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Summary 
 

There is a difference between the raw sensory input to the brain and our stable perception of 
entities in the environment. A first approach to investigate perception is to study relationships 
between properties of currently presented stimuli and biological correlates of perceptual 
processes. However, it is known that such processes are not only dependent on the current 
stimulus. Sampling of information and the concurrent neuronal processing of stimulus content 
rely on contextual relationships in the environment, and between the environment and the 
body. Perceptual processes dynamically adjust to relevant context, such as the current task of 
the organism and its immediate history. To understand perception, we have to study how 
processing of current stimulus content is influenced by such contextual factors. This thesis 
investigates the influence of such factors on visual processing. In particular, it investigates 
effects of temporal context in early visual processing and the effect of task context in eye 
movement control.  

 
To investigate effects of contextual factors on early visual processing of current stimulus 

content, we study neuronal processing of visual information in the primary visual cortex. We 
use real-time optical imaging with voltage sensitive dyes to capture neuronal population 
activity in the millisecond range across several millimeters of cortical area. To characterize 
the cortical layout concerning the mapping of orientation, previous to further investigations, 
we use smoothly moving grating stimuli. Investigating responses to this stimulus type 
systematically, we find independent encoding of local contrast and orientation, and a direct 
mapping of current stimulus content onto cortical activity (Study 1). To investigate the 
influence of the previous stimulus as context on processing of current stimulus content, we 
use abrupt visual changes in sequences of modified natural images. In earlier studies, 
investigating relatively fast timescales, it was found that the primary visual cortex 
continuously represents current input (ongoing encoding), with little interference from past 
stimuli. We investigate whether this coding scheme generalizes to cases in which stimuli 
change more slowly, as frequently encountered in natural visual input. We use sequences of 
natural scene contours, comprised of vertically and horizontally filtered natural images, their 
superpositions, and a blank stimulus, presented with 10 or 33 Hz. We show that at the low 
temporal frequency, cortical activity patterns do not encode the present orientations but 
instead reflect their relative changes in time. For example, when a stimulus with horizontal 
orientation is followed by the superposition of both orientations, the pattern of cortical 
activity represents the newly added vertical orientations instead of the full sum of 
orientations. Correspondingly, contour removal from the superposition leads to the 
representation of orientations that have disappeared rather than those that remain. This is in 
sharp contrast to more rapid sequences for which we find an ongoing representation of present 
input, consistent with earlier studies. In summary, we find that for slow stimulus sequences, 
populations of neurons in the primary visual cortex are no longer tuned to orientations within 
individual stimuli but instead represent the difference between consecutive stimuli. Our 
results emphasize the influence of the temporal context on early visual processing and 
consequentially on information transmission to higher cortical areas (Study 2).  

  
To study effects of contextual factors on the sampling of visual information, we focus on 

human eye movement control. The eyes are actively moved to sample visual information from 
the environment. Some traditional approaches predict eye movements solely on simple 
stimulus properties, such as local contrasts (stimulus-driven factors). Recent arguments, 
however, emphasize the influence of tasks (task context) and bodily factors (spatial bias). To 
investigate how contextual factors affect eye movement control, we quantify the relative 
influences of the task context, spatial biases and stimulus-driven factors. Participants view 
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and classify natural scenery and faces while their eye movements are recorded. The stimuli 
are composed of small image patches. For each of these patches we derive a measure that 
quantifies stimulus-driven factors, based on the image content of a patch, and spatial viewing 
biases, based on the location of the patch. Utilizing the participants’ classification responses, 
we additionally derive a measure, which reflects the information content of a patch in the 
context of a given task. We show that the effect of spatial biases is highest, that task context is 
a close runner-up, and that stimulus-driven factors have, on average, a smaller influence. 
Remarkably, all three factors make independent and significant contributions to the selection 
of viewed locations. Hence, in addition to stimulus-driven factors and spatial biases, the task 
context contributes to visual sampling behavior and has to be considered in a model of human 
eye movements. 

 
Visual processing of current stimulus content, in particular visual sampling behavior and early 
processing, is inherently dependent on context. We show that already in the first cortical 
stage, temporal context strongly affects the processing of new visual information and that 
visual sampling by eye movements is significantly influenced by the task context, 
independently of spatial factors and stimulus-driven factors. The empirical results presented 
provide foundations for an improved theoretical understanding of the role of context in 
perceptual processes. 
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1. General introduction 
 
1.1 Views of perception 

 
We can see leaves falling from a tree, hear the sound of a guitar, feel the softness of a 
cashmere jacket, smell roses, and taste the sweetness of a chocolate tart. We experience such 
rich percepts, but our senses, at the border between the environment and the skin and skull, 
are not receptive to objects in the environment. Instead, our sensors react to much simpler 
physical stimuli. Hair cells in the ear, for example, react to oscillations of air, and the 
receptors in the retina react to photons. This sensory input is influenced by objects in the 
environment in a complex way. For example, taking a closer look at the eye, we have to 
notice that the retina has different properties at its different locations. The spatial resolution is 
highest in the center and decreases towards the periphery (Sere et al., 2000). An objects' 
retinal activation pattern is dominated by the spatial resolution across the retina, changes in 
the wavelength sensitivity across the retina, and distortions in the retina itself. Making things 
more complicated, the position of the eyes in the world is not fixed. Body movements and eye 
movements lead to continuous image motion on the retina. These movements introduce 
changes in retinal activity even when the environment does not change. Thus, there is a large 
difference between the activity patterns at the receptor level and our stable perception of 
entities in the environment. 
 
Given this divergence between the sensory input to the brain and the actual experience can 
lead to the question: How does the brain construct a faithful representation of the environment 
from the physical input obtained by our senses? Behind this question, there is often a view, in 
which the primary task of perception is essentially to compute a faithful representation of the 
environment from the information received (see Marr, 1982). Here, perception is a process 
that acts previous to cognitive capabilities, as it provides the input interface to the world. This 
process receives sensory information as input and provides a representation of the current 
outside environment as a result. Cognitive processes, here, work on the results of perception, 
which are internal representations. In the cognitivist view, there is a clear division of labor. 
Perceptual processes generate internal representations from sensory information. Cognitive 
processes, such as reasoning and planning, on the other hand, are processes that are 
completely internal. They, in turn, provide commands for motor control ("Sense-Think-Act 
Cycle" e.g. Malcolm et al., 1989; see Clark, 1998a, 1998b for subsumption). Consequently, 
based on the idea of such a division of labor, perception is viewed as rather independent of 
higher cognitive function and action. In the study of perception, accordingly, this view leads 
to an approach that tries to understand biological correlates of perception primarily based on 
the properties of currently presented stimuli. 

 
 

 
 
 

Figure 1.1 Ambiguous image. 
Either a vase or two faces can 
be perceived. The image is an 
adaptation of the famous 
Rubin vase (Rubin, 1915). 
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However, perceptual processes are not only dependent on the current stimulus. This is 
especially apparent in cases, in which the same stimulus can lead to different percepts. This 
can be demonstrated with ambiguous images. Figure 1.1 shows an ambiguous image; either a 
vase or two faces can be perceived. Whether the observer perceives a vase or faces at a given 
time does not depend on the stimulus, as it is the same in both cases. Other factors determine 
how the brain processes the information. A possible factor can be information that has been 
processed prior to viewing an image. For example, an image that is similar to the ambiguous 
image, but biased to one of the two interpretations, influences observers to perceive later the 
respective object also in the ambiguous image (Leeper, 1935; Goolkasian, 1987; Goolkasian 
& Woodberry, 2010). Yet another factor is the task context of the observer. The vase or the 
faces can be easily seen, in the above example, given the task to look for either. Thus, 
perceptual processes are not solely determined by the stimulus, but influenced by contextual 
factors. Instead of constructing a representation of objective properties of external stimuli, 
perceptual processes dynamically favor an interpretation of the stimulus in dependence of the 
context at a given time. 
 
Is there a general principle behind the influence of contextual factors on perceptual 
processing? On a systemic level, we can take a perspective in which brains "are not primarily 
designed to give faithful representations of the environment, but to ensure survival of their 
bearers and their genes" (König & Luksch, 1998). In such an action-oriented view (Engel et 
al, 2013), the most important goal of an animal is to produce beneficial behavior, which 
entails making fast decisions about action and solving specific imminent tasks. Perception, 
here, is thought to serve action. Perception, cognition and action are not seen as modular 
sequential processes that strictly divide labor, but instead they are seen as coupled to control a 
physical body that is situated in a real-world scenario (Clark, 1998b).1 In the real world, 
sensory input is not arbitrary. Instead, there are dependencies in the world, including those 
between the world and the body. Such dependencies determine which entities provide 
information that is potentially useful in the processing of current stimulus content. These 
entities, accordingly, provide relevant context. An adaptation of the nervous system to such 
dependencies and a resulting use of the relevant context at every level, can allow the organism 
to facilitate processing of relevant information. Thus, direct sensory input alone is not 
sufficient for perceptual processes to provide an optimal base for the system to carry out its 
tasks. Additionally, these processes need to dynamically incorporate contextual factors in the 
processing of current stimulus content. 
 
Concerning perception, action-oriented views of cognition do not focus primarily on the 
feedforward pathway from the sensors to higher areas. They oppose the classical emphasis on 
the questions of how information is propagated through the brain in a mainly feedforward 
way and how it then affects action in the end. Instead, action-oriented views emphasize the 
inter-connectivity of the brain (Clark, 1998b, Engel et al, 2013). Instead of sequentially 
processing of information, neuronal processes receive and generate feedback and can be 
influenced by internal dynamics, allowing them to adjust to relevant context. This also 
includes perceptual processes in early visual areas. There, processing of sensory information 
can depend on ongoing neuronal activity. Already in the primary visual cortex (V1) - the first 
cortical area receiving information from the eyes - feedback signals, interactions between 
neurons, and processes within individual neurons allow to constantly receive, process, and 
maintain information other than direct sensory input (see dedicated section 1.3 for details on 
this issue). Thus, in V1 internal dynamics and feedback signals provide capabilities for factors 

1 Maturana & Varela (1984) emphasize that there is a recurrent coupling between the world, the sensors, and the actuators for 
the purpose of producing useful to the survival of the organism. 
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other than those dependent on the current stimulus to take effect. Early visual processes can 
thus be dynamical, in the sense, that they do not process current stimuli in always the same 
way, but that they instead process new stimuli in dependence of varying contextual factors, 
including previous sensory input. 
 
Sensory input changes over time due to self-motion and due to motion of objects in the 
environment. In such natural input, there are dependencies over time and space (see 
Simoncelli & Olshausen, 2001; Geisler, 2008 for reviews).2 By natural selection and learning, 
the brain adapted to the properties of natural and ecologically relevant input (Barlow, 1961). 
This can allow the animal to more efficiently process information (Barlow, 1961), and 
enhance processing of potentially relevant information useful to satisfy its needs, and support 
fast choices of action.3 Given dependencies across time, visual input continuously provides 
new relevant information, and thereby constantly provides context for the processing of future 
input. Because of an adaptation of the visual system to temporal dependencies in natural 
input, processing of new input might dynamically change dependent on the context of 
previous input. 
 
Predictive coding theories (Rao & Ballard, 1999; Friston, 2005, 2010; Huang & Rao, 2011; 
Clark, 2013) even propose that the brain constantly makes predictions about future input. In 
these frameworks, internally generated predictions are constantly matched to new incoming 
information from the sensors. Only in case of a mismatch between the prediction and 
incoming information, deviations are propagated to higher areas as error signals, via the 
feedforward pathway.  
 
Another factor that plays a role for the generation of beneficial behavior is related to the 
current needs of the animal. Which sensory data is especially informative depends on the 
context of the imminent tasks. The tasks can differ in the information that they require. For 
example, when looking for signs of human civilization in the wilderness, a manhole cover 
might be very informative. It is not so, when having to decide whether it is possible to keep 
walking straight ahead. The tree in front, blocking the view, however, is highly informative 
for choosing a walking path, as it indicates that it is better to turn, while it holds little 
information regarding signs of human civilization. Thus, how informative given stimulus 
content is, depends on the task. A bias towards processing of informative stimulus content 
necessitates a dynamical adjustment of perceptual processes to the task context.  
 
Such a task-dependent adjustment can take effect via sampling of information from the 
environment.4  Action-oriented views of cognition emphasize that vision is not a passive 
process, starting with the stimulus, which is passively fed to the nervous system, for it to be 

2 Not only are there, independent of the observer, statistical properties in the environment that can be used by the brain to 
more efficiently process information. Lawful changes in the input can also be introduced by action. When the animal moves 
its own sensors (e.g. by head and eye movement), the visual input changes in a lawful way. Such sensorimotor contingencies 
between visual input and action are learned by the brain (O’Regan & Noë, 2001) and can be used to predict future sensory 
input (see Engel et al., 29013 for a review). In addition to sensorimotor contingencies, which are direct relationships between 
sensor movement and changes in sensory input, lawful changes in the environment can also be introduced by action, when 
the animal changes objects and structures in it. In this context the notion of "extended mind" (Clark & Chalmers, 1989) is 
relevant. The proposition is that the human organism uses the environment as an extension of the mind, by structuring it in a 
way that helps to solve cognitive tasks (see Clark & Chalmers, 1989). 
3 The original idea is from Barlow (1953), when he discovered that response properties of frog retinal neurons match up to 
the frogs feeding behavior (Barlow, 1953). See (Martin, 1994) for review. 
4 The sampling of information can also influence what is later perceived. In the case of ambiguous images (example in Figure 
1.1), Kietzmann et al. (2011) found that which of the two possible objects in the image is perceived by an observer does 
depend on which locations she has previously inspected (prior to object awareness). 
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left with the task to get the most usage out of it, but that instead, the animal itself actively 
selects sensory input by its own actions (Ballard, 1991; Ballard et al., 1997). As mentioned, 
the image on the retina is in constant motion, as the animal moves its body and eyes. The 
movements of the sensors in the environment determine which signals are received by them 
and can be processed further in the brain. The process of sampling sensory information from 
the environment is partly stimulus driven (e.g. Koch & Ullman, 1985; Itti & Koch, 2001), but 
also goal directed and depends on the current task of the observer (Yarbus, 1967; Land et al., 
1999; see dedication section 1.4 about this issue). 
 
In conclusion, when assuming that the primary function of perception is to aid the generation 
of beneficial behavior, we do not expect perception to create a strictly objective representation 
of the environment in the animal’s brain. Instead, perceptual processes, including neuronal 
processing and sampling of information, are viewed as dynamical, in the sense that they can 
incorporate relevant context and adjust the processing of current stimulus content to this 
context. Such context includes the current task of the animal and previous sensory input. The 
effect that one stimulus can lead to different percepts in the case of ambiguous images, is a 
byproduct, or consequence of a dynamical tuning of visual processes to relevant context. 
Context dependent perceptual processing of current stimulus content is not the exception, but 
an integral part of perception. 

 
This thesis contributes to the investigation of the influence of contextual factors on visual 
processing of current stimulus content. To better understand how temporal context effects 
early visual processing of current stimulus content we study neuronal processing in the 
primary visual cortex. To characterize the cortical layout in V1 concerning the mapping of 
orientation, as a foundation for further investigation, we use moving grating stimuli. 
Investigating responses to this stimulus type systematically, we find simultaneous 
independent encoding of local contrast, in addition to orientation, and a direct mapping of 
current stimulus content onto cortical activity (Study 1, Section 2). In the main study, we 
investigate the influence of the context of previous stimulation on processing of current 
stimulus content using abrupt visual changes in sequences of modified natural images. We 
find a strong influence of the previous stimulus on the processing of new sensory input (Study 
2, Section 3). To better understand how contextual factors interact with stimulus-driven 
factors in visual sampling behavior, we conduct a study to quantify the relative influences of 
the task context of the observer, spatial biases and stimulus-driven factors on eye movement 
control (Study 3, Section 4). 
 
In the past, it has proven successful to understand a number of aspects of visual processing 
based on simple image properties. However, there are additional aspects that cannot be 
captured or predicted by just considering the current stimulus. Section 1.2 and 1.3 elaborate 
this issue, the earlier section focusing on neuronal processing in V1, and the latter focusing on 
the sampling of visual information by eye movements. The last section of this introduction 
(section 1.4) provides specific background and motivation of the presented empirical studies. 
These studies are covered subsequently in section 2 to 4. Section 5 gives an additional 
discussion. The appendix 6.1 provides supplementary information on the method of voltage 
sensitive dye imaging that is used in two of the presented studies. Appendix 6.2 documents an 
additional study, which investigates the mapping of visual input from the retina to V1 neurons 
(retinotopy) in rat. 
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1.2 Processing in the primary visual cortex (V1) 
 
The visual system can be described as hierarchical network (Felleman & van Essen, 1991). 
Feedforward signals travel up the hierarchy, from the sensors, through early visual areas to 
higher areas. Feedback signals travel down the hierarchy. The retina, in the back of the eye, is 
the first stage of the visual processing hierarchy. Here, photoreceptors convert incoming light 
into chemical signals. Neurons in the retina, in particular interneurons and ganglion cells, 
translate these into electrical signals. Axons of ganglion cells form the optic nerve, which 
leaves the retina at the optic disc, and projects to the lateral geniculate nucleus (LGN) in the 
thalamus (see e.g. Kandel et al., 2000). The LGN projects to the primary visual cortex (V1).5 
V1 is thus the first cortical area that receives input from the eyes. V1 is a bottleneck for of 
visual information, as most visual information available to higher cortical areas passes 
through it.  

 
1.2.1 Understanding V1 function in terms of simple stimulus properties 
 
In the investigation of V1, we can build on a base of research that was done in this area over 
the last 50 years. V1 is now one of the best-investigated areas in the mammalian brain. The 
foundations go back to Hubel and Wiesel, who had great success in studying the neuronal 
properties in the cat and macaque visual system with relatively simple artificial stimuli such 
as oriented bars. An important idea in the study of properties of V1 neurons is the concept of 
a receptive field. A receptive field is a projection of a part of the retina onto the visual field, 
particularly, of that part of the retina that connects to a single cell, in a feedforward way. 
Hubel & Wiesel (1959) found that V1 neurons have local receptive fields that are selective for 
stimulus orientation. Later they found that neurons are grouped systematically in columns 
across the cortical surface in a topographical fashion, so that nearby cells prefer similar 
orientations and locations, thereby representing visual space and contours in overlaid 
retinotopic and orientation maps (Hubel & Wiesel, 1974; also see appendix for a retinotopic 
map in rat V1).6 The findings provide evidence for the concept of a systematic mapping 
between visual space and cortical space.7 

 
Over the years, a standard model of neurons in V1 was established. This model is widely 
agreed upon by researchers as a useful basis for further study and elaboration. Briefly, this 
model has three stages: In the first stage of processing, the input image is passed through one 
or more linear spatiotemporal filters (usually Gabor-like functions) - one for simple cells, two 
or more for complex cells (Hubel & Wiesel, 1962). Such filters compute one value, which, in 
intuitive terms, reflects how similar a particular part of the input image is to the filter. In the 
second step, the computed value is passed through a threshold function. In the case of two or 
more filters, as in complex cells, the values are combined (essentially summed) and then 

5 Cat V1 is widely used as a model system to study visual processing and also cerebral circuitry and processing in general 
(Payne & Peters, 2002). Throughout this thesis the definition of cat V1 as area 17 and 18 is used. Both areas receive their 
driving input from the LGN (Lee et al., 1998; Malpeli, 1983; Malpeli et al., 1986) and are structurally and functionally 
similar. For information on the historic development of the concept of cat V1 please see Payne & Peters (2002; pp. 1-129). 
6 With their work on the properties of neurons in the visual cortices and their functional layout (see Hubel & Wiesel, 1979 for 
overview) and development (e.g. Wiesel & Hubel, 1965; Hubel & Wiesel, 1963b) Hubel and Wiesel have laid the 
foundations for what is today a research field on its own: Visual Neuroscience. In 1981, they received a Nobel Prize for their 
discoveries concerning information processing in the visual system. The Nobel Prize in Physiology or Medicine was shared 
with Roger Wolcott Sperry, who did receive it for his work on the lateralization of brain function in split-brain patients 
(Sperry, 1967; Sperry, 1974). 
7 Hubel & Wiesel were, of course, aware that perceptual processes, including those reflected in their measured responses, 
could be influenced by factors not dependent on the current stimuli. This is apparent e.g., when Hubel & Wiesel (1959) 
discuss effects of anesthesia. Also Hubel (1959) carried out experiments in freely moving cats. 
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passed through the threshold function.8 As a third step, the result is used as the rate parameter 
in a Poisson spiking process. The higher the rate is, the higher is the expectation of the spike 
count.9 This model captures basic properties of cells in V1. In particular, it captures basic 
characteristics of simple and complex cells: e.g. their receptive field properties such as 
orientation, location and frequency tuning (Hubel & Wiesel, 1962; Foster et al., 1985). 
 
The standard model of V1 neurons, essentially working like a Gabor filter bank, is a 
feedforward model with relatively simple functional units. Response properties of neurons are 
fixed and completely defined by the receptive field properties of the neuron. The model 
predicts that, whenever there is a change in the stimulus, this change is essentially mirrored in 
the cortical response. A Gabor filter bank faithfully maps present input, in dimensions of 
spatial frequency, orientation and location, onto cortical activity, leading to ongoing and 
feedforward encoding of present input, with minimal interactions between responses to 
successive stimuli (e.g. see Benucci et al. 2009). 
 
The standard model, as described above or in a similar version, has been successful in 
predicting neuronal responses to a degree. It is widely accepted as a working model of V1 
function (see e.g. Lennie, 2003 for overview) and is used to predict psychophysical 
performance (Graham & Nachmias 1971; Watson et al. 1983; Anderson et al. 1991; Bethge et 
al., 2007). It has also been shown to provide efficient representations of natural scenes 
(Olshausen & Field, 1996; Bell & Sejnowski, 1997; Hurri et al., 1997). In general, 
understanding V1 function in terms of a representation of the environment by predicting 
neuronal activity as the result from a filtering processes, in which neurons with Gabor-like 
stationary receptive fields filter given external stimuli, has been successful in the past.10 
 
1.2.2 Understanding V1 function in terms of internal dynamics 
 
Although the receptive field standard model is a useful conceptual tool to model neuronal 
response properties in V1, it fails to capture a number of established empirical results. There 
is evidence that early perceptual processes are influenced by internal neuronal dynamics and 
not by the current sensory stimulus alone in a purely feedforward way.11 Arieli et al. (1996), 
for example, showed that the variability of activity in response to a specific stimulus could be 
predicted well from previous stimulus-independent activity. Fiser et al. (2004) showed that 
correlations found in spontaneous activity (neural behavior without stimulation) in V1 are 
only slightly modified by stimulation.  

 
Internal neuronal dynamics can act on different levels. They concern processes within 
individual neurons, and communication between different neurons. Concerning 

8 The different filters that are combined in complex cells have similar locations and are tuned to a similar orientation, spatial 
frequency and temporal frequency. They are however different in phase, making them invariant to the exact position of the 
stripes of a grating or a bar of light (see Hubel & Wiesel (1962) for complex cell characterization).  
9 This description of the standard model is taken from Rust and Movshon (2005), who themselves propose extensions to it. 
But see also Carandini et al. (2005) and Olshausen & Field (2005) for similar descriptions of the standard model and reviews 
therein. Additionally, in many version of the standard model, there is a normalization step, in which responses are normalized 
by the responses of neighboring neurons (see Olshausen & Field, 2005). 
10 The assessment of the standard model in this paragraph is taken from Olshausen & Field (2005). See also König & Luksch 
(1998) for a similar assessment of its relevance. 
11 This section concentrates on temporal effects. However, there is extensive work on V1 neuronal response behavior 
focusing on the investigation of spatial context. Spatially, context presented outside of the receptive field influences a 
neurons' response behavior to stimuli presented inside its receptive field. Such effects are generally referred to as contextual 
modulation (of receptive field properties) and have led to the notion of the non-classical receptive field, spatially extending 
beyond classical receptive field borders, and including cortical interactions. See Lee (2009) for an overview. A 
comprehensive review of spatial contextual effect in visual processing in general is given by Albright and Stoner (2002).  
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communication between different neurons, we have to note that although V1 is the first 
cortical area that receives input from the eyes, most of its input comes from other neurons 
(Peters & Payne, 1993; Peters et al., 1994). Olshausen and Field (2005) estimate that between 
60-80% of the response of a V1 neuron is a function of other neurons in the same area, or 
inputs other than those arising via the feedforward route from LGN. Thus, from an anatomical 
point of view, stimulus processing in V1 can be influenced by cortical mechanisms, via local 
intra-cortical circuits and feedback from higher areas. 
 
Additionally, there is evidence for mechanisms within individual neurons that integrate input 
over time and lead to a changes in neuronal response properties depending on their history. 
For example, short-term synaptic plasticity describes synaptic changes found on time scales 
from a few milliseconds up to minutes. Although, these can also involve cortical circuitries 
(Zucker & Regehr, 2002), they rely on processes within individual neurons that go beyond 
what is covered in the standard model, mentioned above. For example, activity dependent 
synaptic depression due to depletion of vesicles of the presynaptic cell (see Zucker & Regehr, 
2002 for review) can affect response properties of individual neurons over time. Thus, 
internal dynamics mediated by processes within individual neurons can influence how new 
sensory information is processed.  

 
In respect to temporal context, internal neuronal dynamics can influence responses to 
presented stimuli, in dependence of previous input. Contrast adaptation, for example, which 
leads to stimulus specific changes in perceived contrast and orientation specific aftereffects 
(Blakemore & Campbell, 1969; Blakemore & Nachmias, 1971, see Kohn, 2007 for review), 
was shown to involve effects in V1 (in addition to the retina, e.g. Smirnakis et al., 1997). In 
V1, it reduces neuronal responsiveness and causes preferred orientations to shift away from 
the adapting orientation on short time scales (Movshon & Lennie, 1979; Müller et al., 1999; 
Felsen et al., 2002). Adaptation to a single orientation was also shown to enhance the 
representation of orthogonal orientations (Dragoi et al., 2002). Cortical mechanisms 
(Movshon & Lennie, 1979; Felsen et al., 2002) as well as cellular mechanisms (Sanchez-
Vives et al., 2000), including synaptic depression (Müller et al., 1999), mentioned earlier, 
have been related to contrast adaptation. On the functional level, contrast adaptation has been 
suggested to increase efficiency in the visual system. According to this thought, its role is to 
adjust the gain of a neuron to avoid saturation and make better use of its limited dynamic 
range (Baccus & Meister, 2004). 
 
Another neuronal property that depends on previous stimulation is response behavior 
immediately after a stimulus is turned off. Neuronal off responses are responses to a preferred 
stimulus, after it has disappeared (Coltheart, 1980; Duysens et al., 1985; McCormick et al., 
2003). As these responses occur, after the stimulus is no longer visible, they do not 
correspond to current stimulus content. Such off-responses can depend on how long the 
previous stimulus was shown (Duysens et al., 1996) and are thus dependent on the history of 
stimulation. These effects, contrast adaptation and neuronal off responses, show that previous 
input can influence responses to current input already at early stages of visual processing. 
Thus, they are candidate mechanisms to enable processing of new information in context of 
the immediate past. 

 
As described above, the standard simple receptive field model, that does not cover such time-
dependent changes in neuronal response properties, is quite successful in predicting neuronal 
responses. Also on a population level, where responses of many neurons are captured at once, 
the average cortical response to an individual stimulus can be used to predict the response to 
that stimulus in a context or sequence of other stimuli well (Benucci et al., 2009). The 
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functional roles of feedback signals, neuronal interaction within the same area, and processes 
within individual neurons (that go beyond the mechanic of the standard model) and their 
influence in the processing of new sensory input are subject of ongoing research. It is possible 
that the influence of previous input on current processing is dependent on parameters not yet 
sufficiently explored. Investigating such influences in early visual processing is a necessary 
step towards an improved understanding of the role of context in perceptual processing in 
general. 
 
To investigate cortical dynamics empirically, choices concerning the stimuli and the recording 
method have to be made. The remainder of this section will address these topics in turn. 

 
The choice of stimuli  
 
When planning to measure visual responses, appropriate stimuli have to be chosen. How does 
the choice of stimuli influence what information about neural function is revealed? Internal 
dynamics, which integrate information over time and across different neurons, might be 
expert to facilitate perceptual processing concerning the goals of the animal in its every day 
environment. This is because the organism is not a general processor. Instead, its body, its 
behavioral repertoire, its sensory apparatus, and its nervous system are all adapted by natural 
selection and learning to the kinds of stimuli, it has encountered during its evolutionary 
history and during its lifetime. Cortical processes are adapted to process natural input 
efficiently (Barlow, 1961). In case of visual processing, this results in an adaptation of the 
visual system to the statistical properties of natural images (Simoncelli & Olshausen, 2001; 
Felsen & Dan, 2005).12 According to this line of thought, the visual system is specialized to 
process a certain subclass of stimuli: those whose statistics are similar to that of natural 
images. Stimuli that fulfill this criterion in some respect are said to be more ecologically 
plausible than stimuli that do not fulfill it. 

 
Concerning processing in the visual cortex, evidence for such an adaptation of the visual 
system to statistics of natural stimuli has been found in previous studies. For example, Felsen 
et al. (2005) found an elevated sensitivity of V1 neurons to visual features when they were 
presented in natural scene context, as compared to random context. Mante at al. (2005) 
provide evidence that luminance and contrast are independent in natural scenes. They found 
that this independence corresponds to independent gain control mechanisms for luminance 
and contrast in early visual processing. Thus, they show how properties of mechanisms in 
visual processing can reflect properties of natural images.  

 
Because of such adaptation, taking the statistical properties of natural stimuli into account can 
help, and might even be necessary, to understand neuronal function. Artificial stimuli, such as 
gratings and bars, are effective tools in the study of the visual system. They have the 
advantage that they are easy to control and that their properties are well understood (Rust & 
Movshon, 2005). However, they provide an unusual input to the visual system. Findings 
obtained with such stimuli might not always generalize to scenarios in which complex stimuli 
are used (see Felsen & Dan, 2005). It is possible, that internal dynamics involving 
mechanisms specialized to processes ecologically relevant input, cannot be probed with 
artificial stimuli. The more relevant the stimuli, the more influence might internal dynamics 
have on the processing of current stimulus content. Thus, to evaluate the generality of results 

12 See Hyvärinen et al. (2009) for a thorough discussion of natural image statistics. 
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obtained with artificial stimuli, it is important to validate such findings using stimuli that are 
more natural. 
 
The choice of the recording method 
 
When investigating neuronal processes, it is important to attend the question of what signals 
can be measured. Unfortunately, the data that can be obtained is limited. It is not possible to 
record all activity of all neurons at once with unlimited spatial and temporal resolution. Any 
recording of brain activity only provides a small window into the brain.  

 
Non-invasive methods such as EEG, fMRI, or MEG can provide correlates of activity across 
different regions of the brain, measured simultaneously; however, spatially the measurements 
are coarse. These measurements, for example, do usually not resolve individual orientation 
columns in V1. A recent breakthrough was made with fMRI, where individual columns could 
be measured in humans with a seven Tesla scanner (Yacoub et al., 2008). Although these 
methods have made advancements, as for example, fMRI has been used to disentangle 
activity from different cortical layers (e.g. Goense & Logothetis, 2006; Ress et al., 2007; 
Olman et al., 2012), these non-invasive methods are limited in their use for the investigation 
of functional properties on the neuronal level. 
 
Invasive techniques allow accessing the activity of individual neurons. Intra-cellular 
recordings, for example, report the currents within individual neurons. In extra-cellular 
recordings, the electrode does not penetrate the membrane of a cell, but instead is brought in 
close, to record voltage changes from the outside of either a single neuron or, when recording 
multi-unit activity, a few. The prevailing method to obtain neuronal responses is extra-cellular 
recording, which is the base for the majority of our knowledge about neuronal function in V1 
(see Olshausen & Field, 2005). However, as both methods provide signals from individual 
cortical locations at a time, they are limited in their use for the investigation of neuronal 
interactions across different cortical locations. 

 
Methods that overcome this limitation by simultaneously recording across cell populations are 
multi-electrode recordings and optical imaging techniques. In contrast to intrinsic optical 
imaging, optical imaging with voltage sensitive dye also provides a high temporal resolution 
in the millisecond range. Whereas the multi-electrode recording samples at individual 
locations, the voltage sensitive dye signal reflects spatial averages of neuronal activity at 
individual cortical locations. 13  Such simultaneous recordings at several cortical locations 
allow us to investigate dynamical aspects of cortical processing in large cell populations, 
which cover a variety of neurons tuned to different stimulus features. 
 
In summary, the standard model, which predicts responses of V1 neurons based on fixed 
receptive field properties, has been successful. However, there is evidence that V1 neuronal 
response properties are dependent on temporal context. In the investigation of the dependency 
of early visual processing on temporal context and the related cortical dynamics, the use of 
ecologically relevant stimuli and the recording of many neurons simultaneously might be 
useful. 
  

13 Details of the method of voltage sensitive dye imaging and a comparison to other methods are given in a dedicated section 
in the Appendix (section 6.1). 
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1.3 Eye movement control 
 
Early processing of visual input can be influenced by contextual factors. In addition, 
contextual factors can also affect visual processes by influencing the actions that are used to 
acquire the visual input. In general, visual perception is an active process. The active aspect of 
perception is obvious in the classical examples of active sensing (see Schroeder et al., 2010), 
such as whisking in rodents (Ritt et al., 2008), or echolocation in bats, dolphins, and fish (von 
der Emde & Schwartz, 2003; Thomas et al., 2004). The weakly electric fish Gnathonemus 
petersii does not passively receive input from the environment. It actively produces electrical 
discharges using an electric organ at its tail. Nearby objects distort the electrical field around 
the fish. These distortions are detected by the fish's electroreceptive skin surface. In that way, 
the fish actively samples the information needed for its imminent tasks, such as object 
detection and self-localization (von der Emde & Schwartz, 2003). In the case of human 
vision, this is not much different. Although the organism does not emit light, it performs 
selective actions: It actively changes its own position and the orientation of its sensors (e.g. 
the eyes) thus guiding its own information intake. This sampling process is an integral part of 
visual perception.  
 
What light will hit the retina depends on the position of the eyes in the world. Not all active-
sensing movements in vision are solely performed by the eye muscles. Movements of the 
eyes, the head and the entire body might synergistically be employed to select a new gaze 
location (see e.g. Einhäuser et al., 2009a). On the other hand, not every eye movement is 
performed with the intent to sample new information. Eye movements can be intended to 
compensate for a head movement and in effect stabilize the retinal input (Einhäuser et al., 
2009b).14 Here, we are not interested in these compensatory eye movements but in those that 
are part of the active selection of visual information. In the literature, the term 'overt visual 
attention' has become synonymous with these kinds of eye movements.  
 
In humans, such eye movements consist of fixation periods and saccade movements (Buswell, 
1935). During fixation, the eyes are rather stationary and center one location in the visual 
field. The centered part of the visual field is represented with the highest spatial acuity and it 
receives disproportionately more cortical processing resources than the surrounding areas 
(Tootell et al., 1982). Saccades are movements from one fixation location to the next. Human 
fixations in scene perception have an average duration of 330 ms (Rayner, 1998). This is the 
average time the human brain spends to process visual information with the eyes centered at 
one location, before selecting the next fixation location.  
 
1.3.1 Stimulus-driven eye movement control 
 
A first question is how the selection visual input is driven by the stimulus. Some locations in 
a scene are more salient than others and thereby attract attention. To predict stimulus-driven 
eye movement control in the viewing of images, the probability for fixation is based only on 
features that are extracted from the image. Luminance contrast, for example, is a local image 
property that can be used to predict how often an image location is fixated (Itti & Koch, 
2001). Many different low-level image features can be used to compute fixation probabilities. 
These probabilities are then combined in a so-called saliency map. Such saliency maps are the 
basis for stimulus-driven models of human eye movements (e.g. Koch & Ullman, 1985). In 
principle, the selection of features for such models is unconstrained and present models 

14 In addition, there are also other types of eye movements, such as tremor, drifts and microsaccades, which are not in the 
focus of the present work (for review see Martinez-Conde et al., 2004). 
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include a considerable number of features (Wolfe & Horowitz, 2004; Betz et al., 2010). Using 
saliency maps, it is possible predict, to some extent, fixations in complex scenes based on 
simple stimulus properties alone (Privitera & Stark, 2000; Li, 2002; Parkhurst et al., 2002; 
Peters et al., 2005; Tatler et al., 2005). 
 
1.3.2 Task context and spatial factors in eye movement control 
 
There are additional factors that play a role in the selection of fixation locations that are not 
dependent on the specific scene or image that is viewed. Such are spatial constraints and 
properties of the oculomotor system itself, which lead to spatial biases on eye movements. 
For example, there is a tendency to fixate close to the center of an image (central bias, see 
Tatler et al., 2006 and Tatler, 2007). Other spatial biases concern the geometric properties of 
saccades (Brockmann & Geisel, 1999). One of these geometrical properties is a preference to 
select the successive fixation location rather close to the previous one, with the majority of 
saccades crossing a distance of 15 degrees of visual angle or less (Bahill et al., 1975). While it 
is clear that these spatial biases contribute to the selection of fixation points, their general 
influence yet needs to be quantified.  

 
Simple stimulus features and spatial biases are not the only factors that influence the selection 
of fixation points. It has long been shown that eye movements depend on the task context of 
the observer (Buswell, 1935; Yarbus, 1967). The same picture is inspected differently, 
depending on whether observers, for example, are asked to estimate the age of people in it, or 
judge the material circumstances of a family in the picture (Yarbus, 1967). When perceiving a 
scene, the selection of sensory input differs with the given task, possibly related to how 
informative specific image regions are, in respect to that task. However, the objective 
quantification of the task-related information content, in specific image regions, remains a 
challenge. Information content is often determined intuitively or based on direct subjective 
ratings. Furthermore, it is unclear to what degree task-dependent local information content 
causally contributes to the selection of fixation points in relation to low-level image features. 
 
Thus, low-level image features, spatial biases, and the task context all have an influence on 
eye movement control. An interesting topic is the interaction between these three factors. 
While each of these three factors has individually been shown to affect gaze, it is not clear to 
what degree and how these factors compete in eye movement control. In principle, it is 
possible that they are redundant to a large degree and predict similar fixation locations. A 
quantification of the relative influences of these factors is needed. 

 
1.4 Studies, background and motivation 
 
Perceptual processes are influenced by the current stimulus, but also depend on contextual 
factors. In early visual processing, simple receptive field models predict V1 responses to a 
degree. In the sampling of visual information, low-level image features can be used to predict 
eye movements. In both cases, however there is evidence that other factors play a role. In this 
thesis, we investigate specific influences of contextual factors and current stimulus content on 
visual processing. In V1, we first investigate the processing of current stimulus content in 
smooth visual motion and, second, the influence of previous input on the processing of 
current input in image sequences. Concerning the sampling of visual information by eye 
movements, we investigate the contributions of the task context of the observer in relation to 
stimulus-driven factors and spatial biases. This section elaborates detailed motivations for the 
presented studies.  
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1.4.1 Representation of current stimulus features in V1 
 
Investigations of neuronal processing of current stimulus content are an important foundation 
for the investigation of contextual factors. In general, to characterize the cortical layout in V1 
concerning the mapping of orientation, previous to further investigation, we use smoothly 
moving grating stimuli. In the first study, we investigate responses to this stimulus type 
systematically. In particular, we investigate to what extend information about current 
properties of this stimulus type is reflected in V1 population responses.  
 
The receptive field of an individual V1 neuron, as mentioned above, has a location and an 
orientation preference. The finding that V1 neurons are topographically organized, thus 
mapping retinotopic location and orientation in overlaid retinotopic (coding stimulus local 
contrast) and orientation maps (coding stimulus orientation), is well accepted and has been 
reproduced across different species.15 However, how these different information channels are 
simultaneously encoded across large neuronal populations remained unclear. Usually, visual 
stimuli provide both, orientation information as well as local contrast, i.e. location 
information. In a moving grating, both of these dimensions can easily be controlled 
experimentally. This stimulus type provides orientation information given by the orientation 
of the stripes and location information given by the exact positions of the moving stripes (the 
phase of the grating). 
 
In particular, when a moving grating is presented, the orientation of the stripes leads to large 
differences in activity levels across the neuronal population, because of the orientation 
selectivity of individual cells. Neurons that are tuned to the orientation of the stripes respond 
strongly, while neurons that are tuned to the orthogonal orientation respond the least. In 
species in which orientation selective cells are topographically organized, the differences 
across the neuronal population can become visible as spatially structured patterns of 
activation on the cortex (e.g. Blasdel & Salama, 1986; Bonhoeffer & Grinvald, 1991; Bosking 
et al., 1997; Sharon & Grinvald, 2002). In the optical signal, the response to a preferred 
orientation is 20% stronger than the response the orthogonal orientation (Onat et al, 2011). 
Because of their high amplitude and their spatial structure, the response differences across V1 
can be detected with various techniques. Even in fMRI experiments in human, these 
orientation patterns can be detected (Yacoub et al., 2008; Freeman et al., 2011). 
 
This well-known orientation response, however, provides an ambiguous representation of the 
stimulus, as it does not contain information about the motion and location of the individual 
grating's stripes (the phase of the grating). It remained unclear how this second stimulus 
dimension, local contrast, is simultaneously represented to orientation across the two cortical 
maps. Given that the retinotopic representation of local contrast is independent of the cortical 
orientation map (Bosking et al., 2002; Buzas et al., 2003; Yu et al., 2005, but see Das & 
Gilbert, 1997), we hypothesize that smoothly travelling waves of cortical activity (Engel et 
al., 1994, 1997; Lee et al., 2005), which represent the current positions of the grating’s 
stripes, should be detectable at the same time. 

 

15 The topographical organization of orientation selective cells is species-specific. Such a topographical arrangement of 
orientation preference is found in cat (Hubel & Wiesel, 1963a; Grinvald et al., 1986), primate (Hubel & Wiesel, 1974; Hubel 
et al., 1978), ferret (Redies et al, 1990), tree shrew (Humphrey et al., 1980a, 1980b), sheep (Clarke et al., 1976), and human 
(Yacoub et al., 2008). The situation is different in rodents, such as rats. Rats have orientation-tuned cells, but no orientation 
topography (Ohki et al., 2005).  
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Many recording methods are not suited to record these waves of activity across cortical 
orientation maps. Single electrode recordings do not provide a coherent population picture of 
activation across the cortex due to restrictions in spatial sampling. Intrinsic optical imaging 
and fMRI are limited in temporal resolution because of their dependence on slow 
hemodynamic processes. In Study 1, we overcame these limitations by using voltage-sensitive 
dye imaging, which allowed us to record population activity in the millisecond range across 
several millimeters of cat V1. 
 
To investigate the retinotopic representation of visual motion, simultaneously to the 
orientation representation, we show smoothly moving gratings of different orientations, 
temporal, and spatial frequencies. Using singular value decomposition, we are able to separate 
the responses to the grating's global orientation and its individual moving stripes. The 
orientation response matches the orientation of the grating, and the retinotopic response, 
which is two orders of magnitude smaller, precisely matches the actual movement of the 
gratings' stripes in space and time. Capturing and resolving both responses simultaneously, 
we are able to show an independent processing of the two stimulus features across the 
neuronal population.  

 
1.4.2 Influences of the past stimulus context on responses in V1 
 
In the second study, we focus on the influence of the context of past stimulation on the 
processing of current stimuli. As the response to the orientation of a stimulus is a dominant 
response in V1, as elaborated above (see Study 1; the orientation response is much higher 
than e.g. the retinotopic response), we concentrated on the processing of changes in 
orientation in the second study. Previous studies, that investigated responses to rapid changes 
of orientation, found a representation of current image content. For example, Ringach et al. 
(1997) and Benucci et al. (2009) investigated V1 responses to stimulus sequences composed 
of gratings that differed in orientation content. 16  Ringach et al. (1997) made 
electrophysiological recordings and Benucci et al. (2009) additionally used voltage-sensitive 
dye imaging. Data from these studies provided evidence that V1 continuously represents 
present input, with little interference from previous stimulation. This is referred to as 'ongoing 
encoding scheme' in the following.  
 
In the investigation of the influence of previous stimuli onto processing of current stimuli, the 
considered timescales might play a role. In the referred studies the investigated time scale is 
relatively short: Ringach et al. (1997) used a presentation duration of 17 ms for each single 
grating; Benucci et al. (2009) used a presentation duration of 32 ms. On what timescales do 
changes occur in the natural input to the cat visual system? Kayser et al. (2004) investigated 
temporal correlations of orientations in the natural movies (Betsch et al., 2004). They found 
long lasting temporal correlations between collinear orientations, which are significant over 
several hundreds of milliseconds and strongest for the cardinal orientations.17 These findings 
indicate that under natural conditions, collinear orientations can be present for hundreds of 
milliseconds, before a change of orientation occurs. Mechanisms such as adaptation 
(Movshon & Lennie, 1979; Müller et al., 1999; Felsen et al., 2002; Dragoi et al., 2002) and 
off-responses (Duysens et al., 1996, Bair et al., 2002) are known to be time-dependent. They 
might have a stronger effect with time, interfere with an independent processing of individual 
stimuli in a sequence, and lead to an increased influence of the preceding stimulus on the 

16 This is not a complete list. Other related work is referenced in the study itself (section 3).  
17 Kayser et al. (2004) report decay time constants for 0°: >1 s, 45°: 490 ms, 90°: 900 ms, 135°: 360 ms. 
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processing of the next stimulus. Thus, responses to changes in orientation content might 
strongly depend on the timescale under consideration. 
 
Considering the potential time dependency of the effects of previous stimuli onto current 
processing, an empirical study to investigate whether the ongoing encoding scheme transfers 
to longer timescales is needed. Therefore, in Study 2, we investigate whether the ongoing 
encoding scheme, which is found for sequences of oriented stimuli shown with short 
presentation durations (<32 ms) in V1, does generalize to sequences presented with longer 
durations. A significant deviation from this encoding scheme would indicate an influence of 
the previous stimulus on the processing of the next. 

 
Concerning the choice of stimuli we take into account that, as mentioned earlier, response 
characteristics obtained with simple artificial stimuli, like the gratings, do not necessarily 
generalize towards input of ecological relevance (Smyth et al., 2003; David et al., 2004; 
David & Gallant, 2005; Felsen et al. 2005; Haider et al., 2010; Fournier et al., 2011; Onat et 
al. 2011). That is, response behavior to natural stimuli can deviate significantly from 
predictions based on simple parameterized stimuli (see Carandini et al. (2005) and Olshausen 
& Field (2005) for reviews). Thus, it is important to validate findings obtained with artificial 
stimuli using more natural stimulus conditions (Felsen & Dan, 2005). 
 
For this reason, we use types of stimuli with different degrees of complexity. We use simple 
artificial grating stimuli for comparison with the literature and additionally we use stimuli that 
are more natural. These were derived by extracting oriented contours from natural images by 
filtering them along the orientation dimension (horizontal or vertical) in Fourier space. We 
either apply a filter that is narrow in orientation space, resulting in vertical and horizontal 
gratings (of multiple superposed spatial frequencies), for which the superposition is similar to 
a plaid pattern, or we use a wide filter, that is more tolerant to content from neighboring 
orientations. Here, the superposition of the filtered horizontal and vertical image adds up to 
the unfiltered natural image. In contrast to the gratings, these images retain important 
properties of natural stimuli, such as their phase relationships and the typical 1/f fall-off of 
amplitudes along the spatial dimension (Simoncelli & Olshausen, 2001; Geisler, 2008; 
Hyvärinen et al., 2009). 
 
For a comparison with the literature, we present the oriented stimuli and their compound 
superpositions within 33-Hz sequences (30 ms presentation duration for each image). For the 
investigation of longer stimulus durations, we present them within 10-Hz sequences (100 ms 
presentation duration for each individual image). To capture population activity evoked by 
these sequences of oriented stimuli across V1, we use voltage-sensitive dye imaging. Based 
on responses to pairs of stimuli within the sequence (pair-triggered averages), we investigate 
the influence of the preceding stimulus on the response to the next. Indeed, we find that the 
established view of cortical responses to sudden changes in orientation, which is that they 
represent the stimulus currently shown ('ongoing encoding' scheme), does not generalize to 
longer stimulus durations. Instead, the observed responses provide evidence that information 
from the previous and the current stimulus is combined and another coding scheme has to be 
considered to explain the observed data. 
 
1.4.3 Influences of the task context on visual sensory sampling 
 
In the third study, we focus on the in influences of context on the sampling of visual 
information by eye movements. To investigate such influences, we concentrate on a 
quantification of the influence of the task context on human eye movements in relation to 
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influences of low-level image features and spatial biases. As described above, it is widely 
acknowledged that low-level image features, the task of the observer, and spatial biases 
contribute to the selection of fixation points. However, no study has comprehensively 
investigated the relative influences of these three factors on eye movement control. An open 
topic is the potential explanatory overlap of these three factors. A point of concern is that 
even if low-level image features, such as luminance contrast, are good correlates of fixation 
probability, it is not clear to what extend they drive attention causally (Privitera & Stark, 
2000; Carmi & Itti, 2006; Tatler, 2007). For example, the photographer places the object of 
interest in the center of the picture. In this case, this object might be task relevant, have high 
low-level feature values (e.g. high contrast), and its position coincides with the central 
fixation bias. In such a scenario, any of the three factors alone might be as good a predictor 
for eye movements as all of them combined. Similar problems are encountered in studies that 
investigate correlations between individual factors and eye movements, without excluding the 
contributions from other factors. Thus, a disentangled quantification of the individual 
influences of each of the three, above-mentioned factors is needed. 

 
To quantify the relative contribution of low-level image features, task context, and spatial 
biases to the selection of fixation points, we sample non-overlapping image patches (also 
called 'bubbles'; Gosselin & Schyns, 2001, 2002; Schyns et al., 2002; Vinette et al., 2004) 
from forest scenes and face images. These isolated patches are shown to human participants 
in different configurations. The participant’s eye movements are recorded while they have to 
solve a classification task. We developed four measures. The stimulus-dependent measure 
captures low-level feature contrast. It is based on the luminance and texture distribution 
within each image patch. The second measure, describing the spatial characteristics of eye 
movements, builds on a baseline study and takes into consideration the global fixation bias 
and geometrical properties of saccades. The third, task-related measure ignores image features 
and spatial biases, but quantifies how much information an image patch contains in the 
context of a specific classification task, based on participant's decision responses. By 
evaluating the eye-tracking data of the main study, we obtain the fourth measure that captures 
the empirical salience of each image patch. Having applied these four measures to each image 
patch, we are able to quantify the overall contributions as well as the individual, non-
redundant, contributions of task context, low-level image features, and spatial biases to 
fixation behavior. 
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2. Independent encoding of grating motion across stationary 
feature maps in primary visual cortex visualized with voltage-
sensitive dye imaging (Study 1) 
 
This section is based on the following publication in NeuroImage: S Onat1, N Nortmann123, S 
Rekauzke23, P König1, D Jancke23 (2011) Independent encoding of grating motion across stationary 
feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. NeuroImage 55: 
1763-1770. 1Institute of Cognitive Science, Department of Neurobiopsychology, University 
Osnabrück, 49069 Osnabrück, Germany. 2Cognitive Neurobiology, Ruhr-University Bochum, 44780 
Bochum, Germany. 3Bernstein Group for Computational Neuroscience, Institut für Neuroinformatik, 
Ruhr-University Bochum, 44780 Bochum, Germany. 

2.1 Abstract 
 
In early visual cortex different stimulus parameters are represented in overlaid feature maps. 
Such functioning was extensively explored by the use of drifting gratings characterized by 
orientation, spatial–temporal frequency, and direction of motion. However surprisingly, the 
direct cortical visuotopic drift of the gratings' stripy pattern has never been detected 
simultaneously to these stationary feature maps. It therefore remains to be demonstrated how 
physical signals of grating motion across the cortex are represented independently of other 
parametric maps and thus, how multi-dimensional input is processed independently to enable 
effective read-out further downstream. 
 
Taking advantage of the high spatial and temporal resolution of voltage-sensitive dye 
imaging, we here show the real-time encoding of position and orientation. By decomposing 
the cortical responses to drifting gratings we visualize the typical emergence of stationary 
orientation maps in which specific domains exhibited highest amplitudes. Simultaneously to 
these patchy maps, we demonstrate coherently propagating waves of activity that precisely 
matched the actual movement of the gratings in space and time, most dominantly for spatial 
frequencies lower than the preferred range. Thus, the primary visual cortex multiplexes 
information about retinotopic motion by additional temporal modulation of stationary 
orientation signals. These signals may be used to variably extract coarse-grained object 
motion and form information at higher visual processing stages. 

2.2 Introduction 
 
Fifty years ago, neurons in primary visual cortex were discovered to have local receptive 
fields that are selective for stimulus orientation (Hubel & Wiesel, 1959). Moreover, it has 
been found that neurons are grouped systematically across the cortical plane representing 
visual space and contours in overlaid retinotopic and orientation maps (Hubel & Wiesel, 
1974). Intrinsic optical imaging revealed further details of the distinct cortical functional 
organization establishing the columnar arrangement of ocular dominance, motion direction, 
and spatio-temporal frequency maps (Blasdel & Salama, 1986; Bonhoeffer & Grinvald, 1991; 
Bosking et al., 1997; Hübener et al., 1997; Shoham et al., 1997; Xu et al., 2006). But how are 
these different information channels efficiently encoded across large neuronal populations 
without undesirable interferences? 
 
In primary visual cortex the precise temporal structure of the neuronal spike patterns in the 
gamma range [40–80 Hz] was proposed as a fundamental mechanism to enable binding as 
well as segmentation of visual features (Abeles, 1991; Gray et al., 1989), in addition to 
mechanisms in which amplitudes of instantaneous firing rates of coactive neurons (Roelfsema 
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et al., 2004), or entire spike trains (Jancke, 2000; Richmond et al., 1990), all play an 
important role in processing (Kayser et al., 2009). Intrinsic optical imaging research to date 
shows that moving gratings – as a means to provide simultaneous multi-dimensional visual 
input – are cortically represented by unique patchy activity patterns where the locations of the 
activated domains are interpreted to either reflect the intersection of orientation, spatial 
frequency, and direction maps (Blasdel & Salama, 1986; Bonhoeffer & Grinvald, 1991; 
Bosking et al., 1997; Hubel & Wiesel, 1974; Hübener et al., 1997; Shoham et al., 1997; Xu et 
al., 2006), or to encode the overall spatio-temporal energy of these features (Basole et al., 
2003; Mante & Carandini, 2003; see Issa et al., 2008 for recent review). In either case, since 
multiple feature combinations can produce an identical stationary map (Basole et al., 2003) its 
information content remains ambiguous (Movshon et al., 1985; Rust et al., 2006; Zhang & 
Britten, 2006). Particularly in the event of moving gratings such feature map fails to 
additionally capture the physical motion of the grating across the retinotopic representation 
and therefore, neglects the permanent space–time changes in luminance caused by the 
gratings' stripes. Instead, given that retinotopy is independent of orientation (Bosking et al., 
2002; Buzas et al., 2003; Yu et al., 2005, but see Das & Gilbert, 1997), smoothly traveling 
waves of activity (Engel et al., 1994, 1997; Lee et al., 2005) should be detectable at the same 
time. 
 
However, the applied recording methods so far were limited in sampling: single electrode 
recordings hamper a coherent population picture of activation across the cortex due to 
restrictions in spatial sampling, whereas intrinsic optical imaging is limited in temporal 
resolution because of its dependence on slow hemodynamic processes. Also with fMRI, as 
another method that uses hemodynamic signals, retinotopic waves and orientation maps were 
never captured simultaneously (Yacoub et al., 2008). To overcome these limitations, we made 
use of an imaging technique that employs voltage-sensitive dye to record population activity 
in the millisecond range across several millimeters of cat visual cortex with high resolution 
(Grinvald et al., 1994; Jancke et al., 2004; see Grinvald & Hildesheim, 2004 for review). 

2.3 Materials and methods 
 
We recorded from cat primary visual cortical area spanning A17 and A18 (11 animals, 12 
hemispheres). Detailed analysis was performed in 6 experiments, in which the compound 
spatio-temporal activity was found. Standard surgical and experimental procedures were used, 
approved by the German Animal Care and Use Committee (AZ 9.93.2.10.32.07.032) in 
accordance with the Deutsche Tierschutzgesetz and NIH guidelines. 

2.3.1 Animal preparation 
 
Animals were initially anesthetized with ketamine (15 mg kg-1 i. m.) and xylazine (1 mg kg-1 
i.m.), supplemented with atropine (0.05 mg kg-1 i.m.). After tracheotomy, animals were 
artificially respirated, continuously anesthetized with 0.8–1.5% isoflurane in a 1:1 mixture of 
O2/N2O, and fed intravenously. Heart rate, intratracheal pressure, expired CO2, body 
temperature, and EEG were monitored during the entire experiment. The skull was opened 
above area 17/18 and the dura was resected. Paralysis was induced and maintained by 
Alloferin®. Eyes were covered with zero-power contact lenses as protectives. External lenses 
were used to focus the eyes on the screen. To control for eye drift, the position of the area 
centralis and receptive field positions were repeatedly measured. A stainless steel chamber 
was mounted and the cortex was stained for 2–3 h with voltage-sensitive dye (RH-1691), and 
unbound dye was subsequently washed out. 
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2.3.2 Stimulus presentation 
 
Gratings (0.1/0.2/0.4 c/°, 6.25 Hz were presented on a Monitor (100 Hz, mean luminance 11 
cd m− 2, Sony Triniton GDM-FW900, Japan) covering a visual field of 30°×40°. To detect 
the area 17/18 border, gratings of 0.6 c/° and 2 Hz were additionally used. Eyes were 
converged using a prism. Stimuli were randomly displayed for 2 s (including 200 ms of 
prestimulus duration), followed by a uniform gray screen (blank condition) presented for 15 s 
during the interstimulus intervals. 

2.3.3 Data acquisition and pre-processing 
 
Optical imaging was accomplished using an Imager 3001 (Optical Imaging Inc, 
Mountainside, NY) The camera was focused ~ 400 nm below the cortical surface. Data 
acquisition onset was synchronized with heart-beat signal. For detection of changes in 
fluorescence the cortex was illuminated with light of 630 ± 10 nm and emitted light was high-
pass filtered with a cut-off of 665 nm (camera frame rate 220 Hz). Divisive normalization was 
performed by dividing each pixel value by its DC level during 200 ms pre-stimulus time (in 
which a uniform gray screen was presented); heart-beat and respiration-related artifacts were 
removed by subtracting the average blank signal. 

2.3.4 Singular value decomposition analysis 
 
Evoked signals were computed by averaging 25 to 50 stimulus repetitions. For singular value 
decomposition (SVD) analysis we chose the time interval in which activity roughly stabilized 
(>400 ms). Technically, the entire time course or a time window starting closer to response 
onset could be used. However, inclusion of the transient response part, characterized by huge 
changes in overall activity, reduces sensitivity of the method to the later oscillatory part of the 
responses. We applied SVD to the evoked activity by using svd command of Matlab software 
(Mathworks, Natick, MA, USA) after transforming each frame into a vector. SVD transforms 
the data matrix representing the evoked signal, 𝑆𝑆(𝑡𝑡, 𝑥𝑥), into a weighted sum of 𝑁𝑁 space–time 
separable matrices, 𝑔𝑔𝑖𝑖(𝑡𝑡, 𝑥𝑥), such that 𝑆𝑆(𝑡𝑡, 𝑥𝑥) = ∑ γ𝑖𝑖𝑔𝑔𝑖𝑖(t, x)𝑁𝑁

𝑖𝑖 ; where γ𝑖𝑖 represents the weight 
of the 𝑖𝑖𝑡𝑡ℎ modes and 𝑁𝑁, the number of frames. The matrix 𝑔𝑔𝑖𝑖(𝑡𝑡, 𝑥𝑥) can be described as the 
outer product of two vectors 𝑢𝑢𝑖𝑖(𝑥𝑥) and 𝑣𝑣𝑖𝑖(𝑡𝑡) representing the 𝑖𝑖𝑡𝑡ℎ spatial and temporal modes. 
Interpreting the rows of 𝑆𝑆(𝑡𝑡, 𝑥𝑥) as samples and the columns as features, 𝑢𝑢𝑖𝑖(𝑥𝑥) and 𝑣𝑣𝑖𝑖(𝑡𝑡) are 
the eigenvectors of the sample and feature covariance matrices i.e. principal components, 
respectively. Singular values, γ𝑖𝑖  increased linearly with logarithmic scale and significant 
components were detected by identifying the first component with significant increase in its 
weight with respect to the previous components. To selectively reconstruct the oscillatory 
activity, we selected those components with a prominent peak at the required frequency. In 
some cases fitting harmonic functions to the temporal modes at the required frequency 
beforehand improved the results. 

2.4 Results 
 
Cortical responses to drifting gratings were measured that moved either rightwards or 
downwards across the contra-lateral visual field (Fig. 2.1a). These stimuli give rise to 
complementary activity pattern as demonstrated by the difference map (Fig. 2.1a, second row, 
leftmost). The lower graph in Fig. 2.1a shows the evoked time courses of activity of one 
experiment averaged across the imaged region for each grating direction. Activity rises 
steeply after stimulus onset, suspended by an intermediate deceleration–acceleration notch 
after ~85 ms (Sharon & Grinvald, 2002), reaching maximum levels after 300 ms, followed by 
a slow monotonic decay. 
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Singular-value decomposition (SVD) was applied to the later part of the evoked responses 
(Fig. 2.1a, grey area in bottom traces, 400–1800 ms) excluding the fast transient onset (see 
Material and methods, SVD analysis). SVD decomposes the evoked signal into distinct 
orthonormal components that are separable into their spatial and temporal modes. The relative 
importance of each component, i.e. fraction of variance explained, is captured by the size of 
the singular value (Fig. 2.1b, top-left). We observed 6 significant singular values spanning a 
range of two orders of magnitude. This shows that the responses to gratings are characterized 
by compound dynamics that result in spatio-temporal inseparability of activity. 
 

Figure 2.1 Decomposition of evoked 
cortical responses to gratings of 0.2 c/° 
drifting for 2 s at a temporal frequency 
of 6.25 Hz. (a) Evoked spatio-temporal 
activity patterns (top rows) and time 
courses obtained by spatial averages 
across the images (bottom traces) 
expressed as fractional change in 
fluorescence relative to blank 
condition (ΔF/F). Top left frame shows 
the vascular image of the recorded 
right hemisphere, P = posterior, L = 
lateral; here and in all figures scale bar 
1 mm. Leftmost frame in 2nd row 
depicts the time-averaged orientation 
map derived by subtracting evoked 
responses to the vertical grating from 
horizontal. Green trace = responses to 
vertical grating, drifting rightwards in 
visual space; blue trace = horizontal 
grating, drifting downwards. (b) Top 
left corner, singular values, 𝒈𝒈𝒊𝒊, ranked 
in order of their contributions. 
Components of significant contribution 
to variance are colored (grey area 
depicts significance level). The 
contribution of each single SVD 
component to single recorded trials 
(n=35) was computed, their 
correlations across trials are 
represented as a matrix. Spatial 
(𝒖𝒖𝒊𝒊(𝒙𝒙)) and temporal (𝒗𝒗𝒊𝒊(𝒕𝒕)) modes of 
the SVD components were clustered 
according to their correlation (red, 
yellow, and green boxes; curves 
represent weight of each spatial mode 
[y-axes] as a function of time [400–
1800 ms]). 
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To infer the biological significance of the SVD components we reasoned that the 
contributions of individual components must exhibit co-variation across trials. Indeed, the 
respective correlation matrix revealed different clusters of SVD components (Fig. 2.1b). The 
first cluster encompasses two SVD components with highest singular values, each displaying 
non-oscillatory tonic activity modes (Fig. 2.1b, red/left). This was observed in all measured 
hemispheres. The second cluster included 4 SVD components with smaller singular values 
and strong oscillatory activity (Fig. 2.1b, orange/top) matching the fundamental frequency of 
the moving grating (6.25 Hz). For the present example, additional SVD components followed 
(Fig. 2.1b, green/ bottom) displaying distinct oscillations at the 2nd harmonic of the grating's 
temporal frequency. We found that these oscillatory dynamics were almost exclusively 
accounted for by those higher order SVD components that did not have orientation selective 
spatial modes (see Fig. 2.2a for average power spectra across the significant temporal modes 
and Fig. 2.2b for relationship between their oscillatory strength and orientation selectivity 
across all experiments). 
 
Reconstruction of activity using the first cluster of SVD components displayed the typical 
patchy structure of stationary orientation maps characterized by repeating local domains of 
peak amplitudes (Fig. 2.3, see contours in red panels, first and third rows). The regions 
maximally activated by the different orientations are largely non-overlapping resulting, as 
expected, in orthogonal maps of activation (Fig. 2.5). Bear in mind that other stimulus 
dimensions are mapped within primary visual cortex as well. For example, regions differ in 
their responsiveness to stimuli of different spatial frequency (Shoham et al., 1997). Yet, 
orientation maps determined by gratings of different spatial–temporal frequencies are highly 
overlapping (Fig. 2.6). Thus, we conclude that in the present experiment the response 
captured by the first cluster of SVD components is dominated by the orientation selectivity of 
neurons in primary visual cortex. 

Figure 2.2 (a) Power spectra of temporal modes averaged across significant components for all experiments 
(black lines). In 6 of 12 hemispheres a prominent peak at 6.25 Hz was observed (see arrowhead). For the 
experiment presented in Fig. 2.1, components 7 to 10 were characterized by another prominent peak at 
12.5 Hz (green line, see 2nd arrowhead). Blue line depicts spectrum characteristics of responses to a grating 
of lower spatial frequency (0.1 c/°, cf. Fig. 2.10, bottom rows). (b) Orientation selectivity of spatial modes 
(black line) and power at 6.25 ± 1 Hz (gray line) are shown for the first 6 SVD components across all 
experiments. Orientation selectivity was evaluated by quantifying the correlation between spatial modes 
and differential orientation map (shown in Fig. 2.1a). Power at 6.25 Hz ( ± 1.00 Hz) was computed for each 
component. Differences in the singular values were accounted by weighting each component's power by its 
singular value. With increasing rank the power at 6.25 Hz increased while the correlation of the spatial 
modes to the orientation maps decreased. Error bars indicate SEM. As a control, we additionally compared 
the power at 6.25 ( ± 1.00 Hz) to a baseline (i.e. power at flanking frequencies, 3.25 Hz–5.25 Hz and 7.25 Hz–
9.25 Hz). For the first cluster (components 1 to 2) the power at 6.25 Hz was on average 1.21 ± 0.18 times 
higher, but was increased by a factor of 8.63 ± 1.56 for the second cluster (components 3 to 6), indicating 
that oscillatory components were almost independent from cortical representation of orientation. 
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Overlaid on these maps, the second cluster of oscillatory SVD components (orange 
panels/second and fourth rows) revealed cyclic waves of activity that propagated either 
medial to lateral (right to left in image frames) or in posterior–anterior direction (from top 
downwards) across the cortex depending on the gratings' drifting direction. Evidently, the 
retinotopic propagation was not restricted to particular regions as it passed coherently through 
both preferred orientation and orthogonally tuned domains. Moreover, the fact that these 
waves propagated with the same temporal frequency as the grating suggests an underlying 
asymmetry in the responses to its dark and bright stripes (see Discussion). In addition, the 
higher order SVD components (7 to 10) exhibited waves of half spatial wavelength, thus 
reporting the individual contrast changes at each of the grating edges (Fig. 2.3, last row). 

Figure 2.3 Propagation of retinotopic cortical 
activity across stationary orientation maps. 
Icons on top sketch stimulus conditions. Within 
each panel, spatio-temporal activity dynamics 
represented by different SVD components are 
shown (color code as in Fig. 2.1b): tonic 
components (red panels, top rows), oscillatory 
components with principle oscillation 
frequencies at 6.25 (orange panels, second 
rows) and 12.5 Hz (green panel, bottom row). 
Time after stimulus onset (red panels) or 
relative to the propagation period (orange and 
green panels) is indicated above each single 
frame. Note the difference in the time-scales. To 
capture a full cycle of propagating activity, only 
a single period (duration 160 or 80 ms) is 
depicted (multiple cycles were averaged). 
Contour lines are drawn around 90th percentiles 
of activity for the tonic components (contours in 
first frame of upper box were copied as white 
outlines to first frame in lower box for 
comparison) and at zero crossings for the 
oscillatory components. Color bars depict 
activity levels, ΔF/F; note the two-order 
difference in amplitudes between the two 
scales. See Fig. 2.4 for rough retinotopic 
sampling of the imaged cortical area using 
electrophysiology. 

Figure 2.4 Relationship between direction of motion across the cortex and its 
retinotopic layout. Several penetration sites along the posterior-anterior 
cortical axis were done prior to the recording and the corresponding 
receptive field locations (hand-mapped) in visual space are shown. Colors 
match recording sites (AC=projection of area centralis). Note that for the 
grating moving downwards (Fig. 2.3, bottom rows) activity propagated from 
posterior towards anterior regions in the expected cortical direction. 
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We next extracted the phase of the best fitting harmonic functions (Fig. 2.7a) for each pixel 
and plotted these values topographically (Fig. 2.7b). The change in phase as a function of 
cortical distance (Fig. 2.7c) resulted in values of ~ 30 and ~ 39 mm/s (for medial–lateral and 
anterior–posterior direction, respectively). Given the speed of the drifting gratings (~31 °/s) 
this cortical propagation speed matches to the known magnification factor of the central 
visual field representation of area 17 (Tusa et al., 1978). Hence, overall the oscillatory SVD 
components reflected the shifts of the gratings' stripes with high spatial and temporal 
accuracy. Notably in this experiment the signal-to-noise ratio of the propagating waves was 
highest medial to the 17/18 areal border (Fig. 2.7b, see dashed white lines in the respective 
phase plots, and Fig. 2.8). However, when a grating of lower spatial frequency (0.1 c/°) was 
used in another experiment, propagation was evoked concurrently across both primary visual 
areas (Fig. 2.7e; see Fig 2.9 for space–time diagram). We calculated the power of the 
oscillatory components dependent on the grating spatial frequency for each area 17 and 18 
separately. At all spatial frequencies investigated, oscillatory power in area 17 was higher 
than in area 18 (Fig. 2.7f), on average by a factor of 1.7. This may suggest that the emergence 
of retinotopic grating propagation is area specific and might lead to the situation where the 
retinotopic component is independently processed in area 17 while in area 18 such 
multiplexing is absent or weak. 
 
 

         

 

 

Figure 2.6 Subtractive orientation maps (vertical-horizontal) derived from different spatio-temporal 
frequencies of the gratings. From left to right: 0.6 c/° (2 Hz), 0.2, 0.1 c/° at 6.25 Hz. Each map depicts time 
average, 400-1800 ms, and was clipped to ±2 SD. Blue contours separate pixels preferring vertical (bright) 
from horizontal (dark). To facilitate comparison, contours from the middle plot were copied to the left and 
right plots. High spatial frequencies produced a strong pattern in area 17 (right to dashed line). As expected, 
with decreasing spatial- and increasing temporal frequencies also orientation domains in area 18 emerged 
(left to dashed line). Importantly, as shown in Shoham et al. (1997), in area 17 small systematic differences 
between orientation maps of different spatial frequencies reflect an additional underlying mapping of distinct 
low frequency domains (preferring high speeds) and high frequency domains (preferring low speeds). 

Figure 2.5 Orientation related activity components derived from SVD analysis overlaid on 
conventional subtractive map (vertical minus horizontal, cf. Fig. 2.1; grey values were clipped 
to ±2 SD). Most active pixels of tonic SVD components (90th percentile of activity) were 
plotted for each of the single conditions, vertical grating (red), horizontal (green; yellow 
pixels mark minor overlap of red and green). Brightness is proportional to the number of 
temporal frames a given pixel was above threshold (with brightest pixels denoting the entire 
length of the analyzed temporal interval [400-1800 ms]). 
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Figure 2.7 Phase vs. space: propagation speed of cortical activity. (a) Oscillatory activity around 
two pixels separated by 1 mm along the medial–lateral axis (grey and black dots in panel (b). 
Oscillatory activity was best described by a harmonic function with a period of 160 ms (black and 
grey fitted curves). (b) The phase of each pixel is shown topographically for both grating 
conditions. Estimate of A17/18 border is shown as stippled line. Arrows indicates direction of 
motion. (c) Change of phase as a function of space within circumscribed regions (see vertical and 
horizontal rectangles in (b). The slope of the fitting lines was on average across both propagation 
directions ~1.2 radians per mm. (d) Another experiment (right hemisphere) where the A17/18 
border was mapped with gratings of 0.6 c/°. Stippled line delineates at 75th percentile. (e) Phase 
map computed from oscillatory components in response to a downward drifting grating of 0.1 
c/° spatial frequency. (f) Increase of oscillatory power in A17 and A18 in percentage of baseline 
power at 6.25 Hz and 12.5 Hz across all conditions. 
 

Figure 2.8 Amplitudes and signal-to-noise of oscillatory activity in response to a 
0.2 c/deg spatial frequency grating. Using significant oscillatory SVD 
components, propagating waves of activity were reconstructed representing 
vertical (left) and horizontal (right) grating motion. Different cycles of 
propagation were averaged. To the temporal course of activity at each pixel a 
harmonic function was fitted (cf. Fig. 2.7a). (a) The best fitting amplitude 
parameters are represented topologically. (b) The goodness of the fit was 
evaluated by measuring the squared sums of errors normalized by the variance 
for each pixel separately. Note that both amplitudes and signal-to-noise ratios 
decreased gradually with increasing proximity to the area 18 border (roughly 
estimated by stereotactic coordinates, see stippled line). 
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Figure 2.9 Propagation of activity across primary visual cortex (right hemisphere) in response to a 
grating with 0.1 c/° spatial frequency moving downwards. Propagation is most prominently seen 
across area 17 (right from stippled white line). Activity was reconstructed using SVD components 
with dominant power at 6.25 Hz. Same conventions as in Fig. 2.3 and 2.7; the data are depicted as 
phase plot in Fig. 2.7e; see space-time plot of 12.5 Hz related components across area 17 in Fig. 
2.10 bottom row). 
 

Figure 2.10 Retinotopic 
propagation of cortical activity in 
response to gratings varying 
spatial parameters. SVD 
components with principle 
oscillation at either 6.25 Hz 
(rows 1–4) or 12.5 Hz (last row) 
were used to reconstruct the 
oscillatory dynamics in A17 (as 
outlined in Fig. 2.7d). Icons at 
left sketch the different grating 
conditions from top to bottom: 
0.4 c/°, 0.2 c/° (sinusoidal), 0.2 
c/° (oblique), 0.1 c/° (vertical and 
horizontal). Modulation 
amplitudes were highest for low 
frequency gratings. Note the 
systematic change in 
propagation direction and 
spatial wavelength of activity. 
Contour lines are drawn at zero 
crossings. Color bars depict 
activity levels, ΔF/F. 
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We additionally explored further systematic variations of the gratings' spatial frequency and 
drifting direction in this experiment (Fig. 2.10). The highest spatial frequency measured (0.4 
c/°) evoked activity with principle oscillation matching the grating temporal frequency. 
However, the retinotopic modulations of these waves were less pronounced, which could be 
due to limitations in the spatial resolution of our method or caused by likely differences in 
physiological mechanisms (Movshon et al., 1978a,b). Wave amplitudes and retino-topic 
spatial resolution increased then systematically with lower spatial frequencies (Fig. 2.10, top 
to bottom). Importantly, a sinusoidal grating (0.2 c/°) showed comparable propagation 
characteristics as a square-wave grating of equal spatial frequency (Fig. 2.10, second and third 
row, respectively. Note that the third row represents an oblique grating). With lower spatial 
frequencies of the gratings (0.1 c/°, Fig. 2.10 bottom rows), additional SVD components with 
power at 12.5 Hz, representing each grating edge, became increasingly significant (Fig. 2.10, 
last row). 

2.5 Discussion 
 
We have demonstrated how the primary visual cortex – as the cortical bottleneck along the 
visual pathway – disambiguates two parameters, visual space and orientation: Besides 
representation of stationary orientation maps we show additional response components that 
simultaneously signal retinotopic grating motion through small oscillatory modulations of 
synaptic activity. Thus, our study demonstrates for the first time directly, how retinotopic 
millisecond propagation of grating motion is represented across stationary feature maps. We 
found that only a small portion of the entire signal amplitude represents such physical motion. 
Importantly, these retinotopic waves were homogenously traversing the orientation maps 
indicating independent and parallel multiplexing of the retinotopic signals. 

2.5.1 Sources of the optical signal 
 
The dye signals in cortical responses to visual stimulation are commonly of amplitudes in the 
range of maximal 2‰ relative to baseline fluorescence levels (Grinvald & Hildesheim, 2004; 
Jancke et al., 2004; Sharon & Grinvald, 2002; Sharon et al., 2007). The oscillatory signal 
reported here was even two orders of magnitude lower and only detectable in our highest 
quality recordings as the functional signal is most sensitive to various sources of noise 
(Grinvald & Hildesheim, 2004; Reynaud et al., 2011). Besides noise due to heart-beat 
pulsations and breathing artifacts (Grinvald & Hildesheim, 2004), which were largely 
eliminated by our data recording and processing procedures, shot-noise induced by statistical 
fluctuations of the light emitting process is a major technical obstacle to detect small activity 
changes. Therefore, the intensity of staining, i.e. baseline fluorescence levels, should ideally 
be as high as possible (Grinvald et al., 1988; Ross et al., 1977). However, such requested high 
levels of staining are not achievable in all preparations and consequently, recordings of the 
oscillatory components were not revealed in every experiment. Thus, the limiting factor here 
is most likely of technical origin rather than reflecting a genuine physiological variability 
across animals. 
 
Extra-cellular recordings performed in parallel to the optical measurements confirmed that 
high amplitudes of the dye signal corresponded to spiking cortical activity. Yet, we cannot 
estimate the relative contribution of various cell types as the optical signal captures activity of 
a large pool of neurons. Most likely the oscillatory signal is dominated by complex cells, 
since simple cell activity is phase dependent and may therefore be cancelled out at the 
population level where phases are arbitrarily mixed (Benucci et al., 2007). Moreover, VSD 
imaging emphasizes activity in upper cortical layers 2/3 (Petersen et al., 2003) and therefore 
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highlights intra-layer propagation of activity via long-range horizontal connections, including 
subthreshold postsynaptic cortical activation (Jancke et al., 2004). 
 
The amplitudes of the retinotopic waves detected here were most prominent when the 
grating's spatial frequency was at the lower end of the known bandpass characteristics of 
neurons in the respective visual area (Movshon et al., 1978b). This suggests that the relative 
width of the grating period plays a critical role for the emergence of the retinotopic waves 
(Maffei & Fiorentini, 1973; Movshon et al., 1978a). In view of the high power at the 
fundamental, compared to double temporal frequency, these retinotopic waves may result 
from an asymmetry in the responses to dark and bright (Jin et al., 2008). Indeed, a recent 
study in macaque primary visual cortex (V1) showed that neuronal responses in layers 2/3 
(the layers our method is most sensitive to) was higher to “black” as compared to “white” 
stimuli (Yeh et al., 2009). Consequently, a traveling wave may emerge from units that are 
periodically driven by the gratings' dark edges. However, oscillatory signals were also evident 
for sinusoidal gratings devoid of sharp edges, for higher spatial frequencies (0.4 cycles/°) 
close to the preferred range of area 17 (Pollen et al., 1978), and uniformly encompass regions 
of preferred and opposite orientation selectivity. Altogether these observations indicate that 
the periodic drive constitutes the main but not necessarily the full explanation of the current 
findings. Also top-down influences may be involved (Ahmed et al., 2008) thus, further studies 
are needed to identify the various possible mechanisms contributing to retinotopic grating 
propagation. 

2.5.2 Space–time inseparable dynamics revealed by SVD analysis 
 
In general, SVD and other directly related procedures such as principal component analysis 
(PCA or Karhunen–Loève transform) are analytical matrix decomposition methods. SVD and 
related statistical procedures are thus helpful mathematical tools to separate spatial patterns 
given by eigenvalues of the autocorrelation matrix from temporal modes in complex physical 
systems (Aubry et al., 1991; Sirovich, 1987). Such procedures were also successfully applied 
in waveform analysis of evoked neuronal potentials (Glaser & Ruchkin, 1976) and spike 
response patterns (Abeles & Goldstein, 1977). In a first attempt to model optical imaging data 
by Karhunen–Loéve decomposition, different modes could be identified that resembled the 
layout of intrinsically recorded maps of ocular dominance, orientation, and direction in 
primary visual cortex (Sirovich et al., 1996). PCA is based on the correlations that exist in the 
multidimensional data and describes it in a new coordinate system where the basis vectors are 
linearly decorrelated and ranked in descending order according to the explained variance. 
SVD (or temporal PCA) extends the PCA and explains the data as weighted sums of space–
time separable matrices, where the temporal and spatial modes correspond to principal 
components. The SVD algorithm is therefore mathematically equivalent to applying PCA in a 
specific form to spatial and temporal dimensions (Sornborger et al., 2003; Strang, 2007; see 
Material and methods, Singular value decomposition analysis section). In the simplest case, 
where the responses are space–time separable, the dynamics can be described as the outer 
product of temporal and spatial modes. In the presence of strong space–time correlations the 
outer product fails to account for the full variance. However, the residuals can be subject to 
the same analysis, successively explaining the remaining dynamics. SVD implicitly iterates 
this process and describes the data with a finite sum of products of temporal and spatial 
modes. Specifically, the algorithm refers only to the covariance matrix and not to higher order 
moments. 
 
Another decomposition method, independent component analysis (ICA) takes a completely 
different approach. It describes the dataset in a coordinate system where statistical 
dependencies between different dimensions are minimal. For example, it has been proven 
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useful in cleaning EEG recordings of biological artifacts like heart-beat and eye movements 
(Jung et al., 2000). An important aspect of ICA is that the number of sources that are 
responsible for generating the observed data has to be fixed and the precise choice affects the 
final solution. In the present case the number of generators is not a priori known. Therefore, 
SVD in the present context seems to be better suited to analyze our data. Earlier SVD analysis 
of VSD recordings in the turtle visual brain led to discovery of rich dynamics of widespread 
traveling activity in different low frequency bands b 5, 10, and 20 Hz (Prechtl et al., 1997). 
Such large-scale timing differences of complex activity patterns across the brain were 
speculated to reflect processing of diverse visual features by multiple phases of neural activity 
(Prechtl et al., 1997; Senseman & Robbins, 1999). 
 
In this cortical study, the stimulus was a simple constantly drifting grating. Its orientation was 
encoded by tonic and highest response amplitudes across cortical neurons located in specific 
orientation domains. In addition, the gratings' actual motion was represented by stimulus 
locked propagation of activity for which the relative timing reflected local movement of the 
gratings' stripes across the retinotopic map independent of orientation domains (Bosking et 
al., 2002; Buzas et al., 2003; Yu et al., 2005). This observation has an important implication 
for orientation selectivity: The fact that the propagating waves do not omit orthogonal 
orientation domains suggests that orientation tuning is influenced by non-orientation specific 
thalamic or intracortical inputs and consequently, affected through amplitude modulations 
representing visual space. As a result, non-specific parts of the orientation tuning curve may 
indeed contain residual retinotopic related activity in response to non-preferred orientations. 

2.5.3 Multiplexing of visual information at different spatio-temporal scales 
 
Along the visual pathway multiplexing of oscillatory signals is a general way to increase the 
amount of information being transmitted (Koepsell et al., 2010). Multiplexed channels acting 
across various timescales were recently also observed at the subcortical level in thalamic 
spike trains (Koepsell et al., 2009). The authors found that the firing rate at low frequencies 
encoded local changes of the stimulus. The second channel, in the gamma frequency range, 
was coupled to retinal oscillations. It was concluded that these higher frequencies possibly 
transmit global visual features. However, which frequency band encodes which parameter 
might critically depend on the stimulus characteristics and on the visual task (Ahissar & 
Arieli, 2001). For instance, fixational eye movements, which are naturally accompanied by 
incessant jitter, improve discrimination of local fine spatial details within a visual scene by 
emphasizing the high spatial frequencies of the stimulus (Henning & Wörgötter, 2007). 
Importantly, during the course of fixational switches, the change between microscopic tremor 
and macroscopic eye movements enables a time-varying multiplexing of visual information at 
different spatial scales (Rucci, 2008). Accordingly, for oscillatory stimulus-locked activity 
substantially lower than the gamma range, as observed in our study, the system appears 
flexible as to which channels carry either global or local feature information (Jancke, 2000). 

2.5.4 Divergent readout of available information in primary visual cortex 
 
In our study we consider the gratings' retinotopic motion as the source of local signals and the 
gratings' orientation as the prominent global stimulus feature. Such multiple signals may 
enable the network to differently affect downstream areas: The fast cortical retinotopic 
propagation might dominate readout in motion sensitive areas that analyze motion speed and 
solve the ‘aperture problem’ by integrating motion direction across larger receptive field sizes 
(Glaser & Barch, 1999; Movshon et al., 1985; Rust et al., 2006; Wallach, 1935; Zhang and 
Britten, 2006). In parallel, the presence of a steady orientation map signals slowly changing 
stimulus features (Wiskott & Sejnowski, 2002; Wyss et al., 2006) to enable invariant 
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representation at higher visual processing stages engaged in form representation (Karklin & 
Lewicki, 2009). Finally, such complex spatio-temporal activity dynamics could play an 
important role in cortical memory consolidation particularly, when dealing with high-
dimensional natural input (Yao et al., 2007). 
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3. Primary visual cortex represents the difference between past 
and present (Study 2) 
 
This section is based on the following publication in Cerebral Cortex: N Nortmann123, S Rekauzke12, S 
Onat3, P König34✮, D Jancke12✮ (2013, Epub ahead of print) Primary visual cortex represents the 
difference between past and present. Cerebral Cortex, doi: 10.1093/cercor/bht318. 1Optical Imaging 
Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany. 2Bernstein Group 
for Computational Neuroscience, Ruhr-University Bochum, Bochum, Germany. 3Institute of Cognitive 
Science, University of Osnabrück, Osnabrück, Germany. 4Department of Neurophysiology and 
Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ✮These 
authors shared senior authorship. 
 
3.1 Abstract 
 
The visual system is confronted with rapidly changing stimuli in everyday life. It is not well 
understood how information in such a stream of input is updated within the brain. We 
performed voltage-sensitive dye imaging across the primary visual cortex (V1) to capture 
responses to sequences of natural scene contours. We presented vertically and horizontally 
filtered natural images, and their superpositions, at 10 or 33 Hz. At low frequency, the 
encoding was found to represent not the currently presented images, but differences in 
orientation between consecutive images. This was in sharp contrast to more rapid sequences 
for which we found an ongoing representation of current input, consistent with earlier studies. 
Our finding that for slower image sequences, V1 does no longer report actual features but 
represents their relative difference in time counteracts the view that the first cortical 
processing stage must always transfer complete information. Instead, we show its capacities 
for change detection with a new emphasis on the role of automatic computation evolving in 
the 100-ms range, inevitably affecting information transmission further downstream. 
 
3.2 Introduction 
 
Characterization of stimulus-response relationship is the most fundamental approach to 
accessing cortical coding behavior. This procedure starts with the assumption that neuronal 
populations sample sensory input and form faithful internal representations of its actual 
content. In fact, classical reverse-correlation techniques enable us to determine neuronal 
tuning properties by backtracking responses to stimulus variations across rapid sequences of 
presentation (Eckhorn et al., 1993; Ringach et al., 1997). Thus, these techniques build on the 
idea that neuronal activity is permanently updated by current stimulation, maintaining an 
ongoing representation of the outer world (Jonides et al., 1982). 
 
To measure the continuous dynamics of cortical population activity, we used voltage-
sensitive dye imaging, which reflects gradual changes in membrane potentials across several 
square millimeters of cortex with an emphasis on superficial layers (Grinvald et al., 1994; 
Petersen et al., 2003; Jancke et al., 2004; Chen et al., 2006; Roland et al., 2006; Berger et al., 
2007; Sit et al., 2009; Grinvald & Hildesheim, 2004 for review). This method does not 
provide single neuron activity or its dependence on different cortical layers. On the upside, it 
avoids biased sampling of neurons and it captures population activity irrespective of receptive 
field locations and preferred feature selectivities (Lee et al., 1988; Vogels, 1990; Jancke et al., 
1999; Tsodyks et al., 1999; Jancke, 2000; Dinse & Jancke, 2001; Pouget et al., 2003; Graf et 
al., 2011; Gilad et al., 2012; Lewis & Lazar, 2013), hence providing the global tuning of the 
cortex across millions of neurons under different stimulus conditions. 
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We report, using recordings in cat visual cortex (V1), that ongoing encoding can be found for 
the representation of briefly presented stimulus sequences (33 Hz) consistent with earlier 
studies (Ringach et al., 1997; Benucci et al., 2009). However, slower image sequences (10 
Hz) reveal an essential addition. Population tuning in the primary visual cortex no longer 
represents the complete image content, but rather those orientations that were newly added or 
removed. We propose that such a precise detection of change across sequences of natural 
scene contours involves the interplay between two well-known neuronal behaviors, adaptation 
and stimulus off-responses (Movshon & Lennie, 1979; Duysens et al., 1996; Müller et al., 
1999; Bair et al., 2002; Felsen et al., 2002; Dragoi et al., 2002) that are important for stimulus 
transitions (Eriksson et al., 2008; Eriksson et al., 2012) and interact here to encode the 
difference to past images. In combination with eye movements at different spatiotemporal 
scales, the observed frequency-dependent encoding of image content might help to remove 
predictable input correlations in order to emphasize object borders and discontinuities within 
natural scenes (Rucci et al., 2007; Desbordes & Rucci, 2007; Rucci, 2008; Kuang et al., 
2012). We conclude that input timing may entail predictive encoding (Rao & Ballard, 1999; 
Friston, 2005) at the very first cortical processing stages without the involvement of voluntary 
or attentional top-down mechanisms. 
 
3.3 Materials and methods 
 
3.3.1 Visual stimuli and presentation 
 
Construction of oriented stimuli (V, H) and superpositions (VH) 
 
We presented sequences of stimuli to anesthetized cats (11 males, 4 females, adult). First, we 
used 128 natural images (64 urban and 64 nature scenes) in grayscale to construct stimuli with 
dominant vertical (V) and horizontal (H) orientation. We derived these oriented stimuli by 
filtering the natural images in Fourier space with real-valued, polar-separable filters. The 
angular function of these filters was a triangular hat function, symmetric across 180°, with its 
maxima of 1 at either vertical (for stimulus type V) or horizontal (for stimulus type H) 
frequency. The half width at half maximum was 45° for the construction of broadly filtered 
images, and 2.8° for the construction of narrowly filtered images. The radial function 
(adapted from Simoncelli & Farid, 1996) included a low-pass filter with cut-off at 6.6 c/° 
visual angle, and the DC component was set to zero. From the first harmonic up to 6.0 c/° 
(start of low-pass transition range), the function was 1. Thus, in this range, we preserve the 
relative amplitudes of the original image, including the characteristic 1/f fall-off for natural 
stimuli. 
 
Next, we constructed superpositions (VH) of vertical (V) and horizontal (H) stimuli by 
summing them (in image space). We normalized the stimuli such that the global contrast of 
all superpositions was the same (rms contrast: 0.71); this means that component stimuli (V 
and H) were scaled with the same factor as their superposition (VH). During this 
normalization, we had to clip some pixels of images with a large intensity range (in average 
2%, at most 15%). 
 
We also presented vertical (V) and horizontal (H) square-wave gratings (0.2 c/°) and their 
linear superpositions (VH, contrast also 0.71, phases were varied over repetitions). In addition 
to oriented stimuli and their superpositions we used an isoluminant screen as blank (B) 
stimulus. All stimuli were gamma-corrected according to the presentation monitor (100 Hz, 
Sony Triniton GDM-FW900, Japan). Mean luminance of each stimulus, including blank, was 
20 cd/m². Stimuli covered a visual field of 31°x31°. 
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Stimulus sequences 
 
From the four stimulus types: (V) vertical stimulus, (H) horizontal stimulus, (VH) 
superposition, and (B) blank stimulus, we created pseudorandom sequences including all 16 
(42) possible transitions, that is, switches, between them, resulting in 17 stimuli per sequence. 
We constructed 64 different sequences optimizing the following criteria: As response 
variance across different experimental trials is relatively high, we applied the constraints that 
all stimulus types (V, H, VH, and B) should occur equally often (4 times within each 10-Hz 
sequence) and that every switch should occur equally often (once within each 10-Hz 
sequence). To avoid systematic effects in the responses to particular switch types in 
dependence of their position in the sequence (start, middle, or end) we randomized positions 
of both stimulus type and transition type across the 64 sequences (see Fig. 3.1 for a sketch of 
the paradigm and averaging procedure). 
 
These 64 sequences were repetitively shown with two different presentation frequencies, at 10 
or at 33 Hz. For 10-Hz presentation (100-ms presentation of each stimulus), one sequence 
was shown per trial. Here, stimulus presentation per trial lasted 1700 ms. For 33-Hz 
presentation (30-ms presentation of each stimulus), we showed three sequences in one trial 
(1530 ms per trial). Optical data were recorded for 2 s per trial, including a 200 ms baseline, 
in both cases. The relatively short trial durations were used to avoid dye bleaching effects, 
photodynamic damage of the cortical tissue, and possible contamination by intrinsic signals 
(Grinvald & Hildesheim, 2004). The intertrial interval, in which a blank stimulus was shown, 
was set to a minimum of 5 s. When two stimulus conditions were used (such as narrowly 
filtered and broadly filtered), these were randomized across trials. In between stimulus trials, 
we recorded blank conditions, where an isoluminant gray screen was shown for 2 s, to allow 
correction of breathing and heartbeat artifacts (2 blanks for 16 stimulus trials). 
 
Experimental protocols 
 
In the main body of imaging experiments we used 10-Hz presentation frequency and the two 
stimulus conditions narrowly filtered and broadly filtered images (Fig. 3.4 and 3.7, 12 
experiments, 256–896 repetitions of each switch type). In one additional imaging experiment, 
we used oriented square-wave gratings for 10-Hz presentation (Figure 3.4 (bottom row) and 5 
(imaging trace), 236 repetitions of each switch type). To recapitulate previous optical imaging 
results (Benucci et al., 2009), in one experiment (Fig. 3.2, 3.3, and 3.4 (upper row), 384 

Figure 3.1: Illustration of the switch-triggered 
average. Three pseudorandom stimulus 
sequences are exemplified (5 stimuli are shown; 
in the experiments we used at least 64 different 
sequences of at least 17 stimuli, see Materials 
and Methods). Sequences were aligned to a 
specific switch between a pair of stimuli (blank 
to horizontal in this example) to illustrate our 
averaging procedure. Note that when aligning 
sequences to a particular switch type for 
averaging, the stimuli before and after were 
different. For switch-triggered averaging the 
procedure was used to average the cortical 
responses to a particular stimulus pair across all 
sequences shown. 
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repetitions of each switch type), we used 33-Hz presentation frequency and two different 
stimulus conditions: gratings and narrowly filtered images. Finally, instead of using long 
stimulus sequences we presented two stimuli (i.e. isolated single switches) in one experiment. 
Here, we concentrated on the most informative switch type, superposition to a single 
orientation (VH to V, and VH to H). Gratings were used in three different timing conditions: 
The superposition (VH) was shown for 30, 100, and 500 ms before switches to a single 
orientation (V or H) occurred (Figure 3.6, 80 repetitions). 
 
High-contrast moving gratings 
 
For calibration and mapping of orientation preference, we used moving square-wave gratings 
(rms-contrast: 1, 0.2 c/°, 6 Hz, mean luminance 53 cd/m² [8 hemispheres], or 38 cd/m² [9 
hemispheres]) with four different orientations (0°, 45°, 90°, 135°) and both motion directions. 
We recorded for 1 s in each trial, including 200-ms prestimulus time. These calibration trials 
were recorded throughout the entire experiment in between blocks of the main stimulus 
protocol of each experiment (specified above). 
 
3.3.2 Preparations for optical imaging 
 
All animal experiments were carried out in accordance with the European Union Community 
Council guidelines and approved by the German Animal Care and Use Committee 
(application number: AZ 9.93.2.10.32.07.032) in accordance with the Deutsches 
Tierschutzgesetz (§ 8 Abs. 1) and the NIH guidelines. For further details, see Onat et al. 
(2011a). In brief, animals were initially anesthetized with ketamine (20 mg per kg i.m.) and 
xylazine (1 mg per kg i.m.), artificially respirated, continuously anesthetized with 0.8–1.5% 
isoflurane in a 1:1 mixture of O2/N2O, and fed intravenously. Both weak effects on neuronal 
tuning properties (e.g. Niell and Stryker, 2010) and strong modulations (e.g. Adesnik et al., 
2012) have been reported when comparing anesthetized and awake states. This might 
additionally depend on the type of anesthetics used. Therefore, it is an interesting question, 
and it remains to be generally tested, in how far results obtained under anesthesia hold in 
behavioral settings. However, our anesthetized and paralyzed preparation provides the 
advantage that eyes are fixed and hence allow complete control of the dynamics of the visual 
input. We administered 0.4 mg/kg dexamethasone i.m. and 0.05 mg/kg atropine sulfate i.m. 
daily and 20 mg/kg cephazolin twice a day. In few control experiments we used contact lenses 
with a 3 mm diameter pupil. Heart rate, intratracheal pressure, exhaled CO2, and body 
temperature were monitored. The skull was opened above area V1 (A18, occasionally parts of 
A17), the dura was removed, a chamber was mounted, the cortex was stained for 3 h (and 
occasionally re-stained) with voltage-sensitive dye (RH-1691), and unbound dye was washed 
out. 
 
3.3.3 Data acquisition and pre-processing 
 
Optical imaging was conducted with Imager 3001 (Optical Imaging, Inc., Mountainside, NY, 
USA). The camera was focused ~500 μm below the cortical surface. Data acquisition onset 
was synchronized with heartbeat and respiration. For detection of changes in fluorescence, the 
cortex was illuminated with light of wavelength 630 ± 10 nm, and emitted light at 
wavelengths above 665 nm was collected. The frame rate was set to 100 Hz. We performed 
normalization by dividing each pixel value by its average 200-ms prestimulus activity; 
heartbeat and respiration-related artifacts were removed by subtracting the average blank 
signal. These preprocessing steps lead to a unitless relative signal of fluorescence, denoted by 
delta F/F. For the main paradigm (10 Hz narrowly/broadly filtered), we excluded five 
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hemispheres from analysis because of insufficient staining. Data were used when the 
amplitude of the evoked response in the Fourier power spectrum at 10 Hz (the switch-type 
unspecific response) was at least three times larger than at surrounding frequencies (± 2 Hz). 
 
3.3.4 Electrophysiology 
 
Electrode recordings served as a control of the voltage-related responses reported by the 
fluorescent optical signals. The recorded units were collected at a depth between 400 and 700 
μm. Before electrophysiology, a vascular map of the brain was captured by illumination with 
green light (546 nm) from two optic fiber light guides. Additionally, the afterward measured 
orientation maps were overlaid. This combined map was then used to guide electrode 
penetrations to orientation-selective domains. Spikes were sorted online by a multiple spike 
detector, MSD (Alpha Omega Engineering, Ltd., Israel). Cells were selected upon differences 
in spike-wave forms. Multiple unit activity (MUA, mostly 3-4 cells, occasionally we recorded 
single units in addition to MUA (5 of 27 sites)) was recorded with tungsten electrodes (0.8-2 
MΩ, WPI, Inc., USA). For display purposes (Fig. 3.5A, D), the data were convoluted in a 5 
ms window. 
 
For these electrophysiological recordings, we presented oriented square-wave gratings at 10 
Hz. We adopted our corresponding imaging paradigm (see above) to use longer trial 
durations. This allowed us to show sequences of 66 stimuli (6600 ms presentation duration 
per trial) consisting of the 64 possible triplets of the four stimulus types (V, H, VH, and B). 
Positions of triplet types within sequences were randomized across trials. Data were recorded 
in four hemispheres (in two of which we also performed optical imaging). 
 
3.3.5 Analysis 
 
Orientation maps 
 
Maps were computed using data from high-contrast, square-wave moving gratings. After 
trial-wise pre-processing, we averaged data over repetitions (50-119 repetitions), motion 
direction, and time. The resulting dataset was spatially band-pass filtered from 1 to 3 c/mm. 
The vertical-horizontal (VH-) orientation maps (used for correlation analysis in Fig. 3.6E and 
Suppl. Fig. 3.S1) were obtained by subtracting the horizontal from the vertical map. We also 
computed additive VH-maps as a control (Fig. 3.6E). Orientation maps, which cover the full 
range of orientations, were computed based on the four measured orientations using vector 
summation, and downsampled to 18 bins of 10° each.  
 
Switch-triggered responses 
 
To obtain responses to each of the 16 possible switches (i.e. the pairs of 4 different stimulus 
types: V, H, VH, and B (blank)), we first removed responses unspecific to switch type by 
pixel-wise subtraction of the average response across the entire stimulus sequences. We then 
computed switch-triggered responses for each of the 16 switch types. This was done by 
aligning responses to a particular switch in time and then averaging over repetitions measured 
in different sequences. Thereby we averaged over responses to varying stimuli before and 
after a specific switch. The procedure to compute switch-triggered averages is illustrated in 
Fig. 3.1 (a comparison to stimulus-triggered averaging is provided in Suppl. Fig. 3.S2). When 
using filtered natural stimuli the two image categories (urban/nature scenes) were pooled. 
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Figure 3.2: Visual stimulation and cortical representation of oriented contours. Top: Example stimulus, a 
natural image (left, purple), and its horizontally (red) and vertically (blue) filtered versions using broad filters in 
Fourier space (second column). Here and in subsequent figures colored edges of stimulus icons indicate stimulus 
type (horizontal stimulus (H): red horizontal edge; vertical stimulus (V): blue vertical edge; superposition (VH): 
purple horizontal and vertical edges). (A-C) Time sequences of stimuli with different orientation content, 
presented either at 30- or 100-ms stimulus periods (see outlined arrows): broad filters (A), narrow filters (B), and 
square-wave grating (C). (D) Switch from a vertical to a horizontal square-wave grating (30-ms stimulus period): 
the most active 30% of pixels in each 10-ms camera frame are shown and overlaid on the vascular cortical image 
(averages over 384 switch repetitions). Here and in subsequent plots, data were shifted by 50 ms to account for 
average latency; the green line at zero marks relative time to switch. Pixel color denotes preferred orientation 
derived from a conventional orientation map (most left), which was recorded separately (see Materials and 
Methods). (E) Population tuning curves for each time frame obtained by averaging activities over pixels with the 
same orientation preference (preferences were binned into 18 classes of 10°). Horizontal orientation bin (0°, 
red) is displayed twice. Abscissa shows amplitudes of tuned activity (delta F/F, see Materials and Methods). (F) 
Switch-triggered average as compact illustration of the data in E. Colorbar shows amplitudes of tuned activity. 
Orientation tuning curves to the left and right of the central frame illustrate time averages (−40 to 0, and 0 to 
+40 ms). Dashed faint lines illustrate time shifted (50 ms) positions of transitions from and to other stimuli 
(before and after the switch), which were averaged across all sequences by switch-triggered averaging (see Fig. 
3.1 and Materials and Methods). 
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Population tuning 
 
The data were spatially band-passed from 1 to 3 c/mm. Population tuning was computed by 
averaging responses across pixels with the same orientation preference (as determined by the 
vector-based orientation map). Overall population tuning was then obtained by averaging 
across experiments (10 Hz narrowly/broadly filtered n = 12, 10 Hz gratings n = 1, 33 Hz 
narrowly filtered/gratings n = 1) and time (50–90 ms after switch). 
 
Modulation depth and tuning width 
 
Modulation depth was calculated as the average difference between activity at pixels 
preferring 90±15° and 0±15° (time window 50-90 ms after switch). We tested for differences 
between broadly and narrowly filtered stimuli, using responses from blank (B) to vertical (V) 
and horizontal (H) orientations. We first averaged over vertical and horizontal condition, sign-
inverting the latter, and subsequently we used a pairwise two-tailed t-test to compare filter 
conditions within experiments (n = 12). Tuning width was estimated by fitting a Gaussian 
with three parameters (amplitude, width, and basis level) for each experiment and filter 
condition, and using a paired two-tailed t-test comparing filter conditions within experiments. 
We only used experiments for this subsequent test, in which the fitted Gaussian yielded a fit 
better than 80% of variance explained (the residual variance divided by the variance of the 
data, subtracted from one), which was the case in 8 of 12 experiments. In general, before 
conducting t-tests we tested the respective distributions for normality using a Lilliefors test 
(alpha = 0.05). 
 
Statistical evaluation of population tuning 
 
To evaluate population tuning statistically we used a three-step procedure. First, we quantified 
how much the time-averaged orientation tuning curves deviated from a flat orientation-tuning 
curve (zero-baseline). To quantify this difference to zero, we computed one 𝜲𝜲2-test statistic. 
This allowed us to include the data from all experiments in an overall quantification, while at 
the same time accounting for differences in sample sizes, variances, and response levels 
across different experiments. The 𝜲𝜲2-test statistic is computed across all experiments 
(experiment e = 1,…,n; where n is the number of experiments), and orientation bins (bin θ = 
1,…,18; bins of 10° each), taking the standard error over repetitions of a switch type 
(repetition re = 1,…,me; where re is a repetition in experiment e, and me is the overall number 
of repetitions in experiment e) in each experiment as a normalization factor:  
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Here, 〈 〉𝑟𝑟𝑒𝑒  denotes the average over repetitions in experiment e and 𝑑𝑑𝑒𝑒,𝜃𝜃,𝑟𝑟𝑒𝑒  the response in 
experiment e, orientation bin θ, and repetition re. In this first step, we wanted to quantify the 
difference between our data and zero. Thus we used se,θ = 0 as constant baseline. The degrees 
of freedom are df1= 18n−1, corresponding to 18 orientation bins and n experiments. 
 
In the second step of the evaluation of population tuning, we fitted sinusoids to the population 
tuning curves and repeated the quantification on the residuals. We used the sinusoid function 
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Goodness of fit was then evaluated by computing the 𝜲𝜲2-test statistic on the residuals as 
specified above (using the fitted sinusoids in place of the constant baseline). 
In this second step, there are fewer degrees of freedom, df2= 18n−1−n, because we did fit n 
parameters (10 Hz narrowly/broadly filtered n = 12, 10 Hz gratings n = 1, 33 Hz narrowly 
filtered/gratings n = 1).  
 
In the third step of the procedure, we investigated the direction of population tuning. It is 
characterized by the sign of the amplitude of the sinusoid, ae, which was fitted in the second 
step. When ae is positive, the maximum of the sinusoid is at bin 18, which covers orientation 
preferences 175°-185°, and its minimum is at bin 9, which covers 85°-95°. Thus, positive 
amplitude ae indicates horizontal population tuning. Negative amplitude, correspondingly, 
indicates vertical population tuning. 
 
3.4 Results 

 
To mimic natural viewing conditions (Betsch et al., 2004), stimuli were rapid sequences 
comprising blank (B), vertical (V), horizontal (H), and superimposed orientations (VH) with 
different degrees of complexity (Fig. 3.2A–C). We set up pseudorandom sequences from 
these 4 stimulus types such that each sequence included all 16 possible transitions. Activity 
was continuously recorded in 10-ms time frames (Fig. 3.2D), and switch-triggered averages 
were generated for each individual transition. 

 
3.4.1 Representation of current orientations 
 
First we verified that we can reproduce former findings within our settings. Figure 3.2D-F 
depicts cortical responses to a switch (green line) from vertical to horizontal when square-
wave gratings (Fig. 3.2C) were presented within short 30-ms stimulus sequences. Note the 
rapid change in color (bluish to reddish) that indicates subsequent activation of spatially 
distinct populations of neurons representing each stimulus orientation briefly before and after 
the switch. To obtain a compact depiction of overall population tuning over time, we 
remapped the data onto orientation space (Fig. 3.2E). Figure 3.2F summarizes, in 10-ms time 
frames, how peak population activity shifted from vertical to horizontal, with a transition 
phase of typically one to two 10-ms frames (color bar for activity levels, tuning profiles on 
left and right). Thus, as described in previous electrophysiological studies (Ringach et al., 
1997; Gillespie et al., 2001) as well as in a recent work which evaluated both voltage-
sensitive dye imaging and extracellular measurements for this paradigm (Benucci et al., 
2009), we showed how the primary visual cortex acts as a straightforward "instantaneous 
decoder" (Benucci et al., 2009) by mapping of currently presented orientations. 
 
Next, we tested whether this coding scheme also holds for complex stimuli that contain more 
than just a change to a single orientation. To answer this question, we introduced switches 
from a single grating orientation (V or H) to superposition (VH plaid) and vice versa 
(Eriksson et al., 2010; Nortmann et al., 2011). Superimposing an orthogonal orientation to the 
present one resulted in relatively flat distributions, representing the average of the individual 
orientation patterns (Fig. 3.3, columns #1, stimulus conditions on top; see figure legend), 
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indicating an unbiased processing of both the sustained and added orientation (MacEvoy et 
al., 2009; Busse et al., 2009). Importantly, a change back from superposition to a single 
orientation led to responses tuned to the orientation present after the switch (Fig. 3.3, columns 
#2, see blue and red arrows). Therefore, current orientations were again directly encoded with 
a processing delay of ∼50 ms, similar to when turned on from blank (Fig. 3.3, compare 
columns #3). This scheme deviated exclusively for switches from an oriented stimulus back 
to blank (Fig. 3.3, columns #4). In this case, activity showed persistent tuning after the 
stimulus was turned off (Coltheart, 1980; Duysens et al., 1985). In summary, our data using 
33-Hz square-wave grating sequences confirmed the ongoing encoding of orientation, 
including the known exception of the tuned response after stimulus offset (Benucci et al., 
2009). 
 
Response characteristics obtained with simple artificial stimuli, like gratings of optimal 
spatial frequency used so far, do not necessarily generalize towards input of ecological 
relevance (Smyth et al., 2003; David et al., 2004; David & Gallant, 2005; Felsen et al., 2005; 
Haider et al., 2010; Onat et al., 2011b; Fournier et al., 2011). That is, response behavior to 
natural input can deviate significantly from predictions based on simple parameterized 
stimuli, probably due to the extensive spatial context in natural images (see Carandini et al. 
[2005] and Olshausen & Field [2005] for reviews). Thus, it may be important to validate 
findings obtained with artificial stimuli using more natural stimulus conditions (Felsen & 
Dan, 2005). To address this point in a first step, we extracted oriented contours from 128 
different natural images (see Materials and Methods) by filtering them along the orientation 
dimension in Fourier space. In contrast to gratings, these images retain important properties of 
natural stimuli, such as the phase relationships and the typical 1/f fall-off of amplitudes along 
the spatial dimension (Simoncelli & Olshausen, 2001; Geisler, 2008; Hyvärinen et al., 2009; 
see Fig. 3.2B for example). Indeed, population tuning had an overall lower amplitude than for 
gratings (~30%, cf. scale bars in Figs. 3.3 and 3.4), most likely due to the heterogeneity of 
local contrasts in the natural stimuli, which may engage widespread population gain control 
reflected in the dye signal (Sit et al., 2009). Nevertheless, also for these stimuli, actual 
orientations after the switch were well represented (compare Fig. 3.4 first row with Fig. 3.3, 
columns #1 and #2). 

 
 
 
 
 
 
 
 

Figure 3.3: Ongoing cortical encoding of current orientation with sequences of short 30-ms stimulus periods. 
Frames resolve population tuning around stimulus switch-time (green line) in 10-ms steps (−20 to +40 ms, 
averages over 384 repetitions of each switch, same conventions as in Fig. 3.2F). The icons on top depict switch 
conditions. Black traces to the right of each frame show time average: 0 to +40 ms. The first four conditions on 
the left are characterized by a change in horizontal orientation (either turned on or off). Each stimulus has 
different orientation content after the switch, except for the switch to blank (4th frame). The last four conditions 
cover corresponding changes in vertical orientation. Note that responses before the switch in 33-Hz sequences 
can partly include responses to previous stimuli (first dashed line Fig. 3.2F), particularly visible in conditions #3, 
when the switch occurred from blank that naturally leads to a low amplitude of activity. Tuning curves obtained 
with voltage-sensitive dye imaging (Sharon & Grinvald, 2002) are generally broader than for spike recordings 
(Benucci et al., 2009) and hence, superimposed gratings caused per se relatively flat distributions. Also our 
stimuli were not of highest contrast and evoked lower modulation depth, which in turn produces higher 
sensitivity to noise (Grabska-Barwinska et al., 2009). Thus, responses to superimposed gratings did not reveal a 
clear bimodal distribution when averaged over brief time intervals (but see Fig. 3.6 for longer time averages). All 
switches p<0.001 in comparison to flat response; except H to VH: p = 0.97; after fitting for all residuals p>0.99; 
except VH to H: res. p = 0.87; B to V: res. p = 0.98; H to B: res. p = 0.73; V to B: res. p = 0.26 (see Materials and 
Methods and Suppl. Table 3.S1–S3 for details).  51 



 

 

 
 
 

Figure 3.4: Primary visual cortex represents difference in orientation content compared with past. 
Conventions and layout as in Fig. 3.3 columns #1 and #2. First row is for comparison with short 30-ms 
stimulus period: Responses to narrow filtered natural stimuli, 1 experiment (384 switch repetitions, V/H 
to VH: p>0.99 no tuning; VH to V: p<0.01 tuned [residual p = 0.99]; VH to H: p<0.02 tuned [res. p = 0.88]). 
Bottom rows: 100-ms stimulus period, narrowly filtered natural stimuli (second row; average modulation 
depth: 0.6±0.2 x10-5), broadly filtered (third row; average modulation depth: 0.5±0.1 x10-5), and gratings 
(last row; average modulation depth: 2.1 x10-5). Blue arrows highlight positions of vertical tuning (90°), 
and red arrows indicate horizontal position (0°). Note that tuning peaked around removed (or added) 
orientations instead of currently presented orientations (for narrowly and broadly filtered stimuli all 
displayed switches: p<0.001 tuned [residuals: p>0.99], 12 experiments [256-896 switch repetitions each], 
average is shown; for gratings all displayed switches: p<0.001 tuned [res.: V to VH: p = 0.96, VH to V: p = 
0.69, H to VH: p = 0.65, VH to H: p>0.99], 1 experiment, 236 switch repetitions). 
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3.4.2 Representation of the difference between past and present orientations 
 

During natural vision changes of contour orientation can occur on relatively slow time scales 
(Gallant et al., 1998; Dragoi et al., 2002; Betsch et al., 2004; Kayser et al., 2004). Hence, in 
the following we contrast the above scheme of ongoing encoding with the processing 
characteristics found for slower sequences of natural scene contours, using 100-ms stimulus 
periods (Fig. 3.4, bottom three rows). Strikingly here, responses to a switch from the vertical 
orientation to superimposed horizontal and vertical (Fig. 3.4, left column) represented almost 
exclusively the horizontal orientation, hence the orientation that was added rather than the 
present superposition. Likewise, switches from superposition to vertical (Fig. 3.4, second 
column) were followed by responses that were tuned to horizontal, thus representing the 
removed orientation instead of the remaining vertical orientation (compare first-row blue with 
bottom red arrows). The same characteristics were found for changes in vertical orientations 
(Fig. 3.4, two right columns; see Suppl. Fig. 3.S1 for the correlation between population 
tuning over time and a standard VH-orientation map). 
 
Most remarkably, the mechanism worked precisely for natural scenes (Fig. 3.4, third row) in 
which the superposition of broadly filtered horizontal and vertical versions was almost 
identical to original images (see example Fig. 3.2, top). Therefore, even for the most complex 
stimuli that contained a rich mixture of multiple orientations, we found sensitive cortical 
tuning for changing orientations rather than for currently presented orientations. 
  
Population tuning to turned-off orientations after a switch from the superposition to a single 
orientation (VH to V or H, 0.29±0.12 mad, x10-5 deltaF/F; see Materials and Methods and 
Suppl. Material Table 3.S1-S3; n = 48: medians across 12 experiments, both orientations, and 
both filter conditions of the natural images) suggests that responses to orientations that were 
turned-off are stronger than responses to orientations that sustained. When these components 
were measured directly, tuning amplitudes were indeed higher for turned-off orientations 
(switches from H or V to blank, 0.58±0.28 mad, x10-5 deltaF/F) than for sustained 
orientations (V to V or H to H, 0.14±0.16 mad, x10-5 deltaF/F; n = 48; paired two-tailed sign 
test p<0.0001). 
 
When comparing responses to narrowly and broadly filtered images, we calculated for the 
latter a decrease in modulation depth of 24±7% (the difference between preferred and 
orthogonal responses, paired t-test p<0.02), while we did not observe differences in tuning 
width (broadly filtered, HWHM 46±2° sem, narrowly filtered, 49±3° sem, pairwise difference 
3±3° sem, n = 8 experiments, p = 0.33). Because broadly filtered images provide enriched 
orientation content, a divisive normalization across populations of neurons with different 
preferred orientations (MacEvoy et al., 2009; Busse et al., 2009) may cause the observed 
decrease in modulation depth. For a proof of principle, we finally applied sequences of 
square-wave gratings in an additional experiment (Fig. 3.4 bottom). As expected, modulation 
depth was large (cf. colorbar) and also for those stimuli we found a dominant representation 
of orientation change. 

 
Even though VSD imaging may be a powerful tool to measure neuronal population dynamics 
with high spatiotemporal resolution, the relationship between the imaging signal and spiking 
activity is not entirely clear. Eriksson et al. (2008) suggest a close relationship between spike 
rate and the derivative of the VSD response rather than its magnitude. Such behavior might 
especially apply to the rising phase of the membrane potential after stimulus onsets (Jancke et 
al., 2004; Sit et al., 2009). Moreover, combined VSD and calcium-sensitive dye imaging 
suggest that the relationship between spiking activity and the amplitude of the VSD response 
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depends on stimulus intensity (Berger et al., 2007). Chen et al. [2012] propose that these 
relationships are well captured by a power function with an exponent of ~4, similarly as 
observed for the relationship between average membrane potential and spike rates in single 
V1 neurons (Anderson et al., 2000; Finn et al., 2007). However, dependencies on individual 
experimental settings, on the particular stimuli used, and on the likely differences between 
species, are widely unexplored. Hence, to address this issue, and to directly exclude the 
possibility that the dye signal levels reporting the difference to past orientations would merely 
reflect subthreshold activity (Petersen et al., 2003; Jancke et al., 2004; Berger et al., 2007; 
Eriksson et al., 2008), we additionally performed electrophysiological recordings in four 
hemispheres. 
 
 

 

 
 

Figure 3.5: Electrophysiological recordings. (A) Multiunit activity (MUA) versus optical signal. Blue trace shows 
averages over 32 recordings (4 different hemispheres) and over randomized 10-Hz sequences of gratings. 
Black trace outlines the time course of the unfiltered optical signal (average over space and all 10-Hz 
sequences, 1 experiment). (B) Log power spectrum of the evoked dye signal (in the steady phase 900-1900 
ms). Spectrum of trace in A (black bold line) and the log spectra for filtered natural stimuli of all 12 
experiments (narrowly filtered stimuli, gray dotted line shows mean, shaded area shows std). First arrow 
points to stimulus frequency (10 Hz), the dotted arrow indicates first harmonic (20 Hz). (C) Example spike 
recording. Spike responses to moving gratings of four different orientations (temporal average over 800 ms) 
indicating orientation tuning to horizontal (red axis). (D) Responses to either horizontal (red) or vertical (blue) 
orientation after presentation of their superposition, black trace plots difference. (E) Summary: Differences 
between responses to vertical and horizontal moving gratings (i.e. orientation tuning, cf. black outline in C) are 
plotted against differences in responses to vertical and horizontal after presentation of their superposition (cf. 
black trace in D). Time averages across the same time window as used for the imaging data (see gray shading 
in D). Each circle plots MUA (n = 32, red dot represents example shown in C-D). Spike responses tend to be 
higher after the preferred orientation was switched-off from the superposition (gray shaded quadrants) than 
when it was the remaining orientation; Fisher's exact test one-tailed p = 0.016; inset shows count for each 
quadrant. 
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Figure 3.5A shows average multiunit activity (MUA, blue trace) recorded after imaging 
(black trace) in response to grating sequences. Along the entire stimulus sequence small 
bumps in the dye signal level coincided precisely with the generation of spiking activity, even 
at low levels during the early phase of the imaged response. Meaningful neuronal signals in 
VSD recordings can indeed be small in relation to overall activity (cf. Sharon and Grinvald, 
2002, for a signature of cross-inhibition suppression). Benucci et al. [2007] showed that small 
oscillations in the dye signal correlated with the frequency of counterphase oscillating 
gratings. In Onat et al. [2011a] we showed for the first time that small bumps of activity 
represented exactly the retinotopic propagation of moving gratings. Very recently, using 
longer sequences (>10 s) of flashed gratings with different spatial phase, these formerly 
elusive retinotopic components in the imaging signal were shown in awake monkey (Omer et 
al., 2013). 

 
For each electrode-recording site we determined the preferred orientation tuning of MUA. 
Figure 3.5C depicts average spiking responses to moving gratings of different orientations. In 
this example, the neurons’ preferred orientation was horizontal (red axis). Next, in Fig. 3.5D, 
their time-resolved responses to a switch from superposition to either a horizontal or a vertical 
orientation are shown (see icons). Despite the fact that these neurons were tuned horizontally 
(Fig. 3.5C), responses for the switch to the nonpreferred vertical orientation were larger than 
for the switch to the preferred horizontal orientation (black trace shows the difference). In Fig. 
3.5E spiking activity from all recorded units is summarized. The plot indicates that the 
recorded neurons responded stronger when their preferred stimulus was removed rather than 
when it was present, similarly as observed in our imaging signals (Fig. 3.4, bottom three 
rows). 
 
Finally, we used a single-switch paradigm (Fig. 3.6; cf. Eriksson et al., 2010; Eriksson et al., 
2012), also to rule-out that stimulus frames other than the switch-pair under analysis (Felsen 
et al., 2002; see Materials and Methods) may have significantly affected the observed 
response behavior using continuous sequences. The superposition of two orientations was 
presented for 30, 100, and 500 ms followed by a sudden switch to a single orientation (Fig. 
3.6A). Whereas switches after 30 ms delay produced activity that was tuned to the orientation 
present after the switch, longer delay times yielded the opposite effect (Fig. 3.6B). Here 
again, population activity represented the orientation that was removed rather than the 
sustained orientation (Eriksson et al., 2010; Eriksson et al., 2012). This effect was stable and 
slightly increased (though not significantly) for 500 ms delays (Fig. 3.6C; in support of these 
findings see Eriksson et al. [2012] for similar results with a stimulus duration of 250 ms). In 
Fig. 3.6D the time-courses of global population activity are shown. For each condition, both 
the initial responses to the superposition as well as the second response to a single orientation 
were represented by peaks of activity that were separated in time with longer switch delays 
(dark gray area). For 100 and 500 ms delays, activity to the superposition nearly adapted to 
baseline levels (occasionally we observed some further oscillations, see gray trace in first plot 
and black trace in third plot), followed by a strong response after the stimulus changed to a 
single orientation. In contrast, for the 30-ms switch, activity did not adapt to baseline and 
responses to both stimuli were merged within a double-peak transient. To demonstrate that 
the orientation-selective part of the responses was directly traceable across the cortical 
activation patterns, we show time-averages of the most active pixels in each condition (Fig. 
3.6E, see maps). Note the opposing cortical patterns in the maps depending on the switch 
direction and its delay times. The temporal evolution of the orientation specific patterns is 
shown as their correlation to a standard VH orientation map over time (black and gray traces 
in Fig. 3.6E; cf. Suppl. Fig. 3.S1). Thus, by using only a single switch, these measurements 
confirmed our findings obtained with stimulus sequences: a short 30-ms period of stimulation 

 55 



resulted in the representation of current orientations (Fig. 3.6E left), whereas longer stimulus 
periods (100 and 500 ms) caused representation of the difference to past orientations (Fig. 
3.6E, second and third graphs). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: Single switches. (A) Superimposed gratings were presented for 30, 100, or 500 ms (see dark gray 
box) before switching to either vertical or horizontal orientation (here and in all subsequent plots these 
switches are marked in black and gray, respectively). The intertrial interval, in which a blank stimulus was 
shown, was set to a minimum of 5 s (200 ms were recorded when a new stimulus started to obtain baseline 
activity, see white boxes). (B) Population tuning in response to the 6 stimulus conditions; switches to vertical 
along top row, horizontal switches at bottom. Same conventions as in previous figures (cf. Figs. 3.2F, 3.3, 3.4). 
Temporal structure of stimulation is indicated at bottom (cf. A). Green lines and boxes mark the time window 
used to calculate effect size in C and maps in E (50-90 ms after switch). Insets: Bimodal distribution 
representing the constituent orientations of the superimposed gratings (time averages 50-150 ms after 
response onset). (C) Effect size. Data points specify average modulation depth (see Materials and Methods) 
dependent on different presentation times of the superimposed gratings (x-axis). Bars depict standard error 
(80 stimulus repetitions). Positive values indicate higher activity at vertically tuned pixels (blue icon) and 
negative values higher activity at horizontal pixels (red icon). When testing for differences between timing 
conditions, pooling vertical and horizontal conditions (sign inverting the latter), we found significant 
differences between the 30-ms and the 100-ms condition (pairwise two-tailed t-test: 30 vs. 100 ms p<0.001, 
n=160) but no significant differences between the 100-ms and 500-ms condition (p=0.79). (D) Time courses of 
global activity (unfiltered spatial averages across imaging frames) in response to the six stimulus conditions. 
Shaded areas depict the temporal structure of stimulus conditions (cf. A). (E) Correlation of the cortical 
activity patterns with a standard VH orientation map (see Materials and Methods and Suppl. Fig. 3.S1). 
Positive values indicate similarity with activity pattern representing vertical orientation (icon on top), negative 
values indicate correlations to the horizontal map. On the right of each graph the 30% most active pixels 
across the imaged cortex are shown for each condition (time averages of 4 imaging frames, 50-90 ms after 
switches). Colors code preferred orientation at each pixel location (same conventions as in Fig. 3.2D). Upper 
maps visualize population tuning to a switch to vertical (outlined black), lower maps show switches to 
horizontal (outlined gray). Dotted lines show correlations with the additive map instead of the standard 
subtractive VH-orientation map (see Materials and Methods) as control. 
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3.5 Discussion 
 

Our main result is that for sequences of natural scene contours presented with 10 Hz, activity 
no longer led to population tuning that represented actual stimulus contours. Instead, when 
compared with the preceding image, the cortical activity patterns characterized exactly the 
difference in orientations. Consequently, large amounts of incoming data were relatively 
suppressed, reminiscent of differencing methods (Fowler et al., 1995) used for video data 
compression in communication technology. For higher temporal frequency (33 Hz), activity 
was instead updated linearly, providing an ongoing representation of current stimulus 
orientation (Ringach et al., 1997; Benucci et al., 2009). Because we opposed two stimulation 
dynamics selected from a wide range of possible sequence frequencies, the exact time course 
of the transition between the different encoding schemes remains to be determined. 
Interestingly, in the same vein, using single squares of light Eriksson et al. [2008] showed in 
ferrets that V1 responses to rapidly presented stimulus switches (<83 ms) were dominated by 
stimulus onsets, whereas both VSD imaging and spiking responses to longer stimuli (>133 
ms) carried additional prominent information about stimulus offset. We speculate that joint 
processing at various stimulus temporal frequencies is required to produce a coherent 
interpretation of a visual scene (Jonides et al., 1982; Rucci et al., 2007; Rucci, 2008; Belitski 
et al., 2008; Nikolić et al., 2009; Onat et al., 2011a; Jurjut et al., 2011; Eriksson et al., 2012), 
which might be implemented through differences in coherence between neuronal signals 
carrying different information at different frequencies, as recently shown for orientation 
tuning in monkey V1 (Gilad et al., 2012; Womelsdorf et al., 2012). 

 
3.5.1 Interaction between adaptive- and off-response components 

 
Because our results were dependent on stimulus frequency, we provide strong evidence that 
input history has a decisive effect on cortical orientation tuning. Several time-dependent 
changes in cortical orientation selectivity could be accounted for by mechanisms of 
adaptation. Specifically, stimulus-selective adaptation of visual cortical neurons has been 
shown to reduce responsiveness and causing a shift in tuning curves away from the adapting 
orientation on short time scales (Movshon & Lennie, 1979; Müller et al., 1999; Felsen et al., 
2002). In our experiments, neuronal adaptation mechanisms (Galaretta & Hestrin, 1998; 
Varela et al., 1999; Sanchez-Vives et al., 2000) and immediate tuned suppression (Nelson, 
1991) may decrease activity for the sustained component. Adaptation to a single orientation 
was shown to also enhance the representation of orthogonal orientations (Dragoi et al., 2002), 
which in our case would furthermore boost the on-response for the newly added orientation. 
Thus, for switches within sequences from a single, (V) or (H), orientation to a superimposed 
(VH) stimulus, adaptation alone would explain the resulting dominant representation of the 
newly added orientation (instead of both of the current orientations). 

 
These mechanisms, however, cannot entirely explain the prominent representation of the 
disappeared orientation after exposure to superimposed orientations. The latter provide no 
bias that could induce adaptation of a particular orientation before the switch. Thus, in 
addition, responses to the disappeared orientation must be involved (Bair et al., 2002; Sit et al. 
2009; Eriksson et al., 2010; Eriksson et al., 2012). Signals following stimulus removal are 
commonly referred to as visual off-responses, which tend to increase with stimulus duration 
(Duysens et al., 1996), as similarly found in the somatosensory cortex (Kyrazi et al., 1994). A 
likely assumption is that off-responses result from post-inhibitory rebound due to sustained 
hyperpolarization arising from synaptic inhibition (Pernberg et al., 1998, but see Scholl et al., 
[2010] for auditory cortical neurons), supposedly mediated by tuned push-pull mechanisms 
within the cortical circuitry (Hirsch et al., 2003). Importantly, such tuned off-responses and 
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adaptive contributions can be disentangled in our study. A change from superimposed 
orientations to a single orientation has two underlying constituents: A switch from one 
orientation to blank (off-component), and an overlaid continuous presentation of the 
orthogonal orientation (sustained, adaptive component). Fig. 3.7 summarizes such a 
composition for a switch from superposition (VH) to a single orientation (V or H). Median 
fits for responses to each of the constituent stimuli are shown (blue/red; see Results), the gray 
curve outlines their average (i.e. divisive normalization, MacEvoy et al., 2009). The black 
curve shows the median fit for the responses that we obtained for the composite switch 
(Suppl. Table 3.S1-S3), indicating tuning to the orientation that was turned off. 

 
Approximating the measured change response for this type of switch (VH to H and VH to V) 
by a weighted average of the two component responses (MacEvoy et al., 2009, Busse et al., 
2009), resulted in a significantly higher average contribution of 60% from the off-component, 
compared with 40% from the adaptive component (see Suppl. Methods and Table 3.S4 for 
details). Thus, for a 100-ms stimulus period the off-component is facilitated (see blue arrows 
in Fig. 3.7) and overrides the response component that undergoes adaptation. Accordingly, 
due to increased contribution of orientation-selective off-responses, the combination of 
adaptive- and off-response components results in a representation of the difference between 
the past and the present image. Taken together, our data suggest mutual interaction across 
population responses to changing and nonchanging, that is, sustained, features. As a 
consequence, after periods of longer stimulation, a stimulus-change within stimulus 
sequences triggers activity to report that a particular feature has disappeared in comparison to 
what is left. 
 

Figure 3.7: Disentangling components that 
produce change coding within 10-Hz 
sequences. Schematic of the response to a 
switch from superimposed orientations to a 
single orientation (bottom icon, black box) and 
the responses to the constituents of this switch 
(middle icons): Median of fitted population 
tuning curves (see Materials and Methods and 
Results) for off-component (blue), adaptive 
component (red), and composite switch (black; 
n = 48, medians across 12 experiments, both 
orientations, and both filter conditions of the 
natural images). Note the blue arrows, 
indicating deviations from the component 
average (gray, see main text for quantification). 
Overall, the measured response to the 
combined stimulus represents the difference 
between the past stimulus (i.e., superposition, 
purple icon at bottom) and the current 
orientation (horizontal, red icon at bottom). This 
difference is the orientation that was turned off 
(see peak of black curve at position of vertical 
orientation tuning, blue). The opposite result 
was found for 33-Hz sequences (see example in 
inset; nonfitted data of an experiment obtained 
with narrowly filtered natural images). 
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Stimuli usually do not occur in temporal isolation, but within a temporal context where 
stimuli in the range of a few milliseconds up to seconds appear in succession (cf. Zucker & 
Regehr, 2002). In an early account, so-called paired pulse stimulation (Allison, 1962) was 
used, showing that responses to a second stimulus were severely suppressed when compared 
with the first response dependent on the interstimulus interval. Although the underlying 
mechanisms are not resolved there is agreement that paired pulse suppression is a cortical 
phenomenon with a strong GABAergic contribution (Wehr & Zador, 2005). In contrast to 
paired pulse suppression, which addresses the transient behavior of cortical response 
properties, continuous, periodic stimulation addresses the response behavior during so-called 
steady-state conditions (Onat et al., 2011b). Conceivably, our single-switch condition (Fig. 
3.6) resembles paired stimulation, while the sequence conditions reflect steady-state 
stimulation as termed by others. Interestingly, the built-up and the time course of inhibition 
during steady-state stimulation can be quite different from what can be inferred from paired 
stimulation (Hickmott, 2010). It is therefore surprising that we obtained equivalent results for 
both paradigms which may hint on involvement of widespread excitatory-inhibitory 
mechanisms (Markram et al., 1998). Interestingly, in a recent work by Olsen et al. [2012] it 
was shown that neurons in cortical layer six have a major impact in controlling the gain of 
activity in upper layer neurons, the layers imaged here. Most strikingly, gain control occurred 
without changing orientation tuning. Thus, such mechanism may be the ideal candidate to 
balance the relative weights of adaptive and off-components dependent on visual input 
frequency. This might be realized by different gating of activity across two neuronal circuits 
acting (i.e. “competing”, Adesnik and Scanziani, 2010) in parallel: those including adapting 
neuronal populations and those that produce off-responses. 

 
3.5.2 Coding of stimulus differences between past and present 

 
Representation of difference in the primary visual cortex may lead to attenuation of 
redundancies (Attneave, 1954) over time and increased sensitivity to dissimilar structures, 
such as differently oriented borders of objects (Das & Gilbert, 1997; Downar et al., 2000; 
Dragoi et al., 2002; Desbordes & Rucci, 2007; Rucci et al., 2007; Rucci, 2008; Beste et al., 
2011). The proposed activity dynamics of adaptive- and off-response components might be 
viewed as short-term memory processes (Sperling, 1960; DiLollo, 1977; Coltheart, 1980), 
which begin with stimulus onset (DiLollo, 1977), trigger recurrent networks (McCormick et 
al., 2003), and may be coupled with feed-back from higher areas (Rockland & Pandya, 1979; 
Roland et al., 2006; Golomb et al., 2010; Vetter et al., 2013) to allow prolonged influence of 
past activity (Coltheart, 1980; Duysens et al., 1985; McCormick et al., 2003) on the 
processing of current input (Gould, 1967; Jonides et al., 1982; Jancke, 2000; Eagleman et al., 
2004; Eriksson et al., 2008; Nikolić et al., 2009; Eriksson et al., 2010; Glasser et al., 2011; 
Eriksson et al., 2012). 
 
During free viewing of natural scenes intersaccadic durations (in human ~250 ms on average, 
Kuang et al., 2012; in cat >2000 ms, Moeller et al., 2004) can be even larger than our long 
stimulus intervals (>100 ms). After the onset of each new fixation (i.e. at low temporal 
frequencies) difference representation might facilitate cortical encoding of luminance 
discontinuities and edges at spatial scales larger than covered by retinal ganglion cells and 
also by neighboring cortical cells with similar orientation tuning (Müller et al., 1999). 
Specifically, cortical difference representation might compensate the extensive luminance 
correlations (and thus, reduce redundancies) conveyed by transient activity of retinal ganglion 
cell populations immediately after a saccade (Desbordes & Rucci, 2007). 

 
High correlation among activity of ganglion cells immediately after a saccade signals long-
range correlations in natural images (Kuang et al., 2012). A second regime brought in by 
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microscopic eye movements, operating at higher temporal frequencies, is proposed to cause 
whitening of input while decorrelating retinal activity (Kuang et al., 2012). Hence, these 
retinal signals emphasize small spatial details in visual structures during fixation (Rucci et al., 
2007; Desbordes & Rucci, 2007; Rucci, 2008; Kuang et al., 2012), even of contour 
orientations (Rucci & Desbordes, 2003). The here reported cortical representation of current 
orientations at higher frequencies (33 Hz) may reflect the transmission of the acquired 
information further downstream. In conclusion, the two temporal regimes of eye movements 
may allow complementary contributions (Snodderly et al., 2001) in a motion-based coarse-to-
fine processing of visual information (Parker et al., 1992; Jancke, 2000; Ahissar & Arieli, 
2001; Geisler, 2001; Henning et al., 2002; Desbordes & Rucci, 2007; Rucci, 2008; Ahissar & 
Arieli, 2012; Meirovithz et al., 2012) and could be an efficient mechanism for perception of 
salient structures in the environment. Whether these regimes act linearly at the cortical level 
cannot ultimately be decided upon our data. Modeling at the retinal level suggests that the two 
regimes can however be well captured using linear approaches (Desbordes & Rucci, 2007). 

 
More generally, the time-dependent cortical coding of the difference to past events can be 
interpreted as an early cortical signature of mismatch signals between ongoing stimulation 
and abrupt stimulus changes, as first described in the auditory domain (Näätänen et al., 1978). 
Most recently, mismatch signals have been shown in the primary cortex of the mouse to be 
cooperatively influenced by motor-related input (Keller et al., 2012). We suggest that both 
adaptation (Jääskelainen et al., 2004) and stimulus off-responses play in important role in 
generating mismatch signals. 

 
Finally, responses to stimulus differences fit well conceptually with predictive coding 
principles, proposing that deviations from cortically generated predictions are propagated up 
the visual hierarchy as error signals (Friston, 2005; Garrido et al., 2009). Given the prediction 
that contour orientations remain stable over prolonged periods of time, as during periods of 
fixation, error signals would correspond to representations of change, as measured here. 
Predictive coding principles were found as early as in the retina (Srinivasan et al., 1982; 
Hosoya et al., 2005) and have been used in recent modeling frameworks of cortical visual 
responses (Rao & Ballard, 1999; Friston, 2005; Spratling, 2010; Boerlin & Denève, 2011; 
Spratling, 2012), also suggesting a combination of stimulus and error-like coding within 
single neurons (Eriksson et al., 2012). The exact timescales (Thorpe et al., 1996) at which 
different predictive states may evolve under natural viewing conditions need to be further 
explored and elaborated in computational models to account for the qualitatively different 
behaviors of cortical responses—from ongoing representation to representation of 
difference—that are reported here. 
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3.6 Supplementary material 

3.6.1 Contents of supplementary material 
 

Supplementary figures (3.6.2) 
 

Figure 3.S1: Time course of difference representation. 
This Figure shows the correlation between population orientation tuning 
over time and a standard VH-orientation map. The purpose of this Figure is 
to also show the time course of the main effect beyond the window used for 
analysis throughout the paper (50-90 ms after switch). For the single switch 
paradigm correlation over time is shown in Fig. 3.6. 

 
Figure 3.S2: Stimulus-triggered versus switch-triggered averages. 

A. Illustration of the stimulus paradigm and the averaging procedure for 
analysis. B. The purpose of this Figure is to show how the differences in 
switch-triggered responses that we find for the different stimulus durations 
(30 ms vs. 100 ms) lead to differences in stimulus-triggered responses. 

 
Figure 3.S3: Switches to blank, sustained orientation, and from superposition to a 

single orientation. 
The purpose of this Figure is to show responses to a switch from a single 
orientation to blank, as a supplement to the data provided in Figure 3.4 of 
the main text. 

 
Supplementary tables  (3.6.3) 

 
Table 3.S1: Statistical evaluation of population tuning, step 1.  
Table 3.S2: Statistical evaluation of population tuning, step 2. 
Table 3.S3: Statistical evaluation of population tuning, step 3, orientation-tuning 

amplitudes.  
The purpose of these three tables is to give a comprehensive report of the 
statistical results. 

 
Table 3.S4: Response decomposition (results): contributions of adaptive and off-

components to change responses. 
The purpose of this table is to show the results from the comparison of 
responses to constituent stimuli (off-switch of one orientation and sustained 
presentation of the orthogonal orientation) with the response to their 
composite stimulus (switch from superimposed orientations to a single 
orientation). 

 
Supplementary methods (3.6.4) 

 
Response decomposition (methods): evaluation and fitting procedure 

Here we describe the method that was used to compute the results in Table 
3.S4, which are referenced in the Discussion section of the main text. The 
response to the switch from superposition to single orientations is 
approximated using responses to the two constituent stimuli. 
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3.6.2 Supplementary figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.S1: Time course of difference representation. Correlations between responses to a switch from 
superposition to single orientation (measured within sequences of narrowly filtered natural images) and VH-
map (independently measured differential horizontal-vertical activity pattern, see Materials and Methods) 
over time. Positive values indicate similarity with orientation pattern evoked by a vertical grating 
(corresponding to white regions in VH-map), and negative correlation indicates similarity with the horizontal 
pattern (dark regions in VH-map). When presented within 30-ms time sequences, increase in correlation 
showed tuning for the orientation that was actually present (thin gray traces; average correlation from 50-90 
ms after switch, 1 experiment: 0.28 for switch to vertical and -0.25 for switch to horizontal). For 100-ms 
stimulus time sequences (black traces, gray shaded area mark standard deviation across 12 different 
experiments; black lines show average values from 50-90 ms for the individual experiments), correlation 
values reversed, indicating tuning for the orientation that had disappeared (time window 50-90 ms: -0.21±0.15 
(std), left tailed t-test against zero p<0.001 for switch to vertical; 0.17±0.11 (std), right tailed t-test p<0.001 for 
switch to horizontal). 
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Figure 3.S2: Stimulus-triggered versus switch-triggered averages. A: Illustration of averaging procedures. 
Exemplified are three different stimulus sequences (5 stimuli from 17-stimulus-long sequences are shown; 
in the experiments we used at least 64 different sequences of at least 17 images, see Materials and 
Methods). On the left, sequences are aligned at a specific stimulus (horizontal in this example, red box) 
and averaged. Note that the different stimuli before and after are averaged. For stimulus-triggered 
averaging, this procedure is used to average the cortical responses to a particular single stimulus across 
all sequences. On the right, sequences are aligned at switches between specific pairs of stimuli (blank to 
horizontal in this example) and averaged. In this case the pair is fixed, while different stimuli before and 
after are averaged. For switch-triggered averaging, this procedure is used to average cortical responses to 
a particular stimulus pair (i.e. switch) across all sequences. 
B: Stimulus-triggered versus switch-triggered responses. The left side shows average population 
responses triggered by either the vertical or horizontal stimulus. Here we averaged over all preceding 
stimuli (see A). This is usually seen as the pure response to the single orientation stimulus. When 
measured within 30-ms sequences, there is clear population tuning to the currently resented stimulus. 
However, when measured within 100-ms sequences, the stimulus-triggered response is flat, indicating 
that the different underlying switch-triggered responses (change responses), comprising switches in which 
the orientation was removed as well as switches in which is was added, average each other out. The right 
side shows example switch-triggered responses for switches from blank to a single orientation. Here, we 
find orientation tuning for both sequence speeds. Altogether this illustrates that at 30-ms presentation 
duration, population-tuning responses are evoked by individual stimuli in a sequence, while at 100-ms 
presentation duration responses are highly dependent on specific pairs of stimuli. The window shows 30-
90 ms after onset of the oriented stimulus, the green line is at 50 ms (the approximate response latency). 
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Figure 3.S3: Switches to blank, sustained orientation, and from superposition to a single orientation. We find 
that population responses were faithfully tuned to both turned-off and sustained orientations (first and second 
column, respectively) after both 30 ms (first row) and 100 ms (second row) presentation duration. When one 
orientation was turned-off from superimposed orientations (gray columns), the direction of population tuning 
was dependent on stimulus timing: Whereas in fast sequences the actual (i.e. the sustained) orientation after 
the switch was represented, slower sequences resulted in a representation of stimulus difference (i.e. the 
removed orientation). Conventions as in Fig. 3.4, main text. 
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3.6.3 Supplementary tables 
 

 V to VH VH to V B to H H to B H to VH VH to H B to V V to B 
33-Hz 

Gratings 56***  339***  350*** 727*** 8   
(p=0.97) 123*** 471*** 618*** 

33-Hz 
Narrow 

6   
(p>0.99) 37**  34** 114*** 5   

(p>0.99) 33* 47*** 151*** 

10-Hz 
Narrow 563*** 671***  1180*** 2144***  422*** 443*** 1463*** 2663*** 

10-Hz 
Broad 388***  370*** 704*** 810*** 324*** 306*** 728*** 1051*** 

10-Hz 
Gratings 280*** 184*** 372*** 450*** 149*** 179*** 276*** 518*** 

 
Table 3.S1: Statistical evaluation of population tuning, step 1. In the first step, we evaluated the 
difference to zero (or flat response). Shown are the 𝜲𝜲2-statistic and p-values (*** = p<0.001, ** = 
p<0.01, * = p<0.02). For the 33-Hz data, we find significant differences to zero for switches with a 
single orientation present after the switch (columns 2, 3, 6, and 7) and off-switches from a single 
orientation to the gray screen (columns 4 and 8). For the transition from a single orientation to the 
superposition, we find no significant deviation (columns 1 and 5), as is expected from a representation 
of both orientations present after the switch, with the exception of one switch (V to VH, column 1, 
row 1). For the 10-Hz data, the population tuning curves deviate significantly from zero in all cases 
(lower three rows).  
 
 
 

 V to VH VH to V B to H H to B H to VH VH to H B to V V to B 
33-Hz 

Gratings 
4 

(p>0.99) 
5 

(p>0.99) 
5 

(p>0.99) 
12 

(p=0.73) 
3 

(p>0.99) 
10 

(p=0.87) 
6   

(p=0.98) 
19 

(p=0.26) 

33-Hz 
Narrow 

3   
(p>0.99) 

6 
(p=0.99) 

4 
(p>0.99) 

7   
(p=0.97) 

5 
(p>0.99) 

10 
(p=0.88) 

5   
(p>0.99) 

5 
(p>0.99) 

10-Hz 
Narrow 

101 
(p>0.99) 

139 
(p>0.99) 

119 
(p>0.99) 

143 
(p>0.99) 

52 
(p>0.99) 

126 
(p>0.99) 

105 
(p>0.99) 

120 
(p>0.99) 

10-Hz 
Broad 

76 
(p>0.99) 

116 
(p>0.99) 

97 
(p>0.99) 

86 
(p>0.99) 

96 
(p>0.99) 

107 
(p>0.99) 

66 
(p>0.99) 

85 
(p>0.99) 

10-Hz 
Gratings 

7 
(p=0.96) 

13 
(p=0.69) 

9 
(p=0.93) 

21 
(p=0.16) 

13 
(p=0.65) 

3 
(p>0.99) 

33 
(p<0.01) 

14 
(p=0.62) 

 
Table 3.S2: Statistical evaluation of population tuning, step 2. In the second step, we fit sinusoids 
to the population tuning curves of each experiment and repeat the test against zero on the residuals. 
Shown are 𝜲𝜲2-statistics and p-values. Now there are no significant differences, except in one case (10-
Hz-Gratings B to V). In all cases the 𝜲𝜲2-values decreased substantially, thus a large part of the 
variance in the data can be explained by the fitted function. 
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 V to VH VH to V B to H H to B H to VH VH to H B to V V to B 

33-Hz 
Gratings -0.33 -0.88 0.89 1.32 -0.10 0.53 

 
-1.02 

 
-1.21 

33-Hz 
Narrow -0.08 -0.28 0.27 0.53 0.01 0.26 -0.33 -0.62 

10-Hz 
Gratings 1.29 0.99 1.46 1.62 -0.90 -1.05 -1.19 -1.79 

10-Hz 
Narrow 

0.30 
(0.21*) 

0.39 
(0.34**) 

0.61 
(0.45***) 

0.84 
(0.77***) 

-0.32  
(-0.32**) 

-0.34  
(-0.32**) 

-0.62  
(-0.56***) 

-0.84  
(-0.67***) 

10-Hz 
Broad 

0.25 
(0.20**) 

0.30 
(0.22**) 

0.48 
(0.43***) 

0.49 
(0.35***) 

-0.24  
(-0.14*) 

-0.31  
(-0.25***) 

-0.45 
(-0.37***) 

-0.52  
(-0.49***) 

 
 
 
 
 
 
 
 
 
 
 
 
All values: x10-5 DeltaF/F; Sign test: ***p<0.001, **p<0.01, *p<0.05  
 
Table 3.S3: Statistical evaluation of population tuning, step 3, orientation-tuning amplitudes. 
 
Black values indicate switches where population-tuning curves did not significantly deviate from zero. 
Amplitudes for switches were population-tuning curves deviated significantly are indicated in either 
red or blue, depending on the sign of the fitted functions. Positive values indicate horizontal tuning 
and are indicated in red; negative values indicate vertical tuning and are indicated in blue. Values 
were fitted for each experiment individually. For the 33-Hz data and the 10-Hz grating data, the fitted 
values are shown directly (n = 1 in both cases). For the 10-Hz data (derived from narrowly and 
broadly filtered natural images), averages and medians (in brackets) over experiments (n = 12) are 
shown, asterisks indicate results from a sign test against zero over n = 12 values. Histograms detail the 
individual values for the 12 experiments (blue side negative, red side positive amplitudes), 
corresponding to the last two rows of the above table. 
 
33-Hz data: Amplitudes are negative (indicating vertical tuning) when vertical orientation is presented 
after the switch (columns 2 and 7) and positive (indicating horizontal tuning) when the orthogonal 
(horizontal) orientation is presented after the switch (columns 3 and 6). We confirm persistent tuning 
to previous orientation after a switch from a single orientation to blank for horizontal (column 4) and 
vertical orientation (column 8). When we examine the case where transition to the superposition led to 
significant differences from zero before the fitting, we find that the population tuning represents the 
vertical orientation presented before the switch and not the horizontal orientation that was turned on 
(column 1, row 1), most likely reflecting a delayed response during transition.  
 
10-Hz data: Responses were tuned to a single orientation switched on from blank for both horizontal 
(column 3) and vertical orientation (column 7). Corresponding to the 33-Hz data, we find a persistent 
response to the previous orientation when switched-off to blank (off-component), for both horizontal 
(column 4) and vertical orientation (column 8). For switches from a single orientation to the 
superposition, positive amplitudes indicate horizontal population tuning when the horizontal 
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orientation was added (column 1), and negative amplitudes indicate vertical population tuning when 
the vertical orientation was added (column 5). For switches from the superposition to a single 
orientation, amplitudes indicate population tuning to the removed orientation when horizontal is 
turned-off (column 2) and when vertical is turned off (column 6). In general, we find that the sign of 
the fitted amplitude is consistent with population tuning to the orientation present after the switch for 
the 33-Hz data and representative of the difference between two successive stimuli for the 10-Hz data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 3.S4: Response decomposition (results): contribution of adaptive and off-
component to change response.  
 
Results for 10-Hz sequences, 12 experiments. Columns describe the models, which are 
characterized by the respective weights given to adaptive component (i.e. response to 
sustained orientation, third column) and off-component (response to orientation that is 
turned-off, fourth column). For model #4, mean and sem across fitted weights for 
experiments and both filter conditions (broad and narrow) is given. The fifth column shows 
degrees of freedom, the sixth column the 𝜲𝜲2-statistic (see Materials and Methods). The 
seventh column shows the ratio of 𝜲𝜲2-values between the respective model and the 
baseline. The eighth column shows the p-value for data-model comparison. 
 
Neither of the constituent responses alone (#1 and #2) can explain the data better than the 
baseline model (𝜲𝜲2-values in #1 and #2 are higher than in #0), albeit the off-component 
alone is closer to the measured data than the adaptive component alone (𝜲𝜲2-values in #2 are 
smaller than in #1). The 50-50-average of both components (#3) provides a better fit than 
either of the components alone (#1 and #2). When constituent responses are combined as 
weighted average, we obtain significantly higher weights for the off-component (than for 
the adaptive component (see #4; two-tailed t-test against 0.5, p<0.01). The prediction 
resulting from such a combination reduces the 𝜲𝜲 2-values by 49%.  

  

# Description Adaptive  
comp. 

Off-  
comp. df       𝜲𝜲2 𝜲𝜲2/ 𝜲𝜲2 of 

Baseline p-value 

 
0 Baseline 0 0 863 1789 100% <0.0001 
1 Adaptive comp. alone 1 0 863 5101 285% <0.0001 
2 Off comp. alone 0 1 863 3283 183% <0.0001 
3 50-50-Average 0.5 0.5 863 1077 60% <0.0001 
4 Weighted Average 0.40± 

0.03 
0.60 839 909 51% 0.047 
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3.6.4 Supplementary methods 
 
Response decomposition (methods): evaluation and fitting procedure 
 
To investigate the response to the switch from the superposition to a single orientation (VH to 
V/H) at 10 Hz in more detail, we approximated response to this complex switch through the 
combination of the responses to its constituents, a sustained presentation of a single 
orientation (V to V or H to H), and the off-switch of the other orientation (H to blank or V to 
blank). The data used in our models are time-averaged (50–90 ms after switch) population 
tuning curves. 
 
To statistically evaluate the goodness of the fit, we first tested the response from the complex 
switch (VH to H/V) against a flat response at zero to obtain a baseline. In the next step, we 
repeated the test on the residuals between the predictions of models 1 to 4 and the data.  
 
As test statistics, we computed one 𝜲𝜲2-value across all experiments (e = 1,…,n; where n is the 
number of experiments), stimulus types (f = narrowly filter, broadly filtered naturals), 
orientation bins (𝜃𝜃 = 1,…,18; bins of 10° each), and types of switches (c = 1,2; corresponding 
to VH to V and VH to H), taking the standard error over repetitions of a switch type 
(repetitions re = 1,…,me; where re is a repetition in experiment e, and me is the overall number 
of repetitions in experiment e), as a normalization factor:  
 

Χ2 = �����
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Here, 〈 〉𝑟𝑟𝑒𝑒 denotes the average response over repetitions in experiment e, and 𝑑𝑑𝑒𝑒,𝑓𝑓,𝜃𝜃,𝑐𝑐,𝑟𝑟𝑒𝑒  is 
the response that we wanted to model in experiment e, filter condition f, orientation bin 𝜃𝜃, 
switch type c, and repetition re. Respectively, 〈𝑢𝑢𝑒𝑒,𝑓𝑓,𝜃𝜃,𝑐𝑐,𝑟𝑟𝑒𝑒〉𝑟𝑟𝑒𝑒 is the average of responses to the 
sustained orientation, and 〈𝑣𝑣𝑒𝑒,𝑓𝑓,𝜃𝜃,𝑐𝑐,𝑟𝑟𝑒𝑒〉𝑟𝑟𝑒𝑒 is the average of off-response over all repetitions in 
experiment e, in filter condition f, orientation bin 𝜃𝜃, for switch type c. 
 
We investigated three different models and the baseline response (model 0). The models 
differ in their weights for the sustained response, denoted with a, and the weight for the off-
response, denoted with b. For the baseline (test against constant zero), m0: a = b = 0. In model 
1 (only sustained response), m1: a = 1; b = 0, in model 2 (only off-response), m2: a = 0; b = 1, 
in model 3 (50-50-average) m3: a = 0.5; b = 0.5. In model 4 parameters were fitted to the data 
using the constraint a + b = 1. We fitted aef for each experiment e and filter condition f by 
minimizing all 𝜀𝜀ef: 
 
 

𝜀𝜀𝑒𝑒𝑒𝑒 ≔ �����𝑎𝑎𝑒𝑒𝑒𝑒〈𝑢𝑢𝑒𝑒,𝑓𝑓,𝜃𝜃,𝑐𝑐,𝑟𝑟𝑒𝑒〉𝑟𝑟𝑒𝑒 + (1 − 𝑎𝑎𝑒𝑒𝑒𝑒)〈𝑣𝑣𝑒𝑒,𝑓𝑓,𝜃𝜃,𝑐𝑐,𝑟𝑟𝑒𝑒〉𝑟𝑟𝑒𝑒 − 𝑑𝑑𝑒𝑒,𝑓𝑓,𝜃𝜃,𝑐𝑐,𝑟𝑟𝑒𝑒�
2

𝑟𝑟𝑒𝑒𝑐𝑐𝜃𝜃

 

 
This way, one set of weights was fitted to each experiment and filter condition, with data-
model comparison at 864 points: 12 experiments x 2 filter conditions x 18 bins of orientation 
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preference x 2 versions of the switch. The models have different degrees of freedom, 
depending on the number of fitted parameters: dfnr = 864 −1− pnr, with fitted parameters (prn): 
p0 = p1 = p2 = 0, p3 = 24.  
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4. Influence of low-level stimulus features, task dependent factors, 
and spatial biases on overt visual attention (Study 3) 
 
This section is based on the following publication in PLoS Compuational Biology: S Kollmorgen12✮, N 
Nortmann1✮, S Schröder12✮, P König1 (2010) Influence of Low-Level Stimulus Features, Task 
Dependent Factors, and Spatial Biases on Overt Visual Attention. PLoS Comp Biol 6: 1-20. 1Institute 
of Neurobiopsychology, University of Osnabrück, Osnabrück, Germany. 2Institute of 
Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland. ✮These authors 
contributed equally to this work. 

4.1 Abstract 
 
Visual attention is thought to be driven by the interplay between low-level visual features and 
task dependent information content of local image regions, as well as by spatial viewing 
biases. Though dependent on experimental paradigms and model assumptions, this idea has 
given rise to varying claims that either bottom-up or top-down mechanisms dominate visual 
attention. To contribute toward a resolution of this discussion, here we quantify the influence 
of these factors and their relative importance in a set of classification tasks. Our stimuli 
consist of individual image patches (bubbles). For each bubble we derive three measures: a 
measure of salience based on low-level stimulus features, a measure of salience based on the 
task dependent information content derived from our subjects’ classification responses and a 
measure of salience based on spatial viewing biases. Furthermore, we measure the empirical 
salience of each bubble based on our subjects’ measured eye gazes thus characterizing the 
overt visual attention each bubble receives. A multivariate linear model relates the three 
salience measures to overt visual attention. It reveals that all three salience measures 
contribute significantly. The effect of spatial viewing biases is highest and rather constant in 
different tasks. The contribution of task dependent information is a close runner-up. 
Specifically, in a standardized task of judging facial expressions it scores highly. The 
contribution of low-level features is, on average, somewhat lower. However, in a prototypical 
search task, without an available template, it makes a strong contribution on par with the two 
other measures. Finally, the contributions of the three factors are only slightly redundant, and 
the semi-partial correlation coefficients are only slightly lower than the coefficients for full 
correlations. These data provide evidence that all three measures make significant and 
independent contributions and that none can be neglected in a model of human overt visual 
attention. 

4.2 Introduction 
 
In daily life, eye movements center parts of a scene on the human fovea several times a 
second (Buswell, 1935). The part of the visual field falling onto the fovea is represented with 
the highest spatial acuity and, compared to the periphery, receives disproportionately more 
cortical processing resources (Tootell et al., 1982). The selection process is an important 
aspect of attention, and it has a profound impact on our perception (Rizzolatti et al., 1987). 
The selection of fixation points is governed by several factors. First, goal-driven, top-down 
mechanisms adapt eye movements to the specific task (Yarbus, 1967; Land et al., 1999). 
Second, bottom-up mechanisms that consider only sensory-driven aspects, such as local 
image features (Koch & Ullman, 1985), contribute to the fixation selection process. Third, 
characteristics inherent to the visual apparatus, such as the spatial bias to the center region 
(Tatler, 2007) and geometric properties of saccades (Brockmann & Geisel, 1999), are widely 
acknowledged to influence the selection of fixation points. However, the relative roles and the 
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interaction of these mechanisms are not understood, and a quantitative understanding of the 
principles of fixation selection is still lacking. 
 
Attention models designed to cope with the complexities of natural conditions are usually 
based on a so-called salience map (Koch & Ullman, 1985). Filtering the input image with 
kernels reminiscent of early visual processing generates feature maps at various spatial scales. 
These are then combined into a single salience map, which encodes the probability that an 
image region will be attended (Itti & Koch, 2001). In principle, the selection of features for 
such models is unconstrained. First implementations were designed to explain covert attention 
in experiments involving artificial stimuli and based on a repertoire of simple features. 
Present models slowly move towards a more complete list of relevant features (Wolfe & 
Horowitz, 2004) and include more and more features (Betz et al., 2010). Furthermore, they 
introduce probabilistic and decision theoretic concepts (Zhang et al., 2008; Gao & 
Vasconcelos, 2009; Itti & Baldi, 2009). Salience maps predict, to some extent, fixations in 
complex scenes (Privitera & Stark, 2000; Li, 2002; Parkhurst et al., 2002; Peters et al., 2005; 
Tatler et al., 2005) for humans as well as for monkeys (Einhäuser et al., 2006). The critical 
phrase “to some extent” is at the center of an intense debate. Is it possible to refine models 
based on stimulus dependent salience to model overt attention as well as intersubject 
variability allows?  
 
A major concern is that even if features of the salience map, such as luminance contrast, are 
good correlates of fixation probability, they do not necessarily drive attention causally 
(Einhäuser & König, 2003; Carmi & Itti, 2006; Tatler, 2007), but are contingent on higher-
order statistics (Einhäuser et al., 2006). These issues have raised considerable skepticism 
regarding models based purely on low-level image features.  
 
For these reasons, there is consensus that viable models of human attention should not rely 
solely on stimulus properties. Specifically, eye movements are influenced by spatial 
constraints and properties of the oculomotor system. A wide range of studies has 
demonstrated a preponderance of small amplitude saccades (Bahill et al., 1975). Furthermore, 
under typical lab conditions observers have a central bias—i.e., a tendency to fixate 
preferentially close to the center of photographs of natural scenes, in excess of behavior under 
truly natural conditions (Tatler et al., 2006; Schuhmann et al., 2008). Furthermore, the recent 
years have seen a major advance in our understanding of scene layout. Including such 
information, which was automatically generated by machine learning algorithms, leads to a 
very high prediction accuracy in a search task for pedestrians (Ehinger et al., 2009). 
Furthermore, recent work demonstrates that spatial properties might have a large influence on 
overt attention (Tatler & Vincent, 2009). While it is clear that these spatial factors contribute 
to the selection of fixation points, there is as yet no quantification of their general influence. 
 
That the task context influences eye movements has long been observed (Buswell, 1935; 
Yarbus, 1967). In a study utilizing a variety of tasks—including abstract interpretations, such 
as the judgment of social status—the task was found to strikingly modify observed fixation 
patterns (Yarbus, 1967). Also the complex activities of daily living reveal the task 
dependence of human eye movements (Land & Hayhoe, 2001). Models for visual attention 
based solely on low-level visual features fail to capture the effects of the task context. Several 
extensions to existing and also new models have been proposed to address that shortcoming 
(Tsotsos et al., 1995; Torralba, 2003; Navalpakkam & Itti, 2007). An elegant information 
theoretic approach combines visual appearance, spatial information and high-level 
information further improving prediction accuracy (Kanan & Cottrell, 2010). 
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It was suggested early on that in a specific task context, the information content of an image 
patch defines its salience (Antes, 1974; Mackworth & Morandi, 1967). This proposal has 
triggered bottom-up driven models of attention incorporating a decision theoretic approach 
(Zhang et al., 2008; Gao & Vasconcelos, 2009; Itti & Baldi, 2009). Hence the information 
content of a patch may be viewed as a task dependent, high-level feature. This view is suited 
to reconciling stimulus-driven models and task-centered models. Recent studies emphasizing 
the importance of objects in overt attention are compatible with this view (Einhäuser et al., 
2008). However, information content is determined either intuitively or based on a direct 
subjective rating. Furthermore, there is presently no general algorithm available that would 
reliably label objects in a visual scene. Instead studies rely again on ratings of human subjects 
(http://labelme.csail.mit.edu/). An explicit quantification of the contribution of task dependent 
factors relative to feature-based factors is still missing. 
 
In summary, it is widely acknowledged that image features, the task of the observer, and the 
properties of the oculomotor system contribute to the selection of fixation points. Still, in the 
absence of quantitative data on the relative weight of the different factors, settling the issue of 
how exactly each of these contributes towards overt attention is not possible. In the present 
study, we attempt a step in this direction: we quantify the relative contribution of stimulus 
properties, task dependence, and oculomotor constraints to the selection of fixation points. 
We capture stimulus dependent properties by an analysis of low-level image features. Task 
dependent factors are captured by the information content of discrete parts of the stimulus in 
well defined tasks. The influence of oculomotor constraints is taken into account by a 
generative model including typical saccadic parameters and the central bias. With this 
approach we obtain scalars for each of these three factors for each image region, allowing us 
to quantify their independent contributions to human eye movements. 
 
To quantify the three different types of influences we sample non-overlapping image patches 
(bubbles) from forest scenes and face images. These isolated patches are shown in different 
configurations in combination with a classification task. This design is inspired by Gosselin 
and Schyns, who have introduced the bubble paradigm to measure which parts of an image 
are used by the observer to solve a classification task (Gosselin & Schyns, 2001; Gosselin & 
Schyns, 2002; Schyns et al., 2002; Vinette et al., 2004). The technique applies two-
dimensional Gaussian filters to isolate locations of visual cues, which are called bubbles. 
These are then presented in varying combinations, revealing only a limited controlled subset 
of the image content in combination with a classification task. Based on the observers’ 
responses, Gosselin and Schyns derived a map revealing the regions of an image that are 
relevant for a specific classification task (Gosselin & Schyns, 2001). We use the bubble 
technique in combination with an eye-tracking experiment to obtain measures of different 
contributions to overt attention. Each bubble is treated as an independent unit. Utilizing 
recorded eye movements, responses in the classification task, feature analysis of the image 
patches, and baseline data taken from a free viewing eye-tracking study, we compute four 
measures: the stimulus dependent measure captures low-level feature contrast and is based on 
the luminance and texture distribution within each bubble. The task-related measure ignores 
image features, but quantifies how much information a bubble contains in the context of a 
specific classification task. Additional high-level factors, e.g. emotional and attentional state, 
might be relevant. We tried to keep these constant as much as possible. This quantification 
does of course not capture all possible top-down effects discussed in the literature as a 
classification task provides a particular context. The third measure, describing the spatial 
characteristics of eye movements, builds on a baseline study and takes into consideration the 
global fixation bias and geometrical properties of saccades. By evaluating the eye-tracking 
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data of the main study, we obtain the fourth measure that captures the empirical salience of 
each bubble.  
 
In comparison to full field stimuli, our bubble stimuli consist of a manageable number of 
discrete perceptual units. Using discrete units allows us to assign a single value for each of the 
measures to each bubble. In particular, describing the task dependent information of a bubble 
using the degree of agreement between subjects with respect to a classification task requires 
individual pieces of visual information. It is not clear how a measurement of local information 
content could be achieved using full field stimuli only. Accordingly, the problem of 
measuring local information is exactly the one addressed when the bubbles technique was 
first established (Gosselin & Schyns, 2001).  
 
Having acquired the four measures for each bubble, we finally use linear multivariate 
regression to quantify the overall and the individual, i.e., non-redundant, contributions of the 
task-dependent, feature-based, and spatial-based factors influencing attention. 

4.3 Results 

4.3.1 Context 
 
In this study, subjects had to classify visual stimuli based either on face images or on forest 
scenes. We employed a total of four different tasks. Face stimuli had to be classified either 
according to gender or according to facial expression, with the stimulus classes happy, sad, 
fearful, or disgusted. For the stimuli based on forest scenes, one task (space) was to decide 
whether the scenery was close and narrow – when the image was a close-up or displayed a 
closed environment – or whether it was wide and open. The other task was to judge the 
presence of indicators of human influence such as houses, roads, paths, trunks of trees. 
Stimulus presentations lasted for three seconds during which the subjects’ eye movements 
were recorded. The majority of the stimuli were composed of 1 to 5 bubbles placed on a gray 
background. Half of the stimuli consisted of bubbles originating from the same full field 
image (condition same), whereas 15% of the stimuli combined bubbles from different full 
field images belonging to the same stimulus class (condition congruent). Another 15% of the 
stimuli were composed of bubbles originating from full field images of different classes 
(condition incongruent). To control for position effects, we also showed stimuli (16%) in 
which the positions of the bubbles are shuffled (condition permuted). The remaining 4% of 
the stimuli were full field images, which we used to confirm that subjects agreed on the 
classes of the images underlying the bubble stimuli. The bubbles themselves were constructed 
from square image patches with a side length of 6 visual degrees. To each patch, we applied a 
space-variant filter to imitate the retinal resolution when fixating the center of the bubble and 
a Gaussian mask to avoid visible edges. 
 
75 subjects took part in this study, each performed 280 trials. We used a total of 2061 gray-
scale stimuli for all subjects. This resulted in 21000 trials, recorded with 131935 fixations.  

4.3.2 Bubbles are treated as units 
 
In a first step, we investigated viewing behavior relative to bubbles. Subjects made, on 
average, 6.2 fixations in each trial where bubbles were presented. Of these, 94% were no 
more than 3 visual degrees distant from the closest bubble center and thus were located well 
inside a bubble. Three percent were located at the screen center and can be attributed to 
anticipation of the decision screen that followed each trial. The remaining 3% were scattered 
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across the screen. Hence, the fixations were rare in the space between bubbles and were 
clearly targeted at bubbles.  
 

 
 
We designed the bubbles in such a way that maximal and complete information is available 
when subjects fixated the center of the bubble (see Methods). Hence subjects would not gain 
anything by scanning different positions within the same bubble. This, however, does not 
necessarily prevent them from doing so. We tested this to confirm that bubbles were indeed 
treated as perceptual units. Of the total number of fixations that targeted bubbles, 60% 
originated from outside the respective bubble (“first fixations”). The remaining 40% were due 
to saccades within a bubble (“subsequent fixations”). The distributions of distances to bubble 
centers for these two groups of fixations were significantly different (p<0.01, KS-test, Fig. 
4.1). The median of the distances to the closest bubble center was 1.05° for “first fixations” 
and larger than the median of 0.91° for “subsequent fixations”. For pairs of first and 
subsequent fixations, the subsequent fixation was, on average, 0.16° closer to the bubble 
center. Additionally, both distributions were more sharply peaked than the distribution that 
would have resulted if fixations had been sampled from the Gaussian mask used for bubble 
construction (p<0.01 in both cases, KS-test, see Fig. 4.1). Altogether, the fixation data do not 
indicate that individual bubbles were scanned for information, but suggest that participants 
targeted bubble centers and made small corrective saccades towards bubble centers when 
landing off-center. The data is hence consistent with the assumption that bubbles were treated 
as perceptual units.   
 
Building on the property that bubbles are treated as units, we derive a measure characterizing 
the empirical salience of a complete bubble. It is based on the fixation counts of a bubble in 
specific stimulus configurations (see below). In the above example of Fig. 4.1 these fixation 
counts amount to 3, 3, 0, and 0 for bubbles A, B, C, and D, respectively. These counts are 
then averaged over subjects.  
 

Figure 4.1 Fixations on bubbles. 
(A) An example trajectory recorded during the experiment. The fixation labeled with zero is the first fixation in 
that trial, which was excluded from analyses. (B) Distributions of distances between fixation locations and the 
closest bubble center for “first fixations” into a bubble (median 1.05°) and “subsequent fixations” within the 
same bubble (median 0.91°). For comparison, the distribution that would result if all fixations were sampled 
from the Gaussian window used to construct the bubbles (median 1.18°) is also given. 
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4.3.3 Information of different bubbles is integrated 
 
The average classification performance for the original images (full field stimuli) was 94%, as 
measured by the fraction of responses that were correct with respect to the image class 
established in pre-experiments. For the four tasks average performance was 87%, 94%, 99% 
and 94% (expression, gender, influence, and space). When comparing the different tasks, 
please note that in expression the chance level is 25% and in all others 50%. The high-level of 
performance indicates that participants understood the tasks and had a shared interpretation of 
stimulus classes.  
 
In order to be independent of predefined “correct” responses in the following analyses, we use 
the more general measure of stimulus information. It is defined by the maximal possible 
entropy of the distribution of responses minus the entropy of the actual response distribution 
(see Methods). When all subjects agree on the classification of a stimulus, that stimulus 
contains maximal information with respect to the classification tasks. When their response 
distribution is flat, the stimulus contains no information. In the case of expression, with 4 
choices the stimulus information ranges from 0 to 2 bit, in the other tasks from 0 to 1 bit. 
Stimulus information thus captures the degree of consensus from the subjects classifying the 
stimuli.  
 

 
Figure 4.2 Stimulus information versus number of bubbles for the four tasks.  
Stimulus information estimated using the p-model is plotted for all four tasks (black dashed line). 
This is contrasted with the measured stimulus information in the same condition (green line) and 
in the congruent condition (red line). The blue line marks the measurements that result if the 
positions of bubble stimuli of the same condition are shuffled (same, permuted). The colored 
stars mark significant differences (p<0.05, bootstrapped confidence intervals) between the curve 
belonging to the respective condition and the p-model estimate. For visibility, the 95% 
confidence interval is marked by error bars only for condition same. 
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Next we investigated stimulus information in the reduced stimuli composed of bubbles. 
Presenting bubble stimuli composed of bubbles taken from the same base image (condition 
same) yielded average stimulus information of 1.18 bit, 0.66 bit, 0.74 bit, and 0.54 bit for the 
four tasks expression, gender, influence, and space, respectively. Presenting stimuli composed 
of bubbles taken from different images of the same response class (condition congruent) 
average stimulus information changed to 1.31 bit, 0.62 bit, 0.67 bit, and 0.61 bit (expression, 
gender, influence, and space). In contrast, in presenting stimuli composed of bubbles taken 
from images of different response classes (condition incongruent) it dropped to 1.12 bit, 0.55 
bit, 0.58 bit, and 0.34 bit. These data demonstrate that stimulus information is far from 
complete and that no ceiling effects are to be expected.  
 
To address the integration of information we analyze stimulus information as a function of the 
number of bubbles (Fig. 4.2). First, we compare measured stimulus information in the same 
condition with estimates of a probabilistic model of information integration (see Methods). 
The model, which we denote as p-model, integrates the response distributions of individual 
bubbles to estimate the stimulus response distribution and is presented here as a hypothesis. In 
the following, we only test plausibility of the p-model; we give a more detailed account in the 
Discussion. Stimulus information is computed from the entropy of the stimulus response 
distribution as described above. The p-model assumes independence of the information in 
different bubbles and integrates the information optimally. To predict stimulus information as 
a function of the number of bubbles, a sample of the bubbles, which were presented on their 
own, is selected. Then the respective response distributions of these stimuli are integrated 
using the p-model. This procedure is repeated 1000 times for each number of bubbles and 
each task. The resulting average information values are compared to the empirically found 
information values of the stimuli containing the respective numbers of bubbles (Fig. 4.2). The 
selection of single bubble stimuli for integration is done independent of image class. In the 
expression task, which uses face stimuli, we observe a pronounced surplus of experimentally 
observed average stimulus information (green line) compared to the prediction of the p-model 
(dashed black line). This higher-than-expected stimulus information indicates a violation of 
the assumption of independence of the information in different bubbles and is investigated 
below. In the gender task, which also uses face stimuli, at four and five bubbles a surplus of 
measured information is observed as well. Due to the larger variance of these two data points 
it does not reach significance. Stimulus information in the influence task, which uses natural 
scenes, is well predicted by the p-model, and no significant deviation of estimate and data 
could be detected (p>0.05, bootstrapped confidence intervals). For space, stimulus 
information is a little, but significantly, smaller than predicted by the p-model (p<0.05, 
bootstrapped confidence intervals). In this condition, the integration strategy of the subjects 
does not quite reach optimal performance. These data suggest that the p-model provides a 
reasonable description of the information integration. The mentioned deviations are further 
investigated below.  
 
Now, we investigate the integration of information for the different conditions. We compare 
stimulus conditions same and congruent. In contrast to the former, the latter is composed of 
bubbles that originate from different full field images of the same response class. Data 
obtained in same and congruent conditions give rise to nearly identical values of stimulus 
information in all tasks, and their difference is never significant (p>0.05, bootstrapped 
confidence intervals, Fig. 4.2 green and red lines). Specifically, this includes the large 
deviation from the prediction of the p-model in the expression task. This indicates that the 
information of bubbles is integrated in the same way, irrespective of whether the bubbles 
originate from the same or different congruent full field stimuli.  
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To further elucidate the cause for the deviations of the data from the p-model estimates, we 
consider the interaction of bubble information and spatial location. For this purpose, we 
employ permuted stimuli. These are composed of bubbles placed at positions not matching 
their location in the respective full field stimuli (see Methods). In all tasks, including the 
expression task, the stimulus information in this permuted condition is well predicted by the 
p-model (Fig. 4.2A, blue line). For the face stimuli, this, together with the large differences 
between the p-model and the same and the congruent condition for high numbers of bubbles, 
demonstrates that the subjects’ integration of information is influenced by bubble locations. 
This can be understood intuitively if one assumes that bubbles at certain locations (e.g., 
mouth) are given more weight, irrespective of the actual content of the bubble (e.g., smile). 
Indeed, the main result for permuted stimuli is an improved fit by the p-model. On the other 
hand, position effects are not a likely cause for the deviations in the space task. There, the 
permuted and same conditions show no pronounced differences. The stimulus information for 
both is slightly below that of the p-model. 
 
To test more directly whether bubble position and arrangement have an influence on 
information integration in the tasks gender, influence, and space, we performed an additional 
test and considered the differences between the response distributions of normal stimuli and 
their permuted versions. To specify whether these differences reflect a significant effect of 
permutation, we investigate whether the differences are consistent with the assumption that 
the responses for normal and permuted stimuli are sampled from the same stimulus answer 
distribution, independent of bubble arrangement. As the overwhelming majority (98.6%) of 
the differences between permuted and non permuted stimuli is located within the 95% 
confidence region of the zero hypothesis, no significant effect of permutation could be 
detected. It must be noted, however, that the test power is limited by the small number of 
trials using permuted stimuli.  
 
We arrive at the conclusion that the p-model provides a good description of integration of 
information for face stimuli in the permuted condition and for forest scenes in all conditions. 
In the same and the congruent condition, face stimuli consisting of many bubbles are 
processed using additional configural information (Calder et al., 2000). 

4.3.4 Three different saliences of bubbles and their relation to fixation behavior 
 
Now we address the relative contributions to fixation behavior of the stimulus dependent 
salience, task dependent information, and geometric properties of the stimuli. First, to address 
the stimulus dependent salience, we consider the low-level visual information of luminance 
contrast and texture contrast. These features are presumably processed in a bottom-up manner 
and have been used in other studies before. Second, to address the task dependent 
information, we consider the measure of bubble information, which captures the contribution 
of a bubble to the classification responses of subjects (see Methods). Third, to address the 
geometric properties, we investigate whether a simple generative model of fixation behavior 
that is based on the spatial arrangement of bubbles, central fixation bias, and geometrical 
constraints of average saccadic length and direction is informative with respect to the 
frequencies of fixation of different bubbles. Finally, these three components are used to 
explain the empirical distribution of fixations on bubbles, represented by empirical saliences. 
The measure of empirical salience is a context independent measure that represents how often 
a bubble is fixated relative to any other bubble. To obtain a measure which is independent of 
the specific stimulus context (instead of values for each stimulus) we combined the data from 
all stimuli and computed the best linear fit (see Methods). With this measure in turn the actual 
averaged fixation counts on the individual stimuli can be reconstructed with an average 
accuracy of 94.4%. Hence the empirical salience gives a faithful description of the fixation 

 82 



probability of a bubble in all stimulus configurations. The three former components and their 
relation with empirical salience are now considered in turn.  
 

 

 

4.3.5 Correlation of low-level stimulus features with empirical salience 
 
In agreement with a large body of previous research (Reinagel & Zador, 1999; Einhäuser & 
König, 2003; Parkhurst & Niebur, 2004; Zhang et al., 2008; Açık et al., 2009; Gao & 
Vasconcelos, 2009), we characterize low-level visual information contained in a bubble by its 
luminance and texture contrast. We estimate the contribution to fixation behavior by 
considering fixation probability conditioned on these feature contrasts. This allows 
determining the correlation of local features, as used in common stimulus-driven models of 
overt attention, with the empirical salience of bubbles.  
 
The luminance and texture contrast of bubbles are determined by standard procedures (see 
Methods). To infer the conditional fixation probability, we recur to a previous study where 
gaze movements on full field images have been recorded, and the conditional probability to 
fixate a location given its feature values was determined empirically (Schumann et al., 2007). 
Here we use the same procedure and the results of the previous study to convert both 
luminance contrasts and texture contrasts into fixation probabilities. To obtain a model that 
incorporates both, we combine the resulting probabilities, assuming independence of the 
contributions of the two feature contrasts. Fig. 4.3A shows an example stimulus from the 
expression task with the individual bubbles labeled with their stimulus dependent salience. 
Bubble A, located on the right eye and eyebrow, contains high luminance and texture 
contrasts. This is mapped to a high value of the stimulus dependent salience (see Methods). 
Relative to the other bubbles of the expression task, bubble A has a high stimulus dependent 
salience and a high empirical salience, placing it in the upper right-hand corner of the scatter 
plot of stimulus dependent salience vs. empirical salience (Fig. 4.3B). Bubble B, centered on 
the upper lip, has a lower stimulus dependent salience, but is looked at slightly more often 
than bubble A, placing it in the upper left-hand corner of the scatter plot. Bubble C, showing 
hair, has the strongest stimulus dependent salience of all four bubbles, but is only rarely 
looked at, placing it in the lower right corner of the plot. Bubble D, also showing hair, has 
very low stimulus dependent and empirical salience, placing it in the lower left corner of the 
plot. In this specific example, stimulus dependent salience and empirical salience appear 
unrelated. 

Figure 4.3 Relationship between stimulus dependent and empirical salience.  
(A) Example stimulus from the expression task with bubbles labeled by their stimulus 
dependent salience. (B) Scatter plot of stimulus dependent vs. empirical salience for the 
expression task. The positions of the bubbles from the example stimulus are marked by 
colored dots. The correlation coefficient r is given as a figure inset. (C) Correlation 
coefficients for all four tasks (E – expression, G – gender, I – influence, S – space). One 
star marks a significant correlation (p<0.05, t-test); two stars mark a highly significant 
correlation (p<0.01, t-test). 
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To determine the predictive power of the feature-driven model, we correlate the predicted 
fixation probabilities for individual bubbles with their empirical salience (both log 
transformed, see Methods). 4.3B shows a scatter plot of stimulus dependent salience of all 
bubbles in the expression task versus their empirical salience. It shows a weak, albeit not 
significant, correlation (p>0.05, t-test). Similarly, no significant correlation is observed for the 
space task (Fig. 4.3C). In the remaining two tasks, gender and influence, we do observe a 
significant correlation. This shows that the strength of the correlation of low-level features 
with selected fixation points varies as a function of the task for photographs of faces as well 
as of natural environments.  
 

 

4.3.6 Correlation of bubble information with fixated bubbles 
 
We take the contribution of a bubble to stimulus information as a surrogate for high-level 
information. We estimate bubble information for all bubbles that were shown in isolation or 
in combinations by assuming that the information of individual bubbles in a stimulus is 
integrated according to the p-model. Under this assumption, bubble information can be 
estimated in a global fit that maximizes the agreement between the subjects’ responses to all 
stimuli and the alleged information contained in each single bubble (see Methods). This 
global fit estimates the information contained in each bubble, including those that were shown 
in isolation.  
 
As a model of information integration we use the p-model introduced above. The results of 
the global fit based on the p-model may be viewed as a high-level feature specific to the 
context of the current task. Fig. 4.4A shows an example of a stimulus of the expression task 

Figure 4.4 Bubble Information. 
(A) Example stimulus from the expression task where the individual bubbles are labeled by their fitted 
response distributions and the corresponding bubble information. The four numbers above the black line give 
the response probabilities for the classes “disgusted,” “happy,” “fearful,” and “sad.” The bold number below 
the line gives the bubble information (in bit). For the whole stimulus, the measured response distribution and 
stimulus information (in bit) is given in the lower right corner. (B) The distribution of bubble information for 
the expression task. The bubble information of the four bubbles of the example stimulus is marked by colored 
dots. (C) The distribution of bubble information for the other three tasks gender, influence and space. 
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where the total measured stimulus information is 2 bit. The individual bubbles are labeled 
with their fitted response distributions and bubble information values. The global fit gives the 
information content as 0.40, 1.84, 0.13, and 0.01 bit for bubbles A, B, C, and D, respectively. 
In turn, estimating the stimulus information by the p-model results in 1.97 bit. This is close to 
the measured stimulus information with an error of 0.03 bit. Over all the bubble stimuli, the 
mean errors of stimulus information predicted from the fitted bubble answer distributions are 
0.32, 0.20, 0.26, and 0.24 bit for the tasks expression, gender, influence, and space, 
respectively. For comparison, we computed the errors that would be expected if the 
predictions by the p-model were the true underlying response distributions of the stimuli (see 
supplementary text in section 4.6.2). In that case, the subjects sample their responses from the 
predicted response distributions and the resulting average errors serve as lower bounds for the 
expected errors. The resulting errors are 0.29, 0.16, 0.16, and 0.18 bit (expression, gender, 
influence and space). This implies that the deviation from the p-model stays within a factor of 
2 of the theoretical lower limit and is consistent with the observation above that the p-model 
faithfully describes the dependence of stimulus information on the number of bubbles (Fig. 
4.2). Hence, bubble information is reliably estimated by the global fit with the p-model. Fig. 
4.4B and C show the frequencies of bubble information for the four tasks. The majority of 
bubbles have low bubble information values. Only a few have very high information. Bubble 
information varies over the whole possible range in all four tasks.  
 

 

 
We now investigate the correlation between bubble information and empirical salience (both 
log transformed, see Methods). Fig. 4.5A shows the example stimulus with the individual 
bubbles labeled by their bubble information, and Fig. 4.5B shows a scatter plot of bubble 
information and empirical salience for the expression task. Bubble A, located on the right eye, 
is somewhat informative and looked at very often, placing it in the upper right corner of the 
plot. Bubble B, located on the smiling mouth, is much more informative than A but looked at 
only slightly more often, placing it in the upper right corner of the plot, to the right of bubble 
A. Bubble C, showing hair, has less information than A and B but is still somewhat 
informative. It is looked at less often than A and B. Bubble D, finally, has almost no 
information and is also looked at very seldom. In this specific example, bubble information 
and empirical salience are closely related. 
 
Investigating the complete set of bubbles, we find that for the expression task the correlation 
of bubble information and empirical salience is highly significant (p<0.01, t-test). Although 
there is a noticeable drop in correlation for the tasks gender, influence, and space; all are 

 
Figure 4.5 Relationship of task dependent and empirical salience.  
(A) Example stimulus of the expression task with individual bubbles labeled by their 
bubble information. (B) Scatter plot of bubble information and empirical salience for the 
expression task. The positions of the example bubbles are marked by colored dots. The 
correlation coefficient r is given as a figure inset. (C) Correlation coefficients for all four 
tasks. Two stars mark highly significant correlations (p<0.01, t-test). 
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highly significant (p<0.01, t-test) as well (Fig. 4.5C). Hence there are strong correlations 
between bubble information and empirical salience in all four tasks.  

4.3.7 Correlation of spatial arrangement with fixated bubbles 
 
We use a generative model to predict the empirical salience of a bubble independent of its 
visual content, but given its location. The generative model, as defined in the Methods 
section, predicts gaze trajectories on a stimulus given the initial fixation spot and the spatial 
arrangement of bubbles. Please note that the spatial arrangement of the bubbles alone does not 
contain information on the frequency of fixations on different bubbles. The model takes into 
account the central bias of fixations and geometric constraints on the length and direction of 
saccades. It does not incorporate an explicit inhibition of return (see Discussion). Both the 
central bias of fixations and the geometric constraints on saccades are grand averages over a 
large number of full field stimuli from many different categories (see Methods). The model 
generates fixation sequences on bubble stimuli. From these sequences the average 
probabilities of fixating individual bubbles on a stimulus are computed. These only locally 
valid values are now transformed to a global scale in the same way as the relative frequencies 
of fixations made by actual subjects were transformed into empirical saliences (see Methods). 
We now consider the correlation of this spatial bias salience with empirical salience (both log 
transformed). Fig. 4.6A shows an example of a stimulus from the expression task where the 
individual bubbles are labeled with their spatial bias saliences, and Fig. 4.6B shows a scatter 
plot of spatial bias salience versus empirical salience. Bubbles A and B are looked at very 
often and have relatively high spatial bias saliences, which is probably due to the fact that 
they are close to the center of the stimulus and close to each other. Bubbles C and D, which 
are farther away from the center and have lower spatial bias saliences, are looked at much 
more rarely. In this specific example, spatial bias and empirical salience are closely related. 
 
For all bubbles of the expression task, the correlation between spatial bias salience and 
empirical salience is highly significant. For the other three tasks, the correlation is highly 
significant as well (Fig. 4.6C). The correlation of empirical salience with the prediction based 
on spatial properties is of comparable strength in all four tasks. 
 

 

 
 

 
Figure 4.6 Relationship of spatial bias and empirical salience. 
(A) Example stimulus of the expression task with individual bubbles labeled by their 
spatial bias salience. (B) Scatter plot of spatial bias and empirical salience for the 
expression task. The positions of the example bubbles are marked by colored dots. 
The correlation coefficient r is given as a figure inset. (C) Correlation coefficients for 
all tasks. Two stars mark highly significant correlations (p<0.01, t-test). 
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4.3.8 Partializing the information in low-level stimulus features, bubble information, and 
spatial arrangement 
 
For a combined view we compare the values of all three predictor variables and empirical 
salience for the example stimulus (Fig. 4.7). Gathering the information from Fig. 4.3, 4.5, and 
4.6 reveals bubble information as the best predictor (e.g., the order of the bubbles according 
to bubble information is the same as according to empirical salience), followed by the spatial 
bias and the stimulus dependent salience. This example is reasonably representative for the 
expression task. In other tasks the contribution of stimulus dependent salience, bubble 
information, and spatial bias salience is more balanced. However, the individual correlations 
of empirical salience with the three predictors do not address how much the effects of one of 
these predictor variables are already addressed by another, because of correlations between 
individual predictors. In the following we address this question, which is crucial for the 
investigation of the causal role of the individual predictors.  
 
We employ a multivariate linear model to predict empirical salience from the joint set of all 
the predictors. We analyze how well a linear combination of the stimulus dependent salience, 
bubble information, and spatial bias salience of each bubble can explain the attention it 
attracts, as reflected by the empirical salience values. As in the pair-wise correlations, we use 
the log transform of each predictor variable and correlate with the log transform of empirical 
salience. The model structure is as follows: 
 
                                        log(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 
                                                  = 𝛽𝛽1 
                                                     +𝛽𝛽2 log(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)     

            +𝛽𝛽3 log(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 
                                                     +𝛽𝛽4 log(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)  
 
To address correlations between individual predictor variables, we use semi-partial 
correlations, which correlate one predictor with empirical salience while controlling for the 
effect of all other predictors (see Methods).  
 
Table 1 gives the results of this correlation analysis for the four tasks, and Fig. 4.8 
summarizes these results visually. The multivariate regression coefficient (R) is highly 

 
Figure 4.7 Relationship between empirical salience, stimulus dependent salience, bubble information and 
spatial bias salience for an example stimulus. 
The example stimulus from the expression task is given on the left. The four values characterizing each bubble 
are shown on their respective scales (right panel). The range of spanned values for each variable is mapped to 
the same interval for comparison. The colors code for the identity of the different bubbles. 
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significant (p<0.01, F-test) for all four tasks, but varies considerably across tasks. For 
expression, the multivariate correlation is highly significant, with 48% of variance explained. 
Bubble information is the best individual predictor, the pair-wise correlation being highly 
significant. The individual predictive power of spatial bias salience is smaller, but the pair-
wise correlation is still highly significant. Stimulus dependent salience, on the other hand, 
does not significantly correlate with empirical salience. These results indicate that subjects 
have much information about where to expect informative bubbles a priori and that their 
attention is guided by this task dependent knowledge. This is exactly what one would expect 
of a system that is specialized in effectively recognizing facial expression. It is clearly 
inconsistent with a purely bottom-up driven account of overt attention. For the gender task, 
the multivariate correlation coefficient is smaller than for expression, but still highly 
significant, with 27% of variance explained. Spatial bias salience and bubble information 
have almost the same pair-wise correlation coefficient, both correlations being highly 
significant. In contrast to the expression task, the pair-wise correlation of the stimulus 
dependent salience is also significant. For the influence task, the multivariate correlation is 
also highly significant, with 36% of variance explained. Again all three predictors show 
significant, even highly significant, pair-wise correlations. Spatial bias salience has the 
highest correlation coefficient, followed by bubble information and stimulus dependent 
salience, the latter two being almost identical. For the space task, the multivariate correlation 
coefficient is smallest, but still highly significant, with 25% of variance explained. Spatial 
bias salience is the best predictor, followed by bubble information. Both these pair-wise 
correlations are highly significant. In contrast to influence, the correlation coefficient of 
stimulus dependent salience is very small and not significant.  
 

 

 
The previous observations on the relative predictive power of individual predictors in the 
different tasks are also supported by the semi-partial correlation analysis. The only exceptions 
are a rather large decrease from the pair-wise to the semi-partial correlation for bubble 
information in the influence task, reflecting a rather small unique influence of bubble 
information on empirical salience, as well as a noticeable decrease of the semi-partial 

Figure 4.8 Influence of the three factors on empirical salience.  
The multivariate regression results are given for all four tasks expression (E), gender 
(G), influence (I), and space (S). The height of each bar depicts the R2 value; each 
shaded area represents the squared semi-partial correlation coefficient, which 
reflects the unique contribution of the respective factor. The white area in each bar 
represents the amount of variability of empirical salience that can explained by more 
than one factor. 
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correlation coefficient compared to the pair-wise correlation coefficient for the spatial bias 
based predictor in the expression task. 
 
On the level of individual predictors, we make several observations. Spatial bias salience 
shows a strong and stable contribution in all four tasks. The unique contribution of bubble 
information is strong as well, but varies considerably over tasks. In the case of influence, it is 
not even significant. Stimulus dependent salience is the weakest predictor of the three, but 
shows significant correlations in gender and influence. Each single predictor shows 
significant normal and semi-partial correlations in at least some of the tasks. Furthermore, the 
relative contributions of the predictors, in terms of both uncontrolled and semi-partial 
correlations, vary considerably over tasks. Hence the contribution of the three different factors 
is dependent on the task, and none can be generally dismissed in an explanation for guidance 
of overt attention. 
 

Task  Stimulus 
dependent 
salience 

Bubble 
Information 

Spatial 
bias 

All together 

Expression Correlation coefficient r 0.130 0.631 ** 0.437 **  

 Semi-partial correlation 
coefficient sr 0.091 0.527 ** 0.252 *  

 Multivariate regression  R² = 0.476** 

Gender Correlation coefficient r 0.235 * 0.326 ** 0.362 **  

 Semi-partial correlation 
coefficient sr 0.213 * 0.304 ** 0.329 **  

 Multivariate regression  R² = 0.269** 

Influence Correlation coefficient r 0.324 ** 0.345 ** 0.456 **  

 Semi-partial correlation 
coefficient sr 0.324 ** 0.155 0.406 **  

 Multivariate regression  R² = 0.360** 

Space Correlation coefficient r 0.067 0.290 ** 0.412 **  

 Semi-partial correlation 
coefficient sr 0.055 0.243 * 0.401 **  

 Multivariate regression  R² = 0.245** 

 

4.4 Discussion 

4.4.1 General summary 
 
In this study, we quantify and compare the influence of low-level stimulus features, task 
dependent features, and spatial biases on overt visual attention. The major achievement is a 
direct and quantitative comparison of the individual influences of these factors on fixation 
behavior in a single study. The experimental approach builds on the bubble paradigm as 
introduced by Gosselin and Schyns (Gosselin & Schyns, 2001). It makes use of visual stimuli 
composed of small image patches, called bubbles, based on face images and forest scenes. 

Table 4.1 Results of the multivariate regression. Pair-wise regression coefficients and semi-partial regression 
coefficients for the different predictors are given for each task. The total variance of empirical salience that is 
explained by all three factors is given in the last column. One star marks significant correlations (p<0.05); two 
stars mark highly significant correlations (p<0.01). 
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Subjects classified stimuli according to facial expression and gender, or according to scenic 
openness and human influence, respectively. The subjects’ eye movements show that bubbles 
are not scanned for information and verify our assumption that bubbles are treated as 
perceptual units. To each bubble, we assigned an empirical salience that adequately represents 
the fixation probability of the bubble. We further quantitatively assessed three factors that are 
thought to influence visual attention: first, stimulus dependent salience reflecting the 
probability of fixating a bubble given its luminance and texture contrast; second, bubble 
information reflecting how much information a bubble contains with respect to the 
classification task; and third, spatial bias salience reflecting the fixation probability given the 
location of the bubble. Bubble information was estimated based on the subjects’ classification 
responses to stimuli composed of one or several bubbles using a model of information 
integration. We showed that this model is a reasonable approximation of the integration. 
Interestingly, we found that information of individual bubbles is integrated even if bubbles 
originate from different images of the same class and independent from their spatial 
arrangement in the case of forest scenes. 
 
Having measured the three factors bubble information, stimulus dependent salience, and 
spatial bias salience, we then quantified how well they predict fixation behavior. We found 
that a substantial portion of variance of empirical salience could be explained by all three 
factors combined, although the share of variance explained varies across tasks. Pair-wise 
correlations between empirical salience and each of the factors indicate clear differences 
between the three factors. Empirical salience shows high correlations with spatial bias 
throughout all four tasks, whereas both the correlations with stimulus dependent salience and 
bubble information vary strongly with tasks. Stimulus dependent salience is the weakest 
predictor, but reaches significant levels in the gender and influence tasks. Bubble information 
is the best predictor in the expression task but for the other tasks it reaches slightly lower 
correlations with empirical salience than does spatial bias. Surprisingly, the semi-partial 
correlation coefficients, which reflect the unique contributions of each predictor controlling 
for the influences of the other factors, are only slightly lower than the pair-wise correlation 
coefficients. This indicates that all three factors act almost independently on visual attention. 
In summary, we find that all factors contribute, but that the absolute and relative strength of 
contribution depends on the task. 
 
We now look into the potentially critical issues and shortcomings of our paradigm. These fall 
into two overall categories. First, we discuss the validity of our different measures. Second, 
we analyze how much the results obtained using our bubble paradigm generalize to more 
natural conditions.  

4.4.2 Validity of bubble measures 
 
Empirical salience. One basic assumption of the present approach is that the empirical 
saliences of different bubbles are independent from each other — i.e. the empirical salience of 
a bubble is not influenced by any other bubble on the same stimulus. An indicator of a 
violation of this assumption would be a change of the ratio of fixations falling onto two 
bubbles when other bubbles were presented simultaneously. We tested whether empirical 
salience values can predict the average number of fixations made by the subjects onto each 
bubble in all stimuli. The test resulted in very small errors showing that our assumption of 
independence between bubbles with respect to empirical salience is not violated. 
 
Stimulus dependent salience. We characterized stimulus dependent salience as the 
conditional probability of fixating on an image patch given its local luminance and texture 
contrast for several reasons. First, these two low-level features were shown to correlate with 
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fixation behavior in many previous studies (Reinagel & Zador, 1999; Einhäuser & König, 
2003; Parkhurst & Niebur, 2004; Açık et al., 2009). Hence, the present study can be 
compared directly with this previous work. Second, in an independent study, we observed that 
the strength of influence of different low-level features on overt visual attention is highly 
correlated over image categories and tasks (Betz et al., 2010). Hence, the potential benefit of 
additional features appears small. Third, as a control we compared stimulus dependent 
salience with a measure of salience obtained by a publicly available model, often used as a 
baseline (Itti & Koch, 2001; Walther & Koch, 2006). Indeed, the correlation of the two sets of 
saliences is high and in all tasks in the range of 0.4 – 0.7. Furthermore, the correlation of 
salience according to the model by Itti and Koch with empirical salience of bubbles is not 
qualitatively different from the data presented here. Fourth, previous studies showed that 
luminance contrast influences the response of area V1, but not the response of higher areas 
(Rolls & Baylis, 1986; Avidan et al., 2002). These results indicate that luminance contrast is a 
good measure for the relevance of stimulus dependent signals in early visual cortex and 
justifies the term “low-level”. Fifth, another recent study claims that stimulus dependent 
salience is well described by luminance contrast without the need to introduce more complex 
kernels (Kienzle et al., 2009). Sixth, texture contrast, which is defined as second-order 
luminance contrast, is usually considered a low-level feature in that sense as well and 
triggered some debate in the literature (Parkhurst & Niebur, 2004; Açık et al., 2009). For 
these reasons we decided to base our characterization of low-level contributions on luminance 
and texture contrast.  
 
Spatial bias salience. We characterized spatial bias salience through a generative model of 
fixation behavior. The model takes into account the central bias of fixations (0th order) and 
geometric constraints on the length and direction of saccades (1st order). While the location of 
a particular fixation has an influence on the next fixation, we do not model higher order 
dependencies. Specifically, we do not account for inhibition of return, which would be a 2nd 
order relation of direction and length of saccades. Inhibition of return is characterized as a 
small delay of saccades that return to the location of a previous fixation. As the current 
investigation is not concerned with these dynamic aspects, it is not of relevance here. 
Furthermore, recent studies report that inhibition of return might actually not change viewing 
strategy for complex scenes (Hooge et al., 2005; Smith & Henderson, 2009). 
 
Bubble information. Estimation of bubble information is based on the complete data set and 
involves a specific model of information integration. Both issues are considered in turn. In 
principle it would have been possible to estimate bubble information directly from stimuli 
presenting single bubbles only. This approach comes, however, with several disadvantages. 
First, the presentation of only single bubbles as stimuli is rather inefficient. To get reliable 
estimates of bubble information, each single bubble stimulus would have to be shown much 
more often. Since a participant cannot respond to the same single bubble stimulus twice and 
should not see individual bubbles too often, many more participants would be needed. 
Additionally, the responses on stimuli with several bubbles would be left unused, further 
diminishing efficiency. Given that in the present study 75 subjects were investigated, more 
than in any of the eye tracking studies cited above, this issue of efficiency quickly gets 
prohibitive. Second, using qualitatively different stimuli for computing empirical salience and 
bubble information potentially introduces systematic biases. For example, the difficulty of the 
classification task is increased considerably on single bubbles compared to stimuli with 
several bubbles. This might lead to performance near chance level, which in turn could cause 
subjects to lose motivation and concentration. Third, for the purpose of the present study our 
interest is focused on an estimate of bubble information in the context of the stimulus. In the 
event that estimates of information of isolated bubbles and bubbles in more complex context 
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diverge (e.g. a systematic increase or decrease), the latter would be the relevant measure as it 
matches the viewing conditions during the task. These reasons further grow our confidence in 
the validity of the applied methods.  
 
Several models of information integration are conceivable. The mode of information 
integration is an important topic in its own right and a complete treatment is beyond the scope 
of the present paper. We assume a probabilistic integration model but also considered two 
other models of information integration: first a local model that captures stimulus information 
by the maximally informative bubble, second a global model that differs from the 
probabilistic model by capturing contra factual evidence for the different choice possibilities. 
Compared to the p-model these models both show lower performance (see supplementary text 
in section 4.6.4). Furthermore, under the assumption of the p-model being the true model of 
information integration, the estimates for bubble information resulting from the global fitting 
procedure are unbiased and have moderate variance (see supplementary text in section 4.6.2 
and Fig. 4.14 in same section). This indicates that the predictions based on the p-model are 
generally good estimates of bubble information. 
 
In conclusion, although we did not show that a probabilistic model for information integration 
is the true or optimal model we demonstrated that the estimates for stimulus information 
obtained through it are robust and consistent with the majority of the data. The influence of 
configural information in face stimuli has been described before and does not pose a problem 
in the current context. The question of which is the optimal model of information integration 
is left to be answered by future research.  
 
For these reasons we decided to show stimuli with varying numbers of bubbles in a 
homogeneous set and to employ the information integration model and global fitting 
procedure. In so doing we assess the two behavioral measures, bubble information and 
empirical salience, from the same subjects during the same experimental trials and make 
optimal use of experimental data to improve the signal to noise level.  
 
Effects of bubble position on information integration. The discrepancy between stimulus 
information in bubble stimuli of condition same versus permuted in task expression (see Fig. 
4.2) could have several causes. The faces are similarly positioned in all stimuli so that the 
location of the bubbles hints at which bubbles contain relevant information: subjects might 
know a priori where informative regions, e.g. the eyes or the mouth, are located and select 
fixation targets accordingly. Furthermore, faces are special perceptual stimuli. Specific brain 
areas are devoted to the processing of face stimuli, and identification can be completely 
disrupted by reversing a face image (Kanwisher & Yovel, 2006; Freiwald et al., 2009). 
Position effects could, therefore, play a more important role for the classification of face 
images than for the classification of forest scenes (Calder et al., 2000). Indeed, a major effect 
of permutations in the expression task is a largely improved fit of the p-model. This indicates 
that, once the standardized positioning is violated, different bubbles are treated as independent 
pieces of information, enabling the “normal” mode of information integration. The effect of 
bubble position is less pronounced in the gender task. For the gender stimuli, supposedly 
more regions contain information and the correlation between bubble position and bubble 
information is weaker. In summary, our data indicate that position effects have some 
influence in face stimuli, but less so in the forest scenes.  

4.4.3 Generalization to full scenes 
 
Do the observed correlations between empirical salience, on the one side, and stimulus 
dependent salience, bubble information, and spatial bias salience, on the other side generalize 
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to full field images? This is a variation of the eternal question where to place the balance 
between complex natural conditions and well controlled laboratory stimuli. Here, the answer 
depends critically on whether the four measures we employ are preserved on full field stimuli. 
For example, it is decisive whether the empirical salience of image patches measured on full 
field stimuli is comparable to the empirical salience measured on bubble stimuli. In the same 
way, bubble information, stimulus dependent salience and spatial bias salience need to be 
preserved. If the four measures that characterize a bubble were preserved when the bubble is 
embedded in a full field stimulus then the relationship between the measures, in particular the 
correlations between them, would be preserved as well and our results should generalize to 
full scene viewing. We consider this question for each of the measures in turn. 
 
Stimulus based salience, as we defined it, is just dependent on a local image patch. It is thus 
preserved for full field stimuli. Bubble information measures how much information with 
respect to a task is contained within a single bubble. The amount of information contained 
appears largely independent of bubble context and thus only depends on the image patch 
itself. Spatial bias salience, as we define it, is based on global fixation and saccade biases 
assessed from a large variety of full field stimuli. Hence, the effect of spatial bias should be 
largely independent of whether an image patch is embedded into a full field or bubble 
stimulus. The question of whether the measure of empirical salience is preserved on full field 
stimuli is more intricate. The observer may very well fixate image regions in the bubble 
stimuli that would never draw her attention given the complete image. We tested this by 
correlating empirical salience of bubbles with the fixation densities of the full field images 
containing those bubbles (r=0.79, r=0.75, r=0.55, r=0.32 for expression, gender, influence, 
and space, respectively; p < 0.01 in all cases). Since empirical salience of individual bubbles 
is well preserved on full field stimuli, we expect that our findings generalize to full scene 
viewing. 
 
Previously, it was debated whether the informative regions uncovered by Gosselin and 
Schyns’ bubble paradigm (Gosselin & Schyns, 2001) are valid for full scene viewing as well. 
Murray and Gold argue that the bubble stimuli change the information integration strategy 
employed by the observer (Murray & Gold, 2004). A former study showed that observers 
used different stimulus regions to identify faces, depending on which regions were covered by 
Gaussian white noise (Schwartz et al., 1998). It is conceivable that for full field images, 
which include redundant features, observers normally base their classification decision on 
only one or two of these features. The bubble stimuli force the observers to use different 
features on different trials, because only small fragments of the stimulus are shown on any 
given trial (Gosselin and Schyns argue, however, that these concerns are unfounded (Gosselin 
& Schyns, 2004)). These potential problems are not relevant for our study since we do not 
claim that certain bubbles would be used by the observers to solve the classification task on 
full fields, whereas other bubbles would not. Instead, we quantify the information of each 
single bubble, i.e., how well the task can be solved given only this bubble. By using the 
information integration model, we actually incorporate the observer’s strategy to use different 
image regions, depending on which regions are shown. Hence, our measure of task dependent 
information is not invalidated by the use of bubble stimuli.  
 
In summary, we consider the present experimental paradigm a most sensible compromise, 
balancing between the complexities of natural conditions and well controlled laboratory 
stimuli, and suitable for the questions addressed.  
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4.4.4 Relationship of low-level and high-level features to bottom-up and top-down neural 
signals 
 
One of the most debated issues concerning overt visual attention is the role of bottom-up and 
top-down signals on a neural level. This issue is not integral part of the results of the current 
study. In the present study we discuss the influence of stimulus dependent salience and bubble 
information. Stimulus dependent salience translates directly to low-level stimulus features and 
to some degree, these features can be identified with bottom-up signals. It has been shown 
that neurons in V1 are sensitive to these features (Hubel & Wiesel, 1961; Rolls & Baylis, 
1986; Avidan et al., 2002). To reach relevant motor centers and influence eye movements, 
these signals have to traverse the hierarchy of the visual system (Fellerman & Van Essen, 
1991). This may be viewed as a bottom-up process. The second measure, bubble information, 
relates to high-level features of the visual stimulus interpreted in a specific context. 
Considering complex response properties in high-level brain areas, these are a natural place to 
extract such information (Tanaka, 1996). Again, in view of abundant connectivity, it is 
plausible that such information is sent down to lower areas of the hierarchy in a top-down 
manner. However, receptive field properties of neurons in V1 are complex, and non-classic 
surround effects are far from understood (Olshausen & Field, 2005). Furthermore, it has been 
proposed that essential characteristics of a salience map are already captured in the response 
properties of V1 neurons (Li, 2002). For that reason we are cautious using the terms top-down 
and bottom-up signaling, and we took care not to make unwarranted speculations about the 
site of the integration of the observed contributions of low-level and high-level stimulus 
features.  

4.4.5 A Unified theory of overt visual attention 
 
Many low-level image features were suggested to play an important role for the guidance of 
visual attention (Itti & Koch, 2001). When compared to random image locations, fixated 
regions of natural and artificial images are characterized by higher decorrelation of intensities 
of nearby image points (Reinagel & Zador, 1999; Parkhurst & Niebur, 2003), higher 
luminance contrast (Reinagel & Zador, 1999; Parkhurst & Niebur, 2003, 2004; Einhäuser et 
al., 2006), texture contrast (Parkhurst & Niebur, 2004; Einhäuser et al., 2006), color contrast 
(Frey et al., 2007; Frey et al., 2008), orientation contrast (Parkhurst et al., 2002), flicker and 
motion contrast (Carmi & Itti, 2006), strong statistical dependencies between frequency 
components of different orientation like curved lines (Saal et al., 2006) , edges (Tatler et al., 
2005), occlusions or isolated spots (Krieger et al., 2000), and disparity (Jansen et al., 2009). 
These effects, however, appear to be relatively weak (Tatler et al., 2005), and another study 
reports that locations of extremes of luminance intensity, luminance contrast, high spatial 
frequency content, and edge density do not match with locations of fixations (Mannan et al., 
1996). Yet another study puts forward contradicting evidence in favor of the role of high 
spatial frequency content (Baddeley & Tatler, 2006). The strength of these effects was found 
to vary with image type (Parkhurst et al., 2002; Açık et al., 2009). Still, the idea is that with 
increasing complexity of the features investigated a faithful description of human overt visual 
attention can be reached.  
 
This line of research has come under attack from two sides. On the one hand, Kienzle and 
colleagues show that much of the observed correlation of selected fixation points in a free 
viewing task on gray-scale images of natural scenes can be captured by an extremely simple 
center surround mechanism (Kienzle et al., 2009). On the other hand, recent studies found that 
high-level features play an important role in overt visual attention and act more strongly on 
fixation behavior than low-level features when subjects engage in visual search tasks (Chen & 
Zelinsky, 2006; Underwood et al., 2006; Einhäuser et al., 2008). In more natural settings, task 
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and context have a strong impact on eye movements as well (Rothkopf et al., 2007). Also 
models of visual attention that employ top-down processing were successfully applied to 
visual search tasks (Tsotsos et al., 1995; Rao et al., 2002; Turano et al., 2003; Hamker, 2004; 
Navalpakkam & Itti, 2005). Recent work tries to combine low-level and high-level cues 
(Cristino & Baddeley, 2009; Vincent et al., 2009). The latter study specifically investigates 
the salience of light sources (very high luminance contrast) in natural scenes at dawn and 
dusk. They show that high-level features and spatial biases make the largest contribution in a 
mixture model, which is in line with the results reported here. However, in the work by 
Vincent et al. (Vincent et al., 2009) the definition of high-level features like 
foreground/background contains a subjective component and might correlate strongly with 
low-level features like disparity. Indeed, we could recently demonstrate that disparity has a 
strong influence on the selection of fixation points in stereoscopic presentation (Jansen et al., 
2009), close regions being viewed earlier than far regions. Furthermore, about 40% of this 
effect survives in 2D presentation. This highlights the problem to define objectively low-level 
and high-level cues and to analyze their independent contribution to the guidance of gaze 
movements. Some experimental studies assessed the informativeness of image regions by 
subjective ratings (Mackworth & Morandi, 1967; Antes, 1974); or they made use of identified 
informative regions of face images for different tasks (Malcolm et al., 2008). In agreement 
with our data, these investigations show that fixation patterns vary for different tasks even if 
the visual input is identical — i.e., that high-level features like task dependent information 
have an influence on attention, and that more informative regions are fixated upon more often 
than less informative ones. The advantage of our approach is that it enables us to 
quantitatively measure task dependent information in an objective way. Another study 
presents an information theoretic approach to the combination of different cues (Kanan et al., 
2009). They demonstrate that the model clearly outperforms models with pure bottom-up 
architectures. Furthermore, Ehinger and colleagues give a highly informative comparison with 
current contextual guidance models (Ehinger et al., 2009). Our results are in line with these 
studies. Averaged over all the tasks investigated, high-level features contribute more than 
low-level features.  
 
One center issue of the debate about low-level and high-level features is whether, and to what 
degree, they have a causal role versus pure correlative effects. A study on images whose 
luminance contrast was locally modified shows that fixations are attracted by increases as 
well as decreases of luminance contrast, but that the effect within the region of normal 
variance of luminance contrast is small (Einhäuser & König, 2003). Furthermore, these 
observations cannot be explained by induced changes in texture contrast (Açık et al., 2009). 
This argues against a causal effect, but in favor of a pure correlative effect of luminance 
contrast in a free viewing task on natural stimuli. Our present results agree with the 
aforementioned studies inasmuch as the low-level factors exhibit, on average, weak effects on 
fixation behavior. However, our analysis of the correlation of empirical salience with the 
three predictors uncovers a surprising fact. The semi-partial correlations are only a little 
smaller than the full correlations. This indicates little redundancy of the three predictors — 
i.e. low-level features are not coincident correlations of high-level features in many tasks. 
This argues that none of the predictors can be neglected, but that a true integration is to be 
achieved. This is very much in the spirit of recent proposals, putting the problem of overt 
attention in a Bayesian framework (Zhang et al., 2008; Gao & Vasconcelos, 2009).  
 
Concerning the role of spatial biases on visual attention, it was pointed out that the spatial 
bias towards the screen center has to be taken into account when studying the effect of image 
features on selection of fixation points (Mannan et al., 1996; Tatler, 2007). Furthermore, 
some work has been done on the statistical properties of saccade length and directions. 
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Human saccades can be modeled as a Levy flight with a heavy-tailed distribution (Brockmann 
& Geisel, 1999) and it can be shown that under certain assumptions such a distribution leads 
to optimal scanning behavior. Research on higher order correlations, i.e. dependencies of 
selected fixation points within a trajectory, is still rare (Tatler & Vincent, 2008). Given our 
current knowledge of spatial properties, a comparison of several models of fixation behavior 
revealed that the best performance is obtained from a strategy combining top-down 
information and spatial bias, which, however, was defined as the restriction of fixations to one 
side of the image (Turano et al., 2003). Our results support this view, showing a surprisingly 
high correlation between spatial bias and visual attention. This effect is strong and consistent 
in all tasks tested. This contrasts with the emphasis on low-level and high-level features in 
current models of visual attention. Forthcoming models should put the spatial properties of 
eye movements on an equal footing with other factors.  
 
The present study contributes to focusing discussions of models of attention on quantitatively 
testable properties. Low-level stimulus features, task dependent information content, and 
spatial viewing biases jointly explain a substantial fraction of the variation of empirical 
salience — i.e., a unifying theory of visual attention will have large predictive power. 
Furthermore, each of the three factors contributes significantly. A unified theory of overt 
visual attention has to account for all of them.  

4.5 Methods 

4.5.1 Experimental setup  
 
Ethics statement 
All subjects were informed about the experimental procedure, the eye-tracking device, and 
their right to withdraw from the experiment at any time. However, they were initially kept 
naïve as to the purpose of the experiment and were debriefed after the experiment. All 
participants consented in writing to take part in the experiment and to allow scientific usage 
of the recorded data. The experimental procedure conformed to the Declaration of Helsinki 
and national guidelines.  
 

 

 
 

Figure 4.9 The different stimulus classes.  
Subject’s had to classify faces and forest scenes 
according to four tasks (expression, gender, 
influence, and space). For the forest scenes, the 
different response possibilities are given above the 
example stimuli. The stimuli are shown as full fields 
and are used for bubble stimuli construction. For 
copy right reasons, we cannot show the face 
stimuli here but we refer the reader to Tottenham 
et al. (2009). The face stimuli are taken from the 
“NimStim” stimulus set. 
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Participants 
75 student volunteers participated in the experiment (39 female, 36 male). Their ages ranged 
from 18 to 41, with a mean of 24.2 years. All had normal or corrected-to-normal vision, 
which was confirmed by a vision test with Landolt rings. Participation was voluntary, and 
participants either were granted extra course credits or received monetary compensation for 
their participation. 
 
Apparatus and recording 
Participants’ eye movements were recorded with the head-mounted Eyelink II eye-tracking 
system and the Eyelink II software package (SR Research, Ltd., Mississauga, Ontario, 
Canada). Monocular eye-position data were sampled with infrared-based tracking only, using 
a sampling rate of 250 Hz. The saccade classification of the Eyelink system is based on 
velocity and acceleration. A saccade starts if an initial acceleration threshold of 8000°/s2 is 
exceeded and a distance of at least 0.1° is covered with a minimal velocity of 30°/s. Fixation 
points are then defined by the samples in between two saccades. Stimuli were presented on a 
21-inch Samsung Syncmaster 1100 DF 2004 (Samsung Electronics Co. Ltd., Korea) CRT 
monitor at a distance of 80 cm from the subject, using a display resolution of 1024x786 pixels 
and a refresh rate of 120 Hz. These settings resulted in a spatial resolution of 33 pixels per 
degree of visual angle. No headrest was used.  
 
 

 
 

Stimuli  
All stimuli were based on gray-scale face images (Tottenham et al., 2009) and forest scenes 
(the forest scene photographs were used with permission from W. Einhäuser and P. König 
(Einhäuser & König, 2003)). Photographs used for the construction of stimuli were selected 
on the basis of pre-experiments (forest scenes: Steinwender J (2005) Bachelor’s thesis; faces: 
pre-experiment, data not shown). Face images had to be classified in different tasks (see 

Figure 4.10 Bubble stimuli. 
(A) Distribution of bubble positions for the 
expression task. (B) A single bubble based on a 
patch of 6 visual degrees from a full field face 
stimulus. The patch was filtered using an 
eccentricity dependent frequency filter simulating 
the drop of spatial acuity and a Gaussian mask to 
avoid edge effects. (C) Different types of bubble 
stimuli were generated. Stimuli of the same 
condition are built from patches of the same 
image. Stimuli of the congruent and incongruent 
condition are built from patches of different 
images of the same class or of different classes, 
respectively. Permuted stimuli were created for 
each of the three conditions by shuffling the 
positions of bubbles. 
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below) according to gender (gender) and expression (expression), forest images according to 
scenic openness (space) and human influence (influence). Only photographs that were 
evaluated consistently by all participants of the pre-experiments were included in the present 
study. These responses defined the different classes used below during stimulus construction. 
We selected a total of 24 photographs of faces and 36 photographs of forest scenes. The 
stimulus sets were balanced in the context of each of the four tasks. In 4% of all trials, stimuli 
were photographs shown in full field condition (Fig. 4.9). Although these full fields were 
shown during the main experiment to control for changes in classification, their main purpose 
was to serve as a basis for the creation of bubble stimuli. In 96% of the trials, bubble stimuli 
constructed from the same basic set of photographs were presented. These were created in 
three steps. First, 6.0° square patches were selected from the available full field photographs. 
Second, the image patches were space-variant filtered, imitating the retinal resolution as a 
function of eccentricity, and masked by a Gaussian envelope. Third, these bubbles were 
recombined and placed on an equiluminant gray background in different ways to create a 
variety of bubble stimuli. A total of 2061 gray-scale stimuli were used. 
 
The selection of image patches from full fields was governed by the following criteria: first, 
we selected image patches from locations where the fixation density obtained in the pre-
experiments was very low or very high. This way of selecting patch positions yields a set of 
patches with diverse empirical saliences. Second, since bubbles should be independent units 
of information, they must not overlap. Third, for each bubble on a particular full field 
stimulus, there should be bubbles on other full field stimuli that occupy the same position. 
This constraint allowed controlling for position effects when combining bubbles from 
different full fields. Ideally, some of these bubbles on other full fields should be close to 
minima and some to maxima of their respective fixation distribution. We used a randomized 
algorithm to generate an appropriate selection. Since the aligned geometry of the face stimuli 
made it impossible to fully satisfy the latter constraint, a residual set of bubbles for the face 
stimuli was selected by hand. The resulting distribution of bubble centers for the expression 
task is shown in 4.10A. 
 
The selected image patches were first filtered using an eccentricity-dependent frequency filter 
that simulates the decline of visual acuity towards the edges of the visual field as resulting 
from the non-uniform distribution of photoreceptors on the human retina (Sere et al., 2000). 
This approach ensures that all information present in a bubble can be gained by fixating the 
bubble center and that scanning bubbles is inefficient. To prevent potential artifacts resulting 
from sharp apertures, the space-variant filtered patches were masked using an isotropic 
Gaussian window with a standard deviation of 1.0°. This made the bubbles blend 
inconspicuously into the gray background. An example is shown in Fig. 4.10B.  
 
The final bubble stimuli were created by combining bubbles. In a small fraction, individual 
bubbles were shown (12%). The remaining stimuli were composed of two (42%), three 
(26%), four (14%) or five bubbles (2%). Combining several bubbles, depending on their full 
field stimulus of origin, allows different conditions (Fig. 4.10C). Same stimuli (50% of all 
stimuli, including single bubbles) were composed entirely of bubbles from the same full field 
image. Congruent stimuli (15%) were composed of bubbles from different full fields that 
were classified in the same way during the pre-experiments (they belong to the same class). 
Incongruent stimuli (15%) were composed of bubbles from full fields of different classes. 
Permutations (16%) were created by shuffling the positions of the bubbles. The final 
stimulus set was created using a randomized algorithm that optimized the set with respect to 
the constraint that each individual bubble should appear in the same number of stimuli. 
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Classification tasks 
During the experiment, participants classified visual stimuli in four different tasks. In the first 
task, participants tagged stimuli according to the facial expression of the actors into the 
classes “happy,” “sad,” “fearful,” or “disgusted.” Similarly they classified gender into “male” 
or “female.” For the space task, participants were asked to choose between “close and 
narrow” or “wide and open.” They were instructed to respond “close and narrow” if the image 
was a close-up or if it would not be possible to leave the scene—for example, if leaves and 
branches were blocking the view. They were told to respond “open and wide” if it was 
possible to look far ahead. For the influence task, we asked participants to look for indicators 
of human influence such as houses, roads and paths, trunks of trees, fences, and hewn stones 
and to classify the stimuli into either “present” or “absent.” The wording of the instructions 
was the same for all participants.  
 
Procedure 
A complete experimental session lasted approximately one hour. It was divided into four 
blocks, one for each of the four classification tasks. Face stimuli and forest scene blocks were 
presented alternately. In the beginning of the experiment, participants were instructed about 
the procedure, and example bubble stimuli were shown. They were directed to classify the 
stimuli by pressing numbers on the keyboard’s keypad and to take their best guess in cases 
where they were not sure about the stimulus’ class.  
 
Before the beginning of each block, the eye tracker was calibrated, and task and answer 
choices for that block were explained and exemplified. Each block consisted of 70 trials that 
were presented in constrained random order (see below). Each trial began with the 
presentation of a fixation cross in the middle of the screen. Whenever the fixation of the cross 
indicated a notable decline in tracking quality, the eye tracker was recalibrated. This ensured 
that the mean tracking error for at least one eye was always lower than 0.4°. If the cross was 
fixated properly, the conductor of the experiment triggered the stimulus presentation. We 
excluded the very first fixation from all subsequent analysis, as it directly reflects the 
preceding fixation of the fixation cross. The trial lasted for 3 seconds and was followed by the 
answer screen, which stayed on until participants responded by using the keyboard. There was 
no time limit for the decision. Before the next trial started, visual feedback of the participant’s 
response was given to minimize classification errors due to typos (Fig. 4.11).  
 

Figure 4.11 Experimental procedure.  
Each trial began with the presentation of a 
fixation point used for drift correction. 
Subsequently, the stimulus was presented for 3 
seconds. The response screen was displayed until 
the subject responded to the classification task 
by pressing one of the indicated keys. The 
subject’s choice was then shown as feedback. 
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The stimuli shown to each participant and their order were selected by a randomizing 
algorithm that respected the following constraints: for each participant, each stimulus was 
shown at most once; each bubble was presented at most four times; and stimuli with the same 
bubble were not shown in direct succession. Furthermore, on average, each stimulus should 
be shown to 8 participants, and the variation in the number of participants that have seen a 
particular stimulus should be as small as possible. 

4.5.2 Data analysis  
 
In the following, we first define a measure for the empirical salience of bubbles as quantified 
by fixation probability. Then we derive measures for the spatial bias, and the stimulus 
dependent and task dependent effects. These three measures will be used to investigate the 
relative contributions to the empirical salience of stimuli. All three measures put the bubbles 
in a global order. 
 

 

 
Empirical salience 
To obtain a global quantification of empirical salience, we assume that on any stimulus S, the 
ratio between the number of fixations at a bubble A, FS(A), and the number of fixations at 
another bubble B, FS(B), is independent of the context in which both are presented. This 
implies 
  

𝐹𝐹𝑆𝑆(𝐴𝐴)
𝐹𝐹𝑆𝑆(𝐵𝐵)

= 𝐸𝐸𝐴𝐴
𝐸𝐸𝐵𝐵

        (1) 

Figure 4.12 Computation of stimulus dependent salience. 
For each bubble, stimulus dependent salience was computed by considering the 
luminance and texture contrast map of the embedding full field (A and C). Luminance 
and texture contrast at the location of the bubble (marked by red circles for one 
example bubble) are then mapped to fixation probabilities (red dots). These mappings 
(B and D) map luminance and texture contrast bins (see text) to fixation probabilities 
and were obtained in a baseline study using a large number of stimuli from different 
categories. The resulting fixation probabilities based on luminance and texture 
contrast were multiplied yielding the stimulus dependent salience. 
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for any stimulus S with bubbles A and B, where EA and EB are global measures of empirical 
salience, which are independent of stimulus context. From this, it follows that the equation 
 

𝐹𝐹𝑆𝑆(𝐴𝐴)
∑ 𝐹𝐹𝑆𝑆(𝐿𝐿)𝐿𝐿∈𝑆𝑆

= 𝐸𝐸𝐴𝐴
∑ 𝐸𝐸𝐿𝐿𝐿𝐿∈𝑆𝑆

                                                           (2) 
   

holds for any stimulus S and any bubble A. Because every stimulus was presented to several 
subjects, we have, in fact, several left-hand sides of this equation. We average them for each 
stimulus and bubble. Next, the resulting equations are grouped into a linear system, and we 
compute the empirical salience as the best approximate solution. We eliminate one degree of 
freedom by imposing a scale, demanding that all empirical saliences sum to one.  
 
Stimulus dependent salience 
To characterize the bottom-up contribution to fixation behavior, we use a feature-based 
salience model. It models the conditional probability of fixating a location of an image, given 
a set of local low-level image features. Here we consider luminance contrast and texture 
contrast as features.  
 
Luminance contrast is defined as the standard deviation of the luminance intensity in an 
image patch, normalized by the mean intensity of the entire image (Einhäuser et al., 2006, 
Reinagel & Zador, 1999). We calculate it using circular patches weighted by a Gaussian 
window, G, in close analogy to the computation of a bubble. Formally, the luminance contrast 
of a pixel, LC(x), is given by 
 

𝐿𝐿𝐿𝐿(𝑥𝑥) =  1
𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

��𝐼𝐼(𝑥𝑥 − ∆) − 𝐼𝐼(̅𝑥𝑥)�2 ⋅ 𝐺𝐺(∆)     (3) 
   

where I(x) is the map of luminance intensity at each pixel, ∆ is the displacement relative to the 
center of the bubble, and 𝐼𝐼 ̅ = 𝐼𝐼 ⋅ 𝐺𝐺 is the smooth luminance map obtained by a convolution 
with a Gaussian of the same size as the Gaussian used in bubble construction. Please note that 
the normalization deviates from the definition given by Reinagel and Zador (Reinagel & 
Zador, 1999) and Einhäuser et al. (Einhäuser et al., 2006). In these previous studies luminance 
contrast was normalized in each individual image. Here, however, the bubble stimuli show 
only a limited aperture of the respective full field stimulus. Hence varying normalization of 
bubble stimuli, due to not visible differences in the respective full field stimuli would make 
contrast values incomparable. Furthermore, in conditions congruent and incongruent, several 
different full field stimuli contribute. There is no obvious generalization of an image-specific 
normalization procedure to these conditions. For these reasons we follow the suggestion of 
Zhang et al. (Zhang et al., 2008) and normalize luminance contrast by the mean luminance 
contrast over all the images of one task (Itask). This is based on the assumption that the 
influence of a bubble’s contrast on the viewing behavior depends on the whole range of 
contrast values appearing in the images of one category. Fig. 4.12A shows a luminance 
contrast map of one of our full field stimuli. 

Texture contrast is defined as the standard deviation of the luminance contrast values in an 
image patch, normalized by the mean luminance contrast of the entire image (Einhäuser et al., 
2006). Formally, 
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𝑇𝑇𝑇𝑇(𝑥𝑥) = 1
𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

��𝐿𝐿𝐿𝐿(𝑥𝑥 − Δ) − 𝐿𝐿𝐿𝐿����(𝑥𝑥)�2 ⋅ 𝐺𝐺(Δ)     (4) 
 

where 𝐿𝐿𝐿𝐿���� = 𝐿𝐿𝐿𝐿 ⋅ 𝐺𝐺  is the map of the Gaussian weighted mean luminance contrasts. 
Analogous to luminance contrast, we normalize by the mean luminance contrast over all 
images in one task. The luminance contrast map, LC, used for the computation of the texture 
contrast, is calculated with a Gaussian window of a quarter of the size of a bubble. For the 
subsequent computation of texture contrasts, the same Gaussian window, G, as for bubble 
creation is used. The luminance contrast and texture contrast of a single bubble are defined as 
the contrast values at the center of the bubble. 

Based on the feature contrasts of each bubble, we now derive a scalar describing the stimulus 
dependent contribution to fixation probability (Fig. 4.12). In a previous study we investigated 
the relation of luminance contrast and texture contrast with fixation probability in natural 
stimuli (Schumann et al., 2007; Açık et al., 2009). From the observed distribution of selected 
fixation points and the image statistics, we used Bayes’ rule to determine the conditional 
probability to fixate a given location. Importantly, the data were well described by a model 
assuming independent contributions of luminance contrast and texture contrast. Here we use 
this mapping, which originates from an independently obtained data set, to predict fixation 
probability based on the luminance contrast and texture contrast of the bubble stimuli.  
 
For computational efficiency and optimal usage of data we bin the luminance contrast and 
texture contrast values of each image. We chose 20 bins with boundaries so that the number 
of available image locations falling into each bin is constant. Next, the probability of a feature 
value (luminance contrast or texture contrast) occurring at a fixated location was calculated. 
Then priors on the image features and fixation locations are computed. The priors on the 
image features are constant due to the equilibration of the distribution. The priors for the 
fixation locations were estimated for each image category. Both the feature and fixation 
location priors were corrected for the spatial viewing biases to obtain a measure based purely 
on low-level image features. The probability of fixating a location, given its local features, 
was then estimated using Bayes’ rule. Finally, the stimulus dependent salience value of each 
bubble was calculated as the product of the fixation probabilities based on luminance and 
texture contrast. 
 
Spatial bias salience  
As a next step we investigated to what degree the fixation of bubbles can be predicted by a 
spatial bias towards the screen center (Tatler, 2007) and the statistics of saccade length and 
orientation (Bahill et al., 1975). Fig. 4.13 shows the structure of a generative model based on 
bubble positions and on the parameters of the Gaussian window used for bubble construction 
(bubble masks), global fixation statistics (central bias), and saccade statistics. Using the 
specific bubble locations as input to the model is necessary to account for the strong fixation 
preference towards bubbles found in the experimental data, the very purpose of using bubbles. 
The fixation and saccade bias maps are derived from empirical data recorded in a previous 
study of our laboratory (Walter A (2006) Bachelor’s thesis. Walter showed images of urban 
scenes/man-made objects, natural images, fractals, and pink noise images under a free 
viewing condition to 27 participants. We pooled over all her data from all of these 
categories.). The fixation bias map contains the distribution of fixations in absolute (screen) 
coordinates; the coordinates of fixations relative to their preceding fixations form the saccade 
bias map. For each trial, both maps are computed and convolved with a Gaussian kernel, with 
a standard deviation of 0.5° and then normalized to integral of one. Finally, we average across 
trials weighting each trial equally independent of the number of fixations made. 
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Based on the three maps, we simulate gaze trajectories of 75 virtual participants in 280 trials 
each in close analogy to the actual experiments. For each simulated trial, the global stimulus 
independent fixation map and the stimulus specific bubble mask are combined by point-wise 
multiplication. This combination results in an intermediate map of the spatial bias specific for 
the position of the bubbles in the stimulus considered (Fig. 4.13C). Next, the saccade bias 
map is combined with the intermediate map by first aligning the center of the saccade map 
with the last fixation location (or the screen center for the first fixation within a trial), then 
multiplying both maps point-wise and normalizing the result to integral one (Fig. 4.13E). The 
next simulated fixation is then randomly drawn from that probability distribution. This 
procedure is repeated until as many simulated fixations are drawn for the simulated trial as 
were made in the corresponding original trial.  
 
From the simulated data we obtain a scalar measure for the fixation probability of each 
bubble, independent of the task and the spatial structure of the respective full field images. 
Instead, this spatial bias salience is based solely on the spatial position of the bubbles and the 
global properties of fixation points and saccades.  
 

Figure 4.13 Simulation of fixation trajectories based on spatial biases. 
Spatial bias salience was computed from simulated fixation trajectories based on the central bias of fixations, 
saccade statistics, and bubble positions. Given the current fixation location, the next fixation is generated by, 
first, multiplying the central bias map (A) with the bubble position map (B). Second, the resulting intermediate 
map (C) is multiplied with the probability distribution over saccade vectors (D) centered at the current 
fixation. The next fixation is then sampled from the resulting map (E). For example, assuming a fixation of the 
upper left bubble in panel C, the multiplication (indicated by the white coordinate frame) of the intermediate 
map (C) and saccade statistics (D) results in the depicted next fixation map (E). Repeating this sampling 
procedure resulted in the simulated fixation trajectory. 
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Bubble information 
To characterize task dependent influences on fixation behavior, we derive a scalar measure 
for the information a bubble contains with respect to a classification task. First, we assume 
that each individual bubble is associated with a probability distribution that captures how 
likely the subjects are to decide for each stimulus class (response distribution). If this 
distribution is flat, the bubble contains no information relevant for classification, and 
performance of subjects viewing only this bubble would be at chance level. If one of its 
components is one and all others are zero, then the bubble contains maximal information. 
This is captured by the entropy of a bubble’s response distribution. If I(B) denotes the 
information content and PR(B) denotes the response distribution of bubble B, with entropy 
E(PR(B)), then 

 
𝐼𝐼(𝐵𝐵) = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸�𝑃𝑃𝑅𝑅(𝐵𝐵)�      (5) 

 
where Emax denotes the maximal entropy that can occur for probability distributions like PR(B) 
and depends only on the number of degrees of freedom of PR(B). For tasks expression, 
gender, influence, and space, Emax is 2, 1, 1, and 1, respectively. 
 
Second, along the same lines we assume that our participants’ responses to a stimulus S are 
independent and identically distributed according to the response distribution of the stimulus. 
In the case of a stimulus S composed of a single bubble B the distribution of observed answers 
is an estimate of PR(B). To estimate the empirical saliences of single bubbles from measured 
classification responses to stimuli composed of several bubbles, we need to make an 
assumption on how the response distributions for single bubbles are related to the joint 
response distribution of a stimulus containing those bubbles. Here, we assume optimal 
probabilistic integration of the independent response distributions of single bubbles (p-
model). We describe the response distribution PR(S) of a stimulus S = {B1, …, Bn} by the 
function Z operating on the individual response distributions PR(B1), …, PR(Bn). 
 

𝑍𝑍�𝑃𝑃𝑅𝑅(𝐵𝐵1), . . . , 𝑃𝑃𝑅𝑅(𝐵𝐵𝑛𝑛)� = 𝑃𝑃𝑅𝑅(𝑆𝑆)     (6) 
 

We call Z the information integration function. It integrates the response distributions of 
single bubbles independent of the bubbles’ absolute position or their relative arrangement. 
Furthermore, it does not relate to the visual content of the bubbles. It is defined as 
 

                 𝑍𝑍�𝑃𝑃𝑅𝑅(𝐵𝐵1), . . . , 𝑃𝑃𝑅𝑅(𝐵𝐵𝑛𝑛)�[𝑐𝑐] =  1
𝜔𝜔
∏ 𝑃𝑃𝑅𝑅𝑖𝑖=1,…,𝑛𝑛 (𝐵𝐵𝑖𝑖)[𝑐𝑐]                                  (7)  

where 𝜔𝜔 =  ∑ ∏ 𝑃𝑃𝑅𝑅(𝐵𝐵𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 [𝑑𝑑]𝑑𝑑 , with the summation over different stimulus classes d, is 
the appropriate normalization. Z is formally derived by writing the probability for a stimulus S 
= {B1, …, Bn} to be of class c, PR(S)[c], in terms of the corresponding probabilities for the 
individual bubbles in S to be of class c, PR(Bi)[c] under the assumption that the individual 
bubbles are independent. 

For each stimulus, we can formulate an equation like (6). Hence for each task, we can 
formulate as many equations like (6) as there are stimuli in that task. These equations operate 
on response distributions. Each equation can, however, be transformed into a set of scalar 
equations by considering the different components of the response distributions (probabilities 
for the different classes) separately. This yields 1791, 600, 588, and 585 equations for the 
tasks expression, gender, influence and space, respectively (expression has four instead of 
two response possibilities, yielding more scalar equations). This contrasts with 282, 94, 88, 
and 89 free parameters in the four tasks, equaling the number of bubbles used for stimulus 
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construction in these tasks, multiplied by the number of possible responses minus 1. We solve 
this over a determined system of non-linear equations by a maximum likelihood method. 
Details of this fitting procedure are given in the supplementary text in section 4.6.1. Finally, 
we determine estimated bubble information from the estimated response distributions of 
single bubbles according to equation (5).  
 
Correlation analysis 
We employ pair-wise correlation analyses (Pearson’s correlations) to address the net effect of 
individual predictor variables. To address how well a linear combination of the stimulus 
dependent salience, the bubble information, and the spatial bias salience of each bubble can 
explain the attention it attracts, as reflected by the empirical salience values, we employ a 
multivariate model. Finally, to correlate one predictor with empirical salience while 
controlling for the effect of all other predictors, we use semi-partial correlations. For example, 
when we are interested in the correlation of bubble information and empirical salience 
controlled for the influence of stimulus-based salience and spatial bias salience, we consider 
the residuals of a multivariate correlation (with intersection) of stimulus-based salience and 
spatial bias salience with bubble information. These residuals are the differences between the 
prediction of the multivariate model and the actual bubble information values. We now 
correlate these residuals with empirical salience. The result is called the semi-partial 
correlation coefficient of bubble information and empirical salience.  
 
For all, the simple pair-wise correlation analysis, the multivariate correlation and the semi-
partial correlation analysis, we used the log transform of the predictor variables and the log 
transform of empirical salience. This standard practice (Tabachnick & Fidell, 2007) has the 
main effect of making the distributions of the individual variables more normal. 
 

4.6 Supplementary material 
 
Description of the computation of bubble information and of other models of information 
integration.  
 
4.6.1 Fitting single bubble answer distributions 
 
Let 𝑆𝑆 be a stimulus made up of a number of bubbles 𝐵𝐵1𝑆𝑆, … , 𝐵𝐵𝑚𝑚𝑆𝑆 . If it was presented to 𝑘𝑘 
participants, 𝑘𝑘  classification responses are available. By assumption (compare Methods), 
these 𝑘𝑘 responses are drawn from the same underlying stimulus response distribution. We 
denote that underlying response distribution by 𝑠𝑠. The 𝑘𝑘 responses yield an estimate of 𝑠𝑠. This 
estimate is a random variable following a multinomial distribution. The parameters of that 
distribution are given by the underlying stimulus response distribution 𝑠𝑠. By assumption, we 
know that 𝑠𝑠 is related to the response distributions of the individual bubbles that make up the 
stimulus by an information integration model 𝐼𝐼. Let 𝑏𝑏1𝑆𝑆, … , 𝑏𝑏𝑚𝑚𝑆𝑆  denote the underlying response 
distributions of the individual bubbles of stimulus 𝑆𝑆. It holds: 𝑠𝑠 =  𝐼𝐼( 𝑏𝑏1𝑆𝑆, … , 𝑏𝑏𝑚𝑚𝑆𝑆  ). We want to 
estimate 𝑏𝑏1𝑆𝑆, … , 𝑏𝑏𝑚𝑚𝑆𝑆  based on the measured responses of our participants. Estimating 𝑏𝑏1𝑆𝑆, … , 𝑏𝑏𝑚𝑚𝑆𝑆  
is harder than estimating the underlying stimulus response distribution 𝑠𝑠, since we cannot 
directly observe realizations of the corresponding random variables. However, we can 
estimate 𝑏𝑏1𝑆𝑆, … , 𝑏𝑏𝑚𝑚𝑆𝑆  by maximizing the likelihood of the observed classification responses with 
respect to the response distributions of individual bubbles. In our case, the maximum 
likelihood estimates of 𝑏𝑏1𝑆𝑆, … , 𝑏𝑏𝑚𝑚𝑆𝑆  are those that minimize the sum-of-squares error between 
the classification responses predicted from them and the actual classification responses. We 
perform this maximum likelihood fit for every task separately, always fitting all bubbles of 
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one task simultaneously. We used a genetic algorithm to minimize the sum-of-squares 
(MatLab’s ga.m function, Mathworks, Natick, MA, USA). We used the genetic algorithm 
instead of gradient based methods, since we initially experimented with a multitude of 
information integration models, some of them possessing non differentiable structure. The 
fitting procedure was repeated 15 times (each time with different random starting values for 
the genetic algorithm), and the best fit was chosen.  

4.6.2 Comparing the predicted stimulus response distributions with the measured stimulus 
response distributions 
 
We used the p-model to fit the response distributions for single bubbles. The bases for these 
fits are the stimulus response distributions measured throughout the experiment on stimuli 
with 1 to 5 bubbles. As an additional test for the validity of the p-model we predicted the 
stimulus response distributions from the fitted response distributions for single bubbles using 
the p-model. We give the absolute difference of stimulus information of the predicted 
response distribution and stimulus information of the measured response distribution 
averaged over all stimuli within one task to indicate the fitting error. As a lower bound, we 
compute the error that would be expected if the predicted stimulus response distributions were 
the true response distributions. Under this assumption, the measured response distributions 
are built up from samples drawn from the predicted response distributions. Hence, we 
computed the average absolute difference between stimulus information of the “resampled” 
response distribution and the assumed response distribution. 

4.6.3 Validating the fit 
 
Because of the random nature of the fitting algorithm and the measured stimulus answer 
distributions, we investigated the quality of the estimation process. We investigated the bias 
and variance of the estimated underlying bubble distributions using simulations of the 
experimental process and the fitting procedure, based on random initial values for the 
underlying bubble distributions (these values were, however, chosen to be close to the 
estimated underlying bubble answer distributions to achieve maximal comparability). The 
simulation proceeded as follows. First, we choose underlying response distributions for single 
bubbles. Second, we use the integration model to compute the response distributions for 
whole stimuli. Third, we resample those distributions, taking into account the number of 
subjects that actually saw each of the stimuli in the real experiment. Fourth, we perform the 
above described fit to obtain estimates of the underlying response distributions for single 
bubbles based on the resampled responses to whole stimuli.  
 
These four steps are repeated 30 times, yielding pairs of underlying bubble response 
distributions and their estimates for every repetition. We are interested in the bias and 
variance of the entropy of the estimated response distributions, because the entropy is what 
we correlate with empirical salience and our other measures. Hence, for each pair of the 
underlying “true” bubble response distribution and its estimate, we compare the entropies of 
the distributions. Figure 4.14 shows how the entropies of the estimated bubble response 
distributions relate to the entropy of the true response distributions for different values of the 
true entropy for the expression task. The estimates appear unbiased, and the variance is 
moderate. The situation for the other tasks is qualitatively the same. 
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4.6.4 Other models of information integration 
 
We assume a probabilistic integration model but also considered two other models of 
information integration. First, a local model captures stimulus information by the maximally 
informative bubble (max-model). This model always selects the bubble with the highest 
information. Formally: 

𝑍𝑍𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑅𝑅(𝐵𝐵1), … , 𝑃𝑃𝑅𝑅(𝐵𝐵𝑛𝑛)) =  𝑃𝑃𝑅𝑅(argmax
       𝐵𝐵𝑖𝑖 ,𝑖𝑖=1..𝑛𝑛

𝐼𝐼(𝐵𝐵𝑖𝑖)) 

Where PR denotes the response distributions, Bi denotes an individual bubble and I(Bi) denotes 
its information content. 𝑍𝑍𝑀𝑀𝑀𝑀𝑀𝑀  is a function on the response distributions of the individual 
bubbles (just like in the case of the p-model) and its value is the response distribution with 
maximal information. 
Second, we considered a global model that differs from the probabilistic model by capturing 
contra factual evidence for the different choice possibilities (ce-model). Formally: 
 

𝑍𝑍𝑐𝑐(𝑃𝑃𝑅𝑅(𝐵𝐵1), … , 𝑃𝑃𝑅𝑅(𝐵𝐵𝑛𝑛))[𝑐𝑐] =  
1
𝜔𝜔

(1 − � (1 − 𝑃𝑃𝑅𝑅(𝐵𝐵𝑖𝑖)[𝑐𝑐])
𝑖𝑖=1,...,𝑛𝑛

) 

We evaluate these models using the method employed to generate Figure 4.2 (see Results). 
We give the squared error between the same condition and the model prediction (divided by 
the maximal information of the task) averaged over bubble numbers and tasks. The average 
squared relative error for the max-model is 0.044276. For the ce-model the average error is 
0.23654. The error for the p-model is 0.02518.  
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5. General discussion 
 
5.1 Discussion 
 
Summary of results 
This thesis investigates influences of stimulus-dependent factors and contextual factors on 
visual processing. To gain a better understanding of influences of temporal context on early 
visual processing we investigated neuronal processing in V1 using the method of optical 
imaging with voltage sensitive dyes, which allowed us to measure neuronal population 
activity across several millimeters of cortical area with high temporal resolution.  
 
To characterize the cortical layout in V1 concerning the mapping of orientation, previous to 
further investigation, we used smoothly moving grating stimuli. Optical responses to moving 
gratings were measured for a long time (VSDI measurements: Shoham et al., 1999), but the 
obtained responses held ambiguous stimulus information, as they did not show signatures of 
stimulus motion. Thus, prior to the investigation of influences of contextual factors, we 
investigated systematically to what extend properties of the current stimulus are reflected in 
V1 population responses, under stimulation with moving gratings (Study 1, Section 2). In 
addition to the strong and well-known response to the orientation of the grating, we were able 
to show simultaneous encoding of stimulus motion, across the population of V1 neurons. 
While the orientation of a moving grating led to a stationary pattern on the cortex, the motion 
of the grating’s individual stripes led to propagating waves. The retinotopic waves traversed 
the orientation map homogeneously, which indicated that orientation and location information 
are processed independently. The signal magnitude of the propagating waves was two orders 
of magnitude smaller than that of the stationary orientation response. The critical step that 
allowed us to visualize these waves in the recorded data was the use of singular-value-
decomposition, as an alternative method of analysis. Still, we were only able to resolve these 
signatures in our highest signal-to-noise ratio recordings. The results provide evidence that, at 
the first cortical stage, the two stimulus features, location and orientation, are processed 
independently across the neuronal population (multiplexing). 

 
To investigate the influence of the context of previous stimulation on the processing of the 
current stimulus (Study 2, Section 3), we measured responses to abrupt stimulus changes in 
cat V1. We were able to find evidence for two different encoding schemes: We found ongoing 
encoding of stimulus features when stimuli were presented in fast succession (at 33 Hz), 
consistent with earlier studies (Benucci et al., 2009). However, slower stimulus sequences (10 
Hz) revealed an alternative encoding scheme. Population tuning in V1 no longer represented 
the complete stimulus content, but those orientations that were newly added or removed. 
Thus, we found two characteristically different encoding schemes: ongoing encoding after 
short presentation (30 ms) of the preceding stimulus, and encoding of difference after longer 
presentation (100 ms). We found this neuronal behavior for artificial grating stimuli, as well 
as for filtered natural stimuli that contained a range of different spatial frequencies. We 
wanted to test whether our results are contingent on the chosen recording method of VSDI, 
which is highly sensitive to subthreshold activity. Therefore, we conducted additional 
experiments in which we recorded spiking activity of individual neurons, using electrodes. 
There, we were able to confirm a representation of difference in superthreshold responses of 
individual neurons. Further, to test whether the results are contingent on presentation of 
stimulus sequences, we also used isolated presentation of stimulus transitions between only 
two stimuli. There, we confirmed our results. Yet further, to test whether change coding is 
only found for a presentation duration of 100 ms, we also tested a duration of 500 ms in an 
additional experiment. After such longer presentation of the preceding stimulus, we found 
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representation of difference also. Thus, we showed that representation of difference is not 
exclusive to a frequency of 10 Hz, and the results suggest that it can generally be found for 
lower temporal frequencies. To explore the underlying mechanisms of change coding, we 
assessed possible contributions of adaptation and stimulus off-responses, whose signatures we 
also measured using stimulus sequences. We then proposed that encoding of difference 
involves the interplay of these two mechanisms, both depending on stimulus timing also. 
Overall, we found that the previous stimulus strongly influences the processing of current 
stimulus content when it is presented for relatively long durations of 100 ms and 500 ms, 
resulting in an encoding of the difference between past and present sensory input.  
 
Finally, to better understand how contextual factors interact with stimulus-driven factors in 
visual sampling behavior, we conducted a study to quantify the influence of the task context 
in relation to the influence of spatial biases and low-level image features on human eye 
movement control (Study 3, Section 4). We tested visual stimuli composed of image patches 
in a variety of tasks. Obtaining eye-tracking and behavioral data (button presses in forced 
choice classification tasks) from 75 participants and, subsequently, fitting them to an 
information theoretic model, allowed us to take a quantitative approach to task-dependent, 
contextual effects. We found that all three factors made individual contributions towards the 
selection of attended locations, with little redundancy among them. On average, spatial 
viewing biases, which only depend on the location of a patch, made the strongest 
contribution. Second, on average, were factors related to the task context, which were based 
on how informative the content of an image patch is in a given task. Third were low-level 
image features, which, on average, contributed least to eye movements, yet they also showed 
a significant individual contribution. All three factors made independent and significant 
contributions to eye movements and together explained a substantial fraction of the variance 
in how often different image patches were selected for fixation. The results emphasize the 
need to integrate all three, task context dependent factors, spatial biases, and stimulus-driven 
factors in a model of human eye movements. 
 

 
The following sections discuss connections of the presented work to related concepts and 
research, address possible consequences, and provide outlooks on possible future work. The 
results of the individual studies were already discussed separately (in sections 2.5, 3.5, and 
4.4).  
 
The choice of stimuli 
Whether results obtained using artificial stimuli generalize to natural conditions is an 
interesting topic. When investigating the V1 representation of stimulus motion (Study 1) we 
used artificial gratings to obtain a high signal to noise ratio. The detected signals carrying 
information about stimulus motion were two orders of magnitude smaller than the orientation 
responses and only detectable in our highest quality recordings (were the limiting factor is 
likely of technical origin, as discussed in 2.5.1). It remains to be investigated whether the 
independent simultaneous encoding of the two stimulus features generalizes to stimuli that are 
more natural. Natural stimuli, however, usually provide smaller response amplitudes than 
gratings (see Study 2, and e.g. Onat et al., 2011). A methodological advancement could 
provide a higher signal to noise ratio than is currently achievable. This might enable the 
investigation of parallel encoding of orientation and local contrast using stimuli that are more 
natural. 

 
When investigating the influence of a previous stimulus onto the processing of the next 
(Study 2), we used different types of stimuli, ranging from artificial gratings to widely filtered 
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natural stimuli. We found 10-Hz-change-coding independent of the stimulus type. Although 
we modified the natural stimuli to obtain dominant vertical and horizontal frequencies, 
necessary for parametric control in our experiments, these stimuli share important properties 
with natural stimuli, that the grating stimuli do not: The phase spectrum and the frequency 
spectrum along the spatial frequency dimension is left untouched in the filtering process. In 
the broadly filtered stimuli, additionally, we presented context from other orientations 
together with the dominant orientations. This reduced the amplitude of the effect but not the 
qualitative result. Our results show that change coding is not contingent on the presentation of 
abstract simple stimuli, but indeed generalizes to scenarios in which complex stimuli are used, 
that are comprised of contours from natural images. These results further emphasize the need 
to consider cortical encoding of difference in theoretical frameworks that aim to predict 
responses to natural stimuli. 
 
Furthermore, an interesting topic is the possible interaction of the two different encoding 
schemes for stimuli with orientation changes at multiple timescales. In our presented data, we 
found either ongoing encoding or encoding of difference, in dependence of the presentation 
duration of the stimuli. In the natural input, different changes could take place on different 
timescales in an interleaved fashion. Within the same visual stream of input, one orientation 
can change after a short time, while another orientation can change after a longer time. This 
makes it reasonable to hypothesize that both encoding schemes can be found in the cortex 
simultaneously under such kind of stimulation. It could be useful to investigate empirically 
such a possible co-occurrence of different coding schemes and their interaction, to specify 
response predictions to complex natural movies. 
 
The main discussion about the use of natural stimuli versus artificial stimuli concerns the use 
of these stimulus types in the investigation of early visual areas (Felsen & Dan, 2005; Rust & 
Movshon, 2005). In the investigation of functions involving higher areas, such as eye 
movement control, natural images are often used. Nevertheless, also in our investigation of 
the influence of the task context on human eye movements, we used images that are modified. 
There, we extracted image patches from photographs of forest scenes and faces that reveal 
only a limited controlled subset of the image content. We argued (in detail in the study in 
section 4.4.3) for a generalizability of our results to full field scenes. By using local image 
patches, we created individual perceptual units (individual pieces of visual information), 
which were required, in the developed methodology, to objectively quantify task-dependent 
information content of particular image regions (using the degree of agreement between 
participants with respect to a classification task). 
 
However, the controlled use of pieces of information in the form of image patches is a 
versatile and powerful approach to investigate questions involving the use of task-related 
information. In particular, the method and stimuli developed in the presented study (Study 3), 
as well as the measured data, provided a foundation for further investigations. Sinke (2008) 
adapted the method and stimuli to also investigate the influence of the gist of a scene 
(provided by low-spatial-frequency global image content, presented together with the local 
image patches) on the selection of fixation locations. Zennig (2009) and Herkenhoff (2012) 
investigated cultural differences in the use of information in scene viewing and classification, 
between German and Japanese participants, with a special focus on faces (based on the 
presented data from German participants and additionally obtained data from Japanese 
participants).  
 
Generally, in each empirical study the question where to place the balance between complex 
natural conditions and well-controlled laboratory stimuli has to be addressed anew. In Study 
1, we used gratings, a stimulus type, which is known to be highly effective in driving 
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responses in V1, to detect responses to an additional stimulus property. In Study 2, we used 
classical grating stimuli, as well as filtered natural stimuli. The orientation-sensitive filtering 
was necessary to investigate changes in orientation content, in line with previous related 
research (e.g. Ringach et al., 1997; Benucci et al., 2009). In study 3, we used image patches 
extracted from natural images to evaluate task-dependent information content. In the 
presented experimental paradigms, we chose stimuli suitable for the respective questions 
addressed, striking compromises between the ecological validity of natural stimuli and the 
controllability of artificial stimuli. 
 
Perceptual experience 
Neuronal activity in V1 can sometimes directly be linked to perceptual phenomena. In an 
earlier study, Jancke et al. (2004) found cortical correlates of perceptual illusion in V1. In 
particular, a stimulus without real motion, that is known to create a perceptual motion 
illusion, created cortical activity indistinguishable from that to real stimulus motion (Jancke et 
al., 2004). It is thus reasonable to hypothesize that the two different coding schemes observed 
in Study 2 (ongoing encoding and encoding of difference) also have perceptual correlates. 

 
There is a possible connection of the two different coding schemes to the flicker fusion 
frequency, which is the frequency above which individual images are not perceived separately 
anymore, but instead, as a smoothly changing stream of input. The flicker fusion frequency 
for cats is in a range of 45-70 Hz (Taravella & Clark, 1963; Schwartz & Cheney, 1966). 
Although the experimental conditions in our setup are different to the ones in which these 
thresholds were measured (the most important difference being that the cats were anesthetized 
in the experiments reported here), the values point to possible perceptual correlates of the 
qualitatively different coding schemes reported (ongoing encoding at 33 Hz and encoding of 
difference at 10 Hz), namely perception of smooth motion and flicker. This connection would 
need to be investigated, possibly by specification of the relevant timescales of ongoing 
encoding versus encoding of difference in awake animals, also including other areas (e.g. cat 
area 17). 
 
Predictive coding 
Encoding of differences in V1 is compatible with theories of predictive coding (Friston, 2005; 
Clark, 2013). Clark (2013) concludes that the predictive coding approach is the "best clue yet 
to the shape of a unified science of mind and action." Predictive coding theories inherently 
combine action and perception, since in their theoretic framework predictions about future 
input are propagated down to the earliest levels of the perceptual hierarchy (e.g. Rao & 
Ballard, 1999). The organism is assumed to possess knowledge about the effect of its own 
actions on possible input, which influences its predictions about it, in dependence of its 
actions. 
 
Further, predictive coding theories propose that deviations from the cortically generated 
predictions about the input are propagated up the visual hierarchy as error signals. In this 
framework, assuming that the default prediction is that no change occurs, representations of 
change can be interpreted as instances of such error signals. It is unknown how interactions 
with high-level mechanisms affect representation of differences in awake animals. 
Considering the temporal statistics of natural input, as discussed in the introduction, the 
prediction that no change occurs in orientation on a timescale of 100 ms and longer is 
ecologically worthwhile, and in accordance with natural input statistics (Kayser et al., 
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2004).18 Thus, even in lack of voluntary or attentional top-down influences, the first cortical 
processing stage may already incorporate predictive coding mechanisms, dependent on input 
timing. 
 
Cortical encoding of difference in connection with eye movements 
Given that under natural conditions visual input is actively selected by eye movements, it is 
an interesting question whether cortical encoding of difference could be observed in 
combination with eye movements. We found ongoing encoding for fast changes (33 Hz), and 
encoding of difference for slower changes (10 Hz). We proposed that these two processing 
schemes, observed for the different presentation durations, complement two different modes 
of sensory sampling. 
 
Specifically, the first case concerns the processing across different fixations. The change 
coding that we observed in our experimental setup, in anaesthetized cats, can be described as 
a difference operation over time between two visual inputs that originate from the same 
location in the environment. However, the situation might be different in awake animals. The 
spatial mapping in V1 is in reference to the retina and not in reference to the visual field. 
Thus, when eye movements are made, a given cortical location will receive information from 
different locations in the environment. Thus, local operations in the cortex are, in principle, 
sufficient to compare information originating from different locations in the environment. 
Accordingly, change coding could not only be used to process changes of visual information 
in time, but also to process differences in visual information across space (Gawne & Woods, 
2003). In the study (section 3.5.2), we propose that the characteristically high correlation of 
activity in the retina in the beginning of a fixation (as opposed to later during fixation; 
Desbordes & Rucci, 2007), i.e. at low temporal frequencies, might be compensated at the 
cortical level by the observed difference representation, effectively reducing redundancies in 
the input. In general, encoding of difference across successive fixations could play a role in 
the perception of spatial patterns and in the detection of salient structures, by reducing 
responses to similar input across fixations, while enhancing responses to dissimilar input 
across fixations.  
 
The second case concerns the processing during fixation. During fixation, microscopic eye 
movements, which operate at higher temporal frequencies, decorrelate retinal activity (Kuang 
et al., 2012). Thereby, small spatial details in visual structures are emphasized (Rucci et al., 
2007; Desbordes & Rucci, 2007; Rucci, 2008; Kuang et al., 2012). Here, the faithful cortical 
representation of current stimulus content, which is observed at higher frequencies (33 Hz), 
may result in a direct transmission of the acquired information, which already has reduced 
correlations due to the microscopic eye movements, further downstream. Thus, the two 
different processing schemes observed for the different presentation durations (ongoing 
encoding and encoding of difference) might complement the two different modes of sensory 
sampling by eye movements (during fixation and immediately after a saccade).  
 
In addition, under natural conditions and in awake animals, additional factors are expected to 
play a role. In the investigation of contextual factors in eye movement control (Study 3), we 
showed that task context individually influences the selection of fixation locations, in addition 
to low-level features and spatial biases. Task context was also shown to affect responses in 
V1 via top-down signals (Heanny & Schiller PH, 1988; Watanabe et al., 1998; see Posner & 
Gilbert, 1999 for review of attentional modulation in V1). Task-dependent effects in V1 

18 This applies to the amplitudes of collinear orientations. Phases of orientations, on the other hand, correlate on shorter 
timescales (Betsch et al., 2004). 
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include changes in neuronal response properties that allow neurons to carry more information 
about a stimulus attribute, when it is relevant in the given task (Li et al., 2004). It was also 
found that practicing a task could lead to long-term changes in V1 neuronal response 
properties (Schoups et al., 2001). The other way around, activity in V1 can sometimes even 
be used to predict task performance (Ress et al., 2000). Thus, task context can influence V1 
activity not only via the selection of visual input by eye movements, but also via top-down 
signals. Future research needs to elaborate, how such top down influences interact with the 
observed encoding of difference across time, in addition to eye movements. 

 
Simultaneous and independent processing of different stimulus features 
Of the different stimulus features that are processed in the primary visual cortex, in Study 2, 
we concentrated on stimulus orientation. We found encoding of difference in slow (10 Hz) 
stimulus sequences. From the response we measured at a given time, it is not possible to infer 
what image was presented at the screen at the corresponding time. Instead, the change that 
occurred from one image to the next can be inferred. Does V1 possess incomplete information 
about the current stimulus? In Study 1, we found that the two stimulus dimensions, 
orientation and local contrast, are represented independently. Although the retinotopic 
response, encoding local contrast, was two orders of magnitude smaller than the orientation 
response, the results show that different properties of the stimulus are processed in parallel at 
the same cortical locations. It is, thus, possible that in parallel to the representation of 
differences observed for orientation, a faithful representation of current stimulus content 
exists in the retinotopic representation, which Study 2 was not designed to investigate. Thus, 
in light of the multiplexing capabilities of V1 (observed in Study 1), it is possible that the 
orientation response, investigated in Study 2, does not represent all information available in 
V1. Alternatively, other stimulus properties, such as local contrast, could be processed in 
parallel, and provide additional stimulus information.  
 
Concluding remarks 
It is clear that a concept of perception, that sets the construction of faithful representations as 
its main function, is simplified and that perceptual processes are influenced by more than the 
current stimulus alone. To understand the role of context in perceptual processing it can help 
to conceptualize perception in a broader framework. That is, understanding the function of 
perception as to aid the generation of beneficial behavior.  
 
In real-world scenarios, sensory input is not arbitrary. If it were, nothing could be gained by 
integrating information across time and space or across different sources. However, there are 
dependencies in the world. It was mentioned that natural visual input possesses characteristic 
statistical properties, such as correlations across time and space (see Simoncelli & Olshausen, 
2001; Geisler, 2008). Additionally, there are lawful relationships between action and sensory 
input (sensorimotor contingencies, O’Regan & Noë, 2001).19 And, of course, there are also 
higher-level, complex lawful relationships in the world. Such dependencies determine the 
entities that provide relevant context in the processing of current stimulus content. 
 
An adaptation of the nervous system to such dependencies allows the use of relevant context. 
This has advantages for the organism, among which are the following. It allows for 
predictions about future sensory input (e.g. Rao & Ballard, 1999; Friston, 2005; Clark, 2013). 
It allows for increasing efficiency in perceptual processing, by using knowledge of lawful 
relationships (or learned probabilities) to reduce redundancies (Barlow, 1961). Related to the 

19 For example, when the eyes are moved to the left, visual input shifts to the right. 
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last, it allows selecting (by active sensing) or enhancing (by neuronal processing) those 
signals that are most informative. On a systemic level, it allows the organism to take guided 
actions to increase the chances of beneficial outcome. Organisms that learn or have adapted to 
these dependencies can exploit them and have an evolutionary advantage.  
 
These ideas stress that an influence of context on perceptual processes is not to be seen as an 
exception or an artifact, interfering with unbiased stimulus processing. Instead, it is vital for 
the organism that it uses lawful relationships in the world and between the world and its own 
body, which exist under natural conditions, in the processing of current stimulus content. To 
be able to observe how perceptual processes have adapted to such lawful relationships, they 
have to be investigated in conditions in which ecologically relevant relationships are 
applicable. 
 
In this framework, the immediate past and the task of the animal can provide relevant context. 
These contextual factors are investigated in this thesis. We have shown a strong effect of 
temporal context in the primary visual cortex, and found significant independent contribution 
of the task context on eye movements, in addition to spatial and stimulus-driven factors. The 
empirical results presented here provide foundations for an improved theoretical 
understanding of the role of context in perceptual processes. 
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6. Appendix 
 
6.1 Information on the method of voltage sensitive dye imaging  
 
The method of voltage sensitive dye imaging used in the studies in section 2 and 3 enables 
real-time, in vivo optical imaging of the brain activity. It provides high spatial and temporal 
resolution at the same time. This section provides specific information voltage sensitive dye 
imaging (VSDI), and compares it with other methods used to investigate neuronal processing.  
 
6.1.1 Mechanism 
 
Voltage sensitive dye imaging was first used by Tasaki et al. (1968) in the squid giant axon to 
translate membrane potential into optical signals. The amplitude of the voltage sensitive dye 
signal is linearly correlated with changes in membrane potential (Cohen et al., 1974). The 
voltage sensitive dye molecules bind to neuronal membranes and their fluorescence properties 
correlate linearly to changes in membrane potential. They act as signal transducers 
exchanging electrical activity into optical signals within the studied tissue. This is possible 
because of the dye's electrochemical properties. Each dye molecule has a large dipole 
moment. It has a hydrophobic tail on one side and a hydrophilic part on the opposing side 
with a fixed charge. The dye binds to the membrane of cells with its hydrophobic tail. The 
fixed charge on the hydrophilic part of molecule prevents the molecule from crossing the 
membrane. The opposing charges within the dye molecule make it sensitive to changes of 
membrane potential and lead to changes in its fluorescent properties. See also Grinvald et al. 
(2001).  
 
6.1.2 Temporal and spatial resolution 
 
When the stained cortex is thus excited with light, local changes in membrane potential lead 
to changes in optical signals. These signals are captured with a fast CCD camera. We used a 
recording frame rate from 100 Hz to 200 Hz. Grinvald et al. (2001) determined an upper 
boundary for spatial resolution (around 50 x 50 micrometers per pixel), the limiting factors 
being optics and light scattering. In the results reported in this thesis, we use a resolution of 
107 x 107 micrometers per pixel. The cortical area covered is a few square centimeters in 
size. According to Grinvald et al. (2001), a pixel viewing an area of 50 x 50 micrometers 
would measure a composition of signals from about 250-500 neurons. Consequently, in one 
of our pixels we would have contributions from 1145-2290 neurons. Since contributions from 
these neurons are mixed in each pixel, it is important for paradigms using this method, to 
make use of functional cortical organization. Here, topographic organization of cortical areas 
is a great advantage. In a topographic organization, neighboring cells are functionally more 
similar to each other than to cells that are further away. 
 
6.1.3 Comparison to other methods 
 
The dye signal is a sum over responses from dendrites, axons and cell bodies. However, the 
greatest share of the signal is generated by post-synaptic potentials, as the receiving dendritic 
trees cover a much larger cortical area than the cell somata (~1000 fold) (Grinvald et al., 
2001). VSDI measurements in combination with other methods have confirmed that the dye 
signal reports changes in membrane potential (Petersen et al, 2003), in contrast to classical 
electrophysiological recording, which records spikes only. Being able to detect changes in 
sub-threshold activity can be very useful. Membrane potential much better reflects the 
synaptic input to neurons and the integrative processes within them than their spiking output. 
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Thus, visualizing subthreshold activity allows the investigation of input integration in a large 
cortical area. Other methods that can measure subthreshold activity are intrinsic 
electrophysiology, which allows measurement from only one neuron at a time, and external 
recording of local field potentials (LFPs), which measures responses at single cortical 
locations. Both methods are spatially restricted, while their temporal resolution is very good 
(in the sub-millisecond range). The method that is most similar to VSDI is LFP recording 
with multi-electrode arrays. Both have the advantage that responses can be recorded from 
different cortical locations simultaneously. VSDI imaging, however, reflects spatial averages 
at each pixel location, whereas multi-electrode recordings sample at individual locations. 
Signals measured with intrinsical optical imaging (without dye), like in fMRI, depend on the 
level of oxygen in the blood. The measured response is called hemodynamic response, or also 
blood-oxygen-level dependent (BOLD) signal. Recoding techniques that depend on the 
BOLD signal have a low temporal resolution. Intrinsical imaging is useful when focusing on 
spatial properties of cortical activation (e.g. MacEvoy et al. (2009) use frames of 500 ms), 
while VDSI allows investigation of both spatial and temporal properties, resolving temporal 
changes on smaller timescales (we use frames of 10 ms).  
 
6.1.4 Conclusion 
 
Using VSDI imaging, we can record simultaneously from large neuronal populations with 
high spatial and temporal resolution (Grinvald & Hildesheim, 2004). Since both of the studies 
in section 2 and 3 aim to investigate dynamical aspects of cortical processing in large 
populations of neurons tuned to different stimulus features, VSDI imaging was the 
appropriate choice.  
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6.2 Rat retinotopy 

6.2.1 Introduction 
 
To prepare for experiments investigating cat primary visual cortex (presented in section 2 and 
3), the author conducted experiments investigating the primary visual cortex of rats. This was 
done in the context of two projects, the first investigating retinotopic organization in rat 
primary visual cortex (Sascha Rekauzke, 2006, Diploma Thesis) and the second investigating 
the extension, propagation, and overlap of local activity in rat primary visual cortex under 
local stimulation (Jan Habijan, 2009, Diploma Thesis). Details about these projects are 
documented in the respective diploma theses. This section provides a brief overview of these 
experiments, of data analysis, and of the data. 
 
Retinotopy is a specific kind of mapping from the visual field to the cortex, one that is 
topographic, meaning that neighbor-relationships are maintained. Thus, in a retinotopic 
mapping neighboring locations in the visual field are mapped onto neighboring locations on 
the cortex. It has been shown previously that the contralateral retina of the rat projects to the 
primary visual cortex (Rumberger et al., 2001) and ipsilateral input only reaches the lateral 
binocular area (Adams & Forrester, 1968). Most previous studies, investigating retinotopy in 
primary visual cortex, report that the superior-inferior axis of the visual field is represented on 
a posterior-anterior axis in the primary visual cortex (area 17), and the temporal-nasal axis is 
represented on a medial-lateral axis in the cortex (Adams & Forrester, 1968; Espinoza & 
Thomas, 1983; Gias et al., 2005), in another study however, a representation that was rotated 
about 45° was reported (Montero, 1973). Montero et al. found that both the dorsal and ventral 
temporal visual field was represented medially in the cortex, and the whole nasal visual field 
was represented laterally in the cortex. In the two projects mentioned above, voltage-sensitive 
dye imaging (VSDI) of responses to local stimuli was used to investigate retinotopic 
organization in rat primary visual cortex (area 17).  

6.2.2 Methods 
 
Animal preparation 
The experiments described here were conducted to supplement the experiments documented 
in Rekauzke (2006), and Habijan (2009), as well as to provide the author with practical 
experience in the method of voltage sensitive dye imaging. Animal preparation and data 
acquisition was similar to that described in the context of the studies in section 2 and 3 (see 
methods sections). However, there were some differences as rats are different from cats. The 
following section contains a brief report of the methods with emphasis on the deviations from 
the methods described earlier in this thesis. For more details see Habijan (2009).  
 
All animal experiments were approved by the German Animal Care and Use Committee and 
carried out in accordance with the Deutsches Tierschutzgesetz (§ 8 Abs. 1 Tierschutzgesetz). 
The experiments were conducted with rats (Dark Agouti, Janvier). Data was recorded from 10 
male animals weighing between 218 g and 354 g. Initial anesthesia was done with chloral 
hydrate (400 mg per kg i.p.). Animals were artificially respirated, continuously anesthetized 
with 0.8% isoflurane in a mixture of O2/N2O (1:2 during surgery and 1:1 during 
measurement), and fed intravenously. Atropine sulphate was administered (0.05 ml/kg i.m.) 
every four hours. Before receptive field mapping, paralysis was induced with 0,09 mg/kg*h 
Alloferin® i.v. to prevent eye drift during measurement. Heart rate, exhaled CO2 (3.8%), and 
body-temperature were constantly monitored and maintained. The skull was opened, using the 
bregma as a point of reference, the dura was removed, a chamber was mounted, the cortex 
was stained for 2-3 h with voltage-sensitive dye (RH1838), and unbound dye was washed out.  
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Data acquisition 
The chamber was filled with Lactated Ringer's solution and sealed to maintain pressure. 
Before recording an image of the cortical vessel pattern was made using green light to 
enhance contrast. Then the camera was positioned. The focal plane was set to about 500 
micrometers below the cortical surface. The cortex was illuminated with light of wavelength 
630 ± 30 nm, and emitted light at wavelengths above 665 nm was collected. Stimulus 
presentation was locked to heart-beat for later artifact correction. Breathing was not locked to 
recording, because interfering with the rhythm of the pneumatic pump tended to have a 
negative influence physiological stability, which had a higher priority. (This is much more 
critical in a small animal like the rat than in cat).  
 
Visual stimuli and presentation 
The stimuli used where high-contrast phase inverting step-wave gratings. They alternated 
with a frequency of 2,5 or 4,5 Hz, meaning that there was a black-white-switch either 5 or 9 
times per second, respectively (a full cycle is one switch and back). Luminance was 1-97 
cd/m², with mean 49 cd/m². One local stimulus was 17° in size, with a spatial frequency of 
0.06 c/°, so one full cycle (one black and one white bar) was visible (see Figure 6.1 for 
illustration of a local stimulus). In between conditions, there was a delay of at least 15 
seconds. Recording was done for 1 second, including a 200 ms pre-stimulus interval. The 
stimulus was shown more than 800 ms, thus exceeding the recoded interval. Additionally, 
"blank" trials (grey screen) were recorded for later artifact correction. The grating was 
presented in horizontal and vertical orientation locally at 12 different positions on the monitor 
(100 Hz, Sony Triniton GDM-FW900, Japan), which was positioned 30 cm in front of the 
contra-lateral eye. The exact position of the monitor was chosen based on gaze direction, 
which was assessed by measuring the position of the blind spot, which was then back-
projected onto the visual field (and marked on a glass panel) as well as by electrophysiology. 
Receptive fields of individual cells were mapped manually beforehand using a flashlight 
capable of projecting oriented light bars of varying length and width onto a surface. Potentials 
were amplified and played over audio speakers. Based on this feedback, receptive field 
borders were mapped onto the surface and manually noted on a glass plate. In some 
experiments, extra-cellular recordings were also made in response to local stimulation. Also 
full field stimuli (covering the whole monitor) were shown, previous to the local gratings, to 
check for visual responses with a strong stimulus first, before running the local paradigm.  
 
Analysis 
The recorded signal was normalized by the average (across 200 ms) pre-stimulus response-
level and an average blank trial was subtracted to correct for heart-beat artifacts. The signal 
from the local presentation paradigm was then averaged across repetitions of each condition 
and across stimulus orientation, resulting in one signal for each of the twelve local stimulus 
positions. The activity not specific to position was removed by subtracting the average across 
all stimulus positions from each condition. To eliminate high-frequency artifacts and low-
frequency gradients, the signal was spatially band-passed from 0.01 to 3 c/mm.  

6.2.3 Results 
 
Figure 6.1 and 6.2 illustrate retinotopic organization in rat primary visual cortex for one 
animal. Figure 6.1 shows average responses to local stimuli presented at twelve different 
positions. Each local response is an average across 80 repetitions (40 each orientation). 
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Representation of stimulus location  
Temporal averages were computed from 100 ms after stimulus onset to the end of stimulus 
presentation at 700 ms later to avoid artifacts from the initial processing delay. Contour lines 
were computed at 60% and 80% of the maximal activity across space and conditions. 
Responses to stimulation at the twelve monitor positions with contour lines overlaid are 
shown in Figure 6.1. In Figure 6.2 only the 60% contours from responses to local stimuli are 
shown and overlaid on top of the cortical vessel pattern to aid comparison of cortical position. 
There is a systematic relationship between the position of the local stimulus and the position 
of its response on the cortex: Dorsally presented stimuli (9-12) lead to activation in posterior 
regions of V1. Stimuli presented more ventrally (5-8, and also 1-4) lead to activation of more 
and more anterior regions. Along the other axis, temporal stimuli were represented more 
medially, while nasally presented stimuli were represented more laterally. There was no 
visible activation for stimulus 1,2, and 9 inside the region of interest (ROI). Considering the 
layout of the mapping of the other local stimuli, these stimuli are likely to be projected to 
regions outside the ROI, which could not be detected in this experiment. 
 
Size of local activity 
Visual responses were obtained in a region from 4 to 6.5 mm lateral and from 2 to 4 mm 
posterior to bregma (Figure 6.2). All local stimuli were of the same size in the visual field, but 
the contoured activated regions are of different sizes for different stimuli. Larger regions are 
activated laterally compared to medially (from nasal vs. temporal stimulation), and slightly 
larger regions are activated posteriorly compared to anteriorly (from dorsal vs. ventral 

 
Figure 6.1: Top: Stimulus positions on the presentation screen. One of two phase-inverting gratings, horizontal 
orientation or vertical orientation, was shown at one of twelve possible positions on the screen. Bottom: 
Average responses for each of the twelve positions. Contour lines are plotted at 60% (black) and 80% (white) of 
maximal average activity. 
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stimulation). This excludes the cases of stimulus number 1,2, and 9, in which no local activity 
was measured. 
 

 

 

6.2.4 Discussion 
 
Representation of stimulus location  
Using VSDI and localized stimuli it was possible to document the retinotopic organization in 
rat primary visual cortex (area 17). There was a systematic relationship between the position 
of the local stimuli on the monitor (or in the visual field since eyes did not move) and the 
cortical position of their evoked activity (Fig 6.1 and 6.2). The retinotopic representation 
shown here is incongruent with Montero et al.'s (1973) result that the whole (dorsal and 
ventral) nasal visual field is represented in the lateral visual cortex (area 17). Instead, the 
layout of the retinotopy is consistent with studies that found that the dorsal-nasal visual field 
(Figure 6.2, light green) is represented laterally, and the ventral-nasal field (Figure 6.2, light 
purple) is represented medially (Adams & Forrester, 1968; Espinoza & Thomas, 1983, Gias et 
al., 2005). 
  
Size of local activity 
Gias et al. (2005) found a relatively larger representation of the dorsal-nasal area compared to 
other regions of the visual field. They argue that this might partly be due to this being the 
binocular region, which might use a larger neural circuitry. The data presented here is 
consistent with this observation of cortical magnification (Figure 6.2, light and medium-light 
green, and light blue lead to a larger area of activity).  

Figure 6.2: a) Positions on the screen are color-coded. Stimuli were presented on the left side of the animal. b) 
Contour lines of the 60% activation level for each possible position on the screen (also seen in Figure 6.1, black) 
are overlaid on top of each other and on top of the cortical vessel pattern inside the ROI shown in c. Contour 
lines and regions within contour lines were colored according to the color code shown in a). The white bar 
indicates one millimeter. c) Cortical vessel pattern underneath opening and region of interest (ROI) as white 
frame. The red grid is spaced in one-millimeter distances and is anchored at the position of the bregma.  
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V1 location 
The data show visual responses in a region from 4 to 6.5 mm lateral and from 2 to 4 mm 
posterior to bregma (Figure 6.2). It is important to realize that not the whole primary visual 
cortex was stimulated, since the monitor did not cover the entire visual field. Thus, areas in 
which visual responses were not recorded could still be part of primary visual cortex. In 
addition, a region could be stimulated but still not lead to a recorded response, when signal 
quality would be to low, as would be the case for responses outside the ROI (expected 
response locations for stimulus position 1,2 and 9). This means that also areas outside the ROI 
could be part of the primary visual cortex. So the values above are rather minimal boundaries 
than maximal boundaries. Interpreted this way, the observations here are consistent with 
results reported in the two above mentioned diploma theses: Habijan localized the primary 
visual cortex 4,9 to 8,2 mm posteriorly and 2,4 to 4,3 mm laterally to bregma (Habijan, 2009, 
p.26) and Rekauzke found it 4 to 7.5 mm posteriorly and 1.7 to 4.5 mm laterally to bregma 
(Rekauzke, 2006, p.23-24).  
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7. Abbreviations 
 
BOLD  blood-oxygen-level dependent 
i.m.  intramuscular (into a muscle) 
i.p.  intraperitoneal (into the peritoneum "body cavity") 
i.v.  intravenous (into a vein) 
LFP  local field potential 
LGN  lateral geniculate nucleus 
RF  receptive field 
ROI  region of interest 
SVD  singular-value decomposition 
V1  primary visual cortex 
VSDI   voltage-sensitive dye imaging 
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