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Abstract

We can affirm to apprehend a system in its totality only when we know how it be-
haves under its natural operating conditions. However, in the face of the complexity of
the world, science can only evolve by simplifications, which paradoxically hide a good
deal of the very mechanisms we are interested in. On the other hand, scientific en-
terprise is very tightly related to the advances in technology and the latter inevitably
influences the manner in which the scientific experiments are conducted. Due to this fac-
tor, experimental conditions which would have been impossible to bring into laboratory
not more than 20 years ago, are today within our reach. This thesis investigates neu-
ronal integrative processes by using a variety of theoretical and experimental techniques
wherein the approximation of ecologically relevant conditions within the laboratory is
the common denominator. The working hypothesis of this thesis is that neurons and
neuronal systems, in the sensory and higher cortices, are specifically adapted, as a result
of evolutionary processes, to the sensory signals most likely to be received under ecolog-
ically relevant conditions. In order to conduct the present study along this line, we first
recorded movies with the help of two microcameras carried by cats exploring a natural
environment. This resulted in a database of binocular natural movies that was used in
our theoretical and experimental studies.

In a theoretical study, we aimed to understand the principles of binocular disparity en-
coding in terms of spatio-temporal statistical properties of natural movies in conjunction
with simple mathematical expressions governing the activity levels of simulated neurons.
In an unsupervised learning scheme, we used the binocular movies as input to a neuronal
network and obtained receptive fields that represent these movies optimally with respect
to the temporal stability criterion. Many distinctive aspects of the binocular coding in
complex cells, such as the phase and position encoding of disparity and the existence of
unbalanced ocular contributions, were seen to emerge as the result of this optimization
process. Therefore we conclude that the encoding of binocular disparity by complex
cells can be understood in terms of an optimization process that regulates activities of
neurons receiving ecologically relevant information.

Next we aimed to physiologically characterize the responses of the visual cortex to eco-
logically relevant stimuli in its full complexity and compare these to the responses evoked
by artificial, conventional laboratory stimuli. To achieve this, a state-of-the-art record-
ing method, voltage-sensitive dye imaging was used. This method captures the spatio-
temporal activity patterns within the millisecond range across large cortical portions
spanning over many pinwheels and orientation columns. It is therefore very well suited
to provide a faithful picture of the cortical state in its full complexity. Drifting bar
stimuli evoked two major sets of components, one coding for the position and the other
for the orientation of the grating. Responses to natural stimuli involved more complex
dynamics, which were locked to the motion present in the natural movies. In response
to drifting gratings, the cortical state was initially dominated by a strong excitatory
wave. This initial spatially widespread hyper-excitatory state had a detrimental effect
on feature selectivity. In contrast, natural movies only rarely induced such high activity
levels and the onset of inhibition cut short a further increase in activation level. An



increase of 30 % of the movie contrast was estimated to be necessary in order to produce
activity levels comparable to gratings. These results show that the operating regime
within which the natural movies are processed differs remarkably. Moreover, it remains
to be established to what extent the cortical state under artificial conditions represents
a valid state to make inferences concerning operationally more relevant input.

The primary visual cortex contains a dense web of neuronal connections linking distant
neurons. However the flow of information within this local network is to a large extent
unknown under natural stimulation conditions. To functionally characterize these long-
range intra-areal interactions, we presented natural movies also locally through either
one or two apertures and analyzed the effects of the distant visual stimulation on the
local activity levels. The distant patch had a net facilitatory effect on the local activity
levels. Furthermore, the degree of the facilitation was dependent on the congruency
between the two simultaneously presented movie patches. Taken together, our results
indicate that the ecologically relevant stimuli are processed within a distinct operating
regime characterized by moderate levels of excitation and/or high levels of inhibition,
where facilitatory cooperative interactions form the basis of integrative processes.

To gather better insights into the motion locking phenomenon and test the generalizabil-
ity of the local cooperative processes toward larger scale interactions, we resorted to the
unequalized temporal resolution of EEG and conducted a multimodal study. Inspired
from the temporal properties of our natural movies, we designed a dynamic multimodal
stimulus that was either congruent or incongruent across visual and auditory modalities.
In the visual areas, the dynamic stimulation unfolded neuronal oscillations with frequen-
cies well above the frequency spectrum content of the stimuli and the strength of these
oscillations was coupled to the stimuli’s motion profile. Furthermore, the coupling was
found to be stronger in the case where the auditory and visual streams were congruent.
These results show that the motion locking, which was so far observed in cats, is a phe-
nomenon that also exists in humans. Moreover, the presence of long-range multimodal
interactions indicates that, in addition to local intra-areal mechanisms ensuring the in-
tegration of local information, the central nervous system embodies an architecture that
enables also the integration of information on much larger scales spread across different
modalities.

Any characterization of integrative phenomena at the neuronal level needs to be sup-
plemented by its effects at the behavioral level. We therefore tested whether we could
find any evidence of integration of different sources of information at the behavioral level
using natural stimuli. To this end, we presented to human subjects images of natural
scenes and evaluated the effect of simultaneously played localized natural sounds on their
eye movements. The behavior during multimodal conditions was well approximated by
a linear combination of the behavior under unimodal conditions. This is a strong indica-
tion that both streams of information are integrated in a joint multimodal saliency map
before the final motor command is produced.

The results presented here validate the possibility and the utility of using natural stimuli
in experimental settings. It is clear that the ecological relevance of the experimental
conditions are crucial in order to elucidate complex neuronal mechanisms resulting from
evolutionary processes. In the future, having better insights on the nervous system can
only be possible when the complexity of our experiments will match to the complexity
of the mechanisms we are interested in.
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General Introduction

1.1 Context

One of the most surprising facts about life is its diversity. Besides the biological diversity
of species which is in the focus of classic and modern biology across centuries, another
aspect that is much less investigated is just as worth being surprised: The diversity of
the experienced world. The way living organisms experience the world is also subject to
extreme diversity. Naturally here, there is no possibility for any claim of this order to be
supported by a rigorous scientific proof because on the one hand, we have no practical
access to how other animals may be experiencing the external world and on the other
hand, we simply have no idea of how and why we, as humans, do experience the world
as we do (O’Regan & Noé 2001). However, given the enormous diversity of animals and
their sensory organs, one may make the claim that the world as it would potentially
be experienced by living beings is infinitely complex (Freeman 2000). As a matter of
fact we, animals, do not experience this infinity but only a part of it. And interestingly
different animals do it differently. What is the origin of this diversity? More precisely,
what determines that a sensory system should be sensitive to a given set of aspects of
the environment and ignore, to a good extent, others?

One answer, which is certainly the Modern Age’s most prevailing one, would be that
these diverse selectivities result from the clockworks of evolution shaping different sensory
organs and epithelia in order to represent different and specific aspects of external world
by means of genetic and/or epigenetic mechanisms. Each unique sensory domain could
then be seen as different pair of goggles directed to different parts of the same reality,
which is the environment. Said another way, this view has a specific answer to the
popular chicken-egg problem: Which one, the sensory system responsible for sensation
or the environment, did come first? According to this view, the environment should
have been there before the sensory system evolved to process and represent the incoming
information by virtue of natural selection (Varela et al. 1992). Therefore this account of
sensory diversity presupposes that the world has pregiven properties which are accessible
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to the organisms directly. It assigns a totally passive observer status to the organism
with the absolute capacity of having access to different properties of the environment.

But here we should stop and ask what an incoming signal is . Does the environment let
itself be experienced by observers without any constraints? The answer is most certainly
negative given the fact that the input to the nervous system depends not only on the
environment but also on the animal’s more general properties such as its body shape,
locomotion, speed, head shape, inter-ocular distances, dexterity among many more traits.
The obvious relationship of the body shape and multitude of potentials it generates or
restricts, suggests that the problem of sensory diversity is not a simple problem which
could be explained by a representation of the external world and further attunement
of these representations. One should recognize the primacy of animals being animated
beings. As a fact of definition, animals are self-animated beings and the capacity of self
motion is their unshared trait among all living beings. Importantly, the nervous system
is an invention of the Animal Kingdom: that is to say that the link between action and
sensation is created via the nervous tissue.

Strikingly, a representationist account of sensory diversity does not make recourse to
this defining property of animal nature. Hence it ignores to a large extent their dynamic
nature. It simply focuses on the sensation and creates a simple picture of the relation-
ship between the environment and the organism. Such a view reduces the animal to a
disembodied agent where it simply receives signals from the external world, to which he
has full access from the beginning. However considering the organism in its embodied
context, we accept the fact that what reaches central sensory neurons primarily depends
on, the environment, and also importantly, how motor neurons make use of the very
specific body, which in turn depends on the very shape of the body and the manner
in which it interacts with the environment. Therefore it becomes increasingly harder
to defend the position of a pregiven world that is represented by the organism without
taking into account the shape and design of the animal. The shape and design of the
animal specifies the sensory motor space of the animal; these are the aspects which an
embodied science of mind can not disregard (Clark 1999). Let’s illustrate this view with
an excellent passage of The Embodied Mind (Varela et al. 1992):

It is well known that honey bees are trichromats whose spectral sensitivity
is shifted toward the ultraviolet. It is also well known that flowers have con-
trasting reflectance patterns in ultraviolet light. Consider now our "chicken-
and-egg” question [...]: Which came first, the world (ultraviolet reflectance)
or the image (ultraviolet sensitive vision). Most of us would probably answer
with little hesitation, The world (ultraviolet reflectance). It is therefore in-
teresting to observe that the colors of flowers appear to have coevolved with
the ultraviolet sensitive, trichromatic vision of bees.

Why should such coevolution occur? One the one hand, flowers attract pol-
linators by their food content and so must be both conspicuous and yet
different from flowers of the other species. On the other hand, bees gather
food from flowers and so need to recognize flowers from distance. These two
broad and reciprocal constraints appear to have shaped a history of coupling
in which plant features and the sensorimotor capacities of bees coevolved.
It is this coupling, then, that is responsible for both the ultraviolet vision
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of bees and the ultraviolet reflectance patterns of flowers. Such coevolution
therefore provides an excellent example of how environmental regularities are
not pregiven but are rather enacted or brought forth by a history of coupling.”

This example emphasizes an important concept of the so-called enactivist point of view:
structural coupling. In this example, bees and flowers are two components of a system.
These, by virtue of their coupling codetermine the fate of each other. In this paradigm,
the idea of a world with pregiven attributes that the agent needed to represent does not
occupy a central position. Admittedly the agent needs a sensorial system that reacts to
the external world, but the principle characteristics of the sensory-motor system are not
organized for the representation of the external world. Both the environment and the
agent are embodied within a dynamic system that enacts the observed visual sensitivities
of bees. Bees do not need to know the exact properties of the external world. They don’t
need to create a sensory system which faithfully represents the world. It suffices for the
subject to distinguish the relevant objects from the background of meaningless stimula-
tion. This example shows that the representationism (at least at its strong definition)
is not a necessary component of the biological and sensorial diversity generation. From
this perspective, the fact that different animals have different sensitivities with respect to
the environment results from their specific history of structural coupling, which endows
them with basic capacities for solving problems related to their survival.

1.1.1 Representationism in Cognitive Science

Interestingly, representationism (takes the label of Cognitivism in the field of Cogni-
tive Science) translates one-to-one to the field of Cognitive Science and constitutes the
major paradigm and working hypothesis. Here also, representationism is based on the
very assumption that the world has pregiven properties which are then represented by
the mind in order to solve different tasks or to produce intelligent behavior. Accord-
ingly, any intelligent behaviour finds its sources on the computations which are done
on the symbolic level based on the representations of an external world. Clearly today,
representationist accounts of the intelligent behaviour can be found in many different
contexts. It wouldn’t be erroneous to assert that this view occupies the defining zeitgeist
in Cognitive Science.

Let’s illustrate this paradigmatic view with a real-world example and take the task that
an outfield baseball player has to solve. The question of interest here is to understand
how outfield players in baseball do know where to run, starting from the point where
the ball hits the bat. Given the high speed levels the ball reaches and the large distances
between the ball and the outfield player, it is reasonable to assume that the visual cues,
such as for example stereoscopic depth, are not reliable. Therefore the question of how
this is achieved raises interest.

Classically this task was thought to be solved by humans by realizing unconscious com-
plex mathematical computations in order to derive the trajectory of the ball based on
variables extracted from the external world such as for example its speed, acceleration
(McLeod & Dlenes 1993). McBeath et al. (1995) provided a different account that relies
on the idea that when outfield players start running to catch the ball, they choose a
trajectory for their own body which linearizes the trajectory of the ball according to
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the optical information they receive. This is an important switch in our conceptual-
ization of the intelligent behaviour as it removes any need to extract parameters from
the external world, and thus, the realization of complex mathematical computations on
them. The problem raised by fact that we are not consciously aware of these computa-
tions (see Mind-Mind problem (Jackendoff 1987)) is also eliminated. Rather it relies on
sensory-motor coupling and puts the body into a central position by involving the active
motor behaviour of the subject: the player using his sensory-motor capacity coupled
dynamically to the external world can exhibit the required intelligent behaviour without
actually representing any external parameters.

It is generally within the representationist paradigm that Computer Scientists "inspired”
by biological vision are interested in reconstructing the three-dimensional world based
on two-dimensional, and thus ambiguous, retinal images. For example, a chair may
have extremely different two-dimensional projections onto a two dimensional surface
depending on the angle of view. Here it is of extreme interest to create a visual algorithm
which is able to understand the content of images. Although this task is extremely
easy for the primate’s nervous system, computer algorithms are rather poor in their
recognition performance.

A typical Computer Vision approach for solving this task would be to design an algorithm
for recognizing objects based on their two-dimensional images. A dataset consisting of
images taken from a camera, which passively creates images, would be the major source of
information in order to solve this task. A classifier trained on these data would learn how
to categorize different images depending on the presence or absence of the target object.
Clearly as shown in this example, the representationist approach ignores the situatedness
of biological intelligence, its dependence on a body and also on a history of sensory-
motor coupling which underpins the performance of living system, therefore it reduces
the visual system to a passively observing camera. As criticized in Action in Perception
(Noé 2004), there is simply no fundamental reason to think that the data which carries
the information about the external world is contained exclusively in the static two-
dimensional retinal images. However, the outlined approach in computer science is
completely static, passively observing the outside world and radically disembodied. It
wouldn’t be erroneous to assert that since the approach outlined by David Marr in
Vision (Marr 1982), the paradigm in Computer Vision, one of the most prominent fields
in Cognitive Science, has not made significant progress toward incorporating embodied
aspects of biological vision.

In experimental fields of Cognitive Science however the importance of the active bodily
participation was very early recognized (even though here also it never became the major
paradigm). One of the classic behavioral experiments which underlines the primacy of
an active bodily involvement for the development of perceptual skills is the work of Held
& Hein (1963). They showed that a well functioning central nervous system requires
the active motor involvement of the animal during its developmental stages. In their
now classical experiments, they deprived a group of cats (cats are mammals commonly
used in physiological experiments investigating sensory systems) of the active motor
component of their behavior while they were exposed to the same visual input patterns
as another group of cats which were not constrained in their active behavior (see Fig.
1.1A for a schematic view of the experimental setup). According to the representationist
view, as both groups are being exposed to the same visual input, the development of
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their visual system should be at least comparable in their performances following the
restricting rearing period. However the restrained cats were severely impaired in their
basic perceptual and motor skills. Their results showed that passive observation of the
outside world was not sufficient for generating basic sensory-motor capacities used to
solve simple tasks.

Much more recently the FeelSpace® (Nagel et al. 2005) project conducted in the Neu-
robiopsychology Department in Osnabriick is based on a very similar idea. Within this
project, humans learn how to make use of a mechanical belt by carrying it during their
everyday life (Fig. 1.1B). By means of a compass, the belt vibrates always at the North
direction independent of body direction. This results in the vibration of different parts
of the body in contact with the belt, depending on the orientation of the subject in the
North-South axis. Initially the stimulation by the belt is rather simple and meaning-
less, however the tactile stimulation gains a biological meaning within a relatively short
temporal interval (in the order of weeks) through the building up of a sensory-motor
coupling history resulting from the interaction between the subject and the effect of the
externally plugged device. Not only that, subjects acquire the capacity of incorporating
this "new sense” on navigational tasks they are required to solve, additionally their phe-
nomenal perception of the space becomes different, if not extended. For example, they
report awareness of the orientation of their dining table with respect to the position of
the orientation of their office desk. This fact lies indeed on a major divergence point
between enactivist and representationist approaches. Whereas the representationist per-
spective has serious difficulties with the incorporation of new senses to an old body, the
enactivist view predicts that the emergence of new senses should not be given a special
status considering that this is how we make use of our biological sense apparatus during
development in any case.

Given the importance and necessity of active bodily participation for the normal de-
velopment of a visual system, one might still ask how humans solve visual tasks while
they are not bodily active: for example, in simple laboratory conditions. Suppose we are
given the task of predicting the success (whether it’s “in” or “not”) of a basketball player’s
shot and provided necessary video material recorded under controlled conditions while
players are aiming the ball to the basket (Fig. 1.1C). How do humans solve this task.
Given that we are presented pixel-based video data, one approach would be to follow
a strategy of finding some heuristics based on the visual data. For example initial ball
trajectory, fore-arm angle etc. would be the best candidate parameters with predictive
value regarding the ball’s trajectory. If this were true, this task could exclusively be
solved by involvement of visual areas in the central nervous system.

Using transcranial-magnetic stimulation and measuring the muscular evoked potentials,
Aglioti et al. (2008) tackled this issue experimentally. What they found was evidence
for the large-scale involvement of the central nervous system, including motor cortex,
during this task. The activity of neurons in the motor cortex corresponding to the
arm area (the only area tested) were found to be involved during this task, suggesting
that subjects were using the parts of their brain usually involved during such tasks in
real-life. Importantly, people who were not experienced were not able to solve this task,
suggesting that what is to be perceived is not a process which relies on symbolic inference
but rather depends on previous bodily experience. This interpretation directly supports
an embodied action view of the nervous system, which is valid even during conditions
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that do not require the usage of a body.

The dominant view and scientific enterprise in the Cognitive Science was thus far dom-
inated by representationism. To this view is an intrinsic difficulty of conceiving the
organisms as being embodied agents associated. Recent advances in the field of Cog-
nitive Science make it unlikely that we can achieve an understanding of the intelligent
behavior without conceiving the organism’s dynamic nature and its situatedness in the
environment. In the future this will necessarily result in a shift of our current computer-
mind metaphor toward a more dynamic environment-body metaphor.

One point must be considered carefully in the discussion of representationism and taken
care to note that the point here is not to reject the existence of the representations
in the brain. Most certainly the activity of neurons could match to some external
variables faithfully. And as observers we may assign to these neurons a representative
role. Neurons within the motor cortex could very well represent different movement
directions of the arm (Georgopoulos 1994); the activity of neurons responsive to visual
stimulation may very well correspond to, under certain restricted conditions, different
parameters of the visual stimulation. For example, the activity of middle temporal area
neurons are known to match to the speed of the stimulus (Liu & Newsome 2006) and the
stimulation of these neurons can cause perceptual shifts on the monkey’s perception in a
predictable way in accordance with the feature selectivity of these neurons (Celebrini &
Newsome 1994). But we should be aware that given this knowledge we can not deduce
that the nervous system as a whole is operating on the basis of representations. The main
point is to emphasize the fact that sole observation of a correlation between neuronal
activity and parameters of external world do not allow us to conclude that the cognition
and intelligent behaviour is based on manipulation of symbols extracted from outside
world. It is the representationism which is problematic and not representations.

1.1.2 About this Thesis

How would it be possible to study the physiology of sensory systems within an embodied
paradigm? One strategy would be to study sensory systems under conditions as close to
the real-world operational conditions of the animals as possible. This requires that we,
as experimentalists, need to be aware of the natural embodiment of the animals, and try
to develop an understanding of the role of sensory neurons within a context that makes
sense for their situatedness.

For this reason, during physiological investigations where I focused on the visual system
of the cat, I aimed to approximate as closely as possible the visual signals that cats
receive during their real-world conditions (Fig. 1.1D). To this end, I recorded stereoscopic
natural movies from their perspective using a pair of micro-cameras carried on the head
of freely moving cats viewing their natural habitat. A large part of the theoretical and
experimental results presented in this thesis relies heavily on these movies. In order to
avoid technical complications due to eye movements, natural movies were recorded in
head centered coordinates. The fact that cats do not make large saccadic movements
during active behaving (Einhduser et al. 2008) makes it likely that the movies recorded
by cameras do represent the input to the sensory system within reasonable limits.
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Figure 1.1: Embodied Cognitive Science. (A) Apparatus for equating motion and consequent visual feedback
for an actively moving (A) and a passively moved (P) S[ubject] (Fig. and caption from Held & Hein (1963), my
text is indicated within square brackets. (B) One of the earliest models of the FeelSpace® belt. (Image taken
from www.feelspace.de). 13 vibrators provide tactile information depending on the positioning of the subject along
the North-South axis. (C) Fig. taken from Aglioti et al. (2008). Showing the visual information that human
subjects were provided during a task which consisted of predicting whether a sequence of frames representing a
basketball player shooting would be a success or fail. The frames were cut shortly before or after the ball left
the hand of the player. (D) Making of stereoscopic natural movies by freely moving cats in a natural habitat. A
pair of cameras carried by a cat was connected to two VCR recorders carried by the experimenter. (See also Fig.
2.1 for more detail.) (E) An example of two frames extracted from movies are shown together with an artificial
stimulus. These kind of stimuli were used in our physiological and modelling experiments.
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Since the discovery of simple and complex cells in the primary visual cortex (V1*) by
Hubel and Wiesel (Hubel & Wiesel 1959; 1962a), which brought them the Nobel Prize
in 1981 for the work they carried out during early 60’s, the scientific investigations of
sensory systems are dominated mainly by the usage of simplified stimulation protocols
in physiological experiments. In visual experiments usage of drifting gratings, random
dots, flashed bars and moving edges were (and are still today) very common for the char-
acterization of the receptive fields (RF). There is no doubt that the spatial and temporal
properties of such visual images and movies are extremely unusual and disparate with
respect to images encountered in the natural environments (see for example Fig. 1.1E)
from the animals perspective. While a natural stimulus such as, a photograph taken in a
wood, contains many different spatial frequencies and orientations simultaneously, sim-
plified stimuli are generally constituted of a single orientation and spatial frequency at a
time. The cortical responses to natural and complex stimuli were marginally investigated
by only a few experimenters (Creutzfeldt & Nothdurft 1978).

It is no doubt that technological restrictions during these early times of electrophysiol-
ogy favoured the usage of simplified stimuli during experiments. However, beside these
technological constraints, having an easily controllable and parameterizable source of
stimulation was also seen as a major benefit. Therefore one can say that conceptual
drives had also a significant contribution in increasing the popularity of simplified stim-
uli. Nevertheless, during this initial period of the sensory neuroscience, usage of such
simple stimuli ensured a constant accumulation of data, results and ideas. Different
theories (for example related to the emergence of orientation selectivity) which are de-
bated even today, were proposed during these initial times. Therefore, the very basics of
our current knowledge on sensory processing relies largely on these experiments realized
under reduced stimulation settings. Consequently little is known about how sensory
neurons process complex natural inputs. Furthermore we currently are only partially
starting to understand whether and how cortical neurons are evolutionary adapted to
process their most common input patterns. Therefore natural stimuli form the best
choice of stimuli if the search is for the existence of more complex and sophisticated
cortical mechanisms related to the processing of real-world input.

However, this view does not constitute a consensus among specialists in the field. Rust
& Movshon (2005) argue that the physiological systems can be studied by simplified,
parameterized stimuli forming the constitutive parts of more complex signals such as
natural images. This view however has one implicit assumption: namely, it asserts
that the knowledge gathered regarding the functioning of neurons with experiments
where simple stimuli is used, can be transferred without any complication to the cases
involving more complex situations such as processing of real-world inputs. As of today,
we do not have enough data to clearly answer whether this position is wrong or not. I
think however that the results presented in this thesis (Chapter 3) contributes to this
topic.

As noted at the very beginning, the sensory input that animals are exposed to are
constrained in many respects. First of all the natural habitat enormously restricts the
possible set of input patterns, that is to say not all signals are equally likely (Simoncelli
& Olshausen 2001, Barlow 1961a, Atick et al. 1992). Consider for example a set of 10 by
10 pixel-image representing the light falling within a restricted area of the retina with 255

*complete list of abbreviations are given at the end of this thesis.
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discrete numbers of grays. It is trivial to show that the total number of all possible inputs
is simply astronomical. However, studying statistical properties of natural images, one
realizes that real-world input spans only a very limited subspace (Chandler & Field 2007).
It is therefore reasonable to consider the possibility that sensory neurons developed
adaptational skills in order to react optimally to such stimuli. Such an adaptational
strategy has many advantages. First of all, restricting the processing power to a very
limited subspace may increase reaction times in face of life-threatening situations where
the survival is important. Moreover, recently it has been proposed that the energy
consumption may be an important constraint for the development and functioning of
the nervous system (Laughlin et al. 1998). From this perspective RF which minimize
the total number of spikes by coupling to the environment as efficiently as possible are of
biological interest as they reduce the required energy consumption for the transmission
of information.

The fact that natural images spans only a limited portion of all possible stimuli means
that the real-world input that the animal receives contains certain regularities. A mile-
stone study by Laughlin (1981) showed that the contrast sensitivity of neurons in large
monopolar cells in the fly visual system follows the distribution of contrast values en-
countered in the habitat of the fly. The incremental change in spiking activity following
an incremental change in the contrast of the stimulus was not random nor constant.
The change in number of spikes was minimal for contrast values which were rare in the
environment and maximal for the contrast levels which were most common. This specific
contrast sensitivity curve has the consequence that the neurons in the visual system of
the fly are most sensitive to resolving the most common signals. Additionally from an
information theoretical point of view, this leads to a distribution of spiking activity hav-
ing the maximum rate of information because all possible spike counts occur with equal
probability in the long run. It is thought that this specific way of translating luminance
contrast values into spiking activity is the result of an adaptive process leading to the
efficient processing of natural input. In the visual system of mammals such adaptive
phenomena has also been observed. In a now classical study, Dan et al. (1996) recorded
responses of neurons located in the lateral geniculate nucleus (LGN) of cats. This nu-
cleus is the target of the retinal ganglion cells and is located only one synapse before
V1; it therefore stands in the mid-way between retina and cortex. They showed that
the spatio-temporal RF properties of these neurons are specifically designed to process
natural input efficiently so as to maximize the information content of the spike trains.
Using another type of stimuli with properties deviating significantly from the statistics of
natural images, such as white-noise patterns, they observed that the responses of neurons
were much less equally distributed: meaning that they were inefficiently conveying the
information. They interpreted their results as being a consequence of an adaptational
strategy of neurons to natural real-world input.

The statistical properties of the input signals that reach neurons in the early cortical areas
are not constrained solely by external world. They also depend on the animal’s body
shape, head movements, eye movements and on the coordination of the same. Therefore
in addition to spatial properties of natural images, temporal properties also may in
principle be equally important. That is to say that the input received from the beginning
on by the sensory neurons about the external world is dynamic and very idiosyncratic
with respect to the animal in question. In the first part of this thesis (Chapter 2), I aim



Chapter.1 General Introduction

to understand how spatial properties of binocular RFs located in area 17/18 (A17/18)
of cats and V1 of monkeys are related to the spatio-temporal statistics of natural signals
received by the visual system. The spatio-temporal properties of the natural movies I
used here are constrained by, both the spatial properties of natural images and the bodily
motion of cats recording these movies. I employed an unsupervised learning scheme in
an artificial neuronal network in order to derive short-hand mathematical descriptions of
learning principles that lead to the observed binocular complex and simple cells RFs. The
learnt RFs do possess striking similarities to the neuronal RFs observed in physiological
experiments.

In the second part (Chapter 3), I use a state-of-the-art neuronal recording method,
namely voltage-sensitive dye imaging (VSDI), in order to unravel the dynamics of large
numbers of neuronal populations during exposure to naturalistic movies and I compare
these dynamics to the activity levels evoked by simplified laboratory stimuli (Section
3.3). This is the first time that a large-scale recording method directly measuring neu-
ronal activity has been used in conjunction with natural stimuli to investigate neuronal
dynamics at the mesoscopic level. My results demonstrate that the cortical processing
structures are indeed adapted to their real-world input and the artificial stimulation
paradigms, using for example, moving bar stimuli, lead the system towards an operating
regime which is different than natural movies. Moreover, in the last part of the same
Chapter (Section 3.4), by presenting natural movies locally through either one or two
apertures, I analyzed how the presence of contextual information influences the local
processing. My results show that the dense intra-cortical connectivity patterns are at
work under conditions of complex dynamics stimulation.

In the third part of this thesis (Chapter 4), inspired by the dynamic nature of the nat-
ural movies, I investigate the processing of dynamic stimuli and the effect of dynamic
extramodal sensory signals in humans. Previous results in our working group (Kayser &
Konig 2004) showed that dynamic stimuli such as movies recorded by cats induces mod-
ulations in the local field potentials (LFP) at different frequency bands, a phenomenon
called motion locking. Due to the fact that the VSDI is not well-suited for recording
of high frequency oscillations, we recoursed to the EEG which is a well-known and es-
tablished recording method. I investigated how such dynamic stimuli is processed in
humans and the effect of contextual auditory information that was either congruent or
incongruent with the visual input. Our results showed, for the first time in humans,
the existence of motion locking using the method of EEG thus extending the results
obtained in the cat cortex. Moreover I provided evidence that motion locking in the
early visual areas is subject to modification in the presence of contextual auditory signal
if it is congruent to the motion of the visual stimulus.

In the fourth and last part of this thesis (Chapter 5), the active behavior of humans dur-
ing real-world input was in my focus. In order to complement the physiological findings
reported above concerning the existence of short and local integrative mecanisms at the
cortical level, I measured eye movements in human subjects as they were freely observ-
ing naturalistic photographs and investigated how a localized auditory signal influenced
their behavior under natural conditions. My results showed that the presence of local-
ized sound stimuli shifted the eye movements toward the side of the auditory stimulus;
however, this was more than a simple orientation behavior and reflected the outcome of
an integrative phenomenoun taking place during the planning of eye movements.
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A Simulation Approach: Learning Binocular
Receptive Fields from Natural Movies*

2.1 Context

One of the fundamental questions in current theoretical neuroscience is how to under-
stand the rules governing RF properties. Neurons gather their functional properties
by virtue of the specific connectivity pattern on the surface of their dendrites with the
incoming axons. A neuronal subtype called simple cell, found mainly in the thalamore-
cipient layers of early visual cortex, do have RFs with elongated ON and OFF subfields
endowing them with the ability to detect edge-like structures (Hubel & Wiesel 1959).
Compared to the circular RFs of retinal ganglion (Kuffler 1953, Barlow 1953) and LGN
(Hubel & Wiesel 1962a) neurons, this is considered as an operation resulting in sensitiv-
ity to more elaborated features. The other major subtype, complez cells, found mainly
in the superficial layers (Martinez et al. 2005), are in addition to be sensitive to the
orientation of the edge, they possess the intriguing property of being relatively invariant
to its precise position within the RFs. Neuronal computations leading to invariance with
respect to a given visual feature such as for example the position of the stimulus, are
ubiquitous in the ventral visual system (Ito et al. 1995). For example neurons in the
fusiform gyrus (Kanwisher et al. 1997) are, beside being selective for faces, relatively in-
variant to the angle of view. From this perspective the complex cells we are investigating
here occupy a well-defined study case for the understanding of learning and emergence
of invariances. What are the computations realized in the dendrites of these neurons,
and most importantly, can we derive compact mathematical descriptions of the learning
principles for these operations?

The spatial properties of complex cell RFs are compatible with the hypothesis that

*I am thankful to Christoph Kayser for his support for the preparation of the results presented in
this Chapter.
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cortical neurons form optimally stable representations of time-varying real-world input
(Hyvirinen & Hoyer 2001, Einh#user et al. 2002, Kérding et al. 2004, Wiskott & Se-
jnowski 2002). Within this scheme an artificial neuronal network is fed with natural
input and the response of the neurons are optimized with respect to an objectively
defined constraint. This optimization forces neuronal activities to change as slow as
possible across time in response to a representative set of natural image sequences by
virtue of the specific organization of the learnt connectivity weights. It has been shown
that extracting optimally stable features from natural movie sequences in conjunction
with a basic neuronal model leads to the emergence of complex cell-like RFs. In this
work, we extend these studies to stereoscopic natural movies and show that by optimiz-
ing the stability of visual representations disparity selective and translation invariant
cells emerge. Moreover, the response properties of these cells resemble in many aspects
binocular neurons observed in visual cortex. The concept of optimally stable representa-
tions successfully describes important aspects of the binocular processing of neurons in
primary visual cortex. This is compatible with the view that the synaptic organization
in the upper cortical layers may be governed by a simple mathematical rule.

2.2 Introduction

Starting from early work on retinal electrophysiology (Kuffler 1953, Barlow 1953), con-
tinuing with the Nobel Prize winning discovery of Hubel and Wiesel (Hubel & Wiesel
1962a) in primary visual cortex, a wealth of data has been made available on the prop-
erties of neuronal responses in the visual system up until now (Ringach 2004). We know
that neurons in V1, the cortical area closest to retina, respond to visual stimulation with
specific characteristics. Edge-like structures with a specific orientation, spatial width
and motion direction evoke vigorous activity. Our understanding of the processing in
the mammalian visual system is largely based on such descriptive characterization of RF
properties.

Given that real-world data is not labeled as edges, surfaces, textures etc., frameworks
relying on unsupervised, feed-forward learning of such RF properties are much appreci-
ated. Early on it has been emphasized that the encoding of sensory signals is related
to the statistics of the input they are exposed to (Barlow 1953; 1961b, Field 1987). For
example, natural images do contain redundancies e.g. a brightness value measured at
a given position is correlated with a neighboring position due to the dominance of low
spatial frequencies in the natural images. It has been estimated that natural images con-
tain less than 60 % of the entropy of images having the same power spectra (Chandler
& Field 2007), meaning that strong redundancies exist. Therefore representations that
are much more efficient than pixel representations of images would be possible. It has
been proposed that sensory neurons may reduce redundancies in the input signals by
efficiently representing the key building blocks of natural images (Barlow 1961a).

Recent theoretical studies provide insights into the relation of neuronal response proper-
ties and natural stimulus statistics especially with an emphasis on simple and complex
cells. Simple cells, constituting a considerable number of neurons in V1, are optimally
activated by stimuli with specific position, orientation and spatial frequency and it has
been shown that this is compatible with an optimally sparse representation of natu-
ral visual stimuli (Field 1987, Olshausen & Field 1996). Sparse coding implies highly
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selective representations of the input signals, and consequently, this results in neurons
that are silent most of their lifetime in response to various external input but very active
when their preferred stimulus is in their RF. Olshausen & Field (1996) created optimally
sparse representations of a large set of natural images in a neuronal network simulation.
They found that the features that these artificial neurons are selective for share many
common characteristics (e.g. localized RF's, orientation and spatial frequency selectivity)
with simple cells found in V1.

Complex cells, the other dominant population in V1, are similar in many respects. How-
ever an important qualitative difference is that their responses are invariant with respect
to the precise position of the stimulus (Hubel & Wiesel 1962b). The principle of tem-
poral coherence (also referred as slow feature analysis) was originally proposed in the
form of the trace rule (Foldiak 1991). The main idea is based on the assumption that
the relevant features in an environment change much slower (e.g. orientation of an edge)
than the noise component (e.g. neuronal noise). Therefore by learning to extract slow-
changing features from a signal, one might expect to gather a set of useful features. It
has been shown that the position invariance property of complex cells can be under-
stood computationally within the framework of forming optimally stable representations
of natural movies (Hyvirinen & Hoyer 2001, Einhduser et al. 2002, Wiskott & Sejnowski
2002, Kording et al. 2004). Optimizing the stability of representations has been also
successfully used to predict the non-linearity of neurons (Kayser et al. 2003a). Thus,
important characteristics of simple and complex cells in V1 can be understood in terms
of general properties of the representations formed.

All these studies have implicitly assumed a monocular visual system as the simulations
were realized using natural movies or images recorded with only one camera. This
discards therefore the binocular disparity dimension of the visual feature space. This
is obviously an acceptable starting point but also a considerable simplification of the
visual system of animals. Neurons in the primary visual cortex of monkeys and cats
which have two frontally located eyes with a large binocular field, exhibit prominent
binocular interactions (Pettigrew et al. 1968, Poggio & Fischer 1977, Anzai et al. 1999a;b,
DeAngelis 2000).

In such animals, fixational eye movements bring a given point in a scene to the foveal
region, which contains a high density of photoreceptor cells, and because of the conver-
gence of the line of sight to the same external object, both left and right retinal images
are in register with respect to each other on this retinal region. However, all other parts
of the external world project at disparate positions on both retinae. This is reflected
in the interesting differences in the spatial organization between left and right retinal
counterparts in the RF of binocular neurons. It is thought that neurons that are selec-
tive for these differences are suitable for the detection of disparity (Ohzawa et al. 1990)
and underpin the basis of stereoscopic perception (Cumming & DeAngelis 2001). These
differences in the RF spatial organization take the form of shifts in the position of the
RF center or small phase shifts in the precise location of ON and OFF subregions (Anzai
et al. 1997). Moreover it has been reported that shifts of the RFs are specially biased to-
ward a horizontal direction, paralleling the statistical fact that the most of the disparities
occur along the horizontal axis due to the alignment of both eyes (Cumming 2002). On
the other hand intriguing facts such as the presence of binocularly unbalanced neurons
are also observed. Whereas some binocular neurons do have rather balanced input from
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both eyes, a non-negligible amount receives unbalanced input (Wiesel & Hubel 1974,
LeVay et al. 1985). However, the reason for this organization is not well-understood. On
the psychophysical level, it is well known that the binocular disparity feature, even on its
own, is a powerful cue to create a vivid sensation of depth, indicating the fundamental
aspect of this feature detected by these neurons (Julesz 1960). Therefore, a complete
account of the RF properties must include the binocular dimension. Moreover, enrich-
ing the input by including this visual feature offers us the possibility to test different
coding schemes on the basis of how well they reproduce classically observed binocular
characteristics.

In this Chapter, we record stereoscopic movies with a pair of micro-cameras carried by
a freely moving cat in a natural environment and we train a neuronal network to make
optimally stable representations of these stereoscopic natural movies. A comparison with
the reported physiological data tests whether we can understand binocular neuronal RFs
as optimal representations.

2.3 Methods

2.3.1 Recording of Videos

We used a custom made setup to record stereoscopic movies. Two micro-cameras (The
Imaging Source, DFM-5303) were mounted on a crossbar with a distance of 4.8 cm (Fig.
2.1) approximating the interocular position shift of the cat. The setup was calibrated
to obtain a binocular parallax of zero at infinity. The gain control of both cameras
was fixed to a constant value to avoid luminance differences. In order to synchronize
two video streams we used a manually controlled shutter closing circuit that produced
simultaneously black images in both cameras. The total weight of the setup was 71 g and
was reversibly attached by two screws to an electrophysiological implant of a cat. During
recording the cat was freely exploring an outdoor environment and didn’t exhibit any
observable behavior of dislike to these procedures. The movies were recorded in a forest
near the university campus. Care has been taken to avoid any human constructions.
Two mobile VCRs (Roadstar, VDR-6205K) carried by the experimenter have been used
for the recording. The videotapes have been digitalized in Matlab (Mathworks, Natick,
MA) by using a homemade script. With this setup we recorded 21 movies on different
days. These correspond to a total of 27556 non-compressed 752x582 RGB movie frames
at 25 Hz. The whole procedure is in compliance with institutional national guidelines
for experimental animal care.

2.3.2 Building the Stimulus Set

The stimuli to train the network consisted of a sequence of grayscale image patches taken
from the stereoscopic movies. Sequences were two frames long and corresponded to an
interval of 40 ms due to the sampling rate of the micro-cameras. The patches were 40 by
40 pixels, roughly corresponding to 1 degree of view angle. For computational reasons,
we down sampled these patches by half.

A stereo-patch was formed by extracting a pair of monocular patches from the same pixel
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Figure 2.1: Recording of Natural Movies. Natural
movies were recorded at a sampling rate of 25 Hz using a
pair of analogue cameras reversibly mounted on the heads
of cats. As the cameras are positioned to have 0 binoc-
ular parallax at infinity the only disparities presents in
the input are crossed disparities. The cameras were po-
sitioned so that the Cameras and plastic support (weight
70 g) were connected by cables to a pair of analogue video
recorders carried by the experimenter. Cats did not ex-
hibit any signs of discomfort because of the additional
weight on their head, and freely explored their surround-
ings. See also the Fig. 1.1D

coordinates of corresponding left and right images and by appending them horizontally.
This created a rectangular patch of 20 by 40 pixels which was processed as a unit i.e.
no explicit distinction on the eye identity (left or right) was provided.

The left and right parts of stereo-patches were subject to different selection criteria based
on the similarity between each monocular halves. For the first set we did not apply
any selection criteria, therefore the similarity between left and right patches reflected
the intrinsic similarity present in binocular images. This set contained stereo-patches
composed out of monocular halves that were extracted from randomly selected pixel
coordinates (random condition). The second set (confidence condition) contained stereo-
patches composed exclusively out of similar monocular patches. This was intended to
mimic the role of the eye movements bringing the binocular images as much as possible
into register. The strength of the similarity was evaluated by a confidence measure
based on the correlation between left and right patches. We computed the correlation at
different horizontal and vertical lags between both monocular patches which had their
mean brightness values set to zero. We evaluated how much the peak value of this
correlogram stands out by measuring its distance to the background correlation and
chose only the most correlated pair of patches. Each set used for training the network
contained 20000 stereo-patches for time points ¢ and ¢ + 1.

As each pixel represents one dimension in the input layer, we sought to reduce the di-
mensionality of the stimulus set in order to reduce the computational load. A principal
component analysis (PCA) was used to reduce the dimensionality of the stimulus set.
PCA was realized on the stereo-patches. The components ranging from 2 to 101 were
used; first PCA component resembling the mean luminance was discarded. These were
the weights of the PCA components rather than the raw pixel data which were used
for the optimization process. The contributions of different principal components were
whitened by dividing each eigenvector by its eigenvalue and thus each principal compo-
nent had an equal contribution. This is thought to be similar to the operation of LGN
(Dan et al. 1996) which whitens the contribution of different frequency channels.

2.3.3 Structure of the Neuronal Network

The model implements a two-layer feed-forward neuronal network (Fig. 2.2). The
weights connecting the input layer to the subunits in the next layer are subject to
modification by the optimization procedure. The activity of the neurons on the top
layer is determined by the neuronal model which dictates the way how the activity of

15



Chapter.2 Learning of Binocular Complex Cells

subunits converges to the output neuron. This neuronal model is not subject to modifi-
cation throughout of the simulation and it is similar to the energy model of complex cells
proposed by Ohzawa et al. (1990). According to this model shown in equation (2.1),
the activity of the output neuron i at time ¢, A;(t) is determined by two full-rectifying
binocular subunits

Ailt) = /W, - 1) + (Wi, 1(1))? (2.1)

N pairs of binocular
subunits

input layer
N PCA components

Figure 2.2: The structure of the Artificial Neuronal Network. The nodes in the first layer (bottom circles)
represents input dimensions. The input is formed by temporal sequences of stereo-patches. Rather than using the
raw pixel data as the input, the simulations were run on PCA components which covered 90 % of the variance
present in the stereo-patches. This was done in order to lower computational load. Each single input dimension
were connected to all subunits (blue circles). These connections represented the RFs of the subunits. Subunits
were organized as pairs and each unit within a pair were connected to a complex cell (red circle on top). The
activity of the complex cell was determined according to the equation in 2.1. The activity of these neurons were
the basis for the optimization process which modified the RF's.

where A;(t) represents the activity of neuron i at time point ¢; W7 and W2 represent
the RF of the subunit 1 and 2; I(t) represents a stereo-patch at time t. As specified
above, no explicit differentiation of the left and right eyes were defined therefore the
weight matrix defined by W represents the RF of both eyes. Due to the scalar product
preceding the square operation depicted in the equation above, the left and right images
interacts linearly for the activation of a given subunit. Thus our network is in accord
with the classical energy model Ohzawa et al. (1990). We simulated 100 neurons each
with two subunits.

2.3.4 The Goal Function

The activity of the neurons in on the top layer are optimized with respect to an objective
function by gradient descent. The goal function is composed of two terms:

\Iltotal = \Ijstable + \I]decorrelation (22>

The first term W p5¢ is the stability criterion and defined in equation 2.3.
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< (Avy — Aigis)? > stimuti
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The top term is the mean squared derivative of activities with respect to time over all
stimuli. This terms is minimized if the activity levels are more stable across time and
thus do not change. The brackets symbolize the average over stimuli. § is set to 40 ms
and equal to the time interval between two frames during recording. The trivial solution
for this optimization problem is a completely insensitive black RF for both subunits.
This would result in a neuron with a constant activity of zero i.e. maximally stable. In
order to exclude this trivial solution, we scale the nominator by the total variance in
the denominator where o represents the standard deviation of activity levels of a given
neuron at a given time point computed across all stimuli. The resulting expression takes
large negative values and thus punishes fast changes. Therefore the optimization is the
result of two opposing forces, while the neurons are forced to be as stable as possible
across short time scales, they achieve this by being as variable as possible in the long
time scales.

Because the stability criterion evaluates individual neurons independently, the optimal
solution is identical for all simulated neurons. It is customary to introduce a second,
decorrelation term to avoid such degeneracy.

1
\I}decorrelation = _m Z Z UZ'QJ (24)
i i)

The decorrelation term shown in equation 2.4 forces different neurons to be selective
for different features by punishing correlations among neurons. o;; corresponds to the
covariance between neurons i and j. N denotes the total number of neurons. This
results in an optimal coverage of the energy landscape at the expense of the stability
of individual neuron activity. The overall operation accomplished by the network is to
extract the slowest features from a given stimuli set thus achieving a learning supervised
by the temporal structure of the stimuli.

2.3.5 Analysis of Receptive Fields

After 800 iterations, consecutive changes of the objective function were smaller than
10~? and the optimization converged. To each monocular RF, a two dimensional Gabor
function was fitted. The fit is realized by using the lsqcurvefit function of Matlab (Math-
works, Natick, MA). All the fits are graphically checked to ensure that the algorithm
did not get caught in a local minima. To precisely compute the phase shift between left
and right RFs, we used gratings with optimum orientation and spatial frequency at all
possible phase shifts and found the phase shift between left and right monocular RFs.

In order to quantify the translation invariance of the complex neurons, the AC/DC ratio
(Dean & Tolhurst 1983) was computed by translating the optimal grating stimulus on the
neuron’s subunits and computing the activity according to the neuronal model. Based
on these activities the ratio in equation 2.5 was computed and assigned to the neuron’s
AC/DC ratio.
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max(A;) — min(A4;)

AC/DC; = mean(A4;)

(2.5)

Finally, to compute the binocular dominance index (BDI) the ratio in equation 2.6 was
calculated for each neuron. This value deviates from 0 if one of the eyes has a dominant
contribution to the neurons activity level.

max(AF)

BDI; = log(———%~
Og(maX(Aﬁ)

) (2.6)

2.4 Results

We investigate optimally stable representations of the stereoscopic natural stimuli by
training a neuronal network. A representative set of the optimally stable RFs are shown
in Fig. 2.3. For each of the 6 optimally stable neurons presented in Fig. 2.3, their
binocular subunits are presented (left and right columns). The binocular RFs contain ON
and OFF regions similar to cortical neurons’ RFs. In the following a detailed description
and related statistics concerning the selectivities of the optimally stable neurons will be
explained for different stimuli conditions. Few non-converged RFs (3 from the confidence
condition and 8 from the random condition) were not included in the analysis.

2.4.1 Orientation and Spatial Frequency Selectivity

The RFs of subunits are selective for a given orientation and spatial frequency and they
resemble to Gabor functions (Fig. 2.3). Although in these examples the orientation and
the spatial frequency selectivity of different neurons vary a lot, regions pertaining to left
and right eye, and first and second subunits of a given neuron are always similar. There
is a high correlation between left and right eye orientation selectivity of all subunits
(r = 0.94 for confidence condition and r = 0.96 for random condition). The correlation
between same eye RF of different subunits for a given neuron was 0.98 and 0.97 for
confidence and random stimuli conditions respectively. Concerning the spatial frequency,
the correlation coefficients between left and right RF were 0.99 and 0.98 for confidence
and random conditions respectively. Similar correlation exists between the same eyes of
different subunits. This indicates a tight coupling of feature selectivity of left and right
eyes irrespective of the stimuli set for which the neurons where trained.

The distribution of orientation selectivity over the whole population of neurons has a
strong anisotropy towards horizontal and vertical orientations (Fig. 2.4, top row, left
panel). Analyzing the distributions of orientations inside patches of 40 by 40 pixels in
our natural movie database, we found that the distribution of orientations has a similar
distribution to the RF selectivities trained in the confidence condition (data not shown).
Concerning the spatial frequency tuning (Fig.2.4, top row center panel) of all neurons,
the random condition (gray lines) gives rise to many low frequency selective neurons
while in the confidence (black lines) condition neurons cover more evenly the frequency
space and extent to higher frequencies. Overall neurons trained by both stimuli sets seem
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Figure 2.3: A Selection of RFs Representing Opti-
mally Stable Representations of Stereoscopic Natural
Movies. The binocular RF's of 6 neurons are presented in each
row. Each cells is given an index number to specify its location
in the next Fig.. Receptive fields of subunits are selective for
a given orientation and spatial frequency. A given pair of sub-
units as well as different eyes of a given subunit exhibit similar
preferences. Left and right RFs of subunits of Cell I encode
disparities with a shift in the phase of their monocular RFs.
On the other side, the cell 3 encode disparities by positional
shifts of the RFs. Cells 2, / and 6 are binocularly unbal-
anced. These occur mostly when the cells are trained with less
correlated binocular input (random condition). Another point
worth to mention is that cells seems to be selective for horizon-
tal disparities independent of the orientation selectivity of the
cell (see cell 8 and 6).

to cover the stimulus space evenly, although this is more prominent in the confidence
condition.

2.4.2 Disparity Encoding

Next we investigate the coding of disparity information. In the disparity energy model
(Ohzawa et al. 1990), a complex cell can be selective to a given disparity by either shifts
in its phase or central position of its left and right RF eye. Both types of mechanisms
are thought to be involved in the encoding of binocular disparity in the visual system
(Anzai et al. 1997, DeAngelis 2000).

Neurons 1 and 5 in Fig. 2.3 are example cells where the phase shift between left and
right RFs of subunits can easily be distinguished. These cells code for the binocular
disparity by shifting the phase of their ON and OFF subregions rather than shifting
globally their position. The correlation of phase shifts between subunits was 0.98 and
0.96 for confidence and random conditions respectively. This indicates that different
subunits of a neuron have very similar phase shifts. The histogram (Fig. 2.4, bottom
row left panel) shows that at the population level the subunits cover the phase space
mostly between 0 and 7 which corresponds to the crossed disparities present in the
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Figure 2.4: Feature Selectivity of the Simulated Complex Cell Population. The results of both random
(gray lines and empty dots) and confidence conditions (black lines and dots) are presented as histograms. The
numbered arrowheads refer to the indices of neurons depicted in Fig. 2.3.

stimuli.

In addition to encoding disparity by phase shifts, neurons have also horizontal position
shifts which make them suitable to encode disparity by position shifts. The neurons 3
and 6 of Fig. 2.3 are exemplar neurons where the positional shifts are clearly apparent.
This can be quantified by analyzing the difference between the centers of RFs of left
and right eyes. The center of a RF corresponds to the center of the Gaussian envelope
obtained after Gabor fitting process. In Fig. 2.4 (bottom row, right panel), the horizontal
position shift between left and right RF of two subunits for a given neuron are plotted
against each other (black dots) for the whole population of neurons. It can be seen
that position shifts cover a large spectrum of disparities and that the amount of shifts
are correlated between each subunits meaning that a given complex cell receiving inputs
from a pair of subunits receives similar information with respect to the disparity (r = 0.5
and 0.43 for random and confidence condition respectively). This shows that, in addition
to phase shift encoding, learnt RFs use also positional offsets to encode disparity as do
the RF's observed in physiological experiments.

It has also been reported that neurons in the primate visual cortex, are predominantly
selective for horizontal disparities irrespective of the orientation selectivity of the neuron
Cumming (2002). The same tendency in the optimized neurons can be observed in
Fig. 2.3 (e.g. neurons 3 and 6). This shows that the observed cortical specialization
for horizontal disparities can be explained by the statistical structure of the binocular
visual information in a feed-forward manner.
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2.4.3 Translation Invariance

AC/DC ratio quantifies how well a neuron is translation invariant and low values are
obtained if neurons exhibit position invariance. The distribution of AC/DC ratios is
depicted in Fig. 2.4 (bottom row, middle panel). Most of the values being very close
to zero, this shows that neurons are position invariant with respect to the precise lo-
calization of their optimal stimuli. The random condition gives generates slightly more
neurons having high AC/DC ratios compared to confidence condition. However here also
most of the neurons are translation invariant. Taken together with the results presented
above, this shows that the optimally stable neurons exhibit, in addition to be selective
for a given orientation, spatial frequency and binocular disparity, the property of being
invariant to the precise position.

2.4.4 Binocular Dominance

An interesting result is the differences in binocular dominance distribution of RFs trained
with different stimulus conditions (Fig. 2.4, top row, right panel). Neurons 4 and 6 in
the Fig. 2.3 are typical binocularly unbalanced cells. These unbalanced RFs were more
numerous in the random stimulus condition. This is reflected in a wider distribution of
binocular dominance values in Fig. 2.4). This suggests that training with a stimuli where
the correlation between left and right monocular images is low, favors the dominance of
one eye over the other. We verified this by creating a new set of stimuli where the left and
right parts were chosen to be always uncorrelated. This resulted in a complete dominance
of an eye over the other in every simulated neuron (data not shown). Diminishing or
completely cancelling the contribution of one eye in the face of uncorrelated input seems
to be the solution for increasing the stability of the neurons.

2.5 Discussion

2.5.1 Why Do Receptive Fields Have the Structure They Have?

Giving a formal account of the RF structure is one of the most important preoccupa-
tions in theoretical neuroscience. While physiologists describe and detect the properties
of RFs, theoretical studies attempt to give an account in term of input statistics and
some well-defined formal computational constraints such as stability or sparseness. The
hypothesis that the process governing RF organization can be well described by an opti-
mization process has received support by experimental and theoretical work (Olshausen
& Field 1996, Wiskott & Sejnowski 2002, Hurri & Hyvérinen 2003, Kording et al. 2004).
Much of this work concentrated on the selectivity of simple and complex cells in the
primary visual cortex with respect to orientation and spatial frequency. However, it is
well known that neurons in primary visual cortex are selective to many more features
including color, and disparity. The relation between selectivity of neurons for these fea-
tures and the input statistics is being investigated only recently (Caywood et al. 2004,
Einh#user et al. 2003, Hoyer & Hyvarinen 2000, Wyss et al. 2006). Here in the same
direction, we argue that disparity tuning of complex cells can be understood based on
the same principles.
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We show that the binocular disparity feature can be extracted by forming optimally
stable representations of stereoscopic natural movies. Most importantly, the stable rep-
resentations are in good agreement with the properties of disparity selective simple and
complex cells recorded from the cortex (Anzai et al. 1999a;b). We have shown that
neurons encode disparities both by binocular phase shift and position shifts similar to
the observations noted in the physiological literature (Anzai et al. 1997). Both strate-
gies seem to be the natural outcome of extracting stable features of natural stereoscopic
movies. Furthermore, the binocular disparity selectivity seems to be more specialized
for horizontal disparities independent of the orientation selectivity of the neurons (Cum-
ming 2002) although a more detailed analysis is needed to quantify this. Additionally
the binocularly unbalanced RFs, described in the early physiology literature (Hubel &
Wiesel 1962b) is shown to emerge from the convergence of uncorrelated input from both
eyes. In summary, constraining artificial neurons to be as stable as possible in response
to a stream of appropriate input reproduces many aspects of binocular processing that
are well known to physiologists.

Studies investigating unsupervised learning of disparity selective neurons are relatively
recent. This is probably because it is technically difficult to record such images and
movies. On the other hand, disparity feature offers another dimension in which the in-
vestigators can evaluate the similarities of the artificial and biological RFs and evaluate
general mathematical principles of synaptic learning leading to the observed RF struc-
tures. Hoyer & Hyvarinen (2000) successfully applied a similar approach to stereoscopic
images by using independent component analysis. They obtained RF's similar to simple
cells resembling in many aspect physiological RF although they did not make a detailed
comparison to the physiological RFs.

In the visual cortex of a variety of animals, sophisticated binocular interactions are
described. For example, this includes neurons selective for a given slant of the visual
stimulus or having selectivity for relative disparity emerging in V2 of monkeys (Thomas
et al. 2002). From a theoretical point of view, it is fundamental to know whether the
same goal function, when iterated several times, would give rise to RFs comparable to
those found in visual areas located hierarchically higher.

As a cell model, we used a classical disparity energy model. Therefore, in each subunit
the weighted inputs by left and right eye are summed before the non-linearity is applied.
This model has already been used to describe the disparity selectivity of cortical neurons
(Ohzawa et al. 1990). But it is also known for its limitations e.g. its inability to
capture combinations of inhibitory and excitatory effects from left and right RFs (Read
et al. 2002). This choice limits the faithfulness of describing known physiological data.
Nevertheless, we considered it more important at the present stage to use the identical
type of neuronal model as in previous studies by others and our own group. This
decision makes the integration of different feature selectivity, e.g. color (Einh#user et al.
2003) straightforward. The alternative, to use a different neuronal model to understand
disparity, and to worry over other features later, is of course also possible. Thus, we
consider the present study as one of two equally valid approaches to a description of
multiple feature selectivity using detailed neuronal models.
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2.5.2 How Could Stable Features Be Extracted by Neurons?

How could stable visual features might be extracted by neurons? A set of experiments
by Frégnac & Shulz (1999) shows that artificially increasing the covariance between the
afferent input and postsynaptic activity by injecting intracellular currents is sufficient to
induce long-lasting modifications in the visual responses of neurons. This confirms the
possibility for Hebbian-like learning processes in the early visual cortex. It is possible to
evaluate these results from the point of view of a given visual feature’s temporal stability:
the more a feature in the stimulus space is stable over time, the more the postsynaptic
neuron representing this feature will tend to be consistently activated by the presynaptic
cell. This will fulfill the requirements of an Hebbian learning and consequently this
feature will be learnt by the network. At the cellular level, back-propagating action
potentials (Larkum et al. 1999) are a natural candidate for generating a local learning
signal (Kording & Konig 2001). Recently Sprekeler et al. (2007) provides a detailed
account on how stability can be extracted in a biologically plausible manner using the
spike timing dependent plasticity rule.

2.5.3 Relation to Sparseness

In their milestone report (Olshausen & Field 1996), Olshausen & Field showed that arti-
ficial neurons representing natural images in an optimally sparse way, have RF structures
similar to the ones recorded during electrophysiological experiments. Two constraints
were imposed during the training of the neuronal network. The first constraint required
the distribution of neuronal activities to be as sparse as possible. This was obtained by
imposing a non-Gaussian activity distribution with a strong peak and heavy tails. This
forced neurons to be as selective as possible in their responses by having zero or very
little response to most of the natural images and strong responses to only a small subset
thereof. Worth noting is that the stability criterion does not impose any distribution on
the resulting activity levels.

The second driving force of the optimization Olshausen & Field (1996) used constrained
the neuronal population to convey as much information as possible regarding the stimulus
so as to minimize the reconstruction error of the stimulus. However, this latter constraint
cannot easily be justified on biological grounds, simply because neurons in the visual
cortex that are processing incoming signals do not "know” anything about what is to be
represented. They are simply local agents blind to the global aspects of the incoming
signals. In our simulations we did not need to provide any explicit knowledge on what has
to be represented. This was motivated from the fact that there is a priori no necessity
from the neuronal perspective to represent an image.

Another major difference between the sparseness or stability criterion as goal functions
concerns the nature of the sensory input. Whereas sparseness, as it is generally imple-
mented, operates on static images, extraction of stable features is tightly related to the
bodily motion of the animal, which is in turn responsible for the temporal scale of the
changes in the retinal input. Therefore the development of RFs under stability criterion
is tightly related to the specific action repertoire of a given animal. It is tempting to
speculate that animals of different types may use the same synaptic learning principle in
order to extract features from the environment that are relevant for their idiosyncratic
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sensory-motor action.
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An Optical Imaging Study: Cortical Dynamics
During Processing of Natural Movies*

3.1 Context

In the previous section, we have seen that relatively simple mathematical expressions
governing synaptic connectivity patterns captured many essential properties of neuronal
RFs located in the early sensory areas. Rather than predicting the responses of com-
plex and simple cells to natural movies per se, we were dealing with an optimization
problem where the responses were forced to satisfy some well-defined constraints. In
this Chapter, we will directly deal with the characterization of neuronal population re-
sponses recorded from the superficial layers of the early visual cortex of cats. Natural
scenes are complex in nature and there are no simple mathematical formulas with which
to describe them; however, they are far from random and they contain strong regulari-
ties (Chandler & Field 2007). Given that natural images occupy only a small fraction of
all possible images, it is expected that neurons constrained by evolutionary, metabolic
and computational pressure have developed some adaptational strategies for the specific
input they are exposed to (Graham et al. 2009). We will investigate whether or not
cortical responses do exhibit any signs of functional specialization for the processing of
natural real-world input. As stimulation, we will use natural movies from the previous
Chapter in conjunction with simplified laboratory stimuli, which are by far the most
common source of stimulation in physiological experiments investigating visual process-
ing. We will use a state-of-the-art neuronal recording method: Voltage-Sensitive Dye
Imaging (VSDI), in order to visualize directly the responses of neuronal populations to

*This Chapter is the result of a tight and fruitful colloboration with Dr. Dirk Jancke in Ruhr-
University Bochum. All the experiments are realized by him and his team in Bochum. The recording of
movies, preparation of stimulation protocol and all data analysis are realized by me. The results presented
here will form the basis for three different publications. As of today, two of these are submitted (Onat
et al. 2009¢;b), and the third one (Onat et al. 2009a) is close to the final state.



Chapter.3 Cortical Dynamics During Processing of Natural Movies

stimulation with our natural movies. Voltage-Sensitive Dye Imaging offers an unequal-
ized conjoint spatial and temporal resolution (Grinvald & Hildesheim 2004). Whereas
it can simultaneously record neurons spread over distances of few millimeters on the
superficial layers of the cortex, it offers an extremely good temporal resolution allowing
the detection of activity changes in millisecond time-scales. However, in order to avoid
complications associated with the stereoscopic presentation of natural movies, here we
presented our movies monocularly. This recording method is used here for the first time
in conjunction with natural movies.

In the Section 3.3 of this Chapter, we compare the spatio-temporal dynamic activity
characteristics of neurons driven by simple laboratory stimuli (i.e. drifting square grat-
ing) and complex natural movies under controlled stimulation conditions. Our results
demonstrate that the processing of natural movies is realized by a rich repertoire of
spatio-temporal activity dynamics which are locked to the motion signals inherent to
natural movies (Sections 3.3.3.2 and 3.3.3.3). As expected from the simplified nature
of the artificial grating stimuli, the spatio-temporal dynamics were much simpler during
processing of grating stimuli. Nevertheless we observed a high degree of spatio-temporal
inseparability in the activity levels. Our results presented in the Section 3.3.3.4 show
that the responses to gratings were characterized by a linear superposition of an orien-
tation and retinotopical map simultaneously encoding the orientation and the position
of the displayed grating.

By comparing large-scale activity levels, we show that the processing of natural movies is
characterized by a state that is very different than the grating stimuli (Section 3.3.3.5).
This state is mainly characterized by an excess of net inhibition. We show that these
differences are unlikely to arise from local differences of luminance contrast levels between
these two classes of stimuli, but rather result from an evolutionary functional adaptation
of the cortex in response to the input patterns it receives under operational conditions.

The last part of this Chapter (Section 3.4) is devoted to the question of contextual
modulation under natural conditions. The early visual cortex contains an extended
network of lateral connectivity going far beyond the spatial extent of the classical RF's
(Series et al. 2003, Gilbert & Wiesel 1989). To study the functional role of these long-
range lateral connections under natural conditions, we presented our natural movies
locally through either one or two Gaussian apertures. Our results presented in the
Section 3.4 demonstrated that the local processing of natural movies is influenced by the
distant stimulus located many visual degrees away. This contextual stimulation had a
net facilitatory effect on activity levels (Section 3.4.3.3) and shortened the latency of the
cortical responses (Section 3.4.3.2).

3.2 Analysis of Optical Imaging Data

In this section I provide a detailed account of the general analysis methods used through-
out this Chapter. In order to not disturb the flow of thought related to the scientific
questions with highly technical issues, I require the reader to refer to the Appendix (in
7.1) at the end of this thesis.
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3.3 Are Simple Laboratory Stimuli Processed in the Same
Way as Natural Input?

3.3.1 Introduction

The early visual cortex comprises an extended, densely interwoven network, acting on
millisecond time scales (Callaway 1998). Across cortical layers, activity is rapidly dis-
tributed by local feedback loops (Tucker & Katz 2003, Douglas & Martin 2007), tangen-
tially, long horizontal fibers connect distant neuronal populations to each other (Gilbert
& Wiesel 1989, Kisvarday et al. 1994, Grinvald et al. 1994, Bringuier et al. 1999, Jancke
et al. 2004). Additionally, feedback loops involving higher areas add to interactions over
large distances (Bullier et al. 2001), in sum forming a repeating scheme of connectiv-
ity that allows far-reaching, spatio-temporal integration of information. Furthermore,
neuronal activity in early visual cortex covaries with basic stimulus parameters such as
position, orientation, direction of motion, color, spatial frequency, and binocular dispar-
ity. In many mammals, the large scale organization of early sensory cortices is in the form
of overlaid maps in which neurons with similar tuning properties are spatially clustered
(Hubel & Wiesel 1974, Blasdel & Salama 1986, Bonhoeffer & Grinvald 1991, Hubener
et al. 1997, Coppola et al. 1998). When stimulation parameters are varied in isolation
or in well-controlled low-dimensional steady-state experimental settings (Jancke 2000,
Geisler et al. 2007, Benucci et al. 2007), the layout of cortical maps changes (Basole
et al. 2003), but is still predictable using feedforward models of visual processing (Mante
et al. 2005).

As expected from the success of these models in predicting changes in population activ-
ity and related changes in map layouts, individual neuronal responses stimulated with
simple stimuli such as oriented bars and gratings are well predicted by linear models
incorporating non-linearities at the output stages (Chichilnisky 2001, Touryan et al.
2002, Rust et al. 2005). However, the success of the prediction is largely contingent
on the precise properties of the stimuli that are used; performance drops considerably
when non-parametric, complex stimuli, which appear in ecologically relevant settings,
are used to drive cortical neurons (Smyth et al. 2003, David et al. 2004, David & Gallant
2005). The statistical structures of natural images are by and large strikingly different
to simple laboratory stimulation. While the latter class of stimuli is controlled precisely
by the experimenter and thus tailored for the purpose of the experiment, the former
does not allow parametrical modifications but better represents the ecologically relevant
input to the sensory system. Despite their complexity, natural images and movies do
possess intrinsic regularities and recent research has shown that cortical (Felsen et al.
2005b, Mante & Carandini 2005) and subcortical (Dan et al. 1996) neuronal machinery
incorporate diverse phenomena adaptive to the statistical structures of the input sig-
nals. While the question of how individual neurons are adapted to the input statistics
has attracted a great deal of effort, only a very limited number of studies have compared
the large-scale effects of natural and artificial stimulation, and how real-world input is
represented cortex-wide within the early sensory areas remains largely unknown.

Simultaneous recording of the large number of neurons involved in the processing of
dynamic natural stimuli may in fact lead to an understanding of discrepancies in the
results obtained with different classes of stimuli. Here we used a large-scale recording
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method to investigate neuronal activity dynamics. Optical imaging using blue voltage-
sensitive dye records the sum of synaptic currents with high a spatial and temporal
resolution across cortical distances involving large numbers of neurons with an emphasis
on supragranular layers (Grinvald et al. 1984, Arieli et al. 1996, Shoham et al. 1999,
Petersen et al. 2003a, Jancke et al. 2004, Sharon et al. 2007, Ferezou et al. 2007). It
therefore reduces the possibility of having a biased sample of neurons and faithfully
provides the state of cortex under different stimulation conditions.

Our main working hypothesis is that the cortical circuitry does not embody a fixed,
generic processing structure in which all input signals are processed with the same pro-
cessing characteristics. In particular, the balance between inhibitory and excitatory neu-
rons, being subject to modification (David et al. 2004), may allow different processing
regimes for different categories of stimuli. Thus the processing of different stimuli may in
principle be realized in different operating regimes, defined by the general characteristics
of the state of a large population of neurons as they process their input. One corollary of
these considerations is that simple laboratory stimuli tailored for experimental purposes,
such as bars in the visual domain and sines or pure tones in the auditory domain may
indeed lead the system into a processing regime that is different than the one within
which naturalistic stimuli are processed. We defined here an operating regime as the
first, second and higher order properties of activity levels derived from large number of
neurons. As optical imaging with voltage-sensitive dyes quantifies the net difference be-
tween excitatory and inhibitory sources of synaptic activity, it is a well-suited recording
method for evaluating differences that characterizes different operating regimes.

In order to shed light onto the cortex-wide large-scale processing of simple and natural
visual input we presented natural movies and compared a variety of response character-
istics to the activity levels evoked by simple laboratory stimuli. Our results show that
the processing of natural movies within the superficial layers of early visual cortex occurs
under a different spatio-temporal context and in a distinct operating regime.

3.3.2 Experimental Procedures
3.3.2.1 Stimulus Acquisition and Presentation

Natural movies were recorded by freely moving cats with a head-mounted pair of cameras
(DFM-5303, The Imaging Source Europe, Bremen, Germany) while exploring a forest
(Fig. 1.1D and 2.1). In this study we used the data recorded from one of the cameras
only, hence no binocular depth cues were given. The cameras and the supporting frame
(=70 gr) were reversibly attached to an electrophysiological implant.

The gain of the camera was set to a constant value and the frames were recorded with a
sampling rate of 25 Hz. The output of the camera was recorded with a VCR (Roadstar,
VDR-6205K, Novazzano, Switzerland) carried by the experimenter. Recorded analogue
movies were later digitalized and transformed to grayscale with at a size of 640x480
pixels. The average and RMS value of brightness was then equalized to the respective
average values of the movies in our database so that each frame in our database had
globally the same average luminance and RMS value. We excluded movies that were
solely characterized by immobile fixation behavior of the cats.

A 24” Sony monitor (Sony Triniton GDM-FW900, Tokyo, Japan) covering a visual field
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of 30° x40° was used to present the stimuli with refresh rate of 100 Hz (thus each cat-cam
movie frame was repeated 4 times). The stimuli were shown using Matlab (Mathworks,
Natick, MA, USA) and Psychophysics Toolbox extensions (Brainard 1997, Pelli 1997).
The duration of the presentation was 2 seconds including 200 ms prestimulus period.
Stimuli were presented binocularly on the monitor located 50 cm distant from the cat’s
eyes. Eyes were converged using a prism in front of the eye that was ipsilateral to the
recorded hemisphere. The mean achromatic luminance of the stimuli was 11 c¢d/m? with
54 cd/m? for brightest, and 1.6 cd/m? for darkest pixels. The average brightness of the
screen during stimulation and interstimulus intervals (15 s) was kept constant during
the course of the experiment. Stimuli were presented in pseudo-random order in blocks.

3.3.2.2 Stimulus Conditions

During full-field conditions natural movies and gratings were shown across the entire
monitor screen. In each experiment, two different natural movies (movie 1 and movie
2) and gratings (horizontal and vertical) were used. Square wave gratings with spatial
frequency of 0.2 cycles/® and drifting velocity of 6 Hz were shown in horizontal and
vertical orientation. Their mean luminance and RMS contrast were adjusted to match
the natural movies.

3.3.2.3 Experimental Setup

All surgical and experimental procedures were approved by the German Animal Care and
Use Committee (AZ 9.93.2.10.32.07.032) in accordance with the Deutsche Tierschutzge-
setz and the NIH guidelines. In brief, animals were initially anesthetized with Ketamine
(15 mg/kg i.m.) and Xylazine (1 mg/kg i.m.), supplemented with Atropine (0.05 mg/kg
im.). After tracheotomy, animals were artificially respirated, continuously anaesthetized
with 0.8-1.5% Isoflurane in a 1:1 mixture of O2/N2O, and fed intravenously. Heart rate,
intratracheal pressure, expired COg, body temperature, and EEG were monitored dur-
ing the entire experiment. The skull was opened above A18 and the dura was resected.
Paralysis was induced and maintained by Alloferin®. Eyes were covered with zero-power
contact lenses as protectives. External lenses were used to focus the eyes on the screen.
To control for eye drift, the position of the area centralis and RF positions were re-
peatedly measured. A stainless steel chamber was mounted and the cortex was stained
for 2-3 hours with voltage-sensitive dye (RH-1691), and subsequently washed out with
artificial CSF .

3.3.2.4 Retinotopical Mappings

Prior to optical recordings, the topographic mapping between the cortical surface and
the visual field were scrutinized by means of several electrode penetrations (Fig. 3.1;
penetration sites and corresponding RFs are color coded). Stimuli were positioned so
that the upper movie patch matched the RF position of the simultaneously recorded
multiunit activity (Fig. 3.1, red circle and rectangle). This ensured that the distance
between the Gaussian masks were separated beyond the size of classical RF's.
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Figure 3.1: Retinotopical Mapping. Retinotopy across the imaged
cortical region was evaluated by hand mapping of RF locations (col-
ored rectangles) at various penetration sites (see corresponding colored
dots in vascular image). Parallel to image acquisition, multiunit ac-
tivity was recorded at a position (red dot) in which the neurons’ RF
approximately fitted the center of the upper stimulus (red rectangle;
black dots mark center of each movie patch).

3.3.2.5 Data Acquisition

Optical imaging was accomplished using an Imager 3001 (Optical Imaging Inc, Moun-
tainside, NY) and a tandem lens macroscope (Ratzlaff & Grinvald, 1991), 85 mm/1.2
toward camera and 50 mm/1.2 toward subject, attached to a CCD camera (DalStar,
Dalsa, Colorado Springs). The camera was focused ~400 nm below cortical surface.
For detection of changes in fluorescence the cortex was illuminated with light of 630+£10
nm wavelength and emitted light was high-pass filtered with cutoff at 665 nm using a
dichroic filter system. Cortical images were acquired at a frame rate of 220 Hz covering
regions of approximately 10x5 mm of A18.

Our experimental data that we base our analysis contains 11 hemispheres (10 animals)
for the analysis reported in the Section 3.3. For electrophysiological recordings before
and in parallel with VSDI, an in house-build device was used that allowed targeted
penetrations at different locations without opening the sealed recording chamber.

3.3.2.6 Preprocessing

The raw data was processed in two steps. First, in order to remove differences in illu-
mination across different pixels, divisive normalization is performed on all the recorded
raw samples of a given pixel by its DC level during prestimulus period. Thus the average
value of each pixel during this period is exactly equal to one for all pixels. Divisive nor-
malization is preferred over subtractive normalization as it also equalizes for standard
deviation of different pixels. This is due to the linear relationship between the prestim-
ulus DC amplitude and standard deviation of the pixels’ activities. Second, the removal
of heart-beat and respiration related artifacts were realized by subtracting the average
blank signal recorded in the absence of stimulation. The differences are later normalized
by the blank signal in order to be independent of the global activity level fluctuations
which occurs during the course of an experiment. As our recordings were synchronized
with the heart-beat cycle of the animal, this blank subtraction step effectively removes
these artifacts. Moreover this method is preferred over the cocktail blank correction be-
cause our conditions were not composed of orthogonal stimuli. These steps were applied
for each trial separately and the outcome was averaged across trials. The number of
trials ranged from 20 to 37 for different experiments.
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3.3.2.7 Region of Interest Selection

In cases where we restricted the analysis to a limited ROI of the recorded area, selection
heuristics were based on either time averages or peak activity levels. From these average
or peak activity maps, ROIs were created according to the percentile ranges of the
pixel’s activities. For example a given set of pixels could be assigned to belong to the
percentile interval of 95-100%, 90-95% and so on. This method of ROI selection has many
advantages. As the selection merely depends on the ranking of the pixels based on their
activity levels and not their absolute value, it facilitates the usage of the same heuristics
for different experiments with varying absolute activity levels. A further benefit is that
different ROIs originating from different experiments are all composed of same number of
pixels. For comparison of evoked activity levels during localized presentation of natural
movies, we focused on the highest 5th percentile of the pixels. However the same results
were obtained also with a selection based on the 10" percentile.

3.3.2.8 Latency Detection

Evaluation of the response times was realized on z-score transformed data. Z-score di-
rectly translates a given activity level to its distance from baseline in units of the baseline
process’ standard deviation. It is therefore invariant to changes on absolute level of ac-
tivities which occurs during different experiments. Baseline activity was characterized
by temporarily averaging activity levels during prestimulus period. Standard deviation
of the baseline activity for a given pixel was computed by pooling all its prestimulus
samples over all conditions; this increased the sample size and therefore reduced the
uncertainty of the approximation. Because of the slight spatial dependencies of aver-
age and standard deviation statistics, we computed each pixels’ average and standard
deviations for the baseline period separately. After z-score transformation, latency was
determined by detecting for each pixel the time point at which activity exceeded 2 times
the prestimulus time standard deviation in two consecutive time frames.

3.3.2.9 Singular Value Decomposition

We applied SVD to the evoked activity by using svd command of Matlab software (Math-
works, Natick, MA, USA) after transforming each time frame into a vector. Singular
values increased linearly in the logarithmic scale and significant components were de-
tected by identifying the first component which had a significantly different increase in
its weight with respect to the previous components.

3.3.2.10 Detection of Confidence Intervals

Due to somewhat large variability across experiments, in some cases it was preferable
to compare first natural and grating conditions in a pair-wise fashion within each ex-
periment and then evaluate the significance of the deviations across all experiments. In
order to make the pair-wise comparison possible we first averaged across both natural
movie and grating conditions. In these cases the statistical tests were carried on 11 ob-
servations. In all other cases, all observations corresponding to a given condition across
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all experiments were used for statistical tests. This amounted to 22 observations per
condition.

In order to estimate the confidence intervals we used the statistical bootstrap method.
We derived the distribution of the statistic of interest by resampling the observations
with replacement 10° times. The confidence intervals are given in the text within square
brackets following the mean values.

3.3.3 Results

We presented natural movies along with drifting square gratings (horizontal and verti-
cal) to anesthetized cats (11 hemispheres, 10 cats) and performed voltage-sensitive dye
imaging on cortical area 18 of cat’s visual cortex. Over the past decades during electro-
physiological and imaging experiments this model sensory cortex has been extensively
investigated with simple laboratory stimuli. Our natural movies were captured by cats
freely exploring a natural habitat and contain a rich spatio-temporal structure. They
depict natural scenes from the cat’s point of view and incorporate temporal dynamics
mainly due to head and body motion. In order to improve the generality of our results
we presented a total of 9 different movies and in cases where the same movies were
used across different experiments, different portions of the movies were used to drive the
recorded cortical area. Prior to and during the experiment, the recordings were com-
plemented by retinotopical mappings in order to certify which local parts of the movies
were directly received by the cortical tissue that was being imaged.

3.3.3.1 Spatio-Temporal Population Dynamics Evoked by Natural and Grat-
ing Stimuli

Both kinds of stimuli were presented subtending a large part of the visual field (=
40° x 30°) under equal global luminance and luminance contrast conditions (Fig. 3.2).
However due to the intrinsic properties of natural movies, local average luminance and
luminance contrast values exhibit some degree of variation across the presentation time
leading to discrepancies between global and local statistics. For example, a relatively
uniform surface of a piece of a wood or a leaf that is represented with a very peaky
distribution of local brightness values would necessarily have a low luminance contrast.
As these areas in the image cannot be constrained to have a higher luminance contrast
without impairing the quality of the movie we did not control for these local variations,
thus local contrast and average luminance in a given restricted area of the movie was oc-
casionally higher or lower than the global target values. Within these restricted regions,
the distribution of the local luminance contrast values were slightly negatively (p <0.05)
skewed (skewness = -0.18) with a standard deviation of 9.7% (9.3%/10.1%', p = 0.05)
and an median luminance contrast sensibly but significantly higher than the luminance
contrast of the grating stimuli (101.25%, Wilcoxon-Signed Rank, p < 0.05, see Fig. 3.8
for the distribution of contrast values of all the frames). There was no systematic bias
that caused the part of the movies that were directly received by the recorded area to be
lower than the global statistics. Therefore we consider that the local fluctuations do not

In the following, bootstrap confidence intervals are presented in brackets according to the following
convention (Lower Bound/ Upper Bound, p = Confidence Level)
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Figure 3.2: Recording Cortical Responses to Natural Stimuli and Gratings. (A) Two natural movies
(within the blue and red boxes) and vertical gratings (within the gray box) used as stimulation are depicted
together with evoked optical responses. Visual stimuli are depicted in the upper row within each box. Leftmost
image represents an example movie frame covering approximately a visual angle of &~ 40° x 30°. The scale bar
represents 5° of angle of view. The local portion that directly stimulates the recorded cortical region is delineated
with a white rectangle. The temporal evolution of the movie within the delineated region is shown as a succession
of frames. The second row within each box is space-time representation of the evoked optical signals recorded
during two seconds including the prestimulus period. Each frame represents the average activity during intervals
of non-overlapping 100 ms. The rightmost image shows the average activity computed over the entire stimulus
presentation. Vascular image of the recorded cortical area is shown in the top leftmost frame (P=posterior,
A=anterior, M=medial, L=lateral; scale bar represents 1 mm). Colorbar indicates (bottom box) activity levels
as fractional fluorescence change relative to blank. (B) Time courses of global activity computed by taking the
average across all pixels of a given frame. Shaded gray area symbolizes the prestimulus period. Line colors
are matched to the boxes shown in (A); black = grating, blue/red = natural conditions. The thickness of lines
represents confidence intervals computed by resampling all the pixels that belong of a given frame (p = 1073).
Right panel: Amplitudes of activity averaged over the presentation time. Error bars represent the standard
deviation of activity levels depicted in the time-course.
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constitute a major obstacle for the comparison of activities across stimulus categories
and the differences in the activity levels are not straightforwardly attributable to the
local differences in stimulus power.

The region which was recorded covered a surface of approximately 1 cm and it was
driven by a portion of 3° to 4° of visual stimulus (Fig. 3.2A, white rectangle in leftmost
column). It contained a large number of neuronal components spanning multiple orien-
tation columns and pinwheels; it thus constituted a representative sample of an early
visual cortex. Fig. 3.2A depicts the evoked activity recorded under different stimulation
conditions along with the local portions of the movie frames directly received by the
recorded area; the cortical response is represented with 20 frames each representing the
average activity during non-overlapping intervals of 100 ms. With the onset of the natu-
ral movies an excitatory response was observed within the first 100 ms. (Fig. 3.2A, first
and second rows, see also Fig. S1). The average latency computed from the spatially
averaged data (Fig. 3.2B) was 57 ms (SD = 12 ms) and it was not significantly different
than the latency of 55 ms (SD = 1lms, paired t(21) = -0.51, p = 0.61) observed in
response to grating stimuli. However, computing the latency separately for each pixel,
we found that not all the pixels responded in the same time to the stimulus onset. The
spatial distribution of latencies was much more variable in response to natural movies.
To evaluate the spatial inhomogeneity we computed the standard deviation of pixel la-
tencies; the median standard deviation computed over all experiments (n = 11) was 17
ms and 40 ms (p < 0.001, signtest) for grating and natural movie stimuli respectively.
This suggests that the onset of natural movies do generate a spatially patterned and
inhomogeneous activity across the cortical surface.

Following the onset of grating stimuli evoked responses appeared in the form of ripple-
like spatial patterns characteristic of the cortical columnar architecture for orientation
selectivity (Fig. 3.2A, third row and black trace). This was accompanied by a strong
orientation unspecific excitation distributed widely across the imaged area. Activity
increased sharply until 300 ms, and then constantly decayed (Fig. 3.2B, black curve).
On the other hand responses to natural movies (Fig. 3.2A, first and second rows and
red /blue traces), exhibited dynamic spatial modulations characterized by the emergence
and propagation of spatial activity patterns. These spatial patterns co-occurred with
temporal fluctuations in the overall activity levels. The appearance of large regions of
low (e.g. frame 6 in movie 1 and frame 10 in movie 2) activity suggests that excitatory
drives were at times either absent or completely counter-balanced by inhibition. At these
intervals the average activity within the imaged area approached to prestimulus baseline
levels suggesting that the balance between excitation and inhibition were constantly
subject to modification.

3.3.3.2 Locking of Activity to the Stimulus Motion

Temporal dynamics of our natural movies were dominated by the body and head motion
of the cat. In parallel, we observed that the time-course of the global activity i.e.
average activity of the recorded cortical area, during stimulation with natural movies
displayed considerable fluctuations. For each movie within the relevant local portion
we computed the amplitude of the flow-field vector representing the motion between
consecutive frames (Fig. 3.3A black traces; see also Fig. S1). Owing to relatively long
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Figure 3.3: Motion Locking of Average Activity. (A) The temporal progression of spatially averaged activity
levels is depicted (red/blue traces, left y-axis) together with the absolute amplitude of the motion vector (black
lines) computed between consecutive frames evaluated within the local portion of movies directly stimulating the
recorded cortical tissue. In order to discard the transient part of the response only the period of 200 to 1800 ms
after stimulus onset is used. The thickness of lines represents bootstrap confidence intervals (p = 107°) computed
by resampling all the pixels that belong to given frame. (B) The correlation between the absolute flow field and
the time-course of activity computed at different lags of time. The two examples in (A) are depicted with red/blue
traces. Green trace represents the mean taken over all experiments and movies (11 experiments with 2 movies
each). Shaded area represents 95% bootstrap confidence intervals. The dotted line is drawn at 90 ms where the
correlation peaks. The shaded gray horizontal bar represents the 95% bootstrap confidence interval of the peak
location.

recording interval, we quantified the extent to which the observed fluctuations in global
activity were related to the absolute velocity profiles of the movies by computing the
correlation coefficient at different lags of time (Fig. 3.3B, right panel). For the two
examples shown in Fig. 3.3A, the cross-correlogram peaked at approximately 100 ms
and reached values up to 0.7 (Fig. 3.3B, blue and red traces). The correlation curve
averaged across experiments peaked at 90 ms with a correlation value of 0.41 (0.6/0.15,
p = 0.05) and was significantly different than zero at the peak position (Wilcoxon-Signed
Rank, p < 0.001; Fig. 3.3B, green trace). In order to evaluate the variability of the peak
positions across different experiments and movies we detected the peak position of the
correlation curves between the interval of 0 to 300 ms. The average peak was located
at 91.3 ms (71/122 ms, p = 0.05, Fig. 3.3B, gray horizontal bar). These results show
that motion cues within dynamic natural stimuli entail spatially widespread activity
fluctuations by simultaneously driving large numbers of neurons and that a considerable
part of the variance present in the global activity time-courses is explained by the velocity
profile of natural movies.

3.3.3.3 Spatio-Temporal Separability of Activity Dynamics

We used SVD analysis in order to evaluate the separability of the spatio-temporal dy-
namics accompanying the temporal modulations reported above. A function f(x,t)
describing spatio-temporal dynamics is said to be separable if it can be decomposed into

35



Chapter.3 Cortical Dynamics During Processing of Natural Movies

L R 2 1 g
g T | R T T T T :
& | i s i b - :
- | 1 1 T
# | | € 4 €4 €4 W
B C . D .
© @ 3 1 1 1
= : & %
X =~
& qg 2L, 27
L <C —
< =2z 2
" 22 = 9
© ST ©
=) <1 —_ *
B 3 S 25
3 o) [
x [h'4 n
3 o 0]
0 500 1000 G N G N

time (ms)

Figure 3.4: Separability of Spatio-Temporal Activity Dynamics. (A) Reconstructed evoked activity
under spatio-temporal separability hypothesis for the same data shown in Fig. 3.2. The data represents the
first SVD component and thus the outer product of spatial and temporal activity profiles computed by averaging
along temporal and spatial dimensions, respectively. (B) Mean time course of the spatially averaged prediction
error computed between the reconstructed and recorded evoked activity is depicted for natural movie (green)
and drifting grating (black) conditions. The triangles represent overall average errors for the examples used in
(A). Shaded area represents 95% bootstrap confidence interval computed by resampling the data of different
experiments and movies. (C-D) Distribution of two different measures quantifying spatio-temporal separability
is shown as boxplots. The difference between grating and natural conditions are significant when evaluated in a
pair-wise manner (p<10~? and p<0.01 for (C) and (D) respectively).

the outer product of its single dimensional constituents, i.e. < f(z) >; and < f(t) >,,
which represent signals averaged across the temporal or spatial dimension, respectively.
Thus, under separability hypothesis the effects of spatial and temporal dynamics are
assumed to interact independently.

SVD transforms the original signal f(z,t) into a weighted sum of separable functions
> i vigi(z,t) where ~; represents the weight of the component i in decreasing order of
magnitudes. Following SVD transformation the first component, g;(z,t), represents the
outer product of the average spatial and temporal profiles. If the signal is separable,
this results in all singular values but the first one to be equal to null. Hence the first
components totally capture the dynamics of the recorded data.

The signal reconstructed under separability hypothesis (i.e. the first SVD component),

36



Chapter.3 Cortical Dynamics During Processing of Natural Movies

for the data shown previously (in Fig. 3.2) is depicted in Fig. 3.4A. In order to get
a measure of the separability of spatio-temporal dynamics, we computed the residuals
between the predicted activity and the evoked activity; where larger residuals would
be an indication of less separable activity dynamics. The time-course of the prediction
error averaged across all experiments is shown in Fig. 3.4B (see also color matched
triangles). During stimulation with natural movies, the residuals (Fig. 3.4B, green
traces) reached a plateau shortly after the stimulus onset and stayed relatively constant
thereafter. The error profile under grating stimulation (black curve) started with a phasic
strong peak and quickly dropped toward values lower than the observed for natural
stimulation leading to overall smaller error values (Fig. 3.4C). The median amplitude of
prediction errors was lower in the grating conditions and corresponded to less than 8.8
% (7.72/10.5, p = 0.05) of the average activity (Fig. 3.4C) this was significantly smaller
than the natural conditions (p < 107°, pair-wise bootstrap) which had a mean error of
13 % (11.1/15.4 %, p = 0.05).

The reason for the strong initial peak in residuals can be understood by comparing the
initial frames of the reconstructed (Fig. 3.4A, third row) and evoked data (Fig. 3.2A,
third row); one can see that the spatial patterning due to cortical columnar organization
was much weaker in the recorded evoked activity, rather a widespread unspecific activity
at frames between 300 and 500 ms was clearly evident. The separable prediction over-
estimated the fine-grained columnar structure observed shortly after stimulus onset and
thus led to higher prediction errors. This change in the overall spatial pattern was the
main source of non-separability during grating conditions.

We also computed the separability index, a previously used measure (Escabi et al. 2003)
which quantifies the ratio of the first singular value to the sum of all singular values; it
thus represents the variance accounted by the first SVD component and is equal to 1 in
case of a separable function. Median separability index was 0.81 and 0.64 for gratings
and naturals respectively (p < 0.01, pair-wise bootstrap). Accordingly we found that the
number of significant singular values necessary to describe the activity during grating
conditions were much smaller. While in average 5 (4.3/5.6, p = 0.01) singular values
were found to be significant, this number was equal to 7.3 (6.4/8.5, p = 0.01) in the case
of naturals. We thus conclude that activity within superficial layers is characterized by
non-separable spatio-temporal dynamics during both natural and grating conditions.

3.3.3.4 Singular Value Decomposition Unravels Two Overlapping Maps.

The result of the SVD analysis applied to another dataset is shown in Fig. 3.5A (upper
panel) where the responses evoked by two orthogonal drifting gratings are depicted
together with the time-course of the activity (Fig. 3.5A bottom panel) which represents
the spatially averaged response. The SVD was applied to the later part of the evoked
responses (Fig. 3.5, shaded area) excluding the fast transient onset. For the data
presented, we observed 6 different significant singular values (3.5b, top-left), suggesting
inseparable complex spatio-temporal activity dynamics in the responses to the moving
gratings.

However, the existence of numerous significant SVD components calls into question the
functional relevance of the dynamics described by these components, as the true under-
lying biological process is unknown. Therefore, one cannot directly attribute a biological

37



Chapter.3 Cortical Dynamics During Processing of Natural Movies

AFIF (%n)
N D
- .f [
L A
m-RREEEARA
- 3 - | f
- = } ¥ BF
Yy N

B
S—

time (ms)

o] 200 400 600 800 1000 1200 1400

1600

£
H._‘
E
o
b
0 # Rank 3 # Rank 4 # Rank 5 # Rank 6
o M i G ai G
Figure 3.5: Decomposition of Evoked Cor-  _ ; R [ o ey
. ape = " ] : B
tical Voltage-Sensitive Dye Responses to % I 'n' ’-' v’ﬁ -
Moving Gratings. (A), Time courses of & anh, I”I ‘

. .. ! d |
spatio-temporal activity patterns (top rows) D{‘l"f'll“g"t}\w‘ﬂf' % o |\| ‘l"i* 1"‘\]1 ID I WWHH‘L D‘)&’MH ’whb'l‘
and spatial averages (bottom traces) expressed - L“ i
as fractional change in fluorescence relative to L 20
blank condition (AF/F). Scale bar 1 mm. Here o B2 #3 k4 #5  #6 Il
and in all other plots: green = responses to ver- 01#5 Rank 1025

. s irps . s . -— 1 0.8
tical grating, drifting rightwards in visual space; = .

blue = horizontal grating, drifting downwards. '\w "

(B), (Top left corner) Singular values ranked 1%
in order of their contributions. Components of \,‘,\v\
significant contribution to variance are colored \ﬁ(
(gray area depicts significance level). The con- 04 —————= 0
tribution of each single SVD component to indi- _Df Ragk e 4
vidual recording trials (n = 35) were computed, o

their correlations across trials are represented as
a matrix. Spatial and temporal profiles of the
first 6 significant SVD components (top row and
left column) were clustered according to their
correlation (red and yellow).

meaning to the individual SVD components or to any combination of a subset thereof.
We reasoned that if given sets of components describe an underlying biological process,
their relative contributions across trials should exhibit some degree of common variation.
By measuring the correlation between the contributions of different SVD components
across trials, we detected two clusters (3.5b, correlation matrix). The first cluster con-
tained two SVD components (Fig. 1b, left column), each displaying non-oscillatory
tonic activity profiles with highest singular values (red circles in 3.5b, top-left). The
second cluster (3.5B, top-row) included the remaining 4 different SVD components with
strongly oscillating activity. Their relative contributions were similar. However their
weight was two orders of magnitude smaller than the first SVD components, suggesting
weak contribution to the overall evoked activity.

Fig. 3.6 illustrates the spatio-temporal dynamics described by these two clusters of
non-overlapping SVD components. Reconstruction of activity using the first two SVD
components displayed the typical patchy structure of orientation maps characterized by
repeating local domains of peak amplitudes (see contours in red panels and compare to
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3.5). Note that the gratings evoked the expected orthogonal maps of activation. Overlaid
on these maps, the oscillatory SVD components revealed cyclic waves of activity that
propagated either medial-laterally (rightward in image frames) or in posterior-anterior
direction (downwards) across the cortex depending on the gratings’ drifting direction
(contours in yellow panels). These propagating waves were brought about by oscillations
with a period of =160 ms. The same patterns were observed in two further experiments.
Thus, responses to each of the gratings’ motion direction showed a clear shift over time
indicating stimulus locked retinotopic propagation. Note that the distance that the wave
traveled across the cortex in one cycle was nearly similar for both conditions. This is due
to the fact that the imaged region matches the part of the cortical retinotopic map for
which cat A18 is approximately isotropic, 5-10 mm below the representation of the area
centralis. In the anterior part of the image, propagation was less pronounced, most likely
due to smaller amplitudes of oscillatory activity resulting in decreased signal-to-noise in
this region.

Next, to establish the dependency of the observed oscillations on cortical location, the
data were fitted by a harmonic function with a constant period. Fig. 3.7A depicts
the raw activity over time at two selected pixel regions (black and gray dots in 3.7b).
We extracted the phase of the harmonic functions for each recorded pixel and plotted
these values topographically (3.7b). In order to estimate the speed of the propagating
waves, we then calculated the change in phase as a function of cortical distance (3.7c).
A value of ~34 mm/s was derived that matched the drifting speed of the gratings (34
°/s) in visual space. Consequently, the oscillatory SVD components reflected the shifts
of the gratings’ stripes by coherently propagating waves of activity with high spatial and
temporal accuracy.

3.3.3.5 Comparison of Evoked Activity Levels

We next aimed to characterize the operating regime in which these spatio-temporal
dynamics took place. We define an operating regime as the first, second and higher
order characteristics of the distribution of activity levels. Fig. 3.8A depicts the activity
levels averaged across the whole recorded area and stimulus presentation period, it thus
illustrates differences in the first order statistics of the activity levels recorded under
these two stimulation conditions. The overall average activity during presentation of
different natural movies was equal to 0.57 x 1073AF/F (0.46 x 1073/0.68 x 10 3AF/F,
p = 0.05). A value of 0.7 x 1073AF/F (0.58 x 1073/0.821 x 10~3AF/F) was observed
with grating stimuli. Due to relatively large variability in the overall activity levels across
experiments, we first compared grating and natural conditions within each experiment
by computing their differences and later averaged these differences. In 9 out of 11
experiments grating stimuli elicited stronger responses (Wilcoxon signed-rank test, p =
0.004). The difference between average activity levels reached values as high as 58%
of the activity evoked by natural movies; the mean increase was 26% (9%/41%, p =
0.01). As the underlying distribution of activity levels can be of any form, the average
value constitutes a rather underdetermined description of the underlying distributions.
Therefore to complement this analysis, we focused on the higher tail of the distribution
of activity levels and analyzed the percentage of the recorded samples lying above a given
common threshold value (Fig. 3.8A, right panel). A value of 17% (16%/18%, p = 0.01)
was consistently observed when the threshold was set to be one standard deviation
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Figure 3.7: Propagation Speed of Cortical Activity. (A) Oscillatory activity around two pixels separated by
1 mm along the medial-lateral axis (gray and black dots in panel B). Oscillatory activity was best described by a
harmonic function with a period of ~160 ms (black and gray fitted curves). (B) The phase of each pixel is shown
topographically for both grating conditions. (C), Change of phase as a function of space within circumscribed
regions (see vertical and horizontal rectangles in (B). The slope of the fitting line was ~1.2 rad/mm.

above the average activity recorded during grating conditions (Fig. 3.8A, black dots).
The median percentage of pixels lying above the same absolute threshold value was only
5% in the case of activity distribution evoked by natural movies (Fig. 3.8A, green dots).
This suggests that the net excitation levels reached commonly during grating conditions
were attained much more rarely during the processing of natural movies.

3.3.3.6 Specific vs. non-Specific Activity

As we were simultaneously recording neurons spanning the whole orientation space, we
were able to dissociate the activity into two components, namely the specific (SC) and
non-specific (nSC) activity. We divided the recorded area into two sets by choosing the
most active pixels occupying the highest 5th percentile during presentation of horizontal
and vertical gratings (Fig. 3.8B, pixels delineated with black/blue contours). nSC activ-
ity represents neuronal activity evoked by a grating that is orthogonal to the preference
of the neurons (Sharon & Grinvald 2002). The incremental change in activity that is due
to the change of orientation to the preferred one is termed the modulation depth (MD).
We found SC and nSC activity to be equal to 1.06 x 107 3AF/F (1.21 x 1073/0.91 x 1073,
p = 0.05) and 0.88 x 107 3AF/F (1.02 x 1073/0.75 x 1073, p = 0.05) respectively (Fig.
3.8B, middle panel blue and black bars). This corresponded to a MD of 20% (18%/24%,
p = 0.05) of the nSC activity. The average activity during natural conditions across
both sets of pixels was found to be equal to 0.74 x 1073AF/F (0.64 x 1073/0.88 x 1073,
p = 0.05) and interestingly this value was smaller than nSC activity (Fig. 3.8B, middle
panel green bar). In a pair-wise comparison, we found that on average the nSC activ-
ity was 19% (7%/30%) higher than the activity during natural conditions (Wilcoxon
sign-rank test, p = 0.018).

As shown previously natural movies induced continual modifications in the balance be-
tween excitation and inhibition over the entire course of movie presentation; one inter-
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ison of average activity evoked by natural movies and z 00 05 y

drifting gratings as a scatter plot for the complete data
set (n = 11). Two natural movie (movie 1 and movie Grating, AF/F(%o)
2) and two grating conditions (horizontal and vertical) g
were averaged for each experiment beforehand. Plus sign
represents average and SEM. Right: The percentage of Il
samples that lies above a given common threshold for
each experiment. The threshold was set to be 1 stan-
dard deviation above the mean activity computed during
grating conditions (black dots). Same absolute threshold
was used for natural conditions (green dots). (B) Sin-
gle condition maps obtained for V and H gratings (av-
eraged over the whole period of stimulus presentation).
Pixels with orientation preference matching to the stim-
ulus are delineated with black lines; their activity cor-
responds to the specific activity (SC). They occupy the "

highest 5t percentile of the acti\(zity)distribution. Non- Average Activity SC nSC Nat  SC nSC Nat
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eraged across all pixels and experiments. The difference sunnnn nNSC
between SC and nSC is termed Modulation Depth (MD). Nat

Green bar depicts the average activity within both sets of
pixels during presentation of the natural movies. Right- 3
most plot shows the same results computed with peak <
instead of mean activity. (C) Temporal evolution of ac- L
tivity during presentation of grating and natural stimuli Lé
(black and green filled lines). 22 (Two grating and nat-
ural movie conditions per experiment) different individ-
ual time-courses were used. As various natural movies

had different dynamics, average responses are necessar- Ot . X . .
ily less structured than individual time-courses. Shaded 0 500 1000 1500
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ted lines represent the time course of MD (red traces) D

and nSC (blue traces) making up the response to grating
stimuli. (D) Distribution of luminance contrast values
within constricted regions (e.g. white frame in Fig. 3.2A)
of movie frames which directly stimulates recorded corti-
cal area. The values in the x-axis ranging between 65%
and 128% represent the luminance contrast in percentage
of grating stimulus contrast. The y-axis on the left rep-
resents the number of frame with a given contrast value.
Example frames with increasing luminance contrast from
left to right are shown on the top part. The triangle de-
notes the mean of the distribution which is slightly higher
than 100% (Wilcoxon-Signed Rank, p<0.05). The distri-
bution was divided into 9 intervals of equal number of
frames, and for each frame the deviation from the activ-
ity evoked by gratings were computed (green dots). The
median value of the deviation is depicted by the height
of green dots. Best fitting line had an equation of (r2 80 100 120

= 0.61, 0.94/0.11, p < 0.05) and crossed the x-axis at 0
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esting question is to know whether the peak values that can be reached during natural
conditions also differ from those reached during grating conditions. We therefore re-
peated the same analysis, this time based on the peak activation levels reached during
the course of stimulus presentation (Fig. 3.8B, rightmost panel). The peak values aver-
aged across experiments were approximately 2 times higher than the average amplitudes.
Usage of peak activity levels resulted in a slightly reduced MD value of 14% (12%/16%,
p = 0.05). This suggests that even during periods of very strong excitatory drive, the
activity of neurons with orthogonal orientation preferences conforms to the functional
cortical domains, albeit with a slightly reduced selectivity levels. We confirmed that
nSC peak activity was higher than maximum values attained during natural conditions
(Wilcoxon sign-rank test, p = 0.024) by an amount of 8% (2%/12%, p = 0.05). These
results show that the processing of oriented bar stimuli is concomitant to a widespread
vigorous excitatory drive; even sub-optimally driven neuronal populations were subject
to a strong net excitation resulting in much higher activity levels encountered during
stimulation with naturalistic movies.

3.3.3.7 Differences in the Time-Courses of Activities

In order to analyze the temporal evolution of the average activity, we computed the char-
acteristic time-courses for both stimulation conditions (Fig. 3.8C, gray and green traces,
shaded area represents 99.99% CI). These represent the activity averaged across different
experiments and therefore illustrate systematic effects of the stimulation category rather
than experiment specific influences (such as for example flow field locked specific tempo-
ral dynamics as shown in Fig. 3.3A). No global trends were observed in the time courses
during stimulation with natural movies. On the other hand, despite their stationary na-
ture as stimulation, the processing of drifting square-wave gratings was characterized by
a strong adaptational decay in the global activity levels which led to a dramatic decrease
of net excitation levels. To quantify this decay, we fitted a line to the global activity
time courses and in order to exclude the transient part of the response, we only included
samples starting from 300 ms after stimulus onset. In all experiments the grating stimuli
gave rise to stronger decay values hence to more negative slopes and in no experiment
a positive slope was observed. The slopes were computed after expressing the activity
levels in percentage of peak activity recorded during grating conditions. For the grating
condition, the slope was equal to -48%/s (-59/-35%/s, p = 0.01), meaning that after
only one second of presentation time the amplitude of the net excitation declined to a
level which is half of the peak activity levels. During stimulation with natural movies
the mean adaptational decay was -24% (-44/-5%/s, p = 0.01), and the median slope was
found to be only marginally different than zero (sign-test, p = 0.065). This suggests
that the processing of natural movies, despite their complex spatio-temporal dynamics,
is characterized by a rather stationary activity dynamics in the superficial layers of visual
cortex. Given the fact that the natural movies we used were dynamic, these results are
not surprising. Nevertheless, we would like to emphasize the fact that grating stimuli,
which are the most common form of stimulation used in experiments, are processed in a
regime which is strongly non-stationary with respect to continual change in the balance
of excitation and inhibition.

We next analyzed the temporal evolution of the nSC activity and MD separately (Fig.
3.8C red and blue traces). We found that MD kept increasing during the first second of
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the presentation and reached a plateau relatively late and remained relatively constant
until the stimulus offset (Fig. 3.8E). From 200 ms until 1000 ms the value of MD nearly
doubled and reached values close to 0.35 x 1073. On the other hand the time course
of the nSC activity (blue trace) was found to follow a very similar profile as the overall
response time course (black trace) and toward the end of presentation it approached
values as small as modulation depth. This similarity shows that the major characteristics
of the temporal responses to grating stimuli is dominated by nSC activity whereas the
activity responsible for the encoding of the stimulus properties such as orientation, has
a much smaller and but also more stable temporal evolution.

3.3.3.8 Effect of Variability of Local Luminance Contrast

To what extent could local properties of natural images such as fluctuations in the lu-
minance contrast (LC) values be responsible for the differences in the average activity
levels observed? As stated above, the LC values within the local region of the natural
movies directly stimulating the recorded cortical area exhibited some degrees of fluctu-
ations (Fig. 3.8D, top row of frames). The distribution of local LC values is shown in
Fig. 3.8D where 100% in the x-axis represents the LC of the grating stimuli which did
not vary across time. LC values ranged between 65% and 128%. For each of the frames,
we computed the evoked activity level associated with it and computed the ratio to the
activity evoked by gratings at the same time of presentation. For example, to find the
activity level evoked by a movie frame occurring at 500th ms, we measured the average
activity at 590 ms and compared it to the activity evoked by grating stimuli recorded
at exactly the same time. The median of the ratios were calculated after pooling all the
data points which belonged to a given LC percentile interval (Fig. 3.8D, green dots)
each containing the same number of frames. Not surprisingly the biggest difference be-
tween naturals and gratings was observed for the frames that had the lowest LC values
corresponding to the interval of 65% and 88%; the median ratio of activity level reached
values as high as 150 % (Fig. 3.8D, leftmost green dot). For the interval where the LC
of the natural stimuli was approximately equal to the target contrast (percentile inter-
val of 99% and 103%), the median ratio decreased down to only 120 % indicating that
grating stimuli induced still stronger responses. The estimated parameters of the best
fitting line using linear regression indicated that a boost of LC corresponding to 132%
of the baseline LC level would be necessary in order to obtain the same activation levels
between natural movies and gratings.

3.3.3.9 Deceleration/Acceleration Notch

We next focused on the transient part of the cortical response representing the arrival
of the visual input to superficial layers of the cortical circuitry. The steep increase
of the net excitation immediately following the stimulus onset was interrupted by a
transient slowdown occurring over a short period of time (Fig. 3.9A, four examples). This
has been referred to as the deceleration-acceleration (DA) notch in VSDI experiments
and evidence suggests that it corresponds to the establishment of inhibition within the
cortical circuits following the arrival of excitatory input (Sharon & Grinvald 2002). In
all but two experiments we observed a notch occurring approximately 100 ms after
stimulus onset. The exact time of DA notch varied slightly between experiments (Fig.
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Figure 3.9: Transient Part of the Response to
Stimulus Onset. (A) Four plots illustrate the
deceleration-acceleration notch occurring during the
transient part of the responses to gratings (black traces)
and natural movies (green traces) onsets. The time runs 1 1
from O to 200 ms. Deceleration was not strictly followed
by acceleration during natural conditions. (B) Aver-
age across all experiments and 95% bootstrap confidence 0
intervals. The time sample where the second deriva-
tive (shown below schematically) of the grating response 1

crosses zero point was detected (zero point in x-axis and
red arrows in (A) and (B)) and used to align in time dif-
ferent time courses prior to averaging. The area under
the second derivative curve located in between the align- 0 0

ment point and the previous and next zero-crossings were

used to quantify the strength of the deceleration and ac-

celeration, respectively. (C-D) The relationship between

the orientation selectivity quantified as the modulation L4
depth and the strength of different DA notch compo- ®

nents (deceleration in the left panel; acceleration in the

right panel). 2 experiments out of 11 were excluded be- /
cause the notch was not detected. Shaded areas represent °

the 95% confidence bands for the regression line. While ° ®

the orientation selectivitiy was not found to be corre- i

lated with deceleration strength (r = 0.25, -0.41/0.68, p
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3.9A, red arrows). In order to align different experiments in time we detected the zero
crossing of the second derivative of the dye signal (shown schematically in Fig. 3.9B)
recorded during grating conditions (Fig. 3.9A, red arrows) and proceeded by averaging
the time courses (Fig. 3.9B, black and green curves). The initial deceleration followed
by a strong acceleration was evident in the average transient response in the case of
stimulation with grating stimuli (Fig. 3.9B, black curve). A similar deceleration of
activity occurred also in response to natural stimuli. However, the following acceleration
component was much weaker or even absent for natural movies (green curve). As a
consequence of the pronounced acceleration during grating stimulation, activation levels
peaked at extremely high values; the activity between 150-450 ms was 48% higher than
the overall mean, compared to only 23% in case of natural conditions. We thus conclude
that the onset of grating stimulation caused an initial overshoot of activity within the
first hundreds of milliseconds. On the other hand, the activity evoked by natural movies
never or very rarely reached such high values. In order to check whether any bias
in the statistics of natural images could be responsible of this outcome, we computed
the luminance contrast within the area of the movies directly stimulating the recorded
cortical area during the first 300 ms. The average luminance contrast was equal 100.29%
(94.1%/105.2, p = 0.001) of the target luminance contrast. Therefore any bias in the
contrast levels toward lower values that might be present in the natural movies within the
first 300 ms cannot be held responsible for the discrepancies in the activity levels. These
observations support the view that stimulation with gratings provides an excitatory input
which is extremely powerful and affects the balance between excitation and inhibition
in favor of strong excitation. In contrast, the system processes natural scenes in a more
balanced regime leading to a marked absence of the late acceleration component and
high activity levels. The extremely high activity levels hint into a qualitatively different
state of the underlying cortical circuitries.
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3.3.3.10 Strength of the Acceleration vs. Orientation Selectivity

We reasoned that the stronger the acceleration part, thus stronger the excitation op-
posing inhibition, weaker might be the selectivity of the visual cortex. To test this
hypothesis we evaluated the selectivity of the visual cortex by computing the MD and
quantified its relationship to the magnitude of different notch components across differ-
ent experiments. The magnitudes of these were computed by integrating the area just
neighboring the zero crossing of the second derivative of the raw dye signal (Fig. 3.9C-D,
red and blue shaded areas). While the deceleration component was uncorrelated with
the cortical selectivity (r = 0.25, -0.41/0.68, p = 0.05), the acceleration was strongly
anti-correlated (r = -0.6, -0.96/-0.003, p = 0.05). In line with the earlier findings show-
ing higher selectivity for neurons under natural conditions, our finding supports the view
that the cortex under strong excitatory input looses its selectivity.

The MD represents the difference between activity levels of neurons that are strongly
and weakly driven. Therefore it can in principle be used to quantify the dynamic range
of neuronal populations. However a measure similar to MD is not easily derivable in
the case of activity patterns evoked by natural movies because the natural stimuli is not
clearly segregated into orthogonal orientation components making it difficult to track
down differences in the spatial inhomogeneities of activity levels. To circumvent this
problem, we computed the standard deviation of the activity values for each frame
separately (20 frames representing each the average activity during 100 ms) and in order
to obtain systematic differences between these two stimulation conditions we averaged
the results across experiments (Fig. 3.10A). We found that the grating stimuli induced
slightly stronger spatial inhomogeneities, however these differences were not found to be
significantly different. These results show that the second-order statistics, contrary to
first-order properties of activity levels are not qualitatively different between these two
categories of stimulation. The dynamic range which is made use of during encoding of
visual input is similar under natural and more simplified stimulation conditions.

3.3.3.11 Population Sparseness

We constructed histograms of the activity levels by pooling all recorded samples of all
experiments (excluding samples recorded during prestimulus and the transient part) sep-
arately for the grating and natural conditions. Most remarkable difference between these
histograms was the strong rightward shift seen for the activity distribution originating
from the grating condition corresponding to the first order differences (Fig. 3.10B, black
trace). Moreover differences in the extreme values also were observed; while lowest val-
ues were more abundant during natural conditions, the opposite was true for high-end
values. We quantified the higher order characteristics of these distributions, namely the
kurtosis. The distribution of activity levels during natural conditions was found to be
slightly more leptokurtotic with a kurtosis of 3.32 (3.31/3.33, p = 0.05) whereas a value
of 3.07 (3.07/3.08, p = 0.05) was obtained from the distribution of activity levels under
grating conditions.

These histograms incorporate changes in the activity levels that occur over the stimu-
lus presentation hence their shapes are to some extent dominated by average activity
fluctuations. For example the decay in activity levels during stimulation with gratings
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Figure 3.10: Second and Higher Order Characteristics of Response Distributions. (A) Temporal
evolution of spatial inhomogeneity measured as the standard deviation of activity levels with a given frame. The
values at each time point were averaged across different experiments after the standard deviation was computed.
Grating stimuli induces slightly stronger spatial inhomogeneity, yet differences were not significant. (B) Histogram
of activity levels of all recorded samples excluding the prestimulus and transient part of the responses for grating
(gray shade) and natural (green). The data of different experiments are pooled together. Black curve depicts
the difference between both histograms. (C) Same as in (B) but after removing from each frame its mean value.
Both distributions deviate from a Gaussian distribution in terms of their kurtosis. However distribution during
natural condition is more leptokurtotic with a kurtosis value of 3.91 in comparison to distribution obtained in
response gratings which had a kurtosis of 3.35.

may have a non negligible contribution to the shape of the histogram depicted in Fig.
3.10B. In order to eliminate these confounding effects and to have a better overview on
the spatial distribution characteristics of activity levels, we recomputed the histograms
after removing from each frame its average activity level, thus centering all the frames
around zero level (Fig. 3.10C). Both of these distributions deviated significantly from
a Gaussian distribution in terms of their kurtosis values; a kurtosis of 3.35 (3.34/3.37,
p = 0.05) was found for the spatial distribution of pixels under stimulation with gratings.
For the natural condition, the distribution was more strongly leptokurtotic with a value
of 3.91 (3.88/3.93, p = 0.05). These results shows that spatial distribution of activity
levels evoked by grating and natural stimuli do have different higher order properties.
Moreover high kurtosis values found under natural conditions is compatible with the
view that neuronal populations have a sparse representation of the visual input.

3.3.4 Discussion

In the present section we address the question of whether and how sensory cortex pro-
cesses simple, artificial stimuli versus complex, natural stimuli. Such a comparison be-
tween the stimuli most widely used in investigations of sensory cortex and the ecologically
relevant stimuli is of major relevance for system identification. It is crucial to estimate
in how far cortical functioning can be generalized across different stimulus categories.
We investigated several basic measures of population activity: Peak amplitudes, average
activity, stimulus motion locking and temporal characteristics, spatio-temporal separa-
bility and second-order and higher-order statistics. In order to simultaneously capture
changes in cortical activity across several millimeters we used a state-of-the-art opti-
cal recording method that is sensitive to sub- and supra-threshold activity levels of a
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pool of neurons with a millisecond time resolution. We report large quantitative and
qualitative differences in processing regime, indicating limited generalization across stim-
ulus categories.

Natural stimulation evoked sparsely distributed population activity characterized by
highly non-separable spatio-temporal dynamics that were locked to the intrinsic motion
signals present in the movies. In contrast, responses to drifting gratings were charac-
terized by a stereotypic rapid increase followed by a monotonic adaptational decay of
activity. One of the major findings was the modest net activity level with balanced
effects of inhibition and excitation in response to natural movies. This was in stark
contrast to the vigorous excitation reached shortly after the transient notch during stim-
ulation with gratings. An increase by almost half of the luminance contrast of natural
movies was found to be necessary in order to equalize the activity levels between these
different conditions. The cortical state during stimulation with gratings was dominated
by a widespread feature non-specific activity and, importantly, even this non-specific
activity was stronger than the average and peak activity levels encountered during the
processing of natural movies.

In the interpretation of the high level of unspecific activity induced by grating stimuli
and the lack of spatio-temporal separability of dynamics in response to natural movies
we have to consider several methodological issues. First, due to highly reciprocal inter-
connectivity patterns within the superficial layers and the spatial extension of dendritic
trees beyond functionally distinct domains (Gilbert & Wiesel 1989, Douglas & Martin
2004), the optically recorded signal, relating partly to subthreshold activity, could in
principle suffer from averaging unspecific inputs. While, in the case of gratings, this
would lead to an overestimation of the unspecific activity, it would also mask the non-
separable dynamics when present during processing of natural movies. Indeed, it was
shown that the majority of dendritic contacts within a radius of less than 500 microns
do not exhibit an orientation bias (Malach et al. 1993, Bosking et al. 1997, Buzas et al.
2006). Thus, each orientation domain receives horizontal input from differently tuned
neighboring neurons. These unspecific response components are evident in the orienta-
tion tuning of depolarizing responses, which is generally wider than for spike responses
(Monier et al. 2003). This, however, applies more to natural movies that incorporate
a rich spectrum of orientations and spatial frequencies (Simoncelli & Olshausen 2001).
In the case of gratings the moderate bias of functional columns of similar preferred
orientation to be connected (Rockland & Lund 1982, Gilbert & Wiesel 1989) and the
properties of the reduced stimuli limit such an effect. Yet we observe a much higher level
of unspecific activity in response to grating stimuli. This indicates that the high level of
unspecific activity upon stimulation with oriented gratings, higher than the average ac-
tivity induced by natural stimuli, is real and a sign of a qualitatively different processing
regime.

Second, fibers of passage could in principle add to the measured activity at a given pixel,
and therefore may lead to an erroneous overestimation of the amplitude of the unspecific
response. However, it has been shown that the dye signal strongly correlates with the
changes in membrane potential at the soma (Sterkin et al. 1998, Petersen et al. 2003b).
Therefore it seems unlikely that activity at unspecific pixels is particularly infiltrated by
specific signals originating from remote cross-orientation columns. Moreover our data
reveal a large difference in the first order statistics of activity induced by gratings versus
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natural stimuli, yet the differences in second order statistics are smaller in comparison.
These observations cannot be explained by contributions of fibers of passage. Instead
voltage sensitive dye imaging constitutes a well-suited method for the detailed analysis
of specific versus unspecific activation.

Along the same line, the fact that we observed highly non-separable spatio-temporal ac-
tivity dynamics supports the view that optical imaging does no suffer from the aforemen-
tioned problems. The non-separability of activity during processing of natural movies
resulted mainly from emerging spatial patterns that propagated across time and space
and to a lesser extent by global changes in the activity levels such as adaptation. Notably,
despite their simple statistical structure, the processing of gratings was also, albeit to
a lesser extent, governed by non-separable spatio-temporal dynamics. The main source
of non-separability in this case was the slight increase in feature selectivity observed
across time accompanying the strong adaptational decay of unspecific activity. Addi-
tionally, we also observed propagating waves retinotopically representing the motion and
the direction of gratings. In fact the existence of non-separable activity patterns has pre-
viously been demonstrated by in vitro measurements of neocortical patches (Xu et al.
2007) and during in vivo recordings of the visual cortex in response to simple stimuli
(Prechtl et al. 1997, Benucci et al. 2007). Here we report that similar dynamics occur
during the processing of natural movies. Therefore we conclude that the non-separable
spatio-temporal dynamics is an important general quality of cortical responses to both
simple and complex visual stimulation.

By means of relatively long recording duration of about 2 seconds, we were able to show
that processing of continuously moving gratings takes place within a non-stationary cor-
tical state. The monotonic decay in total activity during grating presentation relates to
the well-known phenomenon of adaptation found in electrophysiological investigations
(Maffei et al. 1973, Vautin & Berkley 1977, Movshon & Lennie 1979, Ohzawa et al. 1982,
Kohn & Movshon 2003). Furthermore, also psychophysically the effects of long-term ex-
posure to constant stimulation are well-studied (Gibson & Radner 1937, Blakemore &
Campbell 1969, Pestilli et al. 2007). Moreover, adaptation is frequently used in func-
tional magnetic resonance imaging experiments in order to reveal the selectivity of brain
areas (Krekelberg et al. 2006). In all these experimental paradigms adaptation is com-
monly induced by constant stimulation lasting longer than 20 seconds, sometimes even
many minutes. In our experiment, total activity was reduced by as much as 50% after
only one second of stimulus presentation. This shows that within neuronal circuitries,
major changes occur already very early under conditions of constant stimulation. This
points to the fact that the cortical processing of the most commonly employed stimu-
lation method takes place within a highly non-stationary cortical state. Interestingly,
the decay in activity was not specific to neuronal populations receiving the preferred
stimulus. Instead, as shown by the decay in the unspecific cortical activity, the entire
recorded cortex, whether optimally or suboptimally activated, underwent the adapta-
tional process.

As the major attributes of the activity in response to gratings were found to match
the characteristics of the unspecific activity, it could be argued that the adaptational
decay occurs independent of the specific content in the presence of “any” stimulus. For
example, it could be a circuitry phenomenon in response to the sharp stimulus onset.
However, for natural movies the adaptational decay was largely absent and on average
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only a small decrease in activity across time was observed. It is tempting to speculate,
that one of the reasons might be, that in the case of natural stimuli the onset did not
lead to a strong acceleration component, but stayed in a processing regime with balanced
inhibition and excitation.

Alternatively the fluctuations in activity levels induced unceasingly by the dynamics
inherent in natural movies may be held responsible for the virtual absence of the adap-
tational decay. The dye recordings revealed powerful modulations that were locked to
the motion profiles of movies, and which accounted for a relatively large proportion of
the variance present in the global activity time course. This implies that the observed
motion-locking is a population phenomenon simultaneously affecting cortical regions of
several square millimeters. Indeed, electrophysiological recordings have previously shown
that under conditions in which stimulus velocity is not constant, local field potentials
exhibit stimulus-locked modulations (Kayser et al. 2004, Schall et al. 2009, Mazzoni
et al. 2008), which result in action potentials that are characterized by high-degrees of
reliability across trials (Mainen & Sejnowski 1995). In contrast, responses to stimuli of
constant velocity, such as drifting gratings, are characterized by a Poissonian relation-
ship between the mean and the variance of spike counts (de Ruyter van Steveninck et al.
1997). Hence the low reliability of the spiking might be a result of the non-stationary
temporal dynamics distinguished by the strong adaptational decay, and may therefore be
a consequence of inappropriate stimulation used for identifying neuronal response char-
acteristics. On the other hand, high reliability in responses may reflect an outcome of an
adaptive phenomenon dealing with the ever-changing input patterns resulting from the
animal’s head and eye movements. The here observed activity levels of a large number
of neurons locked to the motion cues is likely to underpin such a mechanism.

Shortly after onset of the grating stimulus, we observed a transient suppression of
the rapidly rising activity, termed deceleration/acceleration notch in a previous report
(Sharon & Grinvald 2002). The dye signal reflects net changes in potentials across
membranes and therefore does not allow an isolated inspection of depolarizing and hy-
perpolarizing contributions. Thus the deceleration component, could in principle result
either from withdraw of excitation or increase in inhibitory strength. However, withdraw
of excitation is an unlikely scenario, given that the input was kept constant during both
grating and natural movie conditions. It was previously argued that the notch results
from the establishment of inhibition within the cortical circuitry following incoming exci-
tatory inputs (Sharon & Grinvald 2002). It is presumably triggered by a strong decrease
in membrane conductance due to shunting mechanisms (Borg-Graham et al. 1998, Hirsch
et al. 1998, Sharon & Grinvald 2002). In fact, because activity within pixels coding for
orthogonal orientation decelerated stronger than for preferred orientation, it has been
interpreted as a signature of intra-cortical cross-inhibition (Bonds 1989, Ben-Yishai et al.
1995, Somers et al. 1995, McLaughlin et al. 2000, Shapley et al. 2003). In response to
natural movies we observed a deceleration in activity with comparable properties, but
the acceleration component was virtually absent. This resulted most probably from the
effective inhibition leading to sharp termination of the increase in net-excitation. This
provides evidence for a qualitatively different processing mode upon stimulation with
gratings and natural movies. In the former case, excitation overcomes the rising inhibi-
tion in the network and activity reaches rather high levels. In the latter case, processing
of the stimuli is performed in a regime of more balanced excitation and inhibition.
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How does the increased effective inhibition detected in the dye signal relate to earlier
results obtained at the single cell level? Upon stimulation with natural images, the
strength of inhibitory subregions within RFs of LGN (Lesica et al. 2007) and V1 (David
et al. 2004) neurons increased significantly compared to artificial stimuli. In line with
these results, intracellular recordings have shown that for natural stimuli inhibition fol-
lowed excitation within a much smaller time window than for gratings. Such rapidly
counteracting inhibition leads to generation of fewer spikes and a more precise timing
compared to gratings. Along the same lines, increasing the size of a natural movie such
that it extends to the modulatory surround of the classical RF leads to highly non-linear
changes in spiking behavior. The enlargement in stimulus size creates a net suppressive
effect reducing overall population activity (Vinje & Gallant 2000; 2002), in line with
our results obtained for movies that covered the entire visual hemifield. Moreover, in
agreement with the modulatory suppression, natural stimuli produced increased sparse-
ness (Vinje & Gallant 2000; 2002) and non-linear changes in feature contrast sensitivity
(Felsen et al. 2005b). These observations underline the impact of suppressive mecha-
nisms on cortical processing capacities and suggest its functional efficacy in a balanced
regime of processing within neuronal circuits that are designed for natural input.

The hyper-excitatory state of the cortex upon stimulation with gratings may lead to
erroneous overestimation of the bandwidth of visual feature tuning as the overwhelming
synaptic activation in response to gratings that we have observed may cause wider tuning
curves that occur during processing of oriented features in natural images. Supporting
this conclusion we found the initial excitation wave to be detrimental with respect to
cortical orientation selectivity as captured by modulation depth measure: During the
first few hundreds of milliseconds where the net excitation peaks, the cortical spatial
patterning due to orientation specific activity was weaker than predicted by the separa-
bility hypothesis. This resulted from a steady increase in the selectivity and in contrast
to Sharon & Grinvald (2002), no brief transient increase in selectivity was observed.
Instead, the strength of the acceleration was negatively correlated with orientation se-
lectivity, indicating that inhibitory intra-cortical mechanisms, which sharpen orientation
selectivity, were less effective with higher boosts of initial excitation. Therefore, we con-
clude that higher activity levels in response to gratings signifies that the operating point
of the cortex was initially situated at a higher, "artificial position”.

The qualitative differences in processing regime might be related to the differences in
the statistical properties between these two classes of stimuli. Square wave gratings
are characterized, as do natural images (Field 1987, Ruderman & Bialek 1994, van der
Schaaf & van Hateren 1996, Torralba 2003, Betsch et al. 2004), by a 1/f?> power spectrum.
Furthermore, the total energy carried by these stimuli was controlled to be the same.
However there are considerable differences between these two stimulus categories. A
grating is characterized by a single pure orientation and by infinitely long spatial auto-
correlations, whereas spatial correlations in natural scenes are of finite length (Betsch
et al. 2004). These regularities might result in a state where excitation surmounts
inhibition, leading to higher levels of total activation. An alternative, fully compatible
viewpoint interprets the different processing regime as an adaptational strategy to real-
world stimuli. The reduced activity levels during processing of natural stimuli reduce
energy consumption, an exceedingly important factor from an evolutionary perspective
(Laughlin et al. 1998, Lennie 2003).
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Our approach contrasted simple and artificial with complex and natural stimuli. Al-
though these may be seen as extremes on a continuous scale, we observed qualita-
tive differences. Gratings proved to be extremely powerful in driving cortical activity.
For this very reason, cortical dynamics enters a regime, as signified by the decelera-
tion/acceleration, with high total activity levels including a strong unspecific compo-
nent. In contrast, under natural conditions dynamics are more complex, partly locked
to stimulus dynamics and composed of many non-separable components. Whether the
continuous adaptation, including the suboptimally activated regions, leads to a process-
ing of grating stimuli comparable to the natural conditions with balanced excitation and
inhibition remains to be investigated. From an evolutionary perspective, these observa-
tions might not be utterly surprising, given the necessity to limit the energy consumption
of the brain to a level sustainable. Indeed, heightened attention to the processing char-
acteristics in the regime of balanced excitation and inhibition is dearly needed (Felsen
et al. 2005a). ;
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3.4 Processing of Locally Presented Natural Movies and
Contextual Interactions during Processing of Natural
Movies

3.4.1 Introduction

In order to understand processing of natural stimuli it is essential to unravel neuronal
interactions within cortical areas. An important characteristic of early visual cortex is
long-range connections linking distant neurons to each other (Rockland & Lund 1982,
Gilbert & Wiesel 1989). However their functions, especially under natural stimulation
conditions are largely unknown. Here we investigated the dynamics of long-range cortical
integration by using localized presentation of natural movies.

3.4.2 Experimental Procedures?

In order to investigate long-range cortical interactions, natural movies were also pre-
sented locally through a single or a pair of Gaussian apertures. These were created by
modulating the contrast of the movies as a function of space according to a two dimen-
sional Gaussian function (FWHM = 3°-4°, size depend on distance of stimuli to area
centralis in the individual experiments). The local movies were placed ~ 3°-4° relative
to the visual field projection of the area centralis.

Local conditions were indexed by two parameters: position (A or B) on the screen
and movie number (1 or 2) specifying which full-field movies were to be masked. By
displaying either one or simultaneously two local movies, the conditions A1, B1, A1B1,
and A2, B2, A2B2 were created (Fig. 3.11). For conditions with a pair of patches the
distance between the centers of the two Gaussian apertures was equal to 2.5x FWHM. In
conditions A1B1 and A2B2 the stimuli played through both apertures were belonging to
the same original movie (movie 1 or 2) and therefore these conditions are called coherent.
Additionally we created incoherent conditions by presenting two different movies within
both apertures. Local movies were corrected for mean luminance so that the average
of the pixels within the Gaussian apertures was always equal to the brightness of the
background they were embedded. However, we did not equalize the contrast within each
apertures as it is not possible to do so without introducing strong artifacts, particularly
in cases where the local portion of a movie frame contains a zone with homogeneous
brightness values corresponding to a surface-like object in the movie.

For each experiment, a total of 8 local stimulation conditions were created (Fig. 3.11B).
Using two positions (positions A and B) and two natural movies (movie 1 and 2), single
(conditions A1, B1, A2 and B2), coherent (conditions A1B1 and A2B2) and incoherent
(conditions A1B2 and A2B1) conditions were constructed. During stimulation with
these localized stimuli, we observed evoked activity in 7 out of 11 experiments, which
were included in the following analysis.

The data from 8 hemispheres (7 animals) were used for the results reported in the
following (local set). The remaining data had to be discarded because we did not observe

#This part complements the Experimental Procedures of the last Section. Here only the information
specific to the localized stimulation protocol is provided.
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Figure 3.11: Presentation of Natural Movies. For each experiment, two base natural movies (marked
red/blue) were used to create different stimulation conditions: In full-field conditions (left), movies maximally
covered the visual hemi-field of the cat. In local conditions, movies were presented through either one or two
Gaussian masks (3° or 4° FWHM, see Experimental Procedures) centered at positions “A” (top position) or “B”
(bottom position), illustrated by white circles. According to the position label (A or B) and the index of the
natural movies (movie 1 or 2), the following conditions were displayed: single (A1, B1, A2, B2), in which only one
local patch was shown; coherent (A1B1, A2B2), in which two local patches belonged to the same full-field movie;
and incoherent (A1B2 and A2B2), with local patches derived from different movies (see rightmost column).

any activity in response to localized presentation of the movies. Within this dataset local
stimulation did not always activate the cortex strongly. We therefore had to distinguish
between experiments with high activity levels from those where local stimulation did
not yield a strong activity. Therefore the analysis were occasionally restricted to the
experiments with high activity (selected local set, 3.4.2). The selection was done by
applying a threshold on the peak average activity levels of the evoked data representing
the average activity across presentation time and local conditions (> 0.2 x 1073A F/F).

3.4.3 Results

3.4.3.1 Locally Presented Natural Movies Evoke Localized Dynamic Activ-
ity Patterns

Upon localized stimulation by natural movie patches, activity emerged from baseline
level with variable delays among conditions (Fig. 3.12 shows responses to two different
movies: movie one, rows 1-3; movie two, rows 4-6). The cortical responses were located
along the cortical antero-posterior axis, reflecting the vertical positioning of the movie
patches in the visual field. The localized stimuli gave rise to different spatial extents
and peak values of cortical activation at different frames. Across the time averaged
maps (Fig. 3.12, second column from right), spatially localized spots of activity with
approximately centrally located peak values were clearly visible. These spot-like acti-
vation patterns observed during localized presentation allowed us to disambiguate the
contributions of subcortical input from those of other sources. We were thus able to
choose non-overlapping regions of interests (ROI) that were specifically driven by indi-
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vidual movie patches presented at the two different locations. The direct input to these
ROIs was the same under coherent and single patch conditions, thus any differences in
activity can be attributed to impact of long-range cortical interactions. By selecting the
most active pixels corresponding to the highest percentiles during single patch conditions
(A1, B1, A2 and B2), we chose two pairs of different ROIs (one pair for each movie) per
experiment (Fig. 3.12, rightmost column). This yielded 28 ROIs for comparison (local
set). Occasionally we focused on a subset of 19 comparisons corresponding to the ROIs
with the strongest responses to the stimuli (selected local set). In the following, the la-
tencies and activity levels within these selected ROI will be compared across conditions
to identify contextual interactions.

3.4.3.2 Long-range Cortical Connections Reduce Response Time

We investigated the extent to which contextual stimulation reduced the time required for
neuronal populations to reach a significant activation level. We defined this as the time it
took for a recorded pixel to exceed two standard deviations of baseline in two consecutive
frames, and visualized these values topographically using latency maps (see 3.13A, left
and middle columns for examples). In the case of single conditions (left column), latency
maps exhibited a localized circular spot embedded in a background that did not reach
significant activation levels (black pixels). We also found a common tendency for the
fastest reacting pixels to be centrally located, with an increase in latencies towards the
periphery. To quantify the effect of contextual modulation on response times, changes in
latency due to the additional movie patch were evaluated within a given ROI. To avoid
problems with determining latencies of weak responses, the analysis was carried on the
selected local set.

Within the highest percentile of activation (3.13A, red pixels in the right panel corre-
spond to the 5th percentile) latencies exhibited a large variability, ranging between 100
and 700 ms (3.13B). The mean latency decreased in the presence of an additional dis-
tant movie patch, with 76% of cases displaying shorter latencies. The average latencies
were about 340 ms and 268 ms for single and coherent conditions, respectively (t-test,
p < 0.05). Furthermore, we found that the effect on latencies increased approximately
linearly with decreasing activity percentiles (3.13C). For the least active pixels, corre-
sponding to the interval of 75-80 %, the average change in latency was about 140 ms.
This was twice the size of the effect found for pixels belonging to the highest percentile
interval. Hence we conclude that the presence of a contextual natural stimulus reduced
the response times of distant neurons to their direct subcortical input. Furthermore the
least activated pixels benefited most from this effect.

3.4.3.3 Lateral Connections Exert Facilitatory Influences under Natural
Conditions

We next evaluated the effect of contextual movies on activity levels. The time course of
activity within the pixels corresponding to the highest 5th percentile is shown for the
example experiment introduced previously (3.14A). The evolution of activity during the
local presentation of two different movies (1st and 2nd rows) at two different cortical
positions (left and right columns) is depicted. Note the similarity in temporal structure
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Figure 3.13: Effects of Contextual Stimulation on the Latency
of Activation. (A) Latency maps derived from presentation of sin-
gle and coherent movie patches. Color codes for the time point at
which each pixel reached significant activation (non-responsive pixels
in black). Left column: Latency maps during single movie conditions
exhibit circular spots of latency values discernible from a background
of non-activated pixels. Upper and lower rows show two different ex-
periments. Middle column: Coherent conditions produce two spots
in latency maps in which latencies are decreased compared to single
movie presentations. Vertical bar marks 1 mm cortical distance. Col-
orbar denotes time after stimulus onset in seconds. Right column: To
quantify the reduction in latencies as a function of activity levels, five
sets of pixels were selected corresponding to five non-overlapping per-
centile intervals ranging from 95t to 100t" until 75" to 80" based on
average activity maps (not shown). (B) Average latencies computed
across pixels within the highest percentile interval of activity (95" to
100“‘) are plotted for single and coherent conditions. Plus sign rep-
resents mean. Each experiment contributes 4 values (two regions of
interests and two different movies). Red and green dots correspond
to cases illustrated in (A).(C) Reduction in latency as a function of
activity levels.
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within each row and the pronounced differences across different rows. This points to
the fact that each movie has a specific impact on the recorded cortical region. The
effect of contextual movies can be appreciated by comparing dashed and solid curves
within each plot. The activity evoked by the same input was similar in the presence
or absence of the second movie patch. However, higher activity levels for coherent
conditions were consistently observed during the first half of stimulus presentation (black
lines). Altogether this suggests that the direct input dominates the dynamics, while
long-range interactions lead to facilitation upon presentation of contextual information.

To test whether this reasoning holds for the entire dataset, we took the median of dif-
ferences across all 28 comparisons (solid black curve in 3.14B). We found that the facili-
tatory effect started to evolve briefly after stimulus onset, reached significance after 500
ms (Wilcoxon signed-rank test, p < 0.05), and remained effective for the next 400 ms.
Across all experiments average activities over this first 900 ms of stimulus presentation
time spanned a wide range, starting from no activity to values reaching .4 x 1072AF/F
(3.14C). In 68% of comparisons, coherent stimulation yielded a higher level of activity
compared to single conditions (3.14C). To test how this facilitation depended on the
efficacy of the movies in driving cortical activity, we restricted the same analysis to the
selected local set (19 comparisons, depicted by filled squares in 3.14C). In the remaining
9 cases, activity was very low, and did not exceed .2 x 10~3AF /F within the pixels corre-
sponding to the highest 5th percentile across all local conditions during the whole period
of presentation. Within the selected local set, the activity during coherent stimulation
was greater in 88% of the cases and the facilitatory effect reached significance as early
as 200 ms (p < 0.05, Wilcoxon signed-rank test), with a peak at around 600 ms before
vanishing at approximately 900 ms (3.14D, solid black curve). Our results so far have
provided evidence that upon context, long-range interactions within early visual cortex
are operational under natural stimulus conditions, and allow for enhanced activity levels
and shorter onset latencies in the presence of contextual input.
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Figure 3.14: Distant Natural Stimulus Exerts Facilitatory Effects on Local Activity Levels. (A)
Temporal evolution of activity during single (dashed) and coherent (solid) conditions for two natural movies
presented locally (blue/red mark different movies; same example data as shown in Fig.3.12). Black line shows
differences between coherent and single conditions. In all cases activity was initially higher in coherent conditions.
The insets contain the binary image representing the pixels belonging to the highest 5* percentile used for
calculation of the traces. (B) Time course of the median difference between single and coherent conditions
(solid black line) computed across all experiments (7 experiments, 28 comparisons). For each time sample,
Wilcoxon signed-rank was used to test for deviations from zero (significant values marked by circles, see legend).
Facilitation remained prominent over 900 ms. (C) Mean activity levels during the first 900 ms for single and
coherent conditions shown for the entire dataset. In agreement with (B), most of the data points lie below the
diagonal indicating higher amounts of activity in response to coherent conditions than for single movie patches.
Filled squares illustrate experiments in which the activities of the highest pixels during the whole presentation
period and across coherent and single conditions were below 1.6 x 1074. (D) Same plot as B summarizing
experiments that revealed strong facilitation (selected local set see Section 3.4.2, filled squares in C).

3.4.3.4 Facilitatory Effects are Sensitive to the Spatio-Temporal Coherence
of the Stimulus

In how far does the observed facilitation depend on the specific spatio-temporal prop-
erties inherent to the natural movies? As the movies were recorded from the viewpoint
of freely moving cats, each natural movie had a distinctive flow field profile. Further-
more, motion was widely distributed across the visual field. During coherent conditions
the same original natural movie was presented through both of the Gaussian aper-
tures, and consequently the spatio-temporal characteristics of the natural movie were
left intact. In contrast, in the case of incoherent conditions, movie patches stemmed
from different natural movies, leading to an evident dissonance due to the elimina-
tion of naturally occurring correlations between apertures. The total input received
by cortical neurons was identical across the sum of coherent and incoherent conditions
(A1B1+A2B2=A1B2+A2B1), and therefore any difference encountered in activity lev-
els found in this comparison can be attributed to contextual facilitatory effects arising
from the spatio-temporal coherence of the stimulus.
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Figure 3.15: Magnitude of Facilitation Depends on Stimulus
Coherence. (A) Cortical activation patterns evoked by coherent
(left) and incoherent (right) movie patches shown for 2 different ex-
periments (upper/lower row). Averages were computed across the first
900 ms in accord with the occurrence of long-range facilitation. Note
that besides differences in peak values, the spatial profiles of activity 0
in response to coherent conditions were enlarged; in particular corti-

cal regions between the two activation spots showed elevated activity 0 2 4 6 x10"
levels.(B) Summary across all experiments. Coherent (AF/F)

Incoherent (AF/F)

As facilitation was prominent during the early phase of stimulus presentation, we here
focused on the first 900 ms. 3.15A shows average activity maps evoked by coherent
(left) and incoherent (right) stimulation for two different experiments. As can be seen,
the local movie patches evoked stronger and more spatially extended responses when
the inherent spatio-temporal statistical properties of the natural movies were left intact.
To quantify the differences in activity levels across all experiments we again compared
average activity within those pixels that were most active (local). The location of these
pixels corresponded to the peak position observed during coherent and incoherent condi-
tions thus yielded two regions of interests to be compared per experiment. The average
activity was in most cases higher for coherent conditions. This finding was consistent
across the majority of experiments (3.15B), with 71% of experiments revealing higher
activation levels for coherent conditions (Wilcoxon signed-rank test, p < 0.05). We thus
conclude that the facilitatory effects are stronger when the provided context is coherent
with respect to the spatio-temporal characteristics of the remote stimulation.
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3.4.4 Discussion

Center-surround interactions are intrinsically tied to the integrative operationality of
cortical function (for review Allman et al. (1985), Series et al. (2003), Albright & Stoner
(2002)). In early visual areas, a fundamental property of neurons is their ability to sense
regions of the visual space which is beyond their RF borders (Fitzpatrick 2000). The
major characteristic of this ability is that isolated stimulation of surrounding regions is
not sufficient per se to drive cortical neurons above firing thresholds. However strong
modulatory effects are exerted on responses to a stimulus presented centrally, to the
point of effectively changing tuning characteristics (Sillito et al. 1995). Previous experi-
ments demonstrated a variety of facilitatory and/or inhibitory contextual effects but the
final outcome crucially depends on the precise configuration of the parametrized stim-
ulus used to stimulate center and surround regions. While the effect by surround was
found to be mainly inhibitory (Hubel & Wiesel 1965, Maffei & Fiorentini 1976, Jones
et al. 2001) and spatially asymmetrically organized (Walker et al. 1999), it has been
shown that the precise nature of the effect depends on the contrast of contextual stimuli
relative to the contrast threshold of the recorded neuron (Toth et al. 1996, Sengpiel et al.
1997, Kapadia et al. 1999). Although these neuronal phenomena are usually interpreted
from the viewpoint of their benefits on naturally occurring visual tasks such as con-
tour forming, figure-ground separation, object segmentation, or perceptual completion
of occluded objects, it is not clear whether —and if so, how —these center-surround in-
teractions studied with simple stimulus configurations extrapolate to complex dynamic
conditions that mimic natural input.

By using “keyhole-like” presentations of the original natural movies through either one
or two distant Gaussian masks, we quantified the effect of surrounding stimulation on
local activity levels. We provide evidence that contextual integrative mechanisms are
indeed operative under natural stimulus conditions. The local movies evoked spatially
confined activation spots with approximately circular shapes. Contextual stimulation
led to higher activity levels within these regions compared to when the movies were
shown in isolation. This facilitatory impact of the distant movie started within the first
hundreds of milliseconds and lasted for nearly one second. The changes in activation
levels were accompanied by reduced response latencies, most effective at cortical regions
that were activated only slightly when single apertures were presented.

There are three idealized mechanisms, each based on different anatomical substrates,
which could mediate the observed facilitatory long-range interactions. Overlapping
feed-forward thalamo-cortical input could be a trivial explanation for increased corti-
cal drive during stimulation with adjacent movie patches. However, there are a number
of counter-arguments against this explanation. First, the pixels analyzed were separated
by distances larger than the spread of direct thalamo-cortical projections (Humphrey
et al. 1985, Bringuier et al. 1999). This is additionally supported by the fact that our la-
tency measurements revealed spatially separated spots of equal response onsets for each
movie patch, thus reflecting synchronous early thalamic input at two distinct cortical
regions. Furthermore, the pixels included in our calculations were closely located around
electrode penetration sites corresponding to RFs that were clearly offset in visual space.
We therefore exclude a major direct feed-forward contribution as an account for our
results.
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Rather, the dense network of unmyelinated intra-laminar horizontal connections, linking
distant neurons across several millimeters of cortical space, is a potential substrate for
the observed long-range effects. It has been shown that neurons within the early visual
cortex of cats receive diverse of subthreshold input combinations (Monier et al. 2003).
As we observed subthreshold cortical activity dynamics far beyond the retinotopic rep-
resentations of the individual movie patches, local activity may therefore be influenced
by horizontal lateral input. In addition, feedback signals originating from higher visual
areas with larger RF sizes than in the primary visual cortex may play another, addi-
tionally important role. In voltage-sensitive dye experiments, back-propagating waves
of activity have been shown to be initiated in further downstream cortical areas as early
as 100 ms after stimulus onset (Roland et al. 2006, Xu et al. 2007). Thus, these con-
nections act fast (Lamme & Roelfsema 2000, Hupé et al. 2001) and are likely to mediate
surround modulations spanning considerable distances in visual space, whereas lateral
intra-laminar connectivity may account for modulations within shorter distances (An-
gelucci et al. 2002).

An important cornerstone of long-range facilitation is its dependence on the precise spa-
tial configuration of the surrounding context (Nelson & Frost 1985). It has been shown
that facilitatory effects decrease with decreasing congruency of the contextual stimuli
with respect to the center stimulus (Polat et al. 1998, Kapadia et al. 1995). Using static
stimuli, such coherence is generally controlled parametrically by changing the orienta-
tion difference between center and surround patches (Levitt & Lund 1997, Polat et al.
1998, Sillito et al. 1995, Chisum et al. 2003). As our stimuli were dynamic and complex,
to control the coherency of the stimuli across two Gaussian apertures, we adapted a
non-parametric method by exploiting the unique spatio-temporal characteristics of each
original movie. When the same movie was presented through both apertures they were
perceptually bound without effort, and appeared to belong to a single scene. On the
other hand, the content within both apertures appeared to be immediately incompatible
when two differing movies were used. There are a number of factors that determine co-
herence between patches taken from the same movie. First, stimulus motion was similar
between the two distant apertures. This was due to the ego-motion of the recording
cat, which induced large and equal motion fields across the visual scene captured by the
camera. It has been earlier noted that such temporal phase relationships across distant
regions are perceptually salient and enable object segmentation even in the absence of
any spatial information (Lee & Blake 1999). Second, natural images tend to possess
large spatial correlations because of the dominance of low spatial frequencies in their
spectrum (Simoncelli & Olshausen 2001). Moreover, auto-correlations of orientations
may cover large portions of visual field reaching up to 8 degrees (Kayser et al. 2003b).

We observed that the facilitatory contextual effects were slightly stronger when coher-
ently moving movie patches were present in the context. Since the total input across
coherent and incoherent stimulation received by the recorded cortical area was constant,
these results cannot be solely explained by the local properties of movie patches. Rather,
this facilitation necessarily reflects the outcome of an integrative phenomenon sensitive
to the content of both local movie patches when presented simultaneously. Therefore,
we suggest that the functional architecture of early visual cortical circuits may have em-
pirically internalized the typical contextual relationships found in natural visual scenes.
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An EEG Study: Motion Locking and Crossmodal

Integration in Humans*

4.1 Context

In the previous Chapter (Section 3.3.3.2), we demonstrated that the dynamic natural
stimulation has a major effect on the temporal profile of the cortical responses recorded
in cats. By comparing the evoked optical activity waveform to the motion profile of dy-
namic natural movies we have shown that a good deal of the variations in brain activity
is common to both of these signals. Moreover we provided evidence that the cortical
machinery processing these dynamic input is able to integrate distant contextual informa-
tion (Section 3.4.3.3) when the context is presented within the same sensory modality. In
order to more fully understand the motion locking phenomenon (Kayser & Koénig 2004)
and to test its generalizability to humans, we designed a new set of experiments and
benefited from the unequalized temporal resolution of EEG. Electroencephalogram is a
well-established recording technique and offers recording of high frequency components
(up to 100 Hz in our case).

To stimulate dynamically the visual system, we used a single Gabor wavelet. The choice
of the stimuli was motivated by its well-parametrized nature. We modulated one of its
parameters (for example its orientation) across time in such a way that the temporal
trajectory was similar to the motion signals of our natural movies. Using this dynamic
stimulation we investigated the motion-locking phenomenon at different frequency bands.
Additionally, to test the effect of contextual information, we complemented the visual
input with an extra-modal dynamic sensory signal. To this end, a frequency modulated
auditory signal was used. The modulation of the frequency was either the same or differ-
ent from the motion of the visual stimulation that was simultaneously presented. This

*This Chapter is based on the Master thesis of Sonja Schall (Schall 2008) which was supervised by
Peter Konig and Selim Onat. A similar version of this Chapter is published (Schall et al. 2009).
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resulted in a dynamic multimodal Gabor wavelet that was perceptually either congruent
or incongruent across different modalities.

Our results showed that global brain activity, as recorded by EEG, locked to the dynamic
stimulation at temporal frequencies way above those present in the dynamic stimulation.
Moreover we demonstrated that extramodal auditory input has modulatory effects on
the potentials recorded from electrodes reflecting presumably the activity of early visual
areas.

These observations extend the results presented in the last Chapter: First of all we show
that the motion locking phenomenon is not specific to the cat visual cortex but it can also
be observed in humans. Moreover we show that the connectivity of the central nervous
system subtends the integration of contextual information even when it is presented in
a distributed way across different sensory modalities.

4.2 Introduction

Multisensory integration makes ecological sense when the incoming signals refer to the
same external entity or, more generally, are due to the same underlying physical events.
In general, there are three different ways in which signals must correspond for integra-
tion to take place: spatially, temporally, and/or semantically (Stein & Meredith 1993,
Macaluso & Driver 2005, Calvert et al. 2001, Doehrmann & Naumer 2008).

These correspondences represent a default scheme of integration, and in special cases are
influential enough to fool the system into binding streams that do not belong to the same
underlying cause. In the well-known ventriloquist illusion, for instance, the concurrent
temporal modulation of the puppet’s mouth and the ventriloquist’s speech leads to a
perception of a talking puppet. In spite of the spatial and even semantic discrepancies
here, temporal correspondence drives this audiovisual integration (Vroomen & de Gelder
2004, Bonath et al. 2007). A competition in temporal synchronicity between auditory
and visual streams, on the other hand, may lead to a visual illusion. In the case of the
sound-induced flash illusion (Shams et al. 2000; 2002, Mishra et al. 2007; 2008) an extra
illusory flash is perceived when a single flash is interleaved between two beeps. More
generally, at a constant visual stimulation rate, the number of perceived flashes increases
with a higher auditory stimulation rate (visual illusion) and decreases when the rate of
auditory events is slower (visual suppression) (e.g. Shipley 1964, Noesselt et al. 2008).
The perceived temporal pattern of visual events is thus "adjusted” to match the rate of
auditory events. Taken together, these cases nicely illustrate that temporal aspects are
essential to the perception of audiovisual events.

Research into the neural substrate of multisensory integration began in earnest after
neurophysiological results showed characteristic multimodal response profiles at the level
of single cells in superior colliculus in cat (Meredith & Stein 1983, Meredith et al. 1987)
and macaque (Wallace et al. 1996). When stimuli were presented in close temporal
proximity in two sensory modalities, the response of some collicular cells was found to
reach or even exceed the sum of responses to each stimulus delivered in isolation. Imaging
studies have since confirmed the importance of superior colliculus in human audiovisual
integration (Calvert 2001, Miller & D’Esposito 2005). Several cortical areas have also
been implicated in the processing of audiovisual stimuli including the insula (Bushara
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et al. 2001) and intraparietal sulcus (Calvert et al. 2001). The superior temporal sulcus,
in particular, has been consistently shown to be an area of audiovisual convergence and
integration (Beauchamp et al. (2004), see Calvert (2001) for a review of earlier work).
Importantly, it has been found to be sensitive to the temporal synchrony of audiovisual
information, especially audiovisual speech (Calvert et al. 2000, Miller & D’Esposito 2005,
Macaluso et al. 2004), but also simpler stimuli (Noesselt et al. 2007, van Atteveldt et al.
2007). In addition, there is a growing body of evidence from ERP and fMRI studies
demonstrating that areas traditionally conceived to be unisensory also play a role in the
synthesis of audiovisual information (Giard & Peronnet (1999), Molholm et al. (2002),
Kayser et al. (2007), Calvert et al. (1999), Miller & D’Esposito (2005), Noesselt et al.
(2007), for general reviews on low-level integration see Foxe & Schroeder (2005), Kayser
& Logothetis (2007), Driver & Noesselt (2008)). Another line of research follows the
hypothesis that cortically, multisensory integration is instantiated by the relative timing
of synchronized populations of cortical neurons. This has been supported by human
EEG/MEG studies (see Senkowski et al. (2008) for a review).

To date, studies that explicitly investigate the temporal dependence of audiovisual bind-
ing, such as those mentioned above, have mainly manipulated the timing of stimulus
onset or coincidence in one modality relative to the other. Typically, these experiments
employ brief, simple stimuli that are either presented individually (Meredith et al. 1987,
Bushara et al. 2001) or in streams (Calvert et al. 2001, Noesselt et al. 2007, Dhamala
et al. 2007, Senkowski et al. 2007). However, such static audiovisual events are rarely
found under natural conditions, where acoustic signals mostly emanate continuously
from objects in motion, such as rustling leaves or moving cars. Real-world audiovisual
events extend over time and are bound less by their simultaneity and more by their
common temporal dynamics. For this reason, concentrating only on the isolated tempo-
ral coincidence of brief events neglects important temporal aspects inherent in natural
events. To capture the full importance of temporal information, it is thus necessary to
investigate audiovisual events extended in time.

Indeed, Kayser and Konig (Kayser & Konig 2004) have recently demonstrated that ex-
tended stimulation with natural visual stimuli leads to a continuous modulation of LFP
power in cat visual cortex, and that this modulation reflects the dynamics of the pre-
sented movies. In addition, rhythmic auditory stimulation has been shown to entrain low
frequency activity in auditory cortex of macaque (Lakatos et al. 2005). The entrainment
of human cortical activity to stimulation at a constant frequency is also a well-known
phenomenon in the auditory (Galambos et al. 1981, Bidet-Caulet et al. 2007) and visual
modalities (e.g. Regan 1966, Ding et al. 2006), however it is not clear whether this also
holds for stimuli with rich temporal power spectra. One possible role of stimulus locking
in temporally-dependent multisensory integration may involve an increase in the efficacy
of stimuli from a second modality when temporally aligned with neural activity that is
entrained to the first modality (Lakatos et al. 2007, Kayser et al. 2008, Schroeder et al.
2008). As such, the extended changes in cortical activity seen in response to extended
sensory stimulation are certainly worth closer examination in the context of audiovisual
integration.

Here, we are interested in the general relevance of extended, time-varying information
for the integration of visual and auditory streams. For this purpose, we paired well-
defined visual and auditory signals that changed continuously and irregularly over time
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according to shared or differing dynamical patterns. Though relatively complex in tem-
poral structure, and in this respect comparable to natural events including audiovisual
speech, our stimuli have the advantage of being novel to the experimental subject and
free of semantic reference. Using EEG, we employ two measures of stimulus locking to
investigate audiovisual interaction. First, as a generalization of the evoked potential, we
examine whether averaged EEG waveforms are locked to stimulus dynamics. Evoked
potentials reveal the activity locked to stimulus onset, and here we extend this approach
using cross-correlation. Second, following Kayser & Konig (2004) study, we investigate
the locking of EEG power dynamics at frequencies within and beyond the range of our
stimulus dynamics, and thus whether the observations made in cat transfer to man.

We specifically address three research questions. First, whether neural activity in the hu-
man cortex locks to the temporal structure of irregular dynamic stimuli in the visual and
auditory modalities. Second and most importantly, we want to investigate whether mul-
tisensory integration is reflected in such a mechanism. Finally, we are interested in the
time course of stimulus-locking, particularly in response to congruent and incongruent
bimodal stimulation.

4.3 Experimental Procedures

4.3.1 Participants

EEG was recorded from 30 healthy university students, who were first screened for
normal sight and hearing using standard tests (Landolt C chart and calibrated PC-based
audiometer) and gave their informed written consent to participate in the study. Of
these, 6 subjects were discarded prior to data analysis due to noisy data. The remaining
24 subjects (14 female, 23 right-handed) were aged between 19 and 33 years (mean:
23, standard deviation: 3). The experiment was conducted in accordance with the
Declaration of Helsinki.

4.3.2 Experimental Design

In order to investigate multisensory integration processing, it is possible to contrast
responses to unimodal and bimodal stimuli, or alternatively, to compare congruent and
incongruent bimodal stimulation. To address both of these contrasts, we presented
auditory and visual stimuli in four stimulation conditions: bimodal congruent, bimodal
incongruent, unimodal visual, and unimodal auditory.

To engage their attention, participants were required to perform a congruency judgement
task. In the bimodal case, subjects were asked to judge the temporal congruency of
simultaneously presented auditory and visual stimulus components, thus ensuring that
attention would be equally allocated to both modalities. To similarly engage subjects’
attention during unimodal presentations, we adjusted the task to a sequential comparison
of two consecutively presented unimodal stimuli, meaning that each such trial contained
two stimuli. A sequential pair could consist of any combination of the two modalities
(V-A, A-V, V-V or A-A). In subsequent EEG analysis, however, each stimulus of these
sequentially presented pairs was treated as an independent unimodal stimulus in either
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Figure 4.1: Schematic diagram of both experi-
mental paradigms. For both paradigms trial onset
was self-paced, and subjects indicated their readiness
by button press. Each trial began after a random
delay with the appearance of a red fixation cross,
which subjects were asked to fixate until the end of
the trial. (a) Bimodal trials consisted of simulta-
neously presented visual and auditory stimuli, and
were either congruent (stimuli followed the same tra-
jectory) or incongruent (different trajectories). (b)
Single modality trials contained two sequentially pre-
sented stimuli, separated by a random interval (500
-1500 ms). A pair could entail stimuli from one or
both modalities, again either congruent or incongru-
ent. After stimulus presentation, subjects were re-
quired to decide whether the trial was congruent or
incongruent, answering via button press.

the unimodal visual or auditory condition.

We chose a self-paced paradigm in which subjects triggered trial onset via button press
(see Fig. 4.1). In doing so, we aimed to maximise participants’ concentration and min-
imise eye-movements during stimulus presentation. Each trial began with the presenta-
tion of a red fixation cross. After a short, random delay, the stimulus appeared on the
screen and/or was heard through headphones. In the case of bimodal stimuli, auditory
and visual components were simultaneously presented, after which subjects completed
the task by pressing one of two buttons (denoting “congruent” and "incongruent”). In
the case of sequential trials, two stimuli were shown consecutively, separated by a short,
random time interval (500-1500 ms), and subjects completed the task after the second
stimulus. For purposes of behavioural analysis, task performance was evaluated on a
trial basis.

4.3.3 Stimuli

Stimuli consisted of a rotating Gabor patch, a frequency-modulated tone, or both pre-
sented simultaneously, and lasted for 6 seconds. Gabor patches were grayscale, had
a sinusoidal frequency of 0.33 cycles/°, subtended approximately 4.5° of visual angle
(FWHM) and were centrally presented on a gray background identical to the mean lu-
minance of the patch. Auditory stimuli had constant amplitude, and were ramped with
a 10 ms half-cosine window to avoid clicks or other artifacts. Movies of visual stimuli
were sampled at a frame rate of 25 Hz, and uncompressed visual and auditory stimuli
were merged into an avi file for bimodal presentation using MEncoder (MPlayer version
1.0rcl, www.mplayerhq.hu).

Both unimodal stimulus components varied along only one feature dimension: orienta-
tion of Gabor patches spanned 180° centred around the horizontal axis, and the frequency
of tones was modulated between 200 and 300 Hz. This ongoing feature modulation was
determined by trajectories that changed smoothly but irregularly over time (see Fig.
4.2). Visual and auditory feature dimensions were chosen based on a behavioural pilot
study (see Section 7.2 for more detail on how we have selected which feature to modulate
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during the main experiment) 32 trajectories were created in Fourier space by assembling
a Gaussian power spectrum with a cut-off frequency of 1 Hz (resulting in a cut-off fre-
quency of ~4 Hz for stimulus speed) and random phase information. Each trajectory
was constructed as part of a set of 4 mutually orthogonal trajectories, and in total 8 sets
were created using an iterative optimisation procedure. The Fourier representation was
then transformed to the time domain using the inverse fast Fourier transform. Stim-
uli were presented in congruent and incongruent conditions, where visual and auditory
stimuli were modulated by identical or orthogonal trajectories (see below). This allowed
us to precisely control for the degree of incongruence.

Stimuli were organised into four blocks, each consisting of 24 congruent audiovisual, 24
incongruent audiovisual, 24 visual, and 24 auditory stimuli (yielding 48 simultaneous and
24 sequential trials). Each block was created from two sets of orthogonal trajectories,
with each trajectory occurring three times in each of the four conditions. Trajectories
were balanced over conditions and presentation order of paired stimuli. Block order
and stimulus order within blocks was randomised over subjects. Depending on time
constraints and subject alertness, participants completed either 3 or 4 blocks (equivalent
to 288 or 384 stimuli).

4.3.4 Presentation & Recording

Subjects were comfortably seated approximately 1 m from the presentation screen in a
dimly-lit recording room. Stimuli were presented on a 21” monitor (Samsung SyncMaster
1100 DF) with a refresh rate of 100 Hz. The presentation software (Neurobehavioural
Systems, version 10.3) was run on a Macintosh Pro (Apple Computers). Sounds were
delivered via in-ear headphones (EAR-Tone 3A, Etymotic Research Inc.) at a comfort-
able volume chosen by the subject. During trials, subjects were asked to remain still
and keep their gaze fixated on a centred, red fixation cross.

EEG was recorded from 28 sintered Ag/AgCl ring electrodes mounted in a cap (EasyCap
GmbH, Herrsching-Breitbrunn, Germany) according to the standard 10/20 system, ref-
erenced to linked mastoids. Four additional electrodes were used to capture vertical and
horizontal electro-oculograms (bipolar montages). The upper threshold for impedances
was 5 kOhm. Two of the 30 standard electrodes (FT8 and FT7) were exchanged for
diodes to capture visual and auditory stimulus onset. Signal amplification, filtering and
digitisation were carried out by a 32-channel amplifier system (Synampsl, Neuroscan,
Compudedics, TX, USA). The data were digitized at 500 Hz and online bandpass-filtered
within 0.3 and 100 Hz to prevent aliasing. The digital signal was recorded by a PC-
workstation (Intel Pentium 4, 2.41 GHz, 1GB RAM).

The diode signals revealed that the visual stimulus preceded the auditory by 25 ms —a
small delay compared to the cut-off frequency of the trajectories —due to the stimulation
software used.

4.3.5 Behavioural Analysis

Behavioural analysis served two purposes: first, to determine whether subjects were
attentive during the experiment; second, to ensure that subjects could perceptually
distinguish bimodal congruent from bimodal incongruent stimuli. Task performance was
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evaluated in terms of trials, and simultaneous and sequential stimulus presentations were
dealt with separately.

To determine whether subjects performed above chance level, an exact Binomial test
was performed for each subject. We furthermore used signal detection methods to quan-
tify subjects’ sensitivity and bias in discriminating between congruent and incongruent
bimodal stimuli (see Wickens (2002) for more detail). The sensitivity measure d’ was
computed from hit (correct identification of congruent stimulus) and false alarm rates.
Assuming that both rates come from standard normal distributions, d’ estimates the dis-
tance between the two distributions in units of standard deviations —the further apart
the two distributions, the easier the congruency can be detected, and the higher the d’.
The response bias estimate (log ) informs us whether the observer favours a ’congruent’
or ’incongruent’ response, with a negative value indicating a bias to congruence, and a
positive value indicating an incongruence bias.

4.3.6 Pre-processing & Artefact Removal

All data analysis was carried out using MatLab (The MathWorks, Natick, MA), using
the EEGLab toolbox (Delorme & Makeig 2004) and custom-made functions. Before
artefact removal, all data were bandpass filtered between 0.5 and 100 Hz and epoched.
Eye-movement artefacts were eliminated using Independent Component Analysis (Jung
et al. 2000). Other muscle artefacts were detected by visual inspection, and whole
trials were rejected. All trials were baseline corrected relative to 500 ms of pre-stimulus
activity.

4.3.7 Stimulus Locking

Two approaches were used to quantify stimulus locking, both involving cross-correlations
between EEG activity and the magnitude of change of the stimulus (see Fig. 4.2). All
correlation coefficients were normalised so that the values lie between -1 and 1, with
0 indicating the absence of a correlation. Correlation coefficients are calculated for all
temporal offsets between stimulus and response. Significant coefficients at positive time-
lags indicate that the stimulus leads the cortical responses, that is the brain response
is locked to the stimulus dynamics. Due to the finite autocorrelation of the stimulus, a
locking might even occur at negative lags.

Our first analysis approach (spectrotemporal analysis) was concerned with the question
of whether the time course of stimulus-induced power changes in the EEG correlates with
changes in stimulus speed . This approach allowed us to investigate whether the power
in any frequency band of the measured EEG signals locks to the dynamic stimulus.

A second analysis approach (waveform analysis) was used to examine whether the EEG
waveform itself locks to the temporal profile of the stimulus. This approach was used to
investigate whether there is a stable phase-relationship between evoked EEG response
and stimulus. A significant correlation coefficient indicates that the phase of the EEG
signal locks to the ongoing stimulus. In contrast to the spectrotemporal approach,
this analysis only reveals locking of frequencies common to both stimulus and EEG.
A detailed description of each approach is given below.
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Figure 4.2: Two Correlation Analysis Approaches. Spectrotemporal and waveform correlation methods are
illustrated on the left and right, respectively. Exemplary stimulus trajectory and single-trial EEG waveforms
are shown in the centre, with a gray bar indicating the temporal range used in both analysis approaches. In
the case of spectrotemporal analysis, each trial is transformed into a time-frequency representation (see text for
details) and then correlated with the speed profile of the corresponding stimulus. The waveform analysis method
involves creating an ERP from all trials corresponding to a single stimulus, and then correlating this waveform
directly with the stimulus speed. Peaks at positive time lags indicate that the EEG power or waveform follows the
temporal dynamics of the stimulus, in other words that the EEG has locked to the stimulus. In both approaches,
correlograms are then averaged over stimuli. Grand averages are created by taking the median over subjects.

In the spectrotemporal analysis approach, spectral power changes in response to visual
speed were determined on a trial-by-trial basis (Fig. 4.2, left panels). For each trial, we
estimated the Short-time Fourier Transform using a window length of 80 ms shifted with
an overlap of 78 ms. Each data segment was windowed (Hamming window) and zero-
padded (to 256 samples ~512 ms). Thus, we achieved a nominal temporal resolution
of 2 ms and frequency resolution of approximately 2 Hz. The amplitude of the Short-
time Fourier Transform was squared to obtain spectral power, and then z-transformed
with respect to baseline power. Due to the power increase evoked by stimulus onset, we
removed the first 500 ms of each trial which is uninformative for the present purpose
and investigated only the stationary response. The power of individual frequencies was
then either summed across our frequency range of interest (20-35 Hz) corresponding to
previous results (Kayser & Konig 2004), or kept at its full resolution. Each frequency
band was then separately cross-correlated with the speed of the stimulus, given by the
absolute values of the trajectory’s first derivative. The resulting cross-correlations were
then averaged using Fisher’s z-transform over all trials within each condition, yielding
one cross-correlogram per subject, condition, frequency band and channel. Bimodal
incongruent trials resulted in two cross-correlograms due to the difference in visual and
auditory stimulation trajectories.
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The waveform analysis approach evaluated whether stimulus speed is reflected in the
EEG waveform by cross-correlating stimulus speed with stimulus-specific ERPs. An
ERP was computed by averaging the EEG over those trials in which the same stimulus
(i.e. identical trajectories) was shown for the modality in question (Fig. 4.2, right
panels). Due to the limited number of trajectory repetitions throughout the experiment,
ERPs were constructed from a maximum of 9 waveforms (please note that the number
of trials is substantially larger). Stimulus-specific ERPs were then cross-correlated with
the speed profile of the corresponding trajectory. The stimulus average for each subject,
condition, and channel was obtained, again using Fisher’s z-transform. As above, the
grand average was calculated using the median.

Our first research question asked whether there is any evidence for stimulus-locking to vi-
sual and auditory stimulus dynamics, in other words how the cortex responds to the pres-
ence of a time-varying stimulus. To address this, for each modality we averaged over all
conditions containing input to that modality, e.g. unimodal visual and both bimodal con-
ditions were averaged to investigate visual stimulus-locking. This increased the amount
of data used in our analysis, thus stabilising effects that were otherwise small and less
consistent between subjects. In addition, we can thus estimate the modality-specific, au-
tomatic, bottom-up response irrespective of task factors or information present in other
modalities. After evaluating the presence or absence of stimulus locking, the original
conditions were used to explore the second question, namely whether locking is mod-
ulated by multisensory interaction. Finally, to address the third research question, we
estimated changes in stimulus locking over the duration of a trial. This was done using
a time-dependent cross-correlation function. Cross-correlations were computed within a
500 ms shifting time window (250 ms overlap), thus yielding 23 cross-correlograms per
trial. Averaging over trials, conditions and subjects was performed as above.

4.3.8 Evaluating Statistical Significance

Significance of the resulting correlation coefficients was tested using bootstrap tech-
niques. To test for significant peaks within a subject and for a given condition, we
computed 1000 cross-correlations composed of averaged cross-correlations between non-
matching EEG data and stimuli. From this distribution, the 95% and 99% confidence
intervals were estimated. To test significance of the grand average, a distribution of 1000
medians was generated to determine confidence intervals.

To test for significant condition differences, permutation testing was used. For each
subject, 1000 surrogate conditions were created by pooling and randomly redrawing trials
from both conditions without replacement. A distribution of condition differences was
obtained by subtracting the resulting 1000 grand averages (median) of both conditions.

4.4 Results

Here we first evaluate subjects’ task performance in order to determine their alertness
during the experiment and ability to distinguish audiovisual congruent from incongruent
stimuli. Next we address the issue of whether stimulus locking can be found in the
human brain. Finally, we compare congruent and incongruent bimodal conditions to
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investigate whether stimulus locking is involved in the crossmodal processing of temporal
information.

4.4.1 Task Performance

All subjects performed well above chance in the task (p < 0.01, exact binomial test), with
an average performance of 76 % (+8% standard deviation). This result indicates that
subjects were attentive during the experiment and understood the task. Dividing data
according to simultaneous audiovisual and sequential single modality trials, subjects’
performance was better for the simultaneous (87 £11%) than the sequential paradigm (65
+7%). All subjects performed above chance in simultaneous trials (23 with p < 0.01, 1
with p < 0.05). In sequential trials the majority of subjects remained significantly above
chance (14 with p < 0.01, 5 with p < 0.05), while 5 of the 24 were not able to significantly
discriminate congruent from incongruent trials. The differences in performance are most
likely related to the difficulty of the task —it is intuitively more difficult to compare
two temporally extended patterns when they are serially presented than when they are
simultaneously available.

In the case of bimodal trials, we further investigated subjects’ ability to detect congruence
and whether any bias was involved in their congruency judgement. This was necessary
before proceeding with the contrast between EEG responses to bimodal congruent and
incongruent stimuli. 22 out of 24 subjects had d’ estimates greater than 1, with 19 of
these exceeding a d’ of 2. The subject average was 2.92, indicating that the difference
between congruent and incongruent bimodal stimuli was clearly perceptually detectable.
Interestingly, almost all subjects (21 out of 24) had a negative log 8 estimate revealing a
bias to respond ’congruent’ with a mean log 5 of -0.8 (+1 standard deviation). Maximum
and minimum bias estimates were 1.65 and -2.6132, respectively.

As mentioned above, each stimulus of sequential pairs is treated as an independent
stimulus in either the unimodal visual or unimodal auditory condition. Thus, we are not
concerned with the behavioural results for those conditions. In all further analysis, all
stimuli are used to calculate results, regardless of whether they appeared in correctly or
incorrectly answered trials.

4.4.2 Stimulus Locking: Can We Find it in Human EEG?

We first had to establish whether EEG entrains to the dynamics of the presented stimuli.
As mentioned in the Methods section, we quantify the locking for each individual input
signal by correlating it with the measured EEG from any trial in which the modality
of interest was stimulated with that input, thus averaging over conditions. Separate
conditions are compared in the next section.

4.4.3 Visual Locking

The spectrotemporal analysis approach quantifies the amount of correspondence between
the magnitude of stimulus change and the spectrotemporal power of the EEG within a
given frequency range. To evaluate whether our data show stimulus locking, we first
concentrate on the 20-35 Hz frequency band reported by Kayser & Konig (2004). Here
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we examine the effect at the population level, averaging first over all visual conditions
(bimodal congruent and incongruent and unimodal visual) and then over subjects. As
can be seen in Fig. 4.3A, we find stimulus locking to visual stimuli within this frequency
range at occipital electrodes (01, OZ, 02), peaking at a lag of 92 ms with a maximal
correlation coefficient of 0.01.

Figure 4.3: Stimulus Locking of EEG Power
to Visual Stimuli. (A) Each plot shows the to-
pographic distribution of the grand average of the
spectrotemporal analysis correlation results (aver-
aged over bimodal congruent, incongruent and uni- Omms ’ 100 ms 200 rT:s b
modal visual conditions and over all subjects) within |— [—’
the 20-35 Hz band, at selected time lags beginning b 80 oz ] : 1
at 0 ms and ending at 200 ms lag. Dots represent
locations of labelled electrodes, with locations below
head centre drawn outside the cartoon head. Colour
codes for the magnitude of the correlation coefficient,
with warm colors indicating positive and cold colors
negative correlation, and values are linearly interpo-
lated between recording sites for visualisation pur-
poses. (B) Grand average spectrotemporal analysis
correlograms (as in a) for individual frequencies are 20
shown for electrode OZ. Each row represents the re- ' r
sults for a single frequency, with frequencies given on ]
the y-axis and correlation lags on the x-axis. Colour -250 0
codes for magnitude of correlation coefficient time lag (ms)
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Looking now at the entire range of frequencies that are available, again at the population
level, we see at occipital electrodes that in addition to this positive correlation between
visual stimulus dynamics and EEG power (r = 0.015 at OZ), there is also a negative
correlation found in lower frequencies at a later correlation lag (r = —0.03 at OZ, see Fig.
4.3B). Although these effect sizes are small, they are clearly different to baseline, and
significance testing using permutation tests reveals that these peaks are indeed highly
significant (p < 0.01). Thus, we report two ranges of stimulus-locking: a positive peak
centred at approximately 27 Hz occurring at 80 ms lag after visual stimulation; and a
strong negative correlation between 8 and 20 Hz beginning at approximately 180 ms
lag. The difference in direction of these correlations suggests that there are at least two
frequency-specific stimulus-locking phenomena in response to visual stimulation.

These results are supported by an analysis of individual subjects. In 10 out of 24
subjects, a significant peak was found in the beta range for at least one occipital recording
site. The clearest beta correlation was not found in the same occipital channel for all
participants, with some displaying a strongly lateralized effect. The anti-correlation
found in lower frequencies showed less variability across subjects, and EEG power of
20 out of 24 subjects was found to significantly anti-correlate with visual stimuli at an
occipital electrode.

Visual stimulus speed is reflected not only in the power profile of single EEG trials but
also in the EEG waveform itself, as can be seen from the waveform analysis results (Fig.
4.4A). The grand average cross-correlogram between stimulus speed and the stimulus-
specific ERP waveform, averaged over all visual conditions, reveals peaks at various
recording sites across the scalp. The strongest effects are found at occipital sites at 78
ms lag with a magnitude of correlation of 0.12. An extensive cluster of electrodes in
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the centro-parietal region shows a more complex pattern of locking, with a first positive
peak at approximately -60 ms lag followed by a negative peak at around 180 ms and
a second positive peak at approximately 390 ms lag. The strongest effect within this
cluster is seen at CPZ (r = 0.09). Given that EEG at these sites follows the stimulus
with differing delays, occipital and centro-parietal clusters are likely to reflect distinct
underlying cortical sources.

-250 0 250
time lag (ms)

Figure 4.4: EEG Waveforms Lock to Visual Input at Multiple Sites. (A) Headplots show the topographic
distribution of the grand average correlation coefficients between ERP waveform (averaged over bimodal congruent
and incongruent and unimodal visual conditions) and visual stimulus speed at selected time lags between 0 and
400 ms. Correlation magnitude is color coded as in Fig. 4.2. (B) Condition comparison for electrodes OZ (upper
panel) and CPZ (lower panel). Waveform analysis correlograms for bimodal congruent (BC, green line), bimodal
incongruent (BI, red) and unimodal visual (UV, dashed blue) are shown with time lags on the x- and correlation
coefficients on the y-axis. Time lags showing significant differences between bimodal incongruent and bimodal
congruent conditions are highlighted in light gray for p<0.05 and darker gray for p<0.01

Contrasting the two analysis approaches, we see that the waveform analysis provides a
stronger, consistent measure of stimulus locking. For almost all subjects (23 of 24), EEG
recorded from OZ correlates with stimulus speed (p < 0.01 for 22 subjects, p < 0.05 for
one subject). Significant peaks occur between zero and 300 ms lag (median r: 0.1372
for significant subjects, 0.1353 for all subjects) for the average of all visual conditions.
Stimulus locking in the centro-parietal region is similarly stable, with 20 subjects show-
ing a significant effect (19 with p <0.01, 1 with p < 0.05) at CPZ between 200 ms and
460 ms lag, (median r: 0.1229 for significant subjects, 0.1100 for all subjects). Thus,
phase-locking, as captured by waveform analysis, is more reliable than the power-locking
quantified by our spectrotemporal approach, making it more useful for investigating
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condition differences.

4.4.4 Auditory Locking

As a next step, we asked whether stimulus locking can also be found in the auditory
system. Here, we didn’t have an initial frequency band or site to guide our investigation.
Representative results for both analysis approaches are depicted in Fig. 4.5 for electrode
CZ (chosen because its auditory ERP showed the largest evoked potential of all channels
shortly ( 100 ms) after stimulus onset) for the unimodal auditory condition. Although
the spectrotemporal analysis results for this recording site suggest there may be stimulus-
locking between 45 and 55 Hz, this correlation is not salient with respect to other lags and
frequencies, and is furthermore not found at neighbouring channels nor is it consistent
across auditory conditions. Waveform analysis cross-correlograms also show no salient
peaks, with very low correlation coefficients over all time lags. As in the visual case, we
also looked at the average over all auditory conditions, since we assumed that averaging
over more trials might uncover small effects. However, the obtained results are similarly
uninformative about auditory stimulus-locking. In addition, no consistent effects were
seen on the individual subject level for either analysis approach.
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Figure 4.5: No Stimulus Locking to Auditory 025
Input. Exemplary unimodal auditory results are de-

picted for electrode CZ. (A) Spectrotemporal anal- - OW\/\/“/

ysis cross-correlograms are shown in rows for indi-

vidual frequency bands (y-axis). Colours represent -.025
correlation coefficients. (B) The waveform analysis

cross-correlation is represented with time lags on the -250 ) 0 250
x- and correlation coefficients on the y-axis time lag (ms)

4.4.5 Is there Evidence for Multisensory Interactions?

To address the question of whether stimulus locking is subject to multisensory interac-
tions, we contrasted different stimulation conditions. As we did not find any evidence
for auditory stimulus locking, we concentrate in the following on visual stimulus locking
and how it is modulated by the presence of matching or mismatching auditory input.

Despite the absence of auditory stimulus locking, the waveform analysis results revealed
that incongruent auditory information modulates visual stimulus locking. This cross-
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modal effect is indicated by diminished peak correlation coefficients in bimodal trials
containing incongruent auditory input, compared to bimodal congruent trials. Occipi-
tally, the maximum correlation of the bimodal incongruent grand average (r = 0.0612)
is almost 25% smaller than the peak of the bimodal congruent condition (r = 0.0795).
Time lags between 98 ms and 168 ms have statistically less locking in incongruent than
congruent bimodal trials (p < 0.05). The unimodal visual condition, in contrast, shows
the same correlation as the bimodal congruent condition (p > 0.05). For centro-parietal
EEG, the biggest condition differences are found for the first of the two peaks mentioned
above. For time bins between -90 and -30, and -10 and 72 ms of lag, bimodal incongruent
coefficients are significantly smaller than for the bimodal congruent or unimodal visual
conditions (p < 0.05, see Fig. 4.4B). Likewise, the magnitude of the subsequent anti-
correlation is lower for bimodal incongruent than both other conditions for lags between
168 and 198 ms (p <0.05). It seems then that incoherent auditory input suppresses
visual stimulus locking during multimodal stimulation.
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Figure 4.6: Temporal Progression of Stimulus
Locking. (A) Each row shows one grand average
waveform analysis cross-correlogram (waveforms cal-
culated from average of bimodal congruent and incon-
gruent and unimodal visual conditions), which was
computed within a 500 ms shifting time window with
250 ms overlap. From bottom to top, the window
is shifted from stimulus onset to the end of stimulus
presentation. Correlation coefficients are color-coded.
(B) The maximum waveform analysis correlation co-
efficients (y-axis) are plotted as a function of time for
OZ (left panel) and CPZ (right panel). Peaks were At
determined within a region of interest (0-250 ms lag) 5
for each time window from the grand average of each N\
condition. The resulting data points are shown in = /\
light-colored lines for bimodal congruent (BC, green), 05/ W //\‘\\ -/’, k\
bimodal incongruent (BI, red) and unimodal visual ' Sed Ao -
(UV, dashed blue). The according linear fits for each — — . )
condition are shown in darker thick lines in the cor- ! DA * ;
responding color scheme. Stars at line ends indicate v
significant linear trends (p<0.05) within a condition, 0 1 > 3 4 5
and starred brackets indicate significantly different . .

slopes between two conditions time window (s)

Applying the spectrotemporal analysis method, no condition differences were found for
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the stimulus-locking effects mentioned above. However, the unimodal visual, bimodal
congruent and bimodal incongruent condition all showed significant peaks in the fre-
quency ranges and time-lags reported for the average condition reported above: peak
cross-correlation values for the postive peak within the limits of 0-150ms lag and 20-30
Hz were 0.018, 0.020, and 0.17, respectively; for the negative peak they were -0.035,
-0.034, and -0.035 within lag limits 150-500 ms and 8-20 Hz. Thus, spectrotemporal
stimulus locking to visual stimulus dynamics seems to be a bottom-up driven cortical
response independent of input to other modalities.

4.4.6 Do the Effects Change over Time?

To examine the progression of stimulus locking over the duration of stimulus presenta-
tion, we evaluated cross-correlations as a function of stimulus time. To this end, correla-
tion coefficients were determined within a shifting time window (see methods in Section
4.3). Before investigating unimodal visual, bimodal congruent and bimodal incongruent
conditions separately, we again examined their condition average.

Fig. 4.6A shows the waveform analysis results for selected occipital and central elec-
trodes. At occipital recording sites, stimulus locking increases with progressing stimulus
time —immediately after stimulus onset, correlation coefficients are very small and only
start to increase after approximately 2 seconds of visual stimulation. In contrast, the
magnitude of stimulus locking at central sites is not dependent on time. Locking is
roughly constant, with no apparent systematic change. Overall, we see different time
courses of visual stimulus locking at occipital and centro-parietal electrodes.

To quantify the temporal progression and obtain a better comparison across conditions,
we extracted the maximum correlation coefficient for each time window. These time
series were then fitted using linear regression. Results are shown for bimodal congruent
and incongruent and unimodal visual conditions at selected occipital and central elec-
trodes (Fig. 4.6B). At the occipital site, there is a significant linear increase for the
bimodal congruent (regression coefficient = 0.0027, 72 = .5; p < 0.01) and unimodal
visual condition (regression coefficient = 0.0034, 2 = .75; p < 0.01). In contrast, lock-
ing in the bimodal incongruent condition does not follow any linear trend (regression
coefficient = 0.0007, 2 = .12 ; p > 0.05). As expected from these data, a comparison
of bimodal congruent and incongruent slopes yields highly significant results (p < 0.01),
while there is no statistical difference between bimodal congruent and unimodal visual
stimuli. At our representative central site, there are no increases in locking over time
in any condition (p > 0.05). There are, however, condition differences regarding the
magnitude of stimulus locking: although all conditions show significant stimulus locking
(p < 0.01), peak correlations are significantly higher for bimodal congruent than incon-
gruent and unimodal visual stimuli (p < 0.01). In summary, our results suggest two
distinct multisensory interactions at work. At central recording sites we see a sensitivity
to congruence between auditory and visual input streams, and at occipital sites a further
time-dependent facilitation of visual stimulus-locking is evident that is suppressed when
conflicting auditory information is present.

In the case of the spectrotemporal analysis approach, we first defined frequency bands of
interest, guided by the visual stimulus locking results reported above (8-20 Hz and 20-30
Hz). The sum of spectrotemporal power in these bands was then correlated with stimulus
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speed using the shifting time window method just described, and peak correlation values
(minimum in the case of the anti-correlation, and maximum for the correlation) were
extracted from lag limits defined from the earlier results (200-300 ms and 0-150 ms,
respectively). Finally, these time series were fitted using linear regression. No linear
trend was seen for the 8-20 Hz band at occipital sites, but effect sizes were in the same
range for bimodal congruent, incongruent, and unimodal visual conditions. In the case
of the beta correlation, no linear trend was found for bimodal congruent and incongruent
conditions at occipital sites (p > 0.05); however, locking of spectrotemporal power to
unimodal visual stimuli was seen to increase over time in OZ (p < 0.05, 72 = 0.27) and
01 (p <0.01, 2 = 0.47).

4.5 Discussion

We measured EEG in 24 subjects while they viewed rotating Gabor patches and listened
to frequency-modulated tones. Our results reveal two forms of stimulus locking of EEG
to the temporal dynamics of visual stimuli, evident from changes in EEG power over
time and from the temporal structure of the EEG waveform. Auditory stimuli presented
alone do not lead to any measurable, structured changes in EEG power or waveform.
However, analysis of bimodal trials shows that visual stimulus locking is modulated by
the temporal congruence of simultaneous auditory input —locking of EEG waveforms to
visual stimuli was reduced when the auditory input mismatched the temporal profile of
the visual input. Furthermore, this multisensory interaction became even clearer when
the time course of waveform locking was examined. Under congruent bimodal stimulation
conditions, visual stimulus locking increased steadily over the duration of the trial, while
the incongruent bimodal condition showed no such effect. Thus we suggest that stimulus
locking is a suitable tool for studying and characterising the multisensory processing of
dynamically changing auditory and visual stimuli.

In order to explore the importance of extended dynamic modulation of auditory and
visual stimuli, we required a relatively long trial duration. This raised the need for
a task to ensure participants’ attention was maintained. We decided on a task that
required attention to both stimulus components in parallel —to decide whether the
auditory and visual signals matched —rather than directing the subject to focus on a
single sensory modality. As a result, the task could not be directly transferred to single
unimodal components of the audiovisual stimuli, and was instead applied to sequentially
presented pairs of components from either modality. The simultaneous and sequential
comparison of stimulus dynamics constitutes two different tasks and necessitates a careful
comparison of unimodal and bimodal conditions. However, the task allows us to be
confident of subjects’ attentiveness during the experiment.

Here, as a first step, we report results for signals measured at electrodes, i.e. in sensor
space. An EEG signal is a combination of signals from different cortical sources and
noise. It would be desirable to further process the data in order to translate our findings
into source space by performing a source localisation that would attempt to isolate the
location and activity of the cortical sources involved. However, this requires additional
assumptions and currently there is no available method that—is generally accepted and
free of problems (Nunez 1981). An additional issue is that algorithms for source lo-
calization make assumptions about the interaction or independence of different signals.
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Work is still under way to develop synchrony measures in source space (e.g. Marzetti
et al. 2008). Although our results do not rely on a spatial interpretation, we do make
some tentative assumptions here: that EEG measured at occipital channels captures
activation in early visual areas proximal to these measurement sites, whereas effects we
find at centro-parietal electrodes reflect cortical processing at some higher stages. A
more detailed investigation of the cortical sources of the stimulus locking phenomena
described here must be left to future work.

We did not see any evidence for stimulus locking to auditory stimuli, or to the auditory
component of audiovisual stimuli. This is surprising, as it is commonly assumed that the
temporal reliability of the auditory system is higher than the visual. As a consequence,
its contribution in optimal sensory fusion is high for temporal estimates (e.g. Bresciani
et al. 2008) and small for spatial estimates (e.g. Koérding et al. 2007). In addition, the
modulation of brain responses to changes in amplitude or frequency of simple auditory
stimuli is a well-established phenomenon. Auditory entrainment has been optimally
found in response to 40 Hz auditory stimulation (Galambos et al. 1981), but has also
been reported at lower frequencies (e.g. Ding et al. 2006). A systematic examination
of the steady-state response to sinusoidal frequency modulation by Picton et al. (1987)
found that for lower modulation frequencies, responses were most reliable between 3 and
7 Hz. The amplitude and phase of responses to tones modulated at the rates of change
used in our study were not found to be significantly reliable, and thus it may simply
be the case that the auditory stimuli used here change too slowly. Indeed, preliminary
results of current work with 3 Hz frequency modulation have shown a tendency to a
locking of 40 Hz power to the dynamics of the auditory stimulus.

We applied two analysis approaches to investigate how the dynamics of the stimulus are
reflected in the power and phase of the measured EEG signals, respectively. The first
approach, spectrotemporal analysis, correlates power changes with stimulus speed, and
can reveal locking of EEG power changes to stimulus dynamics at frequencies beyond the
rate of change of the stimulus. The second approach, waveform analysis, correlates ERP
waveforms with stimulus speed, and thus mirrors a stable phase-relationship between
EEG signals and the time-course of the stimulus. Due to the use of correlation, the
entrainment we observe for the EEG waveform must result from the phase-locking of
frequencies within the range contained in the stimulus speed. Previously, locking of LFP
power to dynamic visual stimulation has been investigated in cat visual cortex (Kayser &
Konig 2004) using the same spectrotemporal locking analysis. In addition, entrainment
or phase-locking of neural responses to regularly repeating stimuli has been extensively
studied (e.g. Rager & Singer 1998) and this steady-state cortical response has been used
to investigate many other phenomena, especially attention (e.g. Muller et al. 2003). Our
analysis approaches are in line with both kinds of locking mechanisms, but are applied
here to explore stimulus locking of human EEG to continuously, irregularly changing
visual stimuli.

Our spectrotemporal approach investigated locking to all frequencies between 0 and 100
Hz. Within this range, different frequency bands have been defined, including delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (> 30 Hz) and
these bands have been suggested to reflect different functionalities (see Steriade et al.
(1990) for an early review). We found two instances of spectrotemporal locking that are
centred at distinct frequencies (20-30 and 8-20 Hz) and furthermore differ in correlation
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lag and direction of effect. As such, we suggest that we are dealing with two distinct
spectrotemporal locking processes with different functional significance.

The first effect found was that induced power changes in the beta (20-30 Hz) range
lock to the speed profile of visual input with a lag of 92 ms. This is in agreement with
previous results that found locking between 20-35 Hz at around 100 ms lag in cat visual
cortex (Kayser & Konig 2004). Curiously, the frequency showing the strongest locking
in our results is close to 25 Hz, which is exactly the frame rate at which our movies
were created, but is far from the refresh rate of the monitor (100 Hz). However, it is
not clear whether the correspondence with the frame rate is simply coincidental or not,
which brings into question the functional significance of the 20-30 Hz band. There is
a crucial difference between our study and the earlier work in cats —humans have a
comparatively lower flicker fusion frequency than cat, so the 25 Hz frame rate can be
considered to be adequate for human viewers. Although we have clearly found evidence
for spectrotemporal locking to irregular visual stimulation, we cannot generalise this
finding to more natural conditions.

The second effect revealed by the spectrotemporal anaylsis was an anti-correlation in
a broad alpha band (8-20 Hz). The human occipital alpha rhythm has traditionally
been associated with a state of cortical rest, as put forward by the idling hypothesis.
More recent studies have extended the idling hypothesis, proposing that a strong alpha
rhythm characterises a dominance of “top-down” processing in the absence of any external
stimulation (von Stein et al. (2000), see Palva & Palva (2007) for a general review).
Although the results here span a frequency band too broad to compare to the classical
alpha band (8-13 Hz), our results fit with the idling hypothesis account, as stimulation
strength anti-correlates with alpha power, with stronger input leading to reduced alpha
oscillations. The anti-correlation found here does not show any modulation by auditory
input, so we assume that the spectrotemporal locking we have observed is a purely visual
phenomenon.

Overall, the effect sizes found using the spectrotemporal approach were small. These cor-
relations are calculated using total power, which includes both induced (not phase-locked
to stimulus onset) and evoked (phase-locked to stimulus onset) components (Tallon-
Baudry & Bertrand 1999). Evoked power constitutes only a small part of total power
—here approximately 15% —so if the stimulus-locked power changes are indeed con-
sistent in their phase with respect to the stimulus dynamics, then the stimulus-locking
effect may be hidden in the total power. In comparison, Kayser and Konig’s results were
indeed larger, with correlations of approximately 0.13 compared to our 0.01, but were
based on intra-cranial LFP measurements that do not suffer from the spatial smearing
inherent in EEG.

The second approach we employed, waveform analysis, correlated ERP waveforms with
stimulus speed. Our results revealed locking to visual stimulus dynamics, distributed
across many measurement sites. An examination of the characteristics of the correlation
results suggests at least two distinct locking mechanisms: one measured occipitally with
a positive correlation at a lag of 78 ms, interpreted as an early visual process; and the
other appearing at centro-parietal sites as positive locking at lags of -60 and 390 ms,
interpreted as later stages of visual processing. A positive correlation indicates that the
phase of the EEG waveform is aligned to the dynamics of the stimulus at a given time lag,
however the relative magnitude of both signals also contributes to this measure of locking
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and we cannot isolate the role of phase alignment from the role of amplitude changes.
As mentioned above, we can furthermore specify that entrained frequencies must lie in
the range contained in the speed profiles of our stimuli (0.5-4 Hz). Although steady-
state responses are typically evoked using stimuli presented at higher, regular stimulation
frequencies, entrainment has also been observed for frequencies in the delta range (Ding
et al. 2006). Less regular stimulus trains jittered in time within this frequency range have
also been found to have an entrainment effect on visual and auditory cortex, which has
been shown to be the result of an instantaneous phase reset of the ongoing oscillatory
activity (Lakatos et al. 2008; 2005). Hence, we assume that in the case of our much
more irregular stimuli, faster visual input leads to a stronger phase-reset across a large
population of neurons, and thus to stronger EEG amplitude that is phase-aligned with
the stimulus. Furthermore, we found that entrainment to visual stimuli increased over
stimulus duration at occipital sites, indicating that phase alignment to our stimuli is a
gradual process —there is no instantaneous phase reset.

The role of ongoing neural oscillations has been emphasised in multisensory research,
in particular frequencies in the gamma range (see Senkowski et al. (2008) for a recent
review). The entrainment of lower frequency oscillations, which are of particular interest
here due to our choice of stimuli, has also been implicated in multisensory processes. In
auditory cortex, the phase of all ongoing neuronal oscillations has been proposed to be
reset by tactile or visual input, with this general phase reset hypothesised to allow more
effective processing of subsequent auditory signals arriving at an optimal phase of this
reset activity (Lakatos et al. 2007, Kayser et al. 2008). Such a mechanism has also
been proposed to be useful for audiovisual speech, with the regularities of the visual
input allowing a facilitation of temporally matched auditory input in noisy backgrounds
(Schroeder et al. 2008). In conclusion, crossmodal resetting of cortical activity in a
“unimodal” area may allow prioritised processing of temporally corresponding stimuli of
the preferred modality, which would be of great importance for multisensory processing.

Our waveform analysis results for audiovisual conditions can be related to these findings.
In general, we found stronger visual locking to congruent than incongruent audiovisual
stimuli. This difference in entrainment to visual dynamics must be due to an effect of the
auditory stimulus dynamics. One possible interpretation is that congruently timed au-
ditory stimulation enhances the phase reset of visually entrained neurons. Furthermore,
an examination of the time course of the visual entrainment of waveforms suggested two
locking mechanisms, which seem to be differently involved in multisensory processing
when the entrainment to purely visual stimuli is taken into account. The visual process
measured at occipital sites shows a continual increase in visual entrainment over the
duration of unimodal visual and congruent audiovisual stimulation, but a constant level
of entrainment for mismatched audiovisual inputs. As such, incongruent auditory in-
put seems to counteract visual entrainment, and the difference in entrainment between
congruent and incongruent conditions unfolds gradually and slowly. The time course
involved, in the magnitude of seconds, is a strong indication that this process is initially
driven by bottom-up visual input, with information regarding multisensory congruence
arriving later, most likely via feedback from higher areas. Along these lines, Noesselt
et al. (2007) recently showed that modulations in primary unisensory areas in response
to temporally aligned audiovisual patterns were a result of feedback from superior tem-
poral sulcus. The visual locking found here at centroparietal sites shows no change over
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time, with congruent audiovisual input showing a clear advantage for locking over both
incongruent and unimodal visual stimulation. Thus, this process depends on both input
streams; however it is unclear whether this mechanism reflects an evaluation of con-
gruence or is itself the result of a match/mismatch evaluation from elsewhere. Source
analysis methods, and a direct evaluation of the directional interaction between the two
waveform locking mechanisms, may help elucidate this in future work.

The behaviour of a dynamical system can be characterised by examining the relationship
between its output and a known input. Often-used inputs are of two different kinds:
impulses or continuous stimuli. In the case of a linear system, these two inputs yield
equivalent results. To date, sensory processing has been analysed with an emphasis on
this impulse-response concept, specifically multimodal interaction (see Calvert & Thesen
(2004) for a general review of methodological approaches in multisensory research). Here
we want to fully exploit the high temporal resolution of EEG to examine the nature
of a temporal process, and it is rather the second kind of input which is of interest.
The present analysis amounts to an investigation of the linearity of the audiovisual
interactions. Indeed, the observation of a time-dependant increase in coupling in the
bimodal congruent condition and unimodal visual condition is difficult to reconcile with
a purely linear system. The characteristics of the stimuli and the analysis methods
used in this study are better suited to such investigations regarding non-linear system
behaviour than traditional impulse response approaches.

The integration of two sensory sources critically depends on the compatibility of the
temporal dynamics of both information streams. We used stimulus locking to extended
stimuli with complex temporal profiles as a tool to investigate multisensory interac-
tions. Spectrotemporal locking revealed a bottom-up, purely visual effect. In contrast,
waveform locking showed modulation by auditory congruency and a differential effect
over time. We thus propose that spectrotemporal and waveform locking reflect different
mechanisms involved in the processing of dynamic audiovisual stimuli, and that these
analysis approaches may prove useful in future research.
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A Behavioral Approach: Crossmodal Integration
for the Control of Overt Attention*

5.1 Context

In everyday life, our brains decide about the relevance of huge amounts of sensory input.
Further complicating this situation, the input is distributed over different modalities.
This raises the question of how different sources of information interact for the control
of overt attention during free exploration of the environment under natural conditions.

Previous Chapters dealt with the question of how the presence of different sources of
information are integrated at the cortical level. In the first Chapter we were interested
in the integration of binocular information. The second Chapter dealt with the ques-
tion of how cortical connectivity underpins the integration of spatially separated visual
information. In the third Chapter we extended this question to different modalities and
investigated how signals originating from different modalities are integrated in the case
of dynamic input. During these Chapters we ignored to a large extent the behavioral
component of these underlying neuronal processes. In this Chapter we investigate how
behavior is influenced by the presence of different sources of input. The integration
we observed at the cortical level leaves open the question of how the behavior is influ-
enced. In the behavioral level, different modalities may work independently or interact
to determine the resulting motor output.

In order to investigate this question, we focused on human overt attention by means
of eye tracking methodology. To collect information from the environment, humans
extensively use their visual system by deploying their attentional resources to different
regions of a scene. During the exploration of a scene, fast eye movements called saccades
intermingling with relatively stable fixation periods form the basis of this process. By
measuring the density of the fixated points, one can obtain an empirical estimate of the

*This chapter is based on a publication Onat et al. (2007)
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saliency of different regions on an image. Such empirical saliency maps can later be used
in order to evaluate different integration mechanisms.

We presented natural images and lateralized natural sounds in a variety of conditions,
and measured the eye movements of human subjects. We show that, in multimodal
conditions, fixation probabilities increase on the side of the image where the sound orig-
inates showing that, at a coarser scale, lateralized auditory stimulation topographically
increases the salience of the visual field. However, this shift of attention is specific be-
cause the probability of fixation of a given location on the side of the sound scales with
the saliency of the visual stimulus, meaning that the selection of fixation points during
multimodal conditions is dependent on the saliencies of both auditory and visual stimuli.
Further analysis shows that a linear combination of both unimodal saliencies provides
a good model for this integration process, which is optimal according to information
theoretic criteria.

Our results support a functional joint saliency map, which integrates different unimodal
saliencies before any decision is taken about the subsequent fixation point. These results
provide guidelines for the performance and architecture of any model of overt attention
that deals with more than one modality.

5.2 Introduction

How are different sources of information integrated in the brain while we overtly ex-
plore natural multimodal scenes? It is well established that the speed and accuracy of
eye movements in performance tasks improve significantly with congruent multimodal
stimulation (Corneil & Munoz 1996, Corneil et al. 2002, Arndt & Colonius 2003). This
supports the claim that sensory evidence is integrated before a motor response. In-
deed, recent findings indicate that areas in the brain may interact in many different
ways (Driver & Spence 2000, Macaluso & Driver 2005). The convergence of unimodal
information creates multimodal functionality (Meredith & Stein 1986, Beauchamp et al.
2004) even at low-level areas traditionally conceived as unimodal (Macaluso et al. 2000,
Calvert et al. 1997, Ghazanfar et al. 2005); evidence is also currently mounting for early
feedforward convergence of unimodal signals (Molholm et al. 2002, Fu et al. 2003, Foxe
& Schroeder 2005, Kayser et al. 2005). Little is known, however, about integration pro-
cesses under the relevant operational —i.e. natural —conditions. Most importantly, we
lack a formal description of the integration process during overt attention. It is impor-
tant to develop formalizations using behavioral data as it reflects the final outcome of
the processes within the CNS.

Current models of overt attention are based on the concept of a saliency map: A given
stimulus is first separated into different feature channels; after the local contrast within
each feature space is computed, these channels are then combined, possibly incorporating
task-specific biases (Koch & Ullman 1985, Itti & Koch 2001, Parkhurst et al. 2002, Peters
et al. 2005). The selection of the next fixation point from a saliency map involves a
strong non-linearity. This is typically implemented as a winner-takes-all mechanism. The
timing of this non-linearity with respect to the integration of multiple feature channels
crucially influences both the performance and structure of the resulting system. In
principle, three idealized multimodal integration schemes can be considered.
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Early interaction —The information from different modalities could be integrated early,
before the computation of a saliency measure and the selection of a fixation point.
Indeed, many studies provide evidence for an interaction between signals in early sensory
cortices (Calvert et al. 2000, Kayser et al. 2005). An integration in the form of interaction
may be the result of modulatory effects of extra-modal signals during computation of
saliency maps within a given modality. Or alternatively such an interaction may be
caused by multiplicative integration of unimodal saliencies after the saliency maps for
each modality are computed. The selection of the most salient point after crossmodal
interaction has taken place imposes an expansive nonlinearity. Consequently, sensory
signals from different modalities should interact supralinearly for the control of gaze
movements.

Linear integration —Alternatively, saliency could be computed separately for different
modalities and subsequently be combined linearly before fixation selection. Recent re-
search shows that the bulk of neuronal operation underlying multisensory integration in
superior colliculus can be well described by a summation of unimodal channels (Stan-
ford et al. 2005). Within this scheme multimodal saliency would be the result of the
linear combination of unimodal saliencies. From an information-theoretic perspective,
this type of linear summation is optimal, as is the resulting multimodal map, in the sense
that the final information gain is equal to the sums of the unimodal information gains.

Late combination —No true integration between modalities occurs. Instead, overt be-
havior results from competition between candidate fixation points in the independent
unimodal saliency maps. The implementation of such a max operator results in a sub-
linear integration of the unimodal saliency maps. Although improvements in saccade
latencies and fixation accuracies in (non-natural) multimodal stimulus conditions have
been used to support the counter-claim that crossmodal integration does take place
(Corneil et al. 2002, Arndt & Colonius 2003), this hypothesis still warrants investigation
under natural free-viewing conditions.

We presented human subjects with lateralized natural sounds and natural images in a
variety of conditions and tracked their eye movements as a measure of overt attentional
allocation. These measurements were used to compute empirically determined saliency
maps, thus allowing us to investigate the above hypotheses.

5.3 Materials & Methods

5.3.1 Participants and recording

Forty-two subjects (19 males, mean age 23) participated in the experiment. All subjects
gave informed written consent but were naive to the purpose of the experiment. All
experimental procedures were in compliance with guidelines described in Declaration of
Helsinki. Each subject performed only one session.

The experiments were conducted in a small dimly lit room. The subjects sat in a stable
chair with back support, facing a monitor. A video-based head-mounted eye tracker
(Eye Link 2, SR Research, Ontario, Canada) with sampling rate of 250 Hz and nominal
spatial resolution of 0.01° was used for recording eye movements.

84



Chapter.5 Audiovisual Integration under Natural Conditions

For calibration purposes, subjects were asked to fixate points appearing in a random
sequence on a 3 x 3 grid by using built-in programs provided with Eye Link (similar
to Tatler et al. (2006)). This procedure was repeated several times to obtain optimal
accuracy of calibration. It lasted for several minutes, thus allowing subjects to adapt to
the conditions in the experimental room. All the data analyzed in the present article
were obtained from recordings with an average absolute global error of less then 0.3°.

During the experiment, a fixation point appeared in the center of the screen before
each stimulus presentation. The experimenter triggered the stimulus display only after
the subject had fixated this point. The data obtained during this control fixation were
used to correct for slow drifts of the eye tracker; that is, if drift errors were high a new
calibration protocol was started again. Subjects could take a break and remove the
headset at any time. In those instances, which occurred rarely, the continuation of the
experiment began with the calibration procedure described above.

5.3.2 Stimuli

The multimodal stimuli consisted of images and sounds. Images depicted natural scenes
like forests, bushes, branches, hills, open landscapes, close ups of grasses and stones, but
also to a limited extent human artifacts, for example, roads, house parts. Some of these
stimuli were used in a previous study (Einhduser & Konig 2003). The photographs were
taken using a 3.3 megapixel digital camera (Nikon Coolpix 995, Tokyo, Japan), down-
sampled to a resolution of 1024 x768 pixels, and converted to grayscale. The images
were displayed on a 21-in. CRT monitor (SyncMaster 1100DF, Samsung Electronics,
Suwon, South Korea), at a resolution of 1024 x 768 pixels and with a refresh rate of 120
Hz. The distance of the monitor from the subject’s eyes was 80 cm. The stimuli covered
28° x 21° of visual angle on the horizontal and vertical axes, respectively. The screen was
calibrated for optimal contrast and brightness using a commercial colormeter (EyeOne
Display, GretagMacBeth, Regensburg, Switzerland). The natural auditory stimuli were
taken from free samples of a commercial Internet Source (Askland Technologies Inc.,
Victorville, Canada). Overall, 32 different sound tracks were used. All of these were
songs of different birds, thus in accordance with the semantic content of the images
presented. The auditory stimuli were generated using a sound card (Sound Blaster
Audigy EX ZE Platinium Pro, Creative Labs, Singapore) and loudspeakers (Logitech
2.1 Z-3, CA, USA). Loudspeakers flanked both sides of the monitor at a distance of 20
cm, at the same depth plane as the screen. In order to avoid the speakers attracting the
attention of the subjects, they were hidden behind black curtains. Sounds were played
from the left or right speaker, depending on the experimental condition. The auditory
signal amplitude was in the range of 50-70 and 55-75 dB for left and right conditions,
respectively. The slight increase was due to the acoustic conditions in the experimental
room.

5.3.3 Experimental paradigm

We employed two unimodal conditions (visual and auditory) and one multimodal con-
dition (audiovisual) (5.1A). During the visual condition (V), 32 natural images were
presented. The auditory condition used 16 x 2 presentations of natural sounds, originat-
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ing from left (AL) and right (AR) side relative to the subject’s visual field.
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Figure 5.1: Experimental Paradigm and Subject Selection. (A) Five different experimental conditions
are used to analyze the effect of unimodal (visual and auditory) and crossmodal (audiovisual) stimuli on overt
behavior. 42 subjects studied 32 natural images in three different conditions. In the visual condition (V), natural
images were presented. In multimodal conditions, the images were paired with localized natural sounds originating
from either the left (AVL) or right (AVR) side of the monitor. In the remaining conditions (AL and AR), the sole
effect of the localized auditory stimulus was characterized. The duration of stimulus presentation in all conditions
was 6 seconds. (B) Distribution of values of each subject’s o, which characterizes the horizontal spread of the pdf
ps,v(xz,y) of a given subject’s at condition V. ps o (z,y) from two subjects are shown in the inset with corresponding
horizontal marginal distributions shown above. Arrows mark the histogram bins to which these subjects belong.
The vertical dashed line indicates the threshold o value required for a given subject to be included in further
analysis.

During auditory conditions, we presented auditory stimuli jointly with white noise im-
ages. These were constructed by shuffling the pixel coordinates of the original images.
They lack any spatial structure and as a result do not bias the fixation behavior of the
subjects. Obtaining a truly unimodal saliency map for auditory conditions adds some
undesirable technical issues. Firstly, due to the operation of the eye tracker and monitor
truly zero-light conditions are hard to achieve. Secondly, presenting a dark stimulus
leads to more fixations outside the dynamics range of the monitor and eye tracker. Fi-
nally, a sudden drastic change in mean luminance of the visual stimulus would introduce
non-stationarities in the form of dark adaptation and create a potential confound. To
avoid these problems, we presented white noise images of identical mean luminance as
the natural pictures.

The multimodal conditions (AVL and AVR) each comprised the simultaneous presenta-
tion of 32 auditory and visual stimuli pairs, without any onset or offset asynchrony. In
order to balance the stimulus set, a new pairing of audiovisual stimuli was presented on
each side to each subject. Stimuli were shown in a pseudorandom order, with a different
permutation used for each subject. Each stimulus was presented for 6 s. A given session
contained 128 stimulus presentations and lasted in total for up to 50 min. The only
instruction given to the subjects was to watch and listen carefully to the images and
sounds. No information about the presence of the speakers at both sides of the monitor
or the lateralization of the auditory stimuli was provided to the subjects.
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5.3.4 Data analysis

We defined fixation points and intervening saccades using a set of heuristics. A saccade
was characterized by an acceleration exceeding 8000 deg/s?, a velocity above 30 deg/s,
a motion threshold of 0.1°, and a duration of more than 4 ms. The intervening episodes
were defined as fixation events. The result of applying these parameters was plotted and
was visually assessed to check that they produce reasonable results.

5.3.5 Probability distributions

From the fixation points of the individual subjects, we built probability density functions
(pdf). The first fixation on each stimulus was discarded, as it was always located at the
position of the preceding fixation cross in the center of the image. A pdf, py;.(z,y), for
a given subject s, image 4, and condition ¢ was calculated as in equation 5.1.

ps7z,c x,y,t I - xf y - yf)(s(t - tf) (5‘1)

||Mdj

with 0(x) as the discrete Dirac function (the Dirac function is equal to zero unless its
argument is zero, and it has a unit integral). xf, ys, and t; are the coordinates and time
of the fi! fixation. F is the total number of fixations. We distinguish three different
pdfs for a given condition with respect to how these individual pdfs were averaged:
subject, image, and spatio-temporal pdfs. Subject pdfs ps.(x,y) for a given subject s
and condition ¢ were built by averaging all the pdfs obtained from a given subject over
the images, without mixing the conditions, according to 5.2

Psie(2,y) Zpszcxy (5.2)

Image pdfs (p(z,y)) and spatio-temporal pdfs (p(z,t)) were similarly computed by aver-
aging over the appropriate dimensions. Image pdfs inform us about consistent biases that
influence subjects’ gaze and are therefore empirically determined saliency maps specific
to a given image. Raw pdfs are matrices of the same size as an image and store fixation
counts in their entries. In all cases, these raw pdfs were smoothed for further analysis
by convolution. A circular two-dimensional Gaussian kernel was used, which had a unit
integral and a width parameter ¢ with a value of 0.6° unless otherwise stated. This
spatial scale is twice as large as the maximal calibration error and maintains sufficient
spatial structure for data analysis.

5.3.6 PDF parameterization

Several parameters were extracted from the pdfs,

fe = >z Pe() (5:3)
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The center of gravity is measured according to Equation 5.3 in order to quantify the
global shift of subject and image pdfs. p. is the center of gravity along the X-axis for
condition ¢, p.(x) is the marginal distribution of a pdf along the X-axis. In condition V,
fixation probabilities were usually distributed symmetrically on both sides of the visual
field with centralized center of gravity values. This simple statistic successfully quantifies
any bias toward the sound location,

o= (x—p)’pv(@)]'/? (5.4)

x

The spread of a given pdf was measured from a subject pdf under condition V using
Equation 5.4 in order to quantify how explorative that subject’s scanning behavior was.
o is the spread along the X-axis, py (x) is the marginal distribution along the X-axis of the
subject pdf, and py is the center of gravity computed as in Equation 5.3. The marginal
distributions arising from condition V were well-behaved (5.1 inset), thus allowing us to
examine the explorative behavior of subjects. Seven of 42 subjects did not engage in
explorative viewing during the analysis of the images, resulting in small spread values.
These subjects were excluded from further analysis.

The spatio-temporal pdfs, p.(x,t), contain information about how the fixation density
along the horizontal axis varies over time. We assessed the statistical differences of
pdfs from different conditions in a time-localized manner; that is, we obtained a p-value
as a function of time for three pairs of conditions (AVL and V; AVR and V; AL and
AR). A two-sided Kolmogorov-Smirnov goodness-of-fit hypothesis test in corresponding
temporal portions of the pdfs was used with significance level « set to .001. This was
done after binning the probability distribution p.(z,t) over the time axis with a bin size
of 240 ms, yielding 25 time intervals for comparison per pair of conditions. A temporal
interval over which the null hypothesis was rejected in at least in two of the condition
pairs was considered as a temporal interval of interest.

The similarity between image pdfs obtained from the same image under different con-
ditions —for example, p; v (x,y) of image i and condition V and p; av(x,y) of the same
image and AV conditions (i.e., either AVL or AVR) —was evaluated by computing r% 4.
Before the coefficients were calculated, the AV image pdfs were first normalized to pg AV
according to Equation 5.5

Py = mm,ftv(%w (5.5)
This normalization corrects the image pdfs of a given bimodal condition for the global
effect of the sound location, so that the expected number of fixations over the horizontal
axis is the same over different conditions. The resulting distribution of 7“‘2/’ Ay values
was then compared to a control distribution of 72 values, which measure the baseline
correlation between image pdfs coming from the same condition pairs (i.e., V and AVL,
or V and AVR) but differing images. The Kullback-Leibler (KL) divergence, which does
not assume any a priori relationship between two distributions, was used to quantify the
similarity of the different image pdfs obtained from different conditions. This measure
was evaluated according to the following formula 5.6, where Dgr,(pic,, Di,c,) denotes the
KL divergence measure between two pdfs, p; ¢, (z,9), Pic,(z,y) in bits,
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DKL [pi,q (.1‘, y)api7c2 (.1‘, y)] = H[pi,q (.%', y)vpi,CQ (.T, y)] - H[piﬁl (l‘, y)] (56)

The KL divergence measures the difference between the cross-entropy of two probability
distributions and the entropy of one of them. The cross-entropy is always greater than
or equal to the entropy; therefore, the KL divergence is always greater than or equal to
zero, which allows its usage as a distance measure between two different pdfs. However,
unlike other distance measurements, it is not symmetric. Therefore, it is used to measure
the distance between the prior and posterior distributions. In comparing different image
pdfs, we used the condition V as the prior distribution. One problem we encountered
was zero entries in the probability distributions. As the logarithm of zero is not defined,
a small constant (¢ = 107?) was added to all entries in the pdf. The precise choice of
this constant did not make a difference to the results of our analysis.

5.3.7 Modeling the cross-modal interaction

In order to quantify the cross-modal interaction, we carried out a multiple regression
analysis. We devised a model (Equation 5.7) with a cross-product interaction term
using smoothed unimodal and multimodal pdfs as independent and dependent variables,
respectively,

Pi,av = Bio + Biav +Bi2  Dia + Bi3 Div-a (5.7)

In Equation 5.7, p; av, pi,v, and p; 4 are the image pdfs of image ¢ at audiovisual, vi-
sual, and auditory conditions, respectively. The interaction term p;y 4 is supposed to
approximate the image pdf that would arise from a multiplicative cross-modal interac-
tion. It is created by the element-wise multiplication of both unimodal image pdfs and
renormalized to a unit integral.

The integrative process was further characterized by constructing integration plots. The
probability of fixation at each x-y location was extracted from the 32 image pdfs of visual,
auditory, and bimodal conditions, yielding a triplet of values representing the saliency. A
given triplet defines the saliency of a given image location in the multimodal condition as
a function of the saliency of the same location in both unimodal conditions, represented
by the point (pv(x,y),pa(x,y),pav(z,y)) in the integration plot. These points were
irregularly distributed and filled the three-dimensional space unevenly. We discarded
the 15% of the values which lay in sparsely distributed regions, and we concentrated
instead on the region where most of the data were located. The data points inside this
region of interest were then binned, yielding an expected value and variance for each
bin. Weighted least square analysis was carried out to approximate the distribution by
estimating the coefficients of the following equation:

pav by . PaA _ Pva
g(pav) fo+F1 g(pv) + P2 g(pa) +Ps g(pv.a) (5:8)

The difference between the above equation and Equation 5.7 is that Equation 5.8 does not
take different images into consideration and pools the data over images and space. Ad-
ditionally, each individual probability value is normalized by its geometric mean (g(pc)),
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which normalizes for its individual range thus allowing a direct comparison of the re-
gression coefficients.

5.3.8 Luminance contrast measurements

LC was computed as the standard deviation of the luminance values of the pixels in-
side a square patch of about 1° centered at fixation positions. The luminance contrast
computed at the fixation points over images and subjects yielded the actual contrast
distribution. This distribution was compared to a control distribution to evaluate a po-
tential bias at the fixation points. An unbiased pool of fixation coordinates served as
the control distribution —for a given image, this was constructed by taking all fixations
from all images other than the image under consideration. This control distribution
takes the center bias of the subjects’ fixations into account, as well as any potential
systematic effect in our stimulus database (Baddeley & Tatler 2006, Tatler et al. 2005).
The contrast effect at fixation points was computed by taking the ratio of the average
contrast values at control and actual fixations. In order to evaluate the luminance con-
trast effect over time, the actual and control fixation points were separated according to
their occurrences in time. The analysis was carried out using different temporal bin sizes
ranging from 100 to 1000 ms. All analysis was carried out using MatLab (Mathworks,
Natick, MA, USA).

5.4 Results

First, we analyze the effect of the lateralized auditory stimuli on the fixation behavior
of subjects during the study of natural images Fig. 5.1A. Second, we characterize the
temporal interval during which the influence of auditory stimuli is strongest. Third,
we demonstrate the specific interaction of visual and auditory information. And finally,
we address the predictions derived from the three hypotheses of crossmodal interaction
stated above.

5.4.1 Subjects’ Gaze Is Biased towards the Sound Location.

In Fig. 5.2, the spatial distribution of fixation points averaged over images in all 5
conditions is shown for 2 subjects. In the visual condition (V), the fixation density
covers a large area and is equally distributed over the left and right half of the screen,
with neither of the subjects showing a consistent horizontal bias. The center of gravity
() is located at 505 and 541 pixels respectively (white crosses) for these two subjects,
in the close vicinity of the center of the screen (located at 512 pixels). In the multimodal
conditions (AVL and AVR), both subjects show a change in their fixation behavior. The
horizontal distance between payr and pay g is 221 and 90 pixels for the two subjects
respectively. Thus, in these two subjects, combined visual and auditory stimulation
introduces a robust bias of fixation towards the side of sound presentation.

Auditory unimodal conditions (AL and AR) induce different patterns of fixation (Fig.
5.2 right hand columns, note different scales of color bars). First, despite lateralized
sound presentation, a non-negligible proportion of fixations are located close to the
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center. Nevertheless the lateralized sound stimulus induces a shift toward the sound
location, even in the absence of any structured, meaningful visual stimulation. In most
cases, the shift had an upwards component. Furthermore, the off-center fixations are
less homogeneously distributed and their distribution does not qualitatively resemble the
distribution of fixations in the visual condition.

Figure 5.2: Bias of Subjects’ Gaze towards the Sound Location. (A, B) ps(z,y) for two subjects in
each condition. Each colorbar shows the scale of the pdf images located to its left; notice the differences in scale.
White crosses denote the center of gravity of a given pdf along the horizontal axis. These pdfs were generated by
convolving the original pdfs with a Gaussian kernel (o = 0.6°).

The complete statistics of all subjects and images are shown in Fig. 5.3. The distribution
of center of gravity shifts (payr — py and pavg — py) for all subjects over all images is
skewed (Fig. 5.3). In the majority of subjects, we observe a moderate effect of lateralized
sound presentation. A small group of subjects show only a small influence; one subject an
extreme effect. The medians of the two distributions are both significantly different from
zero (sign test, p > 107°). Crosses indicate the positions of the two example subjects
described above. They represent the 70" and 90" percentiles of the distributions. Hence,
the complete statistics support the observations reported for the two subjects above.

An analysis of the influence of auditory stimuli on the selection of fixation points in
individual images (over all subjects) is shown in Fig. 5.3B. We see that for all visual
stimuli the shift in average horizontal position of fixation points is towards the sound
location (t-test, p > 107°). In both of the panels A and B, the distributions flank both
sides of zero, with mean values of -37 and 36 pixels for pavy — py and pavr — py
respectively. Thus, auditory stimulation introduces a robust bias of fixation towards the
side of sound presentation for all natural visual stimuli investigated.

5.4.2 Effect is More Prominent in the First Half of Presentation

Next we analyze the temporal evolution of the above-described horizontal effect of the
auditory stimulus. Fig. 5.4 depicts the difference between the spatio-temporal fixa-
tion probability density functions (pdf) for AVR and V, AVL and V, and AL and AR
conditions. Comparing visual and multimodal conditions shortly after stimulus onset,
(Fig. 5.4A, B lower plots) we observe a rapid shift in fixation density on the side of
the auditory stimulus, which is sustained for the presentation period. This increase in
fixation density is realized at the expense of fixations in the central region, and less so
at the expense of fixations on the contra-lateral side. This can be seen by comparing the
marginal distributions (averaged over time) originating from the pdfs used to calculate
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Figure 5.3: Distribution of Fixation Density Shifts towards Sound Location. (A) Centers of gravity
(e for condition c¢) were calculated for the fixation pdfs of each subject averaged over all images for multimodal
conditions (AVR and AVL) and unimodal visual condition (V). The distributions of distances between multimodal
and unimodal centers of gravity are shown. The averages are marked with arrowheads and equal -44 pixels for
pave —py (dark gray) and 42 pixels for payr — pyv (light gray). The two distributions are statistically different
(sign test, p < 1075). The plus signs mark the effect size for the subjects depicted in Fig. 5.2. (B) Shows
the same measurement, this time calculated for fixation pdfs of each image averaged over all subjects. The two
distributions are statistically different (t-test, p < 107?). The average values of the distributions are same as in
(A). However, the variance of the shifts of gravity centers is bigger on subject pdfs compared to the image pdfs
therefore resulting in different scales on the abscissa.

the difference (Fig. 5.4A, B upper plots). The intervals of time for which the differences
reach significance level (two-sided KS-test, p=0.001) are indicated by vertical black bars.
Comparing conditions AL and AR (Fig. 5.4 right panel), we observe an increase in
fixation probability on the half of the horizontal axis corresponding to the side of the
sound location. This difference decays only slowly over time.
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Figure 5.4: Effect of Localized Auditory Stimulus is More Prominent in the First Half of Presen-
tation. The uppermost plots show two marginal probability distributions for the following pairs of conditions:
(A) AVR and V, (B) AVL and V, (C) AR and AL, dashed and solid lines respectively. The lower plots depict
the difference between the spatio-temporal pdfs of the same pairs of conditions. Contour lines are drawn at zero
values. Along the times axis, the black horizontal lines mark the regions where the difference between the two
pdfs is significant (two-sided KS-test, o = 0.001). The vertical dashed line limits the temporal interval of interest,
which is used for further analysis. The pdfs were generated using a Gaussian kernel (o = 0.4° and 70 ms).

5.4.3 Specific Interaction of Visual and Auditory Information

As a next step we investigate the integration of auditory and visual information in the
temporal interval of interest. The first column of Fig. 5.5 depicts examples of the natural
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images used in the experiment. The other columns show the image pdfs computed
over all subjects in conditions V, AVL and AVR. As these pdfs were computed over
many subjects’ fixations, they constitute empirically determined saliency maps. For
each image, we observe a characteristic distribution of salient regions, i.e. regions with
high fixation probabilities. It is important to note that the fixation densities are highly
unevenly distributed, suggesting a similarity between subjects’ behaviors. We computed
the correlation coefficients between image pdfs generated from two subsets of 5 randomly
selected subjects (repeating the same analysis 300 times). For all three conditions the
distribution of coefficients over all images and repetitions peaked at around 0.6. This
suggests that different subjects had similar behaviors for scrutinizing the image during
the temporal interval of interest (240 - 2640 ms). It is not clear whether this was the
result of the specific image content or shared search strategies between subjects.

image \2 AVL AVR

Hyy - By = -80
Hygn =My =88
., =088

D, (V,AVL) = 0.88
D, (V,AVR) = 1.38

Hyy - My, =-80
Hyn =My =73
2,y = 0.56
12,y = 0.41

D, (V,AVL) = 1.32
D, (V,AVR) = 1.79

g = Hy = -40
=y = 82
Py = 0.69
Py = 0.65

D, (V,AVL) = 0.94
D, (V,AVR) = 0.87

Hyy - Hy=-88
Hyyn = Hy =56
Py =0.75

D, (V,AVL) = 1.02
D, (V,AVR) = 1.09

Py = Hy =66
Py~ Hy =59
=0.76
P,y = 0.63

D, (V,AVL) = 1.09
D,.(V,AVR) = 0.79

2
rAVLv

0

Figure 5.5: Specific Interaction of Visual and Auditory Information. Fixation pdfs,p; .(z,y), for a given
image ¢ and conditions ¢ (V, AVL and AVR) are shown, along with the corresponding natural image 3. Each pdf
constitutes an empirically determined saliency map. The saliency maps for each image are shown along rows, for
each condition along columns. White crosses in each panel depict the centers of gravity of the pdfs. In multimodal
conditions, the center of gravity shifts toward the side of auditory stimulation. Interestingly however, moving
across each row we see that the salient spots for each image are conserved across conditions as shown by the high
r2 and low KL divergence values (right of colorbar). Fixation pdfs are computed inside the temporal interval of
interest and convolved with a Gaussian kernel (o = 0.6°).

The two right-hand columns show the respective distributions obtained in multimodal
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conditions. First, as noted earlier, the lateralized stimulus causes the center of gravity
to shift along the horizontal axis (Fig. 5.5, white crosses). Importantly, the spatial
distributions of the spots are alike in different conditions, but differ across images. The
regions with high fixation probability in one multimodal condition (Fig. 5.5) still effec-
tively attract gaze when the side of auditory stimulation is switched, as well as in the
unimodal condition.

This observation is quantified by measuring the KL divergence and 72 statistic between
saliency maps (such as those in Fig. 5.5) belonging to unimodal and cross-modal con-
ditions. For the examples shown in Fig. 5.5 we obtain a KL-divergence of 0.88, 1.32,
0.94, 1.02, 1.09 bits between V and AVL conditions and 1.38, 1.79, 0.87, 1.09, 0.79 bits
between V and AVR. r? statistics range from 0.4 to 0.97, indicating that a substantial
part of the total variance of the multimodal conditions is explained by the distribution
of fixation points in the unimodal visual condition.

The distribution of KL-divergence values obtained from the complete dataset (32 images
times 2 auditory stimulus locations) is presented in 5.6. The more similar the two pdfs
are, the closer the KL-divergence values get to zero; zero being the lower limit in the
case of identity. This distribution is centered at 1.08 & 0.03 bits (mean £SEM). This is
significantly different to the mean of the control distribution (3.4540.02 bits), which was
created using 3200 randomly selected non-matched V-AV pairs. The control distribution
provides the upper limit for KL-divergence values given our data set. Hence, given
the distribution of fixation points on an image in the visual condition, the amount of
information necessary to describe the distribution of fixation points on this image in the
multimodal conditions is about one third of the information necessary to describe the
difference in fixation points on different images in these conditions.

These results are supported by a more conventional linear measure. Fig. 5.6B shows
the distribution of actual r? values calculated between image pdfs from multimodal and
unimodal conditions originating from the same image. The distribution is centered at
0.7140.13 and the difference between this measure and a control 72 measure calculated
from shuffled image pairs is highly significant (t-test, p > 107°). This implies that for
the majority of images, the unimodal fixation pdfs account for more than half of the
variance in the observed distribution of fixation points in multimodal conditions. Hence,
the bias of gaze movements towards the side of the auditory stimulus largely conserves
the characteristics of the visual saliency distribution. Therefore the behavior of the
subjects under the simultaneous presence of auditory and visual stimuli is an integration
of both modalities.

As a complementary approach, we investigate the effect of multimodal stimuli on the re-
lationship between visual stimulus properties and the selection of fixation points. Several
previous studies investigating human eye movements under natural conditions describe
a systematic increase of luminance contrast at fixation points (Reinagel & Zador 1999,
Tatler et al. 2005). If the auditory stimuli cause an orientation behavior independent of
the visual stimuli, then we can expect the luminance contrast at fixation points to be
reduced. If a true integration occurs, we expect this correlation between luminance con-
trast and probability of fixation to be maintained under multimodal stimulus conditions.
Fig. 5.6C shows the ratio of luminance contrast at actual fixations and control locations
for the unimodal and both multimodal conditions. Nearly all values (log-2cal) are

control
greater than zero, indicating a positive correlation between fixation points and lumi-
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Figure 5.6: Awuditory and Visual Information
are Integrated. The distributions of KL divergence
(A) and r? (B) values for control (textitdark gray)
and actual (light gray) conditions are shown. The ac-
tual distributions are obtained by comparing 64 pairs
of multimodal (AVR and AVL) and unimodal (V) fix-
ation pdfs. Control distributions are created by com-
puting the same statistics on randomly-paired non-
matched multimodal and unimodal pdfs (n = 3200).
The measurements are directly obtained from pdfs
shown in Fig. 5.5. (C) The logarithm of the ratios
of actual and control luminance contrast values are
presented as a function of time. Almost all values
lie above the identity line. This effect is stable over
the time of presentation and for different conditions.
The gray shaded area shows the temporal region of
interest.
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nance contrast. Moreover, the effect of contrast is constant over the entire presentation,
with no systematic difference during the temporal interval of interest (Fig. 5.6C, gray
area). Furthermore, the three conditions do not differ significantly in the size of effect.
This holds for temporal bin sizes ranging from 100 to 1000 ms (data not shown). There-
fore, we can conclude that the additional presence of a lateralized auditory stimulus does
not reduce the correlation between the subjects’ fixation points and luminance contrast.

95



Chapter.5 Audiovisual Integration under Natural Conditions

5.4.4 The Integration Is Linear

To quantitatively characterize the integration of unimodal saliencies, we perform a multi-
ple regression analysis. The experiments involved two unimodal auditory conditions (AL
and AR), and two corresponding multimodal conditions (AVL and AVR). In order to
simplify subsequent discussion, we will use a more general notation of A and AV for uni-
modal auditory and multimodal conditions respectively. We model the multimodal (AV)
distributions of fixation points by means of a linear combination of unimodal (A and
V) distributions and the normalized (to unit integral) product of unimodal distributions
(A xV) as indicated in equation (5.6). Here we assume that the effect of a multiplica-
tive integration of unimodal saliencies is well approximated by a simple multiplication
of their probability distributions. The fits were computed separately for left and right
conditions, and the results were pooled for visualization purposes. The distribution of
64 coefficients for each of the regressors is shown in Fig. 5.7. On average, over all im-
ages, the contribution of unimodal visual saliency is largest, with a mean at 0.75 + 0.15
(mean +SD; Fig. 5.7, circles). The contribution of unimodal auditory saliency is smaller
(0.16 + 0.12). The coefficient of the cross-product interaction term is, however, slightly
negative with mean 0.05 £ 0.10. We repeated the same analysis for a subset of subjects
(n=14, 40 %) for whom the lateralized auditory stimulus had the strongest effect on
fixations in terms of gravity center shift in the unimodal auditory conditions. In these
subjects, the contribution of auditory coefficients was increased (0.32 = 0.17) at the ex-
pense of the visual ones (0.53 + 20), without any apparent effect on the interaction term
(—0.06 +0.11, t-test, p = 0.59) (Fig. 5.7, crosses). In both cases, the intercept was very
close but still significantly different from zero. These results suggest that biggest contri-
butions to the multimodal pdfs originate from the linear combinations of the unimodal
pdfs.

Figure 5.7: Prominent Contribution of Uni-

modal Saliencies. This figure shows the distribu-

tions of the parameters of equation Fig. 5.6 (inset),

computed using multiple regression analysis. Image

pdfs used for the regression analysis were computed

either by using all subjects (n = 35) or by selecting

a subset of subjects (n = 14) for whom the later-

alized auditory stimulus had the strongest effect on

fixations, quantified in terms of gravity center shift.

The best fits between image pdfs from conditions

AV and V, A and A XV were calculated for each

of the 32 images, in left and right conditions, yield-

ing 64 fits for each parameter. The distributions of . _ Distribution of Regression Coefficients

the coefficients resulting from the regression analy- By = By + B, Dy + B, Pt Baps.,

sis using all subjects are shown. Circles denote the a0k . By
mean of each distribution of each coefficient. All : B,
means are significantly different from zero (t-test, p B
<1073). The average value of the visual coefficients
£1(0.75 £ 0.15; +SD) is greater than the average of
the auditory coefficients ($2(0.16 + 0.12), and these
unimodal coefficient averages are both greater than
that of the multimodal coefficients 83(—0.05 & 0.1).
Repeating the same analysis using the subset of
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In a subsequent analysis, we carried out the regression analysis using a different com-
bination of dependent variables and evaluated how the introduction of an additional
dependent variable increased the explained variance. Using only unimodal visual pdfs as
one regressor, we obtained 72 values having a median value of 0.72 over all images —as
expected from the previous section. Additionally including unimodal auditory pdfs in-
creased the median 2 only slightly, by 3%. Repeating this analysis using only the subset
of subjects showing the strongest auditory lateralization effect, we obtained a median
value of 0.36 with the sole visual regressor. The subsequent introduction of the unimodal
auditory pdfs as second dependent variable increased the goodness of fit by 21% over all
images. Further including the cross- interaction term as the third dependent variable,
the goodness of fit increased slightly, by 5%. Therefore we can argue that mechanism
linearly combining the unimodal saliencies can well account for the observed behavior in
the multimodal conditions.

As a model-free approach, we compute integration plots using saliencies obtained from
different conditions. It should be noted that no assumptions are made regarding the
calculation of the saliency; that is, these saliency values are empirically determined by
the gaze locations of many subjects. Integration plots are constructed by plotting the
saliency of a given spatial location in the multimodal pdfs as a function of unimodal
saliencies of the same spatial location. The specific distribution within this three dimen-
sional space describes the integration process. In Fig. 5.8 A, B and C, the height of each
surface depicts the corresponding salience of the same location during the multimodal
condition as a function of the saliency of the same location in unimodal conditions. The
three hypotheses about the integration of auditory and visual information make differ-
ent predictions (see introduction): Early interaction leads to a facilitatory effect and
an expansive non-linearity (Fig. 5.8). The landscape predicted in the case of linear
integration is planar and shown in Fig. 5.8. Late combination gives rise to a compres-
sive non-linearity (Fig. 5.8C). Applying this approach to our complete dataset leads to
a highly non-uniform distribution of observed unimodal saliencies, when considered in
terms of their frequency of occurrence. In Fig. 5.8D, the count matrix of joint occur-
rences of unimodal saliencies is presented; the surface is very sparsely filled at regions
with high values of salience and practically no point is present at regions where both
unimodal saliencies are high (top right region of Fig. 5.8D). Statistically reliable state-
ments about the data within these regions are thus not possible. Within this space, we
defined a region of interest depicted as a rectangle in Fig. 5.8D; this portion of the space
contains 85% of the total number of samples. Inside this region, we bin the data using a
10 x10 grid and calculate the expected value (Fig. 5.8) and an error estimate (variance)
for each bin.

The relationship between these unimodal and multimodal saliencies is further analyzed
using a weighted regression analysis with unimodal saliencies as dependent variables.
This yielded 0.54 + 0.04 (£ 95 %CI) and 0.59 + 0.09 for the linear contribution of
visual and auditory saliency respectively. Both coefficients were highly significant (t-
test, p <1O*6)except for the intercept coefficient (t-test, p = 0.23). r2 is equal to 0.89
suggesting a good fit. We repeated the same analysis with the interaction term included
after normalizing each regressor with its geometric mean in order to have the same
exponent range, thus permitting an evaluation of the contribution of different regressors
to the multimodal saliency. This yielded 0.57 4+ 0.08, 0.29 + 0.08 and 0.029 4+ 0.05 for
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Figure 5.8: The Integration is
Linear. (A, B, C) Three hypo-
thetical frameworks for integration
are presented schematically as inte-
gration plots. The X and Y axes
represent the unimodal saliencies as-
sociated with a given location on
the visual field. The saliency of
the same location in the multimodal
condition is color-coded, i.e. each
pixel represents the saliency of a
given point in multimodal condition
(p(AV)) as a function of the saliency
of the same point in unimodal con-
ditions (p(A), p(V)). The specific
distribution of the points generating
this landscape unravels the integra-
tion process. Please note that the
inherent topology of underlying im-
ages is no longer contained in inte-
gration plots. The three integration
schemes mentioned in the text (see
Introduction) predict different prob-
ability landscapes. If the unimodal
probabilities were interacting this
would generate a landscape with an
expansive non-linearity (A); how-
ever if the multimodal saliencies
were combined linearly, the result-
ing landscape is expected to be pla-
nar (B). The absence of an integra-
tion in a scenario where the maxi-
mum of the unimodal saliencies de-
termines the multimodal saliency re-
sults in a compressive non-linearity
(C). (D) Joint count matrix ob-
tained by using all subjects. All
pairs of unimodal saliencies are plot-
ted against each other. Grayscale
level logarithmically codes for the
number of occurrences inside each
bin. The marked rectangular region
contains 85% of all points. (E) In-
tegration plot calculated for points
lying in the rectangular region of
(D) using a 10 x10 binning. The
color codes for the saliency in the
multimodal condition as in (A-C).
Image pdfs used to compute this
plot are obtained by using all sub-
jects. (F) Same as in (E), however
only subjects with the strongest au-
ditory response are used. (G) Inte-
gration plot, calculated using differ-
ence maps (see Results for details).
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visual, auditory and interaction terms respectively. The linear contributions of unimodal
saliencies were highly significant whereas the intercept and the interaction terms were
not statistically different to zero.

Using such large bins increases the statistical power within each bin at the expense
of detailed structure. We therefore conducted the same analysis using up to 50 bins
covering the same region of interest. The 72 of the fitted data at this resolution was
0.87, ensuring that the fit was still reasonably good. The values of coefficients were
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practically the same, and the only noticeable change during the incremental increase of
the resolution was that the interaction term reached the significance level (p > 0.05) at
the resolution of 20 x20, thus demonstrating a slight facilitatory effect. These results
support the conclusion that linear integration is the dominating factor in crossmodal
integration during overt attention, with an additional small facilitatory component.

The above analysis is influenced by a particular property of the auditory saliency maps.
Many fixation densities in the AL and AR conditions are located at the center of the
screen (see Fig. 5.4C). We tried to avoid this problem in two different ways. In the first
method, we performed the same analysis on the subset of subjects mentioned earlier who
were most influenced by the lateralized auditory stimulus, thus minimizing the central
bias. Restricting the analysis allowed us to define a new region of interest, which included
90% of the total data points (Fig. 5.8E) and discarded only those points that were very
sparsely distributed in high saliency regions. r? values varied within the range of 0.81
and 0.9, decreasing with higher binning resolutions. As above, increasing the number of
bins revealed a slight but significant facilitatory effect. Within this subset of subjects,
the contribution of auditory saliency (0.36 & 0.08) was again shown to increase at the
expense of the visual contribution (0.50 £+ 0.08). Removing the interaction term from
the regression analysis caused a maximum drop of only 2.5% in the goodness of fit for
all tested bin resolutions within this subset of subjects.

In the second method used to remove the central bias artifact of unimodal auditory pdfs,
we took the differences between the left and right auditory conditions, i.e. subtracted
the two empirically determined auditory saliency maps to yield difference maps. In
each case, the saliency map for the condition where the sound was presented contra-
laterally was subtracted from the saliency map of the congruent side (i.e. AL —AR for
auditory stimulus presented on the left, AR —AL for auditory stimulation from the right).
These newly generated maps are well-behaved and allow the analysis of a larger region
of saliency space (90% of total samples). The above analysis was repeated using the
difference maps, and is shown in Fig. 5.8G. It should be noted that the positive values
on the y-axis are the data points originating from the region of the screen from which
the sound emanates, during the temporal interval of interest. We performed separate
regression analyses for these two halves of the resulting interaction map. In the lower
part (p(A) > 0), the best predictor was the visual saliencies, as can be seen from the
contour lines. In the upper part ( p(A) < 0), a linear additive model incorporating
auditory and visual saliencies well approximates the surface. The results derived in an
analysis of the effects of different bin sizes were comparable to the above results; that is, a
model combining linearly unimodal saliencies along with a slight facilitatory component
was sufficient to explain a major extent of the observed data.

We repeated the last analysis with image pdfs obtained with varying degrees of smooth-
ing. Decreasing the width of the convolution kernel systematically reduced the explained
variance of the fits on integration plots built within probability ranges containing com-
parable amount of points. In a large interval of tested parameters (0.4° —0.8°), the main
result was conserved i.e. the saliency surface was, to a large extent, captured by a linear
combination of unimodal saliencies, with a slight multiplicative effect also evident.
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5.5 Discussion

In this study, we investigated the nature of the multimodal integration during overt
attention under natural conditions. We first showed that humans do orient their overt
attention towards the part of the scene where the sound originates. This effect lasted for
the entire period of the presentation of the stimuli, but had a stronger bias during the
first half of presentation. More interestingly, this shift was far from a simple orientation
behavior —overt behavior during multimodal stimuli was found to be dependent on the
saliency of both visual and auditory unimodal stimuli. Although subjects’ fixation points
were biased towards the localized auditory stimuli, this bias was found to be dependent
on visual information. Our analysis suggests that a predominantly linear combination
of unimodal saliencies accounts for the crossmodal integration process.

We quantified the saliency associated with a given image region by analysis of the mea-
sured overt eye movements of a large amount of subjects. Subjects’ behavior was similar
within the temporal interval where the effect of the lateralized sound was strongest.
However we do not know whether this was the result of a search strategy shared be-
tween subjects or whether it originates purely from the bottom-up content present in
the image. The results presented here do not depend on the precise determinants of the
saliency associated to different image regions. Similarly, we evaluated the saliency of
different parts of the visual field associated with the lateralized auditory stimulation. In
many subjects this resulted in a shift of fixation toward the side of the sound, in accord
with previous studies showing that sound source location is an important parameter.

Prior studies (Corneil & Munoz 1996, Corneil et al. 2002, Arndt & Colonius 2003) have
shown that congruent multimodal stimulation during tasks where subjects were required
to move their gaze to targets as fast as possible results in faster saccadic reaction times
together with an increase in the accuracy of saccades. Here we are extending these
results to more operationally relevant conditions by using natural stimuli under free-
viewing conditions where the subjects are not constrained in their behavior. Moreover,
we are formally describing the crossmodal behavior in terms of unimodal behavior.

Concerning the temporal dynamics of the integration process, we found that the lo-
calized sound stimuli attracts subjects’ attention more strongly during the first half of
presentation, corresponding to an interval of approximately 2.5 seconds. Although it is
observed that the lateralization of fixation density continues throughout the whole pre-
sentation time (Fig. 5.4), the effects are much weaker and do not reach the significance
level. This effect can be understood as a consequence of inhibition of return, the subject
losing interest in that side of the image, or alternatively due to an increasing efficiency
of top-down signals over time, resulting in a superior efficiency of the sensory signals to
attract attention during early periods of exposure only.

One interesting point is to know whether the present results —a linear integration of
auditory and visual saliencies —generalize to situations with a combination of complex
visual and complex auditory scenes. In the proposed computational scheme the origin of
visual and auditory saliency maps is not constrained, but measured experimentally. The
spatial structure of the auditory salience map is more complex, but presumably does
not much the spatial acuity of the visual system. As a consequence, in the case several
auditory stimuli would contribute no fundamental property in the integration process
needs to be changed and we expect the same integration scheme to hold.
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In our study, majority of the natural images we have presented to the subjects were
devoid of human artifacts. It could be argued that our auditory stimuli were seman-
tically more congruent with natural scenes where there was no human artifact visible
and therefore the crossmodal integration would be stronger. Although some arbitrary
decisions has to be taken, we separated our visual stimuli into two classes depending
on whether human artefacts were present or not, and conducted the regression analysis
with these two sets separately. We have not found stronger integration in the case of
natural images without human artefacts compared to the case where human artefacts
were visible.

How do these results fit with current neurophysiological knowledge? Ome of the most
studied structures in the context of cross-modal integration is the superior colliculus,
a deep brain structure (Meredith and Stein, 1986; Stein et al. 2004). It has long
been known that superior colliculus contains neurons that receive inputs from different
modalities. Neurons fire more strongly with simultaneous congruent spatial stimulation
in different modalities, compared to unimodal firing rates. A recent report (Stanford et
al., 2005) which attempted to quantify this integration process occurring in the superior
colliculus, has pointed out that a great deal of the integration can be described by the
linear summation of the unimodal channels, thereby providing supporting evidence that
it is possible for linear integration to be implemented in the brain. At the cortical
level, we are far from obtaining a final clear-cut consensus on how saliency is computed
and integrated. In order for a cortical area to fulfill the requirements of a saliency
map, the activity of neurons must predict the next location of attentional allocation. A
number of such cortical areas have been proposed. Primary visual cortex, the largest
of all topographically organized visual areas, may contain a saliency map (Li, 2002).
Simulations inspired by the local connectivity of V1 generate results compatible with
human psychophysical data, thus linking the activity of neurons in early visual areas to
the computation of salience. By recording single unit activity in monkey cortex during
the exploration of natural visual stimuli,Mazer and Gallant (2003) found that the activity
of neurons in V4 predicted whether a saccade would be made to their receptive fields.
Based on these findings, they argue that V4, a higher level area located in the ventral
visual stream, contains a topographic map of visual saliency. It is likely that these
considerations may be generalized to other areas located in the ventral stream, but
presumably also to cortical areas responsible for auditory processing. In addition, areas
in the dorsal visual pathway and the frontal lobe —lateral intraparietal (LIP) area and
frontal eye field (FEF) respectively —have been associated with saliency. The activity
of FEF neurons can be effectively modulated by the intrinsic saliency of the stimuli and
further modulated by the current requirements of the task (Thompson and Bishot, 2004;
Thompson et al., 2005). In the dorsal pathway, Bisley and Goldberg (2006) propose that
LIP displays the crucial properties of a saliency map. Since saliency related activity in
the brain seems to be widely distributed over many areas these areas could in theory be
in the position to independently compete for the control of overt attention. However, our
results support the existence of a joint functional saliency map, in which the information
from different modalities converges before the non-linearities involved in the process of
fixation point selection are applied.

It should be noted, however, that our results can not unravel the neuronal mechanisms
underlying integration, as the exact cellular computations could in principle be carried
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out by operations other than linear summation of local variables. This depends on how
saliency is represented —for example, if saliency were represented logarithmically, the
linear summation would create a multiplicative effect. What we have shown is that at the
behavioral level the information converges before motor decisions are taken and that this
integration is mostly linear. We thus provide boundary constraints on the computations
involved in the control of overt attention.

Renninger et al. (2005) use information theoretical tools to provide a new framework for
the investigation of human overt attention. According to this hypothesis, the information
gain is causally related to the selection of fixation points, i.e. we look where we gain
the most information. Considered within this framework, it is tempting to speculate
that a linear integration scheme of unimodal saliencies is compatible with the optimal
information gain, in the sense that the linear integration of information gains originating
from different modalities provides the optimal combination strategy, as the information
gain is the sum of the information quantities that each modality provides.

The integration of multiple sources of information is also a central issue in models of
attention operating in unimodal conditions. As already mentioned, modality-specific
information is separated into different feature channels, and the subsequent integration
of these different sources is usually subject to arbitrary decisions on the part of the
modeler due to the lack of biologically relevant data arising from natural conditions.
Whether unimodal feature channels are also linearly integrated is a testable hypothesis
and needs further experimental research.

One problem we encountered was the centralized fixation density present in the fixation
probability distributions of unimodal auditory conditions. Although subjects were effec-
tively oriented by the lateralized sound source, most of their fixations were concentrated
at the center of the monitor. We avoided this problem in our analysis by taking the
difference of the probability distributions obtained in unimodal auditory left and right
conditions, and also by constraining analysis to the subset of subjects whose behavior
was most influenced by auditory stimulation. However, we believe that this problem
may be alleviated by using multiple sounds simulated to originate from different parts
of the image.

It is common for complex systems, composed of non-linear units, to function in a linear
way. Neurons are the basic functional constituents of nervous systems, and may express
highly non-linear behaviors; for example, the Hodgkin-Huxley equations describing the
relation between membrane potential and ionic currents are highly non- linear. Further-
more, the excitatory and inhibitory recurrent connections within and between cortical
areas allow for complex non-linear interactions. However, irrespective of these underly-
ing non-linear aspects, many neuronal functions are still well described by linear models.
Neurons in early sensory cortices (Schnupp et al. 2001) such as simple cells (Carandini
et al. 1997), for example, are well approximated when considered as linear filters operat-
ing on input signals. A recent study involving micro-stimulation in motor cortex showed
that signals for movement direction and muscle activation also combine linearly. (Ethier
et al. 2006). We have shown that the cross-modal integration during overt attention
process is best described as a linear integration of sensory information, possibly origi-
nating from different brain areas. In doing so, we have provided an important constraint
for any model of cross-modal interaction. This raises an important challenge for any
biologically plausible model of human overt attention operating in environments with
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multiple source of information.
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(General Discussion

The main axis of this thesis focused on approximating real-world operational conditions
within the laboratory environment by using complex and rich natural stimuli. To this
end, a considerable amount of energy was devoted to gathering these stimuli, which were
subsequently used in a variety of experimental and theoretical settings. Together with
many recent reports published during the last few years (see Felsen & Dan (2005) for a
review), this thesis provided supporting evidence that the usage of natural stimuli for
the study of central nervous system is both possible and productive in empirical and
theoretical terms, thereby speaking against a large number of neuroscientists, who are
rather reluctant for the entrance of natural stimuli into experimental fields due to their
complex and uncontrolled nature (Rust & Movshon 2005).

The central nervous system of mammals contains many more synapses than the number
of genes that exist in their genome. For example, in humans the number of genes is
estimated to be in the order of 50,000 and no estimation returns a number larger than
100,000 (Venter et al. 2001). These estimations are 10 orders of magnitude smaller than
the number of synapses in the human brain (Herculano-Houzel 2009). Assuming this
ratio as a valid rule of thumb for other species, a genetic determination of the fine con-
nectivity patterns between specific neurons seems to be implausible. Therefore, a generic
versatile learning rule which does not depend on explicit genetic definitions, is extremely
useful for achieving a given level of selectivity (e.g. edge orientation) with respect to
the external world. Moreover, absence of the necessity of a hard-wiring strategy via
genetic information enables considerable plasticity with respect to relevant features that
are specifically needed by different animals.

Learning stable features from the input signals is a good candidate for achieving this
goal. We reported that the binocular disparity coding, observed in the primary visual
area of monkeys and cats can be understood in terms of extracting stable features from
input signals, given that these are rich in content and represent the natural input. As
this learning scheme involves the temporal dimension, the result of slow feature analysis
depends crucially on the properties of the body and motor repertoire of the animal in
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question and enables neurons to be selective for different features which are relevant for
a given animal. For example, the neurons of animals with fast versus slow locomotion
can extract features suitable for the range of behaviors that their bodies allow without
any explicit definitions in their genomes being necessary.

In addition to low-level feature selectivity that neurons in the early sensory cortices
express, the operations carried out across the visual ventral pathway involve considerably
complex computations. For example, neurons located in the temporal cortical areas of
monkeys have RF's that are selective for complex patterns representing specific objects.
Moreover, this selectivity is to a large extent invariant to the viewing angle of objects
and their position in the visual field (Gross et al. 1972, Rolls & Deco 2006). Even higher
in the hierarchy across the visual ventral pathway, the hippocampus occupies the final
point of neuronal convergence of a large-number of cortically interconnected areas. Some
of the hippocampal neurons called place cells (O’Keefe & Dostrovsky 1971) fire when an
animal is at a given specific location in the space irrespective of the precise viewing angle
of the animal in that portion of the space. This means that visual input is processed
in such a way that these neurons extract the view-angle-invariant information from the
input signals. In simulation studies such non-trivial RF properties were obtained using
the same temporal stability based learning rule. For example, concerning the temporal
cortical neurons, Einh#user et al. (2005) showed that the translation invariant object
recognition can be achieved by extracting stable features from a series of object pictures
taken from different angle of view. Furthermore, Wyss et al. (2006), Franzius et al.
(2007) provided evidence that extracting stable features in an hierarchical manner from
the visual signals recorded by a robot exploring either a real-world (Wyss et al. 2006) or
a virtual environment (Franzius et al. 2007), place-selective neurons emerge at the top
layers. It is therefore likely that the functioning of the ventral visual pathway, however
complex the computations carried by these neurons are, may indeed be based on a simple
learning rule iterated over and over across cortical areas.

Cortical neurons also exhibit many different other specializations and there is no doubt
that the complete operation of the cortical network constituting the visual areas cannot
be totally captured by a simple formal expression. For example, the hierarchical organi-
zation of visual areas reflects only one side of the facts, because it is well known that the
bidirectionality in the cortico-cortical connections is rather a general rule of organization
(Felleman & Essen 1991). These connections are also distributed across different modal-
ities, effectively multiplying the integrative power of neurons. Moreover today, research
on crossmodal integration provides experimental evidence suggesting that different sen-
sory pathways classically thought to be segregated —at least in the early sensory areas
—may actually overlap considerably, resulting in the integration of different sensory sig-
nals very early in the hierarchy (Dehay et al. 1988, Driver & Noesselt 2008, Macaluso
et al. 2004). Adding to the complexity, cortical areas also contain a dense web of intra-
areal connections, which are highly organized (Rockland & Lund 1982). According to
our current knowledge, as early as in the primary visual area, the organization of these
local connections are thought to reflect the general statistical properties of the input
signals founding the basis of local integrative processes (Betsch et al. 2004). There is
no doubt that more experimental research is needed in order to understand better the
cortical function.

Using the physiological recording technique of VSDI (Grinvald & Hildesheim 2004), we
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aimed to understand the processing of natural input in the visual area. We were able to
analyze the activity of a relatively large cortical area with reasonably good spatial and
temporal resolution. Even though the spatial resolution of this technique is not strong
enough to resolve single neurons, it however provides the possibility of recording a large
number of neuronal masses directly and simultaneously. Importantly, it captures the
global cortical state spanning many columns and pinwheels, and therefore it is much less
susceptible with respect to any bias that the experimenter may introduce inadvertently
during electrophysiological recordings. For example, whereas it is simply not possible
to record electrophysiologically from a silent neuron, VSDI would not be blind to their
presence as it faithfully captures the big picture.

We found major differences in the cortical activity levels evoked by natural versus simple
laboratory stimuli. The physiological measurements indicated that during the processing
of commonly used simple drifting edge stimuli, the visual cortex is driven toward a state
characterized by an excess of excitation, leading the system into a strong hyperexcita-
tory state. The activity levels in response to natural stimuli were much more moderate
in comparison. We interpreted these results as being the consequence of an evolution-
ary adaptational process which leads to the efficient processing of naturally occurring
sensory inputs in terms of energy consumption. Within this framework, the fact that
the processing of natural stimuli does not require high levels of net excitation can be
conceived as the result of specialization of the cortical circuits.

Beside these observed differences in responses to artificial and natural stimuli, it is also
important to emphasize that these discrepancies may create difficulties for interpreting
the conclusions derived from studies where simple, artificial stimuli are used. Let’s take
as an example, the emergence of orientation selectivity in the primary visual cortex. It
is by far the most investigated case study in cortical computation since the early work
of Hubel and Wiesel (Priebe & Ferster 2008). However, many of these studies are based
on the results obtained by laboratory stimuli. Taken together with the results presented
here, it is reasonable to doubt the generalizability of these results. For example, the ori-
entation selectivity measured under artificial conditions, may well be an underestimated
approximation of the real selectivity of neurons. The excess of excitation in response to
grating stimuli (or/and the excess of inhibition in response to natural movies) could in
principle lead to such differences in the tuning of neurons. These considerations should
lead us to be more prudent for the interpretations of results.

In the experimental paradigms which are currently used, the final cortical response is
obtained after averaging a large number of repeated trials, thus averaging out the noise
component. By analyzing the data in a trial by trial basis, (Arieli et al. 1996) has shown
that a considerable part of the cortical variability in response to stimulation is due to the
spontaneous activity levels, rather than the external stimulation. This means that the
complexity of the signals can only be underestimated with the experimental paradigms
we are currently using. We showed that even following averaging a large number of
trials, complex spatio-temporal activity dynamics constitute a fundamental character-
istic of the responses of early sensory cortex to input signals, be it complex or simple
in nature. Propagating waves were consistently observed during both grating and natu-
ral conditions. This fact raises the question of how a system characterized by complex
dynamics can self-coordinate in order to integrate different sources of information. We
found that these complex dynamics representing the sensory input were, besides being
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locked to the dynamics of the external stimuli, also very sensitive to internal signals con-
veying contextual intra- or extramodal information. The presence of contextual visual
information was found to support the activity levels of distant neuronal populations. In
the same vein, an additional auditory signal was found to increase the strength of the
motion locking of the distant visual cortical areas. Therefore it is tempting to state that
the cortical machinery is extremely prone to integrate different sources of information.
Given this strong integrative power, it is however remarkably robust in conserving its
stability under normal operating conditions.

As the presence of integrative phenomenon at the neuronal level does not determine
unambiguously the nature of the motor output at the behavioral level, the effectiveness
of the integrative processes can be best studied in the behavioral level. Interestingly, the
results of my psychophysical experiments paralleled the physiological results. Instead
of having different sensory modalities in competition with each other for the control of
the behavior, we reported that different signals were integrated before the production of
the motor decision. Remarkably, the integration scheme was well predicted by a linear
combination of different sources of information. It is surprising that the presumably com-
plex dynamics underlying the functioning of neuronal populations, results in interactions
which are predicted by simple linear models on the behavioral level.

This thesis coincided with a transition period in systems neuroscience, a transition pe-
riod consisting of the introduction of more and more elaborate, complex and clever
experimental conditions within the laboratory settings. In my opinion the usage of com-
plex natural stimuli for the investigation of sensory systems represents only the starting
point of this global trend. Yet many exciting findings have already been brought to light
concerning the adaptational mechanisms used by cortical neurons in sensory cortices.
As the central nervous system of mammals is evolved for maintaining of the survival
in face of extremely uncertain environmental conditions, these findings may not be ut-
terly surprising from an evolutionary perspective. For example, the presence of a prey,
once detected by sensory neurons, must be reliably communicated to other regions of
the brain, and in order to avoid unnecessary energy consumptions and to guaranty the
survival, the probability of a prey or a predator at a given location needs to be evalu-
ated pertinently based on very limited number of trials (Glimcher 2003). Therefore very
robust neuronal mechanisms need to be at play to evaluate the risks of actions and their
outcomes. However, such mechanisms can not be uncovered when the complexity of
the our experimental setups do not match to the complexity of our subjects. Therefore
conducting better and richer experiments in the future will be our chance to learn new
insights about the way the brain functions.

107



Appendix

7.1 Description of Optical Imaging Data & Generic Pro-
cessing Steps: From Photon Counts to Neuronal Ac-
tivity

VSDI is a recording technique for directly measuring the activity of large amounts of
neuronal masses with a temporal resolution in the order of milliseconds. It combines
relatively good temporal resolution with a satisfying spatial resolution. However as it is
always the case, each recording, be it physiological or physical, has its own peculiarities
due to the interaction of the recording system with the subject of the investigation.
VSDI is not exempt of problems and needs careful preprocessing before any analysis. In
the following, description of the data and conventional preprocessing techniques will be
explained in detail.

7.1.1 Some Terminology

Introducing the following definitions is necessary in order to understand the terminology
used in this Section. Due to the manner in which experiments are done, we have to
distinguish between trials, trialblock and block. A trial is the shortest data segment that
is recorded. A trial block is a set of trials where all possible conditions are recorded
in a randomized fashion. In the experiments, we have 17 conditions. The data coming
from the recordings of 17 conditions compose a trialblock. This is the unit of data in the
hard disk because a given trialblock is stored as a unique file. The repetitive recording
generating many trialblocks creates a block. During a block, nothing in the recording
hardware (such as gain control, aperture etc.) is modified and as a consequence a block
is an ensemble of trialblocks where many trials are recorded in presumably constant
conditions. However this situation is interrupted due to some necessity which forces the
experimenter to change some parameters in the camera system. As a consequence a new
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block starts after parameter adjustments.

In summary, a trialblock refers to a set of trials where all the stimulus conditions are
shown only once. A block refers to a group of trialblocks where the hardware parameters
are kept constant. A new block starts as soon as a parameters are modified.

7.1.2 Properties of Raw Data

Each trialblock can be conceptualized as a time-series organized in a 3 dimensional
matrix as (space,time,condition). The length of the time dimension depends on the
specific sampling rate used during a given experiment. The presentation duration is
always 2 seconds. An interval of time corresponding one tenth of the whole stimulus
presentation duration corresponds to the pre-stimulus period.

An example frame of the raw data, directly output from the camera, is shown in Fig. 7.1A
(left panel). The color coded numbers are proportional to the number of photons received
by the photosensitive elements of the camera facing to the cortical tissue depicted in the
right panel. The uneven distribution of the luminance values is clearly visible as an
inverted basin-like structure. Three artefactual lines in the raw data are notable. These
lines are due to the known artefacts caused by the camera system used. Importantly
we see that the cortical "picture” at this rather raw level is mainly dominated by the
curvature of the cortex which causes a strong spatial inhomogeneity on the number of
photons recorded. These artefacts and the spatial inhomogeneities will be washed out
by the subsequent preprocessing steps discussed below.

A B C
Example frame x 10" Example trial

{ —_—
Fs _ |

space (pixels)

20 60 100 200 % 5 10 15

space (pixels) frames x 10"

Figure 7.1: Raw Data Directly Output from the Camera. (A) One example of recorded frame is shown
on the right panel. The color coded values are proportional to the number of photons received. On the right
panel, the corresponding cortical tissue is shown. (B) The temporal evolution of the raw data. Please note that
the change across pixels is much bigger than the change occurring across time. At this initial stage no trace of
evoked activity is visible. (C) Histogram of the luminance levels, each line represents a trialblock. The color and
thickness of the lines changes according to how late a given recording is done. Thick and bright lines indicate
early recordings and black and thin lines indicates late (toward the end of the experiment) recordings. To better
see the evaluation of the slow drift over the recording period refer to the next figure.

In Fig. 7.1B, temporal evolution of each pixel’s luminance is depicted (in units of
recorded frames each lasting 5 ms). The data presented in Fig. 7.1A (left panel) occupies
one of the columns in this panel. Importantly the deviations from the baseline due to
the stimulus onset (which occurs at 20*" frame) are not visible. The reason for this is
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Skewness

trials

conditions

Figure 7.2: Fluctuations in the Basic Statistics Extracted from the Raw Data of a Given Experiment.
On the left-most panel, the average value of the recorded raw signal is shown for all conditions (x-axis) and trials
(y-axis). Different panels represent different statistics extracted. The staircase black lines depict the block identity
changes, each time a step occurs a new recording block starts.

that the deviations between the DC components (average values) of different pixels are
comparatively much bigger than the effect of the stimulus onset.

In Fig. 7.1C, we see the distributions of these raw luminance values. Each line corre-
sponds to a given trialblock. All the pixels which makes up a trialblock (therefore pooled
over conditions, space and time) were used to create each single histogram. Here the
brightness of the curves represents different trials. Brighter and thicker lines represent
trials which are recorded earlier. The fact that late recordings within this experiment
have more illumination is caused by the experimenter’s adjustments counter-balancing
the photo-oxidative degradation of dye signals.

Different statistics extracted from the dataset recorded during an experiment are shown
in Fig. 7.2. In the y-axis, we see different trials recorded along the experiment (/35 tri-
als). In the large-scale x-axis different statistics are represented: mean, range, variance,
mazximum, minimum, kurtosis, skewness. These statistics are extracted for each con-
dition separately by pooling all the data points together. Within each subplot, across
the x-axis different stimulus conditions are shown (total of 17). The black thin line
symbolically shows the starts and stops of different blocks. The intervention of the ex-
perimenter are clearly visible in the abrupt changes of these statistics. It is expected
that an ideal preprocessing method cancels out these fluctuations which are dependent
on experimenter’s interventions.

7.1.3 Frame-zero Correction by Division

Frame-zero correction is realized in order to remove differences in the DC values of
different pixels. This results in the correction of spatial inhomogeneities. In order to do
so, we artificially equalize the luminance values recorded during the prestimulus period.
During this process, for each trial data, the average luminance during the pre-stimulus
time is computed for each pixel and condition separately. This generates one scalar value
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for each pixel and condition. Following, all recorded samples belonging to a pixel and
condition are normalized by this scalar. This forces the temporal average during the
pre-stimulus period to be equal to 1 for each of the pixels. This is called frame-zero
correction.

7.1.4 Why Division?

Even though it is consistent with the literature, it is not clear why division rather then a
subtraction need to be the preferred method. In a scenario where the dynamic range of a
given pixel is proportional to its prestimulus DC value, the divisive normalization would
be preferable. However subtraction would be preferred if the gain of the activation is
constant and therefore independent of the DC component.

This can be verified easily. Fig. 7.3 shows for a given trial and for each pixel, the
relationship between the DC component and its dynamic range. Here dynamic range
of a given pixel is quantified as the standard deviation of its activity computed across
the temporal dimension. This was done for two different stimulation conditions (grating
condition (blue) and blank condition (red)). It is clearly visible that the modulation
depth is to a good extent linearly related to the DC component of the pixels. This
justifies the necessity for a divisive normalization procedure.

The effect of the divisive frame-zero correction on the raw data is presented in Fig. 7.4A
(compare to Fig. 7.1B to the raw data). The frame-zero division has the effect of making
the distributions of luminance values more Gaussian-like (compare histograms in Fig.
7.4C and 7.1C). In these histograms all of the distributions are centered around a value
close to 1. Although some drifts over the course of the experiment (a given gray level
codes for a given trialblock) are present, there seems to be no general rule governing how
do these distributions changes over the entire experimental session.

Importantly, the increase in the luminance level due to the stimulus onset is clearly
visible in Fig. 7.4A. Yet the most important variation in the data at this level is the
heart-beat and respiration related noises (see Fig. 7.4B), seen as oscillations spanning
across all the recorded cortical space. The cat has approximately 4 hearth beats during
the 2 seconds of stimulus presentation. These artefacts are cleaned out by computing
the fractional change.

7.1.5 Blank Correction (Fractional Change)

Our aim is to remove the heart-beat and respiration related artefacts from the recorded
neuronal data. We assume that the neuronal and artefactual data adds up linearly and
that we could obtain back the neuronal data by computing the difference between the
two signals which are recorded in the presence and absence of the visual stimulation. To
this end, we compute the fractional change in order to get rid of the heart-beat related
artefacts. This procedure is formally expressed in equation 7.1.

Condition;(x,t) — Blank(x,t)  Condition;(x,t)
Blank(x,t) Blank(x,t)

-1 (7.1)
Fractional change is obtained by computing the effect of the stimulation with respect to
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Figure 7.3: Relationship between Prestimulus Average Luminance and Modulation Depth of a Pixel.
Each point symbolizes two quantities extracted from a pixel’s luminance: DC component during prestimulus period
and modulation depth, which is the standard deviation of the activity during the stimulus presentation. Blue
and red dots are from grating conditions and blank conditions, respectively. Different panels depicts the data of

different experiments. The presented data originates from one single trial, however same linear relationship is
observed for all other trials.
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Figure 7.4: Effect of Frame-zero Correction. (A)Same data shown in Fig. 7.2B is presented after frame-
zero correction. (B) The spatially averaged data is shown for all the trials recorded under 4 different conditions

(panels). (C) Histogram of the luminance values after Frame-zero correction. Same representation as in Fig.
7.2C.

the baseline activity and a further normalization. The baseline activity is obtained from
the trials where no stimulation is presented. As in each of the trialblocks, we have 2 such

112



Chapter.7 Appendix

blank conditions, the average is taken over those before the subtraction (shown with a
bar in equation 7.1). The fact that all trials are recorded in synchrony with respect to the
hearth beat and respiration cycle allows us to make the subtraction method. It should
be noted that the fractional change operates in an element-wise fashion. The operation
is carried out in corresponding spatial and temporal recorded samples. Therefore this
normalization takes into account spatial changes in luminance over the cortical surface
as well as temporal non-stationariness occurring over curse of the recording.

Mean Range Var Max Min Kurt Skewness

trials

conditions

Figure 7.5: Effect of Frame-zero and Fractional Change Operations on the Fluctuations. The evolution
of different statistics following Frame-zero correction and fractional change computations. The same representation
as in Fig. 7.2. Sharp changes in the values of statistics dependent on the block identity changes is to a good
extent removed.

However, it should be noted that there are a variety of choices for the definition of
the baseline signal. One candidate would be the trialblock’s own blank condition (this
was the choice which is commonly used). In this scenario each trialblock’s own blank
recordings would be used for the fractional change computation. This would be the
choice which is most noisy and temporarily localized. Another candidate would be the
baseline computed using a given number of trials which are consecutively recorded. On
the other extreme, the average blank computed across all the trials of an experiment
could be also used. This would be the least noisy and temporarily located choice. These
different baselines have all their pros and cons. While temporarily well-located blank
recordings take into account the global fluctuations which may occur during the course
of an experiment, they are also more prone to noise as the total number of trials to
be based on is small. In this thesis, all the results reported, are computed using the
conventional trialblock specific blanks.

In 7.5, we see the evolution of different statistics across the trials (organized exactly as
in 7.2) following the operation of frame-zero correction and fractional change. In the
first column which shows the mean luminance, we see a vertical stripe-like pattern at
the 3rd and 4th columns. These correspond to the grating conditions which causes very
strong activity levels. The first two columns shows the statistics extracted from the data
recorded during blank conditions, thus in the absence of any stimulation. Important
to note is that the fluctuations in the values of extracted statistics that we observed in
Fig. 7.2 are to a good extent removed. Therefore these two preprocessing steps pro-
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vides a good way of obtaining the specific activity levels caused by different stimulation
conditions.
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7.2 Behavioural Pilot Study

A behavioural pilot experiment was conducted to determine whether and how stimulus
parameters affect the perceptual detectability of audiovisual congruence.

We tested different visual and auditory feature dimensions, as well as slower and faster
modulation frequencies. Otherwise, audiovisual stimuli were constructed as described for
the main experiment. The Gabor patch could be modulated in one of 6 dimensions: size
(100-200 pixels), contrast (0.1-0.5), orientation (180 ° around horizontal axis), frequency
(~0.2-1 cycles/°), phase (0-360 °) or color saturation (0.1-0.5 along the red-green axis
in DKL color space). The tone was either amplitude- (0.1-1) or frequency- (Carrier
Frequency + 40 Hz) modulated. In the latter case, the carrier frequency was chosen
randomly from a uniform distribution (100-500 Hz). Modulation frequencies were bound
by either 0.7, 1 or 1.3 Hz. The combinations of parameter triplets (visual, auditory,
cutoff) were fully balanced.

Additionally, each combination was shown an equal number of times in congruent and
incongruent stimuli. Movies were created out of 6 trajectories per modulation frequency,
resulting in a total number of 432 movies. Button presses were recorded from 9 naive
subjects. The whole stimulus set was divided and balanced between pairs of subjects,
i.e. each subject saw 216 movies of a single balanced set. Paradigm, trial organization
and instruction were identical to the main experiment (simultaneous trials). Unimodal
stimuli were not shown.

On average, subjects responded correctly on 74,9 % of all trials (standard deviation: 9.3
%). The analysis of responses indicated that each subject performed well above chance
(exact Binomial test, p < 0.01). A comparison of different visual features, auditory
features and modulation frequencies revealed no significant differences (x?, p < 0.05).

We conclude that subjects are capable of distinguishing audiovisual congruent from
incongruent stimuli. Furthermore, sensitivity to temporal congruence does not seem to
be dependent on the specific low-level features through which the temporal structure is
conveyed.
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