Synthesis and Characterization of Functional Amphiphilic Gradient Copolymers by Atom Transfer Radical Polymerization

Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Universität Osnabrück Fachbereich Biologie/Chemie

> vorgelegt von

Sandra Schwitke

Osnabrück
28. July 2014

1. Gutachter: Prof. Dr. U. Beginn,

Universität Osnabrück, Fachbereich Biologie/Chemie Organische Materialchemie
2. Gutachter: Prof. Dr. H.-J. Steinhoff

Universität Osnabrück, Fachbereich Physik
Makromolekülstruktur
"In der Welt von heute hat die Chemie Einfluss auf alles."

Linus Pauling

Die vorliegende Arbeit wurde in der Zeit von Juli 2008 bis Juli 2014 am Institut für Chemie neuer Materialien der Universität Osnabrück unter der Leitung von Prof. Dr. U. Beginn durchgeführt.

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet habe. Ein früherer Promotionsversuch hat nicht stattgefunden.

Osnabrück, der 28. Juli 2014

Sandra Schwitke

Danksagung

Für das interessante Thema und die damit verbundenen Aufgabenstellungen, sowie für seine intensive Betreuung während meiner Arbeit, möchte ich mich als erstes bei Herrn Prof. Dr. Beginn bedanken. Bei Herrn Prof. Dr. Steinhoff möchte ich mich bedanken, dass er das Korefferat meiner Arbeit übernommen hat.

Desweitern möchte ich mich bei den Technischen Assistentinnen der Arbeitsgruppe Organische Materialchemie für ihre Unterstützung bedanken: Petra Bösel für ihre Hilfe bei der gesamten Laborarbeit, ihrer tollen Labororganisation, der Unterstützung bei der Wartung der GPC-Anlage, die Einweisung in die DSC und insbesondere für die Hilfe bei den Hydrolysen; Marianne Gather für die vielen gemessenen "Blumensträuße"; Iris Helms für die IR-Messungen; Elisabeth Michalek für die Versuche mit dem MALDI-TOF und ihre Hilfe bei der Labororganisation und Anja Schuster, aus der ACII, für die Elementar-Analysen.

Ich möchte meinen Kollegen Marina Zorn, Ralph Beckmann, Enfeng Song, Marius Ciobanu, Ana-Maria Lepadatu, Miriam Brand, Xihomara Casallas Cruz und Eduard Belke für die tolle Zusammenarbeit danken. Carina Ellermann möchte ich für ihre Unterstützung bei den Synthesen danken. Traute Stunk danke ich für ihre Hilfe durch den Bürokratismus.

Besonderer Dank gilt meinem Freund Martin, der mir viel Verständnis und Hilfe entgegen gebracht hat.

Meinen Eltern und meinem Bruder danke ich für ihre Unterstützung und dass sie mir Rückhalt gegeben haben, damit ich es bis hierhin schaffen konnte.

Contents

1 Introduction 1
2 Literature Review 5
2.1 Polymer Architecture 5
2.2 Polymer Synthesis 11
2.3 Properties and Applications of Block Copolymers 21
2.4 Molar Mass Determination by Light Scattering 23
3 Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization 27
3.1 Materials and Methods 27
3.1.1 Materials 27
3.1.2 Batch Copolymerization of Statistical Copolymers 27
3.2 Characterization 33
3.2.1 Nuclear Magnetic Resonance Spectroscopy 33
3.2.2 Elementary Analysis 33
3.2.3 Infra Red Spectroscopy 33
3.2.4 Size Exclusion Chromatography 34
3.2.5 Differential Scanning Calorimetry 34
3.3 Results and Discussion 35
3.3.1 Kinetic Studies 35
3.3.2 Structural Analysis 52
3.3.3 Molecular Weight Characterization 59
3.3.4 Thermal Behavior 68
3.4 Summary 76
4 Hydrolysis of Statistical Copolymers from n- and tert-Butyl Methacrylate 79
4.1 Materials and Methods 79
4.1.1 Materials 79
4.1.2 Hydrolysis with Trifluoroacetic Acid 79
4.1.3 Hydrolysis with Methanesulfonic Acid 80
4.1.4 Hydrolysis with Trimethylsilyl Iodide 81
4.1.5 Characterization 81
4.2 Results and Discussion 83
4.3 Summary 93
5 Synthesis of Gradient Copolymers from n- and tert-Butyl Methacrylate by means of Semibatch Polymerization 95
5.1 Materials and Methods 95
5.1.1 Materials 95
5.1.2 Semibatch Copolymerization of Gradient Copolymers 95
5.1.3 Characterization 99
5.2 Results and Discussion 100
5.2.1 Monomer Addition Program 100
5.2.2 Kinetic Studies 105
5.2.3 Structural Analysis 123
5.2.4 Molecular Weight Characterization 131
5.2.5 Thermal Behavior 139
5.3 Summary 147
6 Hydrolysis of Gradient Copolymers from n- and tert-Butyl Methacrylate 149
6.1 Materials and Methods 149
6.1.1 Materials 149
6.1.2 General Procedure 149
6.1.3 Characterization 150
6.2 Results and Discussion 151
6.3 Summary 161
7 Synthesis of Statistic Copolymers from Benzyl Methacrylate and tert-Butyl Methacrylate by means of Batch Polymerization 163
7.1 Materials and Methods 163
7.1.1 Materials 163
7.1.2 Batch Copolymerization of Statistical Copolymers 164
7.1.3 Characterization 168
7.2 Results and Discussion 169
7.2.1 Kinetic Studies 169
7.2.2 Structural Analysis 186
7.2.3 Molecular Weight Characterization 195
7.2.4 Thermal Behavior 207
7.3 Summary 215
8 Synthesis of Gradient Copolymer from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization 217
8.1 Materials and Methods 217
8.1.1 Materials 217
8.1.2 Semibatch Copolymerization of Gradient Copolymers 218
8.1.3 Characterization 220
8.2 Results and Discussion 221
8.2.1 Monomer Addition Program 221
8.2.2 Kinetic Studies 225
8.2.3 Structural Analysis 236
8.2.4 Molecular Weight Characterization 243
8.2.5 Thermal Behavior 250
8.3 Summary 256
9 Hydrolysis of Statistic and Gradient Copolymers from Benzyl Methacrylate and tert-Butyl Methacrylate 259
9.1 Materials and Methods 260
9.1.1 Materials 260
9.1.2 Hydrolysis of Statistical Copolymer 260
9.1.3 Hydrolysis of Gradient Copolymer 260
9.2 Results and Discussion 262
9.3 Summary 271
10 Synthesis of AB-Di-Block Copolymers from tert-Butyl Methacrylate and n- Butyl or Benzyl Methacrylate 273
10.1 Materials and Methods 273
10.1.1 Materials 273
10.1.2 Synthesis of Block A - Macro Initiator 274
10.1.3 Synthesis of Block B 275
10.1.4 Hydrolysis 277
10.1.5 Characterization 278
10.2 Results and Discussion of the Block Copolymerizations 279
10.2.1 Kinetic Studies 280
10.2.2 Structural Analysis 285
10.2.3 Molecular Weight Characterization 287
10.2.4 Thermal Behavior 292
10.3 Summary 297
10.4 Results and Discussion of the Hydrolysis 298
10.5 Summary 305
11 Synthesis of Gradient Copolymers from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization with Observation by Online IR 307
11.1 Materials and Methods 307
11.1.1 Materials 307
11.1.2 Semibatch Copolymerizations 308
11.1.3 Hydrolysis 311
11.1.4 Characterization 312
11.2 Results and Discussion of the Semibatch Copolymerization 313
11.2.1 Online ATR-FTIR-Measurement 313
11.2.2 Structural Analysis 320
11.2.3 Molecular Weight Characterization 325
11.2.4 Thermal Behavior 328
11.3 Results and Discussion of the Hydrolysis 331
11.4 Summary 338
12 Summary 341
13 Zusammenfassung 343
A Feeding-Program of experiment V31 345
B Feeding-Program of experiment V32 355
C Feeding-Program of experiment V33 358
D Feeding-Program of experiment V34 361
E Feeding-Program of experiment V101 364
Literature 377
List of Figures 379
List of Tables 385
List of Abbreviations 389

1. Introduction

Since the research and discovery of Staudinger [1] at the beginning of the last century the field of polymer science has developed with increasing rate. Today neither industry or daily life can renounce synthetic polymers. [2] Free radical polymerization (FRP) is used very often in industry because of the broad spectrum of monomers that can be used and the comparative easy experimental setup and reaction control. [3] With the advancement of controlled radical polymerization (CRP), first reported by Otsu and Yoshida in 1982 [4], involving the suppress of termination reactions, it is possible to overcome the disadvantages of the FRP like broad molar mass distribution and weak control over the structure of the polymer chains. [5, 6, 7, 8] CRP allows the preparation of telomers, end- and side-group functional polymers, as well as block-copolymers. One type of CRP is the Atom Transfer Radical Polymerization (ATRP) which was developed by the working groups of Kato et al. [9] and Matyjaszewski et al. [10] nearly at the same time in 1995. Block-copolymers are used e.g. as emulsifiers in polymer blends and ink-jet inks. [11, 12] A structural relative to block copolymers, accessible by CRP, are the gradient copolymers. [13, 14, 15]

The aim of this work is to synthesize functional amphiphilic copolymers with a well defined gradient structure along the polymer chains, consisting of two monomers that have nearly the same reaction kinetic parameters. For this purpose the kinetic parameters of the two investigated monomer pairs, tert-butyl and n-butyl methacrylate as well as tert-butyl and benzyl methacrylate, were determined by batch ATRP. Then the data were used for the calculation of a monomer feeding program, to prepare gradient copolymers by means of semibatch ATRP. In a second step the resulting copolymers were hydrolyzed to obtain functional amphiphilic gradient copolymers. Three different kinds of hydrolysis were investigated to find the most effective strategy. Moreover di-block copolymers with the same monomer-units were synthesized and compared with the statistical and gradient copolymers. In a cooperation with the working group of Prof. Dr. H.-U. Moritz from the University of Hamburg gradient copolymers were polymerized by a semibatch ATRP with online IR-spectroscopy observation to control the monomer feed during the synthesis. The resulting statistical, gradient and diblock copolymers were compared due to their physical properties by ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy, elementary analysis, ATR-FTIR spectroscopy, size exclusion chromatography and differential scanning calorimetry.

This thesis consists of twelve chapters. Chapter 2 contains an overview of the state of the literature about polymer architecture and synthesis, the properties and applications of block copolymers and the comparison of them with gradient copolymers together with a short review of the molar mass determination by light scattering.

In Chapter 3 the batch ATRP of tert-butyl and n-butyl methacrylate is described. Different monomer compositions were examined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy to find their kinetic parameters. These values were needed for semibatch synthesis of the gradient copolymers. Moreover samples of the resulting statistical copolymers from different polymerization times were investigated in respect to the structure of the resulting copolymers, the molar mass development of the copolymers with reaction time, the polymerization control and the polymers thermal behavior and the changes with increase of polymerization time.

Chapter 4 details the three different kinds of hydrolysis that were investigated. The target copolymers are amphiphilic bearing carboxylic acid side-groups. Since acrylic acid containing monomers can not be used with ATRP [16], the tert-butyl-ester groups protected acids were used. The ester groups were cleaved and replaced by OH-groups. Two acidic hydrolysis, one with trifluoroacetic acid (TFA) and one with methanesulfonic acid (MSA) and a hydrolysis under neutral conditions, with trimethylsilyl iodide (TMSI), were performed. The resulting copolymers were investigated for complete conversion of the tert-butyl-ester groups, the progress of the molar mass and thermal behavior of the amphiphilic products.

Chapter 5 describes the synthesis of four gradient copolymers with different compositions of tert-butyl and n-butyl methacrylate by semibatch ATRP. The kinetic parameters as determined in Chapter 3, were incorporated into the monomer addition programs. The monomer feeding curves were calculated to control the addition of feed-solution into the stock-solution. The development of the cumulative and the instantaneous compositions of the copolymers were determined from data obtained from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of samples that were taken periodically during the reaction. Moreover precipitated samples taken at different polymerization times were examined by the same methods and under the same conditions as the statistical copolymers before. The differences and the similarities between the gradient and the statistical copolymers were worked out as well as the differences and the similarities between the different compositions of the gradient copolymers.

The hydrolysis of the P[tBMA-grad-nBMA] is given in Chapter 6. The hydrolysis strategy that have been determined in Chapter 4 as the most effective one was used for the cleavage of the the tert-butyl groups on the chain of the gradient copolymers to receive the intended amphiphilic gradient copolymers. The hydrolysis products were analyzed as before with ${ }^{1} \mathrm{H}-$ NMR, EA, ATR-FTIR, SEC and DSC.

Chapter 7 contains the batch copolymerization of tert-butyl and benzyl methacrylate. Similar to the monomer system of tBMA and nBMA seven different mixtures of tBMA and BzMA were polymerized by ATRP. Samples which were taken at different polymerization times were investigated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy to determine the kinetic parameters of the system. Additionally precipitated samples were studied with the same methods and under the same conditions as it was done with the $\mathrm{P}[\mathrm{tBMA}-\mathrm{co}-\mathrm{nBMA}]$ products to determine the structure, the molar masses and the thermal behavior of the samples. The resulting data of the $\mathrm{P}[\mathrm{tBMA}-\mathrm{co}-\mathrm{nBMA}]$ and $\mathrm{P}[\mathrm{tBMA}-\mathrm{co}-\mathrm{BzMA}]$ were compared.

In Chapter 8 the semibatch synthesis of the gradient copolymer from tBMA and BzMA is described. The kinetic parameters resulting from the batch copolymerization of the two monomers were introduced into the monomer addition program to calculate the monomer feeding program for the ATRP as it was done for the gradient copolymers with tBMA- and nBMA-units in Chapter 5 before. Also the cumulative and the instantaneous compositions of samples taken during the synthesis were calculated from data resulting from ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectroscopy and even more precipitated samples taken at different polymerization times were analyzed with elementary analysis, ATR-FTIR-spectroscopy to investigate the structure of samples, SEC for determination of molar mass changes and DSC for examination of the thermal behavior. The results were compared with the results of the gradient copolymers with tBMA- and nBMA-units.

Chapter 9 describes the hydrolysis of a statistical and the gradient copolymer with tBMAand BzMA-units. The same hydrolysis reagent and the same experimental procedure that was used for the hydrolysis in Chapter 6 was used to ensure the comparability of the results. Hence, the resulting amphiphilic statistical and gradient copolymer were examined with the same methods (${ }^{1} \mathrm{H}-\mathrm{NMR}$, ATR-FTIR, SEC, DSC) under the same conditions. The resulting data were compared with the data of the amphiphilic copolymers with tBMA- and nBMAunits.

Chapter 10 contains the synthesis of di-block copolymers by ATRP. The influence of the structure of the copolymer and the physical behavior were examined by the comparison of the di-block copolymers $\mathrm{P}[\mathrm{tBMA}]-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]$ and $\mathrm{P}[\mathrm{tBMA}]-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]$ with the previous synthesized and analyzed statistical and gradient copolymers. First a macroinitiator from tert-butyl methacrylate was polymerized. Then a second block of n-butyl methacrylate, respectively benzyl methacrylate was added. ATRP with the same initiator system and under the same experimental conditions was used for all three experiments to ensure the compatibility of the product with the other copolymers of this thesis. On this account also the analysis methods and conditions were used to characterize the polymer products.

In cooperation with the working group of Prof. Dr. H.-U. Moritz from the University of

Hamburg gradient copolymers were polymerized using online infrared-spectroscopy observation to control the monomer feed during the synthesis. This is given in Chapter 11. The resulting copolymers were analyzed in the same way as the statistical an gradient copolymers with tBMA- and BzMA-units before and then they were compared.

The summary of this thesis is the content of Chapter 12. It gives a short overview of the results of the experiments and analyzes that were realized.

2. Literature Review

In this chapter the current state of the scientific literature on the architecture and the synthesis of copolymers is given. Special attention is payed to the block- and gradient-copolymers and the controlled radical polymerization technique of Atom Transfer Radical Polymerization.

2.1. Polymer Architecture

Polymers can be described in different ways. A basis of the description is the overall structure of the polymer. Such structure-based characterization are: [17, 18]

- homo-chain and hetero-chain polymer
- monodisperse and polydisperse
- regular and irregular

The backbone of homo-chain polymers consist of only one kind of element, for example the carbon-backbone chain of poly(acrylonitrile) or poly(methacrylate). Hetero-chain polymers contain at the minimum two different elements, for example poly(urethane) which contains carbon and oxygen on the backbone chain. When the macromolecules e.g. in a solution have all the same molecular weight, the molecules are monodisperse. An example here are enzymes. For the synthesis of monodisperse macromolecules matrices are necessary. In contrast, a typical solution with synthetic polymer is polydisperse. That means they are non-uniform with respect to the molar mass. A homopolymer is called regular when it contains units that repeat uniformly (ABCABCABC...) and with the same sense of direction (head-to-tail). Diketo- or peroxide-groups along the polymer backbone distribute the regularity as well as head-to-head and tail-to-tail conjunctions. Then the macromolecule is irregular. [17]

The process based description of polymer chains reflects the order of the monomer-units along the polymer chain. In Figure 2.1 are listed different types of sequences of monomer-units on a linear polymer chain. A first distinction is the number of different monomers which were used during the polymerization. A polymer chain that contains only one kind of monomer-units is called a homopolymer, see Figure 2.1 A. When two or more different monomers are used at the polymerization, the resulting polymers is called copolymer. When just one monomer is used for the synthesis but isomers of the monomer rise during the reaction the product is called pseudo-copolymer. An example is the polymerization of 1,3-butadiene. The resulting
product contains mainly cis- $1,4-$, but also trans $-1,4-$ and 1,2 -units which originate from the same monomer. [17]

Fig. 2.1.: Overview of linear copolymer architectures; (A) homopolymer P[A], (B) di-block copolymer $\mathrm{P}[\mathrm{A}]-\mathrm{b}-\mathrm{P}[\mathrm{B}]$, (C) tri-block copolymer $\mathrm{P}[\mathrm{A}]-\mathrm{b}-\mathrm{P}[\mathrm{B}]-\mathrm{b}-\mathrm{P}[\mathrm{C}]$, (D) tri-block copolymer $\mathrm{P}[\mathrm{A}]-\mathrm{b}-\mathrm{P}[\mathrm{B}]-\mathrm{b}-\mathrm{P}[\mathrm{A}]$, (E) alternating copolymer $\mathrm{P}[\mathrm{A}-\mathrm{alt}-\mathrm{B}]$, (F) gradient copolymer $P[A-\operatorname{grad}-B],(G)$ statistical copolymer $P[A-c o-B]$, following $[14]$

Block copolymers consist of two or more sequences of homopolymers which are covalently joined together, see Figure 2.1 B, C and D. The monomer units of the polymer chain of an alternating copolymer (c.f. Figure 2.1 E) change totally regular in alternating fashion. The composition of the polymer chain of a gradient copolymer changes continuously, for example from a begin that is rich of monomer unit A to an end of the polymer chain which is rich of monomer unit B, see Figure 2.1 F. [13, 14, 15] A statistical copolymer contains no structure in with respect to the sequence of the monomer units along the polymer chain (c.f. Figure $2.1 G)[17,19]$. In the following text only binary copolymers containing two monomers A and B are described. With polymerization reactions the sequence of the monomer units depend on the reactivity ratios of a pair of monomers r_{A} and r_{B}. These ratios describe the ability of the growing polymer chain $\mathrm{M}_{\mathrm{x}}^{*}$, terminated with growth-active side derived from monomer $\mathrm{x}(\mathrm{x}=\mathrm{A}, \mathrm{B})$, to react with either the same monomer or the other monomer during a polymerization. [20, 21]

$$
\begin{align*}
& M_{A}^{*}+M_{A} \xrightarrow{k_{A A}} M_{A}^{*} \tag{2.1.1}\\
& M_{A}^{*}+M_{B} \xrightarrow{k_{A B}} M_{B}^{*} \tag{2.1.2}\\
& M_{B}^{*}+M_{A} \xrightarrow{k_{\mathrm{BA}}} M_{A}^{*} \tag{2.1.3}\\
& M_{B}^{*}+M_{B} \xrightarrow{k_{B B}} M_{B}^{*} \tag{2.1.4}
\end{align*}
$$

with * as the reactive species, $k_{A A}$ representing the rate constant for the propagation end of a polymer chain ending on A adding monomer A and $k_{A B}$ denoting the rate constant of the propagation end of a polymer chain ending in A adding monomer B and vice versa. [3]

When a monomer was incorporated into the polymer chain, it disappeared from the monomer solution. This is described by Equations 2.1.5 and 2.1.6.

$$
\begin{align*}
& -\frac{\mathrm{d}\left[\mathrm{M}_{\mathrm{A}}\right]}{\mathrm{dt}}=\mathrm{k}_{\mathrm{AA}}\left[\mathrm{M}_{\mathrm{A}}^{*}\right]\left[\mathrm{M}_{\mathrm{A}}\right]+\mathrm{k}_{\mathrm{BA}}\left[\mathrm{M}_{\mathrm{B}}^{*}\right]\left[\mathrm{M}_{\mathrm{A}}\right] \tag{2.1.5}\\
& -\frac{\mathrm{d}\left[\mathrm{M}_{\mathrm{B}}\right]}{\mathrm{dt}}=\mathrm{k}_{\mathrm{AB}}\left[\mathrm{M}_{\mathrm{A}}^{*}\right]\left[\mathrm{M}_{\mathrm{B}}\right]+\mathrm{k}_{\mathrm{BB}}\left[\mathrm{M}_{\mathrm{B}}^{*}\right]\left[\mathrm{M}_{\mathrm{B}}\right] \tag{2.1.6}
\end{align*}
$$

It is conveniently assumed that the reaction rates of the reactions 2.1.2 and 2.1.3 are equal and two reactivity parameters r_{A} and r_{B} are defined from the reactions 2.1.1 and 2.1.2, as well as reactions 2.1.3 and 2.1.4.

$$
\begin{align*}
\mathrm{k}_{\mathrm{BA}} & {\left[\mathrm{M}_{\mathrm{B}}^{*}\right]\left[\mathrm{M}_{\mathrm{A}}\right]=\mathrm{k}_{\mathrm{AB}}\left[\mathrm{M}_{\mathrm{A}}^{*}\right]\left[\mathrm{M}_{\mathrm{B}}\right] } \tag{2.1.7}\\
\mathrm{r}_{\mathrm{A}} & =\frac{\mathrm{k}_{\mathrm{AA}}}{\mathrm{k}_{\mathrm{AB}}} \tag{2.1.8}\\
\mathrm{r}_{\mathrm{B}} & =\frac{\mathrm{k}_{\mathrm{BB}}}{\mathrm{k}_{\mathrm{BA}}} \tag{2.1.9}
\end{align*}
$$

The instantaneous quotient of monomer A- and B-consumption $d\left[M_{A}\right] / d\left[M_{B}\right]$ is obtained by dividing Equation 2.1.5 by Equation 2.1.6. On subsequent insertion of condition 2.1.7, as well as the definitions of the reactivity parameters (Equations 2.1.8 and 2.1.9) one obtains the Lewis-Mayo or Copolymerization-Equation 2.1.10 that relates the instantaneous polymer composition to the actual monomer concentration in the reaction mixture.

$$
\begin{equation*}
\frac{\mathrm{d}\left[\mathrm{M}_{\mathrm{A}}\right]}{\mathrm{d}\left[\mathrm{M}_{\mathrm{B}}\right]}=\frac{\left[\mathrm{M}_{\mathrm{A}}\right]\left(\mathrm{r}_{\mathrm{A}}\left[\mathrm{M}_{\mathrm{A}}\right]+\left[\mathrm{M}_{\mathrm{B}}\right]\right)}{\left[\mathrm{M}_{\mathrm{B}}\right]\left(\left[\mathrm{M}_{\mathrm{A}}\right]+\mathrm{r}_{\mathrm{B}}\left[\mathrm{M}_{\mathrm{B}}\right]\right)} \tag{2.1.10}
\end{equation*}
$$

Another way to describe the conversion of the monomers is the use of mole fractions instead of the concentrations, c. f. Equations 2.1.5 and 2.1.6.

$$
\begin{align*}
\mathrm{f}_{\mathrm{A}} & =1-\mathrm{f}_{\mathrm{B}}=\frac{\left[\mathrm{M}_{\mathrm{A}}\right]}{\left[\mathrm{M}_{\mathrm{A}}\right]+\left[\mathrm{M}_{\mathrm{B}}\right]} \tag{2.1.11}\\
\mathrm{F}_{\mathrm{A}} & =1-\mathrm{F}_{\mathrm{B}}=\frac{\left[\mathrm{M}_{\mathrm{A}}\right]}{\left[\mathrm{M}_{\mathrm{A}}\right]+\left[\mathrm{M}_{\mathrm{B}}\right]} \tag{2.1.12}
\end{align*}
$$

with $f_{x}=$ mole fraction of the monomers and $F_{x}=$ mole fraction of the monomer-units inside the polymer chain

For the determination of the composition of a copolymer the Equations 2.1.10, 2.1.11 and 2.1.12 are combined. [3]

$$
\begin{equation*}
\mathrm{F}_{\mathrm{A}}=\frac{\mathrm{r}_{\mathrm{A}} \mathrm{f}_{\mathrm{A}}^{2}+\mathrm{f}_{\mathrm{A}} \mathrm{f}_{\mathrm{B}}}{\mathrm{r}_{\mathrm{A}} \mathrm{f}_{\mathrm{A}}^{2}+2 \mathrm{f}_{\mathrm{A}} \mathrm{f}_{\mathrm{B}}+\mathrm{r}_{\mathrm{B}} \mathrm{f}_{\mathrm{B}}^{2}} \tag{2.1.13}
\end{equation*}
$$

The plot of the molar fraction copolymer composition F_{A} versus the monomer compositions f_{A} of a pair of monomers is called a copolymerization diagram of these monomers. Figure 2.2 shows copolymerization diagrams from monomer pairs with different couples of reactivity ratios. Only when the reactivity ratios of both monomers are equal to one, the resulting copolymer has the same composition as the monomer mixture. When the r-values of the monomer pair differ from one in the final copolymer chain the amount of one monomer unit is different from the amount of this monomer in the monomer mixture. The reactivity ratios of a pair of monomers also influence the sequence of two monomer units on the copolymer chain.

Fig. 2.2.: Copolymerization Diagram of monomer pairs with different reactivity ratios [19]

In an alternating copolymerization monomer A may only react with monomer B. Hence, the reactivity ratios of both monomers must be zero. An ideal random or ideal statistical copolymer is the result when both reactivity ratios are one. Hence, active chain A reacts with monomer A and monomer B in the same way. The structure of a block-like copolymer results from monomer pairs with the reactive ratios that are both obviously greater than one. That means that one kind of monomer reacts preferentially with themself and parts of the copolymer (the blocks) contains almost only monomer A and the other part monomer B. Note that well defined di- or tri-block copolymers cannot be made by means of random copolymerization reactions that include termination steps. [19]

Beside the different compositions of the monomer units on the polymer chain also the arrangement of linked polymer chains lead to different polymer architectures. In Figure 2.3 different kinds of branched copolymers are depicted. "Three or more polymer chain originate from a branching point of branched copolymers. According to the relative arrangement of the part of the chains to each other one distinguish further star-shaped, dendritic, statistical (hyper-branched) and comb-liked branched molecules." [17] ${ }^{\text {a }}$ In this thesis only linear polymer chains are investigated, in particular block, gradient and statistical copolymers.

Fig. 2.3.: Overview of branched copolymer architectures; (A) star polymer, (B) graft polymer, (C) dendrimer, (D) hyper-branched polymer; • branching point, • end group; following [17]

It is a well known characteristic of high-molar weight polymers to be mutually "incompatible", i.e. mixtures of homopolymers are unstable and separate into different phases. [22] This is also observable between the different blocks of block copolymers. Four factors influence the phase behavior of polymer mixtures and block copolymers: the architecture of the polymer (chains), the kind of monomer-units, their composition on the polymer chains and finally the degree of polymerization which is the number of repeating units on the polymer chains. The energy of the mixture is characterized by the Flory-Huggins segment-segment interaction parameter χ with Equation 2.1.14. [22, 23]

$$
\begin{align*}
\chi & =\frac{1}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}\left[\epsilon_{\mathrm{AB}}-\frac{1}{2}\left(\epsilon_{\mathrm{AA}}+\epsilon_{\mathrm{BB}}\right)\right] \tag{2.1.14}\\
\epsilon_{i j} & =\sum_{\mathrm{ij}} \frac{3}{4} \frac{\mathrm{I}_{\mathrm{i}} \mathrm{I}_{\mathrm{j}}}{\mathrm{I}_{\mathrm{i}}+\mathrm{I}_{\mathrm{j}}} \frac{\alpha_{\mathrm{i}} \alpha_{\mathrm{j}}}{\mathrm{r}_{\mathrm{ij}}^{6}} \tag{2.1.15}
\end{align*}
$$

with $\epsilon_{\mathrm{ij}}=$ contact energy between i and j segments, $\mathrm{k}_{\mathrm{B}}=$ Boltzmann constant, $\mathrm{r}_{\mathrm{ij}}=$ segment segment separation, $\alpha=$ segment polarizability, $\mathrm{I}=$ ionization potential
χ is one parameter to estimate the miscibility of a polymer blend. Miscibility can be expected if χ has a negative value, hence, the energy between $\mathrm{A}-\mathrm{B}$-segment contact is lower than the sum of the $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ contracts. An example of such favorable interactions are hydrogenbonds. In a polymer mixture the value of χ is typically positive, that means the energy of the system increases with the number of $\mathrm{A}-\mathrm{B}$ contacts in the mixture. [22, 23]

[^0]Two different treatments exist for the description of the behavior of the phase separation of block copolymers. The strong segregation limit (SSL) treat a polymer mixture with $\chi \mathrm{N} \gg 10$ and the weak segregation limit (WSL) a mixture with $\chi \mathrm{N} \approx 10$. The SSL approach was developed in the 1960s by D. J. Meier [24] and a further development by E. Helfand and Z. R. Wasserman [25, 26, 27, 28] For both treatments various approaches were developed. The SSL investigates block copolymers that show sharp borderlines between the phases. The borderline between the phases of block copolymers that are diffuse and broad are described by the WSL, developed by L. Leibler. [29] A second approach came from G. H. Fredrickson and E. Helfand. [30] The SSL and the WSL were brought together by M. W. Matsen and F. S. Bates. [31] The strong and weak segregation limits explain the different phases that occur at different compositions of a block copolymer.

The meso-phases that can be exhibited by a SSL-di-block copolymer of different compositions are depicted in Figure 2.4. The length scale of the phases is around 5 to 100 nm [22].

Fig. 2.4.: Structures of di-block copolymer mesophases at different copolymer compositions F_{A}; S/S' - body-centered spherical micelles, C/C' - hexagonally packed cylindrical micelles, $\mathrm{G} / \mathrm{G}^{\prime}$ - bicontinuous gyroid, L - lamella [19, 22]

A lamella structure of the phases occurs at a composition of around $\mathrm{F}_{\mathrm{A}}=0.5$. There layers of PA and PB alternate regularly. When the amount of PA decrease, between $\mathrm{F}_{\mathrm{A}}=0.30$ and $\mathrm{F}_{\mathrm{A}}=0.40$, the structure of the phase change to the gyroid structure. Here a labyrinth of PA permeates a matrix of PB . The PA-channels connect all sides of the sample consistently. When the amount of PA is between $\mathrm{F}_{\mathrm{A}}=0.60$ and $\mathrm{F}_{\mathrm{A}}=0.70$ the inverse gyroid structure with a labyrinth of PB in a PA matrix occurs. Another notation for the gyroid structure is ordered bicontinuous double diamond. [22] That the gyroid structure is a stable phase was first shown by E. L. Thomas et al. in 1994. [32] Hexagonally packed cylindrical micelles of PA in a PB matrix are observed between $\mathrm{F}_{\mathrm{A}}=0.15$ and $\mathrm{F}_{\mathrm{A}}=0.30$ and the inverse structure between $\mathrm{F}_{\mathrm{A}}=0.70$ and $\mathrm{F}_{\mathrm{A}}=0.85$. Microspheres of PA in a body-centered cubic PB Matrix are regarded for di-block copolymers with less than $\mathrm{F}_{\mathrm{A}}=0.15$ and with more than $\mathrm{F}_{\mathrm{A}}=0.85$ PB microspheres in a PA matrix. [22, 23] The different compositions and the corresponding phase structures of the di-block copolymers are associated with a change of $\chi \mathrm{N}$. When the $\chi \mathrm{N}$-values of the different structures are plotted against the respective compositions the result is the phase diagram that is depicted in Figure 2.5. The transfer from the disordered state to the ordered phases is called ordered-disordered-transition (ODT). [22, 31]

Fig. 2.5.: Phase diagram of A-B-di-block copolymer; ODT - ordered-disordered-transition, S/S' - body-centered spherical micelles, C/C' - hexagonally packed cylindrical micelles, G/G'

- bicontinuous gyroid, L - lamellae [31]

Phase segregation is not only observed for block copolymers. Even gradient copolymers may show this behavior. [33, 34, 35] Lefebvre et al. figure out "that a gradient in composition along the chain makes phase separation more difficult than for a block copolymer" [33] Mok et al. compare the phase behavior of a styrene/ n-butly acrylate block copolymer and the corresponding gradient copolymer. Both copolymers show phase separation but the calculated phase diagram of the gradient copolymer is much more complex than the one of the block copolymer. [35]

2.2. Polymer Synthesis

A survey on the different kinds of polymer reactions is given in Table 2.6. There are three types of polymer reactions, the build-up of polymers, their decomposition and polymer-analogous reactions. The latter are reactions of functional groups on the polymer chain which change the chemical properties of the macromolecules without alternating the degree of polymerization, for examples the hydrolysis of tert-butyl-ester-groups to COOH -groups. In principal these reactions are the same as with low-molecular-weight molecules but because the polymer chains are present as statistical coils the functional groups are not perfectly homogeneously distributed in the reaction solution. Furthermore frequent neighbor-group effects, as well as the fact that side products can not be removed from the polymeric products, result in a
different reaction kinetics, and request specialized synthesis techniques. The decomposition of polymer chains can occur in two ways: by depolymerization $\left(\mathrm{P}_{\mathrm{m}+1} \rightarrow \mathrm{P}_{\mathrm{m}}+\mathrm{M}\right)$ or by divide of the polymer chain $\left(\mathrm{P}_{\mathrm{m}+\mathrm{n}} \rightarrow \mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{n}}\right)$. [18]

The two main types of polymerization reactions are step-growth and chain-growth reactions. In a step-growth reaction two molecules with at least two functional groups react. At the beginning of the reaction dimers, trimers and then oligomers are built. Long macromolecules are only reached with high conversion and even then oligomers and unconverted monomers are in the mixture. The growth of the polymers is a random process at step-growth reactions. At a polyaddition two functional groups react and at a polycondensation beside the covalent bond a byproduct, c.f. $\mathrm{H}_{2} \mathrm{O}$, is generated. [18]

- Nitroxide Mediated Polymerization (NMP)
- Reversible Addition Fragmentation Transfer Polymerization (RAFT)
- Atom Transfer Radical Polymerization (ATRP)

Fig. 2.6.: Overview on polymer reaction (following [18])

Beside the step growth reaction the chain growth reaction is the second way for synthesis of polymer chains. Polymerization are reactions, involving active species such as radicals, cations, anions or metal-organic species. With coordinative polymerizations the addition of monomer units is controlled by catalysts, for example the Ziegler-Natta-Polymerization where different catalyst-components like TiCl_{4} and AlEt_{3} are used, or enzymes. With this polymerization technique the tacticity of the monomer units on the polymer chain can be controlled. Here the monomer is inserted between the catalyst and the last added monomer unit. [17]

The active species of the ionic polymerization is an anion $\left[R\left(M_{i}\right)^{\ominus} \rightarrow R\left(M_{i+1}\right)^{\ominus} \rightarrow R\left(M_{i+2}\right)^{\ominus}\right]$ or a cation $\left[R\left(M_{i}\right)^{\oplus} \rightarrow R\left(M_{i+1}\right)^{\oplus} \rightarrow R\left(M_{i+2}\right)^{\oplus}\right]$. [17] Various initiators are used here. To start cationic polymerizations Brønsted and Lewis acids, halogens and salts like aryldiazonium and tetrafluoroborate can be used. [36, 37] For a anionic polymerization initiators like alkyllithium compounds or naphthalene radical-anions are used. [36, 38] The main problem with carbon-cationic polymerizations is the high termination rate because of the instability of the cations. The anionic polymerization is very sensitive against oxygen and water. In addition the monomers must have certain properties. Monomers with electron-releasing substituents are needed for a cationic polymerization, like alkoxy--, phenyl-, vinyl- or 1,1-dialkyl-groups. The monomers for a anionic polymerization must possess electron- withdrawing groups, like nitrile-, carbonyl-, phenyl- or vinyl-groups. However, the initiator and the monomer have to be adjusted. The amount of suitable couples is severely limited. More over polar solvents can not be used because they can react with the ions, destroy of build up stable complexes with them. [3] The method that is used here is the radical polymerization, so this is discussed more intensive here.

The chain-growth polymerization mechanism consists of three steps. The initiation is followed of the propagation of the chain. The polymerization of an individual growing radical ends with the termination reaction. The reactions are given in the Equations 2.2.1 to 2.2.6. [3] Initiator decomposition:

$$
\begin{equation*}
\mathrm{I} \xrightarrow{\mathrm{k}_{\mathrm{d}}} 2 \mathrm{R} \bullet \tag{2.2.1}
\end{equation*}
$$

Initiation:

$$
\begin{equation*}
\mathrm{R} \bullet \xrightarrow{\mathrm{k}_{\mathrm{i}}} \mathrm{RM}_{1} \bullet \tag{2.2.2}
\end{equation*}
$$

Chain growth:

$$
\begin{align*}
& \mathrm{RM}_{1} \bullet+\mathrm{M} \xrightarrow{\mathrm{k}_{\mathrm{p}}} \mathrm{RM}_{2} \bullet \tag{2.2.3}\\
& \mathrm{RM}_{\mathrm{n}} \bullet+\mathrm{M} \xrightarrow{\mathrm{k}_{\mathrm{p}}} \mathrm{RM}_{\mathrm{n}+1} \bullet \tag{2.2.4}
\end{align*}
$$

Termination:

$$
\begin{align*}
& \mathrm{RM}_{\mathrm{n}} \bullet+\mathrm{RM}_{\mathrm{m}} \bullet \xrightarrow{\mathrm{k}_{\mathrm{t}, \mathrm{c}}} \mathrm{RM}_{\mathrm{n}+\mathrm{m}} \tag{2.2.5}\\
& \mathrm{RM}_{\mathrm{n}} \bullet+\mathrm{RM}_{\mathrm{m}} \bullet \xrightarrow{\mathrm{k}_{\mathrm{t}, \mathrm{~d}}} \mathrm{RM}_{\mathrm{n}}+\mathrm{RM}_{\mathrm{m}} \tag{2.2.6}
\end{align*}
$$

with $\mathrm{I}=$ initiator molecule, $\mathrm{R} \bullet=$ radical, $\mathrm{M}=$ monomer molecule, $\mathrm{k}_{\mathrm{d}}=$ rate constant of initiator dissociation, $\mathrm{k}_{\mathrm{i}}=$ rate constant of first monomer adding, $\mathrm{k}_{\mathrm{p}}=$ rate constant of propagation, $\mathrm{k}_{\mathrm{t}, \mathrm{c}}=$ rate constant of termination by coupling, $\mathrm{k}_{\mathrm{t}, \mathrm{d}}=$ rate constant of termination by disproportionation

Equation 2.2.1 shows the homolytic dissociation of the initiator into two radicals i.e. the generation of the active species. The radicals can be produced with different ways. Figure 2.7 depicts different initiators as examples.
a)

b)

c) $\mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{Fe}^{3+}+{ }^{\bullet} \mathrm{OH}+\mathrm{OH}^{-}$
d)

e)

f)

Fig. 2.7.: Homolytic dissociation of different initiators; a) benzyl peroxide (BPO), b) azobisisobutyronitrile (AIBN) , c) hydrogen peroxide with iron ions, d) peroxodisulfate with iron ions, e) alcohol and cesium ions, f) benzoin (following [3, 19])

The most common way is the thermal decomposition of the initiator which are peroxy-, azo-, disulfid- or tetrazene- compounds. [36, 39] The two most frequently applied thermal initiators are benzyl peroxide (BPO) and azobisisobutyronitrile (AIBN), see Figure 2.7a,b. A limitation for the use of a substance as thermal initiator is the dissociation energy of the substance that must be between 100 and $170 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. The thermal initiators have different dissociation temperatures where the half-life time ranges from 6 to 8 h, e. g. AIBN in a range from 50 to $70^{\circ} \mathrm{C}$ and BPO from 80 to $95^{\circ} \mathrm{C}$. "The differences in the rates of decomposition of the various initiators are related to differences in the structures of the initiators and of the radicals produced." [3] An other way of producing of radicals is by means of redox reactions, for example the reaction of hydrogen peroxide with iron ions, see Figure 2.7c. Other kinds of redox initiators are a mixture inorganic oxidant and reductant, for instance peroxodisulfate and a metal ion, a organic-inorganic redox pairs and monomers that are a part of the redox pair itself. The third way of homolytic dissociation which is used at radical polymerization is
the photoinitiated one. [36, 40] "In general, light absorption results in radical production by either of two pathways: 1. Some compounds in the system undergoes excitation by energy absorption and subsequent decomposition into radicals. 2. Some compounds undergoes excitation and the excited species interacts with a second compound by either energy transfer or redox reaction to from radicals derived from the latter and/or former compound(s)." [3]

Equation 2.2.2 shows the addition of the first monomer. This reaction is the second step of the initiation of a radical chain polymerization. It is much faster than the dissociation step, hence, the dissociation of the initiator molecule is the rate-determining step of the initiation. [3] The addition of the subsequent monomer to the active radical is called "propagation step". The propagation rate constant k_{p} is independent of the viscosity of the reaction mixture and on the conversion of the monomer. The ratio between propagation and termination is stable up to a conversion of $\leq 80 \%$. [41] The value of k_{p} of the most monomers is in a range of 10^{2} to $10^{4} \mathrm{l} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~s}^{-1}$. [3] Monomers with similar structure have similar propagation rates, for example methyl acrylate and methyl methacrylate. The solvent which is used at the polymerization has just little influence on the propagation rate constant. [41]

The termination of the polymerization can occur by two reactions. During a coupling reaction, see Equation 2.2.5, two active ends of polymer chains react to one long polymer chain and a disproportionation reaction, see Equation 2.2.6, means a hydrogen atom is transferred from one polymer chain to a second polymer chain. That leads to two polymer chains without active ends, one with a double bond at the end. The rate constant of the two termination reactions is in the same range for both types, in an order of 10^{6} to $10^{8} 1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$. A coupling termination is more frequent at lower temperature, while at higher temperature the disproportionation termination is preferred. "It is generally accepted that the termination rate coefficient depends on the following factors and experimental parameters: (1) the system viscosity, (2) the chain length of the terminating free macroradicals, (3) the temperature, (4) the pressure, and the (5) monomer conversion." [41] "The much greater values of k_{t} (whether $\mathrm{k}_{\mathrm{t}, \mathrm{c}}$ or $\mathrm{k}_{\mathrm{t}, \mathrm{d}}$) compared to k_{p} does not prevent propagation because the radical species are present in very low concentrations and because the polymerization rate is dependent on only the one-half power of k_{t}. . $[3]$

For the determination of the rate of propagation R_{p} the total concentration of the radicals is needed.

$$
\begin{equation*}
-\frac{\mathrm{d}[\mathrm{M}]}{\mathrm{dt}}=\mathrm{R}_{\mathrm{p}}=\mathrm{k}_{\mathrm{p}}[\mathrm{M}][\mathrm{RM} \bullet] \tag{2.2.7}
\end{equation*}
$$

The concentration of the radicals in the polymerization is very low and because of this it is difficult to determine. Hence, for the solution of Equation 2.2.7 it is assumed that their concentration is constant during the "steady-state" regime. [3]

$$
\begin{align*}
& \mathrm{R}_{\mathrm{i}}=\mathrm{R}_{\mathrm{t}}=\mathrm{k}_{\mathrm{t}}[\mathrm{RM} \bullet]^{2} \tag{2.2.8}\\
& {[\mathrm{RM} \bullet]=\left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{k}_{\mathrm{t}}}\right)^{\frac{1}{2}}} \tag{2.2.9}
\end{align*}
$$

Equation 2.2.9 is introduced into Equation 2.2.7. [3]

$$
\begin{equation*}
\mathrm{R}_{\mathrm{p}}=\mathrm{k}_{\mathrm{p}}[\mathrm{M}]\left(\frac{\mathrm{R}_{\mathrm{i}}}{2 \mathrm{k}_{\mathrm{t}}}\right)^{\frac{1}{2}} \tag{2.2.10}
\end{equation*}
$$

The rate of polymerization can be determined experimentally by measuring the decrease of the monomer concentration, respectively the increase of the polymer concentration in the reaction mixture against the polymerization time. Different kind of techniques are available here: infra-red, ultra-violet or nuclear magnetic resonance spectroscopy or even gravimetric analysis. In this work, the presence of the monomers and the polymers will be monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. Another technique is the analysis of unreacted monomer functional groups, like the titration of the carboxyl group at polyesterification. But this is more often used for step-growth polymerization. Dilatometry is the measurement of the volume change which occurs during the polymerization. [3]

The kinetic chain length $\bar{\nu}$ of a polymer is defined by the ratio of the rate of polymerization R_{p} and the rate of initiation R_{i}, respectively the rate of termination R_{t}, see Equation 2.2.11. It is the average number of monomer units that are added to one radical.

$$
\begin{equation*}
\bar{\nu}=\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{i}}}=\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{t}}} \tag{2.2.11}
\end{equation*}
$$

When a polymerization is terminated by a disproportionation reaction the number of polymer chains remains constant, see Equation 2.2.6, and the kinetic chain length equals to the number average degree of polymerization X_{n}. A termination by coupling or combination, see Equation 2.2.5, reduces the number of polymerchains by half. [3, 19]

$$
\begin{align*}
& \overline{\nu_{\mathrm{d}}}=\mathrm{X}_{\mathrm{n}} \tag{2.2.12}\\
& \overline{\nu_{\mathrm{c}}}=\frac{\mathrm{X}_{\mathrm{n}}}{2} \tag{2.2.13}
\end{align*}
$$

The time interval between the initiation and the termination of a chain is the radical life-time τ. For example, in a radical polymerization with the initiator AIBN at a concentration of $10^{-3} \mathrm{~mol} \cdot \mathrm{l}^{-1}$ the radicals have an average lifetime τ of around one second. τ is influenced by the kind of initiator, monomer and solvent, their concentration and the reaction temper-
ature. [19]

$$
\begin{equation*}
\tau=\frac{\mathrm{X}_{\mathrm{n}}}{\mathrm{k}_{\mathrm{p}}[\mathrm{M}]} \tag{2.2.14}
\end{equation*}
$$

The average radical life-time τ is short which leads to high termination rates. Hence, polymer chains appear, add some monomers and is disabled during the free radical polymerization in a random process. The result is a mixture of polymer chains with most different molar masses and the termination reactions results in a large molar mass distribution or polydispersity (PDI). [3] Hence, the termination reactions must be prevented or at least suppressed and all polymer chains must growth simultaneously and consistently when a polymer mixture with a narrow polydispersity and a linear increase of the average molar mass over the increase of the conversion are aspired. That are the characteristics of a "living" polymerization. [3, 18] The first living polymerization was the anionic living polymerization, developed by M. Szwarc in the 1950s. [5] A radical polymerization with suppressed termination was first reported by Otsu and Yoshida in 1982. [4] The term "living" means the lack of any termination at all. But since the termination reactions were only suppressed to a very low level, the better term is "controlled" radical polymerization (CRP). There are different kinds of CRP. They have in common that the radical which is build up from the initiator is stabilized by a second radical. The two radicals combine to from a dormant species. The dormant species reversible decomposes to the propagation radical (= active species) and the stable radical. The monomers are added to the propagation radical and then the radical compose to the dormant species again. The equilibrium between active and dormant species lays on the side of the dormant species and only a small number of radicals is active at each moment. The radical is protected by the dormant species and so termination reactions are suppressed to a minimum. Another important point is that all propagation radicals are created simultaneously at the start of the reaction and that the polymer chains growth in parallel. The different methods of controlled radical polymerization are the Nitroxide Mediated Polymerization (NMP), the Reversible Addition Fragmentation Transfer Polymerization (RAFT) and the Atom Transfer Radical Polymerization (ATRP), see Figure 2.6. At a NMP the initiator is an alkoxy amine which dissociate to a reactive alkyl radical and a stable nitroxide radical. [42] The stabilization at a RAFT is given by a dithio benzoate. [43] The Atom Transfer Radical Polymerization is the technique that is used for this thesis, and will be described more detailed.

The ATRP was developed in the mid 1990s parallel in the working groups of Kato et al. [9] and Matyjaszewski et al. [10]. This technique is established well in the organic material science by this time. [44] The general reaction mechanism of an Atom Transfer Radical Polymerization is depicted in Figure 2.8. The initiator system consists of the initiator molecule R-X, the activator catalyst $\mathrm{M}^{\mathrm{m}}-\mathrm{X}$ and the ligand L . Moreover monomers and the solvent are involved in the reaction, see Figure 2.8.
$\underset{\substack{\text { initiator- } \\ \text { halogenide }}}{\mathrm{R}-\mathrm{X}} \underset{\substack{\text { transition metal- } \\ \text { halogenide }}}{\mathrm{M}^{\mathrm{m}}-\mathrm{X}}+\underset{\text { ligand }}{\mathrm{L}} \rightleftharpoons \underset{\text { dormant species }}{\mathrm{R}-\mathrm{X}-\mathrm{M}^{\mathrm{m}}-\mathrm{X}(\mathrm{L})}$

Fig. 2.8.: General reaction mechanism of Atom Transfer Radical Polymerization (following [16, 18])

The advantage of a radical polymerization towards the anionic polymerization is the large number of monomers that can be used. Styrenes, (meth)acrylates, (meth)acrylamides and acetonitril are possible monomers for an ATRP. [45] "Even under the same conditions using the same catalyst, each monomer has its own unique atom transfer equilibrium constant for its active ans dormant species." [16] As initiator every kind of alkyl halide is useable. Bromides and chlorides are mostly used. Iodines just work in the ATRP of a acrylate with copper and styrene with ruthenium or rhenium. Fluorines can only be used limited because the bond between carbon and fluoride is too strong for homolytic cleavage. [3, 16] As a general guideline the structure of the initiator should be similar to the structure of the used monomer. Beside molecules with bonds between a halogen and a carbon, other initiators with weak $\mathrm{R}-\mathrm{X}$ bonds, like $\mathrm{N}-\mathrm{X}, \mathrm{S}-\mathrm{X}$ and $\mathrm{O}-\mathrm{X}$ can be used. Molecules with several halogens attached to one carbon atom, like e.g. CCl_{4} or CHCl_{3}, can also be used. The initiator concentration influences the degree of polymerization (DP), see Equation 2.2.15. [16]

$$
\begin{equation*}
\mathrm{DP}=\frac{[\mathrm{M}]_{0}}{[\mathrm{I}]_{0}} \cdot \mathrm{p} \tag{2.2.15}
\end{equation*}
$$

with $[\mathrm{M}]_{0}=$ initial monomer concentration, $[\mathrm{I}]_{0}=$ initial initiator concentration, $\mathrm{p}=$ conversion

The concentration of the initiator determines the number of growing chains which is a constant when termination reactions are suppressed by the initiator system of the ATRP. [3, 16] A catalyst must have two oxidation states which are separated by one electron, affinity of the transition metal to the halogen, the possibility of the coordination sphere to expand when the second halogen is incorporated by the oxidation of the catalyst and affinity of building of a complex of the catalyst with the ligand. [16] The transition metals which have been used for ATRP are, for example, molybdenum, rhenium, iron, rhodium, nickel, copper. [16] Copper is the most often used transition metal of Atom Transfer Radical Polymerizations. For an ATRP with copper as transition metal a multidentate nitrogen ligand stabilizes the initiator complex
best. In this work the initiator complex is made from of copper chloride and PMDETA, for example. The selection criteria of a nitrogen-containing ligand are the electronic and steric properties of the molecules. These criteria are influenced as follows: [41]

1. the coordination of the nitrogen
with rise of the denticity of the ligand the activity increases; N1 << N2 < N3 < N4
2. the number of linked carbon atoms
with rise of the linked C-atoms the activity increases; C2 > C3 >> C4
3. the linked functional groups
the activiy of the ligand increase with change of the linked functional group in this order: $\mathrm{R}_{2} \mathrm{~N}-\sim \mathrm{Pyr}->\mathrm{R}-\mathrm{N}=>\mathrm{Ph}-\mathrm{N}=>\mathrm{Ph}-\mathrm{NR}-$
4. bridged systems are more active than cyclic systems

When iron is used, the ligand should be a monodentate or bidentate nitrogen ligand. [46] Initiator systems with rhenium, nickel and palladium need phosphorus-based ligands. [16] There is a large amount of different solvents that are used at an ATRP, like "benzene, toluene, anisole, diphenyl ether, ethyl acetate, acetone, dimethyl formamide, ethylene carbonate, alcohol, water, carbon dioxide and many others". [16] Moreover an ATRP can be performed in bulk or with a solvent in a homogenous solution, but also in suspensions [47], emulsions [48, 49] and dispersions [50]. A solvent can influence the ATRP considerably, i.e. by influencing the structure of the catalyst-ligand-complex which may alter the the reaction rate. [51] A solvent can also poison the catalyst or leads to side reactions. [52, 53] A positive effect of a solvent is to improve the solubility of the catalyst. [54] Beside the solvent also the temperature influences the reaction rate. With a higher temperature the radical propagation rate constant and the atom transfer equilibrium constant increase which causes a better control over the reaction. Moreover, the termination reaction rates also increase with higher temperature. [53] The solubility of the catalyst becomes better with higher temperature. On the other side it is possible that the catalyst decomposes at higher temperatures. [55]

The polymerization rate R_{p} of an ATRP is described by Equation 2.2.16 for a copper-mediated ATRP as example. [16]

$$
\begin{align*}
\mathrm{R}_{\mathrm{p}} & =\mathrm{k}_{\mathrm{p}}[\mathrm{M}][\mathrm{P} \bullet]=\mathrm{k}_{\mathrm{p}} \mathrm{~K}_{\mathrm{eq}}[\mathrm{M}][\mathrm{I}]_{0} \cdot\left[\mathrm{Cu}^{\mathrm{I}}\right] /\left[\mathrm{X}-\mathrm{Cu}^{\mathrm{II}}\right] \tag{2.2.16}\\
\mathrm{K}_{\text {eq }} & =\frac{\mathrm{k}_{\text {act }}}{\mathrm{k}_{\text {deact }}} \tag{2.2.17}
\end{align*}
$$

with $\mathrm{k}_{\mathrm{p}}=$ rate constant of propagation, $[\mathrm{M}]=$ monomer concentration, $[\mathrm{P} \bullet]=$ radical concentration, $\mathrm{k}_{\text {act }}=$ rate constant of activation of the dormant species, $\mathrm{k}_{\text {deact }}=$ rate constant of deactivation of the active species

The conversion-time-curve and the semi-logarithmic representation of the conversion against the reaction time are depicted in Figure 2.9a. The curves base on Equation 2.2.16. The linear progression of $\ln (1-\mathrm{p})$ is a result of the constant radical concentration and, hence, the reaction is of pseudo-first-order with respect to the concentrations of monomer(s), initiator and catalyst. The ratio of ligand to catalyst also influences the kinetic of the ATRP. Every change of monomer, of any part of the initiator system, of the solvent or the reaction temperature leads to another rate. [55, 56, 57]

Fig. 2.9.: Schematic representation of a) the dependence of conversion and semi-logarithmic plot of conversion against time, b) the evolution of molar mass and polydispersity against conversion (following [16])

The typical development of the molar mass of a polymer during an ATRP is given in Figure 2.9b. Due to the good control of the polymerization the molar mass increases linear with the conversion. This is effected by the constant radical concentration and the suppression of termination reactions. The molar mass of the resulting polymer can be modulated between 1000 and $150000 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \cdot[53,58]$ The polydispersity decreases with the increase of the conversion because at the beginning of the reaction the propagation rate is high and at each propagation step several monomer-units are added. With progression of the polymerization the polymer chain become more uniform as stated by Equation 2.2.18. [16]

$$
\begin{equation*}
\frac{\mathrm{M}_{\mathrm{w}}}{\mathrm{M}_{\mathrm{n}}}=1+\left(\frac{[\mathrm{RX}]_{0} \mathrm{k}_{\mathrm{p}}}{\mathrm{k}_{\text {deact }}[\mathrm{D}]}\right)\left(\frac{2}{\mathrm{p}}-1\right) \tag{2.2.18}
\end{equation*}
$$

with $[\mathrm{RX}]_{0}=$ initial initiator concentration, $[\mathrm{D}]=$ deactivator concentration

The slow, but controlled, reaction leads to polydispersities less than 1.5. The value of the polydispersity is influenced by the catalyst reactivity. With a fast deactivation of the active species the polydispersity of the resulting polymer decreases, for example by an increase of the deactivator concentration. But this also means a decrease of the polymerization rate. [58]

In this PhD -thesis the initiator system was applied as depicted in Figure 2.10. The ini-
tiator $\mathrm{R}-\mathrm{X}$ is para-toluenesulfonyl chloride (pTSC), the catalyst $\mathrm{M}_{\mathrm{m}} \mathrm{X}$ is copper chloride (CuCl) and the ligand L is $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-pentamethyldiethylenetriamine (PMDETA). The used monomers are tert-butyl methacrylate (tBMA), n-butyl methacrylate (nBMA) and benzyl methacrylate (BzMA). The initiator pTSC is common used in ATRP for the polymerization of methyl methacrylate (MMA) and mostly with a bipyridine-derivative as ligand and CuBr or CuCl as catalyst. [59, 60] MMA was also copolymerized by using an ATRP-initiator system with pTSC/ PMDETA/ CuBr [61] or pTSC/ PMDETA/ CuCl [62, 63].

Fig. 2.10.: Reaction mechanism of the Atom Transfer Radical Polymerization as used in this work

2.3. Properties and Applications of Block Copolymers

One has tried to mix up polymers with different properties, to create materials with combined or even new features. Moreover the intensity of the features should be adjusted by the ratio of the different parts of the mixture like it is done with metals at alloys. The problem is that most polymers are not mixable among each other and the different polymers separate into different phases. Hence, an unity of the properties is not possible because there is no connection between the phases. The solution of this problem is a bridge between the two phases which is done by block copolymers. Hence, the block copolymer is used as surfactant or polymer soap. [11, 12] For example a mixture of poly(styrene) and poly (2-vinylpyridine) can be stabilized by $\mathrm{P}(\mathrm{S})-\mathrm{b}-\mathrm{P}(\mathrm{VP})$. [64] Figure 2.11 shows the effect of a block copolymer for the stabilization of a polymer blend. Spheres of homopolymer B are enclosed in the matrix of homopolymer A. The upper images of Figure 2.11 show the electron-microscopical recordings of the freeze fractures of the polymer blend. Figure 2.11a displays the blend without additives. The lack of connections between the two phases is obviously because the line of break follows the borders of the spheres. Figure $2.11 b$ exhibits the blend with added block copolymer. The break goes consistently through both parts of the blend because the block copolymer connects the homopolymers steadily.

Fig. 2.11.: Effect of block copolymer in polymer blend; a) shell break - interface without molecular bridging, b) force break - interface bridged with A-B-diblock copolymer [65]

One method to describe a block copolymer is the critical micelle concentration (CMC). This is the point of concentration at which a surfactant does not decrease the surface tension any more and micelles are builded in the emulsion. Literature studies indicate that gradient copolymers can be more effective surfactants than block copolymers. [66] When a gradient copolymer is used as compatibilizer in a polymer blend "the success of this strategy depends significantly on the overall composition of the gradient copolymer as well as details regarding the inherent incompatibility of the blends." [67]

Polymers are also used for noise isolation. [68] This is possible because of the ability of polymers to quieten sonic. This ability is coupled to the glass transition of macromolecules as it is described by the Williams-Landel-Ferry-Equation. [69, 70]

$$
\begin{equation*}
\log \frac{\nu_{1}}{\nu_{2}}=\frac{\mathrm{a} \Delta \mathrm{~T}}{\mathrm{~b}+\Delta \mathrm{T}} \tag{2.3.1}
\end{equation*}
$$

Here a and b are constants with values between 9 and 100. [69]

The composition of a copolymer influences the thermal behavior. [71, 72, 73] The theoretical thermograms of copolymers with different monomer sequences along the polymer chain are depicted in Figure 2.12. A statistical copolymer P $[\mathrm{A}-\mathrm{co}-\mathrm{B}]$ and also a gradient copolymer $\mathrm{P}[\mathrm{A}-$ grad -B$]$ show one glass transition step, while the $\mathrm{AB}-$ diblock copolymer $\mathrm{P}[\mathrm{A}]-\mathrm{b}-\mathrm{P}[\mathrm{B}]$ exhibits two steps. The first T_{g}-step of the block copolymer is related to the first block A of the copolymer and at the same temperature as the homopolymer A, respectively the second step is related to the second block B and at the same temperature as the homopolymer B. The glass transition step of the statistical copolymer lie between the steps of the homopolymers, respectively the two steps of the block copolymer. The slope of the step of the statistical copolymer is similar to the slope of the steps of the homopolymers. [74, 75] The glass transition
step of the gradient copolymer starts at the $T_{\text {onset }}$ temperature of the T_{g}-step of homopolymer A and ends at the $T_{\text {offset }}$ temperature of the T_{g}-step of homopolymer B. Hence, the slope of the glass transition step of the gradient copolymer is lower and its temperature range is wider than the one of the statistical copolymer. [14, 75, 76]

Fig. 2.12.: Scheme of theoretical DSC thermograms in the vicinity of glass transitions of different copolymer structures (black lines) in relation to homopolymers A and B (grey lines); (I) statistical copolymer $\mathrm{P}[\mathrm{A}-\mathrm{co}-\mathrm{B}]$, (II) gradient copolymer $\mathrm{P}[\mathrm{A}-\mathrm{grad}-\mathrm{B}]$, (III) $\mathrm{AB}-$ diblock copolymer $\mathrm{P}[\mathrm{A}]-\mathrm{b}-\mathrm{P}[\mathrm{B}]$

Therewith a statistical copolymer quietens the sonic of one small band of frequencies and a di-block copolymer the sonic of two small band. The glass transition region of a gradient copolymer is extremely broad. Hence, gradient copolymers can dampen the sonic of a very broad band of frequencies. [68]

2.4. Molar Mass Determination by Light Scattering

The molar mass of a polymer can be determined by light scattering (LS) of the molecules in solution. The basis of this measurement method originated from the studies of Rayleigh explaining the scattering of light by small molecules $(\mathrm{d}<\lambda / 20)$. [77, 78] Small molecules scatters uniformly in all directions, see Figure 2.13, and are called isotropic scatterer. This specific kind of light scattering is described with the Rayleigh ratio R_{θ}. [79]

$$
\begin{equation*}
\mathrm{R}_{\theta}=\frac{\mathrm{i}_{\theta} \mathrm{r}^{2}}{\mathrm{I}_{0}\left(1+\cos ^{2} \theta\right)} \tag{2.4.1}
\end{equation*}
$$

with $\mathrm{I}_{0}=$ intensity of the incident laser beam, $\mathrm{i}_{\theta}=$ intensity of the scattered light, $\mathrm{r}=$ distance of the center from the observer, $\theta=$ scattering angle

Fig. 2.13.: Intensity of light scattering of small molecules ($\mathrm{d}<\lambda / 20$, grey line) and large molecules ($\mathrm{d}>\lambda / 20$, black line) (following [80])

Debye extended the work of Rayleigh to large molecules. [81, 82] Large particles like polymer molecules $(\mathrm{d}>\lambda / 20)$ are anisotropic scatterers. They scatter stronger in forward direction than in backward direction. [79, 80] The comparison of the scattering of small and large molecules is illustrated in Figure 2.13. The complex equations of Rayleigh and Debye and their implementation on large molecules is given in literature. [79] The solution of this equations for large molecules is Equation 2.4.2. [79, 80]

$$
\begin{equation*}
\frac{\mathrm{Kc}}{\mathrm{R}_{\theta}}=\frac{1}{\mathrm{M}_{\mathrm{w}}}\left(1+\frac{\mathrm{Q}^{2}\left\langle\overline{\mathrm{~S}}^{2}\right\rangle}{3}\right)+2 \mathrm{~A}_{2} \mathrm{c}+3 \mathrm{~A}_{3} \mathrm{c}_{2}^{2}+\ldots \tag{2.4.2}
\end{equation*}
$$

with $\mathrm{c}=$ concentration, $\mathrm{S}=$ radius of gyration, $\mathrm{A}_{2}=$ second virial coefficient, $\mathrm{A}_{3}=$ third virial coefficient

In Equation 2.4.2 K denotes the optical constant, see Equation 2.4.3, which include the refractive index increment $(\mathrm{dn} / \mathrm{dc})$. This is depended among others on the structure and the composition of the molecule and the measuring temperature and is measured prior to the molecular weight determination. Q is the scattering vector or angle ratio, see Equation 2.4.4.

$$
\begin{align*}
& \mathrm{K}=\frac{2 \pi^{2} \mathrm{n}_{0}^{2}}{\lambda^{4} \mathrm{~N}_{\mathrm{A}}}\left(\frac{\mathrm{dn}}{\mathrm{dc}}\right)^{2} \tag{2.4.3}\\
& \mathrm{Q}=\frac{4 \pi}{\lambda^{\prime}} \sin \left(\frac{\theta}{2}\right) \tag{2.4.4}
\end{align*}
$$

For the determination of the molar mass from Equation 2.4.2 the values of Q and c are extrapolated to 0, see Figure 2.14. The intersection of the resulting straight line with the ordinate is $\mathrm{M}_{\mathrm{w}}^{-1}$. The slope of $\mathrm{c} \rightarrow 0$ is the values of the second virial coefficient and the slope of $\theta \rightarrow 0$ is the values of the average radius of gyration. Due to the fact that the sample fractions are extremely diluted when the light scattering detection is coupled with size exclusion chromatography, the part of Equation 2.4.2 after the second virial coefficent
can be negligible.

Fig. 2.14.: Zimm-plot for the analysis of light scattering data [79]

The concentration of the investigated fraction of the whole polymer sample is measured by a concentration detector. This can be a viscometer or a refractive index (RI) detector. For the measurements of the molar mass in this work the light scattering detector is linked with a RI-detector. The used LS-detector measures the light scattering at 18 different angles. Hence, for each sample fraction a Debye-plot of 18 angles θ is evaluated and solved form the analysis-software. The resulting values are the molar mass M_{w}, the radius of gyration S and the second virial coefficient A_{2} of each sample fraction. With the molar mass of each fraction the molar mass distribution of the whole polymer sample can be determined.

3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

The aim of this part of this PhD thesis is the preparation of statistical copolymers of n butyl methacrylate (nBMA) and tert-butyl methacrylate (tBMA) by means of Atom Transfer Radical Polymerization (ATRP). [16] Batch experiments were carried out to measure (i) the rate of polymerization of the two monomers, (ii) the composition of the copolymers, as well as (iii) the molecular weights of the products in dependence of the monomer-educt mixture and the reaction time. The evaluated data are used to calculate the respective rate constants and to construct the copolymerization diagram of the system tBMA/nBMA.

3.1. Materials and Methods

3.1.1. Materials

N-Butyl methacrylate (nBMA, 99%, Sigma-Aldrich) and tert-butyl methacrylate (tBMA, 98%, Alfa Aesar) were purified via filtration over 1.5 g per 1 g monomer basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (SigmaAldrich) to remove the inhibitor 4-methoxyphenol. 2-Butanone (MEK, BDH Prolabo, chromasol.) was dried with boron oxide $\mathrm{B}_{2} \mathrm{O}_{3}$ (99.9%, Sigma-Aldrich) as described in literature. [83] Copper(I) chloride (97%, Sigma-Aldrich) was given into a tenfold amount of glacial acetic acid and heated under reflux for five hours. Subsequently the grey powder was washed with 100 ml ethanol and 100 ml acetone and then dried in vacuo at $60^{\circ} \mathrm{C}$ over night (following [84]). N,N,N', N', N"-Pentamethyldiethylenetriamine (PMDETA, 99%, Sigma-Aldrich) and para-toluenesulfonyl chloride (pTSC, 98%, Sigma-Aldrich) were used as received.

3.1.2. Batch Copolymerization of Statistical Copolymers

Two series of batch experiments were made. Series A (experiments V11 to V19, Table 3.1) consists of preparative synthesis without sampling and Series B (experiments V21 to V29, Table 3.2) consists of analytical copolymerizations with samples taken for ATR-FTIR-, EA-, SEC- and DSC-analysis.

Fig. 3.1.: Experimental setup for batch copolymerization

Series A was performed in analogy to reference [63]. The experimental setup is depicted in Figure 3.1. A 25 ml Schlenk flask was heated out with a hot gun (air temperature $\approx 400^{\circ} \mathrm{C}$) under vacuum for five minutes and then flushed with nitrogen. The chemicals were weighted in a screw-cap glass in a specific order: First $0.0313 \mathrm{~g}\left(1.81 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{pTSC}$ was weighted, followed by the respective amounts of the two monomers, e.g. $2.2468 \mathrm{~g}(0.0158 \mathrm{~mol}) \mathrm{nBMA}$ and $2.2468 \mathrm{~g}(0.0158 \mathrm{~mol})$ tBMA (cf. Table 3.1). When the pTSC was dissolved, 0.0344 g $\left(1.81 \cdot 10^{-4} \mathrm{~mol}\right)$ PMDETA, and $0.0179 \mathrm{~g}\left(1.81 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{CuCl}$ were added. The mixture was rinsed into the Schlenk flask with 4.4935 g of the solvent MEK under nitrogen flow. Then the flask was sealed with a rubber septum. Subsequently the solution was degassed by means of 5 freeze-melt-cycles, flooded with nitrogen and then heated up to $80^{\circ} \mathrm{C}$ for 3 hours. During the reaction time 0.05 ml samples were taken periodically by means of a syringe through the sealed septum at $0,15,30,45,60,90,120,150$ and 180 min for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. The 0.05 ml of aliquot-sample were given into 0.5 ml cold CDCl_{3} without further purification.

After 3 hours the Schlenk flask was removed from the oil bath. The reactions mixture was cooled to $20^{\circ} \mathrm{C}$ with a mixture of ice and water. Afterward the solution was diluted with 20 ml of MEK, filtered over $30 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$ and two-thirds of the solvent was removed by vacuum distillation. The residual mixture of polymer, monomers, initiator components and remaining solvent was slowly dropped into 500 ml of an ice cooled water:methanol ($1: 1 \mathrm{vol}: \mathrm{vol}$) mixture. The precipitated polymer was filtered over a P 4 glass filter and dried at $45^{\circ} \mathrm{C}$ under vacuum over night. This technique is denoted as "work-up A " in the text throughout. The yields of the polymerizations are listed in Table 3.1.

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

For Series B $0.0689 \mathrm{~g}\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{pTSC}, 0.0626 \mathrm{~g}\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right)$ PMDETA, 0.0357 g $\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{CuCl}$ and 8.986 g MEK were mixed with the corresponding amount of the monomers (cf. Table 3.2). The preparation of the Schlenk flask, the mixture and the transfer of the chemicals were performed as described with Series A but using a 50 ml Schlenk flask. The same holds true with the synthesis temperature, the reaction time as well as the working up procedure. Reaction conditions and yields are summarized in Table 3.2. In Series $B 1 \mathrm{ml}$ aliquot samples were taken, at $0,60,90,120,150,180 \mathrm{~min}$ for SEC analysis and another 0.05 ml sample were treated as described with Series A and used for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

SEC-samples were worked up differently from the final polymer. SEC-sample-work-up is denoted as "work-up B". 1 ml of the solution was dropped into 20 ml of a ice cooled water:methanol $=1: 1$ vol:vol mixture. The precipitated polymer was separated by centrifugation and dried at $45^{\circ} \mathrm{C}$ under vacuum over night. The precipitated was dissolved in $5 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred into a separatory funnel. $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were added and thoroughly shaken. The organic phase was separated and given into a round-bottom flask. The water phase was extracted two times more, each with $2 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. All organic phased were combined. The solvent was removed by vacuum evaporation. The polymer yields of the copolymers isolated from the samples are listed in Table 3.2.

All the precipitated, cleaned and dried copolymers were examined with elemental analysis, ATR-FTIR, SEC and DSC. The respective composition data of all performed test polymerizations are summarized in Tables 3.1 and 3.2.

Tab. 3.1.: Monomer compositions and final yields of nBMA-tBMA batch copolymerization experiments - Series A

Entry	nBMA	tBMA	nBMA:tBMA	$\mathrm{f}_{\text {nBMA }}$	$\mathrm{m}_{\text {nBMA }}$	$\mathrm{m}_{\text {tBMA }}$	yield	
	$[\mathrm{mol}]$	$[\mathrm{mol}]$			$[\mathrm{g}]$	$[\mathrm{g}]$	$[\mathrm{g}]$	$[\%]$
V11	0.0158	0.0158	$1: 1$	0.50	2.2468	2.2468	2.35	51.82
V12	0.0105	0.0211	$1: 2$	0.33	1.4931	3.0004	2.21	48.80
V13	0.0211	0.0105	$2: 1$	0.66	3.0004	1.4931	2.42	53.51
V14	0.0079	0.0237	$1: 3$	0.25	1.1234	3.3701	3.04	67.08
V15	0.0237	0.0079	$3: 1$	0.75	3.3701	1.1234	2.78	61.40
V16	0.0063	0.0253	$1: 4$	0.20	0.8987	3.5948	2.67	59.02
V17	0.0253	0.0063	$4: 1$	0.80	3.5948	0.8987	2.59	57.24
V18	-	0.0316	$0: 1$	0.00	-	4.4935	2.94	64.84
V19	0.0316	-	$1: 0$	1.00	4.4935	-	2.90	64.01

Tab. 3.2.: Monomer compositions and final yields of nBMA-tBMA batch copolymerization experiments - Series B

Entry	nBMA $[\mathrm{mol}]$	tBMA $[\mathrm{mol}]$	nBMA:tBMA	$\mathrm{f}_{\text {nBMA }}$	$\mathrm{m}_{\text {nBMA }}$ $[\mathrm{g}]$	$\mathrm{m}_{\text {tBMA }}$ $[\mathrm{g}]$	yield	
$[\mathrm{g}]$	$[\%]$							
V21	0.0316	0.0316	$1: 1$	0.50	4.4935	4.4935	5.02	55.47
V22	0.0211	0.0421	$1: 2$	0.33	3.0004	5.9866	4.85	53.53
V23	0.0421	0.0211	$2: 1$	0.66	5.9866	3.0004	5.43	59.92
V24	0.0158	0.0474	$1: 3$	0.25	2.2468	6.7403	5.25	57.92
V25	0.0474	0.0158	$3: 1$	0.75	6.7403	2.2468	5.69	62.82
V26	0.0126	0.0506	$1: 4$	0.20	1.7917	7.1953	5.38	59.60
V27	0.0506	0.0126	$4: 1$	0.80	7.1953	1.7917	5.86	64.69
V28	-	0.0632	$0: 1$	0.00	-	8.9870	5.71	63.10
V29	0.0632	-	$1: 0$	1.00	4.4935	-	5.79	63.24

Tab. 3.3.: Time-conversion data obtained from samples taken during the batch copolymerization reactions of nBMA and tBMA (Series B)

time	Entry	yield		Entry	yield		Entry	yield	
$[\mathrm{min}]$		$[\mathrm{g}]$	$[\%]$		$[\mathrm{g}]$	$[\%]$		$[\mathrm{g}]$	$[\%]$
60	V 21	0.17	39.15	V 22	0.20	46.81	V 23	0.24	57.71
90		0.26	60.56		0.26	61.82		0.19	44.51
120		0.28	67.12		0.27	63.31		0.27	63.71
150		0.29	69.56		0.30	71.46		0.31	74.67
180		0.36	84.91		0.35	82.17		0.32	77.95
60	V 24	0.22	51.98	V 25	0.22	53.30	V 26	0.18	42.16
90		0.24	55.55		0.27	63.41		0.34	79.33
120		0.24	58.78		0.37	86.78		0.30	70.10
150		0.29	68.94		0.32	77.02		0.32	74.35
180		0.33	76.85		0.36	85.38		0.35	82.57
60	V 27	0.23	55.08	V 28	0.19	45.88	V 29	0.27	63.23
90		0.31	73.50		0.28	66.53		0.32	76.12
120		0.37	87.95		0.32	75.27		0.33	79.43
150		0.37	88.50		0.35	82.78		0.34	79.93
180		0.38	89.92		0.39	92.60		0.34	80.14
$\mathrm{~T}=80^{\circ} \mathrm{C},[\mathrm{M}]=1.436 \mathrm{~mol} \cdot \mathrm{l}^{-1}, \mathrm{I}: \mathrm{M}=1.175$									

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

Experiment V18 (PtBMA):

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M} \boldsymbol{M R}$: $1.25-1.45 \mathrm{ppm}$ (broad peak, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.42 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA); $1.7-1.9 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.9 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{tBMA}\right) ; 5.3 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.9 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA)
$\boldsymbol{E A} \boldsymbol{:} \mathbf{6 6 . 5 4} \% \mathrm{C}, 9.59 \% \mathrm{H},\left(23.87 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3100-2800 \mathrm{~cm}^{-1} \quad\left(=\mathrm{CH}_{2}, \quad-\mathrm{CH}_{2}-, \quad-\mathrm{CH}_{3}\right) ; 1719 \mathrm{~cm}^{-1} \quad(-\mathrm{C}=\mathrm{O}) ; 1475 \mathrm{~cm}^{-1}$ $\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1457 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1366 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1331 \mathrm{~cm}^{-1} ; 1248 \mathrm{~cm}^{-1}$ (tBu) ; $1133 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1036 \mathrm{~cm}^{-1} ; 969 \mathrm{~cm}^{-1} ; 875 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 847 \mathrm{~cm}^{-1} ; 752 \mathrm{~cm}^{-1} ; 516 \mathrm{~cm}^{-1}$; $502 \mathrm{~cm}^{-1} ; 471 \mathrm{~cm}^{-1}$
$\boldsymbol{S E} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.0612 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=21420 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=28820 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=32910 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ $\boldsymbol{D S C}: \mathrm{T}_{\text {onset }}=96.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=103.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=107.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=111.0^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.223 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

Experiment V19 (PnBMA):

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M} \boldsymbol{M}$: $0.6-0.8 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{3}$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$); $1.25-1.45 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{2}-$, nBMA and $\left.\mathrm{P}[\mathrm{nBMA}]\right) ; 1.5-1.6 \mathrm{ppm}\left(\right.$ broad peak, $-\mathrm{CH}_{2}{ }^{-}$, nBMA and $\left.\mathrm{P}[\mathrm{nBMA}]\right)$; $1.7-1.9 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{nBMA}]\right) ; 1.8 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{nBMA}\right) ; 3.8-3.95 \mathrm{ppm}(\mathrm{broad}$ peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]\right) ; 4.0 \mathrm{ppm}\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{R}, \mathrm{nBMA}\right) ; 5.4 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, nBMA); $6.0 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, nBMA)
$\boldsymbol{E A} \boldsymbol{A} \boldsymbol{6 7 . 1 3} \% \mathrm{C}, 9.68 \% \mathrm{H},\left(23.20 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3050-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2}, \quad-\mathrm{CH}_{2}-, \quad-\mathrm{CH}_{3}\right) ; 1723 \mathrm{~cm}^{-1} \quad(-\mathrm{C}=\mathrm{O}) ; 1466 \mathrm{~cm}^{-1}$ $\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1450 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }^{-} \mathrm{CH}_{3}\right) ; 1381 \mathrm{~cm}^{-1} ; 1323 \mathrm{~cm}^{-1} ; 1304 \mathrm{~cm}^{-1} ; 1269 \mathrm{~cm}^{-1}$; $1240 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1143 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1063 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1020 \mathrm{~cm}^{-1} ; 999 \mathrm{~cm}^{-1} ; 965 \mathrm{~cm}^{-1}$ $(\mathrm{nBu}) ; 945 \mathrm{~cm}^{-1} ; 881 \mathrm{~cm}^{-1} ; 844 \mathrm{~cm}^{-1} ; 748 \mathrm{~cm}^{-1} ; 517 \mathrm{~cm}^{-1} ; 490 \mathrm{~cm}^{-1}$
$\boldsymbol{S E C} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.988 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=25110 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=26790 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=30990 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C}: \mathrm{T}_{\text {onset }}=16.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=29.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=27.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=38.0^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.230 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

Experiment V11 (P[nBMA-co-tBMA $\left.], \mathrm{f}_{\mathrm{BzMA}}=0.5, \mathrm{~F}_{\mathrm{BzMA}}=0.32\right)$:

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M} \boldsymbol{M}$: $0.6-0.8 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{3}$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$); $1.25-1.45 \mathrm{ppm}$ (broad peak, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}],-\mathrm{CH}_{2}-$, nBMA and $\left.\mathrm{P}[\mathrm{nBMA}]\right) ; 1.42 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA);
1.5-1.6 ppm (broad peak, $-\mathrm{CH}_{2}-$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$); 1.7-1.9 ppm (broad peak, $-\mathrm{CH}_{3}$, $\mathrm{P}[\mathrm{tBMA}]$ and $\mathrm{P}[\mathrm{nBMA}]) ; 1.9 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{tBMA}\right) ; 1.8 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{nBMA}\right) ; 3.8-3.95 \mathrm{ppm}$ (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]$); $4.0 \mathrm{ppm}\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{R}, \mathrm{nBMA}\right) ; 5.3 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.4 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, nBMA); $5.9 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA); $6.0 \mathrm{ppm}(\mathrm{s}$, $\mathrm{CH}_{2}=\mathrm{C}-$, trans, nBMA)
$\boldsymbol{E A} \boldsymbol{:} 67.15 \% \mathrm{C}, 9.76 \% \mathrm{H},\left(23.09 \% \mathrm{O}_{\text {calc }}\right)$
$\boldsymbol{A T R}$-FTIR: $3050-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2}, \quad-\mathrm{CH}_{2}-, \quad{ }^{-} \mathrm{CH}_{3}\right) ; \quad 1720 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1473 \mathrm{~cm}^{-1}$ $\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1456 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1366 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1327 \mathrm{~cm}^{-1} ; 1270 \mathrm{~cm}^{-1}$ $(\mathrm{tBu}) ; 1247 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1136 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1065 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1035 \mathrm{~cm}^{-1} ; 1020 \mathrm{~cm}^{-1}$; $1000 \mathrm{~cm}^{-1} ; 967 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 945 \mathrm{~cm}^{-1} ; 876 \mathrm{~cm}^{-1}(\mathrm{tBu})$
$\boldsymbol{S E C} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.0799 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=23510 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=25390 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=26700 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C} \boldsymbol{C}: \mathrm{T}_{\text {onset }}=55.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=64.5^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=63.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=72.0^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.249 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

Experiment V12 - V17 (P[nBMA-co-tBMA]):

The ${ }^{1} \mathrm{H}-$ and IR-spectra of the compounds V12 to V17 exhibited the same signals, i. e. band positions as observed in the analogous copolymer V11. The integral intensities of important NMR signals are detailed in Table 3.5 (cf. Section 3.3), the elemental analysis results are stated in Table 3.7. The band intensities of the ATR-FTIR-spectra are listed in Table 3.9. The SEC-data are summarized in Table 3.11 and the DSC-data in Table 3.14.

3.2. Characterization

In this paragraph the different characterization methods are described together with the used analysis-software.

3.2.1. Nuclear Magnetic Resonance Spectroscopy

${ }^{1} \mathrm{H}-\mathrm{NMR}$ measurements were carried out on a Bruker Avance III 500 MHz spectrometer with 32 scans in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$, respectively DMSO- d_{6}, as solvent, using approx. 100 mg analyte $\cdot \mathrm{ml}^{-1}$. Data acquisition was controlled and data evaluation was performed with the "Bruker Topspin" software.

3.2.2. Elementary Analysis

The samples contents of carbon, hydrogen and nitrogen were analyzed by means of an elemental analyzer the vario MICRO Cube from Elementar. Each sample was measured three times, and for each measurement around 2.5 mg of analyte were used. An average-values was calculated from the results for each sample.

For the determination of the elements a sample was burned with oxygen to get the oxidation products $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}$ and NO_{x}. The burning column was filled with quartz wool, WO_{3}-granule and corundum pellets. The nitrous gases were reduced to N_{2} subsequently. The reduction column were filled with quartz wool, copper wool, corundum pellets and silver wool. The obtained gases were absorbed on an absorption column, were released one after another at the corresponding desorption temperatures and passed a thermal conductivity detector. From the integral values of the measured peaks, the exact weight of the sample, and with the respective calibration factor the absolute content of the elements in the sample was calculated. Data acquisition and evaluation was performed with the vario MICRO Software.

The amount of oxygen in the samples was calculated from the from the difference to 100%.

3.2.3. Infra Red Spectroscopy

The ATR-FTIR-spectra were detected with a "Spectrum Two" FT-IR Spectrometer from Perkin Elmer with a resolution of $4 \mathrm{~cm}^{-1}$. The samples were homogenized in an agate-mortar and then the amount of a micro spatula was pressed on the ATR-crystal. The measured spectral range was 4000 to $450 \mathrm{~cm}^{-1}$. Data acquisition and evaluation was performed with the software "Spectrum" from Perkin Elmer.

3.2.4. Size Exclusion Chromatography

Size exclusion chromatography (SEC) was performed by gel permeation chromatography (GPC) with multi angle light scattering (MALS) and refractive index (RI) detection. A solution with $4 \mathrm{mg} \cdot \mathrm{ml}^{-1}$ of a sample in tetrahydrofuran was filtered over a $0.45 \mu \mathrm{~m}$ PTFE membrane and then was injected into the chromatography system by a Waters 2695 alliance auto-sampler with a flow rate of $1 \mathrm{ml} \cdot \mathrm{min}^{-1}$. The GPC columns were filled with a styrenedivinylbenzene copolymer network (SDV) with a particle size of $5 \mu \mathrm{~m}$ and three different nominal pore sizes of $1000 \AA, 100000 \AA$ and $1000000 \AA$. The MALS detector was a Wyatt Dawn Heleos II and the added RI detector for concentration determination was a Wyatt Optilab rex. Each online measurement lasted 45 min .

For the determination of the molar mass with SEC the refractive index increment (dn/dc) of the compound is needed. This value depends on the composition and the molar mass of the polymer chain and also on the measurement temperature, λ and the solvent. The required $\mathrm{dn} / \mathrm{dc}$ values were measured with the Wyatt Optilab rex in batch operation mode. The used sample concentrations were $0.1 \mathrm{mg} \cdot \mathrm{ml}^{-1}, 0.2 \mathrm{mg} \cdot \mathrm{ml}^{-1}, 0.5 \mathrm{mg} \cdot \mathrm{ml}^{-1}, 1.0 \mathrm{mg} \cdot \mathrm{ml}^{-1}$ and $2.0 \mathrm{mg} \cdot \mathrm{ml}^{-1}$. Data acquisition and evaluation of the online and batch measurements was performed with Waters Empower and Wyatt Astra V.

3.2.5. Differential Scanning Calorimetry

For the measurement of the thermal behavior of the polymers a Netzsch DSC 204 F1 dynamic differential calorimeter was used. The device was calibrated against $\mathrm{Bi}, \mathrm{Hg}, \mathrm{In}, \mathrm{Sn}$ and Zn standards. Samples of approximately 10 mg were sealed in $25 \mu \mathrm{~g}$ aluminium pans, containing a small hole in their lids. The DSC-thermogram was measured in a temperature range from $-80^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, at a heating rate of $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$. Data acquisition and evaluation was performed with the "Netzsch Proteus" software.

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

3.3. Results and Discussion

In following paragraph the results of the analyzes from the different statistical copolymers from n-butyl and tert-butyl methacrylate $\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ and also their discussion is given.

The ATRP-co-polymerizations of n-butyl and tert-butyl methacrylate $\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ were carried out in analogy to [63], using para-toluenesulfonyl chloride (pTSC) as the initiator, $\mathrm{Cu}^{\mathrm{I}} \mathrm{Cl}$ as the catalyst and $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-pentamethyldiethylenetriamine (PMDETA) as the ligand. The initial ratio of the substances was pTSC: CuCl:PMDETA : Mon $=1: 1: 1: 175$. The reactions were carried out in 2-butanone (MEK) as solvent at $80^{\circ} \mathrm{C}$. The ratio of monomer to solvent was wt:wt 1:1 (cf. experimental part Section 3.1.2). Two series of copolymerization were performed. Series A, see Table 3.1, were preparative syntheses series with sampling for ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis, and Series B (see Table 3.2), were preparative syntheses series with sampling for ${ }^{1} \mathrm{H}-\mathrm{NMR}-$, ATR-FTIR-, SEC- and DSC-analysis. The resulting copolymers were filtered over $\mathrm{Al}_{2} \mathrm{O}_{3}$ to remove the CuCl , subsequently precipitated in an ice-cooled mixture of water:methanol vol:vol 1:1, filtered over a P4 glass filter and dried at $45^{\circ} \mathrm{C}$ under vacuum over night. This technique was called "work-up A ". The samples for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ were used without further purification. The other samples were precipitated also in an ice-cooled mixture of water and methanol with vol:vol $1: 1$, then the precipitated polymers were separated from the liquid phase by centrifugation and dried over night at $45^{\circ} \mathrm{C}$ under vacuum. The polymers were re-dissolved in dichloromethane and transferred in a separation funnel. Water was added and the CuCl was extracted. The polymer-dichloromethane solution was clear and green. After the extraction the organic phase was clear and colorless and the water phase was clear and blue. The organic phase was separated and the solvent was removed by vacuum evaporation. This technique was called "work-up B ". The consistence of the resulting polymers varies with the amount of tBMA inside the polymer. Experiments V14, V16 and V18 resulted in fine white powders. The resulting polymer of V11, V12, V13 and V15 were also white powders but not so fine as the three polymers before. The experiments V17 and V19 resulted in white amorphous substances.

3.3.1. Kinetic Studies

In a first series of copolymerization experiments (Series A) preparative batch synthesis were performed to measure the rate of copolymerization as well as the resulting copolymer compositions. Aliquot samples were taken after $0,15,30,45,60,90,120,150$ and 180 min and analyzed by means of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra were evaluated regarding the conversion p of the monomers which was the basis for the calculation of the reaction rates. The signals in the resulting spectra were assigned to the structure elements of the monomers and the copolymer as shown in Table 3.4. The position of the peaks were largely taken from literature [63], and for the cis- and trans-conformation calculated by [85].

Tab. 3.4.: Position and assignments of the signals in the obtained ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra of $\mathrm{P}[\mathrm{nBMA}-$ co-tBMA] polymers

$\delta[\mathrm{ppm}]$	Multiplicity	No. of carbons	Carbon No.*	Structure element
0.6-0.8	broad peak	3H	9,9'	$-\mathrm{CH}_{3}$, nBMA and P[nBMA] side chain
1.25-1.45	broad peak	9H	3	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]$
		2 H	7,7	$-\mathrm{CH}_{2}-$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$ side chain
1.42		9H	3	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, tBMA
1.5-1.6	broad peak	2 H	8, 8^{\prime}	$-\mathrm{CH}_{2}-$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$ side chain
1.7-1.9	broad peak	6H	$10^{\prime}, 11{ }^{\prime}$	$-\mathrm{CH}_{3}$ backbone, $\mathrm{P}[\mathrm{nBMA}]$ and $\mathrm{P}[\mathrm{tBMA}]$
1.8	s	3H	10	$-\mathrm{CH}_{3}$, tBMA
1.9	S	3 H	11	$-\mathrm{CH}_{3}$, nBMA
3.8-3.95	broad peak	2 H	6	$-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]$
4.0	t	2 H	6	$-\mathrm{OCH}_{2} \mathrm{R}$, nBMA
5.3	t	1H	2	$\mathrm{CH}_{2}=\mathrm{C}-$, cis, tBMA
5.4	t	1H	5	$\mathrm{CH}_{2}=\mathrm{C}-$, cis, nBMA
5.9	S	1H	1	$\mathrm{CH}_{2}=\mathrm{C}-$, trans, tBMA
6.0	s	1H	4	$\mathrm{CH}_{2}=\mathrm{C}-$, trans, nBMA

* cf. Figure 3.2

The structures of the monomers and the copolymer are depicted in Figure 3.2 together with the numbering of the carbon-atoms for the assignment of the peaks in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra. Figure 3.3 shows the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum of experiment V11, taken after 180 min , as an example for the obtained spectra, in comparison to the ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra of the two monomers. In this figure the signals are assigned to the corresponding carbon-atoms of the monomers and the polymer chain.

B

C

Fig. 3.2.: Molecular structures of the monomers (A) tBMA and (B) nBMA and (C) the resulting copolymer of Series A and Series B with carbon-atom labels ($\mathrm{z}=\mathrm{x}+\mathrm{y}=1$)

Fig. 3.3.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of (A) reaction mixture V11 $\left(\mathrm{f}_{\mathrm{nBMA}}=0.5\right)$ after 180 min reaction time (nBMA:tBMA $=1: 1, \mathrm{I}: \mathrm{M}=1: 175, \mathrm{~T}=80^{\circ} \mathrm{C}$), (B) tBMA and (C) nBMA ($\mathrm{S}=$ solvent signals: MEK)

Within the subsequent text the numbers of the appropriate carbons from the chemical structure, that is shown in Figure 3.3, are given in the brackets. The nBMA-monomer showed a singlet signal at 6.0 ppm and a triplet at 5.4 ppm originating from the vinyl-group (4 and 5) and a singlet at 1.8 ppm caused by the methyl-group (11) of the methacrylate part. The n-butyl chain exhibited signals of the $\alpha-$ proton (6) at 4.0 ppm , the β-proton (7) at 1.3 to 1.45 ppm , the γ-proton (8) at 1.5 to 1.6 ppm and the δ-proton (9) at 0.6 to 0.8 ppm . The nBMA-ester chain of the polymer is represented in the spectra with broad peaks at around 3.8 to 3.95 ppm of the α-proton (6^{\prime}), 1.5 to 1.6 ppm from the $\gamma-$ proton (8^{\prime}), 1.3 to 1.45 ppm caused by the β-proton (7^{\prime}) and 0.6 to 0.8 ppm originating from the δ-proton (9^{\prime}). Hence the monomer- and polymer-peaks of the $\beta-, \gamma-$ and δ-protons appear in the same chemical shift region and become mutually overlapped. The methacrylate-part of the tBMA monomer shows a singlet at 5.9 ppm , a triplet at 5.3 ppm and a singlet at $1.9 \mathrm{ppm}(1,2,10)$ and the tert-butyl group gives raise to a sharp singlet at 1.42 ppm (3). The broad signal between circa 1.25 to 1.45 ppm is caused by the tert-butyl group of PtBMA (3'). The CH_{2}-signals of the polymer-backbone $\left(10^{\prime}, 11^{\prime}\right)$ are present in form of a broad peak ranging from 1.7 to 1.9 ppm . The signals at circa 2.4 ppm (quartet), 2.1 ppm (singlet) and 1.0 ppm (triplet) ppm belong to MEK.

Fig. 3.4.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of samples, taken from the copolymerization mixture V11 ($\mathrm{f}_{\mathrm{nBMA}}=$ 0.5), at different polymerization times; $\mathrm{A}-0 \mathrm{~min}, \mathrm{~B}-15 \mathrm{~min}, \mathrm{C}-30 \mathrm{~min}, \mathrm{D}-45 \mathrm{~min}, \mathrm{E}$ $-60 \mathrm{~min}, \mathrm{~F}-90 \mathrm{~min}, \mathrm{G}-120 \mathrm{~min}, \mathrm{H}-150 \mathrm{~min}$ and $\mathrm{I}-180 \mathrm{~min}$

Fig. 3.5.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of samples, taken from the copolymerization mixture V11 $\left(\mathrm{f}_{\mathrm{nBMA}}=\right.$ 0.5), at A $-0 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}$ and $\mathrm{C}-180 \mathrm{~min}$

The changes of the ${ }^{1} \mathrm{H}$-NMR-spectra during the polymerization are shown in Figure 3.4 and in Figure 3.5. In Figure 3.5 only the spectra of three samples, taken at 0, 90 and 180 min , were depicted to point out the differences more in detail. The intensities of the different monomer-signals decrease in relation to the solvent peaks which remain constant during the polymerization. The signal 6 ' of the $\alpha-$ proton of PnBMA appears and increases over time as a very broad peak around 3.8 ppm . The signals 7 and 7^{\prime} from nBMA and PnBMA (β-proton) overlap just as 8 and $8^{\prime}\left(\gamma\right.$-proton) and 9 and $9^{\prime}(\delta$-proton $)$. One can see an increase of the three peaks. Especially for the broad peak around 1.3 to 1.45 ppm this is very obvious, because there is also the signal for the PtBMA - tert-butyl group - which rises. In the region between 1.7 to 1.9 ppm the CH_{2}-signal of the polymer-backbone ($10^{\prime}, 11^{\prime}$) gets up in comparison with the solvent-signals directly next to the corresponding monomer peaks (10, 11) and they overlap.

The peak areas of the signals $1,2,3,3,6,6^{\prime}, 7,7^{\prime}, 8$ and 8^{\prime} were measured (see Table 3.5) and the molar ratios of monomers to polymer were calculated by means of Equations 3.3.1 to 3.3.5, taken from the PhD thesis of C. Schmitz [63]. To determine of the conversion of nBMA $\mathrm{p}_{\mathrm{nBMA}}$ the integrals of the n-butyl chains α-protons $\left(6,6\right.$) of the monomer $\left(\mathrm{A}_{6}\right)$ and the polymer $\left(\mathrm{A}_{6^{\prime}}\right)$ respectively were set into a ratio (cf. Equation 3.3.1).

$$
\begin{equation*}
\mathrm{p}_{\mathrm{nBMA}}=\frac{\mathrm{A}_{6^{\prime}}}{\mathrm{A}_{6}+\mathrm{A}_{6^{\prime}}} \tag{3.3.1}
\end{equation*}
$$

with $\mathrm{A}_{6}=$ integral intensity at 4.0 to $4.1 \mathrm{ppm} ; \mathrm{A}_{6^{\prime}}=$ integral intensity at 3.8 to 3.95 ppm

For tert-butyl methacrylate the signals of the CH_{3}-groups of the tert-butyl group of the monomer $\left(\mathrm{A}_{3}\right)$ and the polymer $\left(\mathrm{A}_{3^{\prime}}\right)$ were taken (cf. Equation 3.3.5) to calculate the conversion of the monomer $\mathrm{p}_{\text {tBMA }}$. But these signals partially overlap, perturbing each other, as well with the signals of the β-protons of the n-butyl chain do ($\mathrm{A}_{7}, \mathrm{~A}_{7^{\prime}}$). These integrals had to be subtracted from the mixed signal, here labeled as A_{x} (cf. Equation 3.3.2). For this purpose A_{3} was replaced by $3 / 2 \mathrm{~A}_{1}$, with A_{1} representing the signal intensity of the monomers vinylic $\mathrm{CH}_{2}=-$ protons (cf. signals 1 and 2 in Figure 3.5) of the tBMA monomer. The signal intensity of the β-methylene group of the n-butyl methacrylate, A_{7} and $\mathrm{A}_{7^{\prime}}$, equals that of the $\gamma-\mathrm{CH}_{2}$ group, A_{8} and $\mathrm{A}_{8^{\prime}}$, of the same monomer. Since the latter signal forms an isolated and well integratable signal between 1.5 to 1.6 ppm . The relation of the β - and the $\gamma-$ proton signals were determined for $\mathrm{t}=0 \mathrm{~min}$. The result is the value y (see Equation 3.3.3). The signal intensity of the γ-proton, multiplied by y was subtracted from the mixed signal A_{x}.

The subtraction result $\mathrm{A}_{\mathrm{tBMA}}$ was used to calculate the conversion of tBMA by means of Equation 3.3.5.

$$
\begin{align*}
\mathrm{A}_{\mathrm{tBMA}} & =\frac{\mathrm{A}_{\mathrm{x}}-\mathrm{y} \cdot \mathrm{~A}_{8}}{\mathrm{z}}-\mathrm{A}_{1} \tag{3.3.2}\\
\mathrm{y} & =\frac{\mathrm{A}_{7,0}}{\mathrm{~A}_{8,0}} \tag{3.3.3}\\
\mathrm{z} & =\frac{\mathrm{A}_{\mathrm{x}, 0}-\mathrm{A}_{7,0}}{\mathrm{~A}_{1,0}} \tag{3.3.4}\\
\mathrm{p}_{\mathrm{tBMA}} & =\frac{\mathrm{A}_{\mathrm{tBMA}}}{\mathrm{~A}_{1}+\mathrm{A}_{\text {tBMA }}} \tag{3.3.5}
\end{align*}
$$

with $\mathrm{A}_{\mathrm{x}}=$ integral intensity at 1.25 to 1.45 ppm from different parts of the monomers and the polymer; $\mathrm{A}_{\mathrm{x}, 0}=$ integral intensity at 1.35 to 1.45 ppm at $\mathrm{t}=0 \mathrm{~min} ; \mathrm{A}_{1}=$ integral intensity at 5.9 to $5.95 \mathrm{ppm} ; \mathrm{A}_{1,0}=$ integral intensity at 5.9 to 5.95 ppm at $\mathrm{t}=0 \mathrm{~min} ; \mathrm{A}_{8}=$ integral intensity at 1.5 to $1.6 \mathrm{ppm} ; \mathrm{A}_{8,0}=$ integral intensity at 1.5 to 1.6 ppm at $\mathrm{t}=0 \mathrm{~min} ; \mathrm{A}_{7,0}=$ integral intensity at 1.3 to 1.38 ppm at $\mathrm{t}=0 \mathrm{~min} ; \mathrm{A}_{\mathrm{tBMA}}=$ integral intensity at 1.25 to 1.45 ppm only from the tert-butyl group of the polymer; $\mathrm{y}=$ signal intensity ratios of β - and $\gamma-$ protons of the n-butyl chain at $\mathrm{t}=0 \mathrm{~min} ; \mathrm{z}=$ signal intensity ratio of the tert-butyl group to the monomers vinylic $\mathrm{CH}_{2}=-$ protons at $\mathrm{t}=0 \mathrm{~min}$

The values of the integrals that were needed for the calculations of the conversions as well as the results of the Equations 3.3.1 and 3.3.5 and the total conversions of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-samples taken from the experiments of Series A are listed in Table 3.5.

Figure 3.6a depicts a representative time conversion curve as obtained with reaction V11 (Table 3.1, $\mathrm{f}_{\mathrm{nBMA}}=0.5$). The conversion of both monomers increased steadily, however, the initial slope of the curves was larger than that of the later stages of the reaction. Note that both monomers were consumed with similar rate in the present example. In the absence of side reactions the reaction kinetic of an ATRP homopolymerization is of pseudo-first-order. [16] As long as the monomer composition of the reaction mixture is not altered during the course of a copolymerization this kinetic law should be valid, too.
Tab. 3.5.: Values of integrated ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals and calculated conversions of Series A

Entry $\mathrm{f}_{\mathrm{nBMA}}$	time [min]	Integral					A_{7}	$\mathrm{A}_{\text {tBMA }}$	conversion p		
		A1	A6	A6'	A8,8'	A_{x}			BzMA	tBMA	total
V11	0	0.9614	1.9603	0.0000	2.3145	12.1823	2.7980	0.0000	0.0000	0.0000	0.0000
0.50	15	0.9401	1.9814	0.3337	2.6763	13.8661		0.1490	0.1368	0.1441	0.1405
	30	0.9287	1.9958	0.7094	2.3018	16.1957		0.4454	0.3242	0.2622	0.2932
	45	0.9092	1.9993	1.1215	3.5670	18.2433		0.5180	0.3630	0.3594	0.3612
	60	0.9179	2.0127	1.4430	3.8872	20.3477		0.6853	0.4274	0.4176	0.4225
	90	0.8968	1.9895	2.0506	4.5088	23.6085		0.9634	0.5179	0.5076	0.5127
	120	0.8887	2.0298	2.8266	5.4700	27.8109		1.2830	0.5908	0.5820	0.5864
	150	0.8606	2.0141	3.4344	5.9811	31.7980		1.6563	0.6581	0.6303	0.6442
	180	0.8562	2.0290	4.2754	7.0193	36.2377		1.9869	0.6989	0.6782	0.6885
V12	0	1.9413	1.9910	0.0000	2.4045	21.9696	3.0627	0.0000	0.0000	0.0000	0.0000
0.33	15	1.9163	1.9738	0.0897	2.4109	23.0358		0.1337	0.0652	0.0435	0.0580
	30	1.8981	1.9719	0.3026	2.6547	25.0173		0.3234	0.1456	0.1330	0.1414
	45	1.9070	2.0010	0.5803	3.0088	27.5974		0.5331	0.2185	0.2248	0.2206
	60	1.8951	1.9994	0.7899	3.2710	30.0176		0.7592	0.2860	0.2832	0.2851
	90	1.8686	2.0100	1.2650	3.9086	34.4535		1.1578	0.3826	0.3863	0.3838
	120	1.8419	2.0099	1.7578	4.5355	39.6678		1.6379	0.4707	0.4665	0.4693
	150	1.8205	2.0127	2.3121	5.1293	45.4791		2.1783	0.5447	0.5346	0.5414
	180	1.7840	2.0127	2.8796	5.8751	51.1888		2.7036	0.6025	0.5886	0.5979
V13	0	0.4860	2.0027	0.0000	2.2451	6.9899	2.3092	0.0000	0.0000	0.0000	0.0000
0.66	15	0.4676	1.9884	0.4530	2.6053	8.3513		0.0492	0.0951	0.1855	0.1548
Continuation on next page ...											

$\begin{aligned} & \text { Entry } \\ & \mathrm{f}_{\mathrm{nBMA}} \end{aligned}$	time [min]	Integral					A_{7}	$\mathrm{A}_{\text {tBMA }}$	conversion p		
		A1	A6	A6'	A8,8'	A_{x}			BzMA	tBMA	total
	30	0.4556	2.0090	0.8606	3.0886	9.9814		0.1653	0.2663	0.2999	0.2885
	45	0.4584	1.9957	1.2826	3.4953	11.1668		0.2311	0.3351	0.3912	0.3722
	60	0.4478	1.9910	1.5832	3.7640	12.3329		0.3263	0.4215	0.4430	0.4357
	90	0.4479	2.0107	2.3088	4.6635	14.5626		0.4375	0.4941	0.5345	0.5208
	120	0.4370	1.9888	2.7597	4.9585	16.4766		0.6063	0.5811	0.5812	0.5812
	150	0.4368	2.0023	2.9938	5.3032	17.0460		0.6199	0.5866	0.5992	0.5949
	180	0.4334	2.0047	3.4443	5.8032	18.6352		0.7211	0.6246	0.6321	0.6295
V14	0	2.8587	2.0044	0.0000	2.2469	29.7631	2.5556	0.0000	0.0000	0.0000	0.0000
0.25	15	2.8845	2.0018	0.0069	2.2607	30.3668		0.0360	0.0123	0.0034	0.0101
	30	2.8638	1.9930	0.0525	2.3114	31.1212		0.1299	0.0434	0.0257	0.0390
	45	2.9018	2.0284	0.1372	2.5988	31.0675		0.0519	0.0176	0.0634	0.0290
	60	2.8535	2.0183	0.2645	2.6704	33.7548		0.3740	0.1159	0.1159	0.1159
	90	2.7521	1.9970	1.0802	3.5579	45.1544		1.5671	0.3628	0.3510	0.3599
	120	2.6267	1.9978	2.1345	4.7879	60.9455		3.2047	0.5496	0.5165	0.5413
	150	2.5460	1.9636	3.4786	6.2730	83.4249		5.4698	0.6824	0.6392	0.6716
	180	2.4655	1.9705	5.2595	7.6173	109.3715		8.1159	0.7670	0.7275	0.7571
V15	0	0.3237	2.0096	0.0000	2.0777	5.1651	2.1218	0.0000	0.0000	0.0000	0.0000
0.75	15	0.3114	2.0081	0.3150	2.4287	6.1090		0.0746	0.1932	0.1356	0.1500
	30	0.3060	2.0354	0.8440	2.9864	7.3940		0.1561	0.3378	0.2931	0.3043
	45	0.3060	2.0130	1.3195	3.4411	8.5940		0.2343	0.4337	0.3959	0.4054
	60	0.3041	2.0202	1.7360	3.9589	9.7396		0.3018	0.4981	0.4622	0.4712

[^1]| Entry
 $\mathrm{f}_{\mathrm{nBMA}}$ | time
 [min] | Integral | | | | | A_{7} | $\mathrm{A}_{\text {tBMA }}$ | conversion p | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | A1 | A6 | A6' | A8,8' | A_{x} | | | BzMA | tBMA | total |
| | 90 | 0.2959 | 2.0242 | 2.5475 | 4.7501 | 11.9857 | | 0.4630 | 0.6101 | 0.5572 | 0.5704 |
| | 120 | 0.2897 | 2.0208 | 3.3382 | 5.5661 | 14.0473 | | 0.5999 | 0.6743 | 0.6229 | 0.6358 |
| | 150 | 0.2892 | 2.0347 | 4.2456 | 6.5112 | 16.4046 | | 0.7484 | 0.7213 | 0.6760 | 0.6873 |
| | 180 | 0.2820 | 2.0404 | 5.2009 | 7.5726 | 18.9665 | | 0.9128 | 0.7640 | 0.7182 | 0.7297 |
| V16 | 0 | 3.8767 | 2.0049 | 0.0000 | 2.3822 | 38.8312 | 2.3788 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.20 | 15 | 3.8650 | 2.0153 | 0.1770 | 2.6243 | 42.9300 | | 0.4219 | 0.0984 | 0.0807 | 0.0949 |
| | 30 | 3.7966 | 2.0033 | 0.5179 | 2.9323 | 49.5963 | | 1.1666 | 0.2350 | 0.2054 | 0.2291 |
| | 45 | 3.8039 | 2.0147 | 0.7534 | 3.1586 | 58.2782 | | 2.0586 | 0.3511 | 0.2722 | 0.3353 |
| | 60 | 3.7719 | 2.0610 | 1.2031 | 4.0691 | 63.6674 | | 2.5670 | 0.4050 | 0.3686 | 0.3977 |
| | 90 | 3.6259 | 2.0218 | 1.8178 | 4.6417 | 74.5945 | | 3.8143 | 0.5127 | 0.4734 | 0.5048 |
| | 120 | 3.6050 | 2.0381 | 2.4701 | 5.3132 | 87.6047 | | 5.1475 | 0.5881 | 0.5479 | 0.5801 |
| | 150 | 3.5386 | 2.0319 | 3.0874 | 6.2831 | 98.8949 | | 6.3116 | 0.6408 | 0.6031 | 0.6332 |
| | 180 | 3.4761 | 2.0147 | 3.7342 | 6.6630 | 111.4444 | | 7.6684 | 0.6881 | 0.6496 | 0.6804 |
| V17 | 0 | 0.2363 | 2.0116 | 0.0000 | 2.1018 | 4.3832 | 2.0962 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.80 | 15 | 0.2382 | 2.0233 | 0.3128 | 2.4245 | 5.1084 | | 0.0398 | 0.1431 | 0.1339 | 0.1357 |
| | 30 | 0.2325 | 2.0154 | 0.7379 | 2.8615 | 6.0371 | | 0.0964 | 0.2931 | 0.2680 | 0.2730 |
| | 45 | 0.2314 | 2.0173 | 1.1433 | 3.3319 | 6.9517 | | 0.1435 | 0.3828 | 0.3617 | 0.3660 |
| | 60 | 0.2266 | 2.0195 | 1.5280 | 3.7320 | 7.8521 | | 0.2001 | 0.4690 | 0.4307 | 0.4384 |
| | 90 | 0.2211 | 2.0310 | 2.3653 | 4.5971 | 9.7265 | | 0.3102 | 0.5838 | 0.5380 | 0.5472 |
| | 120 | 0.2199 | 2.0344 | 3.2524 | 5.4792 | 11.7290 | | 0.4274 | 0.6603 | 0.6152 | 0.6242 |
| | 150 | 0.2109 | 2.0403 | 4.1881 | 6.4989 | 13.8780 | | 0.5533 | 0.7240 | 0.6724 | 0.6827 |

[^2]| Entry
 $\mathrm{f}_{\text {nBMA }}$ | time
 [min] | Integral | | | | | A_{7} | $\mathrm{A}_{\text {tBMA }}$ | conversion p | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | A1 | A6 | A6 ${ }^{\prime}$ | A8,8 | A_{x} | | | BzMA | tBMA | total |
| | 180 | 0.2077 | 2.0331 | 5.0599 | 7.3760 | 15.9194 | | 0.6771 | 0.7653 | 0.7134 | 0.7237 |
| V18 | 0 | 1.0000 | - | - | - | 10.5056 | | 0.0000 | 0.0000 | | 0.0000 |
| 0.00 | 15 | 1.0000 | - | - | - | 11.2915 | | 0.2310 | 0.1876 | | 0.1876 |
| | 30 | 1.0000 | - | - | - | 14.5431 | | 1.8461 | 0.6486 | | 0.6486 |
| | 45 | 1.0000 | - | - | - | 15.5065 | | 2.3364 | 0.7003 | | 0.7003 |
| | 60 | 1.0000 | - | - | - | 17.5861 | | 3.4418 | 0.7749 | | 0.7749 |
| | 90 | 1.0000 | - | - | - | 22.2706 | | 5.6720 | 0.8501 | | 0.8501 |
| | 120 | 1.0000 | - | - | - | 24.3656 | | 6.8268 | 0.8722 | | 0.8722 |
| | 150 | 1.0000 | - | - | - | 28.3900 | | 8.8411 | 0.8984 | | 0.8984 |
| | 180 | 1.0000 | - | - | - | 32.6596 | | 10.9706 | 0.9165 | | 0.9165 |
| V19 | 0 | - | 2.0252 | 0.0000 | 2.0556 | 2.0526 | | -- | | 0.0000 | 0.0000 |
| 1.00 | 15 | - | 2.0229 | 0.2987 | 2.3766 | 2.3765 | | -- | | 0.1287 | 0.1287 |
| | 30 | - | 2.0339 | 0.8210 | 2.9333 | 2.9805 | | -- | | 0.2876 | 0.2876 |
| | 45 | - | 2.0334 | 1.2871 | 3.4118 | 3.5032 | | -- | | 0.3876 | 0.3876 |
| | 60 | - | 2.0332 | 1.6922 | 3.8416 | 3.9693 | | -- | | 0.4542 | 0.4542 |
| | 90 | - | 2.0394 | 2.7158 | 4.9173 | 5.0735 | | -- | | 0.5711 | 0.5711 |
| | 120 | - | 2.0411 | 3.4060 | 5.6364 | 5.8696 | | -- | | 0.6253 | 0.6253 |
| | 150 | - | 2.0446 | 4.3964 | 6.6391 | 6.9221 | | -- | | 0.6826 | 0.6826 |
| | 180 | - | 2.0622 | 5.5151 | 7.7963 | 8.1689 | | -- | | 0.7278 | 0.7278 |

Fig. 3.6.: Monomer conversion and first order kinetic plot based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-evaluation of experiment V11 ($\mathrm{f}_{\mathrm{nBMA}}=0.5$); a) conversion p versus time [min]; b) first order kinetic parameters versus time $[\mathrm{s}] ; \mathrm{tBMA}$, nBMA

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

Note that the effective rate constant k may depend on the monomer composition.

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{M}]}{\mathrm{dt}}=-\mathrm{k}_{\mathrm{eff}} \cdot[\mathrm{M}] \quad \text { with }[\mathrm{M}]=[\mathrm{M}]_{1}+[\mathrm{M}]_{2} \tag{3.3.6}
\end{equation*}
$$

with $[M]=$ total monomer concentration, $[M]_{i}=$ concentration of monomer $\mathrm{i}, \mathrm{k}_{\text {eff }}=$ effective rate constant of copolymerization

At least the low conversion, initial stages of a copolymerization reaction can be described by Equation 3.3.6. Hence, a first order kinetic plot of $(-\ln (1-\mathrm{p}))$ can be set up. The calculated conversions of the samples were inserted into Equation 3.3.6 and the results were also plotted in Figure 3.6b. The rate constants of the monomers ($\mathrm{k}_{\mathrm{n} \text { BMA }}$ and $\mathrm{k}_{\mathrm{tBMA}}$) were determined from the slope of a regression line in the range of small conversions of the kinetic plots. The first four data points (up to a reaction time of 45 min) of all members of Series A were used and became located on straight lines (cf. Figure 3.6) up to conversion of about 35%. The continuity during all the polymerizations and over all the monomer compositions was a signal for the very well control over the reaction by ATRP. Note that the time-unit was changed from minutes to seconds, because in the literature rate constants are given in s^{-1} by default. The resulting kinetic plot with the two regression lines for experiment V11 is given in Figure $3.6 b$ exemplarily.

The rate constants $\mathrm{k}_{\mathrm{nBMA}}\left(\mathrm{f}_{\mathrm{nBMA}}\right)$ and $\mathrm{k}_{\text {tBMA }}\left(\mathrm{f}_{\text {nBMA }}\right)$ as obtained from the experiments using the monomer ratios $\mathrm{f}_{\mathrm{nBMA}}=0,0.2,0.25,0.33,0.5,0.66,0.75,0.8$ and 1 were plotted against the monomer molar fraction of nBMA and a regression line was calculated for the data points (see Figure 3.7). In a binary ATRP-copolymerization the consumption of each monomer obeys a pseudo first order-reaction kinetics, as long as the monomer-mixture composition does not change. Hence, one can describe the initial stages of the copolymerization by means of Equation 3.3.7 and 3.3.8.

$$
\begin{align*}
& -\ln \left(1-\mathrm{p}_{\mathrm{nBMA}}\right)=\mathrm{k}_{\mathrm{nBMA}}\left(\mathrm{f}_{\mathrm{nBMA}}\right) \cdot \mathrm{t} \tag{3.3.7}\\
& -\ln \left(1-\mathrm{p}_{\mathrm{tBMA}}\right)=\mathrm{k}_{\mathrm{tBMA}}\left(\mathrm{f}_{\mathrm{nBMA}}\right) \cdot \mathrm{t} \tag{3.3.8}
\end{align*}
$$

In these equations $\mathrm{k}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{nBMA}}\right)$ represent the composition-dependent rate constants of the monomers. Figure $3.6 b$ depicts the respective kinetic plot obtained from the data of experiment V11. An analogous analysis was performed with all obtained time conversion data of reactions V12 to 19. The measured individual rate constants $\mathrm{k}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}\right)$ are summarized in Table 3.6. Figure 3.7 depicts a plot of the individual monomer rate constant $\mathrm{k}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{nBMA}}\right)(\mathrm{i}=\mathrm{nBMA}$, tBMA) versus the initial molar fraction of nBMA in the monomer mixture, $\mathrm{f}_{\mathrm{nBMA}}$. tBMA $\left(\mathrm{k}_{\mathrm{tBMA}}=9.45 \cdot 10^{-5} \mathrm{~s}^{-1}\right)$ polymerized about half as fast as nBMA ($\left.\mathrm{k}_{\mathrm{nBMA}}=22.2 \cdot 10^{-5} \mathrm{~s}^{-1}\right)$. The measured effective rate constants of the copolymerizations lay within this range. Between $\mathrm{f}_{\text {nBMA }}=0.2$ and 0.8 the values were of similar level $\left(1.2 \ldots 2.0 \cdot 10^{-4}\right)$ and close to
$k_{\text {nBMA }}\left(f_{n B M A}=1\right)$; i.e. the constant of the homopolymerization of $n B M A$. In the interval $\mathrm{f}_{\text {nBMA }} \in[0.2,0.8]$ the rate constants were approximated by straight lines, their low slopes $\left(\mathrm{m}_{\mathrm{t}}=\frac{\mathrm{dk}_{\mathrm{tBMA}}}{\mathrm{d} \mathrm{f}_{\text {tBMA }}}=8.97 \cdot 10^{-5} \pm 6.58 \cdot 10^{-5}, \mathrm{~m}_{\mathrm{n}}=\frac{\frac{\mathrm{dk}_{\text {nBMA }}}{\mathrm{df}} \mathrm{f}_{\text {BMA }}}{}=10.6 \cdot 10^{-5} \pm 5.36 \cdot 10^{-5}\right)$ indicating a very weak dependence of the copolymerization rate on the monomer mixture composition.

Tab. 3.6.: Kinetic rate constants and copolymer compositions of the different copolymer compositions of Series A (ATRP, I:M $=1: 175, \mathrm{~T}=80^{\circ} \mathrm{C}$)

Entry	$\mathrm{f}_{\text {nBMA }}$	$\mathrm{k}_{\text {nBMA }}$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\text {eff nBMA }}(a)$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\text {tBMA }}$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\text {eff tBMA }}(b)$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\text {eff }}$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{F}_{\text {nBMA }}$
V18	0.00	-	$1.17 \cdot 10^{-4}$	$4.40 \cdot 10^{-4}$	$1.30 \cdot 10^{-4}$	$1.38 \cdot 10^{-4}$	0.00
V16	0.20	$1.21 \cdot 10^{-4}$	$1.32 \cdot 10^{-4}$	$1.54 \cdot 10^{-4}$	$1.53 \cdot 10^{-4}$	$1.48 \cdot 10^{-4}$	0.10
V14	0.25	$1.66 \cdot 10^{-4}$	$1.35 \cdot 10^{-4}$	$1.82 \cdot 10^{-4}$	$1.56 \cdot 10^{-4}$	$1.51 \cdot 10^{-4}$	0.14
V12	0.33	$8.98 \cdot 10^{-5}$	$1.41 \cdot 10^{-4}$	$9.14 \cdot 10^{-5}$	$1.62 \cdot 10^{-4}$	$1.55 \cdot 10^{-4}$	0.20
V11	0.50	$1.66 \cdot 10^{-4}$	$1.53 \cdot 10^{-4}$	$1.81 \cdot 10^{-4}$	$1.74 \cdot 10^{-4}$	$1.64 \cdot 10^{-4}$	0.32
V13	0.66	$2.04 \cdot 10^{-4}$	$1.65 \cdot 10^{-4}$	$1.59 \cdot 10^{-4}$	$1.85 \cdot 10^{-4}$	$1.72 \cdot 10^{-4}$	0.52
V15	0.75	$1.87 \cdot 10^{-4}$	$1.72 \cdot 10^{-4}$	$2.13 \cdot 10^{-4}$	$1.91 \cdot 10^{-4}$	$1.77 \cdot 10^{-4}$	0.57
V17	0.80	$1.67 \cdot 10^{-4}$	$1.75 \cdot 10^{-4}$	$1.82 \cdot 10^{-4}$	$1.95 \cdot 10^{-4}$	$1.79 \cdot 10^{-4}$	0.66
V19	1.00	$1.74 \cdot 10^{-4}$	$1.90 \cdot 10^{-4}$	-	$2.09 \cdot 10^{-4}$	$1.90 \cdot 10^{-4}$	1.00

(a) calculated from Equation 3.3.11; (b) calculated from Equation 3.3.12

Fig. 3.7.: Plot of the individual monomer rate constants $\mathrm{k}_{\mathrm{n} \text { BMA }}$ and $\mathrm{k}_{\mathrm{tBMA}}$ versus the nBMAcontent of the monomer feed ratio; \square tBMA, nBMA

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

Both fitted lines are shown in Figure 3.8 without the measured data. The rate constant of the homopolymerizations of tBMA was almost twice as fast as the nBMA/tBMA mixtures. It hence seems that even small quantities of nBMA substantially perturb the polymerization of tBMA.

If both monomers are consumed according to a first-order kinetics, the sum of both monomer concentrations $[\mathrm{M}]=\left[\mathrm{M}_{\mathrm{nBMA}}\right]+\left[\mathrm{M}_{\mathrm{tBMA}}\right]$ must follow the same law. Hence, the total rate of copolymerization will follow Equation 3.3.6, with $\mathrm{k}_{\text {eff }}$ representing the monomer mixture dependence effective rate constant. It can be shown that $\mathrm{k}_{\text {eff }}$ is related to the monomer composition $\mathrm{f}_{\text {nBMA }}$ and the individual rate constant according to Equation 3.3.13.

With the equations of the regression lines from the rate constants and the monomer composition of the different feed ratios the effective rate constants of the monomers ($\mathrm{k}_{\text {eff,nBMA }}$ and $\mathrm{k}_{\text {eff,tBMA }}$) were calculated, see Equations 3.3.9 and 3.3.10.

$$
\begin{align*}
& k_{\mathrm{eff}, \mathrm{nBMA}}=\mathrm{a}_{\mathrm{k}_{\mathrm{nBMA}}}+b_{\mathrm{k}_{\mathrm{nBMA}}} \cdot \mathrm{f}_{\mathrm{nBMA}} \tag{3.3.9}\\
& \mathrm{k}_{\mathrm{eff}, \mathrm{tBMA}}=\mathrm{a}_{\mathrm{k}_{\mathrm{tBMA}}}+\mathrm{b}_{\mathrm{k}_{\mathrm{tBMA}}} \cdot \mathrm{f}_{\mathrm{tBMA}} \tag{3.3.10}
\end{align*}
$$

The fit of Equations 3.3 .9 and 3.3 .10 to the experimental data of Table 3.6 gave the resulted in Equations 3.3.11 and 3.3.12.

$$
\begin{align*}
& \mathrm{k}_{\text {eff,nBMA }}=\left(1.17 \cdot 10^{-4}\right) \mathrm{s}^{-1}+\left(7.29 \cdot 10^{-5}\right) \mathrm{s}^{-1} \cdot \mathrm{f}_{\mathrm{nBMA}} \tag{3.3.11}\\
& \mathrm{k}_{\text {eff }, \text { tBMA }}=\left(1.38 \cdot 10^{-4}\right) \mathrm{s}^{-1}+\left(7.06 \cdot 10^{-5}\right) \mathrm{s}^{-1} \cdot \mathrm{f}_{\mathrm{nBMA}} \tag{3.3.12}
\end{align*}
$$

The data points here lied on straight lines for both monomers (Figure 3.8). The values of the effective rate constants were used to determine the copolymerizations total effective rate constant ($\mathrm{k}_{\mathrm{eff}}$) with Equation 3.3.13.

$$
\begin{equation*}
\mathrm{k}_{\mathrm{eff}}=\mathrm{f}_{1} \cdot \mathrm{k}_{1}+\mathrm{f}_{2} \cdot \mathrm{k}_{2} \tag{3.3.13}
\end{equation*}
$$

The total rate constant was expressed either in terms of the molar fraction of nBMA in the reaction mixture ($\mathrm{f}_{\mathrm{nBMA}}$, cf. Equation 3.3.14) or in dependence of $\mathrm{f}_{\mathrm{tBMA}}$ (cf. Equation 3.3.15).

$$
\begin{align*}
& \mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\text {nBMA }}\right)=\left(1.38 \cdot 10^{-4}\right) \mathrm{s}^{-1}+\left(5.15 \cdot 10^{-5}\right) \mathrm{s}^{-1} \cdot \mathrm{f}_{\mathrm{nBMA}} \tag{3.3.14}\\
& \mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\text {tBMA }}\right)=\left(1.89 \cdot 10^{-4}\right) \mathrm{s}^{-1}-\left(5.15 \cdot 10^{-5}\right) \mathrm{s}^{-1} \cdot \mathrm{f}_{\text {tBMA }} \tag{3.3.15}
\end{align*}
$$

The results are depicted in Figure 3.8b, to demonstrate the linear relation. All the results of the previous calculations are summarized in Table 3.6.

Fig. 3.8.: Effective rate constants of the individual monomer consumptions $\mathrm{k}_{\mathrm{eff}, \mathrm{i}}$ and total effective rate constants $\mathrm{k}_{\text {eff,total }}$ of the total reaction for the different monomer feed ratios of Series A; a) effective rate monomer constants $\mathrm{k}_{\mathrm{eff}, \mathrm{nBMA}}(\bullet)\left(E q\right.$. 3.3.11) and $\mathrm{k}_{\mathrm{eff}, \mathrm{tBMA}}(\mathbf{■})(E q$. 3.3.12); b) total effective rate constant $\mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\mathrm{nBMA}}\right)(\bullet)\left(E q\right.$. 3.3.14) and $\mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\mathrm{tBMA}}\right)$ (Eq. 3.3.15)

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

The measured rates constants were also used to determine the instantaneous polymer composition $\frac{\mathrm{d}[\mathrm{nBMA}]}{\mathrm{d}[\mathrm{tBMA}]}$ of the resulting copolymers by means of Equation 3.3.16.

$$
\begin{equation*}
F_{n B M A}=\frac{R_{n B M A}}{R_{n B M A}+R_{t B M A}}=\frac{f_{n B M A} \cdot k_{n B M A}}{k_{n B M A}+f_{t B M A} \cdot k_{t B M A}} \tag{3.3.16}
\end{equation*}
$$

with $\mathrm{R}_{\mathrm{i}}=$ rate of copolymerization of monomer i , $\mathrm{k}_{\mathrm{i}}=$ effective, composition dependent individual rate constant of monomer $\mathrm{i}, \mathrm{f}_{\mathrm{i}}=$ molar fraction of monomer i in the reaction mixture

The copolymerization diagram of $n-$ and tert-butylmethacrylate as obtained from Equation 3.3.16 is shown in Figure 3.9. The compositions of the resulting copolymers from Series A were summarized in Table 3.6. At any monomer composition $\mathrm{f}_{\mathrm{nBMA}}$ the monomer tBMA copolymerized faster than nBMA, resulting in copolymers that contained less nBMA than was initially present in the monomer mixture.

Fig. 3.9.: Copolymerization diagram of $n-$ and tert-butylmethacrylate; dashed line for ideal random copolymerization, solid line for line of fit: $\mathrm{r}_{\mathrm{nBMA}}=0.475, \mathrm{r}_{\mathrm{tBMA}}=0.886$

Such a copolymerization diagram is described in the terminal-model by means of the Lewis-Mayo-Equation with one reactivity ratio larger and one reactivity ratio smaller than one. [20, 86]

$$
\begin{equation*}
\mathrm{F}_{1}=\frac{\mathrm{d}\left[\mathrm{M}_{1}\right]}{\mathrm{d}\left[\mathrm{M}_{1}\right]+\mathrm{d}\left[\mathrm{M}_{2}\right]}=\frac{\mathrm{r}_{1} \mathrm{f}_{1}^{2}+\mathrm{f}_{1} \mathrm{f}_{2}}{\mathrm{r}_{1} \mathrm{f}_{1}^{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}+\mathrm{r}_{2} \mathrm{f}_{2}^{2}} \tag{3.3.17}
\end{equation*}
$$

with $r_{i}=$ reactivity ratio, i.e. copolymerization parameter of monomer $i, f_{i}=$ molar fraction
of monomer i in the reaction mixture, $\mathrm{F}_{\mathrm{i}}=$ instantaneous molar fraction of monomer i incorporated on the copolymer, $\mathrm{d}\left[\mathrm{M}_{\mathrm{i}}\right]=$ different change of the concentration of monomer i due to a differential conversion, $(1)=\mathrm{nBMA}$ and $(2)=\mathrm{tBMA}$

The monomer reactivity ratios were determined by a least-square fit of Equation 3.3.17 to the data points of Figure 3.9 to yield $\mathrm{r}_{\mathrm{nBMA}}=0.475 \pm 0.05$ and $\mathrm{r}_{\mathrm{tBMA}}=0.886 \pm 0.05$. A comparison of the values with literature data was not possible, since copolymerization reactivity ratios of this system have not yet been published.

3.3.2. Structural Analysis

The next investigations referred to the compositional analysis of the copolymers. First the elementary analysis of all resulting copolymers of Series A and Series B is detailed. The purity and the composition of the resulting copolymers were controlled with elementary analysis. The molecular formula of the monomers, which are isomers, is $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$. Therefore the amounts are 67.57% of $\mathrm{C}, 9.92 \%$ of H and 22.50% of O . With the analysis method described in Section 3.2.2 the content of only C and H can be measured, while the amount of O had to be calculated from the difference to 100%. The results of the elementary analyze and as well as the results from the calculations are listed in the Tables 3.7 and 3.8. Furthermore the differences between the theoretical values and the analysis results are given. As part of the initiator-molecule pTSC in each polymer-chain one sulfur-atom occurs, however, its amount was below the detection limit of the elementary analysis device of around 2%.

Tab. 3.7.: Results of the elementary analysis of the different copolymer compositions of Series A with divergence from the set value

Entry	$\mathrm{F}_{\text {nBMA }}$	C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
theory		67.57		9.92		22.50	
V18	0.00	66.54	-1.03	9.59	-0.34	23.87	1.37
V16	0.10	67.23	-0.34	9.67	-0.26	23.10	0.60
V14	0.14	66.74	-0.83	9.64	-0.28	23.62	1.11
V12	0.20	67.30	-0.27	9.76	-0.17	22.94	0.44
V11	0.32	67.15	-0.42	9.76	-0.16	23.09	0.58
V13	0.52	67.01	-0.56	9.63	-0.29	23.36	0.85
V15	0.57	67.13	-0.44	9.67	-0.26	23.20	0.70
V17	0.66	67.29	-0.28	9.67	-0.25	23.04	0.54
V19	1.00	67.13	-0.44	9.68	-0.25	23.20	0.69

Tab. 3.8.: Results of the elementary analysis of the different copolymer compositions of Series B with divergence from the set value

Entry $\mathrm{f}_{\mathrm{nBMA}}$	time [min]	$\begin{gathered} \mathrm{C} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{C}$	$\begin{gathered} \mathrm{H} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{H}$	$\begin{gathered} \mathrm{O} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{O}$
theory		67.57		9.92		22.50	
V28	60	66.97	-0.60	9.46	-0.46	23.57	1.07
0.0	90	67.13	-0.44	9.72	-0.20	23.15	0.64
	120	67.07	-0.50	9.42	-0.50	23.51	1.01
	150	67.13	-0.44	9.37	-0.56	23.50	1.00
	180	66.97	-0.60	9.45	-0.47	23.58	1.07
V26	60	67.34	-0.23	9.41	-0.51	23.25	0.75
0.2	90	67.28	-0.29	9.38	-0.54	23.34	0.83
	120	67.40	-0.17	9.32	-0.60	23.28	0.77
	150	67.38	-0.19	9.41	-0.52	23.21	0.71
	180	67.41	-0.16	9.43	-0.50	23.17	0.66
V24	60	67.22	-0.35	9.39	-0.53	23.39	0.89
0.25	90	67.34	-0.23	9.56	-0.36	23.10	0.60
	120	67.35	-0.22	9.71	-0.22	22.95	0.44
	150	67.29	-0.28	9.61	-0.31	23.10	0.59
	180	67.35	-0.22	9.62	-0.30	23.03	0.53
V22	60	67.34	-0.23	9.37	-0.56	23.29	0.79
0.33	90	67.39	-0.18	9.53	-0.40	23.09	0.58
	120	67.22	-0.35	9.27	-0.65	23.51	1.01
	150	67.36	-0.21	9.46	-0.47	23.18	0.68
	180	67.35	-0.22	9.41	-0.52	23.24	0.74
V21	60	67.29	-0.28	9.45	-0.47	23.26	0.76
0.5	90	67.19	-0.38	9.11	-0.81	23.70	1.19
	120	67.31	-0.26	9.55	-0.38	23.15	0.64
	150	67.41	-0.16	9.60	-0.32	22.99	0.49
	180	67.93	0.36	9.64	-0.28	22.43	-0.07
V23	60	67.37	-0.20	9.08	-0.85	23.56	1.05
0.66	90	67.48	-0.09	9.06	-0.86	23.46	0.95
	120	67.29	-0.28	9.19	-0.74	23.52	1.02
	150	67.31	-0.26	9.49	-0.44	23.21	0.70
	180	67.30	-0.27	9.34	-0.58	23.36	0.86
Continuation on next page . .							

Entry $\mathrm{f}_{\text {nBMA }}$	time $[\mathrm{min}]$	C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
V 25	60	67.41	-0.16	9.77	-0.15	22.82	0.32
0.75	90	67.22	-0.35	9.66	-0.26	23.12	0.62
	120	67.44	-0.13	9.77	-0.16	22.79	0.29
	150	67.40	-0.17	9.55	-0.37	23.05	0.54
	180	67.43	-0.14	9.62	-0.31	22.95	0.45
V 27	60	67.13	-0.44	9.45	-0.47	23.42	0.91
0.8	90	67.97	0.40	10.37	0.44	21.66	-0.84
	120	67.79	0.22	10.26	0.33	21.95	-0.55
	150	67.68	0.11	10.30	0.38	22.02	-0.48
	180	67.53	-0.04	10.06	0.14	22.41	-0.09
V 29	60	66.94	-0.63	9.43	-0.49	23.63	1.13
1.0	90	66.98	-0.59	9.50	-0.42	23.52	1.01
	120	67.03	-0.54	9.50	-0.43	23.47	0.97
	150	66.95	-0.62	9.53	-0.39	23.52	1.01
	180	67.05	-0.52	9.69	-0.23	23.26	0.76

The elementary analysis yielded two results. In all measurements the differences to the theoretical values were small. That implied that all samples were free of pollution from solvents etc. When all the samples were compared all the values were very similar. That means that all the reactions worked in the same way independent from the monomer composition. That was a good requirement for the semibatch polymerization were the monomer composition will change continuously during the reaction.

Another way to characterize the copolymer compositions is ATR-FTIR-spectroscopy. Before the IR-spectra of the polymers were measured, the spectra of the monomers were gathered to find the characteristic vibration bands that can be used to distinguish monomers and polymer units. These spectra of nBMA and tBMA are shown in Figure 3.10. Note that the ATRFTIR is a reflection measurement technique. The intensity of an IR-band depends on the penetration depth of the IR radiation ($\approx 0.1 \ldots 1.0 \cdot \lambda$), but not on the sample thickness as long as the measurement film in much thicker than the longest measured wavelength. [87] For the comparison purpose the spectra were normalized by setting the adsorption intensity of the vibrational band at $1136 \mathrm{~cm}^{-1}$ to one by dividing all intensities A_{x} by A_{1}. In the spectra the peaks were equal for both the monomers that belonged to the methacrylate-part of the molecules.

Fig. 3.10.: Finger print region of the ATR-FTIR-spectra of nBMA and tBMA (black line - nBMA, grey line - tBMA). Insert: full MIR-spectra (Spectra normalized to $\mathrm{A}_{1136}=1$)

The vibrational bands of $=\mathrm{CH}_{2},-\mathrm{CH}_{2}-$ and $-\mathrm{CH}_{3}$ was found between 3050 to $2800 \mathrm{~cm}^{-1}$, but the one for $=\mathrm{CH}_{2}$ which was located higher than $3000 \mathrm{~cm}^{-1}$ was merely weak and imperceptible. The vibrational band of $\mathrm{C}=\mathrm{O}$ was located at $1720 \mathrm{~cm}^{-1}$, for $-\mathrm{CH}_{2}$ - and $-\mathrm{CH}_{3}$ at $1473 \mathrm{~cm}^{-1}$ and $1450 \mathrm{~cm}^{-1}$ and for $\mathrm{C}-\mathrm{O}-\mathrm{C}$ at $1136 \mathrm{~cm}^{-1}$.

The differences between the two spectra resulted from the two different ester-groups of the monomers, the n-butyl-chain and the tert-butyl-group, that became particularly visible between 600 and $1400 \mathrm{~cm}^{-1}$. tBMA showed distinct bands at $1366 \mathrm{~cm}^{-1}, 1270 \mathrm{~cm}^{-1}$ and $876 \mathrm{~cm}^{-1}$. The characteristic bands for nBMA laid at $1247 \mathrm{~cm}^{-1}, 1065 \mathrm{~cm}^{-1}$ and $967 \mathrm{~cm}^{-1}$. Because these bands are within the finger print region it was not possible to assign the vibrational bands to specific vibrations of the functional groups of the molecules.

The IR-spectrum of the statistic copolymer of experiment V11 ($\mathrm{F}_{\mathrm{nBMA}}=0.32$) from Series A, containing both the n-butyl- and the tert-butyl-ester groups, is given in Figure 3.11 together with the spectra of the two monomers to work out the differences between the copolymers and the two monomers. The three vibrational bands that were characteristic for nBMA and also the three bands for tBMA were marked there in the spectra of the polymer and the corresponding monomer-spectra. However, two bands in each monomer spectra did not have corresponding bands in the polymer spectrum. They were at $1295 \mathrm{~cm}^{-1}$ and $1321 \mathrm{~cm}^{-1}$ in the nBMA spectrum and at $1305 \mathrm{~cm}^{-1}$ and $1330 \mathrm{~cm}^{-1}$ in the tBMA spectrum. In the polymer spectrum were no bands in the region between $1290 \mathrm{~cm}^{-1}$ and $1350 \mathrm{~cm}^{-1}$. Hence that bands resulted from the vibration of $=\mathrm{CH}_{2}$. [87]

Fig. 3.11.: Comparison of the finger print region of the ATR-FTIR-spectra of A - nBMA, B tBMA and $\mathrm{C}-$ experiment V11 ($\mathrm{F}_{\mathrm{n}} \mathrm{BMA}=0.32$); $\square-$ nBMA specific bands, $\square-$ tBMA specific bands; analyzed bands were marked with dashed lines (Spectra normalized to $\mathrm{A}_{1136}=1$)

Fig. 3.12.: Analyzed section of the ATR-FTIR-spectra of the different copolymer compositions of $\mathrm{P}[\mathrm{tBMA}-\mathrm{co}-\mathrm{nBMA}] ; \mathrm{A}-\mathrm{F}_{\mathrm{nBMA}}=0.00, \mathrm{~B}-\mathrm{F}_{\mathrm{nBMA}}=0.10, \mathrm{C}-\mathrm{F}_{\mathrm{nBMA}}=0.14$, $\mathrm{D}-\mathrm{F}_{\mathrm{nBMA}}=0.20, \mathrm{E}-\mathrm{F}_{\mathrm{nBMA}}=0.32, \mathrm{~F}-\mathrm{F}_{\mathrm{nBMA}}=0.52, \mathrm{G}-\mathrm{F}_{\mathrm{nBMA}}=0.57, \mathrm{H}-$ $\mathrm{F}_{\mathrm{nBMA}}=0.66, \mathrm{I}-\mathrm{F}_{\mathrm{nBMA}}=1.00$ (normalized on the band at $1136 \mathrm{~cm}^{-1}$)

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

The band at $850 \mathrm{~cm}^{-1}$ (band 2) characteristic for tBMA and the one at $970 \mathrm{~cm}^{-1}$ (band 1) caused by nBMA were most suited for the investigation of the copolymer compositions. They were clearly separated and could be investigated well in view to peak area (PA) and peak height (PH). In Figure 3.12 these two vibrational bands of the IR-spectra of the different copolymers from Series A are compared. It was recognizable that with the change in copolymer composition the peak area and the peak height changed. Band 1 is a characteristic band from nBMA and with the rise of the amount of n-butyl-chain in the copolymer chain also the band intensity increased. Conversely, the intensity of band 2 which is characteristic for the tert-butyl-group decreased. To show that behaviors more precisely the peak area and the peak height of the two bands were determined and then the composition of the samples, taken from analysis of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra, was plotted against the peak area and the peak height. This is depicted in Figure 3.13 and further the values are listed in Table 3.9.

Tab. 3.9.: Peak area and peak height of the analyzed ATR-FTIR-bands of Series A

	band 1			band 2	
Entry	$\mathrm{F}_{\mathrm{nBMA}}{ }^{a}$	peak area $\left[\mathrm{cm}^{-1}\right]$	peak height $[\mathrm{A}]$	peak area $\left[\mathrm{cm}^{-1}\right]$	peak height $[\mathrm{A}]$
V18	0.00	2.98	0.063	8.68	0.423
V16	0.10	3.40	0.072	7.80	0.378
V14	0.14	3.60	0.075	7.54	0.360
V12	0.20	3.64	0.077	6.77	0.328
V11	0.32	4.86	0.103	6.79	0.302
V13	0.52	5.86	0.123	5.79	0.245
V15	0.57	6.74	0.142	5.77	0.223
V17	0.66	7.59	0.162	5.81	0.213
V19	1.00	9.86	0.234	4.33	0.010

${ }^{a}$ calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra

All values, peak area and peak height of both vibrational bands, changed with the change of copolymer composition $\mathrm{F}_{\mathrm{nBMA}}$. The aforementioned increase of band 1 and decrease of band 2 proceeded the equations, that are given in the Equations 3.3.18 to 3.3.21.

$$
\begin{align*}
\mathrm{F}_{\mathrm{nBMA}}\left(\mathrm{PA}_{1}\right)= & (-0.453 \pm 0.108) \mathrm{cm}^{-1} \tag{3.3.18}\\
& +(0.175 \pm 0.039) \mathrm{cm}^{-1} \cdot \mathrm{PA}_{1}-(0.003 \pm 0.003) \mathrm{cm}^{-1} \cdot \mathrm{PA}_{1}^{2} \\
\mathrm{~F}_{\mathrm{nBMA}}\left(\mathrm{PA}_{2}\right)= & (3.169 \pm 0.531) \mathrm{cm}^{-1} \\
& -(0.622 \pm 0.165) \mathrm{cm}^{-1} \cdot \mathrm{PA}_{2}+(0.029 \pm 0.013) \mathrm{cm}^{-1} \cdot \mathrm{PA}_{2}^{2} \tag{3.3.19}\\
\mathrm{~F}_{\mathrm{nBMA}}\left(\mathrm{PH}_{1}\right)= & (-0.524 \pm 0.081) \tag{3.3.20}\\
& +(9.862 \pm 1.278) \cdot \mathrm{PH}_{1}-(14.471 \pm 4.374) \cdot \mathrm{PH}_{1}^{2} \\
\mathrm{~F}_{\mathrm{nBMA}}\left(\mathrm{PH}_{2}\right)= & (1.405 \pm 0.070) \tag{3.3.21}\\
& -(4.067 \pm 0.556) \cdot \mathrm{PH}_{2}+(1.622 \pm 1.030) \cdot \mathrm{PH}_{2}^{2}
\end{align*}
$$

Fig. 3.13.: ATR-FTIR calibration curves, relating to the composition of the copolymers of Series A to a) peak area and b) peak height of band $1\left(970 \mathrm{~cm}^{-1}, \boxed{\square}\right)$ and band $2\left(850 \mathrm{~cm}^{-1}\right.$, -)

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

The fitting of the the peak height of both vibrational bands worked better than the ones of the peak area as can be seen in Figure 3.13. The reason to perform the fittings was that either the peak area or the peak height should be applied for the determination of the composition of the gradient copolymers, hence, the ATR-FTIR-spectra of the copolymers could be analyzed not only quantitatively but also qualitatively. Because of the quality of the fittings the peak heights of the samples of Series A, will be used for the calibration curve. Moreover this is the classical values of IR-analysis. [87]

3.3.3. Molecular Weight Characterization

Beside the investigation of the kinetic and the structure, the resulting polymers were also investigated with size exclusion chromatography. For this purpose the experiments of Series A were repeated in larger batches Series B, cf. Section 3.1.2, to allow for sampling of sufficient larger quantities to obtain enough polymer per sample for a SEC analysis. On the one hand that was done for the verification of the polymerization control and on the other hand to find out how the molar mass growth during the polymerization via the samples from Series B. The control of the polymerization can be judged by the polydispersity of the polymer, because the lower the PDI the better the control. With a perfect control over the reaction the PDI would be $1+\frac{1}{x_{1}} \cdot[41]$ During the polymerization the first sample was taken after one hour because at earlier times the conversion was not sufficiently high to support the analysis. Other samples were taken every 30 min up to 3 hours.

Fig. 3.14.: SEC elution diagrams of the samples of batch copolymerization V23 (f nBMA $=0.66$) at reaction times of $\mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-120 \mathrm{~min}, \mathrm{D}-150 \mathrm{~min}, \mathrm{E}-180 \mathrm{~min}$

Figure 3.14 shows the elution diagrams (RI-signals) of the samples from batch copolymerization V23. With growing reaction time the peaks of the elution diagrams became shifted to lower elution volumes, from 27.4 to 26.5 ml . Hence, the molar mass of the copolymers became larger during the course of the reaction. All the GPC-analysis of the samples of Series B showed this behavior. In view to the growth of the molar mass all the entries of Series B worked well. The RI-signals also demonstrated the absence of side reactions over the course of reaction, due to the lack of multimodality and front- or back-tailing effects. The signals are monomodal and with a narrow distribution. This observation is valid for all samples of Series A and B.

From the elution volume of the peak-maximum of the RI-peak the relative molar mass of the samples with respect to polystyrene standards was determined. For this purpose a calibration curve was constructed from SEC measurements of polymer standards. Narrow distributed polystyrene with molar masses of $1920 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, 5610 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and $27500 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ were used. Their molar masses were plotted logarithmic against their maximum elution volume. The result was a linear calibration curve, see Figure 3.15.

Fig. 3.15.: SEC calibration curve based on narrow distributed polystyrene standards (PSStandard) and determination of the relative peak molecular weights of $\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-$ tBMA] (batch copolymerization $\mathrm{V} 23\left(\mathrm{f}_{\mathrm{nBMA}}=0.66\right), \mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-120 \mathrm{~min}$, D - $150 \mathrm{~min}, \mathrm{E}-180 \mathrm{~min}$)

The equation of the curve was given in Equation 3.3.22.

$$
\begin{equation*}
\ln (\mathrm{M})=(23.884 \pm 0.095)-(0.508 \pm 0.003) \cdot \mathrm{V}_{\mathrm{E}} \tag{3.3.22}
\end{equation*}
$$

From this curve the relative molar mass of the samples can be read off and also calculated with the maximum elution-volume V_{E} of the samples and Equation 3.3.22. The molar masses rose linear from 20860 to $33450 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ during the polymerization. The results of the calculations are listed in Table 3.13. Because of the fact that only the one point of the RI-peak the maximum elution-volume was used for the determination of the relative molar mass the results only reflected a small part of the sample. Therefore the absolute molar masses of the samples were also determined.

For the determination of the absolute molar masses of the samples by means of static light scattering first the differential refractive index increment (dn/dc) of the resulting polymers from Series A must be measured, see Section 2.4. Moreover a correlation between polymer composition and $\mathrm{dn} / \mathrm{dc}$ in THF as solvent at $25^{\circ} \mathrm{C}$ was investigated. Five different concentrations of each copolymer (Series A) were injected one after another; before and after the polymer solution pure THF was injected. Then the gathered diagram was analyzed. First a baseline between the solvent levels was drawn and the regions of the different concentrations were marked. An example of such a time/n-diagram obtained from the copolymer V12 is depicted in Figure 3.16a. The five obtains refractive indices $n\left(c_{i}\right)$ of the concentration series were plotted against the concentrations c_{i}, see Figure 3.16b.

The measured refractive indices of the polymer solutions fairly laid on a straight line of positive slope. The slope of the fitted linear function is the differential refractive index increment $\mathrm{dn} / \mathrm{dc}$ of copolymer V12 in THF at $25^{\circ} \mathrm{C}$. The other copolymers of Series A were investigated in an analogous way. The measured differential refractive index increments of the copolymers are summarized in Table 3.10 while Figure 3.17 depicts a plot of the dn/dc versus the molar fraction of nBMA ($\mathrm{F}_{\mathrm{nBMA}}$) in the respective substance.

Tab. 3.10.: Differential refractive index increments $\mathrm{dn} / \mathrm{dc}$ of $\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ (Series A) copolymers in THF at $25^{\circ} \mathrm{C}$

Entry	$\mathrm{F}_{\text {nBMA }}$	$\mathrm{dn} / \mathrm{dc}\left[\mathrm{ml} \cdot \mathrm{g}^{-1}\right]$
V18	0.00	0.0612 ± 0.0019
V16	0.10	0.0701 ± 0.0008
V14	0.14	0.0654 ± 0.0006
V12	0.20	0.0806 ± 0.0034
V11	0.32	0.0799 ± 0.0033
V13	0.52	0.0774 ± 0.0012
V15	0.57	0.0779 ± 0.0039
V17	0.66	0.0730 ± 0.0034
V19	1.00	0.0988 ± 0.0178

Fig. 3.16.: Refractive index increment of experiment V12 ($\mathrm{F}_{\mathrm{nBMA}}=0.2$); a) elution diagram of solutions $\mathrm{D} 1-0.1 \mathrm{mg} \cdot \mathrm{ml}^{-1}, \mathrm{D} 2-0.2 \mathrm{mg} \cdot \mathrm{ml}^{-1}, \mathrm{D} 3-0.5 \mathrm{mg} \cdot \mathrm{ml}^{-1}, \mathrm{D} 4-1.0 \mathrm{mg} \cdot \mathrm{ml}^{-1}$, $\mathrm{D} 5-2.0 \mathrm{mg} \cdot \mathrm{ml}^{-1}$ (dashed vertical lines) and THF - baseline (dashed horizontal line); b) determination of $\mathrm{dn} / \mathrm{dc}$ - concentrations against refractive index ($\mathrm{dn} / \mathrm{dc}=0.081$ $\left.\pm 0.003 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$; in THF at $25^{\circ} \mathrm{C}$

A simple relation between $\mathrm{dn} / \mathrm{dc}$ and $\mathrm{F}_{\mathrm{nBMA}}$ cannot be stated, however, between $\mathrm{F}_{\mathrm{nBMA}} 0.1$ to 0.6 the dependence of the refractive index increment on the copolymer composition is low $\left(\mathrm{d}[\mathrm{dn} / \mathrm{dc}] / \mathrm{dF}_{\mathrm{nBMA}}<0.009\right)$. Above $\mathrm{F}_{\mathrm{nBMA}}=0.7$ the refractive index increment seems to inverse stronger, since dn/dc of the PnBMA- homopolymer was 0.099 . Literature values of the dn/dc for PnBMA or PtBMA in THF at $25^{\circ} \mathrm{C}$ were not available.

The measured dn/dc values of P[nBMA-co-tBMA] copolymers in THF were used to analyze the molecular weight distributions and to determine the absolute molar masses of the nBMA/ tBMA copolymers of Series A and B (batch copolymerization, cf. Section 3.1.2) by means of online MALS during SEC characterization.

Fig. 3.17.: Plot of the measured differential refractive index increments $\mathrm{dn} / \mathrm{dc}$ of the solutions of P[nBMA-co-tBMA] copolymers (Polymers of Series A, cf. Table 3.1, THF, $25^{\circ} \mathrm{C}$)

Figure 3.18 depicts the RI- and the $90^{\circ}-$ MALS-detector signals of the elution-diagram of P[nBMA-co-tBMA] copolymer V13 ($\mathrm{F}_{\mathrm{nBMA}}=0.52$). From the angle dependence of the scattered light intensity and the known $\mathrm{dn} / \mathrm{dc}$-value of $\mathrm{dn} / \mathrm{dc}=0.0774 \mathrm{ml} \cdot \mathrm{g}^{-1}$ (cf. Table 3.10) the absolute molecular weight of a fraction at a given elution volume can be derived, see Section 2.4. The calculated molecular weights are shown in Figure 3.18 (right axis). Since the RI-signal is proportional to the weight fraction of the eluted polymer, the complete molecular weight distribution (MWD) of the measured polymer can be obtained. Both detector signals were also monomodal without fronting and tailing. From these MWD the molecular weight
averages $\left(M_{n}, M_{w}, M_{z}\right)$ and the polydispersity indices M_{w} / M_{n}, and respectively M_{z} / M_{n} were calculated. The obtained values are detailed in Table 3.11 for Series A and in Table 3.12 for Series B.

Fig. 3.18.: SEC elution diagrams and molar masses of experiment V13 ($\mathrm{F}_{\mathrm{nBMA}}=0.52$); black curve - light scattering signal, grey curve - refractive index signal

Tab. 3.11.: SEC results of the different copolymer-compositions of Series A

Entry	$\mathrm{F}_{\mathrm{nBMA}}$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
V18	0.00	21420 ± 1071	28820 ± 288	32910 ± 658	1.345 ± 0.0673	1.536 ± 0.0768
V16	0.10	27580 ± 276	29660 ± 267	31640 ± 949	1.075 ± 0.0215	1.147 ± 0.0459
V14	0.14	23630 ± 473	28850 ± 288	35590 ± 4627	1.221 ± 0.0366	1.506 ± 0.1958
V12	0.20	19500 ± 195	19950 ± 200	20500 ± 820	1.023 ± 0.0205	1.051 ± 0.0315
V11	0.32	23510 ± 470	25390 ± 229	26700 ± 534	1.080 ± 0.0216	1.135 ± 0.0227
V13	0.52	25320 ± 253	26380 ± 211	27950 ± 559	1.042 ± 0.0104	1.104 ± 0.0331
V15	0.57	31990 ± 960	33520 ± 670	37210 ± 3349	1.048 ± 0.0419	1.163 ± 0.1047
V17	0.66	34520 ± 276	37420 ± 150	39570 ± 356	1.084 ± 0.0098	1.146 ± 0.0115
V19	1.00	25110 ± 201	26790 ± 187	30990 ± 620	1.067 ± 0.0107	1.234 ± 0.0270

Tab. 3.12.: SEC results of the different copolymer-compositions of Series B

| $\begin{array}{c}\text { Entry } \\ \mathrm{f}_{\mathrm{nBMA}}\end{array}$ | $\begin{array}{r}\text { time } \\ {[\mathrm{min}]}\end{array}$ | M_{n} |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$ | | |\(\left.] \begin{array}{c}\mathrm{M}_{\mathrm{w}}

{\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]}\end{array} \quad $$
\begin{array}{c}\mathrm{M}_{\mathrm{z}} \\
{\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]}\end{array}
$$\right]\)

Continuation on next page ...

Entry $\mathrm{f}_{\mathrm{nBMA}}$	time $[\mathrm{min}]$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
	120	28390 ± 57	28610 ± 57	28810 ± 115	1.008 ± 0.0060	1.015 ± 0.0051
	150	30020 ± 120	30490 ± 91	30920 ± 216	1.016 ± 0.0051	1.030 ± 0.0082
	180	31920 ± 128	33510 ± 168	35800 ± 358	1.050 ± 0.0063	1.121 ± 0.0112
V 27	60	18640 ± 112	19170 ± 115	16640 ± 166	1.028 ± 0.0082	1.054 ± 0.0105
0.8	90	25790 ± 129	26330 ± 132	26840 ± 268	1.021 ± 0.0072	1.040 ± 0.0104
	120	28770 ± 230	29530 ± 207	30620 ± 612	1.026 ± 0.0103	1.064 ± 0.0213
	150	30900 ± 124	31800 ± 159	33170 ± 332	1.029 ± 0.0072	1.073 ± 0.0107
	180	33230 ± 199	33960 ± 204	34890 ± 349	1.022 ± 0.0082	1.050 ± 0.0105
V 29	60	14180 ± 284	14380 ± 288	14610 ± 438	1.014 ± 0.0203	1.030 ± 0.0412
1.0	90	17660 ± 88	18490 ± 92	19420 ± 194	1.047 ± 0.0084	1.100 ± 0.0220
	120	20630 ± 413	21180 ± 635	22110 ± 1769	1.027 ± 0.0411	1.072 ± 0.0858
	150	21670 ± 217	22260 ± 200	22990 ± 459	1.027 ± 0.0103	1.061 ± 0.0212
	180	24380 ± 477	24670 ± 247	25080 ± 758	1.012 ± 0.0202	1.029 ± 0.0309

For experiment V23 the results of the absolute molar mass determinations are depicted in Figure 3.19a. The molar mass grew linear at the beginning up to 45 min and reached $17920 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ after 60 min , but with times the growth curve attended and at the end the molar mass was $31080 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. Hence, the growth of the molar mass followed a bounded growth $\mathrm{M} \approx \mathrm{M}_{\infty}\left(1-\mathrm{e}^{-\mathrm{kt}}\right)$. Figure $3.19 b$ shows the linear dependence of the molar mass M_{n} of the samples to the conversion p. In Section 3.3.1 it was shown that $t \rightarrow 0:-\ln (1-p)=k_{1} \cdot t$ applied to the reaction kinetic and in this section it was displayed that $t \rightarrow \infty: M=k_{2} \cdot p$ applied to the molar mass progress. These rules were valid for controlled reactions without termination reactions.

The measured molar masses were all lower than the relative peak masses. For experiment V23 the values are compared in Table 3.13.

Tab. 3.13.: Comparison of relative* and absolute molar masses of experiment V23 ($\mathrm{f}_{\text {nBMA }}=0.66$)

time $[\mathrm{min}]$	V_{E} $[\mathrm{ml}]$	relative M * $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	absolute M $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\Delta \mathrm{M}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$[\%]$
60	27.42	20860	17920	2940	16.41
90	27.05	25190	22960	2230	9.71
120	26.83	28200	25480	2720	10.68
150	26.67	30640	28430	2210	7.77
180	26.49	33450	31080	2370	7.63

[^3]
b)

Fig. 3.19.: a) Polydispersities M_{w} / M_{n} and molar masses M_{n} of batch copolymer V23 ($f_{n B M A}=0.66$) against time t; polydispersity M_{w} / M_{n}, molar mass $M_{n} ; b$) molar masses M_{n} of batch copolymer V23 ($\mathrm{f}_{\text {nBMA }}=0.66$) against conversion p

The difference between the relative and the absolute molar masses originated from the form of the RI-peak. Only at with a perfect distribution the molar masses of the peak maximum and the number average molecular weight would be the same. Any kind of termination reactions would lead to front- or back-tailing at the RI-peak and so to differences between the relative and the total molar mass. Fronting appears when a polymerization is terminated by a combination reaction and tailing by disproportionation. [79, 88] That the values of relative and absolute molar masses of the samples from batch copolymer V23 approached over the reaction time showed that there was a good control over the ATRP.

Figure 3.20 shows the dependence of M_{n} and PDI on the copolymer composition. The molecular weight (M_{n}) was fairly independent of the used copolymer composition ($\mathrm{M}_{\mathrm{n}} \approx$ $28500 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$), although the masses scattered considerably. The polydispersity of the samples was low ($\mathrm{PDI}=1.02 \ldots 1.08$) and also independent of the copolymer composition. As with the results of the elementary analysis it was shown that the monomer composition of the reaction had no influence on the resulting copolymer.

Fig. 3.20.: Polydispersities $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ and molar masses M_{n} of Series A; $\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]-$ copolymers - polydispersity $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$, molar mass M_{n}, dashed line - average molar mass

3.3.4. Thermal Behavior

The next kind of analysis was the differential scanning calorimetry. Here the thermal behavior of the copolymers was anlaysed mainly to determine the dependence of the glass transition
temperature T_{g} on the copolymer composition. All samples of Series A were measured with the following temperature program:

- precooling: RT to $-50^{\circ} \mathrm{C}$
- standby for 20 min
- 1. heating: -50 to $200^{\circ} \mathrm{C}$
- 1. cooling: 200 to $-50^{\circ} \mathrm{C}$
- 2. heating: -50 to $200^{\circ} \mathrm{C}$
- postcooling: $200^{\circ} \mathrm{C}$ to RT

Fig. 3.21.: DSC thermogram of experiment $\mathrm{V} 14\left(\mathrm{~F}_{\mathrm{nBMA}}=0.14\right)$; a - first heating run, $\mathrm{b}-$ first cooling run, c - second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

The samples of Series B were measured between -80 to $150^{\circ} \mathrm{C}$ but with the same procedure because the analysis of Series A showed that it was not required to heat up to $200^{\circ} \mathrm{C}$. In Figure 3.21 the thermogram of experiment V14 with both heating runs and the cooling run is depicted as an example.

Because the copolymers were completely amorphous, no melting or crystallization was observed. In the vicinity of T_{g} the measured heat flow exhibited a characteristic step, caused by the change of the materials heat capacity ($\Delta \mathrm{c}_{\mathrm{p}}$) upon softening from the solid glass into the liquid melt. [89] A schematic depiction of a theoretical DSC thermogram in the vicinity of
a glass transition is given in Figure 3.22. For the analysis of such a glass transition step the linear part of the DSC-signal before and after the step are extrapolated, see Figure 3.22 lines a and b , and a tangent is applied trough the glass transition step, see Figure 3.22 line c. The intersection between lines a and c is the starting point of the glass transition, $\mathrm{T}_{\text {onset }}$, and the intersection between lines b and c the end point, $\mathrm{T}_{\text {offset }}$. The point of inflection in this area was set as glass transition temperature T_{g}. The temperature range of the glass transition, the range between $T_{\text {offset }}$ and $T_{\text {onset }}$, was defined as glass transition temperature range ΔT. (Note that the temperature at the point of inflection and the midpoint temperature ($\mathrm{T}_{\text {midpt }}$) can, but do not necessarily, coincide.)

Fig. 3.22.: Scheme of a theoretical DSC thermogram in the vicinity of a glass transition

The first heating run showed a single glass transition overlaid by a relaxation peak in the range from 60 to $100^{\circ} \mathrm{C}$. To avoid effects of the sample thermal history only the second heating run was analyzed. With the analysis software of the DSC $\mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$ of the glass transition region were determined and then the other values $T_{g}, \Delta T=T_{\text {offset }}-T_{\text {onset }}$ and Δc_{p} were calculated. [89] Also the midpoint of the glass transition region $\mathrm{T}_{\text {midpt }}$ were computed but these values was not used further. All second heating runs from the copolymers of Series A and all the samples of Series B which were taken during the batch copolymerization were analyzed that way. The second heating runs of the samples of V26 as an example for Series B are depicted in Figure 3.23. $\mathrm{T}_{\mathrm{g}}, \mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$ as bounds of the glass area are marked there. The second heating runs of the batch copolymers of Series A are collated in Figure 3.25 also with marked $\mathrm{T}_{\mathrm{g}}, \mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$. All the DSC results of the batch copolymerizations of Series A are summarized in Table 3.14 and the one of Series B in Table 3.15.

Fig. 3.23.: DSC thermograms of samples taken during the batch copolymerization V26 ($\mathrm{f}_{\mathrm{nBMA}}=$ 0.20) with marked glass transition temperature range $\Delta \mathrm{T}$ and temperature T_{g} (second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1} ; \mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-120 \mathrm{~min}, \mathrm{D}-150 \mathrm{~min}$, $\mathrm{E}-180 \mathrm{~min}$ of polymerization time)

Fig. 3.24.: Glass transition temperature T_{g} and temperature range $\Delta \mathrm{T}$ of the samples taken during the batch copolymerization V26 $\left(\mathrm{f}_{\mathrm{n} B M A}=0.20\right)$; glass transition temperature T_{g}, glass transition temperature range $\Delta \mathrm{T}$

Tab. 3.14.: DSC results of the different copolymer compositions of Series A

Entry	$\mathrm{F}_{\text {nBMA }}$	$\mathrm{T}_{\mathrm{g}}^{\mathrm{F}}{ }^{a}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {midpt }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{g} $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{c}_{\mathrm{p}}$ $\left[\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}\right]$
V 18	0.00	107.0^{b}	96.0	103.0	107.5	111.0	15.0	0.223
V 16	0.10	96.0	83.5	91.0	90.0	97.5	14.0	0.260
V 14	0.14	92.0	75.0	82.5	83.0	89.5	14.5	0.234
V 12	0.20	85.5	67.0	76.5	77.5	85.5	18.5	0.226
V 11	0.32	74.0	55.5	64.5	63.0	72.0	16.5	0.249
V 13	0.52	56.0	38.0	50.5	48.0	59.5	21.5	0.199
V 15	0.57	52.0	38.0	48.0	48.0	55.5	17.5	0.223
V 17	0.66	44.5	36.0	46.0	44.0	54.0	18.0	0.243
V 19	1.00	20.0^{c}	16.5	29.0	27.5	38.0	21.5	0.230

${ }^{a}$ calculated with Fox-Equation 3.3.25; from Literature ${ }^{b}$ [90] and ${ }^{c}$ [91]

Tab. 3.15.: DSC results of the different copolymer compositions of Series B

Entry $\mathrm{F}_{\text {nBMA }}$	time $[\mathrm{min}]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {midpt }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{g} $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{c}_{\mathrm{p}}$ $\left[\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}\right]$
V 28	60	54.0	71.0	71.5	97.0	43.0	0.200
0.0	90	64.5	74.0	76.5	85.0	20.5	0.177
	120	66.0	75.0	73.5	83.5	17.0	0.167
	150	70.5	78.0	77.0	84.0	13.5	0.181
	180	73.5	82.5	81.5	91.0	18.0	0.202
V 26	60	71.5	85.0	85.0	98.5	27.0	0.321
0.2	90	71.5	85.5	87.5	101.0	29.5	0.437
	120	74.0	86.0	83.0	96.0	21.5	0.238
	150	76.0	86.2	88.9	95.2	19.2	0.226
	180	74.8	87.0	84.5	98.3	23.5	0.267
V 24	60	40.0	51.5	51.0	61.0	21.0	0.204
0.25	90	70.5	80.5	80.5	89.5	19.5	0.245
	120	65.0	77.5	77.0	89.5	25.0	0.308
	150	65.0	74.5	75.5	83.0	18.0	0.240
	180	70.0	77.0	76.0	82.5	12.5	0.185
V 22	60	41.5	52.5	54.0	61.5	20.0	0.239
0.33	90	39.0	51.0	47.0	59.5	20.5	0.218
	120	52.5	61.0	60.5	69.5	17.0	0.238
	150	53.0	62.0	65.0	70.0	17.0	0.224
	180	52.4	64.0	64.5	76.5	24.0	0.182

Continuation on next page ...

Entry $\mathrm{F}_{\text {nBMA }}$	time $[\mathrm{min}]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {midpt }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{g} $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{c}_{\mathrm{p}}$ $\left[\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}\right]$
V 21	60	46.0	57.0	58.5	70.0	24.0	0.209
0.5	90	34.0	44.5	41.5	52.5	18.5	0.187
	120	49.5	55.5	57.5	61.0	11.5	0.186
	150	43.0	53.5	48.5	61.5	18.5	0.204
	180	44.5	55.2	54.0	72.0	27.5	0.181
V 23	60	45.5	53.0	55.5	59.5	14.0	0.250
0.66	90	41.0	51.5	53.5	63.0	22.0	0.240
	120	44.0	51.5	51.0	59.0	15.0	0.245
	150	42.5	49.5	49.5	55.5	13.0	0.218
	180	43.0	50.5	54.5	58.0	15.0	0.218
V 25	60	33.5	45.0	45.5	54.5	21.0	0.248
0.75	90	33.0	42.5	44.5	50.5	17.5	0.224
	120	36.5	43.5	44.5	50.0	13.5	0.197
	150	34.5	44.5	41.5	52.5	18.0	0.234
	180	26.5	39.5	39.5	50.5	24.0	0.229
V 27	60	20.5	37.0	37.0	52.0	31.5	0.232
0.8	90	32.5	40.5	42.5	47.5	15.0	0.227
	120	18.0	37.5	32.5	56.0	37.5	0.186
	150	20.0	35.0	33.0	49.0	28.5	0.191
	180	27.5	36.5	39.0	43.0	15.5	0.193
V 29	60	54.0	71.0	71.5	97.0	43.0	0.200
1.0	90	64.5	74.0	76.5	85.0	20.6	0.177
	120	66.0	75.0	73.5	83.5	17.0	0.167
	150	70.5	78.0	77.0	84.0	13.5	0.181
180	73.5	82.5	81.5	91.0	18.0	0.202	

The second heating runs of the samples that were taken during the batch copolymerization of experiment V26, see Figure 3.23, did no vary significantly. So the glass transition temperature and the glass transition range did not change with the growing of the molar mass. Figure 3.24 depicts T_{g} and $\Delta \mathrm{T}$ against the polymerization time. The T_{g} staid constant over the whole polymerization and $\Delta \mathrm{T}$ decreased slightly. Therefore the growth of the molar mass had no influence on the glass transition temperature and range. That was the same for all compositions of Series B.

Fig. 3.25.: DSC thermograms of copolymers $\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ Series A with marked glass transition temperature range $\Delta \mathrm{T}$ and temperature T_{g}; second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1} ; \mathrm{A}-\mathrm{F}_{\mathrm{nBMA}}=0.00, \mathrm{~B}-\mathrm{F}_{\mathrm{nBMA}}=0.10, \mathrm{C}-\mathrm{F}_{\mathrm{nBMA}}=0.14, \mathrm{D}-\mathrm{F}_{\mathrm{nBMA}}=0.20$, $\mathrm{E}-\mathrm{F}_{\mathrm{nBMA}}=0.32, \mathrm{~F}-\mathrm{F}_{\mathrm{nBMA}}=0.52, \mathrm{G}-\mathrm{F}_{\mathrm{nBMA}}=0.57, \mathrm{H}-\mathrm{F}_{\mathrm{nBMA}}=0.66, \mathrm{I}-$ $\mathrm{F}_{\mathrm{nBMA}}=1.00$

Fig. 3.26.: Glass transition temperature T_{g} and temperature range $\Delta \mathrm{T}$ of copolymers $\mathrm{P}[\mathrm{nBMA}-$ co-tBMA] Series $A ;$ glass transition temperature $\mathrm{T}_{\mathrm{g}}, \bigcirc$ glass transition temperature range $\Delta \mathrm{T}$

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

Figure 3.25 shows that there is a strong dependence of the glass transition temperature on the composition of the copolymer. T_{g} decreased systematically from $107.5^{\circ} \mathrm{C}$ for PtBMA to $27.5^{\circ} \mathrm{C}$ for PnBMA. The change of $\Delta \mathrm{T}$ was not so obviously. The two values are also depicted in Figure 3.26 against the copolymer composition to point out the trends more explicitly. The dependence of T_{g} on the copolymer composition was not linear over all compositions. Between $\mathrm{F}_{\mathrm{nBMA}}=0.00$ and $0.32 \mathrm{~T}_{\mathrm{g}}$ fell linear with the rise of nBMA in the polymer chain. Then the curves became flatter. The equation of the fit is given in Equation 3.3.23. $\Delta \mathrm{T}$ increased unsteady from 15 to $30^{\circ} \mathrm{C}$. Even here the fit is given in Equation 3.3.24.

$$
\begin{align*}
& \mathrm{T}_{\mathrm{g}}=(17.018 \pm 4.757)^{\circ} \mathrm{C}+(89.206 \pm 4.245)^{\circ} \mathrm{C} \cdot \mathrm{e}^{(-1.972 \pm 0.224)^{\circ} \mathrm{C} \cdot \mathrm{~F}_{\mathrm{nBMA}}} \tag{3.3.23}\\
& \Delta \mathrm{~T}=(14.772 \pm 0.973)^{\circ} \mathrm{C}+(6.853 \pm 1.966)^{\circ} \mathrm{C} \cdot \mathrm{~F}_{\mathrm{nBMA}} \tag{3.3.24}
\end{align*}
$$

The T_{g}-values of the homopolymers fitted good with literature. For PtBMA the literature [90] cited $107^{\circ} \mathrm{C}$ which was equal to the measurements here and for PnBMA [91] $20^{\circ} \mathrm{C}$ was named which was slightly higher than the value here $\left(27.5^{\circ} \mathrm{C}\right)$ but it lay in the determined glass transition region. The theoretical glass transition temperature of a copolymer can be calculated by the Fox-Equation (cf. Equation 3.3.25). [19]

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\frac{\mathrm{F}_{\mathrm{nBMA}}}{\mathrm{~T}_{\mathrm{g}, \text { PnBMA }}}+\frac{1-\mathrm{F}_{\mathrm{nBMA}}}{\mathrm{~T}_{\mathrm{g}, \text { PtBMA }}} \tag{3.3.25}
\end{equation*}
$$

The theoretical values of T_{g} of the different batch copolymers are listed in Table 3.14. All measured T_{g} of the copolymers were just slightly lower than the calculated ones from the Fox-Equation 3.3.25. So this equation is a good possibility to evaluate the glass transition temperature of the gradient copolymers.

Figure 3.27 shows the plot of the reciprocal of the glass transition temperature T_{g} of the copolymer of Series A against the copolymer composition. There the $1 / \mathrm{T}_{\mathrm{g}}$ values rose nearly linear with the amount of nBMA in the copolymer. The fit is given in Equation 3.3.26.

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\left(0.0027 \pm 2.614 \cdot 10^{-5}\right) \mathrm{K}^{-1}+\left(6.839 \cdot 10^{-4} \pm 5.283 \cdot 10^{-5}\right) \mathrm{K}^{-1} \cdot \mathrm{~F}_{\mathrm{nBMA}} \tag{3.3.26}
\end{equation*}
$$

with $\mathrm{T}_{\mathrm{g} 1}=\mathrm{T}_{\mathrm{g}}$ of PtBMA and $\mathrm{T}_{\mathrm{g} 2}=\mathrm{T}_{\mathrm{g}}$ of PnBMA

The Fox-Equation (Equation 3.3.25) was converted into Equation 3.3.27 and then the values of intersection and slope of Equation 3.3.26 were introduced into the equation. Therewith the values of $\mathrm{T}_{\mathrm{g}}(\mathrm{PtBMA})$ and $\mathrm{T}_{\mathrm{g}}(\mathrm{PBzMA})$ were calculated.

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\frac{1}{\mathrm{~T}_{\mathrm{g} 1}}+\frac{\mathrm{T}_{\mathrm{g} 1}-\mathrm{T}_{\mathrm{g} 2}}{\mathrm{~T}_{\mathrm{g} 1} \cdot \mathrm{~T}_{\mathrm{g} 2}} \cdot \mathrm{~F}_{\mathrm{nBMA}} \tag{3.3.27}
\end{equation*}
$$

Fig. 3.27.: Reciprocal glass transition temperature T_{g} of Series A against copolymer composition

This linear relation between the glass transition temperature and the composition of the copolymer corresponded with the Fox-Equation. The solution of Equation 3.3.27 with the values of Equation 3.3.26 were the T_{g} of the homopolymers and gave $97.2^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{g} 1}$ which is a deviation of 9.6% from the measured T_{g} and 9.1% from the literature values of PtBMA and $22.4^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{g} 2}$ which is a deviation of 18.7% from the measured T_{g} and 11.9% from the literature values of PnBMA. Especially the value for $\mathrm{T}_{\mathrm{g} 2}$ of nBMA was obviously lower than the measured value. The difference to the literature values was not so high. For tBMA the calculated value was smaller than the measured one and the one from literature. With a difference of 10% the calculated values from the fitting were tolerable. The determination of the glass transition temperatures of the homopolymers with the reciprocal glass transition temperature of the copolymers lead to sufficient results.

3.4. Summary

The copolymerization rates were measured with seven mixtures of nBMA and tBMA to determine the copolymerization rate constants as well as the instantaneous copolymer compositions of the $\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ copolymers during ATRP reactions as a function of the comonomer composition. The copolymerization parameters were measured $\left(r_{n B M A}=0.475\right.$, $\left.r_{\text {nBMA }}=0.886\right)$. The kinetic studies revealed the occurrence of a well controlled polymerization reaction free of side reactions. The compositions of the resulting copolymers were anlaysed with elementary analysis and infra red spectroscopy. The elementary analysis showed that a

Chapter 3. Synthesis of Statistic Copolymers from n- and tert-Butyl Methacrylate by means of Batch Polymerization

change in the monomer mixture had no influence on the polymerization. The different amount of n-butyl- and tert-butyl-groups inside the polymer chain could be represented in the IRspectra qualitatively. The quantitative analysis of the IR-spectra resulted in a calibration curve for the copolymer composition out of the peak height of two specific bands. SEC studies supported the findings of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy-analysis by revealing narrow MWD without multimodalities or indications of termination reactions. The molecular weights were proportional to the monomer conversion, also indicating a high degree of control. The dn/dc values showed no direct relationship between the refractive index increment and the composition of the copolymer. DSC studies showed the glass transition temperatures depended on the copolymer composition and is well described by the Fox-Equation. During the batch polymerization the glass transition temperature did not change. The glass transition range is slightly independent on the conversion of the batch copolymerization and the copolymer composition.

4. Hydrolysis of Statistical Copolymers from \mathbf{n} - and tert-Butyl Methacrylate

The aim of this thesis is to prepare a functional amphiphilic gradient copolymers. For that reason the tert-butyl group of $\mathrm{P}[\mathrm{tBMA}-$ grad-nBMA] must be converted into a $\mathrm{COOH}-\mathrm{group}$ via hydrolysis. In this chapter a statistical copolymer from nBMA and tBMA (P[nBMA-cotBMA], cf. Chapter 3) was used as model compound to find an efficient hydrolysis procedure.

The tert-butyl group is a classical protections group of OH-groups in organic chemistry. [92] The standard method for the removal of a tert-butyl group is acid catalyzed hydrolysis. Especially the use of trifluoroacetic acid is well described in literature. [93] Also in polymer chemistry this cleavage reaction is often used to remove ester groups. Since (meth)acrylic acid can not be polymerized with ATRP [16], the indirect way using tert-butyl ester monomers is frequency applied. [94, 95, 96] Another acid that can be used as a cleavage catalyst is methanesulfonic acid. This acid is more often used in bio-organic chemistry for the hydrolysis of proteins [97, 98, 99] but is also known in polymer chemistry [100, 101]. A different way to convert the tert-butyl-ester-group to a carboxylic acid group is a hydrolysis under neutral conditions with trimethylsilyl iodide. This method was introduced because the reaction conditions are milder and it is also possible to work with acid sensitive educts. [102, 103, 104, 105]

4.1. Materials and Methods

4.1.1. Materials

In all hydrolysis experiments the same batch copolymer $-\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ with $\mathrm{F}_{\mathrm{nBMA}}=$ 0.32 (experiment V11, Chapter 3, Table 3.1) - was used as substrate. The three hydrolysis reagents trifluoroacetic acid (TFA, 99%, Alfa Aesar), methanesulfonic acid (MSA, $\leq 99.5 \%$, Aldrich) and trimethylsilyl iodide (TMSI, 97%, Alfa Aesar, stabilized with copper) were used as received. The same applied to the used solvents chloroform (99.9\%, Acros, extra dry over molecular sieve, stabilized), THF (chromasolv, Aldrich) and n-pentane (Aldrich).

4.1.2. Hydrolysis with Trifluoroacetic Acid

$\mathbf{P}\left[\right.$ nBMA-co-MAA]; V41: 0.2 g of the copolymer V11 were dissolved in 1.0 ml of CHCl_{3} by stirring over night at room temperature. Then 0.37 ml trifluoroacetic acid (TFA) were
added. The mixture was stirred for 22 hours at room temperature. After that the flask was opened and the mixture was diluted with 5 ml THF. Subsequently the solution was dropped in 200 ml of icecold pentane. The precipitated polymer was filtered over a P4 glass filter and dried at room temperature in an oil pump vacuum over night.
${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R}$: $0.65-1.25 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{nBMA}]$); 1.3-1.45ppm (broad peak, $\left.-\mathrm{CH}_{2}-, \mathrm{P}[\mathrm{nBMA}]\right) ; 1.5-1.61 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{2}-, \mathrm{P}[\mathrm{nBMA}]\right) ; 1.62-2.05 \mathrm{ppm}$ (broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{nBMA}], \mathrm{P}[\mathrm{MAA}]\right) ; 2.09 \mathrm{ppm}$ (acetone); $3.33 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3.8-4.0 \mathrm{ppm}$ (broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]\right) ; 12.1-12.5 \mathrm{ppm}($ broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{:} \mathbf{6 1 . 8 3} \% \mathrm{C}, 8.69 \% \mathrm{H},\left(29.48 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3600-2350 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3050-2350 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }_{-} \mathrm{CH}_{3}\right) ; 1725 \mathrm{~cm}^{-1}$ $(-\mathrm{C}=\mathrm{O}) ; 1698 \mathrm{~cm}^{-1} ; 1466 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }_{-} \mathrm{CH}_{3}\right) ; 1388 \mathrm{~cm}^{-1} ; 1256 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1156 \mathrm{~cm}^{-1}$
$(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1065 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1019 \mathrm{~cm}^{-1} ; 997 \mathrm{~cm}^{-1} ; 963 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 944 \mathrm{~cm}^{-1} ; 844 \mathrm{~cm}^{-1}$; $750 \mathrm{~cm}^{-1} ; 520 \mathrm{~cm}^{-1}$

4.1.3. Hydrolysis with Methanesulfonic Acid

P[nBMA-co-MAA]; V51: 0.2 g of the copolymer V11 were dissolved in $1.8 \mathrm{~g}(1.2 \mathrm{ml})$ CHCl_{3} was stirred over night at room temperature. Subsequently 0.12 ml of methanesulfonic acid (MSA) were added and the mixture was stirred for 2 hours at room temperature. One spatula-spoon of sodium hydrogen carbonate was added, the mixture was stirred for 30 minutes. 5 ml THF were added, the mixture was filtered over a P4 glass filter and the solution was dropped into 200 ml of icecold pentane. The precipitated polymer was filtered over a P4 glass filter and dried at room temperature for two hours. The copolymer was re-dissolved in 1 ml THF and the solution was dropped into 200 ml of ice cooled water:methanol $=1: 1$ vol:vol mixture. The precipitated polymer was filtered over a P4 glass filter and dried at room temperature under oil pump vacuum over night.
${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R} \boldsymbol{R}: 0.65-1.25 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{nBMA}]\right) ; 1.3-1.45 \mathrm{ppm}\left(\right.$ broad peak, $-\mathrm{CH}_{2}-$, $\mathrm{P}[\mathrm{nBMA}]) ; 1.5-1.61 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{2}-\mathrm{P}[\mathrm{nBMA}]\right) ; 1.62-2.05 \mathrm{ppm}\left(\right.$ broad peak, $-\mathrm{CH}_{3}$, $\mathrm{P}[\mathrm{nBMA}], \mathrm{P}[\mathrm{MAA}]) ; 3.33 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3.8-4.0 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]\right) ; 12.1-$ $12.5 \mathrm{ppm}($ broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{:} 61.75 \% \mathrm{C}, 8.36 \% \mathrm{H},\left(29.89 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3600-2350 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3050-2350 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1723 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1456 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1367 \mathrm{~cm}^{-1} ; 1247 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1142 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1064 \mathrm{~cm}^{-1}$ $(\mathrm{nBu}) ; 965 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 943 \mathrm{~cm}^{-1} ; 847 \mathrm{~cm}^{-1} ; 802 \mathrm{~cm}^{-1} ; 749 \mathrm{~cm}^{-1} ; 697 \mathrm{~cm}^{-1} ; 516 \mathrm{~cm}^{-1} ; 468 \mathrm{~cm}^{-1}$

4.1.4. Hydrolysis with Trimethylsilyl Iodide

P[nBMA-co-MAA]; V61: A 25 ml Schlenk flask was heated out with a hot gun, set to a temperature of $400^{\circ} \mathrm{C}$, under vacuum for five minutes and then flushed with nitrogen. 0.2 g of the copolymer were dissolved in $2 \mathrm{ml} \mathrm{CHCl}_{3}$ in the flask under nitrogen counter-stream. After three freeze-melt- cycles the flask was filled with nitrogen and the solution was stirred over night at room temperature. 0.26 ml of trimethylsilyl iodide (TMSI) were added and the mixture was stirred for one hour at room temperature. Subsequently the flask was opened, the mixture was diluted with 5 ml THF and the solution was dropped into 50 ml icecold water. The polymer-water mixture was stirred over night at room temperature. The precipitated polymer was filtered over a P4 glass filter and was dried under vacuum over night at RT. The crude polymer was mixed with 1 ml THF and the solution was dropped slowly into 200 ml of ice cooled water:methanol $=1: 1$ vol:vol mixture and stirred for 2 hours. The precipitated polymer was filtered over a P4 glass filter and dried under vacuum for one hour at room temperature. This step was repeated for three times. The final product was dried in an oil pump vacuum at room temperature over night.
> ${ }^{1} \boldsymbol{H}-\boldsymbol{N M R} \boldsymbol{R}: 0.65-1.25 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{nBMA}]\right) ; 1.3-1.45 \mathrm{ppm}\left(\right.$ broad peak, $-\mathrm{CH}_{2}-$, P[nBMA]); 1.5-1.61 ppm (broad peak, $-\mathrm{CH}_{2}-$, $\left.\mathrm{P}[\mathrm{nBMA}]\right) ; 1.62-2.05 \mathrm{ppm}\left(\right.$ broad peak, $-\mathrm{CH}_{3}$, $\mathrm{P}[\mathrm{nBMA}], \mathrm{P}[\mathrm{MAA}]) ; 3.33 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3.8-4.0 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]\right) ; 12.1-$ $12.5 \mathrm{ppm}($ broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$

$\boldsymbol{E A} \boldsymbol{A} \boldsymbol{6 1 . 8 3} \% \mathrm{C}, 8.66 \% \mathrm{H},\left(29.77 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3600-2350 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3050-2350 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1723 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1698 \mathrm{~cm}^{-1} ; 1466 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }^{-} \mathrm{CH}_{3}\right) ; 1388 \mathrm{~cm}^{-1} ; 1246 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1154 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-)$; $1064 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1049 \mathrm{~cm}^{-1} ; 963 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 943 \mathrm{~cm}^{-1} ; 843 \mathrm{~cm}^{-1} ; 749 \mathrm{~cm}^{-1} ; 632 \mathrm{~cm}^{-1} ; 519 \mathrm{~cm}^{-1}$

4.1.5. Characterization

All characterization-methods were the same as with the batch copolymers of Chapter 3. The used methods were:

- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy
- elementary analysis
- ATR-FTIR-spectroscopy
- size exclusion chromatography
- differential scanning calorimetry

The same instruments under the same conditions were used for the investigation of the resulting copolymers.

X-ray Fluorescence Spectroscopy

The XRF-measurement was performed with a PANalytival Axios spectrometer. The interpretation of the data was done with the device software SuperQ 5.0. The sample-pan was lined with a polypropylene film. The measurement was done under helium as protection gas.

Microscopy

The optical micrographes were taken with a with a Zeiss "Axio Imager.A1m" microscop and a Zeiss 10x/0.25 Pol objective in bright-field transmission mode. The sample was heated up on a Mettler Toledo FP82 HT Hot Stage controlled with a FP90 Central Processor. The sample was heated up from RT to $60^{\circ} \mathrm{C}$ within 5 min and then the temperature was kept for 2 min . Subsequently the samples were heated up to $300^{\circ} \mathrm{C}$ with $5^{\circ} \mathrm{C}$ per minute. After $300^{\circ} \mathrm{C}$ were reached the heating table was deactivated the sample was allowed to cool down to RT.

4.2. Results and Discussion

The classical acid catalyzed ester hydrolysis reaction is well known. The reaction scheme of it is depicted in Figure 4.1.

Fig. 4.1.: Reaction scheme of the acid catalyzed ester hydrolysis

The hydrolysis under neutral conditions with TMSI is a two step reaction. In a first step the tert-butyl group is replaced by a trimethylsilyl-group (TMS) that can be hydrolyzed in the presence of $\mathrm{H}_{2} \mathrm{O}$. The scheme of this is depicted in Figure 4.2.

Fig. 4.2.: Reaction scheme of tert-butyl ester cleavage in the presence of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}-\mathrm{I}$

In this section the observations made with the hydrolysis reactions are described. The three experiments were outlined as Series D. The reaction procedure with the observations is given and also the analysis of the hydrolysis products and their discussion. Two of the reactions were acidic hydrolysis, one with TFA (V41) and another with MSA (V51) as reagent. The third cleavage reaction used TMSI (V61) as reagent, so under neutral conditions. In Table 4.1 an overview on the three different hydrolysis reactions with conditions and yields is listed.

Tab. 4.1.: Hydrolysis experiments on $\mathrm{P}\left[\mathrm{nBMA}_{0.32}\right.$-co-tBMA $\left.{ }_{0.68}\right]$

| Educt | Product | Reagent | Conditions | yield | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | $[\mathrm{g}]$ | $[\%]$ |
| V11 | V41 | TFA | $\mathrm{RT} ; 1.0 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 22 \mathrm{~h}$ | 0.14 | 93.3 |
| V11 | V51 | MSA | $\mathrm{RT} ; 1.2 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 2 \mathrm{~h}$ | 0.12 | 80.0 |
| V11 | V61 | TMSI | $\mathrm{RT} ; 2.0 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 1 \mathrm{~h}$ | 0.12 | 80.0 |

Prior to the synthesis the required amount of hydrolysis reagent was calculated by means of Equation 4.2.1. The designations of the different variables and their values are given in Table 4.2 together with the resulting volumes of the different entries.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{HR}}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{x} \cdot \mathrm{M}_{\mathrm{HR}}}{\mathrm{M}_{\mathrm{tBMA}} \cdot \delta_{\mathrm{HR}}} \tag{4.2.1}
\end{equation*}
$$

Tab. 4.2.: Variables and values of Equation 4.2.1

Variable	Unity	Designation	V11	TFA	MSA	TMSI
m		mass polymer	0.2			
$\mathrm{~F}_{\text {tBMA }}$		molar fraction of tBMA	0.68			
$\mathrm{M}_{\mathrm{tBMA}}$	$\mathrm{g} \cdot \mathrm{mol}^{-1}$	molar mass tBMA	142.2			
x		multiplicity factor HR		5	2	2
M_{HR}	$\mathrm{g} \cdot \mathrm{mol}^{-1}$	molar mass HR		114.02	96.11	200.09
$\delta_{\text {HR }}$	$\mathrm{g} \cdot \mathrm{ml}^{-1}$	density HR	1.48	1.48	1.47	
$\mathrm{~V}_{\mathrm{HR}}$	ml	Volume HR	0.37	0.12	0.26	

HR = hydrolysis reagent: TFA, MSA, TMSI

The polymer samples were stirred over night in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to ensure the complete dissolution of the polymer. The first tested hydrolysis reagent was trifluoroacetic acid (cf. experiment V41, Table 4.1). After the addition of the TFA the mixture had to be stirred for 22 hours to obtain total conversion. The mixture appearance changed from colorless to light brown, simultaneously the batch became viscous over night. It was not necessary to remove the byproduct (2-methyl-1-propene) separately because it evaporated while stirring at room temperature due to its low bowling point of $-6.9^{\circ} \mathrm{C}$. [106] After cleaning and drying the product V41 was a white powder.

The next reagent was methanesulfonic acid (cf. experiment V51, Table 4.1). The reaction was much faster than the hydrolysis with TFA. For total conversion only 2 hours were needed. Some minutes after the addition of MSA the mixture became a light brown gel. During the second hour the gel liquefied again. The synthesis instruction included the neutralization of the excess of acid after the reaction time. [101] The obtained solution was more easier to handle for purification. However, due to the presence of the neutralization, a second precipitationstep in a water:methanol mixture was necessary to obtain a salt-free polymer. Also the product V51 was a white powder after purification.

The last tested reagent was trimethylsilyl iodide (cf. experiment V61, Table 4.1). The reaction was much faster than the previous one. After the addition of the TMSI the mixture got dark brown because the reagent released iodine. The removal of the byproducts 2 -iodo- $2-$ methylpropane and $1,1,1,3,3,3-$ hexamethyldisiloxane was much more time consuming. Both have a boiling point around $100^{\circ} \mathrm{C}[106]$ and so had to be washed out. After the first precipi-
tation of the polymer in water the polymer was dark brown. The precipitation was repeated for three times in water and methanol. With every precipitation the color of the product became more bright until it was also a white powder, finally.

The expected yield for total conversion was calculated according to Equation 4.2.2.

$$
\begin{equation*}
\mathrm{y}_{\text {theo }}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{M}_{\mathrm{MAA}}}{\mathrm{M}_{\mathrm{tBMA}}}+\mathrm{m} \cdot\left(1-\mathrm{F}_{\mathrm{tBMA}}\right) \tag{4.2.2}
\end{equation*}
$$

with $y_{\text {theo }}$ - theoretical yield, m - mass of the polymer, $\mathrm{F}_{\mathrm{tBMA}}$ - ratio of tBMA in the polymer $=0.68, \mathrm{M}_{\mathrm{MAA}}-$ molar mass of MAA $=86.09 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{tBMA}}-$ molar mass of $\mathrm{tBMA}=142.2$ $\mathrm{g} \cdot \mathrm{mol}^{-1}$

At complete conversion a total yield of 0.15 g of the methacrylic acid copolymer should be obtained. The results for the three synthesis are given in Table 4.1. The highest yield gave experiment V41 with 93.3% while the two other methods resulted in about 80%. All yields were in an acceptable range.

The neutralization of the excess MSA with sodium hydrogen carbonate can lead to an exchange of the OH -groups to the respective sodium-salt. A sample of the hydrolysis-product of V51 was analyzed with XRF-spectroscopy to determine the amount of sodium inside the sample. Based on the fact that no sodium was found in the sample, any loss of OH -groups due to neutralization can be excluded.

Because of the change from tert-butyl-groups to OH-groups along the copolymer chain the solubility of the polymers should have changed. This was tested before the structural analysis of the products was done. The educt was well soluble in aprotic solvents like chloroform, acetone and THF but not in protic solvents like water and methanol. The products could be solved in DMSO and methanol, however, not in chloroform, acetone and THF. After some hours of stirring the respective polymer/ solvent mixture were still opaque. In water the hydrolysis products were also not soluble. The solubilities of the educt and the products are listed in Table 4.3. The change of the solubility from educt to product was characteristic for the change of the functional groups along the polymer chain.

Tab. 4.3.: Table of solubility of educt V11 and hydrolysis products Series D

Entry	$\mathrm{H}_{2} \mathrm{O}$	MeOH	DMSO	Acetone	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	THF
V11	-	-	n.m. ${ }^{*}$	+	+	+
V41	-	\pm	+	-	-	-
V51	-	\pm	+	-	-	-
V61	-	\pm	+	-	-	-

[^4]With the results from the solubility-tests first the hydrolysis-products were analyzed by ${ }^{1} \mathrm{H}-$ NMR-spectroscopy, dissolved in DMSO- d_{6} while educt V11 was measured in CDCl_{3}. The chemical shift in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of educt and products were not the same due to the different solvents but the comparison was still possible. The molecular structures of the educt and the product, together with the numbering of the carbons of the experiment V41 to 61 are shown in Figure 4.3. In Figure 4.4 the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum of the substrate material V11 and the spectra of the three hydrolysis products are depicted in comparison.

A

B

Fig. 4.3.: Molecular structures of educt V11 and products of polymers of Series D with carbonatom labels; A - educt $\mathrm{P}\left[\mathrm{tBMA}_{0.32}-\mathrm{co}-\mathrm{nBMA}_{0.68}\right]$ and $\mathrm{B}-\operatorname{product} \mathrm{P}\left[\mathrm{MAA}_{\mathrm{x}}-\mathrm{co}-\mathrm{nBMA}_{\mathrm{y}}\right]$ $(\mathrm{z}=\mathrm{x}+\mathrm{y}=1)$

Fig. 4.4.: Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ Spectra of educt V11 and the polymers of Series D; A - educt P tBMA $_{0.32-\mathrm{co}-\mathrm{nBMA}}^{0.68}$] V11, B - V41 hydrolysis with TFA, C - V51 hydrolysis with MSA, D - V61 hydrolysis with TMSI

The intensity of the mixed broad peak ranging from 1.3 to 1.45 ppm caused by the signals of the protons 3^{\prime} and 7 ' shrank relative to the signals 8^{\prime} or 9 ' which remained constant on comparing educt and product. The reason was the absence of the signal 3' from the protons of the tert-butyl group in the product. The - COOH -signal could be monitored between 12.0 to 12.75 ppm . Furthermore it was clearly to see that water was used during the hydrolysis with TMSI. In all ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of Series D a $\mathrm{H}_{2} \mathrm{O}$ signal was present, also because the DMSO- d_{6} was not dry, but in the spectra of compound V61 the peak was much bigger than in the two other spectra. In the spectra of V41 an additional peak from acetone appeared from the NMR-tube which was not completely dry. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of V61 did not show signals in the range below 0 ppm . That means that no TMS-groups remained in the polymer chain and that the hydrolysis reaction under neural conditions proceeded completely. From the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra it can be concluded that all three reagents quantitatively removed the tert-butyl ester groups from the copolymer.

After the NMR-analysis the copolymers were assayed by elementary analysis. The results of these measurements are listed in Table 4.4. The theoretical values were calculated for a 100% conversion of the hydrolysis of the polymer $\mathrm{P}\left[\mathrm{nBMA} \mathrm{m}_{0.32}-\mathrm{co}-\mathrm{MMA}_{0.68}\right]$. The measured values differed not much from the set values, hence virtually a total conversion of the tert-butyl to - COOH -groups had occurred. Furthermore, the well agreement between theoretical and experimental element composition showed that the resulting copolymers were clean and dry. Since all three entries showed the same values, all three synthesis methods gave fairly similar products.

Tab. 4.4.: Elementary analysis of educt V11 and the polymers of Series D with divergence from the set value

Entry		$\begin{gathered} \mathrm{C} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{C}$	$\begin{gathered} \mathrm{H} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{H}$	$\begin{gathered} \mathrm{O} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{O}$
V11	theory	67.57		9.92		22.50	
	is	67.15	-0.42	9.76	-0.16	23.09	0.59
	theory	60.95		8.29		30.75	
V41	is	61.83	0.88	8.69	0.40	29.48	-1.27
V51	is	61.75	0.80	8.36	0.07	29.89	-0.86
V61	is	61.83	0.62	8.66	0.37	29.77	-0.98

The hydrolysis-products were also investigated by ATR-FTIR-spectroscopy and their spectra were compared with the IR-spectra of the educt. The IR-spectra of the four polymers are depicted in Figure 4.5. In Section 3.3 .2 two bands at $970 \mathrm{~cm}^{-1}$ and $850 \mathrm{~cm}^{-1}$ were introduced that are characteristic for the polymer-incorporated tBMA and nBMA units. When the two bands were observed the change of the spectra were pronounced. Band 1 at $970 \mathrm{~cm}^{-1}$ caused by nBMA units did not change much, but band 2 at $850 \mathrm{~cm}^{-1}$ representing tBMA differed strongly. The change was so strong that a comparison of peak height and peak area of educt
and products was not possible. The loss of band intensity at $850 \mathrm{~cm}^{-1}$ clearly indicates that the hydrolysis products no longer contained tBMA-ester side groups. Also the range between 3400 to $2400 \mathrm{~cm}^{-1}$ changed from educt to product. A broad band from 3100 to $3380 \mathrm{~cm}^{-1}$ appeared which could be assigned to the vibrational band of the carboxylic acid OH -group. A third change exhibited the band at $1710 \mathrm{~cm}^{-1}$ which is the vibrational band of the ester $\mathrm{C}=\mathrm{O}$ group. In the IR-spectrum of the educt the band was a small singlet, while in the spectra of all products a broader doublet band was found. The double band maxima at $1720 \mathrm{~cm}^{-1}$ and $1700 \mathrm{~cm}^{-1}$. The literature refers $1720 \mathrm{~cm}^{-1}$ to ester $\mathrm{C}=\mathrm{O}$ vibration, while $1700 \mathrm{~cm}^{-1}$ belong to the vibration of carboxylic acid $\mathrm{C}=\mathrm{O}$ groups. [85] In the spectrum of experiment V61 (hydrolysis with TMSI) the vibrational $\mathrm{CH}_{3}-$ and $-\mathrm{CH}_{2}-$ bands between 3050 to $2800 \mathrm{~cm}^{-1}$ increased obviously in comparison to the other spectra of experiment V41 (hydrolysis with TFA) and experiment V51 (hydrolysis with MSA). The second different of the spectrum from experiment V61 to the spectra from V41 and V51 was that the acid carbonyl vibration at $1700 \mathrm{~cm}^{-1}$ was less pronounced.

Fig. 4.5.: Comparison of the ATR-FTIR-spectra of educt V11 and the polymers of Series D; A educt $\mathrm{P}\left[\mathrm{tBMA}_{0.32}-\mathrm{co}-\mathrm{nBMA} \mathrm{Pa}_{0.68}\right]$ V11, B - V41 hydrolysis with TFA, C - V51 hydrolysis with MSA, D - V61 hydrolysis with TMSI (Spectra normalized to $\mathrm{A}_{1136}=1$)

After the structural analysis the molar masses of the polymers were determined. The hydrolyzed copolymers were not soluble in THF anymore, cf. Table 4.3. For the analysis with the SEC about 0.4 mg of the copolymer was mixed with 1 ml THF and two drops of TMSI. The mixture was stirred over night at RT and the copolymer was found to be dissolved the next day. The $\mathrm{dn} / \mathrm{dc}$ of the solution could not be determined, because of the presence of
free TMSI: The brown liquid disturbed the measurement. For this reason only the relative molar mass based on a polystyrene-calibration ("PS-Standard-values") was determined from the elution volume V_{E} of the samples and Equation 3.3.22. The RI-detector signals of the samples from Series D are given in Figure 4.6 together with the signal from the educt.

Fig. 4.6.: Comparison of SEC elution diagrams of educt V11 and the polymers of Series D; A educt $\mathrm{P}\left[\mathrm{tBMA}_{0.32}-\mathrm{co}-\mathrm{nBMA} \mathrm{m}_{0.68}\right]$ V11, $\mathrm{B}-\mathrm{V} 41$ hydrolysis with TFA, $\mathrm{C}-\mathrm{V} 51$ hydrolysis with MSA, D - V61 hydrolysis with TMSI

Tab. 4.5.: SEC results of the educt V11 and the polymers of Series D

Entry	$\mathrm{V}_{\mathrm{E}}{ }^{a}$ $[\mathrm{ml}]$	M^{b} $\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]$	$\Delta \mathrm{M}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$[\%]$
V 11	27.26	22680		
V 41	27.34	21760	920	4.06
V 51	27.40	21080	1600	7.06
V61	27.42	20890	1790	7.89
Peak elution volume				
${ }^{b}$ relative values, based on PS-Standard calibration				
Eq. 3.3.22				

The RI-curves of the three hydrolysis-products, very similar in shape and elution volume, were shifted towards higher elution volumes, i.e. lower molecular weights in comparison to the source material. The results are listed in Table 4.5. The molar masses of all three products were lower than the educt. They decreased between 4 to 8%. However, the measured molar masses of the products were higher than expected, since the molar mass should be around $18600 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. This was an expectable result, due to the relative determination
of the molar weights. The differences between the relative and the absolute determination were shown in Section 3.3.3, Table 3.13 for the batch copolymers of experiment V11 to V19. Furthermore relative weights were higher than the absolute ones. For a relative molecular weight determination only the maximum elution volume is used and this is always higher than the average molar mass of a sample.

Fig. 4.7.: DSC thermogram of experiment V51 - hydrolysis with MSA; a - first heating run, b - first cooling run, $\mathrm{c}-$ second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

In the final series of experiments the thermal behavior of the hydrolyzed copolymers was investigated. The samples were analyzed by means of differential thermal analysis (DSC) and thermo-optical-analysis (TOA). With DSC-measurements two heating runs from -80 to $300^{\circ} \mathrm{C}$ and one cooling in between run have been performed. Note that the samples were measured in DSC-pans with a hole punched in the covering lid allowing for the evaporation of volatiles. The full DSC-thermogram of experiment V51 is given in Figure 4.7. The first heating run showed a broad endothermic peak between $50^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ and a second one between $160^{\circ} \mathrm{C}$ and $240^{\circ} \mathrm{C}$. Above $240^{\circ} \mathrm{C}$ the curve was noisy. The second heating run showed a small glass transition step around $90^{\circ} \mathrm{C}$. To find out if the samples lost weight, the DSCpans were weighted before and after the DSC-measurement. The results are listed in Table 4.6, showing a weight loss of 12 to 15% during the complete measuring cycle. That meaned the samples were decomposed by the heat and partly lost weight due to the evaporation of decomposition products.

Tab. 4.6.: Weight loss of substance weight during DSC measurement of the polymers of Series D

Entry	weighted portion $[\mathrm{mg}]$	loss	
	$\mathrm{mg}]$	$[\%]$	
V41	4.310	0.574	13.3
V51	11.384	1.730	15.2
V61	5.578	0.666	11.9

For an overview all three DSC thermograms of the hydrolyzed polymers in comparison to the thermogram of the educt V11 are depicted in Figure 4.8. During the first heating run the two broad peaks of the three products were the obvious differences to the educt. In the thermogram of the educt one peak between $50^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$ during the first heating run. In the first heating run of the thermograms of the products the first peak was between was found $5^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$. There was a second peak in the first heating run between $150^{\circ} \mathrm{C}$ and $275^{\circ} \mathrm{C}$. Since the educt was not heated up to $300^{\circ} \mathrm{C}$ a comparison was not possible in this temperature range. The products were heated to a higher temperature, because at $150^{\circ} \mathrm{C}$ an endotherm peak started to rise that was not present in the educt where instead a plateau followed a tiny endothermal signal. A further difference between the thermograms of educt and products was found during the second heating run. In the thermogram of the educt the second heating run showed a glass transition step at $63^{\circ} \mathrm{C}$. Such as step was not to find in the thermograms of any product even when the products were heated up to $200^{\circ} \mathrm{C}$ or to $300^{\circ} \mathrm{C}$.

Fig. 4.8.: DSC thermograms of the first and second heating runs of educt V11 and hydrolysisproducts Series D (A - educt P[tBMA ${ }_{0.32}$-co-nBMA $\left.0_{0.68}\right]$ V11, B - V41 hydrolysis with TFA, C - V51 hydrolysis with MSA, D - V61 hydrolysis with TMSI; black line - first heating run, grey line - second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

To optical out what happened during the DSC-measurements sample V51 was observed under the microscope while it was heated up from RT to $300^{\circ} \mathrm{C}$. Pictures, as shown in Figure 4.9, were taken during the heating-up at intervals of (i) $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ between $80^{\circ} \mathrm{C}$ and $190^{\circ} \mathrm{C}$, (ii) $5^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ between $190^{\circ} \mathrm{C}$ and $250^{\circ} \mathrm{C}$ and (iii) $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ between $250^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$.

Fig. 4.9.: Thermo optical analysis of experiment V51 from RT to $300^{\circ} \mathrm{C}$

As was clearly seen the sample did not change up to $190^{\circ} \mathrm{C}$. Thus, the first peak in the DSC thermogram between $50^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ could be caused by evaporation of residual water or solvent. Above $190^{\circ} \mathrm{C}$ the sample changed obviously. The samples became liquid and a gas bubble was formed. When a temperature of $300^{\circ} \mathrm{C}$ was reached just a brown spot remained. Hence the second peak in the DSC thermogram resulted from the decomposition of the sample.

The observed small glass transition step at $95^{\circ} \mathrm{C}$ must be attributed to the remaining, but thermally altered, i.e. cured residue of the sample and cannot be taken as a characteristic property of the original polymer.

4.3. Summary

The tert-butyl-ester groups of the educt polymer V11 P $\left[\mathrm{nBMA}_{0.32}-\mathrm{co}-\mathrm{tBMA} \mathrm{tB}_{0.68}\right]$ have been cleaved to obtain $\mathrm{P}\left[\mathrm{nBMA}_{0.32}-\mathrm{co}-\mathrm{MAA}_{0.68}\right]$ by means of TFA, MSA and TMSI. All three ways of hydrolysis worked well. The characterization with ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy and elementary analysis showed the absence of any tert-butyl-groups in the polymer chains and hence a complete conversion with all hydrolysis. The observed changes in the ATR-IR-spectra supported these findings. The vibrational band of OH-groups evolved and the fingerprint-region exhibited changes of the vibrational bands assigned to the tert-butyl-group that suggested its disappearance. The SEC proved a decrease in lower molar masses of Series D. The DSC analysis and the observation of a sample under the microscope during heating-up from RT to $300^{\circ} \mathrm{C}$ demonstrated the decomposition of the sample above $190^{\circ} \mathrm{C}$.

The three hydrolysis reactions gave similar results with respect to yield and degree of hydrolysis. The hydrolysis with TMSI was the fastest but the work-up was tedious. The hydrolysis with TFA gave slightly higher yields but needed much longer (22 h) than using MSA (2 h). For these reasons it was decided to exclusively use the methanesulfonic acid (MSA) hydrolysis procedure for all further hydrolysis reactions in the next steps of the thesis.

5. Synthesis of Gradient Copolymers from \mathbf{n} - and tert-Butyl Methacrylate by means of Semibatch Polymerization

This part of the work describes the synthesis and the characterization of functional amphiphilic gradient copolymers. With the results from the kinetic studies on the statistical tBMA/nBMA copolymers (cf. Section 3.3.1) the monomer addition programs required for the semibatch polymerization of the gradient copolymers can be calculated. The resulting gradient copolymers $\mathrm{P}[\mathrm{tBMA}-\mathrm{grad}-\mathrm{nBMA}]$ are analyzed in the same way as the statistical copolymers before and the results are compared. The four syntheses were subsumed under the term Series C.

5.1. Materials and Methods

5.1.1. Materials

Chemicals and pre-treated of chemicals were the same as detailed in Section 3.1.1.

- monomers
- n-butyl methacrylate (nBMA, 99%, Sigma-Aldrich)
- tert-butyl methacrylate (tBMA, 98%, Alfa Aesar)
- initiator: para-toluenesulfonyl chloride (pTSC, 98%, Sigma-Aldrich)
- catalyst: copper(I) chloride (97\%, Sigma-Aldrich)
- ligand: $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N} "$-pentamethyldiethylenetriamine (PMDETA, 99%, Sigma-Aldrich)
- solvent: 2-butanone (MEK, BDH Prolabo, chromasol.)

5.1.2. Semibatch Copolymerization of Gradient Copolymers

The experimental setup of the semibatch copolymerization is depicted in Figure 5.1. For the synthesis the two monomers were prepared separately. Here is described the preparation of polymer V31 as example: Two Schlenk flasks, one of 100 ml volume to hold the stock solution
and one of 50 ml to store the feed solution were heated out with a hot gun (air temperature $\approx 400^{\circ} \mathrm{C}$) under vacuum for five minutes and then flushed with nitrogen. Subsequently the stock solution consisting of $0.1411 \mathrm{~g}\left(7.403 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{pTSC}, 9.4364 \mathrm{~g}(0.0664 \mathrm{~mol}) \mathrm{tBMA}$, $0.1283 \mathrm{~g}\left(7.403 \cdot 10^{-4} \mathrm{~mol}\right)$ PMDETA and $0.0733 \mathrm{~g}\left(7.403 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{CuCl}$ was weighted in a screw-cap glass. The mixture was rinsed into the 100 ml Schlenk flask with 9.4364 g MEK under nitrogen counter flow. In a second screw-cap glass was weighted in the feed solution monomer, $11.2338 \mathrm{~g}(0.0790 \mathrm{~mol}) \mathrm{nBMA}$. It was flushed into the 50 ml Schlenk flask with 11.2338 g MEK likewise under nitrogen counter stream. All investigated compositions are listed in Table 5.1.

Fig. 5.1.: Experimental setup for semibatch copolymerization

The two solutions were degassed by means of five freeze-melting-cycles. Than the feed solution was transferred into a gas-tight syringe under nitrogen flow and mounted in the syringe pump. The stock solution was placed in an oil bath at $80^{\circ} \mathrm{C}$ with stirring. At this time the sampling began. After 30 min for the pre-polymerization the monomer addition program was started.

During the polymerization aliquot samples with volumes of about 0.05 ml were taken at 0 , $15,30,40,50,60,70,80,90,120,150,180,210,270,330,390,450$ and 1440 min . The samples were immediately given into 0.5 ml ice cooled CDCl_{3} without further purification. Furthermore 1 ml samples were taken from the solution and precipitated in 20 ml of ice cooled water: methanol $=1: 1 \mathrm{vol}:$ vol mixture at $0,90,150,210,330$ and 450 min .

Tab. 5.1.: Compositions of the semibatch copolymerization solutions of tBMA/nBMA - Series C

Entry	$\mathrm{f}_{\text {tBMA }}^{0}$	Solution	Component	n [mol]	m [g]
V31	0.5	Stock	tBMA	0.0664	9.4364
			pTSC	$7.403 \cdot 10^{-4}$	0.1411
			PMDETA	$7.403 \cdot 10^{-4}$	0.1283
			CuCl	$7.403 \cdot 10^{-4}$	0.0733
			MEK	0.1309	9.4364
		$\overline{\text { Feed }}$	$\overline{\mathrm{n}} \overline{\mathrm{B}} \overline{\mathrm{M}} \overline{\mathrm{A}}$	${ }^{0} 0.079 \overline{0}$	11.233 $\overline{8}$
			MEK	0.1558	11.2338
V32	0.65	Stock	tBMA	0.0863	12.2673
			pTSC	$7.458 \cdot 10^{-4}$	0.1422
			PMDETA	$7.458 \cdot 10^{-4}$	0.1293
			CuCl	$7.458 \cdot 10^{-4}$	0.0738
			MEK	0.1701	12.2673
		Feed	$\overline{\mathrm{n}} \overline{\mathrm{B}} \overline{\mathrm{M}} \overline{\mathrm{A}}$	$\bigcirc 0.0553$	$7 . \overline{86} \overline{3} \overline{7}$
			MEK	0.1091	7.8637
V33	0.75	Stock	tBMA	0.0995	14.1546
			pTSC	$7.494 \cdot 10^{-4}$	0.1429
			PMDETA	$7.494 \cdot 10^{-4}$	0.1299
			CuCl	$7.494 \cdot 10^{-4}$	0.0742
			MEK	0.1963	14.1546
		Feed	${ }^{\mathrm{n}} \overline{\mathrm{B}} \overline{\mathrm{M}} \overline{\mathrm{A}}$	${ }^{-} 0.039 \overline{5}$	$5.616 \overline{9}$
			MEK	0.0779	5.6169
V34	0.85	Stock	tBMA	0.1128	16.0419
			pTSC	$7.530 \cdot 10^{-4}$	0.1436
			PMDETA	$7.530 \cdot 10^{-4}$	0.1305
			CuCl	$7.530 \cdot 10^{-4}$	0.0745
			MEK	0.2225	16.0419
		Feed	${ }^{\mathrm{n}} \overline{\mathrm{B}} \overline{\mathrm{M}} \overline{\mathrm{A}}$	${ }^{-} 0.02 \overline{3} 7$	$3 . \overline{3} 70 \overline{1}$
			MEK	0.0467	3.3701

The precipitated polymers were worked up by means of procedure "work-up B " as described in Section 3.1.2 with the samples of Series B and also characterized by means of elementary analysis, ATR-FTIR-spectroscopy, SEC and DSC. After 24 h the reaction solution was cooled down and the polymer was precipitated in 600 ml water-methanol-solution, filtered and dried, also in accordance to "work-up B". The precipitate was extracted first with $150 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $150 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and then the water phase was extracted two times more with $50 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ each. The color of the organic phase shifted from green to colorless and of the aqueous phase from colorless to blue. The organic phases were combined and dried by vacuum evaporation. The resulting polymer was characterized as detailed in Chapter 3, Section 3.1.2. The polymer yields of the samples and of the completely worked-up semi-batch are listed in Table 5.2.

Tab. 5.2.: Polymer yields obtained from the $1-\mathrm{ml}$-samples and the final yield of the semi-batch copolymerizations of Series C

$\begin{gathered} \text { time } \\ {[\mathrm{min}]} \end{gathered}$	V31		V32		V33		V34	
	[g]	[\%]	[g]	[\%]	[g]	[\%]	[g]	[\%]
60	0.10	22.88	0.12	27.75	0.09	22.25	0.10	22.79
90	0.17	39.43	0.16	37.64	0.15	35.64	0.17	40.81
150	0.23	54.42	0.23	53.20	0.24	55.99	0.23	54.23
210	0.27	63.84	0.26	60.90	0.26	62.08	0.30	70.84
330	0.28	66.66	0.33	78.20	0.37	87.56	0.38	88.62
450	0.32	75.99	0.41	97.59	0.42	99.02	0.42	98.08
$1 \overline{4} 40$	14.51	${ }^{78} \overline{8} .1 \overline{6}^{-}$	$\overline{1} 5.71$	$\overline{83.99}{ }^{-}$	$\overline{1} \overline{5} . \overline{9} \overline{3}$	$\overline{8} \overline{4} . \overline{7} 8$	-15.85	$\overline{8} \overline{3} . \overline{9} \overline{6}$

Experiment V31 ($\mathrm{P}[\mathrm{PtBMA}-\mathrm{grad}-\mathrm{nBMA}], \mathrm{f}_{\mathrm{tBMA}}=0.5, \mathrm{~F}_{\mathrm{tBMA}}=0.53$):

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R}$: $0.6-0.8 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{3}$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$); $1.25-1.45 \mathrm{ppm}$ (broad peak, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}],-\mathrm{CH}_{2}-$, nBMA and $\left.\mathrm{P}[\mathrm{nBMA}]\right) ; 1.42 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA); $1.5-1.6 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{2}-$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$); 1.7-1.9 ppm (broad peak, $-\mathrm{CH}_{3}$, $\mathrm{P}[\mathrm{tBMA}]$ and $\mathrm{P}[\mathrm{nBMA}]) ; 1.9 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{tBMA}\right) ; 1.8 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{nBMA}\right) ; 3.8-3.95 \mathrm{ppm}$ (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]$); $4.0 \mathrm{ppm}\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{R}, \mathrm{nBMA}\right) ; 5.3 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.4 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, nBMA); $5.9 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA); $6.0 \mathrm{ppm}(\mathrm{s}$, $\mathrm{CH}_{2}=\mathrm{C}-$, trans, nBMA)
$\boldsymbol{E A} \boldsymbol{:} 66.79 \% \mathrm{C}, 9.23 \% \mathrm{H},\left(23.98 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3050-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1720 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1473 \mathrm{~cm}^{-1}$ $\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1456 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1366 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1327 \mathrm{~cm}^{-1} ; 1270 \mathrm{~cm}^{-1}$ $(\mathrm{tBu}) ; 1247 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1136 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1065 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1035 \mathrm{~cm}^{-1} ; 1020 \mathrm{~cm}^{-1}$; $1000 \mathrm{~cm}^{-1} ; 967 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 945 \mathrm{~cm}^{-1} ; 876 \mathrm{~cm}^{-1}(\mathrm{tBu})$
$\boldsymbol{S E C} \boldsymbol{:}: \mathrm{dn} / \mathrm{dc}=0.0853 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=55050 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=58890 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=61900 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C}: \mathrm{T}_{\text {onset }}=52.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=60.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=60.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=67.0^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.197 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

Experiment V32 to V34 (P[PtBMA-grad-nBMA]:

The signal patterns of V32 to V34 were identical to that of V31. Signal intensities are found in Table 5.4. The elementary analysis results are shown in Table 5.7. The band intensities of the ATR-FTIR-spectra are summarized in Table 5.8, SEC- and DSC-data in Table 5.12 and Table 5.13, respectively.

Chapter 5. Synthesis of Gradient Copolymers from n- and tert-Butyl Methacrylate by means of Semibatch Polymerization

5.1.3. Characterization

All characterization-methods were the same as with the batch copolymers of Chapter 3. The used methods were:

- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy
- elementary analysis
- ATR-FTIR-spectroscopy
- size exclusion chromatography
- differential scanning calorimetry

The same instruments under the same conditions were used for the investigation of the resulting copolymers.

5.2. Results and Discussion

The subsequent paragraph describes the preparation of the monomer-feed programs, the set-up and performance of the semi-batch experiments as well as the results of the analysis from the different semibatch polymerizations of the different compositions of P[tBMA-gradnBMA] and also their discussion. The gradient copolymers were analyzed with the same methods as the statistical copolymers $\mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ before and under the same conditions (cf. Section 3.2).

The theoretical initial value of the monomer amount for the all semibatch copolymerizations were 0.1264 mol , i.e. 0.0632 mol tBMA and nBMA for experiment V31, 0.08216 mol tBMA and 0.04424 mol nBMA for experiment V32, 0.0948 mol tBMA and 0.316 mol nBMA for experiment V33 and 0.10477 mol tBMA and 0.01896 mol nBMA for experiment V34. Actually it were used 5% more tBMA and 25% more nBMA. The amount of tBMA was enlarged because a pre-polymerization time of 30 min was used to ensure a smooth start of the ATRP-reaction. The nBMA-feed solution was larger to compensate for the dead volume of the syringe and the syringe pump. The amount of the other components were adapted respectively. The ratio of monomer to solvent was wt:wt 1:1 for the stock and also for the feed solution because the concentrations had to remain constant. The amount of the components of the initiator system was adjusted to the additional amount of tBMA for the pre- polymerization, because only the 5% of tBMA were polymerized, prior to the start of the monomer feed.

5.2.1. Monomer Addition Program

The preparation of gradient copolymers was done by semibatch copolymerization. That meant one monomer in the stock solution, here tert-butyl methacrylate, together with the initiator compounds was submitted in a Schlenk flask. The second monomer in the feed solution, here n-butyl methacrylate, was continuously injected into the stock solution during the reaction. The required feeding rate which was expressed by means of the dimensionless parameter q , depending on the target gradient $\phi=\mathrm{dF}_{\mathrm{tBMA}} / \mathrm{dX}_{\mathrm{e}}$ and the copolymerization properties of the comonomer system. This is described by the Equations 5.2.1 to 5.2.4, taken from Literature [107].

$$
\begin{align*}
& \frac{d q}{d p}=-f_{t B M A} \frac{X_{e} \phi}{F_{t B M A}^{\prime}}(q-p)+1-\frac{F_{\text {tBMA }}}{f_{\mathrm{tBMA}}} \tag{5.2.1}\\
& \frac{d f_{\mathrm{tBMA}}}{d p}=\frac{1}{q-p}\left\{\mathrm{f}_{\mathrm{tBMA}}-\mathrm{F}_{\mathrm{tBMA}}-\frac{\mathrm{dq}}{\mathrm{dp}} \cdot \mathrm{f}_{\mathrm{tBMA}}\right\} \tag{5.2.2}\\
& \frac{\mathrm{dt}}{\mathrm{dp}}=\frac{1}{\mathrm{k}\left(\mathrm{f}_{\mathrm{efftBMA}}\right)} \frac{1}{\mathrm{q}-\mathrm{p}} \tag{5.2.3}\\
& \mathrm{q}=\frac{1+\mathrm{p}}{2} \tag{5.2.4}
\end{align*}
$$

Chapter 5. Synthesis of Gradient Copolymers from n- and tert-Butyl Methacrylate by means of Semibatch Polymerization

with $\phi=$ targeted copolymer compositional gradient, $\mathrm{X}_{\mathrm{e}}=$ targeted length of the gradient block, $\mathrm{F}_{\mathrm{tBMA}}^{\prime}=\mathrm{dF}_{\mathrm{tBMA}} / \mathrm{df}_{\mathrm{tBMA}}, \mathrm{q}=$ total monomer addition function, $\mathrm{p}=$ monomer conversion, $\mathrm{F}_{\mathrm{tBMA}}=$ instantaneous molar fraction of tBMA in the copolymer, $\mathrm{f}_{\mathrm{tBMA}}=$ instantaneous molar fraction of tBMA in the monomer mixture

In the differential equation system (DES) 5.2.1 to 5.2 .4 the "polymer chain" related gradient $\phi=\mathrm{dF} / \mathrm{dX}$ is used. Since ϕ is a small number $\left(\Delta \mathrm{F} \leq 1 ; \mathrm{X}_{\mathrm{n}}>10\right)$ in the subsequent text the "monomer conversion" related gradient $\phi_{\mathrm{p}}=\mathrm{dF} / \mathrm{dp}$ will be used. Note, that ϕ, and ϕ_{p} are interrelated by the simple expression $\phi=\mathrm{X}_{\mathrm{n}, \mathrm{e}}^{-1} \cdot \phi_{\mathrm{p}}$. Four different target gradient copolymers ϕ were synthesized and investigated here. They are listed in Table 5.3. $\phi_{\mathrm{p}}=\mathrm{dF}_{\mathrm{tBMA}} / \mathrm{dp}$ was calculated according to Equation 5.2.5.

$$
\begin{equation*}
\lim _{\mathrm{p} \rightarrow \infty} \phi_{\mathrm{p}} \Rightarrow \mathrm{~F}_{\mathrm{tBMA}, \mathrm{e}}-1 \tag{5.2.5}
\end{equation*}
$$

Tab. 5.3.: Theoretical values for monomer addition program of Series C

Entry	target Gradient ϕ_{p}	$\mathrm{f}_{\text {tBMA }}^{\text {final }}$	$\mathrm{F}_{\text {tBMA }, \mathrm{e}}$	$\mathrm{F}_{\text {cum,tBMA }}$	q_{0}
V31	-1.0	0.50	0.0	0.50	0.50
V32	-0.7	0.65	0.3	0.65	0.65
V33	-0.5	0.75	0.5	0.75	0.75
V34	-0.3	0.85	0.7	0.85	0.85
${ }^{2}=\mathrm{dF}_{\text {tBMA }} / \mathrm{dp}, \mathrm{q}_{0}=\mathrm{n}_{\text {tBMA }, 0} /\left(\mathrm{n}_{\text {tBMA }, 0}+\mathrm{n}_{\text {tBMA }, \mathrm{e}}\right)$					

The solution of the DES cannot be performed analytically, hence a numerical approximation was calculated by means of the program "GradMake". [107] Since the integration requires the knowledge of the dependence of the effective copolymerization rate constant $\mathrm{k}_{\text {eff }}$ from the actual monomer composition ($\mathrm{k}_{\text {eff }, \text { tBMA }}$), the kinetic data of the tBMA/nBMA batch copolymerization experiments (cf. Section 3.3.1) were required. The total effective rate constant $\mathrm{k}_{\mathrm{eff}}$ (cf. Figure 3.8) was plotted against the monomer composition of the tBMA as stock-monomer. The equation of the line of fit from this plot was converted to get the rate constant k_{0} and the first-order term of the reactions rate polynomial $\mathrm{k}_{\mathrm{f} 1}$, see Equation 5.2.6 to 5.2.8.

$$
\begin{align*}
& \mathrm{k}_{\mathrm{eff}}\left(\mathrm{f}_{\mathrm{tBMA}}\right)=\mathrm{k}_{0}+\mathrm{a} \cdot \mathrm{f}_{\mathrm{tBMA}} \tag{5.2.6}\\
& \mathrm{k}_{\mathrm{fl}}=\frac{\mathrm{a}}{\mathrm{k}_{0}} \tag{5.2.7}\\
& \mathrm{k}_{\mathrm{eff}}\left(\mathrm{f}_{\mathrm{tBMA}}\right)=\mathrm{k}_{0} \cdot\left(1+\mathrm{k}_{\mathrm{f} 1} \cdot \mathrm{f}_{\mathrm{tBMA}}\right) \tag{5.2.8}
\end{align*}
$$

For the copolymerization tBMA and nBMA the equation of the line of fit (cf. Equation 5.2.9) and the equivalent of Equation 5.2.8 was Equation 5.2.10.

$$
\begin{align*}
& \mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\mathrm{tBMA}}\right)=1.8978 \cdot 10^{-4} \mathrm{~s}^{-1}-5.19 \cdot 10^{-5} \mathrm{~s}^{-1} \cdot \mathrm{f}_{\mathrm{tBMA}} \tag{5.2.9}\\
& \mathrm{k}_{\mathrm{eff}}\left(\mathrm{f}_{\mathrm{tBMA}}\right)=1.8978 \cdot 10^{-4} \mathrm{~s}^{-1} \cdot\left(1-2.7347 \cdot 10^{-1} \cdot \mathrm{f}_{\mathrm{tBMA}}\right) \tag{5.2.10}
\end{align*}
$$

The two values $\mathrm{k}_{1}=1.898 \cdot 10^{-4} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{f} 1}=2.735 \cdot 10^{-1}$ were integrated into the program "GradMake". In the program the monomer of the in the stock solution tBMA was labeled as "Monomer1" and the one in the feed solution nBMA as "Monomer2". "GradMake" solved the DES, calculated the time- dependent dosing rate (cf. Figure 5.2) and created a data-file containing the required volume-feed rates ("addition program") to control the syringe pump, see Supplements A to D.

The feeding program contained the respective feed time interval Δt with the related feed rate dV/dt as shown in the Figure 5.2.

Fig. 5.2.: Feed rate per feed time intervals of the different monomer addition programs; V31 (\square, $\left.\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5\right), \mathrm{V} 32\left(\mathrm{O}, \phi_{\mathrm{p}}=-0.7, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{V} 33\left(\Delta, \phi_{\mathrm{p}}=-0.5, \mathrm{f}_{\mathrm{tBMA}}=0.75\right)$, V34 $\left(\diamond, \phi_{\mathrm{p}}=-0.3, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$

The resulting differential volume per feed time $\Delta \mathrm{V}(\mathrm{t})$ and the total volume $\mathrm{V}_{\text {total }}$ are shown in Figures 5.3 and 5.4. The total volume was the sum over all injected differential volumes up to the corresponding feed time (see Equation 5.2.11).

$$
\begin{align*}
& \mathrm{V}_{\text {total }}=\int \frac{\mathrm{dV}}{\mathrm{dt}} \mathrm{dt}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \Delta \mathrm{~V}_{\mathrm{i}} \tag{5.2.11}\\
& \mathrm{t}_{\text {feed }}=\int \mathrm{dt}_{\text {feed }}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \Delta \mathrm{t}_{\text {feed }, \mathrm{i}} \tag{5.2.12}
\end{align*}
$$

The resulting feed rates and volumes showed all nearly the same shapes, see Figure 5.2 to 5.4. At the start the feed rates were high and then they decreased. First the decrease was abrupt and then it flattened. During the first $100 \mathrm{~min} 60 \%$ of the feed solution was injected, then the amount fell to very low values. The differential volume per feed time increased first up to a maximum, then the curves decreased strongly and ceased off. The slope of the decreasing curve tails decreased with lower values of $\phi_{\mathrm{p}}\left(\phi_{\mathrm{p}}=-1, \phi_{\mathrm{p}}=-0.7, \phi_{\mathrm{p}}=-0.5, \phi_{\mathrm{p}}=-0.3\right)$. The total volume also showed that most of the feed solution was injected at the beginning of the copolymerizations. The total time of the monomer addition varied between the entries. Experiment V31 $\left(\phi_{\mathrm{p}}=-1\right)$ had a much longer feed time than the three others. Experiment V34 $\left(\phi_{\mathrm{p}}=-0.3\right)$ was a bit longer than the entries V32 $\left(\phi_{\mathrm{p}}=-0.7\right)$ and V33 ($\left.\phi_{\mathrm{p}}=-0.5\right)$. Experiment V32 and V33 had nearly the same time of feeding.

Fig. 5.3.: Differential volume per feed time intervals of the different monomer addition programs; $\operatorname{V} 31\left(\square, \phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5\right), \mathrm{V} 32\left(\mathrm{O}, \phi_{\mathrm{p}}=-0.7, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{V} 33\left(\Delta, \phi_{\mathrm{p}}=-0.5\right.$, $\left.\mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{V} 34\left(\diamond, \phi_{\mathrm{p}}=-0.3, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$

Fig. 5.4.: Total volume per total feed time of the different monomer addition programs; V31 (\square, $\left.\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5\right), \mathrm{V} 32\left(\mathrm{O}, \phi_{\mathrm{p}}=-0.7, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{V} 33\left(\Delta, \phi_{\mathrm{p}}=-0.5, \mathrm{f}_{\mathrm{tBMA}}=0.75\right)$, $\mathrm{V} 34\left(\diamond, \phi_{\mathrm{p}}=-0.3, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$

5.2.2. Kinetic Studies

NMR samples were taken during the semibatch gradient copolymerizations and analyzed to determine the monomer conversion p from the integrals of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra signals and to determine the cumulative and instantaneous composition of the gradient copolymers, $\mathrm{F}_{\text {cum }}$ and $\mathrm{F}_{\text {inst }}$, respectively. The change of the spectra during the course of reaction and the analyzed peaks are depicted in Figure 5.6 exemplary for the four polymerizations, together with the corresponding proton signals of experiment V32 ($\left.\phi_{\mathrm{p}}=-0.7, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$. The molecular structures of the monomers tBMA and nBMA and the resulting copolymer as well as the numbering of these carbons are shown in Figure 5.5.

In the first spectrum A, shown in Figure 5.6, taken at the start of the semibatch copolymerization, only the signals of the monomer tBMA, a singlet at $5.9 \mathrm{ppm}\left(=\mathrm{CH}_{2}^{\mathrm{cis}}, 1\right)$, a triplet at $5.3 \mathrm{ppm}\left(=\mathrm{CH}_{2}^{\text {trans }}, 2\right)$ and a singlet at $1.8 \mathrm{ppm}\left(-\mathrm{CH}_{3}, 10\right)$ of the methacrylate part of the monomer and a singlet at 1.4 ppm of the tert-butyl group (3) together with the solvent signals of MEK at $0.96 \mathrm{ppm}(\mathrm{t}), 2.06 \mathrm{ppm}(\mathrm{s})$ and $2.38 \mathrm{ppm}(\mathrm{q})$ were present, certainly. The last ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum H, taken after 24 h , showed the sharp signals of both monomers and five broad signals of the polymer chain at 3.8 to $3.95 \mathrm{ppm}\left(\alpha-\right.$ proton, $\left.6^{\prime}\right)$, 1.5 to $1.6 \mathrm{ppm}(\gamma-$ proton, 8^{\prime}), 1.3 to $1.45 \mathrm{ppm}\left(\beta-\right.$ proton, $\left.7^{\prime}\right)$ and 0.6 to $0.8 \mathrm{ppm}\left(\delta-\right.$ proton, $\left.9^{\prime}\right)$ of the n-butyl group and at 1.3 to 1.45 ppm a signal caused by the tert-butyl group (3^{\prime}). The solvent signals remained constant during the polymerization and in the relation to these signals the intensity changes of the monomer and polymer signals became observable. The same behavior was also noticed during the batch synthesis before, reported in Section 3.3.1. In all ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the four semibatch gradient copolymerizations the peak areas A of the signals were determined for calculation of the monomer conversion.

A

B

C

Fig. 5.5.: Molecular structures of the monomers (A) tBMA and (B) nBMA and (C) the copolymer P[tBMA-grad-nBMA] Series C with carbon-atom labels ($\mathrm{z}=\mathrm{x}+\mathrm{y}=1$)

Fig. 5.6.: ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra of experiment $\mathrm{V} 32\left(\phi_{\mathrm{p}}=-0.7, f_{\mathrm{tBMA}}=0.65\right)$ after reaction time of A $-0 \mathrm{~min}, \mathrm{~B}-30 \mathrm{~min}, \mathrm{C}-60 \mathrm{~min}, \mathrm{D}-90 \mathrm{~min}, \mathrm{E}-180 \mathrm{~min}, \mathrm{~F}-330 \mathrm{~min}, \mathrm{G}-450 \mathrm{~min}, \mathrm{H}-$ 1440 min

The determination of the conversion of tBMA ($\mathrm{p}_{\mathrm{tBMA}}$) was done in the same way as described with the batch experiments in Section 3.3. The integrals A_{1} (5.9 ppm) from a signal of the monomer tBMA, $\mathrm{A}_{\mathrm{x}}(1.3-1.45 \mathrm{ppm})$, the mixed signal from the monomers and both functional groups in the polymer chain, and $\mathrm{A}_{8,8^{\prime}}(1.5-1.6 \mathrm{ppm})$ the γ-proton signal from the n-butyl group of the monomer and of the polymer were measured and with the Equations 5.2.13 to 5.2.15 ptBmA was calculated.

$$
\begin{align*}
& \mathrm{A}_{\mathrm{tBMA}}=\frac{\mathrm{A}_{\mathrm{x}}-\mathrm{A}_{8}}{\mathrm{Z}}-\mathrm{A}_{1} \tag{5.2.13}\\
& \mathrm{z}=\frac{\mathrm{A}_{\mathrm{x}, 0}}{\mathrm{~A}_{1,0}} \tag{5.2.14}\\
& \text { ptBMA }=\frac{\mathrm{A}_{\mathrm{tBMA}}}{\mathrm{~A}_{1}+\mathrm{A}_{\mathrm{tBMA}}} \tag{5.2.15}
\end{align*}
$$

with $\mathrm{A}_{\mathrm{x}}=$ integral intensity from 1.3 to 1.45 ppm of the same signal arising from parts of the monomers and the polymers; $\mathrm{A}_{\mathrm{x}, 0}=$ integral intensity from 1.3 to 1.45 ppm at $\mathrm{t}=0 \mathrm{~min} ; \mathrm{A}_{1}$ $=$ integral intensity from $5.9 \mathrm{ppm} ; \mathrm{A}_{1,0}=$ integral intensity from 5.9 ppm at $\mathrm{t}=0 \mathrm{~min} ; \mathrm{A}_{8}=$ integral intensity from 1.5 to $1.6 \mathrm{ppm} ; \mathrm{A}_{\mathrm{tBMA}}=$ integral intensity from 1.3 to 1.45 ppm only from the tert-butyl group of the polymer; $z=$ signal intensity ratio of the tert-butyl group to the monomers vinylic $\mathrm{CH}_{2}=-$ protons $=\mathrm{A}_{1}$

From the conversion of tBMA the amount of tBMA-units inside the polymer chain ($\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}$) was determined, using Equation 5.2.16.

$$
\begin{equation*}
\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}=\mathrm{p}_{\mathrm{tBMA}} \cdot \mathrm{n}_{\mathrm{tBMA}, 0} \tag{5.2.16}
\end{equation*}
$$

with $n_{\text {tBMA }, 0}=$ the amount of tBMA in the stock solution at the beginning of the polymerization $\mathrm{t}=0 \mathrm{~min}$

The calculation of the amount of nBMA in the solution and inside the polymer chain differed from the determination used in the batch copolymerization, because the total amount of nBMA in the system depends on the injected mass of the feed solution up to a certain time. First the amount of nBMA in solution $\mathrm{n}_{\mathrm{nBMA}, \mathrm{S}}$ was determined by means of the Equations 5.2.17 to 5.2.19.

$$
\begin{align*}
& n_{n B M A, \text { total }}=n_{n B M A, P}+n_{n B M A, S} \tag{5.2.17}\\
& n_{n B M A, \text { total }}=n_{n B M A, S} \cdot\left(1+\frac{n_{n B M A, P}}{n_{n B M A, S}}\right) \tag{5.2.18}\\
& n_{n B M A, S}=\frac{n_{n B M A, \text { total }}}{\left(1+\frac{n_{n} B M A, P}{n_{n B M A, S}}\right)} \tag{5.2.19}
\end{align*}
$$

with $n_{n B M A, t o t a l}=$ amount of nBMA in the whole system at the end of the polymerization,
$n_{n B M A, S}=$ the amount of nBMA in the stock solution and $n_{n B M A, P}=$ the amount of nBMA inside the polymer chain

Since $\mathrm{n}_{\mathrm{nBMA}, \mathrm{S}}$ corresponds to A_{6}, the signal of the α-proton of the n-butyl group in the monomer nBMA, and $\mathrm{n}_{\mathrm{nBMA}, \mathrm{P}}$ is proportional to $\mathrm{A}_{6^{\prime}}$, the peak of the α-proton of the n-butyl group in the polymer chain, $\mathrm{n}_{\mathrm{nBMA}, \mathrm{S}}$ can be calculated. Equation 5.2.19 becomes:

$$
\begin{equation*}
\mathrm{n}_{\mathrm{nBMA}, \mathrm{~S}}=\frac{\mathrm{n}_{\text {nBMA,total }}}{\left(1+\frac{\mathrm{A}_{6^{\prime}}}{\mathrm{A}_{6}}\right)} \tag{5.2.20}
\end{equation*}
$$

From the amount of nBMA in the solution, the amount of nBMA in the polymer chain $n_{n B M A, P}$ was obtained and with this result the conversion of nBMA ($\mathrm{p}_{\mathrm{nBMA}}$) was calculated. The results of the analysis of the NMR-spectra in view to the conversion of nBMA were listed in Table 5.4.

$$
\begin{align*}
& \mathrm{n}_{\mathrm{nBMA}, \mathrm{P}}=\mathrm{n}_{\mathrm{nBMA}, \text { total }}-\mathrm{n}_{\mathrm{nBMA}, \mathrm{~S}} \tag{5.2.21}\\
& \mathrm{p}_{\mathrm{nBMA}}=\frac{\mathrm{n}_{\mathrm{nBMA}, \mathrm{P}}}{\mathrm{n}_{\mathrm{nBMA}, \text { total }}} \tag{5.2.22}
\end{align*}
$$

The conversions of the two monomers gave the total monomer conversion p of the whole system.

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}+\mathrm{n}_{\mathrm{nBMA}, \mathrm{P}}}{\mathrm{n}_{\text {tBMA }, 0}+\mathrm{n}_{\mathrm{nBMA}, \text { total }}} \tag{5.2.23}
\end{equation*}
$$

with $n_{\text {tBMA }, \mathrm{P}}=$ amount of tBMA inside the polymer chain, $\mathrm{n}_{\mathrm{nBMA}, \mathrm{P}}=$ amount of $n B M A$ inside the polymer chain, $\mathrm{n}_{\mathrm{tBMA}, 0}=$ the amount of tBMA in the stock solution at the beginning of the polymerization $\mathrm{t}=0 \mathrm{~min}, \mathrm{n}_{\mathrm{nBMA}, \text { total }}=$ amount of nBMA in the whole system at the end of the polymerization

The total conversions of the each sample taken during the copolymerizations of Series C are summarized in Table 5.4. A plot of the total conversions p of the semibatch copolymerizations V31 to V34 versus the reaction time is depicted in Figure 5.7. The graphs were relatively similar. In all four semibatch copolymerizations the conversion was linear up to 120 min . Then the curves leveled off. Only experiment V31 was slightly different, because the conversion p was lower than the three other experiments. However, all four reactions reached a final conversion of $91 \pm 2 \%$ after 24 h .
Tab. 5.4.: ${ }^{1} \mathrm{H}$-NMR-signal areas and conversions during the different semibatch-copolymerizations of Series C

Entry $\mathrm{f}_{\mathrm{tBMA}}$	time t [min]	A_{1}	A_{6}	A_{6}	$\mathrm{A}_{8,8^{\prime}}$	A_{x}	$\mathrm{A}_{\text {tBMA }}$	$\mathrm{p}_{\text {tBMA }}$	$\begin{gathered} \mathrm{n}_{\mathrm{tBMA}, \mathrm{P}} \\ {[\mathrm{~mol}]} \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{nBMA}, \mathrm{~S}} \\ {[\mathrm{~mol}]} \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{nBMA}, \mathrm{P}} \\ {[\mathrm{~mol}]} \end{gathered}$	pnBMA	p
V31	0	1.0000	0.0000	0.0000	0.0000	9.5347	0.0000	0.0000	0.0000	-	-	-	-
0.5	15	1.0000	0.0000	0.0000	0.0000	9.6240	0.0100	0.0099	0.0007	-	-	-	-
	30	1.0000	0.0000	0.0000	0.0000	9.9935	0.0488	0.0465	0.0031	-	-	-	0.0232
	40	41.3046	1.4338	0.0673	3.4732	425.8478	3.0206	0.0682	0.0045	0.0604	0.0028	0.0448	0.0565
	50	15.9792	1.6965	0.1265	3.4704	176.4562	2.1744	0.1198	0.0080	0.0588	0.0044	0.0694	0.0946
	60	9.5601	1.8185	0.1325	2.5234	111.4995	1.8762	0.1641	0.0109	0.0589	0.0043	0.0679	0.1160
	70	6.7606	1.9187	0.1130	2.9835	84.2260	1.7652	0.2070	0.0138	0.0597	0.0035	0.0556	0.1313
	80	4.7734	1.9138	0.1867	2.9393	62.7839	1.5069	0.2399	0.0159	0.0576	0.0056	0.0889	0.1644
	90	3.7915	1.9540	0.2343	2.9357	52.7310	1.4342	0.2745	0.0182	0.0564	0.0068	0.1071	0.1908
	120	2.1006	1.9914	0.3332	2.8245	34.6077	1.2348	0.3702	0.0246	0.0541	0.0091	0.1433	0.2568
	150	1.4080	1.9882	0.4288	2.7842	26.5093	1.0818	0.4345	0.0289	0.0520	0.0112	0.1774	0.3060
	180	1.0371	2.0210	0.5347	2.8027	22.1535	0.9936	0.4893	0.0325	0.0500	0.0132	0.2092	0.3493
	210	0.8044	2.0156	0.5887	2.9018	19.4068	0.9277	0.5356	0.0356	0.0489	0.0143	0.2261	0.3808
	270	1.0000	3.4936	1.2653	5.1487	28.5597	1.4568	0.5930	0.0394	0.0464	0.0168	0.2659	0.4294
	330	1.0000	4.3071	1.9419	6.6137	33.4436	1.8156	0.6448	0.0428	0.0436	0.0196	0.3108	0.4778
	390	1.0000	4.9673	2.6464	8.1955	38.2810	2.1573	0.6833	0.0454	0.0412	0.0220	0.3476	0.5154
	450	1.0000	5.3119	3.2131	9.0091	41.9321	2.4550	0.7106	0.0472	0.0394	0.0238	0.3769	0.5437
	1440	1.0000	8.1838	51.5710	62.9131	271.9619	20.9382	0.9544	0.0634	0.0087	0.0545	0.8630	0.9087

[^5]| Entry
 $\mathrm{f}_{\mathrm{tBMA}}$ | time t
 [min] | A_{1} | A_{6} | A_{6} | $\mathrm{A}_{8,8^{\prime}}$ | A_{x} | $\mathrm{A}_{\text {tBMA }}$ | $\mathrm{p}_{\text {tBMA }}$ | $\begin{gathered} \mathrm{n}_{\text {tBMA }, \mathrm{P}} \\ {[\mathrm{~mol}]} \end{gathered}$ | $\mathrm{n}_{\text {nBMA, }}$
 [mol] | $\mathrm{n}_{\mathrm{nBMA}, \mathrm{P}}$
 [mol] | pnBMA | p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 30 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 10.1849 | 0.0740 | 0.0689 | 0.0060 | 0.0000 | 0.0000 | 0.0000 | 0.0448 |
| | 40 | 23.0386 | 1.9356 | 0.0000 | 4.3675 | 241.6561 | 1.9839 | 0.0793 | 0.0068 | 0.0442 | 0.0000 | 0.0000 | 0.0515 |
| | 50 | 10.5051 | 1.9911 | 0.0547 | 3.1921 | 120.5209 | 1.8674 | 0.1509 | 0.0130 | 0.0430 | 0.0012 | 0.0267 | 0.1075 |
| | 60 | 6.8555 | 2.0627 | 0.1102 | 2.8683 | 82.5312 | 1.5451 | 0.1839 | 0.0159 | 0.0420 | 0.0022 | 0.0507 | 0.1373 |
| | 70 | 4.8206 | 1.9841 | 0.1741 | 2.7609 | 61.5789 | 1.3819 | 0.2228 | 0.0192 | 0.0406 | 0.0036 | 0.0807 | 0.1731 |
| | 80 | 3.6998 | 2.0043 | 0.2327 | 2.6896 | 50.0746 | 1.2970 | 0.2596 | 0.0224 | 0.0396 | 0.0046 | 0.1040 | 0.2051 |
| | 90 | 2.9922 | 2.0170 | 0.2899 | 2.7119 | 43.2621 | 1.2839 | 0.3003 | 0.0259 | 0.0387 | 0.0056 | 0.1257 | 0.2392 |
| | 120 | 1.9528 | 2.0205 | 0.4068 | 2.7752 | 32.8878 | 1.2226 | 0.3850 | 0.0332 | 0.0368 | 0.0074 | 0.1676 | 0.3089 |
| | 150 | 1.4332 | 2.0161 | 0.5416 | 2.8691 | 27.9477 | 1.2114 | 0.4581 | 0.0395 | 0.0348 | 0.0094 | 0.2118 | 0.3719 |
| | 180 | 1.1708 | 2.0170 | 0.6973 | 2.9823 | 25.3108 | 1.1838 | 0.5028 | 0.0434 | 0.0329 | 0.0114 | 0.2569 | 0.4167 |
| | 210 | 1.0360 | 2.0147 | 0.8633 | 3.1588 | 25.4604 | 1.3158 | 0.5595 | 0.0483 | 0.0309 | 0.0133 | 0.3000 | 0.4687 |
| | 270 | 0.9071 | 2.0377 | 1.7889 | 4.2989 | 32.0094 | 2.0150 | 0.6896 | 0.0595 | 0.0235 | 0.0207 | 0.4675 | 0.6119 |
| | 330 | 0.9227 | 2.0248 | 1.3236 | 3.7102 | 28.1651 | 1.6561 | 0.6422 | 0.0554 | 0.0267 | 0.0175 | 0.3953 | 0.5558 |
| | 390 | 0.8988 | 2.0400 | 2.2827 | 4.8550 | 35.5591 | 2.3390 | 0.7224 | 0.0623 | 0.0209 | 0.0233 | 0.5281 | 0.6544 |
| | 450 | 0.8880 | 2.0503 | 2.7457 | 5.3167 | 40.0914 | 2.7791 | 0.7578 | 0.0654 | 0.0189 | 0.0253 | 0.5725 | 0.6930 |
| | 1440 | 0.7916 | 2.0746 | 10.7855 | 14.6120 | 107.1279 | 8.9644 | 0.9189 | 0.0793 | 0.0071 | 0.0371 | 0.8387 | 0.8908 |
| V33 | 0 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 9.3237 | 0.0000 | 0.0000 | 0.0000 | - | - | - | - |
| 0.75 | 15 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 9.4687 | 0.0156 | 0.0153 | 0.0015 | - | - | - | - |
| | 30 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 9.7220 | 0.0427 | 0.0410 | 0.0041 | - | - | - | 0.0307 |
| | 40 | 24.8754 | 1.9536 | 0.0000 | 2.1409 | 253.6090 | 2.0955 | 0.0777 | 0.0077 | 0.0316 | 0.0000 | 0.0000 | 0.0583 |
| | 50 | 12.5537 | 1.9042 | 0.0578 | 2.4070 | 133.5571 | 1.5126 | 0.1075 | 0.0107 | 0.0307 | 0.0009 | 0.0295 | 0.0880 |
| | 60 | 8.6607 | 2.0026 | 0.1293 | 2.6412 | 98.8323 | 1.6561 | 0.1605 | 0.0160 | 0.0297 | 0.0019 | 0.0607 | 0.1356 |
| Continuation on next page . . | | | | | | | | | | | | | |

$\begin{aligned} & \text { Entry } \\ & \mathrm{f}_{\text {tBMA }} \end{aligned}$	time t [min]	A_{1}	A_{6}	$\mathrm{A}_{6}{ }^{\prime}$	$\mathrm{A}_{8,8^{\prime}}$	A_{x}	$A_{\text {tBMA }}$	$\mathrm{p}_{\text {tBMA }}$	$\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}$ [mol]	$\mathrm{n}_{\text {nBMA, }} \mathrm{S}$ [mol]	$\mathrm{n}_{\mathrm{nBMA}, \mathrm{P}}$ [mol]	$\mathrm{p}_{\text {nBMA }}$	p
	70	6.4350	1.9912	0.2152	2.8863	78.9731	1.7256	0.2115	0.0210	0.0285	0.0031	0.0975	0.1830
	80	5.0724	1.9465	0.2395	2.7805	64.4906	1.5462	0.2336	0.0232	0.0281	0.0035	0.1096	0.2026
	90	4.2778	1.9678	0.3000	2.8950	58.9470	1.7340	0.2884	0.0287	0.0274	0.0042	0.1323	0.2494
	120	2.8943	1.9724	0.5085	2.9500	46.6700	1.7948	0.3828	0.0381	0.0251	0.0065	0.2050	0.3383
	150	2.4141	2.0661	0.7811	3.3636	45.4892	2.1040	0.4657	0.0463	0.0229	0.0087	0.2743	0.4179
	180	2.0114	2.0007	0.8761	3.3707	43.0139	2.2405	0.5269	0.0524	0.0220	0.0096	0.3045	0.4713
	210	1.8328	1.9979	1.0594	3.5278	43.1412	2.4159	0.5686	0.0566	0.0207	0.0110	0.3465	0.5131
	270	1.7103	1.9992	1.4427	3.9671	47.2073	2.9274	0.6312	0.0628	0.0184	0.0133	0.4192	0.5782
	330	1.6707	1.9891	1.8322	4.3050	53.0047	3.5525	0.6801	0.0677	0.0165	0.0152	0.4795	0.6300
	390	1.6738	1.9760	2.1191	4.6558	59.4273	4.2006	0.7151	0.0712	0.0153	0.0164	0.5175	0.6657
	450	1.6348	2.0009	2.6310	5.3361	62.9919	4.5490	0.7356	0.0732	0.0137	0.0180	0.5680	0.6937
	1440	1.4851	2.0479	10.7088	14.7867	177.4886	15.9653	0.9149	0.0910	0.0051	0.0265	0.8395	0.8960
V34	0	1.0000	0.0000	0.0000	0.0000	9.5093	0.0000	0.0000	0.0000	-	-		-
0.85	15	1.0000	0.0000	0.0000	0.0000	9.5413	0.0034	0.0034	0.0004	-	-		-
	30	1.0000	0.0000	0.0000	0.0000	9.6057	0.0101	0.0100	0.0011	-	-	-	0.0085
	40	40.0420	1.8527	0.0000	2.7814	398.8170	1.6052	0.0385	0.0044	0.0190	0.0000	0.0000	0.0328
	50	22.2797	2.1607	0.1319	5.0996	239.5269	2.3727	0.0963	0.0109	0.0179	0.0011	0.0575	0.0904
	60	14.1913	2.0333	0.2303	3.6810	161.4756	2.4024	0.1448	0.0163	0.0171	0.0019	0.1017	0.1383
	70	10.7938	2.0260	0.2355	3.8995	131.5417	2.6291	0.1959	0.0221	0.0170	0.0020	0.1041	0.1821
	80	8.2803	1.8678	0.2671	2.6008	104.9418	2.4819	0.2306	0.0260	0.0166	0.0024	0.1251	0.2148
	90	7.7248	2.0383	0.3685	3.1962	104.7342	2.9530	0.2766	0.0312	0.0161	0.0029	0.1531	0.2580
	120	5.5005	1.9991	0.5049	3.2467	86.0975	3.2121	0.3687	0.0416	0.0152	0.0038	0.2016	0.3436

Continuation on next page

$\begin{aligned} & \text { Entry } \\ & \mathrm{f}_{\mathrm{tBMA}} \end{aligned}$	time t [min]	A_{1}	A_{6}	$\mathrm{A}_{6^{\prime}}$	$\mathrm{A}_{8,8^{\prime}}$	A_{x}	$\mathrm{A}_{\text {tBMA }}$	$\mathrm{p}_{\text {tBMA }}$	$\mathrm{n}_{\text {tBMA, }}$ [mol]	$\begin{gathered} \mathrm{n}_{\mathrm{nBMA}, \mathrm{~S}} \\ {[\mathrm{~mol}]} \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{nBMA}, \mathrm{P}} \\ {[\mathrm{~mol}]} \end{gathered}$	PnBMA	p
	150	4.5421	1.9717	0.6849	3.4290	79.9915	3.5092	0.4359	0.0492	0.0141	0.0049	0.2578	0.4092
	180	4.0056	1.9321	0.8461	3.6672	77.6919	3.7789	0.4854	0.0548	0.0132	0.0058	0.3046	0.4583
	210	3.8288	1.9861	1.1406	4.3276	84.2373	4.5745	0.5444	0.0614	0.0121	0.0069	0.3648	0.5174
	270	3.4602	1.9355	1.4764	4.3330	91.1475	5.6692	0.6210	0.0701	0.0108	0.0082	0.4327	0.5927
	330	3.1316	1.8125	1.8931	4.4611	94.1833	6.3036	0.6681	0.0754	0.0093	0.0097	0.5109	0.6445
	390	3.6391	1.9849	2.3357	5.8824	134.0922	9.8435	0.7301	0.0824	0.0087	0.0103	0.5406	0.7017
	450	3.4238	2.0242	3.3055	6.9271	144.0824	10.9995	0.7626	0.0860	0.0072	0.0118	0.6202	0.7413
	1440	2.9394	2.0075	15.6207	25.8145	473.0050	44.0873	0.9375	0.1058	0.0022	0.0168	0.8861	0.9298

Fig. 5.7.: Conversion p of Series C; V31 ($\square, \phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5$), V32 ($\mathrm{O}, \phi_{\mathrm{p}}=-0.7, \mathrm{f}_{\mathrm{tBMA}}=0.65$), $\mathrm{V} 33\left(\Delta, \phi_{\mathrm{p}}=-0.5, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{V} 34\left(\diamond, \phi_{\mathrm{p}}=-0.3, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$; dashed line - start of feed-solution injection, dotted lines - end of feed-solution-injection - a V31, b V32, c V33, d V34

With these results the cumulative and the instantaneous compositions of the gradient copolymers ($\mathrm{F}_{\text {cum }}$ and $\mathrm{F}_{\text {inst }}$) were determined as well as their change during the polymerization, with help of Equations 5.2.24 and 5.2.25.

$$
\begin{align*}
& \mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})=\frac{1}{1+\frac{\mathrm{n}_{\mathrm{nBMA}, \mathrm{P}}}{\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}}} \tag{5.2.24}\\
& \mathrm{~F}_{\text {inst }}^{\mathrm{tBMA}}(\mathrm{p})=\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})+\mathrm{p} \cdot \frac{\Delta \mathrm{~F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})}{\Delta \mathrm{p}} \tag{5.2.25}
\end{align*}
$$

The results of these calculations applied to the four semibatch synthesis are listed in Table 5.5 and depicted in the Figures 5.8 and 5.9 (composition/time plot) and Figures 5.10 and 5.11 (composition/conversion plot).

Some of the calculated values of the instantaneous compositions were higher than 1 and one value was lower than 0 . These results must be chemical erroneous because the molar fraction of a monomer in a copolymer must be between 0 and 1 . The incorrect data points are indicated by arrows in the Figures 5.9 and 5.11.
Tab. 5.5.: Kinetic results and compositions of the different copolymer compositions of experiments of Series C

Entry $\mathrm{f}_{\mathrm{tBMA}}$	time t [min]	p	$\mathrm{F}_{\text {cum }}$	$\mathrm{Finst}{ }^{a}$	$\mathrm{F}_{\text {inst }}{ }^{b}$	$\mathrm{F}_{\text {inst }}{ }^{c}$	Entry $\mathrm{f}_{\mathrm{tBMA}}$	time t [min]	p	$\mathrm{F}_{\text {cum }}$	$\mathrm{F}_{\text {inst }}{ }^{a}$	$\mathrm{F}_{\text {inst }}{ }^{b}$	$\mathrm{F}_{\text {inst }}{ }^{c}$
V31	0	0.0000	-	-	-	-	V33	0	0.0000	-	-	-	-
0.5	15	0.0000	1.0000	1.0000	1.0000	1.0000	0.75	15	0.0000	1.0000	1.0000	1.0000	1.0000
	30	0.0232	1.0000	1.0000	0.9569	0.9910		30	0.0307	1.0000	1.0000	0.9597	0.9941
	40	0.0565	0.6149	-0.0393	0.5101	0.5931		40	0.0583	1.0000	3.1158	0.9236	0.9888
	50	0.0946	0.6446	0.7182	0.4690	0.6080		50	0.0880	0.9200	0.6832	0.8046	0.9031
	60	0.1160	0.7174	1.1118	0.5021	0.6726		60	0.1356	0.8929	0.8156	0.7153	0.8669
	70	0.1313	0.7964	1.4725	0.5527	0.7457						0.8736	
	80	0.164	0.7393	0.4557	0.4342	0.6758		70	0.1830	0.8722	0.7926	0.8463	0.8372
	80	0.1644	0.7393	0.455	0.6960	0.6758		80	0.2026	0.8704	0.8512	0.8416	0.8316
	90	0.1908	0.7292	0.6561	0.6789	0.6555		90	0.2494	0.8729	0.8861	0.8375	0.8251
	120	0.2568	0.7307	0.7366	0.6630	0.6315		120	0.3383	0.8547	0.7854	0.8066	0.7899
	150	0.3060	0.7201	0.6542	0.6395	0.6020		150	0.4179	0.8424	0.7780	0.7831	0.7624
	180	0.3493	0.7107	0.6350	0.6187	0.5758		180	0.4713	0.8449	0.8672	0.7780	0.7547
	210	0.3808	0.7134	0.7456	0.6130	0.5663		210	0.5131	0.8379	0.7510	0.7650	0.7396
	270	0.4294	0.7009	0.5902	0.5877	0.5350		270	0.5782	0.8258	0.7192	0.7438	0.7151
	330	0.4778	0.6856	0.5342	0.5596	0.5010		330	0.6300	0.8171	0.7104	0.7277	0.6964
	390	0.5154	0.6738	0.5124	0.5379	0.4747		390	0.6657	0.8131	0.7395	0.7187	0.6857
	450	0.5437	0.6645	0.4867	0.5212	0.4545		450	0.6937	0.8031	0.5546	0.7046	0.6702
	1440	0.9087	0.5374	0.2211	0.2979	0.1865		1440	0.8960	0.7744	0.6472	0.6472	0.6028

$\begin{aligned} & \text { Entry } \\ & \mathrm{f}_{\mathrm{tBMA}} \end{aligned}$	time t [min]	p	$\mathrm{F}_{\text {cum }}$	$\mathrm{F}_{\text {inst }}{ }^{a}$	$\mathrm{F}_{\text {inst }}{ }^{\text {b }}$	$\mathrm{Finst}^{\text {c }}$	Entry $\mathrm{f}_{\text {tBMA }}$	time t [min]	p	$\mathrm{F}_{\text {cum }}$	$\mathrm{F}_{\text {inst }}{ }^{a}$	$\mathrm{F}_{\text {inst }}{ }^{\text {b }}$	$\mathrm{F}_{\text {inst }}{ }^{c}$
V32	0	0.0000	-	-	-	-	V34	0	0.0000	-	-	-	-
0.65	15	0.0000	1.0000	1.0000	1.0000	1.0000	0.85	15	0.0000	1.0000	1.0000	1.0000	1.0000
	30	0.0448	1.0000	1.0000	0.9423	0.9834		30	0.0085	1.0000	1.0000	0.9953	0.9991
	40	0.0515	1.0000	1.0000	0.9336	0.9843		40	0.0328	1.0000	2.3521	0.9820	0.9964
	50	0.1075	0.9168	0.7570	0.7784	0.8841		50	0.0904	0.9085	0.7651	0.8588	0.8986
	60	0.1373	0.8763	0.6895	0.6994	0.8344		60	0.1383	0.8942	0.8527	0.8180	0.8790
	70	0.1731	0.8436	0.6853	$\begin{aligned} & 0.6207 \\ & 0.8040 \end{aligned}$	0.7908		70	0.1821	0.9178	1.0162	$\begin{aligned} & 0.8176 \\ & 0.9045 \end{aligned}$	0.8979
	80	0.2051	0.8297	0.7411	0.7828	0.7672		80	0.2148	0.9163	0.9062	0.9006	0.8927
	90	0.2392	0.8235	0.7798	0.7688	0.7506		90	0.2580	0.9147	0.9053	0.8958	0.8864
	120	0.3089	0.8177	0.7922	0.7471	0.7236		120	0.3436	0.9157	0.9195	0.8905	0.8780
	150	0.3719	0.8086	0.7545	0.7235	0.6953		150	0.4092	0.9094	0.8703	0.8795	0.8646
	180	0.4167	0.7926	0.6441	0.6973	0.6656		180	0.4583	0.9044	0.8582	0.8709	0.8512
	210	0.4687	0.7846	0.7122	0.6774	0.6418		210	0.5174	0.8986	0.8473	0.8607	0.8419
	270	0.6119	0.7423	0.5616	0.6023	0.5559		270	0.5927	0.8950	0.8665	0.8516	0.8300
	330	0.5558	0.7603	0.5815	0.6332	0.5910		330	0.6445	0.8859	0.7731	0.8388	0.8153
	390	0.6544	0.7276	0.5105	0.5779	0.5282		390	0.7017	0.8891	0.9285	0.8378	0.8122
	450	0.6930	0.7210	0.6030	0.5625	0.5099		450	0.7413	0.8795	0.7000	0.8253	0.7983
	1440	0.8908	0.6814	0.5032	0.4777	0.4100		1440	0.9298	0.8627	0.7795	0.7946	0.7608

[^6]

Fig. 5.8.: Plots of the cumulative compositions $\mathrm{F}_{\text {cum }}$ of gradient copolymers of Series C versus reaction time t (unconsidered values in brackets); a) V31 ($\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5$), b) $\mathrm{V} 32\left(\phi_{\mathrm{p}}=-0.7, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$, c) $\left.\mathrm{V} 33\left(\phi_{\mathrm{p}}=-0.5, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{d}\right) \mathrm{V} 34\left(\phi_{\mathrm{p}}=-0.3\right.$, $\mathrm{f}_{\mathrm{tBMA}}=0.85$)

The cumulative composition $\mathrm{F}_{\text {cum,tBMA }}$ of the early samples of V31 ($\mathrm{f}_{\mathrm{tBMA}}=0.5$) and V34 $\left(f_{\text {tBMA }}=0.85\right)$ gave scattering values, see Figure 5.8. Some values differed so strong that they were not used in the analysis of the cumulative compositions. The points are shown with brackets in Figures 5.8 and 5.10. Beside this the compositional curves of the four polymerizations were consistent, although the slopes of the respective compositional curves were not consistent. All cumulative compositions first reduced strongly and then leveled off exponentially. $\mathrm{F}_{\text {cum }}$ is proportional to the conversion $\left(\mathrm{F}_{\text {cum }}=\alpha \cdot \mathrm{p}\right)$, hence $\mathrm{F}(\mathrm{t})$ cannot become time-linear. The equations of the decreasing curve fractions are given with the Equations 5.2.26 to 5.2.33.

$$
\begin{align*}
\mathrm{V} 31: & \mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}\left(\mathrm{p}_{<80 \min }\right)=(1.1559 \pm 0.0065)-(0.0052 \pm 0.0001) \cdot \mathrm{t} \tag{5.2.26}\\
& \mathrm{~F}_{\text {cum }}^{\mathrm{tBMA}}\left(\mathrm{p}_{280 \min }\right)=(0.3859 \pm 0.0390)+(0.3681 \pm 0.0368) \cdot e^{(-0.0007 \pm 0.0001) \cdot \mathrm{t}} \tag{5.2.27}\\
\mathrm{~V} 32: & \mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}\left(\mathrm{p}_{<70 \min }\right)=(1.1456 \pm 0.0333)-(0.0044 \pm 0.0006) \cdot \mathrm{t} \tag{5.2.28}\\
& \mathrm{~F}_{\text {cum }}^{\mathrm{tBMA}}\left(\mathrm{p}_{\geq 70 \min }\right)=(0.6789 \pm 0.0093)+(0.2048 \pm 0.0113) \cdot e^{(-0.0034 \pm 0.0005) \cdot \mathrm{t}} \tag{5.2.29}\\
\mathrm{~V} 33: & \mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}\left(\mathrm{p}_{<70 \min }\right)=(1.1184 \pm 0.0331)-(0.0036 \pm 0.0006) \cdot \mathrm{t} \tag{5.2.30}\\
& \mathrm{~F}_{\text {cum }}^{\mathrm{tBMA}}\left(\mathrm{p}_{\geq 70 \min }\right)=(0.7738 \pm 0.0042)+(0.1233 \pm 0.0047) \cdot e^{(-0.0032 \pm 0.0004) \cdot \mathrm{t}} \tag{5.2.31}\\
\mathrm{~V} 34: & \mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}\left(\mathrm{p}_{<80 \min }\right)=(1.0867 \pm 0.0339)-(0.0022 \pm 0.0005) \cdot \mathrm{t} \tag{5.2.32}\\
& \mathrm{~F}_{\text {cum }}^{\mathrm{tBMA}}\left(\mathrm{p}_{280 \min }\right)=(0.8613 \pm 0.0032)+(0.0709 \pm 0.0036) \cdot e^{(-0.0028 \pm 0.0004) \cdot \mathrm{t}} \tag{5.2.33}
\end{align*}
$$

Both slopes decreased with the increase of tBMA in the copolymerization systems. All resulting polymers had a cumulative composition which was slightly higher than the theoretical expected values. The calculation of the instantaneous composition $\mathrm{F}_{\text {inst,tBMA }}$ of the gradient copolymers gave scattering values with all four polymerizations, see Figure 5.9. These results were not very surprising. In Equation 5.2.25 the differential quotient $\left(\mathrm{dF}_{\mathrm{cum}} / \mathrm{dp}\right)_{\mathrm{p}}$ was approximated by the differential quotient:

$$
\begin{equation*}
\frac{\Delta \mathrm{F}_{\mathrm{cum}}}{\Delta \mathrm{p}}=\frac{\mathrm{F}_{\mathrm{cum}}^{\mathrm{i}+1}-\mathrm{F}_{\mathrm{cum}}^{\mathrm{i}}}{\mathrm{p}^{\mathrm{i}+1}-\mathrm{p}^{\mathrm{i}}} \tag{5.2.34}
\end{equation*}
$$

This is a very crude approximation, which is known to be very sensitive to even small experimental errors in $\mathrm{F}_{\text {cum }}$ and p. Since the experimental error of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ based on the determination of $\mathrm{F}_{\text {cum }}$ and p is between $5-10 \%$, the difference quotient calculation strongly amplified the deviations, and results in heavy scattering of the obtained instantaneous compositions, $\mathrm{F}_{\text {inst }}$. To overcome the described problem, a second strategy of data evaluation was tried: It was attempted to fit a sufficient analytical function to the cumulative composition $\mathrm{F}_{\text {cum }}(\mathrm{p})$. This function can smoothly be derived and the respective derivative $\mathrm{dF}_{\text {cum }}^{(\mathrm{fit})} / \mathrm{dp}$ can be used to calculate the instantaneous composition $\mathrm{F}_{\text {inst }}(\mathrm{p})$ (cf. Equation 5.2.35).

Fig. 5.9.: Plots of the instantaneous compositions $\mathrm{F}_{\text {inst }}$ of gradient copolymers of Series C versus reaction time t (chemical incorrect values indicated with arrows); a) V31 ($\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=$ $0.5)$, b) V32 ($\left.\phi_{\mathrm{p}}=-0.7, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$, c) V33 ($\left.\phi_{\mathrm{p}}=-0.5, \mathrm{f}_{\mathrm{tBMA}}=0.75\right)$, d) V34 $\left(\phi_{\mathrm{p}}=-0.3\right.$, $\mathrm{f}_{\mathrm{tBMA}}=0.85$)

The plots of the cumulative compositions as a function of the conversions p, see Figure 5.10, showed that the $\mathrm{F}_{\text {cum }}(\mathrm{p})$ of the four polymerizations changed in a similar fashion as the plot against polymerization time. First there was strong linear decrease up to an average conversion of about 16%. Then the slope became flatter but remained linear for all four polymerizations up to 91%. The value of conversion at which the slope changed will be called "changing point" $\left(\mathrm{P}_{\mathrm{c}}\right)$ in the subsequent text. Hence, the curves $\mathrm{F}_{\text {cum }}(\mathrm{p})$ can be well approximated by two linear functions of slope $\mathrm{s}_{\mathrm{i}}=\left(\mathrm{dF}_{\text {cum }} / \mathrm{dp}\right)^{(\text {fit })}(\mathrm{i}=1: \mathrm{p}<0.16, \mathrm{i}=2: 0.16<\mathrm{p}<0.91)$. In Table 5.6 the two slopes and also the average slope are listed.

The instantaneous tBMA molar fraction of the copolymer was calculated by means of Equation 5.2.35, using slope s_{1} in the conversion interval $\mathrm{p} \in[0,0.16]$ and slope s_{2} with $\mathrm{p} \geq[0.16]$. Hence, for each P_{c} two instantaneous compositions were calculated. Furthermore the instantaneous composition was calculated with the average slope of the cumulative composition and Equation 5.2.35.

$$
\begin{equation*}
\mathrm{F}_{\mathrm{inst}}^{\mathrm{tBMA}}(\mathrm{p})=\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})+\mathrm{p} \cdot\left(\frac{\mathrm{dF}_{\mathrm{cum}}^{\mathrm{tBMA}}(\mathrm{p})}{\mathrm{dp}}\right)_{\mathrm{i}}^{(\mathrm{fit})} \tag{5.2.35}
\end{equation*}
$$

The results of the calculations of $\mathrm{F}_{\text {inst }}(\mathrm{p})$ with the Equations 5.2.25 and 5.2.35 are summarized in Table 5.5 and the values are plotted in the Figure 5.11. Slope s s_{2} decreased with the increase of the tBMA-units in the polymer chain.

Like in Figure 5.9 the data points, resulting from Equation 5.2.25 scattered strongly. The reason was the described amplification of the compositional errors by numeric derivation like the one of the first calculation of the instantaneous composition. The instantaneous compositions which were calculated from Equation 5.2 .35 scattered less than the ones obtained with Equation 5.2.25, both, the values calculates by the slopes s_{1} and s_{2} and the values calculated by the average slope. The equation of the fits are given in Equation 5.2.36. The slopes of the fits are given in Table 8.6.

$$
\begin{equation*}
\mathrm{F}_{\text {inst }}^{\mathrm{tBMA}}=1-\phi_{p, i} \cdot \mathrm{p} \tag{5.2.36}
\end{equation*}
$$

with $\mathrm{F}_{\text {inst }}^{\mathrm{tBMA}}=$ instantaneous molar fraction of tBMA in the gradient copolymer, $\mathrm{p}=$ total monomer conversion

The final $\mathrm{F}_{\text {inst }}^{\mathrm{tBMA}}$ values of all four resulting copolymers were lower than the target compositions (see Figure 5.11, dotted line). However, the polymers can be described by an average gradient of $\phi_{\mathrm{p}, \text { av }}(\mathrm{V} 31=0.77, \mathrm{~V} 32=0.64, \mathrm{~V} 33=0.41, \mathrm{~V} 34=0.21)$ that is calculated by means of Equation 5.2.35, using the average slopes of the whole $\mathrm{F}_{\mathrm{cum}}(\mathrm{p})$-curves $\left(\mathrm{s}_{\mathrm{av}}\right)$, see Table 5.6.

Fig. 5.10.: Plots of the cumulative compositions $\mathrm{F}_{\text {cum }}$ of gradient copolymers of Series C versus conversion p; a) V31 ($\phi_{\mathrm{p}}=-1$, $\mathrm{f}_{\mathrm{tBMA}}=0.5$), b) V32 ($\phi_{\mathrm{p}}=-0.7$, $\mathrm{f}_{\mathrm{tBMA}}=0.65$), c) V33 $\left(\phi_{\mathrm{p}}=-0.5, \mathrm{f}_{\mathrm{tBMA}}=0.75\right)$, d) V34 ($\left.\phi_{\mathrm{p}}=-0.3, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$; dashed line - average slope; unconsidered value in brackets

Fig. 5.11.: Plots of the instantaneous compositions $\mathrm{F}_{\text {inst }}$ of gradient copolymers of Series C versus conversion p ; a) V31 ($\left.\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$, b) V32 ($\left.\phi_{\mathrm{p}}=-0.7, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$, c) $\left.\mathrm{V} 33\left(\phi_{\mathrm{p}}=-0.5, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{d}\right) \mathrm{V} 34\left(\phi_{\mathrm{p}}=-0.3, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$; \quad Finst calculated by Equation 5.2.25, $\square \mathrm{F}_{\text {inst }}$ calculated by Equation 5.2.35, $\triangle \mathrm{F}_{\text {inst }}$ calculated by Equation 5.2 .35 with average slope of $\mathrm{F}_{\text {cum }}$; dashed line - average slope; dotted line - ideal run of the curve; chemical incorrect value indicated with arrow

Since however, these averages may cause misleading interpretations, the gradient copolymers will be named as $\mathrm{V} 31=\mathrm{GP}_{0.53}, \mathrm{~V} 32=\mathrm{GP}_{0.46}, \mathrm{~V} 33=\mathrm{GP}_{0.28}$ and $\mathrm{V} 34=\mathrm{GP}_{0.15}$ referring to the $\phi_{\mathrm{p}, 2}$ that dominates the polymer chain. The target compositions were $\phi_{\mathrm{p}, \text { target }}$ are listed in Table 5.3. The differences were -48% for V31, -34% for V32, -44% for V33 and -50% for V34. Due to the binary slopes the resulting compositions differed strongly from the target values and due to the binary slopes the copolymers can be described as "double gradients".

Tab. 5.6.: Slopes of decreases of cumulative and instantaneous compositions against composition of experiments V31 to V34

Entry	$\mathrm{f}_{\mathrm{tBMA}}$	$\phi_{\mathrm{p}, \text { target }}$	p	$\mathrm{s}_{\mathrm{i}}=\frac{\mathrm{dF}}{\mathrm{c}_{\mathrm{cum}}}$	$\phi_{\mathrm{p}}=\frac{\mathrm{dF}_{\text {inst }}}{\mathrm{dp}}$	$\Delta \phi_{\mathrm{p}}$
V31	0.50	-1.0	$0.00 \ldots 0.16$	-1.8558 ± 0.0301	-3.7116 ± 0.0301	
			$0.16 \ldots 0.91$	-0.2636 ± 0.0224	-0.5273 ± 0.0224	-47%
			$0.00 \ldots 0.91$	-0.3862 ± 0.0680	-0.7725 ± 0.0680	-23%
V32	0.65	-0.7	$0.00 \ldots 0.17$	-1.2880 ± 0.0658	-2.5761 ± 0.0658	
			$0.17 \ldots 0.89$	-0.2287 ± 0.0081	-0.4574 ± 0.0081	-34%
			$0.00 \ldots 0.89$	-0.3047 ± 0.0334	-0.6379 ± 0.0369	-10%
V33	0.75	-0.5	$0.00 \ldots 0.14$	-1.3104 ± 0.5697	-2.4602 ± 0.3079	
			$0.14 \ldots 0.90$	-0.1419 ± 0.0063	-0.2838 ± 0.0063	-44%
			$0.00 \ldots 0.90$	-0.1915 ± 0.0266	-0.4075 ± 0.0293	-18%
V34	0.85	-0.3	$0.00 \ldots 0.18$	-0.5504 ± 0.0005	-1.0886 ± 0.2696	
			$0.18 \ldots 0.93$	-0.0732 ± 0.0050	-0.1463 ± 0.0050	-50%
			$0.00 \ldots 0.93$	-0.1096 ± 0.0193	-0.2127 ± 0.0233	-30%

The observed dependence of the compositional data from the monomer conversion suggested that the injection of the second monomer nBMA into the ATRP system of the initiator pTSC, the ligand PMDETA, the catalyst $\mathrm{Cu}^{\mathrm{I}} \mathrm{Cl} / \mathrm{Cu}^{\mathrm{II}} \mathrm{Cl}$ and the first monomer tBMA disturbed the equilibrium of the system. This kinetic effect could not be seen before in the batch experiments because there the monomer mixture ($\left.n_{i, S}, n_{i, P}, i=n B M A, t B M A\right)$ started in equilibrium. It can be seen from the composition-time data that the ATRP system required around 75 min until a new transient equilibrium was build up again. After this time the mixing ratio deviated from the assumptions which were used for the calculations of the injection program, hence the feed program did not fit to the existing monomer mixture. The fact that the feed solution had not the same temperature than the stock solution could also contribute to the disorder of the equilibrium. In further experiment the use of a heating bath would be useful. Other problems like contamination of the monomer with 4-methoxyphenol (the inhibitor which used for the storage of the monomers) or oxygen can be excluded, because these contaminants were eliminated by the filtration of the monomer over an excess of aluminium oxide and the performed freeze-melt-cycles. To solve this problem two way are possible: The complexequilibrium can be introduced into the model of the injection program. The second way is to employ empirical relation of monomer feed. That means to test and change the feed program until it fits to the equilibrium changes of the monomer mixture.

5.2.3. Structural Analysis

As described with the batch polymerizations in Section 3.3.2 the purity and the composition of the resulting copolymers was analyzed by means of elementary analysis. The results of the measurements and the differences between the theoretical and the analysis results are listed in Table 5.\%.

The element compositions of the statistical copolymers (cf. Tables 3.7 and 3.8) and the gradient copolymers were nearly similar. Hence, both copolymerization method, batch and semibatch, gave consistent results. Moreover, the differences between the theoretical compositions and the measured values were small, indicating that the samples were free of pollution.

Tab. 5.7.: Results of the elementary analysis of the different gradient copolymer compositions of Series C with divergence from the set point

Entry $\mathrm{f}_{\mathrm{tBMA}}$	time [min]	$\begin{gathered} \mathrm{C} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{C}$	$\begin{gathered} \mathrm{H} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{H}$	$\begin{gathered} \mathrm{O} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{O}$
set value		67.57		9.92		22.50	
V31	60	67.06	-0.51	9.28	-0.64	23.66	1.16
$\mathrm{GP}_{0.53}$	90	67.22	-0.35	9.58	-0.34	23.20	0.70
0.5	150	66.56	-1.01	9.11	-0.81	24.33	1.83
	210	66.98	-0.59	8.96	-0.96	24.06	1.56
	330	67.24	-0.33	9.29	-0.63	23.47	0.97
	450	67.05	-0.52	9.10	-0.82	23.85	1.35
	1440	66.79	-0.78	9.23	-0.69	23.98	1.48
V32	60	67.06	-0.51	9.28	-0.64	23.66	1.16
$\mathrm{GP}_{0.46}$	90	67.22	-0.35	9.58	-0.34	23.20	0.70
0.65	150	67.43	-0.14	9.34	-0.58	23.23	0.73
	210	67.55	-0.02	9.50	-0.42	22.95	0.45
	330	67.54	-0.03	9.38	-0.54	23.08	0.58
	450	67.18	-0.39	9.33	-0.59	23.49	0.99
	1440	67.10	-0.47	9.55	-0.37	23.35	0.85
V33	60	67.56	-0.01	9.38	-0.54	23.06	0.56
$\mathrm{GP}_{0.28}$	90	67.75	0.18	9.35	-0.57	22.90	0.40
0.75	150	67.82	0.25	9.34	-0.58	22.84	0.34
	210	67.85	0.28	9.25	-0.67	22.90	0.40
	330	67.87	0.30	9.37	-0.55	22.76	0.26
	450	68.05	0.48	9.42	-0.50	22.53	0.03
	1440	67.93	0.36	9.60	-0.32	22.47	-0.03
Continuation on next page ...							

Entry $\mathrm{f}_{\text {tBMA }}$	time $[\mathrm{min}]$	C $[\%]$	$\Delta \mathrm{C}$	H	$\Delta \mathrm{H}$	O	$\Delta \mathrm{O}$
V 34	60	67.42	-0.15	9.13	-0.79	23.45	0.95
$\mathrm{GP}_{0.15}$	90	67.14	-0.43	9.38	-0.54	23.48	0.98
0.85	150	67.39	-0.18	9.17	-0.75	23.44	0.94
	210	67.48	-0.09	9.38	-0.54	23.14	0.64
	330	67.47	-0.10	9.11	-0.81	23.42	0.92
	450	67.51	-0.06	9.35	-0.57	23.14	0.64
	1440	66.63	-0.94	9.07	-0.85	24.30	1.80

Subsequently the gradient copolymers were investigated with ATR-FTIR-spectroscopy. From all samples which were taken during the semibatch copolymerizations IR-spectra were measured and anlaysed in view to the peak height and peak area of the two vibrational bands, at $970 \mathrm{~cm}^{-1}$ (band 1), specific for the n-butyl-chain, and at $850 \mathrm{~cm}^{-1}$ (band 2), caused by the tert-butyl-group. The values are summarized in Table 5.8. For the comparison purpose the spectra were normalized by setting the adsorption intensity of the vibrational band at $1136 \mathrm{~cm}^{-1}$ to one by dividing all intensities A_{x} by A_{1}.

Tab. 5.8.: Peak area and peak height of the analyzed ATR-FTIR-bands of gradient copolymers P[tBMA-grad-nBMA] of Series C

		band 1		band 2	
Entry $\mathrm{f}_{\text {tBMA }}$	time $[\mathrm{min}]$	peak area $\left[\mathrm{cm}^{-1}\right]$		peak height peak area $\left[\mathrm{cm}^{-1}\right]$	peak height
V 31	60	3.52	0.074	8.79	0.414
$\mathrm{GP}_{0.53}$	90	3.88	0.083	9.16	0.412
0.5	150	4.02	0.082	8.62	0.404
	210	4.40	0.089	8.49	0.391
	330	4.93	0.102	8.14	0.367
	450	5.22	0.108	7.95	0.358
	1440	5.71	0.123	6.95	0.307
$\mathrm{~V} 32^{\mathrm{GP}_{0.46}}$	60	3.11	0.065	8.37	0.399
0.65	150	3.45	0.071	8.54	0.402
	210	4.16	0.082	8.74	0.402
	330	4.49	0.085	8.26	0.381
	450	4.75	0.090	8.05	0.367
	1440	5.09	0.105	8.15	0.368
			8.06	0.367	

Continuation on next page ...

Chapter 5. Synthesis of Gradient Copolymers from n- and tert-Butyl Methacrylate by means of Semibatch Polymerization

		band 1		band 2	
Entry $\mathrm{f}_{\text {tBMA }}$	time $[\mathrm{min}]$	peak area $\left[\mathrm{cm}^{-1}\right]$		peak height peak area $\left[\mathrm{cm}^{-1}\right]$	peak height
V 33	60	3.26	0.067	8.77	0.414
$\mathrm{GP}_{0.28}$	90	3.77	0.075	9.35	0.430
0.75	150	3.99	0.079	8.91	0.413
	210	3.91	0.077	8.30	0.389
	330	4.14	0.082	8.44	0.392
	450	4.37	0.087	8.70	0.401
	1440	4.52	0.093	8.66	0.400
V 34	60	3.09	0.066	8.77	0.417
$\mathrm{GP}_{0.15}$	90	3.47	0.072	8.82	0.415
0.85	150	3.63	0.071	8.92	0.419
	210	3.68	0.073	8.77	0.412
	330	3.54	0.069	8.34	0.396
	450	4.07	0.078	9.24	0.422
	1440	4.22	0.091	9.59	0.451

Fig. 5.12.: Finger print region of ATR-FTIR-spectra of samples of experiment V32 $\left(\mathrm{GP}_{0.46}\right.$, $\left.\mathrm{f}_{\mathrm{tBMA}}=0.65\right) ; \mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-150 \mathrm{~min}, \mathrm{D}-210 \mathrm{~min}, \mathrm{E}-330 \mathrm{~min}, \mathrm{~F}-$ 450 min and $\mathrm{G}-1440 \mathrm{~min}$ of reaction time (Spectra normalized to $\mathrm{A}_{1136}=1$)

In Figure 5.12 the fingerprint region of the samples of experiment V32 GP ${ }_{0.46}\left(\mathrm{f}_{\mathrm{tBMA}}=0.65\right)$ and in Figure 5.13 an extended section of the spectra from 800 to $1000 \mathrm{~cm}^{-1}$ are shown to demonstrate the changes of the vibrational bands during the polymerization time more in detail. For band 1 at $970 \mathrm{~cm}^{-1}$ the increase of the band was clearly recognizable. The decease of band 2 at $850 \mathrm{~cm}^{-1}$ during the polymerization was, however, minimal. The incorporation of the nBMA, which was injected during the polymerization, inside the polymer chain lead to a constantly change of the composition of the copolymer and caused the rise of band 1. The changes of band 2 were smaller during the polymerization time which must be attributed to a different extinction coefficient of the tBMA-units. Because the total amount of tBMA was present at the start of the synthesis the change was caused by the tBMA depletion of the solution. The IR-signal qualitatively support the NMR results.

Fig. 5.13.: Section of ATR-FTIR-spectra of samples taken during experiment V32 $\left(\mathrm{GP}_{0.46}, \mathrm{f}_{\mathrm{tBMA}}=\right.$ 0.65) with analyzed specific vibrational bands; A $-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-150 \mathrm{~min}$, D $-210 \mathrm{~min}, \mathrm{E}-330 \mathrm{~min}, \mathrm{~F}-450 \mathrm{~min}$ and $\mathrm{G}-1440 \mathrm{~min}$ of reaction time (Spectra normalized to $\mathrm{A}_{1136}=1$)

In Figure 5.14 the range of the absorption-spectra from 800 to $1000 \mathrm{~cm}^{-1}$ of the four resulting gradient copolymers are pictured to distinguish the differences between the compositions. The decrease of the amount of nBMA inside the polymer chain was represented in the IR-spectra with the decrease of the correlated vibrational band 1. Band 2 did not show such a specific behavior between peak height/ area and copolymer composition.
band 1
band 2

Fig. 5.14.: Section of ATR-FTIR-spectra of gradient copolymers P[tBMA-grad-nBMA] obtained after 1440 min of reaction time; $\mathrm{A}-\mathrm{GP}_{0.53}\left(\mathrm{~V} 31, \mathrm{f}_{\mathrm{tBMA}}=0.5\right), \mathrm{B}-\mathrm{GP}_{0.46}(\mathrm{~V} 32$, $\left.\mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{C}-\mathrm{GP}_{0.28}\left(\mathrm{~V} 33, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{D}-\mathrm{GP}_{0.15}\left(\mathrm{~V} 33, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)($ Spectra normalized to $\mathrm{A}_{1136}=1$)

The Figures 5.15 and 5.16 depict the peak areas and peak heights of the two bands of the samples taken during the four semibatch copolymerizations. The band 1 values of the peak area and the peak height increased during the polymerization and both values of band 2 decreased. But the values of band 2 scattered much more than that of band 1. In both graphs the values of band 1 increased nearly linear at the beginning of the polymerization, then the rise leveled off. The values confirmed the observations from the Figures 5.13 and 5.14. Hence the peak height of band 1 was used to determine the composition of the copolymer by a modified Equation 3.3.20, see Equation 5.2.37. The change was necessary because Equation 3.3.20 was used to calculate $\mathrm{F}_{\mathrm{nBma}}$.

$$
\begin{equation*}
\mathrm{F}_{\text {tBMA }}=1-\left[(-0.524 \pm 0.081)+(9.862 \pm 1.278) \cdot \mathrm{PH}_{1}-(14.471 \pm 4.374) \cdot \mathrm{PH}_{1}^{2}\right] \tag{5.2.37}
\end{equation*}
$$

with $\mathrm{F}_{\mathrm{tBMA}}=$ composition of the copolymer, $\mathrm{PH}_{1}=$ peak height of band 1

The obtained compositions were compared with the cumulative compositions $\mathrm{F}_{\text {cum,tBMA }}$ originating from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. The results of these calculations are listed in Table 5.9. The compositions obtained from both methods did not differ much ($\lesssim 5 \%$), expect from the first sample of experiment V31 taken at 60 min at 18% conversion.

b)

Fig. 5.15.: Plot of ATR-FTIR-spectra peak area a) band 1 and b) band 2 of gradient copolymers P[tBMA-grad-nBMA] Series C versus polymerization time t ; $\mathrm{GP}_{0.53}\left(\square, \mathrm{~V} 31, \mathrm{f}_{\mathrm{tBMA}}=\right.$ $0.5), \mathrm{GP}_{0.46}\left(\mathrm{O}, \mathrm{V} 32, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{GP}_{0.28}\left(\Delta, \mathrm{~V} 33, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{GP}_{0.15}(\diamond, \mathrm{~V} 34$, $\mathrm{f}_{\mathrm{tBMA}}=0.85$)

Fig. 5.16.: Plot of ATR-FTIR-spectra peak height a) band 1 and b) band 2 of gradient copolymers $\mathrm{P}\left[\mathrm{tBMA}\right.$-grad-nBMA] Series C versus polymerization time t; $\mathrm{GP}_{0.53}\left(\square, \mathrm{~V} 31, \mathrm{f}_{\mathrm{tBMA}}=\right.$ $0.5), \mathrm{GP}_{0.46}\left(\mathrm{O}, \mathrm{V} 32, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{GP}_{0.28}\left(\Delta, \mathrm{~V} 33, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{GP}_{0.15}(\diamond, \mathrm{~V} 34$, $\mathrm{f}_{\mathrm{tBMA}}=0.85$)

Tab. 5.9.: Composition of gradient copolymers P[tBMA-grad-nBMA] of Series C calculated from peak height of band 1

Entry $\mathrm{f}_{\mathrm{tBMA}}$	time [min]	$\mathrm{F}_{\text {nBMA }}{ }^{a}$	$\begin{gathered} \mathrm{F}_{\text {cum }}^{\text {tBMA }} b \\ \text { NMR } \end{gathered}$	$\begin{gathered} \mathrm{F}_{\substack{\text { cum } \\ \text { IRMA }}} \end{gathered}$	$\Delta \mathrm{F}^{\text {d }}$
V31	60	0.13	0.88	0.72	-0.16
$\mathrm{GP}_{0.53}$	90	0.20	0.80	0.73	-0.07
0.5	150	0.19	0.81	0.72	-0.09
	210	0.24	0.76	0.71	-0.05
	330	0.33	0.67	0.69	0.02
	450	0.38	0.63	0.66	0.03
	1440	0.47	0.53	0.54	0.02
V32	60	0.05	0.95	0.88	-0.07
$\mathrm{GP}_{0.46}$	90	0.10	0.90	0.82	-0.08
0.65	150	0.19	0.81	0.81	0.00
	210	0.21	0.79	0.78	-0.01
	330	0.24	0.76	0.76	0.00
	450	0.29	0.71	0.72	0.01
	1440	0.35	0.65	0.68	0.03
V33	60	0.07	0.93	0.89	-0.04
$\mathrm{GP}_{0.28}$	90	0.13	0.87	0.87	0.00
0.75	150	0.17	0.84	0.84	0.00
	210	0.15	0.85	0.84	-0.01
	330	0.19	0.81	0.82	0.01
	450	0.22	0.78	0.80	0.02
	1440	0.27	0.73	0.77	0.04
V34	60	0.06	0.94	0.89	-0.05
$\mathrm{GP}_{0.15}$	90	0.11	0.89	0.91	0.02
0.85	150	0.10	0.90	0.91	0.01
	210	0.12	0.88	0.90	0.02
	330	0.09	0.91	0.89	-0.02
	450	0.16	0.84	0.88	0.04
	1440	0.25	0.75	0.86	0.11

${ }^{a}$ calculated with Eq. 3.3.20
${ }^{b}$ calculated with Eq. 5.2.37
${ }^{c}$ calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra
${ }^{d} \Delta \mathrm{~F}=\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{IR})-\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{NMR})$

Fig. 5.17.: Interrelation of the cumulative compositions calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and from ATRFTIR; $\mathrm{GP}_{0.53}\left(\square, \mathrm{f}_{\mathrm{tBMA}}=0.5\right), \mathrm{GP}_{0.46}\left(\mathrm{O}, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{GP}_{0.28}\left(\Delta, \mathrm{f}_{\mathrm{tBMA}}=0.75\right)$, $\mathrm{GP}_{0.15}\left(\diamond, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$, dashed line - ideal curve

With Figure 5.17 the consensus between the compositions obtained from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and from ATR-FTIR was determined. In case of perfect agreement the data points should be located on a straight line of slope $s=1$. As a general tendency it can be noticed that tBMA contents of the gradient copolymers below $70 \mathrm{~mol} \%$ gave good agreements, with the IR-values to be $\approx 2-4 \mathrm{~mol} \%$ below the NMR-based compositions. At higher tBMA molar fraction strong data scattering was observed that, however, depended on the investigated polymer. While the points of $\mathrm{GP}_{0.46}$ and $\mathrm{GP}_{0.28}$ well fitted, $\mathrm{GP}_{0.53}$ and $\mathrm{GP}_{0.15}$ deviated from the ideal curve.

5.2.4. Molecular Weight Characterization

The finally obtained gradient copolymers of the semibatch copolymerizations and also the precipitated samples were analyzed with size exclusion chromatography. In Figure 5.18 the elution diagrams based on the signal of the RI-detector of the samples which were taken during the polymerization at different times at experiment $\mathrm{V} 32\left(\mathrm{GP}_{0.46}, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$ are depicted as an example. All the RI-signals gave monomodal peaks, hence over the whole time of the semibatch copolymerization no termination reactions occurred. Furthermore the signals shifted to lower elution volumes with higher polymerization times of the sample, indicating an increasing molar mass of the samples. The RI-signals from all samples of the three other semibatch reactions looked alike. All four semibatch copolymerizations worked well with respect to the reaction control.

Fig. 5.18.: Elution diagrams of the samples of experiment V32 ($\left.\mathrm{GP}_{0.46}, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$; $\mathrm{A}-60 \mathrm{~min}$, B $-90 \mathrm{~min}, \mathrm{C}-150 \mathrm{~min}, \mathrm{D}-210 \mathrm{~min}, \mathrm{E}-330 \mathrm{~min}, \mathrm{~F}-450 \mathrm{~min}$ and $\mathrm{G}-1440 \mathrm{~min}$ of reaction time

With the calibration curve arising from polystyrene standards that was used in Section 3.3.3, Figure 3.15, the relative molar masses of the samples were calculated from the maximum elution volume V_{E} of the RI-signals. The elution volumes of the RI-signals of all samples of the four semibatch copolymerizations and the calculated relative molar masses are listed in Table 5.11. The values of the relative molar masses rose nearly linear at the beginning of all four copolymerizations than the slopes flattened. Because for the determination of the relative molar mass just one point of the RI-signal was used, not the whole sample was covered with this kind of molar mass determination. To account for this effect the absolute molar masses of the sample were determined. The next step was the determination of the differential refractive index increments $\mathrm{dn} / \mathrm{dc}$ of the resulting gradient copolymers because these values are necessary for the calculation of the absolute molar mass of the polymers from light scattering data. This was done the same way as described with the statistical copolymers of experiment V11 to V19 in THF at $25^{\circ} \mathrm{C}$, cf. Section 3.3.3. The results of these measurements are listed in Table 5.10 and are pictured in Figure 5.19.

A clear dependence of $\mathrm{dn} / \mathrm{dc}$ from the copolymer composition could not be found just like it was for the statistical copolymer. However the $\mathrm{dn} / \mathrm{dc}$-values of the four gradient copolymers lay in a small range from $0.080 \mathrm{ml} \cdot \mathrm{g}^{-1}$ to $0.087 \mathrm{ml} \cdot \mathrm{g}^{-1}$, this is the same range that was found
with the statistical copolymers, cf. Table 3.10, which had dn/dc values between $0.0612 \mathrm{ml} \cdot \mathrm{g}^{-1}$ and $0.0988 \mathrm{ml} \cdot \mathrm{g}^{-1}$.

Tab. 5.10.: Differential refractive index increment $\mathrm{dn} / \mathrm{dc}$ of the different copolymer compositions of Series C

Entry	GradCoPo	$\mathrm{F}_{\text {tBMA }}$	$\mathrm{dn} / \mathrm{dc}\left[\mathrm{ml} \cdot \mathrm{g}^{-1}\right]$
V31	$\mathrm{GP}_{0.53}$	0.54	0.0853 ± 0.0003
V32	$\mathrm{GP}_{0.46}$	0.68	0.0843 ± 0.0004
V33	$\mathrm{GP}_{0.28}$	0.77	0.0870 ± 0.0011
V34	$\mathrm{GP}_{0.15}$	0.86	0.0799 ± 0.0017

Fig. 5.19.: Differential refractive index increments dn/dc of the final different gradient copolymer compositions of $\mathrm{P}[\mathrm{tBMA}-$ grad-nBMA]

With the results from the determination of dn/dc the molecular weight averages (M_{n}, M_{w}, $\left.M_{z}\right)$ and from these the polydispersity indices PDI ($\left.M_{w} / M_{n}, M_{z} / M_{n}\right)$ of the samples of the four semibatch copolymerizations were determined in the same way as for the statistical copolymers in Section 3.3.3. Figure 5.20 depicts the RI- and the $90^{\circ}-$ MALS- detector signals of the elution-diagram of the resulting gradient copolymer V34 ($\mathrm{GP}_{0.15}$). From the angle dependence of the scattered light intensity and the known $\mathrm{dn} / \mathrm{dc}-$ value of $=0.0799 \mathrm{ml} \cdot \mathrm{g}^{-1}$ (cf. Table 5.10) the absolute molecular weight of a fraction at a given elution volume can be derived. The calculated molecular weights are also shown in Figure 5.20 (right axis). Since the RI-signal is proportional to the weight fraction of the eluted polymer, the complete
molecular weight distribution (MWD) of the measured polymer can be obtained and with this the molecular weight averages and the polydispersity indices can be calculated.

Fig. 5.20.: SEC elution diagrams and molar masses of gradient copolymer V34 $\left(\mathrm{GP}_{0.15}, \mathrm{f}_{\mathrm{tBMA}}=\right.$ 0.85) obtained after 1440 min of reaction time; black curve - light scattering signal, grey curve - refractive index signal

The obtained values are detailed in Table 5.12. Both detector signals in Figure 5.20 did not show fronting or tailing which indicated the lack of termination and chain extension reaction during the reaction time of 1440 min .

Tab. 5.11.: Comparison of relative* and absolute molar masses of the different gradient copolymer compositions of P[tBMA-grad-nBMA]

Entry $\mathrm{f}_{\mathrm{tBMA}}$	time [min]	$\begin{gathered} \mathrm{V}_{\mathrm{E}} \\ {[\mathrm{ml}]} \end{gathered}$	$\begin{gathered} \text { relative } \mathrm{M}^{*} \\ {\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]} \end{gathered}$	$\begin{aligned} & \text { absolute M } \\ & {\left[\mathrm{g} \cdot \mathrm{~mol}^{-1}\right]} \end{aligned}$	$\begin{gathered} \Delta \mathrm{M} \\ {\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]} \end{gathered}$	[\%]
V31	60	29.98	5679	5208	471	-9.04
$\mathrm{GP}_{0.53}$	90	29.17	8575	7824	751	-9.60
0.5	150	28.22	13952	13880	72	-0.52
	210	27.68	18281	17900	381	-2.13
	330	27.05	25175	25060	115	-0.46
	450	26.69	30259	31110	-851	2.74

Continuation on next page ...

Entry $\mathrm{f}_{\mathrm{tBMA}}$	time [min]	$\begin{gathered} \mathrm{V}_{\mathrm{E}} \\ {[\mathrm{ml}]} \end{gathered}$	$\begin{gathered} \text { relative } \mathrm{M}^{*} \\ {\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]} \end{gathered}$	absolute M $\left[\mathrm{g} \cdot \mathrm{~mol}^{-1}\right]$	$\underset{\left[\mathrm{g} \cdot \mathrm{~mol}^{-1}\right]}{\Delta \mathrm{M}}$	[\%]
	1440	25.37	59132	58890	242	-0.41
V32	60	29.63	6792	6633	159	-2.40
$\mathrm{GP}_{0.46}$	90	28.80	10339	10620	-281	2.65
0.65	150	27.87	16599	17040	-441	2.59
	210	27.27	22517	23270	-753	3.23
	330	26.71	30032	30660	-628	2.05
	450	26.42	34791	35890	-1099	3.06
	1440	25.83	46905	47210	-305	0.65
V33	60	29.22	8363	7297	1066	-14.61
$\mathrm{GP}_{0.28}$	90	28.37	12886	12230	656	-5.36
0.75	150	27.30	22229	21710	519	-2.39
	210	26.84	28083	27840	243	-0.87
	330	26.45	34152	35640	-1488	4.18
	450	26.17	39508	38000	1508	-3.97
	1440	25.52	54819	49860	4959	-9.94
V34	60	29.41	7603	8174	-571	6.99
$\mathrm{GP}_{0.15}$	90	28.44	12425	13680	-1255	9.18
0.85	150	27.54	19672	20850	-1178	5.65
	210	27.21	23296	26000	-2704	10.40
	330	26.64	31023	33380	-2357	7.06
	450	26.37	35701	37520	-1819	4.85
	1440	25.94	44411	47270	-2859	6.05

* calibrated against PS-Standard

Tab. 5.12.: SEC results of Series C

Entry $\mathrm{f}_{\mathrm{tBMA}}$	time $[\mathrm{min}]$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
V 31	60	4987 ± 150	5208 ± 208	5566 ± 612	1.044 ± 0.052	1.116 ± 0.134
$\mathrm{GP}_{0.53}$	90	7431 ± 149	7824 ± 235	8340 ± 334	1.053 ± 0.021	1.122 ± 0.056
0.5	150	13640 ± 136	13880 ± 139	14220 ± 427	1.018 ± 0.020	1.043 ± 0.031
	210	17550 ± 176	17900 ± 179	18230 ± 365	1.020 ± 0.020	1.039 ± 0.021
	330	24360 ± 146	25060 ± 125	25560 ± 256	1.029 ± 0.008	1.049 ± 0.010
	450	30570 ± 122	31110 ± 124	31550 ± 252	1.017 ± 0.005	1.032 ± 0.009
	1440	55050 ± 165	58890 ± 118	61900 ± 310	1.070 ± 0.004	1.124 ± 0.007
Continuation on next page \ldots						

Entry $\mathrm{f}_{\mathrm{tBMA}}$	time $[\mathrm{min}]$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
V 32	60	6170 ± 123	6633 ± 265	7948 ± 1431	1.075 ± 0.054	1.288 ± 0.232
$\mathrm{GP}_{0.46}$	90	10180 ± 204	10620 ± 212	11190 ± 560	1.043 ± 0.031	1.099 ± 0.066
0.65	150	16550 ± 1655	17040 ± 153	17520 ± 350	1.029 ± 0.010	1.058 ± 0.021
	210	22470 ± 225	23270 ± 465	24120 ± 965	1.036 ± 0.021	1.073 ± 0.043
	330	28650 ± 2865	30660 ± 153	31900 ± 319	1.070 ± 0.011	1.113 ± 0.011
	450	34050 ± 681	35890 ± 718	37230 ± 1862	1.054 ± 0.032	1.093 ± 0.055
	1440	43190 ± 389	47210 ± 236	50200 ± 502	1.093 ± 0.011	1.162 ± 0.012
V 33	60	6924 ± 208	7297 ± 219	8067 ± 807	1.054 ± 0.042	1.165 ± 0.128
$\mathrm{GP}_{0.28}$	90	11730 ± 117	12230 ± 122	12680 ± 380	1.043 ± 0.021	1.081 ± 0.032
0.75	150	20840 ± 146	21710 ± 130	22450 ± 225	1.041 ± 0.009	1.077 ± 0.022
	210	26890 ± 269	27840 ± 278	28950 ± 869	1.035 ± 0.021	1.077 ± 0.032
	330	35260 ± 705	35640 ± 713	36020 ± 1081	1.011 ± 0.020	1.022 ± 0.041
	450	35210 ± 317	38000 ± 190	39840 ± 398	1.079 ± 0.011	1.131 ± 0.011
	1440	45380 ± 227	49860 ± 150	53050 ± 371	1.099 ± 0.007	1.169 ± 0.011
$\mathrm{~V}_{24}$	60	7527 ± 301	8174 ± 490	10440 ± 2088	1.086 ± 0.076	1.387 ± 0.291
$\mathrm{GP}_{0.15}$	90	13040 ± 391	13680 ± 684	15210 ± 2890	1.049 ± 0.063	1.166 ± 0.222
0.85	150	20230 ± 405	20850 ± 417	22120 ± 1327	1.031 ± 0.031	1.094 ± 0.066
	210	25110 ± 251	26000 ± 234	26760 ± 535	1.035 ± 0.021	1.066 ± 0.021
	330	32160 ± 289	33380 ± 200	34580 ± 346	1.038 ± 0.010	1.075 ± 0.022
	450	35210 ± 211	37520 ± 150	39190 ± 353	1.066 ± 0.009	1.113 ± 0.011
	1440	43720 ± 437	47270 ± 378	49820 ± 996	1.081 ± 0.011	1.140 ± 0.023

The results of the SEC analysis were compared for the different copolymer compositions and the change over the polymerization time (Figure 5.21) respectively the conversion (Figure 5.22) of the four reactions. In any case the MWD was very narrow with PDI $=\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ ranging from 1.03 to 1.10. For most practical purposes the polymers can be regarded as fairly monodisperse $\left(\overline{\mathrm{M}}_{\mathrm{w}} \approx \overline{\mathrm{M}}_{\mathrm{n}}\right)$.

Chapter 5. Synthesis of Gradient Copolymers from n- and tert-Butyl Methacrylate by means of Semibatch Polymerization

Fig. 5.21.: a) Molar masses M_{n} and b) polydispersities against reaction time t of Series C; $\mathrm{GP}_{0.53}$ $\left(\square /\right.$ solid line, $\left.\mathrm{V} 31, \mathrm{f}_{\mathrm{tBMA}}=0.5\right), \mathrm{GP}_{0.46}\left(\mathrm{O} /\right.$ dashed line, $\left.\mathrm{V} 32, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{GP}_{0.28}$ $\left(\Delta /\right.$ dotted line, $\left.\mathrm{V} 33, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{GP}_{0.15}\left(\diamond /\right.$ dotted-dashed line, $\left.\mathrm{V} 34, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$

Fig. 5.22.: a) Molar masses M_{n} and b) polydispersities against conversion p of Series C; $\mathrm{GP}_{0.53}$ ($\square /$ solid line, $\mathrm{V} 31, \mathrm{f}_{\mathrm{tBMA}}=0.5$), $\mathrm{GP}_{0.46}\left(\mathrm{O} /\right.$ dashed line, $\left.\mathrm{V} 32, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{GP}_{0.28}$ $\left(\Delta /\right.$ dotted line, $\left.\mathrm{V} 33, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{GP}_{0.15}\left(\diamond /\right.$ dotted-dashed line, $\left.\mathrm{V} 34, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$

As well as the relative molar masses the absolute molar masses increased linearly up to 210 min then the slopes flattened in all four entries. The development of the molar mass M_{n} during the four semibatch copolymerizations of the gradient copolymers was nearly the same as during the batch copolymerizations of the statistical copolymers (cf Figure 3.19). At the beginning of all four semibatch polymerizations the slope was linear over the first 210 min . However, the final masses M_{w} of the gradient copolymers were higher than then molar masses of the statistical copolymers because the polymerization time was much longer (1440 min instead of 180 min). The average final molar mass M_{n} of the statistical copolymers was $\approx 28500 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. In the semibatch copolymerizations of the gradient copolymers an average final molar mass of $\approx 50100 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ was reached. The polymerization time of the semibatch experiment was eight times longer than of the batch experiments. But the final average molar mass of the gradient copolymers of Series C has not even the double size. So the mass growth of the semibatch reactions were much slower than the batch reactions. A relation between the polydispersity PDI and the polymerization time t was not obvious. That was also a repetition of the results of the statistical copolymers from the batch copolymerizations of Series A and Series B. But all PDI values were very low with maximal 1.10. The range of the PDI of the gradient copolymers stayed constant during the semibatch polymerizations.

A linear relation between the development of the molar masses M_{n} and the total conversion of the monomers p during the semibatch experiments was found. The fitted curves originated all in (0,0). This behavior is typical for controlled radical polymerizations. [108] The data points had an average slope of $543 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, see Equations 5.2 .38 to 5.2.41.

$$
\begin{align*}
& \text { V31, } \mathrm{GP}_{0.53}: \mathrm{M}_{\mathrm{n}}=(58335 \pm 3035) \mathrm{g} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{p}\left(\mathrm{f}_{\mathrm{tBMA}, 0.50}\right) \tag{5.2.38}\\
& \mathrm{V} 32, \mathrm{GP}_{0.46}: \mathrm{M}_{\mathrm{n}}=(55040 \pm 1000) \mathrm{g} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{p}\left(\mathrm{f}_{\mathrm{tBMA}, 0.65}\right) \tag{5.2.39}\\
& \text { V33, } \mathrm{GP}_{0.28}: \mathrm{M}_{\mathrm{n}}=(49614 \pm 1547) \mathrm{g} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{p}\left(\mathrm{f}_{\mathrm{tBMA}, 0.75}\right) \tag{5.2.40}\\
& \text { V34, } \mathrm{GP}_{0.15}: \mathrm{M}_{\mathrm{n}}=(54448 \pm 1059) \mathrm{g} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{p}\left(\mathrm{f}_{\mathrm{tBMA}, 0.85}\right) \tag{5.2.41}
\end{align*}
$$

The depiction of the polydispersities PDI of the samples of the four copolymers versus the conversion p gave no relation of the PDI and the conversion p . This was the same observation as with the PDI/reaction time plot. However, the values of the PDI were very low over the whole conversion range. In literature on gradient copolymers which had been synthesized by ATRP the PDI-values were up to 1.5. [109, 110, 111] Hence, it can be stated that the reaction control was good over the whole conversion.

5.2.5. Thermal Behavior

The thermal behavior of the gradient copolymers was examined to determine the temperature range of the glass transition region $\Delta \mathrm{T}$ and the glass transition temperature T_{g}. The samples of the precipitated copolymers of Series C were analyzed in the same way and the same
temperature range as the statistical copolymers of Series B (cf. Section 3.3.4). The applied DSC program parameters were:

- precooling: RT to $-80^{\circ} \mathrm{C}$
- standby for 20 min
- 1. heating: -80 to $150^{\circ} \mathrm{C}$
- 1. cooling: 150 to $-80^{\circ} \mathrm{C}$
- 2. heating: -80 to $150^{\circ} \mathrm{C}$
- postcooling: $150^{\circ} \mathrm{C}$ to RT

In Figure 5.23 the thermogram of the sample of experiment $\mathrm{V} 34\left(\mathrm{GP}_{0.15}, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$ which was taken after 60 min polymerization time with both heating runs and the cooling run is depicted as an example. The first heating run showed a glass transition overlaid by a relaxation peak between $60^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$. The second heating run showed a glass transition step nearly in the same range as the peak in the first run. Only the second heating runs of all samples taken during the four semibatch polymerizations were anlaysed with respect to $\mathrm{T}_{\text {onset }}, \mathrm{T}_{\text {offset }}, \mathrm{T}_{\mathrm{g}}$, $\mathrm{T}_{\text {midpt }}, \Delta \mathrm{T}$ and $\Delta \mathrm{c}_{\mathrm{p}}$. [89] The analysis followed the description in Section 3.3.4. The complete results of the analysis of the second heating runs from all samples of Series C are listed in Table 5.13.

Fig. 5.23.: DSC thermogram of gradient copolymer V34 $\left(\mathrm{GP}_{0.15}, \mathrm{f}_{\mathrm{tBMA}}=0.85\right.$, reaction time $\mathrm{t}=$ 60 min); a - first heating run, b - first cooling run, c - second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Tab. 5.13.: DSC results of the different gradient copolymers of Series C

Entry $\mathrm{f}_{\text {tBMA }}$	time t $[\mathrm{min}]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {midpt }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{g} $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{c}_{\mathrm{p}}$ $\left[\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}\right]$
$\mathrm{V} 31^{\mathrm{GP}_{0.53}}$	60	50.5	60.0	56.0	67.0	16.5	0.169
0.5	150	61.0	72.0	72.0	87.0	26.0	0.191
	210	56.5	71.5	70.0	82.0	22.0	0.252
	330	55.5	65.5	69.5	73.5	18.0	0.180
	450	54.0	63.0	63.5	69.5	15.5	0.163
	1440	52.0	60.0	60.5	67.0	15.0	0.197
$\mathrm{~V} 32^{\mathrm{GP}_{0.46}}$	60	54.5	65.0	65.0	73.0	18.5	0.204
0.65	90	53.5	64.0	64.5	72.5	19.0	0.227
	150	53.0	64.5	64.0	73.5	20.5	0.241
	210	50.5	54.0	63.0	74.0	23.5	0.200
	330	42.0	58.5	54.5	73.0	31.0	0.197
	450	40.0	59.5	52.5	75.5	35.5	0.231
V 33440	46.0	57.0	60.0	66.0	20.0	0.190	
$\mathrm{GP}_{0.28}$	60	58.5	67.0	70.0	75.0	16.0	0.248
0.75	90	62.5	69.5	71.0	76.0	13.0	0.218
	150	51.5	64.5	64.0	75.5	23.5	0.263
	210	53.0	67.5	60.5	83.5	30.5	0.209
	330	56.5	66.0	62.0	72.5	16.0	0.157
	450	50.0	59.0	60.5	66.5	16.5	0.220
	1440	60.0	69.0	68.5	76.0	16.0	0.207
$\mathrm{VP}_{0.15}$	60	67.5	73.5	79.0	81.0	13.5	0.256
0.85	90	54.5	64.0	63.5	72.0	17.5	0.213
	150	63.0	70.0	73.5	77.0	14.0	0.224
	210	61.0	70.5	73.0	78.0	17.0	0.230
	330	62.5	71.5	72.5	79.5	17.0	0.230
	450	65.5	73.5	73.5	80.5	15.0	0.223
	1440	75.5	86.0	84.0	95.5	20.0	0.254

The thermograms of the second heating runs from the samples of experiment V32 $\left(\mathrm{GP}_{0.46}\right.$, $\mathrm{f}_{\mathrm{tBMA}}=0.65$) are depicted in Figure 5.24 exemplarily for the four gradient copolymers. The limits of the glass transition range $\Delta \mathrm{T}, \mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$, are marked there, as well as the glass transition temperature T_{g}. The glass transition temperature T_{g} shifted from $65^{\circ} \mathrm{C}$ (curve A , $\mathrm{t}=60 \mathrm{~min}$) to lower temperature of $52.5^{\circ} \mathrm{C}$ up to a polymerization time of 450 min . However, the last samples taken at 1440 min had a higher glass transition temperature of $60^{\circ} \mathrm{C}$. The
glass transition temperature range $\Delta \mathrm{T}$ expanded from 18.5 to $35.5^{\circ} \mathrm{C}$ over the first 450 min . The sample which was taken after 1440 min had a smaller $\Delta \mathrm{T}$ of $20^{\circ} \mathrm{C}$.

Fig. 5.24.: DSC thermograms of experiment V32 $\left(\mathrm{GP}_{0.46}, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$ with marked glass transition temperature range $\mathrm{T}_{\text {onset }}$, $\mathrm{T}_{\text {offset }}$ and glass transition temperature T_{g}; second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$; $\mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-150 \mathrm{~min}, \mathrm{D}-$ $210 \mathrm{~min}, \mathrm{E}-330 \mathrm{~min}, \mathrm{~F}-450 \mathrm{~min}$ and $\mathrm{G}-1440 \mathrm{~min}$ of reaction time

The plot of the glass transition temperatures T_{g} and temperature ranges $\Delta \mathrm{T}$ of all semibatch copolymerization samples against the polymerization time t is depicted in Figure 5.25, while Figure 5.26 shows analogues plots versus the monomer conversion p.

The results of the DSC-measurements varied obviously between the four semibatch copolymerizations. The glass transition temperature T_{g} of the samples from experiment V31 ($\mathrm{GP}_{0.53}$, $\mathrm{f}_{\mathrm{tBMA}}=0.5$) slightly decreased from 72 to $60.5^{\circ} \mathrm{C}$ during the polymerization time, see Figure 5.25a. The decrease of the glass transition temperature range $\Delta \mathrm{T}$ was strong up to a polymerization time of 450 min from 26 to $15^{\circ} \mathrm{C}$. Between 450 min and 1440 min was no obviously change. The values of the glass transition temperature T_{g} samples of experiment V32 $\left(\mathrm{GP}_{0.46}\right.$, $\mathrm{f}_{\mathrm{tBMA}}=0.65$) decreased up to 450 min polymerization time from 65 to $52.5^{\circ} \mathrm{C}$ and then up to $1440 \mathrm{~min} \mathrm{~T}_{\mathrm{g}}$ increased to $60^{\circ} \mathrm{C}$, see Figure 5.25b. The values of the glass transition temperature range $\Delta \mathrm{T}$ proceeded contrary. First they rose from 18.5 to $35.5^{\circ} \mathrm{C}$ and then they fell to $20^{\circ} \mathrm{C}$.

Fig. 5.25.: Plot of the glass transition temperature $\mathrm{T}_{\mathrm{g}}(\boldsymbol{\square})$ and the glass transition region $\Delta \mathrm{T}(\bullet)$ versus the polymerization time t of Series C; a) $\mathrm{V} 31\left(\mathrm{GP}_{0.53}, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$, b) V32 $\left.\left.\left(\mathrm{GP}_{0.46}, \mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{c}\right) \mathrm{V} 33\left(\mathrm{GP}_{0.28}, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{d}\right) \mathrm{V} 34\left(\mathrm{GP}_{0.15}, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$

Figure 5.25 c shows the polymerization time depending values of the samples taken during experiment V33 $\left(\mathrm{GP}_{0.28}, \mathrm{f}_{\mathrm{tBMA}}=0.75\right)$. Here the data points of T_{g} first declined up to 450 min of polymerization time from 70 to $60.5^{\circ} \mathrm{C}$ and then they raised to $68.5^{\circ} \mathrm{C}$ at 1440 min . The analysis of the glass transition temperature range showed scattering values around $16^{\circ} \mathrm{C}$. The T_{g} values from the samples of experiment $\mathrm{V} 34\left(\mathrm{GP}_{0.15}, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$ (see Figure 5.25d) slightly decreased from $79^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{g}}$ to $73.5^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{g}}$ up to 450 min of polymerization time and then increase again to $84^{\circ} \mathrm{C}$ at 1440 min . For $\Delta \mathrm{T}$ the values scattered and increased from 13.5 to $20^{\circ} \mathrm{C}$.

In Figure 5.26a the plots of the glass transition temperature T_{g} and the glass transition region $\Delta \mathrm{T}$ of the samples from experiment $\mathrm{V} 31\left(\mathrm{GP}_{0.53}, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$ against the conversion p are given. The first values at $11 \% \mathrm{p}$ did not fit to the other values. There was an increase from 56 to $72^{\circ} \mathrm{C}$ at T_{g} and from 16.5 to $26^{\circ} \mathrm{C}$ at $\Delta \mathrm{T}$ from 11 to 20% conversion. The residual T_{g} values slightly decrease from 72 to $60.5^{\circ} \mathrm{C}$ and the $\Delta \mathrm{T}$ values also decrease with a stronger slope from 26 to $15^{\circ} \mathrm{C}$. The T_{g} and $\Delta \mathrm{T}$ values of the samples of experiment V32 $\left(\mathrm{GP}_{0.46}\right.$, $\mathrm{f}_{\mathrm{tBMA}}=0.65$) are plotted in Figure 5.26b. The data points of the glass transition temperature declined from $65^{\circ} \mathrm{C}$ to $52.5^{\circ} \mathrm{C}$ up to a conversion of 70% and then declined to $60^{\circ} \mathrm{C}$ again. The glass transition temperature range first rose from 18.5 to $35.5^{\circ} \mathrm{C}$ up to 70% and then fell to $20^{\circ} \mathrm{C}$. In Figure 5.26 c are the $\mathrm{T}_{\mathrm{g}}-$ and $\Delta \mathrm{T}$-values of the samples of experiment V33 $\left(\mathrm{GP}_{0.28}, \mathrm{f}_{\mathrm{tBMA}}=0.75\right)$ displayed. The glass transition temperature scattered between $60^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ and the glass transition temperature range scattered around $16^{\circ} \mathrm{C}$. The glass transition temperature of the samples of experiment $\mathrm{V} 34\left(\mathrm{GP}_{0.15}, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$, see Figure 5.26d, was nearly linear around $75^{\circ} \mathrm{C}$ up to a conversion of 80%. Then T_{g} increased up to $84^{\circ} \mathrm{C}$. The values of $\Delta \mathrm{T}$ increased from 13.5 to $20^{\circ} \mathrm{C}$.

The dependence of the glass transition temperature constantly changed with the composition of the four entries, according to the Fox-Flory-Theory. [71, 112] Theoretically the T_{g} should decrease with increase of the amount of nBMA inside the polymer chain because PnBMA has a lower glass transition temperature than PtBMA. [90, 91] Only for V32 $\left(\mathrm{GP}_{0.46}, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$ this was obviously noticeable. The values of the samples of the three other entries only fall slightly. But in all four entries the T_{g}-value of the last sample, taken after 1440 min , was higher than the one taken at 450 min .

The glass transition temperature range $\Delta \mathrm{T}$ of the statistical copolymers of Series A rose slightly with the increase of nBMA inside the polymer chain (see Figure 3.26). According to the literature $[14,15]$ the temperature range of the correlated gradient copolymers with an equal composition should have a broader glass transition temperature range that lay between the glass transition temperature of the homopolymers.

Fig. 5.26.: Plot of the glass transition temperature $\mathrm{T}_{\mathrm{g}}(\boldsymbol{\square})$ and the glass transition region $\Delta \mathrm{T}(\bullet)$ versus the conversion p of Series C; a) V31 $\left(\mathrm{GP}_{0.53}, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$, b) V32 $\left(\mathrm{GP}_{0.46}\right.$, $\left.\left.\left.\mathrm{f}_{\mathrm{tBMA}}=0.65\right), \mathrm{c}\right) \mathrm{V} 33\left(\mathrm{GP}_{0.28}, \mathrm{f}_{\mathrm{tBMA}}=0.75\right), \mathrm{d}\right) \mathrm{V} 34\left(\mathrm{GP}_{0.15}, \mathrm{f}_{\mathrm{tBMA}}=0.85\right)$

The broadening of the glass transition temperature range with the increase of nBMA inside the polymer chain could be observed for $\mathrm{V} 32\left(\mathrm{GP}_{0.46}, \mathrm{f}_{\mathrm{tBMA}}=0.65\right)$. Hence, the glass transition temperature range of the samples of this developed as expected. The three other semibatch copolymerization did not show this behavior. When the values of $\Delta \mathrm{T}$ of the statistical copolymers and the gradient copolymers were compared, cf. Tables 3.14, 3.15 and 5.13, no obvious difference was observed.

For statistical copolymers the glass transition temperature can be described with Fox's equation (cf. Section 3.3.4). This analysis was also applied to the gradient copolymers, using Equation 5.2.42.

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\frac{\mathrm{F}_{\mathrm{tBMA}}}{\mathrm{~T}_{\mathrm{g}, \mathrm{tBMA}}}+\frac{\mathrm{F}_{\mathrm{nBMA}}}{\mathrm{~T}_{\mathrm{g}, \mathrm{nBMA}}} \tag{5.2.42}
\end{equation*}
$$

with $\mathrm{T}_{\mathrm{g}, \mathrm{tBMA}}=107^{\circ} \mathrm{C}[90]$ and $\mathrm{T}_{\mathrm{g}, \mathrm{nBMA}}=20^{\circ} \mathrm{C}[91]$

The results of the calculations are listed in Table 5.14. For the copolymers $\mathrm{GP}_{0.46}, \mathrm{GP}_{0.28}$ and $\mathrm{GP}_{0.15}$ the Fox-Equation gave temperature that were close to the measured T_{g} within 2 to $8^{\circ} \mathrm{C}$. But the calculated glass transition temperatures of the samples of $\mathrm{GP}_{0.53}$ did not agree to the measured temperatures. The measured T_{g} values were all distinctly higher than the calculated Fox- T_{g}-values. The differences lay between $17^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$. The gradients of the copolymers $\mathrm{GP}_{0.46}, \mathrm{GP}_{0.28}$ and $\mathrm{GP}_{0.15}$ obviously be to small, hence, there was no substantial difference between the monomer distribution in the gradient-copolymers and the statistical copolymers.

Tab. 5.14.: Theoretical and measured glass transition temperature of Series C
\(\left.$$
\begin{array}{crccccc}\hline \begin{array}{c}\text { Entry } \\
\mathrm{f}_{\mathrm{tBMA}}\end{array} & \begin{array}{c}\text { time } \\
{[\mathrm{min}]}\end{array} & & \mathrm{F}_{\text {tBMA }} & \mathrm{F}_{\mathrm{nBMA}}{ }^{a} & \begin{array}{c}\mathrm{T}_{\mathrm{g}}(\text { Fox })^{b} \\
{\left[{ }^{\circ} \mathrm{C}\right]}\end{array} & \begin{array}{c}\mathrm{T}_{\mathrm{g}}(\mathrm{DSC})^{c} \\
{\left[{ }^{\circ} \mathrm{C}\right]}\end{array}\end{array}
$$ \begin{array}{c}\Delta \mathrm{T}_{\mathrm{g}}{ }^{d}

{\left[{ }^{\circ} \mathrm{C}\right]}\end{array}\right]\)| | | | | | | |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| V 31 | 60 | 0.59 | 0.41 | 38.6 | 56.0 | 17.4 |
| $\mathrm{GP}_{0.53}$ | 90 | 0.72 | 0.28 | 48.3 | 72.0 | 23.7 |
| 0.5 | 150 | 0.67 | 0.33 | 43.6 | 70.0 | 26.4 |
| | 210 | 0.67 | 0.33 | 44.0 | 69.5 | 25.5 |
| | 330 | 0.64 | 0.36 | 41.4 | 69.5 | 28.1 |
| | 450 | 0.62 | 0.38 | 40.3 | 63.5 | 23.2 |
| | 1440 | 0.56 | 0.44 | 36.8 | 60.5 | 23.7 |
| $\mathrm{~V} 32^{\mathrm{GP}_{0.46}}$ | 60 | 0.88 | 0.12 | 69.6 | 65.0 | -4.6 |
| 0.65 | 90 | 0.82 | 0.18 | 60.5 | 64.5 | 4.0 |
| | 2150 | 0.81 | 0.19 | 58.4 | 64.0 | 5.6 |
| | 0.78 | 0.22 | 55.2 | 63.0 | 7.8 | |

Continuation on next page ...

Entry $\mathrm{f}_{\text {tBMA }}$	time $[\mathrm{min}]$		$\mathrm{F}_{\text {tBMA }}$	$\mathrm{F}_{\mathrm{nBMA}}{ }^{a}$	$\mathrm{T}_{\mathrm{g}}(\text { Fox })^{b}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\mathrm{g}}(\mathrm{DSC})^{c}$ $\left[{ }^{\circ} \mathrm{C}\right]$
	330	0.76	0.24	52.4	54.5	$\Delta \mathrm{T}_{\mathrm{g}}{ }^{d}$ $\left[{ }^{\circ} \mathrm{C}\right]$
	450	0.72	0.28	48.3	52.5	4.2
	1440	0.68	0.32	44.8	60.0	15.2
V 33	60	0.89	0.11	73.0	70.0	-3.0
$\mathrm{GP}_{0.28}$	90	0.87	0.13	68.9	71.0	2.1
0.75	150	0.84	0.16	63.5	64.0	0.5
	210	0.84	0.16	62.8	60.5	-2.3
	330	0.82	0.18	59.6	62.0	2.4
	450	0.80	0.20	57.6	60.5	2.9
	1440	0.77	0.23	54.0	69.0	15.0
$\mathrm{~V} 34^{\mathrm{GP}_{0.15}}$	60	0.89	0.11	73.3	79.0	5.7
0.85	90	0.91	0.09	78.0	63.5	-14.5
	150	0.91	0.09	76.8	73.5	-3.3
	210	0.90	0.10	74.2	73.0	-1.2
	330	0.89	0.11	71.5	72.5	1.0
	450	0.88	0.12	70.2	73.5	3.3
	1440	0.86	0.14	67.0	84.0	17.0

${ }^{a} \mathrm{~F}_{\mathrm{nBMA}}=1-\mathrm{F}_{\mathrm{tBMA}} ;{ }^{b}$ calculated with Eq. 5.2.42
${ }^{c}$ measured with DSC; ${ }^{d} \Delta \mathrm{~T}_{\mathrm{g}}=\mathrm{T}_{\mathrm{g}}(\mathrm{DSC})-\mathrm{T}_{\mathrm{g}}($ Fox $)$

5.3. Summary

Based on the kinetic investigations on batch-copolymerizations of the different monomer compositions of n-butyl and tert-butyl methacrylate the monomer addition programs of semibatch copolymerizations to generate gradient copolymers with different compositional gradients have been calculated. Four different monomer compositions were polymerized with tBMA as the stock and nBMA as the feed. The analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the samples taken over the reaction time showed that the conversion of all entries increased linear at the beginning of the polymerization and then leveled off. After 1440 min the conversion reached around 91% in all cases. From the monomer conversions the cumulative and the instantaneous copolymer compositions of all samples was calculated. The cumulative compositions showed a decrease in tBMA-contend up to the intended composition with all four semibatch reactions. The instantaneous compositions also decreased. The slope of the decrease was too strong up to 16% of monomer conversion and from 16 to 91% monomer conversion the slope was too small. But the gradient was constant within these regions. Therewith the semibatch copolymerization yielded in linear gradient copolymers with a con-
stant gradient between a conversion of 16 to 91%. Over the whole reaction the copolymers can be described as "double-gradients". Elementary analysis showed the samples to be free of pollution. The analysis of the samples with ATR-FTIR-spectroscopy gave spectra with the same characteristic vibrational bands that were found for the statistic copolymers. The calibration curve that was developed with the statistic copolymers could also be applied to the gradient copolymers and gave similar compositions as obtained by ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis. The SEC-measurements gave elution-diagrams without fronting or tailing, demonstrating a good reaction control even over 1440 min . The molar masses grew regularly for the experiments V32 $\left(\mathrm{GP}_{0.46}\right)$, V33 $\left(\mathrm{GP}_{0.28}\right)$ and V34 $\left(\mathrm{GP}_{0.15}\right)$, while experiment V31 $\left(\mathrm{GP}_{0.53}\right)$ of higher molar weight. The low polydispersities of all samples were well below 1.1, which also indicated the good reaction control. DSC thermal analysis revealed a remarkable decrease of the T_{g}, as well as a strong increase of the glass transition temperature range with growing of the isolated samples of experiment V32 $\left(\mathrm{GP}_{0.46}\right)$. The measured T_{g} of the gradient copolymers do not obey the Fox-Flory-Rule of the copolymers glass temperature. Semi-batch copolymers of the experiments V33 $\left(\mathrm{GP}_{0.28}\right)$ and $\mathrm{V} 34\left(\mathrm{GP}_{0.15}\right)$ exhibited a similar behavior of T_{g} and $\Delta \mathrm{T}$ on conversion p, however, they all could be described by means of Fox-Equation and hence behave like random copolymers. It must be concluded that $\mathrm{P}[t \mathrm{BMA}-\mathrm{grad}-\mathrm{nBMA}]$ copolymers only behave thermally different from their random analogs if the compositional gradient $\mathrm{dF} / \mathrm{dp}$ exceeds a value of about 0.8 . At all four reactions the last sample, taken at 1440 min , the values of T_{g} were higher than the one taken at 450 min , although they should be lower. The reason could be that the last sample was not a small one of 1 ml but rather was taken from the final precipitated copolymer.

6. Hydrolysis of Gradient Copolymers from $\mathbf{n -}$ and tert-Butyl Methacrylate

Since the declared aim of this thesis was to prepare a functional amphiphilic gradient copolymer P[MAA-grad-nBMA], the next step is the cleavage of the tert-butyl-ester side groups of the gradient copolymers $\mathrm{P}[\mathrm{tBMA}-\mathrm{grad}-\mathrm{nBMA}]$ which were synthesized in Chapter 5. In Chapter 4 a model compound - the statistical copolymer P[nBMA-co-tBMA] - was used to find an efficient hydrolysis procedure, demonstrating the hydrolysis with methanesulfonic acid to give the best results. This chapter shows the hydrolysis of the final gradient copolymers V31 to V34 (Series C) to result compounds V71 to V74 (Series E).

6.1. Materials and Methods

The chemicals and the synthesis method were the same as described in Section 4.1.

6.1.1. Materials

The hydrolysis reagent was methanesulfonic acid (MSA, $\leq 99.5 \%$, Aldrich). It was used as received. The same applied to the used solvents chloroform (99.9%, Acros, extra dry over molecular sieve, stabilized), THF (chromasolv, Aldrich) and n-pentane (Aldrich).

6.1.2. General Procedure

0.25 g of the copolymer were dissolved in $2.25 \mathrm{~g}(1.5 \mathrm{ml}) \mathrm{CHCl}_{3}$ and was stirred over night at room temperature. Then the respective amount of methanesulfonic acid (MSA) was added, see Table 6.1. The mixture was stirred for 2 hours at room temperature. A spatula-spoon of sodium hydrogen carbonate was added and this mixture was stirred for 30 min . Subsequently 5 ml THF were added and the mixture was filtered over a P4 glass filter. Afterward the solution was dropped into 200 ml of ice-cold pentane. The precipitated polymer was filtered over P4 glass filter and dried at room temperature for two hours. Then the copolymer was re-dissolved in 1 ml THF and the solution was dropped into 200 ml of an ice cooled water: methanol $=$ 1:1 vol:vol mixture. The precipitated polymer was filtered over P 4 glass filter and dried at room temperature under an oil-pump vacuum over night. The yields are listed in Table 6.1.

Experiment V71 (P[MAA-grad-nBMA], $\mathrm{F}_{\mathrm{MAA}}=0.53$):
${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R}$: $0.65-1.22 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{nBMA}]\right) ; 1.3-1.46 \mathrm{ppm}\left(\right.$ broad peak, $-\mathrm{CH}_{2}-$, $\mathrm{P}[\mathrm{nBMA}]) ; 1.49-1.63 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{2}-, \mathrm{P}[\mathrm{nBMA}]\right) ; 1.64-2.15 \mathrm{ppm}\left(\right.$ broad peak, $-\mathrm{CH}_{3}$, P[nBMA], P[MAA]); 3.33ppm ($\mathrm{H}_{2} \mathrm{O}$); 3.8-4.0 ppm (broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]\right) ; 12.1-$ $12.5 \mathrm{ppm}($ broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{:} 62.45 \% \mathrm{C}, 8.66 \% \mathrm{H},\left(28.88 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3600-2300 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3050-2750 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}^{-},-\mathrm{CH}_{3}\right) ; 1724 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1699 \mathrm{~cm}^{-1} ; 1468 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }_{-} \mathrm{CH}_{3}\right) ; 1389 \mathrm{~cm}^{-1} ; 1244 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1154 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-)$; $1065 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1020 \mathrm{~cm}^{-1} ; 998 \mathrm{~cm}^{-1} ; 964 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 945 \mathrm{~cm}^{-1} ; 844 \mathrm{~cm}^{-1} ; 800 \mathrm{~cm}^{-1} ; 749 \mathrm{~cm}^{-1} ;$ $518 \mathrm{~cm}^{-1}$

Experiment V72 to V74 (P[MAA-grad-nBMA]:

The ${ }^{1} \mathrm{H}-$ and IR-spectra of the compounds V72 to V74 exhibited the same signals, i. e. band positions as observed in the analogous copolymer V71. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra are shown in Figure 6.2, the FTIR-spectra are depicted in Figure 6.3. The elemental analysis results the four experiments are listed in Table 6.2, SEC- and DSC-data in Table 6.3 and Table 6.4, respectively.

6.1.3. Characterization

All characterization-methods were the same as with the batch copolymers of Chapter 3. The used methods were:

- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy
- elementary analysis
- ATR-FTIR-spectroscopy
- size exclusion chromatography
- differential scanning calorimetry

The same instruments under the same conditions were used for the investigation of the resulting copolymers.

6.2. Results and Discussion

This section describes the observations on the hydrolysis reaction performed with the gradient copolymers of V31 to V34. Also the results of the analysis of the hydrolysis products are given. The products were compared with the educts and the differences between the four products were investigated.

The amount of added MSA depended on the amount of tBMA inside the polymer chain. It was calculated in an analogous way as for the statistical copolymers. Equation 6.2.1 was used for the gradient copolymers.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{MSA}}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{x} \cdot \mathrm{M}_{\mathrm{MSA}}}{\mathrm{M}_{\mathrm{tBMA}} \cdot \delta_{\mathrm{MSA}}} \tag{6.2.1}
\end{equation*}
$$

with $\mathrm{V}_{\text {MSA }}$ - Volume of the methanesulfonic acid, m - mass of the polymer, $\mathrm{F}_{\text {tBMA }}$ - ratio of tBMA in the polymer chain, x - multiplicity factor for the hydrolysis reagent $=2, \mathrm{M}_{\mathrm{tBMA}}$ - molar mass of $\mathrm{tBMA}=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{MSA}}-$ molar mass of the methanesulfonic acid $=$ $96.11 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and $\delta_{\mathrm{MSA}}-$ density of the methanesulfonic acid $=1.48 \mathrm{~g} \cdot \mathrm{ml}^{-1}$

The reactions proceeded in the same way as observed with the model hydrolysis in Section 4.2. However, a second precipitation was not only necessary to remove the formed salt: After the first precipitation from pentane the hydrolysis products were brown oils, hence a second purification step was needed. After the purification steps the resulting copolymers were obtained in form of light yellow powders.

The theoretical yields depend on the copolymer composition $\mathrm{F}_{\mathrm{tBMA}}$, they were calculated in the same way as in Section 4.2, but using Equation 6.2.2.

$$
\begin{equation*}
\mathrm{y}_{\text {theo }}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{M}_{\mathrm{MAA}}}{\mathrm{M}_{\mathrm{tBMA}}}+\mathrm{m} \cdot\left(1-\mathrm{F}_{\mathrm{tBMA}}\right) \tag{6.2.2}
\end{equation*}
$$

with $y_{\text {theo }}$ - theoretical yield, m - mass of the polymer, $\mathrm{F}_{\text {tBMA }}$ - ratio of tBMA in the polymer, $\mathrm{M}_{\mathrm{MAA}}-$ molar mass of MAA $=86.09 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{tBMA}}-$ molar mass of $\mathrm{tBMA}=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

The results of the two calculations, the needed volumes of methanesulfonic acid and the theoretical yields, as well as the resulting and percentage yields of the four hydrolysis reactions are listed in Table 6.1.

The rise of tert-butyl-group contents inside the polymer chain of the educts and therewith of the COOH -group molar fraction in the products lead to a decrease of the reaction yield. That was due to the change in the solubility of the hydrolysis products. The higher the amount of COOH-groups, the better was the solubility of the copolymer in water. The hydrolysis products were precipitated in a mixture of water and methanol (vol:vol 1:1) to purify the
copolymers. To keep the comparability of the reactions, the precipitation mixture was not changed. A fraction of the copolymers was not precipitated and this amount became larger with increasing $\mathrm{COOH}-$ group content of the polymer chains.

Tab. 6.1.: Amount of added MSA and yields of hydrolysis products of Series E

Educt	$\mathrm{F}_{\text {tBMA }}$	$\mathrm{V}_{\text {MSA }}$	yield		
			theoretical	actual	
		$[\mathrm{ml}]$	$[\mathrm{g}]$	$[\mathrm{g}]$	$[\%]$
V71	0.56	0.13	0.19	0.15	78.95
V72	0.68	0.16	0.18	0.12	66.67
V73	0.77	0.18	0.17	0.11	64.71
V74	0.86	0.20	0.16	0.09	56.25

In analogy to the statistical copolymers the hydrolyzed gradient copolymers were dissolved in DMSO-d6 for ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The resulting ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra are represented in Figure 6.2 (black lines) together with the corresponding ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the educts (grey lines). The molecular structures of the educts and the products with the numbering of the carbons are shown in Figure 6.1. The changes between the spectra of the educts and the products were distinct. The intensity of the mixed broad peak ranging from 1.3 to 1.45 ppm caused by the signals 3 ' and 7 ' shrank relative to the signals 8 ' or 9 ' which remained constant. The reason was the absence of the signal 3 ' from the protons of the tert-butyl group in the product. The -COOH -signal could be monitored between 12.0 to 12.75 ppm . In all ${ }^{1} \mathrm{H}-$ NMR-spectra of the products a $\mathrm{H}_{2} \mathrm{O}$ signal was present because the DMSO- d_{6} was not dry. In the spectra of V34 an additional peak from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ appeared because the NMR-tube was not completely dry. From the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra it can be concluded that all tert-butyl-ester groups were removed.

A

B

Fig. 6.1.: Molecular structures of educts Series C and products Series E with carbon-atom labels; $\mathrm{A}-$ educt $\mathrm{P}[\mathrm{tBMA}-\operatorname{grad}-\mathrm{nBMA}]$ and $\mathrm{B}-\operatorname{product} \mathrm{P}[\mathrm{MAA}-\operatorname{grad}-\mathrm{nBMA}](\mathrm{z}=\mathrm{x}+\mathrm{y}=1)$

Fig. 6.2.: Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of educts of Series C and hydrolysis-products of Se ries E; grey line - educt, black line - product; A: V31/V71 $\mathrm{F}_{\mathrm{nBMA}}=0.44$, B: V32/V72 $\mathrm{F}_{\mathrm{nBMA}}=0.32, \mathrm{C}: \mathrm{V} 33 / \mathrm{V} 73 \mathrm{~F}_{\mathrm{nBMA}}=0.23, \mathrm{D}: \mathrm{V} 34 / \mathrm{V} 74 \mathrm{~F}_{\mathrm{nBMA}}=0.14$

The NMR-analysis is followed by the investigation of the hydrolyzed gradient copolymers by elementary analysis and ATR-FTIR-spectroscopy.

The results of the elementary analysis are listed in Table 6.2. The theoretical values were calculated for 100% conversion of the hydrolysis of the educts. The results showed different tendencies of the three elements. The amount of carbon had to fall from Series E because the amount of removed tert-butyl inside the polymer chain rose. In fact the amount of carbon decreased stronger than calculated and the difference between set value and actual values became higher with the increase of $\mathrm{F}_{\mathrm{MAA}}$. The amount of hydrogen also had to fall with the rise of MMA. Here the measured values fitted good to the set values for all four hydrolysis. The amount of oxygen had to increase with the decrease tBMA/ rise of MMA inside the polymer chain. The measured values of oxygen were also higher than they should, expect experiment V71. Moreover, the difference between the set values and the measured one became higher with the rise of MMA. An explanation of the enlargement of the differences is the deterioration of the precipitation behavior in the water: methanol mixture at the end of the synthesis for the purification of the polymer. The hydrolyzed copolymer could be contaminated with solvents or other chemicals which was used during the synthesis even if the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra did not point to something like that. In any case, the good fits of the values of experiment V71 to the targeted values and the fact that the differences of the other entries showed tendencies into the right direction meant that all four reactions worked well.

Tab. 6.2.: Results of the elementary analysis of educts and hydrolysis-products of Series E with divergence from the set values

Entry	$\mathrm{F}_{\text {nBMA }}$		$\begin{gathered} \hline \mathrm{C} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{C}$	$\begin{gathered} \mathrm{H} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{H}$	$\begin{gathered} \mathrm{O} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{O}$
V31	0.44	theory	67.57		9.92		22.50	
		is	66.79	-0.78	9.23	-0.69	23.98	1.48
V71		theory	62.45		8.66		28.88	
		is	62.59	0.14	8.64	-0.02	28.77	0.11
V32	0.32	theory	67.57		9.92		22.50	
		is	67.10	-0.47	9.55	-0.37	23.35	0.85
V72		theory	60.95		8.29		30.75	
		is	59.30	-1.65	8.15	-0.14	32.55	1.79
V33	0.23	theory	67.57		9.92		22.50	
		is	67.93	0.36	9.60	-0.32	22.47	-0.03
V73		theory	59.69		7.98		32.32	
		is	57.14	-2.55	7.84	-0.14	35.02	2.70
V34	0.14	theory	67.57		9.92		22.50	
		is	66.63	-0.94	9.07	-0.85	24.30	1.80
V74		theory	58.30		7.64		34.06	
		is	54.37	-3.93	7.60	-0.04	38.04	3.97

The second part of the structure analysis was the ATR-FTIR-spectroscopy. The resulting spectra of the four hydrolyzed gradient copolymers (black lines) are depicted in Figure 6.3 together with the educts (grey lines). In the four spectra the vibrational bands that were analyzed in the same way as the educts before are marked to show the differences between the educts and the products.

Fig. 6.3.: Comparison of ATR-FTIR-spectra of educts Series C and hydrolysis-products of $S e$ ries E; grey line - educt, black line - product; A: V31/V71 $\mathrm{F}_{\mathrm{nBMA}}=0.44$, B: V32/V72 $\mathrm{F}_{\mathrm{nBMA}}=0.32$, $\mathrm{C}: \mathrm{V} 33 / \mathrm{V} 73 \mathrm{~F}_{\mathrm{nBMA}}=0.23$, $\mathrm{D}: \mathrm{V} 34 / \mathrm{V} 74 \mathrm{~F}_{\mathrm{nBMA}}=0.14$ (Spectra normalized to $\mathrm{A}_{1136}=1$)

In Section 3.3 .2 two bands at $970 \mathrm{~cm}^{-1}$ and $850 \mathrm{~cm}^{-1}$ were introduced that are characteristic for polymer-incorporated tBMA and nBMA units, respectively. Band 1 at $970 \mathrm{~cm}^{-1}$ for nBMA did not change so much but band 2 at $850 \mathrm{~cm}^{-1}$ for tBMA differed obviously from the educt-spectrum to spectra of the products. The changes of band 2 were so strong and influenced also band 1. Therewith the analysis of peak height and peak area of both bands was not possible anymore. The change of band intensity at $850 \mathrm{~cm}^{-1}$ clearly indicates that the hydrolysis products no longer contained tBMA-ester side groups. The band merged with the band at $750 \mathrm{~cm}^{-1}$. The higher the amount of MAA inside the copolymer chain the stronger the fusion of the two bands. Also the band at $1370 \mathrm{~cm}^{-1}$ shrank with the hydrolysis. A third change exhibited the band at $1710 \mathrm{~cm}^{-1}$ which is the vibrational bands of ester $-\mathrm{C}=\mathrm{O}$ group. In the IR-spectrum of the educt the band was a small singlet. The product-spectra instead had broad doublets at that region and with the increase of the MMA-amount that band
became even wider. The double band exhibited maxima at $1720 \mathrm{~cm}^{-1}$ and $1700 \mathrm{~cm}^{-1}$. The literature refers $1720 \mathrm{~cm}^{-1}$ to ester- $\mathrm{C}=\mathrm{O}$ vibration, while $1700 \mathrm{~cm}^{-1}$ belong to the vibrations of carboxylic acid- $\mathrm{C}=\mathrm{O}$ groups. [87] Further the range $\tilde{\nu}>3000 \mathrm{~cm}^{-1}$ changed from educt to product in all four cases. A broad band ranging from 2500 to $3500 \mathrm{~cm}^{-1}$ appeared which could be assigned to the vibrational band of the carboxylic acid OH -group. That broad region got stronger with the rise of the MMA-amount. All in all the changes in the ATR-FTIR-spectra from the educts to the products and the differences of the products among themselves showed that the hydrolysis reactions worked well.

The next analysis was the size exclusion chromatography (SEC). As with the hydrolyzed statistical copolymers also the products of Series E were not soluble in THF. As described in Section 4.2 about 0.4 mg of the copolymer was mixed with 1 ml THF and two drops of TMSI and the mixture was stirred over night at RT. The copolymer became THF-soluble, because the carboxyl groups were converted into non-polar trimethylsilyl-esters. Since the presence of non-covalent fixed TMSI disturbed the dn/dc determination, only the relative molar mass of the copolymers were calculated from the maximum elution volume of the samples and Equation 3.3.22 which based on a polystyrene-calibration-curve ("PSS-values"). The resulting elution diagrams of the RI-detector signals are depicted in Figure 6.4 and the results are listed in Table 6.3.

Tab. 6.3.: SEC results of educts Series C and hydrolysis-products of Series E

| Entry | $\mathrm{F}_{\mathrm{nBMA}}$ | $\mathrm{V}_{\mathrm{E}}{ }^{a}$
 $[\mathrm{ml}]$ | M^{b}
 $\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]$ | $\Delta \mathrm{M}$
 $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$ | $[\%]$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| V31 | 0.44 | 25.37 | 59132 | | |
| V71 | | 25.59 | 53031 | 6101 | 10.32 |
| V32 | 0.32 | 25.83 | 46905 | | |
| V72 | | 26.17 | 39403 | 7502 | 15.36 |
| V33 | 0.23 | 25.52 | 54819 | | |
| V73 | | 26.17 | 39519 | 15300 | 27.91 |
| V34 | 0.14 | 25.94 | 44411 | | |
| V74 | | 26.81 | 28544 | 15867 | 35.73 |

${ }^{a}$ Peak elution volume
${ }^{b}$ relative values, based on PS-Standard calibration Eq. 3.3.22

As well as the product elution-curves of the RI-detector signals also the four educt elutioncurves were monomodal with the same shape, indeed they were shifted towards higher elution volumes, i.e. lower molecular weights. The molar masses of all four products were lower than the educt and the differences became higher with a higher amount of tBMA respectively MAA inside the polymer chain. The difference between the molar mass of the educts and the products decreased from 10.32 to 35.73%.

The calculated relative molar masses were slightly higher than the expected one, around 10%, which was caused by the fact that for a relative molecular weight determination only the maximum elution volume is used and this is always higher than the average molar mass of a sample. Only for experiment V74 the calculated and the expected relative molar masses fitted good together. In terms of SEC the results of the hydrolysis reactions were as expected.

The investigation of the thermal behavior was the next part of analysis. The samples of Series E were heated up two times from -80 to $200^{\circ} \mathrm{C}$ with a cooling run in between $(\mathrm{dT} / \mathrm{dt}=10 \mathrm{~K} / \mathrm{min})$. The samples were not measured up to $300^{\circ} \mathrm{C}$ because from Section 4.2 it was known that the hydrolyzed polymer-samples will decompose. In Figure 6.5 the two heating runs and the cooling run of experiment V71 is represented as an example for the four measurements.

The thermograms of the first heating run showed an endothermic peak between 15 to $115^{\circ} \mathrm{C}$ likewise the thermograms of the statistical copolymers, cf. Figure 4.7. This signal was attributed to the evaporation of remanding solvents, i.e. $\mathrm{H}_{2} \mathrm{O}$ ("emission peak"). At $190^{\circ} \mathrm{C}$ the beginning of the second peak showed. The DSC-trace of the cooling run and the second heating run did not show any peak or other changes, hence, no regeneration of the sample was detected as it was found with the statistical copolymers of Section 4.2. In Figure 6.6 the first heating runs of the compounds of Series E are pictured.

Fig. 6.5.: DSC thermogram of experiment V71 ($\mathrm{P}\left[\mathrm{MAA}_{0.56}\right.$-grad-nBMA $\left._{0.44}\right]$); a - first heating run, b - first cooling run, $\mathrm{c}-$ second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Fig. 6.6.: DSC thermograms of the hydrolysis products of Series E; first heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$; solid line $-\mathrm{V} 71\left(\mathrm{~F}_{\mathrm{MAA}}=0.56\right)$, dashed line $-\mathrm{V} 72\left(\mathrm{~F}_{\mathrm{MAA}}=0.68\right)$, dotted line $-\mathrm{V} 73\left(\mathrm{~F}_{\mathrm{MAA}}=0.77\right)$, dashed-dotted line $-\mathrm{V} 74\left(\mathrm{~F}_{\mathrm{MAA}}=0.86\right)$

All thermograms exhibited an endothermic peak in the same temperature range as substance V71. The peaks got broader and higher with the increase of MMA inside the polymer chain. Regarding to this evident coherence between the shape of the endothermic peak and the composition of the copolymer, the peak area and peak height were determined. The results are listed in Table 6.4 and plotted in Figure 6.7.

Tab. 6.4.: DSC results of hydrolysis-products of Series E

Entry	$\mathrm{F}_{\text {MAA }}$	Area $\left[\mathrm{J} \cdot \mathrm{g}^{-1}\right]$	$\mathrm{T}_{\text {Peak }}$ $\left[{ }^{\mathrm{C}}\right]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	Width $\left[{ }^{[} \mathrm{C}\right]$	Height $\left[\mathrm{mW} \cdot \mathrm{mg}^{-1}\right]$
V 71	0.56	23.7	70.5	34.5	106.8	53.7	0.0845
V 72	0.68	98.1	89.9	47.3	129.6	63.2	0.2863
V 73	0.77	166.8	95.6	41.1	137.6	70.9	0.4366
V 74	0.86	221.3	90.7	37.5	133.2	70.9	0.5949

Fig. 6.7.: Plot of peak area $■$ and peak height of the endothermic peak between $15^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ between against composition of Series E

Both values, the peak area and the peak height, showed a linear dependence on the MAA contents of the copolymers. With the increase of the COOH-group-fraction of in the polymer chain also the peak area and peak height rose. The equations of the two fits are given in Equation 6.2.3 and 6.2.4.

$$
\begin{align*}
& \text { peak area }=(-351.30 \pm 14.74) \mathrm{J} \cdot \mathrm{~g}^{-1}+(667.28 \pm 20.30) \mathrm{J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~F}_{\mathrm{MAA}} \tag{6.2.3}\\
& \text { peak height }=(-0.87 \pm 0.01) \mathrm{mW} \cdot \mathrm{mg}^{-1}+(1.70 \pm 0.01) \mathrm{mW} \cdot \mathrm{mg}^{-1} \cdot \mathrm{~F}_{\mathrm{MAA}} \tag{6.2.4}
\end{align*}
$$

The energy which is needed for the decomposition of the hydrolyzed copolymers rises linear with an increase of methacrylic acid units inside the polymer chain. The independence of the peak area and the peak height from the composition of the copolymers implies that the the peak did not results from the emission of solvents but from the decomposition of COOH groups of the polymers.

6.3. Summary

The tert-butyl groups of the P[tBMA-grad-nBMA] gradient copolymers were hydrolytically cleaved by means of methanesulfonic acid (MSA). The characterization of the hydrolyzed copolymers of Series E with ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy and elementary analysis showed the absence of tert-butyl-groups in the polymer chains and a total conversion for all hydrolysis. The elementary analysis fitted well for experiment V71, with the values from the three other substances tended into the right directions. The changes in the IR-spectra supported the good results of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The vibrational band of the $\mathrm{OH}-$ groups occurred and the fingerprint- region change in case of the vibrational bands from the tert-butylgroup. The changes were so vigorous that an analysis of the vibrational band of nBMA was not possible anymore. The molar mass decreased obviously. With the increase of the MAA-amount inside the polymer chain the shift to lower molar masses became higher. The DSC analysis showed broad endothermic peaks for all copolymers in the same region and the samples did not regenerate after the first heating run. This was the same behavior as observed with samples of the statistical copolymers. The peak area and the peak height of the endothermic peaks rose linear with increase of the MAA-amount inside the polymer chains, hence the needed energy of decomposition increase linear. All four hydrolysis of the resulting gradient copolymers worked well and four amphiphilic gradient copolymers with different composition have successfully be obtained.

7. Synthesis of Statistic Copolymers from Benzyl Methacrylate and tert-Butyl Methacrylate by means of Batch Polymerization

The second monomer system that was investigated in the context of this PhD thesis was composed of benzyl methacrylate and tert-butyl methacrylate. In close analogy to the system with $n-$ and tert-butyl methacrylate statistical copolymers have been prepared first for comparative purpose by means of Atom Transfer Radical Polymerization (ATRP) [16]. These batch experiments were carried out to measure (i) the rate of polymerization of the two monomers, (ii) the composition of the copolymers, as well as (iii) the molecular weights of the products in dependence of the monomer-educt mixture and the reaction time and (iv) the thermal behavior of the resulting polymers and their change during the polymerization. The evaluated data were used to calculate the respective rate constants and to construct the copolymerization diagram of the system BzMA/tBMA.

7.1. Materials and Methods

The batch synthesis with benzyl methacrylate and tert-butyl methacrylate as monomers was done under the same conditions as the ATRP with the monomers n - and tert-butyl methacrylate. $(\mathrm{CuCl}:$ pTSC $:$ PMDETA $=1: 1: 1$ as initiator system, initiator $:$ monomer $1: 175$, solvent MEK, monomer : solvent wt : wt $1: 1, \mathrm{~T}=80^{\circ} \mathrm{C}$).

7.1.1. Materials

Benzyl methacrylate (BzMA, 98%, Alfa Aesar) and tert-butyl methacrylate (tBMA, 98%, Alfa Aesar) were purified via filtration over 1.5 g basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Sigma-Aldrich) per 1 g monomer to remove the inhibitor 4-methoxyphenol. 2-Butanone (MEK, BDH Prolabo, chromasol.) was dried with boron oxide $\mathrm{B}_{2} \mathrm{O}_{3}(99.9 \%$, Sigma-Aldrich) as described in literature [83]. Copper(I) chloride (97%, Sigma-Aldrich) was given into a tenfold amount of glacial acetic acid and heated under reflux for five hours. Subsequently the grey powder was washed with 100 ml ethanol and 100 ml acetone and then dried in vacuo at $60^{\circ} \mathrm{C}$ over night. (following
[84]) $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N} "$ - Pentamethyldiethylenetriamine (PMDETA, 99\%, Sigma-Aldrich) and para-toluenesulfonyl chloride (pTSC, 98%, Sigma-Aldrich) were used as received.

7.1.2. Batch Copolymerization of Statistical Copolymers

Two series of batch experiments were performed. Series F (experiments V81 to V89, Table 7.1) consisted of preparative syntheses without sampling and Series G (experiments V91 to V94, Table 7.2) consisted of analytical copolymerizations with samples taken for EA-, ATR-FTIR-, SEC- and DSC-analysis. The setup of the batch synthesis of BzMA and tBMA was the same as for the batch synthesis, see Figure 7.1.

Fig. 7.1.: Experimental setup for batch copolymerization

Series F was performed in analogy to Series A, cf. Section 3.1.2. A 25 ml Schlenk flask was heated out with a hot gun (air temperature $\approx 400^{\circ} \mathrm{C}$) under vacuum for five minutes and then flushed with nitrogen. The chemicals were weighted in a screw-cap glass in a specific order: First $0.0313 \mathrm{~g}\left(1.81 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{pTSC}$ was weighted, followed by the respective amounts of the two monomers, e. g. $2.7843 \mathrm{~g}(0.0158 \mathrm{~mol}) \mathrm{BzMA}$ and $2.2468 \mathrm{~g}(0.0158 \mathrm{~mol}) \mathrm{tBMA}$ (cf. Table 7.1). When the pTSC was dissolved, $0.0344 \mathrm{~g}\left(1.81 \cdot 10^{-4} \mathrm{~mol}\right)$ PMDETA, and 0.0179 g $\left(1.81 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{CuCl}$ were added. The mixture was rinsed into the Schlenk flask with 5.0310 g of the solvent MEK under nitrogen flow. Then the flask was sealed with a rubber septum. Subsequently the solution was degassed by means of 5 freeze-melt-cycles, flooded with nitrogen and then heated up to $80^{\circ} \mathrm{C}$ for 3 hours. During the reaction time 0.05 ml samples were taken periodically by means of a syringe through the sealed septum at $0,15,30,45,60$, $90,120,150$ and 180 min for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. The 0.05 ml aliquot samples were given into 0.5 ml cold CDCl_{3} without further purification.

After 3 hours the Schlenk flask was removed from the oil bath. The reactions mixture was cooled to $20^{\circ} \mathrm{C}$ with a mixture of ice and water. Afterward the solution was diluted with 20 ml of MEK, filtered over $30 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$ and two-thirds of the solvent was removed by vacuum distillation. The residual mixture of polymer, monomers, initiator components and remaining solvent was slowly dropped into 500 ml of an cooled water: methanol ($1: 1 \mathrm{vol}: \mathrm{vol}$) mixture with $-50^{\circ} \mathrm{C}$. The temperature of the precipitation-solution was observed with a coolingmixture of isopropyl alcohol and liquid nitrogen. The precipitated polymer was filtered over a P4 glass filter and dried at $25^{\circ} \mathrm{C}$ under vacuum over night. This technique is donated as work-up C in the text throughout. The yields of the polymerizations are listed in Table 7.1.

For Series G, the analog to Series B (cf. Section 3.1.2) $0.0689 \mathrm{~g}\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{pTSC}, 0.0626 \mathrm{~g}$ $\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right)$ PMDETA, $0.0357 \mathrm{~g}\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{CuCl}$ were mixed with the corresponding amount of the monomers and MEK (cf. Table 7.2). The preparation of the Schlenk flask, the mixture and the transfer of the chemicals were performed as described with Series G but using a 50 ml Schlenk flask. The same holds true with the synthesis temperature, the reaction time as well as the working up procedure. Reaction conditions and yields are summarized in Table 7.2. In Series $G 1 \mathrm{ml}$ aliquot samples were taken, at $0,60,90,120,150,180 \mathrm{~min}$ for SEC analysis and another 0.05 ml sample were treated as described with Series F and used for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

SEC-samples were worked up differently from the final polymer. The SEC-sample-work-up procedure is denoted as work-up D. 1 ml of the solution was dropped into 20 ml of a cooled water : methanol $=1: 1$ vol:vol mixture which was cooled with isopropyl alcohol and liquid nitrogen to $-50^{\circ} \mathrm{C}$. The precipitated polymer was separated by centrifugation and dried at $25^{\circ} \mathrm{C}$ under vacuum over night. The precipitate was dissolved in $5 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred into a separatory funnel. $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were added and thoroughly shaken. The organic phase was separated and given into a round-bottom flask. The water phase was extracted two times more each with $2 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$. All organic phased were combined and the solvent was removed by vacuum evaporation. The polymer yields of the copolymers isolated from the samples are listed in Table\%.2.

All the precipitated, cleaned and dried copolymers were examined with elemental analysis, ATR-FTIR, SEC and DSC. The respective composition data of all performed test polymerizations are summarized in Tables 7.1 and 7.2.

Tab. 7.1.: Monomer compositions and final yields of BzMA-tBMA batch copolymerization experiments - Series F

Entry	BzMA $[\mathrm{mol}]$	tBMA $[\mathrm{mol}]$	BzMA:tBMA	$\mathrm{f}_{\text {BzMA }}$	$\mathrm{m}_{\text {BzMA }}$ $[\mathrm{g}]$	$\mathrm{m}_{\text {tBMA }}$ $[\mathrm{g}]$	$\mathrm{m}_{\text {MEK }}$ $[\mathrm{g}]$	yield $[\mathrm{g}]$	
$[\%]$									

Tab. 7.2.: Monomer compositions and final yields of BzMA-tBMA batch copolymerization experiments - Series G

Entry	$\begin{gathered} \mathrm{BzMA} \\ {[\mathrm{~mol}]} \end{gathered}$	$\begin{gathered} \mathrm{tBMA} \\ {[\mathrm{~mol}]} \end{gathered}$	BzMA:tBMA	$\mathrm{f}_{\text {BzMA }}$	$\mathrm{m}_{\mathrm{BzMA}}$ [g]	$\mathrm{m}_{\text {tBMA }}$ [g]	$\mathrm{m}_{\text {MEK }}$ [g]	$[\mathrm{g}]^{\mathrm{y}}$	[\%]
V91	0.0316	0.0316	1:1	0.50	5.5686	4.4935	10.0621	7.0909	69.99
V92	0.0211	0.0421	1:2	0.33	3.7182	5.9866	9.7048	6.3808	65.29
V93	0.0421	0.0211	2:1	0.66	7.4189	3.0004	10.4193	7.2422	69.04
V94	0.0632	-	1:0	1.00	11.1371	-	11.1371	5.6621	65.48

Tab. 7.3.: Time-conversion data obtained from samples taken during the batch copolymerization reactions of BzMA and tBMA (Series G)

time	Entry	yield		Entry	yield	
$[\mathrm{min}]$		$[\mathrm{g}]$	$[\%]$		$[\mathrm{g}]$	$[\%]$
60	V 91	0.26	58.40	V 92	0.21	47.52
90		0.32	72.16		0.28	65.13
120		0.36	82.78		0.32	72.50
150		0.38	86.76		0.38	87.25
180		0.39	87.78		0.40	90.88
60	V 93	0.25	56.02	V 94	0.27	59.48
90		0.35	79.51		0.32	71.28
120		0.39	88.09		0.34	75.14
150		0.39	86.68		0.36	79.10
180		0.41	91.26		0.38	84.06

$$
\mathrm{T}=80^{\circ} \mathrm{C},[\mathrm{M}]=\mathrm{xx} \mathrm{~mol} \cdot \mathrm{l}^{-1}, \mathrm{I}: \mathrm{M}=1: 175
$$

Experiment V88 (PtBMA):

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M} \boldsymbol{M} \boldsymbol{R}$: $1.25-1.45 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.42 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA $) ;$ $1.7-1.9 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.9 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{tBMA}\right) ; 5.3 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.9 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA)
$\boldsymbol{E A} \boldsymbol{:} \mathbf{6 5 . 3 0} \% \mathrm{C}, 9.54 \% \mathrm{H},\left(25.16 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3100-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1717 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1476 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-\right.$, $\left.{ }_{-} \mathrm{CH}_{3}\right) ; 1457 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }_{-} \mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1366 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1331 \mathrm{~cm}^{-1} ; 1248 \mathrm{~cm}^{-1}(\mathrm{tBu}) ;$ $1132 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1036 \mathrm{~cm}^{-1} ; 969 \mathrm{~cm}^{-1} ; 940 \mathrm{~cm}^{-1} ; 875 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 847 \mathrm{~cm}^{-1} ; 752 \mathrm{~cm}^{-1}$; $522 \mathrm{~cm}^{-1} ; 500 \mathrm{~cm}^{-1} ; 471 \mathrm{~cm}^{-1}$
$\boldsymbol{S E C} \boldsymbol{:}: \mathrm{dn} / \mathrm{dc}=0.0612 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=30820 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=31620 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=33570 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C}: \mathrm{T}_{\text {onset }}=96.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=103.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=107.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=111.0^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.223 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

Experiment V89 (PBzMA):

${ }^{1} \boldsymbol{H}-\boldsymbol{N M R}: 1.7-1.9 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{BzMA}]\right) ; 1.8 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{BzMA}\right) ; 4.8-$ $5.1 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]\right) ; 5.2 \mathrm{ppm}\left(\mathrm{s}, \mathrm{OCH}_{2} \mathrm{R}, \mathrm{BzMA}\right) ; 5.5 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, BzMA); $6.1 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, BzMA); $7.3-7.43 \mathrm{ppm}$ (broad peak, aromatic ring, BzMA and P[BzMA])
$\boldsymbol{E A} \boldsymbol{A} \mathbf{7 3 . 8 2} \% \mathrm{C}, 6.66 \% \mathrm{H},\left(19.52 \% \mathrm{O}_{\text {calc }}\right)$
$\boldsymbol{A T R}$-FTIR: $3050-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring); $1722 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1497 \mathrm{~cm}^{-1} ; 1484 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1388 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1}$; $1318 \mathrm{~cm}^{-1} ; 1294 \mathrm{~cm}^{-1} ; 1260 \mathrm{~cm}^{-1} ; 1236 \mathrm{~cm}^{-1} ; 1138 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1081 \mathrm{~cm}^{-1} ; 1060 \mathrm{~cm}^{-1}$; $1029 \mathrm{~cm}^{-1} ; 964 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 912 \mathrm{~cm}^{-1} ; 846 \mathrm{~cm}^{-1} ; 826 \mathrm{~cm}^{-1} ; 747 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 733 \mathrm{~cm}^{-1} ; 695 \mathrm{~cm}^{-1}$ (Bz); $583 \mathrm{~cm}^{-1} ; 527 \mathrm{~cm}^{-1} ; 458 \mathrm{~cm}^{-1}$
$\boldsymbol{S E C} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.1351 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=5284 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=55960 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=59460 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C}: \mathrm{T}_{\text {onset }}=96.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=103.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=107.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=111.0^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.223 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

Experiment V81 (P[BzMA-co-tBMA $], \mathrm{f}_{\mathrm{BzMA}}=0.5, \mathrm{~F}_{\mathrm{BzMA}}=0.33$):
${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M} \boldsymbol{M} \boldsymbol{R}$: $1.25-1.45 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.42 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA $) ;$ $1.7-1.9 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]$ and $\left.\mathrm{P}[\mathrm{BzMA}]\right) ; 1.9 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{tBMA}\right) ; 1.8 \mathrm{ppm}$ ($\mathrm{s},-\mathrm{CH}_{3}, \mathrm{BzMA}$); 4.8-5.1 ppm (broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]\right) ; 5.2 \mathrm{ppm}\left(\mathrm{s}, \mathrm{OCH}_{2} \mathrm{R}, \mathrm{BzMA}\right)$; $5.3 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.5 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, BzMA); $5.9 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA); $6.1 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, BzMA); 7.3-7.43 ppm (broad peak, aromatic ring, BzMA and P[BzMA])
$\boldsymbol{E A} \boldsymbol{A} \boldsymbol{7 1 . 2 0} \% \mathrm{C}, 8.18 \% \mathrm{H},\left(20.62 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3125-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring); $1717 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1476 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1319 \mathrm{~cm}^{-1}$; $1248 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1134 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1030 \mathrm{~cm}^{-1} ; 967 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 912 \mathrm{~cm}^{-1} ; 876 \mathrm{~cm}^{-1} ; 846 \mathrm{~cm}^{-1}$ $(\mathrm{tBu}) ; 749 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 696 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 584 \mathrm{~cm}^{-1} ; 528 \mathrm{~cm}^{-1} ; 461 \mathrm{~cm}^{-1}$
$\boldsymbol{S E C} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.1135 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=30880 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=31570 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=32300 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C} \boldsymbol{C}: \mathrm{T}_{\text {onset }}=45.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=56.5^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=52.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=70.5^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.140 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

7.1.3. Characterization

All characterization-methods were the same as with the batch copolymers of Chapter 3. The used methods were:

- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy
- elementary analysis
- ATR-FTIR-spectroscopy
- size exclusion chromatography
- differential scanning calorimetry

The same instruments under the same conditions were used for the investigation of the resulting copolymers.

7.2. Results and Discussion

In following paragraph the results of the analyzes from the different statistical copolymers from benzyl and tert-butyl methacrylate $\mathrm{P}[\mathrm{BzMA}-\mathrm{co}-\mathrm{tBMA}]$ as well as their discussion is given.

The ATRP-polymerizations were carried out in analogy to the copolymerization of n - and tert-butyl methacrylate (cf. Chapter 3) using toluolsulfonyl chloride (pTSC) as the initiator, $\mathrm{Cu}^{\mathrm{I}} \mathrm{Cl}$ as the catalyst and $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-pentamethyldiethylenetriamine (PMDETA) as the ligand. The initial ratio of the substances was pTSC: CuCl:PMDETA:Mon $=1: 1: 1: 175$. The reactions were carried out in 2-butanone (MEK) as solvent $80^{\circ} \mathrm{C}$. The ratio of monomer to solvent was wt:wt $1: 1$ (cf. experimental part Section 7.1.2). Two series of copolymerization were performed. Series F, see Table 7.1, were preparative syntheses just with sampling for ${ }^{1} \mathrm{H}-$ NMR-analysis, and Series G, see Table 7.2, were preparative syntheses with sampling for ${ }^{1} \mathrm{H}-$ NMR-, IR-, SEC- and DSC-analysis. The resulting copolymers were filtered over $\mathrm{Al}_{2} \mathrm{O}_{3}$ to remove the CuCl , subsequently precipitated in an mixture of water:methanol vol : vol $1: 1$ that was cooled down to $-50^{\circ} \mathrm{C}$ by a mixture of liquid nitrogen and isopropyl alcohol, filtered over a P 4 glass filter and dried at $25^{\circ} \mathrm{C}$ under vacuum over night. This technique was called "work-up $C "$. The samples for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ were used without further purification. The other samples were precipitated also in an mixture of water and methanol with vol:vol 1:1 that was cooled down to $-50^{\circ} \mathrm{C}$ by liquid nitrogen and isopropyl alcohol. The precipitated polymers were separated from the liquid phase by centrifugation and dried over night at $25^{\circ} \mathrm{C}$ under vacuum. The polymers were re-dissolved in dichloromethane and transferred in a separation funnel. Water was added and the CuCl was extracted. The polymer- dichloromethane solution was clear and green. After the extraction the organic phase was clear and colorless and the water phase was clear and blue. The organic phase was separated and the solvent was removed by vacuum evaporation. This technique was called "work-up D". The resulting polymers were white and amorphous powders. The work-ups of the Series F and G were different to the work-ups of Series A and B relating to the temperature of the precipitation-solution of methanol and water. The precipitation of the copolymers with BzMA-units only worked well when the methanol-water-mixture had a temperature obviously under $-40^{\circ} \mathrm{C}$ especially for copolymers with low conversion.

7.2.1. Kinetic Studies

In a first series of copolymerization experiments (Series F) preparative batch synthesis were performed to measure the rate of copolymerization as well as the resulting copolymer compositions. Aliquot samples were taken after $0,15,30,45,60,90,120,150$ and 180 min and analyzed by means of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra were analyzed regarding the conversion p of the monomers which was the basis for the calculation of the reaction rates. The signals in the resulting spectra were assigned to the structure elements of the
monomers and the copolymer as shown in Table 7.4. The position of the peaks were taken from literature [85].

Within the subsequent text the numbers of the appropriate carbons from the chemical structure, that is shown in Figure 7.3, are given in the brackets. The BzMA as monomer showed a singlet signal at 6.1 ppm and a triplet at 5.5 ppm originating from the vinyl-group (4 and 5) and a singlet at 1.8 ppm caused by the methyl-group (11) of the methacrylate group. The benzyl-unit exhibited a singlet of the benzylic methylene-group (6) at 5.2 ppm and a broad multiplet was caused the aromatic ring protons $(7,8,9)$ between 7.5 to 7.2 ppm . The BzMApart of the polymer is represented in the spectra by broad peaks around 5.0 to 4.8 ppm for the methylene-group (6 ') and from 7.5 to 7.2 ppm for the aromatic ring protons.

Tab. 7.4.: Position and assignments of the signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the prepared $\mathrm{P}[$ BzMA-co-tBMA $]$ polymers

$\delta[\mathrm{ppm}]$	Multiplicity	No. of carbons	Carbon No. *	Structure element
1.25-1.4	broad peak	9H	3	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]$
1.42	s	2 H	3	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, tBMA
1.7-1.9	broad peak	4 H	10',11'	$-\mathrm{CH}_{2}$-backbone, $\mathrm{P}[\mathrm{BzMA}]$ and P[tBMA]
1.9	s	3H	10	$-\mathrm{CH}_{3}$, tBMA
1.8	s	3H	11	$-\mathrm{CH}_{3}$, BzMA
4.75-5.05	broad peak	2 H	6	$-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]$
5.2	s	2 H	6	$-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{BzMA}$
5.3	t	1H	2	$\mathrm{CH}_{2}=\mathrm{C}-$, cis, tBMA
5.5	t	1H	5	$\mathrm{CH}_{2}=\mathrm{C}-$, cis, BzMA
5.9	S	1H	1	$\mathrm{CH}_{2}=\mathrm{C}-$, trans, tBMA
6.1	s	1H	4	$\mathrm{CH}_{2}=\mathrm{C}-$, trans, BzMA
7.2-7.5	broad peak	5H	7-9,7'-9'	aromatic ring, BzMA and P[BzMA]

* cf. Figure 7.2

Hence the signals, resulting from the aromatic rings of the monomer and polymer, appear in the same chemical shift region, and become mutually overlapped. The methacrylate-part of the tBMA monomer shows a singlet at 5.9 ppm , a triplet at 5.3 ppm and a singlet at 1.9 ppm $(1,2,10)$ and the tert-butyl group gave rise to a singlet at $1.9 \mathrm{ppm}(3)$. The broad signal between circa 1.25 to 1.4 ppm is caused by the tert-butyl group of PtBMA (3'). The $\mathrm{CH}_{2}-$ signals of the polymer-backbone $\left(10^{\prime}, 11^{\prime}\right)$ are present in form of a broad peak ranging from 1.7 to 1.9 ppm . The peaks around 2.4 (quartet), 2.1 (singlet) and 1.0 (triplet) ppm belong to solvent MEK.

The changes of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra during the polymerization are shown in Figure 7.4 and in more detail Figure 7.5. The intensities of the different monomer-signals decrease in relation to the solvent peaks which remain constant during the polymerization. The signal 6 ' of the methylene-group of the benzyl-part of PBzMA appears and increases over time to become a
very broad peak from 4.8 to 5.1 ppm . Especially for the broad peak around 1.25 to 1.4 ppm this is very obvious, because there is also the tert-butyl group signal of the PtBMA which rises in intensity. In the region between 1.7 to 1.9 ppm the CH_{2}-signal of the polymer-backbone $\left(10^{\prime}, 11^{\prime}\right)$ grow in comparison to the solvent-signals next neighbored to the corresponding monomer peaks (10,11). The broad peak of the polymer $\left(10^{\prime}, 11^{\prime}\right)$ overlapped with the two monomer signals $(10,11)$. In Figure 7.5 only the spectra of three samples, taken at 0,90 and 180 min, were depicted to point out the differences more in detail.
A

B

C

Fig. 7.2.: Molecular structures of the monomers (A) tBMA and (B) nBMA and (C) the resulting copolymer of Series F and G with carbon-atom labels ($\mathrm{z}=\mathrm{x}+\mathrm{y}=1$)

Fig. 7.3.: ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectrum of (A) reaction mixture $\mathrm{V} 81\left(\mathrm{f}_{\mathrm{BzMA}}=0.5\right.$; BzMA:tBMA $=1: 1, \mathrm{I}: \mathrm{M}$ $=1: 175, \mathrm{~T}=80^{\circ} \mathrm{C}$) after 180 min reaction time, (B) tBMA and (C) BzMA ($\mathrm{S}=$ solvent signals: MEK)

Fig. 7.4.: ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra of samples, taken from the copolymerization mixture $\mathrm{V} 81\left(\mathrm{f}_{\mathrm{BzMA}}=0.5\right)$ at different polymerization times; A $-0 \mathrm{~min}, \mathrm{~B}-15 \mathrm{~min}, \mathrm{C}-30 \mathrm{~min}, \mathrm{D}-45 \mathrm{~min}, \mathrm{E}-$ $60 \mathrm{~min}, \mathrm{~F}-90 \mathrm{~min}, \mathrm{G}-120 \mathrm{~min}, \mathrm{H}-150 \mathrm{~min}$ and $\mathrm{I}-180 \mathrm{~min}$

Fig. 7.5.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of samples, taken from the copolymerization mixture $\mathrm{V} 81\left(\mathrm{f}_{\mathrm{BzMA}}=0.5\right)$ at different polymerization times; A $-0 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}$ and $\mathrm{C}-180 \mathrm{~min}$

The determination of the kinetic data were done in the same way as with the first monomersystem consisting of n - and tert-butyl methacrylate, cf. Section 3.3.1. However, since the signals of the monomers and the different parts of the polymer were more separated here, the calculations of conversion and composition differed slightly. The peak areas of the signals $3,3^{\prime}, 6,6$ ' were measured and the molar ratios of monomers to polymer were calculated by means of Equations 7.2.1 to 7.2.2.

To determine of the conversion of BzMA ($\mathrm{p}_{\mathrm{BzMA}}$) the integrals of the methylene-group (6 , $\left.6^{\prime}\right)$, cf. Figure 7.2, of the monomer $\left(\mathrm{A}_{6}\right)$ and that of the polymer $\left(\mathrm{A}_{6^{\prime}}\right)$ were used, respectively (cf. Equation 7.2.1).

$$
\begin{equation*}
\mathrm{p}_{\mathrm{BzMA}}=\frac{\mathrm{A}_{6^{\prime}}}{\mathrm{A}_{6}+\mathrm{A}_{6^{\prime}}} \tag{7.2.1}
\end{equation*}
$$

with $\mathrm{A}_{6}=$ integral intensity at 5.15 to $5.2 \mathrm{ppm} ; \mathrm{A}_{6^{\prime}}=$ integral intensity at 4.75 to 5.05 ppm

To determine the conversion of the tert-butyl methacrylate ($\mathrm{p}_{\mathrm{tBMA}}$) the signals (3) (cf. Figure 7.2) of the CH_{3}-groups of the monomers tert-butyl group $\left(A_{3}\right)$ and the respective signal 3 , of the polymer $\left(A_{3^{\prime}}\right)$ were taken (cf. Equation 7.2.2).

$$
\begin{equation*}
\mathrm{p}_{\text {tBMA }}=\frac{\mathrm{A}_{3^{\prime}}}{\mathrm{A}_{3}+\mathrm{A}_{3^{\prime}}} \tag{7.2.2}
\end{equation*}
$$

with $\mathrm{A}_{3}=$ integral intensity at 1.41 to $1.43 \mathrm{ppm} ; \mathrm{A}_{3^{\prime}}=$ integral intensity at 1.25 to 1.4 ppm

The values of the integrals A3, A3', A6 and A6' as well as the results of the Equations 7.2.1 and 7.2.2 and the total conversions of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-samples taken from the experiments of Series F are listed in Table 7.5.

Tab. 7.5.: Values of integrated ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals and calculated conversions of Series F

Entry	time	Integral				conversion p		
$\mathrm{f}_{\text {BzMA }}$	$[\mathrm{min}]$	A_{6}	$\mathrm{~A}_{6^{\prime}}$	A_{3}	$\mathrm{~A}_{3^{\prime}}$	BzMA	tBMA	total
V 81	0	2.0224	0.0000	9.2353	0.0000	0.0000	0.0000	0.0000
0.5	15	2.0016	0.1407	9.2660	0.8582	0.0657	0.0848	0.0424
	30	2.0090	0.3867	9.3239	2.3050	0.1614	0.1982	0.1319
	45	1.9970	0.8374	9.2860	4.6241	0.2954	0.3324	0.2469
	60	1.9943	1.2573	9.3304	6.2966	0.3867	0.4029	0.3492
	90	2.0281	1.9860	9.6231	10.7179	0.4948	0.5269	0.4568
	120	2.0028	2.9955	9.3524	14.5993	0.5993	0.6095	0.5521
	150	1.9966	3.9167	9.4110	19.3527	0.6624	0.6728	0.6361

Continuation on next page ...

Entry $\mathrm{f}_{\mathrm{BzMA}}$	time [min]	Integral				conversion p		
		A_{6}	$\mathrm{A}_{6^{\prime}}$	A_{3}	A_{3}	BzMA	tBMA	total
	180	1.9989	4.9077	9.4311	23.5377	0.7106	0.7139	0.6881
V82	0	1.0082	0.0000	9.2194	0.0000	0.0000	0.0000	0.0000
0.33	15	1.0180	0.0571	9.3560	0.8666	0.0531	0.0848	0.0735
	30	1.0010	0.2461	9.1438	2.6446	0.1973	0.2243	0.2132
	45	1.0111	0.4160	9.0590	4.3804	0.2915	0.3259	0.3113
	60	1.0174	0.6365	9.2788	6.5334	0.3849	0.4132	0.3997
	90	1.0229	1.1314	9.3340	10.8969	0.5252	0.5386	0.5288
	120	1.0244	1.7262	9.4333	16.5355	0.6276	0.6367	0.6273
	150	1.0207	2.2494	9.5183	21.4296	0.6879	0.6924	0.6840
	180	1.0275	2.6931	9.3805	26.1495	0.7238	0.7360	0.7246
V83	0	4.0301	0.0000	9.1938	0.0000	0.0000	0.0000	0.0000
0.66	15	4.0160	0.4483	9.0465	1.2264	0.1004	0.1194	0.1057
	30	3.9676	1.3199	9.0896	3.5185	0.2496	0.2791	0.2568
	45	3.9663	2.3039	9.1446	5.9529	0.3674	0.3943	0.3726
	60	4.0232	3.3837	9.2261	8.5694	0.4568	0.4816	0.4604
	90	4.0680	5.5007	9.4635	13.7825	0.5749	0.5929	0.5751
	120	4.0482	7.7074	9.3692	19.3662	0.6556	0.6740	0.6551
	150	4.0656	10.2164	9.4021	24.5129	0.7153	0.7228	0.7106
	180	4.0214	12.2106	9.3955	29.5497	0.7523	0.7588	0.7469
V84	0	1.9861	0.0000	27.2459	0.0000	0.0000	0.0000	0.0000
0.25	15	1.9821	0.0479	27.3688	3.3937	0.0236	0.1103	0.0886
	30	2.0192	0.3598	27.9387	8.4613	0.1512	0.2325	0.2121
	45	2.0065	0.7611	27.6912	13.4766	0.2750	0.3274	0.3143
	60	2.0094	1.1077	27.7138	19.6707	0.3554	0.4151	0.4002
	90	2.0112	1.8800	27.9923	29.8045	0.4831	0.5157	0.5075
	120	2.0090	2.6068	27.5274	42.3970	0.5648	0.6063	0.5959
	150	1.9693	3.3238	26.4227	49.4054	0.6280	0.6515	0.6456
	180	2.0332	4.2821	28.9001	67.1780	0.6781	0.6992	0.6939
V85	0	6.4157	0.0000	9.2641	0.0000	0.0000	0.0000	0.0000
0.75	15	6.1985	0.1034	9.2683	0.7522	0.0164	0.0751	0.0311
	30	6.1308	0.7052	9.2083	1.4728	0.1032	0.1379	0.1118
	45	6.2208	1.5010	9.2964	2.9317	0.1944	0.2398	0.2057
	60	6.2071	2.2437	9.4738	3.9783	0.2655	0.2957	0.2731
	90	6.2349	3.5492	9.5060	6.1634	0.3628	0.3933	0.3704

Continuation on next page ...

Entry $\mathrm{f}_{\mathrm{BzMA}}$	time [min]	Integral				conversion p		
		A_{6}	$\mathrm{A}_{6^{\prime}}$	A_{3}	$\mathrm{A}_{3^{\prime}}$	BzMA	tBMA	total
	120	6.1867	4.9558	9.4331	8.7090	0.4448	0.4800	0.4536
	150	6.2826	6.4227	9.5111	11.0087	0.5055	0.5365	0.5133
	180	6.3463	8.0051	9.6801	13.5456	0.5578	0.5832	0.5641
V86	0	0.4940	0.0000	9.1973	0.0000	0.0000	0.0000	0.0000
0.2	15	0.4963	0.0110	9.2914	0.4592	0.0217	0.0471	0.0420
	30	0.4963	0.0515	9.2705	1.5923	0.0940	0.1466	0.1361
	45	0.4996	0.1226	9.3487	2.4551	0.1970	0.2080	0.2058
	60	0.5007	0.1640	9.3795	3.6282	0.2467	0.2789	0.2725
	90	0.5172	0.3085	9.2966	6.1193	0.3736	0.3970	0.3923
	120	0.5016	0.4271	9.1413	8.3745	0.4599	0.4781	0.4745
	150	0.5043	0.5729	9.3300	10.9769	0.5318	0.5406	0.5388
	180	0.5097	0.6790	9.5909	13.5739	0.5712	0.5860	0.5830
V87	0	8.5802	0.0000	8.8779	0.0000	0.0000	0.0000	0.0000
0.8	15	7.8303	0.5422	9.0172	1.2350	0.0648	0.1205	0.0759
	30	8.0086	1.9111	9.1275	3.0004	0.1927	0.2474	0.2036
	45	7.9935	3.7154	9.1748	5.5965	0.3173	0.3789	0.3296
	60	7.9470	5.5590	9.2542	7.3912	0.4116	0.4440	0.4181
	90	7.8407	9.4919	9.1722	12.5558	0.5476	0.5779	0.5537
	120	7.8682	13.6865	9.2351	17.8601	0.6350	0.6592	0.6398
	150	7.8497	18.2042	9.2486	23.6625	0.6987	0.7190	0.7028
	180	7.9037	24.0751	9.4728	31.3315	0.7529	0.7679	0.7559
V88	0	-	-	9.3873	0.0000	-	0.0000	0.0000
0.0	15	-	-	9.2505	0.4831	-	0.0496	0.0496
	30	-	-	9.4404	1.4668	-	0.1345	0.1345
	45	-	-	9.4383	2.5480	-	0.2126	0.2126
	60	-	-	9.3901	3.6854	-	0.2819	0.2819
	90	-	-	9.5863	5.9845	-	0.3843	0.3843
	120	-	-	9.4846	8.1597	-	0.4625	0.4625
	150	-	-	9.8736	10.2475	-	0.5093	0.5093
	180	-	-	9.6371	11.8756	-	0.5520	0.5520
V89	0	2.0096	0.0000	-	-	0.0000	-	0.0000
1.0	15	2.0079	0.2506	-	-	0.1110	-	0.1110
	30	2.0142	0.7716	-	-	0.2770	-	0.2770
	45	2.0071	1.4185	-	-	0.4141	-	0.4141

Continuation on next page ...

Entry	time	Integral					conversion p		
$\mathrm{f}_{\mathrm{BzMA}}$	$[\mathrm{min}]$	A_{6}	$\mathrm{~A}_{6^{\prime}}$	A_{3}	$\mathrm{~A}_{3^{\prime}}$	BzMA	tBMA	total	
	60	2.0442	2.4578	-	-	0.5459	-	0.5459	
	90	2.0319	3.7708	-	-	0.6498	-	0.6498	
	120	2.0271	5.4785	-	-	0.7299	-	0.7299	
	150	2.0428	7.8666	-	-	0.7939	-	0.7939	
	180	2.0569	10.4657	-	-	0.8357	-	0.8357	

Figure 7.6a depicts a representative time conversion curve as obtained with reaction V81 (Table 7.1, $\mathrm{f}_{\mathrm{BzMA}}=0.5$). The conversion of both the monomers increased steadily, however, the initial slope of the curves was larger than that of the later stages of the reaction. Note that both monomers were consumed with similar rate in the present example. In the absence of side reactions the reaction kinetic of an ATRP homopolymerization is of pseudo-firstorder. [16] As long as the monomer composition of the reaction mixture is not altered during the course of a copolymerization this kinetic law should be valid, too. With copolymerizations the effective rate constant $\mathrm{k}_{\text {eff }}$ may depend on the monomer composition.

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{M}]}{\mathrm{dt}}=-\mathrm{k}_{\mathrm{eff}} \cdot[\mathrm{M}] \quad \text { with }[\mathrm{M}]=[\mathrm{M}]_{1}+[\mathrm{M}]_{2} \tag{7.2.3}
\end{equation*}
$$

with $[\mathrm{M}]=$ total monomer concentration, $[\mathrm{M}]_{\mathrm{i}}=$ concentration of monomer $\mathrm{i}, \mathrm{k}_{\text {eff }}=$ effective rate constant of copolymerization

At least the low conversion, initial stages of a copolymerization reaction can be described by Equation 7.2.3. Hence, a first order kinetic plot of $(-\ln (1-\mathrm{p}))$ was set up. The calculated conversions of the samples were inserted into Equation 7.2.3 and the results were also plotted in Figure 7.6b. The rate constants of the monomers ($\mathrm{k}_{\mathrm{BzMA}}$ and $\mathrm{k}_{\mathrm{tBMA}}$) were determined from the initial slope of a regression line in the range of small conversions $(\ln (1-\mathrm{p})<0.5)$ of the kinetic plots. The first four data points (up to a reaction time of 45 min) of all members of Series F were used and became located on straight lines (cf. Figure 7.6) up to conversion of about 30%. This result was similar to the one of Series A. The continuity during all the polymerizations and over all the monomer compositions was a signal for the very well control over the reaction by ATRP. Note that the time-unit was changed from minutes to seconds, because in the literature rate constants are given in s^{-1} by default. The resulting kinetic plot with the two regression lines for experiment V81 is given in Figure $7.6 b$ exemplarily.

Fig. 7.6.: Monomer conversion and first order kinetic plot based on the NMR-evaluation of experiment V81 ($\mathrm{f}_{\mathrm{BzMA}}=0.5$); a) conversion p versus time [min]; b) First order kinetic parameters versus time $[\mathrm{s}] ;$ tBMA, \triangle BzMA

The rate constants $\mathrm{k}_{\mathrm{BzMA}}\left(\mathrm{f}_{\mathrm{BzMA}}\right)$ and $\mathrm{k}_{\mathrm{tBMA}}\left(\mathrm{f}_{\mathrm{BzMA}}\right)$ as obtained from the experiments using the monomer ratios $\mathrm{f}_{\mathrm{BzMA}}=0,0.2,0.25,0.33,0.5,0.66,0.75,0.8$ and 1 (cf. Table 7.6) were plotted against the monomer molar fraction of BzMA and a regression line was calculated for the data points. In a binary ATRP-copolymerization the consumption of each monomer obeys a pseudo first order-reaction kinetics, as long as the monomer-mixture composition does not change. Hence, one can describe the initial stages of the copolymerization by means of Equation 7.2.4 and 7.2.5.

$$
\begin{align*}
& -\ln \left(1-\mathrm{p}_{\mathrm{BzMA}}\right)=\mathrm{k}_{\mathrm{BzMA}}\left(\mathrm{f}_{\mathrm{BzMA}}\right) \cdot \mathrm{t} \tag{7.2.4}\\
& -\ln \left(1-\mathrm{p}_{\mathrm{tBMA}}\right)=\mathrm{k}_{\mathrm{tBMA}}\left(\mathrm{f}_{\mathrm{BzMA}}\right) \cdot \mathrm{t} \tag{7.2.5}
\end{align*}
$$

In these equations $\mathrm{k}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{BzMA}}\right)$ represent the composition-dependent rate constants of the respective monomer. Figure $7.6 b$ depicts the respective kinetic plot obtained from the data of experiment V81. An analogous analysis was performed with all obtained time conversion data of reactions V82 to V89. The measured individual rate constants $\mathrm{k}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}\right)$ are summarized in Table 7.6. Figure 7.7 depicts a plot of the individual monomer rate constant $\mathrm{k}_{\mathrm{i}}\left(\mathrm{f}_{\text {BzMA }}\right)$ ($\mathrm{i}=$ BzMA, tBMA) versus the initial molar fraction of BzMA in the monomer mixture, $\mathrm{f}_{\mathrm{BzMA}}$. BzMA ($\mathrm{k}_{\mathrm{BzMA}}=2.22 \cdot 10^{-4} \mathrm{~s}^{-1}$) polymerized about twice as fast as tBMA $\left(\mathrm{k}_{\mathrm{BzMA}}=9.45 \cdot 10^{-5} \mathrm{~s}^{-1}\right)$. The measured effective rate constants of the copolymerizations lay within this range. Between $f_{\text {BzMA }}=0.2$ and 0.8 , while it seems that $\mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\text {BzMA }}\right)$ exhibits a more strong change between $\mathrm{f}_{\mathrm{BzMA}}=0-0.2\left(\mathrm{dk} / \mathrm{df} \approx 2.46 \cdot 10^{-4} \mathrm{~s}^{-1}\right)$ and $\mathrm{f}_{\mathrm{tBMA}}=0.8-1$ $\left(\mathrm{dk} / \mathrm{df} \approx 2.63 \cdot 10^{-4} \mathrm{~s}^{-1}\right)$ the values only slightly increased $\left(1.2 \ldots 1.8 \cdot 10^{-4}\right)$. The rise fitted to values of the homopolymerizations.

Tab. 7.6.: Kinetic results and copolymer compositions of the different copolymer compositions of Series F

Entry	$\mathrm{f}_{\text {BzMA }}$	$\mathrm{k}_{\text {BzMA }}$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\text {eff } \text { BzMA }}$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\text {tBMA }}$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\text {eff tBMA }}$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\text {eff }}$ $\left[\mathrm{s}^{-1}\right]$	$\mathrm{F}_{\text {BzMA }}{ }^{a}$
V88	0.00	-	$1.46 \cdot 10^{-4}$	$9.45 \cdot 10^{-5}$	$1.41 \cdot 10^{-4}$	$1.41 \cdot 10^{-4}$	0.00
V86	0.20	$1.01 \cdot 10^{-4}$	$1.53 \cdot 10^{-4}$	$1.01 \cdot 10^{-4}$	$1.51 \cdot 10^{-4}$	$1.51 \cdot 10^{-4}$	0.11
V84	0.33	$1.58 \cdot 10^{-4}$	$1.58 \cdot 10^{-4}$	$1.64 \cdot 10^{-4}$	$1.57 \cdot 10^{-4}$	$1.57 \cdot 10^{-4}$	0.14
V82	0.25	$1.56 \cdot 10^{-4}$	$1.55 \cdot 10^{-4}$	$1.50 \cdot 10^{-4}$	$1.53 \cdot 10^{-4}$	$1.53 \cdot 10^{-4}$	0.20
V81	0.50	$1.60 \cdot 10^{-4}$	$1.64 \cdot 10^{-4}$	$1.63 \cdot 10^{-4}$	$1.65 \cdot 10^{-4}$	$1.64 \cdot 10^{-4}$	0.33
V83	0.66	$1.75 \cdot 10^{-4}$	$1.70 \cdot 10^{-4}$	$1.88 \cdot 10^{-4}$	$1.73 \cdot 10^{-4}$	$1.71 \cdot 10^{-4}$	0.48
V85	0.75	$1.09 \cdot 10^{-4}$	$1.73 \cdot 10^{-4}$	$9.97 \cdot 10^{-5}$	$1.77 \cdot 10^{-4}$	$1.74 \cdot 10^{-4}$	0.61
V87	0.80	$1.73 \cdot 10^{-4}$	$1.75 \cdot 10^{-4}$	$1.69 \cdot 10^{-4}$	$1.79 \cdot 10^{-4}$	$1.76 \cdot 10^{-4}$	0.67
V89	1.00	$2.22 \cdot 10^{-4}$	$1.82 \cdot 10^{-4}$	-	$1.89 \cdot 10^{-4}$	$1.82 \cdot 10^{-4}$	1.00

${ }^{a}$ calculated from Equation 7.2.14

Fig. 7.7.: Plot of the individual monomer rate constants $\mathrm{k}_{\mathrm{BzMA}}$ and $\mathrm{k}_{\mathrm{tBMA}}$ versus the BzMAcontent of the monomer feed ratio; $\boldsymbol{\mathrm { tBMA }}, \triangle$ BzMA; not included values in brackets

In the interval $\mathrm{f}_{\mathrm{BzMA}} \in[0.2,0.8]$ the rate constants were approximated by straight lines, their low slopes $\left(\mathrm{m}_{\mathrm{Bz}}=\frac{\mathrm{dk}_{\mathrm{BZMA}}}{\mathrm{df} \mathrm{f}_{\mathrm{BzMA}}}=3.64 \cdot 10^{-5} \pm 1.19 \cdot 10^{-5}, \mathrm{~m}_{\mathrm{tB}}=\frac{\mathrm{dk}_{\mathrm{EBMA}}}{\mathrm{df} \mathrm{f}_{\text {BMA }}}=4.80 \cdot 10^{-5} \pm 3.19 \cdot 10^{-5}\right)$ indicating a very weak dependence of the copolymerization rate on the monomer mixture composition. These results were much the same as for Series A. Both fitted lines are shown in Figure 7.8. The disregarded values are set into brackets.

If both monomers are consumed according to a first-order kinetics, the sum of both monomer concentrations $[\mathrm{M}]=\left[\mathrm{M}_{\mathrm{BzMA}}\right]+\left[\mathrm{M}_{\mathrm{tBMA}}\right]$ must follow the same law. Hence, the total rate of copolymerization will follow Equation 7.2.3, with $\mathrm{k}_{\text {eff }}$ representing the monomer mixture dependence effective rate constant. It can be shown that $\mathrm{k}_{\text {eff }}$ is related to the monomer composition $\mathrm{f}_{\mathrm{BzMA}}$ and the individual rate constant according to Equation 7.2.10. With the equations of the regression lines from the rate constants and the monomer composition of the different feed ratios the effective rate constants of the monomers ($\mathrm{k}_{\text {eff,BzMA }}$ and $\mathrm{k}_{\text {eff,tBMA }}$) were calculated (see Equations 7.2.6 and 7.2.7).

$$
\begin{align*}
& k_{\mathrm{eff}, \mathrm{BzMA}}=\mathrm{a}_{\mathrm{k}_{\mathrm{BzMA}}}+b_{\mathrm{k}_{\mathrm{BZMA}}} \cdot f_{\mathrm{BzMA}} \tag{7.2.6}\\
& \mathrm{k}_{\mathrm{eff}, \mathrm{tBMA}}=\mathrm{a}_{\mathrm{k}_{\mathrm{tBMA}}}+\mathrm{b}_{\mathrm{k}_{\mathrm{t} \text { BMA }}} \cdot f_{\mathrm{tBMA}} \tag{7.2.7}
\end{align*}
$$

Fig. 7.8.: Effective rate constants of the individual monomer consumptions $\mathrm{k}_{\text {eff, }, \mathrm{i}}$ and total effective rate constants $\mathrm{k}_{\text {eff.total,total }}$ of the total reaction for the different monomer feed ratios of Series F - assuming that the fit equations to be valid in $\mathrm{f}_{\mathrm{BzMA}} \in[0,1] ;$ a) effective monomer rate constants $\mathrm{k}_{\mathrm{eff}, \mathrm{BzMA}}(\boldsymbol{\Delta})\left(E q\right.$. 7.2.8) and $\mathrm{k}_{\text {eff,tBMA }}(\mathbf{\square})(E q$. 7.2.9); b) total effective rate constant $\mathrm{k}_{\mathrm{eff}}\left(\mathrm{f}_{\mathrm{BzMA}}\right)(\boldsymbol{\Delta})\left(E q\right.$. 7.2.11) and $\mathrm{k}_{\mathrm{eff}}\left(\mathrm{f}_{\mathrm{tBMA}}\right)(\mathbf{\square})(E q$. 7.2.12)

The fit of Equations 7.2.6 and 7.2.7 to the experimental data of Table 7.6 gave the resulted in Equations 7.2.8 and 7.2.9.

$$
\begin{align*}
& \mathrm{k}_{\text {eff,BzMA }}=\left(1.46 \cdot 10^{-4} \pm 7.03 \cdot 10^{-6}\right) \mathrm{s}^{-1}+\left(3.64 \cdot 10^{-5} \pm 1.19 \cdot 10^{-5}\right) \mathrm{s}^{-1} \cdot \mathrm{f}_{\text {BzMA }} \tag{7.2.8}\\
& \mathrm{k}_{\text {eff,tBMA }}=\left(1.41 \cdot 10^{-4} \pm 1.88 \cdot 10^{-5}\right) \mathrm{s}^{-1}+\left(4.80 \cdot 10^{-5} \pm 3.19 \cdot 10^{-5}\right) \mathrm{s}^{-1} \cdot \mathrm{f}_{\mathrm{BzMA}} \tag{7.2.9}
\end{align*}
$$

The data points here lied on straight lines for both monomers, cf. Figure 7.8a. The values of the effective rate constants were used to determine the copolymerizations total effective rate constant ($\mathrm{k}_{\mathrm{eff}}$) with Equation 7.2.10.

$$
\begin{equation*}
\mathrm{k}_{\mathrm{eff}}=\mathrm{f}_{1} \cdot \mathrm{k}_{1}+\mathrm{f}_{2} \cdot \mathrm{k}_{2} \tag{7.2.10}
\end{equation*}
$$

The total rate constant was expressed either in terms of the molar fraction of BzMA in the reaction mixture (f_{BzMA}, cf. Equation 7.2.11) or in dependence of $\mathrm{f}_{\mathrm{tBMA}}$ (cf. Equation 7.2.12).

$$
\begin{align*}
& \mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\text {BzMA }}\right)=\left(1.43 \cdot 10^{-4}\right) \mathrm{s}^{-1}+\left(4.12 \cdot 10^{-5}\right) \mathrm{s}^{-1} \cdot \mathrm{f}_{\mathrm{BzMA}} \tag{7.2.11}\\
& \mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\text {tBMA }}\right)=\left(1.84 \cdot 10^{-4}\right) \mathrm{s}^{-1}-\left(4.12 \cdot 10^{-5}\right) \mathrm{s}^{-1} \cdot \mathrm{f}_{\mathrm{tBMA}} \tag{7.2.12}
\end{align*}
$$

The results are pictured in Figure 7.8b, to demonstrate the linear relation. All the results of the previous calculations are summarized in Table 7.6.

The measured rate constances were also used to determine the instantaneous polymer composition $\frac{\mathrm{d}[\mathrm{BzMA}]}{\mathrm{d}[\mathrm{tBMA}]}$ of the resulting copolymers by means of Equation 7.2.13.

$$
\begin{equation*}
\mathrm{F}_{\mathrm{BzMA}}=\frac{\mathrm{R}_{\mathrm{BzMA}}}{\mathrm{R}_{\mathrm{BzMA}}+\mathrm{R}_{\mathrm{tBMA}}}=\frac{\mathrm{f}_{\mathrm{BzMA}} \cdot \mathrm{k}_{\mathrm{BzMA}}}{\mathrm{k}_{\mathrm{BzMA}}+\mathrm{f}_{\mathrm{tBMA}} \cdot \mathrm{k}_{\mathrm{tBMA}}} \tag{7.2.13}
\end{equation*}
$$

with $\mathrm{R}_{\mathrm{i}}=$ rate of copolymerization of monomer $\mathrm{i}, \mathrm{k}_{\mathrm{i}}=$ effective, composition dependent individual rate constant of monomer $i, f_{i}=$ molar fraction of monomer i in the reaction mixture

The copolymerization diagram of benzyl and tert-butyl methacrylate as obtained from Equation 7.2.13 is shown in Figure 7.9. The compositions of the resulting copolymers from Series F were summarized in Table 7.6. At any monomer composition $\mathrm{f}_{\mathrm{BzMA}}$ the monomer tBMA copolymerized faster than BzMA, resulting in copolymers that contained less BzMA than was initially present in the monomer mixture.

Fig. 7.9.: Copolymerization diagram for benzyl- and tert-butyl-methacrylate; dashed line for ideal random copolymerization, solid line for line of fit: $\mathrm{r}_{\mathrm{BzMA}}=0.517, \mathrm{r}_{\mathrm{tBMA}}=2.055$; compositions determinded by Eq. 7.2.13

Such a copolymerization diagram is described in the terminal-model by means of the Lewis-Mayo-Equation with one reactivity ratio larger and one reactivity ratio smaller than one. [20, 86]

$$
\begin{equation*}
\mathrm{F}_{1}=\frac{\mathrm{d}\left[\mathrm{M}_{1}\right]}{\mathrm{d}\left[\mathrm{M}_{1}\right]+\mathrm{d}\left[\mathrm{M}_{2}\right]}=\frac{\mathrm{r}_{1} \mathrm{f}_{1}^{2}+\mathrm{f}_{1} \mathrm{f}_{2}}{\mathrm{r}_{1} \mathrm{f}_{1}^{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}+\mathrm{r}_{2} \mathrm{f}_{2}^{2}} \tag{7.2.14}
\end{equation*}
$$

with $r_{i}=$ reactivity ratio, i.e. copolymerization parameter of monomer $i, f_{i}=$ molar fraction of monomer i in the reaction mixture, $\mathrm{F}_{\mathrm{i}}=$ instantaneous molar fraction of monomer i incorporated on the copolymer, $\mathrm{d}\left[\mathrm{M}_{\mathrm{i}}\right]=$ different change of the concentration of monomer i due to a differential conversion, $(1)=$ BzMA and $(2)=\mathrm{tBMA}$

The monomer reactivity ratios were determined by a least-square fit of Equation 7.2.14 to the data points of Figure 7.9 to yield $\mathrm{r}_{\mathrm{BzMA}}=0.517 \pm 0.02$ and $\mathrm{r}_{\mathrm{tBMA}}=2.055 \pm 0.06$. A comparison of the values with literature data was not possible, since copolymerization reactivity ratios of this system have not yet been published.

Comparison of kinetic results from batch copolymerizations of $n B M A / t B M A$ and BzMA/tBMA

In the following paragraph the results of the kinetic analysis of Series A, the batch copolymerizations of n-butyl methacrylate and tert-butyl methacrylate, and Series F, the batch copolymerizations of benzyl methacrylate and tert-butyl methacrylate, are compared. The values of the effective rate constants $\mathrm{k}_{\text {eff,i }}$ of the two series are given in Figure 7.10.

Fig. 7.10.: Comparison of the effective rate constants $\mathrm{k}_{\mathrm{eff}, \mathrm{i}}$ of the batch copolymerization Series A (left axis, solid lines, nBMA, tBMA) and Series F (right axis, dashed lines, \triangle BzMA, $\boldsymbol{\nabla}$ tBMA)

The effective rate constants $\mathrm{k}_{\text {eff,i }}$ of the two monomers of both series laid on straight lines. For Series A (nBMA, ■ tBMA), the values differed just slightly. The difference shrunk from $2.14 \cdot 10^{-5} \mathrm{~s}^{-1}$ at $\mathrm{f}_{\mathrm{nBMA}}=0$ to $1.90 \cdot 10^{-5} \mathrm{~s}^{-1}$ at $\mathrm{f}_{\mathrm{nBMA}}=1$. The effective rate constant values of the two monomers of Series $F(\Delta$ BzMA, $\boldsymbol{\nabla}$ tBMA $)$ differed less. The average difference of the effective rate constants of Series F was $3.23 \cdot 10^{-6} \mathrm{~s}^{-1}$. The effective rate constants of $\mathrm{f}_{\mathrm{tBMA}}=0$ of Series A was $1.38 \cdot 10^{-4} \mathrm{~s}^{-1}$ and also both values of Series F were in that region, for $\mathrm{f}_{\mathrm{tBMA}}=0$ at $1.41 \cdot 10^{-4} \mathrm{~s}^{-1}$ and $\mathrm{f}_{\mathrm{BzMA}}=0$ at $1.46 \cdot 10^{-4} \mathrm{~s}^{-1}$. The effective rate constant of $\mathrm{f}_{\text {nBMA }}=0$ was obviously lower than the three others with $1.17 \cdot 10^{-4} \mathrm{~s}^{-1}$. The values of $\mathrm{f}_{\mathrm{i}}=1$ were distributed in a different way. For tBMA of Series A it was $2.10 \cdot 10^{-4} \mathrm{~s}^{-1}$ and the three other monomers gave obviously lower values, for nBMA $1.90 \cdot 10^{-4} \mathrm{~s}^{-1}$, for BzMA $1.82 \cdot 10^{-4} \mathrm{~s}^{-1}$ and for tBMA of Series $F 1.89 \cdot 10^{-4} \mathrm{~s}^{-1}$. So the slops of the two monomers of Series A were higher than the slops of the monomers of Series F. Within a series the slops were relatively equal, for Series A at $7.18 \cdot 10^{-5} \mathrm{~s}^{-1}$ and for Series F at $4.22 \cdot 10^{-5} \mathrm{~s}^{-1}$.

The total effective rate constants $\mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\mathrm{i}}\right)$ of the two series are given in Figure 7.11.

Fig. 7.11.: Comparison of total effective rate constant $\mathrm{k}_{\text {eff, total }}$ of the batch copolymerization Series A ($\mathrm{i}=\mathrm{nBMA}$, solid lines, $-\mathrm{nBMA}, ~ ■ \mathrm{tBMA}$) and Series $F(\mathrm{i}=$ BzMA, dashed lines, \triangle BzMA, $\boldsymbol{\text { tBMA}}$), assuming the individual monomer rate constants to vary linear over $f_{i} \in[0,1]$

The total effective rate constants $\mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\mathrm{i}}\right)$ of the monomers of both series laid on straight lines. The midpoint of both series for $f_{i}=0.5$ was at $1.64 \cdot 10^{-4} \mathrm{~s}^{-1}$. For $\mathrm{f}_{\mathrm{i}}=0$ the total effective rate constants of Series A were $1.38 \cdot 10^{-4} \mathrm{~s}^{-1}$ for nBMA ($)$ and $1.90 \cdot 10^{-4} \mathrm{~s}^{-1}$ for tBMA (and for Series $F 1.41 \cdot 10^{-4} \mathrm{~s}^{-1}$ for BzMA ($\mathbf{\Delta}$) and $1.82 \cdot 10^{-4} \mathrm{~s}^{-1}$ for tBMA ($\left.\boldsymbol{\nabla}\right)$. The slope of Series A was $5.15 \cdot 10^{-5} \mathrm{~s}^{-1}$ for nBMA, respectively $-5.15 \cdot 10^{-5} \mathrm{~s}^{-1}$ for tBMA and of Series F the slope was $4.12 \cdot 10^{-5} \mathrm{~s}^{-1}$ for BzMA, respectively $-4.12 \cdot 10^{-5} \mathrm{~s}^{-1}$ for tBMA, so the slope of Series A was obviously higher than the one of Series F.

In Figure 7.12 the two copolymerization diagrams are shown. The values of the compositions of the copolymers F_{i} of both monomer systems (Series $A \bullet$, Series $F \boldsymbol{\Delta}$) showed no obviously differences. Both copolymerization can be described in the terminal-model by means of the Lewis-Mayo-Equation with one reactivity ratio larger and one reactivity ratio smaller than one. The monomer reactivity ratios of Series A were $\mathrm{r}_{\mathrm{nBmA}}=0.475 \pm 0.05$ and $\mathrm{r}_{\mathrm{tBMA}}=0.886 \pm 0.05$ and of Series $F \mathrm{r}_{\mathrm{BzMA}}=0.517 \pm 0.02$ and $\mathrm{r}_{\mathrm{tBMA}}=2.055 \pm 0.06$. For Series A the reactivity ratios differed not strong. A distinct difference was between the values of Series F. The reactivity ratios of nBMA and BzMA were slightly similar. But the values of tBMA of the two systems differed very strongly.

Fig. 7.12.: Comparison of copolymerization diagrams of the batch copolymerization Series A ($\mathrm{i}=$ nBMA, ©, black line) and Series F ($\mathrm{i}=$ BzMA, $\boldsymbol{\Delta}$, grey line), dashed line for ideal random copolymerization

The effective rate constants $\mathrm{k}_{\text {eff,i }}$ and the total effective rate constants $\mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\mathrm{i}}\right)$ were in the same range for both series and the compositions of the resulting copolymers F_{i} of both series were nearly the same. There was a large difference between the reactivity ratios of tBMA in the two monomer system.

7.2.2. Structural Analysis

The next investigations referred to the compositional analysis of the copolymers. First the elementary analysis of all resulting copolymers of Series F and Series G is detailed. The purity and the composition of the resulting copolymers was controlled with it. The molecular formula of the tert-butyl methacrylate is $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}(67.57 \% \mathrm{C}, 9.92 \% \mathrm{H}, 22.50 \% \mathrm{O})$, the one of benzyl methacrylate $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}(74.98 \% \mathrm{C}, 6.86 \% \mathrm{H}, 18.16 \% \mathrm{O})$. The calculation of the theoretical values of the three element-contents had to be done for each member of Series F and Series G to accommodate for the different copolymer compositions. With the analysis method described in Section 3.2.2 the content of only C and H can be measured, while the amount of O had to be calculated from the difference to 100%. The results of the elementary analysis of Series F are listed in Table 7.7 and the ones of Series G in Table 7.8. Furthermore the differences between the theoretical values and the analysis results are given. As part of the initiator-molecule pTSC in each polymer-chain one sulfur-atom occurs, however, its amount was below the detection limit of the elementary analysis device of around 2%.

The theoretical values showed two tendencies which based on the different ratios of BzMAand tBMA-units along the copolymer chains. The amount of carbon increased proportional to the molar fraction of BzMA inside the polymer chain and the amounts of hydrogen and oxygen decreased. The differences between theoretical values and measured values were relatively small (<3.2\%).

Tab. 7.7.: Results of the elementary analysis of the different copolymer compositions of Series F with divergence from the theoretical value

Entry	$\mathrm{F}_{\text {BzMA }}$		C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
V 88	0.00	theory	67.57		9.92		22.50	
		is	65.30	-2.27	9.54	-0.38	25.16	2.65
V 86	0.11	theory	68.56		9.51		21.92	
		is	68.53	-0.03	8.93	-0.58	22.54	0.62
V 84	0.15	theory	68.86		9.39		21.75	
		is	69.41	0.55	8.90	-0.49	21.69	-0.06
V 82	0.19	theory	69.28		9.22		21.50	
		is	72.43	3.15	7.56	-1.66	20.02	-1.49
V 81	0.33	theory	70.39		8.76		20.85	
		is	71.20	0.81	8.18	-0.58	20.62	-0.23
V 83	0.48	theory	71.55		8.28		20.17	
		is	69.66	-1.89	8.65	0.36	21.70	1.53
V 85	0.61	theory	72.46		7.90		19.63	
		is	73.12	0.66	7.26	-0.65	19.63	-0.01
V 87	0.67	theory	72.87		7.74		19.40	
		is	72.65	-0.22	7.51	-0.23	19.84	0.44
V 89	1.00	theory	74.98		6.86		18.16	
		is	73.82	-1.16	6.66	-0.21	19.52	1.36

Tab. 7.8.: Results of the elementary analysis of the different copolymer compositions of Series G with divergence from the theoretical value

Entry $\mathrm{f}_{\mathrm{BzMA}}$	time [min]		$\begin{gathered} \mathrm{C} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{C}$	$\begin{gathered} \mathrm{H} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{H}$	$\begin{gathered} \mathrm{O} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{O}$
V92		theory	69.28		9.22		21.50	
0.33	60	is	70.42	1.14	8.40	-0.82	21.18	-0.32
	90		71.04	1.76	8.14	-1.08	20.82	-0.68
	120		70.63	1.35	8.42	-0.81	20.96	-0.54
	150		70.74	1.46	8.11	-1.11	21.15	-0.35
	180		70.76	1.48	8.50	-0.72	20.74	-0.76
V91		theory	70.39		8.76		20.85	
0.5	60	is	71.25	0.86	7.40	-1.37	21.36	0.50
Continuation on next page ...								

$\begin{aligned} & \text { Entry } \\ & \mathrm{f}_{\mathrm{BzMA}} \end{aligned}$	time [min]		$\begin{gathered} \mathrm{C} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{C}$	$\begin{gathered} \mathrm{H} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{H}$	$\begin{gathered} \mathrm{O} \\ {[\%]} \end{gathered}$	$\Delta \mathrm{O}$
	90		71.65	1.26	7.68	-1.08	20.67	-0.18
	120		71.02	0.63	7.37	-1.40	21.62	0.77
	150		71.64	1.25	7.57	-1.19	20.79	-0.06
	180		71.83	1.44	7.56	-1.20	20.61	-0.24
V93		theory	71.55		8.28		20.17	
0.66	60	is	72.89	1.34	7.46	-0.82	19.65	-0.52
	90		72.66	1.11	7.45	-0.83	19.89	-0.28
	120		72.99	1.44	7.50	-0.78	19.51	-0.66
	150		73.05	1.50	7.46	-0.82	19.49	-0.68
	180		73.01	1.46	7.51	-0.77	19.48	-0.69
V94		theory	74.98		6.86		18.16	
1.00	60	is	74.88	-0.10	6.65	-0.21	18.47	0.31
	90		75.02	0.04	6.74	-0.12	18.24	0.08
	120		74.78	-0.20	6.70	-0.16	18.52	0.36
	150		74.82	-0.16	6.70	-0.16	18.48	0.32
	180		74.95	-0.03	6.74	-0.12	18.31	0.15

That implied that all samples, expect the ones of V88 and V82, were free of pollution, such as solvents etc, and that the reactions worked in the same way independent from the monomer composition. That the samples of experiment V88 and V82 exhibited higher deviations may be caused by the greater difficulty to isolate purity samples and dry the copolymers from benzyl methacrylate and tert-butyl methacrylate. So remainders of solvents, in particular $\mathrm{H}_{2} \mathrm{O}$, caused these differences. A further drying step did not improve the results. Over all the results of the elementary analysis showed that the polymers are nearly free of pollution. The differences were consistence mostly over all compositions. That means that all the reactions worked in the same way independent from the monomer composition. That was a good requirement for the semibatch polymerization where the monomer composition will change continuously during the reaction.

In a next step the copolymer compositions were calculated from the amount of carbon and hydrogen that were measured by the elementary analysis. Two calibration curves, one for each element, were constructed from the theoretical amount of the elements of the two homopolymers, see Figure 7.13. The linear equations of the two elements contents, depending on $\mathrm{F}_{\mathrm{BzMA}}$ are given in Equations 7.2.15 and 7.2.16.

Fig. 7.13.: Calibration curves to determine $\mathrm{F}_{\mathrm{BzMA}}$ from the element content of carbon (black line) and hydrogen (grey line) for $\mathrm{P}[\mathrm{BzMA}-\mathrm{co}-\mathrm{tBMA}]$

$$
\begin{align*}
& \mathrm{C}=0.6757+0.0741 \cdot \mathrm{~F}_{\mathrm{BzMA}} \tag{7.2.15}\\
& \mathrm{H}=0.0992-0.0306 \cdot \mathrm{~F}_{\mathrm{BzMA}} \tag{7.2.16}
\end{align*}
$$

The equations is resolved for the composition and with the amounts of carbon, respectively hydrogen, taken from elementary analysis the compositions were calculated. The results are listed in Tables 7.9 and 7.10.

Tab. 7.9.: Compositions of copolymers of Series F resulting from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis $\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{NMR}}$ and elementary analysis $\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{EA}}$

Entry	$\mathrm{f}_{\text {BzMA }}$	$\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{NMR} a}$	$\mathrm{~F}_{\mathrm{BzMA}}^{\mathrm{EA}, \mathrm{C} b}$	$\Delta \mathrm{~F}_{\mathrm{BzMA}}^{\mathrm{C}}{ }^{c}$	$\mathrm{~F}_{\mathrm{BzMA}}^{\mathrm{EA}, \mathrm{H} d}$	$\Delta \mathrm{~F}_{\mathrm{BzMA}}{ }^{c}$
V 88	0.00	0.00	-0.31	-0.31	0.12	0.12
V 86	0.20	0.11	0.13	0.02	0.32	0.21
V 84	0.25	0.15	0.25	0.10	0.33	0.18
V 82	0.33	0.19	0.66	0.47	0.77	0.58
V 81	0.50	0.33	0.49	0.16	0.57	0.24
V 83	0.66	0.48	0.28	-0.20	0.42	-0.06
V85	0.75	0.61	0.75	0.14	0.87	0.26
V87	0.85	0.67	0.69	0.02	0.79	0.12
V 89	1.00	1.00	0.84	-0.16	1.07	0.07

[^7]Tab. 7.10.: Compositions of copolymers of Series G resulting from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis $\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{NMR}}$ and elementary analysis $\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{EA}}$

$\begin{aligned} & \text { Entry } \\ & \mathrm{f}_{\mathrm{BzMA}} \end{aligned}$	$\begin{aligned} & \text { time } \\ & {[\mathrm{min}]} \end{aligned}$	$\mathrm{F}_{\text {BzMA }}^{\text {NMR }}{ }^{\text {a }}$	$\mathrm{F}_{\text {BzMA }}^{\mathrm{EA}, \mathrm{C}}{ }^{\text {b }}$	$\Delta \mathrm{F}_{\mathrm{BzMA}}{ }^{\text {c }}$	$\mathrm{F}_{\text {BzMA }}^{\mathrm{EA}, \mathrm{H} d^{\prime}}$	$\Delta \mathrm{F}_{\mathrm{BzMA}}^{\mathrm{H}}{ }^{\text {c }}$
V91	60	0.47	0.50	0.03	0.82	0.35
0.50	90	0.46	0.55	0.09	0.73	0.27
	120	0.48	0.47	-0.01	0.83	0.35
	150	0.48	0.55	0.07	0.77	0.29
	180	0.48	0.57	0.09	0.77	0.29
V92	60	0.27	0.38	0.11	0.50	0.23
0.33	90	0.29	0.47	0.18	0.58	0.29
	120	0.30	0.41	0.11	0.49	0.19
	150	0.38	0.43	0.05	0.59	0.21
	180	0.30	0.43	0.13	0.46	0.16
V93	60	0.63	0.72	0.09	0.80	0.17
0.66	90	0.64	0.69	0.05	0.81	0.17
	120	0.64	0.73	0.09	0.79	0.15
	150	0.64	0.74	0.10	0.80	0.16
	180	0.64	0.73	0.09	0.79	0.15
V94	60	1.00	0.99	-0.01	1.07	0.07
1.00	90	1.00	1.01	0.01	1.04	0.04
	120	1.00	0.97	-0.03	1.05	0.05
	150	1.00	0.98	-0.02	1.05	0.05
	180	1.00	1.00	0.00	1.04	0.04

${ }^{a}$ calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra; ${ }^{b}$ calculated from Eq. 7.2.15
${ }^{c} \Delta \mathrm{~F}_{\mathrm{BzMA}}^{\mathrm{x}}=\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{EAA}, \mathrm{x}}-\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{NMR}} ;{ }^{d}$ calculated from Eq. 7.2.16

The compositions $\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{H}}$ calculated from the hydrogen content differed obviously from the compositions which were determined from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated copolymers for both elements carbon and hydrogen. The differences could be caused by various problems. One possibility is that there is still solvent in the sample. But the ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra did not show the presence of residual solvents or considerable amounts of monomers, hence, that was not the reason for the deviations. An other possible problem could be that the samples were inhomogeneous. For a NMR-measurement 10 mg of the copolymer was used, for an EA-measurement only 2.5 mg . So the problem of an inhomogeneous substance will be increase at the elementary analysis. But the resulting copolymers were apparently consistent. A third possibility is that the pollution happened during the measurement itself. The measurement of standards in periodical intervals should avoid that.

The next kind of structural analysis was the ATR-FTIR-spectroscopy. Before the IR-spectra of the polymers were measured, the spectra of the monomers were gathered to find the characteristic vibration bands that can be used to distinguish monomers and polymer units. These spectra of benzyl methacrylate and tert-butyl methacrylate are shown in Figure 7.14. Note that the ATR-FTIR is a reflection measurement technique. The intensity of an IR-band depends on the penetration depth of the IR radiation $(\approx 0.1 \ldots 1.0 \cdot \lambda)$, but not on the sample thickness as long as the measurement film in much thicker than the longest measured wavelength. [87] For the comparison purposes the spectra were normalized by setting the adsorption intensity of the vibrational band at $1134 \mathrm{~cm}^{-1}$ to one by dividing all intensities A_{x} by A_{1}.

Fig. 7.14.: Finger print region of the ATR-FTIR-spectra of BzMA and tBMA (black line - BzMA, grey line - tBMA). Insert: full MIR-spectra (Spectra normalized to $\mathrm{A}_{1134}=1$)

In the spectra the peaks were equal for both the monomers that belonged to the methacrylatepart of the molecules. The vibrational bands of $=\mathrm{CH}_{2},-\mathrm{CH}_{2}-$ and $-\mathrm{CH}_{3}$ was found between 3125 to $2800 \mathrm{~cm}^{-1}$, but the one for $=\mathrm{CH}_{2}$ which was located higher than $3000 \mathrm{~cm}^{-1}$ was merely weak and imperceptible. The vibrational band of $\mathrm{C}=\mathrm{O}$ was located at $1717 \mathrm{~cm}^{-1}$, for $-\mathrm{CH}_{2}-$ and $-\mathrm{CH}_{3}$ at $1476 \mathrm{~cm}^{-1}$ and $1455 \mathrm{~cm}^{-1}$ and for $\mathrm{C}-\mathrm{O}-\mathrm{C}$ at $1134 \mathrm{~cm}^{-1}$. These were the same vibrational bands than for the first monomer mixture of Section 3.3.2. The differences between the two spectra resulted from the two different ester-groups of the monomers. The broad mixed band between 3125 to $2800 \mathrm{~cm}^{-1}$ also contained the vibrational band of the aromatic ring of the BzMA. The benzyl-group and the tert-butyl-group became particularly visible between $600 \mathrm{~cm}^{-1}$ and $1400 \mathrm{~cm}^{-1}$. tBMA showed distinct bands at $1367 \mathrm{~cm}^{-1}, 1248 \mathrm{~cm}^{-1}$ and $846 \mathrm{~cm}^{-1}$. That were the same characteristic vibrational band than before in Series A.

The characteristic bands for BzMA laid at $967 \mathrm{~cm}^{-1}, 749 \mathrm{~cm}^{-1}$ and $796 \mathrm{~cm}^{-1}$. Because these bands are within the finger print region it was not possible to assign the vibrational bands to specific vibrations of the functional groups of the molecules.

Fig. 7.15.: Comparison of the finger print region of the ATR-FTIR-spectra of A - BzMA, B tBMA and $C-$ experiment V81 $\left(F_{\text {BzMA }}=0.33\right)$; \square - BzMA specific bands, $\square-$ tBMA specific bands; analyzed bands were marked with dashed lines (Spectra normalized to $\mathrm{A}_{1134}=1$)

The IR-spectrum of the statistic copolymer of experiment V81 ($\mathrm{F}_{\mathrm{BzMA}}=0.33$) from Series F, containing both the benzyl- and the tert-butyl-ester groups is given in Figure 7.15 together with the spectra of the two monomers to work out the differences between the copolymers and the two monomers. The three vibrational bands that were characteristic for BzMA and also the three bands for tBMA were marked there in the spectra of the polymer and the corresponding monomer-spectra. However, several bands in each monomer spectra did not have corresponding bands in the polymer spectrum. They were at $815 \mathrm{~cm}^{-1}$ and $1010 \mathrm{~cm}^{-1}$ in both monomer spectra, at $1290 \mathrm{~cm}^{-1}$ and $1320 \mathrm{~cm}^{-1}$ in the BzMA spectrum and at $1305 \mathrm{~cm}^{-1}$ and $1330 \mathrm{~cm}^{-1}$ in the tBMA spectrum. In the polymer spectrum were no bands in the region between $1290 \mathrm{~cm}^{-1}$ and $1350 \mathrm{~cm}^{-1}$. Hence that bands resulted from the vibration of $=\mathrm{CH}_{2}$. [87]

The band at $850 \mathrm{~cm}^{-1}$ (band 1) characteristic for tBMA and the one at $730 \mathrm{~cm}^{-1}$ (band 2) caused by BzMA were most suited for the investigation of the copolymer compositions. They were clearly separated and could be investigated well in view to peak area (PA) and peak height (PH). In Figure 7.16 these two vibrational bands of the IR-spectra of the different copolymers from Series F are compared. It was recognizable that with the change in copolymer composition the peak area and the peak height changed. Band 1 is a characteristic band
from tBMA and with the rise of the amount of tert-butyl-group in the copolymer chain also the band intensity increased. Conversely, the intensity of band 2 which is characteristic for the benzyl-group decreased. To show that behaviors more precisely the peak area and the peak height of the two bands were determined and then the composition of the samples, taken from analysis of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra, was plotted against the peak area and the peak height. This is depicted in Figure 7.17 and further the values are listed in Table 7.11.

Fig. 7.16.: Analyzed section of the ATR-FTIR-spectra of the different copolymer compositions of $\mathrm{P}[\mathrm{tBMA}-\mathrm{co}-\mathrm{BzMA}] ; \mathrm{A}-\mathrm{F}_{\mathrm{BzMA}}=0.00, \mathrm{~B}-\mathrm{F}_{\mathrm{BzMA}}=0.11, \mathrm{C}-\mathrm{F}_{\mathrm{BzMA}}=0.15, \mathrm{D}-$ $\mathrm{F}_{\mathrm{BzMA}}=0.19, \mathrm{E}-\mathrm{F}_{\mathrm{BzMA}}=0.33, \mathrm{~F}-\mathrm{F}_{\mathrm{BzMA}}=0.48, \mathrm{G}-\mathrm{F}_{\mathrm{BzMA}}=0.61, \mathrm{H}-\mathrm{F}_{\mathrm{BzMA}}=0.67$, $\mathrm{I}-\mathrm{F}_{\mathrm{BzMA}}=1.00 \quad\left(\right.$ Spectra normalized to $\left.\mathrm{A}_{1134}=1\right)$

Tab. 7.11.: Peak area and peak height of the analyzed ATR-FTIR-bands of Series F
band 1 band 2
Entry $\mathrm{F}_{\mathrm{BzMA}}{ }^{a}$ peak area peak height peak area peak height
$\left.\begin{array}{llcccc} & & {\left[\mathrm{cm}^{-1}\right]} & & {\left[\mathrm{cm}^{-1}\right]}\end{array}\right]$

[^8]

Fig. 7.17.: ATR-FTIR calibration curves, relating the composition of the copolymers P[BzMA-co-tBMA] of Series F to a) peak area and b) peak height of band $1\left(850 \mathrm{~cm}^{-1}, \llbracket\right)$ and band $2\left(730 \mathrm{~cm}^{-1}\right.$,

All values, peak area and peak height of both vibrational bands, changed with the change of copolymer composition $\mathrm{F}_{\mathrm{BzMA}}$. The mentioned decrease of band 1 and the increase of band 2 is reflected by the Equations 7.2.17 to 7.2.20.

$$
\begin{align*}
\mathrm{F}_{\mathrm{BzMA}}\left(\mathrm{PA}_{1}\right)= & (1.532 \pm 0.079) \mathrm{cm}^{-1} \tag{7.2.17}\\
& -(0.253 \pm 0.017) \mathrm{cm}^{-1} \cdot \mathrm{PA}_{1} \\
\mathrm{~F}_{\mathrm{BzMA}}\left(\mathrm{PA}_{2}\right)= & (0.055 \pm 0.076) \mathrm{cm}^{-1} \\
& -(0.0158 \pm 0.017) \mathrm{cm}^{-1} \cdot \mathrm{PA}_{2}+(0.004 \pm 0.001) \mathrm{cm}^{-1} \cdot \mathrm{PA}_{2}^{2} \tag{7.2.18}\\
\mathrm{~F}_{\mathrm{BzMA}}\left(\mathrm{PH}_{1}\right)= & (1.093 \pm 0.031) \tag{7.2.19}\\
& -(2.885 \pm 0.116) \cdot \mathrm{PH}_{1} \\
\mathrm{~F}_{\mathrm{BzMA}}\left(\mathrm{PH}_{2}\right)= & (0.171 \pm 0.192) \\
& -(1.618 \pm 1.173) \cdot \mathrm{PH}_{2}+(5.233 \pm 1.610) \cdot \mathrm{PH}_{2}^{2} \tag{7.2.20}
\end{align*}
$$

With the copolymer system nBMA/tBMA the fitting of the peak height of vibrational bands worked better than the peak area fits (see Figure 3.13). Here, with Series F (tBMA/BzMA), no greater difference between the error-estimations of the peak area- and the peak height-fits was found. Hence, both values were qualified for the use as calibration curve to determine the composition of the copolymers. This monomer system can be analyzed quantitatively by means of ATR-FTIR spectroscopy. Because peak height measurement is the classical way of IR-analysis, and because of the comparability with Series A, the peak height method will be used to build the calibration curve.

7.2.3. Molecular Weight Characterization

The investigation procedure of the resulting copolymers from benzyl methacrylate and tertbutyl methacrylate was the same as for the first monomer mixture with n - and tert-butyl methacrylate, cf. Section 3.3.3. So after the investigation of the kinetic and the structure, the resulting polymers were also investigated with size exclusion chromatography.

In common with Series A and Series B the experiments of Series F were repeated in larger batches, Series G (cf. Section 7.1.2), to allow for sampling of sufficient larger quantities to obtain enough polymer per sample for a SEC analysis. On one hand that was done for the verification of the polymerization control and on the other hand to find out how the molar mass growth during the polymerization via the samples from Series G. The control of the polymerization can be judged by the polydispersity of the polymer, because the lower the PDI the better the control. With a perfect control over the reaction the PDI would be $1+\frac{1}{x_{1}}$. [41] During the polymerization the first sample was taken after one hour because at earlier times the conversion was not sufficiently high to support the analysis. Other samples were taken every 30 min up to 3 hours. The procedure of sampling and work-up was also the same
as described with Series B, Section 3.1.2, to maintain the comparability of the two systems.

Figure 7.18 shows the elution diagrams (RI-signals) of the samples from batch copolymerization V93. With growing reaction time the peaks of the elution diagrams became shifted to lower elution volumes, from 27.9 to 26.7 ml . Hence, the molar mass of the copolymers became larger during the course of the reaction. All the GPC-analysis of the samples of Series G showed this behavior. In view to the growth of the molar mass all the entries of Series G worked well and just like Series B, cf. Section 3.3.3. The RI-signals also demonstrated the absence of side reactions over the course of reaction, due to the lack of multimodality and front- or back-tailing effects.

Fig. 7.18.: SEC elution diagrams of the samples of batch copolymerization $\mathrm{V} 93\left(\mathrm{f}_{\mathrm{BzMA}}=0.66\right)$ at reaction times of $\mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-120 \mathrm{~min}, \mathrm{D}-150 \mathrm{~min}, \mathrm{E}-180 \mathrm{~min}$

The calibration curve arising from narrow distributed linear polystyrene standards (see Equation 3.3.22) was used together with the the maximum elution-volume of the RI-elution curve for the determination of the relative molar masses of the copolymers. The molar masses rose linear from 16420 to $30130 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ during the polymerization. The results of the calculations are listed in Table 7.15. Because of the fact that only one point of the RI-peak the maximum elution-volume was used for the determination of the relative molar mass the results only reflected just one part of the sample. Therefore the absolute molar masses of the samples were also determined.

Fig. 7.19.: Refractive index increment of polymer $\mathrm{V} 82\left(\mathrm{~F}_{\mathrm{BzMA}}=0.2\right)$; a) elution diagram of solutions $\mathrm{D} 1-0.1 \mathrm{mg} \cdot \mathrm{ml}^{-1}, \mathrm{D} 2-0.2 \mathrm{mg} \cdot \mathrm{ml}^{-1}, \mathrm{D} 3-0.5 \mathrm{mg} \cdot \mathrm{ml}^{-1}, \mathrm{D} 4-1.0 \mathrm{mg} \cdot \mathrm{ml}^{-1}, \mathrm{D} 5$ $-2.0 \mathrm{mg} \cdot \mathrm{ml}^{-1}$ (dashed vertical lines) and THF - baseline (dashed horizontal line);
b) determination of $\mathrm{dn} / \mathrm{dc}$ - concentrations against refractive index ($\mathrm{dn} / \mathrm{dc}=0.1246$ $\left.\pm 0.0025 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$; in THF at $25^{\circ} \mathrm{C}$

As described in Section 3.3.3 for the determination of the absolute molar masses of the samples by means of static light scattering first the differential refractive index increment (dn/dc) of the resulting polymers from Series G must be measured, see Section 2.4. Moreover a correlation between polymer composition and $\mathrm{dn} / \mathrm{dc}$ in THF as solvent at $25^{\circ} \mathrm{C}$ was investigated.

Five different concentrations of each copolymer (V81 to V89) were injected one after another; before and after the polymer solution pure THF was injected. Then the gathered diagram was analyzed. First a baseline between the solvent levels was drawn and the regions of the different concentrations were marked. An example of such a time/n-diagram obtained from the copolymer V82 is depicted in Figure 7.19a. The five obtained refractive indices $n\left(c_{i}\right)$ of the concentration series were plotted against the concentrations ci (see Figure 7.19b).

The measured refractive indices of the polymer solutions fairly laid on a straight line of positive slope. The slope of the fitted linear function is the differential refractive index increment $\mathrm{dn} / \mathrm{dc}$ of copolymer V82 in THF at $25^{\circ} \mathrm{C}$. The other copolymers of Series F were investigated in an analogous way. The measured differential refractive index increments of the copolymers are summarized in Table 7.12 while Figure 7.20 depicts a plot of the dn/dc versus the molar fraction of BzMA ($\mathrm{F}_{\mathrm{BzMA}}$) in the respective substance. There was a rough tendency between the copolymer composition and the $\mathrm{dn} / \mathrm{dc}$ of the polymer. With rise of the amount of BzMA inside the polymer chain the values of $\mathrm{dn} / \mathrm{dc}$ also increased. The values changed from 0.0695 to $0.1351 \mathrm{ml} \cdot \mathrm{g}^{-1}$. Up to a composition of $\mathrm{F}_{\mathrm{BzMA}}=0.5$ the gain was higher $(\sim 0.59=\Delta[\mathrm{dn} / \mathrm{dc}])$ than from $\mathrm{F}_{\mathrm{BzMA}} 0.5$ to $1.0(\sim 0.03=\Delta[\mathrm{dn} / \mathrm{dc}])$. Literature values of the $\mathrm{dn} / \mathrm{dc}$ for PBzMA or PtBMA in THF at $25^{\circ} \mathrm{C}$ were not available.

Tab. 7.12.: Differential refractive index increment $\mathrm{dn} / \mathrm{dc}$ of the different copolymer compositions of Series F

Entry	$\mathrm{F}_{\text {BzMA }}$	$\mathrm{dn} / \mathrm{dc}\left[\mathrm{ml} \cdot \mathrm{g}^{-1}\right]$
V88	0.00	0.0612 ± 0.0019
V86	0.11	0.0814 ± 0.0050
V84	0.15	0.0873 ± 0.0016
V82	0.19	0.1246 ± 0.0025
V81	0.33	0.1135 ± 0.0025
V83	0.48	0.1059 ± 0.0050
V85	0.61	0.1207 ± 0.0022
V87	0.66	0.1198 ± 0.0019
V89	1.00	0.1351 ± 0.0028

The measured dn/dc values of $\mathrm{P}[\mathrm{BzMA}-\mathrm{co}-\mathrm{tBMA}]$ copolymers in THF were used to analyze the molecular weight distributions and to determine the absolute molar masses of the BzMA/ tBMA copolymers of Series F and G (batch copolymerization, cf. Section 7.1.2) by means of online MALS during SEC characterization.

Fig. 7.20.: Plot of the measured differential refractive index increments dn/dc of the solutions of P[BzMA-co-tBMA] copolymers (Polymers of Series F, cf. Table 7.1, THF, $25^{\circ} \mathrm{C}$)

Fig. 7.21.: SEC elution diagrams and molar masses of experiment V85 ($\mathrm{F}_{\mathrm{BzMA}}=0.61$); black curve - light scattering signal, grey curve - refractive index signal

Figure 7.21 depicts the RI- and the $90^{\circ}-\mathrm{MALS}$-detector signals of the elution-diagram of $\mathrm{P}[\mathrm{BzMA}-\mathrm{co}-\mathrm{tBMA}]$ copolymer V85 $\left(\mathrm{F}_{\mathrm{BzMA}}=0.61\right)$. The signals were analyzed in the same way as before the data from the SEC analysis of Series A and Series B, cf. Section 3.3.3. From the angle dependence of the scattered light intensity and the known dn/dc-value of $\mathrm{dn} / \mathrm{dc}=0.1207 \mathrm{ml} \cdot \mathrm{g}^{-1}(\mathrm{cf}$. Table 7.12) the absolute molecular weight of a fraction at a given elution volume can be derived (cf. Section 2.4). The calculated molecular weights are shown in Figure 7.21 (right axis). Since the RI-signal is proportional to the weight fraction of the eluted polymer, the complete molecular weight distribution (MWD) of the measured polymer can be obtained. Both detector signals were also monomodal without fronting and tailing. This result was also a repetition of the results from the first monomer mixture. From the MWD the molecular weight averages $\left(M_{n}, M_{w}, M_{z}\right)$ and the polydispersity indices M_{w} / M_{n} respectively $\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$ was calculated. The obtained values are detailed in Table 7.13 for Series F and in Table 7.14 for Series G.

Tab. 7.13.: SEC results of the different copolymer-compositions of Series F

Entry	$\mathrm{F}_{\text {BzMA }}$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
V 88	0.00	30820 ± 616	31620 ± 949	33570 ± 4364	1.026 ± 0.0308	1.089 ± 0.1416
V 86	0.11	33510 ± 235	34590 ± 138	35730 ± 357	1.032 ± 0.0083	1.066 ± 0.0107
V 84	0.15	33050 ± 331	35990 ± 180	37900 ± 758	1.089 ± 0.0109	1.147 ± 0.0229
V 82	0.19	36600 ± 256	38980 ± 156	40570 ± 406	1.065 ± 0.0085	1.109 ± 0.0111
V81	0.33	30880 ± 278	31570 ± 221	32300 ± 323	1.022 ± 0.0102	1.046 ± 0.0209
V83	0.48	34250 ± 343	36520 ± 292	38170 ± 763	1.066 ± 0.0213	1.115 ± 0.0223
V85	0.61	33020 ± 198	33580 ± 201	34590 ± 692	1.017 ± 0.0092	1.048 ± 0.0210
V87	0.66	49870 ± 150	54050 ± 108	57090 ± 171	1.084 ± 0.0033	1.145 ± 0.0046
V89	1.00	52840 ± 159	55960 ± 112	59460 ± 297	1.059 ± 0.0042	1.125 ± 0.0068

Tab. 7.14.: SEC results of the different copolymer-compositions of Series G

Entry $\mathrm{f}_{\text {BzMA }}$	time $[\mathrm{min}]$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
V 92	60	14370 ± 144	14890 ± 134	15380 ± 308	1.036 ± 0.0104	1.070 ± 0.0214
0.33	90	21570 ± 194	22920 ± 138	27150 ± 543	1.063 ± 0.0106	1.259 ± 0.0252
	120	23870 ± 239	24930 ± 199	27800 ± 556	1.045 ± 0.0105	1.165 ± 0.0350
	150	26530 ± 265	28010 ± 224	35210 ± 1056	1.056 ± 0.0106	1.327 ± 0.0398
	180	26940 ± 269	29200 ± 146	31720 ± 317	1.084 ± 0.0108	1.177 ± 0.0235
V 91	60	23050 ± 184	27080 ± 162	34890 ± 349	1.175 ± 0.0118	1.513 ± 0.0303
0.5	90	28140 ± 141	31990 ± 64	37060 ± 148	1.137 ± 0.0068	1.317 ± 0.0092
	120	30060 ± 301	35430 ± 354	69970 ± 3499	1.179 ± 0.0236	2.328 ± 0.1164
	150	33070 ± 331	35190 ± 704	39140 ± 2740	1.064 ± 0.0213	1.183 ± 0.0828

Entry $\mathrm{f}_{\text {BzMA }}$	time $[\mathrm{min}]$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
	180	32580 ± 652	35380 ± 354	38030 ± 1521	1.086 ± 0.0326	1.167 ± 0.0467
V 93	60	23960 ± 144	25330 ± 152	26750 ± 268	1.057 ± 0.0095	1.116 ± 0.0223
0.66	90	33740 ± 270	36320 ± 218	39690 ± 794	1.076 ± 0.0108	1.176 ± 0.0235
	120	37530 ± 375	40710 ± 204	44340 ± 443	1.085 ± 0.0109	1.181 ± 0.0236
	150	41910 ± 293	45130 ± 181	49570 ± 496	1.077 ± 0.0086	1.183 ± 0.0118
	180	44070 ± 353	47850 ± 191	51880 ± 415	1.085 ± 0.0098	1.177 ± 0.0118
V 99	60	32090 ± 225	34970 ± 105	37600 ± 301	1.090 ± 0.0087	1.172 ± 0.0117
1.0	90	40710 ± 122	42740 ± 128	45270 ± 272	1.500 ± 0.0060	1.112 ± 0.0078
	120	44560 ± 134	48690 ± 97	53120 ± 319	1.093 ± 0.0044	1.192 ± 0.0083
	150	47230 ± 142	51550 ± 103	55710 ± 223	1.091 ± 0.0044	1.180 ± 0.0059
	180	47400 ± 190	53330 ± 160	58280 ± 408	1.125 ± 0.0056	1.230 ± 0.0098

For experiment V93 ($\mathrm{f}_{\text {nBMA }}=0.66$) the results of the absolute molar mass determination are depicted against the reaction time in Figure 7.22a. The molar mass grew linear at the beginning and reached $25330 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ after 60 min , but with times the growth curve attended and at the end the molar mass was $47850 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. Hence, the growth of the molar mass followed a bounded growth $\mathrm{M} \approx \mathrm{M}_{\infty}\left(1-\mathrm{e}^{-\mathrm{kt}}\right)$. Figure $3.19 b$ shows the linear dependence of the molar mass M_{w} of the samples to the conversion p. In Section 7.2.1 it was shown that $\mathrm{t} \rightarrow 0:-\ln (1-\mathrm{p})=\mathrm{k}_{1} \cdot \mathrm{t}$ applied to the reaction kinetic and in this section it was displayed that $\mathrm{t} \rightarrow \infty: \mathrm{M}=\mathrm{k}_{2} \cdot \mathrm{p}$ applied to the molar mass progress. These rules were valid for controlled reactions without termination reactions.

Tab. 7.15.: Comparison of relative* and absolute molar masses of experiment V93 ($\mathrm{f}_{\mathrm{nBMA}}=0.66$)

time $[\mathrm{min}]$	V_{E} $[\mathrm{ml}]$	relative M^{*} $\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]$	absolute M $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\Delta \mathrm{M}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$[\%]$
60	27.90	16420	25330	8915	35.19
90	27.32	22040	36320	14278	39.31
120	27.07	24990	40710	15716	38.61
150	26.86	37780	45130	17354	38.45
180	26.70	30130	47850	17718	37.03

* calibrated against PS-Standard

The measured absolute molar masses were all larger than the relative peak masses. For experiment V93 the values are compared in Table 7.15. With the increase of the reaction time also the difference between the relative and the absolute molar mass increased, from $\Delta \mathrm{M}$ of 8915 to $17718 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. The variance depended on the different approach of the determination methods.

b)

Fig. 7.22.: a) Polydispersities M_{w} / M_{n} and molar masses M_{n} of batch copolymer V93 ($f_{\text {BzMA }}=0.66$) against polymerization time t - polydispersity $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$, molar mass M_{w}; b) molar masses M_{n} of batch copolymer V93 ($\mathrm{f}_{\mathrm{BzMA}}=0.66$) against conversion p

For the determination of the relative molar mass only the maximum elution volume of the RI-curve is used, that means only one point of the whole measurement. The absolute molar mass is determined from the complete database of the measurement and displays the molecular weight distribution of the whole sample.

Figure 7.23 shows the dependence of M_{n} and PDI on the copolymer composition. The molecular weight $\left(M_{n}\right)$ was fairly independent of the used copolymer composition ($\mathrm{M}_{\mathrm{n}} \approx$ $38800 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$), although the masses scattered considerably. The polydispersity of the samples was low ($\mathrm{PDI}=1.02 \ldots 1.09$) and also independent of the copolymer composition. As with the results of the elementary analysis it was shown that the monomer composition of the reaction had no influence on the resulting copolymer.

Fig. 7.23.: Polydispersities $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ and molar masses M_{n} of Series F P[BzMA-co-tBMA]copolymers; - polydispersity $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ and - molar mass M_{n}, dashed line - average molar mass

Comparison of molecular weight characterizations from batch copolymerizations of $n B M A / t B M A$ and BzMA/tBMA

In the next paragraph the results of the SEC analysis of Series A and Series F are compared to work out the similarities and the differences of the two monomer mixtures. The resulting molar masses M_{n} of the final copolymers of Series A and Series F are given in Figure 7.25 and the polydispersities PDI in Figure 7.27.

The dn/dc values of Series A and Series F are compared in Figure 7.24. The values of Series A were all lower than the one of Series F. The progression of the values from Series F were slightly more consistent than the one of Series A.

Fig. 7.24.: Comparison of the differential refractive index increments $\mathrm{dn} / \mathrm{dc}$ of the solutions of the two copolymer series (Polymers of $■$ Series A, $\mathrm{i}=\mathrm{nBMA}$, cf. Table 3.10, and Series $F, \mathrm{i}=$ BzMA cf. Table 7.12 , THF, $25^{\circ} \mathrm{C}$)

The molar masses of Series F were higher than the ones of Series A. The average molar mass of Series A was $28500 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and the one of Series F was $39200 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. Especially the homopolymers of BzMA had a obviously higher M_{n} than the homopolymer of nBMA.

Beside the absolute molar masses of the copolymers, the two copolymerization system were also compared by the degree of polymerization X_{n}, to compensate the different molar masses of the monomers nBMA and BzMA. The degree of polymerization considers the number of incorporated monomer units in the polymer-chain and not their molar mass, see Equation 7.2.21.

$$
\begin{equation*}
\mathrm{X}_{\mathrm{n}}=\frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{~F}_{1} \cdot \mathrm{M}_{1}+\mathrm{F}_{2} \cdot \mathrm{M}_{2}} \tag{7.2.21}
\end{equation*}
$$

with $M_{n}=$ molar mass of the copolymer, $F_{i}=$ molar fraction of monomer $i, M_{i}=$ molar mass of monomer i $\left(\mathrm{M}_{\mathrm{tBMA} / \mathrm{nBMA}}=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right.$ and $\left.\mathrm{M}_{\mathrm{BzMA}}=176.21 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$

Fig. 7.25.: Comparison of a) molar masses M_{n} of Series $A(\mathbf{\square}, \mathrm{i}=\mathrm{nBMA}$, cf. Table 3.11) and Series $F(\bullet, \mathrm{i}=$ BzMA, cf. Table 7.13) against copolymer composition, dashed lines average molar mass

The degree of polymerization of the copolymers of Series A and Series F are listed in Table 7.16 and shown in Figure 7.26. In Series A the X_{n}-values laid between 140 and 260. While in Series F the degree of polymerization ranged from $\mathrm{X}_{\mathrm{n}}=205$ to 260 between $\mathrm{F}_{\mathrm{BzMA}}=0$ and $\mathrm{F}_{\mathrm{BzMA}}=0.61$. Hence, $\mathrm{X}_{\mathrm{n}}(\mathrm{BzMA} / \mathrm{tBMA})$ is in the same region as X_{n} of the copolymers from tBMA and nBMA. The copolymers with $\mathrm{F}_{\mathrm{BzMA}}=0.66$ and $\mathrm{F}_{\mathrm{BzMA}}=1$ had a degree of polymerization of 330, respectively 320. Larger amounts of BzMA inside the polymer is coupled to higher X_{n}-values.

Tab. 7.16.: Degree of polymerization X_{n} of the copolymers of Series $A \mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ and Series F P[BzMA-co-tBMA]

$\mathrm{F}_{\text {nBMA }}$	X_{n}	$\mathrm{F}_{\text {BzMA }}$	X_{n}
0.00	202.67	0.00	222.36
0.10	208.58	0.11	236.97
0.14	202.88	0.15	244.60
0.20	140.30	0.19	261.93
0.32	178.55	0.33	205.72
0.52	185.51	0.48	230.20
0.57	235.72	0.61	206.05
0.66	263.15	0.66	328.12
1.00	188.40	1.00	317.58

Fig. 7.26.: Comparison of degree of polymerization X_{n} of Series $A(\mathbf{\square}, \mathrm{i}=\mathrm{nBMA})$ and Series F $(\bullet, \mathrm{i}=\mathrm{BzMA})$ against copolymer composition

Fig. 7.27.: Comparison of polydispersities $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ of $\operatorname{Series} A(\boldsymbol{\square}, \mathrm{i}=\mathrm{nBMA})$ and $\operatorname{Series} F(\bullet$, i $=$ BzMA) against copolymer composition

The polydispersities PDI were nearly the same with both monomer mixtures. They were low (PDI <1.1) with two exceptions. $\mathrm{F}_{\mathrm{nBmA}}=0$ had a PDI of 1.345 and $\mathrm{F}_{\mathrm{BzMA}}=0$ a PDI of 1.221. The low PDI-values and their narrow distribution on changing t comonomer-content showed that the two controlled radical copolymerizations worked well, independent of the monomer mixture.

7.2.4. Thermal Behavior

The next kind of analysis was the differential scanning calorimetry. Here the thermal behavior of the copolymers was analyzed mainly to determine the dependence of the glass transition temperature T_{g} on the copolymer composition. All samples of Series F were measured with the following temperature program:

- precooling: RT to $-50^{\circ} \mathrm{C}$
- standby for 20 min
- 1. heating: -50 to $200^{\circ} \mathrm{C}$
- 1. cooling: 200 to $-50^{\circ} \mathrm{C}$
- 2. heating: -50 to $200^{\circ} \mathrm{C}$
- postcooling: $200^{\circ} \mathrm{C}$ to RT

Note that the same temperature program was used to analyze Series A to maintain the compatibility of investigations, cf. Section 3.3.4.

The samples of Series F were measured between -80 to $150^{\circ} \mathrm{C}$ as with Series B but with otherwise equal DSC program because the analysis of Series A showed that it was not required to heat up to $200^{\circ} \mathrm{C}$. In Figure 7.28 the thermogram of experiment V81 with both heating and the cooling runs is depicted as an example.

The first heating run showed a single glass transition step overlaid by a relaxation peak in the range from 30 to $80^{\circ} \mathrm{C}$. To avoid effects of the sample thermal history only the second heating run was analyzed. With the analysis software of the DSC, $\mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$ of the glass transition region were determined and then the other values $\mathrm{T}_{\mathrm{g}}, \Delta \mathrm{T}=\mathrm{T}_{\text {offset }}-\mathrm{T}_{\text {onset }}$ and Δc_{p} were calculated. [89] Also the midpoint of the glass transition region $T_{\text {midpt }}$ was computed but these values were not used further. The procedure was the same as described before for the first monomer mixture in Section 3.3.4. All second heating runs from the copolymers of Series F and all the samples of Series G which were taken during the batch copolymerization were analyzed that way. The second heating runs of the samples of V92 as an example for Series G are depicted in Figure 7.29. $\mathrm{T}_{\mathrm{g}}, \mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$ as bounds of the glass area are marked there. The second heating runs of the batch copolymers of Series F are collected
in Figure 7.31, also with marked $\mathrm{T}_{\mathrm{g}}, \mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$. All the DSC results of the batch copolymerizations of Series F are summarized in Table 7.17 and the one of Series G in Table 7.18.

Fig. 7.28.: DSC thermogram of experiment $\mathrm{V} 81\left(\mathrm{~F}_{\mathrm{BzMA}}=0.33\right)$; a - first heating run, $\mathrm{b}-$ first cooling run, $\mathrm{c}-$ second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Tab. 7.17.: DSC results of the different copolymer compositions of Series F

Entry	$\mathrm{F}_{\text {BzMA }}$	$\mathrm{T}_{\mathrm{g}}^{\mathrm{F}}{ }^{a}$ $\left[{ }^{\mathrm{C}}\right]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {midpt }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{g} $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{c}_{\mathrm{p}}$ $\left[\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}\right]$
V88	0.00	107.0^{b}	96.0	103.0	107.5	111.0	15.0	0.223
V86	0.11	94.0	67.0	82.5	81.5	99.0	32.0	0.220
V84	0.15	90.0	73.5	81.5	83.0	89.0	15.5	0.175
V82	0.19	86.0	43.5	50.0	55.5	57.5	14.0	0.222
V81	0.33	75.5	45.0	56.5	52.5	70.5	25.5	0.140
V83	0.48	66.5	47.0	63.0	66.0	77.0	30.0	0.254
V85	0.61	60.2	39.0	49.5	54.0	58.5	19.5	0.206
V87	0.66	58.0	17.5	32.5	29.5	43.0	25.5	0.215
V89	1.00	47.0^{c}	24.0	34.0	36.5	42.5	18.5	0.239

${ }^{a}$ calculated with Fox-Equation 7.2.23; from Literature ${ }^{b}$ [90] and ${ }^{c}$ [113]

Tab. 7.18.: DSC results of the different copolymer compositions of Series G

Entry $\mathrm{F}_{\text {BzMA }}$	time $[\mathrm{min}]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{[} \mathrm{C}\right]$	$\mathrm{T}_{\text {midpt }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{g} $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{c}_{\mathrm{p}}$ $\left[\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}\right]$
V 92	60	61.5	69.5	70.0	77.0	15.5	0.263
0.33	90	59.5	69.0	71.5	77.5	18.0	0.253
	120	58.0	64.5	66.0	71.0	13.0	0.215
	150	51.0	60.0	63.0	66.5	15.5	0.198
	180	62.5	69.0	71.0	75.0	12.5	0.238
V 91	60	30.0	37.5	39.0	43.5	13.5	0.249
0.5	90	47.5	59.0	58.5	69.0	21.5	0.244
	120	58.0	65.5	61.0	71.5	13.5	0.184
	150	42.0	50.5	51.5	58.0	16.0	0.247
	180	42.0	50.5	51.5	58.0	16.0	0.214
V 93	60	48.5	57.0	56.0	64.5	16.0	0.281
0.66	90	53.5	62.0	65.5	68.5	15.0	0.311
	120	44.0	51.5	53.5	58.0	14.0	0.241
	150	39.0	48.5	47.5	55.5	16.5	0.255
	180	44.0	51.0	52.0	56.5	12.5	0.244
V 94	60	42.5	48.0	51.5	53.5	11.0	0.264
1.0	90	49.0	55.5	56.0	60.5	11.5	0.278
	120	36.5	43.5	46.5	50.0	13.5	0.277
	150	38.0	43.5	48.0	50.0	12.0	0.274
	180	35.0	42.0	43.0	48.0	13.0	0.278

The second heating runs of the samples that were taken during the batch copolymerization of experiment V92, see Figure 7.29, did not vary significantly between the first four samples. Only the last sample, taken after 180 min , showed a slight shift to higher temperature. So the glass transition temperature and the glass transition range did not change obviously with the growing of the molar mass. Figure 7.30 depicts T_{g} and $\Delta \mathrm{T}$ against the polymerization time. The T_{g} staid constant over the whole polymerization and also $\Delta \mathrm{T}$ decreased only marginally. Therefore the growth of the molar mass had no influence on the glass transition temperature and range. That was the same with all compositions of Series G. An analogous behavior was also found with the P[nBMA-co-tBMA]-copolymers of Series B.

Fig. 7.29.: DSC thermograms of samples taken during the batch copolymerization $\mathrm{V} 92\left(\mathrm{f}_{\mathrm{BzMA}}=\right.$ 0.33) with marked glass transition temperature range $\Delta \mathrm{T}$ and temperature T_{g} (second heating runs, heating rate $10 \mathrm{~K} \cdot \min ^{-1} ; \mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-120 \mathrm{~min}, \mathrm{D}-150 \mathrm{~min}$, E-180 min of polymerization time

Fig. 7.30.: Glass transition temperature T_{g} and temperature range $\Delta \mathrm{T}$ of the samples taken during the batch copolymerization V92 ($\mathrm{f}_{\mathrm{BzMA}}=0.33$); glass transition temperature T_{g} and - glass transition region $\Delta \mathrm{T}$

Figure 7.31 shows that there is some kind of dependence of the glass transition temperature on the composition of the copolymer. T_{g} decreased from $107.5^{\circ} \mathrm{C}$ for PtBMA to $36.5^{\circ} \mathrm{C}$ for PBzMA. The change of $\Delta \mathrm{T}$ was not consistent. The two values are also plotted in Figure 7.32 against the copolymer composition to point out the trends more explicitly. The dependence of T_{g} on the copolymer composition was not linear over all compositions. Between $\mathrm{F}_{\mathrm{BzMA}}=0.00$ and $0.33 \mathrm{~T}_{\mathrm{g}}$ fell linear with the rise of BzMA in the polymer chain. Then the curves became flatter. The equation of the fit is given in Equation 7.2.22. $\Delta \mathrm{T}$ did not show a dependence to the copolymer composition.

$$
\begin{equation*}
\mathrm{T}_{\mathrm{g}}=(39.006 \pm 10.488)^{\circ} \mathrm{C}+(67.127 \pm 13.192)^{\circ} \mathrm{C} \cdot \mathrm{e}^{(-4.0960 \pm 2.093)^{\circ} \mathrm{C} \cdot \mathrm{~F}_{\mathrm{BzMA}}} \tag{7.2.22}
\end{equation*}
$$

Fig. 7.31.: DSC thermograms of copolymers $\mathrm{P}[\mathrm{BzMA}-\mathrm{co}-\mathrm{tBMA}]$ Series F with marked glass transition temperature range $\Delta \mathrm{T}$ and temperature T_{g}; second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1} ; \mathrm{A}-\mathrm{F}_{\mathrm{BzMA}}=0.00, \mathrm{~B}-\mathrm{F}_{\mathrm{BzMA}}=0.11, \mathrm{C}-\mathrm{F}_{\mathrm{BzMA}}=0.15, \mathrm{D}-\mathrm{F}_{\mathrm{BzMA}}=0.19$, $\mathrm{E}-\mathrm{F}_{\mathrm{BzMA}}=0.33, \mathrm{~F}-\mathrm{F}_{\mathrm{BzMA}}=0.48, \mathrm{G}-\mathrm{F}_{\mathrm{BzMA}}=0.61, \mathrm{H}-\mathrm{F}_{\mathrm{BzMA}}=0.66, \mathrm{I}-$ $\mathrm{F}_{\mathrm{BzMA}}=1.00$

Fig. 7.32.: Glass transition temperature T_{g} and temperature range $\Delta \mathrm{T}$ of copolymers $\mathrm{P}[$ BzMA-co-tBMA] Series F; glass transition temperature T_{g} and \bullet glass transition region $\Delta \mathrm{T}$

The measured T_{g}-values of PtBMA agreed well to the known literature values. Reference [90] stated $107^{\circ} \mathrm{C}$ which was nearly the same as the present measurements $\left(107.5^{\circ} \mathrm{C}\right)$. For PBzMA [113] $\mathrm{T}_{\mathrm{g}}=47^{\circ} \mathrm{C}$ is given which is about $10^{\circ} \mathrm{C}$ higher than the measured value $\left(36.5^{\circ} \mathrm{C}\right)$. Despite the discrepancy of the values of PBzMA, the literature values were used to fit the Fox-Equation (7.2.23) to the glass transition temperature of the prepared copolymers. [19]

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\frac{\mathrm{F}_{\mathrm{BzMA}}}{\mathrm{~T}_{\mathrm{g}, \mathrm{PBzMA}}}+\frac{1-\mathrm{F}_{\mathrm{BzMA}}}{\mathrm{~T}_{\mathrm{g}, \mathrm{PtBMA}}} \tag{7.2.23}
\end{equation*}
$$

The Fox- T_{g}-values of the different batch copolymers are listed in Table 7.17. All measured T_{g} of the copolymers were lower than the ones calculated from the Fox-Equation 7.2.23. The difference was around $10^{\circ} \mathrm{C}$ what was the same difference than between the measured T_{g} of BzMA of the homopolymers and its literature value. So this equation is a good possibility to estimate the glass transition temperature of the gradient copolymers, because the differences were the same. In both cases, calculation and measurement, the T_{g}-values decreased with the increasing of BzMA inside the polymer chain.

Fig. 7.33.: Reciprocal glass transition temperature T_{g} of Series F against copolymer composition

Figure 7.33 shows the plot of the reciprocal of the glass transition temperature T_{g} of the copolymer of Series F against the copolymers composition. There the $1 / \mathrm{T}_{\mathrm{g}}$ values rose roughly linear with the amount of BzMA in the copolymer but in all cases the T_{g}-values of the copolymers exceeded their corresponding Fox-values strongly. The fit is given in Equation 7.2.24.

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\left(0.0028 \pm 6.882 \cdot 10^{-5}\right) \mathrm{K}^{-1}+\left(5.514 \cdot 10^{-4} \pm 1.386 \cdot 10^{-4}\right) \mathrm{K}^{-1} \cdot \mathrm{~F}_{\mathrm{BzMA}} \tag{7.2.24}
\end{equation*}
$$

with $\mathrm{T}_{\mathrm{g} 1}=\mathrm{T}_{\mathrm{g}}$ of PtBMA and $\mathrm{T}_{\mathrm{g} 2}=\mathrm{T}_{\mathrm{g}}$ of PBzMA

The Fox-Equation (Equation 7.2.23) was converted into Equation 7.2.25 and then the values of intersection and slope of Equation 7.2.24 were introduced into the equation. Therewith the values of $\mathrm{T}_{\mathrm{g}}(\mathrm{PtBMA})$ and $\mathrm{T}_{\mathrm{g}}(\mathrm{PBzMA})$ were calculated.

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\frac{1}{\mathrm{~T}_{\mathrm{g} 1}}+\frac{\mathrm{T}_{\mathrm{g} 1}-\mathrm{T}_{\mathrm{g} 2}}{\mathrm{~T}_{\mathrm{g} 1} \cdot \mathrm{~T}_{\mathrm{g} 2}} \cdot \mathrm{~F}_{\mathrm{BzMA}} \tag{7.2.25}
\end{equation*}
$$

The solution of Equation 7.2 .25 with the values of Equation 7.2 .24 for T_{g} of tBMA was $84.0^{\circ} \mathrm{C}$ which is a deviation of 21.9% from the measured T_{g} and 21.5% from the literature value. The resulting T_{g} of PBzMA was $24.2^{\circ} \mathrm{C}$ which is a deviation of 33.7% from the measured T_{g} and 48.5% from the literature value. The determination of the glass transition temperatures
of the homopolymers with the reciprocal glass transition temperature of the copolymers did not lead to sufficient results.

Comparison of the thermal behavior of the batch copolymers of nBMA/tBMA and BzMA/tBMA

In Figure 7.34 the measured glass transition temperature T_{g} of the different copolymer compositions of Series A P[nBMA-co-tBMA] and Series F P[BzMA-co-tBMA] are depicted. The values of Series F scattered more than the values of Series A. Up to a composition of $\mathrm{F}_{\mathrm{BzMA}} / \mathrm{F}_{\mathrm{nBMA}}$ of 0.55 the glass transition temperature T_{g} of the copolymers containing benzyl methacrylate were lower than the T_{g} of the copolymers with n-butyl methacrylate. Then the curves intersected and the T_{g} of the copolymers from Series F were higher. Because the homopolymer PBzMA exhibits a higher glass transition temperature than PnBMA it was expected that all T_{g} values of Series F were higher than the ones of Series A. However, the scattering of the values of Series F made the fitting only an approximation.

Fig. 7.34.: Comparison of glass transition temperature T_{g} of \llbracket Series $A \mathrm{P}[\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA}]$ and - Series $F \mathrm{P}[\mathrm{BzMA}-\mathrm{co}-\mathrm{tBMA}]$ against copolymer composition

The reciprocal glass transition temperatures of Series A and Series F is compared in Figure 7.35. Again it was clearly to see that the values of Series F scattered obviously more than the one of Series A. The scattering was the reason why the analysis of the DSC-values of Series F did not gave as good results as the one of Series A.

Fig. 7.35.: Comparison of reciprocal glass transition temperature T_{g} of \llbracket Series A and \bullet Series F against copolymer composition

7.3. Summary

The copolymerization rates of seven mixtures of BzMA and tBMA were measured to determine the copolymerization rate constants as well as the instantaneous copolymer compositions of the P[BzMA-co-tBMA] copolymers during the ATRP reactions as a function of the comonomer composition. The kinetic studies revealed the occurrence of a well controlled polymerization reaction free of side reactions. The copolymerization parameters were measured $\left(\mathrm{r}_{\mathrm{BzMA}}=0.517, \mathrm{r}_{\mathrm{tBMA}}=2.055\right)$. The compositions of the resulting copolymers were analyzed with elementary analysis and infra red spectroscopy. The results of the elementary analysis showed that the polymers are nearly free of pollution. That means that all the reactions worked in the same way independent from the monomer composition. A calculation of the composition from the measured amounts of carbon or hydrogen leads to values which a obviously different from the compositions resulting from the analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis. The different amount of benzyl- and tert-butyl-groups inside the polymer chain were quantitatively represented in the IR-spectra. The quantitative analysis of the IR-spectra resulted in a calibration curve allowing for the copolymer composition determination from measurements of the peak height of two specific bands at $850 \mathrm{~cm}^{-1}$ for tBMA and $730 \mathrm{~cm}^{-1}$ for BzMA. SEC studies supported the findings of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy-analysis by revealing nar-
row MWD, without multimodalities or indications of termination reactions. The molecular weights were proportional to the monomer conversion, also indicating a high degree of control. The dn/dc values showed no direct relationship between the refractive index increment and the composition of the copolymer. DSC studies showed the glass transition temperatures slightly depended on the copolymer composition and can not well be described by Fox's equation. During the batch polymerization the glass transition temperature of the isolated samples did not change. The glass transition range is independent on the conversion of the batch copolymerization and the copolymer composition.

8. Synthesis of Gradient Copolymer from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization

This part of the work describes the synthesis and the characterization of functional amphiphilic gradient copolymers from benzyl methacrylate and tert-butyl methacrylate. With the results from the kinetic studies on the statistical tBMA/BzMA copolymer (cf. Section 7.2.1) the monomer addition program required for the semibatch polymerization of the gradient copolymer can be calculated. The resulting gradient copolymer $\mathrm{P}[\mathrm{tBMA}-\mathrm{grad}-\mathrm{BzMA}]$ is analyzed in the same way as the statistical copolymers before and the results were compared.

8.1. Materials and Methods

8.1.1. Materials

Chemicals and pre-treated of chemicals were the same as detailed in Chapter 7.

- monomers
- benzyl methacrylate (BzMA, 98%, Alfa Aesar)
- tert-butyl methacrylate (tBMA, 98%, Alfa Aesar)
- initiator: para-toluenesulfonyl chloride (pTSC, 98%, Sigma-Aldrich)
- catalyst: copper(I) chloride (97\%, Sigma-Aldrich)
- ligand: $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N} "$-pentamethyldiethylenetriamine (PMDETA, 99%, Sigma-Aldrich)
- solvent: 2-butanone (MEK, BDH Prolabo, chromasol.)

8.1.2. Semibatch Copolymerization of Gradient Copolymers

The experimental setup of the semibatch copolymerization is depicted in Figure 8.1.

Fig. 8.1.: Experimental setup for semibatch copolymerization

For the synthesis the two monomers were prepared separately. Two Schlenk flasks, one of 100 ml volume to hold the the stock solution and one of 50 ml for the feed solution were heated out with a hot gun (air temperature $\approx 400^{\circ} \mathrm{C}$) under vacuum for five minutes and then flushed with nitrogen. Subsequently the stock solution consisting of $0.1411 \mathrm{~g}\left(7.403 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{pTSC}$, $9.4364 \mathrm{~g}(0.0664 \mathrm{~mol}) \mathrm{tBMA}, 0.1283 \mathrm{~g}\left(7.403 \cdot 10^{-4} \mathrm{~mol}\right)$ PMDETA and $0.0733 \mathrm{~g}\left(7.403 \cdot 10^{-4} \mathrm{~mol}\right)$ CuCl was weighted in a screw-cap glass. The mixture was rinsed into the 100 ml Schlenk flask with 9.4364 g MEK under nitrogen counter flow. In a second screw-cap glass was weighted in the feed solution monomer, $13.9214 \mathrm{~g}(0.0790 \mathrm{~mol}) \mathrm{BzMA}$. It was flushed into the 50 ml Schlenk flask with 13.9214 g MEK likewise under nitrogen counter stream. The composition is also listed in Table 8.1.

Tab. 8.1.: Composition of the semibatch copolymerization of tBMA and BzMA

Entry $\mathrm{f}_{\text {tBMA }}^{0}$				n [mol]	$\mathrm{m}[\mathrm{g}]$
V101	0.5	Stock	tBMA	0.0664	9.4364
			pTSC	$7.403 \cdot 10^{-4}$	0.1411
			PMDETA	$7.403 \cdot 10^{-4}$	0.1283
			CuCl	$7.403 \cdot 10^{-4}$	0.0733
			MEK	0.1309	9.4364
		F-eed ${ }^{-}$	$\overline{\mathrm{B}} \overline{\mathrm{M}} \overline{\mathrm{M}} \overline{\mathrm{A}}$	$0.0 \overline{0} 9 \overline{0}$	$\overline{1} \overline{3} .92 \overline{1} \overline{4}$
			MEK	0.1931	13.9214

Chapter 8. Synthesis of Gradient Copolymer from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization

The two solutions were degassed by means of five freeze-melting-cycles. Than the feed solution was transferred into a gas-tight syringe under nitrogen flow and mounted in the syringe pump. The stock solution was placed in an oil bath at $80^{\circ} \mathrm{C}$ with stirring. At this time the sampling began. After 30 min for the pre-polymerization the monomer addition program was started.

During the polymerization aliquot samples with volumes of about 0.05 ml were taken at 0,15 , $30,40,50,60,70,80,90,120,150,180,210,270,330,390,450$ and 1440 min . The samples were immediately given into 0.5 ml ice cooled CDCl_{3} without further purification. Furthermore 1 ml samples were taken from the solution and precipitated in 20 ml of water: methanol $=1: 1 \mathrm{vol}: \mathrm{vol}\left(\right.$ temperature $\left.-50^{\circ} \mathrm{C}\right)$ mixture at $60,90,150,210,330$ and 450 min .

The precipitated polymers were worked up by means of procedure "work-up D " as described in Section 7.1 .2 with the samples of Series G and also characterized by means of elementary analysis, ATR-FTIR-spectroscopy, SEC and DSC. After 24 h the reaction solution was cooled down and the polymer was precipitated in 600 ml water-methanol-solution, filtered and dried, also in accordance to "work-up D". The precipitate was extracted first with $150 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $150 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and then the water phase was extracted two times more with $50 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ each. The color of the organic phase shifted from green to colorless in the organic phase and from colorless to blue in the aqueous phase. The organic phases were combined and dried by vacuum evaporation. The resulting polymer was characterized as detailed in Chapter 7, Section 7.1.2. The polymer yields of the samples and of the completely worked-up semi-batch are listed in Table 8.2.

Tab. 8.2.: Polymer yields obtained from the $1-\mathrm{ml}$-samples and the final yield of the semi-batch copolymerization of experiment V101

time	[g]	[\%]
60	0.07	14.91
90	0.15	33.93
150	0.22	51.72
210	0.32	72.08
330	0.42	95.23
450	0.43	97.80
$\overline{1} \overline{4} 40$	$1 \overline{6} .4 \overline{4}$	$\overline{7} \overline{9} . \overline{3} \overline{6}$

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N} \boldsymbol{M} \boldsymbol{R} \boldsymbol{R}: 1.25-1.45 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.42 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA $) ;$ 1.7-1.9 ppm (broad peak, $-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]$ and $\left.\mathrm{P}[\mathrm{BzMA}]\right) ; 1.9 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{tBMA}\right) ; 1.8 \mathrm{ppm}$ ($\mathrm{s},-\mathrm{CH}_{3}, \mathrm{BzMA}$); 4.8-5.1 ppm (broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]\right) ; 5.2 \mathrm{ppm}\left(\mathrm{s}, \mathrm{OCH}_{2} \mathrm{R}, \mathrm{BzMA}\right)$; $5.3 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.5 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, BzMA); $5.9 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA); $6.1 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, BzMA); 7.3-7.43 ppm (broad peak, aromatic ring, BzMA and P[BzMA])
$\boldsymbol{E A} \boldsymbol{A} \boldsymbol{7 1 . 2 0} \% \mathrm{C}, 8.18 \% \mathrm{H},\left(20.62 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3125-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring); $1717 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1476 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1319 \mathrm{~cm}^{-1}$; $1248 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1134 \mathrm{~cm}^{-1}$ (-C-O-C-) $; 1030 \mathrm{~cm}^{-1} ; 967 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 912 \mathrm{~cm}^{-1} ; 876 \mathrm{~cm}^{-1} ; 846 \mathrm{~cm}^{-1}$ $(\mathrm{tBu}) ; 749 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 696 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 584 \mathrm{~cm}^{-1} ; 528 \mathrm{~cm}^{-1} ; 461 \mathrm{~cm}^{-1}$
$\boldsymbol{S E C} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.1135 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=30880 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=31570 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=32300 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ $\boldsymbol{D} \boldsymbol{S} \boldsymbol{C}: \mathrm{T}_{\text {onset }}=45.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=56.5^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=52.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=70.5^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.140 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

8.1.3. Characterization

All characterization-methods were the same as with the batch copolymers of Chapter 3. The used methods were:

- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy
- elementary analysis
- ATR-FTIR-spectroscopy
- size exclusion chromatography
- differential scanning calorimetry

The same instruments under the same conditions were used for the investigation of the resulting copolymers.

8.2. Results and Discussion

The subsequent paragraph describes the preparation of the monomer-feed programs, the setup and performance of the semi-batch experiments as well as the results of the analysis from the semibatch polymerization of $\mathrm{P}[\mathrm{tBMA}-\mathrm{grad}-\mathrm{BzMA}]$ and also its discussion. The gradient copolymer was analyzed with the same methods as the statistical copolymers $\mathrm{P}[\mathrm{BzMA}-\mathrm{co}-$ tBMA] before and under the same conditions (cf. Section 3.2).

The theoretical initial value of the monomer amount was 0.1264 mol , i. e. 0.0632 mol tBMA and BzMA. Actually it were used 5% more tBMA and 25% more BzMA. The amount of tBMA was enlarged because a pre-polymerization time of 30 min was used to ensure a smooth start of the ATRP-reaction. The BzMA-feed solution was larger to compensate for the dead volume of the syringe and the syringe pump. The amount of the other components were adapted respectively. The ratio of monomer to solvent was wt:wt $1: 1$ for the stock and also for the feed solution because the concentrations had to remain constant. The amount of the components of the initiator system was adjusted to the additional amount of tBMA for the pre-polymerization, because only the 5% of tBMA were polymerized, prior to the start of the monomer feed.

8.2.1. Monomer Addition Program

The preparation of the gradient copolymer was done by semibatch copolymerization. That meaned the monomer in the stock solution together with the initiator compounds, here tertbutyl methacrylate, was submitted in a Schlenk flask. The second monomer in the feed solution, here benzyl methacrylate, was continuously injected into the stock solution during the polymerization. The required feeding rate which was expressed by means of the dimensionless parameter q, depending on the target gradient $\phi=\mathrm{dF}_{\mathrm{nBMA}} / \mathrm{dX}_{\mathrm{e}}$ and the copolymerization properties of the comonomer system. This is described by the Equations 8.2.1 to 8.2.4, taken from Literature [107].

$$
\begin{align*}
& \frac{d q}{d p}=-f_{t B M A} \frac{X_{e} \phi}{F_{t B M A}^{\prime}}(q-p)+1-\frac{F_{\text {tBMA }}}{f_{t B M A}} \tag{8.2.1}\\
& \frac{d f_{t B M A}}{d p}=\frac{1}{q-p}\left\{f_{\mathrm{tBMA}}-F_{\text {tBMA }}-\frac{d q}{d p} \cdot f_{\mathrm{tBMA}}\right\} \tag{8.2.2}\\
& \frac{d t}{d p}=\frac{1}{k\left(f_{\text {eftBMA }}\right)} \frac{1}{q-p} \tag{8.2.3}\\
& q=\frac{1+p}{2} \tag{8.2.4}
\end{align*}
$$

with $\phi=$ targeted copolymer compositional gradient, $\mathrm{X}_{\mathrm{e}}=$ targeted length of the gradient block, $\mathrm{F}_{\mathrm{tBMA}}^{\prime}=\mathrm{dF}_{\mathrm{tBMA}} / \mathrm{df}_{\mathrm{tBMA}}, \mathrm{q}=$ total monomer addition function, $\mathrm{p}=$ monomer conversion, $\mathrm{F}_{\mathrm{tBMA}}=$ instantaneous molar fraction of tBMA in the copolymer, $\mathrm{f}_{\mathrm{tBMA}}=$ instantaneous
molar fraction of tBMA in the monomer mixture

In the differential equation system (DES) 8.2.1 to 8.2.4 the "polymer chain" related gradient $\phi=\mathrm{dF} / \mathrm{dX}$ is used. Since ϕ is a small number $\left(\Delta \mathrm{F} \leq 1 ; \mathrm{X}_{\mathrm{n}}>10\right)$ in the subsequent text the "monomer conversion" related gradient $\phi_{\mathrm{p}}=\mathrm{dF} / \mathrm{dp}$ will be used. Note, that ϕ, and ϕ_{p} are interrelated by the simple expression $\phi=\mathrm{X}_{\mathrm{n}, \mathrm{e}}^{-1} \cdot \phi_{\mathrm{p}}$. One target gradient copolymer $\phi=-1.0$ was synthesized and investigated here, as shown in Table 8.3. $\phi_{\mathrm{p}}=\mathrm{dF}_{\text {tBMA }} / \mathrm{dp}$ was calculated according to Equation 8.2.5.

$$
\begin{equation*}
\lim _{\mathrm{p} \rightarrow \infty} \phi_{\mathrm{p}} \Rightarrow \mathrm{~F}_{\mathrm{tBMA}, \mathrm{e}}-1 \tag{8.2.5}
\end{equation*}
$$

Tab. 8.3.: Theoretical values for monomer addition program of experiment V101

target gradient ϕ_{p}	$\mathrm{f}_{\text {tBMA }}^{\text {final }}$	$\mathrm{F}_{\text {tBMA }, \mathrm{e}}$	$\mathrm{F}_{\text {cum }, \mathrm{BBMA}}$	q_{0}
-1.0	0.50	0.0	0.50	0.50
$\phi_{\mathrm{p}}=\mathrm{dF}_{\text {tBMA }} / \mathrm{dp}, \mathrm{q}_{0}=\mathrm{n}_{\text {tBMA }, 0} /\left(\mathrm{n}_{\text {tBMA }, 0}+\mathrm{n}_{\text {tBMA }, \mathrm{e}}\right)$				

The solution of the DES cannot be performed analytically, hence a numerical approximation was calculated by means of the program "GradMake". [107] Since the integration requires the knowledge of the dependence of the effective copolymerization rate constant $\mathrm{k}_{\text {eff }}$ from the actual monomer composition ($\mathrm{k}_{\text {eff,tBMA }}$), the kinetic data of the tBMA/BzMA batch copolymerization experiments (cf. Section 7.2.1) were required. The total effective rate constant $\mathrm{k}_{\mathrm{eff}}$ (cf. Figure 7.8) was plotted against the monomer composition of the tBMA as stock-monomer. The equation of the line of fit from this plot was converted to get the rate constant k_{0} and the first-order term of the reactions rate polynomial $\mathrm{k}_{\mathrm{f} 1}$, see Equation 8.2.6 to 8.2.8.

$$
\begin{align*}
& \mathrm{k}_{\mathrm{eff}}\left(\mathrm{f}_{\mathrm{tBMA}}\right)=\mathrm{k}_{0}+\mathrm{a} \cdot \mathrm{f}_{\mathrm{tBMA}} \tag{8.2.6}\\
& \mathrm{k}_{\mathrm{f} 1}=\frac{\mathrm{a}}{\mathrm{k}_{0}} \tag{8.2.7}\\
& \mathrm{k}_{\mathrm{eff}}\left(\mathrm{f}_{\mathrm{tBMA}}\right)=\mathrm{k}_{0} \cdot\left(1+\mathrm{k}_{\mathrm{ff}} \cdot \mathrm{f}_{\mathrm{tBMA}}\right) \tag{8.2.8}
\end{align*}
$$

For the copolymerization tBMA and BzMA the equation of the line of fit (cf. Equation 8.2.9) and the equivalent of Equation 8.2.8 was Equation 8.2.10.

$$
\begin{align*}
& \mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\text {tBMA }}\right)=1.8394 \cdot 10^{-4} \mathrm{~s}^{-1}-4.1246 \cdot 10^{-5} \mathrm{~s}^{-1} \cdot \mathrm{f}_{\mathrm{tBMA}} \tag{8.2.9}\\
& \mathrm{k}_{\text {eff }}\left(\mathrm{f}_{\mathrm{tBMA}}\right)=1.8394 \cdot 10^{-4} \mathrm{~s}^{-1} \cdot\left(1-2.2424 \cdot 10^{-1} \cdot \mathrm{f}_{\mathrm{tBMA}}\right) \tag{8.2.10}
\end{align*}
$$

The two values $\mathrm{k}_{1}=1.898 \cdot 10^{-4} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{f} 1}=2.242 \cdot 10^{-1}$ were integrated into the program "GradMake". In the program the monomer of the in the stock solution tBMA was labeled
as "Monomer1" and the one in the feed solution BzMA as "Monomer2". "GradMake" solved the DES, calculated the time-dependent dosing rate (cf. Figure 8.2) and created a data-file containing the required volume-feed rates ("addition program") to control the syringe pump, see Supplement E.

The addition program contained the respective feed time interval Δt with the related feed rate $\mathrm{dV} / \mathrm{dt}$ as shown in the Figure 8.2. The resulting differential volume per feed time $\Delta \mathrm{V}(\mathrm{t})$ and the total volume $V_{\text {total }}$ are shown in Figures 8.3 and 8.4. The total volume was the sum over all injected differential volumes up to the corresponding feed time (see Equation 8.2.11).

$$
\begin{align*}
& \mathrm{V}_{\text {total }}=\int \frac{\mathrm{dV}}{\mathrm{dt}} \mathrm{dt}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \Delta \mathrm{~V}_{\mathrm{i}} \tag{8.2.11}\\
& \mathrm{t}_{\text {feed }}=\int \mathrm{dt}_{\text {feed }}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \Delta \mathrm{t}_{\text {feed }, \mathrm{i}} \tag{8.2.12}
\end{align*}
$$

The feed rate per feed time, see Figure 8.2, started with the highest rate and then the values fall strongly and leveled off. The feed volume per feed time, see Figure 8.3, showed nearly the same shape. The representation of the total volume against the total addition time in Figure 8.4 shows that during the first 85 min the half of the feed solution was added and the curve level off. Up to 200 min most of the solution was injected.

Fig. 8.2.: Feed rate per feed time intervals of experiment V101 ($\left.\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$

Fig. 8.3.: Differential volume per feed time intervals of experiment V101 ($\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5$)

Fig. 8.4.: Total volume per total feed time of experiment V101 ($\left.\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$

Chapter 8. Synthesis of Gradient Copolymer from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization

8.2.2. Kinetic Studies

NMR samples were taken during the semibatch gradient copolymerization and analyzed to determine the monomer conversion p from the integrals of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra and to determine the cumulative and instantaneous composition of the gradient copolymer, $\mathrm{F}_{\text {cum }}$ and $\mathrm{F}_{\text {inst }}$, respectively. The change of the spectra during the course of reaction and the analyzed peaks are depicted in Figure 8.6. The molecular structures of the monomers tBMA and BzMA and the resulting copolymer as well as the numbering of their carbon atom are shown in Figure 8.5.

In the first spectrum A, shown in Figure 8.6, taken at the start of the semibatch copolymerization, only the signals of the monomer tBMA a singlet at $5.9 \mathrm{ppm}\left(=\mathrm{CH}_{2}^{\text {cis }}, 1\right)$, a triplet at $5.3 \mathrm{ppm}\left(=\mathrm{CH}_{2}^{\text {trans }}, 2\right)$ and a singlet at $1.8 \mathrm{ppm}\left(-\mathrm{CH}_{3}, 10\right)$ of the methacrylate part of the monomer and a singlet at 1.4 ppm of the tert-butyl group (3) together with the solvent signals of MEK at $0.96 \mathrm{ppm}(\mathrm{t}), 2.06 \mathrm{ppm}(\mathrm{s})$ and $2.38 \mathrm{ppm}(\mathrm{q})$ were present, certainly. The last ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum H , taken after 24 h , showed the sharp signals of both monomers and the two broad signals of the polymer chain at 4.75 to $5.05 \mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{R}, 6\right)$ and at 1.25 to 1.4 ppm a signal caused by the tert-butyl group (3^{\prime}). The solvent signals remained constant during the polymerization and in the relation to these signals the intensity changes of the monomer signals became observable. The same behavior was also noticed during the batch synthesis before, reported in Section 7.2.1. In all ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the semibatch gradient copolymerization the peak areas A of the signals were determined for calculation of the monomer conversion.

B

Fig. 8.5.: Molecular structures of the monomers (A) tBMA and (B) BzMA and (C) the copolymer $\mathrm{P}[$ tBMA-grad-BzMA] with carbon-atom labels $(\mathrm{z}=\mathrm{x}+\mathrm{y}=1)$

Fig. 8.6.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of experiment V101 $\left(\phi_{\mathrm{p}}=-1\right.$, $\left.\mathrm{f}_{\mathrm{tBMA}}=0.5\right)$ after reaction time of $\mathrm{A}-$ $0 \min , \mathrm{~B}-30 \mathrm{~min}, \mathrm{C}-60 \mathrm{~min}, \mathrm{D}-90 \mathrm{~min}, \mathrm{E}-180 \mathrm{~min}, \mathrm{~F}-330 \mathrm{~min}, \mathrm{G}-450 \mathrm{~min}, \mathrm{H}-$ 1440 min

The determination of the conversions of the monomers ($\mathrm{p}_{\mathrm{tBMA}}$ and $\mathrm{p}_{\mathrm{BzMA}}$) was done in the same way as for the statistical copolymers in Section 7.2.1. To determine of the conversion of BzMA ($\mathrm{p}_{\mathrm{BzMA}}$) the integrals of the methylene-group-protons $\left(6,6\right.$) of the monomer $\left(\mathrm{A}_{6}\right)$ and that of the polymer $\left(\mathrm{A}_{6^{\prime}}\right)$ were used, respectively (cf. Equation 8.2.13).

$$
\begin{equation*}
\mathrm{p}_{\mathrm{BzMA}}=\frac{\mathrm{A}_{6^{\prime}}}{\mathrm{A}_{6}+\mathrm{A}_{6^{\prime}}} \tag{8.2.13}
\end{equation*}
$$

with $\mathrm{A}_{6}=$ integral intensity at 5.15 to $5.2 \mathrm{ppm} ; \mathrm{A}_{6^{\prime}}=$ integral intensity at 4.75 to 5.05 ppm

To determine the conversion of the tert-butyl methacrylate ($\mathrm{p}_{\mathrm{tBMA}}$) the signals (3) of the CH_{3}-groups of the monomers tert-butyl group $\left(\mathrm{A}_{3}\right)$ and the signal 3 ' of the polymer $\left(\mathrm{A}_{3^{\prime}}\right)$ were taken (cf. Equation 8.2.14).

$$
\begin{equation*}
\mathrm{p}_{\mathrm{tBMA}}=\frac{\mathrm{A}_{3^{\prime}}}{\mathrm{A}_{3}+\mathrm{A}_{3^{\prime}}} \tag{8.2.14}
\end{equation*}
$$

with $\mathrm{A}_{3}=$ integral intensity at 1.41 to $1.43 \mathrm{ppm} ; \mathrm{A}_{3^{\prime}}=$ integral intensity at 1.25 to 1.4 ppm

From the conversion of each monomer the respectively amount of tBMA- and BzMA-units in the polymer chain, $\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}$ and $\mathrm{n}_{\mathrm{BzMA}, \mathrm{P}}$, are calculated with Equation 8.2.15.

$$
\begin{equation*}
\mathrm{n}_{\mathrm{i}, \mathrm{P}}=\mathrm{p}_{\mathrm{i}} \cdot \mathrm{n}_{\mathrm{i}, 0} \tag{8.2.15}
\end{equation*}
$$

with $n_{i, 0}$ representing the amount of monomer i in a solution at the beginning of the polymerization $t=0 \mathrm{~min}$

The conversions of the two monomers gave the total monomer conversion p of the whole system.

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}+\mathrm{n}_{\mathrm{BzMA}, \mathrm{P}}}{\mathrm{n}_{\mathrm{tBMA}, 0}+\mathrm{n}_{\mathrm{BzMA}, \text { total }}} \tag{8.2.16}
\end{equation*}
$$

with $\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}=$ amount of tBMA inside the polymer chain, $\mathrm{n}_{\mathrm{BzMA}, \mathrm{P}}=$ amount of BzMA inside the polymer chain, $\mathrm{n}_{\mathrm{tBMA}, 0}=$ the amount of tBMA in the stock solution at the beginning of the polymerization $\mathrm{t}=0 \mathrm{~min}, \mathrm{n}_{\mathrm{BzMA}, \mathrm{total}}=$ amount of BzMA in the whole system at the end of the polymerization

The total conversions of the each sample taken during the copolymerization are summarized in Table 8.4. A plot of the total conversion p of the semibatch copolymerizations V101 versus the reaction time is depicted in Figure 8.7. After a short induction period of about 60 min , the conversion rose linear up to 150 min , then the curve leveled off. After 24 h the conversion reached 86%.

Tab. 8.4.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-signal areas and conversions during semibatch-copolymerization V101

time t $[\mathrm{min}]$	A_{6}	$\mathrm{~A}_{6^{\prime}}$	A_{3}	$\mathrm{~A}_{3^{\prime}}$	$\mathrm{p}_{\text {tBMA }}$	$\mathrm{n}_{\text {tBMA,P }}$ $[\mathrm{mol}]$	$\mathrm{p}_{\text {BzMA }}$	$\mathrm{n}_{\text {BzMA,P }}$ $[\mathrm{mol}]$	p
0	0.0000	0.0000	9.4062	0.0000	0.0000	0.0000	-	-	-
15	0.0000	0.0000	9.2463	0.2446	0.0258	0.0017	-	-	-
30	0.0000	0.0000	9.1500	0.3576	0.0376	0.0025	-	-	-
40	1.8546	0.0075	109.7198	5.4143	0.0470	0.0031	0.0040	0.0003	0.0255
50	1.9601	0.0218	58.7244	4.5891	0.0725	0.0048	0.0110	0.0007	0.0417
60	1.9397	0.0493	40.3055	3.5410	0.0808	0.0054	0.0248	0.0016	0.0528
70	1.9810	0.0539	30.8116	4.2860	0.1221	0.0081	0.0265	0.0017	0.0743
80	2.0080	0.1468	24.4559	4.5528	0.1570	0.0104	0.0681	0.0043	0.1125
90	1.9990	0.3222	20.6631	5.7063	0.2164	0.0144	0.1388	0.0088	0.1776
120	1.9598	0.4600	13.2861	7.0341	0.3462	0.0230	0.1901	0.0120	0.2681
150	1.9781	0.7591	10.1434	8.2177	0.4476	0.0297	0.2773	0.0175	0.3624
180	2.2052	1.0019	9.4759	9.6520	0.5046	0.0335	0.3124	0.0197	0.4085
210	2.5078	1.3808	9.5124	11.8201	0.5541	0.0368	0.3551	0.0224	0.4546
270	2.9209	2.3737	9.5988	16.7431	0.6356	0.0422	0.4483	0.0283	0.5420
330	3.1632	3.2613	9.7836	21.3357	0.6856	0.0455	0.5076	0.0321	0.5966
390	3.3022	4.1189	9.8353	24.5922	0.7143	0.0474	0.5550	0.0351	0.6347
450	3.2809	4.8772	9.9388	28.8275	0.7436	0.0494	0.5978	0.0378	0.6707
1440	3.6480	17.2825	10.8227	85.0253	0.8871	0.0589	0.8257	0.0522	0.8564

Fig. 8.7.: Conversion p of experiment V101 ($\left.\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$; dashed line - start of feed -solution-injection, dotted line - end of feed-solution-injection

With these results the cumulative and the instantaneous compositions of the gradient copolymer $\left(\mathrm{F}_{\text {cum }}\right.$ and $\left.\mathrm{F}_{\text {inst }}\right)$ were determined as well as their change during the polymerization, with help of Equations 8.2.17 and 8.2.18.

$$
\begin{align*}
& \mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})=\frac{1}{1+\frac{\mathrm{n}_{\text {BzMA }, \mathrm{P}}}{\mathrm{n}_{\mathrm{tBMA}, \mathrm{P}}}} \tag{8.2.17}\\
& \mathrm{~F}_{\text {inst }}^{\mathrm{tBMA}}(\mathrm{p})=\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})+\mathrm{p} \cdot \frac{\Delta \mathrm{~F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})}{\Delta \mathrm{p}} \tag{8.2.18}
\end{align*}
$$

The results of these calculations applied to the semibatch synthesis are listed in Table 8.5 and depicted in the Figures 8.8 and 8.9 (composition/time plot) and Figures 8.10 and 8.11 (composition/conversion plot).

One of the calculated values of the instantaneous composition ($\mathrm{t}=40 \mathrm{~min}, \mathrm{~F}_{\text {inst }}{ }^{a}$) was higher than 1 . This result must be chemical erroneous because the molar fraction of a monomer in a copolymer must be between 0 and 1 . The incorrect data point is indicated by an arrow in the Figures 8.9 and 8.11. The value at $\mathrm{t}=120 \mathrm{~min}$ differed so strong that it was not used in the analysis of the cumulative compositions. The point is shown with brackets in Figures 8.8 and 8.10. Beside this the compositional curves of the polymerization was consistent. However, the slope of the compositional curve was not consistent.

Tab. 8.5.: Kinetic results and compositions of the different copolymer compositions of experiment V101

time t $[\mathrm{min}]$	p	$\mathrm{F}_{\text {cum }}$	$\mathrm{F}_{\text {inst }}{ }^{a}$	$\mathrm{~F}_{\text {inst }}{ }^{b}$	$\mathrm{~F}_{\text {inst }}{ }^{c}$
30	-	1.0000	1.0000	0.9489	0.9912
40	0.0255	0.9246	3.4302	0.8554	0.9127
50	0.0417	0.8738	0.7904	0.7607	0.8544
60	0.0528	0.7739	0.1374	0.6308	0.7494
70	0.0743	0.8289	0.9276	0.6275	0.7943
80	0.1125	0.7076	0.3159	0.4026	0.6515
90	0.1776	0.6209	0.3618	0.5797	0.5383
120	0.2681	0.6567	0.7308	0.5946	0.5320
150	0.3624	0.6290	0.5300	0.5450	0.4603
180	0.4085	0.6292	0.6307	0.5345	0.4391
210	0.4546	0.6211	0.5468	0.5157	0.4096
270	0.5420	0.5983	0.4467	0.4726	0.3461
330	0.5966	0.5866	0.4468	0.4483	0.3089
390	0.6347	0.5749	0.3153	0.4277	0.2795
450	0.6707	0.5665	0.3754	0.4110	0.2544
1440	0.8564	0.5302	0.3137	0.3316	0.1317

[^9]

Fig. 8.8.: Plot of the cumulative compositions $\mathrm{F}_{\text {cum }}$ of gradient copolymer $\mathrm{V} 101\left(\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=\right.$ 0.5) versus the reaction time t (unconsidered value in brackets)

Fig. 8.9.: Plot of the instantaneous compositions $\mathrm{F}_{\mathrm{inst}}$ of gradient copolymer V101 ($\phi_{\mathrm{p}}=-1$, $\mathrm{f}_{\mathrm{tBMA}}=0.5$) versus the reaction time t (obtained with Eq. 8.2.18; chemical incorrect value indicated with arrow)

The cumulative composition as a function of the polymerization time first reduced strongly but fairly linear in time up to 80 min and then leveled off exponentially. $\mathrm{F}_{\text {cum }}$ is proportional to the conversion $\left(\mathrm{F}_{\text {cum }}=\alpha \cdot \mathrm{p}\right)$, hence $\mathrm{F}(\mathrm{t})$ cannot become time-linear. The two decreases are described with the Equations 8.2.19 and 8.2.20.

$$
\begin{align*}
& \mathrm{F}_{\mathrm{cum}}^{\mathrm{tBMA}}\left(\mathrm{p}_{<80 \min }\right)=(1.1420 \pm 0.0546)-(0.0053 \pm 0.0009) \cdot \mathrm{t} \tag{8.2.19}\\
& \mathrm{~F}_{\mathrm{cum}}^{\mathrm{tBMA}}\left(\mathrm{p}_{\geq 80 \min }\right)=(0.5365 \pm 0.0096)+(0.2325 \pm 0.0194) \cdot e^{(-0.0050 \pm 0.0008) \cdot \mathrm{t}} \tag{8.2.20}
\end{align*}
$$

The resulting polymer had a cumulative composition which was slightly higher than the theoretically expected value of 0.5 . The calculation of the instantaneous composition $\mathrm{F}_{\text {inst,tBMA }}$ of the gradient copolymers by means of Equation 8.2.18 gave scattering values, see Figure 8.9. This result was not very surprising. In Equation 8.2.18 the differential quotient ($\mathrm{dF}_{\mathrm{cum}} / \mathrm{dp}_{\mathrm{p}}$ was approximated by the differential quotient:

$$
\begin{equation*}
\frac{\Delta \mathrm{F}_{\mathrm{cum}}}{\Delta \mathrm{p}}=\frac{\mathrm{F}_{\mathrm{cum}}^{\mathrm{i}+1}-\mathrm{F}_{\mathrm{cum}}^{\mathrm{i}}}{\mathrm{p}^{\mathrm{i}+1}-\mathrm{p}^{\mathrm{i}}} \tag{8.2.21}
\end{equation*}
$$

This is a very crude approximation, which is known to be very sensitive to even small experimental errors in $\mathrm{F}_{\text {cum }}$ and p. Since the experimental error of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ based on the determination of $\mathrm{F}_{\text {cum }}$ and p is between $5-10 \%$, the difference quotient calculation strongly amplified the deviations, an results in heavy scattering of the obtained instantaneous compositions, $\mathrm{F}_{\text {inst }}$. To overcome the described problem, a second strategy of data evaluation was tried: It was attempted to fit a sufficient analytical function to the cumulative composition $\mathrm{F}_{\text {cum }}(\mathrm{p})$. This function can smoothly be derived and the respective derivative $\mathrm{dF}_{\text {cum }}^{(\mathrm{fit})} / \mathrm{dp}$ can be used to calculate the instantaneous composition $\mathrm{F}_{\text {inst }}(\mathrm{p})$ (cf. Equation 8.2.22).

The plot of the cumulative compositions as a function of the conversions p, is shown in Figure 8.10. The curve consists of two linear segments of considerable different slope. Up to a monomer conversion of 11% the cumulative composition decreased with a slope of $\mathrm{s}_{1}=\mathrm{dF}_{\text {cum }} / \mathrm{dp}=-2.7105 \pm 0.6685$, while the second segment of the plot exhibited a slope $\mathrm{s}_{2}=-0.2319 \pm 0.0091(\mathrm{p}=0.11 \ldots 0.85)$. The value of conversion at which the slope changed will be called "changing point" $\left(\mathrm{P}_{\mathrm{c}}\right)$ in the subsequent text. Hence, the curve $\mathrm{F}_{\text {cum }}(\mathrm{p})$ can be well approximated by two linear functions of slope $\mathrm{s}_{\mathrm{i}}=\left(\mathrm{dF}_{\mathrm{cum}} / \mathrm{dp}\right)^{(\mathrm{fit})}(\mathrm{i}=1: \mathrm{p}<0.11$, $\mathrm{i}=2: 0.11<\mathrm{p}<0.85$). In Table 8.6 the two slopes and also the average slope are listed.

The instantaneous tBMA molar fraction of the copolymer was calculated by means of Equation 8.2.22, using slope s_{1} in the conversion interval $\mathrm{p} \in[0,0.11]$ and slope s_{2} with $\mathrm{p} \geq[0.11]$.

$$
\begin{equation*}
\mathrm{F}_{\text {inst }}^{\mathrm{tBMA}}(\mathrm{p})=\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})+\mathrm{p} \cdot\left(\frac{\mathrm{dF}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{p})}{\mathrm{dp}}\right)_{\mathrm{i}}^{(\mathrm{fit})} \tag{8.2.22}
\end{equation*}
$$

Fig. 8.10.: Plot of the cumulative compositions $\mathrm{F}_{\text {cum }}$ of gradient copolymer V101 $\left(\phi_{\mathrm{p}}=-1, \mathrm{f}_{\mathrm{tBMA}}=\right.$ 0.5) versus the conversion p ; dashed line - average slope; unconsidered value in brackets

Fig. 8.11.: Plot of the instantaneous compositions $\mathrm{F}_{\text {inst }}$ of gradient copolymer V101 ($\phi_{\mathrm{p}}=-1$, $\mathrm{f}_{\mathrm{tBMA}}=0.5$) versus the conversion p ■ $\mathrm{F}_{\text {inst }}$ calculated by Equation 8.2.18, $\square \mathrm{F}_{\text {inst }}$ calculated by Equation 8.2.22, $\Delta \mathrm{F}_{\text {inst }}$ calculated by Equation 8.2.22 with average slope of $\mathrm{F}_{\text {cum }}$; dashed line - average slope; dotted line - ideal run of the curve

Chapter 8. Synthesis of Gradient Copolymer from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization

Hence, for P_{c} two instantaneous compositions were calculated. Furthermore the instantaneous composition was calculated with the average slope of the cumulative composition and Equation 8.2.22. The results of the calculations of $\mathrm{F}_{\mathrm{inst}}(\mathrm{p})$ with the Equations 8.2.18 and 8.2.22 are summarized in Table 8.5 and the values are plotted in the Figure 8.11.

Like in Figure 8.9 the data points, resulting from Equation 8.2.18 scattered strongly. The reason was the described amplification of the compositional errors by numeric derivation like the one of the instantaneous composition. The instantaneous compositions which were calculated from Equation 8.2.22 scattered less than the ones obtained with Equation 8.2.18, both the values calculates by the slopes s_{1} and s_{2} and the values calculated by the average slope. The resulting $\mathrm{F}_{\text {inst }}(\mathrm{p})$ values from Equation 8.2.22 show also two slopes with a "changing point" at $\mathrm{P}_{\mathrm{c}} \approx 0.11$. The equation of the fits are given in the Equation 8.2.23. The slopes of the fits are given in Table 8.6.

$$
\begin{equation*}
\mathrm{F}_{\mathrm{inst}}^{\mathrm{tBMA}}=1-\phi_{p, i} \cdot \mathrm{p} \tag{8.2.23}
\end{equation*}
$$

with $\mathrm{F}_{\text {inst }}^{\mathrm{tBMA}}=$ instantaneous molar fraction of tBMA in the gradient copolymer, $\mathrm{p}=$ total monomer conversion

The final $\mathrm{F}_{\text {inst }}^{\mathrm{tBMA}}$ value was lower than the target composition of 0.5 (see Figure 8.11, dotted line). However, the polymer can be described by an average gradient of $\phi_{\mathrm{p}, \mathrm{av}} \approx-0.91$ that is calculated by means of Equation 8.2.22, using the average slope of the whole $\mathrm{F}_{\text {cum }}(\mathrm{p})-$ curve ($\mathrm{s}_{\mathrm{av}}=-0.47$). Since however, these averages may cause misleading interpretations, the gradient copolymer V101 will be denamed as $\mathrm{GP}_{0.43}$, referring to the $\phi_{\mathrm{p}, 2} \approx-0.43$ that dominates the polymer chain. Due to the binary slope the resulting compositions differed strongly from the target value of -1.0 and due to the binary slopes the copolymer can be described as "double gradient". As a result the physical properties of the gradient copolymer are determined by the main gradient $\phi_{\mathrm{p}, 2}$.

Tab. 8.6.: Slopes of decreases of cumulative and instantaneous compositions against composition of experiment V101

$\phi_{\mathrm{p}, \text { target }}$	p	$\mathrm{s}_{\mathrm{i}}=\frac{\mathrm{dF}}{\text { cum }}$		
d_{p}	$\phi_{\mathrm{p}}=\frac{\mathrm{dF}_{\text {inst }}}{\mathrm{dp}}$	$\Delta \phi_{\mathrm{p}}$		
-1.0	$0.00 \ldots 0.11$	-2.7105 ± 0.6685	-5.4210 ± 0.6685	
	$0.11 \ldots 0.85$	-0.2319 ± 0.0091	-0.4292 ± 0.0262	-57%
	$0.00 \ldots 0.85$	-0.4654 ± 0.0654	-0.9094 ± 0.0728	-9%

The observed dependence of the compositional data from the monomer conversion suggested that the injection of the second monomer BzMA into the ATRP system of the initiator pTSC, the ligand PMDETA, the catalyst $\mathrm{Cu}^{\mathrm{I}} \mathrm{Cl} / \mathrm{Cu}^{\mathrm{II}} \mathrm{Cl}$ and the first monomer tBMA disturbed the equilibrium of the system. This kinetic effect could not be seen before in the batch experiments because there the monomer mixture $\left(n_{i, S}, n_{i, P}, i=B z M A, t B M A\right)$ started in equilibrium. It
can be seen from the composition-time data that the ATRP system required around 75 min until a new transient equilibrium was build up again. After this time the mixing ratio deviated from the assumptions which were used for the calculations of the injection program, hence the feed program did not fit to the existing monomer mixture. The fact that the feed solution had not the same temperature than the stock solution could also contribute to the disorder of the equilibrium. In further experiment the use of a heating bath would be useful. Other problems like contamination of the monomer with 4-methoxyphenol (the inhibitor which used for the storage of the monomers) or oxygen can be excluded, because these contaminants were eliminated by the filtration of the monomer over an excess of aluminium oxide and the performed freeze-melt-cycles. To solve this problem two way are possible: The complex-equilibrium can be introduced into the model of the injection program. The second way is to employ empirical relation of monomer feed. That means to test and change the feed program until it fits to the equilibrium changes of the monomer mixture.

Comparison of Kinetic Results from Semibatch Copolymerizations of $n B M A / t B M A$ and $B z M A / t B M A$

In the following paragraph the results of the kinetic analysis of the experiments V31 ($\mathrm{P}[\mathrm{tBMA}-$ grad-nBMA] $\mathrm{GP}_{0.53}$) and V101 ($\mathrm{P}\left[\mathrm{tBMA}-\right.$ grad-BzMA] $\mathrm{GP}_{0.43}$), both with $\mathrm{f}_{\mathrm{tBMA}}=0.5$, respectively $\phi_{\mathrm{p}}=-1.0$, of the semibatch copolymerizations are compared. In Figure 8.12 the conversions of the two experiments are depicted.

Fig. 8.12.: Conversion p of experiment $\mathrm{P}[\mathrm{tBMA}-\mathrm{grad}-\mathrm{nBMA}] \mathrm{GP}_{0.53}(\boldsymbol{\square}$, V31) and $\mathrm{P}[\mathrm{tBMA}-$ grad$\mathrm{BzMA} \mathrm{GP}_{0.43}(\bullet, \mathrm{~V} 101)$; dashed line - start of feed-solution injection, dotted lines end of feed-solution-injection - a V31, b V101

In the semibatch copolymerization V31 the conversion was linear up to 120 min . Then the curve leveled off. The reaction reached a final conversion of 91% after 24 h . The conversion of the semibatch copolymerization V101 showed a short induction period of about 60 min , then the conversion rose linear up to 150 min , and finally the curve also leveled off. After 24 h the conversion reached 86%.

Fig. 8.13.: Plots of cumulative compositions $\mathrm{F}_{\text {cum }}$ of $\mathrm{P}[\mathrm{tBMA}-\mathrm{grad}-\mathrm{nBMA}] \mathrm{GP}_{0.53}$ ($■, \mathrm{~V} 31$) and $\mathrm{P}\left[\right.$ tBMA-grad-BzMA] $\mathrm{GP}_{0.43}(\bullet, \mathrm{~V} 101)$ against conversion p (unconsidered values in brackets)

In Figure 8.13 the cumulative compositions are plotted against the conversion for the two monomer systems. The slope s_{1} of the $\mathrm{F}_{\text {cum }}$-values of copolymer $\mathrm{GP}_{0.43}\left(\mathrm{~s}_{1}=-2.71 \pm 0.04\right)$ was higher than s_{1} of the values of $\mathrm{GP}_{0.53}\left(\mathrm{~s}_{1}=-1.86 \pm 0.03\right)$. The "chaning point" in the curves laid at $\mathrm{P}_{\mathrm{c}}=0.16$ for $\mathrm{GP}_{0.53}$ and at $\mathrm{P}_{\mathrm{c}}=0.11$ for $\mathrm{GP}_{0.43}$. In contrast the slope s_{2} of the values of $\mathrm{GP}_{0.43}\left(\mathrm{~s}_{2}=-0.23 \pm 0.01\right)$ was lower than s_{2} of the values of $\mathrm{GP}_{0.53}\left(\mathrm{~s}_{2}=-0.26 \pm 0.02\right)$. Since the concentrations and the conditions of the reactions were the same the differences of the cumulative compositions depend the different monomer compositions with tBMA- and nBMA-units in $\mathrm{GP}_{0.53}$ and tBMA- and BzMA-units in $\mathrm{GP}_{0.43}$.

The plot of the values of the instantaneous compositions $\mathrm{F}_{\text {inst }}$ against the conversion p of the two experiments are shown in Figure 8.14. Due to the fact that the values of the instantaneous compositions were calculated from the values and the slopes of the cumulative compositions, the differences of the values of $\mathrm{F}_{\text {cum }}$ were amplified at the values and the slopes of the instantaneous compositions of the two gradient copolymers.

Fig. 8.14.: Plots of instantaneous compositions $F_{\text {inst }}$ of $(■) \mathrm{P}[\mathrm{tBMA}-\operatorname{grad}-\mathrm{nBMA}] \mathrm{GP}_{0.53}, \mathrm{f}_{\mathrm{tBMA}}=$ 0.5 , and (○) P[tBMA-grad-BzMA] $\mathrm{GP}_{0.43}, \mathrm{f}_{\mathrm{tBMA}}=0.5$ against conversion p (unconsidered values in brackets)

The overall process of the cumulative and the instantaneous compositions of the two semibatch copolymerizations were nearly the same. The different values result from the different kinetic behavior of nBMA and BzMA. Despite the differences both semibatch copolymerizations gave "double gradients". The main part of the gradient structure of both copolymers is represented by $\phi_{\mathrm{p}, 2}$. Thereby the physical behavior of the gradient copolymer is determined by $\phi_{\mathrm{p}, 2}$.

8.2.3. Structural Analysis

As described with the batch polymerizations in Section 7.2.2 the purity and the composition of the resulting copolymers were analyzed by means of elementary analysis. The results of the measurements and the differences between the theoretical and the analysis results are listed in Table 8.7.

The element compositions of the statistical copolymers (cf. Tables 7.7 and 7.8) and the gradient copolymers were nearly similar. Hence, both copolymerization method, batch and semibatch, gave consistent results. Moreover, the differences between the theoretical compositions and the measured values were small, expect the sample $t=60 \mathrm{~min}$, indicating that the samples were free of pollution.

Tab. 8.7.: Results of the elementary analysis of the samples taken during experiment V101 $\left(\mathrm{GP}_{0.43}\right.$, $f_{\text {tBMA }}=0.5$) with divergence from the set point

time $[\mathrm{min}]$	$\mathrm{F}_{\text {cum }}$		C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
60	0.77	theory	69.54		9.11		21.35	
		is	67.72	-1.82	8.38	-0.74	23.91	2.56
90	0.62	theory	70.76		8.61		20.63	
		is	68.86	-0.68	8.46	-0.65	22.68	1.34
150	0.63	theory	70.70		8.63		20.67	
		is	70.51	0.97	8.05	-1.06	21.44	0.10
210	0.62	theory	70.76		8.61		20.63	
		is	70.51	0.97	7.81	-1.30	21.68	0.33
330	0.59	theory	71.02		8.50		20.48	
		is	71.04	1.50	7.75	-1.36	21.21	-0.14
450	0.57	theory	71.18		8.43		20.39	
		is	70.87	1.33	7.73	-1.38	21.40	0.05
1440	0.53	theory	71.45		8.32		20.23	
		is	71.08	1.54	7.81	-1.30	21.11	-0.23

As well as for the statistical copolymers also for the gradient copolymers the data from elementary analysis were used to calculated the composition of the polymers. The fitted calibration curves from the amount of carbon and hydrogen, see Section 7.2.2, Figure 7.13, were adapted for the calculations. That was necessary because the equations were established for the amount of BzMA inside the polymer-chain $\mathrm{F}_{\mathrm{BzMA}}$ and the composition of the gradient copolymers was described by the amount of tBMA inside the polymer-chain $\mathrm{F}_{\text {tBMA }}$. So for the determination of the compositions from the amount of carbon Equation 8.2.24 was used and for the determination from the amount of hydrogen Equation 8.2.25.

$$
\begin{align*}
& \mathrm{F}_{\text {tBMA }}=1-\frac{\mathrm{C}-0.6757}{0.0741} \tag{8.2.24}\\
& \mathrm{~F}_{\text {tBMA }}=1-\frac{\mathrm{H}-0.0992}{-0.0306} \tag{8.2.25}
\end{align*}
$$

The results of the calculations are given in Table 8.8.

The compositions $\mathrm{F}_{\text {tBMA }}^{\mathrm{EA}, \mathrm{H}}$ calculated by the amount of hydrogen which was measured by elementary analysis differed obviously from the compositions which were determined from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated copolymers. The composition which were calculated from the amount of carbon differed strongly only for the first two samples taken after 60 min and 90 min of reaction time. The calculations with the measured carbon amount from other five samples gave compositions that fitted good with the compositions calculated from ${ }^{1} \mathrm{H}-$ NMR-spectra. So for higher conversions the amount of carbon measured by elementary analysis is also a possibility to calculate the composition of the copolymers.

Tab. 8.8.: Compositions of copolymers of experiment V101 $\left(\mathrm{GP}_{0.43}, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$ resulting from
${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis and elementary analysis

$\begin{aligned} & \text { time } \\ & {[\mathrm{min}]} \end{aligned}$	$\mathrm{F}_{\text {tBMA }}^{\text {NMR }}{ }^{\text {a }}$	$\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{EAA}, \mathrm{C} b}$	$\Delta \mathrm{F}_{\text {tBMA }}{ }^{\text {c }}$	$\mathrm{F}_{\text {tBMA }}^{\mathrm{EA}, \mathrm{H} d}$	$\Delta \mathrm{F}_{\text {tBMA }}{ }^{\text {c }}$
60	0.77	0.98	0.21	0.50	-0.28
90	0.62	0.83	0.21	0.52	-0.10
150	0.63	0.60	-0.03	0.39	-0.24
210	0.62	0.60	-0.02	0.31	-0.31
330	0.59	0.53	-0.05	0.29	-0.30
450	0.57	0.55	-0.01	0.28	-0.28
1440	0.53	0.53	0.00	0.31	-0.22

${ }^{a}$ calculated from ${ }^{1} \mathrm{H}-$ NMR-spectra; ${ }^{b}$ calculated from Eq. 8.2.24
${ }^{c} \Delta \mathrm{~F}_{\mathrm{tBMA}}^{\mathrm{x}}=\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{x}}-\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{NMR}} ;{ }^{d}$ calculated from Eq. 8.2.25

The differences between the values from the hydrogen amount and the NMR-measurements could not be caused by a solvent like water because the compositions calculated from the hydrogen amount were to low and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra did not show the presence of residual solvents. Also the presence of monomers in the sample could falsify the measures amount but even they were not monitored in the NMR-spectra. An other possible problem could be that the samples were inhomogeneous. For a NMR-measurement 10 mg of the copolymer was used, for an EA-measurement only 2.5 mg . So the problem of an inhomogeneous substance will be increase at the elementary analysis. But the resulting copolymers were apparently consistent. A third possibility is that the pollution happened during the measurement itself. The measurement of standards in periodical intervals should avoid that.

Subsequently the copolymers P[tBMA-grad-BzMA] were investigated with ATR-FTIR-spectroscopy. From all samples which were taken during the semibatch copolymerization IRspectra were measured and analyzed in view to the peak height and peak area of the two vibrational bands, at $850 \mathrm{~cm}^{-1}$ (band 1), specific for the tert-butyl-group, and at $730 \mathrm{~cm}^{-1}$ (band 2), caused by the benzyl-group. The values are summarized in Table 8.9.

Tab. 8.9.: Peak area and peak height of the analyzed ATR-FTIR-bands the samples taken during experiment V101 $\left(\mathrm{GP}_{0.43}, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$

| $\begin{array}{c}\text { time } \\ {[\mathrm{min}]}\end{array}$ | $\begin{array}{c}c \\ \text { peak area } \\ {\left[\mathrm{cm}^{-1}\right]}\end{array}$ | peak height | $\begin{array}{c}\text { band 2 } \\ \text { peak area } \\ {\left[\mathrm{cm}^{-1}\right]}\end{array}$ | |
| ---: | :---: | :---: | ---: | :---: | $\left.\begin{array}{r}\text { peak height }\end{array}\right]$| 60 |
| ---: |
| 90 |

For the comparison purposes the spectra were normalized by setting the adsorption intensity of the vibrational band at $1134 \mathrm{~cm}^{-1}$ to one by dividing all intensities A_{x} by A_{1}. In Figure 8.15 the fingerprint region of the samples of experiment V101 GP ${ }_{0.43}\left(f_{\mathrm{t}_{\mathrm{tMA}}}=0.5\right)$ and in Figure 8.16 an extended section of the spectra from 700 to $900 \mathrm{~cm}^{-1}$ are shown to demonstrate the changes of the vibrational bands during the polymerization time more in detail. For band 1 at $850 \mathrm{~cm}^{-1}$ the increase of the band was clearly recognizable. The decease of band 2 at $730 \mathrm{~cm}^{-1}$ during the polymerization was, however, minimal. The incorporation of the BzMA, which was injected during the polymerization, inside the polymer chain lead to a constantly change of the composition of the copolymer and caused the rise of band 2.

Fig. 8.15.: Finger print region of ATR -FTIR - spectra of samples of experiment V101 $\left(\mathrm{GP}_{0.43}\right.$, $\left.\mathrm{f}_{\mathrm{tBMA}}=0.5\right) ; \mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-150 \mathrm{~min}, \mathrm{D}-210 \mathrm{~min}, \mathrm{E}-330 \mathrm{~min}, \mathrm{~F}-$ 450 min and $\mathrm{G}-1440 \mathrm{~min}$ of reaction time (Spectra normalized to $\mathrm{A}_{1134}=1$)

Fig. 8.16.: Section of ATR-FTIR-spectra of samples taken during experiment V101 $\left(\mathrm{GP}_{0.43}\right.$, $\mathrm{f}_{\mathrm{tBMA}}=0.65$) with analyzed specific vibrational bands; $\mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-$ $150 \mathrm{~min}, \mathrm{D}-210 \mathrm{~min}, \mathrm{E}-330 \mathrm{~min}, \mathrm{~F}-450 \mathrm{~min}$ and $\mathrm{G}-1440 \mathrm{~min}$ of reaction time (Spectra normalized to $\mathrm{A}_{1134}=1$)

The changes of band 1 were smaller during the polymerization time which must be attributed to a different extinction coefficient of the tBMA-units. Because the total amount of tBMA was present at the start of the synthesis the change was caused by the tBMA depletion of the solution. The IR-signal qualitatively support the NMR results.

The Figures 8.17 and 8.18 depict the peak areas and peak heights of the two bands of the samples taken during the semibatch copolymerization. The band 1 values of the peak area slightly decreased. Up to 200 min of reaction time the values scattered. The values of the peak area of band 2 increased exponentially. The run of the values of the peak height gave similar results. For band 1 the values decreased exponentially and for band 2 there was an exponential increase. The values confirmed the observations from the Figure 8.16. Hence the peak height of band 2 was used to determine the composition of the copolymer by a modified Equation 7.2.20, see Equation 8.2.26. The change was necessary because with Equation 7.2.20 FnBMA was calculated. The obtained compositions were compared with the cumulative compositions $\mathrm{F}_{\text {cum,tBMA }}$ originating from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

$$
\begin{equation*}
\mathrm{F}_{\text {tBMA }}=1-\left[(0.171 \pm 0.192)-(1.618 \pm 1.173) \cdot \mathrm{PH}_{2}+(5.233 \pm 1.610) \cdot \mathrm{PH}_{2}^{2}\right] \tag{8.2.26}
\end{equation*}
$$

with $\mathrm{F}_{\mathrm{tBMA}}=$ composition of the copolymer, $\mathrm{PH}_{2}=$ peak height of band 2

Fig. 8.17.: Plot of peak areas of ATR-FTIR-spectra band 1 ($\mathbf{\square}$) and band $2(\bullet)$ of P[tBMA-gradBzMA] $\mathrm{GP}_{0.43}\left(\mathrm{f}_{\mathrm{t} \text { BMA }}=0.65\right)$ versus polymerization time t

Fig. 8.18.: Plot of peak heights of ATR-FTIR-spectra band1 (■) and band $2(\bullet)$ of P[tBMA-grad-BzMA] $\mathrm{GP}_{0.43}\left(\mathrm{f}_{\mathrm{t} \text { BMA }}=0.65\right)$ versus polymerization time t

The results of these calculations are listed in Table 8.10. The compositions obtained from the two methods differed strongly. The compositions calculated from the peak height of band 2 were all smaller than the ones calculated from NMR-spectra. The differences were between 15% and 40%.

Tab. 8.10.: Composition of gradient copolymer $\mathrm{GP}_{0.43}$ calculated from peak height of band 2

time [min]	$\mathrm{F}_{\text {BzMA }}{ }^{a}$	$\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}} b$ NMR	$\mathrm{F}_{\text {cum }}^{\text {tBMA }} c$ IR	$\Delta \mathrm{F}^{d}$
60	0.06	0.94	0.77	-0.17
90	0.12	0.88	0.62	-0.26
150	0.19	0.81	0.63	-0.19
210	0.21	0.72	0.62	-0.17
330	0.32	0.68	0.59	-0.09
450	0.34	0.66	0.57	-0.09
1440	0.34	0.69	0.53	-0.16

${ }^{a}$ calculated with Eq. 7.2.20
${ }^{b}$ calculated with Eq. 8.2.26
${ }^{c}$ calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra
${ }^{d} \Delta \mathrm{~F}=\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{IR})-\mathrm{F}_{\text {cum }}^{\mathrm{tBMA}}(\mathrm{NMR})$

Fig. 8.19.: Interrelation of the cumulative compositions calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and from ATRFTIR of $\mathrm{GP}_{0.43}\left(\mathrm{f}_{\mathrm{tBMA}}=0.65\right)$; dashed line - ideal curve

With Figure 8.19 the missing consensus between the compositions from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ATRIR is demonstrated. In case of perfect agreement the data points should be located on a straight line of slope $s=1$. The compositions calculated from the values obtained by IRspectra increased like the values from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra but they were all obviously higher and also did not develop linear. It is concluded better not to use FTIR-based methods to determine the composition of gradient tBMA/BzMA copolymers.

8.2.4. Molecular Weight Characterization

The finally obtained gradient copolymer of the semibatch copolymerization V101 and also the precipitated samples were analyzed with size exclusion chromatography. The elution diagrams based on the signal of the RI-detector of the samples which were taken during the polymerization at different times are shown in Figure 8.20 together with experiment V101 $\left(\mathrm{GP}_{0.43}, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$. All the RI-signals gave monomodal peaks, hence over the whole time of the semibatch copolymerization no termination reactions occurred. Furthermore the signals shifted to lower elution volumes with higher polymerization times of the sample, indicating an increasing molar mass of the samples.

Fig. 8.20.: Elution diagrams of the samples of experiment V101 ($\left.\mathrm{GP}_{0.43}, \mathrm{f}_{\mathrm{tBMA}}=0.5\right)$; $\mathrm{A}-60 \mathrm{~min}$, B $-90 \mathrm{~min}, ~ C-150 \mathrm{~min}, ~ D-210 \mathrm{~min}, \mathrm{E}-330 \mathrm{~min}, \mathrm{~F}-450 \mathrm{~min}$ and $\mathrm{G}-1440 \mathrm{~min}$ of reaction time

With the same calibration curve arising from polystyrene standards that was used in Section 3.3.3, Figure 3.15, the relative molar masses of the samples were calculated from the maximum elution volume V_{E} of the RI-signals. The elution volumes of the RI-signals from the samples of the semibatch copolymerization and the calculated relative molar masses are listed in Table 8.11. The values of the relative molar masses rose nearly linear at the beginning than the slopes flattened. Because for the determination of the relative molar mass just one point of the RI-signal was used not the whole sample was covered. To account for this effect the absolute molar masses of the sample were determined.

The next step was the determination of the differential refractive index increments $\mathrm{dn} / \mathrm{dc}$ of the resulting gradient copolymer because this value are necessary for the calculation of the absolute molar mass of the polymers from light scattering data, see Section 2.4. This was done the same way as described with the statistical copolymers of experiment V81 to V89 in THF at $25^{\circ} \mathrm{C}$, cf. Section 7.2.3. $\mathrm{GP}_{0.43}\left(\mathrm{~F}_{\text {tBMA }}=0.53\right)$ had a differential refractive index increment of $0.1234 \pm 0.0099 \mathrm{ml} \cdot \mathrm{g}^{-1}$. That was in the same range than the statistical copolymers of BzMA and tBMA, see Table 7.12.

Fig. 8.21.: SEC elution diagrams and molar masses of gradient copolymer $\mathrm{GP}_{0.43}\left(\mathrm{f}_{\mathrm{tBMA}}=0.5\right)$ obtained after 1440 min of reaction time; black curve - light scattering signal, grey curve - refractive index signal

With the results from the determination of $d n / d c$ the molecular weight averages $\left(M_{n}, M_{w}\right.$, $\left.M_{z}\right)$ and from these the polydispersity indices PDI ($M_{w} / M_{n}, M_{z} / M_{n}$) of the samples of the semibatch copolymerization were determined in the same way as for the statistical copolymers in Section 7.2.3. Figure 8.21 depicts the RI- and the $90^{\circ}-$ MALS-detector signals of the elution-diagram of resulting gradient copolymer $\mathrm{GP}_{0.43}$.

From the angle dependence of the scattered light intensity and the known dn/dc-value of $\mathrm{dn} / \mathrm{dc}=0.1234 \mathrm{ml} \cdot \mathrm{g}^{-1}$ the absolute molecular weight of a fraction at a given elution volume can be derived. The calculated molecular weights are also shown in Figure 8.21 (right axis). Since the RI-signal is proportional to the weight fraction of the eluted polymer, the complete molecular weight distribution (MWD) of the measured polymer can be obtained and with this the molecular weight averages and the polydispersity indices can be calculated. The obtained values are detailed in Table 8.12. Both detector signals in Figure 8.21 did not show fronting or tailing which indicated the lack of termination and chain extension reaction during the reaction time of 1440 min .

Tab. 8.11.: Comparison of relative* and absolute molar masses of of the different gradient copolymer compositions of $\mathrm{P}\left[\mathrm{tBMA}-\right.$ grad-BzMA] $\mathrm{GP}_{0.43}$

time $[\mathrm{min}]$	V_{E} $[\mathrm{ml}]$	relative M $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	absolute M $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\Delta \mathrm{M}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$[\%]$
60	30.48	4407	3247	1160	-35.72
90	28.96	9567	9293	274	-2.95
150	27.24	22939	23290	-351	1.51
210	26.58	32044	34570	-2526	7.31
330	25.87	46057	53180	-7123	13.39
450	25.53	54727	62740	-8013	12.77
1440	24.85	77143	84520	-7377	8.73

* calibrated against PS-Standard

Fig. 8.22.: Comparison of relative ($\mathbf{\square}$) and absolute (\bullet) molar masses M_{n} of $\mathrm{GP}_{0.43}\left(\mathrm{f}_{\mathrm{tBMA}}=0.5\right)$

In Figure 8.22 the relative molar masses, calculated from the calibrations curve of PS standards, and the absolute molar masses, calculated from the LS-signal and dn/dc value, are compared. Up to a reaction time of 150 min the masses were similar. After that with rising of the polymerization time the difference between the relative and the absolute molar masses became greater. But the shape of the curves of the values were similar and different by less than $14 \%(\mathrm{t}=330 \mathrm{~min})$.

Tab. 8.12.: SEC results of experiment V101

time $[\mathrm{min}]$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{z} / \mathrm{M}_{\mathrm{n}}$
60	2978 ± 119	3247 ± 162	3689 ± 553	1.087 ± 0.065	1.235 ± 0.185
90	8514 ± 255	9293 ± 372	12510 ± 2252	1.091 ± 0.055	1.469 ± 0.264
150	22300 ± 89	23290 ± 70	24160 ± 169	1.044 ± 0.005	1.083 ± 0.009
210	33180 ± 133	34570 ± 104	35630 ± 249	1.042 ± 0.005	1.074 ± 0.009
330	50710 ± 101	53180 ± 53	55040 ± 165	1.049 ± 0.003	1.085 ± 0.004
450	59690 ± 119	62740 ± 125	64920 ± 260	1.051 ± 0.003	1.088 ± 0.005
1440	74730 ± 224	84520 ± 169	90640 ± 181	1.131 ± 0.003	1.213 ± 0.005

The results of the SEC analysis against the polymerization time are plotted in Figure 8.23 and against the conversion in Figure 8.24. The MWD was very narrow with PDI $=M_{w} / M_{n}$ ranging from 1.04 to 1.13 . For most practical purposes the copolymer can be regarded as fairly monodisperse ($\overline{\mathrm{M}}_{\mathrm{w}} \approx \overline{\mathrm{M}}_{\mathrm{n}}$).

Fig. 8.23.: Molar masses M_{n} and polydispersities against reaction time t of $\mathrm{GP}_{0.43}$ $\left(\mathrm{f}_{\mathrm{tBMA}}=0.5\right)$

Fig. 8.24.: Molar masses M_{n} and polydispersities against conversion p of $\mathrm{GP}_{0.43}$

$$
\left(\mathrm{f}_{\mathrm{tBMA}}=0.5\right)
$$

As well as the relative molar masses the absolute molar masses increased linearly up to 160 min then the slopes flattened. The development of the molar mass M_{n} during the semibatch gradient copolymerization was nearly the same as during the batch copolymerizations of the statistical copolymers (cf. Figure 7.22). At the beginning of the polymerizations the slope was linear in the first 160 min . However, the final mass M_{w} of the gradient copolymer from the semibatch copolymerization was higher than the molar masses of the statistical copolymers resulting from the batch copolymerizations because the polymerization time was much longer (1440 min instead of 180 min). The average final molar mass M_{n} which was reached in the batch copolymerizations was $\approx 38800 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. In the semibatch copolymerizations an average final molar mass of $\approx 74700 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ was reached. The polymerization time of the semibatch experiment was eight times longer than that of the batch experiments, but the final molar mass of $\mathrm{GP}_{0.43}$ is only twice as large. Hence, the mass growth of the gradient copolymer was much slower than that of the batch reactions. A relation between the polydispersity PDI and the polymerization time t was not obvious. That was also a repetition of the results from the statistical copolymers of Series F and Series G. PDI values were very low (PDI <1.13), the range of the PDI stayed constant during the semibatch polymerization.

A linear relation between the development of the molar masses M_{n} and the total conversion of the monomers p during the semibatch experiments was found. The fitted curve originated in $(0,0)$, a behavior that is typical for controlled radical polymerizations. [108]

$$
\begin{equation*}
\mathrm{V} 101, \mathrm{GP}_{0.43}: \mathrm{M}_{\mathrm{n}}=(99014 \pm 42) \mathrm{g} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{p}\left(\mathrm{f}_{\mathrm{tBMA}, 0.50}\right) \tag{8.2.27}
\end{equation*}
$$

The depiction of the polydispersities PDI of the samples versus the conversion p gave no relation of the PDI and the conversion p. This was the same observation than at the PDI/reaction time plot. However, the values of the PDI were very low over the whole conversion range. In literature gradient copolymers which had been synthesized by ATRP the PDI-values were up to 1.5. [109, 110, 111] Hence, it can be stated that the reaction was good over the whole conversion.

Comparison of Molecular Weight Characterizations from Semibatch Copolymerizations of $n B M A / t B M A$ and $B z M A / t B M A$

In the following paragraph the results of the SEC analysis of the experiments V31 ($\mathrm{P}[\mathrm{tBMA}-$ grad -nBMA$] \mathrm{GP}_{0.53}$) and V101 ($\mathrm{P}\left[\mathrm{tBMA}-\right.$ grad-BzMA] $\mathrm{GP}_{0.43}$), both with $\mathrm{f}_{\mathrm{tBMA}}=0.5$, respectively $\phi_{\mathrm{p}}=-1.0$, of the semibatch copolymerizations are compared. The degree of polymerization was calculated with Equation 7.2.21 from the molar masses to eliminate the differences of the molar masses of the monomers n-butyl methacrylate and benzyl methacrylate. The X_{n}-values are listed with the corresponding conversions and compositions in Table 8.13.

Tab. 8.13.: Degree of polymerization X_{n} of the gradient copolymers of P[tBMA-grad-tBMA] V31 and P[BzMA-co-tBMA] V101

V31 p			X_{n}	PDI	p
0.1160	36.6245	1.044	0.0528	21.6627	1.087
0.1908	55.0211	1.053	0.1776	59.9190	1.091
0.3060	97.6090	1.018	0.3624	150.4356	1.044
0.3808	125.8790	1.020	0.4545	222.9095	1.042
0.4778	176.2307	1.029	0.5966	340.3310	1.049
0.5437	218.7764	1.017	0.6707	399.7627	1.051
0.9087	414.1350	1.070	0.8564	534.3392	1.131

In Figure 8.25 the degree of polymerization of the samples of the two experiments are depicted against the conversion p . The X_{n}-values of the samples decreased nearly linear during both experiments, however, the graphs have different slopes. The slope during the semibatch copolymerization V101 was larger than during the polymerization V31. In Figure 8.26 the polydispersities of the samples taken during the two semibatch copolymerizations are depicted. The PDI-values of the samples of copolymerization V31 were all lower than the PDI-values of the samples of experiment V101. Expect the last sample of experiment V101 all values lay under 1.14.

Fig. 8.25.: Comparison of degree of polymerization X_{n} of gradient copolymers of $■ P[t B M A-g r a d-$ tBMA] V31 and P P BzMA-co-tBMA] V101 against copolymer composition

Fig. 8.26.: Comparison of polydispersities M_{w} / M_{n} of gradient copolymers of $■$ P[tBMA-gradtBMA] V31 and \bullet P[BzMA-co-tBMA] V101 against copolymer composition

The low values of polydispersity during both semibatch copolymerizations reflects the good control of the ATRP-system during the both semibatch copolymerizations.

8.2.5. Thermal Behavior

The thermal behavior of the gradient copolymer was examined to determine the temperature range of the glass transition region $\Delta \mathrm{T}$ and the glass transition temperature T_{g}. The samples of the precipitated copolymers of experiment V101 were analyzed in the same way and the same temperature range as the statistical copolymers of Series G (cf. Section 7.2.4). The applied DSC program parameters were:

- precooling: RT to $-80^{\circ} \mathrm{C}$
- standby for 20 min
- 1. heating: -80 to $150^{\circ} \mathrm{C}$
- 1. cooling: 150 to $-80^{\circ} \mathrm{C}$
- 2. heating: -80 to $150^{\circ} \mathrm{C}$
- postcooling: $150^{\circ} \mathrm{C}$ to RT

In Figure 8.27 the thermogram of the sample which was taken after 60 min of polymerization time is depicted with both heating runs and the cooling run is depicted as an example. The first heating run showed a glass transition overlaid by a relaxation peak between $45^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$. The second heating run showed a glass transition step nearly in the same range as the peak of the first run. Only the second heating runs of all samples taken during the four semibatch polymerizations were analyzed with respect to $\mathrm{T}_{\text {onset }}, \mathrm{T}_{\text {offset }}, \mathrm{T}_{\mathrm{g}}, \mathrm{T}_{\text {midpt }}, \Delta \mathrm{T}$ and $\Delta \mathrm{c}_{\mathrm{p}} .[89]$ The analysis followed the description in Section 3.3.4. The complete results of the analysis of the second heating runs from all samples of experiment V101 are listed in Table 8.14 .

Fig. 8.27.: DSC thermogram of gradient copolymer V101 $\left(\mathrm{GP}_{0.43}, \mathrm{f}_{\mathrm{tBMA}}=0.5\right.$, reaction time $\mathrm{t}=$ 60 min); a - first heating run, b - first cooling run, c - second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Tab. 8.14.: DSC results of experiment V101

time t $[\mathrm{min}]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{[} \mathrm{C}\right]$	$\mathrm{T}_{\text {midpt }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{g} $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{c}_{\mathrm{p}}$ $\left[\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}\right]$
60	37.0	49.5	45.5	57.0	7.5	0.137
90	55.0	70.5	74.5	83.0	12.5	0.269
150	30.0	43.5	45.0	53.0	9.5	0.219
210	16.0	28.5	29.5	37.5	9.0	0.196
330	24.5	35.0	37.0	42.0	7.0	0.201
450	27.5	40.5	42.5	49.0	8.5	0.210
1440	47.5	57.0	56.5	64.5	7.5	0.212

The thermograms of the second heating runs of the samples of experiment $101\left(\mathrm{GP}_{0.43}, \mathrm{f}_{\mathrm{tBMA}}=\right.$ 0.5) are depicted in Figure 8.28. The limits of the glass transition range $\Delta \mathrm{T}, \mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$, are marked there, as well as the glass transition temperature T_{g}. The glass transition temperature T_{g} scattered between $29.5^{\circ} \mathrm{C}$ and $74.5^{\circ} \mathrm{C}$. A dependence between polymerization time and T_{g} was not noticeable. The glass transition temperature range $\Delta \mathrm{T}$ ranged from 7.5 to $12.5^{\circ} \mathrm{C}$. Also for this value no dependence on the polymerization time was found.

Fig. 8.28.: DSC thermograms of $\mathrm{GP}_{0.43}\left(\mathrm{f}_{\mathrm{tBMA}}=0.5\right)$ with marked glass transition temperature range $\mathrm{T}_{\text {onset }}, \mathrm{T}_{\text {offset }}$ and glass transition temperature T_{g}; second heating runs, heating rate $10 \mathrm{~K} \cdot \min ^{-1} ; \mathrm{A}-60 \mathrm{~min}, \mathrm{~B}-90 \mathrm{~min}, \mathrm{C}-150 \mathrm{~min}, \mathrm{D}-210 \mathrm{~min}, \mathrm{E}-330 \mathrm{~min}, \mathrm{~F}-$ 450 min and $\mathrm{G}-1440 \mathrm{~min}$ of reaction time

The plot of the glass transition temperatures T_{g} and temperature ranges $\Delta \mathrm{T}$ of the samples of experiment V101 against the polymerization time t are depicted in Figure 8.29, while Figure 8.30 shows an analogues plot versus the monomer conversion p .

The glass transition temperature T_{g} did not show a clear dependence on the polymerization time. But from 210 to 1440 min the values increased exponentially. The values of the glass transition temperature range $\Delta \mathrm{T}$ laid in a narrow range between $7^{\circ} \mathrm{C}$ and $13^{\circ} \mathrm{C}$ and they were nearly linear.

Likewise the glass transition temperature did not show a dependence to the conversion p . The T_{g}-values increased, decreased and increased again with the rise of the conversion. The glass transition temperature range showed relatively straight values over the conversion p .

Fig. 8.29.: Plot of the glass transition temperature $\mathrm{T}_{\mathrm{g}}(\boldsymbol{\square})$ and the glass transition region $\Delta \mathrm{T}(\bullet)$ of $\mathrm{GP}_{0.43}\left(\mathrm{f}_{\mathrm{tBMA}}=0.5\right)$ against polymerization time t

Fig. 8.30.: Plot of the glass transition temperature $\mathrm{T}_{\mathrm{g}}(\boldsymbol{\bullet})$ and the glass transition region $\Delta \mathrm{T}(\bullet)$ of $\mathrm{GP}_{0.43}\left(\mathrm{f}_{\mathrm{tBMA}}=0.5\right)$ against conversion p

The glass transition temperature of $\mathrm{P}[\mathrm{tBMA}-\mathrm{co}-\mathrm{BzMA}]$ copolymers (Series F) can not be described well with Fox-Equation (cf. Section 7.2.4), because a difference of $10{ }^{\circ} \mathrm{C}$ between the calculated and measured values was found. However, this analysis was also applied to the gradient copolymers, using Equation 8.2.28. The results of the calculations are listed in Table 8.15.

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\frac{\mathrm{F}_{\mathrm{tBMA}}}{\mathrm{~T}_{\mathrm{g}, \mathrm{tBMA}}}+\frac{\mathrm{F}_{\mathrm{BzMA}}}{\mathrm{~T}_{\mathrm{g}, \text { BzMA }}} \tag{8.2.28}
\end{equation*}
$$

with $\mathrm{T}_{\mathrm{g}, \mathrm{tBMA}}=107^{\circ} \mathrm{C}[90]$ and $\mathrm{T}_{\mathrm{g}, \mathrm{nBMA}}=47^{\circ} \mathrm{C}[113]$

Tab. 8.15.: Theoretical and measured glass transition temperature of experiment V101

time $[\mathrm{min}]$	$\mathrm{F}_{\text {tBMA }}$	$\mathrm{F}_{\text {BzMA }}{ }^{a}$	$\mathrm{T}_{\mathrm{g}}\left(F_{0} x\right)^{b}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\mathrm{g}}(\mathrm{DSC})^{c}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{T}_{\mathrm{g}}{ }^{d}$ $\left[{ }^{\circ} \mathrm{C}\right]$
60	0.77	0.23	83.0	45.5	-37.5
90	0.62	0.38	72.1	74.5	2.4
150	0.63	0.37	72.6	45.0	-27.6
210	0.62	0.38	72.1	29.5	-42.6
330	0.59	0.41	70.0	37.0	-33.0
450	0.57	0.43	68.9	42.5	-26.4
1440	0.53	0.47	66.9	56.5	-10.4
${ }^{a} \mathrm{~F}_{\text {BzMA }}=1-\mathrm{F}_{\text {tBMA }} ;{ }^{b}$ calculated with Eq. 8.2 .28					
${ }^{c}$ measured with DSC; ${ }^{d} \Delta \mathrm{~T}_{\mathrm{g}}=\mathrm{T}_{\mathrm{g}}(\mathrm{DSC})-\mathrm{T}_{\mathrm{g}}($ Fox $)$					

The differences between the calculated and measured glass transition temperatures were high $\left(>25^{\circ} \mathrm{C}\right)$ for the most of the samples. Only with the sample taken at 90 min of polymerization time the calculated and the measured value were similar while the sample taken at 1440 min showed a the difference of $10^{\circ} \mathrm{C}$. Since similar discrepancies have been found with the statistical copolymers, the system tBMA/BzMA is not suitable to a Fox-Equation based description. The glass transition temperatures T_{g} of the samples of the gradient copolymer $\mathrm{GP}_{0.43}$ were in the same range as the glass transition temperatures of the samples of Series G, see Table 7.18. The glass transition temperature range $\Delta \mathrm{T}$ of the samples of the gradient copolymer $\mathrm{GP}_{0.43}$ were lower than the $\Delta \mathrm{T}$-values of the statistical copolymers of Series G.

Comparison of the Thermal Behavior of the Semibatch Copolymers of nBMA $/ t B M A$ and BzMA/tBMA

In the following paragraph the results of the DSC analysis of the experiments V31 ($\mathrm{P}[\mathrm{tBMA}-$ grad-nBMA] $\mathrm{GP}_{0.53}$) and V101 ($\mathrm{P}\left[\mathrm{tBMA}-\right.$ grad-BzMA] $\mathrm{GP}_{0.43}$), both with $\mathrm{f}_{\mathrm{tBMA}}=0.5$, respectively $\phi_{\mathrm{p}}=-1.0$, of the semibatch copolymerizations are compared. In Figure 8.31 the glass transition temperatures of the samples which were taken during the semibatch copolymerizations V31 and V101 are depicted.

Chapter 8. Synthesis of Gradient Copolymer from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization

Fig. 8.31.: Comparison of glass transition temperature T_{g} of copolymers of $\llbracket \mathrm{P}[\mathrm{tBMA}$-grad-tBMA $]$ V31 and \bullet P[BzMA-co-tBMA] V101 against copolymer composition

Fig. 8.32.: Comparison of glass transition temperature range $\Delta \mathrm{T}$ of copolymers of $■ \mathrm{P}[\mathrm{tBMA}-$ grad-tBMA] V31 and - P[BzMA-co-tBMA] V101 against copolymer composition

The glass transition temperature T_{g} of the samples of the copolymerization V31 were higher than the T_{g}-values of the samples of copolymerization V101 and the range of the values is smaller at the samples of V31 than the value-range of the samples of experiment V101. During both experiments the values scattered. The samples at experiments V31 the scattering was less strong. The differences between the T_{g}-values of copolymerization V101 was higher. That the values of the samples of semibatch copolymerization V31 were higher depends on the monomer-compositions of the two systems. Poly[benzyl methacrylate] has a lower glass transition temperature than poly[tert-butyl methacrylate].

In Figure 8.32 the values of the glass transition temperature ranges $\Delta \mathrm{T}$ of the samples from the semibatch synthesis V31 and V101 are depicted. The values of the samples of V31 are all higher than the values of the samples of V101. For both synthesis the sample-values increased from the first to the second value and the decreased from the second to the sixth value of V31 and to the fifth value of V101. Between the last two values of V31 and the last three values of V101 the values were nearly constant.

8.3. Summary

Based on the kinetic investigations on batch-copolymerizations of the different monomer compositions of tert-butyl-methacrylate (monomer 1) and benzyl methacrylate (monomer 2) the monomer addition program of semibatch copolymerization to generate a gradient copolymer has been calculated for a semibatch copolymerization with tBMA as the stock-monomer and BzMA as the feed-monomer. The analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the samples taken over the reaction time showed that the conversion increased linear at the beginning of the polymerization and then leveled off. After 1440 min the conversion reached around 85%. From the monomer conversions the cumulative and the instantaneous copolymer compositions of all samples were calculated. The cumulative compositions showed a decrease in tBMA-content, the instantaneous compositions also decreased. The slope of the decrease was too strong up to 11% of monomer conversion and from 11 to 85% monomer conversion the slope was too small. Hence, the obtained gradient copolymer V101 is characterized by "double gradient" structure, with a large gradient ($\phi_{\mathrm{p}}=-5.42$) over $\sim 11 \%$ of the chain length and a low gradient $\left(\phi_{\mathrm{p}}=-0.43\right)$ along the rest of the chain. Therewith the semibatch copolymerization yielded in a linear gradient copolymer with a constant gradient between a conversion of 11 to 85%. Over the whole reaction the copolymer can be described as "double-gradient". Elementary analysis showed the samples to be free of pollution. A calculation of the composition from the measured amounts of carbon leads to values which did not a obviously different from the compositions resulting from the analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis. The analysis of the samples with ATR-FTIR-spectroscopy gave spectra with the same characteristic vibrational bands that were found for the statistic copolymers. The calibration curve that was developed with the statistic copolymers could also be applied to the gradient copolymer, but

Chapter 8. Synthesis of Gradient Copolymer from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization 257
gave compositions that fitted badly to the compositions obtained by ${ }^{1} \mathrm{H}-\mathrm{NMR}-\mathrm{analysis}$. The SEC-measurements gave elution-diagrams without fronting or tailing, demonstrating a good reaction control even over 1440 min . The molar masses grew regularly. The polydispersities of all samples were well below 1.15 , which also indicated the good reaction control. DSC thermal analysis revealed no dependence of the T_{g} to reaction time or composition of V101. The glass transition temperature range stayed constant during the reaction. The measured T_{g} of the copolymers do not obey the Fox-Flory-rule of the copolymers glass temperature. The glass transition temperature of the samples of experiment V101 were in the same range than the T_{g}-values of the statistical copolymers of Series G and the glass transition temperature range of the samples of the gradient semibatch copolymerization were lower than the $\Delta \mathrm{T}$-values of the samples of the statistical batch copolymerization of Series G.

9. Hydrolysis of Statistic and Gradient Copolymers from Benzyl Methacrylate and tert-Butyl Methacrylate

The aim of this thesis is to prepare a functional amphiphilic gradient copolymer. For that reason the tert-butyl group of $\mathrm{P}[\mathrm{tBMA}-\mathrm{grad}-\mathrm{BzMA}]$ must be converted to a $\mathrm{COOH}-$ group via hydrolysis. In this chapter one statistical copolymer from BzMA and tBMA P[BzMA-cotBMA] (V81), cf. Chapter 7, and the gradient copolymer P[tBMA-grad-BzMA] (V101) were hydrolyzed to obtain P[BzMA-co-MAA] (V111), respectively P[MAA-grad-BzMA] (V121).

The tert-butyl group is a classical protections group in organic chemistry for $-\mathrm{COOH}-$ groups. [92] The standard method for the removal of a tert-butyl group is acid catalyzed hydrolysis. Especially the use of trifluoroacetic acid is well described in literature [93]. Also in polymer chemistry this cleavage reaction is often used to remove ester groups. Since (meth)acrylic acid can not be polymerized with ATRP, the indirect way using tert-butyl ester monomers is frequency used. [94, 95, 96] Another acid that can be used as a cleavage catalyst is methanesulfonic acid. This acid is more often used in bio-organic chemistry for the hydrolysis of proteins [97, 98, 99] but is also known in polymer chemistry. [100, 101] A different way to convert the tert-butyl-ester-group to a carboxylic acid group is a hydrolysis under neutral conditions with trimethylsilyl iodide. This method was introduced because the reaction conditions are milder and it is also possible to work with acid sensitive educts. [102, 103, 104, 105] In Chapter 4 the use of methanesulfonic acid was found to be the most effective way for the hydrolysis of the copolymers from tert- and n-butyl methacrylate. And because of the compatibility it was also used for the hydrolysis of the copolymers with tert-butyl and benzyl methacrylate.

9.1. Materials and Methods

The chemicals and the synthesis method were the same as described in Section 4.1.

9.1.1. Materials

The hydrolysis reagent was methanesulfonic acid (MSA, $\leq 99.5 \%$, Aldrich). It was used as received. The same applied to the used solvents chloroform (99.9%, Acros, extra dry over molecular sieve, stabilized), THF (chromasolv, Aldrich) and n-pentane (Aldrich).

9.1.2. Hydrolysis of Statistical Copolymer

V111: 0.2 g of the copolymer V81 were dissolved in $1.8 \mathrm{~g}(1.2 \mathrm{ml}) \mathrm{CHCl}_{3}$ and was stirred over night at room temperature. Then $0.27 \mathrm{~g}(0.18 \mathrm{ml})$ MSA were added. The mixture was stirred for 2 hours at room temperature. A spatula-spoon of sodium hydrogen carbonate was added and this mixture was stirred for 30 min . Subsequently 5 ml THF were added and the mixture was filtered over a P4 glass filter. Afterward the solution was dropped into 200 ml of ice-cold pentane. The precipitated polymer was filtered over P4 glass filter and dried at room temperature for two hours. Then the copolymer was re-dissolved in 1 ml THF and the solution was dropped into 200 ml of an ice cooled water: methanol $=1: 1 \mathrm{vol}$: vol mixture. The precipitated polymer was filtered over P 4 glass filter and dried at room temperature under an oil-pump vacuum over night.
${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R}$: $0.55-0.73 \mathrm{ppm}$ (broad peak); 0.74-1.17 ppm (broad peak); 1.55-2.08 ppm (broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{BzMA}], \mathrm{P}[\mathrm{MAA}]\right) ; 3.40 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3.71-3.90 \mathrm{ppm}$ (broad peak); 4.8-5.04 ppm (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]$); $7.04-7.49 \mathrm{ppm}$ (broad peak, aromatic ring, $\mathrm{P}[\mathrm{BzMA}]$); 12.13-12.56 ppm (broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{:} \mathbf{6 7 . 3 3} \% \mathrm{C}, 7.00 \% \mathrm{H},\left(25.67 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3600-2360 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3110-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring $) ; 1724 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1703 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1484 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-\right.$, $\left.{ }_{-} \mathrm{CH}_{3}\right) ; 1389 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1} ; 1259 \mathrm{~cm}^{-1} ; 1147 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1029 \mathrm{~cm}^{-1} ; 964 \mathrm{~cm}^{-1}(\mathrm{Bz}) ;$ $912 \mathrm{~cm}^{-1} ; 826 \mathrm{~cm}^{-1} ; 801 \mathrm{~cm}^{-1} ; 750 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 697 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 587 \mathrm{~cm}^{-1} ; 528 \mathrm{~cm}^{-1} ; 460 \mathrm{~cm}^{-1}$

9.1.3. Hydrolysis of Gradient Copolymer

V121: 0.25 g of the copolymer V101 were dissolved in $2.25 \mathrm{~g}(1.5 \mathrm{ml}) \mathrm{CHCl}_{3}$ and was stirred over night at room temperature. Then $0.27 \mathrm{~g}(0.18 \mathrm{ml})$ MSA were added. The mixture was stirred for 2 hours at room temperature. A spatula-spoon of sodium hydrogen carbonate was added and this mixture was stirred for 30 min . Subsequently 5 ml THF were added and the
mixture was filtered over a P4 glass filter. Afterward the solution was dropped into 200 ml of ice-cold pentane. The precipitated polymer was filtered over P 4 glass filter and dried at room temperature for two hours. Then the copolymer was re-dissolved in 1 ml THF and the solution was dropped into 200 ml of an ice cooled water: methanol $=1: 1 \mathrm{vol}$: vol mixture. The precipitated polymer was filtered over P 4 glass filter and dried at room temperature under an oil-pump vacuum over night.
${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R}$: $0.57-0.74 \mathrm{ppm}$ (broad peak); 0.75-1.22 ppm (broad peak); 1.59-2.09 ppm (broad peak, $-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{BzMA}], \mathrm{P}[\mathrm{MAA}]$); $3.56 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 4.8-5.08 \mathrm{ppm}$ (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}$, $\mathrm{P}[\mathrm{BzMA}]$); 7.23-7.45 ppm (broad peak, aromatic ring, $\mathrm{P}[\mathrm{BzMA}]$); $12.15-12.59 \mathrm{ppm}$ (broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{:} 65.36 \% \mathrm{C}, 6.81 \% \mathrm{H},\left(27.83 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3650-2390 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3115-2790 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring); $1726 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1699 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1483 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }_{-} \mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-\right.$, $\left.{ }^{-} \mathrm{CH}_{3}\right) ; 1389 \mathrm{~cm}^{-1} ; 1368 \mathrm{~cm}^{-1} ; 1257 \mathrm{~cm}^{-1} ; 1149 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1030 \mathrm{~cm}^{-1} ; 964 \mathrm{~cm}^{-1}(\mathrm{Bz}) ;$ $912 \mathrm{~cm}^{-1} ; 825 \mathrm{~cm}^{-1} ; 801 \mathrm{~cm}^{-1} ; 750 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 697 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 586 \mathrm{~cm}^{-1} ; 526 \mathrm{~cm}^{-1} ; 460 \mathrm{~cm}^{-1}$

9.2. Results and Discussion

This section describes the observations on the hydrolysis reactions performed with the statistical copolymer V81 and the gradient copolymer V101. Also the results of the analysis of the hydrolysis products are given. The products were compared with the educts. Further the differences between the hydrolyzed statistical and gradient copolymer were investigated.

The amount of added MSA depends on the amount of tBMA inside the polymer chains. It was calculated with Equation 9.2.1 for both copolymers consisting of tert-butyl methacrylate (monomer 1) and benzyl methacrylate (monomer 2).

$$
\begin{equation*}
\mathrm{V}_{\mathrm{MSA}}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{x} \cdot \mathrm{M}_{\mathrm{MSA}}}{\mathrm{M}_{\mathrm{tBMA}} \cdot \delta_{\mathrm{MSA}}} \tag{9.2.1}
\end{equation*}
$$

with $\mathrm{V}_{\text {MSA }}$ - Volume of the methanesulfonic acid, m - mass of the polymer, $\mathrm{F}_{\text {tBMA }}$ - ratio of tBMA in the polymer chain, x - multiplicity factor for the hydrolysis reagent $=2, \mathrm{M}_{\mathrm{tBMA}}$ - molar mass of $\mathrm{tBMA}=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{MSA}}-$ molar mass of the methanesulfonic acid $=$ $96.11 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and δ_{MSA} - density of the methanesulfonic acid $=1.48 \mathrm{~g} \cdot \mathrm{ml}^{-1}$

Also the theoretical yields depend on the copolymer composition $\mathrm{F}_{\text {tBMA }}$. They were calculated in the same way as in Section 4.2, using Equation 9.2.2.

$$
\begin{equation*}
\mathrm{y}_{\text {theo }}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{M}_{\mathrm{MAA}}}{\mathrm{M}_{\mathrm{tBMA}}}+\mathrm{m} \cdot\left(1-\mathrm{F}_{\mathrm{tBMA}}\right) \tag{9.2.2}
\end{equation*}
$$

with $y_{\text {theo }}$ - theoretical yield, m - mass of the polymer, $\mathrm{F}_{\text {tBMA }}$ - ratio of tBMA in the polymer, $\mathrm{M}_{\mathrm{MAA}}$ - molar mass of MAA $=86.09 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{tBMA}}$ - molar mass of $\mathrm{tBMA}=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

The results of the two calculations, the needed volumes of methanesulfonic acid and the theoretical yields, as well as the resulting and percentage yields of the two hydrolysis reactions are listed in Table 9.1.

Tab. 9.1.: Amount of added MSA and yields of the hydrolysis products V111 and V121

Product	Educt		weighted			yield		
			$\mathrm{F}_{\text {tBMA }}$	mass [g]	$\begin{gathered} \mathrm{V}_{\mathrm{MSA}} \\ {[\mathrm{ml}]} \end{gathered}$	theo [g]	actual	
							[g]	[\%]
V111	P[tBMA-co-BzMA]	V81	0.67	0.20	0.12	0.15	0.12	83.80
V121	$\mathrm{P}[$ tBMA-grad-BzMA]	V101	0.53	0.25	0.12	0.20	0.16	80.22

The reactions proceeded in the same way than the model synthesis in Section 4.2. Some minutes after the addition of MSA the mixture of both experiments became a light brown gel. During the second hour the gels liquefied again. The added sodium hydrogen carbonate neutralized the excess of acid after the reaction time. Because a byproduct of this step is a
salt, after the precipitation in n-pentane a second precipitation in water/methanol was done. However, the second precipitations was not only necessary to remove the formed salt. After the first precipitations from n-pentane the hydrolysis products were light brown powders, hence a second purification step was needed. After the purification steps the resulting copolymers were obtained in form of white powders. The yields of both hydrolysis were around 80%. The structure of the copolymers had no influence on the behavior of the educts during the reaction.

The solubility-properties of these hydrolysis products V111 and V121 were same as that of the P[nBMA-co-MAA], reported in Chapter 4 (Table 4.3). Using a benzyl ester group instead of the n-butyl group had no influence on the solubility of the hydrolyzed copolymer: The hydrolyzed copolymers V111 and V121 were dissolved in DMSO-d6 for ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The resulting ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the two hydrolysis products (B) are presented in Figures 9.2 and 9.3 together with the corresponding ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the educts (A). The molecular structures of the educts and the products with the numbering of the carbons are shown in Figure 9.1.

B

Fig. 9.1.: Molecular structures of educt V81, respectively V101, and product V111, respectively V121, with carbon-atom labels; A - educt $\mathrm{P}\left[\mathrm{tBMA}_{\mathrm{x}}-\mathrm{co}-\mathrm{BzMA}_{\mathrm{y}}\right]$ and B - product $\mathrm{P}\left[\mathrm{MAA}_{\mathrm{x}}-\mathrm{co}-\mathrm{BzMA}_{\mathrm{y}}\right](\mathrm{z}=\mathrm{x}+\mathrm{y}=1)$

The changes between the spectra of the educts and the products were distinct and for both hydrolysis the changes were the same. The intensity of the broad peak ranging from 1.25 to 1.55 ppm caused by the signals of the proton 3^{\prime} shrank relative to the signals 6^{\prime} from 4.8 ppm to 5.1 ppm , which remained constant. The reason was the absence of the signal 3 ' from the protons of the tert-butyl group in the products. In the spectra of the hydrolysis products the broad -COOH -signal could be monitored between 12.0 to 12.75 ppm . In the ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra of the products additionally a $\mathrm{H}_{2} \mathrm{O}$ signal was present because the DMSO-d6 was not dry. That the signal of the tert-butyl-group disappeared nearly completely indicated a total conversion of both educts.

Fig. 9.2.: Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ Spectra of educt V81 and product V111 (A: educt P $\left[\mathrm{tBMA} \mathrm{B}_{0.67}{ }^{-}\right.$ co $\left.-\mathrm{BzMA}_{0.33}\right]$), V 81 ; B : hydrolysis product $\mathrm{P}\left[\mathrm{MAA}_{0.67}-\mathrm{co}-\mathrm{BzMA}_{0.33}\right]$, V111)

Fig. 9.3.: Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ Spectra of educt V101 and product V121 (A: educt P $\mathrm{tBMA} \mathrm{D}_{0.53^{-}}$ $\left.\operatorname{grad}-\mathrm{BzMA}_{0.47}\right]$, V101; B: hydrolysis product $\mathrm{P}\left[\mathrm{MAA}_{0.53}-\operatorname{grad}-\mathrm{BzMA}_{0.47}\right]$, V121)

Chapter 9. Hydrolysis of Statistic and Gradient Copolymers from Benzyl Methacrylate and tert-Butyl Methacrylate 265

The NMR-analysis is followed by the investigation of the hydrolyzed copolymers by elementary analysis and ATR-FTIR-spectroscopy. The results of the elementary analyzes are listed in Table 9.2. The theoretical values were calculated for 100% conversion of the hydrolysis of the educts.

Tab. 9.2.: Results of the elemental analysis of educts V81 and V101 and hydrolysis-products V111 and V121 with divergence from the set values

Entry	$\mathrm{F}_{\text {BzMA }}$		C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
V81	0.33	theory	70.39		8.76		20.85	
		is	71.20	0.81	8.18	-0.58	20.62	-0.23
V111		theory	65.43		6.94		27.62	
		is	67.33	1.90	7.00	0.06	25.67	-1.96
V101	0.47	theory	71.45		8.32		20.23	
		is	71.08	1.54	7.81	-1.30	21.11	-0.23
V121		theory	68.17		6.92		24.91	
		is	65.36	-2.81	6.81	-0.12	27.83	2.92

The results of the two products were slightly different. The statistical copolymer V111 showed a small excess of carbon and a little less oxygen. At the gradient copolymer V121 the amount of carbon was slightly lower than calculated and for oxygen slightly higher. The differences were higher at the gradient copolymer than at the statistical copolymer. But in both cases the differences were justifiable. The results of the elementary analysis showed that the resulting copolymers were clean and dry.

In a next step the compositions of the copolymers was calculated from the content of carbon and hydrogen that were measured by means of elementary analysis like it was done with the educts. The different calibration curves were needed with the amounts of carbon and hydrogen of homopolymers PMAA and PBzMA as basis. These calibration curves are depicted in Figure 9.4 and the corresponding linear equations are given as Equations 9.2.3 and 9.2.4.

$$
\begin{align*}
& \mathrm{C}=0.7498-0.1971 \cdot \mathrm{~F}_{\mathrm{MAA}} \tag{9.2.3}\\
& \mathrm{H}=0.0686+0.0017 \cdot \mathrm{~F}_{\mathrm{MAA}} \tag{9.2.4}
\end{align*}
$$

The equations were recalculated for the composition and with the amounts of carbon, respectively hydrogen, taken from elementary analysis the compositions were calculated. The results are listed in Table 9.3.

Fig. 9.4.: Calibration curves of amount of carbon (black line) and hydrogen (grey line) in P[MAA-co-BzMA]

Tab. 9.3.: Compositions of the copolymers of experiment V111 and V121 resulting from ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ analysis and elementary analysis

entry $[\mathrm{min}]$	$\mathrm{F}_{\mathrm{MAA}}^{\mathrm{NMR} a}$	$\mathrm{~F}_{\mathrm{MAA}}^{\mathrm{EA}, \mathrm{C}_{b}}$	$\Delta \mathrm{~F}_{\mathrm{MAA}}^{\mathrm{C}}$	$\mathrm{F}_{\mathrm{MAA}}^{\mathrm{EA}, \mathrm{H}_{d}}$	$\Delta \mathrm{~F}_{\mathrm{MAA}}^{\mathrm{H}}{ }^{c}$
V 111	0.67	0.40	-0.27	0.83	0.16
V 121	0.53	0.50	-0.03	-0.32	-0.85

${ }^{a}$ calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra; ${ }^{b}$ calculated from Eq. 9.2.3
${ }^{c} \Delta \mathrm{~F}_{\mathrm{MAA}}^{\mathrm{x}}=\mathrm{F}_{\mathrm{MAA}}^{\mathrm{EA}, \mathrm{x}}-\mathrm{F}_{\mathrm{MAA}}^{\mathrm{NMR}} ;{ }^{d}$ calculated from Eq. 9.2.4

The compositions $\mathrm{F}_{\text {tBMA }}^{\mathrm{EA}, \mathrm{x}}$ calculated by elementary analysis differed obviously from the compositions which were determined from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated copolymers for both elements carbon and hydrogen, expect the composition of V111 that was calculated from the amount of carbon. The differences could be caused by various problems: The presence of a residual solvent can be a reason for the large differences. However, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra did not show the presence of solvents and therewith this can be excluded. The ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra also did not contain signal which resulted from the presence of monomers. Inhomogeneity of the sample is also possible as a problem. The amount of polymer which was taken at a NMR-measurement is 10 mg and at an EA-measurement 2.5 mg . Hence, the smaller mass taken for the sample of the EA-measurement would be intensified a problem like inhomogeneity. The resulting copolymers were apparently consistent. Therewith, inhomogeneity can be
excluded. A third possibility is that the pollution happened during the measurement itself. The measurement of standards in periodical intervals should avoid that.

The ATR-FTIR-spectra of the educts (grey lines) and the corresponding product-spectra (black lines) are depicted in Figures 9.5 and 9.6. The vibrational bands in the IR-spectra were analyzed in view to changing which were caused by the hydrolysis.

In section 7.2 .2 two bands at $850 \mathrm{~cm}^{-1}$ and $730 \mathrm{~cm}^{-1}$ were introduced that are characteristic of polymer-incorporated tBMA and BzMA units, respectively. Band 2 at $730 \mathrm{~cm}^{-1}$ of BzMA did not change so much but band 1 at $850 \mathrm{~cm}^{-1}$ for tBMA differed obviously. The changes of band 1 were strong and also influenced band 2. Therewith the analysis of peak height and peak area of both bands was not possible anymore. The loss of band intensity at $850 \mathrm{~cm}^{-1}$ clearly indicates that the hydrolysis products no longer contained tBMA-ester side groups. Also the intensity of the bands at $1370 \mathrm{~cm}^{-1}$ and $1390 \mathrm{~cm}^{-1}$ shrank with the hydrolysis. A third change exhibited the band at $1710 \mathrm{~cm}^{-1}$ which is the vibrational bands of ester $-\mathrm{C}=\mathrm{O}$-group. In the IR-spectrum of the educts the band was a small singlet. The product-spectra instead had a broader doublet at that region. The double band exhibited maxima at $1720 \mathrm{~cm}^{-1}$ and $1700 \mathrm{~cm}^{-1}$. The literature refers $1720 \mathrm{~cm}^{-1}$ to ester- $\mathrm{C}=\mathrm{O}$ vibration, while $1700 \mathrm{~cm}^{-1}$ belong to the vibrations of carboxylic acid-C=O groups. [87] Further the range $\tilde{\nu}>3000 \mathrm{~cm}^{-1}$ changed from educt to product in both cases. A broad band ranging from 2350 to $3700 \mathrm{~cm}^{-1}$ appeared which could be assigned to the vibrational band of the carboxylic acid OH-group. All in all the changes in the IR-spectra of the educts to the product-spectra and the differences of the product-spectra among themselves showed that both hydrolysis reactions worked well. Between the IR-spectra of the two products was no obvious difference. Hence, the structural sequence on the polymer chain has no influence on the IR-spectra.
band 1 band 2

Fig. 9.5.: Comparison of ATR-FTIR-spectra of educt V81 and product V111 (A: educt $\mathrm{P}\left[\mathrm{tBMA}_{0.67}-\mathrm{co}-\mathrm{BzMA}_{0.33}\right], \mathrm{V} 81$; B: hydrolysis product $\mathrm{P}\left[\mathrm{MAA}_{0.67}-\mathrm{co}-\mathrm{BzMA}_{0.33}\right]$, V111) (Spectra normalized to $\mathrm{A}_{1134}=1$)
band 1 band 2

Fig. 9.6.: Comparison of ATR-FTIR-spectra of educt V101 and product V121 (A: educt $\mathrm{P}\left[\mathrm{tBMA}_{0.53}-\operatorname{grad}-\mathrm{BzMA}_{0.47}\right], \mathrm{V} 101$; $\mathrm{B}:$ hydrolysis product $\mathrm{P}\left[\mathrm{MAA}_{0.53}-\operatorname{grad}-\mathrm{BzMA}_{0.47}\right]$, V121) (Spectra normalized to $\mathrm{A}_{1134}=1$)

The next type of analysis was the size exclusion chromatography (SEC). As with the hydrolyzed copolymers of Chapter 4 also the products of V111 and V121 were not soluble in THF. As described in Section 4.2 about 0.4 mg of the copolymer was mixed with 1 ml THF and two drops of TMSI and the mixture was stirred over night at RT. The copolymer became THF-soluble, because the carboxyl groups were converted into non-polar trimethylsilylesters. Since the presence of non-covalent fixed TMSI disturbed the dn/dc determination, only the relative molar mass of the copolymers were calculated from the maximum elution volume of the samples and Equation 3.3.22 which based on a a polystyrene-calibration ("PS-Standard-values"). The resulting elution diagrams of the RI-detector signals are depicted in Figure 9.7 and the calculated relative molar masses are listed in Table 9.4.

Fig. 9.7.: Comparison of SEC elution diagrams of the educts V81 and V101 as well as the products V111 and V121 (A: educt P[tBMA $0_{0.67}-$ co- $\mathrm{BzMA}_{0.33}$, V81; B: hydrolysis product P $\left[\mathrm{MAA}_{0.67}-\right.$ co- $\left.\mathrm{BzMA}_{0.33}\right]$, V111; C: educt $\mathrm{P}\left[\mathrm{tBMA}_{0.53}-\right.$ grad- $\left.\mathrm{BzMA}_{0.47}\right]$, V101; D: hydrolysis product $\mathrm{P}\left[\mathrm{MAA}_{0.53}-\right.$ grad $\left.-\mathrm{BzMA}_{0.47}\right]$, V121)

Tab. 9.4.: SEC results of experiments V81, V111, V101 and V121

Entry	$\mathrm{F}_{\text {BzMA }}$	$\mathrm{V}_{\mathrm{E}}{ }^{a}$ $[\mathrm{ml}]$	$\mathrm{M}_{\mathrm{w}}{ }^{b}$ $\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]$	$\Delta \mathrm{M}_{\mathrm{w}}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$[\%]$
V81	0.33	27.34	21767		
V111		27.70	18111	3656	16.80
V101	0.47	24.85	77143		
V121		25.18	65317	11826	15.33

[^10]The refractive index elution diagram of the sample of the copolymer V111 was bimodal. It shows a step on the left side. The reason for this could be the problem of solubility of the sample in THF. The elution diagram of the RI-detector of the sample of the copolymer V121 was monomodal as the elution diagram of the educt-sample. For both experiments the signals of the product-samples shifted towards higher elution volumes, i. e. lower molecular weights. The molar masses of the products were lower than the educts. In both cases the molar mass shrunk around 15%. The calculated relative molar masses were slightly higher than the expected ones. The molar mass of the copolymer V111 should be 25% lower than the molar mass of the educt and the molar mass of the copolymer V121 19%. That was caused by the fact that for a relative molecular weight determination only the maximum elution volume is used and this is always higher than the average molar mass of a sample.

The investigation of the thermal behavior was the next part of analysis. The samples of the experiments V111 and V121 were heated up for two times from -80 to $200^{\circ} \mathrm{C}$ with a cooling run in between ($\mathrm{dT} / \mathrm{dt}=10 \mathrm{~K} / \mathrm{min}$). The samples were not measured up to $300^{\circ} \mathrm{C}$ as in Section 4.2, because it was known that the hydrolyzed polymer-samples will decompose. In Figure 9.8 the two heating runs and the cooling run of both experiments V111 and V121 are represented.

Fig. 9.8.: DSC thermograms of hydrolyzed copolymer V111 (black line) and V121 (grey line); a/a’ - first heating run, b / b ' - first cooling run, $c / c^{\prime}-$ second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Both thermograms of the first heating run exhibited an endothermic peak in the temperature range from 20 to $160^{\circ} \mathrm{C}$. Then the DSC-signal increased. The second heating run and the cooling run did not show peaks or glass transition steps. The DSC-thermograms of P[nBMA-co-MAA], see Section 4.2 also shows a similar endothermic peak during the first heating run. So also the hydrolyzed copolymers V111 and V121 decomposed during the first heating run. The peak area and peak height of the first heating runs of the thermograms of hydrolyzed copolymers V111 and V121 were determined and the results are listed in Table 9.5.

Tab. 9.5.: DSC results of hydrolysis-products of copolymers from experiment V111 and V121

Entry	$\mathrm{F}_{\text {MAA }}$	Area $\left[\mathrm{J} \cdot \mathrm{g}^{-1}\right]$	$\mathrm{T}_{\text {Peak }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	Width $\left[{ }^{\circ} \mathrm{C}\right]$	Height $\left[\mathrm{mW} \cdot \mathrm{mg}^{-1}\right]$
V111	0.67	23.7	70.5	34.5	106.8	53.7	0.0845
V121	0.53	98.1	89.9	47.3	129.6	63.2	0.2863

The peak area and the peak height of the endothermic peak of the sample V111, the statistical copolymer, was lower than the values of the gradient copolymer V121, although the amount of MAA inside the statistical copolymer was higher than in the gradient copolymer. The structure of the gradient copolymer lead to a stronger decomposition than the one of the statistical copolymer even if the amount of MAA in the gradient copolymer chain was lower than in the copolymer chain of the statistical copolymer.

9.3. Summary

The tert-butyl groups of the statistical and the gradient copolymer from tert-butyl methacrylate and benzyl methacrylate were hydrolytically cleaved by means of methanesulfonic acid (MSA). The characterization of the hydrolyzed copolymers with ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy and elementary analysis showed the absence of tert-butyl-groups in the polymer chains, and hence, a total conversion of the hydrolysis. The elementary analysis results agreed decently to the structure of both experiments. A calculation of the monomer molar fraction from the measured contents of carbon or hydrogen leads to values which obviously differed from the compositions resulting from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis. The changes in the ATR-FTIR-spectra supported the good results of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The vibrational band of the $\mathrm{OH}-$ group occurred and the fingerprint-region change in case of the vibrational bands from the tert-butyl-group. The changes were so vigorous that an analysis of the vibrational band of BzMA was not possible. The RI-detector signals of copolymer V111 was bimodal what could be caused by the problem of the solubility of the hydrolyzed polymer in THF. The detector signals of the sample from copolymer V121 was monomodal. The SEC exhibited the decrease of the molar masses. The DSC analysis showed broad endothermic peaks for both copolymers in the same region and the samples did not regenerate after the first heating run. The peak area and the peak height of the endothermic peak of the statistical copolymer

V111 were lower than the ones of the gradient copolymer V121, despite the higher amount of MAA inside the statistical copolymer. Both hydrolysis of the copolymers worked well and an amphiphilic statistical and an amphiphilic gradient copolymer have successfully be obtained.

10. Synthesis of AB-Di-Block

 Copolymers from tert-Butyl Methacrylate and n-Butyl or Benzyl MethacrylateThis part describes the synthesis of AB-di-block copolymers from tert-butyl methacrylate as the block A and n-butyl methacrylate, respectively benzyl methacrylate, as the block B . The AB-di-block copolymers were synthesized to compare of the high structured copolymer with the unstructured statistical copolymers and the semi-structured gradient copolymers. The prepared block copolymers were aimed to be composed of the same length $\mathrm{P}[\mathrm{A}]_{0.5}-\mathrm{b}-\mathrm{P}[\mathrm{B}]_{0.5}$. Moreover, the two resulting block copolymers were hydrolyzed with the same method than the statistical and the gradient copolymers before.

10.1. Materials and Methods

For compatibility reasons the AB -di-block copolymers were synthesized with the same materials and the former methods than the former statistical and gradient copolymers.

10.1.1. Materials

First are listed the chemicals which were used for the copolymerizations of the block copolymers. The treatments of chemicals were the same as detailed in Sections 3.1.1 and 7.1.1.

- monomers
- tert-butyl methacrylate (tBMA, 98%, Alfa Aesar)
- n-butyl methacrylate (nBMA, 99%, Sigma-Aldrich)
- benzyl methacrylate (BzMA, 98%, Alfa Aesar)
- initiator: para-toluenesulfonyl chloride (pTSC, 98%, Sigma-Aldrich)
- catalyst: copper(I) chloride (97\%, Sigma-Aldrich)
- ligand: $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-pentamethyldiethylenetriamine (PMDETA, 99 \%, Sigma-Aldrich)
- solvent: 2-butanone (MEK, BDH Prolabo, chromasol.)

The chemicals which were used for the hydrolysis are listed in the following. They were used as received.

- methanesulfonic acid (MSA, $\leq 99.5 \%$, Aldrich)
- chloroform (99.9%, Acros, extra dry over molecular sieve, stabilized)
- THF (chromasolv, Aldrich)
- n-pentane (Aldrich)

10.1.2. Synthesis of Block A - Macro Initiator

The block copolymers were also synthesized by Atom Transfer Radical Polymerization with the same system than the statistical and the gradient copolymers in Chapters 3, 5, 7 and 8. The experimental setup is depicted in Figure 10.1.

Fig. 10.1.: Experimental setup for batch block-copolymerization

A 50 ml Schlenk flask was heated out with a hot gun (air temperature $\approx 400^{\circ} \mathrm{C}$) under vacuum for five minutes and then flushed with nitrogen. The chemicals were weighted in a screw-cap glass in a specific order: First $0.0689 \mathrm{~g}\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{pTSC}$ was weighted, followed by the monomer tBMA, $8.9870 \mathrm{~g}(0.0632 \mathrm{~mol})$. When the pTSC was dissolved, 0.0626 g $\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right)$ PMDETA, and $0.0357 \mathrm{~g}\left(3.61 \cdot 10^{-4} \mathrm{~mol}\right) \mathrm{CuCl}$ were added. The mixture was rinsed into the Schlenk flask with 8.9870 g of the solvent MEK under nitrogen flow. Then the flask was sealed with a rubber septum. Subsequently the solution was degassed by means of 5 freeze-melt-cycles, flooded with nitrogen and then heated up to $80^{\circ} \mathrm{C}$ for 45 minutes. At the start and the end of the reaction 0.05 ml samples were taken for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. Each 0.05 ml of aliquot-sample was given into 0.5 ml cold CDCl_{3} without further purification.

After the reaction the Schlenk flask was removed from the oil bath. The flask was floated with air and the reactions mixture was cooled to $20^{\circ} \mathrm{C}$ with a mixture of ice and water. Then the solution was dropped into 500 ml of a ice cooled water : methanol $=1: 1 \mathrm{vol}$: vol mixture. The precipitated polymer was filtered over a P 4 glass filter and dried at $45^{\circ} \mathrm{C}$ under vacuum over night. The precipitated was dissolved in $20 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred into a separatory funnel. $20 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were added and thoroughly shaken. The organic phase was separated and given into a round-bottom flask. The water phase was extracted two times more each with $10 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$. All organic phased were combined. The solvent was removed by vacuum evaporation. The yield of the polymer is listed in Table 10.1.

Experiment V150 (PtBMA):

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N} \boldsymbol{M} \boldsymbol{M}$: $1.35-1.50 \mathrm{ppm}$ (broad peak, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.45 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA); $1.84-1.89 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.85 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{tBMA}\right) ; 5.42 \mathrm{ppm}(\mathrm{t}$, $\mathrm{CH}_{2}=\mathrm{C}-$, cis, tBMA); $5.95 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA$)$
$\boldsymbol{E A} \boldsymbol{A} \mathbf{6} .59 \% \mathrm{C}, 9.57 \% \mathrm{H},\left(23.84 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3100-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1718 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1476 \mathrm{~cm}^{-1}$ $\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1457 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1366 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1330 \mathrm{~cm}^{-1} ; 1248 \mathrm{~cm}^{-1}$ (tBu) ; $1132 \mathrm{~cm}^{-1}$ (-C-O-C-); $1036 \mathrm{~cm}^{-1} ; 969 \mathrm{~cm}^{-1} ; 840 \mathrm{~cm}^{-1} ; 875 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 847 \mathrm{~cm}^{-1}$; $816 \mathrm{~cm}^{-1} ; 752 \mathrm{~cm}^{-1} ; 666 \mathrm{~cm}^{-1} ; 514 \mathrm{~cm}^{-1} ; 497 \mathrm{~cm}^{-1} ; 471 \mathrm{~cm}^{-1}$
$\boldsymbol{S E C} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.0612 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=11060 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=11620 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=12420 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C}: \mathrm{T}_{\text {onset }}=64.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=75.5^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=77.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=85.0^{\circ} \mathrm{C} ; \Delta \mathrm{c}_{\mathrm{p}}=0.247 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

10.1.3. Synthesis of Block B

The experimental setup was the same as for the macro initiator, see Figure 10.1. A 25 ml Schlenk flask was heated out with a hot gun (air temperature $\approx 400^{\circ} \mathrm{C}$) under vacuum for five minutes and then flushed with dry nitrogen. The chemicals were weighted in a screw-cap glass in a specific order: First $0.5246 \mathrm{~g}\left(4.51 \cdot 10^{-5} \mathrm{~mol}\right)$ of the macroinitiator PtBMA was weighted in, followed by the monomer (Block $\mathrm{B}_{1}: 1.1234 \mathrm{~g}(0.0079 \mathrm{~mol}) \mathrm{nBMA}$, Block $\mathrm{B}_{2}: 1.3921 \mathrm{~g}$ $(0.0079 \mathrm{~mol}) \mathrm{BzMA}$. Then $0.0078 \mathrm{~g}\left(4.51 \cdot 10^{-5} \mathrm{~mol}\right)$ PMDETA, and $0.0045 \mathrm{~g}\left(4.51 \cdot 10^{-5} \mathrm{~mol}\right)$ CuCl were added. The mixture was rinsed into the Schlenk flask with 1.6479 g of the solvent MEK for Block B_{1} or 1.9167 g MEK for Block B_{2} under nitrogen flow. Then the flask was sealed with a rubber septum. Subsequently the solution was degassed by means of 5 freeze-melt- cycles, flooded with nitrogen and then heated up to $80^{\circ} \mathrm{C}$ for 1 hour. At the beginning and the end of the reaction 0.05 ml samples were taken for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. The 0.05 ml of aliquot-sample were given into 0.5 ml cold CDCl_{3} without further purification.

After the reaction the Schlenk flask was removed from the oil bath. The flask was floated with air and the reactions mixture was cooled to $20^{\circ} \mathrm{C}$ with a mixture of ice and water. Then the solution was dropped into 50 ml of a ice cooled water: methanol $=1: 1 \mathrm{vol}$: vol mixture. The precipitated polymer was filtered over a P 4 glass filter and dried at $45^{\circ} \mathrm{C}$ under vacuum over night. The precipitated was dissolved in $5 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred into a separatory funnel. $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were added and thoroughly shaken. The organic phase was separated and given into a round-bottom flask. The water phase was extracted two times more each with $2 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$. All organic phased were combined. The solvent was removed by vacuum evaporation. The yield of the polymer is listed in Table 10.1.

Experiment V151 P[PtBMA-b-nBMA]:

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R}$: $0.86-0.94 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{3}$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$); 1.46-1.30 ppm (broad peak, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}],-\mathrm{CH}_{2}-$, nBMA and $\left.\mathrm{P}[\mathrm{nBMA}]\right) ; 1.43 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA); $1.52-1.65 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{2}-$, nBMA and $\left.\mathrm{P}[\mathrm{nBMA}]\right) ; 1.72-1.82 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]$ and $\left.\mathrm{P}[\mathrm{nBMA}]\right) ; 1.84 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{tBMA}\right) ; 1.88 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{nBMA}\right)$; 3.82-3.99 ppm (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]$); $4.09 \mathrm{ppm}\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{R}, \mathrm{nBMA}\right) ; 5.41 \mathrm{ppm}$ ($\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-$, cis, tBMA); $5.48 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, nBMA); $5.94 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA); $6.03 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, nBMA)
$\boldsymbol{E A} \boldsymbol{A} \mathbf{6 8 . 1 4} \% \mathrm{C}, 8.97 \% \mathrm{H},\left(22.89 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3080-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1721 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1473 \mathrm{~cm}^{-1}$
$\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1512 \mathrm{~cm}^{-1} ; 1456 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1321 \mathrm{~cm}^{-1}$; $1270 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1244 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1135 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1065 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1020 \mathrm{~cm}^{-1}$;
$1002 \mathrm{~cm}^{-1} ; 967 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 944 \mathrm{~cm}^{-1} ; 876 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 750 \mathrm{~cm}^{-1} ; 657 \mathrm{~cm}^{-1} ; 605 \mathrm{~cm}^{-1} ; 581 \mathrm{~cm}^{-1}$; $517 \mathrm{~cm}^{-1} ; 472 \mathrm{~cm}^{-1}$;
$\boldsymbol{S E} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.0772 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=23590 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=29310 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=34340 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C}$: glass transition 1: $\mathrm{T}_{\text {onset }}=32.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=49.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=54.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=62.0^{\circ} \mathrm{C}$; $\Delta \mathrm{c}_{\mathrm{p}}=0.187 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$; glass transition 2: $\mathrm{T}_{\text {onset }}=100.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=103.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=103.5^{\circ} \mathrm{C}$; $\mathrm{T}_{\text {offset }}=105.5^{\circ} \mathrm{C} ; \Delta \mathrm{c}_{\mathrm{p}}=0.074 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

Experiment V152 P[PtBMA-b-BzMA]:

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M} \boldsymbol{M} \boldsymbol{R}$: $1.22-1.54 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.47 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{tBMA}\right) ;$ 1.69-1.91 ppm (broad peak, $-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]$ and $\mathrm{P}[\mathrm{BzMA}]$); $1.86 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}\right.$, tBMA); $1.95 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{BzMA}\right) ; 4.79-4.97 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]\right) ; 5.18 \mathrm{ppm}(\mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{R}, \mathrm{BzMA}\right) ; 5.45 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.56 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, BzMA); $5.98 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA); $6.14 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, BzMA); 7.18-7.41 ppm (broad peak, aromatic ring, BzMA and P[BzMA])
$\boldsymbol{E A} \boldsymbol{A} \boldsymbol{7 2 . 1 7 \%}$ C, $7.49 \% \mathrm{H},\left(20.34 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3140-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring); $1719 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1478 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1318 \mathrm{~cm}^{-1}$; $1294 \mathrm{~cm}^{-1} ; 1246 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1135 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1030 \mathrm{~cm}^{-1} ; 967 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 912 \mathrm{~cm}^{-1}$; $877 \mathrm{~cm}^{-1} ; 847 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 827 \mathrm{~cm}^{-1} ; 749 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 696 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 581 \mathrm{~cm}^{-1} ; 527 \mathrm{~cm}^{-1} ; 459 \mathrm{~cm}^{-1}$
$\boldsymbol{S E} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.1151 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=25040 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=31030 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=34700 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C}:$ glass transition 1: $\mathrm{T}_{\text {onset }}=24.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=34.5^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=31.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=43.0^{\circ} \mathrm{C}$; $\Delta \mathrm{c}_{\mathrm{p}}=0.212 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$; glass transition 2: $\mathrm{T}_{\text {onset }}=58.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=63.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=59.0^{\circ} \mathrm{C}$; $\mathrm{T}_{\text {offset }}=60.0^{\circ} \mathrm{C} ; \Delta \mathrm{c}_{\mathrm{p}}=0.024 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

10.1.4. Hydrolysis

0.25 g of the block copolymer were dissolved in $2.25 \mathrm{~g}(1.5 \mathrm{ml}) \mathrm{CHCl}_{3}$ and was stirred over night at room temperature. Then the respective amount of methanesulfonic acid (MSA) was added, see Table 10.11. The mixture was stirred for 2 hours at room temperature. A spatula-spoon of sodium hydrogen carbonate was added and this mixture was stirred for 30 min . Subsequently 5 ml THF were added and the mixture was filtered over a P4 glass filter. Afterward the solution was dropped into 200 ml of ice-cold n-pentane. The precipitated polymer was filtered over P4 glass filter and dried at room temperature for two hours. Then the copolymer was re-dissolved in 1 ml THF and the solution was dropped into 200 ml of an ice cooled water: methanol $=1: 1 \mathrm{vol}: \mathrm{vol}$ mixture. The precipitated polymer was filtered over P4 glass filter and dried at room temperature under an oil-pump vacuum over night. The yields are also listed in Table 10.11.

Experiment V161 P[PMAA-b-nBMA]:

 $\mathrm{P}[\mathrm{nBMA}])$; $1.5-1.61 \mathrm{ppm}$ (broad peak, $-\mathrm{CH}_{2}-, \mathrm{P}[\mathrm{nBMA}]$); 1.62-2.05 ppm (broad peak, $-\mathrm{CH}_{3}$, $\mathrm{P}[\mathrm{nBMA}], \mathrm{P}[\mathrm{MAA}]) ; 3.33 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3.8-4.0 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]\right) ; 12.1-$ 12.5 ppm (broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{A} \boldsymbol{6 1 . 7 5} \% \mathrm{C}, 8.36 \% \mathrm{H},\left(29.89 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3600-2350 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3050-2350 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1723 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1456 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }_{-} \mathrm{CH}_{3}\right) ; 1367 \mathrm{~cm}^{-1} ; 1247 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 1142 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1064 \mathrm{~cm}^{-1}$ $(\mathrm{nBu}) ; 965 \mathrm{~cm}^{-1}(\mathrm{nBu}) ; 943 \mathrm{~cm}^{-1} ; 847 \mathrm{~cm}^{-1} ; 802 \mathrm{~cm}^{-1} ; 749 \mathrm{~cm}^{-1} ; 697 \mathrm{~cm}^{-1} ; 516 \mathrm{~cm}^{-1} ; 468 \mathrm{~cm}^{-1}$

Experiment V162 P[PMAA-b-BzMA]:

${ }^{1} \boldsymbol{H}-\boldsymbol{N} \boldsymbol{M} \boldsymbol{R}: ~ 0.55-0.73 \mathrm{ppm}($ broad peak); $0.74-1.17 \mathrm{ppm}(\mathrm{broad}$ peak) ; $1.55-2.08 \mathrm{ppm}(\mathrm{broad}$ peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{BzMA}], \mathrm{P}[\mathrm{MAA}]\right) ; 3.40 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3.71-3.90 \mathrm{ppm}($ broad peak $) ; 4.8-5.04 \mathrm{ppm}$ (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]$); 7.04-7.49 ppm (broad peak, aromatic ring, $\mathrm{P}[\mathrm{BzMA}]$); $12.13-12.56 \mathrm{ppm}($ broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{A} \mathbf{6 7 . 3 3} \% \mathrm{C}, 7.00 \% \mathrm{H},\left(25.67 \% \mathrm{O}_{\text {calc }}\right)$
$\boldsymbol{A T R}-\boldsymbol{F T I R}: 3600-2360 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3110-2800 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring) ; $1724 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1703 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1484 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-\right.$, $\left.{ }_{-} \mathrm{CH}_{3}\right) ; 1389 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1} ; 1259 \mathrm{~cm}^{-1} ; 1147 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1029 \mathrm{~cm}^{-1} ; 964 \mathrm{~cm}^{-1}(\mathrm{Bz})$; $912 \mathrm{~cm}^{-1} ; 826 \mathrm{~cm}^{-1} ; 801 \mathrm{~cm}^{-1} ; 750 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 697 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 587 \mathrm{~cm}^{-1} ; 528 \mathrm{~cm}^{-1} ; 460 \mathrm{~cm}^{-1}$

10.1.5. Characterization

All characterization-methods were the same as with the batch copolymers of Chapter 3. The used methods were:

- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy
- elementary analysis
- ATR-FTIR-spectroscopy
- size exclusion chromatography
- differential scanning calorimetry

The same instruments under the same conditions were used for the investigation of the resulting copolymers.

10.2. Results and Discussion of the Block Copolymerizations

To prepare $\mathrm{P}[\mathrm{tBMA}]-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]$ and $\mathrm{P}[\mathrm{tBMA}]-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}] \mathrm{AB}-$ di-block copolymers, a $\mathrm{P}[\mathrm{tBMA}]-\mathrm{B}_{\mathrm{i}}$ macroinitiator was prepared in the first step. The block copolymers were obtained by subsequent growth of the second monomer on this starter block. The synthesis of the macro initiator P[tBMA] was performed by means of the same ATRP system that was used to prepare the statistical copolymers in Section 3, using para-toluolsulfonyl chloride (pTSC) as the initiator, $\mathrm{Cu}^{\mathrm{I}} \mathrm{Cl}$ as the catalyst and $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}-$ pentamethyldiethylenetriamine (PMDETA) as the ligand. The initial ratio of the substances was pTSC: $\mathrm{CuCl}:$ PMDETA : Mon $=1: 1: 1: 175$. The reactions were carried out in 2-butanone (MEK) as solvent at $80^{\circ} \mathrm{C}$. The ratio of monomer to solvent was wt: wt 1:1 (Table 10.1). The reaction was stopped after 45 min because it was known from the synthesis of the homopolymer P[tBMA] in Section 3 that after that time range around 20% monomer conversion are reached which is the target value for the macro initiator of Block A to exhibit a degree of polymerization of about $\mathrm{X}_{\mathrm{n}}=35$. The resulting copolymers were precipitated in an ice-cooled mixture of water and methanol with vol:vol 1:1, then the precipitated polymers were separated from the liquid phase by filtration and dried over night at $45^{\circ} \mathrm{C}$ under vacuum. The polymers were re-dissolved in dichloromethane and transferred in a separation funnel. Water was added and the CuCl was extracted. The polymer-dichloromethane solution was clear and green. After the extraction the organic phase was clear and colorless and the water phase was clear and blue. The organic phase was separated and the solvent was removed by vacuum evaporation. The resulting polymer was a white powder. The yield of the macroinitiator was $1.85 \mathrm{~g}(20 \%)$, as shown in Table 10.1, V150 A.

Tab. 10.1.: Compositions and yields of the solutions for polymerizations of block-copolymers

Entry	Block	Component	$\mathrm{n}[\mathrm{mol}]$	$\mathrm{m}[\mathrm{g}]$	yield
V150	A	tBMA	0.0632	8.9870	1.85 g
		pTSC	$3.61 \cdot 10^{-4}$	0.0689	20.45%
		PMDETA	$3.61 \cdot 10^{-4}$	0.0626	
		CuCl	$3.61 \cdot 10^{-4}$	0.0357	
		MEK		8.9870	
V 151	AB_{1}	nBMA	0.0079	1.1234	1.22 g
		P[tBMA	$4.51 \cdot 10^{-5}$	0.5246	74.12%
		PMDETA	$4.51 \cdot 10^{-5}$	0.0078	
		CuCl	$4.51 \cdot 10^{-5}$	0.0045	
		MEK		1.6479	
V 152	AB_{2}	BzMA	0.0079	1.3921	1.12 g
		P[tBMA	$4.51 \cdot 10^{-5}$	0.5246	58.30%
		PMDETA	$4.51 \cdot 10^{-5}$	0.0078	
		CuCl	$4.51 \cdot 10^{-5}$	0.0045	
		MEK		1.9167	

For the synthesis of the block copolymers with the $\mathrm{P}[\mathrm{tBMA}]$ macroinitiator, resulting from experiment V150 as block A, the ATRP system was adapted respectively with the same ratios of monomer to initiator system and monomer to solvent. The compositions of the two reaction mixtures in experiments V151 and V152 are listed in Table 10.1 together with the corresponding yields. After the reaction time of 1 hour in both cases the reactions were stopped by floating the Schlenk flask with air and cooling down the reaction mixtures. The work-up of the reaction mixtures and the resulting copolymers was done in the same way as for Block A. The reaction time was enlarged from 45 min to 1 hour form Block A to Block B because the conversion curves of the statistical copolymers flattened with higher conversions and because the used macro initiator already contained a certain amount of monomer units. The yields of the two experiments are also listed in Table 10.1. The yields of the two copolymerizations were unexpected high contrary to the assumption of the flat conversion curve. With the use of Equation 10.2.1 the compositions of the AB-di-block copolymers were calculated. Hence, no symmetric AB-di-block-copolymers have been obtained in view of gravimetry, instead compound V151 is of the composition $\mathrm{P}[t B M A]_{35}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{130}$, while polymer V152 exhibits $\mathrm{P}[\mathrm{tBMA}]_{35}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{101}$.

$$
\begin{equation*}
\overline{\mathrm{X}}_{\mathrm{n}}^{\text {Block }}=\frac{[\mathrm{M}]_{0}}{[\mathrm{I}]_{0}} \cdot \mathrm{p} \tag{10.2.1}
\end{equation*}
$$

with $\bar{X}_{\mathrm{n}}^{\text {Block }}=$ degree of polymerization of a block copolymer, $[\mathrm{M}]_{0}=$ monomer concentration at the start of the polymerization, $[\mathrm{I}]_{0}=$ initiator concentration at the start of the polymerization, $\mathrm{p}=$ conversion

In following paragraphs the results of the analyzes from the two block copolymers $\mathrm{P}[\mathrm{tBMA}]-$ $\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]$ and $\mathrm{P}[\mathrm{tBMA}]-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]$, and also their discussion is described.

10.2.1. Kinetic Studies

At the start and at the end of the experiments V150, V151 and V152 samples were taken for the analysis with ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra were analyzed regarding the conversion p of the monomers. The signals in the resulting spectra were assigned to the structure elements of the monomers and the copolymer as shown in Table 10.2. The position of the peaks were taken from literature [63] and [85].

The structures of the monomers and the block copolymers are depicted in Figure 10.2 together with the numbering of the carbon-atoms for the assignment of the peaks in the ${ }^{1} \mathrm{H}-$ NMR-spectra. Figure 10.3 shows the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum of the reactions mixtures of the experiments V150, V151 and V152 at the end of the polymerization times. In this figure the signals are assigned to the corresponding carbon-atoms of the monomers and the polymer chain.

Tab. 10.2.: Position and assignments of the signals in the obtained ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of AB -diblock copolymers

$\delta[\mathrm{ppm}]$	Multiplicity	No. of carbons	Carbon No.*	Structure element
0.6-0.8	broad peak	3H	9,9'	$-\mathrm{CH}_{3}$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$ side chain
1.25-1.45	broad peak	9H	3	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]$
		2 H	7,7'	$-\mathrm{CH}_{2}-$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$ side chain
1.42	s	9H	3	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, tBMA
1.5-1.6	broad peak	2 H	8,8'	$-\mathrm{CH}_{2}-$, nBMA and $\mathrm{P}[\mathrm{nBMA}]$ side chain
1.7-1.95	broad peak	3 H	10^{\prime}	$-\mathrm{CH}_{3}$ backbone, P [tBMA]
		3 H	11'	$-\mathrm{CH}_{3}$ backbone, $\mathrm{P}[\mathrm{nBMA}]$
		3 H	$18{ }^{\prime}$	$-\mathrm{CH}_{3}$ backbone, $\mathrm{P}[\mathrm{BzMA}]$
1.85	S	3 H	10	$-\mathrm{CH}_{3}$, tBMA
1.9	S	3 H	11	$-\mathrm{CH}_{3}$, nBMA
1.95	S	3 H	18	$-\mathrm{CH}_{3}$, BzMA
3.8-3.95	broad peak	2 H	14,	$-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{nBMA}]$
4.0	t	2 H	14	$-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{nBMA}$
4.75-5.05	broad peak	2H	6	$-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]$
5.2	S	2 H	6	$-\mathrm{OCH}_{2} \mathrm{R}$, BzMA
5.4	t	1H	2	$\mathrm{CH}_{2}=\mathrm{C}-$, cis, , BMA
5.5	t	1H	5	$\mathrm{CH}_{2}=\mathrm{C}-$, cis, nBMA
5.55	t	1H	13	$\mathrm{CH}_{2}=\mathrm{C}-$, cis, BzMA
5.9	s	1H	1	$\mathrm{CH}_{2}=\mathrm{C}-$, trans, tBMA
6.0	s	1H	4	$\mathrm{CH}_{2}=\mathrm{C}-$, trans, nBMA
6.1	S	1H	12	$\mathrm{CH}_{2}=\mathrm{C}-$, trans, BzMA
$7.2-7.5$	broad peak	5H	15-17	aromatic ring, BzMA
		5H	$15^{\prime}-17$	aromatic ring, $\mathrm{P}[\mathrm{BzMA}]$

* cf. Figure 10.2

In Figure $10.3 A$ the resulting mixture of experiment V150 is given. The monomer tBMA is represented by a singlet at 5.9 ppm (1), a triplet at $5.4 \mathrm{ppm}(2)$, a singlet at 1.85 ppm (10) and a singlet at $1.42 \mathrm{ppm}(3)$. The broad signal between 1.25 ppm and $1.45 \mathrm{ppm}\left(3^{\prime}\right)$ is caused by the tert-butyl groups of the polymer chain and the one between 1.7 ppm and 1.95 ppm (10^{\prime}) by the CH_{2}-group of the polymer-backbone. The resulting $\mathrm{P}[\mathrm{tBMA}]$ is the basis of the two following block copolymers. The signals at circa 2.4 ppm (quartet), 2.1 ppm (singlet) and 1.0 ppm (triplet) ppm belong to MEK.

Figure $10.3 B$ shows the resulting mixture of experiment V151 which is the synthesis of $\mathrm{P}[\mathrm{tBMA}]-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]$. A little rest of the monomer tBMA gave barely visible signals at
$5.9 \mathrm{ppm}(1)$ and $5.4 \mathrm{ppm}(2)$. The monomer for the second block $\mathrm{B}_{1} \mathrm{nBMA}$ give a singlet signal at 6.0 ppm (4), a triplet at $5.5 \mathrm{ppm}(5)$ and a singlet at 1.85 ppm (11) for the methacrylate part. The n-butyl chain is represented by the signals at 4.0 ppm (6) for the α-protons, at $1.25-1.45 \mathrm{ppm}(7)$ for the β-protons, at $1.5-1.6 \mathrm{ppm}$ (8) for the $\gamma-$ protons and at $0.6-0.8 \mathrm{ppm}$ (9) for the δ-protons. The signals of the polymerized $\beta-, \gamma-$ and δ-protons appear in the same chemical regions and become mutually overlapped. Additionally the signal of the $\beta-$ protons interferes with the broad signal of the polymerized tert-butyl-group of P[tBMA]. The $\alpha-$ proton signal of the $\mathrm{P}[\mathrm{nBMA}]$ appears between 4.75 ppm and $5.05 \mathrm{ppm}\left(6{ }^{\prime}\right)$. The signal of the CH_{2}-group of the polymer-backbone (10^{\prime}) overlap with the signal of the CH_{2}-backbonegroup of $\mathrm{P}[\mathrm{tBMA}]$ between 1.7 ppm and 1.95 ppm .
A

D

E

Fig. 10.2.: Molecular structures of the monomers (A) tBMA, (B) nBMA and (C) BzMA and the resulting block copolymers of (D) experiment V151 and (E) experiment V152 with carbon-atom labels $(\mathrm{x}+\mathrm{y}=1)$

Fig. 10.3.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of (A) the macroinitiator $\mathrm{P}[\mathrm{tBMA}]-\mathrm{B}_{\mathrm{i}}$ (V150) after 45 min reaction time, (B) block copolymer P[tBMA]-b-P[nBMA] (V151) and (C) block copolymer $\mathrm{P}[\mathrm{tBMA}]-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}](\mathrm{V} 152)$ after 60 min reaction time ($\mathrm{I}: \mathrm{M}=1: 175, \mathrm{~T}=80^{\circ} \mathrm{C}, \mathrm{S}$ $=$ solvent signals: MEK)

Figure 10.3 C depicts the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum of experiment V152 at the end of the polymerization time with BzMA as monomer for Block B_{2}. As in Figure 10.3B there are barely visible signals of the monomeric tBMA at 5.9 ppm (1) and 5.4 ppm (2). The singlet signal at 6.1 ppm (12), the triplet at $5.55 \mathrm{ppm}(13)$ and the singlet at $1.95 \mathrm{ppm}(18)$ are caused by the methacrylate-part of the monomer BzMA. The singlet signal at 4.0 ppm (14) represented the methylene-group of BzMA and the broad signal between 7.2 and $7.5 \mathrm{ppm}(15-17)$ the benzylic ring. A broad signal between 3.8 ppm and $3.95 \mathrm{ppm}\left(8^{\prime}\right)$ is caused by the methylene-group inside the polymer chain. The methylene-groups of the polymerized BzMA-units (14') is located between 4.79 ppm and 4.97 ppm . The CH_{2}-group of the BzMA-part of the polymer backbone lay in the same region than the other CH_{2}-group in the polymer backbone of tBMA between 1.7 and 1.95 ppm . The benzylic ring inside the polymer chain show a broad signal with the same chemical shift than the benzyl-ring of the monomer between 7.2 ppm and $7.5 \mathrm{ppm}\left(15^{\prime}-17^{\prime}\right)$.

Tab. 10.3.: Integrals and conversion of experiments V150, V151 and V152

entry	A1	A6/A14	A6'/A14'	A8, 8^{\prime} A3,3' A7,	A3'	conversion p	
V150	1.00	-	-	-	11.56	0.28	0.22
V151	0.03	2.05	2.16	4.47	13.45	0.97	0.51
V152	0.02	2.05	3.81	-	14.88	1.63	0.65

The peak area of the signals 1 and $3 / 3^{\prime}$ in Figure $10.3 A$ were determined and with these values the conversion of the monomer tBMA of experiment V150 was calculated with Equations 10.2.2 and 10.2.3. The results are listed in Table 10.3.

$$
\begin{align*}
& \mathrm{A}_{3^{\prime}}=\frac{\mathrm{A}_{3,3^{\prime}}}{9}-\mathrm{A}_{1} \tag{10.2.2}\\
& \mathrm{p}_{\text {tBMA }}=\frac{\mathrm{A}_{3^{\prime}}}{\mathrm{A}_{3^{\prime}}+\mathrm{A}_{1}} \tag{10.2.3}
\end{align*}
$$

with $\mathrm{A}_{3,3^{\prime}}=$ integral intensity at 1.25 to $1.45 \mathrm{ppm} ; \mathrm{A}_{1}=$ integral intensity at 5.9 ppm

The conversion of the monomer nBMA of experiment V151 was calculated from the peak areas of the signals 6 and 6^{\prime} with the Equation 10.2.4 and the conversion of BzMA of experiment V152 from the peak areas of the signals 14 and 14 ' with the Equation 10.2.5. The results of the two calculations are listed in Table 10.3.

$$
\begin{align*}
& \mathrm{p}_{\mathrm{nBMA}}=\frac{\mathrm{A}_{6^{\prime}}}{\mathrm{A}_{6^{\prime}}+\mathrm{A}_{6}} \tag{10.2.4}\\
& \mathrm{p}_{\mathrm{BzMA}}=\frac{\mathrm{A}_{14^{\prime}}}{\mathrm{A}_{14^{\prime}}+\mathrm{A}_{14}} \tag{10.2.5}
\end{align*}
$$

with $\mathrm{A}_{6}=$ integral intensity at $5.2 \mathrm{ppm} ; \mathrm{A}_{6^{\prime}}=$ integral intensity at 4.75 to $5.05 \mathrm{ppm} ; \mathrm{A}_{14}=$
integral intensity at $4.0 \mathrm{ppm} ; \mathrm{A}_{14^{\prime}}=$ integral intensity at 3.8 to 3.95 ppm

The calculated conversions fit to the measured gravimetric yields, c.f. Table 10.1. For the determination of the composition of the two AB -di-block copolymers from the ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra, the precipitated copolymers were analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy, even as the macro initiator. The spectra are depicted in Figure 10.4. All three spectra show that the precipitated polymers contained non-converted monomers. It was not possible to wash these out of the polymer coils.

Fig. 10.4.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of precipitated (A) macroinitiator $\mathrm{P}[\mathrm{tBMA}]-\mathrm{B}_{\mathrm{i}}$ (V150) after 45 min reaction time, (B) block copolymer P[tBMA]-b-P[nBMA] (V151) and (C) block copolymer $\mathrm{P}[\mathrm{tBMA}]-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}](\mathrm{V} 152)$ after 60 min reaction time ($\mathrm{I}: \mathrm{M}=1: 175, \mathrm{~T}=80^{\circ} \mathrm{C}$, $\mathrm{S}=$ solvent signals: MEK)

The composition of the block copolymers V151 and V152 was calculated from the ratio of the intensity of the integrals 3 ' and 6^{\prime}, respectively 3^{\prime} and 14 ', of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated AB -di-block copolymers. The peak areas of the different signals are given in Table 10.4.

Tab. 10.4.: Peak ares of precipitated AB-di-block copolymers V151 and V152

entry	A1	A6/A14	A6'/A14'	A8,8'	A3,3' A7,	A3'	$\mathrm{F}_{\text {tBMA }}$	$\mathrm{F}_{\text {nBMA }} /$ $\mathrm{F}_{\text {BzMA }}$
V151	0.05	0.10	2.00	2.25	12.42	1.08	0.52	0.48
V152	0.01	0.87	2.00	-	8.18	0.90	0.47	0.53

For the determination of the peak area of the integral 3 ' in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum of experiment V151 the interfering peak areas of the integrals 3, 7 and 7^{\prime} had to be subtracted from the mixed intensity of the integral ($3,3^{\prime}, 7,7^{\prime}$), see Equation 10.2.6. The signal caused by the β-protons is equal to the signal caused by the γ-protons of the n-butyl chain, so the peak area of signal $8,8^{\prime}$ was subtracted from the peak area of the mixed signal. The signal of the monomeric tert-butyl-group was eliminated by the subtraction of the value of the peak area of integral 1.

$$
\begin{equation*}
\mathrm{A}_{3^{\prime}}=\frac{\mathrm{A}_{3^{\prime}}-\mathrm{A}_{8,8^{\prime}}}{9}-\mathrm{A}_{1} \tag{10.2.6}
\end{equation*}
$$

The integrals 3 and 3 ' interfere in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum of experiment V152 as in the spectrum of experiment V150. Hence the peak area of integral A3' was calculated with Equation 10.2.2. The values of the peak areas of the integrals 6^{\prime} and 14^{\prime} were divided by 2 and then the ratios of the two units in the polymer chain were determined. The results of the calculations are given in Table 10.4. The compositions of the two resulting block copolymers are

- V151: $\mathrm{P}[\mathrm{A}]-\mathrm{b}-\mathrm{P}\left[\mathrm{B}_{1}\right]: \mathrm{P}[\mathrm{tBMA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$
- V152: $\mathrm{P}[\mathrm{A}]-\mathrm{b}-\mathrm{P}\left[\mathrm{B}_{2}\right]: \mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$

The compositions of both block copolymers were nearly the same and in both copolymers the blocks are of equal length. Hence, the target compositions were reached. When the compositions of the AB -di-block copolymers were calculated from the conversion with Equation 10.2.1, the copolymer with $\mathrm{A}-\mathrm{B}_{1}=\mathrm{nBMA}$ is $\mathrm{P}[\mathrm{tBMA}]_{35}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{130}$ and the one with $\mathrm{A}-\mathrm{B}_{2}=\mathrm{BzMA}$ is $\mathrm{P}[\mathrm{tBMA}]_{35}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{101}$. The NMR-spectra of the precipitated polymers, the macro initiator and both $\mathrm{AB}-\mathrm{di}-$ block copolymers, showed rests of monomers. That means the weighted yields were too high. One reason for the differences are the remained monomers in the precipitated polymers which falsified the amounts of the yields. Another possibility is that there was a loss of control during the ATRP which means that Equation 10.2.1 do not obtain. For the following analysis the compositions which were calculated from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated AB -di-block copolymers are used because the results from the yields probably erroneous.

10.2.2. Structural Analysis

The next investigations referred to the compositional analysis of the block copolymers. First the elementary analysis of the resulting copolymers is detailed. Here the purity and the composition of the resulting copolymers were controlled. The results of the measurements and the differences between the theoretical and the analysis results are listed in Table 10.5.

Tab. 10.5.: Results of the elementary analysis of the experiments V150, V151 and V152

entry	$\mathrm{F}_{\text {tBMA }}$		C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
V150	1.00	theory	67.57		9.92		22.50	
		is	66.59	-0.98	9.57	-0.36	23.84	1.34
V 151	0.52	theory	67.57		9.92		22.50	
		is	68.14	0.57	8.97	-0.96	22.89	0.39
V152	0.47	theory	71.89		8.14		19.97	
		is	72.17	0.28	7.49	-0.65	20.34	0.37

The elementary analysis yielded two results. In all measurements the differences to the theoretical values were small. That implied that all samples were free of pollution from solvents. The small amounts of the non-converted monomers did not influenced the elementary analysis essentially. When the samples were compared all the values were very similar. Hence, the three polymerizations proceeded in equal measure.

Subsequently the macro initiator and the two block copolymers were investigated with ATR-FTIR-spectroscopy. The finger print regions of the three IR-spectra are depicted in Figure 10.5 with marked specific bands of the n-butyl-, tert-butyl- and benzyl-units.

Fig. 10.5.: Finger print region of ATR-FTIR-spectra of (A) V150 macro initiator P[tBMA] and
 $\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$

The three spectra show nearly the same peaks between $1800 \mathrm{~cm}^{-1}$ and $1000 \mathrm{~cm}^{-1}$. Below $1000 \mathrm{~cm}^{-1}$ are the three vibrational bands which are specific for the three different functional groups. The band at $970 \mathrm{~cm}^{-1}$ represents the n-butyl-group, the one at $850 \mathrm{~cm}^{-1}$ the tert-butyl-group and the one at $730 \mathrm{~cm}^{-1}$ the benzyl-group. The peak area and the peak height of these three vibrational bands were determined. The results are listed in Table 10.6.

Tab. 10.6.: Peak area and peak height of the analyzed ATR-FTIR-bands of experiments V150, V151 and V152

		band $n B u$		band tBu		band Bz	
Entry	$\mathrm{F}_{\text {tBMA }}$	peak area $\left[\mathrm{cm}^{-1}\right]$	peak height	peak area $\left[\mathrm{cm}^{-1}\right]$	peak height	peak area $\left[\mathrm{cm}^{-1}\right]$	peak height
V150	1.00	3.24	0.068	9.22	0.435	3.35	0.156
V151	0.52	6.14	0.133	7.47	0.306	5.38	0.223
V152	0.47	6.81	0.150	5.26	0.217	11.78	0.422

The peak area and the peak height of the vibrational band caused by the n-butyl-ester group increased from the sample of the macro initiator P[tBMA] (V150) to the block copolymer $\mathrm{P}[\mathrm{tBMA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}(\mathrm{~V} 151)$. That was caused by the addition of the block B_{1} with nBMA groups. In contrast the peak area and the peak height of band $t B u$ decreased. The results fitted good to the results of the investigations of peak area and peak height of the statistical copolymers with nBMA- and tBMA-units, see Section 3.3.2, and the respective gradient copolymers, see Section 5.2.3.

The vibrational band which is caused by the benzyl group also increased in view to the peak area and the peak height from the sample of the macro macro initiator (V150) to the block copolymer P $[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}(\mathrm{~V} 152)$. Even here the peak area and peak height of band $t B u$ decreased. The changes caused by the addition of block B_{2} confirm to the analyzes of the statistical copolymers with BzMA- and tBMA-units, see Section 7.2.2, and the respective gradient copolymer, see Section 8.2.3.

The changes of the vibrational bands from the ATR-FTIR-spectrum of the sample of the macro initiator to the spectra of the samples the two AB -di-block copolymers are obvious and in agreement with the results from the statistical and gradient copolymers before.

10.2.3. Molecular Weight Characterization

The macro initiator of experiment V150 and the obtained block copolymers of experiments V151 and V152 were analyzed with size exclusion chromatography. The elution diagrams based on the signal of the RI-detector of the samples are shown in Figure 10.6. The RIsignal of experiment V150 gives a monomodal peak, hence, during the polymerization no termination reactions occurred. The RI-signals of the samples of experiments V151 and

V152 showed tailing to the low molecular weight. That occurs either because of the presence of non-converted macro initiator or because of a slight loss of control, i.e. termination reactions. The macro initiator and the two block copolymers were investigated by diffusion ordered NMR spectroscopy (DOSY-NMR). The spectra of the three samples are depicted in Figure 10.7. The diffusion index $(=-\log \mathrm{D}, \mathrm{D}=$ diffusion coefficient) of the macro initiator is between -8.8 ppm and -8.9 ppm , see Figure 10.7a. A smaller molecule has a higher diffusion index than a larger molecule. Hence, with the addition of the second block to the macro initiator the diffusion index of the copolymer must decrease. Figure 10.7 b shows the DOSY-NMR spectrum of $\mathrm{P}[t B M A]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$. The diffusion index is between -8.95 ppm and -9.1 ppm . Figure 10.7 c shows the DOSY-NMR spectrum of $\mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-$ $\mathrm{P}[\mathrm{BzMA}]_{0.53}$. The diffusion index is between -9.2 ppm and -9.3 ppm . The diffusion indices of both block copolymers were obviously lower than the one of the macro initiator. Additional, the DOSY-NMR spectra of both block copolymers do not show signals between -8.8 ppm and -8.9 ppm . Therewith, the total amount of the macro initiator was converted during the reactions and the DOSY-NMR measurement excludes the presence of non-converted or terminated macromolecules. That implies that the reaction control at the ATRP of the second block was not as good as during the synthesis of the macro initiator, causing a low-molecular weight tailing in the SEC-elution diagram (c.f. Figure 10.6).

Fig. 10.6.: SEC elution diagrams of the samples of (A) V150 macro initiator P[tBMA] and
 $\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$

Fig. 10.7.: DOSY-NMR spectra of the samples of a) V150 macro initiator $\mathrm{P}[t \mathrm{BMA}]$ and block copolymers b) V151 P[tBMA $]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ and c) V152 P[tBMA $]_{0.47}-\mathrm{b}-$ $\mathrm{P}[\mathrm{BzMA}]_{0.53}$

The maximum elution volume V_{E} of both block copolymers were nearly the same and both were obviously lower than the V_{E} of the macro initiator. Hence, the molar masses were higher. They are listed in Table 10.9. The increase of the molar mass resulted from the polymerizations of the second blocks to the first block, the macro initiator of $\mathrm{P}[\mathrm{tBMA}]$. Both copolymerizations worked similar. With the calibration curve arising from polystyrene standards that was used in Section 3.3.3, Figure 3.15, the relative molar masses of the samples were calculated from the maximum elution volume V_{E} of the RI-signals. The elution volumes of the RI-signals from the three samples and the calculated relative molar masses are listed in Table 10.9 likewise. The relative molar masses of the final block copolymers were around
three times higher than the macro initiator. The difference was much higher than expected after the analyzes of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated copolymers. The relative molar mass is a hunch, because for the determination just one point of the RI-signal was used not the whole sample was covered. To account for this effect the absolute molar masses of the sample were determined.

The next step was the determination of the differential refractive index increments dn/dc of the resulting AB -di-block copolymers because these values are necessary for the calculation of the absolute molar mass of the polymers from light scattering data, see Section 2.4. This was done the same way as described with the statistical copolymers of experiment V11 to V19 in THF at $25^{\circ} \mathrm{C}$, cf. Section 3.3.3. The results of these measurements are listed in Table $10 . \%$

Tab. 10.7.: Differential refractive index increment dn/dc of experiments V150, V151 and V152

Entry	$\mathrm{F}_{\text {tBMA }}$	$\mathrm{dn} / \mathrm{dc}\left[\mathrm{ml} \cdot \mathrm{g}^{-1}\right]$
V150	1.00	0.0612 ± 0.0019
V151	0.52	0.0772 ± 0.0024
V152	0.47	0.1151 ± 0.0008

The differential refractive index increment of the three polymers changed obviously with the composition. The dn/dc value from the sample of V150 to the sample of V151 increased slightly. That this values increase with a added amount of nBMA inside the copolymer chain was observed previously at the statistical copolymers with nBMA- and tBMA-units, c.f. Table 3.10. The difference between the sample of V150 and V152 was much higher. Also this result agree with the measured dn/dc-values of the statistical copolymers with BzMA- and tBMA-units, c.f. Table 7.12.

With the results from the determination of $d n / d c$ the molecular weight averages $\left(M_{n}, M_{w}\right.$, $\left.M_{z}\right)$ and from these the polydispersity indices PDI ($\left.M_{w} / M_{n}, M_{z} / M_{n}\right)$ of the samples of the macro initiator and the two AB -di-block copolymers were determined in the same way as for the statistical copolymers in Section 3.3.3. Figure 10.8 depicts the RI- and the $90^{\circ}-\mathrm{MALS}-$ detector signals of the elution-diagram of the sample of the macro initiator V150. From the angle dependence of the scattered light intensity and the known $\mathrm{dn} / \mathrm{dc}-$ value of $\mathrm{dn} / \mathrm{dc}=$ $0.0612 \mathrm{ml} \cdot \mathrm{g}^{-1}(\mathrm{cf}$. Table 10.7) the absolute molecular weight of a fraction at a given elution volume can be derived, see Section 2.4. The calculated molecular weights are also shown in Figure 10.8 (right axis). Since the RI-signal is proportional to the weight fraction of the eluted polymer, the complete molecular weight distribution (MWD) of the measured polymer can be obtained and with this the molecular weight averages and the polydispersity indices can be calculated. The obtained values are detailed in Table 10.8.

Fig. 10.8.: SEC elution diagrams and molar masses of macro initiator P[tBMA] (experiment V150); black curve - light scattering signal, grey curve - refractive index signal

Tab. 10.8.: SEC results of V150, V151 and V152

entry	$\mathrm{F}_{\text {BzMA }}$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
V150	1.00	11060 ± 221	11620 ± 232	12420 ± 621	1.051 ± 0.021	1.124 ± 0.067
V151	0.52	23590 ± 236	29310 ± 176	34340 ± 343	1.242 ± 0.025	1.456 ± 0.029
V152	0.47	25300 ± 228	31120 ± 93	34720 ± 208	1.230 ± 0.011	1.373 ± 0.014

The absolute molar mass of the macro initiator $\left(10660 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$ is half as high as the absolute molar mass of the P [tBMA] of experiment V18 $\left(21420 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$, see Table 3.11. The PDI-values of the sample of experiment V150 is narrow with 1.051. So the polymerization worked good and the resulting mass fitted good to the intended application of the polymer as macro initiator for the block copolymerizations when the molar mass of the resulting block copolymer should be around 25000 to $30000 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, which is the range of the molar masses of the statistical copolymers with nBMA- and tBMA-units, see Table 3.11 and the statistical copolymers with BzMA- and tBMA-unit, see Table 7.13.

The molar masses of the samples of the two AB-di-block copolymers (V151 P $[\mathrm{tBMA}]_{0.52}-\mathrm{b}-$ $\mathrm{P}[\mathrm{nBMA}]_{0.48}=23590 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and V152 P $[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}=25300 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$) are
two-times higher than M_{n} of the macro initiator $\mathrm{P}[t B M A]$. That results confirm the calculations of the compositions of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated polymers. The polydispersities of the samples of the two block copolymers are high, up to 1.23 . Hence, the assumption from the shape of the RI-detector signals that there was a residue of nonconverted macro initiator in the samples or a loss of control during the polymerizations of the second block was corroborated. The differences of the composition determinations from the yields and from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra also refer to this loss of control.

The absolute molar masses which were determined from the LS-detector signals and the $\mathrm{dn} / \mathrm{dc}$--values are lower then the relative molar masses determined from the maximum elution volumes of the RI-detector signals. For the determination of the relative molar mass only the maximum elution volume of the RI-curve is used, that means only one point of the whole measurement. The absolute molar mass is determined from the complete database of the measurement and displays the molecular weight distribution of the whole sample.

Tab. 10.9.: Comparison of relative* and absolute molar masses of experiments V150, V151 and V152

entry	$\mathrm{F}_{\text {tBMA }}$	V_{E} $[\mathrm{ml}]$	relative M^{*} $\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]$	absolute M $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\Delta \mathrm{M}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$[\%]$
V150	1.00	29.26	8223	11060	-2832	25.65
V151	0.52	27.15	23983	23590	393	-1.66
V152	0.47	26.92	26933	25300	1633	-6.45

* calibrated against PS-Standard

The resulting molar masses are in the same range then the statistical copolymers of the Sections 3 and 7 . But the polydispersities were obviously higher. Hence, during the polymerization of the second block the control over the synthesis by the ATRP-system was lost.

10.2.4. Thermal Behavior

The thermal behavior of the two AB-di-block copolymers was examined to determine the temperature ranges of the glass transition regions $\Delta \mathrm{T}$ and the glass transition temperatures T_{g} of the two glass transition steps which are expected. The theoretical thermograms of statistical, gradient and AB-di-block copolymers are described and compared in Section 2.3.

The samples of the macro initiator V150 and the two block copolymers V151 and V152 were measured in the same temperature range as the gradient copolymers of Sections 5 and 8. The applied DSC program parameters were:

- precooling: RT to $-80^{\circ} \mathrm{C}$
- standby for 20 min
- 1. heating: -80 to $150{ }^{\circ} \mathrm{C}$
- 1. cooling: 150 to $-80^{\circ} \mathrm{C}$
- 2. heating: -80 to $150{ }^{\circ} \mathrm{C}$
- postcooling: $150^{\circ} \mathrm{C}$ to RT

In Figure 10.9 the thermogram of the macro initiator V150 with both heating runs and the cooling run are shown and Figure 10.10 depicts the thermograms of the two AB-di-block copolymers V151 and V152 also with both heating runs and the cooling run.

Fig. 10.9.: DSC thermogram of macro initiator P[tBMA] (experiment V150); a - first heating run, b - first cooling run, $\mathrm{c}-$ second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

The first heating runs showed a single glass transition step overlaid by a relaxation peak in the range from 55 to $90^{\circ} \mathrm{C}$ for the sample of the macro initiator V150, from $40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ for the sample of V151 and 25 to $50^{\circ} \mathrm{C}$ for the sample of V152. To avoid effects of the sample thermal history only the second heating runs were analyzed. With the analysis software of the DSC, $\mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$ of the glass transition regions were determined and then the other values $\mathrm{T}_{\mathrm{g}}, \Delta \mathrm{T}=\mathrm{T}_{\text {offset }}-\mathrm{T}_{\text {onset }}$ and $\Delta \mathrm{c}_{\mathrm{p}}$ were calculated. [89] Also the midpoint of the glass transition region $\mathrm{T}_{\text {midpt }}$ was computed but these values were not used further. The procedure was the same as described before for the monomer mixtures in Section 3.3.4. The second heating runs of the three samples of the experiments V150, V151 and V152 are depicted in

Figure 10.11 with marked $\mathrm{T}_{\mathrm{g}}, \mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$ as bounds of the glass area. All the DSC results of the samples of the three experiments are summarized in Table 10.10.

Fig. 10.10.: DSC thermogram of copolymer V151 (P[tBMA $]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$, black line) and V152 ($\mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$, grey line); a/a' - first heating run, $\mathrm{b} / \mathrm{b}^{\prime}$ - first cooling run, $\mathrm{c} / \mathrm{c}^{\prime}-$ second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Tab. 10.10.: DSC results of experiments V150, V151 and V152

entry	$\mathrm{F}_{\text {tBMA }}$	T_{g}-step	$\begin{gathered} \mathrm{T}_{\text {onset }} \\ {\left[{ }^{[} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {midpt }} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{g}} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {offset }} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	$\begin{aligned} & \Delta \mathrm{T} \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \end{aligned}$	$\begin{gathered} \Delta \mathrm{c}_{\mathrm{p}} \\ {\left[\mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}\right]} \end{gathered}$
V150	1.00		63.0	74.0	77.0	84.5	21.5	0.264
V151	0.52	I	39.0	56.5	54.5	64.0	25.0	0.147
		II	100.5	103.0	103.5	105.5	5.0	0.068
V152	0.47	I	27.0	39.0	31.0	43.5	16.5	0.146
		II	58.0	62.5	59.0	63.5	5.5	0.023

The second heating run of the sample of the macro initiator showed a glass transition step between $63^{\circ} \mathrm{C}$ and $84.5^{\circ} \mathrm{C}$, with the glass transition temperature at $77^{\circ} \mathrm{C}$. For high molecular weigh $\mathrm{P}\left[\mathrm{tBMA}\right.$] the literature [90] cited a T_{g} of $107^{\circ} \mathrm{C}$. But this values was measured for $\mathrm{P}[\mathrm{tBMA}]$ with a M_{n} of $25000 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. In Section 3.3.4 a T_{g} of $107.5^{\circ} \mathrm{C}$ was measured for a $\mathrm{P}[\mathrm{tBMA}]$ with $21420 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. The macro initiator had a molar mass of $11060 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, see Table 10.8. So the difference of the between the measured T_{g} and the T_{g}-value taken from
literature was caused by the different molar masses of the analyzed samples.

The second heating run of the sample of the block copolymer with tBMA- and nBMA-units $\mathrm{P}[\mathrm{tBMA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ showed two glass transition steps. The first step lay between $39^{\circ} \mathrm{C}$ and $64^{\circ} \mathrm{C}$ with a glass transition at $54.5^{\circ} \mathrm{C}$, the second step between $100.5^{\circ} \mathrm{C}$ and $105.5^{\circ} \mathrm{C}$ and a T_{g} at $103.5^{\circ} \mathrm{C}$. Even the second heating run of the sample of the block copolymer with tBMA- and BzMA-units $\mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$ showed two glass transition steps. The first step lay between $27^{\circ} \mathrm{C}$ and $43.5^{\circ} \mathrm{C}$ with a glass transition at $31^{\circ} \mathrm{C}$, the second step between $58^{\circ} \mathrm{C}$ and $63.5^{\circ} \mathrm{C}$ and a T_{g} at $59^{\circ} \mathrm{C}$. For both block copolymers the second glass transition step was characterized by only a small specific heat capacity change Δc_{p}.

Fig. 10.11.: DSC thermograms of (A) macro initiator V150 P[tBMA] and block copolymers (B) V151 P $[t B M A]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ and (C) V152 $\mathrm{P}[t B M A]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$ with marked glass transition temperature range $\Delta \mathrm{T}$ and temperature T_{g}; second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

The DSC measurements of samples of the to block copolymers were repeated, certainly, with a heating rate of $20 \mathrm{~K} \cdot \mathrm{~min}^{-1}$ to get more distinct glass transition steps. The resulting thermograms did not show obviously better results. The literature values of the T_{g} of the homopolymers are $107^{\circ} \mathrm{C}$ for P [tBMA] [90], $20^{\circ} \mathrm{C}$ for $\mathrm{P}\left[\mathrm{nBMA}\right.$] [91] and $47^{\circ} \mathrm{C}$ for BzMA [113]. For $\mathrm{P}[\mathrm{tBMA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ the first glass transition step was related to the $\mathrm{P}[\mathrm{nBMA}]-$ block of the copolymers, but the measured T_{g}-value is obviously to high. The difference between the measured T_{g} and the literature values of the $\mathrm{P}[\mathrm{tBMA}]$-block was $3.5^{\circ} \mathrm{C}$. So the measured
values fits in acceptable limits. The two measured $\mathrm{T}_{\mathrm{g}}-$ values of $\mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$ were both distinctly lower than the literature values. Especially the measure value of the P[tBMA]-block was much too low.

The measured glass transition temperatures of the statistical and the gradient copolymers with tBMA- and nBMA-units fitted good to the literature values, see Sections 3.3.4 and 5.2.5. The differences between the statistical and the gradient copolymers with tBMA- and BzMA-units were in acceptable ranges, see Sections 7.2.4 and 8.2.5.

For the comparison of the thermal behavior of the different types of copolymers the second heating runs of three different copolymers are depicted in Figure 10.12. There the different glass transition temperature regions $\Delta \mathrm{T}$ and the glass transition temperatures T_{g} are given of a statistical copolymer (A), a gradient copolymer (B) and a block copolymer (C) which all contain tBMA- and nBMA-units and have nearly the same compositions.

Fig. 10.12.: DSC thermograms of (A) a statistical copolymer $\mathrm{P}\left[\mathrm{tBMA}_{0.48}-\mathrm{co}-\mathrm{nBMA}_{0.52}\right]$, (B) a gradient copolymer $\mathrm{P}\left[\mathrm{tBMA}_{\left.0.54-\mathrm{grad}-\mathrm{nBMA}_{0.46}\right] \text { and }(\mathrm{C}) \text { a block copolymers }}\right.$ $\mathrm{P}[\mathrm{tBMA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ with marked glass transition temperature range $\Delta \mathrm{T}$ and temperature T_{g}; second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

The statistical copolymer $\mathrm{P}\left[\mathrm{tBMA}_{0.48}-\mathrm{co}-\mathrm{nBMA}_{0.52}\right]$ and the gradient copolymer $\mathrm{P}\left[\mathrm{tBMA}_{0.54^{-}}\right.$ grad $\left.-\mathrm{nBMA}_{0.46}\right]$ show one glass transition step, the block copolymer two. The glass transition temperature range $\Delta \mathrm{T}$ of the statistical copolymer is about $20^{\circ} \mathrm{C}$, the one of the gradient
copolymer $15^{\circ} \mathrm{C}$. The first $\Delta \mathrm{T}$ of the block copolymer $\mathrm{P}[t B M A]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ is about $25^{\circ} \mathrm{C}$ and the second one about $5^{\circ} \mathrm{C}$. Even if the ratio of the two monomer-units is nearly the same for the three different copolymers, the thermal behavior did not show the expected behavior, see Figure 2.12.

10.3. Summary

A P [tBMA] macroinitiator was synthesized by Atom Transfer Radical Polymerization. The reaction was quenched after a target conversion of 20% to yield a degree of polymerization of $\mathrm{X}_{\mathrm{n}}^{\mathrm{PA}}=35$. The resulting homopolymer was used as macro initiator for the synthesis of two block copolymers, one with $\mathrm{P}[\mathrm{nBMA}]$ as second block and one with $\mathrm{P}[\mathrm{BzMA}]$ as second block. The analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the resulting polymers showed that the two blocks of both copolymers were present in nearly the same ratio in the polymer chain. The composition of the first block copolymer was $\mathrm{P}[\mathrm{tBMA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ and the one of the second block copolymer $\mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$. The elementary analysis of samples of the two block copolymers showed a good agreement between the calculated and measured amount of carbon, hydrogen and oxygen. The samples were free of pollution from solvents. The analysis of the ATR-FTIR-spectra displayed changes of the vibrational bands from the spectrum of the sample of the macro initiator to the spectra of the two block copolymers. The differences were in accordance to the results from the statistical and gradient copolymers before. The differential refractive index of the block copolymers were in the same range than the dn/dcvalues of the statistical and the gradient copolymers with the respective monomer-units. The molecular masses of the block-copolymers were two times higher than the molar mass of the macro initiator and hence, fit well to the results of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. Also the resulting molar masses are in the same range than the ones of the statistical and gradient copolymers before. But the polydispersities of the block copolymers were high, $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ up to 1.23. Hence, during the polymerization of the second block the control over the synthesis by the ATRPsystem was lost. ${ }^{1} \mathrm{H}-\mathrm{DOSY}-\mathrm{NMR}$-experiments proofed the lock of non-converted macro initiator in both the samples. The analysis of the DSC-thermogram of the macro initiator gave a glass transition temperature that was obviously lower than the literature values. This was possibly related to the fact that the molar mass of the macro initiator is lower than the values of the polymer in the literature. The thermograms of the block copolymers showed two glass transition steps, one for each block of the copolymers. The second steps had a small specific heat capacity. The glass transition temperatures of the samples of both copolymers differed obviously from the literature values in opposite the results from the statistical and gradient copolymers before. Hence, a comparison of the block copolymers with the relating statistical and gradient copolymers relating to the thermal behavior was not possible.

10.4. Results and Discussion of the Hydrolysis

This section describes the observations on the hydrolysis reaction performed with the AB -di-block copolymers $\mathrm{P}[\mathrm{tBMA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}(\mathrm{~V} 151)$ and $\mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$ (V152). Also the results of the analysis of the hydrolysis products are given. The products were compared with the educts. Moreover the two products were compared.

The amount of added MSA depends on the amount of tBMA inside the polymer chains. It was calculated with Equation 10.4.1 for both block copolymers.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{MSA}}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{x} \cdot \mathrm{M}_{\mathrm{MSA}}}{\mathrm{M}_{\mathrm{tBMA}} \cdot \delta_{\mathrm{MSA}}} \tag{10.4.1}
\end{equation*}
$$

with $\mathrm{V}_{\text {MSA }}$ - Volume of the methanesulfonic acid, m - mass of the polymer, $\mathrm{F}_{\text {tBMA }}$ - ratio of tBMA in the polymer chain, x - multiplicity factor for the hydrolysis reagent $=2, \mathrm{M}_{\mathrm{tBMA}}$ - molar mass of tBMA $=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{MSA}}$ - molar mass of the methanesulfonic acid $=$ $96.11 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and δ_{MSA} - density of the methanesulfonic acid $=1.48 \mathrm{~g} \cdot \mathrm{ml}^{-1}$

Also the theoretical yields depend on the copolymer composition $\mathrm{F}_{\text {tBMA }}$. They were calculated in the same way as in Section 4.2, using Equation 10.4.2.

$$
\begin{equation*}
\mathrm{y}_{\text {theo }}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{M}_{\mathrm{MAA}}}{\mathrm{M}_{\mathrm{tBMA}}}+\mathrm{m} \cdot\left(1-\mathrm{F}_{\mathrm{tBMA}}\right) \tag{10.4.2}
\end{equation*}
$$

with $y_{\text {theo }}$ - theoretical yield, m - mass of the polymer, $\mathrm{F}_{\text {tBMA }}$ - ratio of tBMA in the polymer, $\mathrm{M}_{\mathrm{MAA}}-$ molar mass of MAA $=86.09 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{tBMA}}-$ molar mass of $\mathrm{tBMA}=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

The results of the two calculations, the needed volumes of methanesulfonic acid and the theoretical yields, as well as the resulting and percentage yields of the two hydrolysis reactions are listed in Table 10.11.

Tab. 10.11.: Amount of added MSA and yields of the hydrolysis products V161 and V162

Product	Educt		weighted			yield		
			$\mathrm{F}_{\text {tBMA }}$	mass [g]	$\mathrm{V}_{\text {MSA }}$ [ml]	theo [g]	actual	
							[g]	[\%]
V161	P [tBMA]-b-P $[\mathrm{nBMA}]$	V151	0.52	0.25	0.11	0.20	0.13	62.02
V162	P[tBMA]-b-P $[$ BzMA $]$	V152	0.47	0.25	0.10	0.20	0.11	52.34

The reactions proceeded in the same way than the model synthesis in Section 4.2. Some minutes after the addition of MSA both reaction mixtures became a dark brown gel. During the second hour the gels liquefied again. The added sodium hydrogen carbonate neutralized the excess of acid after the reaction time. Because a byproduct of this step is a salt, after the precipitation in n-pentane a second precipitation in water/ methanol was done. However,
the second precipitations was not only necessary to remove the formed salt. After the first precipitations from n-pentane the hydrolysis products were yellow powders, hence a second purification step was needed. After the purification steps the resulting copolymers were obtained in form of white powders. The yields of both hydrolysis were 60% for experiment V161 and 50% for experiment V162. Hence, the values of the yield were in the same range than yield of the hydrolysis of the statistical and gradient copolymers before.

The solubility-properties of the hydrolyzed block copolymers V161 and V162 were same as that of the P[nBMA-co-MAA], reported in Chapter 4 (Table 4.3). The structural differences on the polymer chains between the block copolymers, the gradient copolymers and the statistical copolymers had no influence on the solubility. The hydrolyzed AB-di-block copolymers were dissolved in DMSO-d6 for ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The resulting ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the two hydrolysis products (black lines) are presented in Figure 10.14 together with the corresponding ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the educts (grey lines). The molecular structures of the educts and the products with the numbering of the carbons are shown in Figure 10.13.

The changes between the spectra of the educt V151 and the product V161 were distinct. The intensity of the mixed broad peak ranging from 1.3 to 1.45 ppm caused by the signals of the protons 3^{\prime} and 7^{\prime} shrank relative to the signals 8^{\prime} or 9^{\prime} which remained constant. The reason was the absence of the signal 3 ' from the protons of the tert-butyl group in the product. Additionally the -COOH -signal could be monitored between 12.1 to 12.5 ppm . Also the changes between the spectra of the educt V152 and the corresponding product V162 were obviously. The intensity of the mixed broad peak ranging from 1.22 to 1.54 ppm caused by the signals of the proton 3' shrank relative to the signals 14 ' from 4.79 to 4.97 ppm , which remained constant. The reason was also the absence of the signal 3' from the protons of the tert-butyl group in the products. Further in the spectra of the hydrolysis products the broad $-\mathrm{COOH}-$ signal could be monitored between 12.13 to 12.56 ppm . That the signal of the tert-butyl-group disappeared nearly completely indicated a total conversion of both educts. In both ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the products a $\mathrm{H}_{2} \mathrm{O}$ signal was present because the DMSO- d_{6} was not dry.

Fig. 10.13.: Molecular structures of (A) educt V151 P $[t B M A]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ and (B) product V161 P $[\mathrm{MAA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$, respectively (C) educt V152 P $[\mathrm{tBMA}]_{0.47}-\mathrm{b}-$ $\mathrm{P}[\mathrm{BzMA}]_{0.53}$ and (D) product $\mathrm{V} 162 \mathrm{P}[\mathrm{MAA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$ with carbon-atom labels $(\mathrm{x}+\mathrm{y}=1)$

Fig. 10.14.: Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of (A) educt V151 P $[\mathrm{tBMA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ (grey line) and hydrolysis product V161 P $[\mathrm{MAA}]_{0.52}{ }^{-\mathrm{b}}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$ (black line) and (B) educt V152 P $[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$ (grey line) and hydrolysis product V162 $\mathrm{P}[\mathrm{MAA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$ (black line)

The NMR-analysis is followed by the investigation of the hydrolyzed gradient copolymers by elementary analysis and ATR-FTIR-spectroscopy. The results of the elementary analyzes are listed in Table 10.12. The theoretical values were calculated for 100% conversion of the hydrolysis of the educts.

Tab. 10.12.: Results of the elementary analysis of educts V151 and V152 and hydrolysis-products V161 and V162 with divergence from the set values

Entry	$\mathrm{F}_{\text {nBMA }}$ $\mathrm{F}_{\text {BzMA }}$		C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
V151	0.52	theory	67.57		9.92		22.50	
		is	68.14	0.57	8.97	-0.96	22.89	0.39
V161		theory	62.91		8.78		28.31	
		is	63.60	0.69	8.28	-0.50	28.12	-0.19
V152	0.47	theory	71.89		8.14		19.97	
		is	72.17	0.28	7.49	-0.65	20.34	0.37
V162		theory	69.18		6.91		23.90	
		is	68.56	-0.62	6.60	-0.31	24.85	0.94

The results of the elementary analysis of the two hydrolysis products were slightly different for both block copolymers. For experiment V161 the measured amount of carbon was higher than the calculated amount, also the measured amount of oxygen was higher than the calculated but the difference is lower. The calculated amount of hydrogen was lower than the measured amount. For experiment V162 the measured amounts of carbon and hydrogen are lower than the calculated amounts. The difference for hydrogen is lower than for carbon. The amount of oxygen was higher than the pre-calculated one. But in all cases the differences were justifiable. The results of the elementary analysis showed that the resulting copolymers were clean and dry.

The ATR-FTIR-spectra of the educts (grey lines) and the corresponding product-spectra (black lines) are depicted in Figure 10.15. The vibrational bands in the IR-spectra were analyzed in view to changing which were caused by the hydrolysis.

In Section 10.2.2 bands at $970 \mathrm{~cm}^{-1}, 850 \mathrm{~cm}^{-1}$ and $730 \mathrm{~cm}^{-1}$ were introduced that are characteristic of polymer-incorporated n-butyl-, tert-butyl- and benzyl- units, respectively. The vibrational bands at $970 \mathrm{~cm}^{-1}$ of nBu and $730 \mathrm{~cm}^{-1}$ of Bz did not change so much but the band at $850 \mathrm{~cm}^{-1}$ for tBu differed obviously. The changes of the tBu -band were strong and also influenced the two other bands. Therewith the analysis of peak height and peak area of the bands were not possible anymore. The loss of band intensity at $850 \mathrm{~cm}^{-1}$ clearly indicates that the hydrolysis products no longer contained tert-butyl-ester side groups. Also the intensity of the bands at $1370 \mathrm{~cm}^{-1}$ and $1390 \mathrm{~cm}^{-1}$ shrank with the hydrolysis. A third change exhibited the band at $1710 \mathrm{~cm}^{-1}$ which is the vibrational bands of ester- $\mathrm{C}=\mathrm{O}$-group. In the IR-spectrum of the educts the band was a small singlet. The product-spectra instead had a much broader band at that region. The literature refers $1720 \mathrm{~cm}^{-1}$ to ester- $\mathrm{C}=\mathrm{O}$ vibration and $1700 \mathrm{~cm}^{-1}$ belongs to the vibrations of carboxylic acid- $\mathrm{C}=\mathrm{O}$ groups. [87] Further the range $\tilde{\nu}>3000 \mathrm{~cm}^{-1}$ changed from educt to product in both cases. A broad band ranging from 2350 to $3700 \mathrm{~cm}^{-1}$ appeared which could be assigned to the vibrational band of the
carboxylic acid OH-group. All in all the changes in the ATR-FTIR-spectra from the educts to the product-spectra and the differences of the product-spectra among themselves showed that the hydrolysis reactions worked well.

Fig. 10.15.: Comparison of ATR-FTIR-spectra of educts V151 resp. V152 and products V161 resp. V162 (grey line - educt, black line - product); $\mathrm{A}-\mathrm{V} 151 / \mathrm{V} 161=\mathrm{F}_{\text {nBMA }}=0.52$, $\mathrm{B}-\mathrm{V} 151 / \mathrm{V} 161=\mathrm{F}_{\mathrm{BzMA}}=0.47$ (Spectra normalized to $\left.\mathrm{A}_{1134}=1\right)$

The next type of analysis was the size exclusion chromatography (SEC). As with the hydrolyzed statistical copolymers also the products of V161 and V162 were not soluble in THF. As described in Section 4.2 about 0.4 mg of the copolymer was mixed with 1 ml THF and two drops of TMSI and the mixture was stirred over night at RT. The copolymer became THFsoluble, because the carboxyl groups were converted into non-polar trimethylsilyl-esters. Since the presence of non-covalent fixed TMSI disturbed the dn/dc determination, only the relative molar mass of the copolymers were calculated from the maximum elution volume of the samples and Equation 3.3.22 which based on a polystyrene-calibration ("PS-Standardvalues"). The resulting elution diagrams of the RI-detector signals are depicted in Figure 10.16 and the calculated relative molar masses are listed in Table 10.13.

Fig. 10.16.: Comparison of SEC elution diagrams of the educts V151 and V152 as well as the product V161 and V162 (A: educt P[tBMA $]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}$, V151; B: hydrolysis product $\mathrm{P}[\mathrm{MAA}]_{0.52}-\mathrm{b}-\mathrm{P}[\mathrm{nBMA}]_{0.48}, \mathrm{~V} 161$; C: educt $\mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$, V152; D: hydrolysis product $\mathrm{P}[\mathrm{tBMA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$, V162)

The elution diagrams of both hydrolysis product-samples showed the same tailing than the elution diagrams of the two product-samples. For both experiments the signals of the product-samples shifted towards higher elution volumes, i. e. lower molecular weights. Hence, the molar masses of the products were lower than the educts.

Tab. 10.13.: SEC results of experiments V151, V161, V152 and V162

Entry	$\mathrm{F}_{\mathrm{nBMA}}$ $\mathrm{F}_{\text {BzMA }}$	$\mathrm{V}_{\mathrm{E}}{ }^{a}$ $[\mathrm{ml}]$	$\mathrm{M}_{\mathrm{w}}{ }^{b}$ $\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]$	$\Delta \mathrm{M}_{\mathrm{w}}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	 $[\%]$
V151	0.52	27.15	23983		
V161		27.32	22037	1946	8.11
V152	0.47	26.92	26933		
V162		27.11	24492	2441	9.06

${ }^{a}$ Peak elution volume
${ }^{b}$ relative values, based on PSS calibration Eq. 3.3.22

The reduction of the relative molar masses from the product-samples to the educt-samples lay at 8 to 9% and so equal for the two hydrolysis reactions. Thereby the resulting relative molar masses were higher than calculated in the forefront. The relative molar mass of the
hydrolyzed block copolymer of experiment V161 should be 19% lower than the relative molar mass of the educt V151 and the molar mass of product V162 should be 16% lower than the molar mass of the educt V152. That was caused by the fact that for a relative molecular weight determination only the maximum elution volume is used and this is always higher than the average molar mass of a sample. The relative molar masses of the statistical copolymers and the gradient copolymers that were analyzed before show the same differences between the measured and the expected relative molar masses.

The investigation of the thermal behavior was the next part of analysis. The samples of the hydrolysis products V161 and V162 were heated up for two times from -80 to $200^{\circ} \mathrm{C}$ with a cooling run in between ($\mathrm{dT} / \mathrm{dt}=10 \mathrm{~K} / \mathrm{min}$). The samples were not measured up to $300^{\circ} \mathrm{C}$ like the samples of Section 4.2 before because it was worked out that the hydrolyzed polymers will decompose during the DSC-measurement. In Figure 10.17 the two heating runs and the cooling run of both experiments V161 and V162 are represented.

Fig. 10.17.: DSC thermograms of hydrolyzed AB-di-block copolymers V161 (black line) and V162 (grey line); a / a - - first heating run, $\mathrm{b} / \mathrm{b}^{\prime}$ - first cooling run, $\mathrm{c} / \mathrm{c}^{\prime}$; second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Both thermograms of the first heating run exhibited an endothermic peak in the temperature range from 20 to $140^{\circ} \mathrm{C}$. Then the DSC-signal increased. The second heating run and the cooling run did not show informative peaks or glass transition steps. The DSC-thermograms of P[nBMA-co-MAA], see Section 4.2, also shows a similar endothermic peak during the first
heating run. So also the hydrolyzed block copolymers V161 and V162 decomposed during the first heating run. The peak area and peak height of the first heating runs of the thermograms of hydrolyzed copolymers V161 and V162 were determined and the results are listed in Table 10.14.

Tab. 10.14.: DSC results of hydrolysis-products of copolymers from experiment V161 and V162

Entry	$\mathrm{F}_{\text {MAA }}$	Area $\left[\mathrm{J} \cdot \mathrm{g}^{-1}\right]$	$\mathrm{T}_{\text {Peak }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {onseet }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offse }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	Width $\left[{ }^{\circ} \mathrm{C}\right]$	Height $\left[\mathrm{mW} \cdot \mathrm{mg}^{-1}\right]$
V111	0.52	60.4	83.2	44.2	117.2	64.2	0.1825
V121	0.47	50.9	85.8	53.8	119.5	63.9	0.1499

The endothermic peaks of the thermograms of the two samples show nearly the same values. So the different functional groups inside the chains of the block copolymers $\mathrm{P}[\mathrm{MAA}]_{0.52}$-b$\mathrm{P}[\mathrm{nBMA}]_{0.48}$ and $\mathrm{P}[\mathrm{MAA}]_{0.47}-\mathrm{b}-\mathrm{P}[\mathrm{BzMA}]_{0.53}$ did not have a strong influence on the decomposition of the hydrolyzed polymers.

10.5. Summary

The tert-butyl groups of the AB-di-block copolymer from tert-butyl methacrylate and n butyl methacrylate, respectively from tert-butyl methacrylate and benzyl methacrylate were hydrolytically cleaved by means of methanesulfonic acid (MSA). The characterization of the hydrolyzed copolymers with ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy and elementary analysis showed the absence of tert-butyl-groups in the polymer chains, and hence, a total conversion of the hydrolysis. The elementary analysis results agreed decently to the structure of both experiments. The changes in the ATR-FTIR-spectra supported the good results of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra. The vibrational band of the OH-group occurred and the fingerprint-region change in case of the vibrational bands from the tert-butyl-group. The changes were so vigorous that an analysis of the vibrational bands of nBMA- and BzMA-units was not possible. The RI-detector signals of the block copolymers showed the same tailing than the elution diagrams of the two products. The relative molar masses deceased but not as strong as expected. The DSC analysis showed broad endothermic peaks for both copolymers in the same region and the samples did not regenerate after the first heating run. The peak area and the peak height of the endothermic peak were the same for both block copolymers. Both hydrolysis of the $\mathrm{AB}-$ di-block copolymers worked well and two amphiphilic AB-di-block copolymers with different composition have successfully be obtained. There was no obvious difference of the hydrolyzed block copolymers to the respective statistical or gradient copolymers which contain the same monomer-units.

11. Synthesis of Gradient Copolymers from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization with Observation by Online IR

This part describes an approach to synthesizes gradient copolymers from benzyl methacrylate and tert-butyl methacrylate by means of an automatic, feedback-loop controlled semibatch synthesis, using online infrared-spectroscopy observation to control the monomer feed during the synthesis. The synthesis was a cooperation with the working groups of Prof. Dr. H.U. Moritz from the University of Hamburg. Subsequently the resulting copolymers were hydrolyzed with methanesulfonic acid to obtain functional amphiphilic gradient copolymers which are the aim of this thesis.

11.1. Materials and Methods

Because of the compatibility the copolymers were synthesized with the same materials than in the Chapters 7 and 8. Also the hydrolysis were done with the same technique than in Chapter 9.

11.1.1. Materials

First are listed the chemicals which were used for the semibatch copolymerization. The treatments of chemicals were the same as detailed in Section 7.1.1.

- monomers
- benzyl methacrylate (BzMA, 98\%, Alfa Aesar)
- tert-butyl methacrylate (tBMA, 98%, Alfa Aesar)
- initiator: para-toluenesulfonyl chloride (pTSC, 98%, Sigma-Aldrich)
- catalyst: copper(I) chloride (97\%, Sigma-Aldrich)
- ligand: $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-pentamethyldiethylenetriamine (PMDETA, 99 \%, Sigma-Aldrich)
- solvent: 2-butanone (MEK, BDH Prolabo, chromasol.)

The chemicals which were used for the hydrolysis are listed in the following. They were used as received.

- methanesulfonic acid (MSA, $\leq 99.5 \%$, Aldrich)
- chloroform (99.9%, Acros, extra dry over molecular sieve, stabilized)
- THF (chromasolv, Aldrich)
- n-pentane (Aldrich)

11.1.2. Semibatch Copolymerizations

The experimental setup of the semibatch copolymerization is depicted in Figure 11.1.

Fig. 11.1.: Experimental setup for semibatch copolymerization with online IR-measuring

In contrast to the semibatch copolymerization of tBMA and BzMA in Section 8 the total volume of the reaction mixture had to be around 500 ml because of the volume of the reaction vessel. So the amounts of the substances were forty times higher. They are listed in Table 11.1 for the two semibatch copolymerizations. Both experiments had the same composition and also the preparation of the feed- and the stock-solution were the same. Likewise the work-up of the final solution was the same for both experiments.

The two monomers, respectively the feed- and the stock-solution, were prepared separately. The stock solution, consisting of $1.38 \mathrm{~g}\left(7.22 \cdot 10^{-3} \mathrm{~mol}\right) \mathrm{pTSC}, 89.87 \mathrm{~g}(0.6320 \mathrm{~mol}) \mathrm{BzMA}$, $1.25 \mathrm{~g}\left(7.22 \cdot 10^{-3} \mathrm{~mol}\right)$ PMDETA, $0.72 \mathrm{~g}\left(7.22 \cdot 10^{-3} \mathrm{~mol}\right) \mathrm{CuCl}$ and 89.87 g MEK, was weighted in a round bottom flask. In a second flask (vessel B, Figure 11.1) was weighted in the feed solution, with $111.38 \mathrm{~g}(0.6320 \mathrm{~mol})$ tBMA and 111.38 g MEK. Nitrogen was passed into the solutions under stirring for 30 min to remove the oxygen. The stock solution was transferred into the reaction vessel (vessel A, Figure 11.1) under nitrogen counterflow. Into the round bottom flask of feed solution the pump was mounted under nitrogen counterflow and then the pump was connected with the reaction vessel. The stock solution was degassed again by the pass of nitrogen into the solution for 90 sec . Then the stock solution was heated up to $80^{\circ} \mathrm{C}$ over 10 min , stirred with 400 rpm over 30 sec , paused for 5 min , stirred with 500 rpm over 6 sec and then paused for 33 min .

V131: After the preparation of the stock- and the feed-solution the injection of the feedsolution was started. In a first phase 5 g feed-solution were injected over 1 min . Then the system paused for calibration over 23 min . Subsequently the feeding was started with $0.3 \mathrm{~g} \cdot \mathrm{~min}^{-1}$. The feeding ended when 170 g of feed-solution were added. After the addition the heating was switched off and the solution was stirred with 100 rpm until RT was reached.

V132: After the preparation of the stock- and the feed-solution the program for the dosing control was started. The dosing ended when 170 g of feed-solution were added. After the addition the heating was switched off and the solution was stirred with 100 rpm until RT was reached.

Both final solution were divided into four portions of around 50 g . Each portion was diluted with 100 ml of MEK, filtered over $50 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$ and two-thirds of the solvent was removed by vacuum distillation. The residual mixture of polymer, monomers, initiator components and remaining solvent was slowly dropped into 750 ml of an ice cooled water : methanol (1:1 vol:vol) mixture. The precipitated polymer was filtered over a P4 glass filter and dried at $25^{\circ} \mathrm{C}$ under vacuum over night.

Tab. 11.1.: Composition of the semibatch copolymerizations of BzMA and tBMA with online IRmeasuring

$\mathrm{f}_{\text {tBMA }}^{0}$			n [mol]	$\mathrm{m}[\mathrm{g}]$
0.5	Stock	BzMA	0.6320	89.87
		pTSC	$7.22 \cdot 10^{-3}$	1.38
		PMDETA	$7.22 \cdot 10^{-3}$	1.25
		CuCl	$7.22 \cdot 10^{-3}$	0.72
		MEK	1.5444	89.87
	$\overline{\text { Feed }}{ }^{-}$	$\overline{\mathrm{t}} \overline{\mathrm{M}} \overline{\mathrm{M}} \overline{\mathrm{A}}^{\prime}$	$\overline{0} . \overline{6} \overline{3} 20$	111 $\overline{1} . \overline{3} \overline{8}$
		MEK	2.7907	111.38

Experiment V131 P[BzMA-co-tBMA], linear dosing:

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M} \boldsymbol{M} \boldsymbol{R}$: $1.13-1.30 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.32 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{tBMA}\right) ;$ $1.57-1.80 \mathrm{ppm}\left(\right.$ broad peak, $-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]$ and $\mathrm{P}[\mathrm{BzMA}]$); $1.71 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}\right.$, tBMA); $1.79 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{BzMA}\right) ; 4.64-4.93 \mathrm{ppm}$ (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]$); $5.02 \mathrm{ppm}(\mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{R}, \mathrm{BzMA}$); $5.29 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.41 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, BzMA); $5.81 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA); $5.97 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, BzMA); $7.05-7.29 \mathrm{ppm}$ (broad peak, aromatic ring, BzMA and P[BzMA])
$\boldsymbol{E A} \boldsymbol{:} \mathbf{7 1 . 8 4} \% \mathrm{C}, 7.67 \% \mathrm{H},\left(20.49 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3160-2780 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring); $1722 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1479 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1248 \mathrm{~cm}^{-1}$ (tBu); $1134 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1030 \mathrm{~cm}^{-1} ; 966 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 912 \mathrm{~cm}^{-1} ; 876 \mathrm{~cm}^{-1} ; 847 \mathrm{~cm}^{-1}(\mathrm{tBu}) ;$ $749 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 696 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 583 \mathrm{~cm}^{-1} ; 527 \mathrm{~cm}^{-1} ; 459 \mathrm{~cm}^{-1}$
$\boldsymbol{S E C} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.1177 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=46180 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=55450 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=64590 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C} \boldsymbol{C}: \mathrm{T}_{\text {onset }}=48.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=55.5^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=57.5^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=63.5^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.176 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

Experiment V132 P[BzMA-co-tBMA], controlled dosing:

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M}$ M: $1.07-1.23 \mathrm{ppm}$ (broad peak, $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}[\mathrm{tBMA}]\right) ; 1.25 \mathrm{ppm}\left(\mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, tBMA); 1.49-1.75 ppm (broad peak, $-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{tBMA}]$ and $\mathrm{P}[\mathrm{BzMA}]$); $1.65 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}\right.$, tBMA); $1.72 \mathrm{ppm}\left(\mathrm{s},-\mathrm{CH}_{3}, \mathrm{BzMA}\right) ; 4.60-4.86 \mathrm{ppm}\left(\right.$ broad peak, $\left.-\mathrm{OCH}_{2} \mathrm{R}, \mathrm{P}[\mathrm{BzMA}]\right) ; 4.95 \mathrm{ppm}(\mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{R}, \mathrm{BzMA}$); $5.23 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, tBMA); $5.35 \mathrm{ppm}\left(\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, cis, BzMA); $5.75 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, tBMA); $5.90 \mathrm{ppm}\left(\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}-\right.$, trans, BzMA); 6.99-7.19 ppm (broad peak, aromatic ring, BzMA and P[BzMA])
$\boldsymbol{E A} \boldsymbol{A} \mathbf{7 1 . 1 2} \% \mathrm{C}, 7.93 \% \mathrm{H},\left(20.95 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3160-2785 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring); $1717 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O})$; $1476 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,{ }_{-} \mathrm{CH}_{3}\right) ; 1392 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1319 \mathrm{~cm}^{-1}$; $1248 \mathrm{~cm}^{-1}(\mathrm{tBu}) ; 1133 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1030 \mathrm{~cm}^{-1} ; 967 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 912 \mathrm{~cm}^{-1} ; 876 \mathrm{~cm}^{-1} ; 846 \mathrm{~cm}^{-1}$ $(\mathrm{tBu}) ; 749 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 696 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 584 \mathrm{~cm}^{-1} ; 528 \mathrm{~cm}^{-1} ; 463 \mathrm{~cm}^{-1}$
$\boldsymbol{S E C} \boldsymbol{C}: \mathrm{dn} / \mathrm{dc}=0.1025 \mathrm{ml} \cdot \mathrm{g}^{-1} ; \mathrm{M}_{\mathrm{n}}=53240 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{w}}=62470 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}_{\mathrm{z}}=68830 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$\boldsymbol{D S C} \boldsymbol{:}$ $\mathrm{T}_{\text {onset }}=58.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {midpt }}=72.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=71.0^{\circ} \mathrm{C} ; \mathrm{T}_{\text {offset }}=84.5^{\circ} \mathrm{C} ; \Delta \mathrm{C}_{\mathrm{p}}=0.259 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$

11.1.3. Hydrolysis

0.2 g of the copolymer were dissolved in $1.8 \mathrm{~g}(1.2 \mathrm{ml}) \mathrm{CHCl}_{3}$ and was stirred over night at room temperature. Then the respective amount of MSA, see Table 11.13, was added. The mixture was stirred for 2 hours at room temperature. A spatula-spoon of sodium hydrogen carbonate was added and this mixture was stirred for 30 min . Subsequently 5 ml THF were added and the mixture was filtered over a P4 glass filter. Afterward the solution was dropped into 200 ml of ice-cold n-pentane. The precipitated polymer was filtered over P 4 glass filter and dried at room temperature for two hours. Then the copolymer was re-dissolved in 1 ml THF and the solution was dropped into 200 ml of an ice cooled water: methanol $=1: 1$ vol: vol mixture. The precipitated polymer was filtered over P 4 glass filter and dried at room temperature under an oil-pump vacuum over night.

Experiment V141 P[BzMA-co-MAA]:

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R}$: $0.53-0.72 \mathrm{ppm}$ (broad peak); 0.73-1.14 ppm (broad peak); 1.56-2.05 ppm (broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{BzMA}], \mathrm{P}[\mathrm{MAA}]\right) ; 3.55 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 4.76-5.05 \mathrm{ppm}$ (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}$, $\mathrm{P}[\mathrm{BzMA}]$); 7.19-7.44 ppm (broad peak, aromatic ring, $\mathrm{P}[\mathrm{BzMA}]$); 12.03-12.69 ppm (broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{:} \mathbf{6 7 . 5 5} \% \mathrm{C}, 6.78 \% \mathrm{H},\left(25.67 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3650-2390 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3115-2790 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring) ; $1726 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1699 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1483 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-\right.$, $\left.{ }_{-} \mathrm{CH}_{3}\right) ; 1389 \mathrm{~cm}^{-1} ; 1368 \mathrm{~cm}^{-1} ; 1257 \mathrm{~cm}^{-1} ; 1149 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1030 \mathrm{~cm}^{-1} ; 964 \mathrm{~cm}^{-1}(\mathrm{Bz}) ;$ $912 \mathrm{~cm}^{-1} ; 825 \mathrm{~cm}^{-1} ; 801 \mathrm{~cm}^{-1} ; 750 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 697 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 586 \mathrm{~cm}^{-1} ; 526 \mathrm{~cm}^{-1} ; 460 \mathrm{~cm}^{-1}$

Experiment V142 P[BzMA-co-MAA]:

${ }^{1} \boldsymbol{H}$ - $\boldsymbol{N M R}$: $0.57-0.71 \mathrm{ppm}$ (broad peak); 0.73-1.16 ppm (broad peak); $1.57-2.01 \mathrm{ppm}$ (broad peak, $\left.-\mathrm{CH}_{3}, \mathrm{P}[\mathrm{BzMA}], \mathrm{P}[\mathrm{MAA}]\right) ; 3.39 \mathrm{ppm}\left(\mathrm{H}_{2} \mathrm{O}\right) ; 4.79-5.04 \mathrm{ppm}$ (broad peak, $-\mathrm{OCH}_{2} \mathrm{R}$, $\mathrm{P}[\mathrm{BzMA}]$); 7.21-7.43 ppm (broad peak, aromatic ring, $\mathrm{P}[\mathrm{BzMA}]$); 12.11-12.53 ppm (broad peak, $-\mathrm{COOH}, \mathrm{P}[\mathrm{MAA}])$
$\boldsymbol{E A} \boldsymbol{:} 66.44 \% \mathrm{C}, 7.23 \% \mathrm{H},\left(26.33 \% \mathrm{O}_{\text {calc }}\right)$

ATR-FTIR: $3710-2370 \mathrm{~cm}^{-1}(-\mathrm{COOH}) ; 3320-2790 \mathrm{~cm}^{-1}\left(=\mathrm{CH}_{2},-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right.$, aromatic ring); $1725 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1609 \mathrm{~cm}^{-1}(-\mathrm{C}=\mathrm{O}) ; 1484 \mathrm{~cm}^{-1}\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1455 \mathrm{~cm}^{-1}$ $\left(-\mathrm{CH}_{2}-,-\mathrm{CH}_{3}\right) ; 1388 \mathrm{~cm}^{-1} ; 1367 \mathrm{~cm}^{-1} ; 1258 \mathrm{~cm}^{-1} ; 1239 \mathrm{~cm}^{-1} ; 1143 \mathrm{~cm}^{-1}(-\mathrm{C}-\mathrm{O}-\mathrm{C}-) ; 1030 \mathrm{~cm}^{-1}$; $964 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 912 \mathrm{~cm}^{-1} ; 826 \mathrm{~cm}^{-1} ; 802 \mathrm{~cm}^{-1} ; 750 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 696 \mathrm{~cm}^{-1}(\mathrm{Bz}) ; 586 \mathrm{~cm}^{-1} ; 527 \mathrm{~cm}^{-1}$; $459 \mathrm{~cm}^{-1}$

11.1.4. Characterization

All characterization-methods were the same as with the batch copolymers of Chapter 3. The used methods were:

- ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy
- elementary analysis
- ATR-FTIR-spectroscopy
- size exclusion chromatography
- differential scanning calorimetry

The same instruments under the same conditions were used for the investigation of the resulting copolymers.

Online FTIR-measurement

The online FTIR-measurements were performed with a Mettler Toledo ReactIR 15. The device was controlled with the software iC-IR. The measurement-range was 2800 to $650 \mathrm{~cm}^{-1}$ and the measurement-interval was 120 sec .

11.2. Results and Discussion of the Semibatch Copolymerization

The subsequent paragraph describes the evaluations of the ATR-FTIR-spectra resulting from the online-measurements and the analysis of the two resulting copolymers $\mathrm{P}[\mathrm{tBMA}-\mathrm{co}-$ BzMA] from the semibatch polymerizations and also their discussion. The resulting copolymers were analyzed with the same methods as the statistical copolymers $\mathrm{P}[\mathrm{BzMA}-\mathrm{co}-\mathrm{tBMA}]$ and the gradient copolymers $\mathrm{P}[t \mathrm{BMA}-\mathrm{co}-\mathrm{BzMA}]$ before and under the same conditions (cf. Section 3.2). Thereby the resulting copolymers P[tBMA-co-BzMA] can be compared with the gradient copolymer $\mathrm{P}\left[\mathrm{tBMA}-\right.$ grad-BzMA] $\mathrm{GP}_{0.43}$, see Chapter 8 .

11.2.1. Online ATR-FTIR-Measurement

For the investigation of the polymer solution with online-IR the IR-spectra of the starting components were needed. The complete analyzed measuring range of the two monomers BzMA and tBMA and the solvent MEK are depicted in Figure 11.2. In Figure 11.3 the finger print region with the two analyzed vibrational bands of the three compounds are detailed.

Fig. 11.2.: ATR-FTIR-spectra of (A) 2-butanone, (B) benzyl methacrylate and (C) tert-butyl methacrylate with marked analyzed vibrational bands

Overall the IR-spectrum from 650 to $2800 \mathrm{~cm}^{-1}$ was observed but only two bands in the finger print region from 650 to $900 \mathrm{~cm}^{-1}$ were investigated particularly. Between $2800 \mathrm{~cm}^{-1}$ and $1050 \mathrm{~cm}^{-1}$ the IR-spectra of the monomers and the solvent were relatively equal. The
vibrational band of $\mathrm{C}=\mathrm{O}$ was located at $1717 \mathrm{~cm}^{-1}$ in the spectra of the two monomers and also in the spectrum of the solvent. For $-\mathrm{CH}_{2}-$ and $-\mathrm{CH}_{3}$ the vibrational band were found at $1485 \mathrm{~cm}^{-1}$ and $1456 \mathrm{~cm}^{-1}$ in the spectra of the monomers and at $1459 \mathrm{~cm}^{-1}$ in the spectrum of the solvent. The vibrational band for $\mathrm{C}-\mathrm{O}-\mathrm{C}$ was located at $1150 \mathrm{~cm}^{-1}$ in the monomer spectra and at $1173 \mathrm{~cm}^{-1}$ in the solvent spectrum.

Fig. 11.3.: Section of ATR-FTIR-spectra of 2-butanone (dark grey line), benzyl methacrylate (black line) and tert-butyl (grey line) methacrylate with marked analyzed vibrational bands

Between 1050 and $650 \mathrm{~cm}^{-1}$, the lower part of the fingerprint region, the spectra of the monomers among themselves and the solvent varied obviously. For each monomer a vibrational band which is specific for the substance had been searched. The bands at $700 \mathrm{~cm}^{-1}$ is characteristic for benzyl methacrylate (band I) and the band at $850 \mathrm{~cm}^{-1}$ for tert-butyl methacrylate (band II). These bands were observed by ATR-FTIR-spectroscopy during the semibatch copolymerizations. The changing of the vibrational bands represented the conversion of the two monomers. During experiment V131 the feed-solution was injected without consideration the changing of the vibrational bands linear with $0.3 \mathrm{~g} \cdot \mathrm{~min}^{-1}$. During experiment V132 band I was observed and the increase of band I was recalculated into the decrease of the monomer BzMA in the stock-solution. The polymerized BzMA was refilled with tBMA by injection of the feed-solution.

Chapter 11. Synthesis of Gradient Copolymers from Benzyl and tert-Butyl Methacrylate by means of Semibatch Polymerization with Observation by Online IR

In the Figure 11.4 the fingerprint region of the ATR-FTIR-spectra 1 (0.9 min), $50(114.3 \mathrm{~min})$, $100(214.9 \mathrm{~min}), 150(314.4 \mathrm{~min}), 200(421.1 \mathrm{~min}), 250(514.9 \mathrm{~min}), 300(620.2 \mathrm{~min})$ and 350 (714.5 min) of experiment V131 are depicted. The two analyzed vibrational bands are marked with dashed lines. In Figure 11.5 the analyzed section with the vibrational bands was represented more detailed.

Fig. 11.4.: Finger print region of ATR-FTIR-spectra of samples of experiment V131; A - 0.9 min , B-114.3 min, C - $214.9 \mathrm{~min}, ~ D-314.4 \mathrm{~min}, \mathrm{E}-421.1 \mathrm{~min}, \mathrm{~F}-514.9 \mathrm{~min}, \mathrm{G}-620.2 \mathrm{~min}$ and $\mathrm{H}-714.5 \mathrm{~min}$ of reaction time

The different IR-spectra showed changes only in the lower fingerprint region between 650 to $900 \mathrm{~cm}^{-1}$. The four vibrational bands at $700 \mathrm{~cm}^{-1}, 750 \mathrm{~cm}^{-1}, 816 \mathrm{~cm}^{-1}$ and $850 \mathrm{~cm}^{-1}$ changed obviously. Band II at $850 \mathrm{~cm}^{-1}$ increased and the band at $816 \mathrm{~cm}^{-1}$ decreased during the polymerization. The changes of the band at $700 \mathrm{~cm}^{-1}$ and band I at $750 \mathrm{~cm}^{-1}$ were less obvious.

The detailed Figure 11.5 shows that only the differences of band II were considerable. The differences of band I were indistinct because the baseline of the band varied between the different spectra. Therefore the peak area and the peak height of the two vibrational bands were determined. The values are listed in Table 11.2 and depicted in Figure 11.6.

Fig. 11.5.: Section of ATR-FTIR-spectra of samples taken during experiment V131; A - 0.9 min, $\mathrm{B}-114.3 \mathrm{~min}, \mathrm{C}-214.9 \mathrm{~min}, \mathrm{D}-314.4 \mathrm{~min}, \mathrm{E}-421.1 \mathrm{~min}, \mathrm{~F}-514.9 \mathrm{~min}, \mathrm{G}-620.2 \mathrm{~min}$ and $\mathrm{H}-714.5$ min of reaction time

Tab. 11.2.: Peak area and peak height of the analyzed ATR-FTIR-bands the samples taken during experiment V131

Spectrum No.	$\begin{aligned} & \text { time } \\ & {[\mathrm{min}]} \end{aligned}$	band I		band II	
		peak height	peak area $\left[\mathrm{cm}^{-1}\right]$	peak height	peak area $\left[\mathrm{cm}^{-1}\right]$
001	0.9	5.04	0.41	-0.87	0.02
050	114.3	6.37	0.48	-0.49	0.01
100	214.9	7.16	0.51	-0.15	0.01
150	314.4	5.30	0.40	0.90	0.07
200	421.1	4.73	0.35	1.32	0.09
250	514.9	4.37	0.33	1.64	0.11
300	620.2	3.91	0.30	1.97	0.13
350	714.5	4.16	0.31	2.14	0.14

It was not possible to calculate the conversion of the monomers or the composition of the copolymer during the reaction. First it was not possible to separate the monomer-spectra from the polymer-spectrum. So the ratios of PBzMA and PtBMA in band I and band $I I$ could not be determined. Second it was not possible to determine the actual amount of added feed-solution. The values of the peak areas and the peak heights showed inexplicable runs during the polymerization time for both vibrational bands.

Fig. 11.6.: Plot of peak area $(■, \odot)$ and peak height (\square, \bigcirc) of band I (black squares) and band II (grey circles) of experiment V131

In the Figure 11.7 the fingerprint region of the ATR-FTIR-spectra 1 (1.4 min), 50 (99.4 min), $100(199.4 \mathrm{~min}), 150(299.4 \mathrm{~min}), 200(399.4 \mathrm{~min}), 250(499.4 \mathrm{~min}), 300(599.4 \mathrm{~min})$ and 350 (699.4 min) of experiment V132 are depicted. The two analyzed vibrational bands are marked with dashed lines. In Figure 11.8 the analyzed section with the vibrational bands are represented more detailed. The vibrational bands changed in the same way as the IR-spectra of experiment V131 in the lower fingerprint region. The four vibrational bands at $700 \mathrm{~cm}^{-1}$, $750 \mathrm{~cm}^{-1}, 816 \mathrm{~cm}^{-1}$ and $850 \mathrm{~cm}^{-1}$ changed distinctly. Band II at $850 \mathrm{~cm}^{-1}$ increased and the band at $816 \mathrm{~cm}^{-1}$ decreased during the polymerization. The changes of the band at $700 \mathrm{~cm}^{-1}$ and band I at $750 \mathrm{~cm}^{-1}$ were less obvious. The detailed Figure 11.8 shows the same development of the IR-spectra than the IR-spectra of experiment V131. Only the differences of band II were considerable. The differences of band I were indistinct because the baseline of the band varied between the different spectra. Also here the peak area and the peak height of the two vibrational bands were determined. The values are listed in Table 11.3 and depict in Figure 11.9. Even here it was impossible to calculate the conversion of the monomers or the composition of the copolymer during the reaction. First it was not possible to divide the monomer-spectra from the polymer-spectrum. So the ratios of PBzMA and PtBMA in band I and band II could not be determined. Second it was not possible to determine the actual amount of added feed-solution. The values of the peak areas and the peak heights show inexplicable runs during the polymerization time for both vibrational bands.

Fig. 11.7.: Finger print region of ATR-FTIR-spectra of samples of experiment V132; A - 1.4 min, $\mathrm{B}-99.4 \mathrm{~min}, \mathrm{C}-199.4 \mathrm{~min}, \mathrm{D}-299.4 \mathrm{~min}, \mathrm{E}-399.4 \mathrm{~min}, \mathrm{~F}-499.4 \mathrm{~min}, \mathrm{G}-599.4 \mathrm{~min}$ and $\mathrm{H}-699.4 \mathrm{~min}$ of reaction time

Fig. 11.8.: Section of ATR-FTIR-spectra of samples taken during experiment V132; A - 1.4 min, $\mathrm{B}-99.4 \mathrm{~min}, \mathrm{C}-199.4 \mathrm{~min}, \mathrm{D}-299.4 \mathrm{~min}, \mathrm{E}-399.4 \mathrm{~min}, \mathrm{~F}-499.4 \mathrm{~min}, \mathrm{G}-599.4 \mathrm{~min}$ and $\mathrm{H}-699.4$ min of reaction time

Tab. 11.3.: Peak area and peak height of the analyzed ATR-FTIR-bands the samples taken during experiment V132

$\begin{array}{c}\text { Spectrum } \\ \text { No. }\end{array}$	$\begin{array}{c}\text { time } \\ {[\mathrm{min}]}\end{array}$	band I		band II			
peak height							
peak area							
$\left[\mathrm{cm}^{-1}\right]$						$) ~$ peak height	peak area
:---:							
$\left[\mathrm{cm}^{-1}\right]$							

Fig. 11.9.: Plot of peak area $(■, \odot)$ and peak height (\square, \bigcirc) of band I (black squares) and band II (grey circles) of experiment V132

However, the precipitated copolymers of the experiments V131 and V132 were analyzed in the same way as the statistical copolymers P[tBMA-co-BzMA] of Section 7 and the gradient copolymer P[tBMA-grad-BzMA] Section 8.

11.2.2. Structural Analysis

The molecular structures of the monomers tBMA and BzMA and the resulting copolymer as well as the numbering of these carbons are shown in Figure 11.10.

A

B

C

Fig. 11.10.: Molecular structures of the monomers (A) tBMA and (B) BzMA and (C) the copolymer $\mathrm{P}[$ tBMA-grad-BzMA] with carbon-atom labels $(\mathrm{z}=\mathrm{x}+\mathrm{y}=1)$

Fig. 11.11.: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of (A) experiment V131 ($\left.\mathrm{P}\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]\right)$ and (B) V132 $\left.\left(\mathrm{P}^{2} \mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]\right)$

The Figure 11.11 shows the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the resulting copolymers from the experiments (A) V131 P $\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$ and (B) V132 $\mathrm{P}^{\left(\mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right] \text {. In both }}$ spectra the signals of the monomers together with polymer-signals mixed up with the signals
of the solvent MEK. The signals at $0.96 \mathrm{ppm}(\mathrm{t}), 2.06 \mathrm{ppm}(\mathrm{s})$ and 2.38 ppm (q) represented the solvent. For the monomer tBMA a singlet at $5.9 \mathrm{ppm}\left(=\mathrm{CH}_{2}^{\text {cis }}, 1\right)$, a triplet at 5.3 ppm $\left(=\mathrm{CH}_{2}^{\text {trans }}, 2\right)$, a singlet at $1.8 \mathrm{ppm}\left(-\mathrm{CH}_{3}, 10\right)$ of the methacrylate part of the monomer and a singlet at 1.4 ppm of the tert-butyl group (3) were found. The BzMA as monomer showed a singlet at 6.1 ppm and a triplet at 5.5 ppm for the vinyl-group (4 and 5) and a singlet at 1.8 ppm for the methyl-group (12) of the methacrylate group. The benzyl-unit exhibited a singlet of the benzylic methylene-group (6) at 5.2 ppm and a broad multiplet was caused the aromatic ring protons $(7,8,9)$ between 7.5 to 7.2 ppm . The polymer is represented in the spectra by broad peaks from 7.5 to 7.2 ppm for the aromatic ring protons ($7^{\prime}, 8^{\prime}, 9^{\prime}$), at 4.75 to $5.05 \mathrm{ppm}\left(-\mathrm{OCH}_{2} \mathrm{R}, 6^{\prime}\right)$ and at 1.25 to 1.4 ppm a signal caused by the tert-butyl group (3^{\prime}) inside the polymer chain. The signals of the aromatic ring of monomer and polymer (7, $8,9,7^{\prime}, 8^{\prime}, 9^{\prime}$) overlapped. From the ratios of the integrals A of the signals 3^{\prime} and 6 ' the compositions of the copolymers were calculated. They are listed in Table 11.4.

Tab. 11.4.: Integrals of experiment V131 and V132

entry	A6	A6'	A3	A3'	composition
V131	2.00	31.39	66.19	84.15	$\mathrm{P}^{\prime}\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$
V132	2.00	10.90	17.04	51.31	$\mathrm{P}\left[\mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]$

The two spectra showed slight differences at the signals of the polymer components. The signal of the monomer parts and the polymer components were set in proportion to the signals of the solvent. The signal of the aromatic ring ($7,8,9$ and $7^{\prime}, 8^{\prime}, 9^{\prime}$) was stronger in the spectra of experiment V131 than in the spectra of experiment V132. The same was one view for the signals of the benzylic methylene-group of the polymer (6^{\prime}). The reason was a higher amount of BzMA inside the polymer chain of copolymer V131 than in polymer chain V132. At reverse, the signal of the tert-butyl group of the polymer (3^{\prime}) was stronger in the spectra of experiment V132 than in the one of experiment V131, because of the higher amount of tBMA in the copolymer V132 in comparison to copolymer V131. The calculations of the compositions of the two copolymers, see Table 11.4, from the integrals of the signals lead to the same results.

The different kinds of injection methods led to copolymers with a different composition. The continuous linear injection of tBMA during experiment V131 resulted in a copolymer with one third tBMA and two thirds BzMA inside the polymer chain. The IR-controlled injection resulted in a copolymer with 50% tBMA and 50% BzMA what was the intended composition.

The purity and also the composition of the resulting copolymers were analyzed by means of elementary analysis. The results of the measurements and the differences between the theoretical and the analysis results are listed in Table 11.5.

Tab. 11.5.: Results of the elementary analysis of the experiments V131 and V132

entry	$\mathrm{F}_{\text {tBMA }}$		C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
V131	0.37	theory	72.60		7.85		19.56	
		is	71.84	-0.76	7.67	-0.18	20.49	0.94
V132	0.51	theory	71.60		8.26		20.14	
		is	71.12	-0.48	7.93	-0.33	20.95	1.34

The element compositions of the resulting copolymers from the experiments V131 P $\left[\mathrm{tBMA}_{0.37}-\right.$ co- $\left.\mathrm{BzMA}_{0.63}\right]$ and V132 P $\left[\mathrm{tBMA}_{0.51-\mathrm{co}}-\mathrm{BzMA}_{0.49}\right]$ were similar to the other copolymers from tBMA and BzMA, the statistical copolymers (cf. Tables 7.7 and 7.8) and the gradient copolymer (cf.Table 8.7). Hence, also this polymerizations gave consistent results. Moreover, the differences between the theoretical compositions and the measured values were small, indicating that the samples were free of pollution.

As well as for the statistical copolymers from Chapter 7 also for these copolymers the data from elementary analysis were used to calculated the composition of the polymers. The fittings of the calibration curves from the amount of carbon and hydrogen, see Section 7.2.2, Figure 7.13, were adapted for the calculations. That was necessary because the equations were established for the amount of BzMA inside the polymer-chain $\mathrm{F}_{\mathrm{BzMA}}$ and the composition of the gradient copolymers was described by the amount of tBMA inside the polymer-chain $\mathrm{F}_{\text {tBMA }}$. So for the determination of the compositions from the amount of carbon Equation 11.2.1 was used and for the determination from the amount of hydrogen Equation 11.2.2.

$$
\begin{align*}
& \mathrm{F}_{\text {tBMA }}=1-\frac{\mathrm{C}-0.6757}{0.0741} \tag{11.2.1}\\
& \mathrm{~F}_{\text {tBMA }}=1-\frac{\mathrm{H}-0.0992}{0.0306} \tag{11.2.2}
\end{align*}
$$

The results of the calculations are given in Table 11.6.

Tab. 11.6.: Compositions of copolymers of experiment V131 and V132 resulting from ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ analysis and elementary analysis

time $[\mathrm{min}]$	$\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{NMR} a}$	$\mathrm{~F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{C}} b$	$\Delta \mathrm{~F}_{\mathrm{tBMA}}^{\mathrm{C}}{ }^{c}$	$\mathrm{~F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{H}}{ }^{2}$	$\Delta \mathrm{~F}_{\mathrm{tBMA}}{ }^{\mathrm{H}}$
V131	0.37	0.42	0.05	0.26	-0.11
V132	0.51	0.52	0.01	0.35	-0.16

[^11]Both compositions that were calculated from the amount of carbon $\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{C}}$ as well as from the amount of hydrogen $\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{H}}$ differed obviously from the compositions which were determined from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated copolymers. The differences between the values and the NMR-measurements could not be caused by a solvent like water because the compositions calculated from the hydrogen amount were to low and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra did not show the presence of residual solvents. Also the presence of monomers in the sample could falsify the measures amount but even they were not monitored in the NMR-spectra in higher rates. An other possible problem could be that the samples were inhomogeneous. For a NMR-measurement 10 mg of the copolymer was used, for an EA-measurement only 2.5 mg . So the problem of an inhomogeneous substance will be increase at the elementary analysis. But the resulting copolymers were apparently consistent. A fourth possibility is that the pollution happened during the measurement itself. The measurement of standards in periodical intervals should avoid that.

Subsequently the two precipitated copolymers of experiments V131 P $\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$ and V132 $\mathrm{P}^{\left[\mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right] \text { were investigated with ATR-FTIR-spectroscopy. The }}$ same two IR-vibrational bands that were analyzed in the spectra of the statistical copolymers of experiments V81 to V89, see Section 7.2.2, and the the gradient copolymer V101, see Section 8.2.3, were investigated in view to the peak height and peak area.
band 1 band 2

Fig. 11.12.: Finger print region of ATR-FTIR-spectra of (A) experiment V131 P[tBMA $\mathrm{H}_{0.37}$-co$\left.\mathrm{BzMA}_{0.63}\right]$ and (B) V132 P[tBMA $\left.{ }_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]$ (Spectra normalized to $\mathrm{A}_{1134}=1$)

Band 1 at $850 \mathrm{~cm}^{-1}$ is specific for the tert-butyl-group, and band 2 at $730 \mathrm{~cm}^{-1}$ is caused by the benzyl-group. In Figure 11.12 the fingerprint region of the ATR-FTIR-spectra of the two experiments are given.

There was no obvious difference between the two ATR-FTIR-spectra of the two precipitated copolymers of experiment V131 P $\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$ and $\mathrm{V} 132 \mathrm{P}\left[\mathrm{tBMA}_{0.51}-\mathrm{co}-\right.$ $\mathrm{BzMA}_{0.49}$]. In Figure 11.13 an extended section of the spectra from 700 to $900 \mathrm{~cm}^{-1}$ is shown that contained the two analyzed vibrational bands. The values of the analyzed band are summarized in Table 11.7.

Fig. 11.13.: Section of ATR-FTIR-spectra of experiment V131 P[tBMA ${ }_{0.37}-\mathrm{co}-$ BzMA $\left._{0.63}\right]$, black line, and V132 P[tBMA $0.51-$ co- $\left.-\mathrm{BzMA}_{0.49}\right]$, grey line) (Spectra normalized to $\mathrm{A}_{1134}=1$)

Tab. 11.7.: Peak area and peak height of the analyzed ATR-FTIR-bands of experiment V131 and V132

Entry	F $\mathrm{F}_{\mathrm{tBMA}}$	band 1			
peak area					
$\left[\mathrm{cm}^{-1}\right]$				\quad peak height \quad	peak area
:---:	:---:	:---:			
$\left[\mathrm{cm}^{-1}\right]$	\quad peak height				

Band 1 at $850 \mathrm{~cm}^{-1}$ was higher in the spectra of the sample of experiment $\mathrm{V} 132 \mathrm{~F}_{\mathrm{tBMA}}=0.51$ and band 2 at $730 \mathrm{~cm}^{-1}$ was lower. Because band 1 is the vibrational band of the tert-butylgroup and band 2 the one of the benzyl-group the values of the peak area and the peak height
reflected the results of the calculations of the compositions from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the resulting copolymers which showed a higher amount of tBMA inside the polymer chain of the sample of V132 $\mathrm{F}_{\mathrm{tBMA}}=0.51$ than in the polymer chain of the sample of $\mathrm{V} 131 \mathrm{~F}_{\mathrm{tBMA}}=0.37$.

11.2.3. Molecular Weight Characterization

The obtained copolymers of the semibatch copolymerizations with online IR-measurement were analyzed with size exclusion chromatography. Figures 11.14 and 11.15 depict the RIand the $90^{\circ}-$ MALS- detector signals of the elution-diagrams of copolymers from experiments V131 P $\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$ and V132 $\mathrm{P}\left[\mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]$.

The RI-detector-signals were bimodal for the samples of both experiments. Hence, there was not the same good control over reactions with the experimental setup of the semibatch copolymerization with online-IR measurements, see Figure 11.1, than with the semibatch copolymerization without direct measurements, see Figure 5.1. One possible reason for the loss of control could be a slight amount of oxygen during the reaction, because the experimental setup of this reaction was not as tight as the experimental setup for the copolymerizations without online measurements. A second problem was that the copolymer could be precipitated not until three days after the actual synthesis. The reaction mixture was cooled during that days but this is an obvious difference to the procedure of the experiments in Chapter 7 and 8 .

In a first step, for the investigation of the SEC-data, the signals of the refractive-index detector were analyzed with the calibration curve arising from polystyrene standards, that was used in Section 3.3.3, Figure 3.15, in view to the relative molar masses of the copolymers. The values of the maximum elution volume and the calculated relative molar masses of the samples of the two polymers are listed in Table 11.10. The elution volumes V_{E} of the two samples just differed in 0.03 ml . So also the calculated relative molar masses were nearly the same.

The next step was the determination of the differential refractive index increments $\mathrm{dn} / \mathrm{dc}$ of the resulting copolymer because these values are necessary for the calculation of the absolute molar mass of the polymers from light scattering data. This was done the same way as described with the statistical copolymers of experiment V81 to V89 in THF at $25^{\circ} \mathrm{C}$, cf. Section 7.2.3. The measured differential refractive index increments of the copolymers are summarized in Table 11.8. The $\mathrm{dn} / \mathrm{dc}$-values of the two copolymers resulting from the semibatch copolymerization with online IR-measurement were in the same region than the dn/dc-values of the statistical copolymers in Section 7.2.3. Moreover, also these copolymers had a higher $\mathrm{dn} / \mathrm{dc}$-values with a higher amount of BzMA inside the polymer chain like the statistical copolymers, see Table 7.12.

Fig. 11.14.: SEC elution diagrams and molar masses of copolymer V131 $\mathrm{P}\left[\mathrm{tBMA}_{0.37}\right.$-co$\mathrm{BzMA}_{0.63}$]; black curve - light scattering signal, grey curve - refractive index signal

Fig. 11.15.: SEC elution diagrams and molar masses of copolymer V132 $\mathrm{P}\left[\mathrm{tBMA}_{0.51}\right.$-co$\mathrm{BzMA}_{0.49}$]; black curve - light scattering signal, grey curve - refractive index signal

Tab. 11.8.: Differential refractive index increment dn/dc of copolymers V131 and V132

Entry	$\mathrm{F}_{\text {BzMA }}$	$\mathrm{dn} / \mathrm{dc}\left[\mathrm{ml} \cdot \mathrm{g}^{-1}\right]$
V131	0.63	0.1177 ± 0.0018
V132	0.49	0.1025 ± 0.0023

From the angle dependence of the scattered light intensity and the known dn/dc-value of the absolute molecular weight of a fraction at a given elution volume can be derived, see Section 2.4. The calculated molecular weights are also shown in Figures 11.14 and 11.15 (right axis). Since the RI-signal is proportional to the weight fraction of the eluted polymer, the complete molecular weight distribution (MWD) of the measured polymer can be obtained and with this the molecular weight averages and the polydispersity indices can be calculated. The obtained values are detailed in Table 11.9.

Tab. 11.9.: SEC results of V131 and V132

entry	$\mathrm{F}_{\text {BzMA }}$	M_{n} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{w} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	M_{z} $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{\mathrm{n}}$
V131	0.37	46180 ± 462	55450 ± 277	64590 ± 1292	1.201 ± 0.012	1.399 ± 0.028
V132	0.51	53240 ± 532	62470 ± 312	68830 ± 688	1.173 ± 0.012	1.293 ± 0.013

The resulting molar masses of experiments V132 $\mathrm{P}\left[\mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]$ were higher than the ones of V131 P $\left.\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$. The molar mass of copolymer V132 was higher because of the higher amount of BzMA inside the polymer chain. That the amount of BzMA influenced the resulting molar mass was seen at the statistical copolymers of of Series F, see Table 7.13. With the increase of BzMA inside the copolymer and with constant reaction time the resulting molar mass also increased. The polydispersities of V132 were lower than the ones of V131. Hence, the control over the reaction V132 was better when the feeding was depended on the conversion of the stock-monomer. The sample of both experiments led to molar masses that were higher than the resulting molar mass of the gradient copolymer V101, cf. Table 8.12. The total reaction time of the experiments was equal but the precipitation of the copolymers was done three days of the actual synthesis as told before. So the difference of the synthesis-setup and the cooled storage of the reaction-mixture could influence the results of the SEC-analysis.

Tab. 11.10.: Comparison of relative* and absolute molar masses of of the copolymer of experiment V131 P[tBMA $\left.{ }_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$ and V132 P $\left[\mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]$

entry	$\mathrm{F}_{\text {tBMA }}$	V_{E} $[\mathrm{ml}]$	relative M^{*} $\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]$	absolute M $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$\Delta \mathrm{M}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	$[\%]$
V131	0.37	25.92	44862	53330	-1318	2.85
V132	0.51	25.95	44164	46180	-9076	17.09

[^12]The difference between the relative molar masses, calculated from the elution volume V_{E} and the PS-standard calibration curve differed obviously. The relative molar masses are higher than the absolute molar masses which were calculated from the MALS-detector signals and the $\mathrm{dn} / \mathrm{dc}$-values of the copolymers. That is because for the determination of the relative molar mass only the maximum elution volume of the RI-curve is used, that means only one point of the whole measurement. The absolute molar mass is determined from the complete database of the measurement and displays the molecular weight distribution of the whole sample.

11.2.4. Thermal Behavior

The next kind of analysis was the differential scanning calorimetry. Here the thermal behavior of the copolymers was analyzed mainly to determine the dependence of the glass transition temperature T_{g} on the copolymer composition. The samples of the precipitated copolymers of the two experiments V131 and V132 were analyzed in the same way and the same temperature range as the statistical copolymers of Series F (cf. Section 7.2.4) and the gradient copolymer V101 (cf. Section 8.2.5). The samples of the experiments V131 and V132 were measured with the following temperature program:

- precooling: RT to $-50^{\circ} \mathrm{C}$
- standby for 20 min
- 1. heating: -50 to $200^{\circ} \mathrm{C}$
- 1. cooling: 200 to $-50^{\circ} \mathrm{C}$
- 2. heating: -50 to $200^{\circ} \mathrm{C}$
- postcooling: $200^{\circ} \mathrm{C}$ to RT

In Figure 11.16 the thermograms of the samples of copolymers V131 (black lines) and V132 (grey lines) are depicted with both heating runs and the cooling run between. Both thermograms looked nearly similar. The first heating runs showed a glass transition overlaid by a relaxation peak between $15^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The second heating runs showed a glass transition step nearly in the same range as the peak of the first runs. Only the second heating runs of both samples were analyzed with respect to $\mathrm{T}_{\text {onset }}, \mathrm{T}_{\text {offset }}, \mathrm{T}_{\mathrm{g}}, \mathrm{T}_{\text {midpt }}, \Delta \mathrm{T}$ and $\Delta \mathrm{c}_{\mathrm{p}}$. [89] The analysis followed the description in Section 3.3.4. The complete results of the analysis of the second heating runs from the samples of experiments V131 and V132 are listed in Table 11.11.

The thermograms of the second heating runs of the two samples of experiments (A) V131 $\mathrm{P}\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$ and (B) $\mathrm{V} 132 \mathrm{P}\left[\mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]$ are depicted in Figure 11.1%

Fig. 11.16.: DSC thermogram of copolymer V131 ($\mathrm{P}\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$, black line) and V132 $\left(\mathrm{P}^{[\mathrm{tBMA}} \mathrm{tBF}^{2}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]$, grey line $) ; \mathrm{a} / \mathrm{a}^{\prime}-$ first heating run, b / b - first cooling run, $\mathrm{c} / \mathrm{c}^{\prime}-$ second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Fig. 11.17.: DSC thermograms of (A) V131 P[tBMA $\left.{ }_{0.37}-\mathrm{co}^{-}-\mathrm{BzMA}_{0.63}\right]$ and (B) V132 P[tBMA ${ }_{0.51^{-}}$ $\mathrm{co}-\mathrm{BzMA}_{0.49}$] with marked glass transition temperature range $\mathrm{T}_{\text {onset }}, \mathrm{T}_{\text {offset }}$ and glass transition temperature $\mathrm{T}_{\mathrm{g}} ;$ second heating runs, heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Tab. 11.11.: DSC results of V131 and V132

entry	$\mathrm{F}_{\text {tBMA }}$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {midpt }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	T_{g} $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $[\mathrm{C}]$	$\Delta \mathrm{T}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta \mathrm{c}_{\mathrm{p}}$ $\left[\mathrm{J} \cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}\right]$
V131	0.37	48.5	55.5	57.5	63.5	15.0	0.176
V132	0.51	58.0	72.0	71.0	84.5	26.5	0.259

The limits of the glass transition range $\Delta \mathrm{T}, \mathrm{T}_{\text {onset }}$ and $\mathrm{T}_{\text {offset }}$, are marked there, as well as the glass transition temperature T_{g}. There is a clear dependence between the thermal behavior of the sample and the composition of the sample of the copolymer. The sample of copolymer V131 had a lower amount of tBMA inside the polymer chain and so $\mathrm{T}_{\text {onset }}\left(48.5^{\circ} \mathrm{C}\right)$ and also the glass transition temperature $\mathrm{T}_{\mathrm{g}}\left(57.5^{\circ} \mathrm{C}\right)$ were lower than the ones of the sample of copolymer V132 ($\left.\mathrm{T}_{\text {onset }}=58.0^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{g}}=71.0^{\circ} \mathrm{C}\right)$. Also the glass transition temperature range $\Delta \mathrm{T}$ was smaller at the sample of copolymer V131. Therefore, composition and structure of the copolymers has an influence on the thermal behavior of them.

For statistical copolymers the glass transition temperature can be described fairly with the Fox-Equation (cf. Section 7.2.4). But there was a difference of $10^{\circ} \mathrm{C}$ between the calculated and measured values. So the Fox-Equation was just an approximation. However, this analysis was also applied to the copolymers resulting from the semibatch polymerization with online IR-measurements V131 and V132, using Equation 11.2.3. The results of the calculations are listed in Table 11.12.

$$
\begin{equation*}
\frac{1}{\mathrm{~T}_{\mathrm{g}}}=\frac{\mathrm{F}_{\mathrm{tBMA}}}{\mathrm{~T}_{\mathrm{g}, \mathrm{tBMA}}}+\frac{\mathrm{F}_{\mathrm{BzMA}}}{\mathrm{~T}_{\mathrm{g}, \mathrm{BzMA}}} \tag{11.2.3}
\end{equation*}
$$

with $\mathrm{T}_{\mathrm{g}, \mathrm{tBMA}}=107^{\circ} \mathrm{C}[90]$ and $\mathrm{T}_{\mathrm{g}, \mathrm{nBMA}}=47^{\circ} \mathrm{C}[113]$

Tab. 11.12.: Theoretical and measured glass transition temperature of experiments V131 and V132

entry	$\mathrm{F}_{\text {tBMA }}$	$\mathrm{F}_{\text {nBMA }}{ }^{a}$	$\mathrm{T}_{\mathrm{g}}(\text { Fox })^{b}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\mathrm{g}}(\mathrm{DSC})^{c}$ $\left[{ }^{c} \mathrm{C}\right]$	$\Delta \mathrm{T}_{\mathrm{g}}{ }^{d}$ $\left[{ }^{\circ} \mathrm{C}\right]$
V131	0.37	0.63	59.3	57.5	-1.8
V132	0.51	0.49	65.8	71.0	5.2
${ }^{a} \mathrm{~F}_{\mathrm{B}}$					

${ }^{a} \mathrm{~F}_{\mathrm{BzMA}}=1-\mathrm{F}_{\mathrm{tBMA}} ;{ }^{b}$ calculated with Eq. 8.2.28
${ }^{c}$ measured with DSC; ${ }^{d} \Delta \mathrm{~T}_{\mathrm{g}}=\mathrm{T}_{\mathrm{g}}(\mathrm{DSC})-\mathrm{T}_{\mathrm{g}}($ Fox $)$

The differences between the glass transition temperature which were measured by DSC and the ones calculated with Equation 11.2.3 were not as high as they was for the statistical copolymers (cf. Table 7.17) and also for the gradient copolymer which was synthesized without online measurements (cf. Table 8.15). So here the Fox-Equation fits good to the resulting copolymers.

11.3. Results and Discussion of the Hydrolysis

This section describes the observations on the hydrolysis reaction performed with the two copolymer V131 and V132. Also the results of the analysis of the hydrolysis products are given. The products were compared with the educts. Further the differences between the two hydrolyzed copolymer were investigated. The product of the hydrolysis of copolymer V131 was numbered V141 and the product of the hydrolysis of copolymer V132 respectively V142.

The amount of added MSA depends on the amount of tBMA inside the polymer chain. It was calculated with Equation 11.3.1 for both copolymers with benzyl methacrylate and tert-butyl methacrylate.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{MSA}}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{x} \cdot \mathrm{M}_{\mathrm{MSA}}}{\mathrm{M}_{\mathrm{tBMA}} \cdot \delta_{\mathrm{MSA}}} \tag{11.3.1}
\end{equation*}
$$

with $\mathrm{V}_{\text {MSA }}$ - Volume of the methanesulfonic acid, m - mass of the polymer, $\mathrm{F}_{\text {tBMA }}$ - ratio of tBMA in the polymer chain, x - multiplicity factor for the hydrolysis reagent, $\mathrm{M}_{\mathrm{tBMA}}$ molar mass of $\mathrm{tBMA}=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{MSA}}-$ molar mass of the methanesulfonic acid $=$ $96.11 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and δ_{MSA} - density of the methanesulfonic acid $=1.48 \mathrm{~g} \cdot \mathrm{ml}^{-1}$

Also the theoretical yields depend on the copolymer composition $\mathrm{F}_{\text {tBMA }}$. They were calculated in the same way as in Section 4.2 with Equation 11.3.2.

$$
\begin{equation*}
\mathrm{y}_{\text {theo }}=\frac{\mathrm{m} \cdot \mathrm{~F}_{\mathrm{tBMA}} \cdot \mathrm{M}_{\mathrm{MAA}}}{\mathrm{M}_{\mathrm{tBMA}}}+\mathrm{m} \cdot\left(1-\mathrm{F}_{\mathrm{tBMA}}\right) \tag{11.3.2}
\end{equation*}
$$

with $y_{\text {theo }}$ - theoretical yield, m - mass of the polymer, $\mathrm{F}_{\mathrm{tBMA}}$ - ratio of tBMA in the polymer, $\mathrm{M}_{\mathrm{MAA}}$ - molar mass of MAA $=86.09 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \mathrm{M}_{\mathrm{tBMA}}-$ molar mass of $\mathrm{tBMA}=142.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

The results of the two calculations, the needed volumes of methanesulfonic acid and the theoretical yields, as well as the resulting and percentage yields of the two hydrolysis reactions are listed in Table 11.13.

Tab. 11.13.: Amount of added MSA and yields of hydrolysis products of V141 and V142

Educt	$\mathrm{F}_{\text {tBMA }}$	$\mathrm{V}_{\text {MSA }}$	yield		
		$[\mathrm{ml}]$	theoretical $[\mathrm{g}]$	$[\mathrm{g}]$	$[\%]$
V141	0.37	0.07	0.17	0.10	60.48
V142	0.51	0.09	0.16	0.11	70.33

The reactions proceeded in the same way than the model synthesis in Section 4.2. Some minutes after the addition of MSA the mixture of both experiments became a light brown gel. During the second hour the gels liquefied again. The added sodium hydrogen carbonate
neutralized the excess of acid after the reaction time. The byproduct of the neutralization is a salt and because of this after the precipitation in pentane a second precipitation in water/ methanol was done. However, the second precipitations was not only necessary to remove the formed salt. After the first precipitations from n-pentane the hydrolysis products were brown light powder, hence a second purification step was needed. After the purification steps the resulting copolymers were obtained in form of white powders. The yield of experiment V142 was with 70.33% better than the yield of experiment V141 with 60.48%.

The solubility-properties of these hydrolysis products were same as before of the $\mathrm{P}[\mathrm{nBMA}-$ co-MAA], see Table 4.3. So the hydrolyzed copolymers V141 and V142 were dissolved in DMSO-d6 for ${ }^{1} \mathrm{H}$-NMR-spectroscopy as well. The resulting ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the two hydrolysis products (B) are represented in Figure 11.19 together with the corresponding ${ }^{1} \mathrm{H}-$ NMR-spectra of the educts (A). The molecular structures of the educts and the carbons with the numbering of the protons are shown in Figure 11.18.

The changes between the spectra of the educts and the products were distinct and for both hydrolysis the changes were the same. The intensity of the mixed broad peak ranging from 1.25 to 1.55 ppm caused by the signals of the proton 3 ' shrank relative to the signals 6 ' from 4.8 to 5.1 ppm , which remained constant. The reason was the absence of the signal 3 ' from the protons of the tert-butyl group in the products. In the spectra of the hydrolysis products the broad -COOH -signal could be monitored between 12.0 to 12.75 ppm . In the ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra of the products additionally a $\mathrm{H}_{2} \mathrm{O}$ signal was present because the $\mathrm{DMSO}-\mathrm{d}_{6}$ was not dry. That the signal of the tert-butyl-group disappeared nearly completely indicated a total conversion of both educts.

A

B

Fig. 11.18.: Molecular structures of educt V131 resp. V132 and product V141 resp. V142 with carbon-atom labels; A - educt $\mathrm{P}\left[\mathrm{tBMA}_{x}-\mathrm{co}-\mathrm{BzMA}_{y}\right]$ and $\mathrm{B}-$ product $\mathrm{P}\left[\mathrm{MAA}_{x}-\mathrm{co}-\right.$ $\left.\mathrm{BzMA}_{y}\right] ;(\mathrm{z}=\mathrm{x}+\mathrm{y}=1)$

Fig. 11.19.: Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of educts V131 resp. V132 and products V141 resp. V142 (grey line - educt, black line - product); $\mathrm{A}-\mathrm{V} 131 / \mathrm{V} 141=\mathrm{F}_{\mathrm{BzMA}}=0.63, \mathrm{~B}-$ $\mathrm{V} 132 / \mathrm{V} 142=\mathrm{F}_{\mathrm{BzMA}}=0.49$

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis was followed by the investigation of the hydrolyzed gradient copolymers by elementary analysis and ATR-FTIR-spectroscopy. The results of the elementary analyzes are listed in Table 11.14. The theoretical values were calculated for 100% conversion of the hydrolysis of the educts.

Tab. 11.14.: Results of the elementary analysis of the experiments V141 and V142

entry	$\mathrm{F}_{\text {BzMA }}$		C $[\%]$	$\Delta \mathrm{C}$	H $[\%]$	$\Delta \mathrm{H}$	O $[\%]$	$\Delta \mathrm{O}$
V131	0.63	theory	72.60		7.85		19.56	
		is	71.84	-0.76	7.67	-0.18	20.49	0.94
V141		theory	70.70		6.90		25.68	
		is	67.55	-3.15	6.78	-0.13	25.67	0.81
V132	0.49	theory	71.60		8.26		20.14	
		is	71.12	-0.48	7.93	-0.33	20.95	0.81
V142		theory	68.52		6.92		24.57	
		is	66.44	-2.08	7.23	0.31	26.33	1.76

The results for the two products were slightly different. Both samples of the hydrolyzed copolymers had a lack of carbon and an excess of oxygen. The sample of experiment V141 had small lack of hydrogen and the sample of V142 a small excess. But in both cases the differences were justifiable. The results of the elementary analysis showed that the resulting
copolymers were clean and dry.

In a next step from the amount of carbon and hydrogen that were measured by the elementary analysis the compositions of the copolymers was calculated like it was done for the educts. For the calculations different calibration curves were needed with the amounts of carbon and hydrogen of homopolymers PMAA and PBzMA as basis. These calibration curves are depicted in Figure 9.4 and the resulting linear equations are given in Equations 11.3 .3 and 11.3.4.

$$
\begin{align*}
& \mathrm{C}=0.7498-0.1917 \cdot \mathrm{~F}_{\mathrm{MAA}} \tag{11.3.3}\\
& \mathrm{H}=0.0686+0.0017 \cdot \mathrm{~F}_{\mathrm{MAA}} \tag{11.3.4}
\end{align*}
$$

The equations were recalculated to the composition and with the amounts of carbon, respectively hydrogen, taken from elementary analysis the compositions were calculated. The results are listed in Table 11.15.

Tab. 11.15.: Compositions of copolymers of experiment V141 and V142 resulting from ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ analysis and elementary analysis

entry	$\mathrm{F}_{\mathrm{MAA}}^{\mathrm{NMR} a}$	$\mathrm{~F}_{\mathrm{MAA}}^{\mathrm{EA}, \mathrm{C}_{b}}$	$\Delta \mathrm{~F}_{\mathrm{MAA}}^{\mathrm{C}}{ }^{c}$	$\mathrm{~F}_{\mathrm{MAA}}^{\mathrm{EA}, \mathrm{H}_{d}}$	$\Delta \mathrm{~F}_{\mathrm{MAA}}^{\mathrm{H}}{ }^{c}$
V 141	0.37	0.39	0.02	-0.50	0.16
V142	0.51	0.45	-0.06	2.17	1.66
calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra; ${ }^{b}$ calculated from	Eq. 9.2 .3				
${ }^{c} \Delta \mathrm{~F}_{\mathrm{MAA}}^{\mathrm{x}}=$	$\mathrm{F}_{\mathrm{MAA}}^{\mathrm{EA}, \mathrm{x}}-\mathrm{F}_{\mathrm{MAA}}^{\mathrm{NMR}} ;{ }^{d}$ calculated from Eq.	9.2.4			

The compositions $\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{H}}$ calculated by elementary analysis differed obviously from the compositions which were determined from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the precipitated copolymers for hydrogen. However, the compositions $\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{C}}$ calculated from the amount of carbon fitted well with the compositions determined from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra. The differences could be caused by various problems. But the ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra did not show the presence of residual solvents, hence, that was not the reason for the deviations. Also the presence of monomers in the sample could falsify the measured amounts but even they were not monitored in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra. Another possible problem could be that the samples were inhomogeneous. For a NMR-measurement 10 mg of the copolymer was used, for an EA-measurement only 2.5 mg . So the problem of an inhomogeneous substance will be increase at the elementary analysis. But the resulting copolymers were apparently consistent. A fourth possibility is that the pollution happened during the measurement itself. The measurement of standards in periodical intervals should avoid that.

The second part of the structure analysis was the ATR-FTIR-spectroscopy. The resulting spectra of the hydrolyzed copolymers (black lines) are depicted in Figure 11.20 together with the educts (grey lines). In both spectra the vibrational bands that were analyzed before are
marked to show the differences between the educts and the products.

Fig. 11.20.: Comparison of ATR-FTIR-spectra of educts V131 resp. V132 and products V141 resp. V142 (grey line - educt, black line - product); $\mathrm{A}-\mathrm{V} 131 / \mathrm{V} 141=\mathrm{F}_{\mathrm{BzMA}}=0.63$, $\mathrm{B}-\mathrm{V} 132 / \mathrm{V} 142=\mathrm{F}_{\mathrm{BzMA}}=0.49$ (Spectra normalized to $\mathrm{A}_{1134}=1$)

In section 7.2 .2 two bands at $850 \mathrm{~cm}^{-1}$ and $730 \mathrm{~cm}^{-1}$ were introduced that are characteristic for polymer-incorporated tBMA and BzMA units, respectively. Band 2 at $730 \mathrm{~cm}^{-1}$ for BzMA did not change so much but band 1 at $850 \mathrm{~cm}^{-1}$ for tBMA differed obviously. The changes of band 1 were so strong and influenced also band 2 that the analysis of peak height and peak area of both bands was not possible anymore. The loss of band intensity at $850 \mathrm{~cm}^{-1}$ clearly indicates that the hydrolysis products no longer contained tBMA-ester side groups. Also the bands at $1370 \mathrm{~cm}^{-1}$ and $1390 \mathrm{~cm}^{-1}$ shrank with the hydrolysis. A third change exhibited the band at $1710 \mathrm{~cm}^{-1}$ which is the vibrational bands of ester- $\mathrm{C}=\mathrm{O}$-group. In the IR-spectrum of the educts the band was a small singlet. The product-spectra instead had a broader doublet at that region. The double band exhibited maxima at $1720 \mathrm{~cm}^{-1}$ and $1700 \mathrm{~cm}^{-1}$. The literature refers $1720 \mathrm{~cm}^{-1}$ to ester- $\mathrm{C}=\mathrm{O}$ vibration, while $1700 \mathrm{~cm}^{-1}$ belong to the vibrations of carboxylic acid- $\mathrm{C}=\mathrm{O}$ groups. [87] Further the range $\tilde{\nu}>3000 \mathrm{~cm}^{-1}$ changed from educt to product in both cases. A broad band ranging from 2350 to $3700 \mathrm{~cm}^{-1}$ appeared which could be assigned to the vibrational band of the carboxylic acid OH-group. All in all the changes in the ATR-FTIR-spectra from the educts to the products and the differences of the products among themselves showed that the hydrolysis reactions worked well. The changes were the same as for the gradient copolymer resulting from the hydrolyzed copolymers in Chapter 9.

The next analysis was the size exclusion chromatography (SEC). As with the hydrolyzed
statistical copolymers also the products of V141 and V142 were not soluble in THF. As described in Section 4.2 about 0.4 mg of the copolymer was mixed with 1 ml THF and two drops of TMSI and the mixture was stirred over night at RT. The copolymer became THFsoluble, because the carboxyl groups were converted into non-polar trimethylsilyl-esters. Since the presence of non-covalent fixed TMSI disturbed the dn/dc determination, only the relative molar mass of the copolymers were calculated from the maximum elution volume of the samples and Equation 3.3.22 which based on a a polystyrene-calibration ("PS-Standardvalues"). The resulting elution diagrams of the RI-detector signals are depicted in Figure 11.21 and the calculated relative molar masses are listed in Table 11.16.

Fig. 11.21.: Comparison of SEC elution diagrams of educts V131 resp. V132 and products V141 resp. V142 (grey line - educt, black line - product); A - V131/V141 $=\mathrm{F}_{\mathrm{BzMA}}=0.63$, $\mathrm{B}-\mathrm{V} 132 / \mathrm{V} 142=\mathrm{F}_{\mathrm{BzMA}}=0.49$

Tab. 11.16.: SEC results of products of educts V131/V132 and products V141/V142

Entry	$\mathrm{F}_{\text {BzMA }}$	$\mathrm{V}_{\mathrm{E}}{ }^{a}$ $[\mathrm{ml}]$	M^{b} $\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]$	$\Delta \mathrm{M}$ $\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	 $[\%]$
V131	0.63	25.92	44862		
V141		26.52	33010	11852	26.42
V132	0.49	25.95	44164		
V142		26.01	42815	1349	3.05

[^13]The shape of the RI-detector signals changed from the samples of the educts to the products. The one of the product-signals were not so distinctly bimodal as the one of the educt-signals. For the sample of experiment V141 the peak maximum of the RI-signal shifted to lower molar masses and the shape of the peak became smaller. For the sample of experiment V142 the peak maximum did not shifted obviously but the shape of the educt-signal was much smaller then the shape of the product-signal. That the peak maxima of the product-RI-signals did not shifted obviously explained the results of the calculations of the relative molar mass. The molar mass of the sample V141 was obviously smaller than the relative molar mass of the product sample of copolymer V131. Because for the calculation of the relative molar mass only the peak maximum was used there was no difference between the relative molar mass of the sample of the educt V132 and the product V142. The changes of the RI-signalshapes were caused by the loss of molar mass from the replacement of the tert-butyl-group $\left(58.12 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$ to the $\mathrm{OH}-$ group $\left(17.01 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$.

The investigation of the thermal behavior was the next part of analysis. The samples of the experiments V141 and V142 were heated up two times from -80 to $200^{\circ} \mathrm{C}$ with a cooling run in between $(\mathrm{dT} / \mathrm{dt}=10 \mathrm{~K} / \mathrm{min})$. The samples were not measured up to $300^{\circ} \mathrm{C}$ because from Section 4.2 it was known that the hydrolyzed polymer-samples will decomposed. In Figure 11.22 the two heating runs and the cooling run of both experiments V141 and V142 are represented.

Fig. 11.22.: DSC thermogram of copolymer V141 ($\left.\mathrm{P}^{[} \mathrm{MAA}_{0.37}-\mathrm{co}-\mathrm{BzMA}_{0.63}\right]$, black line) and V142 $\left(\mathrm{P}^{\prime} \mathrm{MAA}_{0.51}-\right.$ co- $\mathrm{BzMA}_{0.49}$], grey line); a / a ' - first heating run, b / b - - first cooling run, $\mathrm{c} / \mathrm{c}^{\prime}-$ second heating run; heating rate $10 \mathrm{~K} \cdot \mathrm{~min}^{-1}$

Both thermograms of the first heating run exhibited an endothermic peak in the temperature range from 45 to $115^{\circ} \mathrm{C}$ for the sample of experiment V141 and in the range from 60 to $135^{\circ} \mathrm{C}$ for the sample of experiment V142. Then the DSC-signal increased. The second heating run and the cooling run did not show peaks or glass transition steps. The shape of the curves was the same as at the hydrolysis in Section 4.2. So also the hydrolyzed copolymers decomposed during the first heating run. The shape of the endothermic peak and the composition of the copolymer, the peak area and peak height were determined. The results are listed in Table 11.1%

Tab. 11.17.: DSC results of hydrolysis-products of copolymers from experiment V141 and V142

Entry	F $_{\text {MAA }}$	Area $\left[\mathrm{J} \cdot \mathrm{g}^{-1}\right]$	$\mathrm{T}_{\text {Peak }}$ $\left[{ }^{[\mathrm{C}]}\right.$	$\mathrm{T}_{\text {onset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{T}_{\text {offset }}$ $\left[{ }^{\circ} \mathrm{C}\right]$	Width $\left[{ }^{\circ} \mathrm{C}\right]$	Height $\left[\mathrm{mW} \cdot \mathrm{mg}^{-1}\right]$
V141	0.37	79.7	85.8	46.6	114.9	58.9	0.2503
V142	0.51	77.8	100.1	62.0	136.9	65.4	0.2234

The peak area and the peak height of copolymer V141 with $\mathrm{F}_{\mathrm{MAA}}=0.37$ are higher than the peak area and the peak height of copolymer V142 with $\mathrm{F}_{\mathrm{MAA}}=0.51$. The higher amount of MAA inside the polymer chain gave lower values. So the composition of the copolymer influences the thermal behavior.

11.4. Summary

The syntheses of the two copolymers tBMA/BzMA by means of an online ATR-FTIRspectroscopy measurement controlled automatic process did not yield in evaluable results, because it was not known how many feed-solution was injected at a certain polymerization time. A second problem was that the whole experimental setup was not tight against oxygen. So a partial inhibition of the system during the polymerizations was possible. The resulting IR-spectra showed specific bands for the tert-butyl-group and the benzyl group. But it was not possible to distinguish between signals of monomer and polymer, therewith the conversion and the composition of the copolymers during the copolymerizations could not be determined.

However, the resulting precipitated copolymers were analyzed in the same way as the statistical and the gradient copolymers with tBMA and BzMA before. From the integrals of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of the resulting products the cumulative compositions of the copolymers were calculated. The copolymer-compositions of experiment V131 is $\mathrm{P}\left[\mathrm{tBMA}_{0.37}-\mathrm{co}-\right.$ $\left.\mathrm{BzMA}_{0.63}\right]$ and of V132 P $\left[\mathrm{tBMA}_{0.51}-\mathrm{co}-\mathrm{BzMA}_{0.49}\right]$. The different kinds of injection methods led to copolymers with a different composition. The continuous linear injection of tBMA during experiment V131 resulted in a copolymer with one third tBMA and two thirds BzMA inside the polymer chain. The IR-controlled injection resulted in a copolymer with 50% tBMA and 50% BzMA what was the intended over-all composition. The elementary anal-
ysis of samples of the two copolymers gave only small differences between the theoretical amount of carbon, hydrogen and oxygen to the measured values. So both samples were free of pollution. The values also fit to the data resulting from the analyzes of the statistical and gradient copolymers with tBMA and BzMA. The calculations of the composition of the copolymers from the amount of carbon and hydrogen leaded to results that differed strongly from the compositions which were calculated from the integrals of the ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra. The ATR-FTIR-spectra of the two resulting copolymers differed at the investigated vibrational bands at $850 \mathrm{~cm}^{-1}$ and $730 \mathrm{~cm}^{-1}$ accordingly to the differences of the compositions found by the analysis of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra. The SEC-analyzes gave bimodal elution diagrams for the samples of both copolymers, that indicated that the control of the polymerizations was lost in both experiments. The DSC-measurements showed the influence of the composition on the thermal behavior. Copolymer V131 has a lower amount of tBMA and so a lower $\mathrm{T}_{\text {onset }}$ and T_{g}. The glass transition temperature range $\Delta \mathrm{T}$ was higher at the sample of copolymer V132. The calculation of the glass transition temperatures by the Fox-Equation gave nearly the same values than the measured ones.

The tert-butyl groups of the two copolymers resulting from the copolymerizations of BzMA and tBMA with online IR-measurement were hydrolytically cleaved by means of methanesulfonic acid (MSA). The characterization of the hydrolyzed copolymers with ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectroscopy and elementary analysis showed the absence of tert-butyl-groups in the polymer chains, and hence, a total conversion of the hydrolysis. The elementary analysis results agreed decently to the structure of both experiments. A calculation of the monomer molar fraction from the measured contents of carbon or hydrogen leads to values which obviously differed from the compositions resulting from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-analysis. The changes in the ATR-FTIRspectra supported the good results of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectroscopy. The vibrational band of the OH-group occurred and the fingerprint-region change in case of the vibrational bands from the tert-butyl-group. The changes were so vigorous that an analysis of the vibrational band of BzMA was not possible. The shape of the RI-detector signals changed from educt to product for the samples of both experiments but the maximum elution volumes of both samples did not shifted obviously. So a change of the relative molar mass could not be calculated for both copolymers. The DSC analysis showed broad endothermic peaks for both copolymers in the same region and the samples did not regenerate after the first heating run. That was the same behavior observed for the statistical and the gradient copolymers that contained tBMA and BzMA. The peak height and the peak area of the endothermic peak was different for the samples of the two copolymers. Both hydrolysis of the resulting copolymers worked well and two amphiphilic copolymers with different composition have successfully be obtained.

12. Summary

The purpose of this work was the synthesis of functional amphiphilic gradient copolymers by means of controlled radical polymerizations, more precisely Atom Transfer Radical Polymerization. Two different monomer combinations, tert- and n-butyl methacrylate and tert-butyl and benzyl methacrylate, were copolymerized.

In a first step seven different linear statistical copolymers were synthesized by means of batch polymerization. They were used as comparative material and the analysis of the reaction kinetic yielded the effective rate constants and the copolymerization parameters of the monomers in the particular monomer systems. Furthermore required for gradient polymer syntheses di-block copolymers were synthesized as a second kind of comparative material.

With the results of the kinetic analysis the monomer addition programs for the semibatch polymerizations were calculated to prepare gradient copolymers. Four different gradient copolymers with different compositions of tBMA and nBMA ($\mathrm{f}_{\mathrm{tBMA}}=0.5,0.65,0.75,0.85$) and one gradient copolymer of tBMA and BzMA ($\mathrm{f}_{\mathrm{tBMA}}=0.5$) were synthesized. All semibatch reactions proceeded controlled, i. e. with mostly suppressed termination reactions. The compositions of the resulting copolymers exhibited "double-gradients". The point of change of the compositions were located at 16%, respectively 11% of conversion. The effective compositional gradients $\phi=\mathrm{dF}_{1} / \mathrm{dp}$ were $\phi=0.53,0.46,0.28,0.15$ and 0.43 . A systematic correlation between the thermal behavior of the gradient copolymers and their composition was not found, as opposed to the statistical and the di-block copolymers.

Semibatch synthesis with online infrared-spectroscopy observation to control the monomer feed during the synthesis were used for the polymerization of gradient copolymers. It was not possible to calculate the change of compositions of the polymers because it was not known how much monomer was injected at a certain time of the polymerization. A second problem was that the experimental set-up was not gas-tight. Hence, oxygen led to termination reactions.

Three different kinds of hydrolysis were investigated for the cleavage of the tert-butyl groups on the polymer chains. The obtained gradient copolymers were hydrolyzed with methanesulfonic acid to obtain the intended amphiphilic polymer chains. All reactions proceeded with quantitative conversion. Hence, functional amphiphilic copolymers were obtained.

13. Zusammenfassung

Das Ziel der vorliegenden Arbeit war die Synthese von funktionellen amphiphilen Gradienten Copolymeren mittels kontrollierter radikalischer Polymerisation, genauer durch Atom Transfer Radical Polymerization. Zwei verschiedene Monomer-Mischungen wurden untersucht: tertund n-Butylmethacrylate und tert-Butyl und Benzylmethacrylate.

Im ersten Schritt wurden lineare, statistische Copolymere im Batchverfahren synthetisiert. Zum einen dienten sie als Vergleichsmaterial zu den Gradientencopolymeren und zum zweiten lieferte die Analyse der Reaktionskinetik die effektiven Geschwindigkeitskonstanten und die Copolymerisations-Parameter der Monomere der beiden vorliegenden Monomersysteme (tBMA/nBMA und tBMA/BzMA). Als zweites Vergleichsmaterial wurden Block Copolymere aus den Monomeren hergestellt.

Die Daten aus den Analysen der Batchsynthesen wurden für die Ermittlung der ZudosierungsProgramme für die Semibatchsynthesen der Gradienten Copolymere verwendet. Vier Gradienten Copolymere mit verschiedenen Zusammensetzungen aus tBMA und nBMA ($\mathrm{f}_{\mathrm{tBMA}}=0.5$, $0.65,0.75,0.85$) und ein Gradienten Copolymer aus tBMA und BzMA ($\mathrm{f}_{\mathrm{tBMA}}=0.5$) wurden synthetisiert. Alle Semibatchsynthesen verliefen kontrolliert, d. h. unter weitgehender Unterdrückung von Abbruchreaktionen. Die resultierenden Copolymere wiesen alle einen "DoppelGradienten" in ihrer Zusammensetzung auf. Die effektive Gradient der Zusammensetzung betrug $\phi=\mathrm{dF}_{1} / \mathrm{dp}=0.53,0.46,0.28,0.15$ und 0.43 . Einen systematischen Zusammenhang zwischen dem thermischen Verhalten der Gradienten Copolymere und ihrer Zusammensetzung konnte nicht gefunden werden, anders als bei den statistisch und den Block Copolymere.

Semibatchsynthesen unter kontienuierlicher IR-Messung während der Synthese wurden zur Polymerisation von Gradienten Copolymeren durchgeführt. Es war allerdings nicht möglich die Menge an zudosiertem Monomer zu einem bestimmten Zeitpunkt zu bestimmen, wodurch die Veränderungen in der Zusammensetzung des Polymers nicht ermittelt werden konnten. Des weiteren war die Versuchsapparatur nicht vollständig gasdicht. Der eintretende Sauerstoff führte zu Abbruchreaktionen.

Die erhaltenen Copolymere wurden mittels Methansulfonsäure hydrolysiert um den angestrebten amphiphilen Charakter der Polymerketten zu erhalten. Die Reaktionen liefen alle unter vollständigem Umsatz ab, es wurden saubere, funktionelle amphiphile Copolymere synthetisiert.

A. Feeding-Program of experiment V31

Input

System

001 '- Comonomer System Definition File -'
002 't-BuMA / n-BMA, p-TosCl:PMDETA:CuCl, MEK, 80 GrdC'
003 , ,
004 '—— Molar Masses and Densities _-'
$005 \quad$ 'MM1 $=$ ', 1.4220 d 02
006 'rh1 = ', 0.8750d00
007 'MM2 = ', 1.4220 d 02
008 'rh2 = ', 0.8960d00
$009 \quad$ 'MMI $=$ ', 3.6317 d 02
$010 \quad$ 'rhI $=$ ', 0.9950d00
$011 \quad$ 'MMS $=$ ', 7.2060d01
$012 \quad$ 'rhS $=$ ', 0.8050d00
013 , ,
014 , - Copolymerisation Parameter --'
015 'r1 =', 0.8860d00
$016 \quad$ 'r2 $=$ ', 0.4720 d 00
017 , ,
018 '—_ Kinetic Parameter ——
$019 \quad$ 'nk $=$ ', 2
$020 \quad$ 'kf0 $=$ ', 1.0000d00
021 'kf1 = ', 1.4375d-1
022 'kf2 = ', 0.0000d00
023 '
024 EOF
025 'ONLY EDIT 2. line and r1, r2, n, kfi'

```
Dosage
    001
        '- Comonomer Dosage Definition File -'
        'g(p) = const.'
        ,,
        ,_- Gradient Definition Parameter __,
        'ng = ' 0
        'gpi =' -0.10000E+01
        ,,
        ,__ Gamma Definition ___
        'Ga = '0.19535E+01
        ,,
        ,_ Alpha1 Definition Parameter __,
        'na =' 0
        'api =' 0.00000E +00
        ,- Initial Values
        'p0 =' 0.00000E+00
        'pe ='0.99000E+00
        'F10 =' 0.10000E+01
        't0 =' 0.00000E+00
    019 , Integration Cont
    019 '- Integration Control Parameter --'
    020 'ep =' 0.10000E-12
    021 'h1 = ' 0.10000E-09
```

022	${ }^{\prime} \mathrm{hmin}=, 0.10000 \mathrm{E}-20$
023	${ }^{\prime} \mathrm{hmax}=, 0.10000 \mathrm{E}-04$
024	, - Data Save Control Parameter
025	'Save= ' 1
026	${ }^{\prime} \mathrm{dpSv}={ }^{\prime} 0.10000 \mathrm{E}-01$
027	
028	EOF

Output

GRADDOS1

001	0.17486E-09	0.10000E-09	0.10000 E	$0.50000 \mathrm{E}+00$	0.25334	0.00000 E	0.10
002	$0.17595 \mathrm{E}-01$	0.10001E-01	$0.99108 \mathrm{E}+00$. $50446 \mathrm{E}+00$	$0.25383 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	0
	0.	0.20000	0.9	$0.50899 \mathrm{E}+00$	0.	$0.00000 \mathrm{E}+00$	$0.98000 \mathrm{E}+00$
	0.53	0.3	$0.97286 \mathrm{E}+00$	$0.51357 \mathrm{E}+00$	$0.25480 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.97000 \mathrm{E}+00$
005	0.71667 E	0.40000 E	$0.96356 \mathrm{E}+00$	$0.51823 \mathrm{E}+00$	0.255	$0.00000 \mathrm{E}+00$	$0.96000 \mathrm{E}+00$
006	0.90	0.50001	0.9	0.5	0.2	$0.00000 \mathrm{E}+00$	0
	0.1	0.6	$0.94458 \mathrm{E}+00$	$0.52772 \mathrm{E}+00$	$0.25621 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.94000 \mathrm{E}+00$
008	$0.12769 \mathrm{E}+00$	$0.70000 \mathrm{E}-01$	$0.93489 \mathrm{E}+00$	$0.53257 \mathrm{E}+00$	0.2566	$0.00000 \mathrm{E}+00$	$0.93000 \mathrm{E}+00$
009	$0.14680 \mathrm{E}+00$	$0.80001 \mathrm{E}-01$	0.9	$0.53748 \mathrm{E}+00$	$0.25714 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	0
010	0.16612 E	0.90000	$0.91513 \mathrm{E}+00$	$0.54245 \mathrm{E}+00$	0.257	$0.00000 \mathrm{E}+00$. 9
011	$0.18566 \mathrm{E}+00$	$0.10000 \mathrm{E}+00$	0.90	0.5	0.2	0.00	$0.90000 \mathrm{E}+00$
	0.	0.	0.8	.	$0.25853 \mathrm{E}+00$.	$0.89000 \mathrm{E}+00$
013	$0.22539 \mathrm{E}+00$	0.12000 E	$0.88450 \mathrm{E}+00$	$0.55776 \mathrm{E}+00$	0.25900 E	$0.00000 \mathrm{E}+00$	$0.88000 \mathrm{E}+00$
	$0.24558 \mathrm{E}+00$	$0.13000 \mathrm{E}+00$	$0.87403 \mathrm{E}+00$	$0.56299 \mathrm{E}+00$	0.2594	$0.00000 \mathrm{E}+00$. $87000 \mathrm{E}+00$
	0.2	0.	$0.86343 \mathrm{E}+00$	$0.56829 \mathrm{E}+00$	25	$0.00000 \mathrm{E}+00$	0
016	$0.28661 \mathrm{E}+00$	$0.15000 \mathrm{E}+0$	$0.85269 \mathrm{E}+00$	$0.57366 \mathrm{E}+00$	0.2604	$0.00000 \mathrm{E}+00$	$0.85000 \mathrm{E}+00$
	0.30	0.16000	0.8	$0.57909 \mathrm{E}+00$. 2	0.00000	0
	0.3	0.17000	$0.83084 \mathrm{E}+00$	$0.58458 \mathrm{E}+00$	0.2613	0.0	0
	$0.34975 \mathrm{E}+00$	0.18000 E	$0.81972 \mathrm{E}+00$	$0.59014 \mathrm{E}+00$	$0.26180 \mathrm{E}+0$	$0.00000 \mathrm{E}+00$	$0.82000 \mathrm{E}+00$
	0.	$0.19000 \mathrm{E}+00$	$0.80847 \mathrm{E}+00$	5	$0.26226 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.81000 \mathrm{E}+00$
	$0.39289 \mathrm{E}+00$	0.20000	0.7	$0.60146 \mathrm{E}+00$	0.2	0.00	0.
	0.41	0.21000	0.785	$0.60721 \mathrm{E}+00$	0.263	$0.00000 \mathrm{E}+00$	$0.79000 \mathrm{E}+00$
	0.	-	$0.77399 \mathrm{E}+00$	0	$0.26359 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.78000 \mathrm{E}+00$
	$0.45917 \mathrm{E}+00$	0.23000	$0.76225 \mathrm{E}+00$	$0.61891 \mathrm{E}+00$	$0.26401 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.77000 \mathrm{E}+00$
	0.4	-	$0.75041 \mathrm{E}+00$	$0.62486 \mathrm{E}+00$	$0.26440 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.76000 \mathrm{E}+00$
026	$0.50437 \mathrm{E}+00$	$0.25000 \mathrm{E}+00$	0.7	$0.63086 \mathrm{E}+00$	0.2	$0.00000 \mathrm{E}+00$	0
	0.52728	0.26000	$0.72639 \mathrm{E}+00$	$0.63693 \mathrm{E}+00$	$0.26513 \mathrm{E}+$	$0.00000 \mathrm{E}+00$	$0.74000 \mathrm{E}+00$
	0.55	$0.27000 \mathrm{E}+00$	0.	$0.64306 \mathrm{E}+00$	0.	0.0	$0.73000 \mathrm{E}+00$
029	$0.57369 \mathrm{E}+00$	$0.28000 \mathrm{E}+00$	$0.70196 \mathrm{E}+00$	$0.64925 \mathrm{E}+00$	0.26	$0.00000 \mathrm{E}+00$	$0.72000 \mathrm{E}+00$
	0.59	$0.29000 \mathrm{E}+00$	0.6	.65550E+00	. 26	$0.00000 \mathrm{E}+00$	$0.71000 \mathrm{E}+00$
	$0.62089 \mathrm{E}+00$	$0.30000 \mathrm{E}+00$	0.6	$0.66180 \mathrm{E}+00$	0.2	$0.00000 \mathrm{E}+00$	$0.70000 \mathrm{E}+00$
	$0.64479 \mathrm{E}+0$	0.		$0.66817 \mathrm{E}+00$. 26	$0.00000 \mathrm{E}+00$	$0.69000 \mathrm{E}+00$
	$0.66889 \mathrm{E}+00$	$0.32000 \mathrm{E}+00$	0.65	$0.67458 \mathrm{E}+00$	0.266	0.00	$0.68000 \mathrm{E}+00$
	$0.69318 \mathrm{E}+00$	$0.33000 \mathrm{E}+00$	$0.63937 \mathrm{E}+00$	$0.68105 \mathrm{E}+00$	$0.26615 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.67000 \mathrm{E}+00$
	$0.71768 \mathrm{E}+00$	$0.34000 \mathrm{E}+00$	0.6	$0.68757 \mathrm{E}+00$.26599E+	$0.00000 \mathrm{E}+00$	$0.66000 \mathrm{E}+00$
036	$0.74238 \mathrm{E}+00$	$0.35000 \mathrm{E}+00$	$0.61386 \mathrm{E}+00$	$0.69413 \mathrm{E}+00$	$0.26571 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.65000 \mathrm{E}+00$
037	$0.76728 \mathrm{E}+00$	$0.36000 \mathrm{E}+00$	$0.60104 \mathrm{E}+00$	$0.70074 \mathrm{E}+00$	$0.26531 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.64000 \mathrm{E}+00$
	$0.79239 \mathrm{E}+00$	$0.37000 \mathrm{E}+00$	$0.58818 \mathrm{E}+00$	$0.70740 \mathrm{E}+00$	0.2647	$0.00000 \mathrm{E}+00$	$0.63000 \mathrm{E}+00$
9	$0.81771 \mathrm{E}+00$	$0.38000 \mathrm{E}+00$	$0.57529 \mathrm{E}+00$	$0.71409 \mathrm{E}+00$	$0.26407 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.62000 \mathrm{E}+00$
040	$0.84324 \mathrm{E}+00$	$0.39000 \mathrm{E}+0$	$0.56238 \mathrm{E}+00$	$0.72083 \mathrm{E}+00$	$0.26320 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.61000 \mathrm{E}+00$
	$0.86901 \mathrm{E}+00$	$0.40000 \mathrm{E}+0$	$0.54946 \mathrm{E}+00$	$0.72759 \mathrm{E}+00$	$0.26215 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.60000 \mathrm{E}+00$
	$0.89500 \mathrm{E}+00$	$0.41000 \mathrm{E}+00$	$0.53654 \mathrm{E}+00$	$0.73439 \mathrm{E}+00$	$0.26089 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.59000 \mathrm{E}+00$
043	$0.92123 \mathrm{E}+00$	$0.42000 \mathrm{E}+00$	0.52364 E	$0.74122 \mathrm{E}+00$	0.2594	$0.00000 \mathrm{E}+00$	$0.58000 \mathrm{E}+00$
	$0.94771 \mathrm{E}+00$	$0.43000 \mathrm{E}+00$	$0.51075 \mathrm{E}+00$	$0.74806 \mathrm{E}+00$	$0.25770 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.57000 \mathrm{E}+00$
045	$0.97445 \mathrm{E}+00$	$0.44000 \mathrm{E}+00$	$0.49789 \mathrm{E}+00$	$0.75493 \mathrm{E}+00$	$0.25574 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.56000 \mathrm{E}+00$
046	$0.10015 \mathrm{E}+01$	$0.45000 \mathrm{E}+00$	$0.48507 \mathrm{E}+00$	$0.76181 \mathrm{E}+00$	$0.25351 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.55000 \mathrm{E}+00$
7	$0.10288 \mathrm{E}+01$	$0.46000 \mathrm{E}+00$	$0.47230 \mathrm{E}+00$	$0.76870 \mathrm{E}+00$	$0.25100 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.54000 \mathrm{E}+00$
8	$0.10564 \mathrm{E}+01$	$0.47000 \mathrm{E}+00$	$0.45959 \mathrm{E}+00$	$0.77560 \mathrm{E}+00$	$0.24819 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.53000 \mathrm{E}+00$
0	$0.10844 \mathrm{E}+01$	$0.48000 \mathrm{E}+00$	$0.44696 \mathrm{E}+00$	$0.78249 \mathrm{E}+00$	$0.24508 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.52000 \mathrm{E}+00$
1	$0.11127 \mathrm{E}+01$	$0.49000 \mathrm{E}+00$	$0.43440 \mathrm{E}+00$	$0.78938 \mathrm{E}+00$	$0.24166 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.51000 \mathrm{E}+00$
052	$0.11414 \mathrm{E}+01$	$0.50000 \mathrm{E}+00$	$0.42193 \mathrm{E}+00$	$0.79626 \mathrm{E}+00$	$0.23791 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.50000 \mathrm{E}+00$

053	$0.11704 \mathrm{E}+01$	$0.51000 \mathrm{E}+00$	$0.40956 \mathrm{E}+00$	$0.80312 \mathrm{E}+00$	$0.23383 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.49000 \mathrm{E}+00$
054	$0.12000 \mathrm{E}+01$	$0.52000 \mathrm{E}+00$	$0.39729 \mathrm{E}+00$	$0.80996 \mathrm{E}+00$	$0.22943 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.48000 \mathrm{E}+00$
055	$0.12300 \mathrm{E}+01$	$0.53000 \mathrm{E}+00$	$0.38515 \mathrm{E}+00$	$0.81677 \mathrm{E}+00$	$0.22470 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.47000 \mathrm{E}+00$
056	$0.12605 \mathrm{E}+01$	$0.54000 \mathrm{E}+00$	$0.37313 \mathrm{E}+00$	$0.82355 \mathrm{E}+00$	$0.21965 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.46000 \mathrm{E}+00$
057	$0.12915 \mathrm{E}+01$	$0.55000 \mathrm{E}+00$	$0.36124 \mathrm{E}+00$	$0.83029 \mathrm{E}+00$	$0.21429 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.45000 \mathrm{E}+00$
058	$0.13231 \mathrm{E}+01$	$0.56000 \mathrm{E}+00$	$0.34949 \mathrm{E}+00$	$0.83698 \mathrm{E}+00$	$0.20862 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.44000 \mathrm{E}+00$
059	$0.13554 \mathrm{E}+01$	$0.57000 \mathrm{E}+00$	$0.33789 \mathrm{E}+00$	$0.84361 \mathrm{E}+00$	$0.20267 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.43000 \mathrm{E}+00$
060	$0.13884 \mathrm{E}+01$	$0.58000 \mathrm{E}+00$	$0.32644 \mathrm{E}+00$	$0.85019 \mathrm{E}+00$	$0.19645 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.42000 \mathrm{E}+00$
061	$0.14221 \mathrm{E}+01$	$0.59000 \mathrm{E}+00$	$0.31515 \mathrm{E}+00$	$0.85670 \mathrm{E}+00$	$0.18998 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.41000 \mathrm{E}+00$
062	$0.14566 \mathrm{E}+01$	$0.60000 \mathrm{E}+00$	$0.30402 \mathrm{E}+00$	$0.86314 \mathrm{E}+00$	$0.18328 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.40000 \mathrm{E}+00$
063	$0.14919 \mathrm{E}+01$	$0.61000 \mathrm{E}+00$	$0.29306 \mathrm{E}+00$	$0.86950 \mathrm{E}+00$	$0.17638 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.39000 \mathrm{E}+00$
064	$0.15283 \mathrm{E}+01$	$0.62000 \mathrm{E}+00$	$0.28228 \mathrm{E}+00$	$0.87578 \mathrm{E}+00$	$0.16932 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.38000 \mathrm{E}+00$
065	$0.15656 \mathrm{E}+01$	$0.63000 \mathrm{E}+00$	$0.27167 \mathrm{E}+00$	$0.88196 \mathrm{E}+00$	$0.16211 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.37000 \mathrm{E}+00$
066	$0.16040 \mathrm{E}+01$	$0.64000 \mathrm{E}+00$	$0.26124 \mathrm{E}+00$	$0.88805 \mathrm{E}+00$	$0.15480 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.36000 \mathrm{E}+00$
067	$0.16436 \mathrm{E}+01$	$0.65000 \mathrm{E}+00$	$0.25099 \mathrm{E}+00$	$0.89403 \mathrm{E}+00$	$0.14740 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.35000 \mathrm{E}+00$
068	$0.16845 \mathrm{E}+01$	$0.66000 \mathrm{E}+00$	$0.24093 \mathrm{E}+00$	$0.89990 \mathrm{E}+00$	$0.13997 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.34000 \mathrm{E}+00$
069	$0.17267 \mathrm{E}+01$	$0.67000 \mathrm{E}+00$	$0.23105 \mathrm{E}+00$	$0.90566 \mathrm{E}+00$	$0.13251 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.33000 \mathrm{E}+00$
070	$0.17705 \mathrm{E}+01$	$0.68000 \mathrm{E}+00$	$0.22136 \mathrm{E}+00$	$0.91130 \mathrm{E}+00$	$0.12508 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$. $32000 \mathrm{E}+00$
071	$0.18159 \mathrm{E}+01$	$0.69000 \mathrm{E}+00$	$0.21186 \mathrm{E}+00$	$0.91680 \mathrm{E}+00$	$0.11770 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.31000 \mathrm{E}+00$
072	$0.18630 \mathrm{E}+01$	$0.70000 \mathrm{E}+00$	$0.20254 \mathrm{E}+00$	$0.92218 \mathrm{E}+00$	$0.11039 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.30000 \mathrm{E}+00$
073	$0.19121 \mathrm{E}+01$	$0.71000 \mathrm{E}+00$	$0.19341 \mathrm{E}+00$	$0.92741 \mathrm{E}+00$	$0.10319 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.29000 \mathrm{E}+00$
074	$0.19632 \mathrm{E}+01$	$0.72000 \mathrm{E}+00$	$0.18447 \mathrm{E}+00$	$0.93251 \mathrm{E}+00$	$0.96120 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.28000 \mathrm{E}+00$
07	$0.20166 \mathrm{E}+01$	$0.73000 \mathrm{E}+00$	$0.17571 \mathrm{E}+00$	$0.93745 \mathrm{E}+00$	$0.89208 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$. $27000 \mathrm{E}+00$
076	$0.20724 \mathrm{E}+01$	$0.74000 \mathrm{E}+00$	$0.16713 \mathrm{E}+00$	$0.94224 \mathrm{E}+00$	$0.82475 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.26000 \mathrm{E}+00$
077	$0.21309 \mathrm{E}+01$	$0.75000 \mathrm{E}+00$	$0.15873 \mathrm{E}+00$	$0.94687 \mathrm{E}+00$	$0.75941 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.25000 \mathrm{E}+00$
078	$0.21923 \mathrm{E}+01$	$0.76000 \mathrm{E}+00$	$0.15052 \mathrm{E}+00$	$0.95134 \mathrm{E}+00$	$0.69624 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.24000 \mathrm{E}+00$
079	$0.22569 \mathrm{E}+01$	$0.77000 \mathrm{E}+00$	$0.14248 \mathrm{E}+00$	$0.95564 \mathrm{E}+00$	$0.63541 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.23000 \mathrm{E}+00$
080	$0.23250 \mathrm{E}+01$	$0.78000 \mathrm{E}+00$	$0.13462 \mathrm{E}+00$	$0.95976 \mathrm{E}+00$	$0.57704 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.22000 \mathrm{E}+00$
081	$0.23970 \mathrm{E}+01$	$0.79000 \mathrm{E}+00$	$0.12693 \mathrm{E}+00$	$0.96371 \mathrm{E}+00$	$0.52125 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.21000 \mathrm{E}+00$
082	$0.24733 \mathrm{E}+01$	$0.80000 \mathrm{E}+00$	$0.11942 \mathrm{E}+00$	$0.96748 \mathrm{E}+00$	$0.46815 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.20000 \mathrm{E}+00$
083	$0.25543 \mathrm{E}+01$	$0.81000 \mathrm{E}+00$	$0.11206 \mathrm{E}+00$	$0.97107 \mathrm{E}+00$	$0.41782 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.19000 \mathrm{E}+00$
084	$0.26406 \mathrm{E}+01$	$0.82000 \mathrm{E}+00$	$0.10488 \mathrm{E}+00$	$0.97447 \mathrm{E}+00$	$0.37031 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.18000 \mathrm{E}+00$
085	$0.27329 \mathrm{E}+01$	$0.83000 \mathrm{E}+00$	$0.97853 \mathrm{E}-01$	$0.97767 \mathrm{E}+00$	$0.32567 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.17000 \mathrm{E}+00$
086	$0.28318 \mathrm{E}+01$	$0.84000 \mathrm{E}+00$	$0.90987 \mathrm{E}-01$	$0.98068 \mathrm{E}+00$	$0.28394 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.16000 \mathrm{E}+00$
087	$0.29383 \mathrm{E}+01$	$0.85000 \mathrm{E}+00$	$0.84275 \mathrm{E}-01$	$0.98349 \mathrm{E}+00$	$0.24513 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.15000 \mathrm{E}+00$
088	$0.30534 \mathrm{E}+01$	$0.86000 \mathrm{E}+00$	$0.77715 \mathrm{E}-01$	$0.98610 \mathrm{E}+00$	$0.20926 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.14000 \mathrm{E}+00$
089	$0.31784 \mathrm{E}+01$	$0.87000 \mathrm{E}+00$	$0.71304 \mathrm{E}-01$	$0.98851 \mathrm{E}+00$	$0.17631 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.13000 \mathrm{E}+00$
090	$0.33151 \mathrm{E}+01$	$0.88000 \mathrm{E}+00$	$0.65038 \mathrm{E}-01$	$0.99070 \mathrm{E}+00$	$0.14628 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.12000 \mathrm{E}+00$
091	$0.34654 \mathrm{E}+01$	$0.89000 \mathrm{E}+00$	$0.58914 \mathrm{E}-01$	$0.99269 \mathrm{E}+00$	$0.11914 \mathrm{E}-01$	$0.00000 \mathrm{E}+00$	$0.11000 \mathrm{E}+00$
092	$0.36319 \mathrm{E}+01$	$0.90000 \mathrm{E}+00$	$0.52929 \mathrm{E}-01$	$0.99447 \mathrm{E}+00$	$0.94863 \mathrm{E}-02$	$0.00000 \mathrm{E}+00$	$0.10000 \mathrm{E}+00$
093	$0.38182 \mathrm{E}+01$	$0.91000 \mathrm{E}+00$	$0.47079 \mathrm{E}-01$	$0.99603 \mathrm{E}+00$	$0.73417 \mathrm{E}-02$	$0.00000 \mathrm{E}+00$	$0.90001 \mathrm{E}-01$
094	$0.40289 \mathrm{E}+01$	$0.92000 \mathrm{E}+00$	$0.41362 \mathrm{E}-01$	$0.99737 \mathrm{E}+00$	$0.54758 \mathrm{E}-02$	$0.00000 \mathrm{E}+00$	$0.80000 \mathrm{E}-01$
095	$0.42706 \mathrm{E}+01$	$0.93000 \mathrm{E}+00$	$0.35773 \mathrm{E}-01$	$0.99849 \mathrm{E}+00$	$0.38845 \mathrm{E}-02$	$0.00000 \mathrm{E}+00$	$0.70000 \mathrm{E}-01$
096	$0.45529 \mathrm{E}+01$	$0.94000 \mathrm{E}+00$	$0.30310 \mathrm{E}-01$	$0.99939 \mathrm{E}+00$	$0.25628 \mathrm{E}-02$	$0.00000 \mathrm{E}+00$	$0.60001 \mathrm{E}-01$
097	$0.48908 \mathrm{E}+01$	$0.95000 \mathrm{E}+00$	$0.24970 \mathrm{E}-01$	$0.10001 \mathrm{E}+01$	$0.15057 \mathrm{E}-02$	$0.00000 \mathrm{E}+00$	$0.50001 \mathrm{E}-01$
098	$0.53092 \mathrm{E}+01$	$0.96000 \mathrm{E}+00$	$0.19749 \mathrm{E}-01$	$0.10005 \mathrm{E}+01$	$0.70780 \mathrm{E}-03$	$0.00000 \mathrm{E}+00$	$0.40001 \mathrm{E}-01$
099	$0.58551 \mathrm{E}+01$	$0.97000 \mathrm{E}+00$	$0.14645 \mathrm{E}-01$	$0.10007 \mathrm{E}+01$	$0.16364 \mathrm{E}-03$	$0.00000 \mathrm{E}+00$	$0.30001 \mathrm{E}-01$
100	t/kp0 p f1 q dq/dt Alpha1 F1						
101							
102	GRADPOL.f95-gfortran version						
103	Date: 2013/2/12						
104	Time: 15:15						

GRADIENT

001	$0.10000 \mathrm{E}-09$	$-0.10000 \mathrm{E}+01$
002	$0.10001 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$
003	$0.20000 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$
004	$0.30001 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$
005	$0.40000 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$
006	$0.50001 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$
007	$0.60001 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$
008	$0.70000 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$

09	$0.80001 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$
010	$0.90000 \mathrm{E}-01$	$-0.10000 \mathrm{E}+01$
011	$0.10000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
012	$0.11000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
013	$0.12000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
014	$0.13000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
015	$0.14000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
016	$0.15000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
017	$0.16000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
018	$0.17000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
019	$0.18000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
020	$0.19000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
021	$0.20000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
022	$0.21000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
023	$0.22000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
024	$0.23000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
025	$0.24000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
026	$0.25000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
027	$0.26000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
028	$0.27000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
029	$0.28000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
030	$0.29000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
031	$0.30000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
032	$0.31000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
033	$0.32000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
034	$0.33000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
03	$0.34000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
036	$0.35000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
037	$0.36000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
038	$0.37000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
039	$0.38000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
040	$0.39000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
041	$0.40000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
042	$0.41000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
043	$0.42000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
044	$0.43000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
045	$0.44000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
046	$0.45000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
047	$0.46000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
048	$0.47000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
049	$0.48000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
050	$0.49000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
051	$0.50000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
052	$0.51000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
053	$0.52000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
054	$0.53000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
055	$0.54000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
056	$0.55000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
057	$0.56000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
058	$0.57000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
059	$0.58000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
060	$0.59000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
061	$0.60000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
062	$0.61000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
063	$0.62000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
064	$0.63000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
065	$0.64000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
066	$0.65000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
067	$0.66000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
068	$0.67000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$
069	$0.68000 \mathrm{E}+00$	$-0.10000 \mathrm{E}+01$

Program

$001 \quad 107.94478, \quad 1.750397$
$002 \quad 109.25153, \quad 1.753782$
$003110.58282,1.757168$
004 111.89571, 1.760484
$005113.23313,1.763732$
$006 \quad 114.57669, \quad 1.766979$
007 115.88957, 1.770227
008 117.23926, 1.773405
009 118.52761, 1.776652
$010 \quad 119.87730, \quad 1.779830$
$011 \quad 121.22699, \quad 1.783078$
$012 \quad 122.51534, \quad 1.786256$
$013 \quad 123.86503, \quad 1.789503$
$014 \quad 125.21472, \quad 1.792682$
015 126.50307, 1.795929
$016 \quad 127.79141, \quad 1.799176$
017 129.14110, 1.802424
$018 \quad 130.42945,1.805602$
019 131.65644, 1.808849
$020 \quad 133.00613, \quad 1.812028$
$021 \quad 134.29448, \quad 1.815137$

022	135.52147,	1.818177
023	136.80982,	1.821217
024	138.03681,	1.824119
025	139.26380,	1.826814
026	140.55215,	1.829439
027	141.71779,	1.831857
028	143.00613,	1.833999
029	144.17178	1.835865
030	145.39877,	1.837385
031	146.62577,	1.838559
032	147.85276,	1.839181
033	149.01840,	1.839388
034	150.30675	1.838905
035	151.53374,	1.837799
036	152.76074,	1.835865
037	154.04908,	1.833101
038	155.33742,	1.829301
039	156.62577,	1.824533
040	158.09816,	1.818522
041	159.44785,	1.811268
042	160.92025	1.802562
043	162.45399,	1.792336
044	164.04908,	1.780521
045	165.95092,	1.766979
046	167.48466,	1.751571
047	169.32515,	1.734229
048	171.77914,	1.714814
049	173.61963,	1.693326
050	176.07362,	1.669696
051	177.91411,	1.643787
052	181.59509,	1.615597
053	184.04908,	1.585196
054	187.11656,	1.552515
055	190.18405,	1.517623
056	193.86503,	1.480590
057	198.15951,	1.441414
058	202.45399,	1.400304
059	206.74847,	1.357328
060	211.65644,	1.312625
061	216.56442,	1.266333
062	223.31288,	1.218659
063	228.83436,	1.169879
064	235.58282,	1.120063
065	242.94479,	1.069556
066	250.92025,	1.018428
067	258.89571,	0.967092
068	268.71166,	0.915549
069	278.52761,	0.864213
070	288.95706,	0.813222
071	301.22699,	0.762715
072	313.49693,	0.712969
073	327.60736,	0.664120
074	342.33129,	0.616363
075	358.89571,	0.569843
076	376.68712,	0.524698
077	396.31902,	0.481052
078	417.79141,	0.439023
079	441.71779,	0.398693
080	468.09816,	0.360146
081	496.93252,	0.323458
082	529.44785,	0.288684
083	566.25767,	0.255858

084	606.74847,	0.225015
085	653.37423,	0.196182
086	706.13497,	0.169367
087	766.87117,	0.144584
088	838.65031,	0.121818
089	922.08589,	0.101069
090	1021.47239,	0.082317
091	1142.94479,	0.065543
092	1292.63804,	0.050726
093	1482.82209,	0.037834
094	1731.90184,	0.026839
095	2073.00613,	0.017707
096	2566.87117,	0.010403
097	3349.07975,	0.004890

RECIPE00

001 GRADIENT POLYMER RECIPE FILE:
002
003 Program: GRADMAKE.F95
004 Date: 2013/ 2/12
005 Time: 15:14:56
006
007
008 Start Composition $\mathrm{F} 1(\mathrm{X}=0)=1.0000$
009 Final Composition $\mathrm{F} 1(\mathrm{X}=\mathrm{Xe})=0.0000$
010 Gradient $\mathrm{g}=\mathrm{dF} 10 / \mathrm{dp}=* * * * * *$
011 Final Deg. of Polymn. Xe $=175$.
012
013
t-BuMA / n-BMA, p-TosCl:PMDETA:CuCl, MEK, 80 GrdC
014 Monomer 1: Density $=0.8750 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=142.200 \mathrm{~g} / \mathrm{mol}$
015 Monomer 2: Density $=0.8960 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=142.200 \mathrm{~g} / \mathrm{mol}$
016 Initiator: Density $=0.9950 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=363.170 \mathrm{~g} / \mathrm{mol}$
017 Solvent : Density $=0.8050 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=72.060 \mathrm{~g} / \mathrm{mol}$
018
019
,
20 Monomer 1: $0.89870 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.10271 \mathrm{E}+02 \mathrm{~cm} \wedge 3$
021 Monomer 2: $0.00000 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.00000 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
022 Initiator: $0.26231 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.26363 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
023 Solvent : $0.89870 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.11164 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
024 Volume of Stock Solution, V0 $=0.21698 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
025
026
027 Monomer 2: $0.89870 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.10030 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
028 Solvent : $0.89870 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.11164 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
029 Volume of Feed Solution, V0 $=0.21194 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
030
031
032
033
034
035
036
037
038
039
$040 \quad$ Cadd $=$ nadd $/ \operatorname{Vadd}[\mathrm{mol} / \mathrm{L}]=2.98195$
041 Cfin $=$ nin, $\mathrm{e} /$ Vtot $[\mathrm{mol} / \mathrm{L}]=2.94688$

tau-dqdtau

001	$0.17486 \mathrm{E}-09$	$0.25334 \mathrm{E}+00$
002	$0.17595 \mathrm{E}-01$	$0.25383 \mathrm{E}+00$
003	$0.35403 \mathrm{E}-01$	$0.25432 \mathrm{E}+00$
004	$0.53428 \mathrm{E}-01$	$0.25480 \mathrm{E}+00$
005	$0.71667 \mathrm{E}-01$	$0.25527 \mathrm{E}+00$
006	$0.90124 \mathrm{E}-01$	$0.25574 \mathrm{E}+00$
007	$0.10880 \mathrm{E}+00$	$0.25621 \mathrm{E}+00$
008	$0.12769 \mathrm{E}+00$	$0.25667 \mathrm{E}+00$
009	$0.14680 \mathrm{E}+00$	$0.25714 \mathrm{E}+00$
010	$0.16612 \mathrm{E}+00$	$0.25760 \mathrm{E}+00$
011	$0.18566 \mathrm{E}+00$	$0.25807 \mathrm{E}+00$
012	$0.20542 \mathrm{E}+00$	$0.25853 \mathrm{E}+00$
013	$0.22539 \mathrm{E}+00$	$0.25900 \mathrm{E}+00$
014	$0.24558 \mathrm{E}+00$	$0.25946 \mathrm{E}+00$
015	$0.26599 \mathrm{E}+00$	$0.25993 \mathrm{E}+00$
016	$0.28661 \mathrm{E}+00$	$0.26040 \mathrm{E}+00$
017	$0.30744 \mathrm{E}+00$	$0.26087 \mathrm{E}+00$
018	$0.32849 \mathrm{E}+00$	$0.26133 \mathrm{E}+00$
019	$0.34975 \mathrm{E}+00$	$0.26180 \mathrm{E}+00$
020	$0.37121 \mathrm{E}+00$	$0.26226 \mathrm{E}+00$
021	$0.39289 \mathrm{E}+00$	$0.26271 \mathrm{E}+00$
022	$0.41478 \mathrm{E}+00$	$0.26315 \mathrm{E}+00$
023	$0.43687 \mathrm{E}+00$	$0.26359 \mathrm{E}+00$
024	$0.45917 \mathrm{E}+00$	$0.26401 \mathrm{E}+00$
025	$0.48167 \mathrm{E}+00$	$0.26440 \mathrm{E}+00$
026	$0.50437 \mathrm{E}+00$	$0.26478 \mathrm{E}+00$
027	$0.52728 \mathrm{E}+00$	$0.26513 \mathrm{E}+00$
028	$0.55038 \mathrm{E}+00$	$0.26544 \mathrm{E}+00$
029	$0.57369 \mathrm{E}+00$	$0.26571 \mathrm{E}+00$
030	$0.59719 \mathrm{E}+00$	$0.26593 \mathrm{E}+00$
031	$0.62089 \mathrm{E}+00$	$0.26610 \mathrm{E}+00$
032	$0.64479 \mathrm{E}+00$	$0.26619 \mathrm{E}+00$
033	$0.66889 \mathrm{E}+00$	$0.26622 \mathrm{E}+00$
034	$0.69318 \mathrm{E}+00$	$0.26615 \mathrm{E}+00$
035	$0.71768 \mathrm{E}+00$	$0.26599 \mathrm{E}+00$
036	$0.74238 \mathrm{E}+00$	$0.26571 \mathrm{E}+00$
037	$0.76728 \mathrm{E}+00$	$0.26531 \mathrm{E}+00$
038	$0.79239 \mathrm{E}+00$	$0.26476 \mathrm{E}+00$
039	$0.81771 \mathrm{E}+00$	$0.26407 \mathrm{E}+00$
040	$0.84324 \mathrm{E}+00$	$0.26320 \mathrm{E}+00$
041	$0.86901 \mathrm{E}+00$	$0.26215 \mathrm{E}+00$
042	$0.89500 \mathrm{E}+00$	$0.26089 \mathrm{E}+00$
043	$0.92123 \mathrm{E}+00$	$0.25941 \mathrm{E}+00$
044	$0.94771 \mathrm{E}+00$	$0.25770 \mathrm{E}+00$
045	$0.97445 \mathrm{E}+00$	$0.25574 \mathrm{E}+00$
046	$0.10015 \mathrm{E}+01$	$0.25351 \mathrm{E}+00$
047	$0.10288 \mathrm{E}+01$	$0.25100 \mathrm{E}+00$
048	$0.10564 \mathrm{E}+01$	$0.24819 \mathrm{E}+00$
049	$0.10844 \mathrm{E}+01$	$0.24508 \mathrm{E}+00$
050	$0.11127 \mathrm{E}+01$	$0.24166 \mathrm{E}+00$
051	$0.11414 \mathrm{E}+01$	$0.23791 \mathrm{E}+00$
052	$0.11704 \mathrm{E}+01$	$0.23383 \mathrm{E}+00$
053	$0.12000 \mathrm{E}+01$	$0.22943 \mathrm{E}+00$
054	$0.12300 \mathrm{E}+01$	$0.22470 \mathrm{E}+00$
055	$0.12605 \mathrm{E}+01$	$0.21965 \mathrm{E}+00$
056	$0.12915 \mathrm{E}+01$	$0.21429 \mathrm{E}+00$
057	$0.13231 \mathrm{E}+01$	$0.20862 \mathrm{E}+00$
058	$0.13554 \mathrm{E}+01$	$0.20267 \mathrm{E}+00$
059	$0.13884 \mathrm{E}+01$	$0.19645 \mathrm{E}+00$

060	$0.14221 \mathrm{E}+01$	$0.18998 \mathrm{E}+00$
061	$0.14566 \mathrm{E}+01$	$0.18328 \mathrm{E}+00$
062	$0.14919 \mathrm{E}+01$	$0.17638 \mathrm{E}+00$
063	$0.15283 \mathrm{E}+01$	$0.16932 \mathrm{E}+00$
064	$0.15656 \mathrm{E}+01$	$0.16211 \mathrm{E}+00$
065	$0.16040 \mathrm{E}+01$	$0.15480 \mathrm{E}+00$
066	$0.16436 \mathrm{E}+01$	$0.14740 \mathrm{E}+00$
067	$0.16845 \mathrm{E}+01$	$0.13997 \mathrm{E}+00$
068	$0.17267 \mathrm{E}+01$	$0.13251 \mathrm{E}+00$
069	$0.17705 \mathrm{E}+01$	$0.12508 \mathrm{E}+00$
070	$0.18159 \mathrm{E}+01$	$0.11770 \mathrm{E}+00$
071	$0.18630 \mathrm{E}+01$	$0.11039 \mathrm{E}+00$
072	$0.19121 \mathrm{E}+01$	$0.10319 \mathrm{E}+00$
073	$0.19632 \mathrm{E}+01$	$0.96120 \mathrm{E}-01$
074	$0.20166 \mathrm{E}+01$	$0.89208 \mathrm{E}-01$
075	$0.20724 \mathrm{E}+01$	$0.82475 \mathrm{E}-01$
076	$0.21309 \mathrm{E}+01$	$0.75941 \mathrm{E}-01$
077	$0.21923 \mathrm{E}+01$	$0.69624 \mathrm{E}-01$
078	$0.22569 \mathrm{E}+01$	$0.63541 \mathrm{E}-01$
079	$0.23250 \mathrm{E}+01$	$0.57704 \mathrm{E}-01$
080	$0.23970 \mathrm{E}+01$	$0.52125 \mathrm{E}-01$
081	$0.24733 \mathrm{E}+01$	$0.46815 \mathrm{E}-01$
082	$0.25543 \mathrm{E}+01$	$0.41782 \mathrm{E}-01$
083	$0.26406 \mathrm{E}+01$	$0.37031 \mathrm{E}-01$
084	$0.27329 \mathrm{E}+01$	$0.32567 \mathrm{E}-01$
085	$0.28318 \mathrm{E}+01$	$0.28394 \mathrm{E}-01$
086	$0.29383 \mathrm{E}+01$	$0.24513 \mathrm{E}-01$
087	$0.30534 \mathrm{E}+01$	$0.20926 \mathrm{E}-01$
088	$0.31784 \mathrm{E}+01$	$0.17631 \mathrm{E}-01$
089	$0.33151 \mathrm{E}+01$	$0.14628 \mathrm{E}-01$
090	$0.34654 \mathrm{E}+01$	$0.11914 \mathrm{E}-01$
091	$0.36319 \mathrm{E}+01$	$0.94863 \mathrm{E}-02$
092	$0.38182 \mathrm{E}+01$	$0.73417 \mathrm{E}-02$
093	$0.40289 \mathrm{E}+01$	$0.54758 \mathrm{E}-02$
094	$0.42706 \mathrm{E}+01$	$0.38845 \mathrm{E}-02$
095	$0.45529 \mathrm{E}+01$	$0.25628 \mathrm{E}-02$
097	$0.48908 \mathrm{E}+01$	$0.15057 \mathrm{E}-02$
098	$0.53092 \mathrm{E}+01$	$0.70780 \mathrm{E}-03$
		$0.16364 \mathrm{E}-03$
$0751 \mathrm{E}+01$	0	
07		

t-dVdt

$001 \quad 10593.25153, \quad 0.915549$
$002 \quad 10861.96319, \quad 0.864213$
$003 \quad 11140.49080, \quad 0.813222$
$004 \quad 11429.44785, \quad 0.762715$
$005 \quad 11730.67485, \quad 0.712969$
$006 \quad 12044.17178, \quad 0.664120$
$007 \quad 12371.77914, \quad 0.616363$
$008 \quad 12714.11043, \quad 0.569843$
$009 \quad 13073.00613, \quad 0.524698$
$010 \quad 13449.69325, \quad 0.481052$
011 13846.01227, 0.439023
$012 \quad 14263.80368, \quad 0.398693$
$013 \quad 14705.52147, \quad 0.360146$
$014 \quad 15173.61963, \quad 0.323458$
$015 \quad 15670.55215, \quad 0.288684$
$016 \quad 16200.00000, \quad 0.255858$
$017 \quad 16766.25767, \quad 0.225015$
$018 \quad 17373.00613, \quad 0.196182$
$019 \quad 18026.38037, \quad 0.169367$
$020 \quad 18732.51534, \quad 0.144584$

```
021 19499.38650, 0.121818
022 20338.03681, 0.101069
023 21260.12270, 0.082317
024 22281.59509, 0.065543
025 23424.53988, 0.050726
026 24717.17791, 0.037834
027 26200.00000, 0.026839
028 27931.90184, 0.017707
029 30004.90798, 0.010403
030 32571.77914, 0.004890
031 t [s] dV/dt [uL/s]
032
033
034 Date: 2013/ 2/12
035 Time: 15:15:36
036 r1 = 0.88600E+00
037 r2 = 0.47200E+00
038 kp(f1)=Sum(af(i)*f1**i): 1.0000000000000000 0.1437499999999999990.00000000000000000 0.00000000000000000
```


B. Feeding-Program of experiment V32

Output		
Program		
001	83.40483,	2.070719
002	83.76074,	2.068232
003	84.60123,	2.065399
004	85.44785,	2.062359
005	86.29448,	2.059181
006	87.15337,	2.055726
007	88.01840,	2.052064
008	88.86503,	2.048195
009	89.81595,	2.044119
010	90.67485,	2.039835
011	91.53374,	2.035275
012	92.45399,	2.030507
013	93.43558,	2.025533
014	94.29448,	2.020282
015	95.27607,	2.014754
016	96.13497,	2.008950
017	97.17791,	2.002939
018	98.09816,	1.996583
019	99.14110,	1.989950
020	100.06135,	1.983040
021	101.10429,	1.975786
022	102.08589,	1.968185
023	103.12883,	1.960309
024	104.17178,	1.952018
025	105.21472,	1.943312
026	106.25767,	1.934261
027	107.42331,	1.924795
028	108.46626,	1.914915
029	109.63190,	1.904551
030	110.73620,	1.893703
031	111.96319,	1.882372
032	113.06748,	1.870557
033	114.35583,	1.858189
034	115.58282,	1.845200
035	116.80982,	1.831657
036	118.15951,	1.817493
037	119.44785,	1.802707
038	120.79755,	1.787161
039	122.20859,	1.770994
040	123.68098,	1.753997
041	125.15337,	1.736240
042	126.62577,	1.717723
043	128.28221,	1.698308
044	129.87730,	1.678064
045	131.53374,	1.656921
046	133.37423,	1.634811
047	135.15337,	1.611734
048	136.99387,	1.587621

049	139.07975,	1.562540
050	141.10429,	1.536354
051	143.25153,	1.509062
052	145.52147,	1.480734
053	147.91411,	1.451231
054	150.36810,	1.420623
055	153.06748,	1.388840
056	155.58282,	1.355883
057	158.89571,	1.321751
058	161.96319,	1.286513
059	165.03067,	1.250101
060	168.71166,	1.212514
061	172.39264,	1.173891
062	176.68712,	1.134163
063	180.36810,	1.093398
064	185.27607,	1.051666
065	189.57055,	1.008966
066	195.09202,	0.965507
067	201.22699,	0.921218
068	206.74847,	0.876238
069	212.88344,	0.830706
070	220.85890,	0.784690
071	227.60736,	0.738398
072	236.19632,	0.691829
073	245.39877,	0.645177
074	255.21472,	0.598609
075	265.64417,	0.552268
076	277.30061,	0.506314
077	290.79755,	0.460913
078	304.29448,	0.416237
079	320.85890,	0.372474
080	338.03681,	0.329802
081	357.66871,	0.288401
082	380.36810,	0.248459
083	404.29448,	0.210160
084	432.51534,	0.173693
085	465.03067,	0.139236
086	501.84049,	0.106984
087	544.17178,	0.077101
088	595.09202,	0.049775
089	653.98773,	0.025173
0		

RECIPE00

001 GRADIENT POLYMER RECIPE FILE:
002
003 Program: GRADMAKE.F95
004 Date: 2012/8/28
005
006
007
008
00
010
011
012
013

Stock Solution:
Monomer 1: $0.11683 \mathrm{E}+02 \mathrm{~g}, \mathrm{~V}=0.13352 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
021 Monomer 2: $0.00000 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.00000 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
022 Initiator: $0.26231 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.26363 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
023 Solvent : $0.11683 \mathrm{E}+02 \mathrm{~g}, \mathrm{~V}=0.14513 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
024

025
026
027
028
029
$\mathrm{n} 10[\mathrm{~mol}]=0.08216$
$\mathrm{n} 20[\mathrm{~mol}]=0.00000$
n2add [mol] $=0.04424$
ne, in $[\mathrm{mol}]=0.12640$
VStock $[\mathrm{cm} 3]=28.12915$
Vadd $[\mathrm{cm} 3]=14.83594$
$\mathrm{C}^{*}=$ nin, $\mathrm{e} / \mathrm{V} 0[\mathrm{~mol} / \mathrm{L}]=4.49358$
Cadd $=$ nadd $/$ Vadd $[\mathrm{mol} / \mathrm{L}]=2.98196$
Cfin $=$ nin, $\mathrm{e} /$ Vtot $[\mathrm{mol} / \mathrm{L}]=2.94194$
Initial Monomer Content q0 $=0.65000$
EOF

C. Feeding-Program of experiment V33

Output

Program

001	72.26373,	1.969221
002	72.54601,	1.958857
003	73.24540,	1.948078
004	73.95092,	1.937092
005	74.66871,	1.925830
006	75.39264,	1.914292
007	76.14110,	1.902477
008	76.88957,	1.890386
009	77.66258,	1.878018
010	78.40491,	1.865305
011	79.26380,	1.852384
012	80.00000 ,	1.839118
013	80.85890,	1.825576
014	81.71779,	1.811758
015	82.51534,	1.797594
016	83.43558,	1.783153
017	84.29448,	1.768367
018	85.21472,	1.753305
019	86.13497,	1.737897
020	87.05521,	1.722144
021	88.03681,	1.706114
022	88.95706,	1.689670
023	90.06135,	1.672950
024	90.98160,	1.655815
025	92.14724,	1.638403
026	93.12883,	1.620577
027	94.29448,	1.602406
028	95.39877,	1.583889
029	96.56442,	1.565026
030	97.73006,	1.545749
031	98.95706,	1.526058
032	100.24540,	1.506021
033	101.53374,	1.485639
034	102.82209,	1.464842
035	104.23313,	1.443630
036	105.64417,	1.422004
037	107.05521,	1.400032
038	108.58896,	1.377646
039	110.12270,	1.354845
040	111.71779,	1.331699
041	113.37423,	1.308069
042	115.15337,	1.284094
043	116.87117,	1.259704
044	118.71166,	1.234900
045	120.61350,	1.209681
046	122.63804,	1.184116
047	124.66258,	1.158138
048	126.80982,	1.131744

049	129.07975,	1.105005
050	131.34969,	1.077920
051	133.80368,	1.050491
052	136.38037,	1.022646
053	139.01840,	0.994525
054	141.77914,	0.965990
055	144.72393,	0.937247
056	147.79141,	0.908159
057	150.98160,	0.878794
058	154.35583,	0.849223
059	157.97546,	0.819374
060	161.90184,	0.789388
061	165.64417,	0.759125
062	169.93865,	0.728793
063	174.23313,	0.698323
064	178.52761,	0.667791
065	184.04908,	0.637204
066	189.57055,	0.606616
067	195.09202,	0.576063
068	201.22699,	0.545593
069	207.36196,	0.515254
070	214.72393,	0.485095
071	222.08589,	0.455171
072	230.06135,	0.425537
073	238.65031,	0.396242
074	247.85276,	0.367354
075	258.89571,	0.338929
076	269.32515,	0.311043
077	281.59509,	0.283751
078	295.09202,	0.257123
079	309.20245,	0.231241
080	325.76687,	0.206160
081	343.55828,	0.181970
082	363.19018,	0.158734
083	385.88957,	0.136535
084	411.04294,	0.115441
085	439.87730,	0.095542
086	472.39264,	0.076907
087	509.81595,	0.059617
088	554.60123,	0.043748
089	605.52147,	0.029377
090	668.09816,	0.016580

RECIPE00

001	GRADIENT POLYMER RECIPE FILE:
002	
003	Program: GRADMAKE.F95
004	Date: 2012/ 8/28
005	Time: 15:30:34
006	
007	Gradient Structure:
008	Start Composition F1 $\mathrm{X}=0)=1.0000$
009	Final Composition F1 $\mathrm{X}=\mathrm{Xe}$) $=0.5000$
010	Gradient g $=\mathrm{dF} 10 / \mathrm{dp}=-.5000$
011	Final Deg. of Polymn. Xe $=175$.
012	
013	t-BuMA / n-BMA, p-TosCl:PMDETA:CuCl, MEK, 80 GrdC
014	Monomer 1: Density $=0.8750 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=142.200 \mathrm{~g} / \mathrm{mol}$
015	Monomer 2: Density $=0.8960 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=142.200 \mathrm{~g} / \mathrm{mol}$
016	Initiator: Density $=0.9950 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=363.170 \mathrm{~g} / \mathrm{mol}$
017	Solvent : Density $=0.8050 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=72.060 \mathrm{~g} / \mathrm{mol}$
018	
019	Stock Solution:
020	Monomer 1: $0.13481 \mathrm{E}+02 \mathrm{~g}, \mathrm{~V}=0.15406 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
021	Monomer 2: $0.00000 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.00000 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
022	Initiator: $0.26231 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.26363 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
023	Solvent : $0.13481 \mathrm{E}+02 \mathrm{~g}, \mathrm{~V}=0.16746 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
024	Volume of Stock Solution, V0 $=0.32416 \mathrm{E}+02 \mathrm{~cm}{ }^{\wedge} 3$
025	
026	
027	Feed Solution:
028	Monomer 2: $0.44935 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.50151 \mathrm{E}+01 \mathrm{~cm}^{\wedge} 3$
029	Solvent : $0.44935 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.55820 \mathrm{E}+01 \mathrm{~cm}^{\wedge} 3$
030	Volume of Feed Solution, V0 $=0.10597 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
031	
032	
033	$\mathrm{n} 10[\mathrm{~mol}]=0.09480$
034	$\mathrm{n} 20[\mathrm{~mol}]=0.00000$
035	n2add [mol$]=0.03160$
036	ne,in $[\mathrm{mol}]=0.12640$
037	VStock $[\mathrm{cm} 3]=32.41612$
038	Vadd $[\mathrm{cm} 3]=10.59709$
039	
040	$\mathrm{C}^{*}=$ nin, $\mathrm{e} / \mathrm{V} 0[\mathrm{~mol} / \mathrm{L}]=3.89931$
041	Cadd $=$ nadd $/$ Vadd [$\mathrm{mol} / \mathrm{L}]=2.98196$
042	Cfin $=$ nin, $\mathrm{e} /$ Vtot $[\mathrm{mol} / \mathrm{L}]=2.93864$
043	
044	
045	Initial Monomer Content q0 $=0.75000$
046	Gamma $=\mathrm{C}^{*} / \mathrm{Cadd}=1.30763$
047	EOF

D. Feeding-Program of experiment V34

Output		
Program		
001	63.76681 ,	1.517628
002	64.01227	1.502151
003	64.62577 ,	1.486467
004	65.26380	1.470645
005	65.90798	1.454684
006	66.56442	1.438586
007	67.23313	1.422349
008	67.91411	1.405974
009	68.61350	1.389460
010	69.34969	1.372809
011	70.06135	1.356019
012	70.79755	1.339161
013	71.53374	1.322095
014	72.33129	1.304960
015	73.19018	1.287686
016	73.92638	1.270275
017	74.78528	1.252794
018	75.64417	1.235107
019	76.50307	1.217350
020	77.42331	1.199524
021	78.34356	1.181490
022	79.32515	1.163388
023	80.24540	1.145217
024	81.22699	1.126907
025	82.26994	1.108459
026	83.31288	1.089942
027	84.35583	1.071356
028	85.52147	1.052701
029	86.62577	1.033908
030	87.79141	1.015045
031	89.01840	0.996045
032	90.24540	0.977044
033	91.53374	0.957975
034	92.82209	0.938767
035	94.23313	0.919559
036	95.64417	0.900282
037	97.05521	0.880936
038	98.52761	0.861521
039	100.12270	0.842106
040	101.71779	0.822690
041	103.37423	0.803137
042	105.09202	0.783653
043	106.80982	0.764100
044	108.71166	0.744615
045	110.61350	0.725062
046	112.63804	0.705509
047	114.66258	0.686004
048	116.80982	0.666513

049	119.01840,	0.647049
050	121.34969,	0.627627
051	123.80368,	0.608253
052	126.25767,	0.588935
053	128.95706,	0.569686
054	131.71779,	0.550512
055	134.60123,	0.531429
056	137.54601,	0.512449
057	140.79755,	0.493580
058	144.04908,	0.474828
059	147.54601,	0.456207
060	151.22699,	0.437739
061	155.09202,	0.419422
062	159.07975,	0.401285
063	163.19018,	0.383328
064	168.09816,	0.365564
065	173.00613,	0.348015
066	177.91411,	0.330693
067	182.82209,	0.313613
068	188.95706,	0.296789
069	195.09202,	0.280234
070	201.84049,	0.263970
071	208.58896,	0.248009
072	216.56442,	0.232360
073	223.92638,	0.217056
074	233.12883,	0.202097
075	242.33129,	0.187512
076	252.14724,	0.173313
077	263.80368,	0.159522
078	275.46012,	0.146152
079	288.95706,	0.133225
080	303.06748,	0.120761
081	319.63190,	0.108773
082	337.42331,	0.097283
083	357.05521,	0.086318
084	379.75460,	0.075885
085	404.29448,	0.066009
086	433.74233,	0.056712
087	466.87117,	0.048010
088	505.52147,	0.039925
089	550.30675,	0.032477
090	604.90798,	0.025685
091	669.93865,	0.019570
092	751.53374,	0.014152
094	853.37423,	0.009449
		0.95706,

RECIPE00

001 GRADIENT POLYMER RECIPE FILE:

002
003
004
005
006
007
008
00
010

011
012
013
014
015
016
017
018
019
020

Monomer 1: $0.15278 \mathrm{E}+02 \mathrm{~g}, \mathrm{~V}=0.17461 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
021 Monomer 2: $0.00000 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.00000 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
$\begin{array}{ll}022 & \text { Initiator: } 0.26231 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.26363 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3 \\ 023 & \text { Solvent : } 0.15278 \mathrm{E}+02 \mathrm{~g}, \mathrm{~V}=0.18979 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3\end{array}$
$\begin{array}{ll}022 & \text { Initiator: } 0.26231 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.26363 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3 \\ 023 & \text { Solvent : } 0.15278 \mathrm{E}+02 \mathrm{~g}, \mathrm{~V}=0.18979 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3\end{array}$
024

025
026
027
028
029

Date: 2012/ 8/28
Time: 15:32:35

Gradient Structure:
Start Composition $\mathrm{F} 1(\mathrm{X}=0)=1.0000$
Final Composition F1 $(\mathrm{X}=\mathrm{Xe})=0.7000$
Gradient $\mathrm{g}=\mathrm{dF} 10 / \mathrm{dp}=-.3000$
Final Deg. of Polymn. Xe $=175$.
t-BuMA / n-BMA, p-TosCl:PMDETA:CuCl, MEK, 80 GrdC
Monomer 1: Density $=0.8750 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=142.200 \mathrm{~g} / \mathrm{mol}$
Monomer 2: Density $=0.8960 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=142.200 \mathrm{~g} / \mathrm{mol}$
Initiator: Density $=0.9950 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=363.170 \mathrm{~g} / \mathrm{mol}$
Solvent : Density $=0.8050 \mathrm{~g} / \mathrm{cm}^{\wedge} 3, \mathrm{M}=72.060 \mathrm{~g} / \mathrm{mol}$

Stock Solution:

Volume of Stock Solution, V0 $=0.36703 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$

Feed Solution:
Monomer 2: $0.26961 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.30091 \mathrm{E}+01 \mathrm{~cm}^{\wedge} 3$
Solvent : $0.26961 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.33492 \mathrm{E}+01 \mathrm{~cm}^{\wedge} 3$
Volume of Feed Solution, V0 $=0.63583 \mathrm{E}+01 \mathrm{~cm}^{\wedge} 3$
$\mathrm{n} 10[\mathrm{~mol}]=0.10744$
$\mathrm{n} 20[\mathrm{~mol}]=0.00000$
n2add $[\mathrm{mol}]=0.01896$
ne, in $[\mathrm{mol}]=0.12640$
VStock $[\mathrm{cm} 3]=36.70308$
Vadd $[\mathrm{cm} 3]=6.35825$
$\mathrm{C}^{*}=$ nin, $\mathrm{e} / \mathrm{V} 0[\mathrm{~mol} / \mathrm{L}]=3.44386$
Cadd $=$ nadd $/ \operatorname{Vadd}[\mathrm{mol} / \mathrm{L}]=2.98196$
Cfin $=$ nin, $\mathrm{e} /$ Vtot $[\mathrm{mol} / \mathrm{L}]=2.93535$

EOF

E. Feeding-Program of experiment V101

Input

System

001	- Comonomer System Definition File -'
002	t-BMA(1) / BzMA(2), p-TosCl:PMDETA: $\mathrm{CuCl}, \mathrm{MEK}$, 80 GrdC'
003	,
004	-- Molar Masses and Densities --'
005	MM1 $=$ ', 1.4220d02
006	rh1 $=$ ', 0.8750d00
007	$\mathrm{MM} 2={ }^{\prime}, 1.7220 \mathrm{~d} 02$
008	rh2 $=$ ', 1.0400d00
009	$\mathrm{MMI}=$ ', 3.6317d02
010	rhI $=$ ', 0.9950d00
011	MMS $=$ ', 7.2060d01
012	$\operatorname{rhS}={ }^{\prime}, 0.8050 \mathrm{~d} 00$
013	,
014	-- Copolymerisation Parameter --
015	r1 $=$ ', 2.0550d00
016	$\mathrm{r} 2=,{ }^{\prime}, 0.5170 \mathrm{~d} 00$
017	,
018	-- Kinetic Parameter - '
019	$\mathrm{nk}=,{ }^{\prime}$
020	$\mathrm{kf0}=$ ', 1.0000d00
021	kf1 = ',-4.0424d-1
022	$\mathrm{kf} 2={ }^{\prime}, 0.0000 \mathrm{~d} 00$
023	[
024	EOF
025	ONLY EDIT 2. line and r1, r2, n, kfi'

Dosage

001 - Comonomer Dosage Definition File -'
002

003
004 - Gradient Definition Parameter --,
$005 \mathrm{ng}={ }^{\prime} 0$
006
007
008

022	$\mathrm{hmin}={ }^{\prime} 0.10000 \mathrm{E}-20$
023	$\mathrm{hmax}={ }^{\prime} 0.10000 \mathrm{E}-04$
024	- Data Save Control Parameter -_,
025	Save $={ }^{\prime} 1$
026	$\mathrm{dpSv}={ }^{\prime} 0.10000 \mathrm{E}-01$
027	- Error Handling Flags - - '
028	ErrT: $\operatorname{tau}_{\mathbf{i}} 0^{\prime} 0$
029	Errf1: 0 ¿f1 ${ }^{1} 1{ }^{\prime} 0$
030	ErrTs: tau* ${ }_{\text {¢ }} 0^{\prime} 0$
031	Errq: q0¢qi1' 0
032	-
033	EOF

Output

Program

$001 \quad 177.17657, \quad 2.798505$
$002 \quad 174.80600, \quad 2.805362$
$003 \quad 172.62677, \quad 2.809202$
$004 \quad 170.61763, \quad 2.810117$
$005168.81046, \quad 2.808105$
006 167.16275, 2.803442
$007 \quad 165.67450, \quad 2.795945$
$008 \quad 164.34570, \quad 2.785887$
$009163.12321, \quad 2.773269$
$010 \quad 162.06017, \quad 2.758183$
$011 \quad 161.15659, \quad 2.740719$
$012 \quad 160.35931, \quad 2.720969$
$013 \quad 159.66833, \quad 2.699025$
$014 \quad 159.08366$, 2.674978
$015 \quad 158.71160, \quad 2.648920$
$016 \quad 158.33953, \quad 2.620941$
$017 \quad 158.07377, \quad 2.591134$
$018 \quad 158.02062, \quad 2.559498$
$019 \quad 158.02062, \quad 2.526307$
$020 \quad 158.07377, \quad 2.491654$
$021 \quad 158.28638, \quad 2.455446$
$022 \quad 158.55214, \quad 2.417867$
$023 \quad 158.97736, \quad 2.379099$
$024 \quad 159.45572, \quad 2.339143$
$025 \quad 160.04040, \quad 2.298089$
$026 \quad 160.78452, \quad 2.256030$
$027 \quad 161.47550, \quad 2.213056$
$028 \quad 162.43223$, 2.169351
029 163.38897, 2.124823
$030 \quad 164.45200, \quad 2.079746$
$031 \quad 165.67450, \quad 2.034121$
$032 \quad 166.95014, \quad 1.987947$
033168.43840 , 1.941407
$034169.55459, \quad 1.894502$
$035 \quad 171.68066$, 1.847322
$036 \quad 173.27522, \quad 1.800051$
037 174.86978, 1.752597
$038 \quad 176.99585,1.705052$
$039 \quad 178.59041, \quad 1.657598$
$040 \quad 181.24801, \quad 1.610235$
041 183.37408, 1.562964
042 186.03168, 1.515876
$043 \quad 188.15775,1.469062$
$044 \quad 191.34687,1.422522$
$045 \quad 194.00446$, 1.376348

046	197.19358,	1.330540
047	199.85117 ,	1.285189
48	203.57181	1.240295
049	207.29244,	1.195859
050	210.48156	1.152062
051	214.73371	1.108814
052	218.45434,	1.066206
053	223.23801	1.024238
054	227.49017,	0.983001
55	232.27384,	0.942405
056	237.05751	0.902586
057	242.90422,	0.863498
058	24	0.825178
059	253.53460	0.787663
060	260.44435	0.750952
061	266.82258	0.715074
062	273.73233	0.680027
063	28	0.645850
064	288.61486,	0.612522
065	297.11917,	0.580081
066	305.62347 ,	0.548519
067	315.19082,	0.517852
068	325.28968,	0.488081
069	335.92006 ,	0.459216
070	347.08196	0.431255
071	358.77538,	0.404209
072	372.59488,	0.378068
073	385.88285 ,	0.352842
074	401.29691 ,	0.328530
075	417.77400	0.305123
076	435.31413 ,	0.282630
077	454.44881	0.261043
078	475.70958	0.240369
079	498.56490 ,	0.220592
080	523.54630 ,	0.201711
081	551.71681,	0.183717
082	582.54491	0.166619
083	617.09365	0.150399
084	655.36303	0.135047
085	699.47911 ,	0.120564
086	749.44190 ,	0.106950
087	806.84597,	0.094186
088	872.75433,	0.082260
089	951.41916	0.071175
090	1044.43500,	0.060918
091	1157.11704,	0.051481
092	1296.37504,	0.042854
093	1473.37089	0.035028
094	1704.58169	0.027995
095	2020.83555	0.021747
096	2479.00500,	0.016272
097	3202.40247 ,	0.011564
098	4520.03827,	0.007618
099	7705.43213	0.004440

RECIPE00

001 GRADIENT POLYMER RECIPE FILE:
002
003 Program: GRADMAKE.F95
004 Date: 2013/2/12
005
006
007
008
009
010

011
012
013

021 Monomer 2: $0.00000 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.00000 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
022 Initiator: $0.26231 \mathrm{E}+00 \mathrm{~g}, \mathrm{~V}=0.26363 \mathrm{E}+00 \mathrm{~cm}^{\wedge} 3$
023 Solvent : $0.89870 \mathrm{E}+01 \mathrm{~g}, \mathrm{~V}=0.11164 \mathrm{E}+02 \mathrm{~cm}^{\wedge} 3$
024

025
026
027
028
029
$\mathrm{n} 10[\mathrm{~mol}]=0.06320$
$\mathrm{n} 20[\mathrm{~mol}]=0.00000$
n2add [mol] $=0.06320$
ne, in $[\mathrm{mol}]=0.12640$
VStock $[\mathrm{cm} 3]=21.69846$
Vadd $[\mathrm{cm} 3]=24.29932$
$\mathrm{C}^{*}=\operatorname{nin}, \mathrm{e} / \mathrm{V} 0[\mathrm{~mol} / \mathrm{L}]=5.82527$
Cadd $=$ nadd $/ \operatorname{Vadd}[\mathrm{mol} / \mathrm{L}]=2.60088$
Cfin $=$ nin, $\mathrm{e} /$ Vtot $[\mathrm{mol} / \mathrm{L}]=2.74795$
EOF

Bibliography

[1] H. Staudinger. Die Chemie der hochmolekularen organischen Stoffe im Sinn der Kekuléschen Strukturlehre. Berichte der Deutschen Chemischen Gesellschaft, 59:30193043, 1926.
[2] G. Schwedt. Plastisch, elastisch, fantastisch - Ohne Kunststoffe geht es nicht. WileyVCH, 2013.
[3] G. Odian. Principles of Polymerization. Wiley-Interscience, 4th edition, 2004.
[4] T. Otsu and M. Yoshida. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters. Makromol. Chem. Rapid Commun., 3:127-132, 1982.
[5] M. Szwarc. 'Living' polymers. Nature, 178:1168-1167, 1956.
[6] O. W. Webster. Living polymerization methods. Science, 251:887-893, 1991.
[7] H. Fischer. The persistent radical effect in "living" radical polymerization. Macromolecules, 30(19):5666-5672, 1997.
[8] K. Matyjaszewski. Controlled radical polymerization. Current opinion in solid state \mathcal{E} materials science, 1:769-776, 1996.
[9] M. Kato, M. Kamigaito, M. Sawamoto, and T. Higashimura. Polymerization of methyl methacrylate with carbon tetrachlorid/ dichlorotris- (triphenylphosphine) ruthenium(II)/ methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules, 25(5):1721-1723, 1995.
[10] J.-S. Wang and K. Matyjaszewski. Controlled/ "living" radical polymerization, atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc., 117(20):5614-5615, 1995.
[11] G. Riess, J. Kohler, C. Tournut, and A. Branderet. Über die Verträglichkeit von Copolymer mit den entsprechenden Homopolymeren. Makromol. Chem., 101:58-73, 1967.
[12] J. Noolandi and K. M. Hong. Interfacial properties of immiscible homopolymer blends in the presence of block copolymers. Macromolecules, 15(2):483-492, 1982.
[13] M. Kryszewski. Gradient polymers and copolymers. Polymers of Advanced Technologies, 9:244-259, 1998.
[14] K. Matyjaszewski, M. J. Ziegler, S. V. Arehart, D. Greszta, and T. Pakula. Gradient copolymers by atom transfer radical polymerization. J. Phys. Org. Chem., 13:775-786, 2000.
[15] U. Beginn. Gradient copolymers. Colloid Polym. Sci., 286:1465-1474, 2008.
[16] K. Matyjaszewski and J. Xia. Atom Transfer Radical Polymerization. Chem. Rev., 101:2921-2990, 2001.
[17] H.-G. Elias, editor. Makromoleküle - Chemische Struktur und Synthesen, volume 1. Wiley-VCH, 6th edition, 1999.
[18] B. Tieke. Makromolekulare Chemie. Wiley-VCH, 2nd edition, 2005.
[19] P. C. Hiemenz and T. P. Lodge. Polymer Chemistry. CRC Press, 2nd edition, 2007.
[20] F. R. Mayo and F. M. Lewis. Copolymerization I. A basis for comparing the behavior of monomer in copolymerization; the copolymerization of styrene and methyl methacrylate. J. Am. Chem. Soc., 66(9):1594-1599, 1944.
[21] F. T. Wall. The structures of copolymers II. J. Am. Chem. Soc., 66(12):2050-2057, 1944.
[22] F. S. Bates. Polymer-polymer phase behavior. Science, 251:898-905, 1991.
[23] P. J. Flory. Principles of Polymer Chemistry. Cornell University Press, 1953.
[24] D. J. Meier. Theory of block copolymers. I. domain formation in A-B block copolymers. J. Polym. Sci., Part C: Polym. Symp., 26:81-98, 1969.
[25] E. Helfand. Block copolymer theory. III. Statistical mechanics of the microdomain structure. Macromolecules, 8(4):552-556, 1975.
[26] E. Helfand and Z. R. Wassermann. Block copolymer theory. 4. Narrow interphase approximation. Macromolecules, 9(6):879-888, 1976.
[27] E. Helfand and Z. R. Wassermann. Block copolymer theory. 5. Spherical domains. Macromolecules, 11(5):960-966, 1978.
[28] E. Helfand and Z. R. Wassermann. Block copolymer theory. 6. Cylindrical domains. Macromolecules, 13(4):994-998, 1980.
[29] L. Leibler. Theory of microphase separation in block copolymers. Macromolecules, 13:1602-1617, 1980.
[30] G. H. Fredrickson and E. Helfand. Fluctuation effects in the theory of microphase separation in block copolymers. J. Chem. Phys., 87:697-705, 1987.
[31] M. W. Matsen and F. S. Bates. Unifying weak- and strong- segregation block copolymer theories. Macromolecules, 29(4):1091-1098, 1996.
[32] D. A. Hajduk, P. E. Harper, and S. M. Gruner. The Gyroid: A new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules, 27(15):40634075, 1994.
[33] M. D. Lefebvre, M. O. de la Cruz, and K. R. Shull. Phase segregation in gradient copolymer melts. Macromolecules, 38(4):1037-1040, 2004.
[34] R. Jiang, Q. Jin, B. Li, D. Ding, R. A. Wickham, and A.-C. Shi. Phase behavior of gradient copolymers. Macromolecules, 41(14):5457-5465, 2008.
[35] M. M. Mok, C. J. Ellison, and J. M. Torkelson. Effect of gradient sequencing on copolymer order-disorder transitions: Phase behavior of styrene/n-butyl acrylate block and gradient copolymers. Macromolecules, 44(15):6220-6226, 2011.
[36] H. F. Mark et. al., editor. Encyclopedia of Polymer Science and Engineering, volume 2. Wiley-Interscience, 1985.
[37] G. Sauvet and P. Sigwalt. Carbcationic polymerization: General aspects and initiation. In G. Allen et. al., editor, Comprehensive Polymer Science, volume 3, chapter 39, pages 579-619. Pergaman Press, 1989.
[38] M. Fontanille. Carbanionic polymerization: General aspects and initiation. In G. Allen et. al., editor, Comprehensive Polymer Science, volume 3, chapter 25, pages 365-387. Pergaman Press, 1989.
[39] G. Moad, J. Chiefari, R. T. Mayadunne, C. L. Moad, A. Postma, E. Rizzardo, and S. H. Thang. Initiating free radical polymerization. Macromol. Symp., 182:65-80, 2002.
[40] G. Oster and N.-L. Yang. Photopolymerization of vinyl monomers. Chem. Rev., 68(2):125-151, 1968.
[41] K. Matyjaszewski and T. P. Davis, editors. Handbook of Radical Polymerization. WileyInterscience, 2002.
[42] C. J. Hawker, A. W. Bosman, and E. Harth. New polymer synthesis by nitroxide mediated living radical polymerizations. J. Am. Chem. Soc., 101:3661-3688, 2001.
[43] Y. K. Chong, T. P. T. Le, G. Moad, E. Rizzardo, and S. H. Thang. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process. Macromolecules, 32:2071-2074, 1999.
[44] K. Matyjaszewski. Macromolecular engineering by controlled/ living ionic and radical polymerization. Macromol. Symp., 174:51-67, 2001.
[45] T. E. Patten and K. Matyjaszewski. Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials, 10(12):901-915, 1998.
[46] K. Matyjaszewski, M. Wei, J. Xia, and N. E. McDermott. Controlled/"living" radical polymerization of styrene and methyl methacrylate catalyzed by iron complexes. Macromolecules, 30(26):8161-8164, 1997.
[47] T. Nishikawa, M. Kamigaito, and M. Sawamoto. Living radical polymerization in water and alcohols: Suspension polymerization of methyl methacrylate with $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ complex. Macromolecules, 32(7):2204-2209, 1999.
[48] S. G. Gaynor, J. Qiu, and K. Matyjaszewski. Controlled/"living" radical polymerization applied to water-borne systems. Macromolecules, 31(17):5951-5954, 1998.
[49] J. Qiu, S. G. Gaynor, and K. Matyjaszewski. Emulsion polymerization of nbutyl methacrylate by reverse atom transfer radical polymerization. Macromolecules, $32(9): 2872-2875,1999$.
[50] J. Xia, T. Johnson, S. G. Gaynor, K. Matyjaszewski, and J. DeSimone. Atom transfer radical polymerization in supercritical carbon dioxide. Macromolecules, 32(15):48024805, 1999.
[51] K. Matyjaszewski, Y. Nakagawa, and C. B. Jasieczek. Polymerization of n-butyl acrylate by atom transfer radical polymerization. Remarkable effect of ethylene carbonate and other solvents. Macromolecules, 31(5):1535-1541, 1998.
[52] K. Matyjaszewski, T. E. Patten, and J. Xia. Controlled/"living" radical polymerization. kinetics of the homogeneous atom transfer radical polymerization of styrene. J. Am. Chem. Soc., 119(4):674-680, 1997.
[53] K. Matyjaszewski, K. Davis, T. E. Patten, and M. Wei. Observation and analysis of a slow termination process in the atom transfer radical polymerization of styrene. Tetrahedron, 53(45):15321-15329, 1997.
[54] S. Pascual, B. Coutin, M. Tard, A. Polton, and J.-P. Vairon. Homogeneous atom transfer radical polymerization of styrene initiated by 1-chloro-1-phenylethane/copper(I) chloride/bipyridine in the presence of dimethylformamide. Macromolecules, 32(5):14321437, 1999.
[55] V. Percec, B. Barboiu, A. Neumann, J. C. Ronda, and M. Zhao. Metal-catalyzed "living" radical polymerization of styrene initiated with arenesulfonyl chlorides. From heterogeneous to homogeneous catalysis. Macromolecules, 29(10):3665-3668, 1996.
[56] J.-L. Wang, T. Grimaud, and K. Matyjaszewski. Kinetic study of the homogeneous atom transfer radical polymerization of methyl methacrylate. Macromolecules, 30(21):65076512, 1997.
[57] A. T. Levy, M. M. Olmstead, and T. E. Patten. Synthesis, characterization, and polymerization activity of [bis(4,4'-bis(neophyldimethylsilylmethyl)-2,2'bipyridyl)copper(i) $]^{+} \mathrm{CuBr}_{2}^{-}-$and implications for copper(I) catalyst structures in atom transfer radical polymerization. Inorg. Chem., 39(8):1628-1634, 2000.
[58] K. A. Davis, H.-K. Paik, and K. Matyjaszewski. Kinetic investigation of the Atom Transfer Radical Polymerization of methyl acrylate. Macromolecules, 32(6):1767-1776, 1999.
[59] K. Matyjaszewski, J.-L. Wang., T. Grimaud, and D. A. Shipp. Controlled/"living" atom transfer radical polymerization of methyl methacrylate using various initiator systems. Macromolecules, 31(5):1527-1534, 1998.
[60] H. Zhang, V. Marin, M. W. M. Fijten, and U. S. Schubert. High-throughput experimentation in atom transfer radical polymerization: A general approach towards a directed design and understanding of optimal catalytic systems. J. Polym. Sci., Part A: Polym. Chem., 42(8):1876-1885, 2004.
[61] P. A. Gurr, M. F. Mills, G. G. Qiao, and D. H. Solomon. Initiator efficiency in ATRP: the tosyl chloride/ CuBr/ PMDETA system. Polymer, 46(7):2097-2104, 2005.
[62] S. Karanam, H. Goossens, B. Kluperman, and P. Lemstra. "Controlled" synthesis and characterization of model methyl methacrylate/ tert-butyl methacrylate triblock copolymers via ATRP. Macromolecules, 36(9):3051-3060, 2003.
[63] C. Schmitz. Micellar Properties and Application of Amphiphilic Linear Block Copolymers with Different Microstructure but Same Molecular Weight. PhD thesis, RWTH Aachen, Juli 2009.
[64] K. R. Shull, E. J. Kramer, G. Hadziioannou, and W. Tangs. Segregation of block copolymers to interfaces between immiscible homopolymers. Macromolecules, 23(22):47804787, 1990.
[65] D. Horn. Angewandte Polymerforschung - Ein Kapitel der supermolekularen Forschung. In Polymere - Neue Strategien in der Polymerforschung, pages 20-33. BASF, 1995.
[66] C. L. H. Wong, J. Kim, C. B. Roth, and J. M. Torkelson. Comparison of critical micelle concentrations of gradient copolymer and block copolymer in homopolymer: Novel characterization by intrinsic fluorescence. Macromolecules, 40(16):5631-5633, 2007.
[67] J. Kim, K. Gray, H. Zhou, S. T. Nguyen, and J. M. Torkelson. Polymer blend compatibilization by gradient copolymer addition during melt processing: Stabilization of dispersed phase to static coarsening. Macromolecules, 38(4):1037-1040, 2005.
[68] L. H. Sperling and J. J. Fay. Factors which affect the glass transition and damping capability of polymers. Polym. Adv. Technol., 2(1):49-56, 1991.
[69] M. L. Williams, R. F. Landel, and J. D. Ferry. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc., 77(14):3701-3707, 1955.
[70] L. Dagdug and L. S. Garcia-Colin. Generalization of the Williams-Landel-FerryEquation. Physica A, 250(1-4):133-141, 1998.
[71] T. G. Fox and P. J. Flory. Second-order transition temperatures and related properties of polystryrene. I. Influence of molecular weight. J. Appl. Phys., 21:581-591, 1950.
[72] D. J. Hourston and I. D. Hughes. Polymeric systems for acoustic damping. I. Poly (vinyl chloride)-segmented polyether ester blends. J. Appl. Polym. Sci., 21(11):3099-3109, 1977.
[73] C. L. H. Wong, J. Kim, and J. M. Torkelson. Breadth of glass transition temperature in styrene/acrylic acid block, random, and gradient copolymers: Unusual sequence distribution effects. J. Polym. Sci., Part B: Polym. Phys., 45(20):2842-2849, 2007.
[74] J. H. Gibbs and E. A. DiMarzio. Nature of the glass transition and the glassy state. J. Chem. Phys., 28(3):373/383, 1958.
[75] M. K. Gray, H. Zhou, S. T. Nguyen, and J. M. Torkelson. Synthesis and glass transition behavior of high molecular weight styrene/4-acetoxystyene and styrene/4hydroxystyrene gradient copolymers made via nitroxide-mediated controlled radical polymerization. Macromolecules, 37(15):5586-5595, 2004.
[76] M. M. Mok, J. Kim, and J. M. Torkelson. Gradient copolymers with broad glass transition temperature regions: Design of purely interphase compositions for daming applications. J. Polym. Sci., Part B: Polym. Phys., 46:48-56, 2008.
[77] F. R. S. Lord Rayleigh. X. On the electromagnetic theory of light. Philos. Mag., 12(73):81-101, 1881.
[78] F. R. S. Lord Rayleigh. XXXIV. On the transmission of light through an atmosphere containing small partparti in suspension, and on the origin of the blue sky. Philos. Mag., 47(287):375-384, 1899.
[79] M. D. Lechner, K. Gehrke, and E.H. Nordmeier. Makromolekulare Chemie. Birkhaeuser, 3rd, 2003.
[80] J. M. G. Cowie and V. Arrighi. Polymers: Chemistry and Physics of Modern Materials. CRC Press, 3rd, 2008.
[81] P. Debye. Light scattering on solutions. J. Appl. Phys., 15:338-342, 1944.
[82] P. Debye. Molecular-weight determination by light scattering. J. Phys. Coll. Chem., 51(1):18-32, 1947.
[83] D. R. Burfield and R. H. Smithers. Desiccant efficiency in solvent drying. 3. Dipolar aprotic solvents. J. Org. Chem., 43(20):3966-3968, 1978.
[84] J. Österlöf. Copper compound of acetylene. Acta Chem. Scand., 04:374-386, 1950.
[85] E. Pretsch, P. Bühlmann, C. Affolter, and M. Badertscher. Spektroskopische Daten zur Strukturaufklärung organischer Verbindungen. Springer, 4th edition, 2001.
[86] T. Alfrey and G. Goldfinger. The mechanism of copolymerization. J. Chem. Phys., 12(6):205-209, 1944.
[87] B. H. Stuart. Infrared Spectroscopy: Fundamentals and Applications. WileyInterscience, 2004.
[88] A. R. Copper. Determination of molecular weight. In Chemical Analysis - A Series of Monographs on Analytical Chemistry and its Applications, volume 103. WileyInterscience, J. D. Winefordener and I. M. Kolthoff edition, 1989.
[89] G. W. H. Höhne, W-F. Hemminger, and H.-J. Flammersheim. Different Scanning Calorimetry. Springer, 2nd edition, 2003.
[90] S. Krause, J. J. Gormley, N. Roman, J. A. Shetter, and W. H. Watanabe. Glass temperatures of some acrylic polymers. J. Polym. Sci., Part A: Polym. Chem., 3:35733586, 1965.
[91] S. A. Stern, U. M. Vakil, and G. R. Mauze. The solution and transport of gases in poly(n-butyl methacrylate) in the glass transition regions. I. Absorption-desorption measurements. J. Polym. Sci., Part B: Polym. Phys., 27:405-429, 1989.
[92] T. W. Green and P. G. M. Wuts. Protective Groups in Organic Synthesis. Wiley, 2nd edition, 1991.
[93] D. Boles Bryan, R. F. Hall, K. G. Holden, W. F. Huffmann, and J. G. Gleason. Nuclear analogs of beta-lactam antibiotics. 2. The total synthesis of 8-oxo-4-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acids. J. Am. Chem. Soc., 99(7):2353-2355, 1977.
[94] Z. Gu, Y. Yuan, J. He, M. Zhang, and P. Ni. Facile approach for DNA encapsulation in functional polyion complex for triggered intracellular gene delivery: Design, synthesis and mechanism. Langmuir, 25(9):5199-5208, 2009.
[95] H. Lu, L. Fan, Q-Liu, J. Wei, T. Ren, and J. Du. Preparation of water-dispersible silverdecorated polymer vesicles and micelles with exellent antibacterial efficacy. Polym. Chem., 3:2217-2227, 2012.
[96] Q. Ma and L. Wooley. The preparation of t-butyl acrylate and methyl acrylate and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials. J. Polym. Sci., Part A: Polym. Chem., 38:4805-4820, 2000.
[97] S. McSheehy, I. Yang, and Z. Mester. Selenmethionine extraction from selenized yeast: An LC-MS study of the acid hydrolysis of a synthetic selenopeptide. Microchim. Acta, 155:373-377, 2006.
[98] R. J. Simpson, M. R. Neuberger, and T. Y. Liu. Complete amino acid analysis of proteines from a single hydrolysate. J. Biol. Chem., 251(7):1936-1940, 1976.
[99] K. Wrobel, S. S. Kannamkumarath, K. Wrobel, and J. A. Caruso. Hydrolysis of proteines with methanesulfonic acid from improved HPLC-ICP-MS determination of selenomethionine in yeast and nuts. Anal. Bioanal. Chem., 375:133-138, 2003.
[100] Ph. Dubois, Y. S. Yu, Ph. Teyssié, and R. Jérôme. New polybutadiene-based thermoplastic elastomers: Synthesis, morphology and mechanical properties. Rubber Chem. Technol., 70(5):714-726, 1997.
[101] K. R. M. Vidts, B. Dervaux, and F. E. Du Prez. Block, block gradient and random copolymers of 2-ethylhexyl acrylate and acrylic acid by atom transfer radical polymerization. Polymer, 47:6028-6037, 2006.
[102] G. T. Gavranovic, M. M. Smith, W. Jeong, A. Y. Wong, R. M. Waymouth, and G. G. Fuller. Effects of temperature and chemical modification on polymer langmuir films. J. Phys. Chem. B, 110:22285-22290, 2006.
[103] T.-L. Ho and G. A. Olah. Spaltung von Estern und Ethern mit Iodtrimethylsilan. Angewandte Chemie, 88(24):847, 1976.
[104] M. E. Jung and M. A. Lyster. Quantitative dealkylation of alkyl esters via treatment with trimethylsilyl iodide. A new method for ester hydrolysis. J. Am. Chem. Soc., 99(3):968-969, 1977.
[105] G. A. Olah and C. Narang. Iodotrimethylsilane - A versaile synthetic reagent. Tetrahedron, 38(15):2225-2277, 1982.
[106] D. R. Lide, editor. CRC Handbock of Chemistry and Physics. CRC Press, 89th edition, 2008-2009.
[107] U. Beginn. Monomer addition programs to generate constant gradient block copolymers. Polymer, 47:6880-6894, 2006.
[108] K. Matyjaszewski and T. P. Davis, editors. Handbock of Radical Polymerization. WileyInterscience, 2002.
[109] S. Medel, J. M. Garcia, L. Garrido, I. Quijada-Garrido, and R. Paris. Thermoand pH -responsive gradient and block copolymers based on 2-(2-methoxyethoxy)ethyl methacrylate synthesized via atom transfer radical polymerization and the formation of thermoresponsive surfaces. J. Polym. Sci., Part A: Polym. Chem., 49(3):690-700, 2011.
[110] B.-S. Kim, H.-K. Lee, S. Jeong, J.-O. Lee, and H.-J. Paik. Amphiphilic gradient copolymer of [poly(ethylene glycol) methyl ether] methacrylate and styrene via atom transfer radical polymerization. Macromol. Res., 19(12):1257-1263, 2011.
[111] P. H. M. Van Steenberge, D. R. D. Hooge, Y. W. Mingjiang Zhong, M.-F. Reyniers, D. Konkolewicz, K. Matyjaszewski, and G. B. Marin. Linear gradient quality of ATRP copolymers. Macromolecules, 45:8519-8531, 2012.
[112] L. A. Wood. Glass transition temperatures of copolymers. J. Polym. Sci., Part A: Polym. Chem., 28(117):319-330, 1958.
[113] M. I. Munoz, L. Gargallo, and D. Radic. Effect of the side chain structure on the glass transition temperature. part 4: Molecular weight dependence of Tg on chalcogenides containing poly(methacrylates). Thermochimica Acta, 146:137-147, 1989.

List of Figures

2.1 Overview of linear copolymer architectures 6
2.2 Copolymerization Diagram 8
2.3 Overview of branched copolymer architectures 9
2.4 Block copolymer self-assembly 10
2.5 Phase diagram of di-block copolymer 11
2.6 Overview of polymer reaction 12
2.7 Homolytic dissociation of initiator 14
2.8 General reaction mechanism of ATRP 18
2.9 Scheme of kinetic parameters and molar mass behavior at ATRP 20
2.10 Reaction mechanism of the ATRP as used in this work 21
2.11 Effect of block copolymer in polymer blend 22
2.12 Scheme of theoretical DSC thermograms of different copolymers 23
2.13 Intensity of light scattering at various particle sizes 24
2.14 Zimm-plot for the analysis of light scattering data 25
3.1 Experimental setup for batch copolymerization 28
3.2 Molecular structures of monomers and copolymer of Series A and Series B 36
$3.3 \quad{ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of reaction mixture V11 and monomers 37
3.4 All ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of V11 38
$3.5 \quad{ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra of samples from V11 at $0,90,180 \mathrm{~min}$ 39
3.6 Monomer conversion and first order kinetic plot of V11 46
3.7 Rate constants $\mathrm{k}_{\mathrm{nBMA}}$ and $\mathrm{k}_{\mathrm{tBMA}}$ of the different monomer feed ratios 48
3.8 Effective $\mathrm{k}_{\text {eff,i }}$ and total effective rate constant $\mathrm{k}_{\text {eff,total }}$ for Series A 50
3.9 Copolymerization diagram of n - and tert-butylmethacrylate 51
3.10 ATR-FTIR-spectra of nBMA and tBMA 55
3.11 ATR-FTIR-spectra of nBMA, tBMA and V11 - finger print region 56
3.12 ATR-FTIR-spectra of Series A - analyzed section 56
3.13 ATR-FTIR calibration curves of Series A 58
3.14 SEC elution diagrams of the samples of V23 59
3.15 SEC calibration curve and determination of relative molecular weight 60
3.16 Refractive index measurements of V12 62
3.17 Plot of the measured dn/dc of Series A 63
3.18 SEC elution diagrams and molar masses of V13 64
3.19 Polydispersities M_{w} / M_{n} and molar masses M_{n} of batch copolymer V23 67
3.20 Polydispersities $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ and molar masses M_{n} of Series A 68
3.21 DSC thermogram of V14 69
3.22 Scheme of a theoretical DSC thermogram 70
3.23 DSC thermograms of batch copolymer V26, second heating runs 71
3.24 Glass transition temperature T_{g} and temperature range $\Delta \mathrm{T}$ of copolymer V26 71
3.25 DSC thermograms of Series A, second heating runs 74
3.26 Glass transition temperature T_{g} and temperature range $\Delta \mathrm{T}$ of Series A 74
3.27 Reciprocal glass transition temperature T_{g} of Series A 76
4.1 Reaction scheme of the acid catalyzed ester hydrolysis 83
4.2 Reaction scheme of tert-butyl ester cleavage in the presence of TMSI 83
4.3 Molecular structures of educt V11 and products of Series D 86
4.4 Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}-$ Spectra of educt V11 and Series D 86
4.5 Comparison of ATR-FTIR-spectra of educt V11 and Series D 88
4.6 Comparison of SEC elution diagrams of educt V11 and Series D 89
4.7 DSC thermogram of V51 90
4.8 Comparison of DSC thermograms of educt V11 and Series D 91
4.9 Thermo optical analysis of V51 92
5.1 Experimental setup for semibatch copolymerization 96
5.2 Feed rate of the monomer addition programs 102
5.3 Differential volume of the monomer addition programs 103
5.4 Total volume of the monomer addition programs 104
5.5 Molecular structures of monomers and copolymer of Series C 105
$5.6 \quad{ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of V32 at different reaction times 106
5.7 Conversion p of Series C 113
5.8 Cumulative compositions of Series C vs. time 116
5.9 Instantaneous compositions of Series C vs. time 118
5.10 Cumulative compositions of Series C vs. conversion 120
5.11 Instantaneous compositions of Series C vs. conversion 121
5.12 ATR-FTIR-spectra of samples of V32 125
5.13 Section of ATR-FTIR-spectra of samples of V32 126
5.14 Section of ATR-FTIR-spectra of gradient copolymers Series C at 1440 min 127
5.15 Plot of peak area of gradient copolymers of Series C 128
5.16 Plot of peak height of gradient copolymers of Series C 129
5.17 Interrelation of cumulative composition from NMR and IR of Series C 131
5.18 Elution diagrams of the samples of V32 132
5.19 Differential refractive index increments dn/dc of Series C 133
5.20 SEC elution diagrams and molar masses of gradient copolymer $\mathrm{GP}_{0.15}$ 134
5.21 Molar masses M_{n} and Polydispersities against reaction time t of Series C 137
5.22 Molar masses M_{n} and Polydispersities against conversion p of Series C 1385.23 DSC thermogram of gradient copolymer $\mathrm{GP}_{0.15}$140
5.24 DSC thermograms of $\mathrm{GP}_{0.46}$, second heating runs 142
$5.25 \mathrm{~T}_{\mathrm{g}}$ and $\Delta \mathrm{T}$ against polymerization time t of Series C 143
$5.26 \mathrm{~T}_{\mathrm{g}}$ and $\Delta \mathrm{T}$ against conversion p of Series C 145
6.1 Molecular structures of educts and products of Series E 152
6.2 Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of educts and products of Series E 153
6.3 Comparison of ATR-FTIR-spectra of educts and products of Series E 155
6.4 Comparison of SEC elution diagrams of educts and products of Series E 157
6.5 DSC thermogram of V71 P($\mathrm{MAA}_{0.56}$-grad-nBMA $\left.{ }_{0.44}\right)$ 158
6.6 DSC thermograms of Series E, first heating runs 159
6.7 Plot of DSC-PA and -PH against composition of Series E 160
7.1 Experimental setup for batch copolymerization 164
7.2 Molecular structures of monomers and copolymer of Series F and G 171
$7.3{ }^{1} \mathrm{H}-\mathrm{NMR}$-spectrum of reaction mixture V81 and monomers 171
7.4 All ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of samples from V81 172
$7.5{ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of samples from V81 at $0,90,180 \mathrm{~min}$ 173
7.6 Monomer conversion and first order kinetic plot of V81 178
7.7 Rate constants $\mathrm{k}_{\mathrm{BzMA}}$ and $\mathrm{k}_{\mathrm{tBMA}}$ of the different monomer feed ratios 180
7.8 Effective $\mathrm{k}_{\text {eff,i }}$ and total effective rate constants $\mathrm{k}_{\text {eff,total }}$ for Series F 181
7.9 Copolymerization diagram for benzyl- and tert-butyl-methacrylate 183
7.10 Comparison of effective rate constants $\mathrm{k}_{\text {eff,i }}$ 184
7.11 Comparison of total effective rate constant $\mathrm{k}_{\text {eff,total }}$ 185
7.12 Comparison of copolymerization diagrams 186
7.13 Calibration curves to determine $\mathrm{F}_{\mathrm{BzMA}}$ from elementary analysis 189
7.14 ATR-FTIR-spectra of BzMA and tBMA 191
7.15 ATR-FTIR-spectra of BzMA, tBMA and V81 192
7.16 ATR-FTIR-spectra of Series F - finger print region 193
7.17 ATR-FTIR calibration curves of Series F 194
7.18 SEC elution diagrams of the samples of batch copolymerization V93 196
7.19 Refractive index measurements of polymer V82 197
7.20 Plot of the measured dn/dc of Series F 199
7.21 SEC elution diagrams and molar masses of V85 199
7.22 Polydispersities M_{w} / M_{n} and molar masses M_{n} of batch copolymer V93 202
7.23 Polydispersities $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$ and molar masses M_{n} of Series F 203
7.24 Comparison of dn/dc of Series A and F 204
7.25 Comparison of M_{n} of Series A and F 205
7.26 Comparison of degree of polymerization of Series A and F 206
7.27 Comparison of PDI of Series A and F 206
7.28 DSC thermogram of V81 208
7.29 DSC thermograms of batch copolymer V92, second heating runs 210
7.30 Glass transition temperature and temperature range of batch copolymer V92 210
7.31 DSC thermograms of Series F, second heating runs 211
7.32 Glass transition temperature T_{g} and temperature range $\Delta \mathrm{T}$ of Series F 212
7.33 Reciprocal glass transition temperature T_{g} of Series F 213
7.34 Comparison of T_{g} of Series A and F 214
7.35 Comparison of reciprocal T_{g} of Series A and Series F 215
8.1 Experimental setup for semibatch copolymerization 218
8.2 Feed rate of the monomer addition program 223
8.3 Differential volume of the monomer addition program 224
8.4 Total volume of the monomer addition program 224
8.5 Molecular structures of monomers and copolymer of V101 225
8.6 ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of V101 at different reaction times 226
8.7 Conversion p of V101 228
8.8 Cumulative compositions of copolymer V101 vs. time 230
8.9 Instantaneous compositions of copolymer V101 vs. time 230
8.10 Cumulative compositions of copolymer V101 vs. conversion 232
8.11 Instantaneous compositions of copolymer V101 vs. conversion 232
8.12 Conversion p of V31 and V101 234
8.13 Comparison of cumulative compositions of V31 and V101 235
8.14 Comparison of instantaneous compositions of V31 and V101 236
8.15 ATR-FTIR - spectra of samples of V101 239
8.16 Section of ATR-FTIR-spectra of samples of $\mathrm{GP}_{0.43}$ 240
8.17 Plot of peak areas of gradient copolymer of $\mathrm{GP}_{0.43}$ 241
8.18 Plot of peak heights of gradient copolymers of $\mathrm{GP}_{0.43}$ 241
8.19 Interrelation of cumulative composition from NMR and IR of $\mathrm{GP}_{0.43}$ 242
8.20 Elution diagrams of the samples of V101 243
8.21 SEC elution diagrams and molar masses of $\mathrm{GP}_{0.43}$ 244
8.22 Comparison of relative and absolute molar masses of $\mathrm{GP}_{0.43}$ 246
8.23 Molar masses M_{n} Polydispersities against reaction time t of $\mathrm{GP}_{0.43}$ 247
8.24 Molar masses M_{n} Polydispersities against conversion p of $\mathrm{GP}_{0.43}$ 247
8.25 Comparison of degree of polymerization of V31 and V101 249
8.26 Comparison of PDI of V31 and V101 250
8.27 DSC thermogram of gradient copolymer V101 251
8.28 DSC thermograms of $\mathrm{GP}_{0.43}$, second heating runs 252
$8.29 \mathrm{~T}_{\mathrm{g}}$ and $\Delta \mathrm{T}$ against polymerization time t of $\mathrm{GP}_{0.43}$ 253
$8.30 \mathrm{~T}_{\mathrm{g}}$ and $\Delta \mathrm{T}$ against conversion p of $\mathrm{GP}_{0.43}$ 253
8.31 Comparison of T_{g} of V31 and V101 255
8.32 Comparison of $\Delta \mathrm{T}$ of V31 and V101 255
9.1 Molecular structures of educt and product V111/V121 263
9.2 Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of educt and product V111 264
9.3 Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of educt and product V121 264
9.4 Calibration curves to elementary analysis 266
9.5 Comparison of ATR-FTIR-spectra of educt and product V111 268
9.6 Comparison of ATR-FTIR-spectra of educt and product V121 268
9.7 Comparison of SEC elution diagrams of educts and products V111/V121 269
9.8 DSC thermograms of copolymer V111 and V121 270
10.1 Experimental setup for batch block-copolymerization 274
10.2 Molecular structures of V150, V151 and V152 282
$10.3{ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of V150, V151 and V152 282
$10.4{ }^{1} \mathrm{H}-\mathrm{NMR}-$ spectra of precipitated polymers V150, V151 and V152 284
10.5 ATR-FTIR-spectra of samples of V150, V151 and V152 286
10.6 SEC elution diagrams of the samples of V150, V151 and V152 288
10.7 DOSY-NMR spectra of V150, V151 and V152 289
10.8 SEC elution diagrams and molar masses of V150 291
10.9 DSC thermogram of V150 293
10.10 DSC thermogram of copolymer V151 and V152 294
10.11 DSC thermograms of V150, V151 and V152, second heating runs 295
10.12 DSC thermograms of different copolymers, second heating runs 296
10.13 Molecular structures of V151/V152 and V161/V162 300
10.14 Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of V151/V161 and V152/V162 300
10.15 Comparison of ATR-FTIR-spectra of V151/V152 and V161/V162 302
10.16 Comparison of SEC elution diagrams of V151/V152 and V161/V162 303
10.17 DSC thermograms of copolymer V161 and V162 304
11.1 Experimental setup for semibatch copolymerization with online IR-measuring 308
11.2 ATR-FTIR-spectra of solvent and monomers 313
11.3 Section of ATR-FTIR-spectra of solvent and monomers 314
11.4 ATR-FTIR-spectra of V131 315
11.5 Section of ATR-FTIR-spectra of V131 316
11.6 Peak area and peak height of V131 317
11.7 ATR-FTIR-spectra of V132 318
11.8 Section of ATR-FTIR-spectra of V132 318
11.9 Peak area and peak height of V132 319
11.10 Molecular structures of monomers and copolymer of V131 and V132 320
$11.11{ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of V131 and V132 320
11.12 ATR-FTIR-spectra of samples of V131 and V132 323
11.13 Section of ATR-FTIR-spectra of samples of V131 and V132 324
11.14 SEC elution diagrams and molar masses of copolymer V131 326
11.15 SEC elution diagrams and molar masses of copolymer V132 326
11.16 DSC thermogram of copolymer V131 and V132 329
11.17 DSC thermograms of V131 and V132, second heating runs 329
11.18 Molecular structures of V131/V132 and V141/V142 332
11.19 Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra of V131/V132 and V141/V141 333
11.20 Comparison of ATR-FTIR-spectra of V131/V132 and V141/V142 335
11.21 Comparison of SEC elution diagrams of V131/V132 and V141/V142 336
11.22 DSC thermogram of copolymer V141 and V142 337

List of Tables

3.1 Monomer compositions and final yields of Series A 29
3.2 Monomer compositions and final yields of Series B 30
3.3 Time-conversion data obtained from the batch reactions of nBMA and tBMA 30
3.4 Position and assignments of the signals in ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra 36
3.5 Integrals and conversion of Series A 42
3.6 Kinetic rate constants and copolymer compositions of Series A 48
3.7 Results of the elementary analysis of Series A 52
3.8 Results of the elementary analysis of Series B 53
3.9 Peak area and peak height of the analyzed ATR-FTIR-bands of Series A 57
3.10 Differential refractive index increment dn/dc of Series A 61
3.11 SEC results of Series A 64
3.12 SEC results of Series B 65
3.13 Comparison of relative and absolute molar masses of V23 66
3.14 DSC results of Series A 72
3.15 DSC results of Series B 72
4.1 Hydrolysis experiments on $\mathrm{P}(\mathrm{nBMA}-\mathrm{co}-\mathrm{tBMA})$ 83
4.2 Variables and values of Equation 4.2.1 84
4.3 Table of solubility of hydrolysis products 85
4.4 Elementary analysis of V11 and Series D 87
4.5 SEC results of V11 and Series D 89
4.6 Weight loss during DSC of Series D 91
5.1 Compositions of the semibatch copolymerization solutions of Series C 97
5.2 Yields of Series C 98
5.3 Theoretical values for monomer addition program of Series C 101
5.4 Integrals and conversion of copolymerizations of Series C 109
5.5 Kinetic results and gradient copolymer compositions of Series C 114
5.6 Slopes of cumulative and instantaneous compositions of V31 to V34 122
5.7 Results of the elementary analysis of Series C 123
5.8 Peak area and peak height of the ATR-FTIR-bands of Series C 124
5.9 Composition of copolymers of Series C from peak height of band 1 130
5.10 Differential refractive index increment dn/dc of Series C 133
5.11 Comparison of relative and absolute molar masses of Series C 134
5.12 SEC results of Series C 135
5.13 DSC results of the different gradient copolymers of Series C 141
5.14 Theoretical and measured glass transition temperature of Series C 146
6.1 Amount of added MSA and yields of Series E 152
6.2 Results of the elementary analysis of educts and products of Series E 154
6.3 SEC results of educts Series C and products of Series E 156
6.4 DSC results of products of Series E. 159
7.1 Monomer compositions and final yields of Series F 166
7.2 Monomer compositions and final yields of Series G 166
7.3 Time-conversion data obtained from the batch reactions of nBMA and tBMA 166
7.4 Position and assignments of the signals in ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra 170
7.5 Integrals and conversion of Series F 174
7.6 Kinetic results and copolymer compositions of Series F 179
7.7 Results of the elementary analysis of Series F 187
7.8 Results of the elementary analysis of Series G 187
7.9 Compositions from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and elementary analysis of Series F 189
7.10 Compositions from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and elementary analysis of Series G 190
7.11 Peak area and peak height of the analyzed ATR-FTIR-bands of Series F 193
7.12 Differential refractive index increment dn/dc of Series F 198
7.13 SEC results of Series F 200
7.14 SEC results of Series G 200
7.15 Comparison of relative and absolute molar masses of V93 201
7.16 Degree of polymerization of Series A and F 205
7.17 DSC results of Series F 208
7.18 DSC results of Series G 209
8.1 Composition of the semibatch copolymerization of tBMA and BzMA 218
8.2 Yields of V101 219
8.3 Theoretical values for monomer addition program of V101 222
8.4 Integrals and conversion of copolymerization V101 228
8.5 Kinetic results and gradient copolymer compositions of V101 229
8.6 Slopes of cumulative and instantaneous compositions of V101 233
8.7 Results of the elementary analysis of $\mathrm{GP}_{0.43}$ 237
8.8 Compositions from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and elementary analysis of V101 238
8.9 Peak area and peak height of the ATR-FTIR-bands of GP $0_{0.43}$ 238
8.10 Composition of copolymers of $\mathrm{GP}_{0.43}$ from peak height of band 2 242
8.11 Comparison of relative and absolute molar masses of $\mathrm{GP}_{0.43}$ 245
8.12 SEC results of V101 246
8.13 Degree of polymerization of gradient copolymers V31 and V101 249
8.14 DSC results of V101251
8.15 Theoretical and measured glass transition temperature of V101 254
9.1 Amount of added MSA and yields of V111 and V121 262
9.2 Results of the elemental analysis of educts and products of V111/V121 265
9.3 Compositions from ${ }^{1}-\mathrm{NMR}$ and elementary analysis of V111/V121 266
9.4 SEC results of V81, V111, V101 and V121 269
9.5 DSC results of products of copolymer V111 and V121 271
10.1 Compositions of the solutions for polymerizations of block-copolymers 279
10.2 Position and assignments of the signals in ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra 281
10.3 Integrals and conversion of V150, V151 and V152 283
10.4 Peak ares of precipitated AB-di-block copolymers V151 and V152 284
10.5 Results of the elementary analysis of V150, V151 and V152 286
10.6 Peak area and peak height of the ATR-FTIR-bands of V150, V151 and V152 287
10.7 Differential refractive index increment dn/dc of V150, V151 and V152 290
10.8 SEC results of V150, V151 and V152 291
10.9 Comparison of relative and absolute molar masses of V150, V151 and V152 292
10.10 DSC results of V150, V151 and V152 294
10.11 Amount of added MSA and yields of V161 and V162 298
10.12 Results of the elementary analysis of V151/V152 and V161/V162 301
10.13 SEC results of V151, V161, V152 and V162 303
10.14 DSC results of products of copolymer V161 and V162 305
11.1 Composition of the semibatch copolymerizations with online IR-measuring 309
11.2 Peak area and peak height of the ATR-FTIR-bands of V131 316
11.3 Peak area and peak height of the ATR-FTIR-bands of V132 319
11.4 Integrals of V131 and V132 321
11.5 Results of the elementary analysis of V131 and V132 322
11.6 Compositions from ${ }^{1}$-NMR and elementary analysis of V131 and V132 322
11.7 Peak area and peak height of the ATR-FTIR-bands of V131 and V132 324
11.8 Differential refractive index increment dn/dc of V131 and V132 327
11.9 SEC results of V131 and V132 327
11.10 Comparison of relative and absolute molar masses of V131 and V132 327
11.11 DSC results of V131 and V132 330
11.12 Theoretical and measured glass transition temperature of V131 and V132 330
11.13 Amount of added MSA and yields of V141 and V142 331
11.14 Results of the elementary analysis of V141 and V142 333
11.15 Compositions from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and elementary analysis of V141/V142 334
11.16 SEC results of products of V131/V132 and V141/V142 336
11.17 DSC results of products of copolymer V141 and V142 338

List of Abbreviations

${ }^{1} \mathrm{H}-\mathrm{NMR}$	proton nuclear magnetic resonance spectroscopy
${ }^{13} \mathrm{C}$-NMR	carbon nuclear magnetic resonance spectroscopy
A	area of NMR-Integral
a	alternating
ATR	attenuated total reflectance
ATRP	atom transfer radical polymerization
b	block
BMA	butyl methacrylate
Bz	benzyl
BzMA	benzyl methacrylate
CoPo	copolymer
CMC	critical micelle concentration
CRP	controlled radical polymerization
D	dilution
DMSO	dimethyl sulfoxide
dn/dc	differential refractive index increment
DOSY-NMR	diffusion ordered NMR spectroscopy
DSC	differential scanning calorimetry
EA	elementary analysis
FRP	free radical polymerization
FT	fourier transform
F	copolymer composition

f	monomer composition
grad	gradient
GPC	gel permeation chromatography
IR	infra red
k(eff)	effective rate constant
LS	light scattering
MA	methacrlate
MAA	methacrylic acid
MALS	multi angle light scattering
MEHQ	4-methoxyphenol
MEK	methyl ethyl ketone or 2-butanone
MSA	methanesulfonic acid
MWD	molecular weight distribution
n	molar mass
nBMA	n-butyl methacrylate
nBu	n-butyl
n. m.	not measured
NMP	nitroxide mediate polymerization
NMR	nuclear magnetic resonance
obdd	ordered bicontinuous double diamond
p	conversion
PA	peak area
PBzMA	poly-benzyl methacrylate
PDI	polydispersity index
PH	peak height
PI	polyisoprene

PMDETA $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-pentamethyldiethylenetriamin
PnBMA poly-n-butly methacrylate
PS polystyrene
PSS polystyrene standard
PtBMA poly-tert-butly methacrylate
PTFE polytetrafluoroethylene
pTSC para-toluenesulfonyl chloride
RAFT reversible addition fragmentation transfer polymerization
RI refractive index
RP radical polymerization
q total monomer addition function
SEC size exclusion chromatography
s
statistic
SSL strong segregation limit
t
time
T temperature
tBMA tert-butyl methacrylate
tBu tert-butyl
TFA trifluoroacetic acid
Tg glass transition temperature
THF tetrahydrofuran
TMS trimethylsilyl
TMSI trimethylsilyl iodide
TOA thermo optical analysis
V volume
vol volume
WSL weak segregation limit

[^0]: a"Bei verzweigten Polymeren (E: branched polymers) gehen von den Verzweigungspunkten drei oder mehr Ketten aus. Je nach der relativen Anordung dieser Kettenteile zueinander unterscheidet man weiter sternförmig, dendritisch, statistisch (baumähnlich) und kammförmige verzweigte Moleküle." [17]

[^1]: Continuation on next page ...

[^2]: Continuation on next page ..

[^3]: * calibrated against PS-Standard

[^4]: ${ }^{*}$ n. m. \equiv not measured, 10 mg in $0.5 \mathrm{ml}, \mathrm{RT}, 6 \mathrm{~h}$
 $+=$ soluble,$-=$ insoluble, $\pm=$ difficultly soluble

[^5]: $\begin{array}{lrllllllll}\text { V32 } & 0 & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 9.4830 & 0.0000 & 0.0000 & 0.0000 \\ 0.65 & 15 & 1.0000 & 0.0000 & 0.0000 & 0.0000 & 9.5423 & 0.0063 & 0.0062 & 0.0005\end{array}$
 Continuation on next page ...

[^6]: ${ }^{a}$ calculated by Eq. 5.2.25; ${ }^{b}$ calculated by Eq. 5.2.35; ${ }^{c}$ calculated by Eq. 5.2.35 with average slope

[^7]: ${ }^{a}$ calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra
 ${ }^{b}$ calculated from Eq. 7.2.15
 ${ }^{c} \Delta \mathrm{~F}_{\mathrm{BzMA}}^{\mathrm{x}}=\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{EA}, \mathrm{X}}-\mathrm{F}_{\mathrm{BzMA}}^{\mathrm{NMR}} ;{ }^{d}$ calculated from Eq. 7.2.16

[^8]: ${ }^{a}$ calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra

[^9]: ${ }^{a}$ calculated by Eq. 8.2.18
 ${ }^{b}$ calculated by Eq. 8.2.22
 ${ }^{c}$ calculated by Eq. 8.2.22 with average slope

[^10]: ${ }^{a}$ Peak elution volume
 ${ }^{b}$ relative values, based on PSS calibration Eq. 3.3.22

[^11]: ${ }^{a}$ calculated from ${ }^{1} \mathrm{H}-\mathrm{NMR}$-spectra
 ${ }^{b}$ calculated from Eq. 8.2.24
 ${ }^{c} \Delta \mathrm{~F}_{\mathrm{tBMA}}^{\mathrm{x}}=\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{EA}, \mathrm{x}}-\mathrm{F}_{\mathrm{tBMA}}^{\mathrm{NMR}}$
 ${ }^{d}$ calculated from Eq. 8.2.25

[^12]: * calibrated against PS-Standard

[^13]: ${ }^{a}$ Peak elution volume
 ${ }^{b}$ relative values, based on PSS calibration Eq. 3.3.22

