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Chapter 1

Introduction

Functionalizing surfaces by deposition of adsorbates is a worthwhile method to improve a
variety of components. Commonly known in this context are catalytic converters, which
are mounted in every motor vehicle and steadily gain importance from an environmental
point of view due to their capability to reduce exhaust fumes [1]. However, catalytic mate-
rials are often costly [2] and hence coating low cost bulk materials with effective adsorbates
is a profitable alternative. While nanoparticles are usually sufficient for catalysis [3], full
layers of adsorbate material can be utilized in other fields. The crucial factor during the
miniaturization [4] of electronic components like organic thin film transistors [5] indeed
was the ability to grow thin films with a thickness of only a few monolayers, which still
have either insulating or conducting properties.

More recently, the self-assembly of single molecules has gained attention, especially in
order to develop electronics based on molecular units. These include for instance molecular
wires [6], junctions [7] and switches [8]. Such electronic devices are capable to overcome
the physical limitations of conventional silicon technology [4] and furthermore increase
computational speed [8]. Knowledge of the respective organic building blocks [9] improves
the quality of the structures. In addition to experimental investigation of self-assembly
of specialized structures [10] and molecules in general [11, 12], simulation techniques are
widely used [13] to assist in finding fundamental properties.

Since adsorbates are usually deposited randomly on the surface in the first place [14],
they have to undergo some kind of lateral rearrangement before they can shape the desired
structures [15]. The necessary displacement can be caused by thermal activation [16, 17]
or, for instance, be driven by variations in the particle concentration [18]. However, it
will typically be a diffusive motion.

Apparently, lateral mobility of adsorbates in general and of molecules in particular is
a vital property forming the basis of the described applications. Therefore, knowledge
of diffusion properties, especially the diffusion coefficient and thus the activation energy,
is indispensable for controlling and steering the adsorbates motion. Several methods are
available to determine the diffusion coefficient of adsorbates on surfaces [19] and a short
account of the most popular will be given in the following.

Common measurement methods

One of the first measurement techniques was the real time observation of a pointy metal
tip surface via the field electron microscope (FEM) [20] yielding a spatial resolution of
25 Å [21]. Electrons are emitted from the tip and accelerated towards a fluorescent screen,
due to a high electric field applied between both. Adsorbates on the tip significantly
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change the local work function, causing shadows on the screen. Using the fluctuation
method [22] instead of counting displacement steps by hand further increased the quality
of the results.

Lateral resolution was further increased to 1 Å by introduction of the field ion micro-
scope (FIM) [23]. The experimental setup is similar to the FEM, but the imaging is based
on an inert gas in the apparatus. When a high electric field is applied, it ionizes preferably
in the vicinity of surface atoms, where the electric field is stronger due to a locally higher
curvature in the topography. The strength of the electric field is a delicate choice, because
it has to be strong enough to ionize the gas, but must not detach the adsorbates. The
measurement process itself is split into a recording phase, where the high electric field is
applied, and a movement phase, where the electric field is turned off and the tip is heated
allowing the adsorbates to move. The displacement can be tracked by subsequent images.

The Laser induced thermal desorbtion (LITD) technique [24] does not record the
displacement directly. Here, a focused laser pulse is sent on a surface with a homogeneous
concentration of adsorbates. In the area, where the laser beam irradiates the surface,
adsorbates will desorb completely and the now empty area can only be reoccupied by
neighboring adsorbates diffusing into it. After a certain idle period an identical second
laser pulse again desorbs those particles, which entered the void zone in the meantime.
The amount of desorbing particles depends on their diffusivity and is detected by a mass
spectrometer [25].

Like all measurement techniques, the three methods described above are afflicted with
certain weaknesses. Besides the risk of influencing the adsorbate’s motion by the high
electric fields, a drawback of the FEM as well as the FIM is the limited choice of probe
materials, which are conducting, can be crafted into a tip and withstand high electrostatic
fields. The LITD, though capable of investigating a variety of materials, is a rather
invasive method, which can destroy the samples. With the dawn of the minimally invasive
scanning tunneling microscopes (STM) [26] for conducting and atomic force microscopes
(AFM) [27] for insulating samples, many of these problems were solved.

An STM consists of a point-like conducting tip, which is positioned at a fixed distance
close to an also conducting surface. A small voltage is applied and though electrons
can not cross the gap between tip and surface they can tunnel through the potential
barrier. Since the tunneling probability is very sensitive to the gap width, the electronic
topography of the surface will cause variations in the tunneling current. An alternative
mode of operation is to set a constant tunneling current and reconstruct the electronic
surface structure from the necessary adjustments of the positioning control.

The AFM technique uses a cantilever with a tip on one end, which is positioned close
to the surface. In contact mode its bending due to attractive or repulsive interaction with
the surface can be used to keep the cantilever at a constant height above the surface thus
recording the surface topography via the necessary elevation adjustments. In non-contact
mode the tip oscillates with its resonance frequency close to the surface without touching
it. Different forces affecting the tip, i.e., variations in the surface structure, are then
identifiable as changes in the resonance frequency.

When recording subsequent images of a surface with adsorbates the basic principle
of counting the displacements can be directly applied to determine the diffusion coef-
ficient [28]. An indirect approach is to employ the dependency of island sizes on flux,
critical nucleus size and diffusion coefficient [29, 30] for determining the latter. This prin-
ciple is also expandable to multicomponent systems [15, 31]. Yet, the evaluation of island
sizes calls for large defect free areas on the surface allowing multiple islands to form.
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1. Introduction

State of the art STM techniques are capable of a video mode [32] and thus a real time
tracking of adsorbate paths [33]. However, molecules in organic surface growth often have
high mobilities causing noise instead of clear images [34, 35] due to the strongly limited
time resolution of 25 frames per second for STM [32] and about 1 frame per second for
AFM [36] in these modes of operation.

Recording of signal fluctuations with a locally fixed tip

A more convenient approach is the recording of temporal fluctuations with a locally fixed
probe, for instance current fluctuations in an STM, which enables a strongly increased
time resolution. The goal of this work is the development of evaluation methods that
allow the determination of diffusion coefficients of non-point-like adsorbates on the basis
of such signal fluctuations. This includes absolute values for isotropic translational as
well as rotational diffusion coefficients. Furthermore, anisotropic translational diffusion
should become identifiable.

Different means are conceivable to extract the diffusion coefficient from the detection
events in a time series. Originally, the autocorrelation function of the recorded signal
has been the focus of experimental [37] and theoretical [38] studies. However, diffusion
coefficients of adatoms can only be determined up to a proportionality factor with these
ACF methods. Therefore, no absolute values of the diffusion coefficients are accessible
and only relative changes can be obtained, for instance when varying the temperature.

In this work, the autocorrelation function is adjusted to molecules with sizes larger
than the step length of translational moves. This way absolute values of the diffusion
coefficient become available. Furthermore, the distribution of peak widths [39] is revisited
and a more detailed theoretical treatment is developed. The evaluation of the distribution
of interpeak intervals is introduced as a third alternative here. It is based on the motion
outside of the probes vicinity, while the former two approaches might be influenced by
molecule probe interactions.

Considering the circular shapes of molecules widely used for self-assembly studies, see
Fig. 1.1 (a)-(c), in chapter 3 a first account on the evaluation methods is given for trans-
lational movement of circular shaped molecules. However, other molecules can be better
described by rectangular shapes, see Fig. 1.1 (d)-(f). Therefore, in chapter 4 adjustments
to the methods accounting for rectangular molecules are presented.

Upon deposition, molecules are often spread with an arbitrary orientation on the
surface. With increasing coverage they will eventually rotate to form an ordered layer [40,
41]. While these reorientation steps will be scarce for molecules with only two preferred
orientations [42], there are material combinations that allow a strong rotational movement
of the molecule around its center of mass [43, 44, 45]. For rectangular shaped molecules
this additional degree of freedom causes different fluctuation patterns in the signal. To
cope with the additional degree of freedom and possibly determine the rotational diffusion
coefficient, the methods described above are further extended in chapter 5.

Diffusion in general can be anisotropic. For the investigated motion of molecules
on surfaces reasons include for example an asymmetric molecule structure [46] or an
anisotropic surface structure [47] amongst others. While this might be hindering in some
cases, it can also be exploited for steering self-assembly of structures on the surface [48] or
directional transport of material [49]. In any case it is helpful to quantify such a behavior.
Since they do not contain information on the molecules’ paths, abstract methods like
the analysis of island size distributions or the laser induced thermal desorption are not
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qualified to resolve anisotropic diffusion at all. Strobe like imaging of the surface and
subsequent analysis of the displacement of single objects, would have to be extended to
additionally record the direction of the displacement to get an impression of a molecule’s
preferred direction. The same applies to video-based evaluation methods, but in both
cases it is expected to be rather extensive.

In this work it is discussed that also the recording of signal fluctuations from a locally
fixed probe, which is convenient for resolving isotropic diffusion, is not universally suited
to identify anisotropic motion. However, with different measurement setups, which can be
simulated by letting a probe oscillate on simple trajectories, this deficit can be eliminated,
as presented in chapter 6 along with the corresponding evaluation methods.

Application of methods

All evaluation methods are first validated against substitute kinetic Monte Carlo simula-
tion data, according to the model described in chapter 2. The advantage of simulating
a system is the possibility of choosing various parameter sets. As a result, experimental
prerequisites can be defined in chapter 3 and the methods presented in this work can be
tested thoroughly, even for extreme parameters, that would be difficult to obtain in an
experiment.

Figure 1.1: Ground-state vacuum structures obtained from density functional calcu-
lations of several molecules. They can be considered as representative for classes of
derivates that are widely used in studies of molecular self-assembly on surfaces: (a)
helicene [50] (top and side view), (b) hexaphenylbenzene [51], (c) (copper-) phthalo-
cyanine [52], (d) pentacene [53], (e) anthracene [54, 55] and (f) the perylene derivate
PTCDA [56]. Images of the molecules in the respective studies suggest, that their
overall shape is not significantly distorted upon adsorption and that they often lie
flat on the surface.
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1. Introduction

Eventually, the presented methods are successfully applied to determine the diffusion
coefficients of copperphthalocyanine (CuPc) and PTCDA on Ag(100) from experimental
measurement data [57] in chapter 7. Though STM and AFM are the obvious experimental
choice, because they are most likely already present in every laboratory working in the
field of surface science, the evaluation methods are deliberately kept on an abstract level
and can in principle be applied to any point-like probe.
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Chapter 2

Kinetic Monte Carlo simulation

The ongoing increase of available computing power allows to effectively simulate the be-
havior of even complex physical systems. However, it is still difficult to include all inter-
actions and possible processes contributing to a system in a simulation. Therefore, the
employed simulation technique is chosen according to the particular property of interest.
For example, there are powerful tools to calculate the spatial and electronic structure of
single [58] or multiple molecules, as well as periodic arrangements in crystal-like struc-
tures [59, 60]. In addition a variety of Monte Carlo simulations is available, which are
well suited for simulating the dynamics of molecules on a surface. “Monte Carlo” is a
category name for various simulation techniques, whose mutuality is that they change the
status of a system in a stochastic manner. A prerequisite is that for any given state the
transition rates to other states are known.

2.1 Model

In this work a Monte Carlo simulation of extended objects diffusing on a two-dimensional
grid is employed to simulate molecules diffusing on a surface. Translated to this simu-
lation a state of the system is an accumulation of molecule positions. A transition to
another state is performed, whenever an object moves. To account for the time depen-
dence, the simulation follows the the principle of a Kinetic Monte Carlo simulation [61],
which assumes that the probability distribution of the time ∆t from now, when the next
transition will occur, i.e., Pnext(∆t), is given by a Poisson process

Pnext(∆t) = exp (−ωtot∆t) , (2.1)

where ωtot is the cumulative rate of all possible transitions. In case of diffusion the rates
are proportional to the respective diffusion coefficient Di [62]. The waiting time between
two transitions is then defined as

∆t = − 1

ωtot

log(ztime) , (2.2)

and is randomly drawn via an equally distributed random number ztime(∈ R) between
zero and one [61]. If the random number generator yields ztime ∈ [0, 1[, log(1− ztime) can
be used to avoid the singularity at 0 without loss of generality. Generally, the transition
rates could be different for each state. However, a fixed number of non-interacting objects
will be considered here, hence the rates are constant.
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Figure 2.1: Sketch of the simulation’s geometry: The square lattice of size A defines
possible object center positions (small dots). Objects are defined by their center
position (bold dots) and extent Ã (shaded areas). Allowed transitions are indicated
by the arrows.

The object’s position is defined by its center coordinates, and in case of non-circular
objects they are additionally given an individual orientation. The center positions of
the objects in the simulation perform jumps between nearest neighbor lattice sites on a
two-dimensional grid of size A, see Fig. 2.1. The lattice constant is set to a = 1 and the
system proportions are kept by defining the object size as multiple of the lattice constant.
For example, the simulation radius R of an object with radius R̃ is given by R = R̃/a.
The number N of objects on the grid follows from the number density c = N/A. It is
connected to the widely used surface coverage θ0, given in percent of a monolayer, via the
surface area covered by a single object Ã

c ≡ θ0

Ã
. (2.3)

The lattice used in the simulation should have a size large compared to the single object to
avoid finite size effects. However, N linearly increases with the lattice size. To maintain a
reasonable size of the whole system, a lattice of A = 1000× 1000 positions is chosen with
periodic boundary conditions to emulate an even larger system.

In case of pure translational movement, which will be discussed in chapters 3 and 4,
the objects are displaced on the square lattice with stepsize a and a rate of ωtra = 4D/a2.
Here, the objects orientation ϕ and its rate for rotational moves is set to zero by de-
fault. When including rotational movement as done in chapter 5, reorientation moves
with a step size of aϕ and rate ωrot = 2Dϕ/a

2
ϕ are additionally taken into account. The

anisotropic diffusion in chapter 6 is realized with different jump rates ωtra,x = 2Dx/a
2 and

ωtra,y = 2Dy/a
2 along the principal axes of the diffusion tensor, which coincide with the

x- and y-axes here. The total rate necessary to calculate the waiting time [cf. Eq. (2.2)]
is derived from the sum over the rates of all contributing processes ωtot = N

∑
i ωi. The

rates are weighted with N , because every object can perform every transition. The type
of transition is chosen via another equally distributed random number ztype ∈ [0, 1[(∈ R):

0 ≤ ztype < N ωtra,x

ωtot
→ Translation in x−direction

N ωtra,x

ωtot
≤ ztype < N ωtra,x+N ωtra,y

ωtot
→ Translation in y−direction

N ωtra,x+N ωtra,y

ωtot
≤ ztype < 1 → Rotation

Note that the first two cases merge if ωtra,x = ωtra,y. The direction of displacement is
also set randomly between ±aϕ for rotation as well as ±

(
a
0

)
and ±

(
0
a

)
for translation.
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2. Kinetic Monte Carlo simulation

Other orientations of the principle axes can be easily implemented by changing these
displacement vectors.

Various sets of parameters, which will be called configurations in the following, were
simulated for this work in order to test the simulation as well as the evaluation methods.
Yet, only an assortment of those configurations, which characterize the investigated prop-
erty best will be presented in respective discussions. The underlying parameter sets are
filed in appendix C and will in the following be adressed as Conf. C01, for example.

It has to be noted that the assumption of non-interacting objects is a simplification,
which nevertheless should be appropriate for freely diffusing molecules at low coverages.
Formally, more than one object could cover the detection site in the simulation, due to
the neglect of interactions. Since most probably their arrival and departure times will not
be synchronous, the recorded peak width would be elongated. However, an overlap at the
detection site is unlikely for small coverages and hence does not significantly falsify the
simulation. Considering the probability P1 = Ã/A that a given object covers the detection
site, the binomial distribution can be employed to calculate the probability P>1 that more
than one object will cover it P>1 = 1−

∑1
k=0

(
N
k

)
P k

1 (1− P1)N−k.

In the simulations a coverage of θ0 = 1% is used, which is about the upper limit
of effective coverage values found in experimental setups, cf. chapters 7.2 and 7.3. For
example, Eq. (2.3) yields N = 100 particles of size Ã = 10× 10 on a A = 1000× 1000 grid.
This results in a probability of P>1 = 5× 10−5 to find more the one object at the detection
site in the moment of observation. While recording 105 peaks the detection site is typically
observed 5× 107 times, of which the probe site is occupied by multiple objects 102 times
according to P>1. Assuming the worst case, where each of the 102 occurrences elongates
another peak, this consideration results in a maximal error of 1� falsified peaks. Due to
lower coverages, this negligible error usually is even smaller, especially if not considering
the worst case scenario.

2.2 Implementation

The simulation is implemented in C++ [63] following the principles of object-orientation.
The Mersenne Twister [64] is used as the pseudo random number generator. It is very fast
and passes most randomness tests [64]. Futhermore, the count of random number draws
per simulation run (max. 1×1010 for Conf. A00) is well below the Mersenne Twister’s peri-
odicity of 219937 − 1 ≈ 106001. One of its few disadvantages is, that depending on the initial
value, several draws might be necessary before a sufficient randomness is achieved [64],
which is considered in the implementation. Depending on whether circular or rectangular
objects shall be investigated, the diffusing objects are instances of the CircularObject

or the RectangularObject class. If not stated otherwise, the simulated signal is recorded
at the position of a FixedTip instance.

After parameter declaration and initialization, N identical objects are spread ran-
domly on the grid. The repeating part of the simulation consists of the following steps.
First the time is increased by the waiting time [Eq. (2.2)]. Then an object is chosen ran-
domly and moved as described in the model section. Afterward the moving object checks,
if it covers the tip position. If so, the signal is set “on”. Else, if none of the other objects
covers the detection site, it is set “off”. The pseudocode reads as follows:
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while not enough events recorded

increase time by waiting time

choose random object

move this object

if tip position is covered

set signal on

else

set signal off

end if

if signal toggled from ’on’ to ’off’

increase number of events

end if

end while

In chapter 6 a modification is investigated, where the probing site is no longer lo-
cally fixed. Therefore, also the CircularMovingTip and LinearMovingTip classes have
been implemented, which inherit from FixedTip and can additionally update their own
position. The situation with moving tips is much more elaborate, because the signal is
no longer toggled only by an object moving, but also by the tip entering or leaving a
standstill object. This is best captured by strobe-like reading the system in constant time
steps, rather than increasing the time by the current waiting time. It is very close to the
experimental situation, where a discrete rather than a continuous time signal is recorded,
compare for example [39]. One way to capture the objects’ motion is to continuously
compare the actual system time with the next event time and letting one random object
move when the waiting time has passed. Another possibility is to let all objects move a
corresponding fraction of the stepsize in every time step. Since there are no significant
runtime differences between these two options, the first was used, because of its affinity
to the static tip implementation. The pseudocode in this situation is altered to:

while not enough events recorded

if any object covers tip position

set signal on

else

set signal off

end if

if signal toggled from ’on’ to ’off’

increase number of events

end if

while next event time < next time step

choose random object

move this object

update event time

end while

increase time step

update tip position

end while

An illustration of the classes with their key attributes and all dependencies is given in the
UML class diagram [65] depicted in Fig. 2.2.
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2. Kinetic Monte Carlo simulation

Simulator

objectArray : Object

recordingTip : Tip

Object

xPos : double

yPos : double

move(direction : Integer)

checkTipInside(xTipPos : double,yTipPos : double) : Boolean

CircularObject

newAttr : Integer

R : double

checkTipInside(xTipPos : double,yTipPos : double) : Boolean

RectangularObject

orientation : double

Ls : double

Ll : double

rotate(direction : Integer)

checkTipInside(xTipPos : double,yTipPos : double) : Boolean

Tip

xPos : double

yPos : double

LinearMovingTip

omega : double

l : double

gamma : double

updatePos()

CircularMovingTip

omega : double

r : double

updatePos()

MersenneTwister

genrand_real2()

Figure 2.2: An UML class diagram of the simulation program. A molecule diffusing
on a surface is represented by a two-dimensional Object randomly changing its center
position on a grid. Time dependencies and random choices according to chapter 2
are controlled by the Simulator and its MersenneTwister. The signal is recorded
at a well defined probe site marked by a Tip.

2.3 Optimization

Several optimizations are possible to increase the performance of the simulation. While
mandatory improvements, like avoiding unnecessary branching and loops, will not be
discussed in detail here, two steps to decrease memory load and runtime of the program
to a fraction are to be singled out.

First, the size of the signal in terms of output data can be massively reduced, if only
those times, when the signal toggles from “on” to “off” or vice versa, are written out.
Regarding the evaluation via residence time distribution (cf. chapters 3.2 and 4.2) and
interpeak time distribution (cf. chapters 3.3 and 4.3), the residence times and interpeak
intervals respectively can even be directly written out.

Secondly, the simulation allows to position several tips in the system, which can each
record a signal of its own. Residence times and interpeak intervals of all signals can
be joined afterward. The autocorrelation function on the contrary must be calculated
from a single signal. However, this is no hindrance, since compared to both distributions
only a fraction of recorded events is necessary for a smooth autocorrelation function, cf.
chapter 3.4. For an optimal simulation a balance has to be found between decreasing the
runtime by parallel recording with multiple tips and increasing it, due to the additional
hit tests. For the system size used throughout this work, four independent recording tips
have turned out to deliver the best results.
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Chapter 3

Circular shaped objects

As pointed out in the introduction, this work presents three different approaches to ex-
tract the diffusion coefficient from signal fluctuations of a locally fixed probe, regardless
whether the signal was recorded in an experiment or consists of substitute simulation
data. In the theoretical derivations the recording probe is considered as a fixed point
on a two-dimensional surface called “probe site”. Detailed information on the method of
measurement method is not needed for the theoretical treatment in this work.

The surface is envisioned to be covered by N indistinguishable, non-interacting objects
with a lateral extent Ã representing the molecules. To begin with, a circle with radius R
is assigned to the surface area Ã covered by the object, compare sketch in Fig. 3.1, which
is an appropriate geometric representation for many molecules used in surface science, see
Fig. 1.1 (a)-(c). The signal recorded at the probe site is either “on” or “off”, depending
on whether it is covered by one of the diffusing objects or not. Until the effects of
anisotropic motion are investigated in detail in chapter 6, the objects are presumed to
diffuse isotropically with a diffusion coefficient D.

The evaluation methods are first validated against simulation data, according to
chapter 2. Application of the three methods to real measurement data is presented in
chapter 7.

R∆R

(a)

R∆R

(b)

Figure 3.1: Sketch of a circular object’s geometry with its radius R in (a) the RTD
and (b) the ITD setup. In both cases the dot marks the probing site and the shaded
area is the so-called detection area, defined by those object center positions that turn
the signal “on”. The dotted line marks the initial probability distribution displaced
by ∆R from the absorbing boundary, see text, which is used for Eqs. (3.9) and (3.13).
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3.1 Autocorrelation function

For the autocorrelation function (ACF) the fixed probe position marks the center of a
two-dimensional x-y-coordinate system on the surface. Each of the objects (µ) diffusing
on the surface can be addressed by its center position rµ(t) = [xµ(t), yµ(t)]. The signal
recorded at the probe site is the sum over the contributions of each object

S(t) =
N∑
µ=1

sµ[rµ(t)] , (3.1)

where sµ[rµ(t)] can be interpreted as a “detection function”, specifying how strong the
probe will sense an object at this position. The autocorrelation function of the signal is
given by

C(t) = 〈S(0)S(t)〉 . (3.2)

The objects are supposed to be independent. Furthermore, in the evaluation of the
ACF only times t� τR ≡ R2/D will be considered, where τR is comparable to the mean
residence time of the object center at the probe site. This way, it can be assured that
only one particle will contribute to the signal on this time scale and the cross-correlation
terms between different objects become negligible. The ACF is then reduced to the self-
correlator C(t) = N 〈s(0)s(t)〉, which can be expressed by

C(t) =
c

4πDt

∫
dr0

∫
dr1 s(r1) exp

(
−(r1 − r0)2

4Dt

)
s(r0) . (3.3)

For details of the derivation, please consult appendix A.1.
The explicit form of the detection function depends on the measurement technique.

Regarding an STM, for example, the change of the tunneling current by a foreign object
in the tunneling gap between probe and surface has to be determined. The tunneling
problem itself has long been treated, e.g., by Tersoff and Hamann [66]. Sumetskii and
Kornyshev suggested a Gaussian shaped detection function for diffusing atoms [38]. If
the diffusing object has a non-negligible lateral extent, which is the case for molecules,
its detailed structure and electronic charge density need to be taken into account. This
degree of detail, however, is not necessary for a reasonable evaluation of the ACF of a
simplified signal.

It has turned out to be sufficient only to distinguish between “on” and “off” states in
the signal [�]. The probe is turned “on” whenever part of any diffusing molecule covers
the detection site and goes “off” as soon as this site is uncovered again. This concept
results in a rectangular detection function

s[r(t)] =

{
1 if r(t) ∈ D,
0 else,

(3.4)

where D is the set of those center positions, that cause the object to cover the probe site.
D will be referred to as the detection area. Note that the overall signal [Eq. (3.1)] is also
a rectangular signal with amplitudes either 0 or 1, because only one particle is in the
vicinity of the probe on the examined time scales.

The autocorrelation function of a continuously recorded signal is given by the convo-
lution

C(t) = (f ∗ f) (t) =

∫
dτf (τ) f (τ − t) , (3.5)

14



3. Circular shaped objects

which can be quite extensive to calculate. A more convenient method is to make use of the
convolution theorem [67], which states that a convolution becomes a simple multiplication
in the Fourier space

C(t) = F−1 (F (f ∗ f)) = F−1 (F (f)F (f)) . (3.6)

This principle also applies to signals recorded in discrete and constant time steps. Here a
Fast Fourier Transformation algorithm [68] can be used for the transformation steps.

For a quantitative evaluation of simulated data, the set D has to be adapted to the
object’s geometry. Here, circular objects are to be considered and hence a circle has to
be assigned to D. The right hand side of Eq. (3.4) then is given by Θ(R− |r|) with the
Heaviside jump function Θ(.) and the objects radius R. In this case Eq. (3.3) yields

C(t) = 4πc

∫ R

0

dr0 r0

∫ R

0

dr1 r1

exp
(
− r2

0+r2
1

4Dt

)
4Dt

I0

(
2r0r1

4Dt

)
, (3.7)

where I0(.) is the modified Bessel function of zeroth order. The function will approach
the signal’s expectation value C(0) = cπR2 for t→ 0 and a power law ∝ t−1 in the long
time limit, as is accounted for in appendix A.6.1. The latter, however, is irrelevant for
the application, because it emerges for times larger than the mean residence time τR for
a circular object, where the theory does not apply. The general behavior of the ACF is
shown in Fig. 3.2.
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Figure 3.2: General behavior of the
ACF [Eq. (3.7)] for a circular object with
R = 10 and D = 0.25 (solid line). For
t→ 0 it approaches the signal’s expecta-
tion value C(0) and for t� τR a power
law ∝ t−1 emerges (indicated by the
dashed line). The shaded area represents
the time regime t > τR, where Eq. (3.7)
fails to apply and which hence is not used
for evaluation in the following, see text.

Application to simulation data

The simulation, as described in chapter 2, writes out only those times, when the signal
will change, hindering a direct calculation of the ACF via FFT. However, alternative
means to determine the ACF are easily found as presented in appendix B.1. Since the
time axis of the simulation results will scale with the input diffusion coefficient, simulation
of different diffusion coefficients will yield no further information. Different object radii,
e.g. R = 5 (Conf. C01) and R = 10 (Conf. C02), however, should influence the time series.

Non-linear least-square error fitting of Eq. (3.7) within the valid time regime t� τR,
t ≤ τR/4 to be precise, to the processed signals is done with a Levenberg Marquardt algo-
rithm [69, 70], with the diffusion coefficient D as free parameter. As shown in Fig. 3.3 the
fitting results (solid lines), match the simulation data (symbols) very well. The resulting
diffusion coefficients are D = 0.27± 0.02 and D = 0.22± 0.02 respectively, which is in
good agreement with the input value of Din = 0.25.
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Figure 3.3: Two representative ACFs for objects of size (a) R = 5 (Conf. C01) and (b)
R = 10 (Conf. C02) marked by symbols. The result of fitting Eq. (3.7) to the data is
given by the solid lines. A good agreement within the time regime t ≤ τR/4 is visible.
The resulting diffusion coefficients are (a) D = 0.27± 0.02 and (b) D = 0.22± 0.02.

3.2 Residence time distribution

The residence time distribution (RTD) is determined by sampling the time intervals be-
tween entrance and exit of an object’s center into the detection area D. For its theoretical
description here, the problem of a point-like particle diffusing inside a circle with absorb-
ing boundaries, see Fig. 3.1 (a), has to be treated [�]. The initial probability density should
be as close to the absorbing boundary as possible to represent the entering object. How-
ever, to get a non trivial solution it will be distributed along a circle at a distance ∆R

from the boundary in shape of a delta function δ (r − (R−∆R)). The length ∆R could
be associated to the elementary step size of the object. Due to the symmetrical initial
condition in this case, the probability density for the objects center position r at time t
depends on r = |r| only and is given by

p (r, t) =
∞∑
n=1

J0 (χnr/R)

πR2

J0 [χn (1−∆R/R)]

J2
1 (χn)

exp

(
−χ

2
nt

τR

)
, (3.8)

where Jν(.) are the Bessel functions of order ν, and the χn are the (positive) zeros of
J0, J0(χn) = 0 with 0 < χ1 < χ2 < ... . Equation (3.8) as the solution of the diffusion
equation with these particular initial and boundary conditions has been derived in the
literature before using the Heaviside method [71]. A derivation based on separation of
variables and eigenfunction expansions is given in appendix A.3.

With the probability distribution from Eq. (3.8) the calculation of the RTD follows
standard techniques, as, for example, described in reference [72]. The probability that the

object center has not left the circle until time t is Φ(t) = 2π
∫ R

0
dr rp(r, t). The probability

that it leaves the circle in the time interval [t, t+ ∆t] is Φ(t)− Φ(t+ ∆t), implying that

the probability density ψ(t) for the residence time t is ψ(t) = −2π∂t
∫ R

0
dr rp(r, t). With
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3. Circular shaped objects

Eq. (3.8) this yields

ψ (t) =
2

τR

∞∑
n=1

χn
J0 [χn (1−∆R/R)]

J1 (χn)
exp

(
−χ

2
nt

τR

)
. (3.9)

Within the RTD distinct time regimes can be identified, as illustrated in Fig. 3.4. First
note that with τ∆R

≡ ∆2
R/D there is a lower limit for the application of Eq. (3.9), because

for smaller times the continuum treatment of the problem would have to be refined for
discrete jump lengths. For larger times, that are still small compared to the typical time
the object center needs to explore the detection area, a power law emerges

ψ (t) ∝ 1

τR

(
t

τR

)−3/2

. (3.10)

In this time regime, the ratio of the explored boundary section (∝ t1/2) to the explored
part of the detection area (∝ t) is proportional to the probability for the object center
being next to the absorbing boundary. The (negative) time derivate of this probability
−∂tt−1/2 ∼ t−3/2 then gives the time dependency of the efflux rate, which equals ψ. In
Fig. 3.4 the ratio R/∆R is deliberately chosen high, so that the power law ∝ t−3/2 is well
visible for ∆2

R/D � t� τR/χ
2
1. For parameters closer to experimental values, ∆R and R

are usually too close to fully unfold this time regime.
In the long time limit t� τR/χ

2
1, the functional behavior of Eq. (3.9) follows

ψ (t) ∼ 2

τR

χ1J0 [χ1 (1−∆R/R)]

J1 (χ1)
exp

(
−χ

2
1t

τR

)
. (3.11)

For those times, the occupation probability is spread over the whole circle and the efflux
rate is essentially constant and given by the inverse of the typical time for the object
center to reach the boundary. A Poisson process with this constant rate would yield
ψ(t) ∼ τ−1

R exp(−const. t/τR). Derivations of the behaviors in the time regimes according
to Eqs. 3.10 and 3.11 are given in appendix A.6.3
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Figure 3.4: General behavior of the
RTD [Eq. (3.9)] for a circular object with
R = 100,∆R = 1 and D = 0.25 (solid
line). For τ∆R

� t� τR/χ
2
1 it follows

a power law ∝ t−3/2 (indicated by the
dashed line). For times t� τR/χ

2
1

the exponential decay used for fitting
[Eq. (3.11)] is clearly visible (emphasized
by the dotted line). The shaded area
marks the lower limit τ∆R

for applicabil-
ity of this theory.

Application to simulation data

In case of the simulation described in chapter 2, the residence times, i.e., the interval
between an object center entering and leaving the detection area, are given out directly
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and can be sampled subsequently. Since the residence times are spread over several orders
of magnitude, a histogram with constant bin size is not the best for evaluation. More
suitable approaches are the use of logarithmic spaced bins in the histogram or a sampling
according to the procedure described in reference [73]. In the latter all residence times are
sorted by their length and then a constant number n of events is combined per bin. The
respective probability p(ti) = n/(N(ti+n − ti)) of a bin follows from the normalization of
the overall distribution.

The symbols in Fig. 3.5 show such distributions of residence times for two different
object radii R = 5 (Conf. C01) and R = 10 (Conf. C02). To determine the diffusion coeffi-
cient D and the length ∆R from a given RTD, Eq. (3.11) can be fitted to the exponential
behavior for times t� τR/χ

2
1. In a self-consistency check it has been assured, that the

tail regime used for fitting fulfills this requirement. The resulting diffusion coefficients
are D = 0.22± 0.06 (Conf. C01) and D = 0.23± 0.03 (Conf. C02) for an input value of
Din = 0.25. For ∆R a value of 1.8 is obtained for both Conf. C01 and Conf. C02, which is
of the order of the lattice constant a = 1 used in the simulation. Inserting these D and
∆R in Eq. (3.9) yields the full distribution, marked by the solid line in Fig. 3.5, which
shows a good agreement with the underlying data in the time regime t ≥ τ∆R
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Figure 3.5: Representative RTDs (symbols) for two different object radii (a) R = 5
(Conf. C01) and (b) R = 10 (Conf. C02). Fitting of t ≥ τR/χ

2
1 with Eq. (3.11) yields

D = 0.22± 0.06 and ∆ = 1.8 in (a) as well as D = 0.23± 0.03 and ∆ = 1.8 in (b).
The solid lines mark the full distributions according to Eq. (3.9), when using the
fitted parameters. The shaded areas mark the short time regime t� τ∆R

, where the
continuum treatment ceases to apply.

3.3 Interpeak time distribution

The interpeak time distribution (ITD) results from the sampling of the time intervals
between the probe signal turning “off” and “on” again. The statistics of small interpeak
times is dominated by exit and entrance of the same object into the detection area D.
For calculating the contribution of these return processes to the ITD, the diffusion of an
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3. Circular shaped objects

object center with initial distance ∆R from an circular absorbing boundary with radius
R, see Fig. 3.1 (b), has to be analyzed [�]. For the probability density of the object center
to be at position r at time t

p (r, t) =

∫ ∞
0

dχ

2πR2
χ W0

(χr
R
, χ
)W0 [χ (1 + ∆R/R) , χ]

J2
0 (χ) + Y 2

0 (χ)
exp

(
−χ

2t

τR

)
(3.12)

is obtained with W0(x, y) ≡ J0(x)Y0(y)− J0(y)Y0(x), where J0(.) and Y0(.) are the Bes-
selfunction of first and second kind. Details of the derivation are given in appendix A.3.

The ITD can be derived from the probability density analogously to the treatment
of the RTD by taking the time derivate of the integral of p(r, t) over the outer area
with respect to the circle. In the present case it is more convenient to take the flow
through the absorbing boundary ψ(t) =

∮
ds[−D∇p(r, t)]r=R, which, when making use of

the Wronskian [J ′0(x)Y0(x)− J0(x)Y ′0(x)] = 2/(πx) [74], yields

ψ (t) =
2

πτR

∫ ∞
0

dχ χ
W0 [χ (1 + ∆R/R) , χ]

J2
0 (χ) + Y 2

0 (χ)
exp

(
−χ

2t

τR

)
(3.13)

Similar to the RTD, two distinct time regimes can be identified within the ITD. The
asymptotic behavior for t→ 0 is

ψ(t) ∼
(
τ∆

√
4π (1 + ∆R/R)

)−1

exp
(
−τ∆

4t

)(τ∆

t

)3/2

, (3.14)

which gives a good approximation for times t� τR. Note that the maximum of this
distribution at τmax ≡ ∆2

R/(6D) again sets a lower limit, below which the continuum
treatment is no longer a valid description. According to Eq. (3.14), ψ(t) approaches a
power law ∝ t−3/2 after its maximum at τmax. This power law has an analogous origin as
the power law in the RTD. Here, τR can be associated the typical time, when the diffusing
object center realizes the finite extent of the detection area or, in other words, where the
object realizes its size. For times smaller than τR, the object size R itself has only a
minor influence on the prefactor of Eq. (3.14). For large times (t� τR), Eq. (3.13) can be
approximated by

ψ (t) ' 2 ln (1 + ∆R/R)

t ln2 (t/τR)
. (3.15)

The asymptotic behavior ∼ (t ln2 t)−1 follows from the fact that for large t, the detection
area becomes very small with respect to the area explored by the object. Accordingly,
ψ(t) scales as the probability of the first return time of the origin of a two-dimensional
random walk [72]. Details on the derivations of these approximations in the time regimes
can be found in appendix A.6.5.

The behavior predicted by Eq. (3.15) for large interpeak times is, however, of limited
use, because another object can enter the detection area before the object, which left the
detection area last, returns. The memory to a object that leaves the detection area is
lost on time scales of the order of τc ≡ 1/(cD). On these time scales, different objects
can be regarded as entering and leaving the detection area with a constant rate. The
rate of these exchange processes should scale with the inverse mean time τ−1

c = cD for an
object outside the detection area to enter it. Hence, in the limit of large t, an exponential
distribution is expected,

ψ (t) ∼ cD exp (−κπcDt) , (3.16)

where κ is a constant of the order of unity.
The general behavior of the ITD and its approximations in the respective time regimes

in the single particle domain, i.e., t� τc, is shown in Fig. 3.6.
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Figure 3.6: General behavior of the
ITD [Eq. (3.13)] for a circular object
with R = 10,∆R = 1 and D = 0.25 (solid
line). For times τmax � t� τR it follows
Eq. (3.14) with its transition into a power
law ∝ t−3/2 (dashed line). The dotted
line, indicating Eq. (3.16) for a coverage
of θ = cπR2 = 1%, illustrates that the
logarithmic long time behavior accord-
ing to Eq. (3.15) (dash-dotted line) can
usually not be used for evaluation. The
shaded area marks times t < τmax, where
the continuum treatment ceases to apply.

Application to simulation data

The time intervals between the signal turning off and on again, i.e., the interpeak times,
are given out directly by the simulation described in chapter 2 and also should be sampled
by one of the methods described in chapter 3.2. The ITDs of diffusing objects with two
different radii R = 5 (Conf. C01) and R = 10 (Conf. C02) are displayed by the symbols in
Fig. 3.7.

In case of the ITD there are two possibilities to obtain values for the diffusion coeffi-
cient. One is the consideration of the time regime τmax � t� τR, which will be presented
first. As already mentioned, refinements would be necessary to describe the behavior of
the ITD left to the maximum

ψmax =
3
√

6D√
π(1 + ∆R/R)e3/2∆2

R

≈ D

a2
. (3.17)

However, they are not expected to yield larger values of the ITD. In fact, when con-
sidering jump dynamics of the molecules with a rate D/a2 the ITD should behave as
∼ (D/a2) exp(−const.×Dt/a2) for short times, i.e., the largest value of the ITD should
be of the order of D/a2. Due to matching with the continuum treatment, ψmax can be
identified with the maximum seen in Fig. 3.7. This is a convenient way to determine
D/∆2

R, and knowing this value to extract D by fitting the part right to the maximum
predicted by Eq. (3.14). Again the limits of the time regime boundaries need to be checked
self consistently. The resulting values in both cases are D = 0.23± 0.01, which is in good
agreement with the input value Din = 0.25, and ∆R = 0.8, which is again of the order of
the lattice constant a = 1. Using these values in Eq. (3.13) yields the solid lines in the
main plots of Fig. 3.7.

The other possibility for obtaining values for D is to use the distribution in the particle
exchange time regime t� τc. However, adjustments on the interpeak time sampling
might be necessary for this approach. The problem is that the interpeak times as well as
their probabilities are spread over several orders of magnitude, so that even the sampling
method described in reference et al. [73] reaches its limits, see the main plots in Fig. 3.7.
To resolve the exponential tail expected for times t� τc, either the number of elements
per bin has to be chosen rather small, or only interpeak times that lie in this time regime
have to be considered for the sampling. The first approach results in a strong noise for
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3. Circular shaped objects

smaller times, the second has a uncertainty in setting the lower limit of this regime, when,
in the beginning, no information is known about the system’s parameters. Because the
short interpeak times are irrelevant for this fitting anyway, the first approach should be
the method of choice.

If a suitable distribution is available, the exponential decay can be fitted straight-
forwardly with Eq. (3.16). Evaluating the long time regime for the presented configura-
tions yields D = 0.25± 0.02 (Conf. C01) and D = 0.22± 0.02 (Conf. C02), when assuming
κ = 1. This good agreement with the input value Din = 0.25 reassures the choice of κ = 1.
The number concentration c of objects is an input parameter in case of the simulation,
but it is also easy to obtain from measurement data as the ratio of cumulative time, when
the tip is occupied, to the overall measurement time. This will be used in chapter 7 for
the analysis of experimental data. Information for ∆R cannot be obtained here, because
memory of the objects geometry is lost on this time scale.
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Figure 3.7: ITDs (symbols) of two representative object radii (a) R = 5 (Conf. C01)
and (b) R = 10 (Conf. C02). The main plots show fitting of t� τR with Eq. (3.14),
which yields D = 0.23± 0.01 and ∆R = 0.8 in (a) as well as D = 0.23± 0.01 and
∆R = 0.8 in (b). Solid lines mark the full distributions according to Eq. (3.13), when
using the fitted parameters. Dashed lines in the insets show evaluation of t� τc
with Eq. (3.16), which yields D = 0.25± 0.02 in (a) and D = 0.22± 0.02 in (b). The
shaded areas mark the respective short time regime t < τmax excluded from fitting.

3.4 Prerequisites for experiments

In this chapter it was shown that the diffusion coefficient can be reliably extracted from a
simulated fluctuating signal with all three methods. The obtained diffusion coefficients in
most cases agree with the input value of the simulation within error margins or are very
close, as summarized in Tab. 3.1. This is not surprising for the evaluation of simulation
data, where external error sources are not present. This ideal situation can now be used
to check certain prerequisites for a real experiment [�].
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R Din ACF RTD ITD (front) ITD (tail)

5 0.25 0.27± 0.02 0.22± 0.06 0.25± 0.02 0.23± 0.01

10 0.25 0.22± 0.02 0.23± 0.03 0.22± 0.02 0.23± 0.01

Table 3.1: D values of circular molecules determined from substitute simulation data.

For instance, all presented theories base on objects with a finite lateral extent. But
it has to be investigated, whether the theoretical description will fail in the transition to
point-like objects. And if so, how small the objects can become, before the description
fails. For the ACF the limit R→ 0 can be readily given, resulting in the classical t−1

behavior for point-like particles [75]. Also the exponential decay for t� τc in the ITD is
independent of the actual object size. But its short interpeak time regime and especially
the RTD strongly depend on the object geometry, because here the object size R and the
length ∆R, which is typically associated with the object’s jump length, are entering the
theory. A step size large compared to the object’s size (R ≤ ∆R) is physically meaningless
in the description of the RTD, but also R & ∆R causes problems. Both would result in
a small amount of valid positions inside the detection area and therefore rather a “jump
in” and “jump out” scenario than a diffusive motion. In the ITD for times t� τR the
same reasoning applies.

Figure 3.8 (a) and (b) show the RTDs and ITDs for small object radii R = 1 (Conf. C03)
and 4 (Conf. C06). The data is described very well for all radii with Eq. (3.9) and (3.13)
using the respective fitting values, see the solid lines in Fig. 3.8 (a) and (b), though the
input diffusion coefficient Din is not reproduced, see Fig. 3.8 (c). The diffusion coefficients
obtained by fitting are summarized in Fig. 3.8 (c), together with those from the evaluation
of further object radii (Conf. C01-C06). To avoid finding misleading diffusion coefficients
R̃/a = R = 3 is set as a lower limit for the object size in terms of applicability of these
evaluation methods to simulated as well as experimental measurements.
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Figure 3.8: (a) RTDs for object radii R = 2 (+) and R = 4 (×). Diffusion coefficients
resulting from fitting are D = 0.16± 0.08 and D = 0.20± 0.08 respectively. (b) ITDs
for the same object radii. Fitting of the short time regime yields D = 0.28± 0.3 and
D = 0.26± 0.16. Solid lines show the theoretical curves according to Eq. (3.9) and
Eq. (3.13) with the respective fitting values. Graphs in (a) and (b) were vertically
shifted for better visibility. (c) Summary of diffusion coefficients resulting from the
RTD and short time regime of the ITD for these and further object radii (Conf. C01-
C06). Non-misleading diffusion coefficients can be obtained for R ≥ 3.
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3. Circular shaped objects

Naturally, the quality of the evaluations increases with the number of recorded events.
While the simulation can run until enough events have been recorded, it may be prob-
lematic in an experiment. Therefore, by means of the simulation a minimum number M
of recorded events for a sufficient determination of the diffusion coefficient shall be given.
With the ACF already a total number of 102 events is enough to reproduce the input
diffusion coefficient within error margins, see squares in Fig. 3.9 (d). Larger number of
events improve the ACF only outside of the time regime relevant for fitting.

For evaluation of the RTD the exponential decay for t� τR/χ
2
1 is relevant. The

diamonds in Fig. 3.9 (d) show, that a total of 103 events is necessary to determine the given
diffusion coefficient within error margins. The ITD for 102 is too noisy for evaluation,
therefore at least 103 events should be recorded. Concerning the evaluation in the particle
exchange time regime t� τc, recording of 103 events is recommended analogously to
the RTD. As follows from

∫ τc
τmax

dt ψ(t) [with ψ(t) from Eq. (3.13)], depeding on R and
c, maximal 15% of the interpeak intervals are larger than τc, compare Fig. B.3 in the
appendix. This leaves only a fraction of the recorded events relevant for fitting. This
argumentation can be analogously used to explain the relatively large number of events
necessary for an RTD evaluation, where maximal 25% of the events are relevant for fitting
(t ≥ τR/χ

2
1).

Keeping in mind the further uncertainties in an experiment, the recommendation is
to perform measurements that record at least M = 103 events for an ACF evaluation and
M = 104 events for an analysis of the distributions.
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Figure 3.9: (a) ACFs, (b) RTDs, (c) ITDs for R = 10 (Conf. C02) with different num-
bers of events between M = 102 and M = 105 used for the analysis. (d) Diffusion
coefficients obtained from respective fittings. Evaluation of the ITD was not rea-
sonable for M = 102 events. Data points have been horizontally shifted for better
visibility here. For all methods M = 103 events are enough for a sufficient accuracy.
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Chapter 4

Rectangular shaped objects

So far the focus of this work lay on objects with a circular shape. However, rectangles
are a more appropriate geometric representation for several of the molecules used in sur-
face science, see Fig. 1.1 (d)-(f). Therefore, the treatment in chapter 3 has to be modified
for objects with rectangular shape of size Ls × Ll, where, without loss of generality, the
shorter edge is addressed by Ls and the longer one by Ll, as shown in Fig. 4.1 (a). Signif-
icant changes in the functional behavior of the distributions and autocorrelation function
are expected for aspect ratios α ≡ Ll/Ls � 1. In this chapter the necessary adjustments
are made to the treatment in chapter 3 to cover the different object shape. This includes
the choice of a Cartesian instead of a polar coordinate system. The measurement setup
itself is not affected.

The evaluation methods are again validated against simulation data in the first place.
Implications of the object shape will also be addressed upon applying the evaluation
methods to real measurement data in chapter 7.

Ls

Ll

∆

(a)
∆

(b)

Figure 4.1: (a) Sketch of a rectangular object’s geometry used for ACF and RTD
with its defining lengths: The edges Ls and Ll, as well as the minimal penetration
depth ∆. The dot marks the probing site and the shaded area is the detection area,
defined by those object center positions that turn the signal “on”. (b) Sketch of the
substitute situation for the ITD at short times. A point-like object diffuses in front
of a infinite extended absorbing wall after starting in distance ∆ from it.
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4.1 Autocorrelation function

Adjustments on the autocorrelation function are marginal, since the object’s shape does
not enter the general derivation in the previous chapter [Eq. (3.3)]. For a quantitative
evaluation of simulated data only the detection area has to be adapted to a rectan-
gular objects geometry. If a rectangle is assigned to the set D of object center posi-
tions, that give rise to a signal, Eq. (3.4) is a combination of Heaviside jump functions
s[r(t)] = [Θ(x+ Ll/2)−Θ(x− Ll/2)][Θ(y + Ls/2)−Θ(y − Ls/2)] with the object edge
lengths Ll and Ls. Eq. (3.3) then yields

C(t) =
c

π

[
−
√

4Dt
(

1− e−
τLl
4t

)
+ Ll

√
π erf

(√
τLl

4t

)]
[
−
√

4Dt
(

1− e−
τLs
4t

)
+ Ls

√
π erf

(√
τLs

4t

)]
, (4.1)

with the two typical times τLl
≡ L2

l /D and τLs ≡ L2
s/D, representing the mean time an

object needs to cross the detection area in the respective direction.
These two times separate three distinct time regimes in the ACF. It gives C(0) = cLlLs

for t→ 0, which is the expectation value of the signal. For intermediate times τLs � t� τLl

the ACF will follow a power law ∝ t−1/2 and in the long time limit again the power law
∝ t−1 known from the circular solution in chapter 3.1 is dominant. Derivations of these
approximations are given in appendix A.6.2. The general behavior of the ACF for rect-
angular shaped objects with two different aspect ratios is displayed in Fig. 4.2. It shows,
that the intermediate time regime will only be visible for very high aspect ratios, i.e.
rodlike objects.
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Figure 4.2: General behavior of the ACF
[Eq. (4.1)] for rectangular objects with
sizes (a) 10× 10 (bold line) and (b)
10× 100 (thin line), both with D = 0.25.
For t→ 0 the expectation value C(0) is
approached and for large times t� τLl

the ACF shows a power law ∝ t−1 (in-
dicated by the dashed line). The inter-
mediate time regime, which would follow
a power law ∝ t−1/2 (indicated by the
dash-dotted line), can only be guessed,
even for an aspect ratio of α = 10. The
time regime t ≥ τLs/4 (shaded area) is
excluded from evaluation.

Application to simulation data

A non-linear least square fit was used to exemplarily fit Eq. (4.1) to the autocorrelation
function of simulated fluctuating signals, generated by rectangular diffusing molecules
of different aspect ratio, see Fig. 4.2. The raw simulation data was again prepared as
described in appendix B.1. To ensure the exclusion of cross correlation events, which
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4. Rectangular shaped objects

are not accounted for in the theory, only times t� τLs (t ≤ τLs/4) are considered for
for evaluation. This condition is checked repeatedly during the fitting process. The
obtained diffusion coefficients are D = 0.25± 0.03 for a 10× 10 [Conf. R01, Fig. 4.3 (a)]
and D = 0.26± 0.03 for a 10× 20 [Conf. R02, Fig. 4.3 (b)] object and agree very well with
Din = 0.25 used in the simulation.
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Figure 4.3: Representative ACFs of (a) 10× 10 (Conf. R01) and (b) 10× 20
(Conf. R02) sized objects. Evaluation of the short time regime yields D = 0.25± 0.03
in(a) and D = 0.24± 0.03 in (b) matching the input value of Din = 0.25. Times
t > τLs/4, marked by the shaded area, are excluded from fitting. Solid lines result
from Eq. (4.1) using the respective fitting values.

4.2 Residence time distribution

The principle for the derivation of the residence time distribution (RTD) in case of rect-
angular shaped object is analogous to chapter 3.2 [�]. The diffusion propagator p(r, t) of
an object center diffusing inside a closed absorbing boundary, which is now formed by the
edges of a rectangle, has to be determined. A uniform distribution of the object center
on an inner rectangle contour, displaced by ∆ from the absorbing boundary, is used as
initial condition.

Expansion of p(r, t) in terms of the eigenfunctions fµ,ν = sin(µπx/Ll) sin(νπx/Ls),
with µ = 2m+ 1, ν = 2n+ 1 and m,n = 0, 1, ... of the Laplacian yields

p (r, t) =
∞∑

m,n=0

cµ,νfµ,ν exp
(
−Dλ2

µ,νt
)

(4.2)

with λ2
µ,ν = π2[(µ/Ll)

2 + (ν/Ls)
2] and coefficients

cµ,ν =
8
[
Ls

ν
sin
(
µπ
Ll

∆
)

cos
(
νπ
Ls

∆
)

+ Ll

µ
sin
(
νπ
Ls

∆
)

cos
(
µπ
Ll

∆
)]

πLlLs (Ll + Ls − 4∆)
(4.3)
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from the boundary conditions.

The RTD follows from the established procedure ψ(t) = −∂t
∫ Ll

0
dx
∫ Ls

0
dyp (r, t), yield-

ing

ψ (t) =
4DLlLs

π2

∞∑
m,n=0

cµ,νλ
2
µ,ν exp

(
−Dλ2

µ,νt
)

µν
. (4.4)

Not surprisingly, this RTD shows the same functional time dependence as the RTD for
circular shaped objects discussed in chapter 3.2. Again a lower time limit for applicability
of the method is given by τ∆ ≡ ∆2/D, see discussion in chapter 3.2. A power law decay
occurs at intermediate times τ∆ � t� τλ1,1 ≡ 1/λ2

1,1D and an exponential decay

ψ (t) ∼ 4DLlLs

π2
c1,1λ

2
1,1 exp

(
−Dλ2

1,1t
)

(4.5)

for t� τλ1,1 , that can be readily used for the fitting. Details of the derivation of the
approximations in the single time regimes can be found in appendix A.6.4.

The general behavior of this RTD [Eq. (4.4)] and its approximations in the correspond-
ing time regimes is given in Fig. 4.4.
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Figure 4.4: General behavior of the RTD
[Eq. (4.4)] for rectangular objects of size
50× 100 with ∆ = 1 and D = 0.25 (solid
line). Note that proportions of Ll, Ls

and ∆ are again chosen deliberately ex-
treme in this example, to enhance the
power law ∝ t−3/2 in the intermediate
time regime τ∆ � t� τλ1,1 (indicated by
dashed line). For times t� τλ1,1 the ex-
ponential decay used for fitting is clearly
visible (emphasized by dotted line). The
shaded area marks times t < τ∆.

Application to simulation data

This theory for the RTD of rectangular shaped objects was validated against two exem-
plary simulations of diffusing rectangular objects with different aspect ratio (Conf. R01
and Conf. R02). The exponential decay at times t� τλ1,1 together with Eq. (4.5) was em-
ployed for the evaluation. The lower time limit was subsequently revised during the fitting.
The resulting diffusion coefficients are D = 0.24± 0.04 for a 10× 10 and D = 0.27± 0.05
for a 10× 20 rectangle. Both agree very well with the input value Din = 0.25 used in
the simulation. Again these values can be used in a further step to determine ∆ ≈ 2.5
for both sets, which are slightly larger than comparable values in the circular approach,
but still of the order of the step length. Fig. 4.5 shows, that putting the respective fitted
parameters into Eq. (4.4) gives a good account on the overall RTD.
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4. Rectangular shaped objects
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Figure 4.5: Symbols illustrate the RTDs generated by two representative rectangular
object sizes (a) 10× 10 (Conf. R01) and (b) 10× 20 (Conf. R02). Evaluation of the
time regime t� τλ1,1 with Eq. (4.5) yields D = 0.24± 0.04 in(a) and D = 0.27± 0.05
in (b), which match the input value of Din = 0.25. The minimal penetration depth
is ∆ ≈ 2.5 for both. The solid lines mark the full distributions according to Eq. (4.4)
when using the fitted parameters.

4.3 Interpeak time distribution

To give the interpeak time distribution (ITD) of a rectangular object, the problem of
the object center diffusing outside a rectangular absorbing boundary would have to be
solved. The initial probability should be spread on a outer rectangle displaced by ∆ with
respect to the absorbing boundary. It was not possible for the author to derive a closed
form expression for the diffusion propagator in this situation or to find a derivation of this
problem in the literature. Therefore, only a qualitative description of the ITD is available.

For small times t� L2
s/D the object has not realized its own size and the situation

can be compared to that of a point-like particle diffusing in front of a infinite extended
absorbing wall, after starting in a distance ∆ from the boundary, see Fig. 4.1 (b). The free
propagator of this setup is p(x, y, t|x0, y0) = exp{−[(x0 − x)2 + (y0 − y)2]/(4Dt)}/(4πDt),
compare Eq. (A.6) in the appendix. The absorbing boundary can be incorporated by
subtracting the propagator of the point mirrored at the boundary [76]. Arbitrarily
setting the x-axis as absorbing boundary, the propagator reads
p̃(x, y, t|x0, y0) = p(x, y, t|x0, y0)− p(x,−y, t|x0, y0). This gives the time distribution

ψ(t) =
(
τ∆

√
4π
)−1

exp
(
−τ∆

4t

)(τ∆

t

)3/2

(4.6)

according to ψ(t) =
∫∞

0
dy
∫∞
−∞ dx p̃(x, y, t|0,∆). The maximum at tmax ≡ ∆2/6D again

gives a lower limit for the applicability of this theory, for the previously discussed reasons,
cf. chapter 3. Eq. (4.6) shows the same functional behavior as Eq. (3.14). The prefactor
is slightly different, but in the limit of ∆R � R, Eq. (3.14) becomes Eq. (4.6). It follows,
that the functional behavior of the return time for a single object on suitable time scales is
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independent on the objects actual shape, if ∆� R. Another possibility to approximately
deal with this time regime, will be discussed in chapter 4.4.

As previously discussed in chapter 3.3, the long time regime t� τc, which is dominated
by exchange processes of different objects, is independent of their shape, because the
detection area is considered as point-like here. This time regime will follow Eq. (3.16).

Application to simulation data

The ITDs of objects with two differet aspect ratios with Din = 0.25 (Conf. R01 and
Conf. R02) are shown in Fig. 4.6. The interpeak intervals were sampled as described in
Chap. 3.2. In principle, the single-particle short time regime as well as the particle ex-
change long time regime can be used separately for determining the diffusion coefficient
from the ITD. However, so far only the evaluation of the long time regime t� τc is reli-
able. Exemplarily, a linear regression of the exponential decay (dashed line in the inset of
Fig. 4.6) yields D = 0.25± 0.02 for a 10× 10 and D = 0.24± 0.05 for a 10× 20 rectangle,
when assuming κ = 1.

Nevertheless an evaluation with Eq. (4.6) in the short time regime is executed, to
investigate the quality of the rough treatment. In order to do so, a Levenberg-Marquardt
fit with three free parameters is employed. The first two are the diffusion coefficient D
and penetration depth ∆. The third is a prefactor replacing (τ∆

√
4πD)−1 in Eq. (4.6)

to compensate the error of neglecting the object size. The results are D = 0.26± 0.07
(Conf. R01) and D = 0.24± 0.07 (Conf. R02) as well as ∆ ≈ 1.0, which indeed agrees very
well with the input parameters, although the uncertainty increases slightly. The findings
are visualized by the solid line in the main plot of Fig. 4.6.
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Figure 4.6: Symbols illustrate the ITDs generated by two representative rectangular
object sizes (a) 10× 10 (Conf. R01) and (b) 10× 20 (Conf. R02). Semilogarithmic
plots of the respective exponential tails can be found in the inset. Evaluation of the
time regime t� τc with Eq. (3.16) yields D = 0.25± 0.02 in (a) and D = 0.24± 0.06
in (b) (dashed lines in the insets). The solid lines in the main plots indicate the
approximate treatment according to Eq. (4.6), which yields D = 0.26± 0.07 in (a)
and D = 0.24± 0.07 in (b) as well as ∆ ≈ 1.0 for both.
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4. Rectangular shaped objects

4.4 Similarities to circular approach

After implementing the necessary modifications, also for rectangular molecules the input
diffusion coefficients used in the simulation were reliably reproduced independent of the
applied method, as displayed in Tab. 4.1.

Ls × Ll Din ACF RTD ITD (front) ITD (tail)

10× 10 0.25 0.25± 0.03 0.24± 0.04 0.26± 0.07* 0.25± 0.02

10× 20 0.25 0.26± 0.03 0.27± 0.05 0.24± 0.07* 0.24± 0.05

Table 4.1: Overview of D values for rectangular molecules determined from substitute
simulation data (∗: approximate treatment).

Upon incorporating rectangular objects into the three evaluation methods, it turns
out that the functional behavior, known from circular objects, is mostly preserved. This
is not very surprising and leads to the question, if the differentiation according to the
object shape is really necessary.

Assuming that the rectangular solutions were unknown, one could try to assign a circle
to the rectangular object, for example by preserving its edge length Redge = (Ls + Ll)/π
or area Rarea = (LsLl/π)1/2 or by using its area gyration radius Rgyr = 12−1/2(Ls + Ll).
Using these radii in Eq. (3.7) to fit the ACF of rectangular shaped objects, however fails
to reproduce the input diffusion coefficient used for simulation [Fig. 4.7 (b)], though the
fit itself agrees very well with the correlation, see Fig. 4.7 (a). This leads to the con-
clusion, that even for aspect ratios close to 1 the ACF strongly depends on the objects
shape. When choosing the rectangular ACF [Eq. (4.1)] for evaluation, the obtained dif-
fusion coefficients match the input values very well, as can be seen by the rectangles in
Fig. 4.7 (b).
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Figure 4.7: (a) ACFs of the signal from diffusing rectangular objects with differ-
ent aspect ratios α = 1 (+, Conf. R01), 2 (×, Conf. R02), 3 (∗, Conf. R03) and 4 (•,
Conf. R04). They have been shifted vertically for better visibility. (b) Diffusion coef-
ficients resulting from an evaluation with the circular ACF solution [Eq. (3.7)] with
different definitions of R as well as with the rectangular ACF [Eq. (4.1)]. Respective
fitting curves are congruent solid lines in (a).

In case of the RTD circular as well as rectangular objects show an exponential decay
for large residence times, which is relevant for the fitting. For evaluating the RTD of
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rectangular objects, one could therefore again try to use the circular RTD [Eq. (3.9)] with
one of the above mentioned radii. Fig. 4.8 summarizes the fitting of the RTD of rectangular
objects with different aspect ratios α with the rectangular as well as the circular approach.
Both fits agree very well with the data, see Fig. 4.8 (a). But while for α ≈ 1 all obtained D
match the one used in the simulation, a listing of diffusion coefficients obtained at higher
α reveals that those obtained with the circular approach disagree with the input and the
discrepancy increases with the aspect ratio, see Fig. 4.8 (b).

Evidently, arbitrarily chosen radii yield erroneous results. However, with the knowl-
edge of the exact rectangular solution Eq. (4.4) an abstract radius

R′ ≡ χ1

π

(
L−2

l + L−2
s

)−1/2
(4.7)

can be defined, by comparing the long time limits Eq. (3.11) and Eq. (4.5) of both ap-
proaches. Using this radius in the circular solution [Eq. (3.9)], the fit agrees very well with
the simulation data [Fig. 4.8 (a)].
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Figure 4.8: (a) RTDs of the signal from diffusing rectangular objects with different
aspect ratios α = 1 (+, Conf. R01), 2 (×, Conf. R02), 3 (∗, Conf. R03) and 4 (•,
Conf. R04) as well as corresponing fits with Eq. (3.9) (dashed lines) and Eq. (4.4)
(solid lines, nearly congruent). They have been shifted vertically for better visibility.
(b) Diffusion coefficients resulting from an evaluation of the exponential decay with
the circular RTD solution [Eq. (3.11)] and different definitions of R as well as with
the rectangular RTD solution [Eq. (4.5)].

As mentioned in chapter 4.3, the attempt to derive a closed form for the ITD in the
presence of a rectangular detection area was not successful. However, with the finding,
that the RTD for rectangular shapes can be well approximated by the RTD for circular
shapes by using an appropriate radius, one can follow a corresponding route here to find
an approximate solution for the ITD. At long times, the ITD is governed by exchange pro-
cesses of different objects, yielding an exponential decay with characteristic time ∝ 1/cD.
The number density c = θ0/Ã indirectly contains the object geometry due to its relation
to the coverage θ0 of freely diffusing objects. So supposedly, the object area Ã rather
than the shape itself is relevant here and a circle with the same area can be assigned to
the rectangle by defining

R′′ = Rarea ≡ (LsLl/π)1/2 . (4.8)

Inserting this R′′ in the exact solution for circular objects [Eq. (3.13)] one could expect
that it provides a good account of the ITD of rectangular shaped objects. Indeed, a good
agreement with the simulation data for t ≤ τR′′ ≡ R′′2/D can be asserted, see Fig. 4.9.
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4. Rectangular shaped objects
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Figure 4.9: ITDs of obtained from
diffusing object of aspect ratio α = 1
(+, Conf. R01) and 5 (×, Conf. R05).
The short time regime t < τR′′ of both
curves can be described very well with
Eq. (3.13), when using R′′ [Eq. (4.8)] as
substitute radius.

Concluding, for aspect ratios α ≈ 1 the actual object shape is secondary in the RTD
and ITD methods, but for higher aspect ratios it has to be taken into account. Neverthe-
less, there are strong similarities between approaches using a rectangle or circular detection
area. In the RTD and ITD, these can be utilized to define abstract radii [Eqs. (4.7) and
(4.8)], which enable to approximately transform the solutions into another.
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Chapter 5

Rotational diffusion

When an object can rotate around its center of mass, new possibilities arise to enter or
leave the detection area, that are not accounted for in the previous treatments. Their
influence will be negligible for individual reorientation moves. In case of a steady rota-
tional movement, the implications on the signal can be exploited to quantify the rotational
dynamics, as will be demonstrated in the following.

To approach the difficulty of incorporating an additional degree of freedom into the
theory a simple model is considered here. Discrete rotational moves are supposed to
occur independent of translational moves, i.e., there is no coupling between rotation and
translation. In this model, rectangular shaped objects of size Ls × Ll perform transitions
between n possible orientations separated by an angle aϕ = 2π/n, with n = 10 in the
following. The transitions occur between neighboring orientations around the object
center with a constant rate ωϕ = 2Dϕ/a

2
ϕ, where Dϕ is the rotational diffusion coefficient.

The measurement setup remains unchanged with a locally fixed point-like probing site,
where an “on” signal is recorded, whenever the probing site is covered, and “off” otherwise.

(b)

rmi n

rmax

Rmod

(c )

lr (e.g. )
ϕA∩

(a)

Figure 5.1: (a) Different orientations of starting (gray boundary) and target (black
boundary) detection area. The displacement is characterized by ϕ. The shaded area
marks the overlap A∩(ϕ) relevant for the ACF. (b) Classification of distances between
the object center (center of figure) and probe tip: The signal is influenced by rotation
only in the shaded area. (c) Detection lines in case of pure rotational diffusion: If
the center of a rectangular object sets the origin of a corotating coordinate frame,
rotational diffusion leads the probe to diffuse along concentric circles. The intersection
set of these circles with the rectangle yields arcs that define detection lines of length
lr (inner arcs for the RTD and outer arcs for the ITD).
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5.1 Autocorrelation function

When incorporating rotational diffusion in the treatment of the autocorrelation function,
one has to be aware that the starting and target detection area, i.e., the set of positions
that give rise to a signal at t = 0 and those at t, are no longer inevitably identical. Since the
object could have taken rotational steps in the meantime, the definition of the detection
area has to additionally contain the angular orientation of the object here, see Fig. 5.1 (a).
Knowing this, an expression for the ACF can be given as described in appendix A.2. As
an alternative to the extensive treatment of this full solution, a much more convenient
approximate approach for the short time regime t� τLs will be presented here.

The typical time to cross the detection area via translational motion is τR′ = R′2/D
and the typical time it takes the object to change its orientation by ϕ is τϕ = ϕ2/Dϕ.
Comparison of these times allows an estimation of ϕ = (R′2Dϕ/D)1/2 on how an objects
orientation usually changes in the time it takes to leave the detection area by translational
motion. As a result, if Dϕ/a

2
ϕ � D/a2 rotational steps will scarcely occur on these time

scales and a translational ACF following Eq. (4.1) will emerge. If Dϕ/a
2
ϕ � D/a2, on the

other hand, the object will almost exclusively rotate. In the limiting case, i.e., when the
object will experience no translational displacements at all, only those starting positions
contribute to the ACF, that are also contained in the target detection area, see shaded
area in Fig. 5.1 (a). Following Eq. (A.7), the ACF for purely rotational diffusion is then
given by

C (t) = c

∫ 2π

0

A∩ (ϕ)√
4πDϕt

exp

(
− ϕ2

4Dϕt

)
, (5.1)

where p(ϕ) = exp(−ϕ2/4Dϕt)(4πDϕt)
−1/2 is the free azimuthal rotational diffusion prop-

agator and A∩(ϕ) the intersection between starting and target detection area. For
small t the diffusion propagator becomes the Dirac Delta function δ(ϕ) and
A∩(ϕ = 0) = Ls × Ll the full rectangular detection area, resulting in C(0) = cLsLl.

Application to simulation data

The autocorrelation functions of simulated time series, that contained uncoupled transla-
tional and rotational displacements, for three different rotational diffusion coefficients
Dϕ and fixed Din = 0.10 (Conf. M00-M03) are shown by the symbols in Fig. 5.2. As
long as Dϕ/a

2
ϕ � D/a2 the ACF is consistent with the solution of Eq. (4.1), result-

ing in D = 0.10 ± 0.01. For the values underlying the ACF displayed by squares
(D/a2 = 20Dϕ/a

2
ϕ) the object will typically rotate by only ϕ = 0.5 before leaving the

detection area due to translation. With increasing rotational diffusion coefficients, start-
ing with Dϕ/a

2
ϕ ≈ D/a2, a kink becomes visible in the ACF, indicating implications of

rotational diffusion. While the short time regime is governed by rotational and trans-
lational motion equally here, for Dϕ/a

2
ϕ � D/a2 rotational diffusion gains dominance

and the kink steadily becomes more distinctive. For the ACF represented by diamonds
(D/a2 = 0.5Dϕ/a

2
ϕ) the suggested comparison of typical times yields a rotation by ϕ = 3.5,

i.e., a half turn, in the time it takes to leave the detection area by translation. In case of the
circles (D/a2 ≈ 0.06Dϕ/a

2
ϕ) this value has increased to more than a full turn (ϕ = 10.4)

and therefore the rotation is dominant to such an extent, that the kink can be described
by Eq. (5.1). A non-linear Levenberg-Marquardt fit with this approximation yields a ro-
tational diffusion coefficient of Dϕ = 0.809± 0.002, which is in quite good agreement with
the input value of Dϕ,in = 0.711.
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5. Rotational diffusion

When handling experimental data, the course of action is straightforward. As long as
no kink is visible in the ACF Dϕ/a

2
ϕ � D/a2 can be safely assumed and by using Eq. (4.1)

the translational diffusion coefficient can be determined. Whenever the kink is visible a
fit with Eq. (5.1) can be attempted. Should the rotational and translational diffusion
coefficient be comparable even the best fit with Eq. (5.1) will not match the data, because
the approximation is not valid yet, cf. the dotted line in Fig. 5.2 for the diamonds. Here,
one would have to resort to the cumbersome full solution [Eq. (A.7) in the appendix]. If
the slopes match on both sides of the kink the regime of Dϕ/a

2
ϕ � D/a2 is reached and a

non-linear fit with the approximation Eq. (5.1) will give the rotational diffusion coefficient.
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Figure 5.2: Autocorrelation functions for uncoupled rotational and translational dif-
fusion with different Dϕ and constant D = 0.1 (Conf. M00-M03). For Dϕ/a

2
ϕ � D/a2

(�) rotational diffusion has no influence on the ACF and it can be described by
Eq. (4.1) (solid line). If Dϕ/a

2
ϕ ≥ D/a2 (�), a kink appears at approximately a2

ϕ/Dϕ.
If Dϕ/a

2
ϕ � D/a2 (◦), the behavior can be described using the approximation in

Eq. (5.1) (dashed line). The dash dotted line marks the full solution [Eq. (A.7) in the
appendix] when using the input parameters for � (Nearly congruent with the other
lines for � and ◦).

5.2 Residence time distribution

To get an insight, how the rotational diffusion will affect the residence time distribution [�],
first solely rotational movements of a single object at distance r from the probe will be
studied. For the analysis for this situation it is convenient to consider the equivalent prob-
lem of a fixed molecule center and a probe performing jumps of size raϕ on a concentric
circle around the center. Clearly, considering the inner and outer circle in Fig. 5.1 (b) the
signal is always “on”, if r < rmin ≡ Ls/2, while for r > rmax ≡ (L2

s + L2
l )1/2/2 it is alway
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off. For radii rmin < r < rmax, a signal alternating between “on” and “off” states can be
obtained. For a given r, the “on” status refers to the probe being located on certain arcs
of the circle with radius r. As sketched in Fig. 5.1 (c), two opposing arcs of equal length
are present, if rmin < r ≤ Ll/2, while for Ll/2 < r < rmax four equivalent arcs close to
the vertices of the rectangle appear. In analogy to the detection areas considered before
for the translational diffusion, the arcs form detection lines with length lr, that can be
obtained by simple geometric reasoning:

lr =

{
2r arcsin

(
Ls

2r

)
, rmin < r ≤ Ll/2,

r
[
arcsin

(
Ls

2r

)
− acos

(
Ll

2r

)]
Ll/2 < r < rmax .

(5.2)

For jump lengths raϕ much smaller than lr the problem of a diffusing tip on a line
of length lr with absorbing boundaries can be considered for calculating the RTD. The
initial distribution is concentrated on two points at distance r∆ϕ from the boundaries.
After determination of the the respective one-dimensional diffusion propagator p(x, t), see
appendix A.5, the first passage time distribution under the condition of a fixed object-
probe-distance r is calculated, as usual, by ψrot(t|r) = −∂t

∫ lr
0

dx p(x, t) yielding

ψrot (t|r) =
4Dϕ

π

∞∑
n=0

q2
n sin (qn∆ϕ)

(2n+ 1)
exp

(
−q2

nDϕt
)
, (5.3)

where qn = qn(r) = (2n+ 1)πr/lr. After averaging over all positions between rmin and
rmax, taking into account that 2 equivalent arcs exist for rmin < r < Ll/2 and four equiv-
alent arcs for Ll/2 < r < rmax, the RTD

ψrot (t) = N−1

[∫ Ll/2

rmin

dr r ψrot,lr (t|r) + 2

∫ rmax

Ll/2

dr r ψrot,lr (t|r)

]
(5.4)

is obtained, with the normalization factor N = πL2
l /4. Analogously to the previous

treatment of translational diffusion Eq. (5.4) is based on a continuum theory. There-
fore, τ∆ϕ ≡ ∆2

ϕ/Dϕ again defines a lower limit for its applicability. To account for the
effect of the finite jump length for detection lines with small length lr, one would have
to deal with a rather complex situation, among others, with very small numbers of just
1− 2 probe positions, whose precise location depends on r and ∆ϕ. After averaging of r
these effects of the discreteness of the jump length are, however, washed out.

In the presence of both rotational and translational diffusion, it is difficult to obtain
exact analytical results for the RTD, because the problem cannot be described as a diffu-
sion problem with a time-independent geometry of the absorbing boundary. Fortunately,
in the situation, where rotational diffusion is relevant in the RTD, the results obtained
for pure translation and pure rotation are sufficient to account for the overall behavior.

As discussed above, the signal can turn from “on” to “off” due to rotational moves,
only if the molecule center is in the shaded area rmin < r < rmax in Fig. 5.1 (a). A typical
arc in this area has an angle of about π/4 to π/2, compare Fig. 5.1 (c), which results in
a typical time τϕ ≡ (π/4)2/2Dϕ for the object to to leave the detection area by rotation.
The typical time for an object to center to traverse the shaded area in in Fig. 5.1 (b) is
τtr ≡ (Ll/2− Ls/2)2/4D. Hence, if τϕ � τtr, the decay of the RTD should be governed
by translational diffusion as described in chapter 4.2. However, if τϕ � τtr, the rotational
diffusion should become significant. It governs the the RTD for short times t� τtr,
while for t� τtr the dominant events are those, where the object center enters the core
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5. Rotational diffusion

area r ≤ rmin and leaves it by translational diffusion. Accordingly, the RTD becomes
decomposable into one part given by pure rotational diffusion [Eq. (5.4)] and a second
part given by pure translational diffusion [Eq. (3.11) with R = rmin]. The lower limit for
applicability, caused by the continuum approaches for translational as well as for rotational
diffusion, will be given by the process reigning the short time regime. Excluding the
indefinite cases, where Dϕ/a

2
ϕ ≈ D/a2, it can be assessed by t ≥ min(τ∆, τ∆ϕ).

Application to simulation data

In Fig. 5.3 representative RTDs in the presence of both rotational and translational dif-
fusion are displayed for a rectangular object of size 10× 5 for three a2Dϕ/a

2
ϕD ratios

(Conf. M00-M03). For a2Dϕ/a
2
ϕD = 0.05 (τϕ/τtr = 10� 1) rotational diffusion indeed has

no influence and the RTD can be described by Eq. (4.4) (dashed line). For a2Dϕ/a
2
ϕD = 18

(τϕ/τtr = 0.03� 1), a double shoulder characterizes the distribution. This reflects the
separation into the two time regimes governed by rotational and translational diffusion,
as demonstrated by the the curves corresponding to Eq. (5.4) (solid line) and to Eq. (3.9)
with R = rmin (dashed line). The relative weight of the two contributions was determined
in the following way: By making the ansatz Ψ(t) = B1ψrot +B2ψtrans(t), the coefficient
B2 was first determined by fitting Ψ(t) ≈ B2ψtrans(t) to the long time regime, with ψtrans

taken from Eq. (3.11). Thereafter, the coefficients B1 followed from the normalization of
Ψ(t). The small full symbols in Fig. 5.3 represent the distribution of residence times, dur-
ing which the object center has entered the core area. These distributions are normalized
to the overall fraction of the corresponding events. Their good agreement with the long
time behavior of the overall RTD is further proof that this time regime is dominated by
translational diffusion in the core area.

Generally, the influence of the rotational diffusional motion on the long time regime
can always be captured by defining an effective radius Reff , which follows from fitting the
exponential decay in the long time regime to Eq. (3.11). The behavior of this effective
radius as a function of a2Dϕ/a

2
ϕD is shown in the inset of Fig. 5.3. For a2Dϕ/a

2
ϕD = 0,

i.e., no rotational diffusion, Reff = R′ from Eq. (4.7) as discussed in chapter 4.4. With in-
creasing a2Dϕ/a

2
ϕD, Reff decreases and rapidly approaches Reff = rmin. When Reff = rmin,

the rotational moves are so fast that, if an object center leaves the core area, the recorded
signal will almost immediately be turned “off”. The radii Reff > rmin for a2Dϕ/a

2
ϕD . 1

can be assigned to an effective circular detection area, which takes into account, that an
object, when leaving the core area, typically diffuses over a certain distance before the
signal is turned off because of a rotational move.

In this paragraph instructions will be given, how these findings can be applied to ex-
tract rotational and translational diffusion coefficients, if both types of motion are present.
As discussed above, if τϕ � τtr only translational diffusion coefficients can be determined
from the RTD. When a double shoulder appears in the RTD for τϕ . τtr, the rotational dif-
fusion coefficient should be determinable. In fact, using a non-linear Levenberg-Marquardt
fitting of Eq. (5.4) to the shoulder in the short time regime, Dϕ = 0.080± 0.001 for the
diamonds and Dϕ = 0.720± 0.001 for the circles are obtained, which agree well with the
respective input values of Dϕ,in = 0.079 and Dϕ,in = 0.711. Simultaneously, by fitting
Eq. (3.11) to the shoulder on the long time regime, D̃ values are determined. Initially,
Reff = rmin can be chosen for this analysis. If the resulting a2Dϕ/a

2
ϕD̃ turns out to be

larger than one, D̃ should have a reliable value. However, if a2Dϕ/a
2
ϕD̃ . 1, the D̃ value

is underestimated, because the effective radius Reff is larger than rmin. For the data pre-
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sented in Fig. 5.3 D̃ = 0.06± 0.00 for the diamonds and D̃ = 0.07± 0.01 for the circles
were obtained, which in connection with the determined Dϕ values give a2Dϕ/a

2
ϕD = 3.4

and 26.1, respectively. Both D agree quite well with the input Din = 0.1, with a big-
ger difference in case of a2Dϕ/a

2
ϕD ≈ 1. Like indicated by this example the deviation

usually is small, because it was observed that Reff and rmin do not differ much, as soon
as the double shoulder can be clearly identified. In practice it will be generally unlikely
to encounter this deviation, because of the narrow regime a2Dϕ/a

2
ϕD, where rotational

effects are visible and Reff is larger than rmin. If the problem is nevertheless present, the
experimentalist may shift the a2Dϕ/a

2
ϕD value to the favorable regime by changing the

temperature. An similar evaluation for a translational diffusion coefficient of D = 0.25 is
given in reference [�].
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Figure 5.3: Residence time distributions for uncoupled rotational and transla-
tional diffusion with different Dϕ and constant D = 0.1 (Conf. M00-M03, open sym-
bols). Distributions are shown for times t > min(τ∆, τ∆ϕ) valid for evaluation. For
Dϕ/a

2
ϕ � D/a2 (�) rotational diffusion has no influence on the RTD and follows

Eq. (4.4) (dashed lines). If Dϕ/a
2
ϕ ≥ D/a2 (�,◦), a double shoulder is visible. The

left is caused by rotational diffusion [Eq. (5.4), solid line] and the right by transla-
tional diffusion [Eq. (3.9), dashed line]. Small solid symbols refer to the distributions
of residence times, which belong to trajectories, where the object center has at least
once entered the core area shown in Fig. 5.1 (b). Inset: Dependence of the effective
radius Reff on a2Dϕ/a

2
ϕD.

5.3 Interpeak time distribution

Analogously to the RTD, first the implications of purely rotational diffusion on the ITD
are investigated. In order to do so, again a probe performing jumps on concentric circles
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5. Rotational diffusion

(rmin < r < rmax) around the fixed object center are considered. Since, now the “off”
times of the signal are relevant, the detection lines lr, l

′
r entering the general expression

in Eq. (5.3) are given by the arcs outside the rectangle, represented by the thin lines in
Fig. 5.1 (c). Their lengths are given by

lr = 2r arccos
(
Ls

2r

)
rmin < r ≤ rmax,

l′r = 2r arcsin
(
Ll

2r

)
Ll/2 < r ≤ rmax . (5.5)

Taking into account, that two equivalent arcs exist for rmin < r < Ll/2 and this time four
pairwise equivalent arcs for Ll/2 < r ≤ rmax, the averaging of Eq. (5.3) over all positions
between rmin and rmax results in

ψrot (t) = N−1

[∫ rmax

rmin

d r r ψrot,lr (r, t) +

∫ rmax

Ll/2

d r r ψrot,l′r (r, t)

]
. (5.6)

Corresponding to the findings for the RTD in chapter 5.2, the ITD should also be
decomposable into a short time regime t < τtr governed by rotational diffusion and a long
time regime t > τtr governed by translational diffusion, if the typical times for leaving
the detection area by a certain type of motion behave as τϕ � τtr. In this case the time
regimes should follow Eq. (5.6) and Eq. (3.16) with an radius of R = rmax, respectively. For
τϕ � τtr rotational diffusion should not affect the ITD, so that Eq. (3.14) and Eq. (3.16)
with R = R′′ can be considered for evaluation in the corresponding time regimes. The
lower time limit for application of the continuum treatment is analogous to the RTD given
by t ≥ min(τmax, τ∆ϕ).

For correct description of the translational diffusion when Dϕ/a
2
ϕ ≈ D/a2 (τtr ≈ τϕ)

an effective radius is introduced during the treatment of the RTD. It shrinks from R′

[Eq. (4.7)] in case of Dϕ = 0 to rmin for Dϕ/a
2
ϕ � D/a2, accounting for the decreasing

effective distance an object center can leave the core area, without leaving the detection
area due to a rotational step, see discussion in chapter 5.2. A similar consideration is
necessary for the ITD, only that the effective radius increases here. When Dϕ = 0 the
object center can typically approach the tip up to its detection area’s radius R′′ [Eq. (4.8)]
before being noticed by the tip. With increasing rotation the tip will sense the object
earlier and the objects size seemingly increases. In the limiting case Dϕ/a

2
ϕ � D/a2 the

object at last cannot get closer than rmax to the tip without turning the signal on.

Application to simulation data

Figure 5.4 illustrates the ITDs of three different a2Dϕ/a
2
ϕD ratios (Conf. M00 - M03).

For a2Dϕ/a
2
ϕD = 0.05 (τϕ/τtr = 10� 1, squares) rotational diffusion has, as expected,

no influence on the ITD and it can be described by Eq. (3.16) (dashed line) in the
long time regime and approximately by Eq. (3.14) (dotted line) in the short time. At
a2Dϕ/a

2
ϕD = 18 (τϕ/τtr = 0.03� 1, circles) an additional shoulder emerges in the short

time regime (t < τtr) of the distribution depicting the influence of the rotational diffusion.
It can be described by Eq. (5.6) and the exponential decay at long times by Eq. (3.16) with
an object size of Ã = πr2

max. A non-linear Levenberg-Marquardt fit yields an rotational
diffusion coefficient of Dϕ = 0.715± 0.002 and a linear regression of the exponential decay
in the long time regime a translational diffusion coefficient of D = 0.09± 0.05, which both
are in good agreement with the input values of Dϕ,in = 0.711 and Din = 0.1 respectively.
In the third example, which represents the intermediate regime of a2Dϕ/a

2
ϕD = 2 ≈ 1
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(diamonds), the additional shoulder is not as obvious, because of the similar shape of the
purely translational ITD in this time regime. Nevertheless, it can be used to extract a
rotational diffusion coefficient of Dϕ = 0.075± 0.002 via non linear fitting, which matches
the input value of Dϕ,in = 0.079. The evaluation of the long time regime yields a trans-
lational diffusion coefficient of D = 0.09± 0.01 again using Reff = rmax, which matches
the input value of Din = 0.10. The inset of of Fig. 5.4 indeed shows, that the interval of
a2Dϕ/a

2
ϕD ratios, where Reff is between R′′ and rmax, is even narrower than the critical

interval of the RTD. Therefore, in practice it is safe to assume Reff = rmax upon evaluating
the long time regime t� τc, whenever the second shoulder in the short time regime of
the ITD is clearly identifiable, and Reff = R′′ otherwise.
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Figure 5.4: Interpeak time distributions for uncoupled rotational and translational
diffusion with different Dϕ and constant D = 0.1 (Conf. M00-M03, open symbols). Dis-
tributions are shown for times t > min(τ∆, τ∆ϕ) valid for evaluation. For Dϕ � D/a2

(�) rotational diffusion has no influence on the RTD and can be described by
Eq. (3.13) in the short time regime (dash-dotted line) and Eq. (3.16) in the long
time regime (dashed line). If Dϕ ≥ D/a2 (�,◦), a shoulder caused by rotational dif-
fusion [Eq. (5.6), solid line] appears in the short time regime. The long time regime
is governed by translational diffusion [Eq. (3.16), dashed line]. (b) Dependence of the
effective radius Reff on Dϕ/Da

2.

5.4 Assessment of the methods

In this chapter the effects of additional rotational diffusion on the ACF, RTD and ITD
have been addressed. Though their curves are strongly influenced by rotational diffusion
the determination of diffusion coefficients is not hampered significantly. On the contrary,
it is rather extended to the possibility to simultaneously determine the translational and
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5. Rotational diffusion

rotational diffusion coefficient underlying a given time series. A comparison of the typical
times for either type of motion discloses, that within the representations time regimes
can be identified, that are each governed by only one kind of diffusion. As a result, these
time regimes can be independently evaluated with the solution for pure rotational and
pure translational diffusion, respectively. This implies that also exclusively rotational
diffusion could be treated. From the experimental point of view the tip would have to be
specifically positioned in a fixed distance between rmin and rmax from the rotating objects
center to record a time series here, because otherwise the objects, lacking translational
motion, will not reach the tip. In the theory the averaging over all possible r in Eq. (5.4)
and Eq. (5.6) then becomes needless. In the treatment of the ACF only the rotational
diffusion propagator has to be considered and corresponding detection lines would replace
the detection areas.

Note, that the time series of circular objects will of course shown none of the effects
described in this chapter. But also in case of quadratic molecules there will be only minor
effects, if it all. For example, in the presented simulation setup the interval between
rmax and rmin in case of a 5× 5 square molecule approximately equals the translational
step size and it is very unlikely to hit a distance relevant for rotation here. Therefore,
as illustrated in Fig. 5.5, ACF, RTD and ITD show no sign of rotation, even in case of
Dϕ = 0.711 (D = 0.1, Conf. M04), where in the previous discussions for a 10× 5 object a
massive influence of the rotation was visible.
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Figure 5.5: (a) ACF, (b) RTD and (c) ITD of a square object of size 5× 5 with
Dϕ = 0.711 (D = 0.1) (Conf. M04). Despite the high a2Dϕ/a

2
ϕD ratio no signs that

would indicate rotational diffusion, i.e., no kink in the ACF nor double shoulders in
the RTD or ITD, are visible.

While in general all three methods are suited to determine the governing diffusion
coefficient of a rectangular object in the respective time regime as displayed in Tab. 7.1, a
ranking of eligibility can be made. The ACF is the weakest link, here, because it has only
a small time interval valid for evaluation due to neglecting the cross correlations. This
time regime then usually is governed by one type of motion and therefore only this one
diffusion coefficient can be determined. In the worst case of of a2Dϕ/a

2
ϕD ≈ 1 one would

have to resort to the extensive fitting with the full solution [Eq. (A.2) in the appendix].
Because of the characteristic kink the ACF can be recommended as a quick and reliable
check, whether rotational diffusion is present, but it is not convenient for the simultaneous
determination of both diffusion coefficients. The identification of rotational diffusion in
the ITD becomes vague in case of Dϕ/a

2
ϕ ' D/a2, because the curves in the short time

43



regime with and without rotation are very similar, so that rotational motion might be
overlooked. Another drawback of the ITD is, that the time regime t� τc is necessary
for simultaneously determining the translational diffusion coefficient, which might be not
resolved satisfactorily in case of small θ. Anyway, if the parameters are not in one of these
adverse, but unlikely, ranges, the ITD can unlike the ACF be used to simultaneously
determine the rotational and translational diffusion coefficients. Among the presented
approaches the RTD, however, is favorable. It is not only based on a sufficiently small
time interval to reliably resolve the translational diffusion governed and the rotational
diffusion governed time regimes, but the regimes can also be distinguished best, in form
of a distinct double shoulder.

Dϕ D Dϕ D Dϕ D

input 0.002 0.10 0.079 0.10 0.711 0.10

ACF — 0.10± 0.01 — — 0.809± 0.002 —

RTD — 0.12± 0.01 0.080± 0.001 0.06± 0.00 0.720± 0.001 0.07± 0.01

ITD — 0.10± 0.01 0.075± 0.002 0.09± 0.01 0.715± 0.002 0.09± 0.05

Table 5.1: Simultaneously determined translational and rotational diffusion coefficients.
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Chapter 6

Anisotropic diffusion

The treatment so far was based on the assumption of an isotropic diffusion coefficient. In
the anisotropic case the diffusive motion is characterized by a diffusion tensor [77].

As far as the RTD for rectangular object is concerned, this tensor can be readily
implemented, in case the principle axes of the diffusion tensor are parallel to the object’s
edges

ψ (t) =
LlLs

π2

∞∑
m,n=0

cµ,νλ
′2
µ,ν

µν
exp

(
−λ′2µ,νt

)
. (6.1)

The coefficients cµ,ν are equivalent to Eq. (4.3) with µ = (2m+ 1) and ν = (2n+ 1), but
the eigenvalues λ′2µ,ν = Dxµ

2π2/L2
l +Dyν

2π2/L2
s additionally depend on Dx and Dy here.

Ikonomov et al. [39] surmised that this expression would suffice to identify a difference in
Dx and Dy, representing the diffusion coefficients parallel to the short and long edge of
the object respectively.

Equation (6.1) indeed contains two exponential functions with the typical times
τx ≡ L2

l /π
2Dx and τy ≡ L2

s/π
2Dy. Usually, the long time regime τx, τy � t is used for

fitting, where µ = ν = 1 are the leading terms of the sum. Its logarithmic represen-
tation is reduced to a single linear equation log(ψ(t)) ∼ log(LlLsc1,1λ

′2
1,1/π

2)− λ′21,1t with
slope −λ′21,1. If de facto Dy 6= Dx, anisotropic diffusion could not be recognized in this
time regime and treatment with Eq. (4.4) would result in a misleading effective diffusion
coefficient.

If the object has a high aspect ratio or if Dx and Dy differ strongly, a time regime
τx � t � τy (or τy � t � τx) emerges, where the behavior of Eq. (6.1) would deviate
considerably from that of Eq. (4.4). This could be used as an indicator for anisotropic
diffusion. However, this time regime is not favorable for evaluation, because of the complex
functional form of Eq. (6.1) and the fact that the short time regime of the RTD often is
very noisy, c.f. chapter 7.

Generally speaking, resolving anisotropic diffusion by evaluating the signal of a point-
like probe is very difficult and limited to setups, where τx and τy define a distinct additional
time regime. Hence, better suited measurement techniques are desirable, which are sen-
sitive to the direction of the diffusion. In the following modifications of the measurement
setup will be discussed, which can be used to account for anisotropic diffusion properties.
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6.1 Extended linear probe

Assuming the probe was not a single point, but rather an infinite extended line, directional
information could be easily obtained. Because displacements parallel to the probe would
not influence the signal, an analysis of the recorded signal would only give information
on an object’s diffusion perpendicular to the line, compare Fig. B.2 in the appendix. By
changing the orientation of the linear tip every favored direction could be probed.

Since this measurement setup will also record a time series toggeling between “on”
and “off”, the principles of the RTD can be employed for evaluation. The problem of
deriving the diffusion propagator used in the RTD is conveniently reduced to solving
the one-dimensional diffusion equation between two absorbing boundaries, as done in
appendix A.5. It gives

ψ (t) =
∞∑
n=0

4D⊥q
2
n

(2n+ 1)π
sin (qn∆) exp

(
−D⊥q2

nt
)
, (6.2)

with qn = (2n+ 1)π/L and D⊥ the effective diffusion coefficient in the direction perpen-
dicular to the probe. The length of the detection line L, i.e. the width of the detection
area, depends on the orientation γ̄ ∈ [0, π/2] of the object in relation to the probe line

L (γ̄) = Ls sin (γ̄) + Ll cos (γ̄) , (6.3)

compare the sketch in Fig. 6.1 (a). Note, that due to symmetry reasons a consideration of
0 ≤ γ̄ ≤ π/2 is sufficient, here. Of course, this approach works fine with circular objects,
too, by defining L = 2R independent of the probe’s orientation. The effective diffusion
coefficient D⊥ is then obtained by a linear regression of the RTD’s exponential decay at
t� τL ≡ L2/π2D⊥ with

ψ (t) ∼ 4D⊥π

L2
sin

(
π∆

L

)
exp

(
−D⊥

π2

L2
t

)
. (6.4)

This is the leading term from Eq. (6.2) in the long time regime. Again, the minimal
penetration depth of ∆ has to be considered here, which defines a lower time limit τ∆,
where the continuum approach holds true. It does not affect the fitting in the time regime
t ≥ τL.

The RTD is derived for a single particle diffusing in the detection area. In practice,
however, more than one object will diffuse on the surface. With increasing length of the
probe, which enlarges the detection area, the risk of another object entering the latter
rises. Hence, the idealized situation of an infinite extended tip is unfit for practical use
and a probe with finite length and its corresponding detection area D ≡ Λ× L will be
considered from now on.

To find a reasonable size of the detection area D, two aspects have to be taken into
account. On the one hand, D should be as small as possible to not endanger the single
particle consideration, as mentioned above. On the other hand, its aspect ratio should be
as large as possible, so that objects preferably enter and leave through the long edges of
D. This way the the one-dimensional approach on evaluation, which is discussed above,
still holds true. In the following the probabilities of both aspects with respect to the size
of the detection area will be derived. Comparison results in a good estimation of the
optimal probe length.
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6. Anisotropic diffusion
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Figure 6.1: Basic geometries of the modified measurement setups: (a) A linearly
extended tip of length 2l with the corresponding detection area (shaded area) of
with L [Eq. (6.3)]. The minimal penetration depth ∆ is indicated by the dotted line.
(b) Two separate probing sites PA and PB in distance 2ρ. To avoid overlap of the
detection areas (shaded areas), ρ ' rmax should be chosen. Both setups are sensitive
for diffusion along the γ-direction respective to the x-axes (γ = γ̄ − π/2).
The linear probe in (a) can be realized by a point-like probe oscillating between
the turning points ±l from the idle position. The signal of an extended probe is
reconstructed according to Fig. 6.3 (a). The two close, but separate, probing sites in
(b) can be realized by a point-like probe rotating on a circle of radius ρ around the
idle position half way between PA and PB. The signal at the probing sites can be
extracted according to Fig. 6.3 (b) and (c).

To quantify the probability to find more than one object in D, first the probabil-
ity P1 to find one marked object inside D has to be considered, which is defined by
P1 ≡ D/A = Dθ/NÃ. Here N is the number of objects of size Ã on the surface A, which
are connected via A = NÃ/θ, compare Eq. (2.3). The probability P>1 to find more than
one object in D then follows from the binomial distribution, compare chapter 2.1,

P>1 =
[
1− (1− P1)N −NP1 (1− P1)N−1

]
. (6.5)

For the one-dimensional approach, objects should preferably neither enter nor leave
through the short edges of the detection area. In continuum the probability
P (L, in) = L/(L+ Λ) to enter through one of the short edges of D, denoted by “L,in”, fol-
lows directly from its aspect ratio, since all entry positions are equally probable. However,
even if an object has entered the detection area through a longer edge
(P (Λ, in) = 1− P (L, in)), denoted by “Λ,in”, there is a certain probability, that it will
leave through one of the shorter ones, denoted by “L,out”. The probability for an object
center to reach one of the detection area’s short edges, after starting in the point (x,y)
inside the detection area [78], is given by

P̃ (x, y) =
4

π

∞∑
k=0

−1k

2k + 1

cosh [(k + 1/2) πx/L] cosh [(k + 1/2) πy/L]

cosh [(k + 1/2) πΛ/L]
. (6.6)

It has to be summed over all possible starting positions along the long edges,

P (L, out|Λ, in) = 1
2Λ

∑∞
k=0

∫ Λ/2

−Λ/2
dx 1

2
[P̃ (x,−L/2 + ∆) + P̃ (x, L/2−∆)] . As a result, the
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probability that the object’s path will cross one of the shorter edges of the detection area
is given by

Pshort = P (L, in) + P (Λ, in) P (L, out|Λ, in) . (6.7)

The shorter edge L of the detection area is defined by Eq. (6.3) and only Λ is variable.
Its optimal value can be appraised from the intersection point of both opposing proba-
bilities P>1 and Pshort, compare Fig. B.4 in the appendix. The length l of the probe itself
follows from Λ = 2l + Ls for γ̄ = π/2 and Λ = 2l + Ll for γ̄ = 0. For intermediate γ̄,
Λ = 2l + Ls should be a fair estimate.

Application to simulation data

Fig. 6.2 (a) shows the RTDs of 10× 5 sized objects diffusing with Dx = 0.25 in x-direction
and varying Dy = 0.25, 0.1 and 0.01 along in y-direction, see configurations Conf. A00-A02.
For each set, simulations with a linear tip of length 2l = 40 at γ̄ = 0 and π/2 were carried
out. To obtain the diffusion coefficients in the direction γ = γ̄ + π/2 perpendicular to the
probe the exponential decay in the long time regime t� τL was evaluated with Eq. (6.4)
and the respective L(γ̄), which equal Ll and Ls following Eq. (6.3).
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Figure 6.2: (a) RTDs of three different Dy/Dx ratios (Conf. A00-A02) recorded with
an extended linear tip of length l = 20 at γ̄ = 0 (M) and π/2 (B). The diffusion coef-
ficients are obtained from a linear regression of the data in the long time regime with
Eq. (6.4) (solid lines) using L(γ̄) of Eq. (6.3). Data has been pairwise vertically shifted
for better visibility here. (b) Fitted diffusion coefficients in relation to the respective
input value. (c) Results for Conf. A00 and γ̄ = 0 for different probe lengths l = 5, 20
and 50. The distributions recorded with the shortest probe approach the solution for
a two-dimensional detection area [Eq. (4.4), dotted line], because objects increasingly
enter and leave through the short edges of the detection area. Those recorded with
the longest probe contain many long peaks, which are caused by multiple objects in
the detection area at the same time.
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6. Anisotropic diffusion

Though the tip length is not yet optimal, lopt = 41 cf. Fig. B.4 in the appendix, the
resulting diffusion coefficients presented in Fig. 6.2 (b) and Tab. 6.1 are in good agreement
with the input values for both directions. However, choosing a tip length farther from
the optimal value, e.g. 2l = 10 or 100, strongly increases the error of the results, see
Fig. 6.2 (c). For the shorter probe the one-dimensional approximation starts to fail and
the slope of the exponential decay approaches the one expected for a rectangular detection
area. The slope in case of the longer probe is too flat in comparison to the expectation.
The additional long time events included in the RTD here are caused by multiple objects
entering the detection area.

Conf. A00 Conf. A01 Conf. A02

Dx Dy Dx Dy Dx Dy

Din 0.25 0.25 0.25 0.10 0.25 0.010

γ ‖ x 0.26± 0.01 — 0.24± 0.00 — 0.24± 0.00 —

γ ‖ y — 0.22± 0.01 — 0.09± 0.01 — 0.011± 0.001

Table 6.1: Diffusion coefficients from evaluating the signal of a linear tip with l = 20.

Linearly oscillating probe

In practice the realization of an extended linear probe, which is still point-like in the
cross-section on an atomic scale would be difficult and was so far not mentioned in the
literature. However, this type of probe could be effectively realized by letting a single
point probe oscillate with a frequency ωlin on a line. The period has to be short compared
to the typical time τL for an object to cross the detection area to ensure identification of
all passing objects. If this time is unknown prior to the measurement it can be estimated
via a short control measurement according to chapter 3 or 4 with the probe locally fixed.
The resulting rectangular signal then has to be coarse-grained on a grid corresponding to
the time intervals ∆t ≡ π/ωlin between the turning points in order to obtain the signal
an extended probe would give.

As an example, Fig. 6.3 (a) illustrates the signal of a probe oscillating with
∆t ≈ 0.3� τL = 400 between the turning points at ±l = ±20 relative to the idle po-
sition. Objects diffusing according to the parameters in Conf. A00 cause fluctuations in
the signal recorded by the oscillating tip displayed by the solid black line. The solid gray
line represent the virtual signal of an extended probe with length 2l after coarse graining
the original signal with ∆t. The signal of an actual extended probe in the same spot,
shown by the dashed line, proofs the accuracy of this method.

A weakness of the linear extended probe is, besides the determination of the optimal
probe length, that a new measurement is necessary for each spatial direction γ that is
to be probed. Therefore, in the following chapter another point-probe trajectory will be
introduced, that allows a simultaneous evaluation of the diffusion coefficient in arbitrary
directions.
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Figure 6.3: If the period of the moving probe is small compared to the typical time an
object needs to cross the detection area, objects encountering the probe will repeat-
edly cause short peaks (solid black lines). (a) Exemplary signal of a probe oscillating
with ωlin on a line between the turning points ±l around the idle position. Discretiz-
ing the signal on a ∆t = π/ωlin grid, yields the virtual signal of an extended tip (solid
gray line), which agrees very well with the signal of an actual extended tip (dashed
gray line). (b) Extraction of the virtual signal (solid lines) in points A, B, C and
D from the continuous signal of a probe rotating with ωcirc on a circle, see sketch.
In each point P (ρ, γ) the signal is updated only at t = (γ + 2πn)/ωcirc (n ∈ N). In
between the virtual probe is “blind” and keeps the previous status. The virtual sig-
nals agree very well with control signals (dashed lines) recorded by fixed probes in
positions A-D. (c) Detailed cutout of (b). Ticks indicate the hit test in the respective
points - bold ticks for “on” and thin ticks for “off”.
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6. Anisotropic diffusion

6.2 Correlation between two separate probing points

Another possibility to gain directional sensitivity is the evaluation of the cross-correlation
between the signals recorded at two separate points on the surface. Both measurement
points PA(xA, yA) and PB(xB, yB) will define corresponding detection areas, compare
Fig. 6.1(b). The cross-correlation function (CCF) is derived following the standard proce-
dure described in appendix A.1, albeit using non-congruent detection areas and the free
diffusion propagator for an anisotropic diffusion tensor from appendix A.4 in Eq. (A.5).
It yields

Ccross (xA, yA, xB, yB, t) (6.8)

= c

∫ xA+
Ll
2

xA−
Ll
2

dxa

∫ yA+Ls
2

yA−Ls
2

dya

∫ xB+
Ll
2

xB−
Ll
2

dxb

∫ yB+Ls
2

yB−Ls
2

dyb
e−

(xb−xa)2

4Dxt

√
4πDxt

e
− (yb−ya)2

4Dyt√
4πDyt

= c C (xB − xA, Dx, Ll, t) C (yB − yA, Dy, Ls, t) ,

with

C (∆, D, L, t) =

√
Dt

π

(
e−

(L+∆)2

4Dt − 2e−
∆2

4Dt + e−
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2
√
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)
.

The origin of the employed coordinate system is, without loss of generality, set to the
middle of the connection line between PA and PB, compare Fig. 6.1 (b). As a result, the
points’ location is defined by their distance 2ρ and the angle γ between the detection line
and the x-axis, giving ∆x = xB − xA = 2ρ cos γ and ∆y = yB − yA = 2ρ sin γ. Accord-
ingly, Ccross = Ccross (xA, yA, xB, yB, t) is written as Ccross = Ccross (ρ, γ, t) in the following.

Application to simulation data

The solid lines in Fig. 6.4 show an overview of simulated CCFs of 10× 10 objects diffusing
with three different Dx/Dy ratios (Conf. A00-A02) as well as three different probe distances
ρ = 3, 7 and 10 recorded at γ = 0 and π/2. The time axes are scaled with τLs to get a
feeling for the peak positions.

The overview illustrates how the correlation functions are affected by the distance
between the measurement points. If ρ < rmax = (L2

l + L2
s )1/2 the detection areas do not

separate and Ccross(t→ 0) approaches ∼ cA∩, i.e., the expectation value for an object
center to be inside the overlap area A∩. If ρ > rmax = (L2

l + L2
s )1/2 the detection areas do

not touch and Ccross(t→ 0) ∼ 0. Here, the CCF is characterized by a single peak, whose
position and height are related to the diffusion coefficients along the principal axis of the
diffusion tensor. Hence, for evaluation purposes the radius should be chosen large enough
for the detection areas to fully separate. For smaller ρ the differences of the correlations
in both directions are marginal, see Fig. 6.4 (g)-(i), and the distinctive peak of the cross-
correlation [Eq. (6.8)] is hidden in the flank arising from C(0) ∼ cA∩. However, increasing
the distance much beyond rmax is not recommended. With increasing ρ an object needs
more time to translate from one measurement point to the other making it less likely that
a signal in PB was caused by the same object previously recorded in PA. In the CCF this
not only results in a delay of the correlation peak to larger times, but also in a decrease
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of the absolute peak height. This eventually complicates the separation of the peak from
the offset Coffset = (cLsLl)

2, which is the constant probability that both probing sites are
covered by different objects, compare the approximate treatment of the cross-correlation
terms in appendix A.1.

10
−4

10
−3

10
−2

C
(t
)

(a)

Dx =Dy =0.25

10
−4

10
−3

10
−2

C
(t
)

(d)

10
−2

10
0

10
2

10
−4

10
−3

10
−2

t/τLs

C
(t
)

(g)

Dx =0.25>Dy =0.1

(b)

(e )

10
−2

10
0

10
2

t/τLs

(h)

Dx =0.25>>Dy =0.01

ρ=10

(c)

ρ=7

(f )

10
−2

10
0

10
2

t/τLs

ρ=3

(i )

Figure 6.4: Overview of the CCFs [bold (red) lines: γ ‖ x, thin (blue) lines: γ ‖ y]
of Dx = Dy (left column, Conf. A00), Dx = 2.5Dy (middle column, Conf. A01) and
Dx = 25.0Dy (right column, Conf. A02). As well as probe distances of ρ = 3 < rmax

(bottom row), ρ = 7 ' rmax (middle row) and ρ = 10� rmax (top row). For ρ� rmax

peaks decrease in height an shift towards the strongly noise affected time regime,
thus hindering evaluation. For ρ < rmax the CCFs of differenct directions differ only
marginally and the distinctive peaks are not visible. A distance of ρ = 7 (graphs in
the center) allows fitting of the CCF, ideally after subtracting Coffset (symbols) to
obtain a more distinct curve (black lines).
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6. Anisotropic diffusion

In practice, the peak’s shift into the time regime t� τLs already is problematic, be-
cause more then one particle might contribute to the cross correlation here, which is not
accounted for in the theory. Furthermore, the longer the investigated time interval in
the CCF, the more events have to be recorded to sufficiently reduce the noise. As an
example, the CCFs for Dx = Dy at ρ = 10, which yield congruent curves for γ = 0 and
π/2, are based on a measurement of 104 events for γ = 0 and 103 events for γ = π/2, see
Fig. 6.4 (a). Though the noise is reduced considerably here, 104 events are not enough to
sufficiently resolve both peaks of the CCF in Fig. 6.4 (c). Since a larger ρ would yield no
further information, the recommended probe distance is ρ ' rmax.

Unless the CCFs for different γ are equal and Dx = Dy can be assumed, a simultaneous
fitting of Dx and Dy based on Eq. (6.8) is necessary. It is recommended to subtract the
offset Coffset=CCF(0) from the CCF to obtain a more distinct curve for fitting, see symbols
in Fig. 6.4 (d)-(f). A corresponding evaluation of Conf. A00-A02 at a distance of ρ = 7
via non-linear least square fits to Eq. (6.8) yields the diffusion coefficients summarized
in Tab. 6.2. They reproduce the input values to a quite good agreement, except the
γ = π/2(‖ y) measurement for Dx = 25.0Dy (Conf. A02), which is too noisy for a better
evaluation. To improve results, a coupled fitting of the measurements along the main axis
is recommended. With these results all corresponding CCFs, exept Conf. A02 at γ = π/2,
in Fig. 6.4 (d)-(f) can be well described as indicated by the solid black lines.

Conf. A00 Conf. A01 Conf. A02

Dx Dy Dx Dy Dx Dy

Din 0.25 0.25 0.25 0.10 0.25 0.010

γ ‖ x 0.28± 0.01 0.28± 0.01 0.30± 0.01 0.06± 0.01 0.28± 0.01 0.012± 0.001

γ ‖ y 0.28± 0.01 0.28± 0.01 0.28± 0.01 0.11± 0.01 0.11± 0.01 0.013± 0.001

Table 6.2: Anisotropic diffusion coefficients from evaluating the CCFs at ρ = 7 in Fig. 6.4.

So far, a system was assumed, where the principal axis of the diffusion tensor are paral-
lel to the x- and y-axes as well as the objects edges. If this is not the case, Eq. (6.8) would
have to be evaluated respectively, i.e., by expressing diffusion propagator [Eq. (A.27)] and
limits of the detection area in the coordinate system defined by the diffusion tensor. In
order to identify the main axis of the diffusion tensor, one can use the fact that the differ-
ences in the CCFs are supposed to be the strongest between those γ, which coincide with
these axes. The CCFs obtained at different γ listed in Fig. 6.5 confirm this assumption
and simultaneously present an approach to identify the axes, even without fitting. After
probing several γ ∈ [0, π] and marking the peak positions, the γ belonging to the left and
right most peaks define the main axes of the system.
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Circularly rotating probe

At first glance it is not possible to implement the method presented in this chapter in
practice, because of the short distance allowed between the two probes that have to record
a unique signal each. State of the art STM techniques realize a minimal probe distance
between 200 nm [79] and 1 mm [80], which is far beyond the requested distance of about
1 nm representing a typical molecule size, see Fig. 1.1. However, letting a single probe
rotate with a frequency of ωcirc on a circular trajectory of radius ρ provides a convenient
workaround. Each point on the circle will repeatedly be passed by the probe in a period
of ∆t ≡ 2π/ωcirc. Assuming, that the probe is “blind” except at times t = (γ + 2πn)/ωcirc

with n ∈ N a discrete virtual signal in a given point PA = (ρ, γ) on the circle can be
extracted from the continuous signal of the probe. The time resolution of the virtual
signal is defined by ∆t and the typical time for an object to traverse from one measurement
point to the other by (2ρ)2/D. Hence, ∆t� (2ρ)2/D should be ensured to sufficiently
identify objects diffusing from one measurement point to the other. Because of the circular
geometry, the point PB = (ρ, π + γ) is the obvious choice for the second measurement
point probing the γ direction.

The convenience of this approach is, that signals corresponding to an arbitrary amount
of points on the circle can be extracted simultaneously from a single measurement with
the oscillating probe. This is a strong advantage compared to the extended linear probe,
which requires an individual measurement for each probed direction. A practical example
for the extraction of 4 individual signals at γ = 0, π/2, π and 3π/2 from the continuous
signal of an oscillating probe is presented in Fig. 6.3 (b) and (c).

6.3 Experimental implementation

Though these methods were not experimentally tested yet, from a technical point of view
there seem to be no hindrances for a scanning tunneling microscope. Linear tip trajecto-
ries are already widely used for video STM recordings [32]. They could be transformed
into circular trajectories by adding an oscillating instead of a linear displacement in the
perpendicular direction. Because the signal recorded by a moving probe will also have
a finite time resolution rather than being continuous, this will be the limiting factor in
an experimental implementation. To give, as an example, an estimation of the time res-
olution necessary to identify the diffusion coefficients of CuPc on Ag(100) at 200 K, a
minimum of n = 4 data points per rotation has to be recorded. Assuming the main axes
are known and perpendicular this gives

∆trec =
∆t

n
≤ (2ρ)2

nD
(6.10)

as minimal time resolution ∆trec. With approximately 2ρ = 15 Å andD = 8× 10−11 cm2/s,
compare chapter 7, ∆trec . 70 µs should be realized. The measurement setup used by
Ikonomov et al. [39] had a time resolution of 4 µs and other groups succeeded to realize
recording frequencies up to 1.6 MHz [32], i.e., time resolutions below 1 µs. This would even
allow the probing of either further directions or higher temperatures in this example.

Atomic force microscopes have a rather limited time resolution of about 100 µs [81]
to minimal 10µs [36]. Nevertheless, they are an alternative to investigate anisotropic
diffusion properties on isolating surfaces.
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Chapter 7

Application to experimental data

The presented simulations are fair surrogate data during development of the evaluation
methods, because they allow an arbitrary tuning of the parameters. However, the purpose
of developing evaluation methods is to apply them to experimental data. The actual
measurement method to record a time series does not matter for the presented evaluation
methods. Only the premises of a point like and locally fixed probe and that “on” and
“off” intervals can be clearly distinguished in the signal must be fulfilled. Considering
the implementation of a measurement the challenge for experimentalists is to create a
situation, where on the one hand molecules diffuse freely on the surface and do not form
clusters. Hence a low coverage is necessary. On the other hand enough molecules have to
pass the tip to record the demanded amount of peaks in a reasonable time, cf. chapter 3.4.

In the following the movement of two different shaped molecules on an isotropic
Ag(100) surface is investigated. Copperphthalocyanine is a nearly quadratic molecule, see
Fig. 1.1 (c), while the perylene derivate PTCDA has a rectangle like shape, see
Fig. 1.1 (f). Experimental findings indicate that CuPc [52] and PTCDA [56], as free
molecules, lie flat on the surface. The two systems are therefore ideal candidates to apply
the presented evaluation methods.

The data, by courtesy of Sokolowski et al. [57], used in this chapter was recorded with
a locally fixed STM tip. During “off” intervals only the noise afflicted setpoint current
will be recorded. Molecules passing the tip will reduce the tunneling gap and thus increase
the tunneling current. These intervals of high current are associated with the “on” times.
Sokolowski et al. succeeded to establish a measurement environment, suitable to record a
sufficient amount of peaks, for CuPc on Ag(100) and PTCDA on Ag(100) at a coverage of
θ0 = 10% to 15%. They quote, that at this coverage both molecules form islands, which
coexist with a two-dimensional gas phase of freely diffusing molecules [39]. This kind of
equilibrium has also been observed in other systems [35] and is stable over a comparably
long period of time [34]. To record a fluctuating signal the STM tip is placed in the gas
phase between two larger islands. Note that the tip should not be placed too close to
either of the islands, because in their adjacencies a molecule’s motion can be influenced
by inhomogeneities in the diffusion profile [82, 83] and edge diffusion [14], amongst others.
Though an interaction between the tip and the molecules can not be ruled out, it can
be reduced to an negligible minimum by systematically adjusting the tip-surface distance
and bias voltage. Further details of the experiment are given in reference [39].
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7.1 Processing raw measurement data

Peaks in an experimentally recorded signal have non-uniform shapes, see for example
Fig. 7.1 (a). In case of an STM this roughness may be caused by the passing molecules
electronic structure or the hopping motion itself. Additionally the signal will most cer-
tainly be noise afflicted. However, as a matter of fact, these detailed shapes are irrelevant
for the evaluation via RTD and ITD, as long as “on” and “off” states are clearly distin-
guishable. It was also shown in chapter 3.1, that an ACF calculated with an “on-off”
signal is sufficient to determine the diffusion coefficient. As a result, it is convenient to
transform the given experimental time series into a rectangular “on-off” signal. Afterward,
all presented evaluation methods can be readily applied.

In the following, a detailed explanation of the necessary preprocessing of STM data
to separate the noise from the relevant signal will be given. Parts of the processing might
be adaptable to other measurement methods as well, but this has to be judged in the
individual case.
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Figure 7.1: (a) Exemplary peaks in a time-current signal, recorded by an STM tip
locally fixed above an Ag(100) surface at T = 166 K. Long interpeak intervals are
partially shortened for a better overview (junctions marked by bold ticks). Diffusing
CuPc molecules cause peaks that are significantly higher than the noise. The dashed
line indicates the threshold Ic, which separates the noise from the relevant signal. It
coincides with the lower limit of those current values, that deviate from a Gaussian
distribution, c.f. Fig. 7.2 and text. Only those time intervals with currents higher
than the threshold are considered as “on” phases in an otherwise “off” signal. (b)
The resulting rectangular signal, where only information on the order and duration
of “on” (tw) and “off” (td) phases is preserved.
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7. Application to experimental data

In a histogram of the tunneling currents I at T = 166 K in Fig. 7.2 the maximum
has been shifted to zero. Previously it can be associated with the tunneling current
between the tip and the bare Ag surface, which usually is about I0 = 0.3 pA in the setup
of reference [39]. Current values below this maximum can be attributed solely to noise
and can be fitted with a half-sided Gaussian. Extending this Gaussian to positive current
values yields the solid line in Fig. 7.2. For small positive values it fits the data very well,
implying that these values can also be attributed to noise. At higher current values the
diffusing molecules cause deviations from the Gaussian. To separate the diffusion-induced
fluctuations from the noise, a threshold value Ic is defined, where the Gaussian distribution
of the number of occurrences of a noise event drops below one, see dashed line in Fig. 7.2.
It amounts to Ic = 0.18 nA> I0 in this example. The threshold is then used to separate
“on” and “off” states in the signal [dashed line in Fig. 7.1 (a)] and thus transforming it
into a rectangular signal [Fig. 7.1 (b)]. An analogous preprocessing at T = 192 K, yielding
a threshold of Ic = 0.20 nA, is given in the Figures 2 and 3 of reference [�].
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Figure 7.2: Histogram of current values measured at T = 166 K after shifting the
maximum to zero. The solid line represents a Gaussian fit of the values I < 0,
which can be attributed to the noise, extended to larger values. The dashed line
is positioned where the number of occurrences of noise values drops below one and
defines the threshold, which is used to separate the diffusion-induced signal from the
noise.

Experimentally recorded signals will usually have a discrete time axis with constant
steps ∆t [39]. Accordingly, peak widths and interpeak intervals will be multiples of ∆t,
which can result in a vanishing bin size in the sampling according to reference [73]. A
classical histogram with logarithmic scaled bin sizes is therefore better suited for the data
on hand and is used in the following.

7.2 Copperphthalocyanine on Ag(100)

The time series of Copperphthalocyanine (CuPc) diffusing on Ag(100), measured at seven
different temperatures between 140 K and 222 K, are available [57]. Hence, the correspond-
ing diffusion coefficients and subsequently the activation energy in this material system
can be determined. In the following, out of the seven measurements two, namely 149 K
and 183 K, will be exemplarily treated in detail to determine the diffusion coefficients.
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Combined with the diffusion coefficients from other temperatures the Arrhenius equation
can be used to determine the activation energy of the material system. Detailed evaluation
of T = 166 K and 192 K can be found in reference [�].

For application of the presented methods it is indispensable to know the dimensions
of the detection area, i.e. of the molecule. Considering the relaxed vacuum structure
from density functional calculations, one will find that CuPc is rather flat, see Fig. 1.1 (c).
It has a quadratic footprint with an edge length, including the van der Waals radius
of the outer hydrogen atoms of Ls = Ll ≈ 14.7 Å, which agrees well with literature val-
ues [43]. Observations of free CuPc molecules and other phthalocyanines suggest that
their structure is not significantly distorted upon adsorption [39, 43, 52].

The rescaled ACFs C(t)/C(0) of the respective rectangular signals are given by the
symbols in Fig. 7.3 (a). Only times t ≤ τLs/4 were considered for fitting of the ACF to
ensure that the cross-correlation terms can be neglected. This condition is checked self-
consistently throughout the fitting process. Non-linear least square fits with the ACF
for rectangular objects [Eq. (4.1)] are marked by the solid lines and yield diffusion coef-
ficients of D = (2.5± 0.5)× 10−11 cm2/s at 149 K and D = (7.8± 0.5)× 10−11 cm2/s at
183 K. These two diffusion coefficients combined with those resulting at the other tem-
peratures in an Arrhenius plot are shown in Fig. 7.3 (b), where a least square fit with
D = D0 exp(−Ea/kBT ) yields an activation energy of Ea = 33± 20 meV and a pre-expo-
nential factor of D0 = (5.7± 1.7)× 10−10 cm2/s. Though the footprint of CuPc could also
be compared to a circle, an evaluation via ACF in the circular geometry is not carried
out, because the evaluation of simulation data in chapter 4.4 already demonstrated, that
the results can be misleading.
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Figure 7.3: (a) Rescaled ACFs (symbols)
of CuPc on Ag(100) and corresponding
fits according to Eq. (4.1) (solid lines).
Shaded areas mark times t > τLs/4. (b)
Arrhenius plot of all D values obtained
with the ACF method. The resulting ac-
tivation energy is Ea = 33± 20 meV with
D0 = (5.7± 1.7)× 10−10 cm2/s. Open
symbols were excluded in the fitting be-
cause of insufficient statistics.
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7. Application to experimental data

The residence times are associated with the widths of the rectangular peaks, see tw in
Fig. 7.1 (a). Their distribution at temperatures 149 K and 183 K is shown by the symbols
in Fig. 7.4. The exponential decays at times t ≥ τλ1,1 are fitted with the long time limit of
the rectangular RTD solution [Eq. (4.5)]. Here it is also self-consistently checked that the
condition t ≥ τλ1,1 holds true. As a side note, like discussed in chapter 4 for an quadratic
shape it is irrelevant, if the rectangular solution is used or the circular one with an appro-
priate circle of radius R̃′ ≈ 6.8 Å, following Eq. (4.7). The resulting diffusion coefficients
are D = (5.3± 1.8)× 10−11 cm2/s for 149 K and D = (4.6± 0.8)× 10−11 cm2/s for 183 K.
Using this diffusion coefficient an average minimal penetration depth of ∆ ≈ 2.2 Å is
obtained, which is of order of the lattice constant 2.9 Å [39] of the Ag(100) substrate.
As previously discussed this sets a lower limit τ∆ to the applicability of the presented
theory, but since τλ1,1 > τ∆ it does not affect the fitting. Using these values, the full so-
lution for the RTD [Eq. (4.4)] satisfactorily describes the distribution for times t ≤ τLs/4.
Fig. 7.4 (b) shows an Arrhenius plot of all determined diffusion coefficients. Fitting
yields an activation energy of Ea = 33± 21 meV and a pre-exponential factor of
D0 = (5.7± 1.8)× 10−10 cm2/s, which agrees with the results from the ACF analysis.
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Figure 7.4: (a) RTDs (symbols) of
CuPc on Ag(100). The insets de-
pict the exponential decay at t > τλ1,1

and fitting with Eq. (4.5) (dashed lines).
Solid lines in the main plot mark the
full solution [Eq. (4.4)] and dotted lines
the lower limit for fitting. Shaded
area mark times t < τ∆. (b) Arrhe-
nius plot of all D values obtained with
the RTD method. The resultig acti-
vation energy is Ea = 33± 21 meV with
D0 = (5.7± 1.8)× 10−10 cm2/s. Open
symbols were excluded in the fitting be-
cause of insufficient statistics.

Distributing the intervals between two rectangular peaks, e.g. td in Fig. 7.1, yields
the ITD, displayed by symbols in Fig. 7.5 (a) for T = 149 K and 183 K. As discussed in
chapter 4, there are two possibilities to tackle the evaluation of an ITD. Fortunately, the
statistics in the available data sets is good enough, to execute and compare a fitting in
the single-particle regime and in the exchange process regime. For evaluating the short
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time regime, which is dominated by the same particle returning to the detection area,
a circle with R̃′ ≈ 8.3 Å according to Eq. (4.8) is set as the detection area. The maxi-
mum of the distribution and its behavior right to the maximum is fitted as described in
chapter 3.3 using τmax = ∆2/(6D) and Eq. (3.17). The determined diffusion coefficients
are D = (11.4± 3.2)× 10−11 cm2/s for T = 149 K and D = (10.8± 1.9)× 10−11 cm2/s for
183 K. The distributions according to Eq. (3.13) with the resulting parameters are marked
by the solid lines in Fig. 7.5 (a). The activation energy resulting from all
diffusion coefficients determined with the ITD method is Ea = 32± 20 meV with
D0 = (8.3± 2.3)× 10−10 cm2/s. The minimal penetration depth, on average ∆ = 5.7 Å,
is larger in case of the ITD method than the RTD method, but is still comparable to
the Ag(100) lattice constant. A possible explanation in terms of penetration depth is
that the molecule has to enter the detection area only slightly for turning the signal “on”
(RTD). In contrast a quite large distance to the tip is necessary to be disregarded and
thus turning the signal “off” (ITD). However, because of the rather strong noise in the
short time regime of the ITD, these findings should not be overinterpreted.
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Figure 7.5: (a) ITDs (symbols) of CuPc
on Ag(100). Solid lines in the main plots
show fitting of the short time regime
t < τR′ with Eq. (3.13). Dashed lines
in the insets display fitting of the ex-
ponential decay with Eq. (3.16) in the
exchange process time regime t > τc.
Shaded areas mark times t < τmax. (b)
Arrhenius plot of all D values obtained
with the ITD method. The resulting
activation energy is Ea = 32± 20 meV
with D0 = (8.3± 2.3)× 10−10 cm2/s for
evaluating t < τR′ and Ea = 32± 17 meV
with D0 = (7.7± 1.5)× 10−10 cm2/s for
t > τc. Open symbols were excluded in
the fitting because of poor statistics.

To investigate the long time limit, which is dominated by exchange processes of dif-
ferent molecules, first the effective coverage θ in the gas phase has to be determined.
It is equivalent to the sum of peak widths compared to the overall measurement time
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7. Application to experimental data

θ ≡
∑

i tw,i/(tw,i + td,i). In the presented data series the effective coverage varies roughly
between θ = 0.01% and 0.1%. The number density then follows from c = θ/Ã [Eq. (2.3)].
In accordance with the findings during the evaluation of simulation data the proportion-
ality factor in Eq. (3.16) is chosen as κ = 1. Using these parameters the slope of the expo-
nential decay according to Eq. (3.16) yields D = (6.8± 1.2)× 10−11 cm2/s for T = 149 K
and D = (13.0± 1.9)× 10−11 cm2/s for 183 K, which is in good agreement with the eval-
uation of the short time regime and the results of the other methods. Here ∆ can not
be determined, because the detection area is considered as point-like in this time regime.
An Arrhenius plot of all diffusion coefficients obtained via this ITD method is shown in
Fig. 7.5 (c). It yields an activation energy of Ea = 32± 17 meV and a pre-exponential
factor of D0 = (7.7± 1.5)× 10−10 cm2/s, which matches the previous results.

The comparison of all three evaluation methods in Fig. 7.6 and Tab. 7.1 shows that
an activation energy Ea = 33 meV can independently and reliably be obtained with each
method. The high relative uncertainty ∆Ea (∆Ea/Ea ≈ 61%) is not surprising for an
evaluation of only seven temperatures. The pre-exponential factor D0 of the different
methods varies only by ±20% referring to the average D0 = 7.8× 10−10 cm2/s indicating,
that also the absolute D values are trustworthy. With a total between 300 and 1000
recorded events, see Fig. B.5 in the appendix, the data sets do not contain the minimum
of 10000 events as recommended in chapter 3.4. However, at first glance on the autocor-
relation function and distributions, see Fig. 7.3, Fig. 7.4 and Fig. 7.5, it becomes obvious
that they behave as expected. This implies that even partially weak statistics allow an
assessment, albeit the short time regimes of the RTD and ITD are quite noisy. One ex-
ception is the signal recorded at T = 187 K, where only 46 peaks can be identified, which
is too little for a meaningful interpretation and hence this temperature is only treated
under reservations and not considered in the determination of the activation energy.
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Figure 7.6: An overview of all D values determined for CuPc and PTCDA diffusing on
Ag(100) at different temperatures. The activation energy, proportional to the slope
of the linear regression, is reliably obtained, independent of the applied evaluation
method. The preexponential factor D0 varies a little, but is still a good basis for
calculating absolute diffusion coefficients.
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7.3 PTCDA on Ag(100)

For the rectangle like shaped PTCDA molecule diffusing on an Ag(100) surface time series
for overall 13 different temperatures between T = 251 K and 313 K are available [57].
Again two data sets, at T = 254 K and 304 K, are chosen to be evaluated in detail, while
the others serve to determine the activation energy with an Arrhenius plot. By means of
density functional theory the longer edge of the relaxed vacuum structure of a PTCDA
molecule is found to be 14.6 Å and the shorter one 8.9 Å, including the van der Waals radii
of the hydrogen and oxygen atoms respectively. This size agrees with values, that can be
found in the literature [39, 84]. Pertinent sources also suggest that the structure of a free
PTCDA molecule is not distorted and stays flat upon adsorption on a surface [39, 56].

The symbols in Fig. 7.7 (a) mark the rescaled autocorrelation functions
C(t)/C(0) of the signals at T = 254 K and 304 K. A least square fit with the rectangular
ACF [Eq. (4.1)], again considering only t ≤ τLs/4, yields the solid lines and diffusion co-
efficients of D = (4.7± 0.5)× 10−11 cm2/s at 254 K and D = (4.1± 0.5)× 10−11 cm2/s at
304 K. The activation energy resulting from a linear fit of all diffusion coefficients found
for PTCDA in an Arrhenius representation [Fig. 7.7 (b)] is Ea = 120± 50 meV with a
preexponential factor of D0 = (7.0± 2.8)× 10−9 cm2/s.
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bols) of PTCDA on Ag(100) and cor-
responding fits according to Eq. (4.1)
(solid lines). Shaded areas mark
times t > τLs/4. (b) Arrhenius plot
of all D values obtained with the
ACF method. The resulting activa-
tion energy is Ea = 120± 50 meV with
D0 = (7.0± 2.8)× 10−10 cm2/s. Open
symbols were excluded in the fitting be-
cause of insufficient statistics.

A distribution of the peak widths contained in the PTCDA signal at 254 K and
304 K is displayed by the symbols in Fig. 7.8 (a). The slopes of the exponential tails at
t ≥ τλ1,1 give diffusion coefficients of D = (5.3± 1.8)× 10−11 cm2/s at 254 K and
D = (7.0± 1.5)× 10−11 cm2/s at 304 K according to the rectangular RTD solution Eq. (4.5).
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7. Application to experimental data

The lower limit t ≥ τλ1,1 for this time regime is checked self-consistently throughout the
process. Due to the similarities between circular and rectangular approach a circle with
radius R̃′ = 5.8 Å can be assigned to the detection area of the PTCDA molecule, following
chapter 4.4 with Eq. (4.7). This approach will yield identical values for the diffusion coef-
ficients and minimal penetration depth. The latter is found to be ∆ = 1.9 Å on average,
which is in agreement with the lattice constant 2.9 Å of the Ag(100) surface and sets a
lower time limit τ∆ that does not interfer with the fitting process. Using these parameters
Eq. (4.4) satisfactorily accounts for the whole distribution. Evaluation of an Arrhenius plot
[Fig. 7.8 (b)] of all diffusion coefficients yields an activation energy of Ea = 120± 44 meV
and a preexponential factor of D0 = (4.5± 1.1)× 10−9 cm2/s in agreement with the result
of the ACF method.
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Figure 7.8: (a) RTDs (symbols) of
PTCDA on Ag(100). Insets depict the
exponential decay at t > τλ1,1 following
Eq. (4.5) (dashed lines). Solid lines mark
the full solution [Eq. (4.4)] and dotted
lines the lower limit for fitting. Shaded
areas mark times t < τ∆. (b) Arrhe-
nius plot of all D values obtained with
the RTD method. The resulting activa-
tion energy is Ea = 121± 44 meV with
D0 = (4.5± 1.1)× 10−9 cm2/s. Open
symbols were excluded in the fitting be-
cause of insufficient statistics.

The interpeak time distribution of PTCDA diffusing on Ag(100) at T = 254 K and
304 K is shown by the symbols in Fig. 7.9(a). The effective coverage of the surface in the
vicinity of the recording tip determined from the time series ranges between θ = 0.04%
and 4%. Transformed into the number density it can be used to determine the diffusion
coefficient from the slope of the exponential decay in the exchange process regime for
t� τc given in Eq. (3.16). With κ = 1, the results are D = (6.3± 1.9)× 10−11 cm2/s at
T = 254 K and D = (7.7± 1.2)× 10−11 cm2/s at T = 304 K. The activation energy is
Ea = 120± 41 meV in case of the ITD evaluation with an preexponential factor of
D0 = (9.9± 2.1)× 10−9 cm2/s. These values agree well with the previous findings.
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Lacking an exact solution for the short time regime of the ITD with a rectangular detec-
tion area, the circular solution Eq. (3.14) with an effective radius of R̃′ = 6.4 Å according
to Eq. (4.8) is used for an assessment in the time regime t� τLs . The latter condition
is dynamically adjusted during the process. With this approach diffusion coefficients of
D = (4.1± 0.8)× 10−11 cm2/s at 254 K and D = (6.8± 0.9)× 10−11 cm2/s at 304 K, as
well as an average mininmal penetration depth of ∆ = 5.3 Å are obtained. Note that the
short time regime is again quite noisy. The overall results including an activation energy
of Ea = 120± 48 meV and the preexponential factor of D0 = (9.7± 2.9)× 10−9 cm2/s are
in good agreement with the previous findings.
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Figure 7.9: (a) ITDs (symbols) of
PTCDA on Ag(100). Solid lines in
the main plots show fitting of the short
time regime t < τR′′ with Eq. (3.13).
Dashed lines in the insets display fit-
ting of the exponential decay with
Eq. (3.16) in the exchange process time
regime t > τc. Shaded areas mark
times t < τmax. (b) Arrhenius plot
of all D values obtained with the
ITD method. The resulting activa-
tion energy is Ea = 120± 48 meV with
D0 = (9.7± 2.9)× 10−9 cm2/s for eval-
uating t < τR′′ and Ea = 120± 41 meV
with D0 = (9.9± 2.1)× 10−9 cm2/s for
t > τc. Open symbols were excluded in
the fitting because of poor statistics.

Again it was demonstrated, that all three methods can be used independently to deter-
mine the activation energy of about Ea = 120 meV, see Fig. 7.6 and Tab. 7.1. The relative
error of ∆Ea/Ea = 38% is smaller than for CuPc, because 13 instead of 7 temperatures
are available. The variation in the preexponential factor of over ±30% referring to the
average D0 = 7.8× 10−9 cm2/s is larger than for the evaluation of CuPc. The RTD values
differ the strongest, which is caused by the small R̃/a ratio as explained in the discussion
(Chapter 7.4).

The RTDs of PTCDA are the most noise afflicted distribution in this context. This is
surprising because in case of PTCDA more events have been recorded per time series than

64



7. Application to experimental data

for CuPc. All time series have recorded about 103 and more peaks. Several offer even
more than the recommended minimum of 104 events, see Fig. B.5 in the appendix. An
exception is the measurement at T=296 K, where only 135 events were reported and which
is therefore treated under reservations and not included when determining the activation
energy. Consideration of the mean residence times , see Fig. B.6 in the appendix, offers a
possible explanation to this apparent contradiction. In a certain temperature range, the
typical residence times are shorter for the smaller PTCDA molecule than for CuPc and
therefore a higher experimental time resolution is necessary to resolve the short peaks
sufficiently. However, the time resolution is limited and thus the error when resolving the
shortest peaks of diffusing PTCDA in the respective temperature range is higher than
for CuPc. Furthermore, the experimental equipment is operated close to the maximal
possible recording frequency [85]. The higher noise in case of the PTCDA therefore seems
to be caused by experimental limitations.

The reader might also notice the comparably large differences in the diffusion coef-
ficients between adjacent temperatures, e.g. T = 301 K to 305 K. As a matter of fact,
these measurements have not been performed subsequently, but over a long period of time
interrupted by other measurements, see Tab. B.1 in the appendix. The results matching
each other straightaway is therefore rather a sign of the experimental method’s robustness
and reproducibility.

CuPc

D(149K)/10−11cm2/s D(183K)/10−11cm2/s D0/10
−9cm2/s Ea/meV

ACF 2.5± 0.5 7.8± 0.5 5.7± 1.7 33± 20

RTD 5.3± 1.8 4.6± 0.8 5.7± 1.8 33± 21

ITD (front) 11.4± 3.2 10.8± 1.9 8.3± 2.3 32± 20

ITD (tail) 6.8± 1.2 13.0± 1.9 7.7± 1.5 32± 17

PTCDA

D(254K)/10−11cm2/s D(304K)/10−11cm2/s D0/10
−10cm2/s Ea/meV

ACF 4.7± 0.5 4.1± 0.5 7.0± 2.8 120± 50

RTD 5.3± 1.8 7.0± 1.5 4.5± 1.1 121± 44

ITD (front) 4.1± 0.8 6.8± 0.9 9.7± 2.9 120± 48

ITD (tail) 6.3± 1.9 7.7± 1.2 9.9± 2.1 120± 41

Table 7.1: Overview of translational diffusion coefficients, pre-exponential factors and the
respective activation energies determined from STM signal fluctuation caused by CuPc
and PTCDA diffusing on Ag(100).

7.4 Discussion of the results

Throughout applying the methods to simulation data in chapters 3 and 4 premises have
been stated to assure a meaningful evaluation. These will be revised in the following with
respect to the experimental data. A minimum number of recorded events was suggested
in chapter 3.4, because it was anticipated that other sources of disturbance, would affect
the distribution of residence times and interpeak intervals, as well as the autocorrelation
function in an experiment. Though this recommendation still holds true, the data on
hand shows that even much less events are sufficient for an evaluation, if the experiment
is conducted with care.

65



It was also discussed, that a molecule size of R̃/a ≥ 3 sets a lower limit to the ap-
plicability of the continuum theory underlying the expressions Eqs. (3.9), (3.13) and
(4.4). CuPc with R′ = R̃′/a ≈ 8.0/2.9 ≈ 2.8 (R′′R̃′′/a ≈ 8.2/2.9 ≈ 2.8) and PTCDA with
R′ = R̃′/a ≈ 5.8/2.9 = 2.0 (R′′ = R̃′′/a ≈ 6.4/2.9 ≈ 2.2) on Ag(100) both, albeit within a
justifiable distance, fall below this boundary. Therefore, is has to be clear in one’s mind,
that the absolute values of D tend to be underestimated in case of the RTD method,
compare Fig. 3.8 (c). For R′ = 2 (PTCDA) they are presumably off by 35% and, indeed,
D0 values obtained from PTCDA diffusing on Ag(100) with the RTD method differ by
40% from the average value, whereas they blend in with the other values for diffusing
CuPc. Evaluation of the short time regime in the ITD is also, though not as strongly,
affected by this difficulty and leads to slightly overestimated values, see Fig. 3.8 (c). As a
result, D0 values obtained with this ITD method tend to be the largest, compare Fig. 7.6
and Tab. 7.1.

Another aspect entering the treatment of experimental data is the time resolution of
the signal. While handling simulation data, the time resolution was, if at all, limited
by the machine accuracy. Real hardware, however, is limited in its capacity and records
the signal in discrete time steps. All three methods presented here require a certain
recording frequency. For using the RTD method only the exponential decay at t ≥ τR
or t ≥ τλ1,1 is necessary for evaluation. Hence, peaks with corresponding widths have to
be resolved in detail. The ITD method at first glance seems to be even less demanding,
because it allows an analysis of the long time limit for times t > τc with τc > τR at typical
coverages. However, to determine the interpeak intervals the peaks separating them have
to be identified as well and therefore the ITD and RTD method are comparable in their
required time resolution. Most problematic in this context is the ACF method, which
calls small time shifts of t� τR or t� τLs in the correlation to exclude the influence of
cross-correlations. The available time series has a time resolution of 4µs generally fulfilling
all of these demands for the given materials. But, as already addressed in chapter 7.3,
it might lead to uncertainties for very short peaks and thus noisy short time regimes
in RTD and ITD. Compared to related methods, however, the STM is best suited for
this type of measurement and should usually comply with the requirements, because of
its high recording frequency of 100 kHz [86] and beyond. Evaluation of AFM signals, for
instance, can be more challenging, because the recording frequency commonly is ten times
smaller [87].

If one of the molecules diffuses anisotropically on the Ag(100) surface cannot be an-
swered conclusively by these recordings of a fixed point like tip, as has been pointed
out in chapter 6. Rotational diffusion, however, should be identifiable, albeit only for
the rectangular shaped PTCDA. CuPc is nearly quadratic and rotational diffusion would
therefore cause no deviation from the ACF and distributions known for pure transla-
tional movement, compare chapter 5.4. The short time regime of the ITD of PTCDA
at T = 313 K indeed deviates from the curve predicted for purely translational diffusion,
see Fig. 7.10 (c), which could be interpreted as additional shoulder indicating rotational
diffusion. Also the ACF, Fig. 7.10 (a), is not as smooth as expected in this case. Oppos-
ing these hints on rotational diffusion of the PTCDA molecule, there is strong evidence
against it. The alteration in the ACF has a rather polygonal shape and does not resemble
the kink caused by rotational diffusion described in chapter 5.1. Furthermore, rotational
diffusion of the PTCDA molecule on a surface, besides rotating ±π/2 from time to time
in order to form a closed layer [42], was not mentioned in the literature, so far. The fact
disagreeing most with the assumption of rotational diffusion is the curve of the RTD,
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7. Application to experimental data

which behaves just as expected for translational diffusion, even though is it supposed to
be the most sensitive for identification of these two types of motion, compare chapter 5.4.
Since the peculiarities only appear for the methods including the molecule’s motion out-
side of the detection area, the explanation is reduced to some obstacle on its path that
hindered free translational diffusion, like nucleation on surface defects and with other
diffusing molecules [88] or capture by a neighboring island [14]. Since it was the last in a
series of measurements, see Tab. B.1 in the appendix, and no signs of rotational diffusion
could be found for the other temperatures, it is likely that the STM tip either drifted
into a non-favorable area of the surface during the continuous heating or the surface itself
deformed due to stress.
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Figure 7.10: (a) ACF, (b) RTD and (c) ITD of PTCDA diffusing on Ag(100) at 313 K
(symbols). ACF and ITD deviate slightly from the curves expected for translational
diffusion only [Eq. (4.1) and Eq. (3.13)], the RTD on the contrary meets the predic-
tions [Eq. (4.4)] (solid lines). Parameters correspond to the evaluation in chapter 7.3.

The evaluation of PTCDA and CuPc diffusing on Ag(100) with the RTD method was
previously reported in reference [39] and the treatment of CuPc by means of the ACF,
ITD and RTD methods was presented in reference [�]. The partially deviating results
will be addressed in the following. The higher activation energy for CuPc on Ag(100) in
reference [39], was already explained in reference [�], naming a strong weighting of the
exposed data point for T = 222 K as the reason for the difference. This weighting by the
error in D during determination of the activation energy also explains the discrepancy in
Ea of PTCDA on Ag(100). In this work the the errors were not considered in the linear
regression for the activation energy, because they all are of comparable size for a given
method.

The small deviations in D0 are caused by different definitions of the molecule size. In
reference [�] a circular detection area was assigned to the CuPc molecule with its gyration
radius. This is legitimate for a nearly circular molecule like CuPc, but with the recent
knowledge on how rectangular molecules should be treated, compare chapter 4.4 and
reference [�], R′ from Eq. (4.7) has to be chosen as the appropriate radius. In reference [39]
the rectangular solution was used, but slightly different edge lengths were assigned to the
rectangular footprint of the molecules. Without own measurements it is hard to say which
one is correct here, because of the different values available in literature, e.g. for the van
der Waals radius of hydrogen between 1.1 Å and 1.2 Å [89], and the fact that the molecule
might adjust itself a little to the surface. Anyway, the error due to this minimal differences
in the detection area’s dimension should be negligible.
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7.5 Comparison of the methods

Of the presented methods each has its strengths and weaknesses. These will be filed in
the following to find the optimal evaluation method for a given measurement. The list
contains topics specific for STM measurements, which possibly do not apply to other
measurement methods. Those can yet entail their own problems.

All three methods have in common that they require a rectangular “on”-“off” signal,
which is extracted from a continuous signal by setting a threshold current. Afterward,
peak widths and interpeak intervals can be identified simultaneously. Note that any
method of determining a threshold is associated with some uncertainty. For the ITD,
this is no problem in practice, because the the interpeak intervals are large compared to
the peak widths. For the RTD, the vagueness of the threshold is a more severe problem.
Because molecules diffuse slowly into the detection area, the peaks in the original tunneling
current signal have rather flat flanks. As a result, the peak widths change more sensitively
with the threshold than the interpeak intervals, compare Fig. B.7 in the appendix.

An advantage of the RTD is that the diffusion coefficient can be determined solely by
analyzing the exponential tail for large residence times. One should note, however, that
it may be challenging to obtain a good statistics in this time regime, if the molecules are
highly mobile or small. In this case, the peaks are narrow and it could be difficult to
resolve them accurately. Another problem is that the RTD can give misleading absolute
values of the diffusion coefficient, when the radius assigned to the detection area is smaller
than three times the jump size of the molecule on the substrate. The determination of the
activation energy is not affected by this problem. In the RTD method, the interaction with
the STM tip can influence the residence times and in this case one would not determine
the free diffusion of the molecules on the substrate. By systematically changing the bias
voltage, a possible influence can, however, be reduced to a minimum [39]. A strength of
the RTD, which should not be underestimated, is that it is related to a single-particle
problem and no approximations enter the treatment.

The ITD method has the advantage, that tip-molecule interaction can be expected
to have, if at all, a marginal influence on the interpeak times. However, it is prone to
be disturbed on its path outside the detection area, e.g. by surface defects. For small
interpeak intervals, the ITD is essentially also related to to a single-particle problem, with
the same restrictions for the molecules size as the RTD. Furthermore, an exact solution
in this time regime is only available for circular shaped molecules. For large interpeak
intervals, the diffusion coefficient can be determined based on an estimate for exchange
processes, where one molecule after leaving the detection area is followed by a different
molecule entering it.

The autocorrelation function of a rectangular signal can be readily calculated by a fast
Fourier transformation. If only a table of toggling times between “on” and “off” should
be available, it can be calculated as described in appendix B.1, with only minor setbacks
in calculation time. Furthermore, it is unlike the RTD and ITD method immune to the
problem of exceeding a certain molecule size compared to the jump length to be applicable.
A disadvantage is that only the short time regime is governed by single-particle diffusion,
while an accurate theoretical description of the crossover to the long-time regime, governed
by the collective particle diffusion, requires a careful consideration of the mutual exclusion
of the molecules (and possibly other interaction effects). Another drawback is that the
determination of the ACF includes time intervals, where molecules are under the tip, and
possible interactions with the tip can thus have an influence on the diffusion properties.
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7. Application to experimental data

The crucial strengths and weaknesses of the methods are summarized in Tab. 7.2 to
quickly find an evaluation method suited for a given data set.

Characteristics ACF RTD ITD

Signal processing ⊕ Convenient 	 Peak widths ⊕ Negligible influence of Ic
by FFT affected by Ic on interpeak intervals

Tip influence 	 Possible 	 Possible ⊕ Less likely

Assumptions 	 Non-interacting ⊕ None ⊕ Short time regime: None

in theory particles 	 Long time regime:

Non-interacting particles

Minimal size ⊕ None 	 R ≥ 3 	 R ≥ 3

Simultaneous 	 Not possible ⊕ Possible ⊕ Possible

determination of Dϕ

Table 7.2: Strengths and weaknesses of the three methods for determining D
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Chapter 8

Closing remarks, summary and
outlook

In this work various methods are developed to characterize diffusive motion of molecules
on surfaces by analyzing fluctuations in the signal of a locally fixed point-like probe. The
methods enable the determination of absolute translational as well as rotational diffusion
coefficients of molecules taking into account their shape. In case of anisotropic diffusion
the diffusion tensor and its principal axes can be identified. The recording of time series
stands out amongst other measurement techniques: It has a high time resolution, since
the tip does not have to move in order to scan a certain area. It is universally applicable
and hardly limited in the investigated materials. And it is minimally invasive, because it
neither damages the sample nor does it significantly influence the adsorbate’s motion.

The evaluation methods are based on the autocorrelation function (ACF) of the
recorded signal, the distribution of peak widths (residence time distribution - RTD) and
the distribution of interpeak intervals (interpeak time distribution - ITD). Each of them
contains at least one characteristic time regime, which allows determination of the dif-
fusion coefficient. In the short time regimes of the ACF and ITD a non-linear fitting
procedure is applied. The long time regimes of the RTD and ITD are evaluated with
a linear regression, due to their exponential decay. Each of these three methods has its
own strengths and weaknesses and the appropriate evaluation method depends on the
situation. For instance the RTD is simple in evaluation, but requires a very good time
resolution to sufficiently resolve short peaks. Therefore, the long time regime of the ITD
might be a better choice in case of high mobilities. This way, the methods, which all
operate on the same recorded signal, complement each other.

Summary

In chapter 2 and 4 of this work, respective formulas are given for the ACF, RTD and ITD,
which was newly developed in this work, to extract translational diffusion coefficients of
circular adsorbates. To include rectangular adsorbates in the considerations corresponding
adjustments to the theory are made. Though the functional behavior in general does not
differ from the solutions regarding circular adsorbates, it is found that the adsorbate’s
shape has to be correctly specified in order to obtain non-misleading diffusion coefficients.
Here, kinetic Monte Carlo simulation data, as described in chapter 2, were used to test
the methods and suggest prerequisites for experimental measurements like a minimum
number of recorded peaks.
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The evaluation methods are successfully applied to experimental data recorded with
a locally fixed STM tip [57] in chapter 7 of this work. With each evaluation method
individually it is possible to determine consistent translational diffusion coefficients of
copperphthalocyanine and PTCDA diffusing on Ag(100) over a wide temperature range.

Rectangular adsorbates cause further variations in the signal, if they perform rota-
tional moves in addition to the translational displacements. To include rotational degrees
of freedom in the theoretical treatment, the case of uncoupled translational and rota-
tional diffusion is considered in chapter 5. If the rate of translational and rotational
movements is comparable or rotation is dominant, the RTD and ITD separate into two
time regimes, where one is governed by rotation and the other by translation. Based on
a novel theoretical description of the rotational behavior in the rotation dominated time
regime absolute values for rotational diffusion coefficients can be determined. Simultane-
ously, the translation governed time regime can be used for determination of translational
diffusion coefficient with the previously described methods.

In chapter 6 further means are developed to quantify anisotropic diffusion on the sur-
face. Along with the development of these methods new experimental setups for cor-
responding measurements are suggested. Since directional information of the motion is
required, a point like probe is no longer sufficient. To resolve this problem the RTD of
a linearly extended probe and the cross correlation of signals recorded at two separated
measurement points are introduced. For these two setups theoretical descriptions were
derived, which allow the determination of the diffusion tensor and its principal axis as
was tested on kinetic Monte Carlo simulation data of a corresponding measurement setup.
From a practical point of view, the cross-correlation technique turns out as more flexible.
It is, however, difficult to implement, because the probing sites have to be very close. For
use in an experiment, hence, a continuously recording point-like probe rotating on a cir-
cular path is suggested. Simulations with tips moving accordingly and subsequent coarse
graining of the recorded signal verified that arbitrary individual measurement points on
the circle can be emulated this way. Since such experiments were not executed yet, the
experimental practicability is discussed.

Outlook

The various methods developed in this work are not limited to adsorbates diffusing on
a surface on the atomic scale. In principle, the only requirements for their applicability
are that the recording probe has to be small compared to the investigated object and
that is has to distinguish between “on” and “off” states. Therefore, with an appropriate
sensor also other large diffusing objects should be amenable to the general treatment, as,
for instance, graphene flakes [90] or compactly diffusing adatom clusters [14]. Also, the
evaluation methods should be applicable to molecules diffusing inside a two-dimensional
membrane [91]. The principles of ACF and RTD are, with modifications, transferable
to three-dimensions. Noteworthy in this context is the single-molecule fluorescence spec-
troscopy [92, 93, 94, 95], which is also based on fluctuations in the recorded signal. Be-
cause of the larger focal volume, the rotation can probably not be resolved here, but the
principles for investigating anisotropic motion, may be adjustable to quantify anisotropic
diffusion in liquid environments.

For application of the presented evaluation methods the detailed shape of the measured
signal may be irrelevant. However, the peak shape certainly contains further information
on probe-sample interactions. Sumetskii et al. [38, 75] pursued an approach to determine
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8. Closing remarks, summary and outlook

the autocorrelation function of an STM tip locally fixed above a surface, which contained
detailed information on the adatoms as well as the tunneling geometry. This idea could
be picked up for analogous considerations with molecules. These have elaborate electronic
structures and motion patterns, that might be elucidated this way. Furthermore the STM
tip could be functionalized with either different surface materials or with single molecules
to probe their interaction with the diffusing adsorbates.

So far, some of the evaluation methods were applied exclusively to simulation data.
This calls for experimentalists to record corresponding time series, e.g. for circular-shaped
or rotating rectangular molecules. The novel approach of letting tips move on circular
trajectory, while continuously recording the signal, as suggested to simulate close indi-
vidual measurement points, is a challenging task. For applicability of the corresponding
evaluation method, it is crucial to verify, if the necessary coarse graining is possible for
noise affected signals. The convenient characterization of several diffusion properties by
evaluation of a single time series recorded with available measurement hardware should
encourage the effort.
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Appendix A

Details on derivations

The first part of the appendix contains selected derivations of formulas, that would have
hindered the flow of reading in the main text.

A.1 Autocorrelation function

Given a locally fixed probe site on a two-dimensional surface of size A and N objects with
lateral extent Ã diffusing on this surface, the autocorrelation function is generally defined
by the following relation

C(t) = 〈S (0)S (t)〉 . (A.1)

The overall signal S is given as the sum of the contributions sµ(t) ≡ sµ[rµ(t)] of each

object to the signal S(t) =
∑N

µ=1 sµ(t). This allows the decomposition

C(t) =

〈
N∑
µ=1

sµ (0)
N∑
µ=1

sµ (t)

〉
=

N∑
µ=1

〈sµ (0) sµ (t)〉+
N∑
µ=1

N−1∑
ν = 1

ν 6= µ

〈sµ (0) sν (t)〉 . (A.2)

Assuming independent objects the latter expectaion values seperates into
∑

µ6=ν 〈sµ〉 〈sν〉.
Furthermore, the objects are supposed to be indistinguishable, so the sums break down
to

C(t) = N 〈s (0) s (t)〉+N(N − 1) 〈s〉2 . (A.3)

In the evaluation of measurement data only times smaller than τR will be considered,
where τR is the typical time for the object to cross the probe site completely. This way
it can be assured, that the same object is considered in the vicinity of the probe site
during this time. Under these circumstances the term containing the cross-correlation
between two different objects becomes small compared to the dominant self correlator
and Eq. (A.3) reads

C(t) = N 〈s (0) s (t)〉 . (A.4)

For the cross-correlation term a rough treatment can be given by considering the
expectation value Ã/A of a single object’s rectangular signal. In this case the cross-
correlation term amounts to add (cÃ)2, where c = N/A is the number density of objects
on the surface, to Eq. (3.3).

The remaining self-correlator 〈s (0) s (t)〉 in Eq. (A.4) can be calculated from the prob-
ability for an object at position r1 at time t to contribute to the signal, if it was previously
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giving a signal in position r0 at time t = 0:

〈s (0) s (t)〉 = A−1

∫
dr0

∫
dr1s(r1)p(r1, t|r0)s(r0) . (A.5)

The probability to relocate from r1 to r0 in time t is given by the two-dimensional diffusion
propagator [18]

p (r1, t|r0) =
1

4πDt
exp

(
−(r1 − r0)2

4Dt

)
. (A.6)

Combination of Eqs. (A.4)-(A.6), yields the autocorrelation function in Eq. (3.3).

A.2 Modified autocorrelation function including ro-

tational diffusion

When including rotational diffusion changing the object’s orientation ϕ in the consider-
ation of the autocorrelation function, as described in chapter 5.1, the general expression
[Eq. (3.3)] is expanded to

C (t) = c

∫ 2π

0

dϕ1 (A.7)∫ Ll
2

−Ll
2

dx0

∫ Ls
2

−Ls
2

dy0

∫ Ll
2

−Ll
2

dX1

∫ Ls
2

−Ls
2

dY1 p (x1 (X1, Y1) , y1 (X1, Y1) , ϕ1, t|x0, y0, ϕ0) .

Since the translation and rotation are supposed to be uncoupled in this model, the diffu-
sion propagator

p (x1, y1, ϕ1, t|x0, y0, ϕ0) =
exp

(
− (x1−x0)2+(y1−y0)2

4Dt

)
4πDt

exp
(
− ϕ2

4Dϕt

)
√

4πDϕt
(A.8)

is simply the product of the free solutions of the two-dimensional translational diffu-
sion equation ∂p/∂t = D∆p and the diffusion equation for one-dimensional azimuthal
rotational diffusion ∂p/∂t = D∂2p/∂ϕ2. The consideration of the angular displacement
between initial and target orientation calls for an additional integration in ϕ. The angular
difference is, without loss of generality, given in reference to the starting orientation re-
sulting in a prefactor of 2π. Also, each of the target orientations is equally probable, but
only one will be taken, which calls for a normalization by 1/2π canceling out the other
prefactor. The coordinate transformation

r1 =

(
x1

y1

)
=

(
X1

|X1|

√
X2

1 + Y 2
1 cos

[
arctan

(
Y
X

)
+ ϕ

]
X1

|X1|

√
X2

1 + Y 2
1 sin

[
arctan

(
Y
X

)
+ ϕ

]) . (A.9)

is necessary to switch between initial and target detection area coordinates.
Eq. (A.7) can not be solved analytically and it can not be simplified, because of the non-

trivial ϕ dependencies. Hence, the full five-fold integral has to be evaluated numerically.
This is furhtermore impeded by the oscillatory terms in the integrand, which calls for a
careful choice of the supporting points.
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A. Details on derivations

A.3 Diffusion propagator for circular absorbing bound-

aries

The propagator for a circular stripe with absorbing boundaries at ra and rc (ra < r < rc)
and initial probability distribution

p0 (r) = p0 (r) =
1

2πr
δ (r − rb) , ra < rb < rc , (A.10)

is derived in the following as previously reported in reference [�]. The limit ra → 0 will
yield the RTD propagator and rc →∞ the ITD propagator.

In order to do so the symmetry of the circular geometry asks for solving the radial
diffusion equation using p(r, t) = p(r, t)

∂p (r, t)

∂t
= D

(
∂2

∂r2
+

1

r

∂

∂r

)
p (r, t) . (A.11)

With the product ansatz p(r, t) = f(r)g(t)/2π equation (A.11) separates into a spatial and
a time dependent part. The time dependency yields g(t) = exp(−λ2Dt), where λ2 > 0
are the eigenvalues of the radial Laplace operator(

∂2

∂r2
+

1

r

∂

∂r

)
fn (r) = −λ2

nfn (r) . (A.12)

Equation (A.12) is the Bessel differential equation [96], which is solved by both the zeroth-
order Bessel functions of first J0(.) and second kind Y0(.), so that the eigenfunctions can
be given as their linear combination fn(r) = AnJ0(λnr) + BnY0(λnr). The absorbing
boundary requires the spatial function to vanish for all times at the respective radii
fn(ra) = fn(rc) = 0, resulting in

J0 (λnra)Y0 (λnrc)− J0 (λnrc)Y0 (λnra) = 0 , (A.13)

as the determination equation for the λn, with n = 1, 2, ... (0 < λ1 < λ2 < ...). After
defining

W (x, y) = J0 (x)Y0 (y)− J0 (y)Y0 (x) (A.14)

the solution becomes

p (r, t) =
1

2π

∞∑
n=1

CnW0 (λnr, λnra) exp
(
−λ2

nDt
)
, (A.15)

with the boundary condition W0(λnra, λnrc) = 0. Because the Laplacian is negative
definite [97], the eigenvalues λ2

n are positive, which guarantees linear independent eigen-
functions [74]. This can be employed via∫ rc

ra

dr rW0 (λmr, λmra)W0 (λnr, λnra) = δm,n

∫ rc

ra

dr rW 2
0 (λnr, λnra) (A.16)

to determine the expansion coefficients Cn from the initial condition in Eq. (A.10)

Cn =

∫ rc
ra

dr rW0 (λnr, λnra) p0 (r)∫ rc
ra

dr rW 2
0 (λnr, λnra)

=
W0 (λnrb, λnra)∫ rc

ra
dr rW 2

0 (λnr, λnra)
. (A.17)
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The result for p(r, t) for the general situation therefore is

p(r, t) =
∞∑
n=1

W0 (λnrb, λnra)W0 (λnr, λnra)

2π
∫ rc
ra

dr rW 2
0 (λnr, λnra)

exp
(
−λ2

nDt
)
. (A.18)

The specialized propagator in Eq. (3.8) used for the RTD in chapter 3.2 is obtained
by letting ra → 0, which calls for some adjustments on the derivation. First, only one
boundary condition f(rc) = 0 has to be taken into account. Second, the Bessel func-
tions of second kind cease to apply, because their logrithmic singularity [74] at the origin
eliminates them from the space of functions, where the radial Laplacian is Hermitian.
The eigenfunctions thus are given by fn(r) = AnJ0(λnr), where the λn are determined by
J0(λnrc) = 0. Eq. (A.15) becomes

p (r, t) =
1

2π

∞∑
n=1

AnJ0 (λnr) exp
(
−λ2

nDt
)
, (A.19)

and the An are again determined by the initial condition, corresponding to an expansion
of p0(r) [Eq. (A.10)] into a Fourier-Bessel series

An =

∫ c
0

dr rJ0 (λnr) p0 (r)∫ rc
0

dr rJ2
0 (λnr)

=
2J0 (λnrb)

r2
cJ

2
1 (λnrc)

. (A.20)

This yields

p (r, t) =
1

πr2
c

∞∑
n=1

J0 (λnr) J0 (λnrb)

J2
1 (λnrc)

exp
(
−λ2

nDt
)
. (A.21)

Eq. (3.8) follows by setting rc = R, rb = R − ∆R and λn = χn/R, where χn is the n-th
root of the Bessel function of first kind J0(.).

The limit rc →∞ yields the propagator in Eq. (3.12) used for the ITD in chapter 3.3.
Again the derivation is slightly different in this case. The spectrum of eigenvalues deter-
mined by Eq. (A.13) becomes continuous. Analogous to the change of a Fourier series to
a Fourier integral, the Weber transform [98]

Q (λ) =
1

r2
a

∫ ∞
ra

dr rW0 (λr, λra) q (r) , (A.22)

of a function q(r) along with its back-transformation

q (r) = r2
a

∫ ∞
0

dλ λ
W0 (λr, λra)

J2
0 (λra) + Y 2

0 (λra)
Q (λ) (A.23)

can be considered. Accordingly, Eq. (A.15) becomes

p (r, t) =
1

2π

∫ ∞
0

dλC (λ)W0 (λr, λra) exp
(
−λ2Dt

)
, (A.24)

where

C (λ) =

∫ ∞
ra

dr r
λW0 (λr, λra) p0 (r)

J2
0 (λra) + Y 2

0 (λra)
=

λW0 (λrb, λra)

J2
0 (λra) + Y 2

0 (λra)
. (A.25)

This yields

p (r, t) =

∫ ∞
0

dλ

2π
λ
λW0 (λr, λra)W0 (λrb, λra)

J2
0 (λra) + Y 2

0 (λra)
exp

(
−λ2Dt

)
. (A.26)

Eq. (3.12) follows by setting ra = R, rb = R + ∆R and λ = χ/R
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A. Details on derivations

A.4 Free translational diffusion propagator with dif-

fusion tensor

The free diffusion propagator for anisotropic diffusion in d dimensions then reads [77]

p (r, t|r′, t′) =
(2π)−d/2√

(2 (t− t′))d detD
exp

(
−1

2

1

2 (t− t′)
(r− r′)

T
D−1 (r− r′)

)
, (A.27)

where D is the diffusion tensor. In its principal axis system it has the form,

D =

(
Dx 0

0 Dy

)
, (A.28)

where Dx and Dy are the eigenvalues along the respective direction of this axis system.
In a coordinate system aligned to the the principal axis system the propagator becomes

p (r, t|r′, 0) =
1

4π
√
DxDyt

exp

(
−Dy (r1 − r′1)2 +Dx (r2 − r′2)2

4DxDyt

)
, (A.29)

which transitions into Eq. (A.6) for Dx = Dy.

A.5 One-dimensional residence time distribution

In case of one-dimensional diffusion the detection area is reduced to a detection line. As a
result, obtaining the residence time distribution calls for solving the one-dimensional diffu-
sion equation ∂p/∂t = −D∂2p/∂x2 with two absorbing boundaries
p(x = 0, t) = p(x = L, t) = 0 at the beginning and end of the detection line.

p (x, t) =
∞∑
n=0

cn sin
(nπx
L

)
exp

[
−D

(nπ
L

)2

t

]
. (A.30)

The coefficients cn are defined by the initial distribution, which is, split equally, positioned
∆ in front of the absorbing boundaries p(x, t = 0) = 1/2[δ(x−∆) + δ(x− (L−∆))]

cn =
2

L

∫ L

0

dx p(x, 0) sin
(nπx
L

)
=

1

L
[1− (−1)n] sin

(
nπ∆

L

)
. (A.31)

Only coefficients with odd n (cn = 2/L sin((2n+ 1)π∆/L)) will contribute to the sum.
With ν = 2n+ 1 the diffusion propagator then reads

p (x, t) =
∞∑
n=0

2

L
sin

(
νπ∆

L

)
sin
(νπx
L

)
exp

[
−D

(νπ
L

)2

t

]
. (A.32)

Analogously to the two-dimensional considerations, the residence time distribution
follows from

ψ (t) = −∂t
∫ L

0

dx p (x, t) =
∞∑
n=0

4Dq2
n

νπ
sin (qn∆) exp

(
−Dq2

nt
)

(A.33)

79



introducing qn = νπ/L.
In case of rotational diffusion (D → Dϕ) the variable x is equivalent to the angular

displacement and ∆ = ∆ϕ corresponds to the angular distance of the initial distribution to
the absorbing boundary. The length of the detection line L equals the maximum angular
interval φ inside the rectangular detection area depending on the distance r from the
rotation center, compare Fig. 5.1(c). Alternatively, ψ(t) also can be expressed in terms of
arcs lengths lr rather than angles by replacing φ = lr/r, as done in Eq. (5.4) of chapter 5.2.

A.6 Derivation of approximations

Throughout this work time regimes have been identified within the ACF, RTD and ITD
in the respective setups. Within these time regimes the functional dependence is usually
reduced to an exponential or power law behavior, which allows for a much easier han-
dling. In this chapter some explanation is given, how these time regimes can be derived
analytically from the respective full solution.

A.6.1 Autocorrelation function for circular objects

The autocorrelation function for t → 0 gives the expectation value of the signal, or
physically the probability, that the probe site is covered, which is C(0) = cÃ. This
relation, however, can also be derived mathematically from the full ACF given in Eq. (3.7).
If t � τR the argument of the included Bessel function becomes large, therefore the
approximation for large arguments I0(z) → ez/

√
2πz for |z| → ∞ [74] is legitimate.

After some expansions Eq. (3.7) reads

C(t) ∼ 4πc

4Dt

∫ R

0

dr1 r1

∫ R

0

dr0 r0

√
4πDt√
4πDt

e−
r20+r21

4Dt

√
4Dt

4πr0r1

e−
2r0r1
4Dt

∼ 2πc

∫ R

0

dr1

√
r1

∫ R

0

dr0

√
r0

e−
(r0−r1)2

4Dt

√
4πDt

 . (A.34)

The square parenthesis contain a Gaussian distribution, which becomes the Dirac Delta
function δ(r0 − r1) for t→ 0. The integral is therefore reduced to 2πc

∫ R
0

dr0 r0 = cπR2.

After the substitution ρi = ri/
√

4Dt with i = 0, 1 the ACF for circular objects reads

C(t) ∝
∫ ρmax

0

dρ0

∫ ρmax

0

dρ1ρ1ρ0 exp
(
−
(
ρ2

1 + ρ2
0

))
I0 (2ρ1ρ0) . (A.35)

ρmax ≡ R/
√

4Dt =
√
τR/4t is the upper integral boundary after substitution. For times

t � τR all ρi � 1. Under these conditions the exponential function (ex ∼ 1 for x → 0)
as well as the modified Bessel function (I0(z) ∼ 1 for |z| → 0 [74]) become 1 and the
integrals are reduced to

∫ ρmax

0
dρ0 ρ0

∫ ρmax

0
dρ1ρ1 To estimate the general behavior of the

function, note that the biggest contribution to the integral for a given ρ0 is for ρ1 = 1, so
that C(t) ∼

∫ ρmax

0
dρ ρ = ρ2

max/2 = R2/4Dt indicates the power law ∝ t−1.

A.6.2 Autocorrelation function for rectangular objects

In the limit t→ 0 the ratios τLs/t < τLl
/t contained in the full ACF for rectangular objects

[Eq. (4.1)] become very large, so the error functions tend to one and exp(−τLs,l/4t)→ 0.
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A. Details on derivations

Simplification yields

C(t) ∼ c

π

[√
4Dt+

√
πLl

] [√
4Dt+

√
πLs

]
(A.36)

in this case and C(0) = cLlLs, which is the expectation value to find the probe site
covered.

The power law ∝ t−1/2 in the intermediate time regime τLs � t� τLl
arises, because

the behavior here is regulated by a very small τLs/t and a very large τLl
/t ratio. The

parentheses in Eq. (4.1) containing the Ll dependence are treated like before and for
those depending on Ls the limiting cases for small arguments z, yielding erf(z) ∼ 2z/

√
π

and exp(z) ∼ 1, are employed. In this case Eq. (4.1) reads

C(t) ∼ c

π

[
−
√

4Dt+ Ll

√
π
] [

2Ls

√
τLs

4t

]
=

cL2
s

π

[
−2 +

√
πτLl

t

]
. (A.37)

The formula indicates the power law ∝ t−1/2, keeping in mind t� τLl
.

The power law ∝ t−1 for τLl
� τLs � t, i.e. small τLs,l

/t, becomes visible directly after
using the series expansion for small arguments on all exponential and error functions in
Eq. (4.1):

C(t) ∼ c

π

[
2Ll

√
τLl

4t

] [
2Ls

√
τLs

4t

]
∝ t−1 . (A.38)

A.6.3 Residence time distribution for circular objects

At long times t � τR/χ
2
1 the exponential factor in the RTD for a circular geometry

[Eq. (3.9)] decreases rapidly and only the term for n = 1 contributes significantly to the
sum. Higher summands can be neglected, so that the functional behavior will follow
Eq. (3.11).

For small times t � τR/χ
2
1, on the contrary, many terms will contribute to the sum,

enabling to transform it into an integral. After substitution of ξ ≡ χ(n) Eq. (3.9) then
reads

ψ(t) ≈
∫

dξ

χ′(n)
ξ
J0 [ξ (1−∆R/R)]

J1 (ξ)
exp

(
−ξ2 t

τR

)
. (A.39)

There is no explicit expression for the zeros of the Bessel-function of first order χ(n),

which would be necessary to universally calculate the factor χ′(n) = dχ(n)
dn

arising from
the substitution. However, for large arguments the zeros can be estimated from the
asymptotic form J0(χ) ∼ (2/πχ)1/2 cos(χ− π/4) [74] yielding χ(n) = (n + 3/4)π and a
constant χ′(n) = χ′, which will be used in this approximation. To account for the time
dependency a further substitution of u2 ≡ ξ2t/τR is convenient

ψ(t) ≈ 2

t

∫
du

χ′
u
J0

[
u
√

τR
t

(
1− ∆R

R

)]
J1

(
u
√

τR
t

) exp
(
−u2

)
. (A.40)

The exponential function is dominant in the integrand and only small u values will con-
tribute to the integral. This allows to use a Taylor series with u ≈ 0 on the Bessel-functions
resulting in

ψ(t) ≈ 2

t

∫
du

χ′
u

[
2

u

√
t

τR
− u

2

√
τR
t

(
1− ∆R

R

)]
exp

(
−u2

)
. (A.41)
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The first summand is negligible, because the time regime t � τR/χ
2
1 is considered. The

prefactor of the remaining expression

ψ(t) ≈ 1

t

√
τR
t

∫
du

χ′

(
∆R

R
− 1

)
u2 exp

(
−u2

)
(A.42)

defines the power law ∝ t−3/2

A.6.4 Residence time distribution for rectangular objects

At small times τ∆ � t � τλ1,1 a power law proportional to t−3/2 arises in the RTD
for rectangular objects. For such small residence times many summands in Eq. (4.4)
add to the result, therefore it is legitimate to again transform the sum into an integral.
Furthermore, the substitutions u2 = Dπ2µ2t/L2

l and v2 = Dπ2ν2t/Ls are helpful in the
further derivation. After some rearrangements Eq. (4.4) reads

ψ (t) ≈ 32

(Ls + Ll) π2t
(A.43)

∫ ∞
π
√
Dt

Ls

∫ ∞
π
√
Dt
Ll

dv du

sin
(
u∆√
Dt

)
v√
Dt

+
sin
(

v∆√
Dt

)
u√
Dt

 u2 + v2

u v
e−u

2−v2

. (A.44)

The exponential function is the dominant expression here and only u2 +v2 ≤ 1 contribute
significantly to the result. Provided that max(u)=max(v)=1 a small-angle approximation
yields sin(∆/

√
Dt) = ∆/

√
Dt and therefore

ψ (t) ≈ 32∆

(Ls + Ll)π2t
(A.45)∫ ∞

π
√
Dt

Ls

∫ ∞
π
√
Dt
Ll

dv du 2 e−u
2−v2

+
u2

v2
e−u

2−v2

+
v2

u2
e−u

2−v2

. (A.46)

This double integral consists of three types of integrals, which can be solved each by
carefully considering the integration boundaries and functional behavior of the integrands:

(I)

∫ ∞
π
√
Dt

Ls,l
= πt
τLs,l

dx x2 e−x
2

, (II)

∫ ∞
πt/τLs,l

dx x−2 e−x
2

, (III)

∫ ∞
πt/τLs,l

dx e−x
2

(A.47)

The lower boundary in (I) tends to zero, because in the considered time regime t �
τLs,l

. Furthermore, the integrand decreases rapidly for small x, therefore it is legitimate
to extend the integration limits to the well defined

∫∞
0

dx x2 exp(x2) =
√
π/4. In (II)

both terms decrease rapidly for x > 1 and for x ≤ 1, u−2 increases strongly, while
exp(−x2) approaches one. As an approximation it is therefore valid to consider only∫∞
πt/τLs,l

dx x−2 =
(
τLs,l

/π2t
)1/2

. Analogous to the previous arguments, in (III) the lower

boundary tends to zero and the integral can be estimated via
∫∞

0
exp(−x2) =

√
π/2.

Using this solutions, the original double integral can be solved consecutively, resulting in

ψ (t) ≈ 8∆

(Ls + Ll) π2t

(
2π +

√
τLs + τLl

πt

)
, (A.48)
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A. Details on derivations

which contains the predicted power law ∝ t−3/2.
At long times τλ1,1 � t, the exponential function in Eq. (4.4) is crucial for the functional

behavior. Only the summand with µ = ν = 1 contributes significantly to the sum, and
the higher terms can be neglected. The remaining expression [Eq. (4.5)] describes the
exponential decay in this time regime.

A.6.5 Interpeak time distribution for circular objects

In the ITD for a single circular object [Eq. (3.13)] two time regimes separated by τR can
be identified. To deal with the short time regime t � τR, the substitution of u2 ≡ χ2 t

τR
is useful

ψ(t) =
2

πt

∫ ∞
0

du u exp
(
−u2

)
(A.49)

−J0

[
u
√

τR
t

(
1 + ∆R

R

)]
Y0

(
u
√

τR
t

)
+ J0

(
u
√

τR
t

)
Y0

[
u
√

τR
t

(
1 + ∆R

R

)]
J2

0

(
u
√

τR
t

)
+ Y 2

0

(
u
√

τR
t

) .

The exponential function limits significant values of the integral to small u. The arguments
u(t/τR)−1/2 of the Bessel-functions of first [J0(.)] and second [Y (.)] kind therefore become
very large in this time regime and the asymptotic expansions for large arguments [74]
J0(z) ∼ (2/πz)1/2 cos(z−π/4) and Y0(z) ∼ (2/πz)1/2 sin(z−π/4) can be employed. After
several conversions using the addition theorems, the expression is reduced to

ψ(t) ∼ 2

πt
√

1−∆R/R

∫ ∞
0

du u exp
(
−u2

)
sin

(
u

√
τR
t

∆R

R

)
. (A.50)

When solving the integral it directly devolves into the approximation in Eq. (3.14) used
for fitting the short time regimes of ITDs.

In the long time regime t � τR the arguments in the Bessel-functions of Eq. (A.49)
become very small, allowing to use the limiting forms for small arguments [74] J0(z) ∼ 1
and Y0 ∼ 2 ln(z)/π. After further transformations and approximations with respect to
the time regime the expression is reduced to

ψ(t) ≈
(

2

π

)2
ln (1 + ∆R/R)

t

∫ ∞
0

du u

[(
2

π

)2

ln2

(√
t

τR

)]−1

exp
(
−u2

)
. (A.51)

Solving the integral yields Eq. (3.15) as the approximation for t� τR.
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Appendix B

Supplementary information

In this part of the appendix supplementary information on different aspects of the work
is collected.

B.1 Calculating correlation functions from “on”-“off”

time tables

If measurement signals are given as a table of “on” and “off” times, the calculation of
the correlation function via fast fourier transformation would require a reconstruction of
a corresponding discrete time series with steps dt:

t = 0:dt:max(table entries)

for each t

if at least one table entry is in [t-dt,t]

find the last table entry smaller t

if it is of ’on’-type

S(t):=1

else

S(t):=0

end if

else

S(t):=S(t-dt)

end if

end

Given this reconstructed signal Eq. (3.6) can be applied. However, the size of dt has to
be chosen with care. If it is too large, peaks can be overlooked. If dt is chosen very small,
runtime as well as memory load increase considerably.

A more convenient alternative is to define the peaks as Θ(t− ton)−Θ(t− toff) with ton

the beginning of the peak and toff the end as well as the Heaviside jump function Θ(.).
The full signal α is then given by

Sα(t) =
∑
n

[Θ (t− tα,non )−Θ (t− tα,noff )] . (B.1)
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The correlation function between the signals α and β reads

C(τ) =
1

T

∫ T

0

dt Sα(t)Sβ(t+ τ) (B.2)

=
1

T

∑
m,n

∫ T

0

dt [Θ(t− tα,non )−Θ(t− tα,noff )][Θ(t− (tβ,mon + τ))−Θ(t− (tβ,moff + τ))]

There are well defined conditions, whether and how two peaks from the signals α and
β will contribute to the correlation. First the peak from β must not end before the
corresponding peak from α has started and it must not start, if the other one already
ended, see Fig. B.1 (a)-(b). If these conditions are met, the start of the correlating time
interval is given by the larger of both ton and the end by the smaller toff , see Fig. B.1 (c)-
(f). Calculation of the correlation function is therefore reduced to a comparison of start
and end times

C(τ) = (B.3)

1
T

∑
m,n


min

(
tα,moff , tβ,noff + τ

)
−max

(
tα,mon , tβ,non + τ

)
if tβ,noff + τ > tα,mon ∧

tβ,non + τ < tα,moff ,

0 else .

Clearly, for the autocorrelation α and β are the same signal.
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Figure B.1: Simplified overview of the
six possible arrangements between peaks
from signal α (solid line) and β (dash-
dotted line). Only (c)-(f) will contribute
to the correlation. The time interval
relevant for correlation (shaded area) is
restricted by the larger of the start-
ing times and the smaller of the ending
times.

B.2 Directional sensitivity of linear extended tip

2ω y =ω x ω y =ω x ω y =2ω x

Figure B.2: Qualitative illustration of three diffusion paths (2ωy = ωx, ωy = ωx
and ωy = 2ωx) through the detection area (gray) of an infinite extended linear probe
(bold line), which is aligned to the x-axis. Displacements parallel to the probe cannot
change the signal.
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B.3 Number of events in exponential time regime
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100

R

%

Figure B.3: Percentage of events in time
regime previous to the exponential de-
cay depending on the object radius R.
For the RTD Ψ(t) from Eq. (3.9) has
to be integrated over the time interval
[∆2/D, τR/χ

2
1] (dash-dotted line) and for

the ITD Ψ(t) from Eq. (3.13) over the in-
terval [τmax, τc] (dashed line).

B.4 Determination of optimal tip length
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(Λ
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Figure B.4: Increasing probability to find more than one object in the detection
area of a extended linear probe [Eq. (6.5), dashed lines] and decreasing probability
to enter or leave the detection area through one of the short edges [Eq. (6.7), solid
lines]. The intersection point indicates the most reasonable length for the detection
area in Conf. A00-A02. Here Λ = 100 for γ̄ = 0 (gray lines) and Λ = 80 for γ̄ = π/2
(black lines) yield a linear probe length between, l = 45 and l = 37.5, respectively.
Therefore, lopt = 41 is defined as the best probe length.
Annotations: In case of a discrete grid PL,in → (L − 1)/(L + Λ − 2) to avoid a
double weighting of the vertices. For γ̄ = π/2 even at the optimal length there is a
probability of 11% for the processes, which threaten the one-dimensional approach.
In general, performance of this method will hence increases at lower coverages, where
P>1 decreases.
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B.5 Event count in experimental data
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Figure B.5: Number of events contained in the available signals for CuPc and PTCDA
at different temperatures. Peaks were extracted according to chapter 7.1. Most time
series contain less than the recommended 104 events (compare chapter 3.4), but still
show usable distributions of peak widths and distances. Only measurements at 187 K
and 296 K have to be treated with reservations, because with 46 and 136 peaks they
offer too little statistics for a meaningful evaluation.

B.6 Mean residence time for CuPc and PTCDA
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Figure B.6: The typical residence times τR′ and τR′′ [with D = D̄0 exp(−Ea/kBT )]
for PTCDA (solid lines) and CuPc (congruent dashed lines). In its respective tem-
perature regime it is partially shorter for the PTCDA molecule than for CuPc.
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B.7 Influence of threshold
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Figure B.7: (a) Excerpt of the signal in Fig. 7.1 with three different threshold values
Ic = 0.18 nA (solid line), 2Ic (dashed line) and 0.25Ic (dash-dotted line). (b) The re-
spective rectangular signal (solid line). With 0.25Ic peaks are widened and additional
peaks are detected (light gray), with 2Ic the peak’s widths is considerably reduced
(dark gray). While peak widths are very sensitive to the threshold, for the interpeak
intervals the difference is negligible.

B.8 Succession of experimental measurements

CuPc PTCDA

T/K Date - Order T/K Date - Order

140 2009/04/15 B 251 2008/10/31 C

149 2009/04/15 G 254 2008/10/30 B

152 2009/04/15 A 258 2008/11/03 A

166 2009/04/15 C 278 2008/11/03 B

169 2009/04/15 D 291 2008/10/30 A

174 2009/04/15 E 294 2008/10/23 A

183 2009/08/26 A 296 2008/10/15 A

187 2009/04/16 A 301 2008/11/07 A

192 2009/08/26 B 304 2008/10/23 B

222 2009/04/15 F 305 2008/11/07 B

309 2008/10/23 C

311 2008/11/07 C

313 2008/10/23 D

Table B.1: Dates and (alphabetical) order of the experimental measurements.
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Appendix C

Simulated configurations

In this part of the appendix all simulation parameter sets used throughout this work are
listed. A system of size (1000× 1000)a with periodic boundary conditions was used and
the Mersenne Twister ran 105 steps as warm up. If not stated elsewise, 105 peaks have
been recorded.

C.1 Configurations with circular shaped molecules

C01

Geometry Rates & stepsize

R/a 5 wtr 1

a 1

θ0 0.01 wrot —

∆ϕ —

C02

Geometry Rates & stepsize

R/a 10 wtr 1

a 1

θ0 0.01 wrot —

∆ϕ —

C03

Geometry Rates & stepsize

R/a 1 wtr 1

a 1

θ0 0.01 wrot —

∆ϕ —

C04

Geometry Rates & stepsize

R/a 2 wtr 1

a 1

θ0 0.01 wrot —

∆ϕ —

C05

Geometry Rates & stepsize

R/a 3 wtr 1

a 1

θ0 0.01 wrot —

∆ϕ —

C06

Geometry Rates & stepsize

R/a 4 wtr 1

a 1

θ0 0.01 wrot —

∆ϕ —
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C.2 Configurations with rectangular shaped molecules

C.2.1 Isotropic translational diffusion only

R01

Geometry Rates & stepsize

Ls/a 10 wtr 1

Ll/a 10 a 1

θ0 0.01 wrot —

∆ϕ —

R02

Geometry Rates & stepsize

Ls/a 10 wtr 1

Ll/a 20 a 1

θ0 0.01 wrot —

∆ϕ —

R03

Geometry Rates & stepsize

Ls/a 10 wtr 1

Ll/a 30 a 1

θ0 0.01 wrot —

∆ϕ —

R04

Geometry Rates & stepsize

Ls/a 10 wtr 1

Ll/a 40 a 1

θ0 0.01 wrot —

∆ϕ —

R05

Geometry Rates & stepsize

Ls/a 10 wtr 1

Ll/a 50 a 1

θ0 0.01 wrot —

∆ϕ —

C.2.2 Mixed isotropic translational and rotational diffusion

M00

Geometry Rates & stepsize

Ls/a 5 wtr 0.25

Ll/a 10 a 1

θ0 0.01 wrot 0.01

∆ϕ 2π/10

M02

Geometry Rates & stepsize

Ls/a 5 wtr 0.25

Ll/a 10 a 1

θ0 0.01 wrot 0.40

∆ϕ 2π/10

M03

Geometry Rates & stepsize

Ls/a 5 wtr 0.25

Ll/a 10 a 1

θ0 0.01 wrot 3.60

∆ϕ 2π/10

M04

Geometry Rates & stepsize

Ls/a 5 wtr 0.25

Ll/a 5 a 1

θ0 0.01 wrot 3.60

∆ϕ 2π/10
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C. Simulated configurations

C.2.3 Anisotropic translational diffusion

A00

Geometry Rates & stepsize

Ls/a 5 wtr,x 0.50

Ll/a 10 ax 1

θ0 0.01 wtr,y 0.50

l ay 1

A01

Geometry Rates & stepsize

Ls/a 5 wtr,x 0.50

Ll/a 10 ax 1

θ0 0.01 wtr,y 0.20

l ay 1

A02

Geometry Rates & stepsize

Ls/a 5 wtr,x 0.50

Ll/a 10 ax 1

θ0 0.01 wtr,y 0.02

l ay 1
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[40] J. Lagoute, K. Kanisawa, S. Fölsch. Manipulation and Adsorption-Site Mapping of
Single Pentacene Molecules on Cu(111). Phys. Rev. B 70, 245415 (2004).

[41] Q. Chen, A. J. McDowall, N. V. Richardson. Ordered Structures of Tetracene and
Pentacene on Cu(110) Surfaces. Langmuir 19, 10164 (2003).

[42] E. Le Moal, M. Müller, O. Bauer, M. Sokolowski. Stable and Metastable Phases of
PTCDA on Epitaxial NaCl Films on Ag(100). Phys. Rev. B 82, 045301 (2010).
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