
Scheduling of flow shops with synchronous
movement

Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)
des Fachbereichs Mathematik und Informatik

der Universität Osnabrück

vorgelegt
von

Dipl. Math. Stefan Waldherr

31. Juli 2015

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich in den vier Jahren der
Promotion unterstützt haben.

Mein besonderer Dank gilt Prof. Dr. Sigrid Knust für ihre ausgezeichnete und auf-
opferungsvolle Betreuung und die mir gegebene Möglichkeit an diesem interessanten Thema
in einem angenehmen Umfeld zu arbeiten. Sie unterstützte mich enorm in allen or-
ganisatorischen und fachlichen Angelegenheiten und war maßgeblich für den reibungslosen
Ablauf der Kooperation mit dem in dieser Arbeit vorgestellten Praxispartner verant-
wortlich. Ihre zahlreichen wertvollen Anregungen trugen immens zum Gelingen dieser
Arbeit bei.

Weiterhin danke ich allen Kollegen und Studenten, durch die ich in ergiebigen Gesprächen
wertvolle neue Ideen entwickeln konnte. Insbesondere danke ich Jana Lehnfeld für ihre
große Hilfe beim Korrekturlesen der vorliegenden Arbeit.

Ebenfalls bedanke ich mich bei meinen ehemaligen studentischen Hilfskräften Sven Boge,
Sebastian Brockmeyer und Matthias Kampmeyer für ihre Hilfe beim Implementieren der
in dieser Arbeit vorgestellten Algorithmen.

Großer Dank gebührt meinen Eltern, Georg und Ute, dafür dass sie es mir meine schulische
und universitäre Ausbildung ermöglicht und mich in allen Lebenslagen unterstützt haben.

Herzlich möchte ich mich bei allen Freunden bedanken, die mir immer ein großer Rückhalt
waren und mir immer eine ausgezeichnete Ablenkungen von meiner Arbeit beschert haben.
Ganz besonderer Dank gilt meiner Verlobten Anna, deren Liebe und Unterstützung mir
in den letzten Jahren immer ein großer Rückhalt war. Auch für ihre Unterstützung beim
Korrekturlesen der Arbeit bedanke ich mich herzlich.

Contents

1 Introduction 1

2 Problem description 7
2.1 Flow shop scheduling . 7

2.1.1 Flow shops with blocking or no-wait constraints 8
2.1.2 Flow shops with dominating machines 10

2.2 Flow shops with synchronous movement . 12
2.3 Synchronous movement and dominating machines 15

2.3.1 Synchronous movement with one dominating machine 16
2.3.2 Synchronous movement with two dominating machines 17

2.4 Possible extensions . 19
2.4.1 Idle jobs . 20
2.4.2 Job splitting . 21
2.4.3 Resources . 23
2.4.4 Circular production and changeover times 23
2.4.5 Order scheduling . 26

3 Complexity 27
3.1 Classical flow shop . 27
3.2 Synchronous flow shops . 27
3.3 Synchronous flow shop with dominating machines 33

3.3.1 One dominating machine . 33
3.3.2 Two dominating machines . 41

3.4 Extensions . 48
3.4.1 Idle jobs . 48
3.4.2 Job splitting . 50
3.4.3 Resources . 54
3.4.4 Changeovers . 55
3.4.5 Order scheduling . 58

3.5 Summary . 59

4 Exact methods 61
4.1 Gilmore and Gomory’s algorithm for F2|synmv|Cmax 62
4.2 Mixed integer linear programming . 65

v

vi CONTENTS

4.2.1 The basic model . 65
4.2.2 Makespan minimization for two dominating machines 67
4.2.3 Extensions . 69

4.3 Branch and bound . 73
4.4 Lower Bounds . 74

4.4.1 Makespan . 74
4.4.2 Maximum lateness . 84
4.4.3 Total completion time . 85

5 Heuristic methods 89
5.1 Constructive heuristics . 90

5.1.1 Makespan . 90
5.1.2 Maximum lateness . 96
5.1.3 Total completion time . 99

5.2 Improvement Heuristics . 100
5.2.1 Local search for general synchronous flow shops 100
5.2.2 Tabu search for two dominating machines 102

5.3 Asynchronous teams . 103
5.3.1 Introduction to asynchronous teams 103
5.3.2 Asynchronous teams for synchronous flow shops 105
5.3.3 Asynchronous teams for synchronous flow shops with resources and

changeovers . 105

6 Practical application 107
6.1 Problem description . 107
6.2 Formal definitions . 108
6.3 Solution approach . 110

7 Computational results 115
7.1 Generated test sets . 115

7.1.1 Makespan . 116
7.1.2 Maximum lateness . 134
7.1.3 Total completion time . 139

7.2 Practical application . 146

8 Conclusion 151

References 154

Chapter 1

Introduction

Scheduling problems have been a very important subject in combinatorial optimization for
a long time. In general, a scheduling problem consists of finding a schedule for a number of
tasks which need to be completed. If costs and payoffs are associated with schedules, the
goal is to find a schedule which maximizes the payoff. In machine scheduling, tasks relate
to the assembly and processing of products. The production process can be affected by a
vast number of constraints: the available number and type of machines; limits in resources
and workforce; or constraints that are enforced by the products, machines or the particular
work process.

With increased flexibility in production, the importance of machine scheduling increases
as well. Nowadays, customers expect a high product diversity. This leads to a shift away
from mass production, where one product is manufactured in a single variant, to the
newer paradigm of mass customization. The goal of mass customization according to
Joe Pine, one of its first analysts, is “developing, producing, marketing, and delivering
affordable goods and services with enough variety and customization that nearly everyone
finds exactly what they want” (Pine, 1999, p. 44). This wish for diversity forces companies
to steadily increase their product variety, for instance by manufacturing one basis product
in a high number of variants. An example of this can be found in the automobile industry:
Stautner (2001) describes that BMW can theoretically offer up to 1032 variants of its cars,
several thousand of which are actually ordered. This trend also reaches out to other areas
like electronics, clothings and furniture manufacturing. In Chapter 6 we will take a look at
a company manufacturing shelf boards for kitchen elements which offers over a thousand
variants of its shelf boards.

Since in mass production only a single variant was produced, no further considerations
had to be given to the sequence of products to be assembled. Neither changeover times nor
product-specific sequence dependencies had to be taken into account. When producing a
high variety of a basis product, however, reconfigurations may be necessary and production
times may vary drastically between variants. Depending on the types of sequence depen-
dencies and the costs in time of switching from one variant to another, two philosophies of
manufacturing stand in contrast to mass production of a single product:

1

2 CHAPTER 1. INTRODUCTION

One possibility is to manufacture similar product variants in batches and to reconfigure
all workstations after the production of each batch. This is of interest in production lines
where changeover between different variants comes at high costs or when one machine can
process several products simultaneously. Consider for example a company that bottles
different beverages and a change in production requires intense cleaning of the whole pro-
duction units such that no traces of the previous product can be found in the succeeding
product. See, e.g., Potts and Kovalyov (2000) for a survey in batch scheduling.

On the other hand, if variants of a basis product are very similar to each other and no
complicated reconfiguration of machines is necessary, they can be produced in an arbitrary
sequence in mixed model lines. Processing times on each workstation may vary and thus
finding a sequence to minimize the total production time is of importance. Within this
work we will focus on mixed model lines. In the following we will present the production
system in the scope of this thesis. We will introduce the machine environment and discuss
the transportation of products within the production process.

The machine environment

Traditionally, automated production systems are of great importance in industry. Therein,
required work pieces move along a conveyor belt or some other underlying transportation
system between distinct workstations until the product is assembled completely. Work
pieces can either be fixed directly to the conveyor belt or be transported in work piece
carriers. The workstations are equipped with dedicated specialized machines or human
workforce which work on the material in several operations. Each of these operations
requires a certain amount of time, not only depending on the distinct operations but on
the variant of the product to be manufactured as well.

In this work we will focus on production processes in which all products are manu-
factured via the same fixed sequence of workstations. In the scheduling literature, such
a sequential process is called a flow shop, an example of a flow shop with three worksta-
tions can be seen in Figure 1.1. Each product moves along the conveyor belt from one
workstation to the next until it is completely assembled.

According to Groover (2007), automated production systems can be classified into three
distinct system configurations:

1) In-line configurations, which consist of a sequence of stations in a straight line (Figure
1.1).

workstation 2 workstation 3

conveyor belt

workstation 1

Figure 1.1: An assembly line with three workstations in a flow shop

3

2) Segmented in-line configurations, which consist of a sequence of straight line segments
that are usually perpendicular to each other (Figure 1.2).

work piece insertion

work piece carrier

workstation 1 workstation 2 workstation 3

work piece
removal

Figure 1.2: Segmented in-line configuration forming a rectangle

3) Rotary configurations, where workstations are located around a circular transporta-
tion system (Figure 1.3). This configuration is similar to a segmented in-line config-
uration where the lines form a rectangle.

work piece insertion

work piece
removal

work piece carrier

workstation 1

workstation 2

workstation 3

workstation 4

workstation 5

workstation 6

Figure 1.3: Rotary configuration

Groover states that “by comparison with the in-line and segmented in-line configura-
tions, rotary indexing systems are commonly limited to smaller workparts and fewer work-
stations, and they cannot readily accommodate buffer storage capacity. On the positive
side, the rotary system usually involves a less expensive piece of equipment and typically
requires less floor space.” (see Groover, 2007, p. 467-468).

It often occurs that certain steps of the production process take considerably longer
time than others. In this case we will say that these steps dominate the process and refer to
the corresponding workstations which are involved in these steps as dominating machines.

4 CHAPTER 1. INTRODUCTION

Transportation of products

It is integral to consider the underlying production system when scheduling the sequences
in a flexible manufacturing environment that produces a high variety of products. This
is especially true for mixed model lines in which processing times may vary a lot between
variants. A very interesting aspect therein lies in the transportation between individual
workstations. According to Boysen et al. (2008), movement of work pieces along an assem-
bly line can be classified into paced and unpaced systems.

Within a paced system the conveyor belt moves at a constant rate between workstations.
Machines or human workers either remove the work pieces from the conveyor system and
replace them after their respective operation is completed, or they move along the conveyor
belt and work on the product during movement. In contrast, within an unpaced production
system work pieces are transported from one workstation to the next when processing of
the product on the workstation is completed.

Unpaced production systems can be further classified into synchronous and asyn-
chronous systems. In asynchronous systems, a product moves from one workstation to
the next immediately after the operation on the former workstation is completed. How-
ever, transportation of a product to the next workstation may not be possible because the
succeeding station still being blocked by another product. One possibility to solve this
problem is to include buffers which, however, may not always be achievable due to space
limitations.

In synchronous systems, all products may only advance from their current workstation
to the next when operations on all workstations are completed. For example, this is the case
when there is only one conveyor belt and products can not be removed from the conveyor
system during the production process. Sequencing of paced and unpaced asynchronous
assembly lines is a well discussed topic in the literature (see e.g. Boysen et al. (2008) and
Boysen et al. (2009)). Also, most works on flow shops only consider cases with asynchronous
transportation. On the other hand, unpaced synchronous assembly lines are considered
rather scarcely. Within this thesis we will consider flow shop production systems with
unpaced and synchronous movement.

In production processes with synchronous movement, dominating machines are of even
greater importance as due to the nature of the system, movement only takes place as soon
as all current operations are completed. In these instances, dominating machines determine
the pace of the whole process. As a result, the complexity of scheduling the production
process may decrease when dealing with machine dominance.

Thesis outline

This thesis presents a thorough introduction and analysis of scheduling of flow shops with
synchronous movement. Despite a big prevalence of synchronous production lines in the
industry, only very little work has been published on this topic. Furthermore, most results
only cover the problem on a very elementary level or assume further constraints that are
defined by the studied application. In this thesis flow shops with synchronous movement
are systematically embedded into the flow shop scheduling framework. The problem is
concisely defined for the most common objective functions as well as for many extensions

5

and additional constraints that can be observed in real world applications. The thesis offers
an exhaustive study of complexity and settles the status of a big amount of the discussed
problems. Several exact and heuristic solution algorithms are proposed and extensively
evaluated.

The remainder of this thesis is structured as follows. In Chapter 2 we will give a
formal description of flow shops with synchronous movement. The problem is defined and
discussed for several objective functions, most notably the minimization of the makespan,
the minimization of the maximum delay from due dates and the total completion time.
Due to practical motivation, special cases depending on dominating machines and further
additional constraints are investigated as well. In Chapter 3 the computational complexity
to find optimal schedules for flow shops with synchronous movement considering various
objective functions as well as the defined special cases are analyzed. Chapters 4 and
5 present exact and heuristic methods to find (near-) optimal solutions for flow shops
with synchronous movement. Chapter 6 thoroughly describes a project in cooperation
with a practitioner where flow shops with synchronous movement and resource constraints
appear in a real world application and compares the implemented heuristic approach with
the actual production of the industrial partner. Computational results for the approaches
described in this thesis are presented in Chapter 7. Chapter 8 concludes the thesis, reciting
the main results and stating open questions in the area of flow shops with synchronous
movement.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Problem description

In this chapter we will give a formal description of flow shops with synchronous movement
and dominating machines. In Section 2.1 we will introduce classical flow shop scheduling
based on Brucker (2007) and Pinedo (2012), describing the basic structure and the most
prevalent constraints considered in the literature. Thereafter, in Section 2.1.1 we will
focus on problems closely related to the ones considered within this work, describe the
notion of dominating machines in Section 2.1.2 and discuss synchronous movement in
Section 2.2. In Section 2.3 we will discuss the effects of dominating machines on flow shops
with synchronous movement in more depth, classifying them depending on the number
and position of the dominating machines. Finally, in Section 2.4 some extensions to flow
shops with synchronous movements will be considered, particularly the effects of circular
production systems and resource constraints.

2.1 Flow shop scheduling

A flow shop consists of m machines M1, . . . ,Mm and a set J of n jobs, where each job
j consists of m operations O1j , O2j , . . . , Omj . Operation Oij has to be processed without
interruption on machine Mi for pij time units and operation Oij may not start before
operation Oi−1,j is completed. A schedule of a flow shop consists of an allocation of jobs
to machines in such a way that each machine processes at most one job at the same time
and each job is processed on at most one machine at the same time. If at any given time a
machine does not process a job, the machine is called idle. The time at which operations
of a job j have been completed on all machines so that the job can leave the system is
called its completion time Cj .

Graham et al. (1979) introduced an α|β|γ-classification scheme for scheduling problems.
The α-field specifies the machine environment and the number of machines, the β-field the
underlying job and machine characteristics and the γ-field the objective function to be
optimized. Within this scheme, a flow shop with characteristics β and objective function
γ is described by F |β|γ. In the following, we will briefly discuss some of the more contem-
plated job characteristics. The characteristics of flow shops with synchronous movement
will be discussed in Section 2.2.

7

8 CHAPTER 2. PROBLEM DESCRIPTION

• Due dates and release dates. For each job j = 1, . . . , n we may be given a due
date dj , i.e. a date until when the job should be completed. If a job is completed after
its due date, the job is called late, otherwise it is called early. We define the lateness
of a job j by Lj = Cj − dj and its tardiness by Tj = max (0, Cj − dj). Further, we
define a binary variable Uj , which is set to 1 iff the job is late. In addition, jobs may
also have release dates rj , indicating that operation O1j may not start prior to this
date rj .

• Permutation flow shop. In a permutation flow shop the jobs have to processed in
the same order on all machines. Then, a schedule can be represented by a permutation
(or sequence) σ = (σ1, . . . , σn) of the jobs in J . The schedule can be constructed by
starting each operation Oi,σk as soon as possible after the completion of operation
Oi,σk−1

when machineMi is free. We refer to this schedule as the left-aligned schedule
for the sequence σ.

• Blocking and no-wait flow shop. In a no-wait flow shop, for all jobs j operation
Oij must start immediately after operation Oi−1,j is completed. Within a blocking
flow shop no job may be processed on a machine Mi for i < m if the preceding job
has not been transferred to the next machine Mi+1. We will discuss blocking and
no-wait flow shops in more detail in Section 2.1.1. Note that no-wait and blocking
flow shops are permutation flow shops by definition.

• No (machine) idle times. This constraint prohibits idle time between consecutive
operations on all machines. As soon as the operation Oij starts on machine Mi for
the first job j, the machine has to process all operations of all jobs for the next

∑
j pij

time periods.

• Preemption. In the default case, preemption of jobs is not allowed, i.e. once
operation Oij starts on machine Mi for job j, the job has to be processed on that
machine for the total of pij time units. If preemption is allowed, the operation may be
interrupted at any time and resumed later. While an operation is being preempted,
a different operation may be executed on this machine.

Throughout this work we will restrict ourselves to permutation flow shops without
preemption. Further, release dates will not be of importance and we will only consider due
dates when discussing objective functions that take into account the lateness of individual
jobs. Table 2.1 shows the objective functions that will be considered within this work
as well as their corresponding notation used in the γ-field of the scheduling classification
scheme.

2.1.1 Flow shops with blocking or no-wait constraints

In a no-wait flow shop, operation Oij of a job j ∈ J on machine Mi for i > 1 must start
immediately after operation Oi−1,j is completed. Examples for production processes with
a no-wait constraint arise in metal and chemical processing where the material must be
kept at a constant temperature and condition and thus the whole work processes must be

2.1. FLOW SHOP SCHEDULING 9

γ optimization target
Cmax Minimize the makespan of the schedule, i.e. the completion time of the

last job to be processed.
Lmax Minimize the maximum lateness Lmax = maxj Lj .∑
Uj Minimize the number of late jobs.∑
Tj Minimize the total tardiness (also called sum of tardiness or mean tar-

diness).∑
Cj Minimize the total completion time (also called sum of completion times

or mean completion time).
There may be a weight wj defined for each job j, indicating its impor-
tance. In this case, objective functions

∑
wjUj ,

∑
wjTj ,

∑
wjCj may

describe the minimization of the weighted sums, respectively.

Table 2.1: Considered objective functions for scheduling problems

executed without interruption. To achieve this, machine Mi must be able to process job j
as soon as operation Oi−1,j on machine Mi−1 is completed for all i > 1. Thus, idle times
on early machines may occur, as they may not start processing the next job because a
succeeding machine would not be available in time. This situation is depicted in Figure
2.1: Operation O1,4 of Job 4 could start on machine M1 immediately after job 3 has been
moved to the next machine, but this would lead to a conflict on machine M3 because of
the large processing time of job 3 on machine M3. Thus, start of operation O1,4 has to
be delayed until it is made sure that all succeeding operations can be executed without
waiting.

M1

M2

M3

4

4

4

5

5

5

3

3

3

1

1

1

2

2

2

0 5 10 15 20

Figure 2.1: Schedule adhering to the no-wait constraint

Another case in which idle times may occur is when machines are blocked. In the
default flow shop case an unlimited buffer is assumed between all pairs of machines and
thus after an operation is completed on a machine, the respective job may be removed
from the machine and stored until it can be processed on the next machine. The operation
of the succeeding job may start immediately afterwards. However, in practice the space
and thus the buffer may be limited and a job can only be transported to the next machine.
If the preceding job is still being processed on the next machine, the machine is blocked

10 CHAPTER 2. PROBLEM DESCRIPTION

and the job can not be transported. This may lead to backlog, as the job that can not be
transported now also blocks its current machine and so forth.

Example 2.1. To demonstrate the notions of no-wait and blocking flow shops we consider
the following example of a flow shop with three machines.

j 1 2 3 4 5

p1j 3 1 3 5 3
p2j 1 3 2 1 1
p3j 1 1 5 5 1

Figures 2.1 and 2.2 show optimal solutions to the problems F3|no-wait|Cmax and
F3|blocking|Cmax, respectively. As can be seen, the schedules differ in the permutation of
jobs and their objective values. While in the no-wait flow shop the permutation (3, 4, 2, 1, 5)
is best with a makespan of 20, within the flow shop without buffers the jobs can be scheduled
optimally in order (2, 3, 4, 1, 5) resulting in a makespan of 18.

M1

M2

M3

4

4

4

5

5

5

3

3

3

1

1

1

2

2

2

0 5 10 15 20

Figure 2.2: Schedule adhering to the blocking constraint

For only two machines, the blocking and no-wait constraints lead to equivalent prob-
lems, see e.g. Pinedo (2012). Flow shops with no-wait and blocking constraints have been
an active topic in the literature for a long time, see e.g. Hall and Sriskandarajah (1996)
for an early survey. Interesting cases also occur when the blocking or no-wait constraint
is only active between two adjacent machines within a larger flow shop or when blocking
and no-wait constraints are mixed.

2.1.2 Flow shops with dominating machines

In accordance to Adiri and Pohoryles (1982), Monma and Rinnooy Kan (1983) and Ho
and Gupta (1995) we say that a machine Mk dominates Ml (denoted Mk ·> Ml) whenever

min
j
pkj ≥ max

j
plj ,

i.e. the smallest processing time of any job on machine Mk is at least as large as the
largest processing time of any job on machine Ml. Adiri and Pohoryles further introduced

2.1. FLOW SHOP SCHEDULING 11

the notions of increasing and decreasing series of dominating machines, indicated by idm
or ddm in the β-field of the classification scheme. In these cases for the m machines either

M1 <·M2 <· · · · <·Mm

or

M1 ·> M2 ·> · · · ·> Mm

holds. Within their work, they discussed both series of dominating machines in flow shops
with no-idle time and no-wait constraints. Čepek et al. (2002) showed that there exist
polynomial time algorithms for any regular objective function for no-idle time and no-wait
flow shops with an increasing or decreasing series of dominating machines. For classical
flow shops without no-idle time or no-wait constraints, Ho and Gupta provided polynomial
time algorithms for several objective functions when there is an increasing or decreasing
series of dominating machines. Xiang et al. (2000) discussed series of dominating machines
which are increasing-decreasing (idm-ddm) or decreasing-decreasing (ddm-idm), i.e. in
which there is a machine Mk, such that

M1 <·M2 <· · · · <·Mk−1 <·Mk ·> Mk+1 ·> . . . ·> Mm

or

M1 ·> M2 ·> · · · ·> Mk−1 ·> Mk <·Mk+1 <· . . . <·Mm

holds. Wang and Xia (2005) then discussed no-idle and no-wait flow shops with series of
machines that are increasing-decreasing.

There exist various other notions of machine dominance in the literature. Additionally
to the definition given above, Monma and Rinnooy Kan discuss variants in which machine
Mk dominates Ml if there exists an integer q such that the sum of every q processing
times on machine Mk is larger than the sum of every q processing times on machine Ml,
which is a generalization that covers the former definition with the case q = 1. Van den
Nouweland et al. (1992) call a machine Mk dominant if

∑r
l=k plj ≥

∑r
l=k p(l+1)j holds for

r = k, . . . ,m−1 and
∑k

l=r plj ≥
∑k

l=r p(l−1)j holds for r = 2, . . . , k. Čap et al. (2005) refer
to this notion of dominance as “weak dominance” in comparison to the “strong dominance”
of a dominating machine in an increasing-decreasing series of dominating machines in
the definition above. They further showed that strong dominance always implies weak
dominance.

Within this work, we generalize this definition of machine dominance. We call a set
{Mi|i ∈ I} of machines dominating if

min
j
i∈I

pij ≥ max
j

h/∈I

phj ,

12 CHAPTER 2. PROBLEM DESCRIPTION

i.e. the set of machines dominates all other machines but there is no further dominance
within the set. If the set {Mi|i ∈ I} describes a set of dominating machines, we will use the
notation ’dom(I)’ in the β-field of the scheduling classification scheme. For short, we will
also write ’dom (k1, . . . , kl)’ instead of ’dom ({k1, . . . , kl})’ to denote dominating machine
with indices k1, . . . , kl.

There are two possibilities for the processing times on non-dominating machines:

• The processing times on the non-dominating machines are arbitrary values, or

• the processing times on the non-dominating machines are job-independent, i.e. pij =
pi for all j and all i /∈ I.

Job-independent processing times in the second case may be present in practice where
non-dominating machines resemble work processes like insertion or removal of work pieces
that have the same processing time regardless of the actual job. Even if times are not
exactly equal, the difference between individual processing times might be negligible in
practice and assuming a constant time may simplify the problem without causing a large
error.

Other concepts of dominance that are different from the above definition can be found
in the literature. Instead of stating that the processing times of a process on one machine
are larger than the processing times of any other process on other machines, it may be
that the processing time on one machine is the largest processing time of each job. Smith
et al. (1975) discussed ordered flow shops, in which the processing times of all jobs are
distributed the same way, i.e. for all r and for all jobs the r-th largest processing time
is on the same machine and further, if for two jobs, i, j, the processing time of job i is
smaller than the processing time of job j on one machine Mk, it is smaller on all machines.
Achugbue and Chin (1982) proposed the less restrictive notion of j-minimal (j-maximal)
jobs, in which the j-th processing time of a job is at most (at least) as large as the other
processing times. While we do not focus on these concepts in this thesis, we include them
here for completeness.

2.2 Flow shops with synchronous movement

A flow shop with synchronous movement is a variant of a non-preemptive permutation flow
shop that was described in the previous section. All transfers of jobs from machines Mi to
machine Mi+1 for i = 1, . . . ,m − 1 take place at the same time. Therefore, an operation
of a job on the next machine may only start after all current operations of the jobs are
completed on all machines, i.e. after the maximal processing time of the jobs that are
currently processed. If the processing time for a job on a certain machine is smaller than
this maximum, the corresponding machine is idle until the job may be moved to the next
machine. In the following we will use the notions ”flow shop with synchronous movement”
and ”synchronous flow shop” interchangeably.

2.2. FLOW SHOPS WITH SYNCHRONOUS MOVEMENT 13

Example 2.2. Let us revisit Example 2.1 with three machines and five jobs:

j 1 2 3 4 5

p1j 3 1 3 5 3
p2j 1 3 2 1 1
p3j 1 1 5 5 1

M1

M2

M3

4

4

4

5

5

5

3

3

3

1

1

1

2

2

2

0 5 10 15 20

Figure 2.3: Example of a flow shop with synchronous movement

Figure 2.3 shows a schedule for the sequence (3, 4, 2, 1, 5). The vertical lines show when
transfer of jobs to the next station takes place. Because of the synchronous movement
constraint, the third operation of job 3 can not start immediately after the completion of
the second operation as the job is only transfered to machine M3 when the first operation of
job 4 is completed on machineM1. Similarly, there is a large idle time on machineM1 after
the completion of job 2 on machine M1 as all transfers have to wait until the completion of
job 3 on machine M3. Figure 2.4 shows a schedule for the permutation (3, 1, 4, 2, 5) with
an optimal makespan of 19.

M1

M2

M3

4

4

4

5

5

5

3

3

3

1

1

1

2

2

2

0 5 10 15 20

Figure 2.4: A schedule with optimal makespan

Flow shop scheduling with synchronous movement was first introduced by Soylu et al.
(2007). The authors discussed complexity results and presented approaches to minimize
the makespan. In Huang and Hung (2010) and Huang (2008), the notation ’synmv’ in
the β-field of the scheduling classification scheme was introduced to indicate synchronous
movement in flow shops. In line with prior work we will refer to the time period between

14 CHAPTER 2. PROBLEM DESCRIPTION

two synchronous movements as a cycle of the synchronous flow shop and index the cycles
starting from cycle 1 (when the first job is processed on machine M1) to cycle n+m− 1
(when the last job is processed on machine Mm). There exist two possibilities of when
to call a job completed, either when the cycle in which the job is processed on the last
machine is completed or alternatively after its processing on the last machine is completed
(thus ignoring the idle time that might occur caused by the jobs on other machines in this
cycle). The exact completion time depends on the construction of the assembly system and
whether the completed job can be removed immediately from the last machine or whether
it can only be accessed after the cycle has completed. Within this work we will consider the
former case and consider a job completed at the end of the respective cycle. Note that we
can always transform an assembly system in which the jobs are completed as soon as their
operation on the last machine is finished into one in which the cycle has to be completed
by adding a virtual machine with processing time of 0 after the last machine.

In synchronous flow shops, jobs are often transported with the help of work piece
carriers or are attached to fixtures on the conveyor system. In some cases, the number of
work piece carriers or fixtures (and thus the number of jobs transported simultaneously)
may exceed the number of operations that need to be executed for each job. Consider
a production system with a conveyor belt that can hold four jobs but with only two
workstations at the beginning and the end of the conveyor belt, respectively (cf. Figure
2.5). After the job is processed on the first workstation it has to be moved to the second
one. However, it takes two more cycles until the job reaches the second workstation and
is processed there.

workstation 1 workstation 2

conveyor belt

Figure 2.5: Assembly line with two workstations and two cycles between the two
operations

In the production system depicted in Figure 2.5, the second operation of a job j takes
place at the same time as the first operation of the third-next job in the sequence. Thus,
the time required for a job to be transported from workstation 1 to workstation 2 depends
on the time of the next two cycles. To incorporate this case into our notation we can
perceive the intermediary cycles as two additional virtual transportation operations of the
job and as moving through two additional machines on which processing times are equal to
zero. Within our framework workstation 1 would be denoted as machineM1, workstation 2
as machine M4 and the two intermediary transport operations as the virtual machines M2

and M3, each with a processing time of zero. Without loss of generality, within this work
we will thus only consider production units in which the number of work piece carriers or
fixtures which are moved synchronously equals the number of machines.

In the next section we will discuss the effects of machine dominance on flow shops with
synchronous movement. Examples of dominated machines (or operations) may be removal

2.3. SYNCHRONOUS MOVEMENT AND DOMINATING MACHINES 15

of jobs from the production unit or the virtual transportation operations discussed in the
previous paragraph.

2.3 Flow shops with synchronous movement and dominating
machines

Machine dominance leads to a simplification of the problem. As soon as the first job is
processed on the first dominating machine, the processing times on all non-dominating
machines become irrelevant and we only have to consider the dominating machines. This
holds true until the last job is moved from the last dominating machine. In Figure 2.6
a schedule for a synchronous flow shop with only one dominating machine Mk and the
sequence (1, 2, . . . , n) is shown. For the first k− 1 cycles (before job 1 is processed on Mk)
and the last m − k cycles (after job n is processed on Mk), no job is processed on the
dominating machine. Thus, for these cycles no further machine dominance occurs and the
situation is the same as for a general synchronous flow shop without machine dominance.

M1

M2

Mk

1

1

1

2

2

2

3

3

n

... . . .

Mm−1 n

...

n− 1· · ·
. . .

Mm n

(k − 1) cycles (m− k) cycles

n− 2

n− 2

n− 1

Figure 2.6: A synchronous flow shop with one dominating machine Mk

In the case of job-independent processing times, the time required in cycles where no
job is processed on a dominating machine is constant independent of the job sequence. We
can thus simply ignore the cycles in which there is no job being processed on a dominating
machine and add a constant to all completion times. As the constant to be added does
not depend on the sequence of the jobs and the value of the constant does not affect an
optimal sequence, in this situation we may even assume that all processing times on the
non-dominating machines are the same and equal to zero. To denote this special situation,
we add ’pndomij = 0’ to the β-field.

In case of arbitrary processing times on the non-dominating machines, if the first domi-
nating machine has index k1 and the last dominating machine has index k2, we can iterate
over all possible sequences of the first k1 − 1 and the last m − k2 jobs. For all jobs in
between, the processing times on the non-dominating machines are not relevant as a job
is processed on at least one dominating machine in each of these cycles. Therefore, after
fixing the first k1 − 1 and last m− k2 jobs, a reduced scheduling problem for the remain-
ing jobs can be solved assuming zero processing times on the non-dominating machines
as explained above. Afterwards, the fixed jobs are added to the front and the end of an

16 CHAPTER 2. PROBLEM DESCRIPTION

optimal sequence of the reduced problem. Finally, the completion times of the jobs and
the objective value can be calculated from the obtained sequence.

There are O(nm−k2+k1−1) possibilities to fix the job sequences in the first k1 − 1 and
the last m − k2 cycles. Thus, if a polynomial time algorithm exists to solve the reduced
problem with zero processing times on the non-dominating machines, the problem with
arbitrary processing times can also be solved in polynomial time by trying all possible
sequences for the first and last cycles if the number of machines m is fixed.

Within this work we will classify flow shops with synchronous movement depending
on the number and positions of dominating machines. With only one or two dominating
machines, the flow shop with synchronous movement is closely related to other known
scheduling problems. We will look into this in the following sections and describe sim-
ilarities and differences. In Section 2.3.1 the case with only one dominating machine is
compared to scheduling problems with only a single machine. The main focus lies on
the difference of completion times within the two problems. In Section 2.3.2 we describe
similarities between synchronous flow shops with two dominating machines and the two-
machine no-wait flow shop.

2.3.1 Synchronous movement with one dominating machine

If in a m-machine flow shop there is only one dominating machine as seen in Figure
2.6, the synchronous flow shop F |synmv, dom (I) |γ with |I| = 1 is closely related to the
single machine problem 1||γ. Given an instance of a single machine problem with jobs
j = 1, . . . , n and processing times pj , we can transform it into a synchronous flow shop
problem with the same jobs by setting their processing times on the dominating machine
to pj and the processing times on all other machines to zero. If C1

max is the makespan of a
sequence of jobs on the single machine, the synchronous flow shop has the same makespan
CSmax = C1

max. Further, if the dominating machine is the last machine and the processing
times on the dominated machines are zero, the individual completion times of all jobs do
not differ from the completion times in the single machine problem. Thus, for |I| = 1
the problems F |synmv, dom (I) , pndomij = 0|γ and 1||γ are equivalent if the dominating
machine is the last machine and processing times on the dominated machines are zero.

On the other hand, if the dominating machine is not the last machine, the problems
are no longer equivalent. The completion time of the last job in a sequence and thus the
makespan are still the same when the processing time on the dominated machines are zero.
However, the completion times of other jobs within the sequence cannot be determined that
easily. Let C1

j be the completion time of job j in the single machine problem. Consider
a synchronous flow shop with a single dominating machine Mk . Then, the end of the
processing on machine Mk for a job j is equal to C1

j in the synchronous flow shop, but the
completion time CSj of job j in the synchronous flow shop is determined by the length of the
next m− k cycles, i.e. the processing times of the next m− k jobs in the sequence. Figure
2.7 depicts this situation in a synchronous flow shop with six machines where machine M4

is dominating and the processing times on the dominated machines are zero. While the
completion time C1

2 of job 2 in the corresponding single machine problem is equivalent to
the completion time of the cycle in which job 2 is processed on the dominating machine,

2.3. SYNCHRONOUS MOVEMENT AND DOMINATING MACHINES 17

its completion time in the synchronous flow shop is two cycles later. Thus, the completion
time CS2 differs from C1

2 by the sum of the processing times of jobs 3 and 4. In Section
3.3.1 we will discuss whether this makes any difference for schedules when the objective
function is minimizing the number of late jobs or the total completion time.

M1

M2

M3

M4

M5

M6

CS
2

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

4

3

5

5

5

5

5

5

C1
2

Figure 2.7: Delayed completion in flow shops with additional non-dominating
machines after a dominating machine

2.3.2 Synchronous movement with two dominating machines

If there are only two machines in total, the constraints of no-wait, blocking and synchronous
movement are equivalent, see e.g. Soylu et al. (2007). A schedule that satisfies the blocking
constraint also satisfies the synchronous movement constraint and vice versa; the no-wait
constraints are satisfied when we shift the jobs on the first machine to the right for each
cycle (cf. Figure 2.8). On the other hand, the completion times of all jobs are identical when
comparing flow shops with blocking and no-wait constraints. However, since we consider
a job completing at the end of the cycle in the flow shop with synchronous movement, the
individual completion time of each job is in general neither equal to its completion time
in the no-wait or the blocking flow shop. However, the completion time of the last job is
equal in all three cases and thus an optimal solution for either of the problems

F2|no-wait|Cmax, F2|blocking|Cmax and F2|synmv|Cmax

is an optimal solution for the two other problems as well.
Further, in the case of two adjacent dominating machines with indices k1, k2 = k1 + 1

and zero times on the dominated machines, the problems F |synmv, dom (k1, k2) , pndomij =
0|Cmax, F2|no-wait|Cmax and F2|blocking|Cmax are still equivalent. Again, the individual
completion times for all jobs except the last depend on the succeeding jobs in the sequence
and can thus not be calculated this easily, similar to the case with only one dominating
machine.

18 CHAPTER 2. PROBLEM DESCRIPTION

M1

M2

1

1

2

2 3

4

4

5

5

3 M1

M2

1

1

2

2 3

4

4

5

5

3

Figure 2.8: Transformation of a schedule of the synchronous flow shop into a
no-wait schedule by shifting the jobs on the first machine to the right

If the two dominating machines Mk1 and Mk2 are not adjacent, there is no more
equivalence between the synchronous flow shop and the flow shop with no-wait constraint.
In this case an interesting effect occurs. Let 1 ≤ k1 < k2 ≤ m be the indices of the
dominating machines and σ = (σ1, . . . , σn) be a sequence of jobs. Because the length of
one cycle in the synchronous flow shop is determined by the maximum of the processing
times on those two dominating machines, the sequence splits into k2 − k1 independent
subsequences σλ for λ = 1, . . . , k2 − k1 with

σλ = σλ+µ(k2−k1) for µ = 0, . . . ,

⌊
n− λ
k2 − k1

⌋
.

These subsequences affect the lengths of disjoint cycles of the schedule and the makespan
of the whole schedule is the sum of the makespans of these subsequences, i.e. Cmax (σ) =∑

λCmax

(
σλ
)
. For example, for the synchronous flow shop F3|synmv, dom (1, 3) |f in

Figure 2.9 we have two subsequences (1, 3, 5) and (2, 4, 6). The idle times on the dominating
machines M1 and M3 for each job are only caused by the preceding (or succeeding) jobs
of the same subsequence. Figure 2.9(a) depicts the original schedule while Figure 2.9(b)
illustrates the equivalence of the three machine schedule to the corresponding two-machine
schedule of the two subsequences (1, 3, 5) and (2, 4, 6).

In the case of two dominating machines, Mk1 ,Mk2 , the problem can also be described
in form of a routing problem in a directed graph: Each job corresponds to a node in the
graph and the distance cij between two nodes corresponding to jobs i, j is defined by the
cycle time that would occur in a cycle when job i is processed on machine Mk2 and job
j is processed on machine Mk1 , i.e. the cycle time if the two jobs succeed each other in
a subsequence. To model the cycle times for cycles in which only one of the dominating
machine processes a job, i.e. the beginning and end of a subsequence, another node 0
is introduced which represents a job with processing times zero on all machines. The
distance between node 0 and another node corresponding to job j is determined by the
cycle time that occurs when j is processed on machine Mk1 (or Mk2 , respectively) and
no job is processed on the other dominating machine. Then, each subsequence σλ relates
to a tour in the graph that starts in 0 and then visits all nodes that correspond to the
respective jobs contained in the subsequence. If the two dominating machines are adjacent,
this resembles a single tour. Thus, finding an optimal schedule for a synchronous flow shop
with two adjacent dominating machines is equivalent to the well known traveling salesman
problem with the described cost structure. If the two dominating machines Mk1 ,Mk2 are
not adjacent, we are interested in finding k2 − k1 tours of length n/(k2 − k1) each (or, if

2.4. POSSIBLE EXTENSIONS 19

M1

M2

M3

1

1

1

2

2

2

3

3

4

4

43

5

5

5

6

6

6

(a) Schedule for F3|synmv, dom(1, 3)|Cmax

M1

M2

1

1

2

2

3 4

43

5

5

6

6

M1

M2

(b) Corresponding schedules of the subsequences for F2|synmv|Cmax

Figure 2.9: Flow shop with synchronous movement in which machinesM1 andM3

are dominating

n mod (k2 − k1) = l 6= 0, in finding l tours of size dn/(k2 − k1)e and (k2 − k1)− l tours of
size bn/(k2 − k1)c). This resembles a special case of the vehicle routing problem. Figure
2.10 shows the two tours that correspond to the schedule depicted in Figure 2.9.

3

5

1

0

2

6

4

Figure 2.10: Tour representation of the schedule depicted in Figure 2.9

By regarding the scheduling problem as a routing problem it is possible to use ap-
proaches that have been studied extensively for many years.

2.4 Possible extensions

The previous sections introduced the fundamental aspects of a flow shop with synchronous
movement. In this section we will look into extensions and alterations that often occur in
real world applications.

20 CHAPTER 2. PROBLEM DESCRIPTION

M1

M2

M3

1

2

1

2

Figure 2.11: Insertion of the black job with small processing times improves the
makespan of the schedule

2.4.1 Idle jobs

An interesting effect recognized by Karabati and Sayin (2003) is that within synchronous
flow shops the makespan of a schedule can sometimes be improved by adding jobs with small
or zero processing time on all machines (or similarly introducing gaps into the schedule
where no job is processed on a machine). While this may seem counterintuitive at first, it
is well justified by the characteristics of synchronous flow shops: Consider a cycle in which
all jobs that are currently processed on machinesM2, . . . ,Mm have a very small processing
time within this cycle. Inserting a job with large processing time into machine M1 leads to
a large amount of idle time on all other machines. If we instead opt to insert no job into
machine M1, the cycle time is determined by the maxima of the processing times of the
other jobs, which might be much smaller. Figure 2.11 shows an example for three machines
with two jobs 1, 2 and processing times p11 = p32 = 1 and zero processing times otherwise.
While we achieve a makespan of 2 with both possible schedules, introducing an idle job
with zero processing times on all machines allows us to decrease the makespan to 1. We
denote problems in which the introduction of idle jobs is allowed with ’idle’ in the β-field
of the classification scheme.

For a given instance the maximal number of idle jobs for which the solution can be
improved might be of interest. An upper bound is (n−1)(m−1), in which case each actual
job except for the last one is succeeded by (m−1) idle jobs. Any additional idle job would
either result in a subsequence of m successive idle jobs (leading to no gain as this results
in a cycle in which only idle jobs are processed) or be added to the end or beginning of the
schedule, both not leading to any improvement.

Example 2.3. The following instance of F |synmv, dom (1) |Lmax is an example in which
(n− 1)(m− 1) idle jobs are necessary to improve the solution. Let jobs j = 1, . . . , n have
a processing time of p1j = j, pij = 0 for all i = 2, . . . ,m. Further, set their due dates to
dj =

∑j
k=1 k. Then, the only way to achieve a schedule without any late job is to process

the jobs sorted in non-decreasing order of their due dates and to let each job except the last
one be followed by m − 1 idle jobs with processing time of zero on all machines such that
each job is completed right after it is processed on the first machine.

This bound can be improved to (n−1)(m−2) for the objective function of minimizing
the makespan, in which case each actual job except for the last one is succeeded by (m−2)
idle jobs. Consider a subsequence of m− 1 consecutive idle jobs scheduled between jobs i

2.4. POSSIBLE EXTENSIONS 21

M1

M2

M3

i

i

i

j

j

j

M4 i j

M1

M2

M3

i

i

i

j

j

j

M4 i j

Figure 2.12: Example of idle jobs in a flow shop with four machines. Removing
one of the three consecutive idle jobs between jobs i and j does not increase the
makespan of the schedule

and j. Let t be the cycle in which operation Omi is processed. As i is followed by m − 1
idle jobs, there is no further operation being processed in cycle t. Further, operation of
O1j is the only operation being processed in cycle t+ 1 as it is preceded by m−1 idle jobs.
Thus, both cycle times sum up to pmi + p1j . Removing one of the m− 1 consecutive idle
jobs improves the makespan of the schedule by pmi+p1j−max (pmi, p1j) ≥ 0 as it leads to
both operations being processed in cycle t. Thus, removing one idle job does not increase
the makespan. An example is depicted in Figure 2.12.

2.4.2 Job splitting

In some production processes it may be possible to split operations across multiple ma-
chines. This might be the case if two adjacent machines are equipped to do the same
operation and the operation can be interrupted at some point. Similarly, machinery as
well as human workforce may be allowed to move alongside the conveyor belt and perform
some operations. To model this, instead of processing times pij for each machine and job
we may be given combined processing times p[i1,i2],j which define the processing time of
job j that has to be split across machines Mi1 , . . . ,Mi2 . In the case i = i1 = i2 we will use
the standard notion pij = p[i1,i1],j .

Additionally, boundaries
[
p
ij
, pij

]
may define lower and upper bounds for processing

job j on machine Mi. The jobs have to be scheduled and split in such a way that for the
resulting actual processing time p̃ij in the schedule, both, p

ij
≤ p̃ij ≤ pij and

∑i2
i=i1

p̃ij =

p[i1,i2],j hold. We will call the lower bound p
ij

the mandatory part of j that has to be
processed on Mi. If p

ij
= pij holds, this resembles the classical case where the processing

time on the machine is fixed. Obviously, the flow shop without job splitting can be modeled
as a flow shop with job splitting by setting all mandatory times to the respective processing
times.

22 CHAPTER 2. PROBLEM DESCRIPTION

Example 2.4. We reconsider the example used in the previous sections, but this time allow
arbitrary job splitting between machinesM2 andM3 and a fixed processing time on machine
M1.

j 1 2 3 4 5

p1j 3 1 3 5 3
p[2,3],j 2 4 7 6 2

p
2j

0 0 0 0 0

p2j 2 4 7 6 2

p
3j

0 0 0 0 0

p3j 2 4 7 6 2

An optimal schedule is depicted in Figure 2.13 with a makespan of 17. Note that the
sequence (3, 1, 4, 2, 5), which is optimal for the synchronous flow shop without job splitting
in Example 2.2 can not be improved if job splitting between machines M2 and M3 is allowed
and leads to a makespan of 19 in comparison to the makespan of 17 of an optimal schedule
for the problem with job splitting.

M1

M2

M3

4

4

4

5

5

3

3

3

1

1

2

2

2

0 5 10 15 20

Figure 2.13: An optimal solution for the synchronous flow shop with job splitting
between machines M2 and M3

We will use the following additional entries in the β-field of the scheduling classification:

• The notation ’split’ refers to problems with job splitting in which there exist no
mandatory parts. In this case, we are given only one combined processing time
pj = p[1,m],j and the jobs can be arbitrarily split across the machines such that for
the resulting actual processing time p̃ij in the schedule

∑m
i=1 p̃ij = pj holds.

• By contrast, ’r-split’ (“restricted splitting”) refers to problems with job splitting in
which there exist mandatory parts.

2.4. POSSIBLE EXTENSIONS 23

2.4.3 Resources

We may consider renewable resources that are needed for processing of the jobs, e.g. tools
required for assembly. Blazewicz et al. (1983) discuss production processes in which certain
operations need additional renewable resources. If an operation Oij of job j needs a
resource, that resource is blocked for all other jobs while this operation is processed. They
introduced the notation ’resλσρ’ in the β-field of the scheduling classification, where

• λ ∈ N indicates that the number of resources is constant and equal to λ. If λ = ·,
the number of resources is part of the input.

• σ ∈ N indicates that the capacity of all resources is constant and equal to σ. If σ = ·,
all resource capacities are part of the input.

• ρ ∈ N is an upper bound on the resource requirements for each job and resource. If
ρ = ·, no bounds are specified.

In synchronous flow shops, it might occur that it is not possible to start processing
of a job because a resource needed by an operation of the job might also be required by
preceding jobs on other machines in the same cycle. In these cases, it may once again be
necessary to insert idle jobs at machine M1 as discussed in Section 2.4.1.

Another concept of resource constraints in flow shops are pallet resources introduced
by Sixiang et al. (2002). Therein, a number of pallets is given and each job requires a
pallet during its entire production process. After a job is completed, the pallet may be
used by a new job. If no pallet is available at any given time, no job may start on the
first machine. In their work, Sixiang et al. only considered pallet resources of a single
type. For this case, within the synchronous flow shop, a pallet is available at every time if
the number of pallets is at least as large as the number of machines. Then, the presence
of pallets has no effect on the problem. On the other hand, if the number of pallets is
smaller than the number of machines, we are forced to insert idle jobs (provided that they
do not require a pallet) to achieve a feasible solution. We may consider problems in which
pallet-type resources of distinct types exist and each job may only be processed with the
help of a subset of these types. For this, we will combine the two concepts of resources
and introduce the notation ’jresλσρ’ to the β-field of the scheduling classification scheme
where λ, σ and ρ are defined as above. However, in contrast to ’res’, distinct resources are
not required for individual operations but they are required during the whole production
process of a job until the job is completed.

2.4.4 Circular production and changeover times

In a circular production unit (like a rotary table, see Figure 2.14) themmachines are placed
around a circular conveyor system, on which fixtures are attached that can accommodate
work piece carriers or allow for the fixation of jobs on the transport system. In the following,
we refer to each such fixture on which a job can be placed for processing as a station of the
production unit. Additionally, the stations need to be distinctively configured depending
on the job that is to be transported, e.g. using specialized work piece carriers, fixture

24 CHAPTER 2. PROBLEM DESCRIPTION

configurations or job specific equipment required for the production. Further, the jobs
may form job families that require the same configuration.

The jobs to be processed are placed on stations which rotate (counter-) clockwise on the
circular production unit and thereby transport the corresponding job to the next machine.
The circular production unit rotates after each cycle, therefore the stations are back at
their starting position after S cycles, where S is the number of stations. The configuration
of the station has to be changed whenever a job of a different family from the preceding job
on this station is to be processed. Then, a changeover time may occur during which the
circular production unit may not rotate. Because of work safety constraints, no operation
on any machine of the circular production unit may be processed during the changeover. In
this case, production on all machines only starts after the changeover is complete. Similar
to the discussion in Section 2.2, we will define virtual machines with processing times of
zero if the number of stations exceeds the number of machines. In the following, we will
assume that the number of stations is equal to the number of machines.

s1 s2

s3

M1

M2

M3

s2 s3

s1

M1

M2

M3

Figure 2.14: Exemplary configuration of a circular production unit with three
machines and three stations. The picture to the left shows the initial positions of
the stations, the picture to the right the positions of the stations after one cycle

Example 2.5. We revisit Example 2.1 once more to show the impact of a circular produc-
tion unit with changeover times on the schedule. We introduce job families to the example
and define a changeover time of 3 between jobs that are of different families:

j 1 2 3 4 5

p1j 3 1 3 5 3
p2j 1 3 2 1 1
p3j 1 1 5 5 1
family 1 1 2 1 2

Then, the optimal solution determined in Section 2.2 is no longer optimal in the situa-
tion with circular production units because two changeovers are necessary after completion
of jobs 3 and 1, respectively (Figure 2.15). An optimal sequence in this situation is given
by (3, 2, 4, 5, 1), which needs no additional changeovers, see Figure 2.16.

2.4. POSSIBLE EXTENSIONS 25

M1

M2

M3

4

4

4

5

5

5

3

3

3

1

1

1

2

2

2

0 5 10 15 20 25

Figure 2.15: Two changeovers are necessary in the previously optimal sequence

M1

M2

M3

4

4

4

5

5

5

3

3

3

1

1

1

2

2

2

0 5 10 15 20 25

Figure 2.16: Optimal solution without changeovers

Huang (2008) discussed flow shops with synchronous movement on rotary tables. In
the system described therein he considered a rotary table with a loading / unloading unit
in which all jobs enter and leave the production system. Changeover times and job types
are not considered, but the jobs have associated loading and unloading times and in each
cycle, a job has to be unloaded first before the next job can be loaded. As the loading
and unloading operation is executed on the same unit, Huang indicates this characteristic
with the notation re-LU (i.e. re-entrance at the L/U station) in the β-field. In this work
we consider cyclic production units where there are distinct machines for loading and
unloading jobs.

To indicate a circular production unit in which changeovers occur, we will use the
notation circ-sfg in the β-field, where sfg denotes the changeover time that occurs when
changing configurations from job family f to job family g. We may consider cases in which
all changeover times are constant (circ-sfg = s) or only depend on the succeeding job
family (circ-sfg = sg). The example given above on the production system pictured in
Figure 2.14 can be written in our notation as

F3|synmv, circ-sfg|Cmax.

Note, that without the presence of job families and changeover times, the circular nature
of the production unit is of no importance. In this case, we will not specify the circular
structure of the production unit in the β-field.

26 CHAPTER 2. PROBLEM DESCRIPTION

2.4.5 Order scheduling

In some applications several jobs may belong together, e.g. this might be the case if
customers order several items of a product. In this case we consider orders Θo for o =
1, . . . , n where each order Θo has an associated product type to and a volume vo indicating
the number of times to has to be assembled to fulfill the order. For some problems we can
transform the orders into a series of jobs

Θ1,1, . . . ,Θ1,v1 , O2,1, . . . ,Θ2,v2 , . . . ,Θn,1, . . . ,Θn,vn

and just solve the corresponding problem without orders. This is the case when considering
the objective functions of minimizing the makespan Cmax or minimizing the maximum
lateness Lmax. However, if we are interested in minimizing the number of late orders

∑
Uo

or the total completion time of the orders
∑
Co, the problems change.

Hitherto, order scheduling was only investigated for parallel machines, e.g. in Blocher
and Chhajed (1996), denoted as the customer order lead-time problem (COLT), in Leung
et al. (2007) where the total weighted completion time on uniform machines is considered or
in Correa et al. (2009) where a case with preemption and unrelated machines is discussed.
Leung et al. (2005) give on overview on order scheduling models. We will only consider this
extension in Chapter 6 when discussing a real world application in furniture manufacturing.

Chapter 3

Complexity

In this chapter we will discuss the complexity status of synchronous flow shop problems. In
Section 3.1 we will recite results for classical flow shop problems. Thereafter, we discuss the
complexity of the general synchronous flow shop with three or more machines in Section
3.2 and of synchronous flow shops with dominating machines in Section 3.3. Section 3.4
deals with the complexity of various extensions of the synchronous flow shop. Finally, a
concise summary of this chapter’s results is presented in Section 3.5. Parts of this chapter
have already been published in Waldherr and Knust (2015). For a thorough introduction
into complexity theory we refer the reader to Garey and Johnson (1979).

3.1 Classical flow shop

For objective functions that are considered in this thesis there exist elementary reductions
as discussed by Brucker (2007) (see Figure 3.1). An arrow γ1 → γ2 between two objective
functions γ1 and γ2 indicates that for a scheduling problem α|β|γ1 there exists a polynomial
reduction to the scheduling problem α|β|γ2, i.e. α|β|γ1 ∝ α|β|γ2, where α and β are
arbitrary specifications identical for both problems. Further, for the classical flow shop
without further constraints, Fm||γ ∝ F (m+ 1)||γ holds for all objective functions γ.

For classical flow shops, the problem F2||Cmax is solvable in polynomial time (see
Johnson (1954)) while F2||Lmax and F2||∑Cj in the two-machine case, as well as the
problem F3||Cmax in the three-machine case are proven to be NP-hard (see Garey et al.
(1976), Lenstra et al. (1977)). In accordance to the elementary reductions we can derive
from these results that the classical flow shop problem isNP-hard for all objective functions
depicted in Figure 3.1 for two or more machines except for the problem F2||Cmax.

3.2 Synchronous flow shops

As already observed in Soylu et al. (2007), the two-machine synchronous flow shop problem
is closely related to the corresponding two-machine flow shop problem with no-wait or
blocking constraints. All problems are equivalent to a special case of the traveling salesman

27

28 CHAPTER 3. COMPLEXITY

Cmax

Lmax

∑
Tj

∑
wjTj

∑
Uj

∑
wjUj

∑
Cj

∑
wjCj

Figure 3.1: Elementary reductions for objective functions (cf. Brucker (2007) p.50)

problem, which can be solved inO(n log n) by the algorithm of Gilmore and Gomory (1964).
To keep this thesis self-contained the algorithm will be presented in Section 4.1.

Because we defined the completion time of a job within the synchronous flow shop as
the completion time of the corresponding cycle, the individual completion times of the jobs
in a synchronous flow shop are in general not identical to the completion times of the jobs
under the no-wait or the blocking constraints, see Chapter 2. Hence, for other objective
functions, in general we get different objective values for the three variants. Röck (1984a)
proved that F2|no-wait|∑Cj and F2|no-wait|Lmax are strongly NP-hard. Within his
proof, schedules without idle times on machinesM1 andM2 are generated. If no idle times
exist on the second machine, the completion times of the jobs are the same for the no-wait
and the synchronous case. Thus, the results of Röck (1984a) can be used to show that
F2|synmv|∑Cj and F2|synmv|Lmax are strongly NP-hard as well. In Section 3.3.2 we
will extend the proof of Röck to provide a slightly more general result which shows that
the problem Fm|synmv, dom (I) |Lmax is NP-hard for each fixed m ≥ 2 and each set I
with |I| = 2.

F3|no-wait|Cmax and F3|blocking|Cmax are stronglyNP-hard as shown by Röck (1984b)
and Hall and Sriskandarajah (1996), respectively. However, as discussed in Chapter 2, the
equivalence between the three concepts no-wait, blocking, and synchronous movement is
no longer valid for more than two machines.

The following list provides a short overview of complexity results for synchronous flow
shops that have already been presented by other authors. In all cases, the makespan was
the considered objective function:

• Soylu et al. (2007) claim to prove NP-hardness for F3|synmv|Cmax. There, it is
shown that the synchronous flow shop problem is a special case of the problem with
blocking and then deduced that the synchronous flow shop problem is NP-hard as

3.2. SYNCHRONOUS FLOW SHOPS 29

well. However, this implication seems to be flawed since a special case of an NP-hard
problem does not need to be NP-hard as well.

• Huang (2008) proved NP-hardness for his synchronous flow shop model with a L/U
unit for a configuration with one more machine besides the L/U unit. His proof of
NP-hardness relies on the characteristic of his model that within one cycle there can
be two operations of two distinct jobs on the L/U unit. Therefore, his proof can not
be used for our model. If unloading times for all jobs are constant, the problem can
be solved optimally in polynomial time with the algorithm of Gilmore and Gomory
as this problem relates to the two-machine synchronous flow shop within our setting.
Huang further presented dynamic programming approaches for the cases with non-
constant unloading times and one as well as two additional machines besides the L/U
unit. He did not consider the special case of constant unloading times in this setting.

• Karabati and Sayin (2003) considered cyclic production minimizing the completion
time of one production cycle. They provided a proof which can be slightly altered to
show NP-hardness for the problem F |synmv|Cmax in which the number of machines
is part of the input.

In the following theorem we prove NP-hardness for the synchronous flow shop problem
with three machines. We show that the strongly NP-hard problem 3-PARTITION (cf.
Garey and Johnson (1979)) can be reduced pseudo-polynomially to F3|synmv|Cmax. The
basic idea will be the core for many proofs within this chapter: For an instance of an NP-
hard problem, an instance of the synchronous flow shop is created, for which a schedule
without idle times on some or all of the machines exists if and only if the instance of the
NP-hard problem is solvable.

Theorem 3.1. Problem F3|synmv|Cmax is strongly NP-hard.
Proof. We prove this via a pseudo-polynomial reduction from the strongly NP-hard prob-
lem 3-PARTITION (cf. Garey and Johnson (1979)). Let (3P) be an instance of 3-
PARTITION with 3m integers a1, . . . , a3m satisfying mB =

∑3m
i=1 ai and B/4 < ai < B/2

for i = 1, . . . , 3m. W.l.o.g. we assume ai ≥ 2 for all i which does not change the hardness
of 3-PARTITION. The goal is to find a partition into disjoint subsets A0, . . . , Am−1 (each
containing three elements from {1, . . . , 3m}) with ∑i∈Aλ ai = B for λ = 0, . . . ,m− 1.

We construct the following instance (SF) of the synchronous flow shop problem with a

set J consisting of 2mB+1 jobs. Let S >
3m∑
i=1

i(ai−1) and ω > S be two large constants.

We create the following jobs:

• One dummy job D0 with processing times (0, S, ω + 1).

• One dummy job DmB with processing times (ω +mB,S, 0).

• For i = 1, . . . ,mB − 1 dummy jobs Di with processing times (ω + i, Si, ω + i+ 1)
where

Si =

{
S, if i mod B = 0

0, otherwise.

30 CHAPTER 3. COMPLEXITY

• For i = 1, . . . , 3m

– one job ji1 with processing times (S, ω, i)

– for l = 2, . . . , ai − 1 jobs jil with processing times (i, ω, i)

– one job jiai with processing times (i, ω, S).

This results in ai jobs for each element i. As an abbreviation we will call the set
J i =

{
jil | l = 1, . . . , ai

}
the “job family” of element i. Because we assume ai ≥ 2 for

all i, at least two jobs ji1 and jiai are created for each element i.

We show that there exists a partition of (3P) into m sets with sum value B each iff
the synchronous flow shop (SF) has a schedule with makespan

Cmax ≤ mBω +
mB(mB + 1)

2
+ (3m+ 1)S +

3m∑

i=1

i(ai − 1).

“⇒:” Let A0, . . . , Am−1 be a partition into m sets of sum value B each and assume that
Aλ = {λ1, λ2, λ3} for λ = 0, . . . ,m− 1. Then we construct a sequence σ = (σ0, . . . , σ2mB)
in the following way: For positions i ∈ {0, . . . , 2mB} with i mod 2 = 0 set σi = Di/2 (cf.
Figure 3.2).

Afterwards, for λ = 0, . . . ,m − 1 insert the jobs corresponding to the set Aλ =
{λ1, λ2, λ3} with aλ1 + aλ2 + aλ3 = B at the positions 2λB + 2µ+ 1 for µ = 0, . . . , B − 1
such that job family Jλ1 is processed in the first aλ1 , job family Jλ2 in the next aλ2 and
job family Jλ3 in the last aλ3 of these slots (cf. Figure 3.3).

In the schedule corresponding to sequence σ there are no idle times on machine M1,
and the cycle time ct of cycle t = 0, . . . , 2mB + 2 is

ct =





0, t = 0

ω + t
2 , t = 2i, i = 1, . . . ,mB

S, t = 2λB + 1, λ = 0, . . . ,m− 1

λ1, t = 2(λB + l) + 1;λ = 0, . . . ,m− 1; l = 1, . . . , aλ1 − 1

S, t = 2(λB + aλ1) + 1, λ = 0, . . . ,m− 1

λ2, t = 2(λB + aλ1 + l) + 1;λ = 0, . . . ,m− 1; l = 1, . . . , aλ2 − 1

S, t = 2(λB + aλ1 + aλ2) + 1, λ = 0, . . . ,m− 1

λ3, t = 2(λB + aλ1 + aλ2 + l) + 1;λ = 0, . . . ,m− 1; l = 1, . . . , aλ3 − 1

S, t = 2mB + 1

0, t = 2mB + 2.

The cycle times of the cycles depicted in Figure 3.3 can be obtained from this formula
by setting λ = 0 for cycles 0, . . . , 2B and λ = 1 for cycle 2B + 1, respectively.

3.2. SYNCHRONOUS FLOW SHOPS 31

D0

D0

D1

D1

D2

D2

DB

DB−1

DB

DB

DB+1

DmB−1

DmB

DmB· · · · · ·
D3

Figure 3.2: Distribution of the dummy jobs Di. The black areas indicate idle slots
that are filled with job families later on.

· · · · · ·D0

D0

jλ1
1 jλ1

2
jλ1
aλ1

jλ2
1 jλ2

2

D1

D1

D2

Daλ1−1

Daλ1

Daλ1

Daλ1+1

Daλ1+1

Daλ1+2

· · ·jλ3
aλ3−1 jλ3

aλ3

DB−2

DB−1

DB−1

DB

· · ·jλ2
aλ2

jλ3
1 jλ3

2

Daλ1+aλ2−1

Daλ1+aλ2

Daλ1+aλ2

Daλ1+aλ2+1

· · ·
Daλ1+aλ2+1

Daλ1+aλ2+2

1 2 3 4 5 2aλ1
2(aλ1

+ 1) 2(aλ1
+ 2)

2(aλ1
+ aλ2

) 2(aλ1
+ aλ2

+ 1) 2(B − 1) 2B2(aλ1
+ aλ2

+ 2)

0

DB

Figure 3.3: Insertion of job families Jλ1 , Jλ2 , Jλ3 with aλ1 +aλ2 +aλ3 = B into the
first B free slots. Job families are indicated in gray, idle times on machine M2 are
indicated in black. The numbering of the cycles is indicated below the respective
cycles.

Since the cycle times sum up to

2mB+2∑

t=0

ct =
∑

j∈J
p1j + S = mBω +

mB(mB + 1)

2
+ (3m+ 1)S +

3m∑

i=1

i(ai − 1),

a schedule with the required makespan is found.
“⇐:” Let conversely σ = (σ0, . . . , σ2mB) be a sequence with makespan

C∗ ≤ mBω +
mB(mB + 1)

2
+ (3m+ 1)S +

3m∑

i=1

i(ai − 1).

We will show that the corresponding schedule is of the same structure as the one in the
first part of the proof. The processing times of jobs Di on machine M1 sum up to mBω+

mB(mB+1)
2 , the processing times of all other jobs on machineM1 sum up to 3mS+

3m∑
i=1

i(ai−
1). Thus, there can be no idle time on machine M1 as any idle time would result in a
schedule with makespan larger than C∗.

At first we show that the dummy jobs Di for i = 0, . . . ,mB have to be scheduled in
positions 2i in σ. If the jobs are not scheduled in these positions, there is at least one slot

32 CHAPTER 3. COMPLEXITY

in the schedule where a job of type Di with i < mB is processed on machine M3 and no
other job Dh with h 6= i is processed on machine M1 at the same time. As the processing
time of any other job is at most S on machine M1 in this cycle, this leads to an idle time
of at least ω−S > 0 time units onM1 and hence to a schedule with makespan Cmax > C∗.
Thus, these jobs have to be scheduled in positions 2i. Because job D0 is the only one with
zero processing time on machine M1, it has to be scheduled in the first position of σ as
otherwise an idle time of at least ω would occur on machines M2 and M3 in the first cycle.
Likewise, job DmB has to be scheduled in the last position of σ, since otherwise this would
lead to an idle time of at least ω on machines M1 and M2 in the last cycle. Thus, all jobs
Di have to be scheduled in the way described in the first part of the proof in ascending
order Di for i = 0, . . . ,mB in positions 2i.

Further, as this leads to processing times of length S on machineM2 in positions 2iB+1
for i = 0, . . . ,m, to avoid idle times on machine M1 there has to be a job of type jk1 for
some k scheduled in positions i for (i − 1) mod 2B = 0. This can be seen in Figure 3.3:
Job D0 is scheduled in cycle 0, leading to a processing time of S on machine M2 in cycle
1. Therefore, to avoid an idle time on machine M1, job jλ11 is scheduled in position 1,
leading to a processing time of S on machine M1 in cycle 1. Likewise, a job of type jλ3aλ3
is scheduled in position 2B − 1, so the processing times on machines M1 and M2 are the
same in cycle 2B + 1. Then, to avoid idle times on machines M1 and M3, starting with a
job of type jk1 in position i the whole job family Jk has to be scheduled in positions i+ 2l
for l = 0, . . . , ai − 1, as only in this case the processing time on machine M1 is the same
as the processing time on M3 in the following cycles. Since this ends with a processing
time of S on machine M3 (and processing times on machine M2 are at most S), another
job family has to follow, as only the first job of a job family has a processing time of S
on machine M1. In Figure 3.3 this is depicted in cycles 2aλ1 + 1, 2(aλ1 + aλ2) + 1 and
2B+1, respectively. Moreover, because of a processing time of length S on machine M2 in
positions 2iB + 1 for i = 0, . . . ,m, the last job of a job family (i.e. a job of type jkak), has
to be scheduled in position i for (i + 1) mod 2B = 0. Only then, the processing times on
machines M2 and M3 are the same and there are no idle times. In Figure 3.3 this occurs
in cycle 2B − 1.

Due to the placement of all other jobs in the sequence and because the cardinality of
each job family satisfies B/4 < |J i| < B/2, for each λ = 0, . . . ,m − 1 the subsequence
σ2λB+2µ+1 for µ = 0, . . . , B − 1 has to consist of exactly three job families whose cardi-
nalities sum up to B. This partition of job families leads to a solution of (3P). In Figure
3.3, we show the schedule for one set Aλ = {λ1, λ2, λ3} with aλ1 + aλ2 + aλ3 = B. Here,
the jobs of the three job families Jλ1 , Jλ2 and Jλ3 are scheduled in positions σ2µ+1 for
µ = 0, . . . , B − 1.

The above reduction is a pseudo-polynomial one since the number of jobs depends
on the values ai of the integers used in the 3-PARTITION problem. However, since 3-
PARTITION is strongly NP-hard, according to Garey and Johnson (1979) (page 101,
Lemma 4.1) this is sufficient to show that the synchronous flow shop problem is also
strongly NP-hard.

3.3. SYNCHRONOUS FLOW SHOP WITH DOMINATING MACHINES 33

As in the classical flow shop, adding a further machine in a synchronous flow shop does
not decrease the difficulty of the problem:

Theorem 3.2. For each m ∈ N and any objective function f problem Fm|synmv|f reduces
polynomially to F (m+ 1)|synmv|f .

Proof. Given an instance (I) of Fm|synmv|f with jobs j = 1, . . . , n construct an instance
(I ′) of F (m + 1)|synmv|f : For each job j create a job j′ with processing times p′1j′ = 0
and p′ij′ = pi−1,j for i = 2, . . . ,m+ 1. Obviously, this is a polynomial-time reduction and
both instances have the same objective value.

This implies that problem Fm|synmv|Cmax is strongly NP-hard for each fixed m ≥ 3.
Furthermore, Fm|synmv|∑Cj and Fm|synmv|Lmax are strongly NP-hard for each fixed
m ≥ 2.

3.3 Synchronous flow shop with dominating machines

As we showed in the preceding section, minimizing the makespan of a synchronous flow
shop is NP-hard for three or more machines. Therefore, unless P = NP, there exists
no polynomial time algorithm and the problem becomes computationally intractable for
larger instances. In this section, we will discuss special cases of the synchronous flow shop
based on machine dominance and will show that some cases are polynomially solvable. We
restrict ourselves to cases with one or two dominating machines as synchronous flow shop
problems with three dominating machines are generalizations of three-machine synchronous
flow shops and thus strongly NP-hard as well for all considered objective functions.

3.3.1 One dominating machine

In this section we consider synchronous flow shop problems with a single dominating ma-
chine Mk. At first we show that if the number of machines is not fixed and the processing
times on non-dominating machines are arbitrary, the synchronous flow shop problem with
one dominating machine is NP-hard for the objective functions Cmax and

∑
Cj .

Theorem 3.3. Problem F |synmv, dom (I) |Cmax is strongly NP-hard for |I| = 1 if the
processing times on non-dominating machines are arbitrary.

Proof. We prove this via a reduction from F3|synmv|Cmax which we showed to be strongly
NP-hard in Theorem 3.1. Let (SF3) be an instance of F3|synmv|Cmax with n jobs and
processing times pij . We construct the following instance (SF1) of a synchronous flow

shop problem with a single dominating machine. Let ω >
m∑
i=1

n∑
j=1

pij +1 be a large constant

and set the number of machines to n + 3 in (SF1). For each job j = 1, . . . , n of (SF3)
construct a job j′ for (SF1) with processing times

• p′1j′ = ω,

• p′ij′ = 0 for i = 2, . . . , n,

34 CHAPTER 3. COMPLEXITY

• p′ij′ = pi−n,j for i = n+ 1, n+ 2, n+ 3.

As can be easily seen, the first machine is dominating since the processing times for any job
on machines M2, . . . ,Mn+3 are smaller than the processing times p′1j′ for any j

′. We show
that for each threshold value C∗ the synchronous flow shop (SF3) has a schedule with
makespan Cmax ≤ C∗ iff the synchronous flow shop (SF1) has a schedule with makespan
C ′max ≤ nω + C∗.

M1

M2

1

1

1

2

2

2

3

3

n

...

Mn+2

n

n− 1· · ·

Mn+3

n

nω C∗

n− 2

n− 1Mn+1

1 2

4 · · ·

n− 3 n− 2 n

Mn

Figure 3.4: Schedule for (SF1) with makespan nω + C∗ based on the sequence
σ = (1, . . . , n) for (SF3) with makespan C∗

“⇒”: Let σ be a job sequence for (SF3) with makespan Cmax ≤ C∗. Define a sequence
σ′ for (SF1) by setting σ′λ = j′ if σλ = j. Since the first machine is dominating, the
cycle times of the first n cycles sum up to nω. After cycle n there is no further job being
processed on the first machine. Thus, the remaining cycle times are determined by the
(arbitrary) processing times on the non-dominating machines. Due to the construction of
the jobs, the cycle time of cycle n+ i in (SF1) is the same as the cycle time of cycle i in
(SF3). Thus, the remaining cycle times add up to at most C∗ and the schedule has the
desired makespan. For illustration, Figure 3.4 shows a schedule for (SF1) with makespan
nω + C∗ based on the sequence σ = (1, . . . , n) for (SF3) with makespan C∗.

“⇐”: For a sequence σ′ of (SF1) a corresponding schedule for (SF3) can be constructed
in the same way as above.

Theorem 3.4. Problem F |synmv, dom (I) |∑Cj is strongly NP-hard for |I| = 1 if the
processing times on the non-dominating machines are arbitrary.

Proof. The proof is similar to the proof of Theorem 3.3 and we just sketch it here. Let
(SF2) be an instance of the strongly NP-hard problem F2|synmv|∑Cj with n jobs.
Construct an instance (SF1) of a synchronous flow shop problem with a single dominating
machine and objective function

∑
Cj in a similar way as in Theorem 3.3, using n + 2

machines. Then, the synchronous flow shop (SF2) has a schedule with
∑
Cj ≤ C∗ iff the

synchronous flow shop (SF1) has a schedule with
∑
C ′j′ ≤ n2ω + C∗.

In the following, we study the situation of job-independent processing times on the
non-dominating machines, i.e. we assume pij = pi for all i /∈ I. As described in Section
2.3, in this situation w.l.o.g. we may assume pij = 0 for all i /∈ I. If a problem is already
NP-hard in this situation, the problem is also NP-hard in the general situation. On the

3.3. SYNCHRONOUS FLOW SHOP WITH DOMINATING MACHINES 35

other hand, if a problem is polynomially solvable for job-independent processing times
on the non-dominating machines, it is also polynomially solvable for arbitrary processing
times on the non-dominating machines and a fixed number m (the running time increases
by the factor O(nm−1)).

For any objective function f the problem F |synmv, dom (k) , pndomij = 0|f with a sin-
gle dominating machine Mk is closely related to the single-machine problem 1||f . Any
instance of the single-machine problem with jobs j = 1, . . . , n and processing times pj
can be transformed into a synchronous flow shop problem instance with one dominating
machine and the same jobs by setting their processing times on Mk to pj and on all other
machines to zero. Obviously, the makespan of a single-machine sequence is equal to the
makespan of the same sequence within the synchronous flow shop and does not depend
on the sequence itself (it is equal to the sum of all processing times). Therefore, problem
F |synmv, dom (k) , pndomij = 0|Cmax is trivial for each index k and its optimal objective
value can be calculated in O(n). Furthermore, as explained above, this implies that prob-
lem Fm|synmv, dom (k) |Cmax can be solved in O(nm) for each k.

Moreover, if we transform the single-machine problem into a synchronous flow shop
where the last machine Mm is dominating and pndomij = 0, all completion times of the
jobs in a synchronous flow shop schedule are the same as in a single-machine schedule.
Therefore, problems with dominating machine Mm are equivalent to the corresponding
single-machine problems. Since the problems 1||∑Tj and 1||∑wjUj are NP-hard (cf.
Du and Leung (1990), Lawler and Moore (1969)), the synchronous flow shop problems
F2|synmv, dom (2) , pndomij = 0|∑Tj and F2|synmv, dom (2) , pndomij = 0|∑wjUj are NP-
hard as well.

However, if the dominating machine is not the last machine, determining the completion
times of individual jobs becomes more difficult. If the dominating machine has index k <
m, the completion time of each job depends on the sequence of the next m−k jobs. In the
following, we will discuss synchronous flow shop problems with a single dominating machine
with zero processing time on the dominated machines where the objective functions depend
on the individual completion times.

Minimizing total completion time

First, we study the problem of minimizing the total completion time
∑
Cj for one do-

minating machine. Let k be the index of the dominating machine and let pj := pkj for
simplicity. Problem F |synmv, dom (k) , pndomij = 0|∑Cj can be solved by scheduling the
jobs according to non-increasing processing times on the dominating machine. This rule
is known as the shortest processing time (SPT) rule and solves the single-machine prob-
lem 1||∑Cj to optimality. As in the single-machine case, optimality can be proved by
exchange arguments.

Theorem 3.5. Problem F |synmv, dom (k) , pndomij = 0|∑Cj can be solved in O(n log n)
by scheduling the jobs according to the SPT rule for the dominating machine Mk.

Proof. Let σ be an optimal sequence with completion times Cj and assume that σ does
not satisfy the SPT rule forMk. Then there are two jobs σλ, σλ+1 scheduled at consecutive

36 CHAPTER 3. COMPLEXITY

positions λ, λ+ 1 with pσλ > pσλ+1
. Consider the sequence σ′ where the jobs σλ, σλ+1 are

interchanged. For σ′ we have C ′σλ = Cσλ+1
and C ′σλ+1

= Cσλ . Additionally, if λ > m − k
holds, the completion time of job σλ−(m−k) is changed to

C ′σλ−(m−k)
= Cσλ−(m−k) + pσλ+1

− pσλ < Cσλ−(m−k) .

Since all other completion times remain the same, we have
∑
C ′j ≤

∑
Cj . Thus, by

iteratively exchanging such jobs we obtain an optimal sequence satisfying the SPT rule.

As discussed above, for the more general situation with arbitrary processing times on
the non-dominating machines we get

Corollary 3.6. Problem Fm|synmv, dom (k) |∑Cj can be solved in O(nm log n) time.

When considering the total weighted completion time, the single-machine problem
1||∑wjCj can also be solved in polynomial time, using Smith’s rule (cf. Smith (1956))
that schedules the jobs in order of non-increasing ratios wj/pj . Unfortunately, this rule is
not optimal for synchronous flow shops and the resulting schedules can even be arbitrarily
bad. This can be seen in the following example for problem F2|synmv, dom (1) , pndomij =
0|∑wjCj where ω is a large constant:

j 1 2 3

p1j 1 ω 1
p2j 0 0 0
wj ω 1 0

M1

M2

1

1

2

2

3

3

C1 C2 C3

M1

M2

1

1

2

2

3

3

C1 C2 C3

Figure 3.5: Schedule according to Smith’s WSPT rule compared to an optimal
schedule

Figure 3.5 shows the schedule according to Smith’s Rule and the optimal solution,
respectively. As can be seen, Smith’s rule (scheduling the jobs according to their ratios
wj/pj) sequences job 2 directly after job 1 which leads to a completion time of ω + 1 for
the first job and thus a weighted completion time of ω(ω + 1). If job 3 is sequenced after

3.3. SYNCHRONOUS FLOW SHOP WITH DOMINATING MACHINES 37

job 1 instead, this results in a weighted completion time of 2ω. Therefore, the relative
error of Smith’s rule for this instance is

ω(ω + 1) + (ω + 2)− (2ω + ω + 2)

(2ω + ω + 2)
=
ω2 − ω
3ω + 2

which can be arbitrarily large.
Although we cannot use a similar rule to find an optimal schedule, we can show the

following dominance rule: If for two jobs i, j the inequalities pi ≤ pj and wi ≥ wj hold,
then there exists an optimal schedule in which job i is scheduled prior to job j. This result
may reduce the solution space of permutations. The dominance rule can once again be
proven by an exchange argument similar to the unweighted case. However, the complexity
status of problem F2|synmv, dom (1) , pndomij = 0|∑wjCj remains open.

Problems involving job lateness

In the following, we study the problem of minimizing the maximum lateness Lmax for a
single dominating machine. Let again k be the index of the dominating machine and let
pj := pkj for simplicity. At first we consider problem F |synmv, dom (k) , pndomij = 0|Lmax,
i.e. the situation that the processing times on the non-dominating machines are zero.

For the single-machine problem 1||Lmax Jackson’s earliest due date (EDD) rule, i.e.
sorting the jobs in non-decreasing order of their due dates, is a polynomial algorithm to
minimize the maximum lateness. As with the WSPT rule for minimizing the total weighted
completion time, the EDD rule is not optimal and can lead to arbitrarily bad schedules for
problem F2|synmv, dom (1) , pndomij = 0|Lmax.

In the following, at first we consider the decision variant of F |synmv, dom (k) , pndomij =
0|Lmax asking whether a feasible schedule with Lmax ≤ L for a given threshold value L
exists. For this problem, Algorithm 3.1 determines a job sequence from the last to the first
position. If there exists a feasible schedule, then also a feasible schedule without any idle
times on Mk exists. Hence, from the sum of all processing times pj we know the length
of such a schedule, as it is sequence independent. Thus, we can calculate the completion
time of the last job in the sequence and can determine which jobs can be scheduled last
in the sequence such that their lateness is not larger than the specified maximum lateness
L. If more than one job is feasible to be scheduled in the current position of the sequence
in iteration λ, we choose a feasible job with largest processing time. The completion time
of the job added in the next iteration λ + 1 is calculated in line 11. Because we assume
zero processing times on the non-dominating machines, in any schedule the last m− k+ 1
jobs all have completion time T . Therefore, nothing is subtracted from T in line 11 in
the first m− k iterations of the algorithm. For λ > m− k, the processing time of the job
scheduled in position n−λ+1+m−k, which is the job scheduled m−k+1 positions after
the job to be scheduled in iteration λ+ 1, is subtracted. As the job scheduled in position
n− λ+ 1 +m− k was one with largest processing time of all feasible jobs, the completion
time of the job to be scheduled in iteration λ+ 1 is as small as possible.

38 CHAPTER 3. COMPLEXITY

Input: number of machines m, index of dominating machine k ≤ m
Input: jobs j = 1, . . . , n with processing times pj on machine Mk, due dates

dj , threshold L ∈ Z
Output: a job sequence with Lmax ≤ L if it exists, an empty sequence

otherwise
1 T ←∑n

j=1 pj
2 σ ← sequence of jobs, initially empty
3 for λ = 1, . . . , n do
4 feasibleJobs ← unscheduled jobs j with T − dj ≤ L
5 if feasibleJobs = ∅ then
6 return ∅
7 end
8 else
9 Assign to σn−λ+1 a feasible job with largest processing time

10 if λ > m− k then
11 T ← T − pσn−λ+1+m−k

12 end
13 end
14 end
15 return σ

Algorithm 3.1: Checking whether a schedule with maximum lateness ≤ L
exists

Theorem 3.7. For problem F |synmv, dom (k) , pndomij = 0|Lmax and a threshold value L ∈
Z, Algorithm 3.1 returns a feasible job sequence with Lmax ≤ L in O(n log n) if such a
sequence exists.

Proof. If L 6= 0, we can transform each instance into an equivalent instance by setting all
due dates to d′j = dj −L and considering the threshold 0. Thus, w.l.o.g. we assume L = 0.
Assume there exists a sequence of the jobs σ̃ = (σ̃1, . . . , σ̃n) such that no job is completed
after its due date. We show that in each iteration λ = 1, . . . , n of the algorithm, there is
at least one feasible job to be scheduled, i.e. line 6 is never reached.

Let l := m−k+1 and T :=
∑n

j=1 pj be the sum of processing times on the dominating
machine. Because we assume zero processing times on the non-dominating machines, in
any schedule the last l jobs all have completion time T . If during the first l steps of the
algorithm there is no more feasible job, less than l jobs have a due date of at least T ,
contradicting that there exists a feasible schedule of the jobs such that no job is completed
after its due date.

Consider iteration λ > l of Algorithm 3.1 and assume that there is no feasible job. The
completion time of the job to be scheduled in iteration λ is given by

tλ = T −
λ−l∑

µ=1

pσn−µ+1

3.3. SYNCHRONOUS FLOW SHOP WITH DOMINATING MACHINES 39

where pσn−µ+1 is the processing time of the job scheduled in iteration µ (i.e. the job
scheduled in position n − µ + 1). Consider the job σ̃n−λ+1 which is scheduled in this
position in the feasible sequence σ̃ with completion time t̃λ. Since this job is not feasible
in iteration λ of the algorithm, this is either because the job has already been scheduled
in a prior iteration of the algorithm or because dσ̃n−λ+1

< tλ holds. Since Algorithm 3.1
always inserts a feasible job with largest processing time, tλ is as small as possible and thus
tλ ≤ t̃λ, which contradicts t̃λ ≤ dσ̃n−λ+1

< tλ. If job σ̃n−λ+1 has already been scheduled in
Algorithm 3.1, then one of the jobs succeeding this one in σ̃ has not been scheduled by the
algorithm. Because this job is infeasible in iteration λ, its due date must be greater than
tλ. However, this contradicts the assumption that the maximum lateness of σ̃ is at most
zero.

Algorithm 3.1 can be implemented such that it runs in O(n log n). Initially, we sort
the jobs according to decreasing due dates. Furthermore, we maintain a heap containing
all feasible unscheduled jobs j with T − dj ≤ L of the current iteration. As key values in
the heap we use the processing times pj of the jobs. Then, in each iteration a feasible job
with largest processing time can be determined in O(1). Afterwards, the heap has to be
updated which can be done in O(log n). Additionally, new jobs may have to be inserted
into the heap for the new value T . This can efficiently be done by going through the initial
list where the jobs are sorted according to decreasing due dates. Since in total we have n
iterations, each job is inserted into the heap exactly once, and in each iteration at most n
jobs are in the heap, all heap updates can be performed in O(n log n).

Using Algorithm 3.1 we can also solve the optimization problem F |synmv, dom (k) ,
pndomij = 0|Lmax and find the minimum maximum lateness for any instance by applying
the algorithm for different values of L. One possibility is to use a binary search approach,
starting with a lower bound of −maxj dj and an upper bound of

∑
j pj −minj dj . Then,

the number of times Algorithm 3.1 has to be executed depends on the numerical values
of pj and dj and hence this approach does not yield a strongly polynomial algorithm.
However, we can use Algorithm 3.1 in the strongly polynomial-time Algorithm 3.2 to find
the minimum maximum lateness of any instance. Algorithm 3.2 starts with an upper
bound on the maximum lateness and uses Algorithm 3.1 to construct a feasible schedule
σ. In each iteration of the algorithm a new threshold value for the maximum lateness is
calculated and tested by Algorithm 3.1 until Algorithm 3.1 no longer returns a feasible
schedule.

Theorem 3.8. For problem F |synmv, dom (k) , pndomij = 0|Lmax Algorithm 3.2 finds a se-
quence of jobs minimizing the maximum lateness Lmax in O(n3 log n).

Proof. First we show that the algorithm is correct. In the first iteration, Algorithm 3.1 is
executed with a value of L =

∑
j pj−minj dj . As this is an upper bound for the maximum

lateness of each instance and Algorithm 3.1 is correct (Theorem 3.7), we get a schedule
with lateness Lmax ≤ L and reach line 11 in Algorithm 3.2. There the minimum deviation
d of the lateness of the returned schedule from the current threshold L is calculated. The
consequence is that this schedule yields a maximum lateness of Lmax = L−d and therefore
a schedule with maximum lateness Lmax = L− d exists. In the next step of Algorithm 3.2

40 CHAPTER 3. COMPLEXITY

Input: number of machines m, index of dominating machine k ≤ m
Input: jobs j = 1, . . . , n with processing times pj on machine Mk, due dates

dj
Output: optimal Lmax-value

1 L←∑n
j=1 pj −minj=1,...,n dj

2 d← 0
3 F ← True
4 while F do
5 Execute algorithm 3.1 with threshold L to get a schedule σ with

completion times
Cj .

6 if No schedule with Lmax ≤ L exists then
7 F ← False
8 L← L+ 1

9 end
10 else
11 d← minj((dj + L)− Cj)
12 L← L− d− 1

13 end
14 end
15 return L

Algorithm 3.2: Minimizing the maximum lateness

we thus try to find a schedule with maximum lateness Lmax = L − d − 1. We iteratively
go on until no such schedule can be found for values L and d. Then, as a schedule with
maximum lateness Lmax = L − d exists, but a schedule with Lmax = L − d − 1 does not,
we have found the minimum maximum lateness.

Next we show that the algorithm runs in O(n3 log n). Let σ be the feasible schedule
for threshold value L returned by Algorithm 3.1 in line 5. Consider the job j with largest
completion time Cj satisfying (dj + L)− Cj = d, which we will call the “critical job”. Let
µ be the position of j in σ. Consider the execution of Algorithm 3.1 for a lateness value
of L− d− 1 in the next iteration of Algorithm 3.2. Then, as job j has to be planned such
that its completion time is Cj ≤ dj +L−d−1, the schedule σ is no longer feasible and has
to be changed. Algorithm 3.1 constructs the new schedule σ̃ in the following way: For all
iterations λ < n−µ+1, the set of feasible jobs constructed in line 4 is a subset of the set of
feasible jobs in the prior execution: Each job that was feasible to be scheduled in position
n−λ in σ is still feasible as the job is non-critical in σ. Also, in each iteration λ < n−µ+1
job σn−λ+1 is chosen in line 9, as there is no job with larger processing time in the set of
feasible jobs. Thus, σ̃l = σl for l > µ holds. In iteration n−µ+ 1 the critical job j can not
appear in the set of feasible jobs in line 4. Further, no job with processing time larger than
pj is in the set of feasible jobs, because otherwise it would have been scheduled in position
µ in schedule σ already. Thus, either the set of feasible jobs is empty and no schedule with

3.3. SYNCHRONOUS FLOW SHOP WITH DOMINATING MACHINES 41

lateness L− d− 1 can be found, or a feasible job with processing time smaller than pj has
to be scheduled in position µ. Therefore, for each job being critical, the schedule can be
improved at most O(n) times resulting in at most O(n2) iterations of Algorithm 3.2. Since
Algorithm 3.1 runs in O(n log n), the total running time is O(n3 log n).

As discussed above, for the more general situation with arbitrary processing times on
the non-dominating machines we get

Corollary 3.9. Problem Fm|synmv, dom (k) |Lmax can be solved in O(nm+2 log n) time.

To achieve this, we have to iterate over all O(nm−1) possibilities to fix the job sequences
in the first k− 1 and last m− k cycles. Then, for all these possibilities, Algorithm 3.2 has
to be employed, using slight modifications of Algorithm 3.1 in each case: The completion
times of the last m− k + 1 job have to be calculated individually based on the fixed jobs’
processing times on the non-dominating machines. If the fixed jobs do not already lead
to a lateness greater than the threshold, the non-fixed jobs once again can be scheduled
iteratively, in each iteration choosing a feasible job with largest processing time. We
only considered the case with zero processing times on non-dominating machines in the
algorithms and proofs above to improve the readability. Nonetheless, the correctness of
the algorithm and the time complexity for the case with arbitrary processing times on
non-dominating machines can be proven in an analogous manner.

Another polynomially solvable single-machine problem involving due dates is the prob-
lem 1||∑Uj , which can be solved to optimality in polynomial time by Moore’s Algorithm
(cf. Moore (1968)). Unfortunately this algorithm does not find optimal solutions for syn-
chronous flow shops with one dominating machine. Since we also did not find another
polynomial-time algorithm, the complexity status of problem F2|synmv, dom (1) , pndomij =
0|∑Uj remains open.

3.3.2 Two dominating machines

In this section we consider synchronous flow shop problems with two dominating ma-
chines. In the case of an arbitrary number of machines where only two are dominating
and the two dominating machines directly succeed each other, the makespan of the flow
shop with synchronous movement is once more closely related to the makespan of the
two-machine flow shop with either no-wait or blocking constraints. Ignoring sequence
independent constants, job sequences for the two-machine no-wait flow shop and the syn-
chronous flow shop have the same makespan. Hence, for each 1 ≤ k < m problem
F |synmv, dom (k, k + 1) , pndomij = 0|Cmax is equivalent to problem F2|no-wait|Cmax and
can be solved in O(n log n). However, the individual completion times Cj for the jobs
again depend on the succeeding jobs in the sequence and thus cannot be calculated easily,
similar to the case with only one dominating machine.

An interesting question is whether it makes a difference if the two dominating machines
directly succeed each other or there are non-dominating machines in between (e.g. in the
case of F3|synmv, dom (1, 2) |f where M1,M2 are dominating and F3|synmv, dom (1, 3) |f
where M1,M3 are dominating). While problem F2|synmv, dom (1, 2) |Cmax is equivalent

42 CHAPTER 3. COMPLEXITY

to F2|synmv|Cmax and hence polynomially solvable as described in Section 3.2, it is not
clear whether problem F3|synmv, dom (1, 3) |Cmax can also be solved in polynomial time.
Intuition guides one into thinking that a problem where a non-dominating machine lies
between two dominating machines is at least as difficult as a problem in which the two
dominating machines are directly succeeding each other. More formally, one would assume
that for m ≥ 3 and two indices k1 < k2 < m problem Fm|synmv, dom (k1, k2 + 1) |f is at
least as difficult as problem Fm|synmv, dom (k1, k2) |f for any objective function f . Un-
fortunately we were not able to prove this intuitive result in the general case, but it can be
proven for the objective function of minimizing the makespan. For the makespan objective
function and job-independent processing times on non-dominating machines we can ignore
all machines before the first dominating machine and after the second dominating machine.
Further, for arbitrary processing times on the non-dominating machines we can once more
fix the first and last jobs in the sequence. Thus, w.l.o.g. we can assume that the first and
last machines are the dominating ones and it is sufficient to consider the relationship be-
tween problems Fm|synmv, dom (1,m) |Cmax and F (m + 1)|synmv, dom (1,m+ 1) |Cmax.
For them we have

Theorem 3.10. For each m ∈ N with m ≥ 2 problem Fm|synmv, dom (1,m) |Cmax reduces
polynomially to F (m+ 1)|synmv, dom (1,m+ 1) |Cmax.

Proof. Let (I) be an instance of Fm|synmv, dom (1,m) |Cmax with jobs j = 1, . . . , n, ma-
chines M1, . . . ,Mm, n ≥ m + 1, and processing times pij . Construct an instance (I ′) of
problem F (m+1)|synmv, dom (1,m+ 1) |Cmax with machinesM ′1, . . . ,M ′m+1 and process-
ing times p′ij in the following way:

• For each job j create a job j′ with processing times p′ij′ = pij for i = 1, . . . ,m − 1,
p′mj′ = 0, and p′m+1,j′ = pmj .

• Let P :=
∑n

j=1 (p1j + p2j) + 1. Create k :=
⌈

n
m−1

⌉
auxiliary jobs a1, . . . , ak. For the

first auxiliary job a1 set p′1,a1 = 0 and p′m+1,a1
= P . For the last auxiliary job ak

set p′1,ak = P and p′m+1,ak
= 0, and for all auxiliary jobs al for l = 2, . . . , k − 1 set

p′1,al = p′m+1,al
= P . Additionally, set p′i,al = 0 for i = 2, . . . ,m and l = 1, . . . , k.

Obviously, if machines M1 and Mm are dominating for (I), then machines M ′1 and M ′m+1

are dominating for (I ′). Let C ≤ P − 1. We will show that the instance (I) has a
solution with makespan Cmax ≤ C iff the instance (I ′) has a solution with makespan
C ′max ≤ C + (k − 1)P .

“⇒”: Let σ = (σ1, σ2, . . . , σn) be a sequence of jobs for (I) with makespan Cσn ≤ C.
Construct a sequence σ′ for the instance (I ′) by

σ′i =




ad ime if i mod m = 1

σi−d ime otherwise

for i = 1, . . . , n + k, i.e. inserting the dummy jobs as every m-th job (see Figure 3.6 for
an example with m = 2 machines). The auxiliary jobs are scheduled in such a way that

3.3. SYNCHRONOUS FLOW SHOP WITH DOMINATING MACHINES 43

M1

M2

1

1

2

2

3 4

43

5

5

6

6

M ′
1

M ′
2

1

1

2

2

3 4

43

5

5

6

M ′
3 6

Figure 3.6: F2|synmv, dom (1, 2) |Cmax and F3|synmv, dom (1, 3) |Cmax with
added auxiliary jobs. The auxiliary jobs are in black, their processing times are
not according to scale to improve readability.

auxiliary job al is processed on machine M ′m+1 when auxiliary job al+1 is processed on
machine M ′1. The auxiliary jobs contribute a total of (k−1)P to the makespan C ′max. The
remaining jobs are scheduled in between the auxiliary jobs such that job σi is processed on
machine M ′m+1 when σi+m is processed on machine M ′1. Thus, the non-auxiliary jobs add
Cσn to the makespan of (I ′), which leads to the desired makespan of C ′max ≤ C+ (k−1)P .

“⇐”: Let σ′ =
(
σ′1, σ

′
2, . . . , σ

′
n+k

)
be a sequence of jobs for (I ′) with makespan C ′σn+k ≤

C+ (k− 1)P . Note that each auxiliary job has processing time P on at least one machine.
Due to C ≤ P this means that the auxiliary jobs have to be scheduled in such a way that
for each l1 = 1, . . . , k − 1, auxiliary job al1 is processed on machine M ′m+1 when another
auxiliary job al2 for some l2 ∈ {2, . . . , k} is processed on machine M ′1. Further, auxiliary
job a1 has to be scheduled as the first of the auxiliary jobs in the first m positions of the
schedule and job ak has to be scheduled as the last auxiliary job to allow for a processing
time of (k−1)P for the auxiliary jobs. For all jobs σ′i, the job is processed on the dominating
machine M ′m+1 when job σ′i+m is processed on machine M ′1. Let λ be the position of the
first auxiliary job a1 and let w.l.o.g. al be scheduled in position λ+m(l−1) for l = 2, . . . , k.
Construct a sequence σ by

σµ =




σ′
µ+dµ−λ+1

m e for µ ≥ λ
σ′µ otherwise,

for µ = 1, . . . , n, i.e. removing all auxiliary jobs. Then this sequence results in a makespan
of Cσn ≤ C for instance (I) with the same arguments as above.

Theorem 3.10 shows that adding a non-dominating machine between two dominating
machines does not decrease the difficulty of the problem. Thus, if we could show NP-
hardness for F3|synmv, dom (1, 3) |Cmax, this would imply NP-hardness for
Fm|synmv, dom (k1, k2) , pndomij = 0|Cmax for all 1 ≤ k1 < k2 − 1 < m, i.e. in all situ-
ations where the two dominating machines are not directly succeeding. While the problem
is open for a fixed number of machines, we can prove that problems with two dominating
machines are NP hard if the number of machines and the positions of the dominating
machines are part of the input:

44 CHAPTER 3. COMPLEXITY

Theorem 3.11. Problem F |synmv, dom (I) , pndomij = 0|Cmax is strongly NP-hard for
|I| = 2.

Proof. This can be proven via a pseudo-polynomial reduction from 3-PARTITION in a
similar way as in Theorem 3.1. We construct the following instance (SF) of the synchronous
flow shop problem with m + 1 machines and mB jobs. For each i = 1, . . . , 3m introduce
the following jobs:

• One job ji1 with processing times p1,ji1
= 0 and pm+1,ji1

= i

• For l = 2, . . . , ai − 1 jobs jil with processing times p1,jil
= pm+1,jil

= i

• One job jiai with processing times p1,jiai
= i and pm+1,jiai

= 0.

All other processing times are set to zero, i.e. the machinesM1 andMm+1 are dominating.
This results in ai jobs for each element i. As in the proof of Theorem 3.1 we will call the
set J i =

{
jil | l = 1, . . . , ai

}
the “job family” of element i. Because we again assume ai ≥ 2

for all i = 1, . . . , 3m, at least two jobs ji1 and jiai are created for each element i. We show
that there exists a partition of (3P) into m sets with sum value B each, iff the synchronous

flow shop (SF) has a schedule with makespan Cmax ≤
3m∑
i=1

i(ai − 1).

“⇒:” Let A0, . . . , Am−1 be a partition into m sets of sum value B each and assume that
Aλ = {λ1, λ2, λ3}. Then we construct a sequence σ = (σ0, . . . , σmB−1) in the following
way: for λ = 0, . . . ,m− 1 insert the jobs corresponding to the set Aλ = {λ1, λ2, λ3} with
aλ1 + aλ2 + aλ3 = B at the positions λ + µm for µ = 0, . . . , B − 1 such that job family
Jλ1 is processed in the first aλ1 , job family Jλ2 in the next aλ2 and job family Jλ3 in the
last aλ3 of these slots. In this sequence there are no idle times on machines M1 and Mm+1

and the cycle times sum up to
3m∑
i=1

i(ai − 1). Thus, a schedule with the required makespan

is found.

“⇐:” Let conversely σ be a sequence with makespan C∗ ≤
3m∑
i=1

i(ai − 1). We will show

that the schedule is of the same structure as the one in the first part of the proof. Because

the processing times of all jobs on machines M1 and Mm+1 sum up to
3m∑
i=1

i(ai − 1), there

may be no idle time on those machines as any idle time would result in a schedule with
makespan larger than C∗. Thus, the first m jobs have to be of type jk1 for some k and the
last m jobs have to be of type jkak . To avoid idle times on machine M1 starting with a job
of type jk1 in position λ the whole job family Jk has to be scheduled in positions λ + µm
for µ = 0, . . . , ak − 1. Additionally, if λ + (ak − 1)m < n −m, another job family has to
follow as the last job of the family has a processing time of 0 on machine Mm+1.

Because the cardinality of each job family satisfies B/4 < |J i| < B/2, for each λ =
0, . . . ,m−1 the subsequence σλ+µm for µ = 0, . . . , B−1 has to consist of exactly three job
families whose cardinalities sum up to B. This partition of job families leads to a solution
of (3P).

3.3. SYNCHRONOUS FLOW SHOP WITH DOMINATING MACHINES 45

As discussed in Section 3.2, for the problem of minimizing the maximum lateness or
the total completion time, the results of Röck (1984a) can be used to prove NP-hardness
for two-machine synchronous flow shops. The proof for minimizing the maximum lateness
can be easily adapted to show NP-hardness for any position of two dominating machines.
In the following, we include a generalized version of the proof of Röck.

The proof uses a reduction from the NP-complete problem Hamiltonian path (cf.
Garey et al. (1976)). Given a graph G = (V,E), is there a path through all vertices in
V that visits every vertex exactly once? The idea of the reduction relies on the following
observation: Let G− = (V −, E−) with V − = {2, . . . , n} be a connected graph with degree
d(v) ≥ 1 for all v ∈ V −. Define a graph G = (V,E) with V = V − ∪ {1} and E =
E− ∪ {(1, v)|v ∈ V −}. Then, G− contains a Hamiltonian path if and only if G contains
a Hamiltonian cycle, i.e. a cycle that visits each vertex in V exactly once. Transform
G into a directed graph ~G = (V,AE) where each edge e = {v, w} ∈ E is represented by
two arcs (v, w) and (w, v) in AE . Because the in-degree of all vertices in ~G is equal to
its out-degree, ~G always contains an Eulerian circuit, i.e. a circuit of length |AE | which
includes every edge in AE . Then, if G contains a Hamiltonian cycle, ~G also contains a
directed Hamiltonian circuit and therefore it also contains a directed Hamiltonian path h
which ends in 1. Further, there exists an Eulerian circuit in ~G that starts and ends in 1
and where the last n vertices constitute h: Let v0 be the first vertex of h. Removing all
arcs in h leads to a connected directed graph where for each vertex except for v0 and 1 its
in-degree is equal to its out-degree, vertex v0 has (in-degree)−(out-degree) = 1 and vertex
1 has (out-degree)−(in-degree) = 1. Thus, the reduced graph contains an Eulerian path
starting in 1 and ending in v0. Adding h again leads to the desired circuit. Then, the first
n− 1 vertices of h constitute a Hamiltonian path in G−.

We will encode the arc and vertex set of the directed graph into a flow shop problem
and show that a schedule without any late jobs exists if and only if there exists an Eulerian
circuit in ~G where the last n arcs constitute a directed Hamiltonian path that ends in vertex
1.

Theorem 3.12. The problem Fm|synmv, dom (I) , pndomij = 0|Lmax is strongly NP-hard
for each fixed m ≥ 2 and each set I with |I| = 2.

Proof. We prove the theorem by a reduction from Hamiltonian path. Let G− = (V −, E−)
with V = {2, . . . , n} be a connected graph with degree d(v) ≥ 1 for all vertices v ∈ V . Let
G = (V,E) be a graph with V = V − ∪ {1} and E = E− ∪ {(1, v)|v ∈ V −}. Further, let
1 ≤ k1 < k2 ≤ m. We construct an instance (SF) of F |synmv, dom (k1, k2) |Lmax with a
set J consisting of 4(k2 − k1)|E| jobs. In the following we use the notation (pk1,j , pk2,j)
to denote job j’s processing times on machine Mk1 and machine Mk2 , respectively. Set
processing time pij = 0 for all j ∈ J and i /∈ {k1, k2} and let K := 2(n + 1). We create
the following jobs:

• For each vertex v ∈ V jobs VEλv with processing times (K− v, v) for λ = 1, . . . , d(v).

• For each edge {v, w} ∈ E one job ARvw with processing times (v,K − w) and one
job ARwv with processing times (w,K − v).

46 CHAPTER 3. COMPLEXITY

• For each i = 1, . . . , (k2−k1−1) jobs Di
0 with processing times (1,K) and jobs Di

4|E|−1

with processing times (K, 1).

• For j = 1, . . . , 4|E| − 2 and i = 1, . . . , (k2 − k1 − 1) jobs Di
j with processing times

(K,K).

As due dates for jobs VEd(v)
v and all jobs of type AR and D we define

d2 := 2|E| ·K + (4|E| − 1) · (k2 − k1 − 1) ·K + (k2 − k1)

=
∑

j∈J
pk1,j + (k2 − k1)

which is the sum of processing times of all jobs on machine Mk1 (and machine Mk2 ,
respectively) increased by the distance of the two dominating machines. For jobs VEλv for
v ∈ V and λ < d(v) we choose the due date d1 as:

d1 := d2 − nK − 2n (k2 − k1 − 1)K +

(
m− k2 −

⌊
m− k2

2(k2 − k1)

⌋)
K

Then, there exists a schedule for (SF) with Lmax ≤ 0 iff G− contains a Hamiltonian
path.

“⇐”: Consider the directed graph ~G = (V,AE) where each edge {v, w} ∈ E is repre-
sented by two arcs, (v, w) , (w, v) ∈ AE . If G− has a Hamiltonian path h−, then G has a
Hamiltonian cycle h and thus ~G has two arc-disjoint directed Hamiltonian circuit h1 and
h2, corresponding to the two orientations in which h can be traversed on G. Therefore,
based on the Hamiltonian cycle h we can find an Eulerian circuit e on ~G which starts
and ends at vertex 1, and its last n + 1 vertices constitute h2. Construct a sequence
σ = (σ0, . . . , σ4(k2−k1)|E|−1) in the following way:

• For positions i ∈ {0, . . . , 4(k2 − k1)|E| − 1} with i mod (k2 − k1) = 0 sequence the
jobs according to the arc-vertex sequence of the Eulerian circuit e, starting with
the first arc of e, and using job VEλv for the λ-th occurrence of vertex v in the
circuit. Then, whenever a job representing an arc connecting vertices v1 and v2 in
the tour is processed on machine Mk2 , a job representing vertex v2 is processed on
machine Mk1 . Whenever a job representing vertex v1 is processed on machine Mk2 ,
a job representing an outgoing arc from vertex v1 is processed on machine Mk2 with
exception for the final visit of vertex 1 in the tour.

• For the remaining positions set σi = Dk
l with k = i mod (k2 − k1) and l =

bi/(k2 − k1)c.

Figure 3.7 shows an extract of a schedule representing an Eulerian cycle as a schedule for
m = 3, k1 = 1 and k2 = 3.

The resulting schedule has no idle times on machinesMk1 except in the (k2−k1) cycles
at the end of the schedule when the processing time on machine Mk2 is 1 in each cycle.
Thus, the makespan is equal to d2 and no job is finished later than d2. Further, the VE jobs

3.3. SYNCHRONOUS FLOW SHOP WITH DOMINATING MACHINES 47

M1

M2

M3

· · ·
AR12

VE1
2

VE1
2

AR23

VE3
i

ARij

ARij

VE2
j

VE2
j

ARjk

ARjk

VE3
k

· · ·
VE

d(n)
n

ARn1

ARn1

VE
d(1)
1

a) b) c)

Figure 3.7: Representation of an Eulerian cycle as a schedule for m = 3, k1 = 1
and k2 = 3. The black jobs indicate the dummy jobs D. Shown are:

a) The first part of the schedule. The first job to be scheduled represents the
first arc of e, connecting vertices 1 and 2. When this job is processed on
machine M3, the first VE job representing vertex 2 is processed on machine
M1.

b) An extract showing jobs that represent the arcs visiting vertex i for the third
time, vertex j for the second time and vertex k for the third time.

c) The end of the schedule.

which appear in the last n pairs of AR−VE jobs are VEd(v)
v , v ∈ V . The last job with due

date d1 that is completed in this schedule is a job of type VEλ1 with λ < d(1) which happens
in position p := (k2 − k1)(4|E| − 2n− 1). The job is completed m− 1 cycles later and the
times of cycles ci for i = 0, . . . , (k2−k1)(4|E|− 2n− 1) +m are determined by the dummy
jobs that are scheduled prior to position p (adding up to (4|E| − 2n− 1) (k2 − k1 − 1)K),
the AR and VE jobs that are scheduled prior to p (adding up to (2|E| − n)K) and the
next m − k2 jobs that are scheduled after position p. Because this sums up to at most(
m− k2 −

⌊
m−k2

2(k2−k1)

⌋)
K, the job is completed no later than its due date. Thus, no job in

the schedule is late. Figure 3.8 shows the completion time of the last job with due date d1

for m = 6, k1 = 1 and k2 = 3. In this case, the last term of the due date results in 3K and
therefore the job is on time because the processing times of the jobs AR12,VE

d(2)
2 and the

dummy jobs are at most K.

M1

M2

M3
ARn1

VEλ
1

VEλ
1

AR12

AR12

VE
d(2)
2

VE
d(n)
n

ARn1

M4

M5

· · ·

M6

· · ·

C
VEλ

1

Figure 3.8: Completion time of the last job with due date d1 for m = 6, k1 = 1
and k2 = 3

48 CHAPTER 3. COMPLEXITY

“⇒”: Let σ =
(
σ0, . . . , σ4(k2−k1)|E|−1

)
be a sequence of jobs with Lmax ≤ 0. Because

the processing times on both machines,Mk1 andMk2 sum up to d2−(k2−k1) there can not
be any idle times on those two machines when there is a job processed on both machines
if no job is to be completed later than d2. Further, the first (k2 − k1) jobs in the sequence
need to have processing time 1 on machineMk1 while the last (k2−k1) jobs in the sequence
need to have processing time 1 on machine Mk2 . There are 4|E| · (k2 − k1) jobs in total
and 4|E| · (k2 − k1 − 1) jobs have a processing time of K on at least one of the machines,
while the other 4|E| jobs have a smaller processing time on each of the machines. Thus, to
avoid idle times, the jobs of type D need to be scheduled in the sequence described in the
first part of this proof. This leaves the AR and VE jobs to be scheduled in positions i for
i mod (k2 − k1) = k for some k ∈ [0, . . . , k2 − k1 − 1]. By construction of the processing
times, this implies that this results in an alternating sequence of AR and VE jobs, where
each AR job has to represent an arc that connects the two VE jobs. Thus, the index
sequence of the arc-vertex sequence represents an Eulerian circuit on the directed graph ~G
which begins with an arc that leaves vertex 1 and ends in vertex 1. Since furthermore all
jobs VEλv , v ∈ V, λ < d(v) finish not later than d1, the last n vertices constitute a directed
Hamiltonian path on ~G that ends in 1. Consequently, G− must have a Hamiltonian path
as well.

For minimizing the total completion time, the proof of Röck (1984a) can only be trans-
fered to synchronous flow shop problems with two succeeding dominating machines. How-
ever, it would be a big surprise if the problem would in fact become easy (i.e. solvable in
polynomial time) if non-dominating machines are introduced in between.

3.4 Extensions

In this section we consider the complexity of some extensions of flow shops with syn-
chronous movement.

3.4.1 Idle jobs

As discussed in Section 2.4.1, (n−1)(m−1) is an upper bound for the number of idle jobs
for which an improvement can be achieved, or even (n − 1)(m − 2) when minimizing the
makespan. Therefore, for already polynomially solvable cases, we could extend the instance
with the maximal required number of idle jobs and still retain an algorithm polynomial
in the number of jobs and machines. However, in the case of synchronous flow shops
with dominating machines in which the processing times on dominated machines are not
equal to zero, introduction of idle jobs with a processing time of zero destroys the machine
dominance and thus might increase the complexity of the problem.

An interesting effect occurs for problems with two non-consecutive dominating ma-
chines and zero processing times on dominated machines. While the complexity of this
problem is still open for a fixed number of machines if no idle jobs are present, the intro-
duction of idle jobs allows for a polynomial time algorithm which determines an optimal
sequence for problem Fm|synmv,dom (1,m) , idle, pndomij = 0|Cmax (see Algorithm 3.3).

3.4. EXTENSIONS 49

Input: jobs j = 1, . . . , n with processing times p1j , pmj
Output: a sequence minimizing Cmax

1 J ← ∅
2 σ ← sequence of mn jobs, initially empty
3 for j = 1, . . . , n do
4 Add a job j′ to J with processing times p1j′ = p1j , p2j′ = pmj
5 end
6 σ′ ← optimal sequence for J via algorithm of Gilmore and Gomory
7 for j = 1, . . . , n do
8 σ(m−1)(j−1)+1 ← σ′j
9 for k = 2, . . . ,m− 1 do

10 σ(m−1)(j−1)+k ← idle job
11 end
12 end
13 return σ

Algorithm 3.3: Algorithm for Fm|synmv,dom (1,m) , idle, pndomij = 0|Cmax

The idea is to transform an instance of this problem into an instance of F2|synmv|Cmax

and to solve the transformed instance with the algorithm of Gilmore and Gomory. Af-
terwards, the schedule is constructed in such a way that in the resulting schedule there is
exactly one subsequence containing actual jobs (the optimal sequence for the two-machine
case) and all other subsequences only contain idle jobs.

Theorem 3.13. For problem Fm|synmv,dom (1,m) , idle, pndomij = 0|Cmax, Algorithm 3.3
finds a sequence of jobs minimizing the makespan in O (mn+ n log n).

Proof. The algorithm consists of the execution of the algorithm of Gilmore and Gomory
for n jobs and constructing a schedule of size mn, thus the runtime is clear.

Let C be the makespan for the sequence σ as determined by Algorithm 3.3. As discussed
in Section 2.3.2, C is the sum of the makespans of the subsequences σλ =

(
σλ1 , . . . , σ

λ
n

)

with σλh = σλ+(h−1)(m−1) for h = 1, . . . , n and λ = 1, . . . ,m−1. As all subsequences except
for σ1 contain only idle jobs, their individual makespans sum up to zero and the makespan
of subsequence σ1 is C. Further, the jobs in σ1 can not be sequenced in such a way that
leads to a lower makespan, as C is the optimal makespan of the corresponding two-machine
problem as determined by the algorithm of Gilmore and Gomory and the upper bound on
idle jobs that can lead to an improvement of the makespan in the two-machine problem is
0. Thus, we can not achieve a better makespan than C with any sequence in which only a
single subsequence contains non-idle jobs.

In the following, we will show that no better makespan can be achieved if more than
one subsequence contains non-idle jobs. Let σ̄ be such a sequence with makespan C̄ and let
w.l.o.g. the first k ≤ m − 1 subsequences contain non-idle jobs. Let C̄λ be the makespan
of the subsequence σ̄λ =

(
σ̄λ1 , . . . , σ̄

λ
n

)
with σ̄λh = σ̄λ+(h−1)(m−1) for h = 1, . . . , n and

50 CHAPTER 3. COMPLEXITY

λ = 1, . . . ,m− 1. Construct a new sequence σ̂ of length kmn and let the first subsequence
σ̂1 be the concatenation of the subsequences σ̄1, . . . , σ̄k, i.e.

σ̂1 =
(
σ̄1

1, . . . , σ̄
1
n, σ̄

2
1, . . . , σ̄

2
n, . . . , σ̄

k
1 , . . . , σ̄

k
n

)

and let all other subsequences contain only idle jobs. Then,the makespan Ĉ of this schedule
is at most Ĉ ≤ C̄ =

∑k
λ=1 C̄

λ. Again, since C is the optimal makespan of the corresponding
two-machine problem and the introduction of idle jobs can not lead to an improvement
therein, it follows that C ≤ Ĉ ≤ C̄. Therefore, no better makespan can be achieved than
the one obtained by Algorithm 3.3 if more than one subsequence contains non-idle jobs.

3.4.2 Job splitting

In the following we will show that for both notions of splitting, arbitrary as well as restricted
splitting, the synchronous flow shop problem becomes NP-hard even for two machines.

Theorem 3.14. F2|synmv,split|Cmax is NP-hard.

Proof. We show this via a reduction from equal-size partition. Let (P) be an instance of
partition with integers a1, . . . , a2n and 2M =

∑2n
j=1 aj . We are interested in finding two

disjoint sets A = {λ1, . . . , λn} , B = {µ1, . . . , µn} of equal size with A ∪ B = {1, . . . , 2n},
such that

∑n
j=1 aλj =

∑n
j=1 aµj = M . We demand of the integers that there is a sufficiently

large constant ω ∈ N with :

• ai ≥ ω for all i = 1, . . . , 2n

• |ai − aj | ≤ ω
n for all i, j = 1, . . . , 2n.

This can be achieved by adding ω to all integers which does not change the complexity of
the partition problem. Adding this constant also leads to the condition that ai + aj ≥ ak
holds for all i, j, k = 1, . . . , 2n.

We will now construct an instance (F) of F2|synmv,split|Cmax with jobs j = 1, . . . , 2n,
processing times pj = aj and no mandatory parts on any of the two machines. We will
show that (P) has a solution iff there exists a schedule of the jobs in (F) with makespan
Cmax ≤ C∗ = 1

2

∑2n
j=1 pj = M .

“⇐”: Let σ = (σ1, . . . , σ2n) be a schedule with the desired makespan C∗ and let w.l.o.g.
be σj = j for all j = 1, . . . , 2n. Because

∑2n
j=1 pj = 2C∗, there are no idle times on either

machine M1 and M2. Let

A = {1 ≤ λ ≤ 2n|λ mod 2 = 1}
B = {1 ≤ µ ≤ 2n|µ mod 2 = 0}

be two sets of equal size. In each cycle there is a job λ for λ ∈ A processed on exactly one
machine and as there are no idle times, it holds that

∑

λ∈A
pλ = M.

3.4. EXTENSIONS 51

Thus, also
∑

λ∈A
aλ =

∑

µ∈B
aµ = M

and therefore we have a solution to (P).

⇒ Let A = {λ1, . . . , λn} and B = {µ1, . . . , µn} with
∑n

i=1 aλi =
∑n

i=1 aµi = M be the
two disjoint equal-sized sets that represent a solution of the partition problem. Let the
elements λi ∈ A be ordered such that aλi ≤ aλj for i ≤ j and the elements µi ∈ B be
ordered such that aµi ≥ aµj for i ≤ j. We construct a schedule σ = (σ1, . . . , σ2n) with

σi =

{
λ(i+1)/2 for i mod 2 = 1

µi/2 for i mod 2 = 0
(i = 1, . . . , 2n).

Figure 3.9 shows the corresponding schedule.

M1

M2

· · ·
λ1

µ1

µ1

λ2

λ2

µ2 λ3

µ2 µn−1

λn µn

λn

Figure 3.9: Schedule of the flow shop representing a solution of the partition
problem

We need to show that we can split the jobs in this schedule in such a way that there
are no idle times on any of the two machines. Then, as the processing times of all jobs
sum up 2M , there has to be a processing time of M on each machine. From this, it follows
that the schedule has the desired makespan.

The jobs are split as follows: The first job λ1 is processed for zero time units on machine
M1 and for pλ1 time units on machineM2. All succeeding jobs σi are processed on machine
M1 for the same processing time as job σi−1 is processed on machine M2 in the same cycle
and split at this point. Thus, if the combined processing time of job σi is at least as large
as the time for which job σi−1 is processed on machine M2, there are no idle times on any
of the machines. In the following, we show that this requirement holds for all i = 2, . . . , 2n.

If job λ1 is processed for zero time units on machine M1 and for pλ1 time units on
machine M2, the succeeding job µ1 has to be processed on machine M1 for pλ1 time units
and thus is processed for pµ1 − pλ1 time units on machine M2. If we number the cycles
c0, . . . , c2n (cycle ci being the cycle in which job σi is processed on machine M2), it follows
that job σi is processed on machine M2 for the following amount of time:

Cycle c1 : pλ1

Cycle c2 : pµ1 − pλ1
Cycle c3 : pλ2 + pλ1 − pµ1

52 CHAPTER 3. COMPLEXITY

Cycle ci :

i/2∑

l=1

(pµl − pλl) for i mod 2 = 0

Cycle ci :

(i−1)/2∑

l=1

(pλl − pµl) + pλ(i+1)/2
for i mod 2 = 1

A negative value for cycle ci would indicate that the processing time of job σi+1 is
smaller than the amount of time job σi is processed on machine M2. In this case, an idle
time would occur on machine M1, leading to a schedule with makespan larger than C∗.
Thus, in the following we will show that all values are non-negative.

For each ci with i mod 2 = 1 we get:
∣∣∣∣∣∣

(i−1)/2∑

l=1

(pλl − pµl)

∣∣∣∣∣∣
≤

(i−1)/2∑

l=1

| (pλl − pµl) | ≤
(i−1)/2∑

l=1

ω

n
≤ ω ≤ pλ(i+1)/2

and thus
∑(i−1)/2

l=1 (pλl − pµl) + pλ(i+1)/2
≥ 0.

For each ci with i mod 2 = 0 assume that
∑k

l=1 pµl <
∑k

l=1 pλl for some 1 ≤ k ≤ n:
Because of the ordering of the numbers within the sets A and B we get

kpλk ≥
k∑

l=1

pλl >
k∑

l=1

pµl ≥ kpµk

and thus pλk > pµk . However this leads to

n∑

l=k+1

pλl ≥ (n− k − 1)pλk > (n− k − 1)pµk ≥
n∑

l=k+1

pµl

contradicting
∑n

l=1 pλl =
∑n

l=1 pµl . Therefore,
∑k

l=1 pµl ≥
∑k

l=1 pλl and thus∑i/2
l=1 (pµl − pλl) ≥ 0 for all i mod 2 = 0. In the last cycle, the last job is processed

for
n∑

l=1

(pµl − pλl) =

n∑

i=1

aλi −
n∑

i=1

aµi = 0

time units on machine M2 leading to no idle times on machine M1 in this cycle. As all
values are non-negative, there are no idle times on any of the two machines and the schedule
yields the desired makespan.

In the case of restricted splitting with mandatory parts, the problem is even strongly
NP-hard.

3.4. EXTENSIONS 53

M1

M2

· · ·
jaλ1

jc1

jc1

jbµ1

jaλ2

jc2 jbµ2

jc2 jaλn

jcn jbµn

jcn

Figure 3.10: Schedule of the flow shop representing a solution of the numerical
matching with target sums

Theorem 3.15. F2|synmv,r-split|Cmax is strongly NP-hard.

Proof. We show this via a reduction from numerical matching with target sums: Given
two disjoint multisets of integers A = {a1, . . . , an} and B = {b1, . . . , bn} as well as a target
multiset of integers C = {c1, . . . , cn}, can the integers in A and B be partitioned into n
disjoint sets Di, each containing exactly one element from A and B such that ci = aλi +bµi
with aλi , bµi ∈ Di?

Let (T) be an instance of numerical matching with target sums with integer setsA,B,C.
Construct an instance of the flow shop problem (F) in the following way: Let ω ≥∑n

i=1 ci+
1 and create the following jobs:

• For each ai ∈ A create a job jai with processing time pjai = ai + ω and mandatory
processing times p

2,jai
= p2,jai

= pjai .

• For each bi ∈ B create a job jbi with processing time pjbi = bi + 2ω and mandatory
processing times p

1,jbi
= p1,jbi

= pjbi
.

• For each ci ∈ C create a job jci with processing time pjci = ci + 3ω and mandatory
processing times p

1,jci
= p

2,jci
= 0.

The mandatory parts are chosen in such a way that all jobs of type ja have to be processed
fully on machine M2, all jobs of type jb have to be processed fully on machine M1 and all
jobs of type jc may be split arbitrarily.

Then, the instance (T) allows for a numerical matching with target sums iff the instance
(F) of the flow shop problem can be scheduled with a makespan of

Cmax ≤ C∗ = 3nω +

n∑

i=1

ci.

“⇒”: Let ci = aλi + bµi for all i = 1, . . . , n be a matching for (T). Then the following
schedule results in the desired makespan: For each i let job jaλi be directly followed by
job jci which is processed for ai + ω time periods on machine M1 and for bi + 2ω time
slots on machine M2. Afterwards job jbµi is processed, followed by the next job jaλi+1

(see
Figure 3.10). This way, there are no idle times on either of the two machines and the
desired makespan is reached as the schedule results in a makespan of Cmax =

∑n
i=1 pjci =

3nω +
∑n

i=1 ci.

54 CHAPTER 3. COMPLEXITY

“⇐”: Let σ be a schedule of (F) with makespan Cmax ≤ C∗. Let P be the sum of
processing times of jobs of type jc on machine M1 in this schedule. Then, the sum of
processing times on machine M1 adds up to

n∑

i=1

pjbi
+ P = 2nω +

n∑

i=1

bi + P

and the sum of processing times on machine M2 adds up to

n∑

i=1

pjai +
n∑

i=1

pjci − P = nω +
n∑

i=1

ai + 3nω +
n∑

i=1

ci − P.

Because of the desired makespan, the sum of processing times on both machines must be
at most C∗ and thus

P = nω +

n∑

i=1

ai =

n∑

i=1

pjai

has to hold. Further, there may be no idle times on both machines as any idle time would
result in a makespan larger than C∗. For any two h, i, job jah may be followed neither by job
jai nor job jbi as this would lead to an idle time of ω+ah > 0 on machine M1 in the former
and an idle time of ω + bi − ah > 0 on machine M2 in the latter case. Therefore, a job of
type ja has to be succeeded by a job of type jc. If for some h, i, job jci succeeds job jah, to
avoid idle times, job jci has to be split in a way that its processing time on machine M2 is
3ω+ci−(ω+ah) = 2ω+(ci−aj). Therefore, to avoid idle times on machineM1, a matching
job of type jb has to succeed job jch. Iteratively, it follows that the schedule has to be as
described in the first part of the proof and as depicted in Figure 3.10. The corresponding
matching can then be read from the schedule, each target value ci represented by the job
jci is reached by adding the integers aλi and bµi which are represented by the jobs jaλi and
jbµi that are processed at the same time as job jci .

3.4.3 Resources

Introducing pallet-like resources as described in Section 2.4.3, the problem becomes NP-
hard even for the problem F2|synmv, dom (1) , jres · 11, pij = 1|Cmax. For the following
proof we will assume that each job requires pallet-like resources which need to be present
for all operations of the job and are free again as soon as the job is completed.

Theorem 3.16. The problem F2|synmv, dom (1) , jres · 11, pij = 1|Cmax is strongly NP-
hard.

Proof. We show this by reduction from Hamiltonian path (see Garey and Johnson (1979)):
Given a graph G = (V,E), is there a path through all vertices V that visits every vertex
exactly once?

We construct an instance (SF) of F2|synmv, dom (1) , jres · 11|Cmax for a given graph
G = (V,E) with V = {1, . . . , n} in the following way: For each vertex v ∈ V add a job v

3.4. EXTENSIONS 55

with processing times p1v = p2v = 1. For each pair of vertices u, v ∈ V with u < v that are
not connected by an edge {u, v} ∈ E, add a resource ruv and let both jobs u and v require
resource ruv, creating

n(n−1)
2 resources. As a result, two jobs u and v can be processed

concurrently on machines M1 and M2 if and only if their respective vertices are connected
by an edge {u, v} ∈ E. Then, there exists a schedule σ with makespan n+ 1 in (SF) iff G
contains a Hamiltonian path.

“⇐”: Let P = (v1, v2, . . . , vn) be a Hamiltonian path in G. Then the vertices vi, vi+1 are
connected by an edge and thus the schedule σ = (σ1, . . . , σn) with σi = vi has a makespan
of n+ 1 in (SF).

“⇒”: Conversely, let σ = (σ1, . . . , σn) be a schedule with makespan n + 1 in (SF).
As two jobs can only be scheduled directly succeeding each other if their corresponding
vertices in G are connected by an edge, this leads to a path of length n in G. As every job
corresponds to a distinct vertex, this path is Hamiltonian.

In most cases, the presence of resources also involves changeovers. We will discuss this
extension in the next subsection.

3.4.4 Changeovers

The following theorem shows that in the presence of job families and changeovers the
synchronous flow shop on two machines is NP-hard even if changeover times are constant.

Theorem 3.17. Problem F2|synmv, circ-sfg = s|Cmax is strongly NP-hard

Proof. We prove this via a pseudo-polynomial reduction from numerical matching with
target sums. Let (T) be an instance of numerical matching with target sums with multisets
of integers A = {a1, . . . , an}, B = {b1, . . . , bn} and a multiset of target integers C =

{c1, . . . , cn}. W.l.o.g. we assume ai, bi ≥ 2 for all i. Let χ :=
(∑n

j=1 cj

)
.

We construct the following instance (SF) of the synchronous flow shop problem with a
set J consisting of 2χ+ 1 jobs in 3n+ 1 job families. Let α, β, γ and s be large constants
with 1 << α < β < γ << s and create the following jobs:

• For c1 one job family JC1 with one job jC11 with processing times (0, α), one job
jC1c1 with processing times (2, β) and c1 − 2 jobs jB1k with processing times (2, 1) for
k = 2, . . . , c1 − 1.

• For ci with i = 2, . . . , n one job family JCi , each with one job jCi1 with processing times
(γ, α), one job jCici with processing times (2, β) and ci − 2 jobs jC1k with processing
times (2, 1) for k = 2, . . . , ci − 1.

• For ai with i = 1, . . . , n one job family JAi , each with one job jAi1 with processing
times (α, 2) and ai − 1 jobs jAik with processing times (1, 2) for k = 2, . . . , ai.

• For bi with i = 1, . . . , n one job family JBi , each with one job jBibi with processing
times (β, γ) and bi − 1 jobs jBik with processing times (1, 2) for k = 1, . . . , bi − 1.

• One dummy job D, being its own job family with processing times (γ, 0).

56 CHAPTER 3. COMPLEXITY

We show that there is a solution of (T) iff the synchronous flow shop (SF) has a
schedule with makespan

Cmax ≤ (3n− 1)s+ n(α+ β + γ) + 3χ− 4n

= (3n− 1)s+

n∑

j=1

p1j

“⇒”: Let ci = aλi + bµi for all i = 1, . . . , n be a numerical matching for (T). Then we
construct a sequence σ = (σ1, . . . , σ2χ+1) for (SF) by:

• For i = 1, . . . , n schedule job jCik at position 2
(∑i−1

j=1 cj + k
)
− 1 for k = 1, . . . , ci.

• For i = 1, . . . , n schedule job jAλik at position 2
(∑i−1

j=1 cj + k
)
for k = 1, . . . , aλi .

• For i = 1, . . . , n schedule job jBµik at position 2
(∑i−1

j=1 cj + aλi + k
)
for k = 1, . . . , bλi .

• Schedule job D at position 2χ+ 1.

jC
11

jA
11

jC
12

jA
11

jA
12

jC
12

· · ·
jC
1a1

jA
1a1

jC
1a1

jB
11

jB
11

· · ·

jC
1c1

jC
1c1

jB
1b1

jB
1b1

jC
21

jC
21

jA
21

jC
22

jA
21

· · ·

1 2 3 4 2a1

2c1 2c1 + 1 2(c1 + 1)

2a1 − 1 2a1 + 1

2c1 − 1 2c1 + 3

Figure 3.11: Schedule of jobs representing the first numerical matching with c1 =
a1 + b1. The numbering of the cycles is indicated below the respective cycles.
Changeovers are represented by the striped boxes. There is a changeover between
the last job of family JA1 and the first job of family JB1 , between the last job of
family JC1 and the first job of family JC2 and between the last job of family JB1
and the first job of family JA2 .

Figure 3.11 shows an extract of a corresponding schedule depicting the first numerical
matching with c1 = a1 + b1. Note, that in this schedule there is no idle time on either
machineM1 orM2. Thus, the processing times add up to

∑
j p1j = n(α+β+γ)+3χ−4n.

Further, all job families are scheduled in a way that as soon as a job of a job family f is
scheduled in position i, all other jobs of the family are sequenced immediately afterwards

3.4. EXTENSIONS 57

in positions i+ 2l for l = 1, . . . , |f | − 1, leading to exactly one changeover needed for each
job family. Thus, the time needed for changeovers adds up to (3n − 1)s and the desired
makespan is achieved.

“⇐”: Let conversely σ = (σ1, . . . , σ2χ+1) be a sequence with makespan

C∗ ≤ (3n− 1)s+ n(α+ β + γ) + 3χ− 4n.

We will show that the corresponding schedule is of the same structure as the one in the
first part of the proof.

First, we can assure that as soon as a job of a job family f is scheduled in position i,
all other jobs of the family are sequenced immediately afterwards in positions i + 2l for
l = 1, . . . , |f | − 1 as this results in the least amount of changeovers. If only one job family
would be split, i.e. an additional changeover to a job family was necessary, this would
immediately result in at least 3n changeovers and to a makespan of Cmax ≥ 3ns > C∗. If
there is only one changeover necessary for each job family, the time required for changeovers
sums up to (3n− 1)s.

Further, to assure a processing time of at most n(α+β+γ)+3χ−4n =
∑

j p1j =
∑

j p2j ,
there may be no idle times on machines M1 and M2. Thus, the first job to be processed
must be a job with processing time 0 on machineM1 and the last job to be processed must
have a processing time of 0 on machine M2. Thus, the first job to be processed must be
job jC11 and the last job to be processed must be job D.

As job jC11 has to be processed in the first position, the whole job family jC1 has to be
processed in the first c1 odd positions 1 + 2l for l = 0, . . . , c1 − 1. Further, as the job jC11

has a processing time of α on the second machine, a job of type jAh1 has to be processed in
the second position. Then, all jobs of the job family JAh have to be processed in the first
ah even cycles. Because of job jCc1 with processing time of β on machine M2, a job family
of type jBi for some i has to follow the job family jAh in the next bi even cycles to avoid
idle times. Also, job jBibi with processing time β on machine M1 has to be succeeded either
by the dummy job D or another job family of type JC because of its processing time of
γ on machine M2. As discussed above, the dummy job has to be scheduled at the last
position in the sequence and thus for all other positions the succeeding job cannot be the
dummy job D but has to be a job of type jC with a processing time of γ on machine M1.
Iteratively, all job families of type JC have to be scheduled in the odd cycles while all job
families of type JA and JB have to be scheduled alternating in the even cycles. The last
cycle is occupied by the dummy job D. Further, consider the first job family JC1 which is
scheduled in positions 2l + 1 for l = 1, . . . , c1. To avoid idle times, the job jC1c1 , job j

B
ibi
, a

job of type jCk1 for some k and a job of type jAo1 for some o have to be scheduled in direct
succession, see Figure 3.11. In this case, the size of the job family jC1 is equal to the sum
of the sizes of job families jBi and jAh , i.e. c1 = ah + bi. Iteratively, the same holds true for
all succeeding job families JC . Thus, a solution to (T) can be read from the schedule.

58 CHAPTER 3. COMPLEXITY

3.4.5 Order scheduling

Obviously, order scheduling problems are at least as difficult as their corresponding coun-
terparts with individual jobs. As discussed in Section 2.4.5, the presence of orders makes
no difference when considering problems with the objective functions Cmax or Lmax. Thus,
the corresponding complexity results obtained in this chapter also apply to these cases.
The polynomial time algorithm 3.2 for the problem F |synmv, dom (I) , pndomij = 0|Lmax

with |I| = 1 can be used for order scheduling as well, by just splitting the orders into
individual jobs. For the problem F |synmv, dom (I) , pndomij = 0|∑Cj with |I| = 1 the
orders can be sorted in SPT order like in the case for individual jobs to achieve an optimal
schedule. This can once again be shown via an exchange argument, similar to Theorem 3.5.
While these algorithms remain polynomial in the number of jobs, they are not polynomial
in the input, as for each order only its corresponding product type and volume has to be
specified.

3.5. SUMMARY 59

3.5 Summary

In this chapter we derived some complexity results for flow shops with synchronous move-
ment, which are summarized in Table 3.1. In the first part of the table the general situation
(i.e. without machine dominance) is considered. Afterwards, results for sets I of domi-
nating machines with cardinalities |I| = 1 and |I| = 2 are shown. The third part shows
results for the extensions discussed in this thesis.

F2|synmv|Cmax O(n log n) Gilmore and Gomory (1964)
F2|synmv|∑Cj str. NP-hard Röck (1984a)
F2|synmv|Lmax str. NP-hard Röck (1984a)
F3|synmv|Cmax str. NP-hard Theorem 3.1
|I| = 1:
F |synmv, dom (I) |Cmax str. NP-hard Theorem 3.3
F |synmv, dom (I) , pndomij = 0|Cmax O(n) Section 3.3.1
Fm|synmv, dom (I) |Cmax O(nm) Section 3.3.1
F |synmv, dom (I) |∑Cj str. NP-hard Theorem 3.4
F |synmv, dom (I) , pndomij = 0|∑Cj O(n log n) Theorem 3.5
Fm|synmv, dom (I) |∑Cj O(nm log n) Corollary 3.6
F |synmv, dom (I) , pndomij = 0|Lmax O(n3 log n) Theorem 3.8
Fm|synmv, dom (I) |Lmax O(nm+2 log n) Corollary 3.9
F2|synmv, dom (I) , pndomij = 0|∑wjUj NP-hard Lawler and Moore (1969)
F2|synmv, dom (I) , pndomij = 0|∑Tj NP-hard Du and Leung (1990)
|I| = 2:
F |synmv, dom (I) , pndomij = 0|Cmax str. NP-hard Theorem 3.11
Fm|synmv, dom (I) , pndomij = 0|Lmax ∀m str. NP-hard Röck (1984a), Theorem 3.12
F |synmv, dom (k, k + 1) , pndomij = 0|Cmax O(n log n) Gilmore and Gomory (1964)
Fm|synmv, dom (k, k + 1) |Cmax O(nm−1 log n) Gilmore and Gomory (1964)
Fm|synmv, dom (k, k + 1) , pndomij = 0|∑Cj ∀m str. NP-hard Röck (1984a)
With idle jobs, |I| = 2:
Fm|synmv,dom (I) , idle, pndomij = 0|Cmax O(nm+ n log n) Theorem 3.13
With job splitting:
F2|synmv,split|Cmax NP-hard Theorem 3.14
F2|synmv,r-split|Cmax str. NP-hard Theorem 3.15
With resources:
F2|synmv, dom (1) , jres · 11, pij = 1|Cmax str. NP-hard Theorem 3.16
With changeovers:
F2|synmv,circ-sfg = s|Cmax str. NP-hard Theorem 3.17

Table 3.1: Complexity results for flow shop problems with synchronous movement

60 CHAPTER 3. COMPLEXITY

Chapter 4

Exact methods

In the previous chapter we already discussed some algorithms to optimally solve special
cases of synchronous flow shop problems. In Section 3.3.1 we described polynomial time
algorithms to minimize the total completion time as well as the maximum lateness in syn-
chronous flow shops with a single dominating machine. Further, the algorithm of Gilmore
and Gomory (1964) can be applied to solve synchronous flow shops with two adjacent
dominating machines to optimality in polynomial time. For reasons of self-containment we
will recite the algorithm of Gilmore and Gomory (1964) in this chapter. Later, concepts
of this algorithm will be used for obtaining lower bounds as well as heuristic algorithms.

Unfortunately, for the general case, finding optimal solutions for the synchronous flow
shop is an NP-hard problem for all of the objective functions contemplated in this thesis.
Thus, unless P = NP, we can not expect to derive a polynomial time algorithm for these
cases. In this chapter we will discuss two classes of exact methods for obtaining optimal
solutions for hard optimization problems. First, we will show how to model synchronous
flow shop problems as mixed integer linear programs (MILP). While this does not reduce
the complexity of the problem, there exist very efficient solvers to derive optimal solutions
for MILPs. Another class of algorithms consists of branch and bound methods which are
based on removing regions from the solution space that can not contain optimal solutions
and thus speed up the solution procedure by concentrating on the non-removed regions.
In this chapter we will discuss lower bounds for instances of synchronous flow shop prob-
lems that can be used in such a branch and bound scheme. The evaluation of the exact
algorithms described here can be found in Chapter 7.

The remainder of this chapter is structured as follows. In Section 4.1, we will lay out
the algorithm of Gilmore and Gomory (1964) for the polynomially solvable special case
F2|synmv|Cmax. In Section 4.2 synchronous flow shop problems will be modeled as mixed
integer linear programs. Formulations will be presented for all of the objective functions,
special cases and extensions that are discussed in Section 2.4. In Section 4.3, we will
discuss branch and bound algorithms that make use of lower bounds which are presented
in Section 4.4.

61

62 CHAPTER 4. EXACT METHODS

4.1 Gilmore and Gomory’s algorithm for F2|synmv|Cmax

In this section, we give a short recapitulation of the algorithm of Gilmore and Gomory
(1964) that can be used to solve the problem F2|no-wait|Cmax. As discussed in Chapter
3 it can thus be applied to obtain an optimal solution for Fm|synmv, dom (i, i+ 1) |Cmax

and F |synmv, dom (i, i+ 1) , pndomij = 0|Cmax in polynomial time. In the following, we will
describe the algorithm for the case F2|synmv|Cmax. The correctness of the algorithm and
all intermediate results are proven in Gilmore and Gomory (1964). As the proof is rather
long, we will omit it in this thesis and only state the algorithm.

To improve readability, we define aj := p1j and bj := p2j as the processing times of job
j on the two machines. For two consecutive jobs i, j the cycle time of the cycle in which
these jobs are processed on machine M1 and M2, respectively can be calculated by

cij = max (bi, aj) .

If we introduce another job 0 with a0 = b0 = 0, the costs c0j = max (0, aj) and cj0 =
max (bj , 0) are equal to the cycle time of the first or last cycle if job j is processed in the
first or the last position of the schedule. The task to find a schedule which minimizes the
sum of cycle times and thus the makespan can now be regarded as a traveling salesman
problem containing nodes 0, . . . , n representing the jobs with distances cij defined by the
cycle times that occur if job j is succeeding job i. An optimal tour with these distances is
equivalent to a schedule with optimal makespan: Node 0 represents the start and end of
such a schedule and the jobs are scheduled in the sequence given by the tour.

In general, the traveling salesman problem is NP-hard (see e.g. Garey and Johnson
(1979)). However, with the special distance metric defined above, the problem can be
solved in polynomial time. The basic idea of the algorithm is to assign to each node its
successor in the tour by finding an optimal matching of b- to a-values. However, in general,
this leads to several disjoint circuits which then need to be joined into a single optimal
tour.

In the following, we describe Algorithm 4.1 by Gilmore and Gomory in detail. We
denote with φj the successor of job j, i.e. the job we want to schedule after job j. At
first, sort the jobs in non-decreasing order of bj . Then, the initial successor for each job
is determined by a bipartite matching of b- to a-values. With the special metric this can
be achieved by sorting the a-values and setting φk = l with l being the job with the k-th
smallest a-value (line 5). This can be modeled as a graph G consisting of nodes 0, . . . , n
and edges between nodes i, j if and only if φi = j. In general, the graph consists of multiple
disjoint small circuits. Figure 4.1 shows an exemplary matching for 8 jobs which results in
an initial permutation (4, 8, 1, 3, 6, 5, 7, 2), leading to the disjoint small circuits depicted in
Figure 4.2.

Let C1, . . . , Cm be the connected components of G, all of which are directed circuits.
We can connect any two components Ci and Cj into a single circuit by interchanging
two edges in the graph G: Let i1, i2 be two consecutive nodes in Ci and j1, j2 be two
consecutive nodes in Cj . An interchange Ri1,j1 consists of removing the directed edges

4.1. GILMORE AND GOMORY’S ALGORITHM FOR F2|SYNMV|CMAX 63

Input: set of jobs J with processing times aj = p1j , bj = p2j

Output: sequence which minimizes F2|synmv|Cmax

1 Add job 0 with processing times a0 = b0 = 0 to J
2 Sort the jobs non-decreasingly in bj
3 A← list of jobs j = 0, . . . , n, sorted non-decreasingly in aj
4 φ← list of size n+ 1
5 φj ← Aj for all j = 0, . . . , n
6 G = (V,E) with V = {0, . . . , n} and E = {(j, φj)|j = 0, . . . , n}
7 cij ← max (bi, aj) for all i, j ∈ V
8 rj,j+1 ← −

(
cj,φj + cj+1,φj+1

)
+ cj,φj+1

+ cj+1,φj for all j < n

9 R← ∅ set of interchanges
10 while G consists of more than one component do
11 Find smallest value rj,j+1 such that j and j+ 1 are in distinct components
12 Add (j, j + 1) to R
13 Add (j, j + 1) to E to join the components
14 end
15 Remove all edges (j, j + 1) ∈ R from E
16 S1 ← list of (j, j + 1) ∈ R with aφj ≥ bj , decreasing in j
17 S2 ← list of (j, j + 1) ∈ R with aφj < bj , increasing in j
18 Make interchanges (j, j + 1) ∈ S1, then interchanges (j, j + 1) ∈ S2

19 σ ← sequence with length n
20 σ1 ← φ0

21 for i = 2, . . . , n do
22 σi ← φσi−1

23 end
24 return σ

Algorithm 4.1: Algorithm of Gilmore and Gomory for F2|synmv|Cmax

(i1, i2) and (j1, j2) and adding the directed edges (i1, j2) and (j1, i2), thus creating a single
circuit. The costs of such an interchange can be calculated by

c (Ri1,j1) = − (ci1i2 + cj1j2) + ci1j2 + cj1i2

To join the components, a variation of the algorithm of Kruskal (1956) can be applied.
In its original version, Kruskal’s algorithm is used to find a minimal spanning tree. Starting
with an empty graph, the algorithm iteratively adds an edge with minimum cost which
does not create a cycle. Similarly, in lines 11-13 of Algorithm 4.1 the disjoint components
are joined by greedily applying an interchange with minimum cost which connects two
disjoint components of the graph G. Gilmore and Gomory were able to show that only
interchanges Ri,i+1 of two jobs which directly succeed each other in the sorted sequence
of jobs need to be considered for this. Whenever an interchange Rj,j+1 is chosen to be
made, we connect the corresponding components with a directed edge (j, j + 1). After we

64 CHAPTER 4. EXACT METHODS

b1 b2 b3 b4 b8b5 b6

a4 a8 a1 a3 a2a6 a5

b7

a7

Figure 4.1: Exemplary matching to find an initial permutation for 8 nodes. The
dotted lines connect the aj- and bj-values of the same job. Regular lines connect
bk to the k-th smallest a-value.

1 4

3

2

8

5

6

7

Figure 4.2: Disconnected circuits resulting from the mapping in Figure 4.1.

reached a single component and saved the interchanges required for this, we again remove
these edges from the graph.

The next step is to join the individual components in G to form a single circuit using
the minimal interchanges determined before. Note that two interchanges might interfere
with each other and thus the total cost of the resulting tour might differ depending on
the sequence in which the interchanges are performed. Gilmore and Gomory were able
to prove that an optimal series of interchanges can be obtained by sorting them into two
groups S1 and S2. Those interchanges Rj,j+1 for which aφj ≥ bj are assigned to group S1,
the others to group S2, respectively. In lines 16 and 17 the interchanges in group S1 are
sorted in order of decreasing index j and the interchanges in group S2 are sorted in order
of increasing index j.

A single circuit is then obtained by first executing all interchanges in group S1 and
then executing the interchanges S2 in the defined order. Figure 4.3 depicts a single tour of
our example after making the interchanges R7,8, R6,7 and R2,3 in this order. Gilmore and
Gomory showed that the resulting tour is an optimal solution to the TSP with the special
metric. Therefore, the schedule σ = (σ1, . . . , σn) with σ1 = φ0, σi = φσi−1 for i = 2, . . . , n
is an optimal solution of the synchronous flow shop problem.

We can also use Algorithm 4.1 if we are given a starting sequence σ = (σ1, . . . , σl) of
jobs that are fixed in the beginning of the schedule and we want to determine an optimal
sequence σ′ with σ′i = σi for i = 1, . . . , l. In this case, the cycle time of the cycle in which

4.2. MIXED INTEGER LINEAR PROGRAMMING 65

1 4

3

2

8

5

6

7

Figure 4.3: Resulting tour from Figure 4.2 after making interchanges R7,8, R6,7

and R2,3.

job σ′l+1 is processed on machine M1 is determined by max
(
bσ′l , aσ

′
l+1

)
. By changing the

attributes of job 0 in line 1 of Algorithm 4.1 such that a0 = 0 and b0 = pσ′l2 we can again
model the problem of minimizing the sum of cycle times of the jobs J ′ = J\{σi|i = 1, . . . , l}
as a traveling salesman problem through nodes {0} ∪ J ′. The node that succeeds 0 in the
tour relates to the job σ′l+1 that is to be scheduled in position l + 1 of the schedule and
the cycle time of the (l + 1)-st cycle is equal to the cost c0,σ′l+1

. An optimal makespan for
a schedule with this fixed starting sequence is then equal to the completion time of job
σl−1 in the fixed starting sequence σ plus the makespan determined for the jobs {0} ∪ J ′
by Algorithm 4.1.

4.2 Mixed integer linear programming

In this section we will discuss how to model synchronous flow shop problems as mixed
integer linear programs. At first, in 4.2.1 we will describe the basic model, examining all
objective functions considered in this thesis. An alternative formulation for the special
case of minimizing the makespan of synchronous flow shops with two dominating machines
will be presented in Section 4.2.2. Finally, extensions discussed in Section 2.4 are modeled
in Section 4.2.3.

4.2.1 The basic model

Karabati and Sayin (2003) presented a MILP model to minimize the makespan in syn-
chronous flow shops. We will recite this model in the following and show how the model
can be extended to allow the handling of further objective functions. For each of the first
n cycles t = 1, . . . , n we define a binary variable xjt ∈ {0, 1} which is set to 1 iff job j
starts its processing on machine M1 in cycle t. Further, for all cycles t = 1, . . . , n+m− 1
variables ct ∈ R+

0 denotes their lengths. Because all processing times are assumed to be
integer and the sum of cycle times is to be minimized, the variable ct does not need to
be defined as integer. The following MILP minimizes the makespan of a synchronous flow
shop by minimizing the sum of all cycle times:

66 CHAPTER 4. EXACT METHODS

min
n+m−1∑

t=1

ct (4.1)

s.t.
n∑

j=1

xjτp(t−τ+1),j ≤ ct t = 1, . . . , n+m− 1;

τ = max(t−m+ 1, 1), . . . ,min(n, t) (4.2)
n∑

t=1

xjt = 1 j = 1, . . . , n (4.3)

n∑

j=1

xjt = 1 t = 1, . . . , n (4.4)

ct ∈ R+
0 t = 1, . . . , n+m− 1 (4.5)

xjt ∈ {0, 1} j, t = 1, . . . , n (4.6)

In constraint (4.2) the cycle time of each cycle is determined by the maximum of the
processing times within this cycle. Constraints (4.3) and (4.4) ensure that each job starts
processing on machine M1 in exactly one of the first n cycles and that in each of those
cycles exactly one job starts. Finally, constraints (4.5) and (4.6) define the domains of the
respective variables.

Further objective functions

To model further objective functions it is not sufficient to only have information about the
length of the individual cycles. Additional auxiliary variables are needed which describe
the individual completion times of the jobs. For each job j, we introduce an auxiliary
variable Cj ∈ R+

0 indicating its completion time. Again, because of the integrality of
all processing times, we do not need to require the domain of the variable to be integer.
As each job is completed m − 1 cycles after its start, we use the following constraint to
determine the completion time:

Cj ≥
t+m−1∑

τ=1

cτ − (1− xjt) ·M j = 1, . . . , n; t = 1, . . . , n (4.7)

Here, M is a large constant to ensure that the term on the right is at most zero if job
j does not start in cycle t. The constant can be bounded by the maximum makespan
that can be realized by a feasible left-aligned schedule. Because this can not be calculated
easily, we can use

∑m
i=1

∑n
j=1 pij as a value for M as this is clearly an upper bound for the

makespan.

4.2. MIXED INTEGER LINEAR PROGRAMMING 67

To model lateness we will use auxiliary variables Lj ∈ R, corresponding to the lateness
of all jobs j = 1, . . . , n:

Lj ≥ Cj − dj j = 1, . . . , n (4.8)

The maximum lateness L of an instance can then be bounded by

L ≥ Lj j = 1, . . . , n. (4.9)

To minimize the number of late jobs, a binary variable Uj ∈ {0, 1} is introduced for
each job:

M · Uj ≥ Lj j = 1, . . . , n (4.10)

Again, a large constant M is used in constraint (4.10) which sets the auxiliary variable
Uj to 1 iff the respective job is late. In this case, M can be bounded by the maximum
lateness that can be realized by a feasible left-aligned schedule. Again, this can not be
calculated easily in general. Thus, it can be set to

∑m
i=1

∑n
j=1 pij − min

j=1,...,n
dj which is

clearly an upper bound.
With these auxiliary variables we can extend the MILP formulation (4.2)-(4.6) to model

the problems for different objective functions: The objective (4.1) needs to be changed to
the desired function (e.g. minL; min

∑
j Cj ; min

∑
j Uj) and the respective constraints

and variables have to be added.

4.2.2 Makespan minimization for two dominating machines

We shortly repeat some of the results described in Section 2.3.2 for the presence of two
dominating machines. In this case, minimizing the makespan can be decomposed into
minimizing the sum of the lengths of the subsequences. Similar to the algorithm of Gilmore
and Gomory discussed in Section 4.1, in which the synchronous flow shop was modeled as a
traveling salesman problem, the situation with multiple subsequences can be modeled as a
vehicle routing problem. Therein, each job is represented by a node and the subsequences
of the synchronous flow shop are modeled as tours that start and end in an auxiliary node,
analogously to the zero job in the algorithm of Gilmore and Gomory. The distance of two
nodes in the vehicle routing problem is again defined by the cycle time that occurs when
the corresponding jobs are processed on the two dominating machines. Kampmeyer (2015)
evaluated multiple approaches to model this situation as a vehicle routing problem. In the
following, we present the formulation with the best performance in regard of computational
time. Let k1, k2 be the indices of the two dominating machines and κ := k2−k1. Introduce
the following binary variables xij , sj , ej ∈ {0, 1} for i, j = 1, . . . , n with i 6= j:

68 CHAPTER 4. EXACT METHODS

xij =

{
1, if job i is processed on Mk2 while job j is processed on Mk1

0, otherwise.

sj =





1, if job j is processed on Mk1 while no job is processed on Mk2

i.e. job j is the first job of a subsequence
0, otherwise.

ej =





1, if job j is processed on Mk2 while no job is processed on Mk1

i.e. job j is the last job of a subsequence
0, otherwise.

Further, we define continuous variables uj ∈
[
1, dnκe

]
for j = 1, . . . , n, where uj models

the position of j within its subsequence. These variables were introduced by Miller et al.
(1960) as subtour elimination constraints in traveling salesman problems. Here, they are
used to ensure that there are no subsequences of size larger than

⌈
n
κ

⌉
or smaller than

⌊
n
κ

⌋
.

Then, the following MILP models the problem as the search for κ subsequences of jobs.
The costs are defined by cij = max (pk2i, pk1j) with c0j = pk1j and cj0 = pk2j .

min
n∑

i=1

n∑

j=1
j 6=i

cijxij+
n∑

j=1

c0jsj +
n∑

j=1

cj0ej (4.11)

s.t. sj +

n∑

i=1
i 6=j

xij = 1 j = 1, . . . , n (4.12)

ei +

n∑

j=1
j 6=i

xij = 1 i = 1, . . . , n (4.13)

sj + ej ≤ 1 j = 1, . . . , n (4.14)
n∑

j=1

sj = κ (4.15)

n∑

j=1

ej = κ (4.16)

uj − ui +
⌈n
κ

⌉
(1− xij) ≥ 1 i, j = 1, . . . , n, i 6= j (4.17)

uj ≥
⌊n
κ

⌋
ej j = 1, . . . , n (4.18)

xij ∈ {0, 1} i, j = 1, . . . , n, i 6= j (4.19)
si, ei ∈ {0, 1} i = 1, . . . , n (4.20)

4.2. MIXED INTEGER LINEAR PROGRAMMING 69

ui ∈
[
1,
⌈n
κ

⌉]
i = 1, . . . , n (4.21)

Constraint (4.12) assures that each job is either the first of a subsequence or is preceded
by exactly one job in its subsequence. Analogously, each job is either the last of a subse-
quence or succeeded by exactly one job as stated by constraint (4.13). Further, no job can
be both the first and the last job of a subsequence (4.14). Constraints (4.15) and (4.16)
force the number of first and last jobs of the subsequences to be exactly κ. Finally, (4.17)
and (4.18) are the subtour elimination constraints based on Miller et al. (4.17) ensures that
no subsequence contains more than

⌈
n
κ

⌉
jobs while (4.18) ensures that each subsequence

contains at least
⌊
n
κ

⌋
jobs. Constraint (4.18) can be removed when n mod κ = 0 as in

this case (4.17) already ensures that all subsequences contain exactly n
κ jobs. Note that

constraints (4.14) do not hold true if n < 2κ, because in this case there exist subsequences
containing less than two jobs. In this case we need to drop this constraint. However, in this
case the problem can be easily solved in polynomial time without the need of formulating
it as a MILP. If κ ≥ n, each subsequence consists of at most one job and the makespan
of all feasible (left-shifted) schedules is the same. If 1

2n < κ ≤ n the problem can be
solved as a non-bipartite matching problem: For each job create a node and define the cost
between two nodes i, j as the minimum of costs c0i + cij + cj0 and c0j + cji + ci0 as defined
above. This represents the cost that occurs when a subsequence consists of only these two
jobs. Further, add 2κ− n auxiliary nodes and define the cost of each auxiliary node to an
actual node j as c0j + cj0, representing the cost that occurs when a subsequence consists
only of j as single job. The cost between two auxiliary nodes is set to a large constant
M >

∑n
i=1

∑n
j=1 cij . Then, a minimum cost perfect matching leads to an optimal solu-

tion of this instance. This can be achieved in polynomial time, e.g. by the algorithm of
Edmonds (1965).

4.2.3 Extensions

In addition to the basic mixed integer program formulations we will shortly describe how
to model the extensions discussed in Section 2.4.

Idle Jobs

There are two possible ways to deal with idle jobs in the MILP formulation of the syn-
chronous flow shop problem. In both, an upper bound n̄ on the number of potentially
used idle jobs has to be specified. One possibility is to modify a given instance of the
synchronous flow shop problem with n jobs to include idle jobs j′ = n+ 1, n+ 2, . . . , n+ n̄
and to solve the MILP for this new instance. Alternatively, the integer programming for-
mulation can be altered to allow for n + n̄ + m − 1 cycles and changing constraint (4.3)
into

n∑

j=1

xjt ≤ 1 for t = 1, . . . , n+ n̄ (4.22)

70 CHAPTER 4. EXACT METHODS

such that for each of the first n + n̄ positions, at most one job has to start. Further,
in all other constraints and the objective function, the parameter n has to be replaced by
n + n̄. As discussed in Section 2.4.1, an upper bound on the number of idle jobs can be
given by n̄ ≤ (n− 1)(m− 1).

Job Splitting

If splitting of jobs is allowed, the processing times of jobs on the machines are no longer fixed
and need to be calculated. To cope with this situation, we can introduce new variables yjt ∈
R which denote the processing time for each job j = 1, . . . , n in cycle t = 1, . . . , n+m− 1.
For a job j starting in cycle t, its actual processing time p̃ij is then equal to yj,t+i−1. The
calculation of cycle times can be changed by replacing constraint (4.2) by

yjt ≤ ct for j = 1, . . . , n , t = 1, . . . , n+m− 1. (4.23)

For all combined processing times p[i1,i2],j that have to be split across machinesMi1 , . . . ,Mi2

we introduce a constraint

i2−1∑

l=i1−1

yj,t+l = p[i1,i2],jxjt for j, t = 1, . . . , n. (4.24)

to assure that job j is processed for the required time in cycles t+ i1 − 1, . . . , t+ i2 − 1 iff
job j starts its processing on machine M1 in cycle t. Mandatory processing times for all
jobs can be included in the same way by setting

yj,t+i−1 ≥ pijxjt for j, t = 1, . . . , n , i = 1, . . . ,m (4.25)

and

yj,t+i−1 ≤ pijxjt for j, t = 1, . . . , n , i = 1, . . . ,m. (4.26)

It should be noted that in the case without upper limits on the actual processing
times, it is possible to formulate a mixed integer program without the auxiliary variables
yjt. However, constraints need to be added to assure that the cycle times ct of all cycles
t = 1, . . . , n + m − 1 allow for a feasible actual processing time for each job. Then, in a
post-processing step, we can determine actual processing times for each job such that the
makespan does not increase. To achieve this, we replace constraints (4.23) and (4.24) for
all combined processing times p[i1,i2],j by

n∑

j=1

p[i1,i2],jxj,t ≤
i2−1∑

l=i1−1

ct+l for t = 1, . . . , n. (4.27)

This constraint assures that the cycle times of cycles t+ i1 − 1, . . . , t+ i2 − 1 are large
enough such that the combined processing time p[i1,i2],j of the job starting in cycle t can

4.2. MIXED INTEGER LINEAR PROGRAMMING 71

be distributed over these cycles. Further, we drop constraint (4.26) and replace constraint
(4.25) by

ct+i−1 ≥ pijxjt for j, t = 1, . . . , n , i = 1, . . . ,m. (4.28)

Constraints (4.27) and (4.28) assure that in a post-processing step, the actual pro-
cessing times can be calculated by Algorithm 4.2. For a job j with combined processing
time p[i1,i2],j starting in cycle t its actual processing times on machines Mi1 , . . . ,Mi2 are
calculated iteratively in lines 5-7. The assigned actual processing time may not lead to
infeasible processing. Thus, it may not exceed the sum of the remaining lower limits on
the actual processing time required in the following cycles. Therefore, in line 6 the actual
processing time is calculated as the minimum of this permitted time and the cycle time as
determined by the MILP. Because of constraints (4.27) and (4.28), the actual processing
times can be feasibly assigned in this way.

Input: sequence of jobs σ = (σ1, . . . , σn)
Input: cycle times ct, combined processing times p[i1,i2],j

Output: actual processing times p̃ij for i = i1, . . . , i2; j = 1, . . . , n
1 for t = 1, . . . , n do
2 j ← σt
3 p← p[i1,i2],j

4 for l = i1, . . . , i2 do

5 p′ ← p−
i2∑

k=l+1

p
kj

6 p̃lj ← min (p′, ct+l−1)
7 p← p− p̃lj
8 end
9 end

Algorithm 4.2: Post-processing step to find actual processing times given a
sequence and cycle times in the case of job splitting without upper limits.

Unfortunately, if upper limits on the actual processing time are defined, it is not possible
to remove the variables resembling the actual processing times of the individual jobs from
the MILP formulation (cf. Bultmann (2015)).

72 CHAPTER 4. EXACT METHODS

Resources

First we consider the case where each operation Oij may need additional resources. Let R
be the set of resources and for each resource r ∈ R let r̄ be the quantity in which resource
r is available. Further, for r ∈ R; j = 1, . . . , n and i = 1, . . . ,m let the parameter ξijr ∈ N
be set to the quantity of resource r that is required by operation Oij . Then, adding the
constraint

min(n,t)∑

τ=max(t−m+1,1)

n∑

j=1

xjτξ(t−τ+1),j,r ≤ r̄ for r ∈ R , t = 1, . . . , n+m+ 1 (4.29)

ensures that each resource r is only used at most r̄ times in each cycle, allowing for a
feasible resource assignment.

To incorporate resources that are needed over the whole course a job is processed on
machines M1 to Mm, we define parameter ξjr ∈ N which is set to the quantity of resource
r required by job j. Again, adding the constraint

min(n,t)∑

τ=max(t−m+1,1)

n∑

j=1

xj,(t−τ+1)ξj,r ≤ r̄ for r ∈ R , t = 1, . . . , n+m+ 1 (4.30)

ensures that each resource r is used at most r̄ times in each cycle.

Circular production and changeover times

When we consider circular production, we can introduce auxiliary variables zjh ∈ {0, 1}
that indicate whether a job h is scheduled exactly m positions after job j. In this case, a
changeover might be necessary between these two jobs. We link the variables zjh to the
variables xjt via the constraint

xj,t−m + xht − zjh ≤ 1 for j, h = 1, . . . , n; t = m+ 1, . . . , n (4.31)

and adjust the objective function by adding the changeover times, resulting in

min
n+m+1∑

t=1

ct +

n∑

j=1

n∑

h=1

sf(j)f(h)zjh (4.32)

where f(j) is the job family of job j.

4.3. BRANCH AND BOUND 73

Order scheduling

As discussed in Section 2.4, considering order scheduling is only relevant for objective
functions that depend on individual completion times. To incorporate order scheduling
into the MILPs discussed in Section 4.2.1, we can define for each order Θi the completion
time CΘi by the constraint

CΘi ≥ Cj for j ∈ Θi. (4.33)

All other auxiliary variables indicating the lateness of orders and the total number of
late orders can then be defined accordingly using the completion time of an order.

4.3 Branch and bound

A branch and bound algorithm represents an exact method to solve optimization problems
by searching the complete solution space for an optimal solution. It employs a divide
and conquer strategy by dividing the solution space into smaller subspaces (branching)
with the intent of finding a good evaluation (i.e. a lower bound) of the quality of the
solutions within each subspace. Whenever it can be shown that it is not possible for any
solution within a subspace to be strictly better than the best solution found so far, the
whole subspace can be disregarded and the search is intensified in the solution space where
better solutions are still possible.

The quality of a branch and bound algorithm is predominantly determined by three
attributes: The branching strategy, i.e. how the solution space is divided, the quality of
the evaluation function which calculates the lower bound on the objective value of the
divided subspaces, and the quality of the initial and later found solutions. In Section
4.4 we will discuss lower bounds for various objective functions for the synchronous flow
shop which can be used within the branch and bound framework. The most common
branching strategy for permutation problems consists of fixing the start of a permutation
and branching over all possible extensions. Initial solutions can be obtained by applying
heuristics as described in Chapter 5. Algorithm 4.3 shows the outline of a general branch
and bound algorithm for synchronous flow shop problems. The algorithm is fed a set
of jobs, a (possibly empty) fixed starting sequence of jobs and an upper bound on the
objective value which is given by the best solution value found so far. In line 4 of the
algorithm, the solution space is divided into subspaces which are identified by which of the
jobs is fixed next in the sequence. For each of the resulting sequences, a lower bound is
calculated in line 6. For this, depending on the objective functions, one of the algorithms
described in Section 4.4 is used. Only if the lower bound is smaller than the hitherto
best found solution value, the search is intensified in this subspace of the solution space
by recursively executing the branch and bound algorithm within this subspace in line 8.
Otherwise, no sequence which starts with this subsequence can achieve a better objective
value than the best hitherto found solution. Therefore, this subspace of the solution space

74 CHAPTER 4. EXACT METHODS

is disregarded. Afterwards, if a better solution is found within this subspace, the upper
bound is updated in line 10.

Input: set of jobs J , objective function F
Input: fixed sequence of jobs σ = (σ1, . . . , σl), upper bound UB
Output: optimal value for F

1 if all jobs fixed then
2 return F (σ);
3 end
4 for j /∈ σ do
5 σ′ ← append j to σ
6 LB ← compute lower bound for J , F and σ′

7 if LB < UB then
8 c← recursively call B&B (Algorithm 4.3) for J , F , UB and σ′

9 if c < UB then
10 UB ← c
11 end
12 end
13 end
Algorithm 4.3: Outline of a general branch and bound algorithm for syn-
chronous flow shop problems

4.4 Lower Bounds

In this section, we will investigate lower bounds for synchronous flow shop problems. These
can be used in branching algorithms (cf. Section 4.3) or to evaluate heuristic approaches
that will be discussed in Chapter 5. We will present lower bounds for synchronous flow
shop problems and the objective functions of minimizing the makespan, maximum lateness
and total completion time. In all of these cases, there exist polynomially solvable special
cases which we will exploit to find the respective lower bounds. In the following, we will
concentrate on the basic synchronous flow shop model without any extensions. For each
objective function we discuss how to get an initial lower bound for a given instance as well
as how to obtain lower bounds if we are already given a fixed starting sequence of jobs
which can be used in a branch and bound algorithm as described in Section 4.3.

4.4.1 Makespan

In the following, we will discuss several lower bounds for the makespan of synchronous
flow shop problems. For this, we will initially consider special cases with two domina-
ting machines. Afterwards, we will take a look at the general case without any machine
dominance.

4.4. LOWER BOUNDS 75

Two dominating machines

First, we will discuss problems of type F |synmv, dom (k1, k2) , pndomij = 0|Cmax with two
dominating machines 1 ≤ k1 < k2 ≤ m. If k2 = k1 + 1, the problem can be solved
optimally in polynomial time using the algorithm of Gilmore and Gomory. Thus, in the
following we may assume that k2 > k1 + 1. In this case, we can exploit the observations
we made in Section 2.1.2 that any schedule can be decomposed into κ := k2 − k1 subse-
quences and that the sum of the subsequences’ makespans is equal to the makespan of the
schedule. Theorem 4.1 proves that the optimal makespan of a synchronous flow shop with
two adjacent dominating machines can be used as a lower bound for instances in which
the two dominating machines are not adjacent. The lower bound is achieved by showing
that the makespan of this instance is not larger than the sum of the makespans of the κ
subsequences for the case that the two dominating machines are not adjacent. We denote
this bound as the Gilmore-Gomory lower bound.

In the following, to improve the readability of the proofs we assume that n mod κ = 0.
However, all results can be generalized for arbitrary values of n > κ.

M1

M2

1

1

4

4

2 5

52

3

3

6

6

max (p14, p23)

(a) Schedule achieved for the Gilmore-Gomory lower bound

M1

M2

M3

1

1

1

4

4

4

2

2

5

5

52

3

3

3

6

6

6

p14 p33

(b) Corresponding schedule for the initial instance with two non-adjacent dominating machines

Figure 4.4: Approximation of the Gilmore-Gomory lower bound for two domina-
ting machines in the case of F3|synmv, dom (1, 3) |Cmax.

Theorem 4.1. Let I be an instance of F |synmv, dom (k1, k2) , pndomij = 0|Cmax with jobs
J and optimal makespan C. Create an instance I ′ of F2|synmv|Cmax with jobs J ′ and
p1j′ = pk1,j ; p2j′ = pk2,j for all j ∈ J . Then, for the optimal makespan C ′ of instance I ′, it
holds that C ′ ≤ C.

Proof. As discussed in Section 2.3.2, the schedule of a flow shop with two non-adjacent
dominant machines k1, k2 decomposes into κ independent sub-schedules of synchronous
flow shops with two adjacent dominating machines and the makespan of the schedule

76 CHAPTER 4. EXACT METHODS

equals the sum of the makespans of these sub-schedules. Thus, for an optimal schedule σ
of I with independent sub-schedules σ1, . . . , σκ, the concatenations of these sub-schedules
results in a schedule σ′ for instance I ′ with

σ′ =
(

(σ1
1)′, . . . , (σ1

n/κ)′, (σ2
1)′, . . . , (σ2

n/κ)′, . . . , (σκ1)′, . . . , (σκn/κ)′
)

which has a makespan of at most C. Because an optimal makespan C ′ of I ′ is at most as
large as this makespan, it holds that C ′ ≤ C.

Further, we even can show how well this lower bound performs in comparison to an
optimal solution:

Theorem 4.2. Let I be an instance of F |synmv, dom (k1, k2) , pndomij = 0|Cmax with optimal
makespan C∗ and let CGG be the Gilmore-Gomory lower bound. Then, CGG ≥ C∗ − (κ−
1) · (maxi,j pij).

Proof. Let σ′ = (σ′1, . . . , σ
′
n) be a sequence of jobs for an instance I ′ of F2|synmv|Cmax

with jobs J ′ and p1j′ = pk1,j ; p2j′ = pk2,j for all j ∈ J which achieves the Gilmore-Gomory
lower bound CGG. Construct a sequence σ for the original instance I as follows. For
λ = 1, . . . , κ, let σλ be the independent subsequences of σ. Set

σλi = σ′(λ−1)n
κ

+i; i = 1, . . . ,
n

κ
− 1

which resembles the splitting of the sequence σ′ into κ subsequences. In the sequence σ,
the operations on machine Mk1 of the first κ jobs and the operations on machine Mk2 of
the last κ jobs are the only jobs on a dominating machine in their respective cycles while
in the sequence σ′ of instance I ′, the operation on machine Mk1 of the t-th job of σ falls
together with the operation of the t-last jobs of σ for t = 2, . . . , κ. An example is depicted
in Figure 4.4 for the case of F3|synmv, dom (1, 3) |Cmax where the processing times of the
second and second-last jobs fall together in the two-machine sequence. Thus, the makespan
Cmax of σ can be calculated by

Cmax(σ) = CGG +
κ∑

t=2

pk1,σt +
n+m−2∑

t=n+m−(2+κ)

pk2,σt −
κ∑

t=2

max
(
pk1,σt , pk2,σn+m−t

)

= CGG +

κ∑

t=2

min
(
pk1,σt , pk2,σn+m−t

)

≤ CGG + (κ− 1) ·
(

max
i,j

pij

)
.

Because an optimal makespan C∗ of the instance I is not larger than Cmax(σ), the claimed
approximation bound of the Gilmore-Gomory lower bound is valid.

Given a fixed sequence of jobs σ = (σ1, . . . , σl), we can derive a lower bound on all
possible schedules that contain σ as a starting sequence by using Algorithm 4.4. Because

4.4. LOWER BOUNDS 77

the machinesMk1 andMk2 are dominating, the cycle times ct of all cycles t = 1, . . . , l+k1−1
will not be increased regardless of the sequence of jobs to be appended. Thus, the makespan
of the complete schedule is at least as large as the sum of the first l + k1 − 1 cycle times
(cf. line 1). Figure 4.5 depicts this situation for five machines where machines M2 and
M4 are dominating. Only cycle times of cycles l+ 2, . . . , n+m− 1 will be affected by the
remaining jobs.

As shown in Theorem 4.1, the makespan of the remaining jobs not scheduled within the
starting sequence is at least as large as the makespan of the relaxation into a two-machine
synchronous flow shop. The processing times of the operations on the second dominating
machine in those cycles in which no operation is scheduled on the first dominating machine
can be incorporated as well. The procedure is similar to the method described in the end
of Section 4.1 where a starting sequence was given for scheduling a two-machine problem.
There, the algorithm of Gilmore and Gomory was altered in such a way that the job 0 had
processing time of zero on the first machine and processing time equal to the processing
time of the last job of the starting sequence on the second machine. For non-adjacent
dominating machines k1, k2, the processing times of jobs j = σl−κ+1, . . . , σl can be included
by introducing jobs with processing times of zero on the first as well as processing times
of pk2j on the second machine (cf. line 9).

Then, the sum of the first l+k1−1 cycle times plus the optimal makespan of the relaxed
instance serves as a lower bound on all schedules starting with the starting sequence σ.
Theorem 4.3 proves the correctness of Algorithm 4.4.

M1

M2

M3

M4

M5

σl−3 σl−2 σl−1

σl

σl

σl

σlσl−1

σl

l l + 1 l + 2 l + 3 l + 4

Figure 4.5: Starting sequence of a schedule for a synchronous flow shop with two
non-adjacent dominating machines.

Theorem 4.3. Let I be an instance of F |synmv, dom (k1, k2) , pndomij = 0|Cmax and let
σ = (σ1, . . . , σl) be a fixed starting sequence. Then, Algorithm 4.4 finds a lower bound on
the optimal makespan in runtime O (n log n).

78 CHAPTER 4. EXACT METHODS

Proof. Algorithm 4.4 consists of a single execution of the algorithm by Gilmore and Gomory
on the transformed instance, leading to the stated runtime. Because the non fixed jobs
j /∈ σ do not affect the cycle times of the first l + k1 − 1 cycles we only need to show that
M is a lower bound on the remaining sum of cycle times to prove the correctness of the
lower bound in line 12. This, however, is a direct consequence of Theorem 4.1. Thus, the
lower bound is valid.

Input: set of jobs J , two dominating machines k1, k2.
Input: fixed sequence of jobs σ = (σ1, . . . , σl).
Input: cycle times ct for t = 1, . . . , l +m− 1
Output: lower bound on Cmax

1 LB0 ←
∑l+k1−1

t=1 ct
2 J ′ ← ∅
3 for j ∈ J do
4 if j /∈ σ then
5 Create a job j′ with p1j′ = pk1,j , p2j′ = pk2,j and add it to J ′

6 end
7 end
8 for i = 0, . . . ,min {l, κ} − 1 do
9 Create a job j′ with p1j′ = 0, p2j′ = pk2,σl−i and add it to J ′

10 end
11 M ← optimal makespan for jobs J ′ by Algorithm 4.1
12 LB ← LB0 +M
13 return LB

Algorithm 4.4: Gilmore-Gomory lower bound (LB-GG) for a fixed starting
sequence in the case of two dominating machines.

The general case

One possibility to obtain a lower bound on the optimal makespan of an instance of the
general synchronous flow shop problem is to relax the instance by transforming it into a
problem consisting of only two dominating machines. For an instance I of the synchronous
flow shop problem F |synmv|Cmax with jobs J consider the following relaxation: For 1 ≤
k1 < k2 ≤ m construct an instance Ik1,k2 with the same jobs J , but set all processing times
on machines Mk with k /∈ {k1, k2} to zero. Clearly, this relaxed instance is an instance
of a synchronous flow shop with two dominating machines and the optimal makespan
of this relaxed instance is a lower bound on the makespan of the original instance I. If
k2 = k1+1, the two dominating machines are adjacent and the makespan of the instance can
be determined by the algorithm of Gilmore and Gomory. Otherwise, if the two dominating
machines are not adjacent, we can use the result of Theorem 4.1. Then, the maximum of
the makespans of all instances Ik1,k2 for all 1 ≤ k1 < k2 ≤ m results in a lower bound for
the original instance.

4.4. LOWER BOUNDS 79

Given a fixed starting sequence of jobs σ, we can use Algorithm 4.5 which consists
of calculating the makespan for all relaxed instances Ik1,k2 for all 1 ≤ k1 < k2 ≤ m for
the unscheduled jobs. The largest of these calculated makespans yields a lower bound for
the makespan of the remaining jobs and thus can be used to derive a lower bound on the
makespan of the original instance I with the fixed starting sequence. We denote this lower
bound as the (iterative) Gilmore-Gomory lower bound.

Input: set of jobs J
Input: fixed sequence of jobs σ = (σ1, . . . , σl)
Input: cycle times ct for t = 1, . . . , l +m− 1
Output: lower bound on Cmax

1 LB ←
l+m−1∑
t=1

ct

2 for k1 = 1, . . . ,m− 1 do

3 S ←
l+k1−1∑
t=1

ct

4 for k2 = k1 + 1, . . . ,m do
5 Lk1k2 ← optimal makespan for Jobs J , starting sequence σ and

dominating machines k1, k2 as determined by Algorithm 4.1
6 LB ← max (LB,Lk1k2 + S)

7 end
8 end
9 return LB

Algorithm 4.5: Gilmore-Gomory lower bound (LB-GG) for a fixed starting
sequence

Theorem 4.4. Let I be an instance of F |synmv|Cmax and let σ = (σ1, . . . , σl) be a fixed
starting sequence. Then, Algorithm 4.5 finds a lower bound on the optimal makespan in
runtime O

(
m2 · n log n

)
.

Proof. Algorithm 4.5 consists of O
(
m2
)
executions of Algorithm 4.1, leading to the claimed

runtime. Let LB >
∑l+k1−1

t=1 ct, because otherwise LB clearly is a lower bound. Then,
LB = Lk1k2 + Ck1 for some indices k1, k2. Assume there exists a sequence σ′ to instance
I with σ′i = σi for i = 1, . . . , l and makespan Cmax(σ′) < LB. Consider the cycle times of
cycles t with k1 + l ≤ t ≤ n+m−1. It must hold that

∑n+m−1
t=k+1 ct(σ

′) < Lk1k2 where ct(σ′)
is the cycle time of cycle t for sequence σ′. For all jobs σ′l+1, . . . , σ

′
n set the processing

times to zero on machines Mi with i 6= k1, k2. Clearly, the sum of the cycle times does not
increase. Further, Lk1,k2 is a lower bound on the sum of cycle times because of Theorems
4.1 and 4.3. Therefore it is also a lower bound on the sum of cycle times for the original
sequence with arbitrary processing times on all machines. This, however, is a contradiction
to Cmax(σ′) < LB. Thus, the lower bound holds.

Another lower bound on the makespan can be achieved by relaxing the synchronous
flow shop in the following way: For all jobs we allow that the operations of each job may

80 CHAPTER 4. EXACT METHODS

be processed in any order, do not have to be processed in consecutive cycles and may even
be processed within the same cycle on different machines. Thus, the operations of the
jobs may be distributed freely over all cycles with the only constraint that no machine
may process more than one operation in the same cycle. Then, similar to the first stage
of the algorithm by Gilmore and Gomory, sorting the processing times on each machine
and matching the k-th smallest processing times together for all k = 1, . . . , n such that
they are processed in the same cycle, leads to a lower bound on the makespan. This lower
bound can be further improved by taking into account the structure of the synchronous
flow shop. Only in cycles m, . . . ,max(m − 1, n) there is a job being processed on every
machine while in the first m − 1 cycles and the last m − 1 cycles not all machines are
occupied. Therefore, to improve the lower bound we require that no operations may be
processed in cycles t = 1, . . . ,m− 1 on machines Mt+1, . . . ,Mm and no operations may be
processed in cycles t = n+ 1, . . . , n+m− 1 on Machines M1, . . . ,Mt−n. Then, the lower
bound can be described as matching together the largest processing times on the machines
in the cycles when all machines are occupied and moving the smaller processing times to
the front or back of the schedule.

M1

M2

M3

M1

M2

M3

M1

M2

M3

M1

M2

M3

M1

M2

M3

(a) (b)

(c) (d)

(e)

Figure 4.6: Exemplary application of the matching lower bound (LB-M) with a
given starting sequence

In the following, we will describe the construction of the lower bound in more detail for
the case when we are to find a lower bound for a schedule in the presence of a fixed starting
sequence σ = (σ1, . . . , σl). Naturally, this can also be applied to an empty starting sequence
as well. The schedule is relaxed in the manner described above such that operations of
jobs do not have to adhere to the flow shop constraints and operations of the same job
can be processed on different machines in the same cycle. Starting with machine Mm, we
iteratively distribute the operations for machine Mk over the cycles l + m − k, . . . , n +
k − 1. In each iteration k we match the i-th smallest operation on machine Mm−k+1 with
the i-th smallest cycle time already determined by the previous iterations for machines
Mm−k+2, . . . ,Mm. Afterwards, the operations that are processed in the cycle with the

4.4. LOWER BOUNDS 81

smallest cycle time are moved to the back of the schedule, such that cycle n + m − k
consists of these operations and such that they are disregarded in future iterations. Figure
4.6 gives an exemplary application of the matching lower bound for three machines. In
step (a) operations on M3 are distributed arbitrarily. In step (b), the smallest operation
on M3 is moved to last cycle and this cycle will not be altered in future steps. In step (c),
the operations on the second machine are distributed over the cycles such that the i-th
smallest operation on machine M2 coincides with the i-th smallest cycle time determined
by the operations on machine M3. Afterwards, the smallest cycle is moved to the back
again in step (d). Finally, in the last iteration (step (e)) the remaining non-fixed operations
on the first machine are distributed.

Input: set of jobs J , fixed sequence of jobs σ = (σ1, . . . , σl)
Input: cycle times ct for t = 1, . . . , l +m− 1
Output: lower bound on Cmax

1 Γ0 ← list of size n with all entries set to 0
2 LB ← 0
3 for k = 1, . . . ,m do
4 µk ← list of operations O(m−k+1),j sorted non-increasingly in p(m−k+1),j

5 Γk ← list of size n
6 for i = 1, . . . , n do
7 Γki ← max

(
p(µki),Γ

k−1
i

)

8 end
9 LB ← LB + Γkn

10 Γkn ← cl+m−k
11 Sort Γk in non-increasing order
12 end
13 for i = 1, . . . , n− 1 do
14 LB ← LB + Γmi
15 end
16 return LB

Algorithm 4.6: Matching lower bound (LB-M) on the makespan.

In the following, we describe this procedure more formally and prove the validity of
Algorithm 4.6 to obtain a lower bound. For the k-th iteration let µk be the list of operations
O(m−k+1),j of the jobs j /∈ σ, sorted in non-increasing order of p(m−k+1),j . Distribute the
operations such that the operation µki with the i-th smallest processing time is processed
in the cycle with the i-th smallest maximum processing time determined by the operations
that were matched together in previous iterations. In Algorithm 4.6, the matching is
performed in line 7. Therein, Γk−1 is a list of the maxima of processing times of the
hitherto fixed operations on machines m− k+ 2, . . . ,m in cycles l+ k, . . . , n+ k− 1, again
sorted in non-increasing order and p(µkl) is the processing time of operation µkl . The new
cycle time Γki is obtained by matching the i-th largest cycle time for the hitherto fixed

82 CHAPTER 4. EXACT METHODS

operations Γk−1
i with the i-th largest processing time of an operation on Mm−k+1. Then,

cycle n + k − 1, represented by Γkn is the one with the smallest cycle time. No further
operation is added to this cycle in the remaining iterations. Thus, the lower bound is
increased by the length of this cycle in line 9. In lines 10 and 11, the list Γ is prepared
for the next iteration by replacing the cycle time of the cycle n+ k − 1 by the cycle time
of cycle l + m − k as determined by the starting sequence. After the m-th iteration, all
operations are fixed and thus the lower bound can be calculated by adding together all
not yet considered cycle times (cf. line 14). We refer to this lower bound as the matching
lower bound (LB-M).

Theorem 4.5. Let I be an instance of F |synmv|Cmax and let σ = (σ1, . . . , σl) be a fixed
starting sequence. Then, Algorithm 4.6 finds a lower bound on the makespan in runtime
O (m · n log n).

Proof. For each machine, the operations are sorted and distributed over the cycles, leading
to the claimed runtime.

Let σ′ = (σ′1, . . . , σ
′
n) be a sequence of jobs with σ′i = σi for i = 1, . . . , l with minimal

makespan C∗ := Cmax (σ′). In the following, we will relax the problem as described above.
Starting with the distribution of operations given by σ′ (which still adhere to the flow shop
constraints) we iteratively rearrange the operations in a way that results in a distribution
of operations identical to Algorithm 4.6 without increasing the makespan. In the following
we will denote the processing time of an operation o by p(o).

Consider the first iteration of the algorithm with k = 1 in line 4 in which operations on
Mm are distributed. Let operation o := µ1

n be processed in cycle i and consider operation
o′ that is processed on machineMm in cycle n+m−1. Let ρi1, . . . , ρi,m−1 be the operations
that are currently processed in cycle i on machines M1, . . . ,Mm−1. Then, we can swap
operations o and o′, not increasing the makespan:

C ′ = C∗ −max

(
p(o),

m−1
max
k=1

(p(ρik))

)
− p(o′) + max

(
p(p),

m−1
max
k=1

(p(ρik))

)
+ p(o) ≤ C∗

Then, the last cycle time is equal to p(o) = p
(
µ1
n

)
= Γ1

n, resembling the cycle time of
Algorithm 4.6 in cycle n+m− 1.

Now, consider iteration k with k > 1 where the operations on machine Mm−k+1 are
distributed. Let C be the makespan of the schedule with the current distribution of oper-
ations. For i = 1, . . . , n let Γk−1

i be the maximum of the processing time of the operations
on machines m− k + 2, . . . ,m in the cycles l +m− k + 1, . . . , n+m− k, i.e.

Γk−1
i :=

m
max

h=m−k+2
ρl+m−k+i,h.

Sort the cycles such that Γk−1
h ≥ Γk−1

i for h ≤ i. Again, denote with ρik the operation
that is processed in cycle i on machine k in the schedule with the current distribution
of operations. Let l + m − k + s, l + m − k + t be two cycles with Γk−1

s ≥ Γk−1
t but

p(ρl+m−k+s,m−k+1) < p(ρl+m−k+t,m−k+1), i.e. where the maximum of the processing times
of operations on machines m − k + 2, . . . ,m in cycle l + m − k + s is at least as large as

4.4. LOWER BOUNDS 83

Γ2
tΓ2

s

ρemρdm

ρd,m−k+2 ρe,m−k+2

ρe,m−k+1

ρe1ρd1

ρd,m−k+1

cecd

Γ2
tΓ2

s

ρemρdm

ρd,m−k+2 ρe,m−k+2

ρd,m−k+1s

ρd1ρe1

ρe,m−k+1

M1

Mm−k+1

Mm−k+2

Mm

cecd
d := l +m− k + s e := l +m− k + t

...

...
...

...

...
...

...

...
...

...

Figure 4.7: Exemplary exchange for iteration k. To improve readability, we set
d := l+m−k+s and e := l+m−k+ t. Because p(ρd,m−k+1) < p(ρe,m−k+1) while
Γ2
s ≥ Γ2

t , the operations on machines M1, . . . ,Mm−k+1 are swapped, resulting in
no increase in the makespan.

the processing times of the operations on these machines in cycle l + m − k + t but the
processing time of the operation on machine m−k+1 is smaller in cycle l+m−k+s than
in cycle l +m− k + t. In this case, for these two cycles swap the operations on machines
1, . . . ,m−k+ 1 such that for each machine the processing time of the operation processed
in cycle l + m − k + s is at least as large as the processing time on this machine in cycle
l+m−k+ t. Obviously, the makespan does not increase. Figure 4.7 depicts an exemplary
configuration and swap. After the swaps, Γk is the maximum of processing times of the
processes on machines m− k+ 1, . . . ,m for these cycles set like in line 7 of the algorithm.
The cycle time of cycle n+m− k is then equal to Γkn and the cycle will not be affected by
future iterations.

Thus, the result of the algorithm can be achieved by starting with a distribution of
operations with optimal makespan and iteratively swapping operations in a way such that
the resulting cycle times resemble the result of Algorithm 4.6 while not increasing the
makespan. Therefore, the algorithm achieves a lower bound on the optimal makespan.

In the case that no fixed starting sequence σ = (σ1, . . . , σl) is given, the algorithm has
to be altered in a minor way: Instead of setting Γkn to the cycle time of cycle (l+m−k) of
the starting sequence in line 10 it can simply be set to zero. In this case, the list Γk does
not need to be sorted again in each iteration because the operations in line 7 retain the
sorting of the list and all processing times are at least zero. Thus, the list Γk is already
sorted in non-increasing order in this case.

84 CHAPTER 4. EXACT METHODS

4.4.2 Maximum lateness

To achieve a lower bound on the maximum lateness for synchronous flow shop instances,
we will use the results of Section 3.3.1 which gave an efficient way to solve the problem
in the case of only one dominant machine. Similar to constructing lower bounds on the
makespan, we will use this algorithm on relaxed versions of the original problem. For
an instance I with jobs J of the synchronous flow shop problem F |synmv|Lmax consider
the following relaxation: For k ≤ m construct an instance Ik with the same jobs J , but
set all processing times on machines Mi with i 6= k to zero. Clearly, this instance of a
synchronous flow shop with a single dominating machine is a relaxation of the original
instance and an optimal solution of the problem F |synmv, dom (k) , pndomij = 0|Lmax for
this relaxed instance is a lower bound on the minimal maximum lateness of the original
instance I. Thus, also the maximum of these bounds is a lower bound for the original
instance.

Input: set of jobs J , fixed sequence of jobs σ = (σ1, . . . , σl)
Input: cycle times ct for t = 1, . . . , l +m− 1
Output: lower bound on Lmax

1 LB ← Lmax(σ)
2 for k = 1, . . . ,m do

3 S ←
l+k−1∑
h=1

ch

4 J ′ ← ∅
5 for j ∈ J do
6 if j /∈ σ then
7 Create a job j′ with pkj′ = pkj ; phj′ = 0 for h = 1, . . . ,m;h 6= k

and dj′ = dj − S and add it to J ′

8 end
9 end

10 L← minimum lateness for jobs J ′ as determined by Algorithm 3.2
11 LB ← max (LB,L)

12 end
13 return LB

Algorithm 4.7: Lower bound on the maximum lateness for a fixed starting
sequence
For a given fixed starting sequence σ = (σ1, . . . , σl), Algorithm 4.7 determines a lower

bound on the maximum lateness. Therein, the lower bound for all sequences that start with
this fixed starting sequence is determined as follows: First, the maximum lateness of the
starting sequence is calculated as this can not be decreased independent of the sequence of
the remaining jobs. Afterwards, a lower bound on the maximum lateness of the remaining
job is determined. For each k = 1, . . . ,m, the remaining jobs are relaxed in such a way
that only their processing times on machine Mk are considered. For this, an instance Ik
of F |synmv|kLmax is constructed (cf. line 4). To simulate that the processing of jobs on
machine Mk in the complete schedule would start in the (l + k)-th cycle, the due dates of

4.4. LOWER BOUNDS 85

each job j′ in the relaxed instance are set to dj −
l+k−1∑
h=1

ch (cf. line 7). Then, the maximum

lateness of the constructed instance gives a lower bound for the maximum lateness for the
remaining jobs.

Theorem 4.6. Let I be an instance of F |synmv|Lmax and let σ = (σ1, . . . , σl) be a fixed
starting sequence. Then, Algorithm 4.7 finds a lower bound on the minimal maximum
lateness in time O(m · n3 log n).

Proof. The arguments are similar to the proof of Theorem 4.4.

4.4.3 Total completion time

Similar to the minimization of the maximum lateness we will use the results of Section 3.3.1
which gave an efficient way to solve the problem in the case of only one dominant machine.
For an instance I with jobs J of the synchronous flow shop problem F |synmv|∑Cj con-
struct instances Ik for k ≤ m with the same jobs J , but set all processing times on machines
Mi with i 6= k to zero. Again, an optimal solution of F |synmv, dom (k) , pndomij = 0|∑Cj
of each of these instances offers a lower bound on the total completion time of the original
instance.

Input: set of jobs J , fixed sequence of jobs σ = (σ1, . . . , σl)
Input: cycle times ct for t = 1, . . . , l +m− 1
Output: lower bound on

∑
Cj

1 LB0 ←
∑
Cj(σ)

2 for k = 1, . . . ,m do
3 S ←∑l+k−1

h=1 ch
4 J ′ ← ∅
5 for j ∈ J do
6 if j /∈ σ then
7 Create a job j′ with p1j′ = pkj ; phj′ = 0 for h = 1, . . . ,m;h 6= k

and add it to J ′

8 end
9 end

10 L← minimal total completion time for jobs J ′

as determined by SPT ordering
11 LBk ← LB0 + |J ′| · S + L

12 end
13 LB ← m

max
k=0

(LBk)

14 return LB

Algorithm 4.8: Lower bound on the total completion time for a fixed starting
sequence
For a fixed starting sequence σ = (σ1, . . . , σl), Algorithm 4.8 calculates a lower bound

on the total completion time. The algorithm works in the same way as Algorithm 4.7 in
Section 4.4.2 above. First, the total completion time for the starting sequence is calculated.

86 CHAPTER 4. EXACT METHODS

Afterwards, for each k = 1, . . . ,m, an instance of F |synmv, dom (k) |∑Cj is constructed.
For each of the remaining jobs, its completion time is increased by the cycle times of the
first l + k − 1 cycles (cf. line 11).

Theorem 4.7. Let I be an instance of F |synmv|∑Cj and let σ = (σ1, . . . , σl) be a fixed
starting sequence. Then, Algorithm 4.8 finds a lower bound on the total completion time
in time O(m · n log n).

Proof. Once again, the arguments are similar to the proofs of Theorems 4.4 and 4.6.

Another lower bound for minimizing the total completion time of synchronous flow shop
problems can be achieved by transforming the problem into a parallel machine problem. For
parallel machines, finding a schedule that minimizes the total completion time is solvable
in polynomial time even if the number of machines is part of the input (cf. Brucker
(2007)). The algorithm consists of first sorting the jobs in SPT order and then iteratively
scheduling each job on the machine with the smallest index on which the fewest jobs have
been scheduled so far. Algorithm 4.9 determines the optimal total completion time for
a parallel machine problem. For each machine Mi, the completion time of the last job
currently scheduled on Mi is stored in list P (cf. line 2). Starting with the first machine,
the jobs are appended iteratively as described above. For each job j that is scheduled on
machineMi, its completion time can be calculated by the completion time of the preceding
job on machineMi, increased by pj (cf. 6). In the following, we show that the optimal total
completion time of the parallel machine problem is a lower bound on the total completion
time of the synchronous flow shop problem.

Input: set of jobs J
Output: optimal value for

∑
Cj

1 C ← 0
2 P ← list of size m, all values 0
3 Sort jobs in SPT order
4 i← 1
5 for j = 1, . . . , n do
6 Pi ← Pi + pj
7 C ← C + Pi
8 i← i+ 1
9 if i > m then

10 i← i−m
11 end
12 end
13 return C

Algorithm 4.9: Optimal algorithm for P ||∑Cj

4.4. LOWER BOUNDS 87

M1

M2

M3

M1

M2

M3

(a)

(b)

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

Figure 4.8: Exemplary transformation of a synchronous flow shop schedule (a) into
a parallel machine schedule (b). The completion times of all jobs in the parallel
machine schedule are at most as large as the completion times of the corresponding
jobs in the synchronous flow shop.

Theorem 4.8. Let I be an instance of F |synmv|∑Cj with J and optimal total completion
time C. Construct an instance I ′ of the parallel machine problem P ||∑Cj with jobs J ′

and pj′ =
∑m

i=1 pij for all j ∈ J . Let C ′ be the optimal total completion time of I ′, then it
holds that C ′ ≤ C.

Proof. Let σ = (σ1, . . . , σn) be a sequence of jobs for I with optimal total completion time
C. To improve readability, let w.l.o.g. n mod m = 0. Construct the following schedule
σP of the parallel machine problem: For i = 1, . . . ,m, schedule all jobs j′ for which
j is scheduled in position i + km with k = 0, . . . , nm − 1 in this order on machine Mi.
Consider the start and completion times of all jobs: In the synchronous flow shop, job
σi starts at time

∑i−1
h=1 ch and is completed at time

∑i+m−1
h=1 ch. In the parallel machine

environment, for k = 1, . . . ,m, job (σk)
′ starts at time 0 and is completed at time p(σk)′ .

As p(σk)′ =
∑i+m−1

i=1 pi,σk ≤
∑k+m−1

h=1 ch for all k = 1, . . . ,m, the completion time of the
first m jobs in the parallel machine environment is at most as large as in the synchronous
flow shop. Figure 4.8 depicts the situation for the first six jobs for a synchronous flow shop
with three machines. Iteratively, the start and completion times of all jobs (σk)

′ in the
parallel machine environment are at most as large as the start and completion times of the
corresponding jobs σk in the synchronous flow shop. Thus, also the total completion time
CP of the schedule σP is at most as large as the total completion time C. Since C ′ ≤ CP
has to hold, it follows that C ′ ≤ C.

For a given a starting sequence, we can alter Algorithm 4.8 by replacing lines 2-11
with transforming the flow shop instance into an instance of a parallel machine problem
as described above and calculating the final lower bound in 13 by

LB ← LB0 + |J ′| ·
l∑

h=1

ch + LBP

where LBP is the optimal total completion time of the transformed instance as calculated
by Algorithm 4.9.

88 CHAPTER 4. EXACT METHODS

Chapter 5

Heuristic methods

Due to the complexity of the synchronous flow shop problem, finding an optimal solution
for larger problem instances may not be computationally tractable using exact methods
discussed in Chapter 4. Computational results (cf. Chapter 7) show that the optimal
makespan of synchronous flow shop instances consisting of 5 machines and 20 jobs in
general can not be computed within a 30 minute time limit. Minimizing the maximum
lateness and minimizing total completion time turn out to be even more difficult in general.
Therefore, in this chapter we will discuss various approaches to determine good solutions
in reasonable time for larger instances of synchronous flow shops.

In the literature there exist several classification schemes for flow shop heuristics. The
most prevalent way is to distinguish between constructive and improvement heuristics. A
constructive heuristic can be described as a procedure which creates feasible solutions for
the underlying optimization problem from scratch. Improvement heuristics alter feasible
solutions in order to obtain solutions with better objective value. Recent reviews and
surveys of heuristics for classical flow shop scheduling include Framinan et al. (2004) as
well as Ruiz and Maroto (2005) for minimizing makespan and Framinan et al. (2005) as
well as Pan and Ruiz (2013) for minimizing total completion time.

In their survey, Framinan et al. (2004) consider a third, separate stage of heuristics in
the form of index development. In their framework, the index development stage consists
of sorting the jobs according to some property based on their input data or by transforming
the problem into an analogous problem that can be easily solved. The sequence of jobs
obtained during the index development stage can either be used directly as a solution or
serve as a sorting method which is used for constructive and improvement heuristics. While
the introduction of index development as an additional stage of heuristics can be useful
when distinguishing between heuristics that only differ by their initial sorting procedure,
it is not always easy to clearly identify an algorithm as either an index development or an
iterative solution construction routine. In Framinan et al. (2005), heuristics are further
divided into simple and composite methods. Therein, a heuristic is regarded as composite
if it employs another heuristic for one of the three stages. Otherwise, it is called simple.

This chapter is structured as follows. In Section 5.1 we will describe constructive heuris-
tics. These heuristics will be considered for the three basic objective functions discussed

89

90 CHAPTER 5. HEURISTIC METHODS

in this thesis; minimization of makespan, maximum lateness and total completion time.
Improvement heuristics will be discussed in Section 5.2. Finally, in Section 5.3 we present
a multi agent framework.

5.1 Constructive heuristics

In this section, we present constructive heuristics for synchronous flow shop problems. A
heuristic solution can be constructed by iteratively adding one or more jobs to an initially
empty sequence based on the attributes of the jobs and the current partial sequence.
Alternatively, the problem can be transformed into a problem that can be solved more
efficiently. Afterwards, the solution of the transformed problem is converted back into a
solution of the initial problem.

5.1.1 Makespan

Heuristics for minimizing the makespan of classical flow shops are well studied in the
literature. Framinan et al. (2004) and Ruiz and Maroto (2005) offer a thorough survey
and evaluation of these approaches. In comparison, Soylu et al. (2007) up to now were
the only authors to propose heuristics for synchronous flow shop scheduling. One of the
strongest heuristics for the classical flow shop is by Nawaz et al. (1983), now referred to as
the NEH heuristic: The jobs are initially sorted by their total processing time Tj =

∑m
i=1 pij

in non-increasing order. Afterwards, the jobs are iteratively inserted into the best position
in the hitherto obtained partial schedule. Other variants of this algorithm define different
ways to sort and append jobs to the schedule.

Similar to the synchronous flow shop, minimizing the makespan isNP-hard for classical
flow shop problems with three or more machines. For two machines, it is solvable in
polynomial time by the algorithm of Johnson (1954). Several heuristics to minimize the
makespan of classical flow shop problems use Johnson’s algorithm by transforming the
initial problem instance with more than two machines into a two machine problem. One
approach is to aggregate processing times of the machines to obtain an instance of the two
machine problem which is then solved optimally and an optimal sequence is transformed
back into a solution for the original problem. Variation of these heuristics can be used for
synchronous flow shops as well. We can transform instances of general synchronous flow
shop problems into instances of two machine problems which can be solved efficiently by
the algorithm of Gilmore and Gomory.

Iterative solution construction

Iterative solution construction heuristics consist of two phases, a job selection and a job
insertion phase. Soylu et al. (2007) proposed several heuristics for the synchronous flow
shop problem, described in the following. The first two heuristics, (S1) and (S2) iteratively
assign a not yet assigned job to one of the n possible positions in the schedule. Algorithm
5.1 depicts heuristic (S1). Therein, we generate m different sequences. To construct the
i-th sequence, the jobs are initially sorted in non-increasing order of processing time on

5.1. CONSTRUCTIVE HEURISTICS 91

machine Mi (cf. line 6). The jobs with large processing times on machine Mi are then
scheduled in such a way that their operations on machine Mi are scheduled in cycles in
which as many other machines as possible are occupied. In the synchronous flow shop, all
machines are occupied in cycles m, . . . , n while in the other cycles at least one machine is
empty. Operations on machine Mi are processed in cycles i, . . . , n + i − 1. These cycles
are sorted in line 8 in decreasing order of number of machines that are occupied in the
respective cycle. Afterwards, the jobs are scheduled such that the job with the k-th largest
processing time on machine Mi is scheduled such that its operation on this machine is
processed in the cycle with the k-th most occupied machines. Out of the m generated
sequences, the one with the best makespan is returned. Obviously, this heuristic performs
better when the number of machines is small in comparison to the number of jobs. If
the number of machines increases in comparison to the number of jobs, all machines are
occupied in almost all cycles.

Input: set of n jobs J
Output: sequence of jobs σ

1 σ ← empty sequence of size n
2 C ←∞
3 for i = 1, . . . ,m do
4 σ′ ← empty sequence of size n
5 L← list of jobs J
6 Sort L, s.t. pir ≥ pis for r < s
7 T ← [i, . . . , n+ i− 1]
8 Sort T , s.t. for r < s in cycle Tr are at least as much operations

processed as in cycle Ts
9 for k = 1, . . . , n do

10 σ′Tk−i+1 = Li
11 end
12 C ′ ← Cmax (σ′)
13 if C ′ < C then
14 C ← C ′

15 σ ← σ′

16 end
17 end
18 return σ

Algorithm 5.1: Heuristic (S1) by Soylu et al.

Algorithm 5.2 shows (S2), the second heuristic proposed by Soylu et al. Therein, we
start with a schedule occupied by n idle jobs with processing times zero on all machines
which are iteratively replaced by actual jobs until all jobs are scheduled. Let T (cf. line 2)
contain all cycles in which the remaining idle jobs start. In each iteration, the maximum
processing time of any operation of the remaining non-scheduled jobs is determined in line
4. Then, from all cycles in which the corresponding job can still be started (i.e. replace

92 CHAPTER 5. HEURISTIC METHODS

an idle job), one is chosen which results in this operation to be processed in the cycle with
largest cycle time (cf. line 5).

Input: set of n jobs J
Output: sequence of jobs σ

1 σ ← sequence of n idle jobs with processing times zero on all machines
2 T ← {1, . . . , n}
3 for h = 1, . . . , n do
4 Let O be an unscheduled operation with largest processing time.

Let k and l be the corresponding machine and job index.
5 s← argmaxt∈T ct+k−1

6 σs ← l
7 T ← T \ {s}
8 end
9 return σ

Algorithm 5.2: Heuristic (S2) by Soylu et al.

Instead of assigning a job to one of the n possible positions of a schedule, heuristic (S3)
by Soylu et al. (2007) starts from an empty sequence and iteratively appends a job to the
end of the schedule (cf. Algorithm 5.3). For this, in each iteration the cycle times of the
last m− 1 cycles of the current schedule are evaluated (cf. line 4). Afterwards, one of the
remaining jobs is chosen which increases the makespan by the smallest amount (cf. line
5).

Input: set of n jobs J
Output: sequence of jobs σ

1 σ ← empty sequence of size n

2 Append to σ a job j with minimal total processing time
m∑
i=1

pij

3 for i = 2, . . . , n do
4 Calculate cycle times of cycles i, . . . , i+m− 2
5 Append to σ an unscheduled job j, s.t.∑i+m−2

k=i max (0, p1+k−i,j − ck) + pmj is minimal
6 end
7 return σ

Algorithm 5.3: Heuristic (S3) by Soylu et al.

Based on heuristic (S3) by Soylu et al. (Algorithm 5.3) we propose the following
adjustments for the selection of the next job in line 5 of Algorithm 5.3:

(S3I): We define a second criterion in case of ties when two jobs increase the
makespan by the same amount. For this, sum up the idle times that would oc-
cur for each operation of the job to be scheduled, i.e.

∑i+m−2
k=i max (0, ck − p1+k−i,j).

Choose a job with the lowest sum of idle times.

5.1. CONSTRUCTIVE HEURISTICS 93

(S3W): Instead of evaluating the two criteria of (S3I) in lexicographic order, use a
weighted function of the increase of makespan as well as the sum of idle times to
determine the next job.

(S3DE): Start with two empty sequences σ1, σ2, one representing the start and the
other representing the end of the schedule. In each iteration evaluate the increase
in makespan and/or idle time if a job is appended to the back of σ1 or to the front
of σ2. Afterwards, concatenate both sequences. Lexicographic ordering as well as a
weighted function of the two criteria can both be used for this.

Algorithm 5.4 demonstrates the NEH heuristic, developed by Nawaz et al. (1983) for
classical flow shop problems. At first, the jobs are sorted in non-decreasing order of to-
tal processing times

∑m
i=1 pij . Afterwards, starting with an empty schedule the jobs are

inserted in this order. In each iteration, the next job to be scheduled is inserted in the
position of the current schedule which results in a schedule of minimal makespan. The
NEH heuristic can be used for all other objective functions of the synchronous flow shops
as well.

Input: set of n jobs J
Output: sequence of jobs σ

1 σ ← empty sequence of size n

2 Sort jobs j in non-decreasing order of total processing times
m∑
i=1

pij

3 for j = 1, . . . , n do
4 C ←∞
5 b← 0
6 for i = 1, . . . , j do
7 σ′ ← σ
8 Insert j in position i in σ′

9 C ′ ← makespan of the partial schedule σ′

10 if C ′ < C then
11 C ← C ′

12 b← i

13 end
14 end
15 Insert j in position b in σ
16 end
17 Return σ

Algorithm 5.4: Heuristic (NEH) by Nawaz et al.

The NEH heuristic can be further improved by considering all jobs in each iteration:

(NEHA): The jobs are not sorted prior to the iterative insertion. In each iteration
evaluate the makespan for the insertion of all remaining jobs for all positions the

94 CHAPTER 5. HEURISTIC METHODS

remaining jobs can be inserted. Afterwards, choose a job and a position which
results in a schedule of minimal makespan.

Instead of using the total processing times of the jobs as an initial sorting for the NEH
heuristic, another sorting procedure or some other heuristic may be chosen.

Transformation into a two-machine problem

In the following, we present several approaches to convert an instance of F |synmv|Cmax into
an instance of F2|synmv|Cmax in order to employ the algorithm of Gilmore and Gomory.
This approach resembles the technique used in Section 4.4.1 to obtain lower bounds where
we used a two machine flow shop as a relaxation of general flow shop instances. First, we
will focus on synchronous flow shop problems with two non-adjacent dominating machines
k1, k2. Like in the previous chapters, to improve readability we set κ := k2−k1 and assume
κ mod n ≡ 0. The algorithms can be easily altered to be used if κ is no factor of n. Then,
in Algorithm 5.5 the problem is relaxed into a synchronous flow shop problem with two
adjacent dominating machines. Afterwards, the sequence obtained for the relaxed instance
is split into κ sequences which are used as the subsequences σ1, . . . , σκ of the original
problem.

Input: set of n jobs J , two dominating machines k1, k2

Output: sequence of jobs σ
1 J ′ ← ∅
2 for j ∈ J do
3 Create a job j′ with p1j′ = pk1j , p2j′ = pk2j and add it to J ′

4 end
5 σ′ ← execute Algorithm 4.1 of Gilmore and Gomory for J ′

6 σ ← empty sequence of size n
7 κ← k2 − k1

8 for λ = 1, . . . , κ do
9 for i = 1, . . . , nκ do

10 σ(i−1)n
κ

+κ ← σ′(κ−1)n
κ

+i

11 end
12 end
13 return σ

Algorithm 5.5: Heuristic (GG-Split)

A similar approach can be applied for the general case without machine dominance.
In Algorithm 5.6, the general problem is relaxed by setting all processing times except on
two machines 1 ≤ k1 < k2 ≤ m to zero, thus transforming the problem into a problem
with two dominating machines for which Algorithm 5.5 is applied. The sequence obtained
by Algorithm 5.5 is evaluated with the original processing times and the best sequence is
returned.

5.1. CONSTRUCTIVE HEURISTICS 95

Input: set of n jobs J
Output: sequence of jobs σ

1 σ ← empty sequence of size n
2 S ←∞
3 for k1 = 1, . . . ,m− 1 do
4 for k2 = k1 + 1, . . . ,m do
5 σ′ ← execute Algorithm 5.5 for J, k1, k2

6 S′ ← Cmax (σ′)
7 if S′ < S then
8 S ← S′

9 σ ← σ′

10 end
11 end
12 end
13 return σ

Algorithm 5.6: Heuristic (GG)

Another possibility to relax an instance of a synchronous flow shop problem into a
problem with two adjacent dominating machines is similar to the approach of Campbell
et al. (1970) who transformed instances of classical flow shop problems into flow shop
problems with two machines in order to apply the algorithm of Johnson. In Algorithm
5.7, an instance of the synchronous flow shop problem with jobs J is transformed into an
instance of a two-machine synchronous flow shop problem with jobs J ′ where the processing
times of the jobs J ′ are calculated by aggregating the processing times of each job on
the first i and the last m − i machines for some 1 ≤ i ≤ m − 1, i.e. setting p1j′ =∑i

k=1 pkj and p2j′ =
∑m

k=i+1 pkj . Within Algorithm 5.7 this relaxation is performed for
all i = 1, . . . ,m− 1 and the algorithm of Gilmore and Gomory is performed on the relaxed
instance. Afterwards, the obtained sequence is evaluated with the original processing times
and the best sequence is returned.

Transformation into a traveling salesman problem

Instead of transforming an instance of a synchronous flow shop with more than two ma-
chines into an instance with two machines, another possibility is to transform the flow shop
scheduling problem into a traveling salesman problem in a similar way as in the algorithm
of Gilmore and Gomory. Each job is identified with a node and the distance between nodes
is defined based on the processing times of the respective jobs. In the original version, the
jobs were simply sorted according to their processing times on machines M1 and M2 and
the first successor for each job was determined in this way. In the general case we supply
the algorithm with a function c : J × J → R which indicates the cost of two jobs being
processed in succession and the first successor for each job is determined by solving a bi-
partite matching problem in a complete bipartite graph G = (J ∪ J ′, E) where J ′ contains
a copy of each job j ∈ J and edges exist between all j ∈ J and j′ ∈ J with weights of the

96 CHAPTER 5. HEURISTIC METHODS

Input: set of n jobs J
Output: sequence of jobs σ

1 σ ← empty sequence of size n
2 S ←∞
3 for i = 1, . . . ,m− 1 do
4 J ′ ← ∅
5 for j ∈ J do

6 Create a job j′ with p1j′ =
i∑

k=1

pkj , p2j′ =
m∑

k=i+1

pkj and add it to J ′

7 end
8 σ′ ← sequence obtained by Algorithm 4.1 of Gilmore and Gomory for J ′

9 S′ ← Cmax (σ′)
10 if S′ < S then
11 S ← S′

12 σ ← σ′

13 end
14 end
15 return σ

Algorithm 5.7: Heuristic (CDS)

edges determined by the cost function c. Then, the first successor of each job is its partner
in an optimal solution of the bipartite matching problem, once again leading to a number
of small disjoint cycles. These cycles are joined similarly to the algorithm of Gilmore and
Gomory.

As a possible cost function for two jobs i, j if scheduling the two jobs in direct succession
results we can use

cij :=
m∑

k=2

max (0, pk−1,j − pki) + pmj ,

i.e. the amount of which the makespan increases if job j is scheduled after job i ignoring all
other jobs. This cost function resembles the formula used in heuristic (S3) (cf. Algorithm
5.3). In a similar way to heuristics (S3-I) and (S3-W) the cost function can also be altered
to take into account the idle times that arise for job j or a weighted function thereof. In
Chapter 7 we evaluate the effects of these cost functions.

5.1.2 Maximum lateness

In comparison to the makespan objective, there is only very limited interest in constructive
heuristics to minimize the maximum lateness of classical flow shops in the literature. A
popular heuristic is to simply sort the jobs in order of non-decreasing due dates (EDD).
Of course, a version of the NEH algorithm described above can be used as well. In each

5.1. CONSTRUCTIVE HEURISTICS 97

Input: set of jobs J = {0, . . . , n}, cost function c : J × J → R
Output: sequence of n jobs σ

1 φ← list of size n+ 1
2 J ′ ← copy of jobs J
3 Create a complete bipartite graph B = (V,E) with V = J ∪ J ′ and
E = {(j, j′)|j ∈ J, j′ ∈ J ′} and weights determined by c

4 Determine a minimum cost perfect matching in B
5 φj ← partner of j in J ′ in the minimum cost perfect matching
6 Create a graph G = (V,E) with V = J and E = {(j, φj)|j = 0, . . . , n}
7 ri,j ← − (ci,φi + cj,φj) + ci,φj + cj,φi for all i, j
8 while G consists of more than one component do
9 Find smallest value ri,j such that i and j are in distinct components

10 Join the two components via interchange (i, j)

11 end
12 σ ← sequence with length n
13 σ1 ← φ0

14 for i = 2, . . . , n do
15 σi ← φσi−1

16 end
17 return σ

Algorithm 5.8: Heuristic (TSP)

iteration of the NEH heuristic the job and/or position is chosen which leads to a minimal
maximum lateness.

As we discussed in Section 3.3.1, the EDD schedule in general leads to non-optimal
solutions already for F2|synmv, dom (1) |Lmax. However, for a single dominating machine,
Algorithm 3.2 finds a schedule with minimal maximum lateness in polynomial time. Thus,
one possibility is to transform a general synchronous flow shop into a flow shop with a single
dominating machine. The heuristic is similar to Algorithm 5.6 in which a synchronous flow
shop instance was transformed into various instances of synchronous flow shops with two
dominating machines.

(1DOM): For k = 1, . . . ,m construct an instance Ik of F |synmv, dom (k) , pndomij =
0|Lmax in the following way: For each job j construct a job j′ with pkj′ = pkj and
pij′ = 0 for all i 6= k. Again, the sequence of jobs obtained for the transformed
problem can be evaluated as a sequence in the original problem.

In the following, we present another heuristic for minimizing the maximum lateness
based on Algorithm 3.2 which was used to find optimal solutions for synchronous flow shop
problems for one dominating machine. To obtain a feasible solution for a given threshold
value for the maximum lateness, Algorithm 3.1 benefits from the fact that the makespan of
a synchronous flow shop with a single dominating machine is independent of the schedule.
Thus, when assigning jobs from the back of the sequence, the completion time of each job

98 CHAPTER 5. HEURISTIC METHODS

is known at the time when it is scheduled. While this does not hold true for more than
one dominating machine, we can still use the technique of the algorithm as a heuristic
algorithm for the decision problem Lmax ≤ L. Because the makespan is not sequence-
independent, we use an approximation T for the makespan. Using this approximation as
the completion time of the last job, we determine the set of all jobs j for which dj +L ≥ T .
Similar to Algorithm 3.1 it would be favorable to schedule a job in the last position such
that the completion time of the jobs that are scheduled before the chosen one are as small
as possible. In contrast to the case with a single dominating machine this job can not
be determined for certain. Therefore, we choose a job that results in the largest sum of
cycle times for the cycles it is scheduled in. If no job is feasible, we choose a job with
maximal due date. Afterwards, we recalculate the lower bound T on the makespan for the
remaining jobs and continue iteratively.

Input: jobs j = 1, . . . , n, threshold L ∈ Z, approximation of makespan T of
the resulting schedule

Output: job sequence σ
1 σ ← sequence of jobs, initially empty
2 for λ = 1, . . . , n do
3 feasibleJobs ← unscheduled jobs j with T − dj ≤ L
4 if feasibleJobs 6= ∅ then
5 l← job j ∈ feasibleJobs that maximizes

n+m−λ∑
t=n−λ+1

ct if scheduled

in position n− λ+ 1

6 end
7 else
8 l← unscheduled job with maximum due date
9 end

10 σn−λ+1 ← l
11 Calculate cycle time cn+m−λ
12 T ← T − cn+m−λ
13 end
14 return σ

Algorithm 5.9:Heuristic (BW) to find a schedule with maximum lateness at most L

If Algorithm 5.9 returns a sequence with maximum lateness Lmax ≤ L, we can use a
lower threshold value to minimize the maximum lateness in the same manner as we did in
Algorithm 3.2 for the case of a single dominating machine. For this, we can once again
decrease the maximum lateness of the returned sequence and use it as a threshold value L
for the next iteration. On the other hand, if Algorithm 5.9 does return a sequence with a
maximum lateness Lmax > L, we can not infer that no such sequence exists. Instead, this
might be caused by a bad value chosen for the initial approximation of the makespan or
because in one of the iterations a wrong job was chosen from the set of feasible jobs. Thus,

5.1. CONSTRUCTIVE HEURISTICS 99

it might be beneficial to restart the algorithm with a different approximation value for T
and retry the same threshold value L.

Several alternative implementations for heuristic (BW) and the iterative version are
possible. For instance, there are many ways to obtain an approximation for the makespan.
We can use an upper bound on the minimal makespan as determined by one of the con-
structive heuristics described in Section 5.1.1. Alternatively, we can use the makespan of
the sequence that was obtained by Algorithm 5.9 in a previous step. Within (BW), the
value of T could also be reevaluated in each iteration λ (cf. line 11) based on the remaining
non-scheduled jobs instead of simply subtracting the cycle time of the (n−m+λ)-th cycle.
Further, a different method to determine which of the feasible jobs should be scheduled in
the last position can be applied, e.g. using a job j with the largest total processing time∑m

i=1 pij . In Chapter 7, we present a study of various possibilities.

5.1.3 Total completion time

In classical flow shop scheduling, finding an optimal schedule minimizing the total com-
pletion time is NP-hard for two or more machines. For a single machine problem, sorting
the jobs in non-decreasing order of processing time (SPT) results in an optimal solution.
A popular heuristic is to sort the jobs by non-decreasing total processing time or varia-
tions thereof. Afterwards, the jobs can be scheduled iteratively in order of the obtained
sequence, e.g. with a version of the NEH algorithm or the sequence is altered using im-
provement heuristics discussed in Section 5.2. As discussed in Section 3.3.1, minimizing
the total completion time is efficiently solvable for synchronous flow shops with a single
dominating machine via the SPT rule, similar to single machine scheduling. Therefore, we
propose the following three methods for index developing for synchronous flow shops.

(StPT): Sequence the jobs in non-increasing order of total processing time
∑m

i=1 pij .

(SwPT): Sequence the jobs in non-increasing order of weighted processing time∑m
i=1wipij where wi can be determined in multiple ways.

(SPT1D): For each machine k = 1, . . . ,m sequence the jobs in non-decreasing order
of pkj . Use the sequence that results in the lowest total completion time for the
actual instance. This approach is similar to Algorithm 5.6 and the (1DOM) heuristic
for minimizing maximum lateness.

Further, many of the heuristics that are used for minimizing the makespan also generate
good results when applied to the objective function of minimizing the total completion time.
Especially heuristics which try to increase the sum of cycle times by the least amount in
each iteration can be used for minimizing the total completion time.

100 CHAPTER 5. HEURISTIC METHODS

5.2 Improvement Heuristics

In this section we will discuss various alternatives to improve schedules which were ob-
tained by the constructive heuristics proposed in the previous section. The purpose of
improvement heuristics is to take a schedule and improve it in regard of the underlying
objective function.

In the following, we will focus on local search procedures that employ a neighborhood
structure to explore the search space and change the solutions according to this structure.
These local search methods are also classified as trajectory methods and more generally
as metaheuristics. A metaheuristic is formally defined as an “iterative generation pro-
cess which guides a subordinate heuristic by combining intelligently different concepts for
exploring and exploiting the search space, learning strategies are used to structure informa-
tion in order to find efficiently near-optimal solutions.” (cf. Osman and Laporte (1996))
In this section, we describe some of the more contemplated metaheuristics which have
been used for several scheduling problems including the classical flow shop. There exist an
abundance of further metaheuristics for problems in scheduling in general and flow shop
scheduling in particular that are based on other concepts which will not be discussed in
this thesis. A good introduction in various methods is given by Osman and Laporte (1996),
while Framinan et al. (2004) as well as Ruiz and Maroto (2005) discuss several applications
of metaheuristics on flow shop scheduling.

In Section 5.2.1 we will discuss local search procedures which can be applied to all
synchronous flow shop problems described in this thesis. Afterwards, in Section 5.2.2
we will describe an approach that can be applied to synchronous flow shops with two
dominating machines.

5.2.1 Local search for general synchronous flow shops

The basic idea of a local search procedure is as follows: Starting from an initial solution
which may be created by a constructive heuristic as described in Section 5.1, the local search
iteratively makes changes to the current solution and tries to find a solution with a better
objective value. In most cases, this is achieved by employing a neighborhood structure
as described in the following. Given a schedule σ, its neighborhood is represented by
schedules that can be created by conducting minor changes on σ. Obviously, neighborhood
structures rely on the representation of these schedules. For instance, within this work,
we predominantly represent synchronous flow shop schedules by a permutation of the jobs.
Then, neighborhoods can consist of changing the permutation of jobs. Let σ = (σ1, . . . , σn)
be a permutation of jobs. Popular neighborhoods to get a new permutation σ′, representing
a new solution of the synchronous flow shop, are

• Swap neighborhood. The position of two jobs in the permutation is swapped, e.g.
σ′i = σj , σ

′
j = σi and σ′k = σk for k 6= i, j.

• Adjacent pairwise interchange (api). Only swaps between two adjacent jobs are
considered.

5.2. IMPROVEMENT HEURISTICS 101

• Shift (or insertion) neighborhood. A job is removed from the permutation and in-
serted in a different position, e.g. in a left shift: σ′i = σj , σ′k = σk−1 for k =
i+ 1, . . . , j − 1, σ′k = σk otherwise.

Iterative improvement

Starting from an in initial solution, either the complete neighborhood is evaluated and
the solution is changed to a neighbor with the best objective value (“best fit”) or the first
neighbor with an objective value that is better than the current solution’s value is used
(“first fit”). The latter approach can be beneficial when evaluating neighbors requires a
lot of computation time or when solving large instances. The procedure may either be
executed for a predetermined number of iterations or continue until at one point there
exists no neighbor with a better objective value than the current solution.

For minimizing the makespan of synchronous flow shops, Soylu et al. (2007) discussed
two improvement strategies:

(I1): Iteratively go through the sequence from the back. In each iteration i evalu-
ate the pairwise interchange of job σn−i−1 with jobs σn−i−2 and σn−i, respectively.
Execute the interchange which leads to biggest improvement, if any.

(I2): Evaluate all pairwise interchanges and execute one which improves the objective
value the most, if any. Continue until all interchanges lead to an inferior objective
value.

For classical flow shop scheduling, there also exist several other iterative improvement
procedures to improve the makespan:

(SU): Heuristic proposed by Suliman (2000). Starting with job j = 1 evaluate the
interchange of job j with the job currently succeeding j in the sequence and make
a pairwise interchange of the jobs if this leads to a better objective value. If an
interchange was performed, iteratively continue with job j and evaluate the pairwise
interchange with its new successor in the schedule. Continue until the interchange
would lead to an inferior objective value. Proceed with all other jobs j = 2, . . . , n.

(RACS): “Rapid access with close order search” heuristic proposed by Dannenbring
(1977). For i = 1, . . . , n − 1 evaluate the pairwise interchange of jobs σi and σi+1

and execute each interchange whenever it leads to an improvement.

(RACE): “Rapid access with extensive search” heuristic proposed by Dannenbring
in which RACS is performed as long as an improvement is achieved. This can also
be performed on I1 and SU.

While all of these improvement heuristics were created for minimizing the makespan,
they can be used for other objective functions as well. For minimizing the maximum
lateness we further propose the following heuristic:

102 CHAPTER 5. HEURISTIC METHODS

(LR): Iteratively go through the sequence from the back. For i = 1, . . . , n − 1,
determine the set of jobs out of σ1, . . . , σn−i that can be moved to position n− i+ 1
without increasing the maximum lateness. Of all these jobs, either choose one that
minimizes the lateness the most or in case of a tie, as a secondary criterion choose a
job that minimizes the length of the schedule.

In Chapter 7 we will evaluate these heuristics as well as iterative improvement algo-
rithms that employ the swap and shift neighborhood. While iterative improvement pro-
cedures are easy to implement and can be used to search the solution space very quickly,
their biggest weakness lies in the inability to escape local optima.

Simulated annealing

In contrast to iterative improvement, local search procedures based on simulated annealing
do not terminate as soon as all neighbors of the current solution have an inferior objective
value. Instead, neighbors with worse objective values are accepted with a defined prob-
ability to form the next solution. The probability to accept worse neighbors is high in
the beginning but is decreased during the run of the procedure. The procedure is named
simulated annealing because it imitates the physical process of a hot material that slowly
cools down (cf. Zimmermann (2008)). In this analogy the probability to accept a worse
neighbor is compared to the temperature of the annealing process, it is “hot” in the be-
ginning and then gets colder. On the extreme points, given a high enough probability to
accept inferior neighbors, the procedure is closer to a random walk through the solution
space, while in the later stages with low probabilities it is similar to a greedy iterative
improvement algorithm.

Tabu search

Similar to simulated annealing, tabu search may choose neighboring solutions of inferior
objective value as the next solution. The procedure employs a so-called tabu list which
serves as a memory of formerly visited solutions to prevent cycles, i.e. the possibility to
return to a solution during the run of the procedure. The tabu list does not necessarily store
complete solutions but rather attributes of solutions or the move made in the neighborhood.
A neighbor is accepted to be the next solution either if it is not tabu or if it has a better
objective value than the best hitherto found solution. Thus, if it is not tabu, a neighbor
may be accepted even if it has a worse objective value than the current solution.

5.2.2 Tabu search for two dominating machines

For synchronous flow shops with two dominating machines k1, k2, we can obtain a more effi-
cient heuristic by using a different representation of the schedules based on the subsequences
of jobs. For this, let σ be a schedule of jobs with subsequences σλ for λ = 1, . . . , κ = k2−k1.
Then, for each of the subsequences σλ, an optimal sequence of the jobs can be obtained
efficiently by the algorithm of Gilmore and Gomory (1964). Thus, instead of describing
each subsequence by its explicit order, it is possible to only represent it by the set of jobs

5.3. ASYNCHRONOUS TEAMS 103

that are part of the subsequence and to determine the order when needed, thereby vastly
reducing the space of possible solutions. The main benefit of this representation is that no
moves within subsequences need to be considered.

Using this representation, a solution is described by a collection S of κ disjoint subsets
S1, . . . , Sκ with

⋃κ
k=1 Sk = J . Then, a corresponding schedule for problem

F |synmv, dom(k1, k2), pndomij = 0|Cmax is constructed as follows. Each subset Sk is consid-
ered as an instance of problem F2|synmv|Cmax with jobs j ∈ Sk and p1j = pk1j , p2j = pk2j .
An optimal subsequence σλ is computed by the algorithm of Gilmore and Gomory. The
complete sequence σ for the original problem is then again defined as σk+lκ := σkl for
k = 1, . . . , κ; l = 0, . . . , nκ − 1. As described in Section 2.3.2 its makespan is calculated by
the sum of the makespans of the subsequences σk.

Using this representation, we define a neighborhood by swapping two jobs from two
distinct subsets of a solution. Thus, if S is the current solution with disjoint subsets
S1, . . . , Sκ, a neighbor S ′ with disjoint subsets S′1, . . . , S′κ can be constructed by choosing
two subsets k, l and two jobs u ∈ Sk, v ∈ Sl and setting S′k = (Sk \ {u}) ∪ {v} , S′l =
(Sl \ {v}) ∪ {u} as well as S′h = Sh for all h 6= k, l.

Using this neighborhood within a tabu search, we define the tabu list as pairs of jobs
that were swapped between two subsets. If we move to the neighbor S ′ which involves
swapping the two jobs k, l, we add the pair (k, l) to the tabu list.

5.3 Asynchronous teams

In this section we describe another metaheuristic approach employing a multi agent system,
the asynchronous teams. One of the greatest strengths of asynchronous teams lie in their
ability to be well applicable to decompose highly complex problems. Therefore, they are
especially useful for extensions of synchronous flow shops. The idea of asynchronous teams
is to combine several constructive and improvement heuristics and to use them on the same
problem instance in order to get the best possible result. In this section we will introduce
asynchronous teams and show how they can be used for synchronous flow shop problems.
Akkiraju et al. (2001) and Rachlin et al. (1999) state that asynchronous teams, though
used very seldom in recent literature, provide good results in rich optimization problems.

In Chapter 6 we will show how we employed an asynchronous team procedure in a prac-
tical application resembling a synchronous flow shop with resources and cyclic changeovers.

5.3.1 Introduction to asynchronous teams

The notion of an asynchronous team (A-team) is defined as “AI architecture that consists of
multiple problem-solving methods (called agents) working together on a common problem”
(see Talukdar et al. (1998)). Examples of usage include Akkiraju et al. (2001), Murthy
et al. (1997) and Rachlin et al. (1999). They cite the A-team approaches for their products
as “well received in the marketplace and currently being used in several paper mills within
North America” (Akkiraju et al. (2001)) and note that “companies have reported substan-
tial benefits using these technologies” (cf. Rachlin et al. (1999)). Communication (and

104 CHAPTER 5. HEURISTIC METHODS

Figure 5.1: Structure of the asynchronous team architecture as presented by
Murthy et al. (1997)

cooperation) takes place through a shared population of candidate solutions (cf. Murthy
et al. (1997)). In an A-team three types of agents exist:

• Constructors which create new solutions and add them to the current population.
These resemble the constructive heuristics as described in Section 5.1.

• Improvers which take solutions from the population and alter them. They resemble
improvement heuristic as described in Section 5.2.

• Destroyers which remove weak solutions from the population.

The asynchronous team architecture is depicted in Figure 5.1 based on the work of
Murthy et al.. The constructors and destroyers are used to control the size of the popu-
lation. The destroyers’ goal is to remove bad solutions from the population and to keep
the population diverse by removing those solutions which are too similar to others. Con-
structors are used to refill the population by inserting starting solutions obtained from
constructive heuristics. Each improver agent has its own set of rules on how he may act
on a solution. Therefore, it is also easy to incorporate multiple objective functions where
each agent tries to optimize the solution only according to its primary objective. Another
approach might be to have each agent altering solutions according to different neighbor-
hoods. There is also the possibility to let each agent simulate a distinct solution approach
with alternating parameters taking one solution from the population as a starting solution.
As it is left to the designer of an A-team system how sophisticated each agent should be,
each agent can do as little as making only one move within its defined neighborhood or as
much as doing a full local search until it reaches a local minimum.

5.3. ASYNCHRONOUS TEAMS 105

5.3.2 Asynchronous teams for synchronous flow shops

For the synchronous flow shop model, the agents of the asynchronous team can apply
heuristics as described in the previous sections to find good solutions. The constructor
agents will employ constructive heuristics as described in Section 5.1. The improver agents
work on the solutions in the solution pool using techniques of Section 5.2. We can use
sophisticated agents which perform simulated annealing or tabu search for a couple of
iterations as well as simple agents which only make small changes on the solutions like
performing a single move in a defined neighborhood. The destroyers greedily remove the
solutions with the worst objective values from the pool.

5.3.3 Asynchronous teams for synchronous flow shops with resources
and changeovers

The strength of the asynchronous team architecture lies in its capability to be quickly
adaptable when the underlying problem is extended. Further, it lends itself very well to
decomposition approaches like decoupling the assignment of resources and the construction
of schedules with little idle times. In the following, we will discuss two extensions for
the asynchronous team structure discussed in the previous section. We will focus on the
addition of resources and synchronous flow shops with changeover times. In Chapter 6,
we show how an asynchronous team with these extensions is used to optimize a real world
synchronous production system.

When dealing with cyclic production and changeover times, the constructive heuristics
discussed in Section 5.1 may provide initial schedules which have low sums of cycle times
but need a lot of changeovers. Therefore, we will add further constructors and improvers
which only consider the minimization of changeover times. Since we do not take into
account the processing times of the jobs in this case, we use another presentation of a
schedule σ = (σ1, . . . , σn). As changeovers take part between jobs that have a distance
of m in the sequence, we define the following subsequences πλ for λ = 1, . . . ,m where
πλi = σλ+(i−1)m for i = 1, . . . , nm (w.l.o.g. we assume n mod m = 0). Then, a job i succeeds
a job j in a subsequence when job i starts its processing on machineM1 in the cycle after job
j is completed. A changeover is necessary whenever two consecutive jobs in a subsequence
belong to a different job family. We chose the letter π to avoid confusion with the concept
of subsequences defined for synchronous flow shops with two dominating machines. For
the schedule of the three-machine synchronous flow shop depicted in Figure 5.2, we obtain
the following three subsequences: π1 = (1, 4, 7), π2 = (2, 5, 8) and π3 = (3, 6, 9).

M1

M2

M3

1

1

1

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

2

Figure 5.2: Three-machine synchronous flow shop giving rise to the subsequences
π1 = (1, 4, 7), π2 = (2, 5, 8) and π3 = (3, 6, 9)

106 CHAPTER 5. HEURISTIC METHODS

We can add the following constructors. Both try to construct schedules with few
changeovers.

(C1) Consider the individual job families f1, . . . , fk. Denote with |fi| the number of
jobs in job family fi. Start with job family f1 and schedule all jobs of the family in
positions π1

h for h = 1, . . . ,max
(
|f1|, nm

)
. If the job family is larger than n

m , schedule
the remaining jobs of the family in the beginning of subsequence σ2. Continue
iteratively with all job families fi by scheduling all jobs of the family consecutively
after the jobs of family fi−1 in the same subsequence. Whenever a job is scheduled
in position n

m of subsequence πl, schedule the remaining jobs of the family in the first
positions of the next subsequence πl+1. We can add an element of randomization to
this step by shuffling the individual job families before executing the constructor.

(C2) Sort the individual job families in such a way that the number of changeovers
is minimal. If changeover times are constant, this can be done in polynomial time
(cf. Brockmeyer (2014)), but may still take considerably more time than the greedy
approach. Note that this does not contradict the results of Section 3.4.4 as we do
not consider the individual processing times.

We can also add the following improver:

(C3) For two subsequences πk and πl and two positions i, j as well as an integer h
with max(i+ h, j + h) ≤ n

m , swap jobs πki , . . . π
k
i+h with jobs πlj , . . . , π

l
j+h.

Chapter 6

Practical application

In this chapter we will present a practical application of a synchronous flow shop problem
with changeovers. The real world example describes the production process of a subcon-
tractor for kitchen installers who uses circular production units with synchronous transport
are used to assemble shelf boards for kitchen elements. In the following, we will at first
describe the production process with all of its constraints in Section 6.1 and then embed
the problem more formally into our framework in Section 6.2. Since the problem is too
difficult to solve exactly for real instances, we describe a multi agent approach based on
A-Teams in Section 6.3. Later, in Chapter 7, the obtained algorithms are tested on real
world data received from the practitioner and compared to the actual planning. The study
of the practical application discussed in this paper has already been published in Waldherr
and Knust (2014).

6.1 Problem description

The main process of producing the shelf boards consists of gluing wooden base plates to
surrounding contours. For the assembly, a gluing form is used which holds both elements
so that they can be glued together by a gluing robot. Both, plates and contours, are
produced in a prior production step which has to be scheduled as well to assure that they
are available in time to be glued together. The gluing process is done on three parallel
circular production units. On each of the production units, eight stations are installed on
the conveyor system in which gluing forms can be inserted for the production and transport
of the shelf boards (see Figure 6.1).

There are distinct types of shelf boards which need different gluing forms for their
production. Only a limited number of gluing forms for each type of shelf board is available.
During the production process, every station is equipped with exactly one gluing form and
every gluing form can be used on at most one station simultaneously. Additionally, each
gluing form is only compatible with a subset of stations. Thus, for producing a shelf
board a compatible form and a corresponding compatible non-occupied station at one of
the three production units have to be available. Whenever a finished board is removed
from a station, the gluing form remains on the station and either another product of the

107

108 CHAPTER 6. PRACTICAL APPLICATION

s2s1

s8

s7

s6 s5

s4

s3gluing
robot

contour insertion

completed article
removal

(workplace 1)
(workplace 8)

s3s2

s1

s8

s7 s6

s5

s4gluing
robot

contour insertion

completed article
removal

(workplace 1)
(workplace 8)

Figure 6.1: Production unit layout and one turn of all stations

same type can be inserted and produced on this station or the gluing form needs to be
changed to allow for the production of a different type of shelf board. In the latter case
a changeover time occurs in which the station is reconfigured and the new gluing form
is inserted. During this changeover period the whole production unit has to wait for the
amount of time required to change the forms.

The company takes orders from customers for a given quantity of product items and
an assigned due date specifying a day until all items of the corresponding order have to be
produced. The main goal of the company is to find a production schedule such that the
number of late orders is minimized and as a second criterion to minimize the total lateness
of such orders. A third (minor) target is to maximize the number of produced items during
a given time frame.

6.2 Formal definitions

In the following we will describe the problem more formally. There exists a set of products
(shelf boards) P = {p1, . . . , p|P |}, a set of gluing forms F = {f1, . . . , f|F |}, and a set of
stations S = {s1, . . . , s24} (eight stations at each of the three circular production units).
The orders to be scheduled form a set O = {o1, . . . , o|O|}. Each order oj specifies a single
associated product aj ∈ P which has to be produced, its order volume vj , i.e. the quantity
of products to be produced, and a due date dj (day). Thus, an order oj consists of vj jobs,
each one presenting the production of one item of the associated product aj . For each
product p ∈ P , the gluing time tg(p) and the insertion time ti(p) are known. All other
times are negligible. Additionally, for each product p ∈ P the subset F(p) ⊆ F indicates
which gluing forms can be used to produce the product. For each gluing form f ∈ F the
subset S(f) ⊆ S indicates which stations the gluing form is compatible with (see Figure
6.2).

Each circular production unit resembles a synchronous flow shop on eight machines
where the machines M1 and M2 are dominating: At machines M1 the plates and contours
are inserted and at M2 they are glued together, requiring processing times of ti and tg,
respectively. After being glued together, the shelf board remains on the unit to dry until it is

6.2. FORMAL DEFINITIONS 109

p1
p2
p3
...

f1
f2
f3
...

s1
s2
s3

s24

...

Products p ∈ P Forms f ∈ F Stations s ∈ S

F S

Figure 6.2: Dependencies of products, gluing forms and stations. Product p2 may
only be produced using gluing forms f1 and f3, form f1 is compatible only with
stations s3 and s24.

removed (workstep represented by machineM8). The drying period and the time to remove
the shelf boards from the unit are negligible and independent of the individual board. The
gluing forms are resources that are needed during the whole production process of a shelf
board. Further, gluing forms need to be exchanged to allow production of a shelf board of a
different type on the same station. The gluing forms define disjoint job families. Two jobs
are part of the same job family if and only if they can be produced with the help of the same
gluing forms. The changeover time is constant and independent from the individual gluing
forms. Because of the complexity of the problem and the need of the practitioner to have
a rough idea of the production plan to allow for production of raw material, the problem
was transformed into a hierarchical scheduling problem with two stages: In the first stage,
production is only coarsely assigned on a daily basis without taking into consideration
the sequence dependencies caused by the synchronous movement and the changeovers.
In the second stage, the production is then planned for the current day based on the
available raw material. As only the second stage deals with the synchronous movement of
the production units, we refer to Waldherr and Knust (2014) for a full description of the
hierarchical planning as well as the scheduling of the first stage. In the following we will
cover the second stage where only a single day is to be scheduled.

In general, the number of orders for which raw material is available and thus the
number of jobs to be produced is larger than the number of cycles that can be processed
on each production unit on a single day. Within the problems discussed previously in this
thesis, all jobs had to be scheduled and the number of cycles of the final schedule was
known. In comparison, in the second stage of the production process we need to determine
a schedule of a subset of jobs which is to be produced in a specified time frame. The actual
number of cycles that can be completed within this time frame is not known beforehand
and depends on the processing times and number of changeovers of the scheduled jobs. To
model this, we define a number Γ of cycles for each production unit which has to be large
enough to cover the number of hours to be planned on the specific day. Then, instead of
scheduling all orders, only a subset of (possibly partial) orders will be chosen and assigned
to these cycles. The schedule of the single day is then obtained by using all cycles that are
completed within the time frame.

We denote by C = {1, . . . ,Γ} ⊂ N the set of cycles that can be scheduled. Then, we
need to determine an assignment C : C → O×F for each production unit. Therein, for each

110 CHAPTER 6. PRACTICAL APPLICATION

cycle c ∈ C we specify which order the shelf board that is inserted on the first machine in
this cycle belongs to and which gluing form is used for its production. W.l.o.g. we assume
that in the first cycle of the schedule the shelf board and gluing form are inserted at station
s1 at the first production unit and s9 and s17 on the other units, respectively. Thus, in
cycle c a job and a gluing form are inserted into station si with i = (c − 1) mod 8 + 1
(analogous for the other two units). The assignment may also be empty if no shelf board
is inserted on a station in a cycle. If for some k ∈ N the order o as well as the gluing form
f in cycles i+ 8l for l = 0, . . . , k − 1 are the same, we will call this successive production
of an order on the same station using the same gluing form an order fragment of order o
starting at cycle i of size k.

In accordance with the practitioner we evaluate a schedule hierarchically by the fol-
lowing four criteria, presented in decreasing importance. The primary criterion is based
on the total number of late orders which can not be produced on the current day d. As a
secondary criterion the total lateness in days of the planned orders is to be minimized: For
each order oj that can not be completed within the given time frame, it results in a penalty
of (d− dj + 1)2, i.e. the square of the order’s lateness in days plus one. The third criterion
is to minimize the number of jobs that are late and the fourth criterion is to maximize the
total number of jobs produced within the time frame.

6.3 Solution approach

As described in Section 6.2, we only determine a production sequence for one day and only
consider orders for which the supply of raw material is guaranteed. Still, the problem is
too rich to be solved in acceptable time by exact methods. While the problem resembles
a synchronous flow shop with two adjacent dominating machines, the first criterion to
evaluate a schedule is a weighted sum of late orders. As we showed in Chapter 3, finding an
optimal schedule is strongly NP-hard even for F2|synmv, dom (1) |∑wjUj . Additionally,
even for other objective functions, solving synchronous flow shop problems is NP-hard for
two machines in the presence of cyclic changeovers even if they are constant. The gluing
form resources in combination with the dependencies of jobs to gluing forms and stations
(as depicted in Figure 6.2) further complicate the problem. Thus, the problem is also
not applicable to the constructive heuristics described in Section 5.1. Instead, we choose
an A-Team approach (see Section 5.3) to obtain heuristic solutions. As we described in
Section 5.3 the A-Team is well capable of dealing with highly complex problems. In the
following, we will give a short outline of the solution approach. The computational results
for test instances that were supplied by the practitioner will be presented in Section 7.2.

A problem instance consists of orders o1, . . . , o|O| as well as a time frame that is to be
scheduled on the current day d. Usually, the time frame spans 16 to 24 hours. Because
the exact number of cycles that can be produced during the specified time frame depends
on the schedule to be determined, the maximum number Γ of cycles to be scheduled is
chosen such that it sufficiently covers the time frame. For example, this number can be
chosen based on the mean insertion and gluing times of the products or based on historical
data. On a typical day the practitioner is able to produce approximately 5000 shelf boards

6.3. SOLUTION APPROACH 111

(see Section 7.2 for real world production rates). We do not require the number of cycles
to be large enough such that it is possible to completely schedule all orders up to their
full volume. Given an assignment of orders and gluing forms to the cycles, the completion
times for all jobs and orders can be calculated. If the completion times of all vj jobs of an
order oj with due date dj ≤ d are within the specified time frame, then the order is said to
be produced on time (even if it is already late on that day), otherwise it is said to be late.
An order is thus considered late either if it is not scheduled completely or if the completion
time of an associated item is later than the time frame specified for the current day.

For our solution approach we use a broad range of improver agents, each of which
alters its solution only slightly. In our early tests these rather simple agents provided
better results than the usage of more sophisticated structures. We also tested an approach
based on self-adaptive metaheuristics (as suggested in Meignan et al. (2010)), in which
agents consist of multiple small operations and a second-order heuristic algorithm is used
to determine which operations should be used and with which intensity. However, this did
not yield better results than using the rather unsophisticated agents. Instead of assigning
all jobs to the cycles individually, we try to schedule jobs of the same order in form of
order fragments as defined above so that they are produced on the same station in direct
succession. We do not require each order fragment to have size equal to the volume of its
order, however the sum of sizes of order fragments of an order may not exceed the volume.
In the following, we give a short description of the constructor and improver agents and
their strategies. Note that each agent only constructs feasible solutions, i.e. the assignment
and reassignment of order fragments and gluing forms is only performed if the constraints
regarding the feasibility of gluing forms and stations are adhered to. Thus, whenever an
order fragment is scheduled in a cycle, this is only done when the corresponding gluing
form is available at this time and the gluing form is compatible with the station in which
it is to be inserted in this cycle.

To create initial solutions we use the following constructors:

• Assign the first order fragment to start in cycle 1 at random and iteratively choose an
order fragment for the next unassigned cycle such that the maximum of the processing
times on machines M1 of jobs and on machine M2 of the already assigned jobs in
this cycle is minimal. Let the size of each order fragment be as large as possible. If
all orders consist of a single job, this heuristic resembles (S3) from Section 5.1.1

• Sort orders according to due dates and greedily assign each order fragment to the
earliest feasible cycle according to this sorting.

• Randomly assign order fragments.

The assignment of order fragments resembles a variation of the constructors (C2) and
(C3) defined in Section 5.3.3. The improvers consist of a couple of agents, each of which
has its own neighborhood structure. The agents make one move within their neighborhood
to change the current solution. For each agent we can choose whether it may be allowed
to return only the best neighbor, any improving neighbor or an arbitrary neighbor. In
most cases we allow the agents to return non-improving solutions as well. Note again that

112 CHAPTER 6. PRACTICAL APPLICATION

moves within these neighborhoods are allowed only if the resulting assignment is feasible
according to assignments of gluing forms and stations. As stated before, the number of
cycles in general is not required to be large enough such that it is possible to completely
schedule all orders up to their full volume. Thus, it is permitted to remove orders and
order fragments from the plan such that not all jobs of an order are scheduled. We also
allow that stations are not completely scheduled, i.e. that for some station s and some
c′ ≤ Γ no job is assigned to cycles c ≥ c′ in which it were to be inserted at station s. We
use the following operators:

• Remove an order fragment from the plan and move all succeeding order fragments
on this station to the vacated cycles.

• Insert an order fragment into the plan and move all order fragments on this station
that were previously occupying these cycles to later cycles (cut off at Γ if necessary).

• Reassign the gluing form of an order fragment.

• Split an order fragment into two.

• Shorten or lengthen an order fragment and move all succeeding order fragments
accordingly.

Given these basic moves, improver agents alter solutions. Each improver in turn takes
one solution at random and performs a series of the basic moves described above:

• Choose a late order oj , i.e. an order which is not completed in the allowed time frame
of the current solution. This order can either be chosen at random or orders with
larger penalty values can be preferred. The solution is then altered via removal or
shortening of order fragments and feasible insertions of order fragments containing
oj such that in the new solution the order oj is completed in the allowed time frame.

• Choose an order fragment that is currently planned on a station and assign a suc-
ceeding order fragment on this station which uses the same gluing form.

• Fix a currently scheduled order fragment and reschedule order fragments in adjacent
cycles such that the cycle times are minimized.

• Randomly swap or shift planned order fragments.

• Randomly insert or remove individual order fragments or all order fragments of an
order.

To have a diverse population of solutions on which the agents can work on, three distinct
pools of solutions are generated by the constructors. The agents work independently on all
three solution pools and each time choose one solution at random to work on. The current
best solutions of each pool are copied and saved separately not to be lost by manipulation
of the improvers. After a number of steps T , the best solutions from each pool together
with the saved solutions are copied into all three pools. All other solutions are removed

6.3. SOLUTION APPROACH 113

by the destroyers and the solution pools are refilled by the constructors. This process is
done for a number of iterations. If during one iteration no solution within the three pools
is found which is better than the best solution at the start of the iteration, only two of
the solution pools are filled in the fashion described above while the third pool is filled
completely with new solutions by the constructors. To “catch up” in quality with the other
two solution pools, the agents only work on this solution pool before continuing their work
on all three pools and continuing the iteration described above.

114 CHAPTER 6. PRACTICAL APPLICATION

Chapter 7

Computational results

In this chapter we present computation results for the algorithms described in this thesis.
For this, we evaluate the exact methods developed in Chapter 4 as well as the heuristic
methods described in Chapter 5.

In Section 7.1 we evaluate the algorithms for the objective functions of minimizing the
makespan, the maximum lateness and the total completion time on artificially generated
test sets. In Section 7.2 we present computation results for the practical application dis-
cussed in Chapter 6. Therein, the results obtained by the multi agent approach described
in Section 6.3 for data obtained by the practitioner are compared to the actual production.

7.1 Generated test sets

In this section we evaluate the algorithms developed in Chapters 4 and 5 on several different
test sets which are based on the one created by Taillard (1993) for asynchronous flow shop
problems. Up to this point, the test set by Taillard has been used by various authors
to evaluate exact and heuristic methods for flow shop scheduling problems. While the
instances have been created for asynchronous flow shops, we can still use them to evaluate
the methods discussed in this thesis. The test set of Taillard contains ten instances for
each of twelve distinct combinations of number of machines and jobs, ranging from 20 jobs
on 5 machines to 500 jobs on 20 machines. For each instance, the processing times of jobs
on the respective machines are within the interval [0, 100].

To evaluate the algorithms designed for minimizing the makespan of synchronous flow
shops without machine dominance as well as for minimizing the total completion time, we
used the original test set of Taillard. To test algorithms for synchronous flow shops with
dominating machines and algorithms for minimizing the maximum lateness, we altered the
test set as described in the corresponding section. Additionally, we generated test sets with
fewer jobs and machines to test exact algorithms for which the test sets described above
proved to be too difficult.

This section is structured as follows: In 7.1.1 we present results for minimizing the
makespan of synchronous flow shops. Subsection 7.1.2 deals with the minimization of
maximum lateness while in 7.1.3 we consider the minimization of total completion time.

115

116 CHAPTER 7. COMPUTATIONAL RESULTS

All subsections follow the same structure: First, we compare the performance of exact
methods derived in Chapter 4 for smaller instances. Afterwards, we concentrate on the
larger instances based on the test set by Taillard. For these, we first summarize the
quality of the lower bounds developed in Section 4.4. Thereafter, we evaluate the heuristics
approaches described in Chapter 5. The constructive heuristics of similar procedure are
evaluated in comparison to another as well as in comparison to the best solution that
could be obtained by any constructive heuristic; to which we will also refer to as the
best constructive solution. Additionally, we summarize the performance of all constructive
heuristics over the whole test set. Afterwards, the improvement heuristics are evaluated.
At the end of each section, the performance of the heuristics in comparison to the exact
algorithms as well as their average deviation from the best lower bound is summarized.

All computation experiments were conducted on an Intel Core i7-2600 @ 3.40 GHz
CPU with 8 GB RAM. To evaluate the mixed integer programming formulations, we used
the IBM ILOG CPLEX 12.5.0.0 IP solver. All runtimes in each table are in seconds and
all average deviations are given in percentage. The runtime required to obtain a heuristic
solution was below one second for all constructive heuristics and all instances except for
the largest instances when using the NEHA heuristic. Therefore, we mention the runtime
of the constructive heuristics just for cases in which it exceeds one second and only discuss
the runtime of exact algorithms and improvement heuristics.

7.1.1 Makespan

In this section we evaluate the methods to minimize the makespan of synchronous flow
shop problems. As discussed in Chapter 3, minimizing the makespan is NP-hard in the
general case with three or more machines and polynomially solvable in the presence of
two adjacent dominating machines. If the two dominating machines are non-adjacent, the
complexity status remains open. However, the special structure of these instances allows
for more efficient solution algorithms. Therefore, we distinguish between these cases and
present results separately for the general synchronous flow shop and for two dominating
machines.

The general case

Even for the smallest instances of the test set of Taillard, no optimal solution could be
found within 30 minutes by CPLEX using the basic mixed integer formulation (4.1)-(4.6)
described in Chapter 4.2. Unfortunately, a branch and bound algorithm using the match-
ing lower bound (LB-M) performed even worse. Therefore, we generated some smaller
instances to compare the two algorithms. For each combination of number of jobs and
machines depicted in Table 7.1, we generated 10 instances. For each instance, the process-
ing times of all jobs were chosen in the interval [0, 100] similar to the test set of Taillard.
Table 7.1 depicts the number of instances solved by CPLEX and the branch and bound
algorithm within a time limit of 30 minutes as well as the average computation time re-
quired for the instances for which an optimal solution could be obtained. It can be seen
that already for 15 jobs on two machines, the branch and bound algorithm can not solve

7.1. GENERATED TEST SETS 117

all instances to optimality within the time limit. Further, for all problem sizes, CPLEX
clearly outperforms the branch and bound algorithm in terms of computation time.

solved avg. time # solved avg. time
m n CPLEX BB CPLEX BB m n CPLEX BB CPLEX BB
2 10 10 10 0.22 0.23 3 10 10 10 0.22 1.86
2 15 10 9 8.80 130.0 3 15 10 0 17.59 –
2 20 6 0 419.41 – 4 10 10 10 0.24 5.24
2 25 2 0 1.17 – 5 10 10 10 0.27 9.18

Table 7.1: Comparison of the number of instances solved to optimality within 30
minutes and the average computation time of solved instances

We compare four lower bounds for the test set of Taillard: LB-FS lists the optimal
solution value or the best known lower bound for the asynchronous flow shop problem.
The values were obtained from the homepage of Taillard (cf. Taillard (2005)), the last
update occurred in April, 2005. LB-GG and LB-M illustrate the two constructive lower
bounds described in Section 4.4.1, i.e. the iterative adjacent Gilmore-Gomory lower bound
and the matching lower bound. Finally, LB-IP presents the best lower bound obtained by
CPLEX within a time limit of 30 minutes. Table 7.2 shows the average deviation in percent
from the best obtained lower bound for each of the combinations of jobs and machines (10
instances each). We also depict the average deviation from the best lower bound of the
best feasible solution obtained by CPLEX within 30 minutes (UB-IP). It can be seen that
the gap between the best lower and upper bound grows very large with increasing problem
size. The IP lower bound outperforms the constructive lower bounds for most problem
sizes and for the smallest instances it always achieves the best lower bound. However, the
matching lower bound LB-M performs better in comparison to the other lower bounds for
larger instances. For 500 jobs on 20 machines, CPLEX was able to derive a lower bound
for only 9 out of the 10 instances. The matching lower bound outperforms the Gilmore-
Gomory lower bound for all problem sizes, most notably for instances where the number of
jobs is not much larger than the number of machines. Surprisingly, despite the differences
between synchronous and classical flow shops, the flow shop lower bound LB-FS performs
very similar to the other lower bounds and in comparison to the other lower bounds offers
very good results with increasing number of machines.

In the following, we discuss results of heuristic approaches for minimizing the makespan
of synchronous flow shops as described in Chapter 5. First, we investigated the effect of
using different weights w for the formula

i+m−2∑

k=i

(w ·max (0, p1+k−i,j − ck) + (1− w) ·max (0, ck − p1+k−i,j))

to evaluate the insertion of a job j at position i in heuristic S3W. For different weights
w = 0, 0.05, 0.1, . . . , 1.0, Figure 7.1 depicts the mean as well as the maximal relative devia-
tion of the objective value of S3W from the objective value obtained by S3I.

118 CHAPTER 7. COMPUTATIONAL RESULTS

average deviation from best LB
m n LB-FS LB-GG LB-M LB-IP UB-IP
5 20 12.14 18.66 10.62 0.00 4.87
5 50 2.99 2.98 0.00 2.34 17.04
5 100 2.14 1.89 0.00 2.22 21.55
10 20 16.73 48.62 19.29 0.00 8.29
10 50 1.69 9.92 2.59 0.06 38.86
10 100 0.55 3.64 0.52 0.12 46.91
10 200 0.75 2.24 0.08 0.67 66.42
20 20 12.02 105.29 7.53 0.00 15.21
20 50 0.39 26.75 6.13 0.48 44.85
20 100 0.33 13.08 5.14 0.53 69.9
20 200 0.03 5.37 1.85 0.45 79.05
20 500 0.27 1.96 0.12 0.15∗ 83.71

Table 7.2: Comparison of lower bounds on the makespan and upper bound ob-
tained by CPLEX
∗: No lower bound could be obtained for three instances

Figure 7.1 a) shows the effect of the weights over all instances of Taillard. It can be
seen that for weights lower than 0.6, the mean objective value of S3W is larger than that
of S3I. However, even for larger weights, the mean objective value is at most 0.5 percent
lower than for S3I. Further, using weights can lead to larger improvements if the number
of machines is smaller. Figures 7.1 b) and c) depict the effect of the weights for instances
with five and twenty machines, respectively. It can be seen that for five machines, the
mean objective value is improved by up to 1.6 percent for a weight of 0.6, while for twenty
machines there is a decrease in solution quality for most weights. Figure 7.2 shows the
same evaluation for using weights for S3DEW and their comparison to the objective value
obtained with S3DE. The results are similar to those of S3W and S3I. In both cases, the
best results over all instances are achieved by using a weight of 0.8.

Next, we compare the iterative constructive heuristics S1, S2, S3, S3I, S3DE as well as
S3W and S3DEW with a weight of 0.8. Table 7.3 shows the results for these heuristics.
For each set of 10 instances of the test set of Taillard we show how often each heuristic
performs best in comparison to all 18 constructive heuristics discussed in this section as
well as the average deviation in percent from the best result obtained by a constructive
heuristic. It can be seen that heuristics S3I and S3DE clearly outperform the heuristics S1,
S2 and S3 except for instances with 20 machines and 20 jobs for which heuristics S2 has the
lowest average deviation from the best heuristic solution among the iterative constructive
heuristics. Only for one instance was one of the original heuristics by Soylu et al. (2007)
able to reach the best result of all constructive heuristics. Overall, the weighted variants
S3W and S3DEW perform best. The non-weighted versions S3I and S3DE are better only
for larger instances.

7.1. GENERATED TEST SETS 119

1

0.8

0.6

0.4

0.2

0

0.9 1 1.1

1

0.8

0.6

0.4

0.2

0

0.9 1 1.1

1

0.8

0.6

0.4

0.2

0

0.9 1 1.1

a) all instances b) 5 machines c) 20 machines

Figure 7.1: Effect of different weights for S3W in comparison to S3I for the in-
stances of Taillard

1

0.8

0.6

0.4

0.2

0

0.9 1 1.1

1

0.8

0.6

0.4

0.2

0

0.9 1 1.1

1

0.8

0.6

0.4

0.2

0

0.9 1 1.1

a) all instances b) 5 machines c) 20 machines

Figure 7.2: Effect of different weights for S3DEW in comparison to S3DE for the
instances of Taillard

Furthermore, we evaluate six variants of the NEH heuristics. In the first variant (Σ,s),
the jobs are sorted by their total processing time and then iteratively inserted in the
standard way as shown in Algorithm 5.4. The second variant (DE,s) employs the standard
algorithm but uses the schedule obtained by the constructive heuristic S3DE as an initial
sorting for the jobs. The third and fourth variant use a different evaluation function for
the insertion of the jobs, similar to the weighted function used in heuristic S3W with a
weight of w = 0.8. This is performed for both sorting methods, total processing time as
well as presorting with the constructive heuristic S3DE (Σ,w and DE,w). Finally, we also
test the heuristic NEHA where the insertion of all jobs is evaluated in each iteration of
the NEH heuristic. This heuristic is used in combination with the standard evaluation

120 CHAPTER 7. COMPUTATIONAL RESULTS

times best constructive solution average deviation from best result
m n S1 S2 S3 S3I S3W S3DE S3DEW S1 S2 S3 S3I S3W S3DE S3DEW
5 20 0 0 0 2 2 3 2 17.47 11.25 7.44 3.02 1.77 2.67 2.88
5 50 0 0 0 2 6 2 7 22.55 8.77 7.04 2.45 0.99 2.14 0.41
5 100 0 0 0 0 7 0 5 28.51 14.04 7.87 3.08 0.28 2.66 0.46
10 20 0 0 0 2 1 2 1 13.78 9.98 8.68 5.14 4.54 4.73 3.25
10 50 0 0 0 2 1 1 3 13.46 6.86 4.79 2.29 2.11 2.68 1.81
10 100 0 0 0 3 2 3 2 16.22 7.96 4.29 1.08 0.57 0.80 0.64
10 200 0 0 0 3 4 4 4 19.70 10.16 4.29 0.78 0.70 0.46 0.55
20 20 1 0 0 0 1 0 1 8.62 4.91 7.11 5.69 5.15 5.35 3.97
20 50 0 0 0 0 0 0 0 10.02 4.45 6.63 3.80 4.38 3.53 4.51
20 100 0 0 0 0 0 0 0 9.95 4.58 4.55 2.57 2.66 2.49 2.43
20 200 0 0 0 3 0 4 1 9.13 4.07 1.98 0.49 1.14 0.51 0.92
20 500 0 0 0 3 0 8 0 11.24 5.88 1.86 0.41 0.96 0.04 0.70

Table 7.3: Comparison of iterative constructive heuristics for minimizing the
makespan

function as well as the weighted function (s and w). The results are depicted in Table 7.4.
It can be seen the incorporation of a weighted evaluation function instead of the standard
evaluation does in general not lead to inferior results. Using the result obtained by S3DE as
a starting solution seems more beneficial for the variant employing the weighted evaluation
function. For the standard evaluation function, it is not definitive which initial sorting of
the jobs leads to better results. The NEHA heuristic clearly outperforms the standard
NEH heuristic. However, for the largest problem size containing 500 jobs and 20 machines,
NEHA already requires a computation time of 27 seconds while all other heuristics need at
most 0.3 seconds. Further, it can be seen that the NEH heuristics outperform the iterative
constructive heuristics when the number of jobs is not too large in relation to the number
of machines. Especially, for problem sets with 20 machines, NEH performs very well. For
the largest problem sets, all NEH variants are inferior to S3I and S3DE.

Finally, we evaluate constructive heuristics that transform the problem into either an
instance of a two-machine synchronous flow shop or a traveling salesman problem, i.e. the
heuristics GG,CDS and TSP. We try the following three cost functions for the TSP. For
two jobs i, j and k = 1, 2, 3, cost functions ck(i, j) calculate the cost when job j is directly
succeeding job i:

c1(i, j) =

m∑

k=2

max (0, pk−1,j − pki) + pmj

c2(i, j) =

m∑

k=2

(0.8 max (0, pk−1,j − pki + 0.2 max(0, pki − pk−1,j))) + 0.8pmj

c3(i, j) =

m∑

k=2

|pk−1,j − pki|+ pmj

7.1. GENERATED TEST SETS 121

times best constructive solution average deviation from best result
NEH NEHA NEH NEHA

m n
∑

,s DE,s
∑

,w DE,w s w
∑

,s DE,s
∑

,w DE,w s w

5 20 1 0 0 0 4 0 4.56 6.14 6.27 6.66 2.72 14.93
5 50 0 0 0 0 0 0 6.27 4.68 6.81 4.67 2.49 17.27
5 100 0 0 0 0 0 0 8.31 7.55 8.75 7.52 4.56 22.70
10 20 1 2 0 0 3 0 3.19 2.99 5.09 4.48 2.02 11.18
10 50 1 1 0 0 3 0 2.91 3.81 4.42 4.30 0.98 11.43
10 100 0 0 0 0 3 0 4.53 5.47 5.97 6.02 1.03 12.87
10 200 0 0 0 0 0 0 7.93 7.24 9.67 8.21 4.34 16.94
20 20 1 3 3 0 2 0 2.30 2.35 2.65 2.55 1.51 6.67
20 50 1 0 0 1 8 0 1.77 2.74 2.71 3.18 0.08 6.45
20 100 0 0 0 0 10 0 2.70 3.00 4.54 3.62 0.00 7.35
20 200 0 0 0 0 4 0 3.25 3.31 4.42 4.00 0.31 7.71
20 500 0 0 0 0 0 0 5.67 6.08 6.62 5.99 3.00 9.84

Table 7.4: Comparison of NEH variants for minimizing the makespan

Similar to S3, the first cost function c1(i, j) calculates the increase in cycle time that
incurs when job j is scheduled after job i. Cost function c2(i, j) also takes into account the
idle time that is caused by job i, similar to S3W with a weight of 0.8. Finally, cost function
c3(i, j) sums up the idle time that occurs for any of the two jobs when job j is scheduled
after i. Table 7.5 shows an evaluation of the transformation heuristics. Again we show how
often each heuristic performs best in comparison to the other constructive heuristics. It
can be seen that only for instances with a large number of machines and not too many jobs
in relation to the number of machines (20 machines and 20 or 50 jobs, respectively), the
GG heuristic performs better than the transformation into a traveling salesman problem.
In general, using the cost function c1 outperforms the two other cost functions and for one
instance it even reaches the best solution of all constructive heuristics. However, in general
all transformation heuristics perform worse than the best iterative constructive heuristics
and all variants of NEH except for the weighted variant of NEHA.

Figure 7.3 depicts how often each constructive heuristic reaches the best constructive
solution as well as how often it is the only heuristic to reach a best solution. Further,
Figure 7.4 shows the average deviation in percent of each constructive heuristic from the
best constructive solution. It can be seen that regular NEHA using the standard eval-
uation function for inserting jobs, reaches the best heuristic solution most often. Also,
the other NEH heuristics except for the weighted NEHA variant, are able to find the best
heuristic solution in at least one case. There is no clearly superior variant, they only vary
slightly in their average deviation with the variants employing the non-weighted evaluation
function being slightly better. As discussed above, the NEH heuristics perform best for
smaller problem sizes while the iterative heuristics S3I and S3DE as well as their weighted
counterparts perform better for larger instances. Similar to the NEH variants, no distinct
winner can be determined among these four variants. Overall, the iterative heuristics S3I

122 CHAPTER 7. COMPUTATIONAL RESULTS

and S3DE as well as the NEHA heuristic with the regular evaluation function achieve the
best results with an average deviation of 1.88 % for the weighted version of S3DE and
1.92 % for the NEHA heuristic. Heuristics S1 and TSP with the cost function c1 only
perform best for a single instance, respectively. However, their average deviation from
the best constructive solution is very large. Overall, the transformation heuristics and the
heuristics S1,S2 and S3 perform very bad in comparison to the other heuristics.

times best constructive solution average deviation from best result
TSP TSP

m n GG CDS c1 c2 c3 GG CDS c1 c2 c3

5 20 0 0 1 0 0 8.86 10.37 4.38 7.51 6.95
5 50 0 0 0 0 0 15.74 18.24 5.98 7.98 9.40
5 100 0 0 0 0 0 20.94 24.69 9.01 10.57 10.76
10 20 0 0 0 0 0 6.44 6.84 5.99 6.32 7.13
10 50 0 0 0 0 0 10.20 10.47 5.88 7.68 5.91
10 100 0 0 0 0 0 13.16 14.17 5.66 6.68 6.99
10 200 0 0 0 0 0 17.63 18.47 8.41 8.85 8.97
20 20 0 0 0 0 0 2.88 3.79 5.10 5.34 5.22
20 50 0 0 0 0 0 6.09 7.02 5.58 6.46 7.73
20 100 0 0 0 0 0 7.31 7.44 6.68 7.20 7.65
20 200 0 0 0 0 0 7.64 7.84 5.96 6.38 6.42
20 500 0 0 0 0 0 10.26 10.54 7.83 8.13 8.12

Table 7.5: Comparison of transformation heuristics for minimizing the makespan

In the following, we will discuss improvement heuristics for minimizing the makespan
of synchronous flow shops. First, we consider improvement heuristics that mostly rely
on adjacent pairwise interchange, i.e. the heuristics (I2) as well as variants of RACE
which iteratively apply the heuristics RACS, I1 and SU as long as an improvement can be
achieved. To evaluate the relative performance of the improvement heuristics we applied
them to the same starting solution and compared the average improvement. Table 7.6
shows how often each improvement heuristic achieves the best improvement as well as the
average improvement in percent of the objective value when using the result of S3DE as
a starting solution. As can be seen, all heuristics perform very similar. I2 on average
achieves the best results, followed by the iterative execution of the SU heuristic. For
different starting solutions, the relative performance of the improvement heuristic was
similar.

Next, we evaluate the metaheuristics when applying the swap and shift neighborhoods.
For both neighborhoods we apply a tabu search, simulated annealing and an iterative
improvement procedure. In each iteration we evaluate the neighborhood of the current
solution given by a sequence σ = (σ1, . . . , σn). Within iterative improvement, we start with
evaluating the swaps of the job σ1 with all other jobs (equivalently for the shift operation
we evaluate shifts to all other positions). If any of the swaps (shifts) improve the objective
value, we execute a move which improves the objective value the most and continue with

7.1. GENERATED TEST SETS 123

0 10 20 30

times best
times single best

S1
S2
S3

S3W 0.8
S3DE

S3DEW 0.8
GG

TSP c1
TSP c2
TSP c3

CDS
NEH Σ, s

NEH DE, s
NEH Σ, w

NEH DE, w
NEHA s

NEHA w

0

S3I

NEHA s

Figure 7.3: Comparison of constructive heuristics for minimizing the makespan

5% 10% 15%

S1
S2
S3

S3W 0.8
S3DE

S3DEW 0.8
GG

TSP c1
TSP c2
TSP c3

CDS
NEH Σ, s

NEH DE, s
NEH Σ, w

NEH DE, w
NEHA s

NEHA w
0%

S3I

NEHA s

Figure 7.4: Average deviation of constructive heuristics from best obtained solution
for minimizing the makespan

124 CHAPTER 7. COMPUTATIONAL RESULTS

times best average improvement of
starting solution

RACE I2 RACE
m n I2 RACS I1 SU RACS I1 SU
5 20 8 6 9 10 1.11 0.80 1.12 1.46
5 50 6 5 4 7 0.91 0.45 0.82 0.94
5 100 8 6 5 9 0.41 0.34 0.30 0.44
10 20 8 5 4 7 1.78 1.22 1.07 1.76
10 50 8 5 6 7 1.00 0.62 0.93 1.02
10 100 8 9 8 8 0.24 0.20 0.16 0.17
10 200 10 9 4 7 0.25 0.20 0.11 0.17
20 20 7 4 5 7 1.82 1.43 1.73 1.57
20 50 5 7 0 2 0.78 0.88 0.49 0.57
20 100 6 5 5 5 0.52 0.48 0.44 0.44
20 200 9 5 5 6 0.23 0.21 0.18 0.18
20 500 10 7 5 8 0.09 0.07 0.07 0.08

Table 7.6: Comparison of improvement heuristics for minimizing the makespan

the next iteration of the iterative improvement procedure. If no move would lead to an
improvement, we evaluate all swap (shift) moves of job σ2 and iteratively continue with jobs
σi for all i = 1, . . . , n until we evaluated all possible moves. If for any i there exists a move
which improves the objective value, we execute a move which improves the objective value
the most and continue with the next iteration of the iterative improvement procedure.
If no improvement can be found in the whole neighborhood, the iterative improvement
procedure terminates.

In the tabu search, we define the following tabu criterion for the swap neighborhood:
For a sequence σ = (σ1, . . . , σn), when swapping two jobs in positions i, j with i < j to
obtain a sequence σ′ = (σ′1, . . . , σ

′
n) we add the pairs (σ′i, σ

′
i+1) and (σ′j−1, σ

′
j). The pairs

denote the new successor of σj and the new predecessor of job σi after the move. A swap is
tabu, when (σj , σi+1) or (σj−1, σi) is in the tabu list. Similarly, for the shift neighborhood
we define the following tabu criterion: When shifting the job in position i to position j to
obtain a sequence σ′ = (σ′1, . . . , σ

′
n) we add the pair (σ′j−1, σ

′
j) if i < j and (σ′j , σ

′
j+1) if

i > j. Again, the pairs denote the new predecessor of job σi in case of a shift to the right
or a the new sucessor of job σi in case of a swap to the left. A shift is tabu, when (σj , σi)
(if i < j) or (σi, σj) (if i > j) is in the tabu list. We use the successor for a shift to the
left and a predecessor for a shift to the right since these always exist, while when shifting
a job to the start (or end) of the schedule, it does not have a predecessor (successor). The
same holds for swap moves. This tabu criterion does not forbid cycles as a solution can be
visited again. However, in this case another move has to be executed than at the first time
the solution was reached. Similar to the iterative improvement algorithm, we evaluate the
swaps of job σ1 with all jobs (equivalently for the shift operation we evaluate shifts to all
other positions). If no non-tabu move leads to an improved objective value, we continue

7.1. GENERATED TEST SETS 125

with the other positions. Otherwise, we execute a best non-tabu move. If no non-tabu
move that improves the current objective value can be found in the whole neighborhood,
we choose the non-tabu move which decreases the objective value the least. We apply an
aspiration criterion, i.e. whenever we find a move that would lead to a solution with a
better objective value than the current best solution, we execute the move even if it is
tabu. We use a tabu list of size 100 and stop the tabu search either after 100 iterations in
which we found no new best solution or after 30 minutes.

For the simulated annealing approach, Brockmeyer (2014) evaluated several anneal-
ing functions. For each iteration t, we make a neighborhood move from a solution with
objective value oold to a solution with objective value onew with probability

max


1, exp



(
onew − oold)

50
cos t

30
t




 .

We stop the simulated annealing algorithm if we did not find a new best solution for 10.000
iterations or after 30 minutes.

Table 7.7 summarizes the results of the metaheuristics when using the swap and shift
neighborhoods with the described attributes. Analogous to the other improvement heuris-
tics, we compare the improvement achieved when using the result of S3DE as a starting
solution. We depict the average improvement in percent achieved by the metaheuristics
in comparison to the starting solution. Further, we show the average computation time in
seconds. It can be seen that for smaller instances, all heuristics have a very low runtime
while achieving better improvements in comparison to the improvement heuristics depicted
in Table 7.6. For all heuristics and all problem sizes, using the swap neighborhood clearly
outperforms using the shift neighborhood. In general, all heuristics using the same neigh-
borhood achieve a similar improvement of the constructive solution. While the tabu search
leads to slightly better results than simulated annealing and iterative improvement, the
latter two require a much lower runtime. Again, the metaheuristics perform similar for
different starting solutions.

Finally, we compare the heuristics to the results obtained by using CPLEX with the
mixed integer programming formulation. Further, we determine the gaps between the best
obtained solutions and the best lower bounds for the instances of Taillard. Table 7.8 shows
how often the best solution obtained by a constructive heuristic was better than the upper
bound obtained by CPLEX within 30 minutes. The same is depicted for the best solution
obtained by an improvement heuristic. For this, the improvement heuristics were executed
on various starting solutions and for each instance we use the best result achieved over all
runs. While CPLEX outperforms the heuristics for smaller instances, for larger instances
even the constructive heuristics lead to better results. Unfortunately, the gaps are very
large for all problem sizes. This seems to be mostly caused by the overall bad quality of
the lower bounds on the makespan for the synchronous flow shop.

126 CHAPTER 7. COMPUTATIONAL RESULTS

avg. impr. of starting solution average computation time
Tabu SA II Tabu SA II

m n sw sh sw sh sw sh sw sh sw sh sw sh
5 20 5.87 3.94 5.85 3.39 5.29 3.53 0.0 0.0 0.0 0.0 0.0 0.0
5 50 4.07 2.43 4.08 2.12 3.73 2.04 0.1 0.2 0.0 0.0 0.0 0.0
5 100 2.01 0.83 1.94 0.69 1.90 0.79 1.1 1.6 0.0 0.0 0.0 0.0
10 20 8.05 5.43 7.80 5.20 7.08 4.88 0.0 0.0 0.0 0.0 0.0 0.0
10 50 6.12 2.89 5.97 3.01 5.48 2.60 0.3 0.4 0.0 0.0 0.0 0.0
10 100 3.39 1.27 3.20 1.36 3.12 1.16 2.4 2.9 0.0 0.0 0.0 0.0
10 200 2.13 0.62 1.98 0.59 1.99 0.61 21.6 21.3 0.1 0.0 0.1 0.1
20 20 2.41 2.41 2.43 2.43 1.87 1.87 0.0 0.1 0.0 0.0 0.0 0.0
20 50 7.91 2.49 7.57 3.03 6.42 2.61 0.7 1.0 0.0 0.0 0.0 0.0
20 100 4.68 1.85 4.61 1.91 4.44 1.79 6.2 6.5 0.1 0.1 0.0 0.1
20 200 3.43 1.27 3.28 1.24 3.27 1.29 44.4 45.1 0.2 0.1 0.3 0.3
20 500 1.42 0.31 1.16 0.16 1.36 0.27 1090.3 635.5 0.6 0.1 1.6 2.9

Table 7.7: Comparison of metaheuristics employing the swap (sw) and shift (sh)
neighborhoods for minimizing the makespan

times better average gap from best LB
than CPLEX

m n constr. impr. constr. impr. CPLEX
5 20 0 0 14.59 % 7.03 % 4.87 %
5 50 0 2 24.86 % 17.79 % 17.04 %
5 100 3 10 23.27 % 18.52 % 21.55 %
10 20 0 1 17.62 % 9.71 % 8.29 %
10 50 0 6 45.88 % 36.83 % 36.86 %
10 100 5 10 46.10 % 37.46 % 46.91 %
10 200 10 10 44.66 % 38.43 % 66.42 %
20 20 0 0 22.96 % 16.78 % 15.21 %
20 50 0 7 52.89 % 44.16 % 44.58 %
20 100 10 10 58.63 % 50.15 % 69.90 %
20 200 10 10 66.06 % 56.51 % 79.05 %
20 500 10 10 66.04 % 58.25 % 83.71 %

Table 7.8: Number of times the constructive and improvement heuristics perform
better than CPLEX, and gaps for minimizing the makespan

7.1. GENERATED TEST SETS 127

Two dominating machines

To evaluate the algorithms for minimizing the makespan of synchronous flow shops with
two dominating machines, we slightly alter the instances by Taillard (1993) by setting the
processing times of all jobs on all machines to zero except for the first and last machine.
We include all combinations of number of machines and jobs except for the instances with
20 machines and 20 jobs as for them each subsequence of a resulting schedule would contain
at most two jobs.

In Section 4.2.2 we presented a mixed integer linear program (4.11)-(4.21) for the syn-
chronous flow shop problem with two dominating machines. Table 7.9 shows the perfor-
mance of CPLEX on the generated instances when using the basic mixed integer formula-
tion (4.1)-(4.6) (denoted as IP-I) as well as the formulation specialized on two dominating
machines (denoted as IP-II) for a time limit of 30 minutes. For each combination of m and
n, we show how many of the 10 instances CPLEX was able to solve to optimality using the
respective IP formulation. Further, for both formulations we depict the average deviation
in percent from the best feasible solution obtained using the two formulations. Note that
for larger instances with 20 machines, CPLEX was able to find a feasible solution when
using formulation (4.11)-(4.21) in only 9 cases for 200 jobs or even no case at all for 500
jobs. Further, we also depict the average computation time required in case an instance
was solved to optimality. The results show that using the specialized formulation (4.11)-
(4.21) is clearly superior to using the standard formulation (4.1)-(4.6) for smaller problem
sizes, solving a lot more instances in very short time. However, for larger sizes it becomes
difficult to even obtain feasible solutions. While we were not able to solve even a single
instance to optimality within 30 minutes in the general case, 78 out of the 110 instances
can be solved by using the specialized formulation in the case of two dominating machines.

solved avg. dev. fr. best UB avg. time
m n IP-I IP-II IP-I IP-II IP-I IP-II
5 20 10 10 0.00 0.00 17.58 3.79
5 50 0 10 0.07 0.00 – 1.55
5 100 0 10 0.39 0.06 – 501.38
10 20 10 10 0.00 0.00 5.35 0.10
10 50 1 8 0.34 0.00 8.62 11.08
10 100 0 10 0.37 0.00 – 94.98
10 200 0 0 0.68 2.70 – –
20 50 3 10 0.00 0.00 61.10 2.01
20 100 0 9 0.36 0.00 – 94.38
20 200 0 0 0.19 3.94∗ – –
20 500 0 0 0.00 –∗∗ – –

Table 7.9: Comparison for the two MIP formulations for two dominating machines
∗: Only 9 feasible solutions were obtained
∗∗: No feasible solution was obtained for any of the ten instances

128 CHAPTER 7. COMPUTATIONAL RESULTS

Table 7.10 depicts the average deviation of various lower bounds from the best obtained
lower bound. The lower bound reached within 30 minutes using formulation (4.1)-(4.6) is
denoted by LB IP-I, the lower bound obtained within 30 minutes with formulation (4.11)-
(4.21) is denoted by LB IP-II. Furthermore, the Gilmore-Gomory lower bound (LB-GG)
as well as the matching lower bound (LB-M) are presented. The lower bound obtained
by the formulation (4.11)-(4.21) outperforms all other lower bounds and delivers the best
results for all instances. The Gilmore-Gomory lower bound performs very similar to the
matching lower bound. For smaller problem sizes, the two constructive lower bounds lead
to very poor results but the performance increases for larger instances. The table shows
the average deviation from the best lower bound as well as the average deviation of the
best upper bound obtained by CPLEX using either of the two mixed inter programming
formulations (UB-IP) from the best obtained lower bound. It can be seen that the gaps
are a lot smaller than in the general case without machine dominance.

average deviation from best LB
m n LB-GG LB-M LB IP-I LB IP-II UB-IP
5 20 4.81 4.83 0.00 0.00 0.00
5 50 0.54 0.55 1.81 0.00 0.00
5 100 0.16 0.16 1.23 0.00 0.03
10 20 20.82 20.94 0.00 0.00 0.00
10 50 2.84 2.84 1.08 0.00 0.03
10 100 0.81 0.81 0.49 0.00 0.00
10 200 0.22 0.22 0.77 0.00 1.68
20 50 14.09 14.09 0.30 0.00 0.00
20 100 3.49 3.49 0.63 0.00 0.02
20 200 0.98 0.98 0.71 0.00 1.75
20 500 0.17 0.17 0.67 0.00 3.50

Table 7.10: Comparison of lower bounds on the makespan for two dominating
machines

In the following, we evaluate the heuristics discussed in Chapter 5 applied to these test
instances. First, we start by comparing the constructive heuristics S1, S2, S3, S3I and
S3DE as well as weighted variants of S3 and S3DE with a weight of w = 0.8. Table 7.11
summarizes the results, showing for each heuristic how often it obtains the best result of all
constructive heuristics and the average deviation from the best objective value obtained
by a constructive heuristic. The results are very similar to the case without machine
dominance. Again, S3DE leads to the best overall results which can be slightly improved
by adding a weight to the evaluation function. The S3DE heuristics perform relatively
better compared to the S3I heuristics than in the general case without machine dominance
where both heuristics achieved more similar results. Further, the weighted variant of S3DE
performs even better than in the general case.

Table 7.12 summarizes the results for the variants of the NEH heuristic that were
also used for the instances without machine dominance. Analogous to the case without

7.1. GENERATED TEST SETS 129

times best constructive solution average deviation from best result
m n S1 S2 S3 S3I S3W S3DE S3DEW S1 S2 S3 S3I S3W S3DE S3DEW
5 20 0 0 0 1 3 2 6 19.00 16.70 14.40 5.65 3.40 2.12 1.44
5 50 0 0 0 0 1 0 7 24.49 19.08 12.47 5.33 3.50 2.46 0.49
5 100 0 0 0 0 0 2 7 27.38 21.48 11.11 2.44 2.03 0.71 0.45
10 20 0 3 0 1 1 6 6 10.50 5.81 15.96 5.61 4.63 1.49 1.49
10 50 0 0 0 0 0 4 9 20.03 16.32 16.66 5.81 6.12 0.58 0.09
10 100 0 0 0 0 0 3 7 23.02 20.76 13.24 4.15 4.13 0.79 0.27
10 200 0 0 0 0 1 0 9 26.95 24.33 10.25 2.52 2.08 0.32 0.04
20 50 0 0 0 0 0 6 9 13.17 8.58 18.47 4.75 4.85 0.18 0.00
20 100 0 0 0 0 0 5 5 20.11 16.62 17.51 6.47 6.09 0.30 0.45
20 200 0 0 0 0 0 2 8 25.16 22.49 12.82 5.70 5.60 0.75 0.12
20 500 0 0 0 0 0 1 9 29.59 28.00 10.02 2.94 2.70 0.28 0.02

Table 7.11: Comparison of the iterative constructive heuristics for two dominating
machines

times best constructive solution average deviation from best result
NEH NEHA NEH NEHA

m n
∑

,s DE,s
∑

,w DE,w s w
∑

,s DE,s
∑

,w DE,w s w

5 20 0 0 0 0 0 0 13.87 11.72 18.09 15.99 14.43 26.80
5 50 0 0 0 0 0 0 9.96 11.62 15.06 16.06 9.04 29.28
5 100 0 0 0 0 0 0 9.01 10.09 11.87 13.62 7.51 24.55
10 20 0 0 0 0 0 0 17.29 9.44 20.30 13.08 17.25 26.76
10 50 0 0 0 0 0 0 14.92 10.71 26.02 18.70 13.88 34.57
10 100 0 0 0 0 0 0 14.39 12.38 25.68 19.86 10.97 35.42
10 200 0 0 0 0 0 0 12.82 11.73 23.13 19.05 9.93 34.37
20 50 0 0 0 0 0 0 20.60 5.80 27.34 19.71 20.50 31.11
20 100 0 0 0 0 0 0 21.75 11.75 32.85 22.12 20.53 37.95
20 200 0 0 0 0 0 0 19.50 17.22 32.67 21.72 16.26 39.22
20 500 0 0 0 0 0 0 16.54 15.09 32.09 20.92 13.06 38.48

Table 7.12: Comparison of NEH heuristics for two dominating machines

machine dominance, the non-weighted versions clearly outperform their weighted counter-
parts. However, in difference to the general case, all NEH variants perform much worse
than the iterative constructive heuristics S3I and S3DE. None of the NEH heuristics was
able to reach the best constructive solution for any instance. All variants required less than
one second for all instances except for the largest set containing 500 jobs on 20 machines
for which NEHA needed 27 seconds, analogous to the general case.

Next, we evaluate the performance of the transformation heuristics. Table 7.13 sum-
marizes the results for each of the heuristic GG, CDS as well as the TSP heuristic with
the three cost functions c1,c2 and c3 as defined for the general case without dominating
machines. The Gilmore-Gomory heuristics outperforms all other transformation heuristics

130 CHAPTER 7. COMPUTATIONAL RESULTS

and achieves the best results of all transformation heuristics. Further, the Gilmore-Gomory
heuristic is the only transformation heuristic to perform well compared to the best itera-
tive construction heuristics. However, it is still outperformed by S3DE and its weighted
counterpart. The solutions obtained by all other transformations deviate a lot from the
best solutions.

times best constr. sol. average deviation from best result
TSP TSP

m n GG CDS c1 c2 c3 GG CDS c1 c2 c3

5 20 2 0 0 0 0 4.05 21.78 20.51 19.35 23.33
5 50 2 0 0 0 0 2.43 27.03 29.35 23.89 26.17
5 100 2 0 0 0 0 0.94 27.35 29.15 26.32 28.48
10 20 1 0 0 0 0 5.04 14.23 15.53 13.17 15.62
10 50 0 0 0 0 0 5.23 25.80 24.65 24.37 23.68
10 100 0 0 0 0 0 3.48 28.37 27.30 27.41 28.40
10 200 0 0 0 0 0 1.72 29.09 28.76 28.92 28.61
20 50 0 0 0 0 0 6.88 19.46 20.45 20.13 20.46
20 100 0 0 0 0 0 7.02 26.68 27.26 26.77 26.77
20 200 0 0 0 0 0 5.05 29.66 30.43 29.32 29.54
20 500 0 0 0 0 0 2.14 30.56 31.38 30.95 31.35

Table 7.13: Comparison of transformation heuristics for two dominating machines

Finally, as we did for the general case, Figure 7.5 depicts how often each constructive
heuristic reaches the best constructive solution as well as how often it is the only heuristic
to reach a best solution. Figure 7.6 shows the average deviation of each constructive
heuristic from the best constructive solution. The result is very different from the case
with no machine dominance. The NEH heuristics perform very poorly for the test sets with
two dominating machines. While the NEHA heuristic only had an average deviation of
1.88 % in the former case, it is 13.11 % for two dominating machines. Further, for no
instance was any NEH heuristic able to find the best heuristic solution. In comparison,
the S3DE heuristic and its weighted counterpart perform even better than in the general
case. At least one of the two heuristics finds the best heuristic solution for 98 of the 110
test instances. Also, the average deviation from the best heuristic result is only 0.41 % for
the weighted version and 0.83 % for the non-weighted version. The S3I heuristics perform
slightly worse than the S3DE heuristics but still only with a small seviation. The GG
heuristic also performs well. While the S1 and S2 heuristic have a very large deviation
from the best objective value for almost all problem sizes, S2 manages to deliver the best
solution in 3 instances with 20 jobs on 10 machines.

In the following, we discuss the effect of the improvement heuristics for the test set
based on Taillard with two dominating machines. As the metaheuristics based on the
api neighborhood were clearly outperformed by the metaheuristics based on the swap and
shift neighborhood, we only evaluate the tabu search, simulated annealing approach and
iterative improvement procedure with these two neighborhoods. As parameters for these

7.1. GENERATED TEST SETS 131

0 20 40 60 80

times single best
S1
S2
S3

S3W 0.8
S3DE

S3DEW 0.8
GG

TSP c1
TSP c2
TSP c3

CDS
NEH Σ, s

NEH DE, s
NEH Σ, w

NEH DE, w
NEHA s

NEHA w
0

S3I

NEHA s

times best
times single best

Figure 7.5: Comparison of constructive heuristics for two dominating machines

S1
S2
S3

S3W 0.8
S3DE

S3DEW 0.8
GG

TSP c1
TSP c2
TSP c3

CDS
NEH Σ, s

NEH DE, s
NEH Σ, w

NEH DE, w
NEHA s

NEHA w
0% 5%

S3I

10% 15% 20% 25% 30%

NEHA s

Figure 7.6: Average deviation of constructive heuristics from best obtained solution
for two dominating machines

132 CHAPTER 7. COMPUTATIONAL RESULTS

metaheuristics we used the same as in the general case. As a starting solution we used
the solution obtained by the weighted S3DE heuristic. For each heuristic we depict the
average improvement in percent from the starting solution as well as the average runtime
in seconds. Similar to the general case, the swap neighborhood performs better than the
shift neighborhood. The results are analogous to the problem without machine dominance.
All metaheuristics perform very similar for all problem sizes. The tabu search performs
slightly better than the simulated annealing and iterative improvement procedures but
requires a longer computation time, up to 975 seconds on average for the largest instances.

avg. impr. of starting solution average computation time
Tabu SA II Tabu SA II

m n sw sh sw sh sw sh sw sh sw sh sw sh
5 20 5.87 3.94 5.85 3.39 5.29 3.53 0.0 0.0 0.0 0.0 0.0 0.0
5 50 4.07 2.43 4.08 2.12 3.73 2.04 0.1 0.2 0.0 0.0 0.0 0.0
5 100 2.01 0.83 1.94 0.69 1.90 0.79 1.1 1.5 0.0 0.0 0.0 0.0
10 20 8.05 5.43 7.80 5.20 7.08 4.88 0.0 0.0 0.0 0.0 0.0 0.0
10 50 6.12 2.89 5.97 3.01 5.48 2.60 0.3 0.5 0.0 0.0 0.0 0.0
10 100 3.39 1.27 3.20 1.36 3.12 1.16 2.6 3.2 0.0 0.0 0.0 0.0
10 200 2.13 0.62 1.98 0.59 1.99 0.61 17.2 21.4 0.1 0.0 0.0 0.1
20 50 7.91 2.49 7.57 3.03 6.42 2.61 0.9 0.9 0.0 0.0 0.0 0.0
20 100 4.68 1.85 4.61 1.91 4.44 1.79 4.7 7.1 0.1 0.0 0.0 0.1
20 200 3.43 1.27 3.28 1.24 3.27 1.29 48.6 50.5 0.2 0.1 0.2 0.3
20 500 1.42 0.31 1.16 0.16 1.36 0.27 975.0 586.5 0.3 0.1 0.9 1.8

Table 7.14: Comparison of improvement heuristics for two dominating machines

In addition to these heuristics we also evaluate the tabu search approach T2D that was
developed especially for synchronous flow shops with two dominating machines in Section
5.2.2. In Table 7.15, we show the average improvement of the best constructive solution
achieved by T2D in comparison to the metaheuristics that are not specialized on problems
with two dominating machines. T2D performs slightly better than the other heuristics for
instances with only 5 machines. Additionally, for the largest instances with 20 machines
and 500 jobs it delivers the best results while requiring a much lower runtime than the
standard tabu search. Only for instances with a large number of machines and few jobs in
comparison to the number of machines, the general metaheuristics perform slightly better.

Table 7.16 shows how well the constructive, the standard improvement heuristics and
the specialized tabu search perform in comparison to CPLEX using the mixed integer
formulations within a time limit of 30 minutes as well as the average gaps. The table
depicts how often the optimality of the best solution could be verified, i.e. how often it
was equal to the best lower bound. As can be seen, CPLEX finds an optimal solutions
most often, especially for smaller instances. For one instance with 5 machines and 100
jobs for which CPLEX was not able to find an optimal solution within the time time limit,
an optimal solution was found by T2D. Also, either T2D or the standard tabu search
were able to find optimal solutions for three instances of 10 machines and 200 jobs for

7.1. GENERATED TEST SETS 133

avg. impr. of
best constr. sol.

m n T2D best general runtime T2D
5 20 6.02 5.71 0.05
5 50 4.10 3.93 0.62
5 100 2.18 1.98 4.37
10 20 7.14 7.53 0.06
10 50 5.75 5.74 0.50
10 100 3.38 3.27 3.13
10 200 2.22 2.09 20.06
20 50 7.07 7.33 0.60
20 100 4.41 4.45 2.89
20 200 3.31 3.30 15.68
20 500 1.44 1.40 182.24

Table 7.15: Comparison of improvement heuristics for two dominating machines

which CPLEX failed as well. T2D slightly outperforms the other improvement heuristics
in terms of optimal solutions found for all except three sets of instances. With the methods
developed in this work, we are able to derive very good lower and upper bounds on the
optimal value of the makespan of synchronous flow shop problems with two dominating
machines. The gaps are very small, especially when comparing them to the large gaps for
the general case. Even for the largest instances, the improvement heuristics managed to
obtain a solution that is only 0.04 % larger than the best lower bound.

Verified Optimum average gap from best LB
m n constr. impr. T2D IP constr. impr. T2D IP
5 20 0 3 6 10 4.39 % 0.44 % 0.11 % 0.00 %
5 50 0 1 9 10 1.82 % 0.19 % 0.01 % 0.00 %
5 100 0 0 5 9 1.54 % 0.22 % 0.03 % 0.03 %
10 20 0 6 4 10 6.85 % 0.20 % 0.63 % 0.00 %
10 50 0 2 1 8 6.21 % 0.61 % 0.60 % 0.03 %
10 100 0 1 2 10 2.79 % 0.20 % 0.09 % 0.00 %
10 200 0 1 2 0 1.99 % 0.17 % 0.04 % 1.68 %
20 50 0 1 0 10 8.26 % 0.47 % 0.75 % 0.00 %
20 100 0 1 1 9 4.76 % 0.37 % 0.41 % 0.02 %
20 200 0 0 0 0 2.83 % 0.17 % 0.16 % 1.75 %
20 500 0 0 0 0 1.22 % 0.08 % 0.04 % 3.50 %

Table 7.16: Number of verifiable optimal solutions and average gaps for two do-
minating machines

134 CHAPTER 7. COMPUTATIONAL RESULTS

7.1.2 Maximum lateness

In this section we evaluate the methods to minimize the maximum lateness. During the
evaluation we experienced that the distribution of due dates has a great impact on the
runtime and the overall performance of our algorithms. As this effect can already be
observed for small instances, we generated a test set containing instances with varying
distribution of due dates. To generate an instance, we specified the number of machines
m , the number of jobs n as well as an upper limit p̄ on the processing time and an upper
limit d̄ on the due dates. For each job and each machine we randomly chose a processing
time in the interval [0, p̄] and for each job we randomly chose a due date in the interval[
1, d̄
]
. Similar to the test set of Taillard, for each combination of m,n,p̄ and d̄ we generated

10 instances. In Table 7.17 we show a comparison between the results of the branch and
bound algorithm with the lower bound described in Section 4.4.2 and the results obtained
by using CPLEX on the mixed integer formulation described in Section 4.2 (denoted by
IP in the table) when using both approaches with a time limit of 30 minutes. Depicted
are the number of solved instances out of 10 for each generated combination of m,n,p̄
and d̄ as well as the average runtime in seconds for solved instances. It can be seen that
for instances where the due dates are only distributed over a very small interval, both
algorithms perform worse in comparison to instances in which due dates are distributed
over a larger interval. The smaller the intervals are in comparison to the number of jobs and
their processing times, the more similar the problem of minimizing the maximum lateness
becomes to the problem of minimizing the makespan. Analogous to Section 7.1.1, the IP
solver is superior to the branch and bound algorithm in these cases. However, the larger
the interval over which the due dates are distributed, the better the branch and bound
algorithm performs in comparison to CPLEX. Further, if the due dates are distributed over
a very large interval, both algorithms obtain optimal solutions in very low computation
time even for the larger test instances.

avg. time # avg. time
m n p̄ d̄ IP BB IP BB m n p̄ d̄ IP BB IP BB
2 10 40 100 10 10 0.29 0.07 2 30 40 900 8 8 203.45 23.27
2 15 40 100 10 7 10.174 351.10 2 30 400 12000 10 10 132.49 12.95
2 15 40 300 10 10 2.47 9.95 5 10 40 100 10 10 0.95 0.15
2 20 40 100 0 0 – – 5 15 40 100 10 5 149.58 541.53
2 20 40 400 10 9 169.06 167.32 5 15 40 300 10 10 23.93 8.47
2 20 400 8000 10 10 6.22 0.10 5 20 40 400 4 5 1049.08 636.49
2 25 40 100 1 0 91.07 – 5 25 40 875 8 10 165.94 75.50
2 25 400 10000 10 10 0.67 0.01 5 25 400 10000 10 10 32.54 6.05

Table 7.17: Comparison of the number of instances solved to optimality within 30
minutes and the average computation time of solved instances

Since the original test set of Taillard only contains processing times, we altered the test
set by specifying due dates for all jobs. As described above, the difficulty of the problem
depends heavily on the distribution of due dates. We were neither interested in too tightly

7.1. GENERATED TEST SETS 135

distributed due dates that turn the problem into one of minimizing the makespan nor in
too far spread due dates that make the problem too easy. Therefore, we randomly chose the
due dates from the interval [1, 100n]. Again, for each combination of m and n we generated
10 instances with the same processing times of all operations as in the original instances
by Taillard and due dates as described above. For all but one instance with 20 jobs, the
branch and bound algorithm was able to obtain an optimal solution. Further, even four
instances with 5 machines and 50 jobs could be solved to optimality by the branch and
bound algorithm. CPLEX using the mixed integer programming formulation described in
Section 4.2 was also able to solve all but one instance with 20 jobs to optimality, but none
of the other instances.

Unfortunately, for all other problem sets, the lower bounds obtained by CPLEX after
30 minutes as well as the lower bound LB-1D derived in Section 4.4.2 perform extremely
bad in comparison to the best feasible solutions obtained by either CPLEX or the branch
and bound algorithm. The best obtained feasible solution is at least 100 % larger than
the lower bound obtained by 1DOM even for 5 machines and 50 jobs and increasing to
well over 1000 % for larger instances (with average of absolute values being 437 and 6070,
respectively). The lower bound obtained by CPLEX performs even much worse for all
instances. We omit the table comparing the lower bounds over all class of instances.
Unfortunately, the branch and bound algorithm achieves even worse upper bounds than
CPLEX for the instances in which it does not return an optimal solution, except for the
remaining instances with 5 machines and 50 jobs. Also, it does not deliver a global lower
bound.

In the following, we evaluate the constructive heuristics 1DOM and BW discussed in
Chapter 5.1. We use two variants of BW. For both variants, BW is executed iteratively 10
times with different threshold values and approximations of the makespan. In each case,
we first sort the jobs in EDD order and use the makespan of the resulting schedule and
the maximum lateness of this schedule reduced by one as the first approximation value
for the makespan and the first threshold value for BW. Further, the threshold value for
each following execution of BW is the hitherto best found maximum lateness reduced by
one. In the first variant, BW-I, the makespan of the schedule obtained by the previous
execution of BW is used as the approximation of the makespan for the following execution.
In each iteration of BW-I, when the set of feasible jobs is not empty, we choose a job to
be scheduled which maximizes the sum of the cycle times of the last m− 1 by the largest
amount (similar to choosing the job with the largest processing time in the case with one
dominating machine). If the set of feasible jobs is empty, we choose a remaining job with
maximum due date. The second variant, BW-II, uses a more randomized approach. As
the approximation value of the makespan for the execution of the next iteration we choose
(0.5 + r)C where C is the makespan of the schedule obtained by the last iteration and
r is a real random number uniformly chosen from the continuous interval [0, 1]. Also,
in BW-II we always choose a random job from the set of feasible jobs. If the set of
feasible jobs is empty, we choose a random remaining job. Table 7.18 shows the results
for these heuristics. We also depict the results obtained by scheduling the jobs in EDD
order. As in the previous section, we show how often each heuristic performs best in
comparison to the other constructive heuristics as well as the average deviation from the

136 CHAPTER 7. COMPUTATIONAL RESULTS

best obtained constructive solution. Both BW heuristics perform best in comparison to
the other heuristics. For smaller instances, BW-II is better than BW-I while for the larger
instances the deterministic algorithm BW-I is superior. Simply scheduling the jobs in EDD
order on average leads to very bad results in comparison, especially for instances with only
5 jobs. The 1DOM heuristic performs very bad, especially for large instances.

times best constructive solution average deviation from best result
m n EDD BW-I BW-II 1Dom EDD BW-I BW-II 1Dom
5 20 0 1 2 0 33.20 16.81 10.27 128.36
5 50 0 0 1 0 22.53 15.85 18.82 348.80
5 100 0 1 3 0 17.98 10.90 12.55 858.63
10 20 0 0 4 0 8.88 6.99 2.75 46.38
10 50 0 0 4 0 9.28 6.66 4.58 165.99
10 100 0 1 1 0 17.88 9.03 14.66 333.88
10 200 1 2 1 0 10.32 7.17 7.60 822.31
20 20 0 2 1 0 4.19 3.33 1.89 15.17
20 50 0 1 1 0 4.49 3.42 2.64 76.51
20 100 0 4 0 0 5.02 2.60 4.21 174.47
20 200 0 2 0 0 10.24 5.74 8.23 386.53
20 500 1 1 1 0 11.37 5.65 9.85 977.37

Table 7.18: Comparison of the iterative constructive heuristics for minimizing the
maximum lateness

Next, we evaluate the NEH heuristics. As an initial sorting for the standard NEH
heuristic we choose the EDD order of jobs. Similar to Section 7.1.1 we evaluate two different
evaluation functions for the insertion of jobs. In the first case (denoted by s in Table 7.19),
for each insertion of a job we only consider the maximum lateness of the partial schedules
and insert the job into a position which yields the minimal maximum lateness. In the
second case (denoted by Σ), if two partial schedules achieve the same maximum lateness,
we choose to insert the job into a position which yields the minimum sum of lateness

∑
Lj .

Both insertion functions are tested for NEH and NEHA, respectively. Table 7.19 shows the
result for the NEH heuristics. It can be seen that the NEHA heuristic is clearly superior
to the standard NEH heuristic, especially for larger instances. Only for smaller instances,
NEH is sometimes able to reach the best constructive solution, yet the average deviation
from the best constructive solution is very large. Further, it can be seen that using the
second evaluation functions has little impact on the performance of the NEHA heuristic
while for the standard NEH variant the introduction of the second criterion leads to a clear
improvement.

To compare the constructive heuristics, Figure 7.7 depicts how often each constructive
heuristic reaches the best solution as well as how often it is the only heuristic to reach
a best solution. Figure 7.8 shows the average deviation of each constructive heuristic
from the best constructive solution. We omit the results of the 1DOM heuristic as its
average deviation from the best solution is 361.20 % and for no instance obtains the best

7.1. GENERATED TEST SETS 137

times best constr. sol. avg. dev. from best result
NEH NEHA NEH NEHA

m n s Σ s Σ s Σ s Σ

5 20 0 2 5 5 35.30 35.03 3.96 3.96
5 50 2 1 6 6 33.36 53.54 2.38 2.38
5 100 1 0 5 4 96.84 64.55 1.59 1.60

10 20 2 2 4 4 11.25 10.16 2.98 2.98
10 100 0 1 5 5 31.29 26.16 1.49 1.49
10 200 0 0 10 8 40.94 21.07 0.00 0.61
10 50 0 0 9 9 62.02 56.15 0.20 0.20
20 20 3 3 4 4 5.54 5.09 0.85 0.65
20 50 0 0 7 8 9.46 5.73 0.14 0.16
20 100 0 0 6 6 32.50 13.22 0.38 0.38
20 200 0 0 5 8 53.14 18.45 0.76 0.15
20 500 0 0 7 5 82.32 40.07 0.60 0.65

Table 7.19: Comparison of NEH variants for minimizing the maximum lateness

constructive solution. It can be seen that NEHA outperforms all other heuristics with an
average deviation from the best constructive solution of 1.28 % for the standard insertion
procedure and 1.27 % when using the second criterion.

EDD
BW-I
BW-II

NEH, Σ
NEHA, s
NEHA, Σ

NEH, s

NEHA, s

NEH, s

times best
times single best

0 20 40 6040 60

Figure 7.7: Comparison of constructive heuristics for minimizing the maximum
lateness

To evaluate the metaheuristics we chose the same setting as in Section 7.1.1. We ran
each metaheuristic using the result obtained by the standard version of NEHA as a starting
solution. In Figure 7.20 we depict the average improvement of the starting solution in
percent. Further, we depict the average computation time. The tabu search and iterative
improvement procedure perform very similar and in general lead to better results than the
simulated annealing procedure. Only for 5 machines and 20 jobs is the simulated annealing
procedure able to outperform the other metaheuristics. Similar as for the other objective
functions, the iterative improvement procedure performs at least as well as the tabu search
for larger instances while requiring a way smaller runtime. In comparison to minimizing

138 CHAPTER 7. COMPUTATIONAL RESULTS

EDD
BW-I
BW-II

NEH, Σ
NEHA, s
NEHA, Σ

NEH, s

NEHA, s

NEH, s

0 10 20 30 30

Figure 7.8: Average deviation of constructive heuristics from best obtained solution
for minimizing the maximum lateness

the makespan, all heuristics require a larger runtime. This is most likely caused by the
larger time requirement to evaluate the change in maximum lateness when making changes
to a solution in comparison to the time required to evaluate the change of makespan or
the total completion time. Again, using other starting solutions lead to the same relative
performance between the metaheuristics.

avg. impr. of starting solution average computation time
Tabu SA II Tabu SA II

m n sw sh sw sh sw sh sw sh sw sh sw sh
5 20 11.82 14.65 17.51 16.79 9.67 8.26 0.0 0.1 0.0 0.0 0.0 0.0
5 50 11.24 5.93 8.22 6.16 8.26 6.34 0.5 1.1 0.0 0.0 0.0 0.0
5 100 6.23 4.82 0.97 1.24 4.06 4.61 4.1 7.7 0.0 0.0 0.1 0.4
10 20 8.31 5.35 7.21 5.98 7.17 3.99 0.1 0.1 0.0 0.0 0.0 0.0
10 50 7.97 5.19 6.71 4.09 6.46 5.08 1.1 1.8 0.0 0.0 0.0 0.1
10 100 9.26 7.18 3.20 2.95 9.77 5.19 6.8 13.5 0.0 0.0 0.2 1.0
10 200 9.03 7.64 0.03 0.30 8.69 6.81 55.5 101.4 0.0 0.0 1.5 7.8
20 20 3.87 3.19 3.37 2.39 3.66 2.79 0.2 0.3 0.0 0.0 0.0 0.0
20 50 6.01 3.99 4.73 2.77 5.16 3.18 2.2 3.5 0.0 0.0 0.1 0.2
20 100 6.49 5.28 3.74 0.99 6.29 4.88 14.5 24.1 0.0 0.0 0.5 1.9
20 200 4.70 3.34 0.60 0.44 4.99 2.56 132.5 181.2 0.0 0.0 4.1 24.0
20 500 9.58 4.91 0.14 0.08 9.95 5.68 1719.3 1800.0 0.1 0.1 74.8 643.3

Table 7.20: Comparison of metaheuristics employing the swap (sw) and shift (sh)
neighborhoods for the benchmark instances of Taillard

Finally, we compare the heuristics to the exact methods and depict the gaps between
the best obtained solutions and the best lower bounds in Figure 7.21. We show, how often
the best constructive solution and the best solution obtained by an improvement heuristic
(using various starting solutions) deliver a better result than the upper bound obtained
by CPLEX within 30 minutes. For one instance of 5 machines and 20 jobs, the BW-II
heuristic was able to obtain an optimal objective value which could be verified. For none
of the other instances could any of the heuristics find a solution that could be verified

7.1. GENERATED TEST SETS 139

as optimal. It can be seen that the constructive and improvement heuristics achieve way
better results than CPLEX for all problem sizes except the smallest ones containing 20
jobs which can be solved to optimality by CPLEX. For larger instances, the gap between
the CPLEX upper bound and the best lower bound is well over 1000 %. While the gaps for
the heuristics are still large as well, this may again be attributed to the bad performance
of the lower bounds.

times better average gap from best LB
than CPLEX

m n constr. impr. constr. impr. CPLEX
5 20 0 0 42.05 % 2.70 % 0.00 %
5 50 7 10 78.53 % 37.74 % 122.45%
5 100 10 10 95.44 % 68.00 % 1931.58%
10 20 0 0 11.44 % 0.13 % 0.00 %
10 50 8 10 113.09% 88.81 % 152.62%
10 100 10 10 163.28% 122.35% 1570.20%
10 200 10 10 119.08% 87.29 % »1000 %
20 20 0 0 17.19 % 10.19 % 7.86 %
20 50 10 10 98.06 % 82.25 % 187.82 %
20 100 10 10 87.38 % 69.61 % 646.01 %
20 200 10 10 108.33% 88.06 % »1000 %
20 500 10 10 142.42% 105.94% »1000 %

Table 7.21: Number of times the constructive and improvement heuristics perform
better than CPLEX, and gaps for minimizing the maximal lateness

7.1.3 Total completion time

In this section we evaluate the methods to minimize the total completion time using the test
set of Taillard. Analogous to the study of minimizing the makespan of general synchronous
flow shop problems in Section 7.1.1, neither CPLEX using the mixed integer programming
formulation described in Section 4.2 nor our branch and bound algorithm were able to
obtain an optimal solution for any instance of the test set within a time limit of 30 minutes.
For two of the largest instances containing 20 machines and 500 jobs, CPLEX was not even
able to obtain feasible solutions. To test the integer programming approach versus our
branch and bound algorithm, we created a test set of smaller instances, ranging from 10 to
25 jobs on 2 to 5 machines. For each combination of machines and jobs, ten instances were
generated. The processing times on all machines were chosen uniformly in the interval
[0, 100]. As can be seen in Table 7.22, the branch and bound approach using the SPT
lower bound outperforms CPLEX in time and number of solved instances. CPLEX was
not able to solve any instance with 15 or more jobs to optimality, while the branch and
bound algorithm solved all instances with 15 or fewer jobs in very short time. Only for
instances with 20 or more jobs the algorithm did not reach an optimal solution within the
time limit on several occasions but was still able to solve some of the instances. While the

140 CHAPTER 7. COMPUTATIONAL RESULTS

branch and bound algorithm was able to solve 3 of the additionally generated instances
with 5 jobs and 20 jobs to optimality (and even was able to solve instances with 25 jobs
and 2 machines), we could not obtain solutions for the instances of the same size contained
in the test set of Taillard.

solved avg. time
m n IP BB IP BB
2 10 10 10 11.52 0.01
2 15 0 10 – 4.05
2 20 0 10 – 76.6
2 25 0 4 – 619.67
3 25 0 0 – –
5 10 10 10 44.12 0.01
5 15 0 10 – 15.09
5 20 0 3 – 633.93

Table 7.22: Comparison of the number of instances solved to optimality within 30
minutes and the average computation time of solved instances

In Table 7.23 we compare three lower bounds for the test set of Taillard: LB-SPT
presents the lower bound obtained by relaxing the problem into a synchronous flow shop
problem with a single dominating machine and applying the SPT rule as described in
Section 4.4.3. The results achieved by the parallel machine bound are denoted by LB-P,
while LB-IP denotes results for the lower bound obtained by CPLEX after a time limit of
30 minutes. Unfortunately, for the largest problem sizes (60 instances in total), CPLEX
could not obtain a lower bound within the time limit for any of the instances. Further,
we depict the average deviation from the best lower bound of the best feasible solution
found by CPLEX (UB-IP). For larger instances, LB-P is clearly superior to the SPT bound
while for smaller instances, the latter performs better in comparison. We omit the results
obtained by the branch and bound algorithm as it was not designed to compute global
lower bounds and its upper bounds for instances it did not solve to optimality were clearly
inferior to the ones derived by CPLEX.

In the following, we discuss constructive heuristics for minimizing the total completion
time of synchronous flow shops. First, we evaluate three different methods of sorting the
jobs according to their processing times: The standard sorting in order of non-decreasing
total processing time

∑m
i=1 pij as well as two weighted versions. In the first weighted

version,
∑m

i=1
i
mpij , the influence of the processing times of a jobs operation increases

with the machine index, i.e. the larger the processing times of the operations on the later
machines, the larger the weight of the job. In the second weighted version,

∑m
i=1

m−i+1
m pij

the processing times of the operations on the earlier machines have a larger influence.
Finally, we also evaluate the 1dom heuristic. Table 7.24 summarizes the results. It can be
seen that sorting the jobs according to the first weighted variant overall leads to the best
results in comparison to other sorting methods. The 1dom heuristic performs very bad
in general, only for the smallest instances with 20 machines and 20 jobs it is superior to

7.1. GENERATED TEST SETS 141

average deviation from best LB
m n LB-SPT LB-P LB-IP UB-IP
5 20 1.44 4.59 92.86 40.22
5 50 7.02 0.00 – 47.88
5 100 16.01 0.00 – 63.03

10 20 1.25 10.24 46.66 68.72
10 50 2.57 2.45 – 82.42
10 100 10.65 0.00 – 93.46
10 200 18.60 0.00 – 106.14
20 20 0.00 11.31 76.22 106.06
20 50 0.00 8.09 – 100.51
20 100 1.39 3.62 – 115.65
20 200 12.71 0.00 – 116.24
20 500 25.08 0.00 – 109.32∗

Table 7.23: Comparison of lower bounds or minimizing the total completion time
∗: No feasible solution were obtained for two instances

the other methods. The total completion times of the schedules obtained by the sorting
procedures on average deviate a lot from the best heuristic results. For no instance does
simply sorting the jobs lead to the best constructive solution.

times best constructive solution average deviation from best result
m n pij

i
mpij

m−i+1
m pij 1dom pij

i
mpij

m−i+1
m pij 1dom

5 20 0 0 0 0 17.64 16.28 22.34 30.87
5 50 0 0 0 0 25.25 24.50 29.93 41.03
5 100 0 0 0 0 28.07 29.67 32.12 41.41
10 20 0 0 0 0 16.02 12.27 18.47 19.51
10 50 0 0 0 0 20.34 18.16 22.80 24.07
10 100 0 0 0 0 20.96 21.53 25.05 29.07
10 200 0 0 0 0 25.46 25.67 28.33 32.98
20 20 0 0 0 0 9.21 8.15 9.63 6.19
20 50 0 0 0 0 13.00 11.25 15.32 16.36
20 100 0 0 0 0 14.95 14.21 16.83 17.82
20 200 0 0 0 0 17.03 16.42 19.26 20.27
20 500 0 0 0 0 19.92 19.53 20.96 22.16

Table 7.24: Comparison of the sorting procedures for minimizing the total com-
pletion time

Next, we evaluate the performance of some of the iterative construction heuristics that
were originally designed for minimizing the makespan; S3, S3I, S3DE, S3W and S3DEW.
As described in Section 5.1, we alter heuristic S3 such that in each iteration it inserts a
job at the end of the schedule which leads to the minimal total completion time for the

142 CHAPTER 7. COMPUTATIONAL RESULTS

partial schedule. In S3I we add another criterion; in case that two jobs lead to the same
total completion time we add a job for which the sum of idle times that would occur for
the operations of the job to be scheduled is lowest. S3IW and S3DEW use a weighted sum
of the two values, similar to Section 7.1.1 we choose a weight of w = 0.8 for our evaluation.
Table 7.25 summarizes the results. The results differ vastly from the ones obtained for
these heuristics when minimizing the makespan. S3DE as well as its weighted counterpart,
which were the best heuristics for minimizing the makespan, perform particularly poor
in comparison to the other heuristics. Overall, S3W performs best, especially for larger
instances. S3 also performs better in comparison to S3I for minimizing the total completion
time, only for larger instances on 20 machines S3I is slightly superior.

times best constructive solution avg. deviation from best result
m n S3 S3I S3IW S3DE S3DEW S3 S3I S3W S3DE S3DEW
5 20 5 0 1 0 0 1.62 2.97 1.97 12.78 13.08
5 50 1 0 1 0 1 1.58 3.56 2.21 12.40 10.75
5 100 6 0 1 0 0 0.37 3.64 2.57 25.41 21.68
10 20 4 0 4 0 0 1.10 1.52 0.75 7.82 7.27
10 50 0 1 4 0 0 1.43 0.99 0.64 11.77 11.26
10 100 2 3 5 0 0 0.52 0.65 0.33 11.35 11.44
10 200 6 0 1 0 0 0.27 1.11 0.33 12.06 12.43
20 20 3 1 2 0 0 0.71 1.29 1.10 6.87 5.64
20 50 1 3 4 0 0 0.96 0.53 0.44 11.57 12.19
20 100 0 1 6 0 0 0.69 0.34 0.16 12.28 11.65
20 200 0 2 7 0 0 0.45 0.34 0.12 11.06 11.18
20 500 0 2 8 0 0 0.43 0.24 0.01 13.19 12.40

Table 7.25: Comparison of the constructive heuristics for minimizing the total
completion time

Table 7.26 depicts the performance of the NEH heuristics. For the NEH procedure
that uses a presorting of the jobs, we use two variants. The first variant (denoted as Σ)
initially sorts the jobs in non-decreasing order of weighted total processing time

∑m
i=1

i
mpij

which was the best sorting procedure as determined above. The second variant (denoted
as S3) uses the schedule obtained by the constructive heuristic S3 as a sorting for the jobs.
As for the other heuristics, we present how often each variant is the best in comparison
to the other constructive heuristics and its average deviation from the best constructive
solution. As can be seen, sorting the jobs in the order obtained by the iterative heuristic,
clearly outperforms the variant where the jobs are initially sorted in non-decreasing order
of total processing time, especially for larger instances. NEHA delivers the best average
deviation from the best constructive solution except for the smallest instances. For the
largest instance with 20 machines and 500 jobs the NEHA is only slightly superior to the
standard NEH procedure using the S3 presorting. However, in this case, NEHA requires
an average runtime of 105 seconds while NEH finishes within 2.6 seconds on average. All

7.1. GENERATED TEST SETS 143

other computation times for all other problem sizes are under one second for all NEH
variants.

times best constr. sol. average objective value
m n Σ S3 NEHA Σ S3 NEHA
5 20 0 0 4 5.97 % 2.08 % 1.25 %
5 50 0 1 6 8.42 % 2.76 % 1.26 %
5 100 0 0 3 8.58 % 3.48 % 1.23 %

10 20 0 1 1 6.66 % 2.41 % 2.48 %
10 50 0 2 3 8.83 % 3.69 % 0.88 %
10 100 0 0 0 10.66 % 3.14 % 0.77 %
10 200 0 0 3 13.75 % 3.08 % 0.38 %
20 20 0 2 2 3.55 % 1.65 % 1.74 %
20 50 0 1 1 6.95 % 3.59 % 1.16 %
20 100 0 1 2 8.29 % 4.59 % 0.99 %
20 200 0 1 0 11.43 % 2.86 % 0.97 %
20 500 0 0 0 14.00 % 0.98 % 0.55 %

Table 7.26: Comparison of the NEH heuristics for minimizing the total completion
time

To summarize the evaluation of the constructive heuristics, Figure 7.9 depicts how often
each constructive heuristic reaches the best constructive solution. It never occurred that a
best solution was achieved by two distinct algorithms for any instance. Figure 7.10 shows
the average deviation of each constructive heuristic from the best constructive solution.
It can be seen that all variants of S3, except for S3DE and its weighted counterpart,
perform very similar and offer very good results. Similar to minimizing the makespan and
minimizing the maximum lateness, NEHA also reaches a very low average deviation from
the best objective value of 1.14 %. However, opposed to the other two objective functions
it does not yield the lowest average deviation as S3 and SEW are superior with an average
deviation of 0.84 % and 0.89 %, respectively.

Again, we chose the same setting to evaluate the metaheuristics as for minimizing the
makespan and the maximum lateness. This time, each metaheuristic was started with
the starting solution obtained by the S3 heuristic. Table 7.27 summarizes the relative
performance of the metaheuristics. The results are very similar to the ones obtained
for minimizing the makespan. Again, using the swap neighborhood leads to a better
performance than using the shift neighborhood and the tabu search leads to the best
average improvement of the solution. However, especially for larger problem sizes, the
results obtained by simulated annealing and iterative improvement are very close to the
ones of the tabu search, while these two procedures require a way lower computation time.

Finally, we once again compare the heuristics to the exact algorithms and determine the
gaps between the best obtained solutions and the best lower bounds. Table 7.28 shows,
how often the best solution obtained by a constructive or the best result obtained by
the improvement heuristic was better than the upper bound obtained by CPLEX within

144 CHAPTER 7. COMPUTATIONAL RESULTS

30 minutes. Only for the smallest instances, CPLEX achieves the best results. For all
instances with 50 or more jobs, already the best constructive heuristic outperforms the IP
solution. Unfortunately, once again, the gaps are very large for all problem sizes. Further,
the improvement heuristics only manage to improve very little on the best constructive
solution, especially for the largest instances. Similar to the other objective functions, the
reason behind this most likely lies in the overall bad quality of the lower bounds.

pij
i/mpij

(m− i + 1)/mpij

S3
S3I

S3W 0.8
S3DE

S3DEW 0.8
NEH Σ
NEH S3
NEHA

0 10 20 30

1dom

40

Figure 7.9: Comparison of constructive heuristics for minimizing the total com-
pletion time

0% 5% 10% 15% 20% 25%

pij
i/mpij

(m− i + 1)/mpij

S3
S3I

S3W 0.8
S3DE

S2DEW 0.8
NEH Σ
NEH S3

NEHA

1dom

S3I

Figure 7.10: Average deviation of constructive heuristics from best obtained solu-
tion for minimizing the total completion time

7.1. GENERATED TEST SETS 145

avg. impr. of starting solution average computation time
Tabu SA II Tabu SA II

m n sw sh sw sh sw sh sw sh sw sh sw sh
5 20 2.31 1.37 1.68 1.68 1.73 1.70 0.0 0.0 0.0 0.0 0.0 0.0
5 50 2.19 0.39 1.32 0.38 1.05 0.35 0.4 0.5 0.0 0.0 0.0 0.0
5 100 1.69 0.19 1.25 0.19 1.22 0.18 2.4 3.8 0.0 0.0 0.0 0.0
10 20 2.49 1.24 1.49 0.89 1.71 0.98 0.0 0.0 0.0 0.0 0.0 0.0
10 50 1.66 0.49 1.14 0.52 1.17 0.44 0.3 0.4 0.0 0.0 0.0 0.0
10 100 0.88 0.08 0.38 0.06 0.48 0.07 1.9 2.8 0.0 0.0 0.0 0.0
10 200 0.53 0.04 0.35 0.03 0.41 0.04 13.4 20.2 0.0 0.0 0.0 0.2
20 20 3.02 1.09 1.26 0.71 1.90 1.02 0.1 0.1 0.0 0.0 0.0 0.0
20 50 1.64 0.37 0.64 0.26 0.85 0.37 1.5 1.7 0.0 0.1 0.0 0.0
20 100 0.94 0.16 0.51 0.15 0.53 0.15 5.5 5.2 0.1 0.0 0.0 0.1
20 200 0.43 0.02 0.21 0.01 0.25 0.02 32.0 36.0 0.1 0.1 0.2 0.4
20 500 0.23 0.05 0.02 0.04 0.13 0.05 835.7 616.3 0.1 0.1 1.3 4.3

Table 7.27: Comparison of metaheuristics employing the swap (sw) and shift (sh)
neighborhoods for minimizing the total completion time

times better average gap from best LB
than CPLEX

m n constr. impr. constr. impr. CPLEX
5 20 1 4 42.39 % 40.22 % 40.22 %
5 50 10 10 39.10 % 37.38 % 47.88 %
5 100 10 10 34.20 % 32.13 % 63.03 %
10 20 2 4 71.32 % 68.81 % 68.72 %
10 50 10 10 67.50 % 66.29 % 82.42 %
10 100 10 10 61.22 % 60.08 % 93.46 %
10 200 10 10 54.21 % 53.53 % 106.14 %
20 20 0 4 111.16% 105.64% 106.06 %
20 50 10 10 86.96 % 85.04 % 100.51 %
20 100 10 10 85.20 % 84.62 % 115.65 %
20 200 10 10 79.76 % 79.73 % 116.24 %
20 500 10 10 71.22 % 71.22 % 109.32 %

Table 7.28: Number of times the constructive and improvement heuristics outper-
form CPLEX, and gaps for minimizing the total completion time

146 CHAPTER 7. COMPUTATIONAL RESULTS

7.2 Practical application

In this section we will present computation results for the real world application discussed
in Chapter 6. We tested the A-team approach described in Section 6.3 on a test set given
to us by the practitioner consisting of order pools for 18 work days during the month of
September 2012. For each day the practitioner gave us the respective product, volume and
due date of all orders that had sufficient supply of raw material and thus were ready for
production. The time frame to be scheduled on each day was given as well, usually ranging
between 16 and 24 hours. The gluing and insertion times for each product were determined
by the practitioner (with a mean of 50 seconds for each insertion and gluing process) and
the changeover time s was set to six minutes. For each day d, Table 7.29 shows the number
of orders n and the total volume

∑
vj . The numbers of orders and individual jobs that

are due on that day (i.e. have a due date smaller or equal to d) are given, both in absolute
number and as a sum of the penalty values

∑
(max(0, d− dj + 1))2, given in brackets.

This value relates to the penalty an order receives if it can not be completed on day d.

d n
∑

vj due orders due jobs d n
∑

vj due orders due jobs
1 168 11498 43 (472) 3688 (370111) 10 163 9579 36 (441) 2891 (581633)
2 186 12359 55 (445) 4993 (515364) 11 161 10997 41 (155) 3740 (254584)
3 193 11656 38 (189) 2522 (91146) 12 151 12246 35 (146) 3773 (307567)
4 187 10601 67 (649) 5155 (1060704) 13 148 10464 46 (181) 4065 (320490)
5 171 12623 52 (578) 4559 (834862) 14 129 8553 40 (150) 3344 (181984)
6 148 7284 30 (251) 2634 (96646) 15 123 7361 60 (269) 3574 (246020)
7 208 11983 68 (392) 4154 (395420) 16 143 8764 53 (433) 2756 (453874)
8 181 9920 48 (267) 3298 (232623) 17 162 9024 74 (358) 3854 (329135)
9 180 10013 45 (219) 3447 (271147) 18 193 12554 69 (360) 3739 (308618)

Table 7.29: Test set given to us by the practitioner

In Table 7.30 and Figure 7.11 the results of the A-Team algorithm and the actual
production are compared. The A-Team results were obtained from running the algorithm
for a total of one hour (again, on an Intel i7 8-Core 3.4 GHz and 8 GB RAM) and taking the
best found solution. We chose one hour because this is the time allowed by the practitioner
in daily production planning. In comparison, prior to the implementation of the algorithm,
a human expert was allowed up to four hours of planning. The actual production numbers
were given to us by the practitioner, however, we did not obtain the actual production
plan (i.e. assignments to stations and cycles). For each day we give the number of orders
that were due on this day but could not be completed on time in the A-Team algorithm
and the actual production, respectively. In brackets we also give the sum of the respective
penalties for late orders and products. Furthermore, the total number of jobs is presented.

It can be seen that the results of the A-Team algorithms are always better than the
actual production in terms of producing due orders on time. In all but four cases the fine
planning’s total production is also larger than the actual production on the respective day,
however in most cases the difference is very small. This shows that the practitioner while
being capable of producing “enough” tends to spend time producing “wrong” (i.e. non-
critical) jobs. One reason may be a sub-optimal assignment of gluing forms and stations

7.2. PRACTICAL APPLICATION 147

A-Team actual production
day late orders late jobs prod. late orders late jobs prod.

1 0 (0) 0 (0) 5295 16 (208) 1169 (52907) 4564
2 6 (23) 748 (3760) 5499 21 (276) 1931 (79560) 5359
3 0 (0) 0 (0) 5349 16 (133) 607 (4384) 4959
4 9 (9) 1113 (1113) 5175 11 (80) 801 (3339) 5930
5 3 (83) 929 (52209) 5282 20 (293) 2136 (57774) 5447
6 0 (0) 0 (0) 5796 9 (125) 578 (4266) 5672
7 3 (3) 372 (372) 5862 28 (208) 1334 (15134) 5705
8 0 (0) 0 (0) 6349 26 (127) 1839 (18902) 5135
9 0 (0) 0 (0) 6373 17 (59) 1128 (3633) 6509
10 3 (3) 606 (606) 5440 13 (73) 955 (2575) 5298
11 1 (4) 400 (1600) 5313 16 (76) 1602 (6594) 4911
12 1 (9) 420 (3780) 5415 16 (78) 1496 (10359) 5157
13 4 (13) 702 (2268) 5106 23 (112) 2075 (14549) 4078
14 4 (4) 721 (721) 3897 23 (73) 1683 (4542) 2945
15 2 (2) 270 (270) 4984 22 (213) 2129 (14069) 4645
16 4 (28) 170 (570) 4161 26 (215) 798 (7198) 4739
17 5 (11) 516 (1295) 4602 40 (225) 1767 (6142) 4333
18 4 (7) 474 (864) 4424 40 (245) 1722 (7483) 3948

Table 7.30: Comparison of A-Team algorithm and actual production

that leads to situations in which it is only possible to produce non-critical orders. In such a
case it seems reasonable that the practitioner tries to maximize its throughput and thus is
able to achieve a similar production. Changing the hierarchies of the optimization criteria
in such a way that maximization of total production is of highest priority, however, shows
that the possible output of the production unit is much larger.

As noted above the A-Team algorithm is allowed to run for one hour. Figure 7.12
shows a representative example (the instance for day d = 1) of the relative evolution of the
best solution value over time. For every three minutes the number of late orders and the
total production volume are presented. As can be seen, the best starting solution already
results in a reasonable schedule and the number of late orders decreases quickly to the final
solution value. In many cases good schedules can be obtained well before the end of the
A-Team procedure. The number of completed jobs, however, slightly increases over the
total course of the runtime of the algorithm. Table 7.31 shows the number of minutes after
which the best solution’s value of the first criterion did no longer improve. Also the total
production volume of this solution is compared to the total production volume of the final
best solution by stating its ratio. While in some cases the best value for the first criterion
was found only late within the one hour time limit, in two thirds of the cases it did not
improve further after at most half an hour. Thus, while reasonable schedules can be found
very early, a larger runtime nevertheless leads to a steady improvement.

148 CHAPTER 7. COMPUTATIONAL RESULTS

a) late orders b) penalties for late orders

c) total production

Figure 7.11: Comparison of A-Team algorithm (dark bars) and actual production
(light bars) per day

a) late orders b) total production volume (in % of the
final solution value)

Figure 7.12: Evolution over the course of the A-Team algorithm of the number of
late orders and total production volume

7.2. PRACTICAL APPLICATION 149

day min perc day min perc day min perc day min perc
1 14 0.98 2 17 0.93 3 1 0.93 4 39 0.97
5 52 0.97 6 26 0.97 7 55 0.98 8 1 0.96
9 28 0.92 10 2 0.95 11 53 0.98 12 56 0.96
13 8 0.98 14 27 0.97 15 16 0.96 16 1 0.96
17 55 0.99 18 18 0.97

Table 7.31: Minutes after which the best solution value of the primary criterion
was reached and percentage of the total production volume at that point

150 CHAPTER 7. COMPUTATIONAL RESULTS

Chapter 8

Conclusion

In this thesis we offered a comprehensive overview on flow shops with synchronous move-
ment. In this chapter we summarize the results and demonstrate the impact of the thesis.
We also lay out possibilities for future work on this topic.

Thesis summary

Chapter 2 presents a thorough introduction into synchronous flow shop scheduling. The
problem is compared to classical flow shop scheduling as well as to the related no-wait
and blocking constraint. A generalized notion of machine dominance is introduced and
embedded into the existing concepts that are prevalent in the literature. The distinctive
features of synchronous flow shops with one or two dominating machines are discussed.
Further, several extensions to synchronous flow shops, motivated by practical application,
are presented.

In Chapter 3, an intensive study of complexity of various synchronous flow shop prob-
lems was conducted. We showed that the general synchronous flow shop problem is strongly
NP-hard for three or more machines when considering the makespan objective and strongly
NP-hard for two or more machines for all other objective functions discussed. Further,
we derived several results for special cases with machine dominance.

In Chapter 4 two exact methods for obtaining optimal solutions for synchronous flow
shop problems are described. The general problem as well as all special cases and exten-
sions presented in the thesis are formulated as mixed integer linear programs. Further,
several lower bounds are derived for the objective functions of minimizing the makespan,
the maximum lateness and the total completion time to be used in a branch and bound
algorithm.

Chapter 5 offers many heuristic approaches to solve synchronous flow shop problems.
Various constructive as well as improvement heuristics are presented. Further, an asyn-
chronous team approach is proposed to be used for extensions of synchronous flow shop
problems that can not be solved by the standard procedures.

Chapter 6 demonstrates a practical application of a synchronous flow shop problem.
Therein, a project in cooperation with a subcontractor for kitchen installers is described.
The presented production system resembled a synchronous flow shop with two dominating

151

152 CHAPTER 8. CONCLUSION

machines and cyclic changeovers. The work process was explained in detail and defined
within the parameters of synchronous flow shop scheduling defined in this thesis. Because
of the richness of the problem we concentrated on the asynchronous team approach to
obtain solutions.

Chapter 7 offers an extensive computational study of the approaches discussed in this
thesis. The exact algorithms and heuristics were tested on the well-known benchmark
by Taillard, data supplied by our industrial partner as well as randomly generated test
instances. The obtained results showed that the algorithms described in this thesis out-
perform the heuristics hitherto found in the literature for minimizing the makespan of
synchronous flow shops. For minimizing the maximum lateness and the total completion
time, we are the first to offer computational tests. The results of the asynchronous team
approach show a noticeable improvement to the actual planning done by the practitioner.

Thesis impact

This thesis presents a thorough introduction and analysis of scheduling of flow shops with
synchronous movement and systematically embeds the concepts into the flow shop schedul-
ing framework.

The thesis offers an exhaustive study of complexity and settles the status of a large
amount of the discussed problems. The complexity results for the basic synchronous flow
shop and for special cases with dominating machines have already been published in Wald-
herr and Knust (2015).

The thesis contains a comprehensive computational study, portraying the good perfor-
mance of the developed exact and heuristic methods for synchronous flow shop problems.
For minimizing the makespan we were able to propose heuristics that outperform the
heuristics found in the literature. In special cases with two non-adjacent dominating ma-
chines we were able to present a new mathematical programming formulation that achieves
better results than the known formulation.

The two-stage planning approach discussed in Chapter 6 containing the multi agent
framework proposed to solve the synchronous flow shop problem is still in operation at our
industrial partner. The full description of the approach has been published in Waldherr
and Knust (2014).

Due to the extensive study of the problem as well as discussions with practitioners, sev-
eral extensions and practical applications were identified that spawn various open questions
which can be investigated in the future.

Future work

Future work can be segmented into several different directions. For one, there are still open
questions regarding more complicated objective functions that have not been discussed in
more detail within this thesis. For instance, the complexity of synchronous flow shops is
still open even for a single dominating machine when considering the objective functions
of minimizing the total weighted completion time,

∑
wjCj , or minimizing the number of

late jobs,
∑
Uj . Both objective functions are well established for classical flow shop and

153

well motivated by practical applications. Similar to the objective functions of minimizing
the total unweighted completion time,

∑
Cj and the maximum lateness of jobs, Lmax,

branching methods and heuristics discussed in this work could lead to good results for
synchronous flow shops with dominating machines as well as general cases. Also, the
complexity status of minimizing the makespan for two non-adjacent dominating machines
remains open.

An important direction of future research is the development of better lower bounds for
all objective functions. These are required to better evaluate the quality of the heuristic
algorithms and to improve the performance of the branch and bound algorithms.

Further questions arise by deeper examination of the extensions for the synchronous
flow shop. While the asynchronous team framework described within this thesis can be well
adapted for all extensions of the synchronous flow shop, more specially designed algorithms
may offer better results. It might be interesting to further investigate the effect of idle jobs
in synchronous flow shop and how they can be exploited to improve the objective values
for various objective functions. Also, the effects of job splitting offer a wild field to explore.
Various possibilities to incorporate splitting in production processes may allow for better
results.

Another possible direction of research emerges by considering alternative production
systems instead of flow shops in which synchronous movement can take place. For instance,
in open shop scheduling, each job also has to be processed on all available machines but
the sequence of operations is not fixed like in a flow shop. In job shop scheduling, in
comparison, each job may have its individual sequence that has to be adhered to. Also,
parallel machine environments might be of interest. Therein, each job can be completed
fully on each of the available machines which may have distinct processing speeds.

154 CHAPTER 8. CONCLUSION

Bibliography

J.O. Achugbue and F.Y. Chin. Complexity and solutions of some three-stage flow shop
scheduling problems. Mathematics of Operations Research, 7(4):532–544, 1982.

I. Adiri and D. Pohoryles. Flowshop/no-idle or no-wait scheduling to minimize the sum of
completion times. Naval Research Logistics Quarterly, 29(3):495–504, 1982.

R. Akkiraju, P. Keskinocak, S. Murthy, and F. Wu. An agent-based approach for scheduling
multiple machines. Applied Intelligence, 14(2):135–144, 2001.

J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics, 5(1):11–24,
1983.

J.D. Blocher and D. Chhajed. The customer order lead-time problem on parallel machines.
Naval Research Logistics (NRL), 43(5):629–654, 1996.

N. Boysen, M. Fliedner, and A. Scholl. Assembly line balancing: which model to use when?
International Journal of Production Economics, 111:509–528, 2008.

N. Boysen, M. Fliedner, and A. Scholl. Sequencing mixed-model assembly lines: Survey,
classification and model critique. European Journal of Operational Research, 192:349–
373, 2009.

S. Brockmeyer. Synchrone Flow-Shop-Probleme mit Ressourcen und Rüstkosten (in Ger-
man). Master Thesis, University of Osnabrück, 2014.

P. Brucker. Scheduling algorithms. Springer, 2007.

M. Bultmann. Synchrone Flow-Shop-Probleme mit Job-Splitting (in German). Bachelor
Thesis, University of Osnabrück, 2015.

H.G. Campbell, R.A. Dudek, and M.L. Smith. A heuristic algorithm for the n job, m
machine sequencing problem. Management Science, 16(10):B630–B637, 1970.

P. Čap, O. Čepek, and M. Vlach. Weak and strong machine dominance in a nonpreemptive
flowshop. Scientiae Mathematicae Japonicae, 61(2):319–334, 2005.

O. Čepek, M. Okada, and M. Vlach. Nonpreemptive flowshop scheduling with machine
dominance. European Journal of Operational Research, 139(2):245–261, 2002.

155

156 BIBLIOGRAPHY

J.R. Correa, M. Skutella, and J. Verschae. The power of preemption on unrelated ma-
chines and applications to scheduling orders. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 84–97. Springer, 2009.

D.G. Dannenbring. An evaluation of flow shop sequencing heuristics. Management Science,
23(11):1174–1182, 1977.

J. Du and J.Y.-T. Leung. Minimizing total tardiness on one machine is NP-hard. Mathe-
matics of Operations Research, 15(3):483–495, 1990.

J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467,
1965.

J.M. Framinan, J.N.D. Gupta, and R. Leisten. A review and classification of heuristics for
permutation flow-shop scheduling with makespan objective. Journal of the Operational
Research Society, 55(12):1243–1255, 2004.

J.M. Framinan, R. Leisten, and R. Ruiz-Usano. Comparison of heuristics for flowtime
minimisation in permutation flowshops. Computers & Operations Research, 32(5):1237–
1254, 2005.

M.R. Garey and D.S. Johnson. Computers and intractability. Freeman New York, 1979.

M.R. Garey, D.S. Johnson, and R. Sethi. The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research, 1(2):117–129, 1976.

P.C. Gilmore and R.E. Gomory. Sequencing a one state-variable machine: A solvable case
of the traveling salesman problem. Operations Research, 12(5):655–679, 1964.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5(2):287–326, 1979.

M.P. Groover. Automation, production systems, and computer-integrated manufacturing.
Prentice Hall Press, 2007.

N.G. Hall and C. Sriskandarajah. A survey of machine scheduling problems with blocking
and no-wait in process. Operations Research, 44(3):510–525, 1996.

J.C. Ho and J.N.D. Gupta. Flowshop scheduling with dominant machines. Computers &
Operations Research, 22(2):237–246, 1995.

K.-L. Huang. Flow shop scheduling with synchronous and asynchronous transportation
times. Ph.D. Thesis, The Pennsylvania State University, 2008.

K.-L. Huang and B.-W. Hung. Hybrid genetic algorithms for flowshop scheduling with
synchronous material movement. pages 1–6, 2010.

S.M. Johnson. Optimal two-and three-stage production schedules with setup times in-
cluded. Naval Research Logistics Quarterly, 1(1):61–68, 1954.

BIBLIOGRAPHY 157

M. Kampmeyer. Vehicle-Routing-Ansätze zur Lösung synchroner Flow-Shop-Probleme (in
German). Master Thesis, University of Osnabrück, 2015.

S. Karabati and S. Sayin. Assembly line balancing in a mixed-model sequencing environ-
ment with synchronous transfers. European Journal of Operational Research, 149(2):
417–429, 2003.

J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

E.L. Lawler and J.M. Moore. A functional equation and its application to resource alloca-
tion and sequencing problems. Management Science, 16(1):77–84, 1969.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:343–362, 1977.

J.Y.-T. Leung, H. Li, M. Pinedo, and J. Zhang. Minimizing total weighted completion time
when scheduling orders in a flexible environment with uniform machines. Information
Processing Letters, 103(3):119–129, 2007.

J.Y.T. Leung, H. Li, and M. Pinedo. Order scheduling models: an overview. In Multidis-
ciplinary scheduling: theory and applications, pages 37–53. Springer, 2005.

D. Meignan, A. Koukam, and J.C. Créput. Coalition-based metaheuristic: a self-adaptive
metaheuristic using reinforcement learning and mimetism. Journal of Heuristics, 16(6):
859–879, 2010.

C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulation of traveling
salesman problems. Journal of the ACM, 7(4):326–329, 1960.

C.L. Monma and A.H.G. Rinnooy Kan. A concise survey of efficiently solvable special
cases of the permutation flow-shop problem. RAIRO Recherche Opérationelle, 17:105–
119, 1983.

J.M. Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15(1):102–109, 1968.

S. Murthy, R. Akkiraju, J. Rachlin, and F. Wu. Agent-based cooperative scheduling. In
Proceedings of AAAI Workshop on Constraints and Agents, pages 112–117, 1997.

M. Nawaz, E.E. Enscore Jr, and I. Ham. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, 11(1):91–95, 1983.

I.H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations Re-
search, 63(5):511–623, 1996.

Q.-K. Pan and R. Ruiz. A comprehensive review and evaluation of permutation flowshop
heuristics to minimize flowtime. Computers & Operations Research, 40(1):117–128, 2013.

158 BIBLIOGRAPHY

B.J. Pine. Mass customization: The new frontier in business competition. Harvard Business
School Press, Boston, MA, 1999.

M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

C.N. Potts and M.Y. Kovalyov. Scheduling with batching: a review. European Journal of
Operational Research, 120:228–249, 2000.

J. Rachlin, R. Goodwin, S. Murthy, R. Akkiraju, F. Wu, S. Kumaran, and R. Das. A-
teams: An agent architecture for optimization and decision-support. Intelligent Agents
V: Agents Theories, Architectures, and Languages, pages 261–276, 1999.

H. Röck. Some new results in flow shop scheduling. Mathematical Methods of Operations
Research, 28(1):1–16, 1984a.

H. Röck. The three-machine no-wait flow shop is np-complete. Journal of the ACM, 31
(2):336–345, 1984b.

R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165(2):479–494, 2005.

H. Sixiang, H. Hoogeveen, and P. Schuurman. A combinatorial property of pallet-
constrained two machine flow shop problem in minimizing makespan. Journal of Systems
Science and Complexity, 15(4), 2002.

M.L. Smith, S.S. Panwalkar, and R.A. Dudek. Flowshop sequencing problem with ordered
processing time matrices. Management Science, 21(5):544–549, 1975.

W.E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3(1-2):59–66, 1956.

B. Soylu, Ö. Kirca, and M. Azizoğlu. Flow shop-sequencing problem with synchronous
transfers and makespan minimization. International Journal of Production Research, 45
(15):3311–3331, 2007.

U. Stautner. Kundenorientierte Lagerfertigung im Automobilvertrieb. Deutscher Univer-
sitätsverlag, Wiesbaden, 2001.

S.M.A. Suliman. A two-phase heuristic approach to the permutation flow-shop scheduling
problem. International Journal of Production Economics, 64(1):143–152, 2000.

E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285, 1993.

E. Taillard. Summary of best known lower and upper bounds of taillard’s instances, April
2005. URL http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.
dir/flowshop.dir/best_lb_up.txt.

S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza. Asynchronous teams: Cooperation
schemes for autonomous agents. Journal of Heuristics, 4(4):295–321, 1998.

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt

BIBLIOGRAPHY 159

A. van den Nouweland, M. Krabbenborg, and J. Potters. Flow-shops with a dominant
machine. European Journal of Operational Research, 62(1):38–46, 1992.

S. Waldherr and S. Knust. Two-stage scheduling in shelf-board production: A case study.
International Journal of Production Research, 52:4078–4092, 2014.

S. Waldherr and S. Knust. Complexity results for flow shop problems with synchronous
movement. European Journal of Operational Research, 242(1):34–44, 2015.

J.-B. Wang and Z.-Q. Xia. No-wait or no-idle permutation flowshop scheduling with do-
minating machines. Journal of Applied Mathematics and Computing, 17(1):419–432,
2005.

S. Xiang, G. Tang, and T.C.E. Cheng. Solvable cases of permutation flowshop scheduling
with dominating machines. International Journal of Production Economics, 66(1):53–57,
2000.

A. Zimmermann. Stochastic discrete event systems. Springer, 2008.

	Titelseite
	Contents
	Introduction
	Problem description
	Flow shop scheduling
	Flow shops with blocking or no-wait constraints
	Flow shops with dominating machines

	Flow shops with synchronous movement
	Synchronous movement and dominating machines
	Synchronous movement with one dominating machine
	Synchronous movement with two dominating machines

	Possible extensions
	Idle jobs
	Job splitting
	Resources
	Circular production and changeover times
	Order scheduling

	Complexity
	Classical flow shop
	Synchronous flow shops
	Synchronous flow shop with dominating machines
	One dominating machine
	Two dominating machines

	Extensions
	Idle jobs
	Job splitting
	Resources
	Changeovers
	Order scheduling

	Summary

	Exact methods
	Gilmore and Gomory's algorithm for F 2 | synmv| Cmax
	Mixed integer linear programming
	The basic model
	Makespan minimization for two dominating machines
	Extensions

	Branch and bound
	Lower Bounds
	Makespan
	Maximum lateness
	Total completion time

	Heuristic methods
	Constructive heuristics
	Makespan
	Maximum lateness
	Total completion time

	Improvement Heuristics
	Local search for general synchronous flow shops
	Tabu search for two dominating machines

	Asynchronous teams
	Introduction to asynchronous teams
	Asynchronous teams for synchronous flow shops
	Asynchronous teams for synchronous flow shops with resources and changeovers

	Practical application
	Problem description
	Formal definitions
	Solution approach

	Computational results
	Generated test sets
	Makespan
	Maximum lateness
	Total completion time

	Practical application

	Conclusion
	References

