamS
2 )xAr /N

p−1∑
s=0

fPS(xPs )e−2πi(cS+ diamS
2 )xPs /N · lPSs (xAr ). (4.38)

The Lagrange polynomials are given via the mapping (4.6) by

lPSs (xAr ) =

p−1∏
j=0
j 6=s

z(xAr )− z(xPj )

z(xPs )− z(xPj )
. (4.39)

Inserting

xAr = cA +
tr
2

diamA and xPj = cP +
tj
2

diamP
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and using diamP diamS = N in Equation (4.39) yields the representation

lPSs (xAr ) =

p−1∏
j=0
j 6=s

e−2πi(cA−cP+ tr
2

diamA) diamS
N(p−1) − e−πi

tj
p−1

e−πi ts
p−1 − e−πi

tj
p−1

.

Furthermore, we have

cA − cP =

{
−diamA

2
A is the left son of P,

diamA
2

A is the right son of P,

and finally

lPSs (xAr ) =



p−1∏
j=0
j 6=s

e
−πi

2
tr−1
p−1 −e

−πi
tj
p−1

e
−πi tsp−1−e

−πi
tj
p−1

A is the left son of P,

p−1∏
j=0
j 6=s

e
−πi

2
tr+1
p−1 −e

−πi
tj
p−1

e
−πi tsp−1−e

−πi
tj
p−1

A is the right son of P.

(4.40)

With the vectors

fPS =
(
fPS(xPr )

)p−1

r=0
, fAB =

(
fAB(xAr )

)p−1

r=0
,

the diagonal matrices

RAS := diag
(

e2πi(cS+ diamS
2 )xAr /N

)p−1

r=0
, SPS := diag

(
e−2πi(cS+ diamS

2 )xPs /N
)p−1

s=0
,

and the Lagrange matrix, which depends only on the relation betweenA and P , whether
A is the left or the right son of P ,

LA :=
(
lPSs (xAr )

)p−1

r,s=0
, (4.41)

we finally obtain

fAB =
∑
S∈SB

RASLASPSfPS. (4.42)

Note, that we compute the coefficients f̂AB of the monomial type basis functions and
the function values fAB for the Lagrange type basis.

4.1.4 Stability

While implementing the original scheme [58], we found that the final accuracy of the
BSFFT is limited far above machine accuracy as numerically shown in Section 4.5. Of
course, the error of the local approximation and thus of the butterfly scheme decreases
rapidly with increasing local expansion degree p - at least in precise arithmetic. On
the other hand, we show subsequently that the condition number of the interpolation
matrix MAB strongly increases and thus rounding errors take over for larger p. In the
following, we prove a weaker increase of the condition number of the Lagrange matrix
LA which seems to suffice for a stable BSFFT. Based on Lemmata 4.3 and 2.14, we
are prepared to prove the following bound on the stability of the local approximation
scheme when the monomial type basis is used.
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Theorem 4.15. Let p ∈ N, p ≥ 3, and boxes A := X`,m and B := ΩL−`,n be given as in
Section 4.1.3. The spectral condition number of the interpolation matrix MAB ∈ Cp×p

given in Equation (4.33) fulfills

κ(MAB) ≥


√
p

(
p− 1

2π

)p−1

p ≥ 3, (4.43)

1
√
p

(
2(p− 1)

π

)p−1

p ≥ 3 and odd. (4.44)

Proof. We use the factorizations MAB = DAB
1 GDAB

2 , see Equation (4.34), and

G = DV, D = diag((e
πi
2
tr)p−1

r=0), V = (zsr)
p−1
r,s=0 , zr := e−πi tr

p−1 .

Noting that the norm of all the diagonal matrices and their inverses is equal to one, it
suffices to analyze the Vandermonde matrix V. We have

‖V‖2 = sup
x∈Cp\{0}

‖Vx‖2

‖x‖2

≥ ‖Ve0‖2

‖e0‖2

=
√
p

for the zeroth unit vector e0 = (1, 0, . . . , 0)> ∈ Cp and bound the norm ‖V−1‖2 by a
similar technique. Solving the linear system Vf = e0 is equivalent to the polynomial
interpolation problem

q : C→ C, q(z) =

p−1∑
s=0

fsz
s, such that q(zr) = δr,0 for r = 0, . . . , p− 1. (4.45)

In terms of the Lagrange polynomials to the nodes {zr}p−1
r=0, its solution is given by

q(z) = L̃0(z) =

p−1∏
r=1

z − zr
z0 − zr

=

(
p−1∏
r=1

1

z0 − zr

)
zp−1 + . . .

and we consider the leading coefficient fp−1 =
∏p−1

r=1
1

z0−zr in the monomial expan-
sion (4.45). Applying Lemma 4.3, estimates (4.9) and (4.10), yields

|z0 − zr|2 = 2− 2 cos

(
π

p− 1

(
cos

π

2p
− cos

2r + 1

2p
π

))
≤ 2− 2 cos

2π

p− 1
≤
(

2π

p− 1

)2

.

Hence, we obtain

‖V−1‖2 ≥ ‖V−1e0‖2 ≥ |fp−1| =
p−1∏
r=1

1

|z0 − zr|
≥
(
p− 1

2π

)p−1

and thus the assertion (4.43).



54 4 Butterfly sparse fast Fourier transform

For p = 2n + 1, n ∈ N, we consider the linear system Vf = en with the n-th unit
vector, which is equivalent to the interpolation problem

q : C→ C, q(z) =

p−1∑
s=0

fsz
s, such that q(zr) = δn,r for r = 0, . . . , p− 1.

Noting zn = 1 and analogously to the above consideration, we have

q(z) = L̃n(z) =

p−1∏
k=0
k 6=n

z − zk
1− zk

= fp−1z
p−1 + . . . , fp−1 =

p−1∏
k=0
k 6=n

1

1− zk
.

Using Lemma 4.3 (4.10) yields

|1− zk|2 = 2− 2 cos
π

p− 1
tk ≤

π2

(p− 1)2
t2k

and together with Lemma 2.10 (2.9) in

‖V−1‖2 ≥ |fp−1| ≥
(
p− 1

π

)p−1 p−1∏
k=0
k 6=n

|tk|−1 =
2p−1

p

(
p− 1

π

)p−1

the assertion (4.44).

The condition number of the matrix NAS in Section 4.1.3.1 can be analyzed in the same
way to yield κ(NAS) ≈ 2p−1κ(MAB). In contrast to the lower bound on the conditioning
of the original method, we obtain an upper bound for the local approximation scheme
when the Lagrange type basis, cf. Section 4.1.3.2, is used.

Theorem 4.16. Under the assumptions of Theorem 4.15, the spectral condition num-
ber of the Lagrange interpolation matrix LA ∈ Cp×p given in Equation (4.41) fulfills

κ(LA) ≤ K2
p

√
2p · 34p

4
≤
√

2p

4
· 6p+1. (4.46)

Proof. The Lagrange functions (4.40) are independent of the box A, up to its relation
to the father box P . Setting xr = tr

2
∓ 1

2
in Equation (4.40) yields

|lPSs (xAr )|2 =

p−1∏
j=0
j 6=s

1− cos
(

π
p−1

(tj − xr)
)

1− cos
(

π
p−1

(tj − ts)
) .

Since xr ∈ [−1, 1] and thus tj − xr ∈ [−2, 2], we can follow the ideas in the proof of
Lemma 4.4 to obtain the relation

≤ K2
p

p−1∏
j=0
j 6=s

(
xr − tj
ts − tj

)2

= K2
p · (Ls(xr))

2 .
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Due to Inequality (2.12) in Lemma 2.14, this yields

‖LA‖2
F =

p−1∑
r=0

p−1∑
s=0

|lPSs (xAr )|2 ≤ K2
p

p−1∑
r=0

max
x∈[−1,1]

p−1∑
s=0

(Ls(x))2 ≤ 2pK2
p . (4.47)

In view of the related polynomial interpolation problem on the complex unit circle and
by changing the basis of the Lagrange polynomials lPSs to lASs , the entries of the inverse
Lagrange matrix can be written as

((
LA
)−1
)
r,s

= lASs (xPr ) =



p−1∏
j=0
j 6=s

e
−πi(tr+ 1

2)/(p−1)−e
−πi

tj
2(p−1)

e
−πi ts

2(p−1)−e
−πi

tj
2(p−1)

A is the left son of P,

p−1∏
j=0
j 6=s

e
−πi(tr− 1

2)/(p−1)−e
−πi

tj
2(p−1)

e
−πi ts

2(p−1)−e
−πi

tj
2(p−1)

A is the right son of P.

Analogously to the first part of the proof, we set xr = tr ± 1
2
⊂
[
−3

2
, 3

2

]
and use

1/4tj − xr/2 ∈ [−1, 1] to use again the ideas in proof of Lemma 4.4. Together with
2xr ∈ [−3, 3], Inequality (2.14) in Lemma 2.14 yields

|lASs (xPr )|2 =

p−1∏
j=0
j 6=s

1− cos
(

2π
p−1

(
tj
4
− xr

2
)
)

1− cos
(

2π
p−1

(
tj
4
− ts

4
)
) ≤ K2

p · (Ls(2xr))
2 ≤

34pK2
p

16p2
.

Combining Equation (4.47) and the slightly simpler estimate

∥∥∥(LA
)−1
∥∥∥2

F
=

p−1∑
r=0

p−1∑
s=0

|lASs (xPr )|2 ≤
34pK2

p

16
,

the assertion follows by bounding the spectral norm by the Frobenius norm. Setting
x = 2π

p−1
in Lemma 4.3 (4.12) finally yields K2

p

√
34 ≤ 62.

4.2 The multivariate case

We develop the method of the multi-dimensional butterfly fast Fourier transform from
the one-dimensional case. We will define the interpolation in the multivariate case via
tensor products and consider the realizations in the monomial and Lagrange type basis.

4.2.1 Interpolation via tensor products

Let the spatial dimension d ∈ N, d ≥ 2, be given. Moreover, let the spatial domain X
and the frequency domain Ω be given with some node sets X̃ and Ω̃ as introduced at
the beginning of this chapter. Let two intervals D1, D2 ⊂ R be given. We define the
tensor product of two functions u ∈ C(D1), v ∈ C(D2) by

(u⊗ v)(x, y) := u(x)v(y).



56 4 Butterfly sparse fast Fourier transform

For d-dimensional boxes A = A1 ×A2 × · · · ×Ad, B = B1 ×B2 × · · · ×Bd, and p ∈ N,
p ≥ 2, we introduce an equispaced multi grid by

ξBs :=
(
ξB1
s1
, . . . , ξBdsd

)>
, s1, . . . , sd ∈ {0, . . . , p− 1}, (4.48)

where ξBνsν , sν = 0, . . . , p − 1, are the equispaced nodes in the box Bν . Moreover, we
define the tensor product spaces

EB(A) := EB1(A1)⊗ · · · ⊗ EBd(Ad)

=

{
h : ∃m ∈ N, u1

i ∈ EB1(A1), . . . , udi ∈ EBd(Ad) with h =
m∑
i=0

u1
i ⊗ · · · ⊗ udi

}

=

{
h : A→ C : h(x) =

n∑
k=0

ĥke
2πiξkx/N , n ∈ N, ĥk ∈ C, ξk ∈ B

}
,

Ep
B(A) := Ep

B1
(A1)⊗ · · · ⊗ Ep

Bd
(Ad)

=

{
h : ∃m ∈ N, u1

i ∈ E
p
B1

(A1), . . . , udi ∈ E
p
Bd

(Ad) with h =
m∑
i=0

u1
i ⊗ · · · ⊗ udi

}

=

{
h : A→ C : h(x) =

p−1∑
s1,...,sd=0

ĥs1,...,sde
2πiξBs x/N , ĥs1,...,sd ∈ C,

}
.

We extend the definition of the trigonometric interpolation, see Definition 4.1 to higher
dimensions.

Definition 4.17 (Multi-dimensional trigonometric interpolation). Let p ∈ N, p ≥ 2,
be given. Furthermore, let A ⊂ X and B ⊂ Ω two d-dimensional boxes.

(i) The Chebyshev tensor grid in A is defined by

xAr := (xA1
r1
, . . . , xAdrd )>, r1, . . . , rd ∈ {0, . . . , p− 1},

where xAνrν are the Chebyshev nodes in the box Aν.

(ii) To shorten notation we define the shift function dB : A→ C by

dB(x) := e
2πi
(
cB+wB

2

)
x/N

,

where wB := (diamB1, . . . , diamBd)
>. Moreover, the interpolation operator

J AB
p : C(A) → Ep

B(A) for complex valued functions is defined as tensor prod-
uct of the one-dimensional interpolation operators by

(
J AB
p g

)
(x) :=

(
d⊗

ν=1

J AνBν
p g

)
(x) (4.49)

:= dB(x)

p−1∑
r1,...,r2=0

g(xAr )dB(−xAr )
d∏

ν=1

lAνBνrν (xν),

where x = (x1, . . . , xd)
>.
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(iii) We set x1,r := (xA1
r , x2, . . . , xd), Ā := A2 × · · · × Ad, B̄ := B2 × · · · × Bd,

y := (x2, . . . , xd) and yr̄ := (xA2
r2
, . . . , xAdrd ). We denote the identity in one direc-

tion by I and Iν :=
ν⊗
k=1

I. Moreover, we define the trigonometric interpolation

in one direction(
J A1B1
p ⊗ Id−1

)
g(x) := dB1(x1)

p∑
r=0

g(x1,r)d
B1(−xA1

r )lA1B1
r (x1)

and the trigonometric interpolation in the last d− 1 directions by(
I ⊗ J ĀB̄

p

)
g(x) := dB̄(y)

p∑
r2,...,rd=0

g(x1,yr̄)d
B̄(yr̄)

d∏
ν=2

lAνBνrν (xν).

The interpolation can be written as the composition of the interpolation in the first
coordinate and the interpolation in the last d − 1 coordinates. The operator norm of
the interpolation in the first coordinate is bounded by the Lebesgue constant which
increases logarithmically for increasing approximation rank.

Lemma 4.18. Let p ∈ N, p ≥ 3, and two d-dimensional boxes A ⊂ X, B ⊂ Ω be
given. For g : A→ C, g ∈ C(A), it follows(

J A1B1
p ⊗ Id−1

) (
I ⊗ J ĀB̄

p

)
g = J AB

p g.

and

‖J A1B1
p ⊗ Id−1‖ := max

g∈C(A)\{0}

‖(J A1B1
p ⊗ Id−1)g‖C(A)

‖g‖C(A)

≤ Cp

with Cp given by Equation (4.15).

Proof. Applying the definitions yields the first assertion

(
J A1B1
p ⊗ Id−1

)(
dB̄(y)

p∑
r2,...,rd=0

g(x1,yr̄)d
B̄(−yr̄)

d∏
ν=2

lAνBνrν (xν)

)

= dB̄(y)

p∑
r2,...,rd=0

((
J A1B1
p ⊗ Id−1

)
g
)

(x1,yr̄)d
B̄(−yr̄)

d∏
ν=2

lAνBνrν (xν)

= dB̄(y)

p∑
r2,...,rd=0

(
dB1(x1)

p∑
r1=0

g(xAr )dB1(−xA1
r1

)lA1B1
r1

(x1)

)
dB̄(−yr̄)

d∏
ν=2

lAνBνrν (xν)

= J AB
p g(x).

Let now g ∈ EB(A), g(x) =
n∑
k=0

ĝke
2πiξkx/N , where ξk ∈ B and n ∈ N. We set

x := (x,y)> and vy : A1 → C, vy(x) := g(x,y). The function (J A1B1
p ⊗ Id)g is contin-

uous and has an absolute maximum in A. We choose x∗ := (x∗,y∗)> ∈ A such that
(J A1B1

p ⊗ Id)g has its absolute maximum in x∗. Hence, it follows

max
x∈A

∣∣(J A1B1
p ⊗ Id)g(x)

∣∣ =
∣∣(J A1B1

p ⊗ Id)g(x∗)
∣∣ = max

x∈A1

∣∣J A1B1
p vy∗(x)

∣∣ .
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We set ξk = (ξk,ηk)
> and obtain

vy∗(x) =
n∑
k=0

fke
2πiξkx/Ne2πiηky

∗/N .

Since we have vy∗ ∈ EB1 , we can apply Equation (4.15) and obtain the assertion

max
x∈A1

∣∣J A1B1
p vy∗(x)

∣∣ ≤ Cp max
x∈A1

|vy∗(x)| = Cp max
x∈A

g(x).

Theorem 4.19. Let d, p,N ∈ N, p ≥ 5, two boxes A,B ⊂ Rd be admissible in the
sense

diamA diamB ≤ N,

and g ∈ EB(A), g(x) :=
∑n

k=0 ĝke
2πiξkx/N , ĝk ∈ C, k = 1, . . . ,M2, then we have the

error estimate

‖g − J AB
p g‖C(A) ≤

(1 + Cp)(C
d
p − 1)

Cp − 1
· cp · ‖ĝ‖1,

where the constants are given by Equation (4.15) and Equation (4.19), respectively.

Proof. The assertion follows from Theorem 4.19 for d = 1. We assume, that the
assertion holds true for a d ∈ N. Inductively, we consider two (d+1)-dimensional boxes
A = A1× · · · ×Ad×Ad+1 and B = B1× · · · ×Bd×Bd+1. We set Ā = A2× · · · ×Ad+1

and B̄ = B2× · · · ×Bd+1. Applying the triangle inequality and extracting the norm of
the interpolation operator yields∥∥g − J AB

p g
∥∥
C(A)

=
∥∥∥g − (J A1B1

p ⊗ Id
) (
I ⊗ J ĀB̄

p

)
g
∥∥∥
C(A)

≤
∥∥g − (J A1B1

p ⊗ Id
)
g
∥∥
C(A)

+

+
∥∥J A1B1

p ⊗ Id
∥∥∥∥∥g − (I ⊗ J ĀB̄

p

)
g
∥∥∥
C(A)

.

Choosing the maximal points of
∥∥g − (J A1B1

p ⊗ Id
)
g
∥∥
C(A)

and
∥∥g − (I ⊗ J ĀB̄

p

)
g
∥∥
C(A)

,

respectively, we just have to consider the one- and accordingly the d-dimensional in-
terpolation. By applying Theorem 4.8, it follows∥∥g − (J A1B1

p ⊗ Id
)
g
∥∥
C(A)
≤ (1 + Cp)cp‖ĝ‖1

and due to the induction hypothesis∥∥∥g − (I ⊗ J ĀB̄
p

)
g
∥∥∥
C(A)
≤

(1 + Cp)(C
d
p − 1)

Cp − 1
· cp · ‖ĝ‖1.

Altogether, the assertion follows with Lemma 4.18∥∥g − J AB
p g

∥∥
C(A)
≤ (1 + Cp)cp‖ĝ‖1 + Cp

(1 + Cp)(C
d
p − 1)

Cp − 1
· cp · ‖ĝ‖1.
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4.2.2 Butterfly algorithm

We expand Algorithm 3 to higher dimensions. The dyadic decompositions of the do-
mains X = [0, N ]d and Ω = [0, N ]d are given by

X`,m := X`,m1 × · · · ×X`,md ,

Ω`,n := Ω`,n1 × · · · × Ω`,nd ,
(4.50)

where m := (m1, . . . ,md) ∈ Nd
0 with ‖m‖∞ < 2` and n := (n1, . . . , nd) ∈ Nd

0 with
‖n‖∞ < 2` are the index vectors, which declare the position of the boxes X`,m and
Ω`,n, respectively. Each level ` has Nd admissible pairs (X`,m,ΩL−`,n). Similar to
the one-dimensional case, the result of the dyadic decomposition of X and Ω is the
formation of the trees TX and TΩ, where the root nodes are X and Ω. If the box X`,m

with ‖m‖∞ < 2` is a node in the tree TX , then the child box X`+1,2m+r, r ∈ {0, 1}d, is

a node in the tree TX if and only if X`+1,2m+r∩X̃ 6= ∅, and it is connected consequently
by an edge to the parent node X`,m. Each node of the tree in level ` = 1, . . . , L − 1
has at most 2d sons. The tree TΩ is built up analogously. The product of the trees
TX and TΩ is a butterfly graph, which is built up as in the one-dimensional case, see
the previous Section 4.1.2 for more details. The complete butterfly graph has L + 1
levels and Nd nodes in each level. It must be pointed out that the number of nodes
in the trees and accordingly in the butterfly graph is dependent on the position of the
sampling nodes X̃ and Ω̃. We will see later in Section 4.4, that the computational and
space complexity depends on the position of the sampling nodes. To be more precise
the complexity of the algorithm depends on the number of nonempty boxes. We write
A ∈ TX , if A is a node in the tree TX , analogously for B ∈ TΩ. The trees are realized as
a recursive data structure, see Algorithm 4, which is a generalization of Algorithm 2.
The tree TX can be generated via the constructor

TX := tree(X̃, (1, . . . ,M1), 0,0).

We denote the floor function for a vector v ∈ Rd by bvc := (bv1c, . . . , bvdc). Algo-
rithm 5 is a generalization of Algorithm 3 to higher dimensions. For simplicity of
notation, Algorithm 5 traverses the full butterfly graph. We describe in Section 4.4 the
details of the conditions on the nodes X̃ and Ω̃, that we call the algorithm sparse. We
denote Algorithm 5 short as BSFFT.

4.2.3 Realization

According to the realization in the one-dimensional case, see Section 4.1.3, we consider
the realization in the d-dimensional case in Algorithm 5 Step 3. The boxes in X
and Ω have the relations X`,m ⊂ X`−1,bm/2c and ΩL−`,n = ∪k∈{0,1}d = ΩL−`,2n+k.
Again, to shorten notation let A := A1 × · · · × Ad = X`,m with Ai := X`,mi and
B := B1× · · · ×Bd = ΩL−`,n with Bi := ΩL−`,ni for i = 1, . . . , d and for ` ∈ {1, . . . , L},
m ∈ Nd

0 with ‖m‖∞ < 2` and n ∈ Nd
0 with ‖n‖∞ < 2L−`. In Step 3, we have to

compute the approximation fAB ∈ EB(A) of (4.31), where now SBi denotes the set of
sons of the box Bi for i = 1, . . . , d and

SB := {S = S1 × · · · × Sd : (S1 × · · · × Sd) ∩ Ω̃ 6= ∅, S1 ∈ SB1 , . . . , Sd ∈ SBd}
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Algorithm 4 Constructor tree

Input:
d ∈ N . dimension
N = 2L, L ∈ N . bandwidth
M1 ∈ N . number of sampling nodes
X̃ = {x1, . . . ,xM1} ⊂ X . sampling nodes
I ⊂ {1, . . . ,M1} . index set
` ∈ {0, 1, . . . , L} . level
m ∈ {0, 1, . . . , 2` − 1}d . position parameter

function Tree(X̃, I, N, `,m)
T .` := `
T .m := m
if 2T .` = N or I = ∅ then
T .I := I

else
for r ∈ {0, 1}d do

Ir := {j ∈ I : xj ∈ X`+1,2m+r}
if Ir1,...,rd 6= ∅ then

s := tree(X̃, Ir, `+ 1, 2m + r) . son of data type tree
T .S := {T .S, s} . set of sons

end if
end for

end if
end function

Output:
T . tree
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Algorithm 5 Butterfly sparse fast Fourier transform in higher dimensions (BSFFT)

Input:
d, L,M1,M2, p ∈ N, p ≥ 2, N = 2L,
f̂k ∈ C, k = 1, . . . ,M2,
Ω̃ = {ξk ∈ [0, N ]d : k = 1, . . . ,M2},
X̃ = {xj ∈ [0, N ]d : j = 1, . . . ,M1}.

1. Decompose the space and frequency domain X and Ω dyadically, see Equa-
tion (4.50).

2. Define the functions fΩL,n : X → C and the corresponding interpolating
functions fX0,0ΩL,n by

for n1 . . . , nd = 0, . . . , 2L − 1 do

fΩL,n(x) :=
∑

ξj∈ΩL,n∩Ω̃

f̂je
2πiξjx/N , (4.51)

fX0,0ΩL,n := J X0,0ΩL,n
p fΩL,n .

end for

3. Compute for the levels ` = 1, . . . , L the recursively defined interpolating
functions fX`,mΩL−`,n : X`,m → C.

for ` = 1, . . . , L do
for m1, . . . ,md = 0, . . . , 2` − 1 and n1, . . . , nd = 0, . . . , 2L−` − 1 do

fX`,mΩL−`,n := J X`,mΩL−`,n
p

∑
r∈{0,1}d

fX`−1,bm/2cΩL−`+1,2n+r , (4.52)

end for
end for

4. The final approximation f̃ of f ∈ EΩ(X) is a composed function of approx-
imating functions from the L-th level and given by

for j = 1, . . . ,M1 do

m := bxjc
f̃(xj) := fXL,mΩ0,0(xj). (4.53)

end for

Output:
Approximate function values f̃(xj), j = 1, . . . ,M1.
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denotes the set of sons, at most 2d, of the d-dimensional box B and the interpolation
error is small in each of the spatial sets A, again at most 2d. We denote the father box
of A by P again. We rely on the same admissible condition as in the one-dimensional
case, diamA diamB = N , and on the result of the dyadic decomposition which results
in diamP diamB = 2N . In this section, we present the calculation rules for computing
the function values of fAB. We consider the complexity of these formulas in Section 4.4.

4.2.3.1 Monomial type basis

Let g ∈ EB(A). The interpolation in Definition 4.17 has a unique solution in Ep
B(A).

The interpolation representations (4.54) and (4.49) are equivalent.

Theorem 4.20 (Monomial representation.). Let p ∈ N, p ≥ 2, and two d-dimensional
boxes A ⊂ X, B ⊂ Ω be given. The interpolation J AB

p g for a function g ∈ C(A) has
the representation

J AB
p g(x) =

p−1∑
s1,...,sd=0

ĝABs1,...,sde
2πiξBs x/N , (4.54)

with ξBs given by Equation (4.48) and with coefficients ĝABs1,...,sd given by

ĝAB :=
(
ĝABs1,...,sd

)
s1,...,sd=0,...,p−1

= (MAB)−1gAB ∈ Cpd (4.55)

with the interpolation matrix

MAB :=
d⊗

ν=1

MAνBν =
(

e2πiξBs x
A
r /N
)p−1

r1,...,rd;s1,...,sd=0
∈ Cpd×pd , and

gAB :=
(
g(xr

A)
)
r1,...,rd=0,...,p−1

∈ Cpd .

Proof. The assertion follows from Lemma 4.4 for d = 1. We assume that the assertion
holds true for d ∈ N. Inductively, let A = A1 × · · · × Ad+1, B = B1 × · · · × Bd+1,
Ā = A2 × · · · × Ad+1, B̄ = B2 × · · · ×Bd+1, and y = (x2, . . . , xd+1). Let g ∈ C(A), we
define for x1 ∈ A1, vx1 : Ā→ C, vx1(y) = g(x1,y). For x1 fixed, we have

J AB
p g(x) =

(
J A1B1
p ⊗ Id

) (
I ⊗ J ĀB̄

p

)
g(x1,y) =

(
J A1B1
p ⊗ Id

)
J ĀB̄
p vx1(y).

We set the index vectors s̄ = (s2, . . . , sd+1), r̄ = (r2, . . . , rd+1), and we declare yĀr̄ as
the Chebyshev grid in Ā. Due to the induction hypothesis, the matrix MĀB̄ is regular.
We define the vector of coefficients by

ĝĀB̄(x1) :=
(
ĝĀB̄s̄ (x1)

)
s2,...,sd+1=0,...,p−1

:= (MĀB̄)−1vĀB̄x1
,

where vĀB̄x1
:=
(
vx1(yĀr̄ )

)
r2,...,rd+1=0,...,p−1

. Applying the induction hypothesis yields

J ĀB̄
p vx1(y) =

p−1∑
s2,...,sd+1=0

ĝĀB̄s̄ (x1)e2πiξB̄s̄ y/N

=

p−1∑
s2,...,sd+1=0

p−1∑
r2,...,rd+1=0

((MĀB̄)−1)s̄;r̄vx1(yĀr̄ )e2πiξB̄s y/N . (4.56)
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Using the interpolation in the first coordinate direction for fixed s2, . . . , sd+1 implies

J A1B1
p ĝĀB̄s̄ (x1) =

p−1∑
s1=0

(
p−1∑
r1=0

((MA1B1)−1)s1,r1 ĝ
ĀB̄
s̄ (xA1

r1
)

)
e2πiξ

B1
s1
x1/N . (4.57)

Combining Equation (4.56) and (4.57) gives the new coefficients

ĝABs1,...,sd+1
:=

p−1∑
r1=0

((MA1B1)−1)s1,r1 ĝ
ĀB̄
s̄ (xA1

r1
)

=

p−1∑
r1,...,rd+1=0

((MA1B1)−1)s1,r1((MĀB̄)−1)s̄;r̄vxA1
r1

(yĀr̄ )

for the interpolating function

J AB
p g(x) =

p−1∑
s1,...,sd=0

ĝABs1,...,sd+1
(xA1

r1
)e2πiξBs x/N .

We have MA1B1 ⊗MĀB̄ = MAB and v
x
A1
r1

(yĀr̄ ) = g(xAr ). Hence, the assertion follows

with Lemma 2.3 (ii).

We use the same notation as in Theorem 4.20 and obtain the monomial representation

J AB
p g(x) =

p−1∑
s1,...,sd=0

ĝABs1,...,sde
2πiξBs x/N ,

where ĝAB = (MAB)−1gAB. Since MAB =
⊗d

ν=1 MAνBν and due to Equation (4.34)
and Lemma 2.3 (i) we obtain with the matrices DAνBν

1 , DAνBν
2 ,G ∈ Cp×p for the

one-dimensional boxes Aν , see Section 4.1.3.1, the decomposition

MAB = (⊗dν=1D
AνBν
1 )(⊗dν=1G)(⊗dν=1D

AνBν
2 ).

Combining the previous equation with Equation (4.31) in the multi-dimensional case,
it follows

f̂AB = (⊗dν=1(DAνBν
2 )−1)(⊗dν=1G

−1)(⊗dν=1(DAνBν
1 )−1)fAB, (4.58)

where fAB =
∑

S∈SB f
PS(xAr ))p−1

r1,...,rd=0. Given the coefficients

f̂PS = (f̂PSs )s1,...,sd=0,...,p−1 ∈ Cpd ,

we compute

fAB =
∑
S∈SB

NAS f̂PS, NAS :=
(

e2πiξSs x
A
r /N
)p−1

r1,...,rd;s1,...,sd=0
= ⊗dν=1N

AνBν ,
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where NAνBν ∈ Cp×p is the matrix of the one-dimensional case for the one-dimensional
boxes Aν and Bν , see Section 4.1.3.1. We set S = S1 × · · · × Sd for S ∈ SB and due to
factorization (4.36) we finally obtain

fAB =
∑
S∈SB

(⊗dν=1E
AνSν
1 )(⊗dν=1H)(⊗dν=1E

AνSν
2 )̂fPS.

Using the definition of CAνSν for the one-dimensional boxes Aν and Sν in Section 4.1.3.1
the following relation holds true with CAS := ⊗dν=1C

AνSν ,

f̂AB = (⊗dν=1(DAνBν
2 )−1)(⊗dν=1G

−1)
∑
S∈SB

(⊗dν=1C
AνSν )(⊗dν=1H)(⊗dν=1E

AνSν
2 )̂fPS. (4.59)

We denote by dAνBν2 , cAνBν , eAνSν2 ∈ Cp the vectors along the diagonal of the diagonal
matrices (DAνBν

2 )−1, CAνBν , EAνSν
2 ∈ Cp×p, respectively. Furthermore, we declare the

d-tensors DAB2 , CAS, EAS2 , F̂PS ∈ Cp×···×p, such that

vecDAB2 = ⊗dν=1d
AνBν
2

vec CAS = ⊗dν=1c
AνSν ,

vec EAS2 = ⊗dν=1e
AνSν
2 ,

vec F̂PS = f̂PS.

Since ⊗dν=1G
−1 = (G−1 ⊗ Id−1)(I1 ⊗ G−1 ⊗ Id−2) . . . (Id−1 ⊗ G−1), we can apply

Lemma 2.7 (ii) and (iii) to obtain

F̂AB =

((∑
S∈SB

((EAS2 � F̂PS)×1 H · · · ×d H)� CAS
)

×1G
−1 · · · ×d G−1

)
� DAB2 , (4.60)

where we set f̂AB := vec F̂AB.

Remark 4.21. (i) We apply Lemmata 2.7 (iv) and 2.3 (iv) in the two-dimensional
case to Equation (4.60) and it reads with F̂PS = F̂PS ∈ Cp×p as

F̃AB :=
∑
S∈SB

(cA2S2(cA1S1)>)�

(
H
((

eA2S2
2 (eA1S1

2 )>
)
� F̂PS

)
H>

)
,

fAB = vec
(

(dA2B2
2 (dA1B1

2 )>)�
(
G−1F̃ABG−>

))
. (4.61)

(ii) Equation (4.58) can be written with tensors as

f̂AB = vec(((DAB1 �FAB)×1 G−1 · · · ×d G−1)�DAB2 ), (4.62)

where dAνBν1 ∈ Cp denote the vector along the diagonal of the diagonal matrix
(DAνBν

1 )−1 and the d-tensor DAB1 ∈ Cp×···×p is defined such that

vecDAB1 = ⊗dν=1d
AνBν
1 .
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4.2.3.2 Lagrange type basis

Let g ∈ EB(A). The interpolating function is given by Definition 4.17,

(
J AB
p g

)
(x) = dB(x)

p−1∑
r1,...,r2=0

g(xAr )dB(−xAr )
d∏

ν=1

lAνBνrν (xν).

Combining the last equation with Equation (4.31) we obtain

fAB(xAr ) =
∑
S∈SB

dS(xAr )

p−1∑
s1,...,sd=0

fPS(xPs )dS(−xPs )
d∏

ν=1

lPνSνsν (xAr ).

We define the matrices for higher dimensions with the matrices of the one-dimensional
case as defined in Section 4.1.3.2,

RAS := ⊗dν=1R
AνSν , SPS := ⊗dν=1S

PνSν , LA := ⊗dν=1L
Aν

with LAν :=
(
lPνSνs (xAνr )

)p−1

r,s=0
. Altogether, we obtain

fAB =
∑
S∈SB

RASLASASfPS =
∑
S∈SB

(⊗dν=1R
AνSν )(⊗dν=1L

AνSν )(⊗dν=1S
PνSν )fPS,

where fAB :=
(
fAB(xAr )

)
r1,...,rd=0,...,p−1

are the function values of the current level and

fPS =
(
fPS(xPs )

)
s1,...,sd=0,...,p−1

are the function values of the previous level. We de-

note by sPνSν , rAνSν ,∈ Cp the vectors along the diagonal of the diagonal matrices
SPνSν , RAνSν , respectively. Moreover, we define the d-tensors SPS,RAS,FPS ∈ Cp×···×d

by

vecSPS = ⊗dν=1s
PνSν ,

vecRAS = ⊗dν=1r
AνSν ,

vecFPS = fPS.

Applying Lemma 2.7 leads to the representation

fAB = vec(
∑
S∈SB

RAS � ((SPS �FPS)×1 LAd · · · ×d LA1)). (4.63)

The computation in the two-dimensional case reads as follows

fAB = vec

(∑
S∈SB

(
rA2S2(rA1S1)>

)
�

(
LA2

((
sP2S2(sP1S1)>

)
� FPS

)
(LA1)>

))
.

4.3 Error analysis

In contrast to other analysis-based fast algorithms, the butterfly scheme uses a sequence
of approximations and the local expansion degree depends not only on the target
accuracy ε > 0 but also mildly on the nonharmonic bandwidth N . This behavior is
illustrated also numerically in Section 4.5.2.
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Theorem 4.22. Let L ∈ N, N = 2L, X,Ω ⊂ [0, N ]d, and p ∈ N, p ≥ 5, then the
approximation (4.53) to the function (4.1) obeys the error estimate

‖f − f̃‖C(X) ≤
(Cp + 1)(C

d(L+1)
p − 1)

Cp − 1
cp‖f̂‖1,

where Cp is given by Equation (4.15) and cp by Equation (4.19).

Proof. Define for all levels ` = 0, . . . , L and the frequency indices n ∈ Nd
0, ‖n‖∞ < 2L−`,

the local sums

fΩL−`,n :=
∑

ξk∈ΩL−`,n∩Ω̃

f̂ke
2πiξkx/N

and for the spatial indices m ∈ Nd
0, ‖m‖∞ < 2`, the error term

E`,m :=
∑

n∈Nd0;‖n‖∞<2L−`

‖fΩL−`,n − fX`,mΩL−`,n‖C(X`,m),

which by definition fulfills ‖f − f̃‖C(X) = maxm∈Nd0,‖m‖∞<2L EL,m. Using Theorem 4.19
and the triangle inequality, this quantity can be bounded for the zeroth level by

E0,0 =
∑

n∈Nd0;‖n‖∞<2L

‖fΩL,n − J X0,0TL,n
p fΩL,n‖C(X0,0)

≤
(1 + Cp)(C

d
p − 1)

Cp − 1
cp

∑
n∈Nd0;‖n‖∞<2L

∑
ξk∈ΩL,n∩Ω̃

|f̂k|

≤
(1 + Cp)(C

d
p − 1)

Cp − 1
cp‖f̂‖1.

For ` > 0, adding and subtracting the term J X`,mΩL−`,n
p fΩL−`,n yields

E`,m =
∑
n∈Nd0

‖n‖∞<2L−`

‖fΩL−`,n − J X`,mΩL−`,n
p fΩL−`,n+

+ J X`,mΩL−`,n
p fΩL−`,n − fX`,mΩL−`,n‖C(X`,m).

Using the triangle inequality, the first norm can be bounded as for the zeroth level,
and we proceed by applying Equation (4.52), factoring out the interpolation opera-
tor, using the dyadic decomposition ΩL−`,n = ∪k∈{0,1}dΩL−`+1,2n+k, and the relation
X`,m ⊂ X`−1,bm/2c to obtain∑

n∈Nd0
‖n‖∞<2L−`

‖J X`,mΩL−`,n
p fΩL−`,n − fX`,mΩL−`,n‖C(X`,m)

≤
∑
n∈Nd0

‖n‖∞<2L−`

∥∥∥J X`,mΩL−`,n
p

∥∥∥ ∑
k∈{0,1}d

∥∥∥fΩL−`+1,2n+k − fX`−1,bm2 c
ΩL−`+1,2n+k

∥∥∥
C(X`−1,bm2 c

)

≤ Cd
pE`−1,bm

2
c.
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Hence, we inductively find for m ∈ Nd
0, ‖m‖∞ < 2L, the relation

EL,m ≤
(1 + Cp)(C

d
p − 1)

Cp − 1
cp‖f̂‖1 + Cd

pEL−1,bm
2
c

≤
(1 + Cp)(C

d
p − 1)

Cp − 1
cp‖f̂‖1 + Cd

p

(
(1 + Cp)(C

d
p − 1)

Cp − 1
cp‖f̂‖1 + Cd

pEL−2,bm
4
c

)

≤ · · · ≤
(1 + Cp)(C

d
p − 1)

Cp − 1
cp‖f̂‖1

L∑
n=0

Cnd
p

≤
(1 + Cp)(C

d
p − 1)

Cp − 1
cp ·

C
d(L+1)
p − 1

Cd
p − 1

‖f̂‖1,

which proves the assertion.

Corollary 4.23. Under the assumptions of Theorem 4.22, let for given ε ∈ (0, 1] the
expansion degree p ∈ N fulfill

p ≥ max

{
10, 2

∣∣∣∣log
2

5
ε

∣∣∣∣ , 2d(L+ 1)

}
,

then ‖f − f̃‖C(X) ≤ ε‖f̂‖1.

Proof. Direct calculation shows for p ≥ 10 the relation

p ≥ 1 + π
√

eCp.

Together with p ≥ 2d(L+ 1) this yields

log
p− 1

π
− d(L+ 1)

p
logCp ≥

1

2

and multiplication by p ≥ 2| log 2
5
ε| finally gives the bound

Cd(L+1)
p

(
π

p− 1

)p
≤ 2

5
ε

Since 1 ≤ Kp, see Equation 4.16, we have

1 +
2

π
log p ≤ Cp = Kp

(
1 +

2

π
log p

)
and with p ≥ 10 finally

Cp + 1

Cp − 1
= 1 +

2

Cp − 1
≤ 1 +

π

log p
≤ 5

2
.

from which the assertion follows by Theorem 4.22.
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4.4 Complexity analysis

We consider the complexity of Algorithm 3 and 5 in due consideration of the computa-
tional realizations of Section 4.1.3 and 4.2.3 to compute the sum (4.1). The organization
of the sampling nodes X, Ω is done in a precomputation step, where the trees TX and
TΩ are computed. Furthermore, we precompute the matrices G−1, H, and LA, since
LA depends only on the relative position to the parent box P of A, cf. Equation (4.40).

4.4.1 The univariate case

We start with the univariate Algorithm 3. For the zeroth level in Step 2, the local
sums fΩL,n in (4.30) are evaluated at Chebyshev nodes xXr , r = 0, . . . , p − 1, which
takes O(pM2) floating point operations in total. In the monomial type basis approach,
the coefficients f̂XΩL,n for n = 0, . . . , 2L − 1 are computed by Equation (4.35), where
fXΩL,n is the vector of function values in the Chebyshev nodes. For Step 3 we have
to compute the sums in (4.31). We have to apply the interpolation operator for each
level ` = 0, . . . , L and for at most N pairs in each level. A single application via
the monomial type realization (4.37) or via the Lagrange type realization (4.42) takes

O(p2) floating point operations. Finally, we evaluate in Step 4 the function f̃ at all

sampling nodes xj ∈ X̃, which takesO(pM1) floating point operations for the monomial
type representation and for the Lagrange type representation with precomputation of
the Lagrange functions l

XL,mΩ
s at the evaluation nodes xj ∈ XL,m for s = 0, . . . , p− 1.

Without such precomputations, a straightforward evaluation of the Lagrange functions
leads to O(p2M1) floating point operations for this step. Since L = log2N , this sums
up to the total computational costs

• O(p(M1 +M2)+p2N logN) with precomputed Lagrange functions or monomials,

• O(pM2 + p2(M1 +N logN)) with directly evaluated Lagrange functions.

Assuming M1,M2 = O(N), a target accuracy ε > 0, and setting p = C log N
ε

, cf. Corol-
lary 4.23, finally leads to the total computational costs

O((| log ε|+ logN)2N logN). (4.64)

Compared to [41], we use here the fact that the Lagrange matrices (4.41) are indepen-
dent of the box A itself but depend only on the position to its father box P . This fact
improves the time complexity by a factor p3 for the Lagrange ansatz in the computation
of the sums (4.42).

4.4.2 The multivariate case

Generalizing to d ≥ 2, we assume that the sets X̃, Ω̃ ⊂ [0, N ]d and their dyadic
subdivisions are sparse in the sense

|{m ∈ Nd
0 : m1, . . . ,md ≤ 2` − 1, X̃ ∩X`,m 6= ∅}| ≤ C2(d−1)`,

|{n ∈ Nd
0 : n1, . . . , nd ≤ 2L−` − 1, Ω̃ ∩ ΩL−`,m 6= ∅}| ≤ C2(d−1)(L−`)
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for some absolute constant C > 0. In particular, we set M1 = |X̃| = O(Nd−1) and

M2 = |Ω̃| = O(Nd−1). The condition above is satisfied if the sets lie on some smooth
(d − 1)-dimensional manifold in [0, N ]d, see also Figure 4.6 or [58, Fig. 5]. Under

(a) ` = 0,
1 box.

(b) ` = 1,
4 boxes.

(c) ` = 2,
8 boxes.

(d) ` = 3,
14 boxes.

(e) ` = 4,
16 boxes.

Figure 4.6: Example for d = 2. Nonempty boxes of samples on an ellipse.

this sparsity assumption, the number of admissible pairs for which we have to do
computations is O(Nd−1) in each level of the butterfly scheme. For the zeroth level
in Algorithm 5 Step 2, the local sums fΩL,n in Equation (4.51) are evaluated in the
Chebyshev nodes xXr for r ∈ {0, . . . , p− 1}d, which takes O(pdM2) floating point oper-
ations. If we use the monomial type basis, we have to compute the coefficients f̂XΩL,n

by Equation (4.62). Due to Lemma 2.7 (ii) a single k-mode product of G−1 ∈ Cp×p

and a d-tensor F ∈ Cp×···×p, where the mode k-foldings of F are F(k) ∈ Cpd−1×p for
k = 1, . . . , d, takes O(pd+1) floating point operations. In Step 3, the sums (4.31) have
to be computed. Again, we have to apply the interpolation operator for each level
` = 0, . . . , L and for O(Nd−1) pairs in each level. A single application via the mono-
mial type realization (4.60) or via the Lagrange type realization (4.63) takes O(pd+1)

operations. Finally in Step 4, the evaluation of the function f̃ at all sampling nodes
xj ∈ X̃ takes O(pdM1) floating point operations in all approaches, in case of on-the-fly
evaluations of the Lagrange functions in tensor product form the costs for the evalua-
tion of the Lagrange functions are amortized. In total, this sums up to computational
costs

O(pd(M1 +M2) +Nd−1pd+1 logN). (4.65)

Applying M1,M2 = O(Nd−1) and p = C log N
ε

, cf. Corollary 4.23, leads to the total
computational costs

O(Nd−1 logN(| log ε|+ logN)d+1) (4.66)

in Equation (4.65). The exponent d+ 1 of the last term can be decreased to d by using
log cp ≤ −Cp log p and the techniques in [16]. A similar improvement might be possible
by reducing the pd-dimensional ansatz to one which lives on the (d − 1)-dimensional
manifold. The butterfly algorithm can be parallelized, which reduces the complexity
further, see [44].

4.4.3 Space complexity

Under the same assumptions as in the time complexity analysis, we discuss the space
complexity of the BSFFT, see Algorithms 3 and 5 except the pre-computations in
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Step 1. In each level ` ∈ {0, . . . , L} of the butterfly scheme are N nodes (pairs of
boxes (A,B)) in the univariate case and Nd−1 in the multivariate case. The coefficient
vectors f̂AB ∈ Cpd in the monomial representation or the vectors of function values
fAB ∈ Cpd in the Lagrange type realization, see Section 4.1.3 and 4.2.3, are stored.
For all levels the space complexity is given by O(Np) for d = 1 and O(Nd−1pd) for
d ≥ 2. Furthermore, the function values or coefficients of level ` ∈ {1, . . . , L} are
computed from the coefficients or function values from the previous level ` − 1, see
Equations (4.37), (4.42), for d = 1 and Equations (4.60), (4.63), for d ≥ 2. Moreover,
the matrices G−1,H ∈ Cp×p, see Equation (4.34) and Equation (4.36), are stored in
the monomial type realization. In the Lagrange type realization, the matrices LA, see
Equation (4.41) are stored for all dimensions. The precomputation of the Lagrange

polynomials evaluated in the samples X̃ needs |X̃p| storage. Summing all over, the
space complexity takes O(Np) in the univariate case and O(Nd−1pd) in the multivariate
case.

4.5 Numerical experiments

We use the same hard- and software as described in Section 3.4. The implementation
of the BSFFT is realized for the dimensions d = 1, 2, 3, 4.

4.5.1 Local accuracy and stability

The first three experiments are dedicated to the approximation in one pair of admissible
boxes. Let the nonharmonic bandwidth N = 2L, L = 10, 14, the level l = 5, and the
boxes A = [0, 2l], B = [0, 2L−l] be given. Draw nodes xj ∈ A, j = 1, . . . ,M1, M1 = N ,
and ξk ∈ B, k = 1, . . . ,M2, M2 = N , at random from the uniform distribution and
define the Fourier matrix

F :=
(
e2πiξk·xj/N

)M1,M2

j=1,k=1
.

This matrix is approximately of low rank and we consider the Lagrange and monomial
type expansions from Section 4.1.3,

F̃ := FA(MAB)−1FB or F̃ := L̃AFB

with the auxiliary matrices

FA :=
(

e2πiξBs xj/N
)M1,p−1

j=1,s=0
, FB :=

(
e2πiξkx

A
r /N
)p−1,M2

r=0,k=1
,

L̃A :=

(
e

2πi
(
cB+wB

2

)
xj/N lABr (xj)e

−2πi
(
cB+wB

2

)
xAr /N

)M1,p−1

j=1,r=0

,

respectively. Due to Lemma 2.1 and Theorem 4.8, we obtain the local error

max
f̂∈CM2

‖f̂‖1=1

∥∥∥Ff̂ − F̃f̂
∥∥∥
∞

= ‖F− F̃‖1→∞ ≤ (1 + Cp)cp =
(1 + Cp)

πp

(
π

p− 1

)p
.
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We compare the quantity ‖F − F̃‖1→∞ for both realizations and for the original ap-
proach [58] in Figure 4.7. The original scheme differs from the variant of the monomial
type basis approach in Section 4.1.3 in the choice of interpolation nodes in xAr ∈ A,
where we use zeros of Chebyshev polynomials instead of extrema, and in the choice
of the ‘equivalent sources’ ξBs ∈ B, where we use equidistant points instead of Cheby-
shev extrema. Note, that an explicit representation for the interpolation in Chebyshev
nodes in A and B is given in a Lagrange type basis in Definition 4.12 and an error esti-
mate is given in Corollary 4.13. The original approach, the interpolation in Chebyshev
extremal points in A and B, has the same convergence rate, cf. [53, Chapter 7 and 8].
In all cases, the error decays exponentially with increasing expansion degree p, as pre-
dicted by Theorem 4.8 for the equidistant points ξBs ∈ B, see Figure 4.7. However, note

that both monomial type approaches achieve only an accuracy ‖F − F̃‖1→∞ ≈ 10−8

and suffer from severe instabilities for values p ≥ 9 which is well predicted by the quan-
tity κ(MAB)µ, where µ ≈ 2 · 10−16 denotes the machine precision and κ the spectral
condition number bounds, cf. Theorems 4.15 and 4.16. The second experiment, cf. Fig-
ure 4.8(a), illustrates the local error ‖F− F̃‖1→∞ of the BSFFT in comparison to the
singular value decomposition of the Fourier matrix F and Ying’s variant, where we use
now a Lagrange type realization for the interpolation in time and frequency domain
in Chebyshev nodes, cf. Definition 4.12. The third experiment analyzes the stability
of the monomial and the Lagrange type approaches as theoretically discussed in Sec-
tion 4.1.4. Figure 4.8(b) shows the growth of the condition numbers of the matrices
MAB, LA ∈ Cp×p, and their lower and upper bound, see Equations (4.43) and (4.46),
respectively.
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(a) N = 210 and ` = 5.
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Figure 4.7: Relative error ‖F − F̃‖1→∞ with respect to the local expansion degree p
for the realization via Lagrange functions (plus), via monomials with equi-
spaced frequencies (diamonds), and via monomials with Chebyshev extrema
(circle). The theoretical estimate of Theorem 4.8 (solid line) and the quan-
tity κ(MAB)µ (dash-dot line) are illustrated, where µ ≈ 2 · 10−16 denotes
the machine precision.
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(a) Local approximation errors.
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(b) Condition numbers κ(MAB) and κ(LA)
with their bounds.

Figure 4.8: Figure 4.8(a) illustrates the `2-approximation error (daggers) of the trigono-
metric interpolation, see Definition 4.1, the `2-approximation error of Ying’s
variant [58] (circle) using interpolation in both variables in Chebyshev nodes
via representation of Definition 4.12 together with its normalized theoret-
ical upper bound (solid line) given in Corollary 4.13 for M1 = M2 = N ,
and the singular values (triangles), representing the best approximation
in this case, together with the lower bound of Remark 4.14 (dashed line).
Figure 4.8(b) illustrates the condition number of the Vandermonde ma-
trix MAB ∈ Cp×p (diamonds) with their lower bounds (4.43) (dotted line)
and (4.44) (dashed line), and the Lagrange matrix LA ∈ Cp×p (plus) with
their upper bound (4.46) (solid line) with respect to the local expansion
degree p.

4.5.2 Accuracy

Regarding the accuracy of the whole algorithm, we draw coefficients

f̂k ∈ [−1

2
,
1

2
]× [−1

2
,
1

2
]i, k = 1, . . . ,M2,

at random from the uniform distribution and consider the relative error as defined in
Equation (3.9),

ε1 =
‖f − f̃‖∞
‖f̂‖1

≤ (Cp + 1)(C
d(L+1)
p − 1)

Cp − 1
cp,

where f ∈ CM1 denotes the function values f(xj) to evaluate the sums (4.1) and its

approximation f̃ = (f̃(xj))j=1,...,M1 , cf. Equation (4.53). For d = 1, 2, 3 we choose

random sampling nodes X̃ and Ω̃ from the uniform distribution. We set M1 = 1 for
d = 1 and M1 = Nd−1 otherwise. In particular we choose the nodes on ellipses for
d = 2 and on ellipsoids for d = 3. For d = 4, we choose equispaced nodes on a
three-dimensional hyperplane.
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We compare the quantity ε1 and the upper bound from Theorem 4.22 for the monomial
and the Lagrange type realization in Figure 4.9 (top). In these two tests for different
parameters N as well as further experiments for d = 2, d = 3, and d = 4, the total
error decays exponentially with p but is again limited for the monomial type realization,
cf. Figures 4.9 and 4.10. In all cases, a least squares fit reveals a numerical error decay
ε1 ≈ C · 16−p, where the constant C seems to depend neither on d nor L.
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(a) d = 1, N = 210.
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(b) d = 1, N = 214.
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(c) d = 2, N = 210.
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(d) d = 2, N = 214.

Figure 4.9: Relative error ε1 with respect to the local expansion degree p for the re-
alization via Lagrange functions (diamonds) with a least squares fit of the
Lagrange type data (dotted line), via the monomials (plus) and the upper
bound of Theorem 4.22 (solid line) for d = 1, 2.

Our second experiment touches the question whether the error really increases for
increasing nonharmonic bandwidth as predicted by Corollary 4.23, i.e., ε1 ≈ Cp,dN .

While randomly drawn coefficients f̂k ∈ C, as in the previous test, do not show this
increase, using constant coefficients f̂k = 1 support a weak increase

ε1 ≈ Cp,dL = Cp,d log2N,

cf. Figure 4.11.
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(a) d = 3, N = 24.
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(b) d = 3, N = 28.

3 4 5 6 7 8 9 10 11 12 13 14 15
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p

ε
2

(c) d = 4, N = 23.
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(d) d = 4, N = 25.

Figure 4.10: Relative error ε1 with respect to the local expansion degree p for the
realization via Lagrange functions (diamonds) with a least squares fit of
the Lagrange type data (dotted line), via the monomials (plus) and the
upper bound of Theorem 4.22 (solid line) for d = 3, 4.



4.5 Numerical experiments 75

N

2
 5

2
 6

2
 7

2
 8

2
 9

2
10

2
11

2
12

2
13

ε
2

×10
-6

4

4.5

5

5.5

6

6.5

7

(a) d = 1, f̂k = 1
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Figure 4.11: The relative error ε1 for p = 5, 6, 7, 8, 9 (plus, circle, asterisk, cross, right-
pointing triangle) with respect to the nonharmonic bandwidth L and the
constant 1

2
· 10−6 (dashed line).

4.5.3 Computational times

Finally, we compare the computational times, measured by the MATLAB functions tic
and toc, of the naive evaluation (4.1) and Algorithm 3 or 5 for fixed spatial dimensions
d = 1, 2, 3, 4, fixed local expansion degrees p = 4, 8, and with respect to increasing
nonharmonic bandwidth N . We draw coefficients f̂k ∈ [−1

2
, 1

2
] × [−1

2
, 1

2
]i and source

and target nodes ξk,xj ∈ [0, N ]d, k = 1, . . . ,M2, j = 1, . . . ,M1, at random from the
uniform distribution (on the submanifold). As discussed in Section 4.1.3 and 4.2.3, we
consider three realizations of the interpolation operator, the monomial type basis and
the Lagrange type basis with and without pre-computations of the Lagrange functions
at the final evaluation nodes. We compare these approximate variants with the naive
computation of sums (4.1) given by Algorithm 6.

Figure 4.12 shows the measured times for d = 1, 2 and M1 = M2 = N sampling
nodes ξk, xj ∈ [0, N ], where the nodes lie on ellipses for d = 2 as described in the
previous section. The break even with the naive method occurs at N = 32 for d = 1,
and N = 1024 for d = 2. For d = 1, we see some increase for a larger local expansion
degree p = 8 when no precomputation is done. Figure 4.13 gives the results for d = 3, 4
with M1 = M2 = Nd−1 sampling nodes on spheres and hyperplanes, respectively. As
already mentioned in Section 4.4, the precomputation of the Lagrange functions in the
last step of the algorithm does not gain any improvement here, cf. Figure 4.12. Finally,
note that the break even with the naive algorithm occurs at a suitable problem size
but a further reduction in absolute computing time is necessary for real applications.

In the next experiment, we compare the NNFFT (nonequispaced fast Fourier transform
in time and frequency domain), see [15, 48] with the BSFFT. After some shifts, the
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Algorithm 6 Naive Algorithm for Fourier transforms.

Input:
d, L,M1,M2, p ∈ N, p ≥ 2, N = 2L,
f̂k ∈ C, k = 1, . . . ,M2,
Ω̃ = {ξk ∈ [0, N ]d : k = 1, . . . ,M2},
X̃ = {xj ∈ [0, N ]d : j = 1, . . . ,M1}.

fj = 0, j = 1, . . . ,M1

for j = 1, . . . ,M1 do
for k = 1, . . . ,M2 do

fj = fj + e2πixjξk/N f̂k
end for

end for

Output:
Function values fj := f(xj), j = 1, . . . ,M1.

NNFFT computes approximate sums of the form

u(xj) =

M2∑
k=1

ûke
2πiξkxj/N for j = 1, . . . ,M1,

where N ∈ N denotes the bandwidth and xj, ξk ∈ [0, N ]d. This is for d = 1 the same
as computing a butterfly transform (4.1). Computing a NNFFT takes O(Nd logN)
floating point operations. The NNFFT does not account the sparsity of the sampling
nodes like the BSFFT. We compare the running times of both algorithms for d = 1, 2,
which are illustrated in Figure 4.14. Both algorithms, the NNFFT and BSFFT are of
order O(N logN) for d = 1 but the constant of the NNFFT is much smaller than the
constant of the BSFFT. The BSFFT takes O(N logN) floating point operations in the
two-dimensional case for sampling nodes on a smooth curve whereas the NNFFT takes
O(N2 logN) floating point operations. Figure 4.14(b) illustrates the computational
times for d = 2 and sampling nodes on ellipses. Since the constant of the BSFFT
is large we obtain a break even for N = 213. Note that during the NNFFT an FFT
for d = 2 of size N × N is performed. Hence, the NNFFT requires a high amount
of memory, which makes the NNFFT not applicable in comparison to the BSFFT for
large sparse data sets X̃ and Ω̃.
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(a) d = 1, p = 4.
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(b) d = 1, p = 8.
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(c) d = 2, p = 4.
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(d) d = 2, p = 8.

Figure 4.12: Computational time of the butterfly (nonsparse) FFT with respect to the
nonharmonic bandwidth and problem size N = M1 = M2 via Lagrange
type without pre-computations (plus), with pre-computations (circle), via
Monomial type (diamonds) representation and the exact naive variant
(asterisk) for d = 1, 2.
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(a) d = 3, p = 4.
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(b) d = 3, p = 8.
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(c) d = 4, p = 4.

N

2
 1

2
 2

2
 3

2
 4

2
 5

2
 6

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

(d) d = 4, p = 8.

Figure 4.13: Computational time of the BSFFT with respect to the nonharmonic band-
width N and problem sizes M1 = M2 = Nd−1 via Lagrange type without
pre-computations (plus), with pre-computations (circle), via Monomial
type representation (diamonds) and the exact naive variant (asterisk) for
d = 3, 4.
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Figure 4.14: Computational times of the BSFFT for approximation rank p = 8 (right-
pointing triangle), the NNFFT (circle) and the naive computation (as-
terisk) for the dimensions d = 1, 2 with respect to the problem sizes
M1 = M2 = N .

4.5.4 Vibrating string problem as a simple application

There are several applications in modern imaging, where Fast Fourier transforms play
an important role. For example in photo acoustic tomography, where spherical means
are a suitable model for the solution of the three-dimensional wave equatiom. For
example, in [24, 23] the authors use a four-dimensional BSFFT to compute spherical
means of three-dimensional objects, see [24, Algorithm 2]. An application is also given
in [58] by a scatterd solution of the Helmholtz-Equation. For simplicity, we treat a
one-dimensional example, the one-dimensional wave equation. The solution of the one-
dimensional wave equation can be computed by applying a two-dimensional BSFFT.
We are looking for a function u : [0, 1]× [0, T ]→ R, u ∈ C2([0, 1]× [0, T ]), which fulfills
the wave equation with initial values

∂2
t u(x, t) = c2∂2

xu(x, t)

u(x, 0) = f(x), ∂tu(x, 0) = 0, for x ∈ [0, 1],
(4.67)

where c > 0 denotes a density constant and f ∈ C([0, 1]). This problem is also known as
vibrating string problem. For this simple one-dimensional situation, it can be proven,
that the solution is given explicitly by

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) .

Moreover, the solution can be expressed as a series.

Lemma 4.24. Let f : [0, 1] → R, f ∈ C2([0, 1]), a 1-periodic function with Fourier
coefficients

ck(f) :=

∫ 1

0

f(x)e−2πikxdx, k ∈ Z.
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The solution of (4.67) is unique and given by

u(x, t) =
1

2

∑
k∈Z

ck(f)
(
e2πi(x+ct)k + e2πi(x−ct)k) . (4.68)

The series is absolutely and uniformly convergent.

Proof. See [7, section 7.1.3] for a proof.

We truncate the series (4.68) afterN summands. Moreover, we approximate the Fourier
coefficients ck(f) by the discrete Fourier coefficients f̂k,

ck(f) =
1

N

1∫
0

f(x)e−2πikxdx ≈ 1

N

N−1∑
n=0

f
( n
N

)
e−2πikn/N =: f̂k,

i.e. we compute approximatively the integral with the trapezoidal rule. Let c = 1, an
approximation of the series (4.68) is given by

u(x, t) ≈ 1

2

N/2−1∑
k=−N/2

f̂k
(
e2πik(x+t) + e2πik(x−t)) := g(x, t). (4.69)

The function g : [0, 1]2 → C can be reformulated as

g(x, t) =
1

2

N/2−1∑
k=−N/2

f̂k

(
e2πi(k,k)(x,t)> + e2πi(k,−k)(x,t)>

)

=
1

2
e−πi(x,t)(N,N)>

N
2
−1∑

k=−N
2

f̂k

(
e2πi(x,t)·(k+N/2,k+N/2) + e2πi(x,t)·(k+N/2,−k+N/2)

)
.

Let

x := N(x, t) ∈ [0, N ]2,

Ω̃ :=

{
ξ := (ξ1, ξ2) ∈ [0, N ]2 : ξ1 = j +

N

2
, ξ2 = ±j +

N

2
for j = −N

2
, . . . ,

N

2
− 1

}
,

ĝj :=

{
2f̂(ξj)1−N2

, for (ξj)1 = N
2
,

f̂(ξj)1−N2
otherwise

and finally we obtain a two-dimensional BSFFT

g(x) =
1

2
e−πix·(N,N)/N

∑
ξj∈Ω̃

ĝje
2πix·ξj/N .

For an example, we choose a function f̃ : R→ R,

f̃(x) :=


(

1− 4
(
x− 1

2

)2

)2

for x ∈ [0, 1)

0 otherwise.
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We consider the 1-periodic continuation f of f̃ ,

f(x) :=
∑
r∈Z

f̃(x+ r) with Fourier coefficients

ck(f) =

{
8
15

for k = 0

− 24
π4k4 otherwise.

Since
∞∑
k=1

1
k4 = π4

90
, the Fourier coefficients obey ck(f) ∈ `1,

∑
k∈Z

|ck(f)| =
1∑

k=−∞

∣∣∣∣−24

π4k4

∣∣∣∣+
8

15
+
∞∑
k=1

∣∣∣∣−24

π4k4

∣∣∣∣ =
48

π4

∞∑
k=1

1

k4
+

8

15
=

16

15
.

Hence, the Fourier series of f converges absolutely and uniformly to f . Let N = 2L,
L ∈ N, and M = 1024 be fixed. We want to compute the solution of the one-
dimensional wave equation for a fixed spatial point xi = 1

2
at different times ti = i

M

for i = 0, . . . ,M − 1. We have to compute the discrete Fourier coefficients f̂ ∈ CN of
f := (f(j/N))j=0,...,N−1. Due to the periodicity of the coefficients f̂k = f̂k+rN , r ∈ Z,
we have

ĝ = (f̂N/2, . . . , f̂N−1, f̂0, . . . , f̂N/2−1)>.

The spatial and frequency nodes, the test function, the exact solution and the approx-
imate solution by applying the BSFFT are illustrated in Figure 4.15. The absolute
error max

i=0,...,M−1
|u(xi, ti)− g(xi, ti)| is listed in Table 4.1 for different bandwidths N and

approximation ranks p. On one hand, the error depends on the parameter N in the
truncation, cf. Equation (4.69), and on the other hand on the approximation rank p in
the BSFFT. Table 4.1 and Figure 4.16 illustrate this dependence of the absolute error
on N and p.
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(a) Frequency nodes Ω̃.
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(b) Spatial nodes X̃.
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(c) Test function f .
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(d) Exact (line) and approximate (diamonds)
solution u(1/2, t).

Figure 4.15: Sampling nodes, test function and an approximate solution for the wave
equation for N = 32, M = 50, and p = 4.
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N p max
i=0,...,M−1

|u(xi, ti)− g̃(xi, ti)|

32

3 9.1611 · 10−2

5 8.0644 · 10−4

7 3.3804 · 10−5

9 3.3623 · 10−5

256

3 1.2123 · 10−1

5 1.4154 · 10−3

7 8.1478 · 10−6

9 7.9908 · 10−8

4096

3 1.1892 · 10−1

5 1.5176 · 10−3

7 9.0309 · 10−6

9 3.4970 · 10−8

Table 4.1: Absolute errors of the approximate solution computed with the two-
dimensional BSFFT of the wave equation for different pairs N , p, and a
fixed number M = 1024 of spatial nodes.
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Figure 4.16: Absolute error of the approximate solution computed with the two-
dimensional BSFFT of the wave equation for a fixed number M = 1024
of spatial nodes for the bandwidths N = 32 (solid), N = 256 (dotted),
N = 4096 (dashed) in dependence of the approximation rank p.
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Fast Fourier transform for
nonequispaced complex nodes

The BSFFT neither allows for an evaluation in complex nodes nor for complex fre-
quencies. This issue has been already studied in [1] which allows for the computation
of exponential sums where the complex evaluation nodes lie in a small strip around the
real line. Here, we present two methods for the computation of sums

fj := f(wj) =

M2∑
k=1

f̂ke
2πiwjξk/N (5.1)

for j = 1, . . . ,M1 with ξk ∈ [0, N ] and wj ∈ C. One method is a generalization of the
BSFFT which also allows for complex evaluation nodes in a strip around the real line.
The second method is based on a combination of the Laplace transform, see Section 3.2,
with fast Fourier transforms, i.e., the NFFT, NNFFT, or BSFFT. The first question is,
which restrictions on the complex spatial nodes wj ∈ C are needed, to obtain a good
low rank approximation of the kernel function κ(w, ξ) := e2πiwξ/N .

5.1 Generalization of the butterfly scheme to complex
nodes in a strip

A first idea for the computation of the sum (5.1) is to expand the Definition 4.1
for boxes D ⊂ C instead of A ⊂ R, where D is a small strip around the real line,
which depends on the approximation rank. The following results were obtained in the
supervised Bachelor-Thesis [20]. At first, we generalize Lemma 4.7 for complex values
in a sector of an annulus to obtain a low rank approximation of the kernel κ on a small
strip around the real line.

Lemma 5.1. Let p ≥ 5, p ∈ N, α ∈ [0, p− 1],

D̃p :=

[
−1

2
,
1

2

]
× i

p− 1

2π

[
log(1− 1

p
), log(1 +

1

p
)

]
, (5.2)
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and Γ̃p := z(D̃p), z(y) := e−2πi y
p−1 , where the map z assigns the complex strip D̃p to a

sector on an annulus, see Figure 5.1. It follows∣∣∣∣∣zα −
p−1∑
k=0

(
α

k

)
(z − 1)k

∣∣∣∣∣ ≤ c̃p,

where

c̃p :=
1

π(p− 1)

((
π

p− 1

)2(
1 +

1

p

)
+

1

p2

)p/2

. (5.3)

Proof. Let y ∈ D̃p and z = z(y) ∈ Γ̃p, then we have

|z − 1|2 = |e
2πi
p−1

(i Im(y)+Re(y))| ≤ |e
2πi
p−1

maxy∈C̃ Im(y)e
2πi
p−1

maxy∈C̃ Re(y)|

=

∣∣∣∣(1 +
1

p

)
e−

πi
p−1 − 1

∣∣∣∣2 =

(
1 +

1

p

)2

− 2

(
1 +

1

p

)
cos

π

p− 1
+ 1

= 2(1− cos
π

p− 1
)

(
1 +

1

p

)
+

1

p2
.

The value, which maximizes maxz∈Γ̃p
|z − 1| is denoted by z∗ in Figure 5.1. Applying

Equation (4.10) yields

|z − 1|2 ≤
(

π

p− 1

)2(
1 +

1

p

)
+

1

p2
.

The rest of the proof is similar to the one of Lemma 4.7. Using |z| ≥ 1 − 1
p

in

Equation (4.21) and applying Lemma 4.5 yields the assertion.

−1
2

1
2

0 0

i

1

1 + 1
p1− 1

p

z∗

π
p−1

Figure 5.1: The map D̃p 7→ Γ̃p.

We extend Definition 4.1 and 4.2 to a complex strip D. For simplicity of notation, we
use the same symbols for the extended operators.
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Definition 5.2. For boxes D ⊂ C, D = A × iC, A,B,C ⊂ R, we define the linear
space of all finite expansions of exponential functions

EB(D) :=

{
g : D → C : g(x) =

K∑
j=1

ĝje
2πiξjx/N , K ∈ N, ĝj ∈ C, ξj ∈ B

}
,

and the subspace with p ∈ N equispaced frequencies

Ep
B(D) :=

{
g : D → C : g(x) =

p−1∑
j=0

ĝABj e2πiξBj x/N , ĝABj ∈ C

}
.

Moreover, we define for p ∈ N, p ≥ 2, the trigonometric interpolation operator

J DB
p : C(D)→ Ep

B(D), g 7→ J DB
p g =

p−1∑
s=0

ĝDBs e2πixξBs /N , (5.4)

such that in the Chebyshev nodes xAr the interpolation condition J DB
p g(xAr ) = g(xAr )

for r = 0, . . . , p− 1 holds true.

Definition 5.3. Let boxes D = A × iC, A,B,C ⊂ R, and p ∈ N, p ≥ 2, be given.
Moreover, let the mapping z : D → C,

z(x) := e−2πix diamB
(p−1)N , (5.5)

and the Chebyshev nodes zDBj := z(xAj ) mapped on the arc ΓDBp := z(D) be given. Under
the admissibility condition in the sense of Inequality (4.5) for A and B, the nodes are

distinct and we extend the Lagrange polynomials in Equation (4.7) to L̃DBk : D → C
and the interpolation operator (4.8) to IDBp : C(ΓDBp )→ Πp−1(C),

L̃DBk (zDB) :=

p−1∏
j=0
j 6=k

z − zDBj
zDBk − zDBj

, (5.6)

IDBp g̃ :=

p−1∑
j=0

g̃(zDBj )L̃DBj . (5.7)

Theorem 5.4. Let p,N ∈ N, p ≥ 5, A,B ⊂ R admissible be given. Moreover, let

Dp := A× i diamA
p− 1

2π

[
log

(
1− 1

p

)
, log

(
1 +

1

p

)]
,

g ∈ EB(Dp), g(x) :=
∑M2

k=1 ĝke
2πiξkx/N , ĝk ∈ C, k = 1, . . . ,M2 be given. Then we have

the error estimate

‖g − J DpB
p g‖C(Dp) ≤ (1 + ‖Ĩp‖)c̃p‖ĝ‖1,

where the constant c̃p is given by Equation (5.3) and Ĩp := ID̃p[−N/2,N/2]
p with

‖Ĩp‖ = sup
h∈C(Γ̃p)
‖h‖C(Γ̃p)=1

‖Ĩph‖C(Γ̃p) ≥ ‖Ip‖ ≥ 1.
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Proof. The proof is analogue to the proof of Theorem 4.8. We dilate and shift the
interval Dp 7→ D̃p and B 7→ [−N/2, N/2] via the maps (4.17) and (4.22), respectively.
Let g̃ : D̃p → C defined as in (4.23). We have

J DpB
p g(x) = e2πicBx/NJpg̃(y), Jp := J D̃p[−N/2,N/2]

p .

With the same arguments and the function h : Γ̃p → C, as defined in (4.24), we obtain

Jpg̃(y) = z−
p−1

2 Ĩph(z).

Moreover, the interpolation obeys

max
x∈Dp
|g(x)− J DpB

p g(x)| = max
y∈D̃p
|g̃(y)− Jpg̃(y)| = max

z∈Γ̃p

∣∣∣z− p−1
2 (h(z)− Ĩph(z))

∣∣∣ .
Since z ∈ Γ̃p implies 1− 1

p
≤ |z| ≤ 1 + 1

p
, we conclude 1

|z| ≤ 1− 1
p
≤ 1 and finally

max
x∈Dp
|g(x)− J DpB

p g(x)| ≤ max
z∈Γ̃p

∣∣∣h(z)− Ĩph(z)
∣∣∣ .

Using the truncated Taylor expansion hp : Γ̃p → C of h, cf. (4.25), and applying
Lemma 5.1, we conclude the assertion

max
z∈Γ̃p

|h(z)− Ĩph(z)| ≤ max
z∈Γ̃p

|h(z)− hp(z)|+ max
z∈Γ̃p

∣∣∣hp(z)− Ĩph(z)
∣∣∣

≤ (1 + ‖Ĩp‖) max
z∈Γ̃p

|h(z)− hp(z)|

≤ (1 + ‖Ĩp‖)c̃p‖ĝ‖1.

The inequality

sup
h∈C(Γ̃p)
‖h‖C(Γ̃p)=1

‖Ĩph‖C(Γ̃p) ≥ ‖Ip‖

follows from Equation (4.26) by an appropriate constant continuation of the function h
to Γ̃p. Moreover, Ip is a polynomial interpolation operator and reproduces polynomials
up to a degree p− 1. Let h : Γp → C, ‖h‖C(Γp) = 1, the assertion follows since

‖Ip‖ ≥ ‖Iph‖C(Γp) = ‖h‖C(Γp) = 1.

Remark 5.5. One aspect, why we do not pursue that idea is that we can only compute

the sum (5.1) for wj ∈ X, where X = [0, N ]× iN p−1
2π

[
log(1− 1

p
), log(1 + 1

p
)
]

is a small

strip around the real line depending on the approximation rank p. Let the nonharmonic
bandwidth N = 2L, L = 10, the level ` = 5 and boxes

D = [0, 2`]× i2`
2π

p− 1

[
log(1− 1

p
), log(1 +

1

p
)

]
and B = [0, 2`],
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be given. Draw nodes aj ∈ [0, 2`] and ξj ∈ B, k = 1, . . . , 1024, at random from the uni-

form distribution. Moreover, we choose equispaced points bk ∈
[
log(1− 1

p
), log(1 + 1

p
)
]
,

k = 1, . . . , 20, and set the spatial nodes

X̃ :=

{
aj + i2`

2π

p− 1
bk : j = 1, . . . , 1024, k = 1, . . . , 20

}
.

The relative error ‖F − F̃‖1→∞ is illustrated in Figure 5.2(a), where F denotes the

exact matrix and F̃ the approximate matrix as described in Section 4.5.1. This figure
illustrates that the error decreases up to an approximation rank p = 15, where the
relative error is 10−5. This slowly decreasing behavior for p ≤ 15 and increasing effect
for p ≥ 16 might be due to the behavior of the interpolation operator norm ‖Ĩp‖. Let g ∈
C(Γ̃p) with g(z0) = 1 and g(zj) = 0 for j = 1, . . . , p−1 and ‖g‖C(Γ̃p) = 1, then the norm

of the interpolation operator obeys ‖Ĩp‖ ≥ ‖Ĩpg‖C(Γ̃p) = maxz∈Γ̃p
|L̃D̃p[−N/2,N/2]

0 (z)|.
This maximal value is illustrated in Figure 5.2(b) in dependence on p, where the line
represents the maximal value and the dashed line represents the increasing behavior
C · 1.1397p with some constant C > 0. Note, that Theorem 5.4 does not give an upper
bound on the interpolation operator norm and thus we have no guarantee for a small
local error.
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Figure 5.2: Relative Error and maximal value of |L̃D̃p[−N/2,N/2]
0 (z)| for increasing ap-

proximation rank p.
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5.2 Combining Laplace and Fourier transforms

Another idea to compute the sum (5.1) is a pointwise combination of Fourier trans-
forms, i.e. the FFT, NFFT, NNFFT, or the BSFFT, and the Laplace transform from
Chapter 3. Let the nonharmonic bandwidth N = 2L, L ∈ N, the domains X,Ω = [0, N ]

and sampling sets X̃, Ω̃ as in the butterfly setting, see the beginning of Chapter 4, be
given. Furthermore, let Ỹ := {yj ∈ R : j = 1, . . . ,M1, 0 < yM1 < · · · < y1}. We

denote the complex spatial nodes by Z̃ := {wj ∈ C : wj = xj + i N
2π
yj : j = 1, . . . ,M1}.

We present a method to compute (5.1) for ξk ∈ Ω̃, k = 1, . . . ,M2, and wj ∈ Z̃,
j = 1, . . . ,M1. We write

e2πiwj/N = e2πixj/Ne−yj

and note that the summation (5.1) is a matrix vector multiplication with the matrix

C := F�K,

where F denotes the Fourier matrix given by (4.2) and K the Laplace matrix (3.2)
with κ(y, ξ) = e−yξ. We have the following result when approximating the factors as in
the previous sections.

Lemma 5.6. Let ε ∈ (0, 1) and the Fourier and the Laplace matrix be approximated
by

‖F− F̃‖1→∞ ≤
ε

3
, ‖K− K̃‖1→∞ ≤

ε

3
,

then

‖F�K− F̃� K̃‖1→∞ ≤ ε.

Proof. The estimate simply follows from

‖F‖1→∞ = 1, ‖K̃‖1→∞ = ‖K̃−K‖1→∞ + ‖K‖1→∞ ≤ 1 +
ε

3
,

and

F�K− F̃� K̃ = F� (K− K̃) + (F− F̃)� K̃.

Applying the norm ‖ · ‖1→∞, the triangle inequality and the rule

‖A�B‖1→∞ = max
i,j
|Ai,jBi,j| ≤ max

i,j
|Ai,j|max

i,j
|Bi,j| = ‖A‖1→∞‖B‖1→∞

for matrices A,B ∈ CM1×M2 twice yields the assertion.

Note that F in Lemma 5.6 could be any Fourier matrix, for example the Fourier matrix
of the FFT, NFFT or NNFFT approach.
We use the hierarchical decomposition of the discrete Laplace transform and realize
matrix vector products with matrix blocks by the following technique.
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Lemma 5.7. By slight abuse of notation, let K = (ki,j)
m1,m2

i,j=1 = LY KY,Ω
(
LΩ
)>

denote
a single matrix block of the Laplace matrix, where LY ∈ Rm1×q, KY,Ω ∈ Rq×q, and
LΩ ∈ Rm2×q, and F = (fi,j)

m1,m2

i,j=1 the associated block of the Fourier matrix, then

(F�K) f̂ =
(
LY � (F diag(̂f)LΩ

(
KY,Ω

)>
)
)

1,

where 1 := (1, . . . , 1)> ∈ Rq.

Proof. We define vectors lY := (lYi )i=1,...,m1 and lΩ := (lΩj )j=1,...,m2 . The simplest case is

K = lY · 1 ·
(
lΩ
)>

. Hence (F�K)i,j = fi,jki,j = lYi fi,jl
Ω
j implies

((F�K)̂f)i = lYi

m2∑
j=1

fijl
Ω
j f̂j = lYi

m2∑
j=1

fi,j(diag(̂f)lΩ)j

and finally

(F�K)̂f =
(
lY � (A diag(̂f)lΩ

(
KY,Ω

)>
)
)
· 1

This implies the result since

K = LY KY,Ω
(
LΩ
)>

=

q∑
r=1

lYr

(̃
lY,Ωr

)>
,

where lYr and l̃Y,Ωr denote the columns of LY and LΩ
(
KY,Ω

)>
, respectively.

Theorem 5.8. Let N,M1,M2 ∈ N with M1,M2 = O(N), ε > 0, wj ∈ Z̃ for

j = 1, . . . ,M1, f̂ ∈ CM
2 , and f := Cf̂ with

C = (e2πiwjξk/N)M1,M2

j,k=1 = (e2πixjξk/Ne−yjξk)M1,M2

j,k=1

be given. Algorithm 7 takes

O
(
N logN log

Ny1

ε
log

1

ε

)
or O

(
N logN log2 N

ε
log

Ny1

ε
log

1

ε

)
floating point operations using the NNFFT or the BSFFT, respectively. Its output
f̃ ∈ CM1 fulfills the error estimate

‖f − f̃‖∞ ≤ ε‖f̂‖1.

Proof. We write all nodes w in the form w = x+ i N
2π
y ∈ Z̃ for the whole proof. We use

the decomposition of the frequency nodes and the spatial nodes in dyadic intervals Ω`,
Ym, `,m = 1, . . . ,M , cf. Definition 3.7 of the Laplace transform. The decomposition
of Y induces a decomposition of the nodes {xj : j = 1, . . . , N} = ∪̇m=1,...,MXm, where
Xm := {xj : yj ∈ Ym}. Accordingly, we denote restrictions of the Fourier matrix, the
Fourier coefficients, and the result vector by superscripts with these sets. Due to
Lemma 3.8 (i), we set

f̃YM := F̃XM ,Ωf̂ .
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Let y ∈ Ym, m = 1, . . . ,M − 1 and Ψ ⊂ Ω. We denote by fΨ : C → C the function
fΨ(w) :=

∑
ξk∈Ψ f̂ke

2πiwξk/N . Note that for y ∈ Ym the function f can be split in the
sums

f(w) = fΨ1(w) + fΨ2(w) + fΨ3(w),

where Ψ1 := ∪`<`mΩ`, Ψ2 := ∪Lm`=`mΩ`, and Ψ3 := ∪`>LmΩ`. Since ξk ∈ Ψ1,

implies |fΨ1(w)| < ε‖f̂‖1 by applying Lemma 3.8 (ii), i.e., fΨ1(wj) can be approximated
by zero. Regarding the most interesting part of the approximation, the computation
of fΨ2(wj). The decomposition of K̃ in (3.7) yields

F� K̃ =
(
FXm,Ω` � LYmKYm,Ω`

(
LΩ`
)>)M−1,Lm

m=1,`=`m
.

For notational simplicity, we apply Lemma 5.7 to one block row m and two (artificial)
block columns ` = 0, 1, Ψ2 := Ω0 ∪ Ω1, in(

FXm,Ω0 � LYmKYm,Ω0
(
LΩ0
)>

FXm,Ω1 � LYmKYm,Ω1
(
LΩ1
)>) f̂Ψ2

=
(
LYm � FXm,Ω0

(
diag f̂Ω0

)
LΩ0

(
KYm,Ω0

)>)
1

+
(
LYm � FXm,Ω1

(
diag f̂Ω1

)
LΩ1

(
KYm,Ω1

)>)
1

=

LYm � FXm,Ψ2

(diag f̂Ω0

)
LΩ0

(
KYm,Ω0

)>(
diag f̂Ω1

)
LΩ1

(
KYm,Ω1

)>
1.

Now, the error estimate is a straightforward consequence of Lemma 5.6. The com-
plexity estimate follows when considering the dominant computation in the second
last line H = . . . in Algorithm 7. We have M = O(log Ny1

ε
) steps in the outer

loop and q = O(log 1
ε
) right hand sides for the multiplication with the approximate

Fourier matrix F̃, whose computational needs are given below (4.64) for the BSFFT
and O(N logN) for the NNFFT, see [15].

For abbreviation, we denote Algorithm 7 as XFLT (fast Fourier transform for complex
evaluation nodes).

5.2.1 Evaluation of polynomials in the unit disk

An application for the computation of sums of the form (5.1) is the evaluation of
generalized polynomials f : C→ C,

f(z) =

M2∑
k=1

f̂kz
ξk (5.8)

at nodes zj ∈ Z := {z ∈ C : |z| ≤ 1}, j = 1, . . . ,M1, and for exponents ξk ∈ [1, N ],
N ∈ N, where we exclude the nonpositive real axis Re (zj) ≤ 0 for noninteger exponents
ξk. We write

z = e−ye2πix/N , y ∈ [0,∞), x ∈ [0, N). (5.9)
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Algorithm 7 Fast Fourier transform for complex evaluation nodes (XFLT).

Input:
ε ∈ (0, 1) . target accuracy
N ∈ N . number of sampling nodes
Ω̃ . nodes in frequency domain
Z̃ . nodes in spatial domain
f̂ ∈ CM2 . Fourier coefficients

Output:
f̃ ∈ CM1 , f̃ ≈ Cf̂

M =
⌈
log2

NyM1

ε

⌉
+ 1 . number of decompositions

q = d1
2

+ log4 1/εe . approximation rank, Laplace transform

f̃ := 0

f̃YM = F̃YM ,Ωf̂

for ` = 1, . . . ,M − 1 do

F̂Ω` :=
(

diag f̂Ω`

)
LΩ` ∈ C|Ω`|×q

end for

for m = 1, . . . ,M − 1 do
Ψ := ∪`>LmΩ`

f̃Ym = F̃Xm,Ψf̂Ψ

Ψ := ∪Lm`=`mΩ`

H := F̃Xm,Ψ
(
F̂Ω`

(
KYm,Ω`

)>)
`=`m,...,Lm

∈ C|Xm|×q

f̃Ym = f̃Ym +
(
LYm �H

)
1

end for

Due to ξk ≥ 1 the condition |zj| ≤ ε implies immediately |f(zj)| ≤ ε and yj ≤ log 1
ε

for all j = 1, . . . ,M1. We collect the associated nodes Z0 := {zj ∈ C : |zj| < ε} and

set the result f̃ ∈ CN , restricted to these nodes, to zero. Now write all nodes in polar
form (5.9), where we can assume 0 ≤ yN ≤ . . . ≤ y1 ≤ log 1

ε
. Furthermore, we denote

by Y 0 and X0 the associated nodes of the polar form of zj ∈ Z0. The only parts

which change in Algorithm 7, are the parameter M =
⌈
log2

N log 1/ε
ε

⌉
+ 1 and that the

appropriate nodes xj and yj of zj ∈ Z0 have to be excluded in the sets Ym and Xm in
the algorithm. In other words, we have to replace Ym by Ym \ Y 0 and Xm by Xm \X0

for all m = 1, . . . ,M .

Remark 5.9. Note that [1] suggests a fast algorithm for the multiplication with C
when the nodes zj are close to the unit circle. Regarding generalizations, we get a fast
algorithm for the multiplication with the adjoint matrix C∗ simply using the adjoint
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algorithms for the matrices K and A. In particular, this allows to evaluate g : C→ C,

g(ξ) =
N∑
j=1

ĝjz
ξ
j

at nodes ξk ∈ [1, N ], k = 1, . . . , N , and for given zj ∈ Z = {z ∈ C : |z| ≤ 1}
and coefficients ĝj ∈ C efficiently. Possible applications include the fast evaluation of
certain special functions when approximated as in [6] on the real line. The most general
case with kernel

e(ξ+iη)(x+iy) = eξxe−byei(ηx+ξy)

allows for efficient treatment when (ξ, η) as well as (x, y) sample a smooth contour in
C and are in appropriate ranges. Then the last term leads to a 2d sparse FFT [58, 35]
and we might apply the pointwise product idea twice.

5.3 Numerical experiments

We use the same hard- and software as described in Section 3.4. Again, we draw random
uniformly distributed coefficients f̂k ∈ [−1

2
, 1

2
]×[−1

2
, 1

2
]i, and sampling nodes xj ∈ [0, N ]

for k = 1, . . . , N , and we draw random nodes 0 ≤ yN ≤ yN−1 ≤ · · · ≤ y1 ≤ (2q−1) log 2

which ensures yj ∈ [0, log 1/ε] and M = dlog2
N log 1/ε

ε
e + 1. Figure 5.3 compares

the relative error ε1 of Algorithm 7 for uniformly distributed frequencies ξk ∈ [0, N ],
k = 1, . . . , N, and for equispaced frequencies ξk = 1, . . . , N , see Section 5.2.1.
The error of the NFFT is given by

‖F− F̃‖1→∞ ≤
4π

21/4
e−
√

2πm(
√
m+m),

where m = dq/3e denotes the approximation rank of the NFFT, see [33, page 11].
We use the default settings of the NFFT toolbox, where the Kaiser-Bessel functions
are used as ansatz functions. The error of the NNFFT can also be bounded for this
ansatz, cf. the error estimate [14, Satz 3.3] for the ansatz with Gaußkernels. For the
combination of the Laplace transform with the BSFFT, we choose the approximation
rank of the butterfly approach p = d q

2
e+ 3.

Since ‖F‖1→∞ = 1 and due to Lemmata 5.6 and 3.8, we obtain an error bound for an
arbitrary Fourier transform

‖F�K− F̃� K̃‖1→∞ ≤ 21−2q + (1 + 21−2q)‖F− F̃‖1→∞. (5.10)

The computational times of Algorithm 7 are shown in Figure 5.4. It illustrates the
combination of the Laplace transform with the BSFFT and with the NFFT or NNFFT.
In both cases all approximate algorithms have a complexity O(N logN). But still, the
constant of the BSFFT is very large.
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(a) XFLT for equispaced frequencies.
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(b) XFLT for arbitrary frequencies.

Figure 5.3: Approximation error (3.9) with respect to the local expansion degree q and
N = 214. The relative error of the BSFFT (circle), the NFFT (left, plus)
or NNFFT (right, plus) ansatz. The dashed lines represent a least squares
fit ε ≈ CK−2q to the error and the solid line in the error bound (5.10) for
the NFFT variant.
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Figure 5.4: Behavior of the computational times for fixed approximation rank q = 4
with respect to the bandwidth N , the BSFFT (plus) with a least squares fit
CN logN (dashed line), the naive computations (diamonds) with a least
squares fit CN2 (line) and the NFFT (asterisk) with a least squares fit
CN logN (dotted line), respectively.
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In our last experiments we compare [1, Algorithm 2], stated here as Algorithm 8, with
Algorithm 7 for the NFFT case. Note that the presented algorithms in [1] allows for
complex spatial and frequency nodes. These algorithms are based on a combination of
convolutions and computing FFTs. Algorithm 8 computes for a bandwidth N ∈ 2N,
a fixed real parameter A > 1, the complex nodes zj = eaje−2πibj , j = 1, . . . ,M1, with
|aj| ≤ logA

N
, bj ∈ [−1/2, 1/2], approximations ũj to the sums

uj :=

N/2∑
k=−N/2

ûkz
k
j , for j = 1, . . . ,M1. (5.11)

The error of this algorithm is bounded by ‖u − ũ‖∞ ≤ ‖u − ũ‖1 ≤ ‖û‖1(2ε + o(ε))
for the target accuracy ε, cf. [1, Theorem 2]. Note that the restriction on the nodes aj
implies a restriction to the absolute values of the complex nodes A−1/N ≤ |zj| ≤ A1/N .
This allows for the computation of the sums (5.11) via Algorithm 8 only in a concentric
band with inner radius A−1/N and outer radius A1/N . In other words, the sum (5.11)
is equivalent to compute (5.1) with

wj = bj − i
aj
2π
∈ [−1/2, 1/2]× 1

2π
[− logA

N
,
logA

N
], (5.12)

which describes only a small strip in the complex plane around the real line.
Defining ĝk := f̂ke

πik and applying some shifts to (5.1) in the settings of Algorithm 7
leads to

N∑
k=1

f̂ke
−yjke2πixjk/N = e−yj(N/2+1)e−2πi( 1

2
−
xj
N

)(N
2

+1)

N/2−1∑
k=−N/2

ĝk+N
2

+1e−yjke−2πi( 1
2
−
xj
N

)k.

Since xj ∈ [0, N ] yields (1
2
− xj

N
) ∈ [−1/2, 1/2] and aj := −yj with the previous restric-

tion and positive values 0 ≤ yj ≤ logA
N

, the last sum can be computed by Algorithm 8.
This restriction on the real part of the transform (5.1) allows for the evaluation of sums∑

k f̂kz
k
j for zj ∈ C in a small strip above the real line.

We use the oversampling parameter ν = 2 in Algorithm 8 for all numerical experi-
ments. In a first experiment, we compare the theoretical accuracy ε of the algorithms
against the numerical error ε1 for fixed bandwidth N = 1024 and a fixed parameter
y1 := logA/N . We draw coefficients f̂k ∈ [−1

2
, 1

2
]×[−1

2
, 1

2
]i and source nodes ξj ∈ [0, N ],

yj ∈ [0, logA
N

], j = 1, . . . , N , at random from the uniform distribution. Figure 5.5 shows
ε ≈ ε1 up to machine precision.
In a second experiment, we choose N = 1024 and ε = 10−8. We compare the com-
putational times of the naive evaluation (5.1), which should be constant for fixed N ,
and Algorithm 7 and Algorithm 8 with respect to the increasing width A = 10m and
m ∈ {10k : k = 1, . . . , 20} of the real part. We draw coefficients f̂k ∈ [−1

2
, 1

2
]× [−1

2
, 1

2
]i

and source nodes ξj ∈ [0, N ], yj ∈ [0, logA
N

], j = 1, . . . , N , at random from the uniform
distribution. Furthermore, the unequally Spaced Fast Laplace Transform (USFLT) is
getting unstable, in the sense that we obtain an accuracy ε1 > 10−8 of Algorithm 8 for
values A > 1070 which implies y1 > 0.1574, see Figure 5.5(b).
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Algorithm 8 Unequally Spaced Fast Laplace Transform (USFLT) ([1, Algorithm 2]).

Input:
ε ∈ (0, 1) . target accuracy
ν ∈ N, ν ≥ 2 . oversampling parameter
A > 1 . maximal exponential growth
N ∈ 2N . bandwidth parameter
{bj : j = 1, . . . ,M1} ∈ [−1/2, 1/2]M1 . complex part of spatial nodes
{aj : j = 1, . . . ,M1} ∈ [− logA

N
, logA

N
]M1 . real part of spatial nodes

û ∈ CM2 . Fourier coefficients
Output:

ũ := (ũj)
N
j=1 ∈ CN , ũ ≈ Cû with C =

(
eajk−2πixjk

)M1,N/2−1

j=1,k=−N/2

µ = 2ν−1
2νN2(ν−1)

logA+ log(1/ε) 1
νN2(ν−1)

ϕa(t) =
√

π
µ
e−

π2

µ
(t−i a

2π
)2

ϕ̂a(v) = e−µv
2+av . modulated Gaussian

Tε = 1
π

√
µ log 1

ε
+ µ2N2

4
+ (logA)2

4N2 ∼ 1
π

log(1/ε)
4N

. threshold parameter

ϕεa =

{
ϕa(t), if |t| ≤ Tε

0, otherwise.
. thresholded modulated Gaussian

M = dνNTεe

for ` = −N
2
, . . . , N

2
− 1 do

ĝl := ûl
ϕ̂0(l)

end for

for k = −νN
2
, . . . νN

2
− 1 do

Gk = 1
νN

∑N/2−1
l=−N/2 ĝle

−2πi kl
νN . computed via FFT of length νN

end for

for k = −νN
2
−M, . . . , νN

2
+M − 1 do

Hk =


Gk+νN if k < −νN

2

Gk−νN if k ≥ νN
2

Gk otherwise

end for

for j = 1, . . . ,M1 do

ũj =
∑dνNbje+M

k=bνNbjc−M Hkϕ
ε
aj

( k
νN
− bj)

end for
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Figure 5.5: The relative error ε1 is illustrated for the NFFT variant (diamond) and the
USFLT (circle) for A = 1000, y1 = logA/N , with respect to the target
accuracy parameter ε (solid line) in Figure 5.5(a) and for the fixed target
accuracy ε = 10−8 with respect to y1 := logA

N
in Figure 5.5(b), both for a

fixed bandwidth N = 1024.
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Figure 5.6: The behaviour ot the computational times for the NFFT variant (diamond),
the USFLT (circle) and the naive computation (asterisk) is illustrated for
a fixed bandwidth N = 1024 and ε = 10−8 with respect to y1 := logA

N
.

Figure 5.6(a) and for a fixed parameter A = 1000, y1 := logA
N

with respect
to the problem size N in Figure 5.6(b).

Due to the dependence of the summation parameter M on A, cf. Algorithm 8, the
computational times of the USFLT increases for increasing values A whereas the NFFT
variant is nearly constant as the naive exact computation, see Figure 5.6(a). For a fixed
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parameter A = 1000 and thus for a shrinking interval Y = [0, y1], y1 = logA
N

, the USFLT
and the NFFT approach have the same complexity rate N logN , whereat the NFFT
approach has a larger preconstant, see. Figure 5.6(b).
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Software library

The implementation of the algorithms presented in the previous chapters was an es-
sential part of this thesis. All algorithms were implemented as a MATLAB toolbox
called XFFT (eXtended fast Fourier transform). The toolbox consists of the butterfly
transforms (Algorithm 3, 5), the Laplace transform (Algorithm 1), and the Fast Fourier
transform for nonequispaced complex nodes (Algorithm 7). We give a short overview,
how to use this toolbox. For readers who are not familiar with the class concept it
is recommended to study the corresponding section of the MATLAB help, labeled as
Object-Oriented Programming. The current release version XFFT 1.0 of the toolbox
is available at http://sines.de.

under the GNU General Public License version 3 as published by the Free Software
Foundation [18].

6.1 Butterfly sparse fast Fourier transform

The butterfly sparse Fourier transform is implemented for the dimensions d = 1, 2, 3, 4.
The XFFT class consists of the main classes @sparse FFT1D for d = 1, @sparse FFT2D

for d = 2, @sparse FFT3D for d = 3, and @sparse FFT4D for d = 4. To shorten
notation, we write sparse FFT*D, where the * can be chosen as 1,2,3,4. There are some
classes called @tree1D, @tree2D, @tree3D, and @tree4D, which generate the trees of
the dyadic decompositions of the domains X and Ω, see Algorithms 2 and 4. Note that
the user must not call the tree-classes by oneself. The @sparse FFT*D generates the
tree automatically in a pre-computation step. The user has to set the properties N, MX,
MOmega, p, and option given in Table 6.1. Here MX and MOmega are the spatial and
frequency nodes X̃ and Ω̃, respectively. Moreover, the user has to ensure that the input
data fulfill the range conditions listed in Table 6.1, because there is no check for wrong
input data implemented. If we want to choose a higher approximation rank p ≥ 6 we
should use for option the property ’Ltb’ or ’Ltb*’, because these variants are more

http://sines.de
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stable, see Section 4.1.4 for details. Then we create an object of class @sparse FFT*D,

plan = sparse FFT ∗ D(MX, MOmega, p, N, option).

Afterwards we have to set the coefficient vector fhat = (f̂k)k=1,...,M2 ∈ CM2×1 and can
compute the sums f := (f(xj))

M1
j=1 in (4.1) approximatively by Algorithm 3 and 5,

respectively, by applying

f = mtimes(plan, fhat).

All available properties and methods of an object can be listed with the MATLAB
functions properties and methods,

properties(obj) or methods(obj),

and documentation is provided by the MATLAB help and doc commands, for example

help sparse FFT1D or doc sparse FFT1D.

Property Range Description

N N = 2L, L ∈ N domain parameter

MX [0, N ]M1×d sampling nodes X̃

MOmega [0, N ]M2×d sampling nodes Ω̃
p p ∈ N local expansion degree
option see Table 6.2

Table 6.1: Properties of the class sparse FFT*D for each dimension d = 1, 2, 3, 4 and
their default values.

option Description

’Mtb’ monomial-type basis, see Sections 4.1.3.1 and 4.2.3.1
’Ltb’ Lagrange-type basis, see Sections 4.1.3.2 and 4.2.3.2
’Ltb*’ Lagrange-type basis with pre-computation of the polynomials in MX.

Table 6.2: Possible types for the property option of the class sparse FFT.

Remark 6.1. In the implementation of the algorithms for d = 2, 3, 4 all matrices,
which are defined as Kronecker products in Section 4.2.3 were defined as Kronecker
products in reversed order. In this thesis we used for simplicity of notation for example
MAB =

⊗d
ν=1 MAνBν , see Section 4.2.3.1 for more details. We have with two appro-

priate permutation matrices Q,P ∈ {0, 1}pd×pd the relation for the reversed ordering
PMABQ =

⊗d
ν=1 MAd−ν+1Bd−ν+1, see [47, page 26].
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6.2 Fast Fourier transform for complex evaluation
nodes

The XFFT class consists of the main class @XFLT, which includes the fast Laplace
transform, Algorithm 1, to compute

fj :=

M2∑
k=1

f̂ke
−yjξk , j = 1, . . . ,M1. (LT)

Furthermore, it includes Algorithm 7, the Fast Fourier transform for nonequispaced
complex nodes, to compute sums of the form

fj :=
N−1∑
k=0

f̂ke
2πikj/Ne−yjk, j = 0, . . . , N − 1, (FFLT)

fj :=
N∑
k=1

f̂ke
2πikxj/Ne−yjk, j = 1, . . . ,M1, (NFLT)

fj :=

M2∑
k=1

f̂ke
2πiξkxj/Ne−yjξk , j = 1, . . . ,M1, . ((BSFLT) or (NNFLT))

For more details, we refer the reader to the previous chapters. The first input parameter
will set the form of the transform, (FLT), (NFLT), (BSFLT) or (NNFLT). The possible
transforms are listed in Table 6.3.

transform, Ftype Description

’LT’ Laplace transform
’FFLT’ fast Fourier Laplace transform
’NFLT’ nonequispaced fast Fourier Laplace transform
’BSFLT’ butterfly sparse fast Fourier Laplace transform
’NNFLT’ nonequispaced fast Fourier Laplace transform in spatial

and frequency domain

Table 6.3: Possible transforms.

For each transform, the following values have to be set. First, the user has to set
sampling nodes MY= (y1, . . . , yM1) ∈ [0,∞)M1 in ascending order. Furthermore, the
user can choose between the target accuracy ε or the approximation rank q of the
Laplace transform. Finally the sampling nodes MOmega= (ξ1, . . . , ξM2) ∈ [0,∞)M2 has
to be set in ascending order, too. For the Laplace transform, you can initialize the
plan for fixed target accuracy epsilon by

plan=XFLT(’LT’,MY,’accuracy’,epsilon,’MOmega’,MOmega)

or for a fixed approximation rank q by

plan=XFLT(’LT’,MY,’rank’,q,’MOmega’,MOmega).
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The computation of f = (fj)j=1,...,M1 is done by the function call

f=mtimes(plan,fhat),

where fhat = (f̂k)k=1,...,M2 . For the NFLT and NNFLT the NFFT software library is
needed, see [33] and

http://www-user.tu-chemnitz.de/~potts/nfft/.

For an arbitrary plan, the ’Ftype’ have to been choosen by possible values listed
in Table 6.3. Moreover, the optional input arguments varargin are listed for each
transformation in Table 6.4. The plan can be initialized by

plan=XFLT(Ftype,MY,option,value,varargin),

where option has to be set as ’rank’ or ’accuracy’ with the appropriate value q ∈ N
or epsilon ∈ (0, 1), respectively.

Ftype Ftype Property Range Description

LT ’MOmega’ (ξ1, . . . , ξM2)> ∈ [0, N ]M2 , frequency nodes
ξ1 < · · · < ξM2

FFLT everything is automati-
cally set

NFLT ’N’ N ∈ N length of the NFFT
’MX’ (x0, . . . , xN−1)> ∈ [0, N ]N spatial nodes
’libdir’ path NFFT library directory

BSFLT ’N’ N = 2L, L ∈ N domain parameter
’MX’ (x1, . . . , xM1)> ∈ [0, N ]M1 spatial nodes
’MOmega’ (ξ1, . . . , ξM2)> ∈ [0, N ]M2 , sampling nodes in fre-

quency domain
ξ1 < · · · < ξM2

’BSFFTrank’ p ∈ N local expansion degree

NFFLT ’N’ N = 2L, L ∈ N domain parameter
‘MX’ (x1, . . . , xM1)> ∈ [0, N ]M1 spatial nodes
’MOmega’ (ξ1, . . . , ξM2)> ∈ [0, N ]M2 , frequency nodes

ξ1 < · · · < ξM2

’libdir’ path NFFT library directory

Table 6.4: Properties of the class XFLT and their default values.

http://www-user.tu-chemnitz.de/~potts/nfft/
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Conclusion

In this thesis, we treated the computation of transforms with asymptotically smooth
and oscillatory kernels. Recently, the butterfly approximation scheme and hierarchical
approximations have been proposed for the efficient computation of integral transforms
with oscillatory and with asymptotically smooth kernels.

In the first part of this thesis, we summarized and slightly improved the fast discrete
Laplace transform [46] in a modern form including a generalization to asymptotically
smooth kernels.

The second part of this thesis concerns the butterfly approximation scheme, which has
been used for the development of a fast Fourier transform for sparse data [2, 58] which
takes O(Nd−1 logNpd+1) floating point operations for d ≥ 2, M1 = M2 = O(Nd−1),

well distributed sampling sets Ω̃, X̃ on smooth (d − 1)-dimensional manifolds, and a
local expansion degree p ∈ N. We presented a rigorous error analysis of this algorithm,
showing that the local expansion degree grows at most as p ≈ | log ε| + logN and
thus gave a complexity estimate for the scheme. Moreover, we showed theoretically
as well as numerically that the original approach becomes numerically unstable if a
large local expansion degree is used. We developed a stable variant by representing all
approximations in a Lagrange type basis. One drawback of the butterfly sparse fast
Fourier transform is a very huge pre-constant in the complexity. A further reduction in
absolute computing time is necessary for real applications. A possible solution might
be the parallelization of the butterfly scheme as done in [44].

Finally, we combined the Laplace transform with the Fourier transform in a purely
algebraic fashion where we used the decomposition of the Laplace transform explicitly
and a small number of generalized fast Fourier transforms as black box. This allows
for a fast Fourier transform with nonequispaced nodes in the upper half plane. In this
situation, the butterfly Fourier transform could be replaced by the nonequispaced fast
Fourier transform which is both asymptotically as well as with respect to actual com-
putation times faster. The Laplace transform as well as the fast Fourier transform for
complex spatial nodes are presented in the univariate case but they can be generalized
in a straightforward manner with tensor decompositions. The here presented algorithm
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is applicable for the evaluation of polynomials at many complex nodes in the unit disc,
whereas the algorithm presented in [1] allows only the evaluation of complex nodes
z in a small annulus A−1/N ≤ |z| ≤ A1/N , where N describes the polynomial degree
and A > 1. Furthermore, our idea will also lead to a Fourier transform for samples
X̃ and Ω̃, both on a smooth contour in C with appropriate ranges for the spatial and
frequency domain, see Remark 5.9. This issue is not treated in detail in this thesis and
remains subject to future work.
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