Ontology Matching by Combining
Instance-Based Concept Similarity
Measures with Structure

Konstantin Todorov

Submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy in Cognitive Science (FB 8)
at the

University of Osnabriick

October 2009

Advisors:

Prof. Dr. Kai-Uwe Kiithnberger (University of Osnabriick)
PD Dr. Peter Geibel (Technical University Berlin)
External Reviewer:

Prof. Dr. Alexander Mehler (University of Bielefeld)

Contents

1
1
[1.2 Overcoming Ontology Heterogeneity: Applied Methodologies| . . 5
[[:3Main Hypothesis and Research Questions 7
— 3

0

[L4 Results and Confributionl

[L.L5__Outline and Intended Audiencef 1
|2 Background Concepts| 12
2.1 Graphs and Lattices| 13
2.1.1 Facts about Graphs and Trees| 13
2.1.2 Graph and Tree Isomorphism| 15
[2.1.3 Graph Similarity Measures and Distances| 19
2.1.4 asic Concepts in Lattice Theoryl. 24
P2 Tntroduction to Support Vector Machines| 26
2.2.1 Computers and Learning| 26
12.2.2 Overview of Support Vector Machines| 27
2.3 Variable Selection]. 34
35
2.3.2 Variable Selection for SVMsg 36
2.4 Text Categorization|, 38
|2.4.1 Representing Text Documents as Feature Vectors|. 38
[2.4.2 Dimensionality Reduction| 40
2.4.3 easuring Document Similarity|. 42
2.4.4 n Overview of Text Categorization Approaches| 43
5 Summary: A Framework for Ontology Matching] 48
[3__Ontology Matching] 49
3.1 efining an Ontology|. L. 49
8.2 Ontology Applications| 51
8.3 Modeling Ontologies| 55
13.3.1 Ontologies in Description Logics| 55
[3.3.2 Ontologies and Formal Concept Analysis| 60
3. ntolo atching: Motivations| 64
[3-4.T Representation of Semantic Knowledge]. 65
13.4.2 Ontology Heterogeneity: Aspects of the Problem of On- |
tology Matchingl 66
[3.4.3 The Role of Similarity in Human Categorization| 68

[3.4. 4 Accounts of Human Similarity Assessment|. 69

ii

[3.4.5
3.5

Terminological Disambiguation|

73

assification o

ntology Matching Techniques and Approaches| 74

B5.1

Structural and Terminological Approaches|.

B.5.2

Extensional Approaches|o

B.5.3

Semantic-based Approaches| L.

3.6 Summary: Ontology Matchingl

4 Composi

te Approaches to Ontology Matching]|

4.1 Assumptions|o

4.1.1

Definition of a Hierarchical Ontology]

4.1.2 Documents, Instances, Concepts, Ontologies|.

F13

Types of Document Intersection|

4.2 Structural Ontology Similarity]

F21

(s

Ontologies as Graphs and a Structural Similarity Measure] 98

f2.2

Discussion: Generalizing in Terms of Cartesian Product

of Treesl o o

4.3 Instance-based Ontology Matching|

E31

An Instance-based Mapping Scenariol.

f3.2

From Data Analysis to Concept Mappingl

[4.3.3 Variable Selection as a Measure of Concept Similarity| . .
[4.3.4 VC-dimension-based Variable Selection for SVMS

109
116

4.4 An Overall Variable Selection-Based Ontology Matching Procedure/118

4.4.1 Matching Hierarchical Ontologies| 118

4.42 Generalizations of the Procedurel 119

4.5 Specificity and Granularity Judgments for Ontology Matching |

[and Merging|. Lo 122
4.5.1 Preliminaries] 123

4.5.2 Overcoming Granularity and Instantiation Discrepancies: |

| A Procedure for Ontology Mergingf 126
4.6 Summary: Combined Matching Approaches| 130

[Experimental Results and Discussion| 132

b.1 Detecting Potential Concept Mappings with Discriminant Analysis|132

p.1.1 Experiment 1) oL 133

p.1.2 Experiment 2| oo 133

o.1.3 Expermment 3[. oL 134

5.2 oncept Similarity based on Variable Selection| 135
0.2.1 Experiments 4: Concept Similarity via DA| 136

5.2.2 Experiments 5: Concept Similarity via DF, MI, ChiJ] . . . 137

9.2.3 Experiments 6: Concept Similarity via VC-dimension- |

[based Variable Selectionl « « v v v v v oo 141
5.2.4 Experiments 7: Comparison of the Performance ot the |

| Similarity Coefficients (k-TF vs. Correlation Measures)| . 143
[5.25 Experiments 8: Comparison of the Performance of the |

L Variable Selection Techniques| 144
[6.3 Evaluation of the Overall Variable Selection-based Ontology |

[Matching Procedure] 144
p.3.1 Experiments 9: Matching the News-Ontologies| 145

9.3.2 Prototype Method| 146

p.3.3 Jaccard Similarity-Based Method|. 146

iii

[5.3.4 Similarity Based on VC Dimension (VC-VS)| 146

[5.35 Matching the News-Ontologies: Discussion] 148

5.4 Summary and Discussion| L. 148
p.4.1 Summary and discussion of the experimental results] . . . 148

p.4.2 Situating our approaches in the discussion about |

| similarity and categorization| 150
6 Conclusion and Future Work] 153
[6.1 Concluding Remarks| 153
B2 TooseEndd o oo 155
6.2.1 Theoretical questions|. 155

16.2.2 Technical improvements| 157

623 FEvaluation| 0. 158

iv

List of Figures

2.1 a) A directed rooted tree; b) A directed acyclic graph| 15
2.2 Isomorphic graphs: an example|.o L. 15
2.3 Structural risk minimization If 29
2.4 Structural risk minimization ILI 29
[2.5 A separating hyperplane and a maximal margin in R*.| 30
2.6 SVMs: The linearly separable case|. 33
2.7 SVMs: The linearly non-separable case.| 33
2.8 Selection techniques in relation to training in time. 36
3.1 Ontology applications: the classification of Staab and Studer| . . 52
3.2 Application fields of ontologies: a suggested classification.| 54
[3.3 _Semantic Web Ontologies.| 55
56
[3.5 DL: Elementary and complex descriptions.|. 57
[.6 A formal concept lattice info a taxonomy (from 27))] 62
[3.7 Hierarchical ontology to FCA]. 63
[3.8 The meaning triangles of Ogden and Richards and Sowa.|. 65
|3.9 Overlapping ontologies. | 67
3.10 Tversky’s feature model] 71
[3.1T The topic model (taken from [60])] 71
3.12 SR: Structured representations.| 72
[3.13 SR: Hierarchically organized features| 73
[3.14 Matching approaches (Rahm and Bernstein)] 75
3.15 Matching approaches (Euzenat and Shvaiko (a fragment)).|. . . . 76
3.16 The ONION tool (adapted from O] - - - -« o o o oo .. 80
3.17 Hierarchical instantiation of a taxonomy]. 81
|3.18 Approximating joint probabilities by a machine learning classifier.| 83
B.19 FCA-MERGEI« . . oo e 84
[3.20 Feature extraction (adapted from [160]). 85
4.1 Example: a document populated taxonomy.| 93
4.2 Doubly annotated documents.|. 93
1.3 Types of document sets INtersections.). o 96
4.4 Prototype document in case 1) and case 2).| 97
4.5 The bell-shaped curves represent the functions f4 and f3°"*. The
fuzzy union Maz[fa(d), f5"(d)] is depicted by the continuous
[segments of the two curves.| 98
6 Example: Cartesian product of two simple trees| 101
1.7 Example: PCA-based concept mappings). 108

4.8 Example: discriminant analysis.|. 109

E9 Example: DA-based concept mappings.] 110
4.10 Variable selection for a concept A in ontology O¢.. 111
4.11 Example: the concept or its compliment?| 113
4.12 A possible architecture of instance-based mapping.| 117
|4.13 Instance-based mapping with variable selection|. 120
£ 14 Mapping ontologies of different sizes. v v o oo ... 120
4.15 Mapping non-hierarchical ontologies| 121
4.16 Intersections of document sets 124
4.17 A procedure for ontology matching.|. 125
418 FIEOM Case 1. Similar structures) 127

419 FEOM Case 2. One of both taxonomies 1s a sub-tree of the other/128
[4.20 FEOM Case 3. a) One of the ontology trees is broader and

the other one is deeper than their mcs (represented with shaded

nodes). b) Merging Oy and O 128
4.21 The PEOM ontology mapping.| 130
b.1 A DA plot of the population ot the documents from three classes.| 133
9.2 A DA plot of 6 pair-wise similar classes.| 134
5.3 A DA plot of 4 classes of one ontology.|. 135
(.4 A DA plot of the classes of two ontologies]. 136
[6.5 TLists of characteristic variables in 4 DA analyses)] 137
5.6 Variable selection for a concept “Hardware PC” in ontology O1.| 138
p.7 Two News-Ontologies.| 145

vi

List of Tables

[3.1 DL: Syntax and semantics of AL|. 57
B2 FCA Thevelation] . - « .« o v v oo e 64
4.1 Data-table with documents from two ontologies| 107
2 Concepts, variables, scores and ranks, 115
5.1 Heuristics similarity matrix] 138
5.2 Performance using Mutual Information]. 139
5.3 Performance using Chi” with 30 features|. 139
5.4 Performance using Chi* with 200 features| 140
[5.5 Performance using Document Frequency Thresholding| 140

[5.6 VCdim-based similarity: k-TF measure (left) and Pearson’s co- |

efficient (right)| 141
5.7 VCdim-based similarity: Spearman’s coetlicient (left) Kendall’s |

coefficient (right)| 141
5.8 VCdim on non-intersecting classes with k-TF 100 Features (left); |

optimized (right)| 142

[5.9 VCdim on non-intersecting classes with Pearson’s coefficient |

(left); optimized (right)l L. 142

[5.10 Performance of the similarity measures| 144

p.11 Performance of the variable selection techniques|. 144

[p-12 Matching the news ontologies: sumproto| - - - - . o o o oL 146

.13 Matching the news ontologies: stmjqccard - - - - - - - . .« 146

5.14 Matching the news ontologies by selecting variables with MI|. . . 147
5.15 Matching the news-ontologies by selecting variables wit -

[SVM: first levels vs. mixed leveld 147

.16 Similarities of the descendants of the computer- and the |

[recreation-classes| Lo 148

vii

Acknowledgments

During the years of work on this thesis, I was lucky to have been constantly
receiving support from many people in different forms. All the persons and
institutions mentioned below have helped me directly by providing me with the
scientific advice, organizational expertize and emotional comfort that I have
needed.

First and foremost, I would like to thank my supervisors, Kai-Uwe Kiihberger
and Peter Geibel. I am much obliged to Kai-Uwe Kiihberger for introducing me
to the exciting area of ontology matching four years ago and for continuously
supporting my endeavors in that field, scientifically, organizationally, technically
and, last but not least, financially. I am indebted to Peter Geibel for his valuable
presence, for his critical comments throughout many discussions, for his moral
support and constant encouragement, which helped me gain confidence in my
ideas.

I would like to thank all my friends and colleagues from the Doctorate Pro-
gramme of the Institute of Cognitive Science (IKW) who have contributed to
my thesis with discussions and comments, but who have also made my stay in
Osnabriick a great time to remember. In that respect, I would like to mention
the names of Tonio Wandmacher, Ulas Tiirkmen, Sasha Alexejenko, Ilaria Ser-
afini, Katya Ovchinnikova, Daniel Weiller, Miriam Kyselo and Mikko Maéatta.
I thank particularly Markus Eronen, for the music and the pipes.

My gratitude equally goes to Carla Umbach and Peter Bosch. I thank them
for the organizational help, for the valuable comments on my work during
my presentations at the doctorate colloquium and for supporting financially,
through the Doctorate Programme which they are in charge of, my conference
and scientific trips. Talking about the financial side, I would like to mention the
support of the German Academic Exchange Service who accorded me a one year
scholarship at a crucial moment of my work. I am as well thankful to Helmar
Gust who offered me a “HiWi” position at the IKW.

I thank Alexander Mehler who agreed to write an external review of my
thesis.

Many thanks to Nicolas Cantono for helping me with part of the experimen-
tal work.

Finally, I would like to express my gratitude and indebtedness to my parents
Margarita and Georgi and my brother Ivan for their continued and unconditional
support, which I was always able to count on, not only during the last four years.

A special thank you to Tsveta, for all the reasons that I hope she knows.

K. G. T., October 2009, Osnabriick

viii

Abstract

Ontologies describe the semantics of data and provide a uniform framework
of understanding between different parties. The main common reference to
an ontology definition describes them as knowledge bodies, which bring a for-
mal representation of a shared conceptualization of a domain — the objects,
concepts and other entities that are assumed to exist in a certain area of in-
terest together with the relationships holding among them. However, in open
and evolving systems with decentralized nature (as, for example, the Semantic
Web), it is unlikely for different parties to adopt the same ontology. The prob-
lem of ontology matching evolves from the need to align ontologies, which cover
the same or similar domains of knowledge. The task is to reducing ontology
heterogeneity, which can occur in different forms, not in isolation from one an-
other. Syntactically heterogeneous ontologies are expressed in different formal
languages. Terminological heterogeneity stands for variations in names when
referring to the same entities and concepts. Conceptual heterogeneity refers to
differences in coverage, granularity or scope when modeling the same domain of
interest. Finally, prgamatic heterogeneity is about mismatches in how entities
are interpreted by people in a given context.

The work presented in this thesis is a contribution to the problem of re-
ducing the terminological and conceptual heterogeneity of hierarchical ontolo-
gies (defined as ontologies, which contain a hierarchical body), populated with
text documents. We make use of both intensional (structural) and extensional
(instance-based) aspects of the input ontologies and combine them in order to
establish correspondences between their elements. In addition, the proposed
procedures yield assertions on the granularity and the extensional richness of
one ontology compared to another, which is helpful at assisting a process of
ontology merging. Although we put an emphasis on the application of instance-
based techniques, we show that combining them with intensional approaches
leads to more efficient (both conceptually and computationally) similarity judg-
ments.

The thesis is oriented towards both researchers and practitioners in the do-
main of ontology matching and knowledge sharing. The proposed solutions can
be applied successfully to the problem of matching web-directories and facili-
tating the exchange of knowledge on the web-scale.

Chapter 1

Introduction

Ontology matching is an active interdisciplinary research field, which encom-
passes subfields of computer science and artificial intelligence, computational
linguistics, psychology and philosophy. This chapter has as a goal to introduce
the reader to the main topics discussed throughout the thesis, all grounded at or
motivating the ontology matching research, taking a generic stance. We start by
discussing motivational issues and illustrating the problem of ontology matching
with a small example (Section . Further, we present various methodological
frameworks for building solutions to this problem (Section [1.2]). We proceed to
state our main hypothesis and a set of originating research questions (Section
11.3)) before we outline the major contribution and results of this work (Section
. Finally, we describe the structure of the thesis and suggest an intended

audience (Section [L5)).

1.1 Aims and Motivation

The relation between the objects in the world, their mental representations (con-
cepts) and the words or language expressions (symbols) that stand for both is
fairly complex. These three entities form what Ogden and Richards have called
the meaning triangle [I17]. The connection and interaction between any two
vertices of that triangle give origin to interdisciplinary research involving fields
of linguistics, cognitive psychology, philosophy and artificial intelligence (AI).
In an attempt to prepare the reader for stating the basic research questions, hy-
potheses and results of this thesis, we will sketch a possible view on how these
entities are related.

By objects in the world we understand a whole collection of things, loca-
tions, times, events, states, relations, features, etc. People develop knowledge
about the categorical nature of these components through their lives, as argued
by Barsalou [§]. One way of defining the relation between concepts and real-
world objects is to identify concepts with the categories developed by humans,
structuring the objects in the world and shaping their knowledge about them.
This conceptualization is not universal and does not hold for all people in the
world altogether and in the same time. It is distributed and dispersed among
smaller communities, among sub-groups of these communities, or even some-
times among particular individuals. What distinguishes, for example, different

human cultures is, to a big degree, the shared agreement about categories, which
exists among the members of these cultural groups and the interpretation that
they give to these categories [56].

The relationship that holds between linguistic symbols and concepts, on one
hand, and linguistic symbols and objects in the world, on the other, is not sim-
pler. The names that people give to the things in the world and the categories
that they form differ among communities and individuals, as well. Naturally,
this is a common phenomenon among multi-linguistic communities: even if a
concept is understood equally by people in France and people in Germany (for
example, the concept corresponding to the thing known under the English word
wine), the linguistic symbols used to refer to this concept and its instances dif-
fer across these communities (for example, the French vin against the German
Wein). But even in communities, which agree on the use of a common lan-
guage this ambiguity can occur, among sub-groups of these communities, due
to language-related factors, such as synonymy or polysemyﬂ or to community-
specific factors, such as importance of a concept for that community, scope,
terminology, specificity.

To sum up, we point to the observation of [ITI] that the nature of the relation
between words, concepts and real world entities can be accounted for by relating
the meaning of a word to a mental description (conceptual system), which allows
people to exemplify words by objects in the world. We emphasize that we would
expect the mental representation (concept) that characterizes and includes sets
of real world objects and the choice of symbols (words, expressions) that stand
for them to differ among different people due to many possible ambiguities
stemming from the distributed nature of human concept formation and the set
of complex psychological principles, which underlie this process [130].

We will close this section by a small example. We all know from biology
classes how the different animal species are organized in a taxonomy. They are
divided into groups according to morphological, physiological, evolutionary and
other criteria (vertebrates vs. invertebrates; mammals, fish, amphibians, birds,
etc.) and the different groups are ordered in a tree rooted in the most general
class branching down to the individual species and subspecies.

Below is a taxonomy of the animal kingdom, taken from the Chinese ency-
clopedia The Celestial Emporium of Benevolent Knowledge (as cited by J. L.
Borges [16]), according to which

[...] animals are divided into (a) those that belong to the Emperor,
(b) embalmed ones, (¢) those that are trained, (d) suckling pigs,
(e) mermaids, (f) fabulous ones, (g) stray dogs, (h) those that are
included in this classification, (i) those that tremble as if they were
mad, (j) innumerable ones, (k) those drawn with a very fine camel’s
hair brush, (1) others, (m) those that have just broken a flower vase,
(n) those that resemble flies from a distance.

Evidently, the latter classification differs significantly from the taxonomies found
in biology textbooks, in terms of categorization criteria, granularity and scope,
even though it also intends to provide a structural account of what kinds of
animals there are in the world.

ISynonyms are different words, which label the same entity or concept; polysemy is the
phenomenon of a word having multiple meanings.

Ontology Matching

In the paragraphs above we have attempted to shape an understanding about
the phenomenon of human category formation, which, in our view, underlies the
problems studied in this thesis. We will introduce and motivate our research
efforts in the sequel.

An ontology in Artificial Intelligeneeﬂ is most generally viewed as a collection
of entities, called concepts, objects in the world (instances) and names, together
with a set of relations defined on these entities. Usually, the concepts and the
relations that hold among them are referred to as the intension of the ontology,
whereas the objects in the world are referred to as the extension of the ontology.

Despite the difficulties faced in agreeing on a common definition of an on-
tology, many authors refer to Gruber’s 1993 paper as the source of the most
general available specification of what an ontology is. There, an ontology is
defined as

a formal representation of a shared conceptualization of a domain
— the objects, concepts and other entities that are assumed to exist
in a certain area of interest together with the relationships holding
among them [GT].

Ontologies were introduced to provide semantics to data, to structure the
knowledge about things in various domains of life, to provide a uniform frame-
work for understanding between different parties within a single community or
across communities. Applications of ontologies can be found in many fields of
life and science, such as knowledge sharing and re-use, automatic reasoning and
problem solving, natural language processing, multimedia search and retrieval,
e-business, to name a few [I43]. Ontologies are basic components of the Seman-
tic Web — a vision of the future web where data will be made understandable for
both humans and computers and ontologies will be the linking element, which
will provide the necessary semantics for machines to “understand” information,
which on the current web is only understandable by humans [12].

The problem of ontology matching stems from the fact that the machine-
mediated and oriented process of ontology generation, acquisition, development,
re-use and updating is decentralized and strongly human biased, analogous to
the natural process of category formation, discussed above. As a result, many
ontologies will be created, covering in a non-explicit manner identical or partially
overlapping domains of knowledge. For reasons, part of which are explained in
the preceding section, it is unlikely to expect that humans, independently, would
create ontologies perfectly corresponding to one another with respect to their
structure and granularity, linguistic use and scope, even if these ontologies are
intended to describe the knowledge about one common domain. We will call this
phenomena ontology heterogeneity and ontologies, which have been created to
describe the same or similar fields, but whose elements do not explicitly match,
will be called heterogeneous (following [43] and other authors).

Often in practice the communication between ontologies is needed, in order
to enable the various applications, discussed above and to unlock the poten-
tial of ontologies to provide the required common framework of understanding.

2The term ontology in Al is borrowed from philosophy, where it stands for a systematic
account of existence, or what there is in the world (http://plato.stanford.edu/entries/logic-
ontology).

For that to take place, ontologies need to be brought to agreement and made
compatible by reducing their heterogeneity. This can happen on different levels
and to different extents: one could consider a small number of domain-specific
ontologies or a bigger set of “inter-disciplinary” ontologies, link them entirely or
partially, simply state the correspondences, or merge them (or their overlapping
parts) into one global ontology. Any of these tasks amounts to consolidating
heterogeneous ontologies by finding explicit correspondences between their el-
ements (concepts, relations, instances, etc.) — a process that will be called
ontology matching.

Illustration by an example

We will illustrate the problem by the help of a small fictional example. Imagine
the following two enterprises: a news agency, collecting and editing news arti-
cles, and a bookstore, offering, among books and music, also the daily press.
Now assume that each of the two enterprises has an ontology, which organizes
and structures the knowledge necessary in order to run the company. The news
agent’s ontology would contain concepts like TITLE OF THE ARTICLE and AU-
THOR, as well as the different topics on which news articles are written, such
as POLITICS, RELIGION, AUTOS, SPORTS, etc. The bookstore’s ontology, on the
other hand, will also contain concepts like TITLE and AUTHOR, POLITICS, RE-
LIGION, SPORTS, referring to books and not news articles. Since the book store
also sells newspapers, it will also have a concept, say, PRESS, which will be
the root of a small subtree of the big bookstore ontology, containing concepts,
similar to the concepts of the news agency, i.e. TITLE OF THE NEWSPAPER,
EDITOR, TOPIC, etc. The concept TOPIC, on its turn will have subconcepts such
as POLITICAL LIFE, RELIGION AND SCIENCE, SPORTS, AUTOS, etc.

Now imagine that the news agency and the bookstore have decided to coop-
erate and for that ends they need to integrate their ontologies, so that communi-
cation and information flow between the two enterprises becomes easy and fast,
or in other words, they have to match their ontologies one against the other.
Assume that the ontologies of the two parties are equally large and specific.
However, clearly the news agency’s ontology would only cover a small part of
the onotlogy of the bookstore — that part related to newspapers and daily press.
The task will be to identify which part of the bookstore’s ontology corresponds
to the news ontology (that could be done by mapping the root node of the
news ontology to a node in the bookstore ontology) and further find out what
are the precise correspondences between the elements of the two ontologies (or
precisely between the elements of the news ontology and that part of the book-
store ontology related to news), i.e. discover that the concept POLITICS in the
news ontology corresponds to the concept POLITICAL LIFE in the bookstore’s
ontology; that the concept RELIGION from the news ontology is a sub-concept of
the concept RELIGION AND SCIENCE from the bookstore ontology, and so forth.
There are plenty of mismatches that a matching system has to cope with: use of
different terminology, different specificity and granularity, different scope, etc.

For a thorough overview of the ontology matching problem and the existing
approaches, we refer to the recent book by Euzenat and Shvaiko [43], to the
survey of tools and theoretical frameworks by Kalfoglou et al. [80], and to the
classification of different matching techniques by Rahm et al. [125].

1.2 Overcoming Ontology Heterogeneity: Ap-
plied Methodologies

Heterogeneity among ontologies can appear on different levels. Euzenat et al.
[43] proposed one possible typology of the different kinds of semantic hetero-
geneity, claiming that it distinguishes between the most “obvious” ones dividing
them in four main groups: syntactical, terminological, conceptual and semi-
otic. Syntactically heterogeneous ontologies are expressed in different formal
languages [3]. Terminological heterogeneity, on the other hand, stands for vari-
ations in names when referring to the same entities and concepts. Conceptual
heterogeneity refers to differences in coverage, granularity or scope when mod-
eling the same domain of interest. Finally, semiotz’(ﬂ heterogeneity is about
mismatches in how entities are interpreted by people in a given context and is
hard to model computationally.

Note that the presented typology is not universal and usually the different
heterogeneity types do not appear in isolation from one another. We refer
the interested reader to the study on ontology mismatches of Klein [85], the
heterogeneity typology suggested by Sheth et al. [I39] and the classification of
schema diversities by Batini et al. [10].

There exist many different theoretical attempts to deal with the ontology
mismatch problem and reduce or eliminate the heterogeneity by introducing a
semantic similarity measure of some kind and / or a procedure for alignment
of the elements of the heterogeneous ontologies. Most roughly, the existing
approaches can be divided into four basic groups with respect to the account
of similarity that they consider: structural, terminological, extensional and se-
mantic techniques [43]. Notice that the approaches from each group can serve
to solve multiple types of heterogeneity. For instance, extensional approaches
can help resolve terminological and conceptual differences; terminological ap-
proaches can be applied to resolving terminological and syntactical mismatches;
etc. We will introduce each of the four groups of approaches by specifying the
formal methodology most commonly applied for constructing solutions for each
groups.

Structural techniques consider how different entities are related within a sin-
gle ontology, taking an intensional standpoint by defining a concept in relation
to other concepts. It is an old idea in the study of semantic memory that a
concept is semantically closer to those concepts, which are nearest to it in a
conceptual graph, a semantic network or an ontology (see the original response
time experiments by Collins and Quillian [28]). Departing from that assumption
and extending it, many authors have proposed efficient ontology matching solu-
tions, based on the intuition that structure is a main container of the semantics
of a group of concepts (see, for instance, the work of Noy [I14], Bernstein et
al. [96] and Mitra et al. [107]). Graph and lattice theory come in support of
the representation, modeling and proof of the concepts of many of the matching
systems, which rely on structure in order to account for the semantic similarity
of entities.

3Following a discussion in personal communication with A. Mehler, we draw the reader’s
attention to a certain inaccuracy in the notation proposed in [43]; it would be more appropri-
ate to talk about Pragmatic, instead of Semiotic heterogeneity, since semiotics encompasses
semantics and syntactics.

Most of the structural approaches have, however, shown not to be sufficient
alone for accomplishing entirely a matching task. Therefore they have been
often applied in combination with terminological or instance-based methods.
Terminological matching consists in applying two basic classes of techniques:
first, a set of approaches for string and tree matching [54], [69] in order to find
lexical correspondences between terms (e.g. names of concepts and relations),
and, second, a group of methods relying on external (lexical) resources, such
as dictionaries or thesauri combined with approaches from Natural Language
Processing, in order to account for problems related to synonymy and polysemy
of terms [158] [144].

Instance-based or extensional ontology matching comprises a set of theoreti-
cal approaches and tools for measuring the semantic proximity of two ontologies
based on their extensions — the instances that populate their concepts. Com-
monly, concepts are modeled as sets of instances, grounded in the external world.
The relatedness of a pair of concepts is an outcome of a properly chosen measure
of similarity, based on estimations of the similarity of the instance sets of these
concepts [39, [72]. Instance-based approaches rely on the knowledge contained
in the extension of the part of the world that we model and therefore naturally
machine and statistical learning methods for inferring rules and decisions from
a collection of observations over facts in the world are most commonly used for
accomplishing the matching task.

Instance-based concept mapping is also central for most of the questions
that this thesis attempts to answer. In our contribution to bringing ontologies
into mutual agreement, we rely on three main statistical and machine learning
concepts. The first one is that of automatic classification, or the task of learning
a binary decision rule based on a collection of categorized observations in order
to be able to infer the class of an unseen individual. We put an emphasis on
the use of a fairly famous set of classification techniques known as Support
Vector Machines (from hereon, SVMs) [30]. The second central concept that
we rely on is that of variable selection, which comprises methods for reducing
the dimensionality of an input dataset by indicating which are the most or
less informative features with regard to the output and with respect to certain
criteria. Among standard variable selection techniques [168], we introduce a
novel approach based on Support Vector Machines. Third, we apply methods
from basic data analysis and descriptive statistics, such as Principal Components
and Discriminant Analyses [77, 48] for the task of detecting potential concept
similarities (also referred to as concept mappings in the sequel).

Finally, the group of semantic-based approaches comprises a set of methods
based on logical deduction. These methods provide mechanisms to justify and
verify a set of previously generated mappings — result of using external back-
ground knowledge of some kind (formal top-level ontologies [50} 121], domain
specific formal ontologies [I10] or informal resources, such as WordNetEI). This
set of techniques falls out of the scope of the studies carried out in this thesis;
a short introduction will be given for completeness later on.

4http://wordnet.princeton.edu/

1.3 Main Hypothesis and Research Questions

We will present in a synthesized manner the initial questions which the study
presented in this thesis originates at.

Statement of main hypothesis

The central goal of our research efforts is to provide generic, theoretically sound
and practically efficient methods for overcoming semantic discrepancies and
reducing heterogeneity among ontologies. Our focus falls on ontologies that
have been created with the intention to organize instantional data, such as text
documents, with respect to their contents. (Examples of such ontologies are
web-directories, such as Yahoo.ﬂ the open directory projectﬂ and other.) We
note that the ontologies to which the approaches developed in this thesis can
be applied are not limited to text populated ontologies, but include ontologies
for which text document-like instances can be generated (these can be as well
general OWL ontologies or multimedia resources containing text annotated im-
ages), as well as ontologies populated with multimedia instances, such as images
(like, for example the LSCOM ontologym or the WordNet/LabelMe ontology@,
for which a proper feature vector representation can be made available. In view
of this remark, throughout the rest of the thesis, the terms “document” and
“instance” will be used in an interchangeable manner.
Our central hypothesis can be articulated as follows.

The heterogeneity between two instance-populated ontologies, as-
sumed to cover (partially) overlapping domains of knowledge, can be
reduced efficiently by the help of extensional approaches to concept
mapping, optimized by structural accounts for ontology similarity.

Local questions

Several main research questions stem from the thesis stated above.

1. What is an appropriate measure of cmss—ontologﬂ concepts similarity?

We have hypothesized that the similarity of concepts, taken from ontolo-
gies, which intend to organize text documents (instances) with respect to
a certain set of categories, can be most efficiently measured on extensional
basis, that is, by using the documents (instances), which are assigned to
these concepts as a basis for deriving similarity criteria.

2. What out of all possible aspects of similarity should be taken into account,
provided a similarity measure is chosen?

In contrast to many existing solutions in the domain of instance-based
ontology matching, we base our measure of concept similarity not directly
on the sets of instances, but on the features, which describe them. In fact,

Shttp://www.yahoo.com

Shttp://www.dmoz.org

"http://www.lscom.org/ontology/index.html

8http://people.csail.mit.edu/torralba/research/LabelMe/wordnet /test.html

9Here and hereafter the term “cross-ontology concepts” is used to denote concepts taken
from two (or more) different ontologies.

we propose a set of concept similarity criteria, based on (a small subset
of) characteristic features selected separately and independently for every
concept. Our endeavours are motivated by the following heuristic:

Similar concepts are characterized by similar (sub)sets of fea-
tures; otherwise are dissimilar ones.

3. How can the suggested concept similarity measure be applied in an optimal
way on the entire sets of concepts of the source ontologies?

Although powerful in estimating the similarity of classes of instances, ex-
tensional approaches alone are not sufficient for building an optimal on-
tology matching solution. Therefore, we propose methods of applying the
suggested instance-based measures by taking into account the structural
properties of the input ontologies and the inter-ontology relations of con-
cepts.

1.4 Results and Contribution

The work that forms the basis of this dissertation contributes to the research in
the field of ontology matching by providing theoretical and technical solutions
on two basic levels in terms of:

e Generic methods for concept alignment through similarity measures based
on the ontologies extensions;

e Procedures for overall ontology matching and merging (if required), based
on combined structural and instance-based similarity criteria.

We will summarize the results from each of the two main research directions
listed above.

Extensional concept mapping

We consider as central the finding that similarity between concepts can be mea-
sured on extensional basis by the help of the variables that describe the instances
that populate these concepts. We have demonstrated that, as a result of a prop-
erly performed variable selection procedure, every concept in an ontology can
be represented as a list of variables scored with respect to their discriminative
power. By discriminative power we understand the importance of every single
variable for the separation of the instances in an ontology into those that be-
long to the concept in question and those that do not. In fact, a concept can be
represented by using only a small subset of the whole set of variables containing
those with the highest scores. They are most characteristic for this concept
and distinguish it best from the rest of the concepts within the same ontol-
ogy. We introduce and compare several measures of semantic proximity of two
cross-ontology concepts based on the small subsets of characteristic variables
corresponding to each of the concepts by using a simple set-theoretic measure,
or based on the whole lists of scored variables by using statistical correlation
coefficients [I51].

Important information concerning the structure of the two source ontologies
can be revealed by the help of statistical analysis of their groups of instances.

As an additional contribution of the thesis, we propose an approach to detect
potential concept mappings based on basic descriptive statistical methods, such
as Principal Components Analysis and Discriminant Analysis [149], which can
be used either in combination with the proposed variable selection-based tech-
niques, or, under assumptions to be specified later, self-dependently.

Finally, the thesis contains an independent contribution to the machine
learning-related research: a novel technique for variable selection in classification
elaborated for Support Vector Machines. We propose and empirically evaluate
the qualities of an important parameter of the SVMs — their VC-dimension —
as an indicator of the importance of a single variable, or a block of variables,
for separating the instances in a training dataset in a binary classification task
[151].

Combined ontology matching procedures

We have observed that, in spite of the excellent results achieved on small sets of
concepts, the suggested instance-based concept similarity measures are likely to
perform poorly on a large scale. Clearly, simply taking the two sets of concepts
and measuring one-to-one similarities would be a fairly time expensive enterprise
with real-life ontologies, containing many concepts. But doing so would be also
conceptually wrong, for the structure of the classes in both ontologies would not
be taken into account. What is the use of naming that an ontology matching
process, when it comes down to comparing sets of flat collections of classes?

In order to account for these problems we have suggested two overall proce-
dures for ontology matching, which build on the proposed measures of concept
similarity, but also take structure into consideration.

The first suggested procedure consists in optimizing the search of similar
pairs of concepts by using the structural relation of the concepts within each
ontology and recursively applying the concept similarity measure on sets of
homogeneous ontology classes. The procedure accounts for the two critiques
mentioned above: it considers the structure of the ontologies, and minimizes
the number of concepts, for which a similarity check will be performed. Its ba-
sic heuristic can be formulated roughly as: we do not need to check the similarity
of the descendants of dissimilar concepts within the two input hierarchies; we do
need to check the similarity of the descendants of similar ones. The procedure
is formulated for the case when the two source ontologies are strictly hierar-
chical and equally deep in terms of levels, but a method for generalization of
the suggested approach on structurally dissimilar, non-hierarchical ontologies is
proposed. The output of the procedure is a set of pair-wise concept alignments.

In many applications it might be required that the two input ontologies are
merged into one, by integrating their overlapping parts. While attempting to
enrich and improve the extensional similarity techniques in order to account for
the structure and to reduce the dimension of the problem, we came up with
an additional finding, in support of the process of ontology merging. Com-
bining graph representation of ontologies with instance-based techniques, and
taking into account the sizes and intersections of the sets of instances of the two
source ontologies leads to assertions on the specificity, granularity and instan-
tiation mismatches between them. These assertions can be useful in providing
guidelines to an ontology engineer through a process of ontology merging, when
ontology merging is required for the needs of the concrete task and application

[148, [150]. As noted, the suggested approach relies on the intersection of the
sets of instances of the two ontologies (among with structural and extensional
ontology similarity measures). An additional contribution of the approach is a
more relaxed definition of a set intersection, which accounts for the semantics
of the instances contained in these sets (which in our case are text documents
written in some natural language) and not simply for identical set members.

As a general remark, we note that structure-related ontology matching tech-
niques are not sufficient and reliable indicators of the semantic similarity of two
ontologies, but in combination with extensional approaches they can help re-
duce time complexity and optimize search among the sets of concepts, yielding
improved overall results.

1.5 Outline and Intended Audience

The contents of the thesis is divided in six chapters, including the current,
introductory Chapter

Chapter [2]reviews basic results in fields of mathematics and machine learn-
ing, which are relevant to both the previously existing and the original ap-
proaches to ontology matching discussed later on in the thesis. The structural
properties of ontologies are commonly, and in our case, accounted for by graph
and lattice representations. Therefore, the first section of this chapter expands
on basic results and definitions from graph and lattice theory (Section. The
rest of the chapter is dedicated to methods, which will be further used for
the study of the extensional concept and ontology semantic similarity. These
include an introduction to some concepts and methods from statistical and ma-
chine learning: the Support Vector Machines classifier (Section , variable
selection (Section , and text categorization (Section .

Throughout Chapter we discuss various issues related to the interdis-
ciplinary research field of ontology matching. These comprise definitions and
areas of application of ontologies (Sections and , models for knowledge
representation (Section , motivational and conceptual problems related to
the question of where the need of ontology matching stems from (Section
and, finally, a presentation and classification of several existing ontology match-
ing theoretical endeavors and engineering solutions (Section . On one hand,
the chapter intends to provide the reader with a structured account of that part
of the state-of-the-art of the ontology matching research, which is relevant to
the approaches discussed throughout the thesis. On the other hand, the chapter
aims to open a broader view to the origins of the ontology heterogeneity prob-
lem drawing motivations from psychology and cognitive science and prepare the
ground, which our own contribution to that field will be built on.

Chapter H4] contains the major part of the theoretical results of the the-
sis. It begins with definitions and preliminary remarks, which set the basic
assumptions of the ontology matching model that we develop (Section .
The chapter proceeds to connect the results from graph and lattice theory dis-
cussed in Chapter [2] with the structural properties of the ontologies, defining a
measure of structural ontology similarity based on solving a graph isomorphism
problem (Section . As mentioned earlier, instance-based ontology mapping
is central to the problematics of this thesis. Therefore, several novel approaches
to identify instance-based similarity of inter-ontology concepts, based on de-

10

scriptive statistics, SVMs and variable selection are elaborated next, in terms of
criteria and measures for semantic proximity (Section. Finally, the two ma-
jor groups of similarity criteria discussed so far, structural and extensional, are
combined together in two independent ontology matching procedures (Section
and Section .

The major theoretical findings of the preceding sections are supported em-
pirically in Chapter [5| More precisely, we provide a thorough evaluation of the
proposed instance-based techniques for measuring cross-ontology concept simi-
larity via descriptive statistics (Section and variable selection for SVMs or
other approaches (Section . The overall variable-selection-based ontology
matching procedure is evaluated by the help of two ontologies intending to or-
ganize news-related documents in tree-structured directories (Section . The
chapter closes with a discussion (Section [5.4).

Finally, Chapter [6] summarizes, concludes and sketches directions for fur-
ther research in terms of a set of open questions and possible technical improve-
ments of the proposed solutions.

The thesis is oriented towards both researchers and practitioners in the field
of ontology matching and semantic similarity, as well as interested readers from
neighboring fields, such as machine learning and text categorization. Appli-
cations of the proposed approaches can be found in fields as various as the
Semantic Web, web-directory mapping, overcoming the problems of the seman-
tic gap, information retrieval and other. The theoretical results of the work
are intended and have been tested on text-related applications. However, the
findings are general and formal enough so that all the discussed approaches can
be generalized to other kinds of non-textual multimedia data, such as images
and videos.

11

Chapter 2

Background Concepts

The problem of ontology matching can be approached from many different an-
gles. The palette of theoretical and methodological tools which are being ap-
plied to the end of accomplishing an ontology matching task of some kind is
quite colorful: different research groups work on different aspects of the prob-
lem by applying different methodologies which have their roots in various fields
of mathematics, logics, computer science, machine learning, relational algebra
and other.

In this chapter, we provide the minimal necessary background knowledge
in several fields in mathematics and statistical learning, which are important
for understanding our approach to ontology matching and for enabling us to
discuss other related techniques. We start by reviewing the basics in the the-
ory of graphs and lattices (Section which is important in our study of the
structural properties of two ontologies in terms of their shared commonalities.
Further (Section , we give an introduction to the Support Vector Machines,
which we will apply during the instance-based concept mapping phase, together
with several Variable Selection techniques (discussed in Section . The main
intended application field of the ontology matching strategy that we have de-
veloped is facilitating text-related categorization problems. For that reason the
chapter closes with an overview of text categorization methods (Section [2.4)).

We note that the content of the chapter might look slightly disunited, at a
first glance: there are multiple sections related to common concepts (e.g. SVMs,
variable (feature) selection, Latent Semantic Analysis, kernels for structures).
This is due to the fact that many of the fields presented in the chapter are
strongly interrelated and aspects of many of these fields are needed in order to
present aspects of other fields. For example, SVMs have been introduced inde-
pendently, but also as a feature selection technique and as a text categorization
tool; kernels for structures are discussed with regard to graph matching, but also
with regard to text categorization; etc. We have attempted, however, to make
the distinctions between the different approaches in the light of their different
applications as clear as possible.

12

2.1 Graphs and Lattices

An ontology provides a highly structured representation of knowledge. Graphs
and lattices have been widely applied for embodying the structural properties
of ontologies. In our approach to ontology matching, we will rely on a couple
of main definitions and result from graph and lattice theory, needed in order to
be able to discuss the problem of ontology matching as a problem of identifying
similarity between structures. Therefore, we begin this chapter by expanding
on the necessary ground knowledge in these fields. Thorough introductions to
graph and lattice theory are found, for example, in the books by Valiente [155]
and Davey et al. [33]. We will broadly follow the notations used by these
authors.

2.1.1 Facts about Graphs and Trees

A graph is a structure, which consists of a set of objects called vertices and
a (possibly empty) set of pairs of vertices, called edges, or arcs. There are
different kinds of graphs with respect to the precise abstract representation
that they embody. An (un)directed graph is one whose edges are (un)ordered
pairs of vertices. The notion of a graph that will be most useful for our goals,
and which is most broadly considered in computer science in general is that of
a directed graph. We give the following definition.

Definition 1 Graph and subgraph. A graph G = (V, E) consists of a finite
set V' of vertices and a finite set E CV xV of edges. The number of vertices n
of G is defined as its order, n = |V|. The size, denoted by m, is the number of
edges, m = |E|. An edge e = (v,w) is said to be incident with vertices v and
w, where v is the source and w is the target of the edge e, and vertices v and
w are said to be adjacent. A graph H = (W, S) is called a subgraph of G if
WCV and S C E.

The degree of a vertex v in a graph G is the number of edges whose target
or source is the vertex v. Vertices and edges can have associated names or
numbers in which case we say that a graph is labeled. Let Ly and Lg denote
the finite sets of vertex and edge labels, respectively. The members of the label
sets can be natural or rational numbers (known as weights), as well as strings of
characters. Formally speaking, a labeled graph is a 4-tuple G(V, E, hy, hg),
where hy : V — Ly is a function assigning labels to the vertices and hg : E —
L assigns labels to the edges.

By ordering the vertices and edges of a graph in sequences we define walks,
trails and paths. Formally, an alternating sequence of vertices and edges

[vi; €i+1,Vit1,€i42,-+, V51, ejavj]»

such that ex = (vg—1,vg) for k =i+ 1,...,7, is called a walk from vertex v; to
vertex v;. A walk with no repeated arcs is called a trail, and a trail with no
repeated vertices, except (possibly) the initial and final ones is called a path.
An integer, associated to the walk, trail, or path of a graph, corresponding to
the number of edges in the sequence, is called length. A graph G is called
connected if for every pair of vertices v,w € E, there exists a walk from v to
w. A path with coinciding start and end vertices is called a cycle and a graph

13

containing cycles is said to be cyclic. Reversely, a graph not containing cycles
is called acyclic.

A class of graphs, commonly used in multiple applications and computational
models, which will be of particular interest for our study is the class of (directed
rooted) trees. A part of the theoretical study of this thesis is done by modeling
hierarchical ontologies as such trees, therefore we will discuss some of their
properties in more detail in the sequel.

Definition 2 Directed rooted tree. A directed tree is a connected acyclic
graph G(V, E), where V(G) denotes the set of vertices of G and E(G) denotes
the set of ordered pairs of vertices of G, called edges. A tree is called a rooted tree
if there exists a vertex designated as “root” and all edges have an orientation —
either towards or away from the root.

Let root(G) denote the root node of a tree G and leaves(G) — the set
of its leaf nodes. A tree, which is contained within another tree is called a
subtree of the latter and is defined as it follows. Let G=(V,E) be a tree and let
children(v) denote the set of children of a node v and parent(v) denote the
parent of a node v, Yv € V, v # root(G).

e A tree (W,S) is said to be a subtree of the tree Gif W CV and S C E.

o A subtree (W,S) is a top-down subtree of G if parent(v) € W, Vv € W :
v # root (@), where parent is the parent function of the sub-tree.

o A tree (W,S) is a bottom-up subtree of G if children(v) C W, Vv €
W : v ¢ leaves(G), where children is the children function of the sub-
tree.

One distinguishes between ordered and unordered trees depending on whether
the order of the children of each node is taken into account or not. Ordered
trees are defined as trees for which the relative order of the successors of a
node is fixed. The order property of the nodes within a tree is not relevant to
the ontology structural property that they shall embody. For example, in the
taxonomy describing the morphological types of mammals, it is not important
whether the subclasses “flying mammals”, “water mammals” and “tree mam-
mals” will appear in that, or in a different order. What is important is the
relation of each of the sub-classes to its super-ordinate category “mammals”
and its sub-ordinate categories. For that reason, in what follows, by trees we
will understand unordered trees.

Finally, let us introduce one more important and commonly used class of
graphs, the class of directed acyclic graphs, often abbreviated as DAG. DAGs
are more general than trees, but share certain commonalities with them. For-
mally, they are defined as directed graphs with no directed cycles (i.e. no path
starts and ends in the same node). DAGs are similar to directed trees, because
their nodes are connected by edges in one single direction; dissimilarly to trees,
a DAG node can have more than one parent (see Figure for a graphical dis-
ambiguation). In section We will show under what conditions it is possible
to generalize trees to DAGs and thus generalize the presented approach to less
particular structures than trees, allowing relations other than subsumtion, as
well as multiple inheritance.

14

‘NN

Figure 2.1: a) A directed rooted tree; b) A directed acyclic graph

We will proceed to discuss isomorphism of graphs and trees, which will be the
basis of a measure of the structural similarity of two ontologies, to be introduced
later on in the thesis.

2.1.2 Graph and Tree Isomorphism

In the ensuing chapters, we will be interested in measuring the similarity be-
tween ontologies expressed as trees or general graphs, which is reduced to the
well known problem of graph matching. A core notion needed for defining graph
similarity is that of graph isomorphism — a structure preserving mapping from
one graph to another (Figure [2.2).

W A

Figure 2.2: Isomorphic graphs: an example.

Definition 3 Graph Isomorphism. A bijective function pu : Vi — V5 is a
graph isomorphism from graph G1(Vy, E1) to a graph Go(Va, Es) if for any
v1,02 € V1

(v1,v2) € Er & (u(v1), u(v2)) € Eo.

We have previously defined a labeled graph. In many cases, one needs to take
into account the nodes and edges names in order to establish their matching. A
possible way of defining labeled graph isomorphism is presented in the following
definition.

Definition 4 Labeled Graph Isomorphism. A bijective function p: Vi —
Va is an isomorphism from the labeled graph G1(Vi, E1, hy,,hg,) to a labeled
graph Go(Va, Eq, hy,, hg,) if for any vy, va € V1, (v1,v2) € Ey it holds:

15

((v1), p(v2)) € Eo (2.1)
hv, (v1) = hv, (u(v1)) :
hi, ((v1,02)) = hig, (p((v1,02))). (2.3)

Throughout our study, we will not consider isomorphism of labeled graphs,
for its definition is too restrictive in the ontology matching domain, where it
will often not be the case that mapped nodes have identical labels. In fact, the
matching approaches presented later do not rely on information related to the
entities names at all. The label matching of both nodes and edges is left for
a separate linguistic-based study. All definitions which follow will consider the
unlabeled case.

Definition 5 Subgraph isomorphism. An injective function u: Vi — Va is
a subgraph isomorphism from Gy to Go if there exists a subgraph S C G2 so
that p is a graph isomorphism from Gy to S.

Finding isomorphism properties of two graphs or parts of them leads to
identifying common subgraphs. Among the set of common subgraphs of two
graphs G1 and Ga, the mazimal common subgraphs, denoted by mcs(G1,G2)
are the ones with the maximal order. They will be of particular importance for
the measure of structural ontology similarity, to be introduced in Chapter [

Definition 6 Maximal common subgraph. Let G, G1 and G5 be graphs.
G is a common subgraph of Gy and Gs if it exists a subgraph isomorphism
from G to G1 and from G to Go. A common subgraph is mazximal if it exists
no other subgraph isomorphism from G to Gy and Gy that has more nodes than

G.

A maximal common subgraph is then the maximal graph isomorphic to sub-
graphs of both G; and G2 and need not be unique for two given trees or general
graphs.

We now move the focus from general graphs to trees, since they are the
basic structural representational body for hierarchical ontologies (Section .
Determining whether two trees are isomorphic is a problem, which lies in the
core of comparing hierarchical structures.

In conformity with definition 3] two trees are said to be isomorphic if there
exists a bijective mapping between the sets of nodes of both trees, preserving
their structure. In fact, the root of one tree is mapped to the root of the other
and any two adjacent nodes in one tree are mapped to adjacent nodes in the
other. In order to identify whether two (unordered) trees are isomorphic, a
broadly applied method assigns a unique isomorphism code to the root nodes of
each tree. The necessary and sufficient condition that two trees are isomorphic is
given by the identification of coinciding isomorphism codes. The isomorphism
code of the root of a tree G(V, E) of order n is defined as the sequence of n
integers in the range 1,...,n

codelroot|G]] = [size[root|G]]], code[w:], ..., code|wy],
where the nodes wy, ..., wy are the children of the root of G. The isomorphism

code of a tree is the isomorphism code of its root node.

16

Note that the given definition suggests that every non-root node of G is
assigned an isomorphism code which participates in the formation of the iso-
morphism code of its parent. A simple tree isomorphism criterion results from
comparing the isomorphism codes of two trees.

Theorem 7 Two trees G and G2 are isomorphic if and only if code|G1] =
code|Gs).

Identifying Tree Isomorphism

According to theorem [7] in order to find out whether two trees are isomorphic
or not we only need to calculate and compare the isomorphism codes of their
roots. One algorithm for computing isomorphism codes of the nodes of two trees
consists in performing a postorder traversaﬂ of the two trees. In that way, all
nodes are assigned an isomorphism code, which is needed in order to compute
the isomorphism bijection M C V x V (cf. appendix of [I55]). The algorithm
for identifying an isomorphism of two trees consists in first checking whether
they are of the same order and then comparing their isomorphism codes.

Identifying Subtree Isomorphism

The problem of subtree isomorphism identification, or determining whether a
tree is isomorphic to a subtree of another tree, is somewhat more complex than
the particular case just discussed. A standard algorithm for general subgraph
isomorphism was introduced by Ullman in the 70s [154]. It is based on a brute-
force tree-search enumeration procedure and attains efficiency by inferentially
eliminating successor nodes in the tree search. In this section, we will present
an algorithm for finding sub-graph isomorphism in the particular case of trees.

As we have observed in the previous section, there can be bottom-up or
top-down sub-trees of a tree. One distinguishes between bottom-up and top-
down isomorphism with respect to whether a tree is isomorphic to a bottom-up
or a top-down subtree of another tree. We will focus on top-down subtree
isomorphism because it will be of interest for the structural ontology matching
procedure to be introduced in Section 4.2

Definition 8 A tree Gy = (Vi, E1) is isomorphic to a top-down subtree of
another tree Go = (Va, Es) if there is an injection M C Vi x Vy with the following
properties:

(1) (root|G1], root[Gs]) € M,

(2) (parent[v], parent[w]) € M for all nodes v € Vi and w € Va such that
v # root|Gi], w # root|Gsa) and (v,w) € M.

The injection M is called a top-down subtree isomorphism of Gy to Ga.

In order to present the intuition behind the actual algorithm of determining
subtree isomorphism we will informally introduce bipartite graphs.

A graph G is defined to be a bipartite graph (or a bigraph) if the set of its
vertices can be partitioned into two disjoint sets, V/ and V", in such a manner
that for every edge e = (v,w) € E one of both holds: {v € V' and w € V"}

LA traversal of a tree or a graph refers to an algorithm, which visits (exactly once following
a predefined system) and examines (and possibly changes) each node of the tree or graph.
Different kinds of traversals are discussed in, for instance, [I55].

17

or {v € V" and w € V'}. A matching in a bipartite graph is defined as a set
of edges E’ within the graph with the property that no two edges in E’ share
a common vertex, i.e. ¢ = (v/,w') € E' and ¢’ = (v",w"”) € E’ if and only
if v/ #v"” and w' # w”. A mazximal matching is a matching that is no longer
one after adding one more edge and a mazimum matching is the matching with
the largest number of edges possible. The identification of a set of edges within
a graph, which is a matching of maximal cardinality is defined as a mazimum
bipartite matching problem.

The algorithm for identifying the existence of a top-down subtree isomor-
phism from a tree (G; into a tree Gy and computing it is based on solving the
following maximum bipartite matching problem. Assume that we want to ver-
ify whether or not a node v of G; can be mapped to a node w in Gg, where
the mapping is understood as in definition [§| Let p and ¢ be integers and let
v1,...,Up and wy, ..., w, be the children of nodes v and w, respectively. We con-
struct a bipartite graph Gy, = ({v1, ..., vp}, {w1, ..., wq }, Ey) o0 p+ ¢ vertices
with the property that an edge (v;,w;) € E, ,, if and only if the node v; can be
mapped to the node w; (i and j are integers in the ranges (1, ...,p) and (1, ..., q),
respectively). If the bipartite graph G, ., has a maximum bipartite matching
with p edges, the node v can be mapped into the node w. Recursively solving
the problem for the nodes of G; determines whether or not there is a top-down
subtree isomorphism of Gy into Gs.

The algorithm for the construction of an actual isomorphism is based on the
following result.

Proposition 9 Let G; = (V1, E1) be a tree isomorphic to a top-down subtree of
a tree Go = (Va, E3). Let B C Vi x V4 be the set of solutions to all the maximum
bipartite matching problems solved during the top-down subtree isomorphism
procedure on G1 and G, described above. Then, there exists a unique top-down
subtree isomorphism M such that M C B.

Maximal and Maximum Common Subtree Isomorphisms

We proceed to define the central notions of a maximal and maximum common
subtree of a pair of trees. Again, due to the fact that subtrees can be top-down
or bottom-up, there is also a distinction between a top-down and a bottom-up
maximal and maximum common subtree. With a similar motivation as in the
previous section, again the definitions and results to be presented in the sequel
only hold for top-down common subtrees.

Definition 10 Let Gy = (Vi, E1) and Gy = (Va, E3) be two trees. A top-down
common subtree of G1 and G is a triple (X1, Xo, M), where X1 = (W7, 51)
is a top-down subtree of G1, Xo = (Wa, Sa) is a top-down subtree of Ga, and
M C Wy x Wy is a tree isomorphism of X1 to X5. A maximal top-down
common subtree of G; to Gz is a top-down common subtree (X1, Xo, M) such
that there is no top-down common subtree (X, X5, M') of G1 to Go such that
X1 is a top-down subtree of X{ and X is a top-down subtree of X},. The tree
(X1, X2, M) is maximum if there is no top-down common subtree (X1, X}, M’)
of G1 to Go such that the size of X is larger than the size of X;.

Lemma 11 A maximum common top-down subtree of a tree G to a tree Go
is also a mazimal top-down common subtree of G1 to Gs.

18

We will use the abbreviation mcs to stand for a maximal common subtree.

The algorithm for constructing a top-down mcs isomorphism of a tree Gy
to a tree G5 consists in constructing mcs isomorphisms of each of the subtrees
of G rooted at a non-root node v into each of the subtrees of G5 rooted at a
non-root node w. The resulting recursive algorithm is based on applying the
divide-and-conquer technique discussed in [155].

Similarly to the previous section, we will first describe a procedure for veri-
fying whether or not two nodes are to be mapped by a mcs isomorphism. The
procedure is again based on the construction of a bipartite graph, and solves,
this time, a maximum weight matching problem. A maximum weight matching
problem applies for weighted bipartite graphs and consists in finding a matching
whose edges’ weights sum up to a maximal value.

Let the node v of G; and the node w of G5 be the two potential mapping
candidates with respective children vy, ..., v, and w, ..., w, (p and ¢ are integers).
We construct a bipartite graph G, = ({v1, ..., vp}, {w1, ..., wg}, By w) o0 D+ ¢
vertices with the property that an edge (v;, w;) € E, , if and only if the mcs of
the subtree of G1 rooted at v; and the subtree of G rooted at w; is non-empty.
Let, in addition, that nonzero size be assigned as a weight to the edge (v;,w;).
The size of the mcs of the subtree of G rooted at v and the subtree of Go
rooted at w equals to the weight of a maximum weight bipartite matching in
Gy, plus one.

Lemma 12 Let Gy = (V1, Ey) and Gy = (Va, E2) be two trees. Let B C Vi x V3
be the set of solutions to all mazimum weight bipartite matching problems solved
during the procedure described above. Then, there is a unique top-down mcs
isomorphism M € Vi x Vo with the property M C B.

The problem of finding a mecs for general graphs is NP-complete but in the
case of trees it can be solved in polynomial time [52]. Procedures are discussed
in [38]. Detecting maximum and maximal subgraphs in general in terms of
theoretical and algorithmic approaches is discussed in [93] [T0T].

2.1.3 Graph Similarity Measures and Distances

In the following, we will review some of the most commonly applied metrics and
measures of graph similarity in the context of the problem of graph matching.
Before doing so, we introduce definitions of a distance function and similarity
measure which will be needed throughout the rest of the thesis and therefore
are not only relevant to the contents of the current chapter.

Metric Spaces and Similarity Functions

Measuring graph similarity comes down to defining and applying an appro-
priate formal quantification of the shared commonality of two given graphs.
Intuitively, similarity between two objects can be measured in terms of their
distance in a certain (metric) space or in terms of shared common features. We
will start by defining and distinguishing between a distance function and a sim-
ilarity (dissimilarity) measure, which are core notions for the graph similarity
problem.

19

Definition 13 Let X be a set and let x,y,z € X. A metric or a distance
functiorﬂ on the set X is a function f : X x X — R with the following
properties:

flz,y) >0, f(z,y) =0 x =y (positive definiteness) (2.4)
f(a,y) = f(y, x) (symmetry) (2.5)
flx,2) < flx,y) + fly,2) (triangle inequality) (2.6)

A pair of a set and a metric (X, f) defines a metric space.

The notion of similarity or dissimilarity is more liberal than that of a metric.
Dissimilarity is intuitively related to the distance between two entities, whereas
similarity is the exact inverse of dissimilarity. To assess these concepts usually a
measure of dissimilarity is defined which relaxes one or more of the conditions for
a distance function. We will introduce the most commonly adopted definitions
of similarity and dissimilarity between two entities [37].

Definition 14 Dissimilarity. Let X be a set and let x,y € X. A dissimilarity
function on the set X is defined as a mapping § : X x X — R with the following
properties:

d(z,z) =0 (minimality) (2.7)
d(z,y) >0 (positiveness) (2.8)
O0(z,y) =0(y,z) (symmelry) (2.9)

Definition 15 Similarity. Let X be a set and let z,y,z € X. A similarity
function on the set X is defined as a mapping o : X x X — R with the following
properties:

o(x,z) > o(y,z) (minimality) (2.10)
o(x,y) >0 (positiveness) (2.11)
o(z,y) =0o(y,x) (symmetry) (2.12)

The problem of graph matching refers to determining the similarity of two
graphs. In a general statement of the problem, it is reduced to finding an isomor-
phism mapping between two graphs. Following the classification of graph match-
ing problems given in [I1], we distinguish between ezact and inezact matching.
Exact matching is defined as the graph matching problem when there exists an
isomorphism from one graph to another or from a subgraph of a graph to (a sub-
graph of) another graph. The term inexact matching is used to denote a class of
matching problems for which it is not possible to find an isomorphism between
the two input graphs. It consists in finding the best possible matching between
the vertices of two graphs, rather than the exact node-to-node correspondence.

From a complexity viewpoint, we can distinguish between graph matching
problems which are of undefined complezity (the general category of exact graph
matching problems (finding a graph isomorphism) with exceptions for some

2In computer science, the notion of s distance is sometimes considered as weaker and
thus not synonymous to a metric, in contrast to the pure mathematical sense of this notion.
Example is the edit distance, to be discussed below, which is not a metric in the general case.
However, throughout the thesis by metric and distance function we will refer to the same
concept.

20

particular kinds of graphs (e.g. isomorphism of planar graphs [70])), problems
which have been proven to be NP-complete (the whole class of exact sub-graph
matching problems (finding sub-graph isomorphism) [52]), and, finally, problems
of polynomial complexity (tree matching problems [116], [122], [160]).

Finally, the algorithms available for solving graph matching problems can be
classified into optimal and suboptimal. As we have already observed, the problem
of finding a maximal common subgraph, which underlies most graph matching
algorithms, is NP-complete. A couple of state-of-the-art graph matching algo-
rithms and approaches designed for various application fields [133], [I37], [152]
provide an optimal solution in exponential time and space which makes them
computationally intractable. On the other hand, suboptimal or approrimative
methods are able to find a solution in polynomial time, but give no guarantee
that the solution found is not due to a local minimum trap [5], [32].

For a more advanced discussion of the overall problem of graph matching in
terms of theoretical foundations, algorithms and applications, we refer to [11]
and [19]. In the next sub-sections, we will define and discuss several of the most
commonly used graph distances and similarity measures which underlie and are
independent of the graph matching algorithm to choose.

Edit Distance

Edit distance is one of the most frequently used measures of graph similar-
ity, broadly applied for trees. The main idea behind it is that a tree can be
transformed into another tree by applying a set of operations, such as deletion
or insertion of vertices. Then, the distance between two trees is defined as the
shortest sequence of such operations, called edit operations, that transforms one
tree into another. However, since one edit operation might be more costly than
another, often the costs of the operations are taken into account in addition to
their number [19].

Definition 16 Let Gy = (V1, E1) and Gy = (Va, Es) be two trees. Define the
following set of elementary edit operations on Gy and Gs:

1. deletion of a leaf node v € Vi from G, denoted (v, \);
2. insertion of a node w ¢ V2 as a new leaf into G, denoted (A, w);
3. substitution of a node w € V5 for a node v € Vi, denoted (v, w).

Deletion and insertion of non-root nodes imply deletion and insertion of incident
edges.

Definition 17 Let Ry C (ViU{A}) x (VoU{\}), where Vi and Vs are the vertex
sets of two trees G1 and G2, be a relation. Ry is called a transformation from
G to Gy if it has the following properties:

1. {veWV|(v,w) € Rp,w € Vo U{A}} = Vi
2. {w € Val(v,w) € Rp,v € Vi U{A}} = Vo
3. (vi,w), (ve,w) € Rp = v1 = v, Vv1,v3 € V1 U{A} and w € Va;

4. (v,wr), (v,we) € Rp = w1 = wa, Vwy,we € Vo U{A} and v € V4.

21

We note that not any arbitrary sequence of elementary edit operations yields
a meaningful transformation. For example, deletion and insertion are only
allowed on leaf nodes, therefore they can only appear in a bottom-up order
(according to a proper tree traversal). The set of “allowed” transformations
on two trees is called valid transformations [I55]. The cost of an elemen-
tary edit operation on trees Gi; = (V1, Eq) and Gy = (Va, Es) is a function
v: ViU{A} x Vo U{A} — R with the properties that v is nonnegative definite,
symmetric and fulfills the triangle inequality. The defined cost function is a
metric and the space ({T'},7), with {T'} the set of trees, is a metric space. Con-
sequently, the cost of a transformation Ry C (VLU{A}) x (VaU{A}) of a tree
G = (V1, En) to a tree Gy = (Va, E) is defined as y(Rr) = 32, yyery 7(0, 0).

Finally, the edit distance between two trees is given as follows.

Definition 18 Edit distance. Let V}%’Q be the set of valid transformations of
a tree G1 = (V1,E1) to a tree Go = (Va, Es). The edit distance between two
trees G1 and Ga is defined as d04;:(G1,G2) = minRTevé,z{v(RT)}.

In the following subsection, we present a different approach to measuring
distances between graphs, based on identifying identical sub-structures.

Graph Distance Based on the Maximal Common Subgraph

We will describe Bunke’s graph distance, based on the maximal common sub-
graph of two graphs [20]. Bunke et al. observe that when defining similarity
measures it is often desirable that they are metrics. Usually edit distance mea-
sures are metrics. Still, sometimes the metric properties are too restrictive with
respect to the domain of application. An advantage of Bunke’s distance in com-
parison to edit distances is that it does not depend on the cost of the underlying
edit operations, which are often computationally problematic.

Definition 19 Bunke’s graph distance. Let |G| denote the number of ver-
tices in a graph G. The distance between two non-empty graphs G1 and Ga is

defined as
|mes(Gy, Ga)

max(|Gil,|Gal)’

where mcs stands for mazimal common subgraph and |.| denotes graph cardinal-
ity.

d(G1,G2) =1—

Theorem 20 The distance d(G1, G2) introduced in deﬁmtion 5 a metm‘(ﬂ.

Bunke’s distance takes into account the ratio of the number of vertices in
the maximal common subgraph of two graphs and the number of vertices in the
larger of both. Note that this is not abusive and theorem [20] holds because the
definition of maximal common subgraph itself (and the definition of common
sub-graph in general) underlies the isomorphism property. An important impli-
cation of the defined metric is that the pairwise distance of a class of graphs to
fixed graph might be quite small, still the distance between any two graphs not
including the fixed one might be quite big. This can be problematic in terms
of defining equivalence classes (or classes of similar graphs) by using Bunke’s
distance - a problem discussed in the concluding chapter of the thesis.

3 A proof of the theorem is found in [20].

22

Relation between edit distance and maximum common subgraph iso-
morphism

A main result from Bunke discussed in [I8] states that the problem of edit-
distance-based graph matching and maximum common subgraph similarity are
related in the following manner

dedit(Gh Gg) = |G1| + ‘G2| — 2|TTLCS(GY17 G2)| (213)

This simple result shows that any algorithm for maximum common subgraph
determination can be used for graph edit distance and the other way round.
However, we note that the result above should hold for edit distances defined
on edit operations with equal costs. Otherwise, the formulation is not entirely
accurate, for the cost function (defined previously) does not play a role in the

expression (2.13)).

Kernel Approaches

Kernel functions are widely used in machine learning in support of various clas-
sification and regression tasks. As a main body of the non-linear Support Vector
Machines, kernels are discussed in more detail in Section They are widely
used for text categorization tasks, as well. In Section we will expand on
this particular application of kernels by referring to much of the contents of the
current section.

The general intuition about kernel functions is that they measure the simi-
larity between two data examples (not in isolation, but in the context of a given
distribution). Geometrically one can think of a dot product of vectors which
provides an example of a kernel.

But how can kernels be of use in measuring similarities on discrete structures,
such as graphs and trees? In his survey paper, Gartner introduces the so called
group of syntax-driven kernels for structured data [53] — kernels which handle
data that does not consist of mere flat attribute-value pairs, but has structure.
We will start by defining the string kernel (introduced by Lohdi, Christianini
and Shawe-Taylor in [94]) which underlies a commonly applied tree kernel-based
similarity measure we will discuss afterwards. To these ends, we introduce the
minimal necessary notation.

Let ¥ be a finite set of characters, called an alphabet. A finite sequence
T = X1X2...Ty, of characters from 3 is called a string, the empty string is denoted
by €. Let ¥* denote the set of all non-empty strings defined over . The number
of occurrences of a string y in a string x is denoted as num, (). A string kernel
counts the occurrences of a string s in two input strings x and z’ and is defined
as

k(z,2") = Z nums(z)nums(x')ws,
sex*
where w; is a weight which is fixed with respect to given data or a priori.

In a conceptually similar manner Collins and Duffy [28] defined a tree kernel.
Let G and G2 be two trees and let a subtree be defined as a connected subgraph
of a tree such that either all or none of the children of a vertex is in the subgraph.
Let h;(G) be the number of times the i-th subtree occurs in a tree G (some
enumeration of the possible subtrees taken into consideration). The tree kernel

23

is defined as

k(Gr,G2) =Y hi(G1)hi(Ga).

To generalize, we will introduce a method by Haussler [69] for constructing
kernels on strings, trees and graphs which can be applied iteratively to build
a kernel on an infinite set from kernels. The family of kernels is known as
convolution kernels, for the resulting kernel on given objects is the product of
the kernels defined on their parts. Let x € X and 2’ € X be two objects
which can be represented as vectors x,x’ € X; x X5 X ... x Xp, where X,
X;, 1 < i < D are non-empty, separable metric spaces. Let R be the relation
(X1 % Xa x ... x Xp) x X and let its decomposition be defined as R~*(z) = {x :
R(x,z)}. The convolution kernel is defined in the following manner:

D
k(x,2') = > 1 it).

x€ER~(z),x'€R~1(z") =1

The graph matching problem with tree kernels has been addressed in re-
search papers by various authors, we review some of the contributions. Ba-
sic definitions, algorithmic complexity proves and evaluations are provided by
Smola [159] who also proves that the proposed tree kernel algorithm runs in lin-
ear time, thus avoiding dynamic programming with quadratic time complexity.
Neuhaus and Bunke [I13] propose a convolution graph kernel function, which is
based on the graph edit distance and counts on evaluating on each step whether
or not the edit paths in two input graphs are valid. The claim is that the method
of the authors is more accurate than standard edit distance based methods and
their kernel variants. Using Schur-Hadamard inner product in an SVM setting,
combined with neural networks to avoid NP-completeness has been proposed
and empirically tested by Geibel et al. [73]. Geibel, Kiithnberger and co-workers
suggested using variants of tree kernels for matching XML documents based on
their DOME| trees [54] [55]. The authors propose to use the underlying structure
of documents as an indicator of their “type” or “genre” in a document classifica-
tion task; see, for more details, various publications by Mehler and co-workers,
e.g. [103)].

2.1.4 Basic Concepts in Lattice Theory

The mathematical theory of lattices has shown to be a useful model to represent
concepts, their structure and relations [51]. A hierarchy of concepts is most
intuitively represented by a directed rooted tree (defined in the previous section).
However, the nodes of a tree are related by adjacency; it is only by intuition that
the adjacency relation is considered to represent the subsumption of concepts
within a hierarchy. Lattices, on the other hand, formalize ordered entities where
order is a relation formally more similar to subsumption than adjacency.

Ordered Sets

Order is a property of a set of comparable entities. The theory of order formal-
izes this notion in terms of binary relations between elements of ordered sets.

4DOM stands for Document Object Model and is a structured representation of XML
documents, defining their logical structure and ways of accessing and manipulating them.

24

We will start our introduction to order and lattice theory by defining a central
concept — that of a partial order.

Definition 21 Partial Order. Let P be a set and let z,y, z € P. An order or a
partial order on P is defined as a relation <, which has the following properties:

x <z (reflexivity), (2.14)
x<yandy<zimply x =y (antisymmetry), (2.15)
x<yandy<zimply x <z (transitivity). (2.16)

A pair (P, <) of a set and a partial order is called a partially ordered
set (or a poset for short). Similarly to graphs, the notion of isomorphism is
introduced for ordered sets, as well. Two ordered sets P and @ are said to be
isomorphic (or “essentially the same”) if there exists a bijective map ¢, called
order-isomorphism from P onto @ such that Vz,y € P: 2 <y in P if and
only if ¢(z) < ¢(y) in Q.

A central property of ordered sets is the so called duality principle. 1t states
that if a statement ® is true for all ordered sets, so is the dual statement ®°. A
dual statement is acquired from a statement by substituting the partial order
< with >. For every ordered set P we can construct its dual P° by defining
x < &’ to hold in P? if and only if 2’ < z holds in P, for all , 2’ € P. The term
dual and its derivatives will be used in the sequel with respect to the introduced
duality principle.

An ordered set can be equipped with two special elements — a bottom and
a top element. A bottom element of an ordered set P is an element 1€ P
with the property that | < z, Vo € P. Dually, P’s top element is an element
T such that for all x € P it is true that x < T.

Lattices and Complete Lattices

Introducing upper and lower bounds of elements of ordered sets gives rise to the
definitions of a lattice, a complete lattice and a semi-lattice.

Let P be an ordered set and let S C P. An upper bound of S is defined
as an element x of P such that for all s € S, s < z holds. Dually, a lower
bound of S is an element y € P with the property that ¢ > y, Vt € S. The
set of all upper bounds of S is denoted by S* and the set of all lower bounds
of S is denoted by S!. If S* has a least element x, then z is called the least
upper bound (or supremum, denoted supS) of S, which is equivalent to the
following two statements:

1) x is an upper bound of S,
(
(2) < 2’ for all upper bounds z’ of S.

In a dual manner, the greatest lower bound (or the infimum, denoted
infS) of S is defined as the greatest element of S (if it exists).

Now taking the whole set P we will make the following observations:

(1) If P has a top element, then supP = T. When P has no top element
supP = ().

25

(2) If P has a bottom element, then infP = 1. When P has no bottom
element infP = {.

As a matter of notation, the concepts of least upper and greatest lower bound
are equally expressed in the following manner. The notation z V z’ stands for
sup{z, 2’} and the notation x Az’ stands for inf{xz, 2}, read, respectively, as “x
join &7 and “x meet 2'”. Similarly, we alternate the notations supS and \/ S,
read the join of S and infS and A S, read the meet of S.

We are now ready to give the definition of a lattice and a complete lattice.

Definition 22 Lattice. Let P be a non-empty ordered set. If xV x' and x N x'
exist, Vx,x' € P, then P is called a lattice.

Definition 23 Complete lattice. Let P be a non-empty ordered set. If \/ S
and N\ S exist, VS C P, then P is called a complete lattice.

Semi-lattices

We have defined a lattice as a partially ordered set closed under both binary
operations supremum and infimum. Relaxing this condition by demanding that
a partially ordered set is closed under only one of the two binary operations
gives rise to the notion of semi-lattice.

Definition 24 Semi-lattice. Let P be a set partially ordered by the binary
relation <. Then (P, <) is a join semi-lattice if for any two elements x,x’' € P
the least upper bound sup(xz,x’) exists in P. Respectively, a meet semi-lattice is
defined when for any two elements x,x' € P the greatest lower bound inf(x,x)
exists in P.

Note that a semi-lattice can be trivially transformed into a lattice by adding
a top element for a meet lattice and a bottom element for a join lattice.

2.2 Introduction to Support Vector Machines

The current section aims to acquaint the reader with the basic ideas of binary
classifications with support vector machines. Before we proceed to that, we
start with some words about machine learning, in general.

2.2.1 Computers and Learning

Machine learning finds an important place in solving a big variety of real life
problems. It evolved from the rather philosophical question of whether and
how could a machine be trained to learn from its “experience” and from the
practical need for a machine to be able to do so. Naturally, answering this
question and motivating further research in the area, was highly furthered by
the development of electronic computers with high capacities and computational
speed which helped to establish machine learning as a standard, nevertheless
developing branch of Computer Science (CS) and Artificial Intelligence (AI).

One distinguishes between several different kinds of (machine) learning and
we will briefly explain them.

26

Supervised Learning is about learning from a data set containing example
pairs of inputs and outputs, referred to as training data or a training set. The
basic assumption is that the set of input-output pairs contains an input-output
relationship which the learning algorithm is to uncover and apply as an input to
output mapping function on unseen data. Unsupervised Learning is applied
in the case when no outputs are initially available and the learning algorithm
acquires some knowledge of how and under which dependencies the data have
been generated. In Semi-supervised Learning (also and less commonly re-
ferred to as Query Learning), the machine learner has the ability of learning
various tasks by querying about the output corresponding to a given input. Re-
inforcement Learning, discussed and applied broadly in Al, develops decision
mechanisms of taking an action out of a set of actions in order to move from
one state to a predefined goal state, the decision being a function of the current
state [30].

Depending on the output, the learning problem is characterized as binary
classification in the case when the outputs are binary values, multiple classifi-
cation when the outputs take their values from a number of finite classes (or
categories), and regression — in the case when outputs have real values.

In the next section, we will overview the Support Vector Machines, a promi-
nent classification method, which will play a central role in our ontology match-
ing approaches, providing a technique for selecting characteristic variables.

2.2.2 Overview of Support Vector Machines

The Support Vector Machines are supervised learning classification techniques
introduced in the mid 1990s by Vladimir Vapnik and coworkers. The method
has proved to perform very well in practice for both binary and multiple classifi-
cation as well as regression tasks on large data sets in diverse application areas.
The mathematical machinery behind the SVMs reposes on theoretical grounds
in four different mathematical fields — Optimization Theory, Reproducing Ker-
nel Hilbert Spaces [4], Linear Classification [132], and Vapink and Chervonenkis
Generalization Theory [I57]. For reasons of space, we cannot give a detailed ac-
count of all aspects. Instead, we will provide enough knowledge about SVMs in
order to understand the ideas behind SVM-based variable selection approaches
developed in the past decade, as well as to be able to introduce our method.
For thorough introductions to SVMs, we refer to the books of Cristianini et al.
[30] and Vapnik [157], as well as the papers of Massart et al. [14] (discussing
the statistical performance of SVMs), and Burges [2I] (providing a brief but
exhaustive overview of the method). We will broadly follow the notations used
by Vapnik, Cristianini and Burges.

Generalization Properties

A supervised machine learning task usually takes place in two main phases: first,
a training phase, when the machine learner is given data to infer a classification,
regression or, generally, a decision rule from and, secondly, a test phase, when the
learner is confronted with unseen data examples to apply (hopefully correctly)
the decision rule on.

The ability to generalize on unseen data, after having learned the training
data is essential and central to every learning machine. The following quotation

27

from Burges gives an insight on that [21]:

A machine with too much capacity is like a botanist with a pho-
tographic memory who, when presented with a new tree, concludes
that it is not a tree because it has a different number of leaves from
anything she has seen before; a machine with too little capacity is
like the botanists lazy brother, who declares that if its green, its a
tree.

The conditions under which a learner has sufficiently good generalization
properties so that it does not behave like the botanist with photographic mem-
ory, but is also sufficiently precise in its judgments, so that it does not behave
like the botanist’s lazy brother have to be studied and defined.

Let us consider the following binary classification layout. Assume we have [
observations x; € R™ and their associated trusted “truth” y; € {—1,1}. Data
are assumed to be i.i.d. (independent and identically distributed), drawn from
an unknown probability distribution P(x,y). The goal of binary classification
is to “learn” the mapping x; — y; which is consistent with the given examples.
Let {f(x,a)} be a set of such possible mappings, where « denotes a set of
parameters. Such a mapping is called a classifier and it is deterministic — for a
certain choice of x and « it will always give the same output f.

Since the data are drown from a distribution P, the natural measure of error
would be the probability that a random instance is misclassified. The actual
risk, or the expectation of the test error for such a learning machine is

R(@) = [3o~ F(x,0)ldPx.y). (217)

The quantity 1/2|y — f(x,a)| is called loss. Based on a finite number of
observations, we calculate the empirical risk

l
Remp(a) = % Z ‘yz - f(Xi7a)|a (218)
1=1

which is a fixed number for a given training set {x;,y;} and a certain choice of
parameters «.

For losses taking values 0 or 1, with probability 1—n, 0 < n < 1, the following
bound on the actual risk holds:

R(a) < Remp(a) + \/hlog(%) +11 - log(g), (2.19)

where h is a nonnegative integer which will play a core role in our variable
selection procedure, called the VC dimension, measuring the capacity of the
classiﬁerﬂ We note that the presented risk bound does not depend on P(x,y)
and it can be easily computed provided the knowledge of h. We will briefly
introduce this parameter.

Let us consider the set of functions {f(x, @)} with f(x,«) € {-1,1},¥x, a.
In a binary classification task there are 2! possible ways of labeling a set of

5VC stands for the initials of Vapnik and Cherovonenkis who introduced the theory in the
1980s.

28

T
I

. hlog(3t) +1 —log(2)
R[u) < Rt\””)(u)._‘_ \/ 1 log ,a,] 01;(4)

! =

. '

Training error | | VC Confidence (capacity term)

v

Bound on the actual risk

Figure 2.3: Structural risk minimization I.

‘underfitting best model overfitting
error \

. 4 bound on the test error

capacity term

training error

structure

Figure 2.4: Structural risk minimization II.

29

separating . margin
hyperplane . = .

PR =0 T ye

Figure 2.5: A separating hyperplane and a maximal margin in R2.

[points. If for each labeling there can be found a member of {f(a)} which
correctly assigns these labels, we say that the given set of points is shattered by
the given set of functions. The VC dimension is a property of such a family of
functions, which is defined as the maximum number of training points that can
be shattered by that family.

The bound (2.19) gives an insight on one very important aspect of statistical
hlog(2)+1—log(%)

7

learning. The term , called VC confidence is “responsible”
for the capacity of the hypothesis space (including hypotheses with the ability
to learn unseen data without an error). The other right-hand quantity of
— the empirical risk, measures the accuracy attained on the particular training
set {x;,y;}. What is sought for is a function which minimizes the bound on the
actual risk and thus provides a good balance between capacity and accuracy —
a problem known in the literature under different names such as bias variance
tradeoff, overfitting or capacity control. Structural risk minimization, sketched
in Figure 2.3 and Figure[2.4] provides a theory to do so. The set of functions is
divided into nested subsets ordered by VC-dimension. The one which assures
the lowest bound on the risk functional is picked out.

Linear Classification

We come back to binary classification with support vector machines. SVMs are
based on a family of linear functions { f(x, &)} mapping elements from the input
space to a binary output, as introduced so far with « being the parameters of
the linear function f(x). The classification decision is according to the sign of
the linear function at the point to be mapped. Geometrically, it can be thought
of as a hyperplane separating the space of the inputs in two halves in a way
that the margin between the two classes is maximized (shown in Figure [2.5).

More formally, let us consider the input space X C R™ and the output
domain Y = {—1,1} with a training set S = ((x1,91), (X2,¥2), .., (X1, 1)) €
(X,Y)!. SVM is a linear real function f: X — R with

f(x) = (w,x) +0,

where @ = (w,b) € R” x R and (-,-) denotes the inner product in a vector
space (a dot product in an Euclidean space). The separating hyperplane in the

30

input space X is defined by the set {x|f(x) = 0}. The decision rule assigns an
input vector x positive if and only if f(x) > 0 and negative — otherwise. (The
inclusion of 0 in the first case and not in the second is conventional.)

We are looking for the best decision function f(x) which separates the input
space in a way that the distance between the positive and negative examples
closest to the hyperplane is maximized. The parameters of the desired function
are found by solving the following quadratic optimization problem:

min || 12
weR™ beR 2

under the linear constraints
Vi = 1,...,m, yl(<waxl)> + b) > 1.

For computational reasons the problem will be solved in a Lagrangian set-
ting. This is useful for two main reasons: first, the constraints will be replaced
by constraints on the Lagrangian multipliers which are easier to handle and,
second, the training data points will appear only in the form of dot products
which, we shall see, is useful for generalizing to the nonlinearly separable case.

After that argumentation, the original problem is transformed to minimizing
the Lagrangian functional

l
LP—* [wi* Zazyz Xi, W) +0) + > a; (2.20)

with respect to w and b, Where «; are non-negative Lagrangian multipliers
(i =1,...,1). However, minimizing is equal to solving the dual Lagrangian
problem — maximize

l

Lp= ZO‘Z Zaza]yly]@xl,xJ)) (2.21)

i=1
with respect to the Lagranglan multipliers. This follows directly from setting
the derivatives of Lp with respect to w and b to zero, yielding

W = E QY X4
i
and

Z a;y; = 0.

A solution w, b of the initial optimization problem must satisfy the follow-
ing necessary and sufficient conditions (known as Karush-Kuhn-Tucker (KKT)
conditions):

0

L = =1 2.22
awv P 07 v) , ()
0
%Lp =0 (2.23)
yi((xi, W) +0) > 0,i=1,..,1 (2.24)
a; > 0, Vi (2.25)
ai(yi((xi,w) +b) —1) = 0, Vi. (2.26)

31

A bound on the VC-dimension

The VC-dimension, discussed in the beginning, is going to play an important
role in our SVMs-based variable selection procedure, to be presented in Chapter
[In general, it is difficult to compute the VC-dimension directly, but we can
compute an upper bound for it, depending on the weight vector w and on
properties of the data.

Consider hyperplanes of the kind {x|f(x) = (w,x) + b = 0}. The following
lemma (Vapnik [I57]) provides an upper bound on the VC-dimension.

Lemma 25 If all ezample vectors x; are contained in a ball of radius R and
for all exmples it holds
[(w,x) +0] > 1,

then the set of hypotheses { f(x)} has a VC-dimension h bounded by

h < min(R?||w]|?,1) + 1.

SVMs with Kernels

Figure summarizes the steps undertaken towards finding a solution in the
linearly separabel case. The power of SVMs is that even if data are not lin-
early separable in the input space, they can be mapped into a (possibly higher
dimensional) space, called feature space where a linear boundary between both
classes can be found (cf. Figure for an illustration). The mapping is done
by the help of the transformation

¢: X — F={p(x)xe X} CRY,

where N is a positive integer or infinity. The set of linear hypotheses in the
feature space is constructed in the same way as in the original input space,

N
fl@) = (w-p(x)) +b=>_ widi(x)+b. (2.27)
i=1

We come to the final step which makes SVM so easy to apply. As we have
seen, in Lagrangian theory, (2.27) has the dual representation

!
Z aiyi(9(xi), §(x)) +b. (2.28)

In the latter formulation, the nonlinear transformations of the original data ¢
appear only in the form of an inner product which can be replaced by a kernel
function with the property

K(x,2) = (¢(x), ¢(2)).

In result, we do not need the explicit knowledge of the (possibly nonlinear)
transformation ¢, nor the resulting (possibly higher dimensional) feature space.
In the input space we will use a kernel function which acts as a dot product in the
feature space. The formal algorithm of finding the decision function is similar
to the one from the linear case with the difference that the dot products are

32

Maximize
margin

™

Minimize w

Minimize Lp » Maximize LD
' |
wrt w. b w.r.t. the lagrangian

multipliers

Figure 2.6: SVMs: The linearly separable case.

A linear classifier learns in the feature space
and creates a decision rule.

o

®3(x . % W o
P(x) i ey
Nonlinear transformation .;'-'"—')_ = T)
of the original inputs to a et e . Back to the original
(higher dimensional) feature . = space: the decision rule
space.) is applied.
®1(x)
\ X2 X2 /
. D2(x) .
k. ' e . Feature space ‘ iy .
: X1 . " X1
Input space Input space

Figure 2.7: SVMs: The linearly non-separable case.

33

replaced by that kernel function. The expressiveness of the learning machines
is increased a lot by the introduction of kernels — the underlying linearity of the
classifiers remains intact which preserves their computational tractability.

The necessary and sufficient conditions for a function, defined in the original
space to be an inner product in the feature space are given by Mercer’s theorem
[21], [30]. The simple condition of Mercer’s theorem is that the kernel must be
a positive semi-definite function.

There are many plausible choices of a kernel function which have already
proved to be quite efficient in practical applications. Among many popular
choices, we will outline the polynomial and the radial basis function kernels
given by:

K(x,y)=({xy)+1)? (polynomial) (2.29)
K(x,y) = e I=Il* (radial basis function) (2.30)

Note that each kernel function depends on one or a set of parameters. In
the examples above these are the degree d or the parameter . Picking up the
right kernel and then setting its parameters appropriately is a difficult task (see
research on model and parameter selection, e.g. [30], [9]), usually done manually
by using heuristics or methods like cross-validation [30].

Finally, kernels which do not operate on vector spaces and therefore do not
fulfill Mercer’s condition have also been introduced to deal with data which are
not representable in a vector space (or its representation is costly and inefficient),
like strings and graphs. Such examples, known as kernels for structures, are
considered in Sections 2.1.3] and 2.4] and the sources cited there.

2.3 Variable Selection

Variable selection is a basic problem in a number of real life statistical analysis,
classification and regression tasks. Applying a variable selection procedure to a
learning task has many benefits, such as enhancing descriptiveness (it can im-
prove the visualization of the data and the understanding of hidden relations),
achieving better generalization and / or gaining computational power. The task
of variable selection is to evaluate with respect to some predefined criteria the
importance of a variable (or a block of variables) for the outcome of a given ma-
chine learning task, should that be prediction, classification or a simpler data
analysis problem. The result of a variable selection procedure can be a list of
the input variables ordered by importance or informativeness. On the one hand,
this helps to reduce the dimension of the input space by eliminating uninforma-
tive, noisy or redundant variables. In that way we ensure better computational
efficiency and improve generalization. On the other hand, in various domains of
application, where the learning tasks are of supervised nature, such as process
control, forecasting, text categorization or gene selection it is important to find
out more about the input — output relations that hold in a dataset by pointing
out the input variables, which most strongly affect the response. In a classi-
fication task, it provides mechanisms for ranking the variables with respect to
their discriminative power. In our study, we are interested in classification tasks
for text categorization and the focus falls on the latter application of variable
selection.

34

We make a distinction between the terms “variable” and “feature”, both
used (sometimes confusingly) to denote similar but distinct entities in statisti-
cal and machine learning terminology. The term “variable” is most commonly
used for the original input variables, while the term “feature” stands for vari-
ables constructed from the input “variables”. Both terms are often used in an
substitutable manner; a disambiguation is, however, needed when the features
are implicitly computed from the variables like, for instance, in kernel-based
methods.

One of the contributions of this dissertation is the definition and applica-
tion of a novel variable selection criterion, based on Support Vector Machines,
which will be introduced in Section [£.3.3] For an overview of standard variable
selection applications and existing theoretical approaches we refer to the study
of Guyon and Elisseeff [63]. Variable subset selection methods for text-learning
have been discussed and evaluated in [I09]. A part of the next section of this
thesis is also dedicated to selection techniques for text categorization, since they
are of particular importance for some of the main results. SVM-based methods,
which are directly relevant to our approach, are discussed separately in Section
2.0.2

2.3.1 Standard Variable Selection Techniques

According to the typology of variable selection techniques brought out by Guyon
and Elisseeff [63], one distinguishes between wvariable ranking, variable subset
selection and space dimensionality reduction by feature construction. We outline
the main characteristics of each of these methods.

Variable ranking evaluates the contribution of single variables by assigning
to each the value of a scoring function. The scoring function is calculated from
the data. It can be based on correlation criteria (estimating the correlation
between a variable and the output), or information theoretic criteria (such as
an estimation of the mutual information between a variable and an output).
Equally, the predictive power of an individual variable can be evaluated by
using as a criterion the performance of some classifier built with this variable
only.

However, ranking variables individually leads to neglecting the informative
power of variables taken in groups. Therefore the second important group of
techniques unites variable subset selection methods. The selection of groups
of variables can be done in three different manners, where from one can further
distinguish between three types of subset selection techniques: wrappers, filters
and embedded methods. The difference between the three classes of methods is
in their relation to the machine learning process. Wrappers use the machine
learner as a “tool” to score groups of variables according to their predictive
power [86]. For that reason they are not specific to a given learning machine.
Filters, on the other hand operate on a dataset before introducing the machine
learner — the variable subset selection is a pre-processing mechanism. Finally,
embedded methods act simultaneously with the learning machine by adjusting
the scores of the subsets in the time of training. Figure[2.8|sketches the temporal
relation of the three methods with the training phase in a machine learning task.

One of the main goals of variable selection is to improve efficiency by reducing
dimensionality and hence complexity. The third important class of selection
techniques are based on space dimensionality reduction by constructing

35

Training

Filters Embedded Wrappers

v

Figure 2.8: Selection techniques in relation to training in time.

features (principal axes) out of the input variables and projecting the data onto
the newly constructed feature space. The most pertinent variables are those
which contribute most to the construction of the new principle axes.

Clustering is one of the most prominent feature construction techniques. The
main idea is to find clusters of similar variables among the set of original input
variables and replace each cluster by a feature which is the cluster’s centroid.

Singular value decomposition (SVD) is another feature construction method
originating from factor analysis and matrix factorization. It is a fact that in
many learning problems where hundreds of thousand of variables are available, a
much smaller number of them are linearly independent. SVD-based techniques
make use of that fact in order to construct new features as linear combinations
of the input variables by performing SVD on the matrix containing as rows the
observationtﬂ and as columns — the input variables.

Latent Semantic Analysis, discussed in Section [2:4] of this chapter is based
on that technique. Other related approaches are two of the most common
descriptive statistics methods — the Principle Component Analysis and the Dis-
criminant Analysis, which on their turn have been dedicated some more space
to later on, in Section Both PCA and DA project the input data on prin-
ciple axes which are constructed by linear combinations of the input variables.
Naturally, different linear combinations, i.e. assigning different weights to the
input variables, corresponds to constructing different axes. In our approach,
what we are interested in both PCA and DA analyses is the way that classes
are represented and separated in a projection over one or two principle axes.
For that reason, the variables which contribute at most for the construction of
these axes are those that are most important for the separation of the instances
projected over these axes. These variables are also said to best discriminate
between the classes.

2.3.2 Variable Selection for SVMs

The SVMs have many attractive sides — their performance does not depend on
the distribution of the data safe that they are i.i.d., it does not demand a linear
input-output relation and they are computationally advantaged over competing
methods. The decision function is calculated only on a small number of input
points (the support vectors). At least theoretically, the generalization properties
of SVMs do not dependent on the size of the input space which makes variable
selection little prominent for learning with SVMs. However, the listed properties
turn them into a good candidate for a variable selection tool to be used self-
dependently. In addition to that, some authors have shown that even though

6The term “observations” is common for denoting the examples (or instances) in a dataset.

36

theoretically unnecessary, variable selection improves SVM learning in practice
[64), 126].

SVM-based variable selection has been studied in the past couple of years,
although, to the best of our knowledge, with surprisingly little intensity. We
briefly review the most important related endeavors.

Guyon et al. (2000) proposed the SVM-RFE (standing for Recursive Feature
Elimination) algorithm [64] for selecting genes which are relevant for cancer
classification. The algorithm selects r out of [initial variables with r < [based
on a backward sequential selection. The removal criterion for a given variable
is minimizing the variation of the weight vector || w ||?, i.e. its sensitivity with
respect to a variable.

A method based on finding the variables which minimize bounds on the
leave-one-out error for classification was introduced by Weston et al. (2000)
[163]. The leave-one-out is a bound on the actual risk, alternative to the one
introduced in Section 2:2] based on the support vectors. To get an estimate of
the bound, for all training points the following procedure is applied: a training
point is removed, SVMs are re-trained over the data without the removed point
and tested on it. The expectation of error over all training sets with one point
left out gives us the desired bound. The bound is intuitive and quite elegant
and formally it looks as follows:

E[Nsvy]

E[Rl—l] < I)

(2.31)
where R;_ is the risk of a machine trained over | — 1 observations, E[R;_1]
is the expectation of that risk for all possible choices of sets of size [— 1, Ngy
denotes the number of support vectors over a set of [— 1 observations (its expec-
tation is taken over all possible such sets). Weston et al. tested their criterion
on toy data, artificially generated for the experiments and on real-life data for
face detection, pedestrian recognition and cancer morphology recognition. The
performance of the selection method has been evaluated by comparing the gen-
eralization error in a classification task when using the selected features only
and when using the whole set of features which includes noise by construction
(in the toy data), or by nature (in the real-life problems).

Rakotomamonjy et al. (2004) suggest a variable selection procedure for
SVMs based on the sensitivity of the margin according to a variable. The
guiding heuristics of their approach is:

A variable which is little informative and thus little important for
the decision function, is a variable to which the margin 2/|| w || is
little sensitive [126] [127].

To demonstrate the viability of their selection method, the authors replicated
the experiments on toy data from Weston et al. and carried out additional
experiments for pedestrian recognition, outperforming the results reported by
Weston and colleagues in [163].

Finally, we will cite one last contribution by Bi et al. (2003), who devel-
oped the VS-SSVM variable selection method for regression tasks applied to
molecules bio-activity prediction problems [I3]. The suggested variable selec-
tion method is a wrapper technique: it uses the performance of the learner with
respect to a group of selected variables as a criterion of their importance. Bi

37

et al. point out that, although successful in induction tasks, wrapper meth-
ods can be computationally very expensive on a large number of variables. To
reduce computational costs, the variable selection is performed by the help of
linear SVMs as a preprocessing step to induction tasks with non-linear learning
machines.

In Section[4.3.4] we will present our own contribution to the variable selection
research for SVMs, based on variations of the VC dimension of the classifiers.
The current section will close by an introduction to text categorization — a field
of machine learning, in which a central part of the solutions proposed in this
thesis is grounded.

2.4 Text Categorization

Text categorization is a machine learning classification task which takes as input
data a collection of text documents written in some natural language. This could
be the set of all web-pages in a web directory, the emails that a certain person
has received during the last year, etc. Assume that all these text documents are
grouped together in classes of some kind — the categories of the web directory,
“spam” vs. “not spam” in the email example. The task of text categorization
consists in assigning the correct class label to an unseen text document, given
a dataset consisting of correctly classified documents. Automatic filtering of a
large amount of text documents is useful for presenting to the user only the ones
which are of importance to her or the ones which correspond to a given query.

Instance-based approaches to modeling and comparing ontologies often rely
on text categorization techniques. An ontological concept is referred to by a
word, a set of words or a set of documents and can be viewed as a category
unifying entities which are represented as or appear in text documents. The
methods for instance-based concept alignment developed in this thesis (cf. Sec-
tion apply different text classification techniques, as well, and therefore, in
the following paragraphs, we will describe several ground notions and approaches
from this field of machine learning and natural language processing. Many of
the topics discussed below are covered thoroughly in the book by Manning and
Schiitze [98].

2.4.1 Representing Text Documents as Feature Vectors

In order to be able to perform classification or other machine learning tasks on
text documents, we need to render them in a form, which is a suitable input of
a computer program and allows this program to run efficiently in terms of time
and space complexity.

In the current section, we will introduce a standard approach to represent
a text document as a vector in an m-dimensional feature space, based on the
frequency of the appearances of word stems within the document and known
as the TF/IDF vector model. A word stem is a form of a word which results
from removing the information relevant to flection and case from the word [123]
(a processes known in computing as lemmatisation). That method renders
words which may look intuitively the same for humans because they share a
morphological root, but appear different to computers, into one single “word”

38

— for example, the words “plays”, “played” and “playing” are represented by a
single word stem “play”.

In the following sections, we will not distinguish between the terms “word”,
“word stem” and “term”.

In order to additionally simplify the task of representing human-produced
text in a numerical format, often a certain kind of pretreatment of the input text
data is required. This most commonly consists in removing so called stop-words
(topic-neutral words which appear too often in the text corpus), such as definite
and indefinite articles, conjunctions and propositions (“or”, “but”, “as”, “the”,
“a”, etc.), as well as words which appear too few times in a single text or in
the whole corpus. The collection of terms of the corpus which are retained and
which will be used to describe a single document will be called a vocabulary.

The representational standard TF/IDF, a short for Term Frequency / In-
versed Document Frequency, consists in coding a text document by an n —
dimensional feature vector, where the value of each feature is relative to the
frequency of the appearance of a word within the text document, scaled by the
number of documents in which the word appears within the whole document
data base. The number n of words to be considered depends on the particular
application and on the user’s choice — in the most specific and expensive case n
equals the number of all words encountered in a training corpus.

We will give a formal definition of the TF/IDF model starting by introducing
some notation. Let the number of times a word w; appears in a text document
d be denoted by T'F(w;,d). Clearly, a document d containing n words can be
coded by an n-dimensional TF-vector by calculating the values of the TF'(w;, d)
features for all + = 1,...,n. However, the performance of algorithms using this
representation is improved a lot by scaling each of the dimensions of the vector
by the so called inversed document frequency, or IDF for short. Let the number
of documents in which a word w; occur within the whole text document dataset
be DF(w;). The inverse document frequency of a word, given that m is the
number of documents in the training set, is calculated by

IDF(w;) = log(%(wi)). (2.32)

Finally, the TF/IDF feature vector corresponding to a document d on n words
looks like that:

d = (TF(wy,d)IDF(wy), TF(ws, d)IDF(ws), ..., TF(w,, d) I DF (w,)).

Clearly, due to the fact that each document can contain a different number of
words and in order to be able to project all the vectors onto one single vector
space where distances can be measured, a normalization of the length of the
document vectors is needed, before proceeding to the classification task. Most
of the vectors will remain sparse since most of the documents in a training
dataset will not contain all the words from the vocabulary.

In the rest of the chapter and of the thesis, we will predominantly consider
the TF/IDF document representation model, except where stated otherwise. We
mention, for completeness, that this is not the only possible text representation.
Simpler presentations include collecting the raw counts of the term occurrences
in the documents. More complex methods, introduced in [I06], consist in defin-
ing an attribute for each word position in a text document whose value is the

39

actual natural language word which appears at this particular position. This
method of text representation is commonly applied in Bayesian learning text
classification, discussed below.

2.4.2 Dimensionality Reduction

As already mentioned above, since words are used as features, the document
vectors might become of a prohibitively large dimension, reaching hundreds
of thousands of terms. This can lead to a situation in which the essential
information is becoming hard to extract and the computational efficiency of the
applied learning algorithms is reduced. As it has been observed by Goller [57],
dimensionality reduction is also useful in order to avoid overfitting, even for
Support Vector Machines.

Text categorization is an inductive learning task and all of the feature se-
lection techniques discussed from a general viewpoint in Section [2.3| can be
applied. In the current section, we will outline a few (automatic) techniques for
dimensionality reduction applied particularly for learning and classifying text. A
thorough evaluation of some of the selection techniques on large categorization
problems is presented by Mladenic [I09] and Yang [167), [168].

One of the most commonly applied selection methods is information gain
[106]. The method suggests an information theoretic approach to evaluate the
goodness of a term with respect to a set of categories. It is based on measuring
the number of bits of information obtained for a given category before and after
the removal of a certain term.

Another frequently used method tightly related to information gain is mu-
tual information in which one considers the co-occurrences of a term and a
category [26]. We will present a variation of it, known as the point-wise mu-
tual information. Let ¢ be a term and ¢ — a category and let A be the number
of times ¢ and ¢ co-occur, B — the number of times ¢ occurs alone, C' — the
number of times ¢ occurs alone and m — the total number of documents in the
dataset. The mutual information criterion is estimated by

Axm
(A+C)x (A+ B)

I(t,c) = log (2.33)

A related approach uses the x? - statistics by testing the lack of indepen-
dence between t and ¢ [166]. The criterion is estimated by

m x (AN — CB)?
(A+C)x (B+ N)x (A+B)x (C+N)’

X2 (ta C) -

where N is the number of times neither ¢, nor ¢ occurs. Based on the y?2
- statistics, Sebastiani and co-workers proposed the GSS coefficient given
simply by the difference AN — CB [136].

The criteria discussed so far are similar in that they look into the information
about the term-category associations. A second group of methods consists of
criteria which are not task-specific in that sense.

The number of documents in which a term occurs is clearly another straight-
forward criterion for the term’s importance. Document frequency thresh-
olding is a simple feature selection technique, which is based on the document

40

frequency for each term in the training dataset. Terms with an infrequent oc-
currence are considered as unimportant for the regrouping of documents into
categories.

The importance of a single term can also be evaluated by the so called term
strength criterion [164]. The quantity that this technique measures is the like-
liness of a term to appear in documents that are assumed to be closely related.
The relatedness of documents is measured by a certain similarity measure (usu-
ally the cosine value, discussed in the next section).

Based on an experimental evaluation of the feature selecting techniques for
text categorization tasks discussed above, Yang and Pederson [I68] reported that
the Information Gain and the Chi-square methods prove to be most efficient.
Sebastiani [136] indicates GSS as the most efficient of the proposed techniques.
However, the efficiency of one method or another remains a question of a par-
ticular application and used data. In our study, we apply feature selection for
different ends than the ones suggested by the authors of [I68], 136] — instead of
dimensionality reduction, we aim at evaluating the predictiveness of a small set
of features with respect to a class. We will see in the empirical evaluation of
our results (Section [5) that for that goals different selection techniques show to
be more appropriate.

Feature selection in text-learning can be also based on descriptive statisti-
cal methods, such as Principal Components Analysis and Discriminant Analysis
(discussed in Section [4.3]and in [77,[48]) and the related Latent Semantic Analy-
sis (LSA). These methods differ from the ones cited above in that they construct
a set of new features (fewer than the original number of features) by regrouping
together semantically similar terms and forming optimal dimensions. We will
describe LSA in some more detail below.

Latent Semantic Analysis is a technique of major importance in natural
language processing (NLP), introduced by Landauer and co-workers in the late
1980s [91]. Tt is Landauer’s claim that LSA is also a cognitively plausible model
of the way humans representation of meaning reflects the words they read and
hear. Leaving aside the discussion of the cognitive aspects of the method, we
focus on the fact that LSA is broadly applied in text categorization as well as
in general information retrieval, finding relations between terms, cross language
retrieval and other NLP tasks.

An old idea in NLP, and one we discussed in details above, is that documents
can be represented as vectors in a space, which is constructed by assigning an
orthogonal direction to every term. This leads to the creation of spaces of
hundreds of thousands of dimensions. LSA evolves from the intuition that such
a high dimensionality is useless, based on the heuristics that there are many
hidden (latent) relations between the terms. For example, the terms car and
automobile are likely to appear in similar documents, just as guitar and piano,
etc. For that reason, documents as vectors in a high dimensional space where
each dimension is a single term will not “occupy” all possible regions of this
space, but will be grouped in small subspaces of it. Based on that finding, LSA
constructs a lower dimensional concept space by combining related terms in a
single dimension.

LSA starts by representing a text corpora as a matrix in which, standardly,
each row stands for a term and each column — for a text document. Usually,
documents are coded as TF/IDF vectors in which every single element of the
matrix contains a number relevant to the frequency with which a term appears in

41

a document. Let the term-document matrix be A. In mathematical terms, the
discussion about term relatedness from the previous paragraph can be summed
up to the following statement about the matrix A: the rank of A is much lower
than min(n, m). (Remember that the rank of a matrix is the number of linearly
independent rows or columns and is at most equal to the smaller of the numbers
of rows and columuns [5§].)

As a second step, LSA performs a singular value decomposition (SVD) on A.
SVD, discussed also in [58], represents a rectangular matrix as a product of three
matrices: one describing the original row entities as vectors of derived orthogonal
factor values, another describing the original column entities in the same way,
and a third one which is a diagonal matrix containing scaling values. The
multiplication of the three matrices results in the original rectangular matrix:

Apxm = UnXTZrXrVT

TXm?

(2.34)

where r is the rank of A (r < min(n,m)) and U and V are column orthogonal
matrices (UTU = VTV = I, where I stands for the identity matrix).

By using this decomposition, terms and documents are translated into a
common concept space of dimension r lower than n (the original number of
terms). Every row ¢ of the matrix U can be viewed as a refined representation
of a term ¢ and every row j of V can be viewed as a refined representation
of a document j, which results from the orthogonal factoring of the rows and
columns of A. Since terms and documents can be equally viewed as vectors
living in an r-dimensional space, the document-document, term-term and term-
document similarities can be evaluated by the help of a distance metric or a
similarity measure of the user’s choice — usually the cosine between vectors (cf.
next sub-section).

In order to relieve computational complexity, only the k (k << r, k =~ 300)
largest values on the diagonal of 3 are taken, together with their corresponding
vectors from U and V. Thus, A is approximated by

Anxm = nxkzkxkvlg;(m~ (235)

Finally, LSA as a feature selecting technique is based on deciding on the
goodness of a feature with respect to a certain class of documents by measuring
their distance or similarity to that class in the LSA space.

2.4.3 Measuring Document Similarity

There are different plausible choices of a distance metric or a similarity measure
defined on a set of documents coded as TF/IDF vectors. The particular choice
is task and data dependent and in most of the cases, once the document vectors
are computed, it is easy to try out different distance measures and pick out the
most appropriate one.

A review of several commonly used distances and measures is found in [87].
Among them, the most applied ones are the Cosine similarity measure and
the Euclidean distance defined for two documents dy = (di, ...,d}) and dy =
(d?,...,d?) living in an n-dimensional space by the well-known formulas:

42

- Euclidean distance:

deuc (dl ’ d2) =

- Cosine similarity measure:

Z?:l dzl) d?

deos(dy,d2) =
cos(1 2) \/Zle(dzl)z - 2?21(d12)2

We note that kernels can be also used to evaluate the similarity of doc-
uments based on the general intuition that they are measures of similarity
between two data examples. The simple dot product of vectors provides an
example of a kernel and can be used as a similarity measure. As we shall see in
next section, a special kind of kernel for structures is applied as a measure of
the closeness in meaning of two documents.

2.4.4 An Overview of Text Categorization Approaches

Let us again recall the setting of the classification problem that we are to solve
and the notations that we have decided to use. Our training data consists of m
documents coded as n-dimensional vectors, d; € R™, i = 1,...,m. Additionally,
let there be K categories cy,...,cx. Each of the documents in our training
set is assigned an output value y; € {c1,...,ck}, according to its class label.
The number of documents in a category ¢; is denoted by m,,. Finally, let
d = (dy,...,d,) be an unseen document vector that we want to classify in one
of the predefined categories.

Text categorization approaches use machine and statistical learning tech-
niques to train an automatic classifier on a dataset of the described type with
adequate generalization properties which will allow for the correct label assign-
ment of unseen documents [57, [167]. We review some of the most prominent
learning techniques that have been successfully applied so far to the task of
categorizing text documents.

Naive-Bayes Learner

Bayes theorem for conditional probabilities is often of help for solving text cat-
egorization problems [I06]. The classification technique provides an estimation
of the probability of a class, given the feature vector of a new document by
using the training data. The conditional class probability is given by

P(c;)P(d|e;) .

The learner has the part “naive” in its name, because, in order to estimate the
quantity above, it makes the assumption that words are conditionally indepen-
dent. This assumption is too strong and generally wrong. It is a fortunate
fact that the Naive-Bayes classifier performs very well in practice, nevertheless.
Conditional independence assumed leads to the following representation:

n

P(ci|d) = P(c;) [[P(d;le:). (2.36)

j=1

43

Note that P(d) has been removed from the formula because it is a con-
stant with respect to the categories. Estimates of the two probabilities left to
calculate, based on the training set, are given in the following way:

P(C=¢) = Zu (2.37)
m
. 14+ n;;
Pl = st fnk»’ (2.38)

where n;; denotes the number of times a word j occurs in documents from the
category ¢; [1J.

Rocchio Algorithm

A largely applied classification method, proposed by Rocchio [128], consists in
first building a prototype vector for each category ¢;, i = 1,..., K by taking the
average of all training documents belonging to that category. In order to assign
a class to an unseen document d, the similarity of each prototype vector and d
is measured (commonly using the cosine measure). Then d is assigned the class
whose prototype vector is found to be closest to d.

Nearest Neighbors Learner

Nearest-neighbors methods for classification tasks produce a prediction of the
class-value of a new instance based on the most commonly encountered class-
value in the set of training points closest to the new instance in the input space.
For continuous valued target functions, the k nearest neighbors prediction is

calculated by
A 1
x; ENg (1})

where y; corresponds to the value of the function in the i-th training instance and
Ny (z) is the set containing the k closest to = training points [68] [106]. k-nearest
neighbor classifiers have shown very good performance in text categorization
tasks.

For a binary classification task, we will give a simple classification rule [98].
Take a proximity of a vector d in the input space containing its k-nearest neigh-
bors and let k; be the number of positive and ks the number of negative exam-
ples among them. The instance d is assigned positive if the estimation of the
conditional probability of membership

k1

P(+1]d) = 2

is greater than the estimation of the conditional probability of membership

P(-1jd) = 12,

the document is assigned negative otherwise.
Generalization to multiple classification is done trivially by solving a series
of binary-class problems.

44

Decision Trees

The training sample can be used in order to construct a decision tree against
which an unseen document is matched in order to find out its class-label. There
are several decision trees algorithms which have been applied for text catego-
rization and we will describe one of the most popular ones, CART [2].

CART consists in constructing a binary decision tree by splitting the vectors
at each node with respect to one single vector component. In that the algorithm
attempts to keep the collection of vectors in each resulting sub-category as less
diverse as possible. The vector component which splits the documents best
according to that criterion is the one which keeps the node-category diversity
low. Commonly, entropy is used as a measure of diversityEI, given by the well
known formula

K
" p(eilt) log pleilt). (2.39)
i=1
In the quantity above, p(c¢;|t) is the probability of the class ¢; given the
decision tree node ¢ and is estimated by

pleilt) = my(t)/m(t), (2.40)

where m;(t) is the number of documents of class ¢; in t and m(t) is the cardi-
nality of t. The decrease of diversity serves as a measure of the degree of impor-
tance of a single component, i.e. one maximizes the quantity diversity(before
split)—[diversity(left child)+diversity(right child)].

The CART procedure runs until each document is grouped in a category
of its own (the data is overfitted) and only then a pruning procedure removes
those branches of the tree which have the least additional predictive power for
the documents found on their leaves.

Making up for this drawback, CHAID — another commonly used decision
tree technique — contains a criterion to stop growing the tree before overfitting
of the data occurs [82].

Latent Semantic Indexing (LSI)

LSA has been discussed in the previous section as a feature selection technique.
In its application in information retrieval, LSA, known as Latent Semantic In-
dexing (LSI) treats every query ¢ as a small document which is projected onto
the k-dimensional LSA space by the help of the transformation

G = YixrUkxnn- (2.41)

The query’s relevance to a document or a group of documents is evaluated again
by the help of a distance metric or a similarity measure.

Despite of using only k£ < r < n orthogonal directions in order to describe
the data, LSA and LSI suffer a considerable computational cost. In order to
cope with this drawback, Cristianini and co-workers [31] have introduced a
kernel-defined version of the method.

"Note that the method shares similarities with the previously introduced feature selection
techniques Information gain and Mutual information, for it is also based on uncertainty
reduction.

45

Topic Hierarchies

It is a commonly encountered text categorization problem to have to train an
automatic classifier on a training set where the class labels are related in a hier-
archical structure connected by subsumption. An example of such an intended
organization of documents is every web-directory (such as Yahooﬁ, the Open
Directory Projecﬂ and other). The documents label assignments follow the
inheritance rules of the hierarchy: every document that belongs to a category
c; also belongs to a category c; if ¢; is the parent of ¢;.

The task of the classification is to assign to an unseen document a path form
the tree-hierarchy which starts at the root (because all documents are trivially
assigned to the root category) and ends with the node which is the most-distant
to the root but still relevant to the document node. For that purpose, a set
of search strategies can be applied, among the most popular ones being greedy
search and best first search (discussed and compared in [24]).

Support Vector Machines and Text Categorization

The application of the Support Vector Machines classifier (see Section for
an overview) to text categorization tasks compared to other inductive learning
methods is discussed broadly by Joachims in a 1998 paper [(4]. By using the
Reuters 21578 dataseﬂ Joachims evaluated the performance of SVMs (with
polynomial and radial-base kernels) compared to four state-of-the-art techniques
— Naive-Bayes, Rocchio, Decision trees and k-Nearest Neighbors. The method
proved to perform better than those techniques, substantially and significantly.
Thanks to the good generalization properties of the method on high dimensional
datasets, the feature selection task can be omitted, making the procedure less
complex and time costly. Dumais et al. [40] preformed similar evaluation, which
confirmed the results by Joachims reporting that the method performs excel-
lently on large categorization problems, outperforming most of its contenders.

There are several main reasons why SVMs have been so successful. Most
of the text—miningiﬂ problems are set in a space of a very large dimensionality,
reaching more than 10,000 features, and SVMs has proved to be able to deal with
high dimensions. The vectors of documents are usually sparse — this is again
not a problem for an SVM algorithm to perform properly. Finally, Joachims
argues that most of the text learning problems are linearly separable, and the
original setting of the SVM classification consists in finding an optimal hyper-
plane between separable classes of observations. We note that this argument
needs an additional remark. By linear separability should be understood that
data are separable by the help with either hard or soft margin, because even
if data appear to be linearly separable, the underlying distribution is usually
not; should that be the case, applying the hard margin classifier might lead to
overfitting.

8http://www.yahoo.com
9http://www.dmoz.org/
10Reuters 21578 is a publicly available dataset containing articles from Reuters news agency,
compiled by David Lewis in 1987, http://www.research.att.com/lewis.
1 Text mining is a term which denotes the domain of machine learning dealing with natural
language texts (representation, pretreatment, classification, etc.).

46

Kernels Accounting for Semantic Proximity

We will close this section with a note on categorization methods based on ker-
nels. Lohdi et al. [95] have argued that the construction of a feature vector out
of a text document can be just as costly and as complex as the categorization
task itself. In addition, by using term frequency features all information related
to word order is lost. In Section we have introduced and discussed kernel
methods on structures, such as graphs and trees. We have pointed out that
these methods are applicable on text documents as well, as long as a structural
representation of text can be made available [103] and are suggested to per-
form efficiently for text categorization tasks not allowing for the drawbacks of
(explicit) feature extraction methods [78].

We will stress on one problematic side of this group of approaches — docu-
ments are considered as sequences of symbols without using domain knowledge.
A feature space is constructed by the set of all non-contiguous substrings of &
symbols. By applying a string kernel the similarity of two documents is given by
a simple heuristics: The more substrings two documents have in common, the
more similar they are considered to be [95]. In fact, the feature vectors of the
documents are only implicitly represented by using string alignment techniques.

In the feature extraction model documents are real valued vectors living in a
certain vector space of some dimensionality. Documents using distinct, although
semantically similar terms are considered unrelated. For that reason, this model
has been additionally criticized for its inability to exploit semantic similarity
of terms. Kernel approaches can account for that drawback, as discussed by
Kondola et al. in [81]. The similarity of two documents d; and d; is estimated by
using a kernel evaluating their dot product by taking into account the semantic
similarity of the terms which compose them in the following standard manner:

k(di,dj) = diPd37 (2.42)

where ." denotes the transpose of a vector. What makes different from a
standard scalar product is that P is a semantic proximity matriz, which fulfills
Mercer’s conditions (see, e.g. [30] for a definition) defined in a special way to
account for semantic proximity of the terms that define the vectors d; and dj.
In fact, every entry Pu,(= Pp,) of the matrix should give the strength of the
relation of the terms a and b.

The authors propose two methods of (implicitly) computing the matrix P.
The first method suggests that if we view documents as bags of words, we can
equally view terms as bags of documents, in which the proximity of two terms
will be calculated on the basis of the correlation of their document vectors. The
second method is based on representing the set of all words in a given corpus as
a graph, where each node stands for a word and the edges between nodes stand
for words co-occurrences [47]. Semantically closer terms will be less distant in
the co-occurrence graph.

To sum up, we note that text categorization is a fast developing and im-
portant subfield of machine learning, furthered by and furthering results in
neighboring subfields of statistical inference, data mining and NLP. Because of
the generality of the presented approaches, most of the results discussed in the
current section are valid and can be applied, subject to minor modifications, on
more general (categorical) multimedia data, such as videos or images.

47

2.5 Summary: A Framework for Ontology
Matching

In the sections above, we have tried to review as concisely and in the same time
as exhaustively as possible several standard subfields of mathematics, machine
learning and statistical inference as a background for a wide range of ontology
matching approaches which will be discussed throughout the following chapters.

We started by presenting basic results and definitions from graph and lat-
tice theory (Section . As we will see in the ensuing chapters, graphs are
helpful for visualizing and embodying the structural properties of an ontology.
Although relations of order are not explicitly defined for graphs, intuitively a
tree can be thought of as an ordered set of nodes, where the adjacency relation
of nodes is, by convention, substituted by a partial order. We introduced lat-
tices and semi-lattices, which are defined as sets equipped with a partial order
relation. In fact, formally, a tree can be viewed as a particular semi-lattice.
This gives rise and enables replying to a central question: how can an ontology
matching environment, defined on hierarchical structures (tree-like ontologies)
be generalized for ontologies containing other than subsumptional relations. We
will discuss this question in more detail in Chapter [of the thesis. Additionally,
a common mathematical model of ontological knowledge representation is given
by the so called Formal Concept Analysis (FCA), which now has become a stan-
dard field of lattice theory. Although not directly related to our approach, FCA
has been presented later in Chapter [3] of the thesis, together with a bridging
approach for translating an ontology into a concept lattice.

The structure of a set of concepts, or knowing how a concept is related
to other concepts, can tell us a lot about the semantics of the entities that
they model. However, structure alone cannot account for the semantics of a
given concept or what could its extension be. On simply structural bases, we
cannot judge whether or not two concepts taken in isolation are similar or
dissimilar and to what degree. Therefore, the main emphasis of the thesis
will fall on instance-based approaches to concept similarity. In the current
chapter, we gave an introduction to Support Vector Machines and discussed
issues related to their generalization properties (Section [2.2), we introduced
main concepts from variable and feature selection (Sectio, and, finally,
we revised approaches to automatic text categorization (Section [2.4). These
techniques operate entirely on real-world instance data and will be our basic
tools for measuring the semantic closeness of concepts as a part of an overall
procedure for extensional (instance-based) ontology matching.

As different as some of the fields described in this chapter may appear at
a first glance, all the discussed results will be necessary in order to introduce
a general approach to overcoming semantic discrepancies by combining these
results into a single framework for ontology matching. In addition to that, the
presented overview sections provide a broad enough ground for discussing a
wide variety of other related approaches and tools for ontology matching from
theoretical, practical, conceptual and motivational viewpoints. This is where
the main focus of the following chapter of the thesis falls.

48

Chapter 3

Ontology Matching

The present chapter discusses ontology matching by combining two main per-
spectives. On one hand, we approach the problem from a broader point of view,
speculating on possible origins of that problem by taking a cognitive science
stance. On the other hand, we present in a structured manner that part of the
state-of-the-art of the research in ontology matching, which is relevant to our
contribution to the field.

We start by discussing the question of why it is difficult to define an ontology
and try to formulate a definition, which covers most of the common conventions
of what an ontology is and fits best the matching approach that we propose
(Section [3.1)). Further, we discuss and classify possible application scenarios
(Section [3.2) and present two standard ways of modeling ontologies by using
description logics and formal concept analysis (Section . They are not di-
rectly relevant to our approach, but are building blocks for many approaches
related to ours. Section [3.4] contains a discussion of main motivational and
conceptual issues concerning the problems of ontology matching and semantic
heterogeneity, trying to sketch their evolution and origins from psychological
and broader computational points of view. Finally, a classification of differ-
ent existing ontology matching approaches is given in Section before we
conclude the chapter (Section [3.6).

3.1 Defining an Ontology

Ontologies in Artificial Intelligence have been introduced to describe the seman-
tics of data in order to provide a uniform framework of understanding between
different parties. Ironmically enough, despite this intention, there exists little
agreement on a common definition of an ontology among different authors, many
of which have proposed their own formal definitions, each taking into account
different aspects of the acquisition, modeling and intended application of on-
tologies. The main common reference to an ontology definition was provided by
Gruber back in 1993, describing ontologies as knowledge bodies which bring a
formal representation of a shared conceptualization of a domain — the objects,
concepts and other entities that are assumed to exist in a certain area of interest
together with the relationships holding among them. Gruber wrote:

An ontology is an explicit specification of a conceptualization. The

49

term is borrowed from philosophy, where an Ontology is a system-
atic account of Existence - the study of what there is. For Al sys-
tems, what “exists” is that which can be represented. When the
knowledge of a domain is represented in a declarative formalism, the
set of objects that can be represented is called the universe of dis-
course. This set of objects, and the describable relationships among
them, are reflected in the representational vocabulary with which a
knowledge-based program represents knowledge [61].

Gruber’s definition suggests that an ontology possesses loosely a set of con-
cepts and a set of relations between these concepts. The core-bodies of ontologies
are taxonomies — hierarchical structures that organize concepts by a subsump-
tion (is_a) relation. Web directories, such as Yahoo! or the Open Directory
Project are examples of taxonomies which classify items in a given domain of
interest. In the sequel, we will speak of hierarchical ontologies and we will define
precisely what we mean by that in Chapter [d] Section but let us never-
theless discuss what could a formal definition of an ontology in a broader sense
look like.

Despite the relative liberality among the members of the scientific commu-
nity concerning the question “what is an ontology?”, we will provide one formal
definition, which is general enough to satisfy many existing understandings of
that question, including ours.

Alexander Madche and Steffen Staab suggested a set of characteristics that
an ontology should or could possess which they called ontology primitives [97].
The set of ontology primitives consists of:

1. a set of lexical entries £ for concepts and relations;
2. a set of concepts C;
3. a taxonomy of concepts with multiple inheritance (heterarchy) He;

4. a set of non-taxonomic relations R described by their domain and range
restrictions;

5. a hierarchy (or heterarchy) on the relations R, Hg;

6. mappings F and G that relate concepts and relations with their lexical
entries, respectively;

7. aset of axioms A that describe additional constraints on the ontology and
allow to make implicit facts explicit.

We will make several comments on the list of primitives above, in order to
clarify its components.

e The set L is understood as the set of direct lexical references to the con-
cepts and relations in question, e.g. “School” for the concept SCHOOL,
“Parent” for the relation parent.

e The taxonomy is defined by a partial order on the set of concepts.

50

e The set R is left without a precise definition of what kind of relations
it might contain. Some examples are the partonimic relation (part_of),
as well as non-standard relations defined by the ontology engineer (e.g.
parent, employed_by, graduated_at, etc.).

e The set A includes axioms, which do not follow directly from the defined
relations and concepts, but are important for modeling the respective do-
main. They can come from background knowledge sources like dictionar-
ies, thesauri or top-level ontologies.

Based on the proposed list of primitives (but not considering all of its in-
gredients), Stumme and Méadche gave the following definition of an ontology
[144):

Definition 26 A (core) ontology is a tuple O := (C,is_a, R,0), where C is a
set whose elements are called concepts, is_a is a partial order on C, R is a set
whose elements are called relation names (or relations for short), ando : R — N
is a function which assigns to each relation name its arity.

An extended version of this definition is found in [79].

We note that the definition above does not prevent from the possibility each
of the defined sets to be the empty set, for example the set R, or even the set
C. And if an ontology with no relations between its concepts is trivial but still,
at least in theory possible, an ontology which consists only of relations but no
concepts does not have neither practical nor theoretical meaning, for relations
are defined on a set of concepts. For that reason, we add to definition one
necessary condition for O to be an ontology: C #). In fact, adding or removing
elements from the definition above moves the ontology that it defines on the
axis of expressiveness. An ontology which contains only a set of concepts is the
least expressive one. We gain more expressiveness by adding the relation is_a
and further relations defined on the set of concepts.

In the next sub-section, we will consider various ontology application sce-
narios.

3.2 Ontology Applications

“Ontology applications” is the title of the last and most voluminous part of
the Handbook of Ontologies, edited by Stefan Staab and Rudi Studer [143]. Its
eleven chapters go into different aspects of application of ontologies in multiple
real life scenarios. Since this is one of the few available endeavors in classifying
ontology application fields to date, we will describe it briefly in the sequel.
We will further argue that the application fields can be organized in a more
consistent manner.

Staab and Studer have conventionally classified the ontology application
fields into two big families — Knowledge Management and Interoperability and
Integration (of Enterprise Applications) (Figure .

The first class of applications aims at answering the question how ontolo-
gies can be of help in support of the identification, creation, representation and
distribution of knowledge. This includes the use of ontologies to support the
corporate memory of a a virtual business partnership using flexible, but well

o1

Ontology Applications

Interoperability & Integration
(Enterprise Applications)

Knowledge Management

Virtual Organizations Process Control

[\
Recommender Systems eCommerce
(Web Page Filtering)

|] L
Knowledge Integration Semantic Interoperability
{OntoWeb Portal) (of Software)

I I
Hypertext Bioinformatics
(Provide & Improve) {managing large databases)

[

Semantic Layering

(Making sense of what we find
I

elearning

Figure 3.1: Ontology applications: the classification of Staab and Studer.

understood for both humans and machines document-based data structures.
Ontologies are main bodies in the Semantic Web [12], therefore researchers and
practitioners have put efforts into developing different Semantic Web improve-
ment scenarios. In that context, ontologies are applied in various topics, such
as Recommender Systems (Web Page Filtering), Knowledge Integration (the
OntoWeb Portal projectﬂ), provision and improvement of hypertext, Semantic
Layering (or “making sense of what we find”’). Finally, using ontologies to
support eLearning finds ultimately place in this general class of applications.

The second class of applications is centered around the role of ontologies
for providing interoperability and integration of enterprise applications. Dis-
cussed are applications in the fields of Process Control (within a company or
between multiple partner companies), semantic interoperability of software (how
to enable the cooperation of two software applications that were initially not
developed for this purpose) and eCommerce. Finally, ontologies are able to man-
age large data bases; this has found place in Staab and Studer’s classification
in the context of bio-informatics — a broad contemporary ontology application
field.

We would like to comment on the structure and the completeness of the
proposed classification.

e Provided the big variety of real life areas where ontologies play a role,
splitting the various application fields in only two classes is not granular
enough.

e Moreover, the reader is left with the impression that most applications of
both classes at the end have to do with knowledge management for the
purposes of the eBusiness, which is a false suggestion.

Thttp://www.ontoweb.org/

52

e Virtual Organization, Knowledge Integration and Semantic interoperabil-
ity in their essence tackle with the same problem and are driven by the
same motivation of providing a mutual framework for semantic homogene-
ity and aim at similar application domains.

e Semantic Layering, Hypertext and Recommender Systems can also be
grouped together because, as observed above, they are basically Semantic
Web driven applications.

e Interoperability and Integration of data may be viewed as a sub-domain
of Knowledge management.

e Some important application fields have been left out.

— Ontologies in support of problem solving is a prominent application
domain. Problem solving methods provide reusable reasoning com-
ponents by specifying the way in which new facts can be inferred
from existing facts on the basis of some set of logical axioms com-
plementing an ontology. In that sense they could be classified in the
Knowledge Management part of ontology application tree or they can
form a class of their own — ontologies as inference systems.

— Planning in Artificial Intelligence deals with building action strate-
gies to be realized by intelligent agents. Applying ontologies in plan-
ning for providing semantics to the sequences of actions is a growing
research topic.

— Ontologies play an important role in Natural Language Processing.
Esteval and co-workers [42] discuss the possibility of coupling on-
tologies with the lexicon used in a natural language component of a
system for facilitating presenting and retrieving of information.

Our own contribution to a classification of the ontology application domains
builds on the work of Mizogouchi [I08] and Staab and Studer by using parts
of the typology presented by Mizogouchi in order to classify the application
domains discussed by Staab and Studer and some more fields that we find
necessary to include. The new classification tree is represented in Figure [3.2]

We have split the applications in three main blocks, containing intersecting
application instances.

e Ontologies providing a common vocabulary

This is the most intuitive and straightforward type of ontology application:
having a common vocabulary is the first step towards the systematization
and the sharing of knowledge of a given domain.

e Ontologies in support of information access

Ontologies provide vocabulary for annotation of web resources and enable
agents to use hierarchy and class relations in order to interpret this vocab-
ulary. This is a step towards making information access more intelligent
and using the enormous information sources of the World Wide Web.

53

Virtual Organizations

Knowledge Integration
(OntoWeb Portal)

Common Vocabulary li f‘::gaﬂntlcr;;\ teroperability

Process Control

communication

eCommerce

elLearning

! Information Access

Semantic Layering
(Making sense of what we find)

Hypertext

Ontology Applications

- Recommender Systems
—‘ Mutual Understanding (Web Page Filtering)

NLP

represenation and
reuse of knowledge

Bioinformatics
{managing large databases)

Problem Solving Methods

reasoning

Planning and Scheduling

Figure 3.2: Application fields of ontologies: a suggested classification.

e Ontologies for mutual understanding

Mutual understanding considers two types of communicating agents — hu-
mans and software agents. Each of them can be on either side of the
communication line.

Communication between humans can be facilitated by ontologies by pro-
viding environments for knowledge-intensive engineering such as concur-
rent engineering, business process re-engineering and other.

A big part of the ongoing ontology research driven by the core ideas that
lie in the project of the Semantic Web [12] concerns understanding between
humans and software agents, seen in the case of web resources search and
use. (An application scenario of ontologies on the semantic web scale is

presented in Figure)

Communication between software agents has been discussed above in terms
of allowing the cooperation of two software applications that were initially
not developed for this purpose.

Finally, the interested reader may like to consider the work of Gaitanou
[49] which presents yet another classification of the ontology application fields
divided into six main fields: Semantic Web and knowledge management, Large
scale applications — machine translation, E-commerce, Multimedia and graphics,
Peer-to-peer networks and Pervasive computing environments.

54

Onotlogies

> Annotations e B
’ L A "guitar”is a
")’/ & "musical
Web Pages [\, This document is about NN instrument”.
guitars. o Q
-—

Ontologies are not about how
documents are related, but about
Markup languages make use of terms:| [how terms are related.

"guitar”, "musical instrument” T

about musical instruments

Figure 3.3: Semantic Web Ontologies.

3.3 Modeling Ontologies

We will discuss two basic models for ontologies, based on entirely different the-
oretical mechanisms: description logics, which evolved from knowledge repre-
sentation research [91] and formal concept analysis, which is considered as a
sub-field of lattice theory and one of its prominent practical applications [51].

3.3.1 Ontologies in Description Logics

In our study, we focus on hierarchical ontologies designed for text categorization.
We use order theoretic and graph theoretic approaches in order to embody
their structural properties and measure their structural similarity. We infer
conclusions on the ontologies semantic closeness by combing structural measures
with instance-based concept similarities, based on modeling concepts as sets of
text documents.

In the sequel, we will give a parallel representation of (hierarchical) ontologies
within a Description Logics (DL) framework. DL stands for a set of expressive
formal languages largely applied in representing ontology terminologies. We will
argue that the AL language (standing for Attributive Language) is the sufficient
language to describe the ontologies of our interest. Before we do so, however,
we give some remarks on the motivation and evolution of Description Logics.

Knowledge Representation (KR) in Artificial Intelligence aims to provide a
high level description of the world embedded in intelligent applications which
enable a system to find implicit consequences of explicitly represented knowl-
edge. Description logics evolved as a framework which provides a representation
of the knowledge of a domain (the “world”) by defining the relevant concepts
(the terminology) and using these concepts to specify properties of objects and
individuals occurring in the domain (the world description) [112].

In Figure[3.4] we have traced the most important moments in the KR history,
which have led to the development of the Description Logics based languages.
As we can see from the diagram, on one hand knowledge representation has
been developing in a purely logic-oriented framework; on the other hand and
mostly not independently from the former, non-logic-based approaches have
been applied. The latter include semantic networks based representations, fur-
thered by the famous experiments by Collins and Quillian [28] in which nodes
characterize concepts (sets of individuals) and links between nodes characterize

55

| Knowledge Representation|

Logic-based

Nen-logic-based

1960s-70s

Predicate calculus unambiguously Building on more cognitive structures —
captures facts about the world. Reasoning network structures and rule-based
amounts to verifying logical consequence. representations

I
1967 Semantig Networks

(Quillian)

|

4| How to provide semantics to structures? }7
1985~ | Frames and semantic nets can be

regarded as fragments of FOL
(Brachman, Levesque)

Teminological systems -> Concept languages ->
Description Logics

Figure 3.4: KR: A historical track.

relationships. A hierarchy is defined by the is_a relationship: the more specific
concept inherits the properties of the more general one. More complex relation-
ships (roles) can be also represented as nodes. These kinds of relationships are
also inherited by the sub-concepts in the hierarchy. Most importantly, semantic
networks allowed the inference of new relationships on the basis of old ones.
The observation that semantic nets can be viewed as fragments of First Order
Logic, the development of Frame Languages, combined with the need to provide
semantics and more expressiveness to structure-based representations led to the
introduction of the Description Logics family [7].

To sum up, DLs are a family of knowledge representation formalisms
equipped with a formal, logic-based semantics and reasoning is their central
service. We outline three basic facts about DLs [112]:

e The basic syntactic building blocks are atomic concepts (unary predi-
cates), atomic roles (binary predicates) and individuals (constants);

e The languages use a rather small set of constructors for building complex
concepts and roles;

e Implicit knowledge about concepts and individuals can be inferred auto-
matically by the help of inference procedures.

The way the entities listed above interact is sketched in Figure [3.5] The
expressiveness of DL languages change with respect to the defined constructors.
The Attributive Language (AL), often considered as the minimal DL language
of practical interest, is described in some more detail below.

56

‘Atomic Concepts| ‘ Atomic Roles ‘ Elementary Descriptions
(A.B,..) (R...)

‘ Concept Constuctors | Description Languages

‘ Complex Descriptions |
(G, D,...)

Figure 3.5: DL: Elementary and complex descriptions.

Syntax Semantics

Al atomic concept

T| universal concept T = AZ

1| bottom concept 17 =9

—A| atomic negation (~A)T = AT\ A%

C' N D| intersection (CcnD)Yf=ctnD?
VR.C| value restriction | (VR.C)T = {a € AT|Vb: (a,b) € RT — b e CT}
JR.T| limited existential

quantification (AR.T)E ={a € AZ|3b: (a,b) € R |

Table 3.1: DL: Syntax and semantics of AL.

The Attributive Language (AL)
Syntax

The basic syntax of AL underlies all description logics. It consists of a set of
concept names (unary predicates), a set of role names (binary relations) and
definitions of new concepts from concept names and role names using construc-
tors. An AL-concept is every atomic concept, the top concept T and the bottom
concept L. Additionally, if C' is an atomic AL-concept then so is its comple-
ment —C; if C and D are AL-concepts, so is their intersection (conjunction)
CnD;if Cis an AL-concept and R is a role name, then VR.C' is also an AL-
concept (value restriction); and, finally, if R is a role name, then IR.T is also
an AL-concept (existential restriction) (see Table [3.1] (left)).

An extended version of AL logics may include concept disjunction C U D,
where C and D are AL-concepts, full existential quantification — if R is a role
name, then IR.C is also an AL-concept and number restriction < nR.C and
> nR.C, where C is a AL-concept and R is an AL-role.

Semantics

Let AT be one of the possible domains over which the AL Description Logic
quantifies — a non-empty set of objects and let -Z be an interpretation function,
which maps individual, concept and role names to, respectively, elements, sub-
sets or products of the domain. More precisely, for an atomic concept C, its
interpretation is given by CZ C AZ. Analogously, a role R is interpreted by -Z

57

as RT C AT x AT,
The AL-concepts interpretation is given in Table (right). For the ex-
tended AL, we have additionally:

(Cu D)t =c*TuD?,

(3R.C)t = {z € AZ| there is a y € AT with (z,y) € R, and y € CT}.

(< nR.C)T = {z € AT|#RY(x,C) < n},

(>nR.C)E = {x € AT|iR?(x,C) > n}, where N denotes the cardinality of
aset N and RZ(x,C) := {y|(z,y) € RT and y € CT}. If z € C%, we say that
is an instance of C' in Z, and if (z,y) € RT, then y is called an R-successor
of x in 7.

Formalizing ontologies in a TBox

In order to be able to do reasoning with ontologies, one needs to define a central
ontological notion, the so called TBox, explained as a set of terminological
axioms which describe the intensional knowledge of the world. Axioms are
equivalences of the kind C' = D or inclusions, such like C' J D for two concepts
C and D. More formally, we give the following definitions.

Definition 27 Subsumption and equivalence of concepts. Given two con-
cept names C and D, C subsumes D, denoted by C 3 D if and only if it is true
that CT D D7, for all T. The equivalence relationship, denoted by C = D is
induced by C 3 D and D 3 C, interpreted as C* = DZ.

Definition 28 A general concept inclusion (GCI) is of the form C C D,
where C', D are AL-concepts. A finite set of general concept inclusions is called

a TBox. An interpretation I is a model of a TBox T if and only if it satisfies
all GCIs in T, i.e., it holds that VC : C T D e T, CT C DT,

Remark 29 Defining axioms as inclusions only, and not as equivalences is
sufficient, following definition[27 In that sense, concept definitions can be ex-
pressed by two inclusions.

Formalizing ontologies in a TBox is a well studied task. We will sketch the
general procedure which one follows.

Before introducing the specific formal language in which the ontology is
to be presented (which will lay the “walls” of the TBox), one usually defines
the possible worlds by restricting the allowed interpretations. That is done by
declaring a set of GCIs. The properties of each of the elements of our world
can be expressed by additional GCIs. The concepts contained in our world
or application domain are defined by concept definitions of the type A = B.
A defined concept is every concept which is found on the left hand side of a
=-expression [44]. In doing so, it is important to ensure that there are no
multiple definitions, as well as that the defined names do not occur in any of
the additional GCls.

Ezxample: A definition of a concept:

AcousticGuitar =
MusicalInstrument((< 6 hasStrings.T)M(> 6 hasStrings.T)M3isHollow. T

To sum up, a TBox can, on one hand, axiomatize the basic notions in an
application domain (the primitive concepts) by GCIs and role inclusions. On the

58

other hand, more complex notions (the defined concepts) can be introduced by
concept definitions. The subsumption hierarchy of the defined concepts induces
the tazonomy of the TBox [6].

World Description: The ABox

The ABox is defined as a set of assertions about the individuals, sometimes
called membership assertions. It contains the extensional knowledge about the
domain, described by the TBox.

Definition 30 Syntax and semantics of the ABox. The ABoz is a finite
set of assertions of the form C(a) or R(a,b), where a and b are individuals, C
18 a concept and R is a role. The interpretation I(AI, -I) is a model for two
individuals a* € AT and b* € AT under the conditions:

T = Cl(a) iff a* € CT and

T k= R(a,b) iff (aZ,b?) € RZ.

Ezample: the assertions Father(PETER) and hasChild(PETER, JOHN) are
a part of an ABox and mean that the individual Peter is an instance of the
concept “Father” and has a child, John.

Hierarchical ontologies in AL

As stated before, we are interested in ontologies that can be structurally seen
as directed rooted trees (see Definition [39] Section [.1.1)). Later, we introduce
a procedure of generalization which allows by the help of operations on trees
(such as a Cartesian product) to deal with more general structures, such as semi-
lattices and DAGs. Nevertheless, in the center of our attention remain ontologies
structured around a strict hierarchical backbone containing only subsumptional
(is_a) relations between concepts, so called hierarchical ontologies. We will
see in Section [:2] that there is a trivial translation of hierarchical ontologies
into trees, where the root node of the tree represents the most general ontology
concept, all other nodes represent sub-concepts of the root and its successors
and all edges represent the subsumptional relations between classes. It is just
as simple to represent the hierarchical ontologies in AL by using the analogue
to a tree-structure.

e The root node is the top concept T.
e Any other node of the tree is a AL concept.

e The adjacency relation is_a between two nodes corresponds to the relation
C between two concepts.

An interpretation I = (A!,.1) consists of the set Al = M, where M is
the set of all instances of concepts contained in a document set A as will be
defined later and -/ maps a role to a subset of M x M. All the definitions of the
semantics of the concepts and the relations remain unchanged. For example, the
concept Oy M Cy will be interpreted in the following way: (C;MCs)! = CIncCe,
where (C1)! € M and (C3)! C M. All other interpretations follow trivially
from the definitions above.

59

The following section focuses on Formal Concept Analysis - a data driven
model for conceptual knowledge representation, formally introduced as a sub-
field of lattice theory.

3.3.2 Ontologies and Formal Concept Analysis

Formal Concept Analysis (FCA) is another theoretical framework of represent-
ing the knowledge in a certain domain of interest, which is different from DL-
based models of concepts and their relations mainly in the fact that FCA always
relies on data, on some set of objects or a fragment of the world in order to con-
struct a model. Ontologies, in general can exist without instances, simply as
intensional structures; FCA is rather an artifact derived from a dataset [27].
Again, due to the fact that this work focuses exclusively on tree-structured
ontologies, which categorize documents, we will discuss the Formal Concept
Analysis model within the scope of hierarchical document populated structures.

Formal Concept Analysis

Formal Concept Analysis (FCA) has been introduced as a mathematical theory
for concept modeling in terms of order and lattice theory. It incorporates a
mathematical description of the notions of concept extension and intension. An
ontology is modeled as a complete lattice where each lattice node represents a
concept as a pair of a set of objects and a set of attributes. Each concept inherits
the attributes of its super-concepts and each concept contains all objects of its
sub-concepts. We will present several formal definitions and properties, taken
from the introductory book by Ganter and Wille [51].

Definition 31 A (formal) context is a triple K := (G,M,I), where G is a
set whose elements are called objects, M is a set whose elements are called
attributes, and I is a binary relation I C G x M. (g,m) € I is read “object g
has attribute m”.

Definition 32 For A C G and B C M, we define the corresponding sets
A'i={meMNVNge A:(g,m) eI}

and
B :={ge GVme B:(g9,m) € I}

A (formal) concept of a formal context K (definition is defined as a pair
(A,B) with ACG, BC M, A =DBand B"=A. A and B are correspondingly
the extent and intent of the formal concept (A, B).

We note that the use of the same term “concept” in FCA and in ontologies for
denoting different things sometimes causes confusion. Both approaches are just
two different models for concept representation independent from one another
both historically and conceptually. Ontology concepts are most close in function
to the attributes of FCA for reasons related to their similar roles of unary
predicates on the set of objects [144].

The following proposition presents some important properties of the intents
and extents of formal concepts.

60

Proposition 33 Let K := (G, M, I) be a formal context and let A, A1, As C G
and B, B1,Bs C M. For the object sub-sets, it holds

1. Ay CAy= A, C A
2. AC A’
5)' AI — AI//
for the attributes subs-sets it holds

2. BCB”
3. B'=DB"
and

ACB &@&BCA e AxBCI.

A proof of the proposition, although straightforward, can be found in [51].

Formal concepts can be ordered in a conceptual hierarchy naturally evoked
by the subconcept-superconcept relation. A “cow” is a subconcept of an “ani-
mal” because all cows are animals. A partial order is introduced on the set of
formal concepts in order to model the concept hierarchy.

Definition 34 Let (A1, B1) and (Az, Ba) be two formal concepts. It holds that
(A1, B1) < (A2, Bs) & Ay C Ay or, equivalently (due to proposition , By C
B;.

Hierarchical ontologies as concept lattices

The relation between ontologies and formal concepts has been a subject of dis-
cussion in the past years. As stated above, the main difference between FCA
and ontologies, is that the former relies on instance-data to a higher degree
than the latter. However, since we are studying ontologies with instances, we
will attempt to provide a straightforward manner of stating the correspondences
between the elements of an ontology (instances and concepts) and those of a
formal concept lattice (objects and attributes).

In previous studies, it has been argued that, most naturally, ontology con-
cepts are directly identified with formal concepts. However, the fact that at-
tributes can be viewed as concepts themselvesﬂ furthered the development of
the view that ontology-concepts are more likely to correspond to both the at-
tributes and the objects of a formal concept lattice (see an example from the
tourist domain taken from Cimiano et al. in Figure .

In the current section, we will discuss what is another possible approach
to translate tree-structured ontologies containing text documents (instances)
assigned to their nodes into concept lattices in terms of FCA. We will criticize
a state-of-the-art approach (reviewed as well in Section and discuss a more
intuitive, in our view, manner of accomplishing the goal.

2Cited by Cimiano, Hesse argues that “[attributes] are units of thought which are gained
by abstraction, and hence they are also concepts” [27].

61

hookable

5 s
_ hotel \> /"_ L g
s — rentable)

___ i, A

o R
/\fxnmsio-xb \/_ trip -3 \ driveable) (apartmem)

rentahle

apartment

BHCUSION

Sy
'\- naeaple -> C

1
o D

Figure 3.6: A formal concept lattice into a taxonomy (from [27]).

The FCA-Merge approach to ontology mapping, introduced by Stumme and
Maedche in 2001, is a method for merging two ontologies, populated with in-
stances taken from a set of text documents relevant to both ontologies. The
approach applies natural language processing techniques and FCA to derive a
concept lattice as a result of the merging procedure which is further transformed
back into a merged ontology [144]. For each ontology O; a unique formal context
K; .= (G;, M;, I;) is generated in the following manner. The set of documents
Do, corresponding to O; is taken as the object set of the formal context, i.e.
G, = Do, and the set of ontology concepts is taken as an attribute set, i.e.
M; = Co,. The relation (g,m) € I; holds whenever a document g € Doy,
contains an instance of m € Cop,.

As the identification of the set of documents with the FCA object set is
straightforward, we will argue that identifying the set of ontology concepts with
the set of FCA attributes is, at least, not highly intuitive. A formal concept
consists of attributes and objects such that, when ordered in a concept lattice,
each concept inherits the attributes of its super-concepts and contains all objects
of its sub-concepts. The inheritance rules that hold for concepts are different
from those holding for attributes. A concept in a hierarchical ontology inherits
the properties of its parent-concept. An attribute from a FCA-concept is more
similar to what we have just called properties, than to the ontology-concept
itself. Merely mapping the attributes to the ontology-concepts makes it unclear
how exactly the subsumption of concepts is realized in terms of FCA-attributes.

We see that as a problematic side of this approach and, in order to avoid
this confusion, we propose making use only of the documents assigned to the
concept nodes in order to define a formal concept and translate an ontology into
a FCA concept lattice.

Let us divide the set of documents in two major sets of subsets in the fol-
lowing manner. For any given concept C;, let Dguip denote the set of documents
assigned to the concept C; and all of its super-concepts. Analogously, let the
set Ds(’zjb denote the set of documents assigned to the concept C; and all of its

sub-concepts. The set ngb is the extension of the concept C;, containing all

62

Figure 3.7: Hierarchical ontology to FCA.

concepts instances and is thus translated into the concept’s object set in FCA.
The set ngp, on the other hand, is more similar to the concepts intent, because
this is the set of documents whose associated concepts are subsumers of C;. For
that reason the set DY, is identified to the FCA attribute set of a concept.

Let n be the number of concepts in a given ontology O. In terms of a formal

sub
context, we define:
Uizt,...n{D5ip} = M

Ui:l,...,n{ngb} =G

The relation [is again defined as I C M x G, or equivalently (m, g) € I and
one reads: a document as an object m has a document g as its attribute.

Finally, we note that some nodes, such as the root node, need not always be
assigned a document to, which will deprive them of attributes. To make up for
that we introduce the slack document dg to be assigned to the root node and
additional slack documents d to be assigned to other document-less nodes.

We will illustrate the presented idea with one example. Figure [3.7] repre-
sents a hierarchical ontology with documents assigned to its concept nodes (the
concepts instances). Let the set of documents be D = {dy,d,...,d14}. The
relation [is presented on Table

e The top concept T is translated into the formal concept
T:= (AT,BT), with AT = {do,dl, ...,d14} =D and BT = {do}

e The ontology concept C is translated into the formal concept
Cl = (AhBl) with A1 = {dl, ...,dg} and B1 = {do,dl}.

e The ontology concept Cj is translated into the formal concept
03 = (A37B3) with A3 = {dg, ...,d7} and Bg = {do,d17d27d3}.

63

—
=8
S
=8
=
U
¥
=8
w

dy | ds | de | d7 | dg | do | dig | di1 | di2 | di2

d14

dq

da

ds

dy

ds

SRR R R R]
AR R R R
™
™

SRR R R R Rl el e

o]

AL A A e R L A R s R s A R R e A R s

Table 3.2: FCA: The relation I

e The ontology concept C7 is translated into the formal concept
07 = (A77B7) with A7 = {d4,d5} and B7 = {do,dl, ...,d5}.

e The bottom concept L is translated into the formal concept
1= (AL,BL) with AL = @ and BL = {do,dl, ...,d14} =D.

It is straightforward to verify that the concepts, as defined here, follow the
rules for formal concept subsumption as introduced in definition[34] For a sketch
of a proof, let us take for instance concept C7 and Cjs, for which in the ontology
tree, it holds that C7 < Cj, where the partial order < stands for the relation
is_a. The same relation between the two concepts holds when taken as formal
concepts, i.e. (A7, By) < (As, Bs), since A7 C Az and B3 C By.

3.4 Ontology Matching: Motivations

In the broadest sense, ontology matching is the process of finding correspon-
dences between the elements of two or more heterogeneous ontologies. Because
of the nature of our approaches to ontology matching which are combined of
(sub-)approaches that are themselves heterogeneous, in this section, we will not
give a formal definition of ontology matching to adher to throughout the whole
study. Instead, we will discuss in a broader sense different motivational ques-
tions and aspects of the problem that form the background of this field. Later
on, however, when presenting our approaches, we will formally state what is un-
derstood by matching (concepts or taxonomies) within the framework of each
stage of the approaches.

The following section introduces phenomena related to the possible ambigui-
ties emerging among communities in representing semantic knowledge which, we
have claimed, underlie the problem of ontology heterogeneity, presented further.
Since semantic similarity is introduced to re-establish the links between different

64

Concept of a representation

Concpet Representation
of a concept

Real World Symbol
Object

Figure 3.8: The meaning triangles of Ogden and Richards and Sowa.

conceptual representations of the same entities and thus provide basic building
blocks for an ontology matching procedure, similarity will be discussed later on
in relation to human concept formation and measuring semantic proximity of
concepts.

3.4.1 Representation of Semantic Knowledge

In order to explain the problem of ontology matching, its motivation and pos-
sible solutions, we need to examine more deeply the representation of seman-
tic knowledge and a phenomenon called semantic heterogeneity. Ogden and
Richards [I17], back in 1936, described the relation between the real world
objects, the concepts (defined most commonly as mental representations) and
symbols (language expressions) introducing the so called meaning triangle: a
symbol stands for a real world object and evokes a concept; a concept refers to
a real world object. Later on, in 2000 John Sowa [I41] built on top of the mean-
ing triangle the knowledge representation triangle, aiming to show how a person
connects his concept with a certain conceptual representation. On the knowl-
edge representation triangle’s vertices we find: the concept (a vertex from the
meaning triangle), a representation of a concept (which models the concept) and
a concept of representation (which relates to the concept of the representation
of a concept). Figure summarizes these ideas.

Clearly, the mental representation (concept) and the choice of a symbol
(word) for a given real world object may differ among different people. For ex-
ample, the symbol for a given real world object, say an electric guitar amplifier,
may differ because of the language different people choose to use. “Amplifier”
might be the symbol chosen by an English speaking person, while it is more
likely that a German native speaker chooses the symbol “Verstarker” for the
same real world object. More over, even among people that have reached an
agreement on the use of a common natural language, the symbolic ambiguity
might still appear. It is possible that a guitar player that works everyday with
electric guitar amplifiers and knows a lot about different kinds of amplifiers (for
which reason he needs to distinguish between them) might call it a “Squire”

65

(following the brand of his favorite amplifier manufacturer), someone else might
still use the symbol “Amplifier” or the abbreviation “Amp”.

The conceptual ambiguity appears quite often, too, since different people
develop different mental representations of one and the same set of real world
objects, depending on the categorization principles they decide to use and the
references to the category they have among the real world objects. It is argued
that this is a complex process in the core of which lie various historical and cul-
tural conditions, as well as complex psychological processes [I31]. Particularly
important is the question what role similarity plays in this whole process and
how is it defined and perceived, especially because similarity of concepts helps
us judge on their semantic proximity. (Section and Section of this
chapter focus on questions related to the principles of human categorization and
similarity assessment.)

Finally, going up to the knowledge representation triangle, we will find dif-
ferent representations of one and the same real world object, since its con-
ceptualization varies among different people. We will claim that this is where
ontology heterogeneity, as defined in the introduction of the thesis, evolves from.
Solving the heterogeneity problem by the definition and application of various
measures of (semantic) similarity of concepts introduces rules for trnaslation
between different conceptual systems - essential for the mutual understanding
and interoperability between (human or artificial) agents.

3.4.2 Ontology Heterogeneity: Aspects of the Problem of
Ontology Matching

Ontologies, as knowledge representation bodies, suffer the problem of knowl-
edge representational heterogeneity described above for many reasons, mostly
because of the limitations following from the decentralized and strongly human-
biased nature of ontology acquisition. Ontologies are being created from differ-
ent people and communities independently from one another and this process is
largely manual or, in the best case, semi-automatic. In many open and evolv-
ing systems and applications with decentralized nature where ontologies are
broadly applied, such as Peer-2-Peer Systems, eCommerce or the widely dis-
cussed Semantic Web [12], it is unlikely that different parties would adopt the
same ontologies to represent the same fragments of knowledge. This has lead to
the creation of a considerable number of ontologies, which describe similar or
overlapping domains of knowledge but their elements do not explicitly match
— a phenomenon that we have called in the introduction of the thesis ontology
heterogeneity. (See Figure for an illustration of two ontologies which share
a semantic overlap).

Ontology matching amounts to reducing ontology heterogeneity and, ulti-
mately, overcoming the barriers in front of knowledge sharing. In the beginning
of the section, we spoke of the problem of heterogeneity in knowledge repre-
sentation. Ontology heterogeneity originates at that problem and can occur in
many different forms. Many authors have provided classifications of the differ-
ent types of mismatches that can occur among schema, databases and ontologies
[10] [43], [85], 139]. Following the heterogeneity typology by Euzenat and Shvaiko
[43], one distinguishes between four main types of heterogeneity and we will
briefly describe each of them.

66

ontologies

BRI

Figure 3.9: Overlapping ontologies.

domains

Syntactical heterogeneity concerns ontologies, which are expressed in differ-
ent formal languages [3]. As argued by many authors, this type of heterogeneity
is among the easiest to overcome. It should be tackled on a theoretical level by
defining correspondences between the constructs of the different languages.

Terminological heterogeneity is about vocabulary mismatch: differences in
the choices of names when referring to the same ontological entities (concepts,
relations or instances). Usually, lexical or instance-based matching techniques
are applied in order to find correspondences between such entities.

Conceptual heterogeneity refers to three sub-types of differences when mod-
eling the same domain of interest:

e Differences in coverage: two ontologies describe different or partly over-
lapping domains, from the same perspective and in the same detail;

e Differences in granularity: two ontologies describe the same domain, from
the same perspective, but in different details;

e Differences in scope: two ontologies describe the same domain with the
same level of detail, but from a different perspective.

Finally, semiotic or pragmatic heterogeneity collects mismatches in how en-
tities are interpreted by people in a given context and is hard to model compu-
tationally.

Of course, the typology presented above is not universal and the different
heterogeneity types often appear simultaneously. For instance, syntactical het-
erogeneity, as described here, can result in semantic differences; terminological
differences, on the other hand, are also considered in various sources as syntac-
tical; etc.

As already observed, reducing heterogeneity is achieved in terms of identify-
ing similarity. More generally speaking, the match as an operation on structured
information can be defined as an operation, which takes two ontologies as an in-
put and produces a mapping between those elements of the two ontologies that
correspond semantically to each other. Therefore, the task of ontology matching
can be viewed as the identification of similarities between the different elements
of two distinct ontologies, by applying a defined distance function or measure

67

of similarity between two ontologies or their alignable elementsﬁ [66]. A very
general definition of this process can look like that:

Ontology matching is the process of identifying the implicitly con-
tained similarities between the elements of two heterogeneous on-
tologies, which cover the same or similar domains of knowledge but
their elements do not explicitly match.

We have seen that there are two notions, which lie at the core of the problem
and the process of ontology mapping — the notion of similarity and the notion of
categorization and conceptualization. They are strongly related and interfering
concepts which have been studied broadly in many fields of natural science
and humanities. Even though discussed from different angles by psychologists,
philosophers and Al-people, we find it a worthwhile effort to have a glance at
some prominent psychological models of human similarity assessment, category
and concept formation, as well as at some philosophical discussions concerning
the role of similarity in human categorization in order to provide a broader
ground for the study of the problem of ontology matching in terms of conceptual
similarities.

3.4.3 The Role of Similarity in Human Categorization

The relation between similarity and categorization, these two ground concepts
in human cognition, has been changing in the views of philosophers and psychol-
ogists during the past decades. The intuitive idea that similarity is at the core
of categorization was broadly accepted during the 1970s. The main argumenta-
tion provided by defenders of this theory like Eleanor Rosch and co-workers [131]
was that similar objects are found in the same category; an object is assigned
to a category, whose other member-objects it is most similar to. Categorization
has inductive properties: knowing that an object belongs to a given category,
we are able to infer properties of that object as long as they are common for
other members of the same category (a phenomenon referred to by Sloutsky as
inductive generalization [140]).

In the mid-seventies, Nelson Goodman, as cited by Quesada [124], criticized
this view by putting forward the argument that similarity as a concept is itself
vague and ill-defined. The philosopher rejected the validity of the intuitive
statement that two objects are similar and thus belong to the same category
because they have many common properties. Any two objects, according to
Goodman, have infinitely many similar and infinitely many dissimilar features.
For example, a feather and a cannonball have the common property that they
weigh less than 100 kg and also less than 101 kg, etc. Therefore, it makes
sense to talk about similarity only if we have specified in what respect we judge.
Thus, categorization is about “respects” and not about similarity. In relation
to that, in the 1980s it became a popular view that categorization cannot be
accounted for by similarity, but rather by our theories about the kind of things
(features, properties) that an object can be characterized by. These theories
form explanatory systems around which our categories — fragments of our world
knowledge — are organized. A series of empirical studies by Rips providing

3By alignable elements we mean elements that correspond to the same component of an
ontology definition. Alignable are the sets of concepts of two ontologies, but not the set of
concepts of one ontology and the set of relations of the other.

68

evidence for the validity of this “theory-based” model of conceptualization is
discussed by Hampton in [67].

However, despite the harsh criticism of the similarity-based approach to
categorization, similarity did come back to the categorization scenario again. As
Sloutsky [140] and Hampton [67] argued, the theory-based model is problematic
for it does not explain where does the conceptual knowledge which organizes
the things in the world in categories originate. Most probably, they claim and
provide in their turn experimental evidence, it is based on simpler perceptual
components. Thus the focus has been switched back on enhanced similarity
based approaches which make up for the drawbacks of the classical similarity
account of categorization.

3.4.4 Accounts of Human Similarity Assessment

We will focus on a couple of standard and some recent approaches to modeling
human similarity assessments — the principles that lie in the basis of how humans
judge on two entities as being similar or dissimilar. Currently, there are several
big groups of similarity models that contain approaches which are considered
to be psychologically and cognitively plausible. We will go into four of them —
spatial models, feature models, hierarchical structure models and models based
on transformational distance. The models from each of the four groups have
their strengths and their weaknesses and none of them is seen as the only generic
similarity model, but rather as a model which is efficient with a given respect.
Therefore, we will emphasize a set of relatively recent approaches which are
particularly relevant for ontology engineering, semantic web applications and
text categorization, as pointed out in a comparative study by Jose Quesada
[124]. A more profound overview of the existing semantic similarity models is
found, for example, in the doctoral thesis of A. Schwering [135].

A discussion that compares our approach to ontology matching and semantic
similarity to the accounts of similarity presented below and situates it among
them is found in Section [£.4.2] of the thesis.

Spatial models

The idea that internal representations of external stumili can be modeled by
using a metric space was initially proposed by Roger Shepard in the late 1950’s
[138]. A metric space is defined by a metric, or a distance function d which
takes two elements of a set and returns a real non-negative number — their
distance — and has the properties minimality (d(x,y) > d(z,z) = 0), symmetry
(d(z,y) = d(y,z)) and triangle inequality fulfillment (d(z,y)+d(y, z) > d(z, z),
where z, y and z are three elements of some abstract space; see definition [T3]
from Section [2.1})

Multidimensional scaling (MDS) was proposed by Shepard and co-workers
as an approach to represent closeness of data in a metric space. The main idea
is that objects are represented as vectors in a multidimensional space, where
the dimensions of the space are continuous features of some kind. The distance
between two objects in a n-dimensional space is given by Minkowski’s formula

n

1

dmink(x%xj) = (E |xik - ‘Tjk‘r)r’
k=1

69

where r is a parameter to be fixed and x; is the k-th dimension value of z; and
%) is the k-th dimension value of the element x;.

A prominent follower of the MDS methods is the Latent Semantic Analysis,
discussed in Chapter [2] - a spatial model of similarity between documents and
words which is based on projecting data onto dimensions defined by distinct
contexts in text corpora (a semantic space). However, a serious drawback of
MDS and LSA in particular in the context of semantic web applications is that
they are based on using statistical information, whereas most of the data on the
semantic web is written in some kind of a formal language and controlled by
logical operations.

Feature models

Amos Tversky, among others, is known as a firm opponent to the spatial models.
He provided empirical evidence that the three main assumptions that define
a distance function are often broken when it comes to human judgments of
similarity [I53].

Minimality violations have been observed on judgments of the similarity
of complex objects as opposed to the similarity of simpler ones. The more
complex structure two identical objects have, the more they seem to be similar
as compared to simpler identical objects.

Violations of the symmetry assumption have been pointed out by an example
which now has become classical. Subjects were asked to judge the similarity of
North Korea to China and the similarity of China to North Korea. The two
countries have been more often judged to be similar in the first case than in the
second one.

Finally, arguments that the triangle inequality does not necessarily hold for
any three objects have been provided, as well. An example in support of that
critique of the spatial model is the fact that although a lamp is similar to the
moon, and the moon is similar to a football, a lamp and a football still have
very little in common.

Evolving from these criticisms, feature models are based on the assumption
that objects are assessed as sets of features. The similarity of x and y is measured
as a function of the intersection and complements of their corresponding sets of
features X and Y

Oversky(X,Y) = f(XNY),(X\Y), Y\ X),0,q,8). (3.1)

We recall that N denotes set intersection and \ denotes set difference (Figure
. O, o and § are parameters which are most commonly set empirically and
serve to attribute greater or smaller weights to either of the three set-related
quantities.

We will pay some more attention to a recently proposed feature model which
is among the first ones that attempt to operate on text corpora. The Topic
model introduced by Griffiths and collaborators a few years ago [60] focuses on
the relations between words in language use on the one hand and the relations
between words and concepts, on the other hand. The topic model is centered
around the idea that there exists a probability distribution from which a set

4The given formula is a general statement of Tversky’s similarity, where it is not indicated
how do the entities precisely relate.

70

Figure 3.10: Tversky’s feature model.

Topic
123
Bank [l MONEY STREAM olL
COMMERCIAL BANK RIVER PETROLEUM
GRUDE FEDERAL BANK GASOLINE
DEEP RESERVE DEEP CRUDE
DEPOSITS LOANS WoODS — COMMERCIAL
DRILL DEPOSITS FIELD DEPOSITS
FEDERAL COMMERGIAL ~ MOMNEY RIVER
FIELD CEEP MEADOW DRILL
GASOLINE MEADOW oIL MONEY
LOANS oL FEDERAL DEEP
MEADOW RIVER DEFOSITS FIELD
woneY il CRUDE LOANS STREAM
Sl g comemw e
PETROLEUM GASCLINE DRILL LOANS
RESERVE : PETROLEUM GASOLINE FEDERAL
RIVER ﬁ STREAM PETROLELUM MEADOW
STREAM WOCDS RESERVE WOoOoDs
WOODS

Figure 3.11: The topic model (taken from [60]).

of words has been generated that can be inferred, called a topic. The gist of
any set of words (like, for example, a document) can be represented by the
means of a probability distribution over a set of topics. The words that are
assigned a higher probability by a given topic are those that reflect that topic’s
content. An example, taken from the paper Topics in semantic representation
by Griffiths et al [60] is shown in Figure words are organized by probability
distributions (topics); the probabilities of words under three different topics is
shown in the table (left); on the right, we see the words contained in each topic
ordered by probability with respect to a topic. A set of topics can be learned
automatically from text corpora by the help of Bayesian statistical methods,
which, according to the authors, throws a bridge to the way in which humans
would form semantic representations when presented with the same collection
of texts.

The topic model suggests increased association between two words if a topic
assigns high probabilities to these words and decreased if this topic assigns high
probability to one word, but not to the other. In that respect, the analogy with
feature models based on equation is relatively straightforward, because
feature models are equally based on both common and distinctive features in
order to claim similarity of entities.

Quesada [124] observes that the topic approach is particularly relevant for
ontology mapping and semantic web representation problems, because it com-
bines statistical learning with structured representations — an advantage of the
method compared to Latent Semantic Analysis or semantic network approaches
(not discussed here, see [28] for a reference).

71

o O
R 4

c)

Figure 3.12: SR: Structured representations.

Hierarchical models of structured representations

Hierarchical models, also known as alignment models, assert that in judging the
similarity of two objects or concepts not only common and distinctive features
are important, but also information related to the structure of the objects and
concepts to be compared. In other words, judging similarity involves a process of
structural alignment. These claims were supported by a number of experiments
(see, for example, [I00]), which have shown that in assessing similarity the
relation between objects and the relation between relations play an important
role.

Let us have a look at the series of pictures a), b) and c¢) presented in Fig-
ure By simply comparing features, we would have to operate with sets
containing elements like “black”, “gray”, “round”, “triangular” and “medium-
sized”. The structured representation model suggests that the relations between
the elements of each object or concept, such as “above”, “under” or “rotated”
are to be taken into account. Indeed, the features of each entitiy are organized
in a hierarchy which preserve and represent the structure by the help of these
relations (an example is shown on the diagram in Figure . The similarity
is then assessed in terms of a series of alignments, first — on relational, and then
— on feature level.

Although models based on structured representations are at least intuitively
closest to the data structures on the semantic web, their application is still not
evident. The main limitations of these approaches originate at the fact that their
generality (performance on larger data samples) has not been empirically tested.
In addition, the structured representations used in psychological experiments are
manually generated and it is not clear how extracting structure representations
can be done automatically within this framework [124].

Transformational distance models

It has been suggested that the distance between two entities x and y can be
expressed as a function of the minimal number of operations that are needed in
order to transform the entity x into an entity x’ which is identical to y. Such a
function is called a transformational distance between z and y.

Transformational distance models are among the most general similarity
models. They are based on the assertion that two entities are similar if their
transformational distance is small [65].

We have discussed the edit distance in the introduction to graph theory
and the related string edit operation in the introduction to text categorization
(Chapter . These techniques provide examples of transformational distance

72

ABOVE ABOVE

@

|b1acl\' Huedimn-sizeq ‘ m'angularH gray Hnedimn-:\izecq

himlgulm” blnck“uedimu-aizec* ‘muucl" @ay ”uediluu-»ich

i]) b) L‘)

ABOVE

hiaugul:u” blacl(‘ Luediluu-size(* [rouu(lH aay |bue(ﬁluu->ize(‘

Figure 3.13: SR: Hierarchically organized features.

models. Among other promising approaches, we will outline the syntagmatic
paradigmatic (SP) model [36] which is also related to string edit approaches. It is
as well a presumably good candidate to solve semantic representation problems
on the semantic web, the main reason for which lies in the fact that the SP
model works from plain text and the expensive step of structuring flat data is
not required [124].

The SP model has been recently proposed by Dennis and colleagues [35]. The
suggestion is that sentence processing in general language acquisition is char-
acterized as retrieval from memory [36]. The interpretation of verbal stimuli is
done through two types of word associations — syntagmatic associations of words
that tend to appear together in the same sentence (like “read” and “book”), and
paradigmatic associations of words which tend to appear in the same context,
although not necessarily together in the same sentence (like “book” and “arti-
cle”). In language acquisition, a target sentence is aligned to sentences retrieved
from memory by the help of sets of syntagmatic and paradigmatic constraints.
The set of thus retrieved sentences constructs the interpretation of the stimulus
sentence. Two sentences are assessed as similar or as conveying the same in-
formation if pairs of words from both sentences are aligned to the same sets of
words from the sentences retrieved from memory through SP associations, i.e.
if they have the same interpretation.

3.4.5 Terminological Disambiguation

We will close this section with some remarks on the terminology used by ontology
matching researchers and practitioners.

The study of ontologies, especially in the context of Internet and web-based
applications, is a relatively new field of Artificial Intelligence and Computer
Science. This is one reason why, anyone who has been confronted with research

73

papers written by different authors on the topic will have noticed a certain
lack of agreement on a common terminology. Particularly speaking of ontology
matching, it is a common thing that different authors use different terms in order
to address similar or identical concepts. Since we do not make an exception
from this practice, in this section, we will attempt to disambiguate between
the different terms used to denote ontology matching and similar techniques by
defining them in the way that they are used throughout this work. A broader
list of terminological definitions is found in the Ontology Matching book by
Jéréme Euzenat and Pavel Shvaiko [43].

Ontology Matching is the most general term standing for the process of
searching and identifying correspondences between the elements of two distinct
ontologies and the relations that hold between them. Throughout this thesis,
we also use this term in the most general sense to denote a procedure or an
algorithm for reducing heterogeneity between two source ontologies.

Ontology Mapping is a stricter notion than matching, related more closely
to the mathematical concept of mapping. Ideally, a mapping takes the elements
of one ontology and, through a defined mapping function, finds their image on
the set of elements of a second ontology. Throughout this thesis the terms map-
ping and matching are used in a more or less interchanging manner. However,
a priority is given to the use of the term “mapping” as referring to finding cor-
respondences among two sets of cross-ontology concepts, whereas “matching”
denotes rather the general process of mapping the concepts and other elements
of two ontologies.

Ontology Alignment is a structured set of correspondences between the
entities of two or more ontologies. ”Structured” indicates that correspondences
are looked for only among sets of entities of the same type (for example concepts,
relations, instances, etc.).

Ontology Reconciliation, as the name indicates, aims at reducing the
differences between two (or more) ontologies, which requires changes in one or
in all input ontologies, until their content is harmonized. This term is used by
defenders of the idea that the creation of a globally consistent ontology is not
only impossible but also not necessary; instead, ontologies have to be enabled
to co-operate locally, only with respect to a given application [66].

Ontology Merging, finally, is often of a very big practical interest and
consists, contrarily to ontology reconciliation, in the creation of a new ontology
from two (or more) source ontologies, which have some semantic overlap [144],
by executing a matching or alignment procedure.

3.5 A Classification of Ontology Matching Tech-
niques and Approaches

We will review the state of the art in the field of ontology matching by outlining
the most relevant with respect to our study theoretical and practical endeavors.
In doing so, we will group similar approaches together by first presenting two
classifications of ontology matching approaches. The first one is provided by
Rahm and Bernstein (2001) and is among the most general available frameworks
[125]. The second one builds on the first one and was published by Euzenat and
Shvaiko in their ontology matching book (2007) [43].

74

Onotlogy mapping approaches

/ \

Individual approaches Composite matchers

AN 7\

Schema-only based Instance/contents-based Antomatic
R composition composition
M_H_Q
Element-level Structure-level Elemeni-level
s
g oy Constraint- Constraint- y : Constraint-
Linguist L iski
L based based il basad

Mapping Cardinality
Anxiliary Information

FIN A AN L

Figure 3.14: Matching approaches (Rahm and Bernstein).

N /ZIN

Rahm and Bernstein’s Classification

In 2001, Rahm and Bernstein [I25] published a classification of schema matching
approaches which can be seen in Figure [3:140 We will explain the nodes of
the classification tree and will position our approaches within the proposed
framework. Note that, in the diagram, we have replaced the word “schema”,
originally used by the authors, by the word “ontology”; however, both names
will be used in the remainder of the section.

On the down most level of the taxonomy we find opposed Linguistic and
Constraint-based approaches. Linguistic approaches rely on names and textual
description of ontology elements and their relations. Most of the concepts in an
ontology contain a textual definition — a natural language description defining
them, which enables a linguistic evaluation of the similarities. Constraint based
approaches make use of relationships.

On the next upper level of the matching approaches tree are classified
Element-level versus Structure-level techniques. This discriminates mappings
performed on single ontology entities from those performed on entire ontologi-
cal structures.

Further on, Rahm and Bernstein consider that schema matching approaches
can take into account either only information contained in the structure of the
ontologies — Schema-only-based, or they can as well make use of the instances
contained in these ontologies, or their data content — Instance / Content-based.

The highest level class-separation in Rahm'’s classification tree concerns the
use of multiple matchers as opposed to individual matching techniques. One one
hand, one may decide to use an individual approach, which relies on only one
mapping criterion. On the other hand, one could apply a composite matcher that
can be manually or automatically composed from several individual matching
approaches.

Finally, the result of the mapping may relate one or more elements from

75

‘ Ontology Matching Techniques ‘

Temninological

Repositor Upper level /
Graph-, Alignment || Constraint- [| o P y String- | [Linguistic Languag e- Data analysis dgr?wain Model-

reuse based structures based | |resources | |based and statistics specific based

taxonomy-
based

Figure 3.15: Matching approaches (Euzenat and Shvaiko (a fragment)).

the first schema to one ore more elements of the second one. That defines the
mapping cardinality which results in four possible cases 1:1, 1:n, n:1 and n:m
map. During the matching procedure, auziliary information, such as dictionar-
ies, thesauri or previous matching descriptions, can come in use, too. Thesauri
help explore and use synonyms and super- or sub-ordinate relations between
terms. Dictionaries are useful for translating from one language to another,
which is particularly helpful when dealing with ontologies in multilingual en-
vironments, as well as for providing explicit semantics of concepts in terms of
linguistic definitions.

The ontology matching procedures that we are about to present in the next
chapter of the thesis are composite approaches, because they combine two differ-
ent ontology matching criteria — structural and instance-based. In Figure
the path that these approaches follow in Rahm and Bernstein’s tree is traced in
double lind’]

Euzenat and Shvaiko’s Classification

Euzenat and Shvaiko, in their 2007 book [43], provided a very detailed classifi-
cation of ontology matching approaches, which builds on Rahm and Bernstein’s
taxonomy, but is more exhaustive and granular, taking into consideration the
advances made in this dynamic field in the time gap between the two publica-
tions. In building their classification, the authors have used as guidelines four
main criteria: ezhaustivity (the sub-categories of a given category all together
contain exactly the extension of that category), pair-wise disjointness of the cat-
egories, homogeneity of classes and, finally, adding and modifying classes until
saturation has been reached.

In Figure we have presented a fragment of Euzenat and Shvaiko’s clas-
sification which we consider to be granular enough for the purposes of our study
and for giving a ground for situating our approach and related mehtods. We will
discuss in more details each of the different categories of methods by putting a
closer focus on approaches which are directly relevant to ours.

5The double-line path in Figure passes through individual approaches, but goes further
down in two different directions, showing that it combines two individual approaches.

76

3.5.1 Structural and Terminological Approaches

Structural and terminological approaches are often used in combination. In the
current subsection, we will also discuss them together, giving more attention
to structural techniques to emphasize their importance and relevance to our
approaches.

Basic assumptions and similarity measures

Terminological methods comprise two major groups of approaches — those that
use strings in order to match names of entities, and those that rely on linguistic
information contained in dictionaries and thesauri combined with techniques
from Natural Language Processing in order to compare the similarity of terms
and their relations and overcome problems evolving from synonymy and poly-
semy. Both groups of techniques have been discussed previously in this thesis
(see Chapter 2] Section[2.1.3]and Section [2.4.4) and, therefore, we will not delve
into further details. Instead, we pay more attention to structure-based mapping
techniques, also because structural similarity is central to our approach.

The structure of an ontology can be studied on two different levels with
respect to either a single ontology element, known as internal structure, or
the way in which a set of elements are related, known as relational structure.
Methods based on the former structure type look into similarities of the sets
of properties of two elements, the datatypes used to describe them or their
properties, the cardinalities that sets of values of two properties are “allowed”
to reach, etc. These approaches are suited to schema matching problems where
one disposes readily with an internal structure of the database entities.

In our approach, however, we do not rely on the explicit availability of such
structural information, but we are rather concerned with comparing blocks of
elements together with the relations that hold between them. This is exactly the
focus of relational structure based methods; the matching problem is typically
situated in a graph-theoretical framework where an ontology is modeled as a
graph whose vertices and edges are labeled by concepts and relations names,
correspondingly. The matching of such “ontology graphs” is usually reduced to
solving a graph isomorphism problem and identification of a maximal common
sub-graph of two graphs. All graph-matching techniques discussed in Section
and in the sources cited there are suitable for approaching this problem.
However, we will look closer at methods and measures designed specifically for
matching tree-structured ontologies for two reasons: first, a taxonomy (a tree
of concepts related by subsumption) is the backbone of an ontology and a lot
of theoretical and practical efforts have been dedicated to mapping taxonomic
structures, and, second, our procedures for ontology mapping rely heavily on
the hierarchical relation of concepts within the source ontologies, generalizing
to non-hierarchical structures on the basis of the underlying hierarchies.

Most approaches to ontology matching, which have a hierarchical structure
similarity measurement component, are based on looking into the structures of
two or more input ontologies separately from one another, and not to compar-
ing their structures explicitly. The measures of concept similarity that they
utilize concern concepts within one single hierarchy. Why is that nevertheless
interesting for matching different ontologies?

The common intuition is that as long as two classes from two distinct on-

7

tologies have been identified as similar (by the help of terminological or other
approaches), based on the relation of each of these classes with the rest of the
classes in their taxonomies, we can trace up or down in the hierarchies other
pairs of similar classes. Below, we will give definitions of some concept similarity
measures and distances which have been applied to these ends so far.

Let H = (C, <) be a hierarchy on the set of concepts C. The most intuitive
method of evaluating the proximity of two nodes within a single hierarchy is
to measure the length of the shortest path connecting them (see, for example,
13)).

Definition 35 The shortest path distance between two elements ¢, ¢’ € C is
given by
Spatn (¢, ") = mincec(ne(d, ¢) + ne(d’, ¢)),

where n. returns the number of edges between two nodes.

Wu and Palmer, as referred to in [43], noticed that simply counting the
edges between two classes is not a valid criterion: nodes closer to the root of
a hierarchy might be totally dissimilar, although very close in terms of path
distance. They proposed a new measure of similarity which takes into account
that observation.

Definition 36 The similarity of two elements ¢’, " € C is measured by

2ne(c N rooty)
ne(c,c A" +mne(c”, ¢ Ac”) + 2ne(c A’ rooty)’

O-wp(cl,cl/) —

where rooty denotes the root of the hierarchy H, ¢’ A " is the least common
subsumer of ¢’ and c’ﬁ and ne is as defined in definition .

As we can see, the denominator of oy, in definition is very similar to dpqtn
from definition Wu and Palmer’s measure of similarity is based on the
previously introduced path-length distance, scaled by the path-length distance
of the nodes least common subsumer to the root of the hierarchy, expressed by
the quantity n.(c’ A’ rooty).

Finally, as we will see below, the Jaccard similarity coefficient is widely used
for measuring instance-based similarity of ontologies. However, a structural
similarity measure which applies it has been also introduced [43].

Definition 37 Let C*(c) denote the set of superclasses of ¢ € C. (Conven-
tionally, ¢ ¢ C*(c).) The similarity of two elements ¢’,c” € C is given by

_ et net(|

S CH(yu ()

Ujacfstr (Clv C//)

In the following, we will discuss several state-of-the-art approaches that com-
bine terminological with structural similarity criteria for matching ontologies
and utilize the measures and distances introduced above.

6Note that using the notation ¢’ A ¢/’ is a way of avoiding the longer min.cc notation
introduced in the definition above.

"Their roles of numerator and denominator in the two formulas are inversed, for one is a
measure of similarity and the other — of dissimilarity

78

Related approaches

The Anchor-Prompt algorithm. The system was developed and imple-
mented by Natasha Noy and colleagues in the beginning of the decade and has
since been recognized as an important state-of-the-art contribution to the field
[114].

Anchor-PROMPT uses the common graph representation of ontologies — each
class corresponds to a node of the graph, an arc between two nodes exists when-
ever a relation between the corresponding classes is available. The algorithm
starts by manually or automatically selecting a set of pairs of similar concepts
from both ontologies — the so called “Anchors” — usually identified through lex-
ical matching. The main idea which the procedure further builds on is that if
there have been found two pairs of similar concepts (two “Anchors”) and there
exists a path connecting the concepts in each of the two ontologies, it is very
likely that the entities found on those paths are also similar. The algorithm
works by simultaneously traversing the paths and testing the similarity of the
classes found on each step of the traversals.

The Cupid system. As we have seen in the previous section, Bernstein
and Rahm have contributed a lot for providing a systematical account of the
existing ontology matching approaches. CUPID, the system that they proposed
together with Madhavan builds on many of the existing to the date of its devel-
opment schema matching approaches, including linguistic-based, element-based
and structure-based matching [96]. It is a generic matching approach, which
has not been developed in the light of a particular intended application.

CupPID works in three steps. The first step is the linguistic analysis of the
individual schema elements (names, data types, etc.). The system uses a the-
saurus to identify synonyms and abbreviations. The second phase consists in
a structural matching. Nodes in the schema-graphs whose parents have been
matched in the first step are considered as matching candidates. In both phases,
a similarity coefficient is calculated for each match-pair. The final step gener-
ates the actual mapping by picking up those pairs of potential mappings which
have maximal similarity coefficients.

The Onion tool. Mitra and Wiederhold [I07] argued against the need
of constructing and maintaining a global consistent ontology as a result of an
ontology matching procedure. Instead, they proposed an approach to ontology-
composition which assists the linking of certain parts of the input ontologies
composing smaller domain ontologies only for the needs of a given application.
The ONION tool for ontology articulation which they presented serves to enable
querying simultaneously multiple ontologies represented as labeled graphs. It is
based on an algebra for knowledge composition, featuring operators like union,
intersection, difference. The alignment consists of a set of articulation rules.

Figure provides a sketch of the main ideas behind ONION. Considered
are two sources of information, “Factory” (Source 1) and “Store” (Source 2).
They must share information in order to enable queries, such as “Purchasing”
(Application context 1).

The Chimaera tool. Proposed by McGuinness and colleagues in the early
00’s [I02], CHIMAERA aides an ontology engineer in a process of merging two or

79

Application context 1 Application context 3
Application context 2

Source contert 1

Source conteat 2

‘ Real wolnd objecrz ‘ ‘ Real wolnd objeciz ‘

Figure 3.16: The ONION tool (adapted from [107]).

more source ontologies. It relies mainly on terminological criteria (similarities
of the vocabularies used for concepts indicates similarity of their semantics) in
combination with relation-based criteria (using the taxonomic structure of the
terms in order to judge on the semantic nature of the respective concepts).

The authors make the observation that ontologies are handled predominantly
by non-experts in knowledge representation and engineering — a reason to focus
on user-friendliness in the development of their tool. In an easy and intuitive
to work on user interface, the tool suggests to the engineer sets of potentially
similar concepts-candidates for merging (for example, the concept “mammalia”
from one ontology and the concept “mammal” from another).

A newer version of the tool contains a diagnostics component, which evalu-
ates (partial) correctness and completeness of the resulting merged ontologies.

3.5.2 Extensional Approaches
Basic assumptions and similarity measures

Extensional ontology matching, also known as instance-based matching, com-
prises a set of theoretical approaches and tools for aligning two or more hetero-
geneous ontologies based on their extensions — the instances that populate their
concepts. The question of how a set of instances of a concept is defined will be
considered in Chapter [4] of this thesis. We mention here that in hierarchically
structured data, a concept can be defined as a set of those instances that are
directly assigned to it, or as a set of all instances assigned to the concept and
its successors in the taxonomy, what we will later call hierarchical and non-
hierarchical instantiation. An example of a hierarchical instantiation is given in
Figure |3.17, Dy, D2 and D3 are the sets of instances of the leaves of the tree.
The very question of what is an instance — an object, a word, a text document,
an image, etc., will be also discussed in Chapter [} because it is relevant to a
particular approach and application, not in general. For the moment, we will
content ourselves with using an abstract notion of an “instance”, understood
as some kind of a real-world data entity, member of a given class within an
ontology.

Various concept similarity measures have already been proposed together
with matching systems that employ them. Often in applying these measures
it is necessary to consider a set of thresholds controlling data sparseness or

80

Figure 3.17: Hierarchical instantiation of a taxonomy.

defining the degree of similarity. For an overview of instance-based mapping in
terms of measures, thresholds and types of concept instantiation, we refer to
the empirical study carried out by Isaac et al. [72].

A common approach to modeling concepts by their instances is the set-
theoretic approach. The relatedness of a pair of concepts is an outcome of a
properly chosen measure of similarity, based on estimations of the intersections
of two sets of instances. Two concepts A and B are considered similar when
AN B~ A =~ B and dissimilar when A N B = (). The problematic aspect of
this technique is, obviously, the very strong assumption of presence of identical
instances in both instance sets which would ensure the presence of a non-empty
intersection.

Alternatively, a measure of concept similarity can be introduced on the ba-
sis of the cosine similarity measure between two class centroids. This implies
modeling a class by the average vector of the instances that it contains. We will
call this measure prototype similarity, given by

|A| |B]

. 1 A 1 .
S'memto(Aa B) = S(m 13'4’ E Z lkB) . (32)
j=1 k=1

where s(-, -) is the standard cosine similarity and i* is an instance of the concept
A. A drawback of that approach is that it tends to flatten the structure and,
although appropriate for leaf nodes, is prompt to fail for higher level concepts.

Among the most popular choices of a similarity measure is the Jaccard coef-
ficient [39] as well as a couple of standard statistical measures which have been
already applied for extracting semantics out of natural texts based on term co-
occurrence, such as mutual information (MI) and information gain (IG), which
have been discussed in Section 2.4] of the thesis. The Jaccard coefficient simi-
larity is defined as it follows.

Definition 38 Jaccard Coefficient. Let P(X) be the probability of a random
instance to be an element of X and let A and B be two sets. The Jaccard
coefficient is a similarity function defined as:

P(ANB)

UJacc(A7 B) = m

(3.3)

Isaac et al. [(2] observed that the similarity defined by (3.3 does not take
into account the relative “quality” of the matching between A and B. A and

81

B are likely to be judged equally similar if the match (A, B) is based on 100
instances or on only one. To correct this problem, Isaac proposed the corrected
Jaccard similarity in which less frequently co-occurring annotations are assigned
a smaller score (the factor 0.8 is chosen on the bases of a series of empirical

tests)lﬂ

VP(ANB) x (P(ANB) - 0.8)
P(AUDB)

Finally, note that P(ANB) = P(A, B) and P(AUB) = P(A, B)+P(A, B)+
P(A, B), where the entity P(A, B) denotes the probability that a random in-
stance belongs to both A and B (the joint probability of A and B). The task of
measuring the similarity of two concepts is then redefined as finding an appro-
priate estimation of each of their four joint probabilities, based on the instances
that they contain. We will see a way to do this in one of the related approaches
[39] described in the next section.

O Jacc—corr (A7 B) =

. (3.4)

Related approaches

We will review several instance-based approaches which we find intriguing and
central to the state-of-the-art of the field. A more detailed description will be
given to those of them which are to a higher degree relevant to our matching
approach.

The GLUE tool. In their paper Learning to map between ontologies
on the semantic web from 2002 Doan et al. introduced the instance based
inter-taxonomy mapper GLUE, based on machine learning techniques for semi-
automatic derivation of concept similarity assertions [39]. The method is based
on one central claim, which is that we need not to commit to a particular defini-
tion of similarity. Once we have an approach to calculate the joint distributions
of the classes, a similarity measure of any kind can be computed over these
terms.

We will present how this is done in Doan’s paper. Let O = (C1,is_a) and
O; = (Cy,is_a) be two ontologies, let Ip, and Ip, be the sets of instances
belonging to the ontologies correspondingly and let A € C; and B € C3 be
two different concepts of each ontology, viewed as sets of instances. A term like
P(A, B) can be estimated by the fraction of instances that belong to both A and
B. The task is thus reduced to deciding for each instance whether it belongs to
AN B or not. Given that the input includes instances of A and instances of B
separately from one another, the problem can be addressed by machine learning
techniques for classification (such as the Support Vector Machines (SVM), the
k-Nearest Neighbors (kNN) or the Naive Bayes learner (NB), used by GLUE) to
create a classifier on A and apply it on B and vice-versa.

The quantity P(A, B) is approximated by using the cardinalities of both sets
and their intersections in each ontology.

B |ANo, B|+|ANp, B|
PAB) = = ol (8:5)

81saac et al. [72], as well as other authors [I62] use the cardinalities |X| instead of the
probabilities P(X), used by [39] and [150], to formulate the Jaccard similarities. It is straight-
forward to prove, however, that both ways of notation are equivalent.

82

In Ontology O1 In Ontology O2
A notB

A AB
C]] Learn on A 5 D D
]

and classify

on B OO

not A notA, B notA notB

Figure 3.18: Approximating joint probabilities by a machine learning classifier.

where Np, denotes that we are intersecting instances belonging to Op only.
The probability of an arbitrary instance to belong to both A and B can be
approximated in terms of the number of instances of A and B in both ontologies
and the whole number of instances contained together in O; and O, [156].

Let us consider B € O;. We separate the instances of Oy into instances that
belong to B and that do not belong to B. We do the same with the instances
in A € O; and use the separated data in O; as positive and negative examples
on which a machine learning classifier is trained. The classifier is applied on
the instances in B and thus we come up with an estimation of the quantity
|ANo, B|. We repeat the procedure inversing the roles of A and B in order to
obtain |[ANe, B| (Figure. The same algorithm is applied for the other joint
probabilities until we have approximations of all three of them. The similarity
between the concpets A and B is given by the Jaccard coefficient estimated
as a function of the joint probabilities.

Further, GLUE computes the |C;| x |C3| similarity matrix of all possible
pair-wise concept similarities. In order to find the best possible mapping config-
uration, the procedure combines the observed similarities with domain-specific
constraints and heuristic knowledge.

A related to GLUE approach, based on Support Vector Machines and using
literature-based corpus was proposed by Lambrix et al. in [89).

The FCA-merge approach. FCA-MERGE, based on Formal Concept
Analysis (introduced in Section was proposed by Stumme and Médche
[144] and is another approach which relies on the assumption that two ontologies
use the same instances taken from a set of text documents relevant to both
ontologies. It provides its own mechanisms of extracting instances of concepts
from text corpora, answering a basic critique to some instance-based approaches
that rely on common instances, that source ontologies are unlikely to share
the same sets of instances. The approach applies natural language processing
techniques and FCA to derive a concept lattice which is further transformed into
a merged ontology. As this summary of FCA-MERGE suggests, a translation of
an ontology into a concept lattice and back to an ontology takes place during
the merging procedure.

The generation of a formal context from an ontology is done as it follows.
For each ontology O; (as defined in Section , a unique formal context K; :=
(G, M;, I;) is generated in the following manner. The set of documents Do,
corresponding to O; is taken as the object set of the formal context, i.e. G; :=
Do, and the set of ontology concepts is taken as an attribute set, i.e. M; := Co,.

83

I
...........
01— K1 | L .
igeneratei \generate ! | merge iderivea | | igenerate |
Vinstances! iformal | | farmal L K —siconcept Ll pi@newW
i | | | | i | | | logy |
i ' jcontexts | contents | i lattice | jonology
! ! ! ! 1 ! [!
........................ J S

|

|

|

1. Instance generation 2 Formal concept analysis techniques | 3 Merged ontology

Figure 3.19: FCA-MERGE.

The relation (g,m) € I, holds whenever a document g € Do, contains an
instance of m € Cp,. By using FCA techniques, a concept lattice involving
both ontologies is generated from merging the formal contexts corresponding to
each of them. Finally, a merged ontology is derived from the concept lattice.

The method is sketched in Figure [3.19] in three steps. Step 1 consists in
generation of instances (can be skipped if the source ontologies share the same
instance set); the application of FCA techniques for deriving a merged concept
lattice takes place in step 2; Step 3 generates an ontology out of the merged
concept lattice.

Mapping via classification. An interesting recent approach to concept
mapping was proposed by Wang and colleagues [1G1]. Its essential idea con-
sists in replacing the mapping problem by a classification one by introducing
a similarity space in which every point represents a pair of matched concepts.
Labeling correct matches with a positive label and incorrect ones — with a nega-
tive label, allows for a machine learning classifier to learn on training dataEI and
automatically classify new pairs of concepts as mappings of similar concepts or
not.

The method relies on the fact that each instance is represented by a set
of features (if it is a book, these could be the title, the author’s name, the
publisher, etc.). Concepts, on their turn are also represented as sets of features
by extracting information about the term occurrences of each of the features
of the instances that are contained in this concept. In our book example, a
concept will contain the features title, author’s name, publisher, each of which
will be represented as a vector of the frequencies of occurrence of each of the
values of title, author’s name and publisher as features of the instances. In other
words, every concept feature contains counts of the occurrences of all values of
the instance features. Finally, for a given pair of concepts, a feature vector is
constructed to reflect the mapping of that pair of concepts. Every component
of this feature vector is the cosine distance between the corresponding concept
features (e.g. the cosine between all “title” term-occurrences in concept 1 and
all “title” features in concept 2).

The idea of extracting features reflecting a pair of concepts from the features
of the instances of that concepts is sketched in Figure [3.20

In that way a feature vector — a point in the so created “similarity space” —

9 Although not explicitly stated by the authors, it is assumed that the class information
in the training set is provided by experts in the field (human supervisors) or it comes from
previous mappings performed by another mapping technique.

84

Seatures af concept features af the

the insiances features concept pair
author i bag of words author
= |tle
= _
publicher
g 3 bag ofwordsj —| title
=]
O | author feature 1
T {(oag of words) —{ i
i bag of word: ublisher
publisher 28 o wores
feature 2
i (g) e
o |title
T [publisher
: D
[
=]
O | author
e (g) —{ e
publisher

Figure 3.20: Feature extraction (adapted from [160]).

is associated to every pair of possible mappings. Since not every point in that
space will correspond to a real mapping, the authors suggest the hypothesis
that there can be found a correlation between the label of a point (positive, if
the point represents a “true” mapping and negative, otherwise) and the points
position in the space which gives rise to reformulating the mapping problem
into a binary classification task.

The Caiman tool. Lacher and Groh [88] contributed to the ontology
mapping research with their system CAIMAN, created to facilitate the retrieval
and publishing of documents among communities.

CAIMAN adopts an extensional ontology modeling approach by defining con-
cepts as sets of relevant documents, coded as TF/IDF vectors. In the mapping
process, every concept in each of the source ontologies is represented as a fea-
ture vector by using the well known Rocchio algorithm — the concept’s feature
vector is calculated as the average of the documents that are assigned to this
concept. The similarity of two concepts from two different ontologies is assessed
by measuring the cosine distance between their corresponding feature vectors,
denoted by p(a,,b;) for two concept vectors a; and b;.

For a fixed ¢, the algorithm which CAIMAN exploits measures the quantity
p(ai,b;) for all j and assigns a mapping between a; and bj, for the node b,
which produces the highest value of p. If two nodes b; and b; produce very
similar p-values, the cosines of their parents is calculated until the difference
between their corresponding p-values becomes significant (with respect to a
fixed threshold). This final characteristic of the method puts it a step closer
to structure based matching techniques, because it suggests using hierarchical
information from the ontology graphs.

85

Matching of instances

Thor et al. [147] proposed a matcher operating on ontologies of strictly hier-
archical type designed predominantly in a bottom-up manner for the purposes
of e-commerce. The system is of highly narrow application domain, because it
relies on the existence of an unique id-key of every concept instance (a plausible
assumption for a restricted category of ontologies such as on-line catalogs). The
ontology matching problem is then reduced to an instance catalog-id alignment
problem.

Folksonomy concept mapping. Folksonomies are data structures which
result from a collaborative bottom-up annotation process. Wartena and Brussee
[162] proposed an instance-based method for mapping folksonomic concepts,
based on the distribution of tags in each concept. The main argument which
enables the application of a similarity measure based on these distributions is
that, although the process of tagging is highly human biased and noisy (tags
like “to read” or “interesting” do not bring any qualitative information for the
tagged article), only the relevant tags will reach high frequencies. Halpin et al.,
as cited by Wartena and Brussee have proven that the distribution of tags (for
entities which are being frequently tagged) converges over time.

Concepts as document vectors. An ontology mapping procedure, based
on vector distances and bearing characteristics of structural as well as instance-
based techniques was suggested by Su [145]. The main assumption of the ap-
proach is that one has two input ontologies, each with a set of documents as-
signed to its relevant concepts. Every leaf-node concept is modeled as a vector
which is computed as the average vector of the vectors of all documents assigned
to it. The non-leaf concepts are represented as feature vectors which are com-
puted from the feature vectors of their descendants. For every pair of concepts,
a similarity measure based on the cosine vector distance is calculated.

A few more instance-based mapping methods are discussed in [43], while [46]
presents a benchmark for instance-based ontology mapping in order to facilitate
the evaluation of the different techniques proposed in the literature. Additional
overview of ontology reconciliation techniques is found in [66] by Hameed et al..
The study aims at explaining, from an engineering and enterprise viewpoint,
where the problem of ontology mapping evolves from and overviews some up-
to-date tools for merging of ontologies. A strong point is the attempt to study
the ground reasons for the emerging ontology mismatches by providing multi-
perspective classifications of ontology dissimilarities. Finally, a comparison of
commonly applied ontology distances was recently proposed by David et al. in
[41].

3.5.3 Semantic-based Approaches

The group of semantic-based approaches unites methods, which rely on logical
deduction in order to justify and verify a set of previously generated mappings.
As this definition suggests, these methods usually consist of two main parts:

1. Anchoring the source ontologies. This is the process of initial align-
ment of two (or more) source ontologies by matching them against an
existing external resource of some kind. This can be a formal top-level

86

ontology, such as DOLCE (Descriptive Ontology for Linguistic and Cog-
nitive Engineering) [50] and SUMO (Suggested Upper Merged Ontology)
[121], a formal domain specific ontology like, for instance, the FMA (For-
mal Model of Anatomy) ontology in the medical domain, or an informal
resource, like WordNeﬂ The main characteristic of this method is that
the input ontologies (the mapping candidates) are first aligned to (parts
of) the background ontology. Checking if the concepts and relations of
the source ontologies correspond to one another is performed by the help
of reasoning services in the background ontology.

2. Applying deductive techniques. The second part of the mapping pro-
cedure consists of verifying the consistency and the completeness of the
correspondences found in the first phase and entailment of new alignments.
To these ends, on applies techniques from propositional or description log-
ics for verifying semantic satisfiability of the correspondences and deduce
new knowledge.

We will illustrate how semantic-based approaches look like in action by the
help of a small example. Let our task be to match two music-ensembles related
ontologies, denoted O and Oy. We decide to use the (fictional) Music Ensembles
Ontology (ME), which provides formal domain knowledge, as a background
source to which our input ontologies will be anchored. In result, we come up
with a set of assertions binding the elements of the two ontologies with relations,
such as =, C, etc.

Let the concept Orchestra_0_1 from O; be mapped to the concept
MusicEnsemble from the FMA ontology and let the concept Player_0_2
from O2 be mapped to the concept Musician from the ME ontology. This
immediately entails that the concept Player_0_2 is a part of the concept
Orchestra_0_1, because a part-of relation holds between the concepts Musician
and Orchestra in the ME ontology[]

Now let us have the following two parts of O; and O (written in description
logics):

ChamberOrchestra = Strings M < 15 musician,

Orchestra = StreichAndWoods M < 50 playeIB

The former means that a chamber orchestra is a collection of not more than 15
string instrumentalists and the latter means that an orchestra is a collection of
not more than 50 strings and woods instrumentalists.

Let us have the following initial alignments from the anchoring stage of the
mapping:

musician = player

Ohttp://wordnet.princeton.edu/

11 As observed in [43], this mapping of concepts and their relations might be less straightfor-
ward when using WordNet where the word “Player”, for instance, has many different senses
among which one has to disambiguate.

12The word “Streich” is often used to denote the part of an orchestra containing only string
instruments. The word “Woods” here stands to denote the wood instruments section of an
orchestra. The concept “Streich and Woods” denotes the union of both sections.

87

Strings L StreichAndWoods.

The latter two alignments entail that a chamber orchestra is a subcategory
of orchestra:
ChamberOrchestra C Orchestra.

Semantic-based approaches do not fall in the focus of the work carried out
in this thesis; therefore, we will not delve into further details. We propose the
interested reader to consult the work of Bouquet, Shvaiko, Serafini and others
(cited in [43]), the IF-MAP method by Kalfoglou and Schorlemmer [79], the
review of semantic metrics by Hu et al. [71], as well as related publications by
Kiihnberger and Ovchinnikova [118] [120].

3.6 Summary: Ontology Matching

Throughout the sections above, we have discussed different issues related to
the interdisciplinary domain of research known under the name of ontology
matching. We have seen that there are many possible definitions of an ontology,
just as there are plenty of application fields, ranging from knowledge integration,
semantic interoperability, through natural language processing, problem solving
and reasoning, to facilitating business interaction and increasing the efficiency
of production. In view of the variety of definitions and application fields, an
ontology, in the broadest sense, is understood as a collection of concepts and
relations defined on these concepts, which altogether describe the knowledge in
a certain domain of life and provide basis for reasoning and inferring new facts.

Ontology matching is defined as the process of finding correspondences be-
tween the elements of two or more ontologies, which are assumed to cover the
same or similar domains of knowledge, but their components are not explicitly
mapped to one another. We have attempted to study the reasons why such
conceptual and terminological discrepancies appear from a psychological and
broad computational points of view and have provided an account of the role of
similarity in human concept formation.

From the perspectives of applications and computational models, we have
presented a classification of the existing theoretical and practical contributions
(matching systems, procedures / algorithms and tools), organized in classes
with respect to their conceptual and methodological characteristics. We have
particularly emphasized on two major groups of techniques, which are directly
relevant to the approach developed in this thesis: structural and instance-based
techniques.

The basic conclusion concerning the performance and efficiency of structure-
based techniques is that structure, although an important bearer of the seman-
tics of a group of concepts, does not provide sufficient ground to build a self-
dependent matching procedure. Structural techniques have to be, therefore,
used in combination with terminological and / or extensional approaches.

Instance-based techniques, on the other hand, prove to be a more reliable
indicator of semantic proximity of concepts and ontologies. In consequence,
more and more recent research efforts are invested in that direction. They
can be used in combination with other techniques, but also as an independent
indicator of semantic similarity, as it has been observed by many authors (see

88

Section . The biggest challenge for instance-based approaches remains to
overcome one of their most frequent and least realistic assumptions that the
same set of instances exists for both (or the many) source ontologies to be
matched.

In the next chapter of the thesis, we will expand on the theoretical grounds
of our own contribution to the field. We will combine structural and exten-
sional methods, developing graph-theoretical and machine learning approaches
to address the problem of ontology matching, attempting to answer frequent
critiques to some of the existing approaches, reviewed in the chapter that we
have just closed.

89

Chapter 4

Composite Approaches to
Ontology Matching

Among the main contributions of this thesis are two novel procedures for on-
tology matching that combine structural and extensional techniques yielding
assertions on the overall semantic similarity of two source ontologies. The first
procedure, introduced in Section relies mainly on instance-based matching
techniques; the structure of the source ontologies comes in use in the definition
of a recursive algorithm for instance-based concept similarity verification, which
optimizes the search of similar concepts among the source concept trees. The
second matching procedure, discussed in Section has a stronger structural
component and explores different possible cases with respect to the structure
and the extension of two (hierarchical) source ontologies. The outcome of the
first procedure is a set of concept alignments, whereas the second procedure
gives indications how both ontologies (or their overlapping parts) can be merged
together, if from an engineering and application viewpoint this is necessary.

In the next couple of sections, we will describe separately the components of
the two composed approaches before we explain how they will combine for the
goals of an overall ontology matching task. We start by describing the environ-
ment, in which the task will be accomplished by stating our main assumptions
(Section . We proceed to discuss the structural properties of ontologies and
to define their similarity in terms of a graph-isomorphism problem (Section.
The central part of this chapter and of the theoretical and practical contribution
of the thesis is the study of instance-based measures of ontology similarities and
how they can be combined in an independent extensional ontology matching
procedure (Section . After presenting the two matching approaches (Sec-
tions and , we close the chapter by a short summary of our main results

(Section [4.6)).

4.1 Assumptions

Clearly, given the complex structure that an ontology may possess with respect
to the various application fields and relation definitions that it may contain, it

might become prohibitive or simply lack sense to discuss the problem of ontology
similarity from a very general point of view. Or, as Welty and Guarino [62]

90

observed, talking about ontologies only makes sense regarding a certain context.
Therefore, we will start by specifying the frames in which the study of ontology
similarity will be carried out in terms of the following basic set of assumptions.

The focus falls on ontologies which:

e are hierarchical, i.e. make use of but are not restricted to declarative
hypernym / hyponym (is_a) relations (in a broader sense, that means
that there exists a hierarchical structural body of each ontology);

e are designed to categorize text documentsﬂ with respect to different topics;

e are populated — there exists a set of documents correctly assigned to their
nodes;

e share an extensional overlap.

In the sequel, we will discuss in more details the assumptions on the list
above.

4.1.1 Definition of a Hierarchical Ontology

In Chapter [3| (Section , we saw that there is little agreement among authors
on a common definition of an ontology. If not partially underlying it, this is at
least symbolic for the problem of ontology mapping: few people would have a
common clearcut convention of what an ontology is — clearly, a fact which does
not help to provide a common ground for ontology acquisition and construction.

We will make our own contribution to the list of ontology definitions, some
of which we have discussed in the previous chapter of this thesis. Explicitly,
in our study, we deal with hierarchical, tree-structured ontologies designed to
categorize text documents such as web pages with respect to their contents.
Generalizations to non-hierarchical ontologies are done under the assumption
that a hierarchical body can be extracted out of each of the considered source
ontologies.

Definition 39 A hierarchical ontology is a pair O := (Co,is_a), where Co is
a finite set whose elements are called concepts and is_a is a partial order on
Co with the following property:

e there exists exactly one element Ag € Co such that {B € Co,B #
A0|(A0,B) S is_a} = @,

o for every element A € Cp, A # Ay, there exists a unique element A’ € Co
such that (A, A’) € is_a.

1 As noted already, the procedures described below generalize to instances of other nature
(e.g. images), under the assumption that they can be represented as real-valued vectors of
some kind. The term “document” is used throughout the text to substitute the more abstract
term “instance”; however, “document” can be also seen as used abstractly to denote a real
word data entity, which need not be limited to a text written in a given natural language.

91

As commented previously (Section 7 the case Co = () is trivial and con-
sidered as excluded, although the given definition does not explicitly suggest
S0.

Finally, note that definition [39] is purely intensional and does not imply
the existence of instances of the ontology concepts. Therefore, throughout the
succeeding sections, we will throw light upon the question of how do we assume
concepts, instances and documents are related.

4.1.2 Documents, Instances, Concepts, Ontologies

There is just as little agreement about the relation between documents, in-
stances, concepts and ontologies, as there is about a common definition of an
ontology and the former seems to be a direct consequence of the latter. The
definition of a hierarchical ontology we have just given clarifies the relation be-
tween the concepts within a single ontology. We will continue by explaining the
assumed relation between documents, instances and concepts in our ontology
matching scenario.

In a bottom-up setting, a set of documents can serve as a basis to extract
ontological information. Methods which provide solutions in that direction have
been discussed in the previous chapter (see for example [35] [124], [144]). On the
other hand, one may adopt a top-down approach by first creating an ontology
and only afterwards populating it with instances. These could be words or
expressions contained in properly classified documents, or the documents them-
selves [25]. This is the strategy applied in many ontology engineering solutions
aiming to “fit” the knowledge of a domain into a formally and formerly cre-
ated structure. A practical reason for that is the fact that it is computationally
less costly to populate a created ontology with instances than to extract struc-
ture out of a flat pool of instances, what the alternative bottom-up approaches
suggest.

In either way, we assume that the ontology population phase had already
taken place. More precisely, we assume the existence of an extension of each
ontology which is a collection of annotated text documents (web-pages) assigned
to that ontology and distributed among its nodes. We will use the documents,
assigned to a given concept, as instances of that concept in order to model it.

After clearing up the question of what we consider to be a legitimate concept
instance there still remains an important question unanswered, namely how is
the set of instances of a given concept defined? Assuming that we have a set of
annotated instances for each ontology (i.e. for each instance there is a pointer
to which ontology concept it refers to), there are two possibilities. The first one
is to ignore the hierarchical structure of the underlying taxonomy and take as
instances of a given concept only those that are directly assigned to it and let us
call that a non-hierarchical instantiation. The second possibility is to include in
the set of instances of a concept all instances assigned to that concept and all of
its descendants in the concept hierarchy — a hierarchical instantiation [72]. An
illustration is provided in Figure [{:1} in a hierarchical instantiation setting the
node ¢2 would contain the documents set {d1, ...,d6} and c1 would contain the
complete document set {d1, ...,d8}. In a non-hierarchical setting, the document
c2 would only contain the document d;, etc.

Usually, the choice of one of the two types of instantiations is motivated by
semantic considerations dependent on the particular intended application. In

92

€

/

@ @ [[

dl d7 ds

HEE B

d2 d3 a4 [(RI)

Figure 4.1: Example: a document populated taxonomy.

\; N\
@H\I @H} @] EE

dd

Figure 4.2: Doubly annotated documents.

some web directories, like for instance Yahoo!, the assignment is understood as
direct assignment of documents to a node and not to its super-nodes in which,
naturally, not all taxonomy classes are assigned documents. Concerning our
approach, the instance-based concept similarity measures, presented in Section
[4:3] perform independently on the assumed type of concept instantiation. Ac-
cordingly, Isaac et al. have reported that in an instance-based matching task,
it is expected the results in both hierarchical and non-hierarchical instantiation
to be very competitive [72]. Nevertheless, for the purposes of our overall ontol-
ogy matching approaches, we adopt a hierarchical instantiation of concepts, for
reasons to become clear during the presentation of the proposed procedures.

Finally, a document may be assigned through its annotation to more than
one ontology nodes and to more than one ontologies. Cross-ontology doubly
(or multiply) annotated instances are considered separately and independently
for each ontology. A doubly (or multiply) annotated document within a single
ontology can be considered to be an instance of the least common subsumer of
the concepts, which it is originally assigned to (as shown in Figure [{.2h), or a
copy of it can be kept in each of the nodes to which it is originally assigned
(Figure [4.) If the quantity of multiply annotated documents in an ontology
is significant, taking the former approach can be problematic, risking to lift a
lot of instances up in the hierarchy, thus weakening the structure. Therefore, we
suggest to keep documents as instances of their respective nodes, as indicated
by their annotation.

We will place in a formal frame the preceding discussion about the associa-
tion of documents to an ontology and their distribution among its nodes.

Let @ = {01,..,0;,....,0} be a finite set of ontologies and A =
{d1,...,dj,...d1} — a finite set of text documents about a given domain of inter-

93

est. Each text document is represented as an n-dimensional TF/IDF vector (as
described in Chapter [2] (Section and in [4]). Let

v — 28 (4.1)

be an injection from the set of ontologies to the power set of the documents.
For every O € Q and Do € 22, so that v(O) = Do there exists an injection

g:Co — 2P0, (4.2)

which assigns documents to the ontology nodes. For the purposes of our study,
we assume that the function g maps every element of Cp to a set of documents
and assigns to a class the union of the sets of documents assigned to all nodes
subsumed by this class.

4.1.3 Types of Document Intersection

An entity that plays a key role in the approach described in Section is the
intersection of the sets of documents D; and D, assigned respectively to two
source ontologies O1 and Os. The relative size of the intersection indicates how
similar the extensions of both ontologies are and to what extent the domains
that they cover overlap. In our procedure this quantity plays a twofold role. In
the first place, it comes to confirm or reject one of our basic assumptions, namely
that the ontologies of interest share a certain extensional overlap, i.e. that they
are good mapping candidates. Further on, at the final mapping stage, com-
bined with the structural and instance-based mapping techniques, it helps yield
quantitative judgments on the granularity and population differences between
the inputs and how these differences can be overcome.

However, working with the mere intersections is too naive when the sets of
elements are vectors of natural language text documents. It is very likely that
documents from both sets that are very similar, yet not identical, will remain
out of the intersection. For example, an article and its abstract might have
different TF/IDF vectors although they are semantically very similar. There-
fore, we need a theoretical approach to deal with that by taking into account
not only identical, but also to a large extent similar documents. We will dis-
tinguish between three different types of intersection: the strict intersection,
or the standard set intersection, the relaxed intersection, containing the strict
intersection and documents from both sets which are close in a vector space,
and the modified relazed intersection, containing the first two plus documents
which are close in a semantic space.

We make the convention that the use of the term “intersection” in the sec-
ond and the third type of intersection described above is a slight abuse to the
common notation, since, as it will be seen further, it carries the characteristics
of both an intersection and a union. A possible fuzzy set formulation of the
problem, which helps to avoid this terminological conflict, is presented at the
end of the section.

A Distance Metric on a Set of Documents

As discussed previously (cf. Chapter 7 the distance between two documents
can be measured in a vector space constructed from the terms occurring in

94

the documents or their combinations used as dimensions. There are different
plausible choices of a distance metric or a similarity measure defined on a set of
documents coded as TF/IDF vectors (or any other numerical format) living in
a multi-dimensional space of some kind. The particular choice is task and data
dependent and in most of the cases, once the document vectors are computed, it
is easy to try out different distance measures and pick out the most appropriate
one. In Section we have introduced the well-known Euclidean distance and
cosine measure of similarity. A review of some more commonly used distances
is found in [87] and the sources cited there. For the purposes of our study at
this point we need not commit to one particular distance metric. Instead, we
will introduce an abstract distance between two documents, dist(d,ds), with
the convention that dist is a metric and defines a metric space on the set of
documents.

Let D, and Ds be two document sets corresponding to the ontologies O
and Oy, respectively. We will consider two documents df € D; and df € D
taken from these sets similar if their distance is smaller than a fixed threshold,
ie.

dist(d{,d}) < cq,

where ¢, is a strictly positive parameter (set by the user). We should keep in
mind that taken into account the fact that the ontologies we are dealing with are
domain specific (i.e. the documents they organize are already rather similar),
small variations of the constant ¢y would lead to important differences in the
similarity judgments.

Strict and Relaxed Documents Intersections

We will introduce the notion of relaxed intersection which integrates similar
documents from both sets as opposed to the standard strict set intersection.

Definition 40 A Strict Intersection (SI) of the sets of document Dy and Do is
the set
SI(Dl, Dg) = Dl N D2

and their Relazed Intersection (RI) is the set
RI(Dy,Dy) = {d},d?|dist(d},d}) < cq,d} € D1,d} € Do}

We note that SI(Dy,Ds) C RI(Dq,Ds). The difference between both is
shown in Figure 1.3

An Account for the Semantic Similarity of Documents

The relaxed intersection helps to include into consideration documents from
both input sets which are not identical but rather similar. Still, it does not
account for documents which are of substantially different word content, because
the similarity is measured in terms of a distance in a term-vector space (i.e.
word-co-occurrences are what count), and not in terms of the semantic closeness
of the documents. Two documents that use semantically related, but distinct
words will show no similarity by measuring their vector distances and will neither
fall into the strict, nor into the relaxed intersections introduced above.

95

n Strict Intersection
Hand @ Relaxed Intersection
B and @ and O Modified Relaxed Intersection

Figure 4.3: Types of document sets intersections.

Kandola, Shawe-Taylor and Cristianini [81] proposed a method for repre-
senting and computing semantic proximity of documents by the help of a kernel
based similarity measure using a semantic proximity matrix. The method is
reviewed in Section [2.4] of the second chapter of the thesis (see equation (2.42)).
Another method by the help of which one extracts information about the se-
mantic closeness of terms and documents is based on Latent Semantic Analysis
(also discussed in Section [2.4).

We suggest that in measuring the documents set intersection it is important
to include documents which share semantic commonalities, not accounted for
by their term occurrences vectors. Let ogsenm(di, d;j) be a measure of semantic
similarityﬂ of two documents d; and dj based on either semantic proximity
matrices (equation (2.42))) or LSA (in this case this is again most commonly the
cosine distance, but applied in the semantic spaces generated by LSA, and not in
the original vector space). Our proposal is to apply osem on the set of documents
which remain from the initial sets D; and D5 after removing their relaxed
intersection (RI), i.e. we apply the osem(d,d’) for all d € Dy \ RI(D;, D3) and
for all d’ € Do \RI(Dl,DQ)

Let the documents from D; and Dy which are found to be semantically close
via 0gem form the set

SC(D1,Dy) ={d{ € D1,d} € Ds|0gem(df,d}) > coem), (4.3)

where cge, 1S a parameter to be fixed.
We define the modified relaxed intersection of documents which contains the
relaxed intersection from definition and the semantic intersection defined in

(4.3) as (see Figure [4.3):

Rl,0q = RIUSC. (4.4)

In our procedure, we will use the modified relaxed document intersection
instead of the strict one and by documents set intersection we will mean the
modified relaxed intersection, except if specified otherwise.

As a final remark, we note that the modified relaxed intersection provides
the most general notion of semantic proximity of two sets of documents and
therefore it is preferable to work with. However, dependent on the corpus, it is

2For the time being assume this is an abstract similarity measure, its explicit definition
being application relevant.

96

1) 2)

dproto s I

-

Figure 4.4: Prototype document in case 1) and case 2).

theoretically possible to achieve satisfactory results by using only the strict or
the relaxed intersection.

A Fuzzy Set Formulation

Exploring the potential of expressing the relaxed intersection of documents by
the help of a fuzzy set formalism is a worthwhile effort. Since the fuzzy set
theoretic approach remains out of the scope of the thesis, we will only sketch a
possible approach to this problem.

Fuzzy set theory has been introduced by L. A. Zadeh in the sixties of the
past century as a generalization of the standard theory of sets [I69]. A fuzzy
set is defined on a given space of objects X as a couple (A4, fa), where A is
characterized by f4 — a function that expresses the degree of membership of
every element of X to A by assigning to every element € X a value from the
interval [0, 1].

In our scenario, we start by considering two cases: 1) the strict intersection
Dy N Dy is non-empty and 2) the strict intersection Dy N Dy is the empty set.
In both cases, we aim at defining a special document vector, dp oo, Which is
a prototype of the shared commonality of both sets. In case 1), we formulate
dproto as the average vector of all vectors contained in Dy N Dy; in case 2), we
compute the pairwise distances between each vector in Dy and each vector in
Dy and define d,ot0 as the average of the two closest vectors from both sets
(see Fig. 4.4).

We proceed to translate the notion of a relaxed document intersection in
a fuzzy set formulation. We take the union of both document sets Dy U Do
as the space X. The relaxed intersection of D; and Dy will be defined as the
couple (A, fa) where the membership function f4 relates to the distance of
each element of Dy U Dy to the prototype vector and is defined as fa(d) =
1—dist*(d, dproto), where dist* is the distance function dist scaled in the interval
[0, 1]. The modified relaxed intersection is defined in a similar manner, by first
taking the membership function f3°"(d) = o.,,(d, dproto), Where o}, is the
scaled version of o4y, in the interval [0, 1] and then computing the fuzzy union
of fa and f3°". We recall that, in fuzzy set theory, the latter will be expressed
by Maz[fa(d), f5¢™(d)], Vd € X.

In practical terms, fixing a threshold of degree of membership enables us to
define a notion of set intersection based on the fuzzy formulation above, which
gives crisp criteria of which documents are to be taken into account. Figure
gives the analytical interpretation of the fuzzy union and the fixed threshold
resulting in the definition of a modified relaxed intersection in the case when X is
the real axis. We note that the fuzzy approach depends on only one parameter,
namely the threshold of degree of membership, whereas the approaches that
rely on crisp set definitions (described in the beginning of this section) imply
the choice of two parameters.

97

threshold m

’ - N X
v " 5 .
modified relaxed intersection

Figure 4.5: The bell-shaped curves represent the functions f4 and f5°". The

fuzzy union Maz[fa(d), f55™(d)] is depicted by the continuous segments of the
two curves.

4.2 Structural Ontology Similarity

We proceed to explore the advantages of a properly chosen graph representation
of ontologies for the efficiency of the structural ontology similarity determina-
tion. We start by presenting hierarchical ontologies by trees; later on, we discuss
the possibility of presenting more general ontologies (containing other than sub-
sumptional relations) as Cartesian products of trees. A distance metric on a set
of graphs is defined to account for the structural ontology similarity.

The basic definitions from graph and lattice theory which we will need have
been given in Section [2.1

4.2.1 Ontologies as Graphs and a Structural Similarity
Measure

Representing ontologies as graphs is a trivial task which consists of aligning an
ontology’s concepts and relations with a graph’s nodes and edges, respectively.
Formally, this will be done in the following manner.

We start by representing hierarchical ontologies as trees. Let I' be a set
of directed rooted trees G(V, E) and € be a set of hierarchical ontologies, as
defined above (Definition 39). We assume that for every O € € there exists
G € T so that |C| = |V|, where | - | denotes set cardinality and there exists an
isomorphism

f:C—->V (4.5)
ie.
(cir¢j) € is_a & (f(c), f(ey)) € E, (4.6)
where ¢;,¢; € C.
We give the following definition.

Definition 41 Let O be a hierarchical ontology. A hierarchical ontology
tree corresponding to O is a directed rooted tree G(V, E) such that

(1) V==C

(2) E C C x C such that {f(c;), f(c;)) € E < (ci,cj) € is_a.

98

We note that strictly speaking, the edge relation is not necessarily transitive
in contrast to the partial order is_a and therefore, for the purposes of the
definition above we should relax the transitiveness of is_a.

Analogously, general ontologies are represented as general graphs by defining
an isomorphism in a similar manner as in the definition above. We recall the
ontology primitives defined by Maedche [97] by introducing a slight modifica-
tio

e Lo — a set of labels for concepts;

e L — a set of labels for relations;

e C — a set of concepts;

e is_a — a partial order on C;

e R — a set of binary non-taxonomic relations;

e F, G —mappings relating concepts and relations with their labels.
Let the list above be denoted ontology primitives (4.2.1)).

Definition 42 Let O be an ontology which is defined by the ontology primitives
. A graph G(V, E) corresponding to O is constructed in the following
manner.

(1) V = C forms the set of vertices via the isomorphism f;

(2) E C C x C such that (f(c;), f(cj)) € E < {(ci,c;) € is_a or (¢;,¢j) €
R};

(3) Ly = Lc;

(4) Le = L;

(5) the mappings hy and hg are identical with F and G, respectively.

Ly, Lg, hy and hg are, respectively, sets of vertices and edges labels and
functions mapping them to graph vertices and edges, as introduced in definition
?? (Section 2.1)).

The distance function which will be used as an indicator of the structural
similarities of two ontologies is Bunke’s graph distance, introduced in Chapter
Bl We recall its definition.

Definition 43 Let |G| denote the number of vertices in a graph G. The distance
between two non-empty graphs G, and G is defined as

|mes(G1, Ga)

d(Gr,Gy) = 1 — 1S ELT2)]
(1, G2) =1 = (G Cal)

(4.7)

The same metric is applicable if instead of nodes we take arcs. To define
it, consider in the denotation |G|ar instead of |G| which stands for the
number of arcs in a graph G. The rest remains unchanged.

Working with Bunke’s distance function has several advantages with respect
to our ontology matching strategy. To start with, is a metric (proved

3The original set of primitives includes one set of labels for concepts and relations. We
have split this set in two in order to avoid the possibility to assign a relation the label of a
concept or the other way round.

99

by Bunke et al. in [20]) — a useful property enabling us to define classes of
equivalences among ontology structures. The distance is based on maximal
common subgraphs. In the case of trees, there exist tractable algorithms of mcs
identification (see, e.g. Section [2.1)). Finally, computes the ratio between
the mcs and the cardinality of the bigger of the two trees — a useful step towards
judging conceptual differences in the granularity of the source ontologies, which
is an important outcome of the ontology matching procedure, to be discussed.

4.2.2 Discussion: Generalizing in Terms of Cartesian
Product of Trees

We will discuss the question whether ontologies of a more general kind than
hierarchies can be modeled by representing them as a product of hierarchies and
letting them inherit the subsumptional properties of the hierarchical structures
that compose them.

Similarly to Section [2.1} we will use the following notations. G, H denote
directed rooted trees and V(G), F(G) — sets of nodes and arcs of a tree G,
respectively; we will use simply the notation V' and E where no disambiguation
between the sets of nodes and edges of different graphs is needed. Finally, x,
2, a”,... denote elements of V(G) and y, ¢/, y”,... — elements of V(H).

We aim to provide a formal framework which allows for the construction of
more general structures out of a set of trees. We consider hierarchical, tree-like
ontologies, where the adjacency relation in a tree is interchangeable termino-
logically with the subsumptional (is_a) relation in a hierarchy, as indicated by
definition [4I] We define an operation on the set of trees which will lead us to
more general structures capable of modeling more general (than hierarchical)
ontologies [45]. We suggest that the Cartesian product is an appropriate choice
to these ends.

Definition 44 Cartesian product on graphs. The Cartesian product of
two graphs G and H is a graph G o H such that:

1) the wvertex set of G o H is the Cartesian product of the vertex sets of
G and H, i.e. V(G) x V(H);

2) two wvertices (z,y) and (z',y") of G o H are adjacent if and only if either
(x adj 2’ andy=1vy') or (x =2’ and y adj ¢').

For trees, a Cartesian product is defined analogously. It is straightforward
to verify that the product is not a tree; an example of a product of two simple
trees is given in Figure [£.0]

More precisely, the resulting product tree defines a directed acyclic graph
(DAG) — graph structure which shares commonalities with a tree, but allows for
multiple inheritanceﬂ A DAG provides a good model for ontologies which have
part_of relations in addition to the is_a relations. For instance, declaring
part_of(a,b) and part_of(a,c) indicates that a is part of both b and ¢ (for
example, a wooden board is a part of a table and of a skateboard); declaring
part_of(a,b) and is_a(a, c¢) indicates that a is a part of b and is a type of ¢ (for
example, a wooden board is a part of a table and is a construction material).

4As introduced in Section a DAG is formally defined as directed graph with no directed
cycles. A partial order is trivially defined on the set of a DAG’s vertices.

100

i X e J '\\ \“\\\
X ~7 y) (x.2) S (2
. 1 (X,2) ~ (2
\ X(Cart) ; \ =]) /‘\\ /.\\ ~
y \s y \g SN N N \
IV N PR
.y v.2)~ (2 22)
[) L [

Figure 4.6: Example: Cartesian product of two simple trees.

Finally, a hierarchy with multiple inheritance can be formed by the is_a relation
only (like for example in some programming languages, e.g. C++) by declaring
is_a(a,b) and is_a(a,c) (e.g. a wooden board is a construction material, but
also a piece of school furniture). All these declarations can be simultaneously
represented and modeled by a DAG, but not by a tree.

Finally, we note that the resulting DAG graph can be viewed as a semi-
lattice, keeping in mind the remark made above, concerning the transitivity of
the partial order as opposed to the non-transitiveness of the adjacency relation.

Levels

We explore and generalize the notion of levels, which is well defined on trees, in
the case of semi-lattices and DAGs resulting from the Cartesian product of two
trees by focusing on the relation between the levels of the input trees and the
levels of the resulting product tree.

Let G(V, E) be a directed rooted tree. Let n be a function that maps a node
to its corresponding level, n : V' — Ny, where Ny is the set of natural numbers
and 0. The map n determines the level of a vertex x from V', surjectively. By
definition, the root node is assigned a level 0, all direct descendants of the root
are assigned level 1, all their direct descendants — level 2, etc.

Now let n(z) and n(y) be the corresponding levels of vertices z € V(G) and
y € V(H). As we have just seen, the Cartesian product G o H of two trees
G and H is not a tree. Nevertheless, we introduce the notion of a level in the
product, as well, in the following manner.

Definition 45 The level of the vertex (z,y) € V(G o H) is defined as the sum
of the levels of x and y.

n(z,y) = n(z) +n(y). (48)

One can easily verify the definition in the example given in Figure the
sum of the levels of the roots x and z’ is 0 which is the level of the product tree
root (z,2’), and so on. Moreover, levels defined in that way can be acquired
for the product of two product trees (like the one on the right side of Figure
4.6). These observations lead us to conclude that the notion of levels is very
flexible and we relate this to the variety of relations which can be present in an
ontology.

101

To conclude, we note that a relation of subsumption, modeled by a tree
(or, more precisely, a tree-like semi-lattice), is core for the ontology, but in
an ontology in general we might as well have other relations. However, our
claim is that some non-subsumptional relations, like part_of can be modeled
by partially ordered structures, such as semi-lattices and DAGs as well, and
levels can be defined in a non-subsumptionally related structure of concepts,
such as an ontology in general, as long as the ontology can be represented as
the product of two trees or two product trees.

In the following section, we will move the focus from studying the struc-
tural properties of ontologies towards looking into extension-based models for
concepts and their similarity.

4.3 Instance-based Ontology Matching

As this has been discussed previously, the problem of ontology heterogeneity,
which gives rise to the need for matching, stems to a great extent from the
fact that the nature of the process of ontology acquisition is decentralized and
strongly human-biased. Ontology matching aims at overcoming the ontology
heterogeneity by identifying similarities between the ontology elements (con-
cepts, relations, instances). In the introduction, we have pointed out that this
task can be approached and accomplished by the help of various theoretical
mechanisms. In the previous section, we have described how ontology similarity
can be furthered by purely structural methods using graph representation of
ontologies and solving an isomorphism identification problem. However, it has
been observed already by many authors that structural mapping techniques,
although important, are not likely to provide an independent solution of an on-
tology matching task and therefore are commonly not considered and applied
self-dependently, but rather as a support and in combination with approaches
of other nature [43].

In the current section, we will expand on another general type of ontology
matching methods, known as instance based or extensional ontology matching
methods. This comprises a set of approaches for measuring the semantic simi-
larity of two ontologies based on their extensions — the instances that populate
their concepts. Commonly for such techniques, a set theoretic approach to
modeling concepts is adopted in which a concept is defined as the set of its
instances and the relatedness of a pair of concepts is estimated on the basis of
the intersection of their instance sets.

In Section of this chapter, we have put forward the question how the set
of instances belonging to a concept is defined. We recall that with respect to
whether or not inheritance via subsumtion among concepts is taken into account
in defining concepts instance sets, one distinguishes between hierarchical and
non-hierarchical instantiation. The former presupposes that concepts inherit
the instances of their predecessors in the hierarchy, the latter does not. In either
case, a clear definition of the set of instances of a concept is to be provided before
an instance-based concept similarity measure of some kind can be introduced.

In the current section, we will focus on several aspects of instance-based
concept similarity identification and measurement. The contribution can be
considered in four separate but related aspect.

102

First, we present a novel technique for detecting potential mappings be-
tween concepts, based on Principal Component Analysis (PCA) and Discrimi-
nant Analysis (DA) (Section [£.3.2). It relies on discovering similarities accord-
ing to the structure of both input ontology instance sets. The procedure can
be used self-dependently, or in combination with another mapping technique.
In the latter case, it serves as a procedure for narrowing down the number of
concepts considered as candidates for a similarity check (i.e. potential concept
matches), the actual similarity measurement being left to be performed by a
concept similarity measure of other kind.

Further, we propose an independent measure of instance-based concept sim-
ilarity which uses variable selection techniques for class discrimination (Section
4.3.3)). The instances in our study are natural text documents assigned to the
nodes of each ontology and coded as TF/IDF vectors [74] or other vector rep-
resentation (e.g. term frequencies or raw occurrence counts) depending on the
selection technique to be used. We suggest to apply variable selection mecha-
nisms in order to score variables (terms in the TF/IDF vectors), with respect
to their importance for a given concept, or the role they play for separating
its instances from the rest of the instances of the same ontology. The pro-
posed measure of similarity is based on comparing characteristic variables for
two concepts taken from two different ontologies. In addition to the suggested
measure, we explore the possibility of applying standard statistical correlation
measures, calculated on the variables scores, which have the advantage of being
parameter-free. Finally, note that the choice of a variable selection procedure
within this setting is left to the user. We discuss, however, various standard
variable selection techniques which are good candidates to serve as an input for
the proposed similarity measures.

The third contribution contained in the section is a novel variable selection
criterion based on Support Vector Machines, which, we will argue, outperforms
standard selection techniques (Section[4.3.4). An evaluation of the performance
of the similarity measure using standard techniques compared to its performance
when using the SVM-based criterion is proposed to the reader in the last but
one Chapter of this thesis.

In a separate section (Section , we propose an overall extensional on-
tology matching procedure, which is directly based on the suggested concept-
to-concept similarity criteria, optimized by taking into account the structure of
the ontologies. The procedure builds on the observation that merely mapping
concepts from one ontology to concepts from another is both computationally
expensive and conceptually wrong, for in this case structure is completely over-
looked.

Comparison to related approaches

Section of Chapter [scrutinizes related work in the field. We underline
again the importance of the study of Isaac et al. [(2] comparing empirically
the performance of different instance-based methods, as well as several state-of-
the-art mapping systems, such as GLUE by Doan et al. [39], FCA-MERGE by
Stumme and Mé&dche [144], the CAIMAN tool by Lacher and Groh [88] or the
“mapping as classification” approach by Wang et al. [160]. Some of the most
commonly applied similarity measures used by the cited approaches (including
the Jaccard coefficient [39] and standard statistical measures [168]) have been

103

described and compared in Chapter [3] Of course, instance-based mapping has
also found an important place in the book on ontology matching by Euzenat
and Shvaiko [43].

The instance-based approaches that we are about to present have several
advantages, compared to other related techniques.

In contrast to most of the existing instance-based mapping procedures, the
presented approaches do not rely on instance sets intersections and can be ap-
plied directly on ontologies populated with entirely different document sets.
Using the descriptive statistical methods, or combining instance-based methods
with structural information, the evaluation of the concepts pairwise similarity is
done at once by the help of an easy to interpret geometrical representation. This
prevents us from having to evaluate m times n concept pairs for two ontologies
— one with n and another with m concepts.

Additionally, allowing the sets of ontology instances to be different for the
two source ontologies makes the expensive step of extracting instances for the
source ontologies from text (as done in [I44]) unnecessary. By using the variable
selection based measure of similarity, the relevant variables are determined for
each ontology independently, and the matching itself is an inexpensive compu-
tation.

The concept similarity values are computed on the sets of input variables
which, in case of text, correspond to actual words. Thus, the most important
words that discriminate between a pair of similar concepts and the rest of the
pairs of concepts can be readily made available in contrast to related methods
(e.g. CAIMAN or GLUE). This information is useful to evaluate the quality and
coherence of the matching results.

We suggest applying machine learning techniques (precisely SVMs) to select
the characteristic variables. The fact that the assessment of the similarity of
two concepts is entirely accomplished at the training—phaseEI of the learning task
is a serious advantage of the method compared to state-of-the-art approaches
relying on machine learning techniques (like Doan’s GLUE [39] or Lambrix’
literature-based alignment [89]).

Finally, the method is stable in multi-linguistic environments since docu-
ments from both ontologies need not be in the same natural language. It suffices
that the documents TF/IDF vectors are translated into a single target language
and not even all their features, but only the selected ones.

The suggested advantages significantly reduce the computational complexity
of the method and increase its time efficiency.

4.3.1 An Instance-based Mapping Scenario

We recall the reader that the mapping problem in our overall setting consists in
identifying semantic similarities between two heterogeneous hierarchical input
ontologies, each equipped with a set of instances. In an instance-based mapping
perspective, we focus on aligning pairs of cross-ontology concepts by degree of
semantic similarity, measured on the basis of their extensions by the help of
machine learning techniques.

5Recall that an automatic classification task is typically accomplished in two main steps:
training (or test) phase, when available data is “learned” by the machine algorithm and
classification phase when the learned rule is applied on unseen instances.

104

Machine learning classification algorithms require a specific kind of input.
Usually training examples are represented as real valued or categorical vectors
and their corresponding classes are coded via integer numbers.

In our instance-based ontology matching scenario, we consider two source
ontologies O7 = {C4,is_a} and Oz = {C3,is_a} together with their corre-
sponding sets of documents Dy = {d],...,d}, } and D, = {d3,...,d2,,}, where
each document is represented as an n-dimensional TF/IDF vector (as described
in Chapter [2| (Section and in [74]) and my and mg are positive integers.
Let, additionally, subsets of the document sets D; and Dy be assigned to the
nodes of O; and Oz through the map g (see (4.2))).

An instance-based mapping will be defined in two steps. First, we consider
the concept-to-concept mapping:

sim: Cy x Cy = R, (4.9)

where sim is a properly chosen measure of similarity. Further, the instance sets
of two mapped concepts are mapped to their union, i.e. VA € C1, VB € (s :
sim(A,B) > 1= {g(A),g(B)} = g(A) U g(B), where g(A) is the subset of the
document set D which corresponds to the concept A, as defined in , and
l is a parameter in the range of sim. Plausible choices of this parameter are
discussed further in the chapter and in the experimental results of the thesis.
We define an instance-based or extensional mapping in the following manner:

My - {C1 x Ca, g(Ch), g(Ca)} = {sim(Cy x Cy), 2P| 272}, (4.10)

where 291 J2P2 denotes all possible pair-wise unions of the elements of 201
and 2P2. The above mapping will be equally represented as

Miy({C1, C2},{g(C1), 9(C2)}).

Finally, we remark that the documents in both sets D; and Dy are based
on the same set of attributes, which can be assumed without loss of generality.
It is also assumed that O; and Oj share a significant extensional overlap, i.e.
their corresponding document sets intersect as it has been specified in Section
and all the documents are in the same natural language.

We comment on the last two assumptions. We will see that for what it
concerns our approaches to instance-based concept mapping (presented below),
the document sets intersection assumption is irrelevant — the concepts to be
compared may be constituted of non-intersecting sets of documents. The in-
tersection requirement is important, however, for the performance of one of the
two suggested overall approaches, described in Section of this chapter.

Regarding the second assumption, we do not discard the importance of on-
tology mapping in multi-lingual environments. Documents or the set of their
frequently occurring terms can be translated automatically into a chosen target
language. Only for the sake of simplicity this step is omitted from the formal
description of the suggested mapping procedure. The problem is addressed in
the concluding chapter of the thesis as a subject of future work (Section [6.2)).

4.3.2 From Data Analysis to Concept Mapping

A major problem for most measures which provide concept similarity evaluation
components to a global ontology matching system is that the number of pairs of

105

concepts to be compared can become fairly large. Even if the measure performs
excellently on a small number of concepts it might fail to be of any use on a
larger scale for reasons of poor time efficiency. In the sequel, we will discuss the
possibility of detecting potential concept mappings by the help of descriptive
statistics in order to reduce the number of concept pairs to be used as an input
for a similarity measure. We rely on the fact that the structure of the instance
sets of two ontologies which is important for their similarity can be revealed by
the help of statistical analysis methods which capture and expose information
on the class separation of the ontology instances. We introduce a geometrical
interpretation technique for detecting mappings among the concepts of two hi-
erarchical ontologies by the help of a principal components analysis (PCA) and
discriminant analysis (DA).

Principal Components Analysis

Principal component analysis (PCA) is one of the most general data analytical
methods known from descriptive statistics. It helps to extract the most essential
structural information contained in a dataset and serves as a basis for differ-
ent methods of discrimination, classification or regression [7]. It is based on
constructing new features, or principal components, by solving an Eigenvalue
problem. The principal components are linear combinations of the original input
variablesﬂ and are the new coordinates by which we represent the data. They
approximate the data in the best possible way by recurrently capturing the
directions of the biggest dispersion. Thus, PCA allows the representation of a
multivariate data table containing thousands of variables in a lower-dimensional
space (2 to 5 dimensions) by preserving and revealing the essential structural
information contained in the data. In result, PCA shows what was not explicitly
seen before: outliers or groups of instances are revealed; important information
about the relations between variables and instances on one hand, and in-between
variable relations, on the other hand is made available. These properties of the
method can be extremely useful to obtain a first big picture over a dataset, in
our case — the sets of instances of two source ontologies. Projecting our ontology
data onto the first two principal components allows us to visualize and study
basic dependencies and relations among sets of individuals or features.

The approach that we suggest consists in the following. We insist that the
ontologies have been populated following a non-hierarchical instantiation (i.e.
a document is assigned to one concept only and not to all of its predecessors
as well). Let D be a set of documents assigned to an ontology O with a set
of concepts C. We define [: D +— C to be the injection which assigns to
each document the label of the concept of which this document is an instance.
Through I, every document is identified by its class only.

Let Op := (C1,is_a) and O := (Ca,is_a) be two hierarchical ontologies
and let Dy and Ds be their corresponding document sets of cardinalities m; and
ma, respectively. Let each element of the document sets has been labeled by
the function [. Our goal is to find the mapping M;;, for every pair of concepts
(A, B) such that A € (4 and B € Cy. We produce a new dataset by taking the
union of both document sets and the labels of their elements and let D; 2 be

6The term “variable” in statistics stands for the commonly used terms “attribute” or
“feature” in computer science. It denotes the original input variables while the term “feature”
denotes the variables that have been created out of the inputs.

106

Var./Obs. | Vary | Varg | --- | Var, | Concept
dr o A,
d% .. As
dL. . A,
dz . B
d3 .. B
dfnz . By

Table 4.1: Data-table with documents from two ontologies.

that set. Thus we come up with a multivariate data table that contains n real
variables — the dimensions of the TF/IDF vectors, one categorical variable (the
class) and mq +msq observationﬁﬂ— the labeled documents from the two ontology
document sets. Table shows an example of such a table (the labels A; and
B; (i,5 € {1,2}) stand for names of concepts from two different ontologies).

We proceed to carry out a Principal Components Analysis on the set D; ».
Since all our observations now live in one single space, PCA will project all
documents from both ontologies in a single principal components space. As we
already noted, PCA shows how observations are regrouped and thus identifies
the existence of classes and their relations. Naturally, all documents belong-
ing to one single concept (no matter from which ontology) will appear grouped
togetherﬂ What is more, documents that belong to two or more different con-
cepts from two different ontologies will also appear to be grouped together if
they are instances of similar concepts. What remains is to take the labels of the
documents which form one single group in the principal components projection
and identify a mapping between the corresponding concepts.

An example illustrating the procedure is given in Figure [£.7 We see docu-
ments from concepts Al, A2, A3 and A4 from one ontology and documents from
concepts Bl, B2 and B3 from another. PCA shows that there are four main
groups of observations. What our procedure suggests is that the documents
that are grouped together in the PCA plot are instances of concepts which are
to be mapped, i.e. Al is mapped to B2, A2 — to B3, A4 — to B1, and A3 has
no match in the second source ontology.

One straightforward problem with the proposed procedure is that the princi-
pal components analysis relies on a list of normality and linearity assumptions,
which in many cases appear to be too strong restrictions. Applying a non-linear
version of the PCA, like the one introduced in [I5] or [I34], based on using dot
products in a feature space in terms of kernels in the input space could help
overcome some of these assumptions. However, distribution related assumptions
will still be on the way.

"The term “observations” is common for denoting the examples (or instances) in a dataset.

8 As a matter of fact, the data is grouped together in its original representation (in a space
of hundreds or thousands of dimensions). As stated above, the groups only become visible via
the PCA-technique.

107

Ontology O1 Ontology 02
Concpets A1, A2, A3, Ad Concepts B1, B2, B3

Al, Bi. sets of documents labeled by their class

\ 4

Principal Components Analysis Concept Alignment
A3
PC1 A3
Ad Agahe A
Aghd -
Bhipy A1 is mapped to B2
B1B1 .
A2 is mapped to B3
a2 P53 , A3 -)
A2 B3 A3 has no match in O2
B B2 Az :
Al A4 is mapped to B1
A}“BZBZ

Al

PC2

Figure 4.7: Example: PCA-based concept mappings.

Discriminant Analysis

PCA finds principal components by describing as much variance of the data as
possible. However, in practice the first components may not (and often will
not) reveal the class structure that we need. Discriminant analysis, originally
introduced by Fisher [48], comes in to compensate for that drawback.

Similarly to PCA, discriminant analysis is also based on constructing princi-
pal (discriminant) axes but with the explicit objective to capture the separation
of the classes by minimizing their in-class variation and maximizing the dis-
tances between their means. The class information has to be included in the
input data from the start. The resulting discriminant axes are again linear
combinations of the input variables. The variables with greatest weights for the
construction of a given axis are the most important ones for the class separation
projected on this axis. This gives rise to one of the most popular applications
of DA analysis as a variable selection tool in class discrimination problems.

For an illustration, see Figure 4.8} represented is a population of two groups
of observations (the blue and the red clusters) projected onto the first two
discriminant axes (DA1 and DA2). DAI1 provides a good separation of the
two classes, unlike DA2 and the variables which are most significant for the
construction of the axis DA1 are the ones which are most important for the
separation of the blue and the red classes. We will come back to the ability of
the method to score variables with respect to their discriminative qualities later
on in next section and in our experimental studies.

In order to identify corresponding concepts, we apply a geometrical approach
similar to the PCA case. We take an input dataset D; o, as introduced above
and by the help of a discriminant analysis, we identify overlaps of groups of
observations. Our argumentation goes as before:

108

DA2 S e

.t . I DAl

Figure 4.8: Example: discriminant analysis.

if two (or more) classes of observations that belong to two different
input ontologies appear to overlap when projected on the DA discrim-
inant azes, the concepts of which they are instances are assigned a
mapping of a similarity degree according to the size of the overlap or
the distance between the classes.

Since the basic motivation of DA is to provide a proper separation of previously
given classes, it is a reasonable suggestion that those classes between which DA
cannot properly discriminate are similar (see Figure for an illustration).

Finally, we note that a kernel version of the discriminant analysis handling
nonlinear cases has been elaborated in [105].

4.3.3 Variable Selection as a Measure of Concept Similar-
ity

We proceed to propose a novel measure of instance-based concept similarity
using variable selection for class discrimination. The instances in our study,
we recall, are natural text documents assigned to the nodes of each ontology
and coded as TF/IDF vectors [(4]. Variable selection mechanisms are used to
find variables (terms in the TF/IDF vectors), which are most characteristic for
a given concept and play the most important role for separating its instances
from the rest of the instances of the same ontology. The proposed measure
of similarity is based on coinciding most important variables for two concepts
taken from different ontologies.

The choice of a variable selection procedure within this setting is left to the
user. However, we propose a novel selection criterion elaborated for Support
Vector Machines (SVMs) (Section, arguing that it potentially outperforms
standard selection techniques. The viability of the proposed concept similarity
measure is demonstrated by experiments on real world textual data carried out
by the help of variable selection procedures based on discriminant analysis and
other standard selection techniques, such as mutual information, document fre-

109

Ontology O1 Ontology 02
Concpets A1, A2 Concepts B2, B3

Al, Bi. sets of documents labeled by their class

\ 4

Discriminant Analysis Concept Alignment

DA is not able to
discirminate properly

pA2 between AT and B2 nor
A2B3 between A2 and B3,
’322 B3 @3 A3 el but separates {A1, B2}
B, B2 A2AZ well from {A2, B3}.
e
Al A1l is mapped to B2

A2 is mapped to B3

DA1

Figure 4.9: Example: DA-based concept mappings.

quency thresholding and Chi-square statistics-based feature selection (Chapter

).

Concept Similarity via Variable Selection

Variable (or feature) selection has been discussed in detail in Section We
recall that in our study the emphasis falls on the application of variable selection
as a method which helps to find out more about the input — output relation in
a given data set by pointing out the input variables, which most strongly affect
the response.

We will introduce the type of datasets resulting from a specific instance-based
representation of concepts within an ontology. The suggested machine learning
procedure will be applied on sets of this kind. Let A be a concept from ontology
O;. We define a training data set S = {(d},y)}, whered}! € R, i =1,...,m;
and y#* are labels taking values +1 when the corresponding document d} is
assigned to A and —1 otherwise. The labels separate the documents in ontology
01 into such that belong to the concept A (positive instances) and such that do
not (negative instances).

The same representation and training data set can be acquired analogously
for any given concept in both input ontologies O; and Os. The similarity be-
tween two concepts A and B which belong to two different ontologies will be
assessed by the help of their corresponding datasets S4 and S&.

In our application scenario, for a given data set of the type S variable selec-
tion would indicate which of the TF/IDF vector dimensions are most important
for the separation of the documents into such that belong to the concept A and
such that do not.

We will see how a variable selection procedure can be applied to the task

110

‘ In ontology O1 ‘

Instances
belonging to concept A not belonging to concept A

O —

VC-dimension Variable Selection
SVM l

List of Selected Variables | |Var7, ..., Varn

I

Set of Top k Variables | L4 =|Vary, .., Varx

ke

Figure 4.10: Variable selection for a concept A in ontology O;.

of discovering concept similarities. We take as an input two concepts A € Cp,
and B € Cp, together with their corresponding datasets S4 = {(d%7yA ,
i=1,..,my and SB = {(d?,yf)}, j=1,...,mg as introduced in Section
Our goal is to identify the degree of similarity between these two concepts.
We carry out a variable selection procedure on each of the sets and order the
variables from each of the sets by their importance for the class separation. Let

LA = {VaTg(l), VCLTU(Q), ceey Va?“g(n)}

and
LB = {Varg(l), Var5(2), ceey Va?“g(n)}

be the ordered lists of variables for concepts A and B, respectively, where o and
0 are two permutations on the sets of variable indexes. We take from each of
the lists a subset of the first k£ top ordered elements, where k is to be set by
the user (k < n), and define the subsets L{} = Varyiyy, Vare,y, ., Vary,)
and LY = {Vars(,), Varsiy), .., Varsgy}s i.j € (1,n), each of which contains
the k most important variables for the separation of the instances in each corre-
sponding ontology into such that belong to concept A, respectively B, and such
that do not (Figure . The similarity of concepts A and B is given as
A B

sim(a, B) = L] (4.11)
with sim(A, B) € (0,1). The defined measure of similarity fulfills the require-
ments for a similarity function (minimality, positiveness and symmetry), as
introduced in definition [15] from Section We will name this measure k-TF,
from k Top Features.

In the experimental part of the thesis (Chapter , we will discuss in some
detail the importance of the parameter k£ and its possible values. We mention
that different values of k are appropriate with respect to different variable selec-
tion procedures used to form the sets L,? and LkB . However, a rule of thumb in

111

choosing k’s value is that it should be kept significantly lower than the number
of variables in the dataset; otherwise one is running the risk of diluting the sets
of selected variables with noise.

The concept or its complement?

Due to the nature of the introduced concept similarity criterion, there appears
a certain ambiguity in the final similarity judgment. If a subset of variables
is important for the separation of a given data set into classes B and B so is
the same subset when we swap the two labels. The end result is that whenever
our similarity measure sim(A, B) yields 1 or a number close to 1 the following
disjunction holds: {concept A is similar to concept B } or {concept A is similar
to concept B } (the second possible disjunction, { A similar to B } or { A
similar to B }, is complementary to the first one).

This undesired effect has been observed experimentally. We tested a VC-
dimension-based similarity measure on the concepts of two small ontologies, O
and O, each containing two classes, such that class A; of O; was similar to
class By of Oy and class Ay of O was similar to class By of Oy. The selected
most important variables for the class A; and the class As were the same, so
were the ones for the classes By and Bs. In that the similarity measure yielded
identical similarity values for each of the four pairs of classes.

However, this effect is most likely to be observed when there are only two or
too few concepts from one of the ontologies to be mapped (for example, this can
happen when mapping concepts from a high level of the ontology, where there is
little granularity). If there are many concepts, which is often the case in real-life
problems, this undesired effect is likely to disappear, for the complement of a
concept will be a set of many other concepts; the characteristic variables of the
complement of the concept will coincide only with the characteristic variables
of the concept itself and no other concept in the dataset, for the complement of
the concept is not an independent concept itself.

We will illustrate the former claim formally by a small example. Let us
consider the two sets of concepts O; = {A1, A2, A3} and Oy = {By, By, Bs}
taken from two different ontologies and let every set contain non-empty concepts,
viewed as sets of instances, from a single level of the respective ontology (see
Figure . In that the concepts are assumed to be pair-wise disjointﬂ AN
Ay = (Z), A1NAs = @7 AsNAs = (Z), and BiNBy = @7 BiNB3 = @, B>sNB3 = 0. We
assume that a concept is entirely defined and exhaustive within a single ontology,
i.e. that the concept’s complement is contained entirely in the ontology, and
not only partially. This is plausible, since it is difficult to talk about what a
concept is and how it is defined out of the formal context of an ontology.

Now let us assume that the similarity measure has identified the
matches {A;, By}, {42, B2}, {43, B3} and thus the following disjunctions hold:

9The disjointness assumption is valid for tree-like ontologies and ontologies containing a
hierarchical backbone, like the ones assumed in our model. However, this assumption might
not hold for ontologies of more general kind.

112

Figure 4.11: Example: the concept or its compliment?

{A, = B} U{A, = B} (4.12)
{A2 = B2} U{A2 = B>} (4.13)
{As = B3} U {4 = B3} (4.14)

The complement of a concept B; is expressed as By = B, U Bs. In the sequel,
we will show that only the left hand side parts of the disjunctions above hold
(the ones explicitly found by the similarity measure).

1. Let A1 = Bl.

Assume that Ay = By (= Ay = By U Bs). We are in the case 4; = By,
which implies A2 = A; U Bs. But, by assumption, A; N Az = (0, therefore
Ay = By cannot hold and Ay = Bs.

Analogously, it follows that A3 = Bs.

2. Let A1 :Bil(:> A1 :BQUBg).

If A, = B, then it follows that A; N As # 0 — a contradiction to an
assumption = Ay # By. If Ay = By, i.e. Ay = B, U Ba, it follows again
Ay N Ay # (), which contradicts the assumption = A, # B,. We have
arrived at the inconsistent conjunction {Ay # Ba} N {As # Ba}. Hence,
the only possible case is A; = Bj.

The same result can be derived analogously for the rest of the disjunctions
in .

To sum up, we state that if a concept A in O; is to be mapped to the
complement of a concept B in Os, then all remaining concepts in O; have to be
mapped to B, which is only reasonable in the case of two concepts and otherwise
is a contradiction to the assumption of disjointness. Hence, the sketch of a proof
above is valid for cardinalities of the sets of concepts greater than two. It is easy
to verify that if there are only two concepts in one of the two sets of concepts
the reasoning above does not hold and the effect of misjudging a concept for its
complement (the second concept in the set) appears. In this case, we suggest to
address the problem by the help of an approach which computes the statistical
correlation between an attribute and the corresponding binary output estimated
over the training data in order to get the desired sign information of for which of
the two possible categories the selected features are relevant. Such approach can
utilize, for instance, Mutual Information (discussed in previous sections) which
explicitly computes the informativeness of a feature with regard to a given class.

113

Another way to approach this problem, is to rely on the polarity of the terms
with respect to the categories. Given two concepts A and B and a term t, we
count the number of documents from A in which ¢ occurs and the number of
documents in which it does not. We do the same for the documents in B. If
t is relevant to A the number of documents in which it occurs in A should be
bigger than those in which it does not and vice-versa for the concept B.

Parameter-free similarity measures

The similarity measure depends on one parameter, k. Setting this param-
eter is not problematic, when we apply standard variable selection techniques.
As seen in the experiments, once we have an algorithm for computing the sim-
ilarity measure, trying out different values of k is inexpensive. Besides, the
results corresponding to different values of k£ within a certain range are very
competitive, in the majority of cases (see the relevant discussion in Chapter [5)).

However, we point out that a parameter-free measure can be applied as well
in order to avoid the manual setting of the parameter k. This is particularly
helpful when using an SVM-based variable selection criterion, for in this case
computations are more expensive. We propose to use standard parameter-free
measures of rank correlations for two random variables — in our case, the two
concepts whose similarity we want to measure. A measure of correlation stan-
dardly takes values between -1 and 1, assuming strong correlations for high
positive values, strong anti-correlations for high negative values and no depen-
dence for values close to 0.

The measures can be computed on the variables scores or on the correspond-
ing variable ranks. As a result of the variable selection procedures, each concept
in our two ontologies can be represented as a list of variables scores and ranks
can be computed over these scores. The variables ranks are integers, such that
rank(Var;) = 1 if the score of the variable Var; is minimal, and so on. Table
4.2 provides an example: 7‘24, i € (1,...,n) stands for the rank corresponding to
variable Var; computed from its score, xf‘7 in result of the variable selection
procedure performed for concept A.

We refer to the book by Conover [29] for an overview of rank correlation-
based tests. We will introduce three of the most popular choices for correlation
measures of two random variables and indicate how they can serve as similarity
measures for two classes of instances.

e Spearman’s coefficient [142] provides a measure of the correlation of two
variables represented as lists of statistical rankings. Formally, it is given
by

> df
n(n? —1)’
where d; is the difference of the ranks calculated for the i-th pair of two
corresponding variables (see Table and n is the total number of ob-
servationﬂ In that, p acts as a similarity function — greater values of p
would indicate higher similarity of the concepts.

p=1-6 (4.15)

101n this case the observations are the different rank values for each of the n variables; recall
that the two random variables that we measure the correlation of are the two classes A and
B.

114

Scores (A) Ranks (A) | Scores (B) Ranks (B) d;
Vary xf r‘f le rlB 7"’14 — TlB
Varg xf r§4 y2B T‘QB 1"5‘ — 7’23
Vars x3A r§4 yf rf 7'34 — rf
Vary xf rf yf rf rf — rf
Var, x,’;‘ r,’? yf rf 7";? — T,l?

Table 4.2: Concepts, variables, scores and ranks.

e Pearson’s product moment correlation coefficient can be applied directly
on the variables scores without transforming them into integer ranks. It
is given by

Z?:l(zf‘ — xﬁean)(yzB — yﬁean)

T =
\/Z:L:l(sz - xﬁmean)z\/zyzl(yiB - yr%ean)Q

where z# and y? are the scores corresponding to the variables for the
classes A and B and z_,. and y2 . are their mean values calculated

overalli=1,..,n,r € [-1,1]

, (4.16)

Note that Pearson is the general formulation of Spearman when there are
no tied ranks. In case our data contain tied ranks, Pearson’s coefficient
can be computed over the ranks, instead of the scores, by the formula

o(rA —rd rB —rB
r= Zz_l(7 mean)(1 mean) ; (417)
\/Z?ZI(T;JA - r'r/rllean>2\/2?:1(ri3 - rglean)Q
where 72 . and rZ_ .~ are the mean values over all variables ranks for

each of the two classes. It can be shown that in this case Pearson is
identical to Spearman (see, for instance, [29]).

e Finally, we introduce Kendall’s 7, which only makes use of ordering infor-
mation, given by

Ne —Ng

T= Tn(n—1)’ (4.18)
where n, and ng are the number of concordant and discordant pairs among
the observations for two given classes. Two observations are called concor-
dant if both members of one observation are larger than their respective
members of the other observation. A pair of observations is called discor-
dant if the two numbers in one observation differ in different directions
from their corresponding numbers in the second observation. For example,
the pairs {(2.2, 3.4), (2.8, 4.1)} and {(5.2, 5.7) (2.1, 3.6)} are concordant,
whereas the pair {(3.7, 1.5),(2.8, 3.2)} is discordant.

HPearson’s correlation usually and here is denoted by r and is not to be confused with the
variables rankings.

115

As mentioned, the measures presented above are measures of correlations
in the range [—1,1] and therefore are not properly measures of similarity. In
our case, for two concepts A and B, a high positive correlation indicates that
whenever a variable has a high score for concept A, so it does for the concept B
(the same variables are important for the two concepts). A correlation close to 0
means that no such dependency exists, a high negative correlation indicates that
whenever a variable reaches a high score for A, it has a low score for B (i.e. it
is certainly not the same variables which characterize the two concepts). Since
having the same variables characterizing two concepts is our basic similarity
criterion, similar concepts are judged to be those with a high positive coefficient,
and not those with a coefficient simply above 0. Therefore, as we will see in
our experimental results, a similarity threshold of 0.5 is sensible. A properly
defined similarity funtion based on either of the measures of correlation above
would look like that:

sim(A, B) = max{0, corr(A, B)}, (4.19)

where corr(A, B) stands for either of the measures p, r or 7 applied on two
copncepts A and B and sim(A, B) € [0,1].

In the experimental part of the thesis (Chapter [5), we will discuss and com-
pare the performance of the parameter-free coefficients introduced above and
the k-TF similarity measure (4.11).

4.3.4 VC-dimension-based Variable Selection for SVMs

As we have seen in Section [2.2] the support vector machines have many attrac-
tive sides, particularly when dealing with text data - their performance does
not depend on the distribution of the data (safe that they are i.i.d.), it does not
demand a linear input-output relation and they are easy to implement. At least
theoretically, the generalization properties of SVMs do not dependent on the
size of the input space which makes variable selection little prominent for learn-
ing with SVMs. However, the listed properties turn them into a good candidate
for a variable selection tool to be used self-dependently. In addition to that,
some authors have shown that even though theoretically unnecessary, variable
selection improves SVM learning in practice [126].

We have discussed different efforts in SVM-based variable selection during
the last decade in Chapter 2] Most of the existing endeavors are based on the
variations of the weight vector with respect to a variable of the original dataset.
The variable selection criterion that we propose is based on the sensitivity of
the VC dimension of the SVM classifiers with respect to a single variable or a
block of variables. As we have seen in Section for different values of the
VC dimension h, different values of the VC confidence (describing the capacity
of the classifier) will be computed and thus different bounds on the actual risk
, where from the generalization power of the classifier will change. Our
main heuristics can be formulated as

a less informative variable is one, which the VC confidence of the
classifier is less sensitive to.

For computational reasons, the evaluation function of our variable selection
procedure will be formulated in terms of VC dimension directly, instead of

116

Instance-based Mapping

Ontologies O1 and 02 - nput

Detect potential pairs :
of similar concepts I PCA, DA

--------------------- i

Measure of Similarity
on a concept level

Concept to Concept U
mapping Qutput)

|
! !

‘cj S {@}‘ ‘ Cl >C?

}

1 2 2
cokicil

o1:{Cli=1..,n}, 02:{C},j=1.,m}

Figure 4.12: A possible architecture of instance-based mapping.

in terms of the VC confidence. This is plausible since the VC confidence is
monotonous in h. Thus, the i-th variable is evaluated by

eval; = h(H) — h(HY), i =1,..n, (4.20)

where h(H) is the VC dimension of a set of SVM hypotheses H constructed
over the entire data set and h(H") is the same quantity computed after the
removal of the i-th variable in the data set (this is the variable whose pertinence
is to be evaluated).

As a final remark, we note that in general, it is difficult to compute the
VC-dimension directly. But in the case of the SVMs, we can compute an upper
bound for the VC-dimension depending on the resulting weight vector and on
properties of the given data (Lemma [25| introduces this bound). In the evalu-
ation of the proposed variable selection technique, presented in Section 77, we
have used SVMlight [75] where the VC dimension is estimated based on the
radius of the support vectors.

The components of instance-based ontology mapping, which have been intro-
duced and elaborated theoretically in the sections above are depicted in Figure
combined together in a possible matching architecture.

117

4.4 An Overall Variable Selection-Based Ontol-
ogy Matching Procedure

In the previous couple of sections, we have introduced and discussed concept-to-
concept mappings achieved by the help of an instance-based similarity measure,
which uses variable selection methods. We have not yet specified how this
measure can be applied in an optimal way for the task of asserting similarities
of all possible pairs of concepts of two source ontologies. Clearly, simply taking
the two sets and measuring one-to-one similarity values would be not only time
and complexity inefﬁcienﬂ but also conceptually unjustified, for in this case
the structure of the classes in both ontologies would not be taken into account.
Structure and rich semantics is what differentiates ontologies from other types
of data representations and therefore simply considering flat sets of concepts
is not a reliable method of ontology matching. In addition to that, there is
a practical problem in doing so. In the section above, we have introduced a
variable selection procedure based on binary support vector machines. Now
let us imagine that in the first of our source ontologies we have the classes
“Hardware-Mac” and “Hardware-PC” among other classes, such as “Religion”
and “Politics”. When an SVM-based variable selection procedure attempts
to identify the characteristic variables for the class “Hardware-Mac”, it will
stumble upon a problem: the instances in the dataset will be labeled positive
for that class and negative for all other classes, including “Hardware-PC”, which
is much closer semantically to “Hardware-Mac” than “Religion” or “Politics”.
In that, the instances of “Hardware-PC” will appear to the classifier as errors,
rather than members of the negative class.

In order to account for this problem and to embody the structure of the
two ontologies, we propose an overall procedure for ontology matching. We
suggest that the similarity measure should be applied iteratively for the sets
of concepts on corresponding levels of the two ontologies, descending down the
tree structure. In a properly designed ontology the classes on a single level are
homogeneous and non-intersecting and the undesired effect described above will
not be produced. We will first describe the procedure for hierarchical ontologies
(containing only is_a relations) with identical number of levels and identical
level of detail - a fairly restricted case, but one which allows to explain the core
of the algorithm. Building on that particular case, we will further present an
extended version of this procedure accounting for non-hierarchical ontologies of
general kind.

4.4.1 Matching Hierarchical Ontologies

Consider we have two ontologies both containing the same number of levels,
equally granular and specific. In the first step, one takes only the classes of
the first level of the two ontologies (the direct descendants of the top concepts)
and measures their similarityE Let the corresponding collection of concepts be
labeled C 4 and Cpg. If a concept A from C'4 is found to be similar to a concept
B from Cp, the procedure is repeated for the two sub-trees which start in A

12Mapping an ontology with n concepts to an ontology with m concepts (performing all
possible n X m mappings) can become prohibitive for high values of n and m.
13We assume that conceps are instantiated hierarchically (see Section [4.1.2)).

118

and B, respectively.

We will illustrate this idea with one example. Let <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>