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1 Introduction

1.1 Problem definition

This thesis deals with unimodular covers and triangulations of lattice poly-
topes. It centers around the following problem definition: Provide a good
bound cd such that for all d-dimensional lattice polytopes and c ≥ cd

all multiples cP admit a unimodular cover.
In [8] Knudsen and Mumford showed that for every lattice polytope P

there exists a number cP such that cP P admits a unimodular triangulation.
One might ask if this result can be generalized. Is there a number cd only
depending on the dimension of the lattice polytope P such that the multiples
cP admit a unimodular triangulation for all d-dimensional lattice polytopes
P and all c ≥ cd?

In [5] Bruns, Gubeladze and Trung showed in a very elegant and sim-
ple way that – if we restrict ourselves to unimodular covers – there exists a
number c′P for every lattice polytope P ⊂ Rd such that c′P P admits a uni-
modular cover for all c ≥ c′P . In [3] Bruns and Gubeladze even proved that
this number only depends on the dimension d. More precisely, they deduced
that there exists a number cpol

d such that for all lattice polytopes P ⊂ Rd the

multiples cP admit a unimodular cover for all c ≥ cpol
d . Furthermore, they

even provided an upper bound for cpol
d . But this bound is superexponential.

In the second chapter we will improve the bound by modifying a crucial
step (with respect to the numerical result) in the proof of the above state-
ment. This crucial step is based on a simple procedure for covering simplicial
cones by unimodular cones. We will provide a new procedure for covering
simplicial cones, which is better than the original one in a sense that the
new procedure gives us a cover with unimodular cones whose generators are
relatively short.

In the third chapter we will provide a similar procedure for the unimodular
triangulation of simplicial cones which has no consequences on the bounds
ccone
d and cpol

d , but might be of interest itself.
In the fourth chapter we turn away from multiples of polytopes and focus

on stellar subdivisions of lattice polytopes. This turn is motivated by the
fact that all procedures and results in the previous chapters are, roughly
speaking, due to the successive application of stellar subdivision. Therefore,
we speculate about the importance of this tool for the triangulation of lattice
polytopes.

Before we go into detail, we will now introduce the basic definitions.
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1.2 Basic lemmas and definitions

In this section we will provide the basic notation and, additionally, some
lemmas which are implicitly used throughout this work.

Let G be a subset of Rd. Then the cone C ⊂ Rd generated by the set G is
defined as the set of finite, non-negative and real linear combinations of the
vectors v ∈ G. Furthermore, a cone C is called polyhedral if it is generated
by a finite set G = {v1, . . . , vk} of vectors. This means that

C = R+v1 + · · ·+ R+vk ⊂ Rd.

We call a cone pointed if it does not contain any linear subspace except of
{0}. Moreover, we shall call a cone rational if G is a subset of Qd. From
now on, when we use the term cone, we always mean a polyhedral, pointed
and rational cone. Because such cones are generated by a finite set of vectors
v1, . . . , vk ∈ Zd, the formula

C = R+v1 + · · ·+ R+vk ⊂ Rd.

will mean that vi ∈ Zd (i = 1, . . . , k). An f -cone is a cone of dimension f .
Moreover, we define – according to Sebö [11]– the set

par(v1, . . . , vn) = {l1v1 + · · ·+ lnvn : 0 ≤ lj < 1} ∩ Zd

for v1, . . . , vn ∈ Rd. A further class of cones which will be mentioned is the
class of simplicial cones. These are the cones that are generated by a set of
linearly independent vectors.

Let us now have a closer look at the set C∩Zd. Therefore, we will describe
C ∩Zd in algebraic terms. A monoid M is defined as a set M together with
an operation M ×M 7−→ M that is associative and has a neutral element.
Furthermore, let an affine monoid be a finitely generated monoid which is
isomorphic to a submonoid of a free abelian group Zd for some d ≥ 0. Very
often an affine monoid is also called an affine semigroup, especially in the
commutative algebra literature (see e.g. [2, 5, 6]). Moreover, if M is an affine
monoid, then we define gp(M) as the subgroup of Zd generated by M . We
call

M := {x ∈ gp(M) : nx ∈ M for some n}
the normalization of M . And we say that M is normal if M = M . Then
Gordan’s Lemma tells us that C ∩ Zd is an affine monoid.

Lemma 1.2.1. (Gordan’s Lemma) Let C ⊂ Rd be a cone. Then S(C) :=
C ∩ Zd is an affine monoid.
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Figure 1.1 The set par(v1, v2)

Proof. Let C ⊂ Rd be a cone. By definition, C is generated by finitely
many vectors v1, . . . , vr. Furthermore, let w ∈ S(C). This implies that
w =

∑r
i=1 aivi with ai ∈ R+ for all i. We can rewrite this formula as follows:

w =
r∑

i=1

baicvi +
r∑

i=1

bivi,

where bi := ai − baic. But x :=
∑r

i=1baicvi ∈ S(C). On the other hand,
y :=

∑r
i=1 bivi is an element of the bounded and finite set

par(v1, . . . , vr) =

{
r∑

i=1

livi : 0 ≤ li < 1

}
∩ Zd.

Hence S(C) is finitely generated. More precisely, S(C) is generated by the
set G := par(v1, . . . , vr) ∪ {v1, . . . , vr}. Therefore, S(C) is an affine monoid.
�

Now let us call an element x ∈ M of a monoid M a unit if x has an
inverse in M . Moreover, we say that x is irreducible if in every decomposition
x = y + z one of the summands y ∈ M or z ∈ M must be a unit.

Then we have the following results for affine monoids.

Lemma 1.2.2. Let M be an affine monoid. Then every element x ∈ M has
a presentation x = u + y1 + · · ·+ ym in which u is a unit and y1, . . . , ym are
irreducible. Furthermore, up to differences by units, there exist only finitely
many irreducible elements in M .
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Proof. See Proposition 2.12(b) and (c) in [4], p. 53. �

In analogy to the positivity of cones a monoid is called positive if 0 is
its only unit. Then Lemma 1.2.2 immediately implies that a positive affine
monoid M has only finitely many irreducible elements and that these ir-
reducible elements constitute a generating set of M . But, of course, the
irreducible elements must also be contained in any other generating set of
M . Therefore, it is justified to define the Hilbert basis Hilb(M) of a positive
affine monoid M as the unique minimal set of generators of M .

Consequently, we have the following result if the positive affine monoid
M is given as the set S(C) = C ∩ Zd.

Lemma 1.2.3. Let C = R+v1 + · · · + R+vr ⊂ Rd be a cone and let the
Hilbert basis Hilb(C) of the cone C be defined as the Hilbert basis of the
positive affine monoid C ∩ Zd. Then we have

Hilb(C) ⊂ par(v1, . . . , vr) ∪ {v1, . . . , vr}.

Proof. As we have seen in the proof of Gordan’s Lemma, the set G :=
par(v1, . . . , vr)∪{v1, . . . , vr} is a generating set of S(C). Because the Hilbert
basis Hilb(C) is a subset of every generating set of the positive monoid S(C),
the statement of Lemma 1.2.3 is true. �

A polytope P is defined as the convex hull of a finite set of points of
Rd. The dimension of a polytope P ⊂ Rd is given as the dimension of the
affine hull of P , the smallest affine subspace containing P . Furthermore, a
polytope is called an e-polytope if it has dimension e. And a lattice polytope
is a polytope whose vertices belong to Zd. Moreover, a simplex is defined as
a polytope whose vertices are affinely independent. A simplex that is also a
lattice polytope will be called a lattice simplex. We say that a lattice simplex
is empty if it contains no elements from Zd other than its vertices.

The multiplicity µ(∆) of a lattice simplex ∆ with the vertices v0, . . . , vg is
given as the index of the subgroup U generated by the vectors v1−v0, . . . , vg−
v0 in the smallest direct summand of Zd containing U . For the multiplicity
µ(∆) we have the following identity.

Lemma 1.2.4. If ∆ ⊂ Rd is a lattice simplex with the vertices v0, . . . , vd,
then we have

µ(∆) = | par(v1 − v0, . . . , vd − v0)| = | det(v1 − v0, . . . , vd − v0)|.

Proof. Obviously, the set par(v1 − v0, . . . , vd − v0) contains exactly one
representative from each residue class of Zd modulo U := Z(v1 − v0) + . . . +
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Z(vd − v0). This implies the first equality. Due to the elementary divisor
theorem there exists a basis e1, . . . , ed of Zd and natural numbers n1, . . . , nd

such that n1e1, . . . , nded is a basis of U . But if n1e1, . . . , nded is a basis of
U , then µ(∆) = n1 · · ·nd. On the other hand, | det(v1 − v0, . . . , vd − v0)| =
| det(n1e1, . . . , nded)| = n1 · · ·nd if n1e1, . . . , nded is a basis of U . �

A subclass of the lattice simplices is the class of unimodular simplices
∆. These are specified by the property µ(∆) = 1. Furthermore, we define
for a d-polytope P the set UC(P ) as the union of all unimodular d-simplices
contained in P . A unimodular cover of a polytope P is defined as a finite
system of unimodular lattice simplices, contained in P , which covers the
polytope P . And a unimodular triangulation of a polytope P is defined as
a unimodular cover of P which additionally is a triangulation of P . This
means that any pair of simplices ∆′, ∆′′ from the cover of P intersects in a
common face (possibly empty).

Now we can provide one of the central definitions of this thesis. Let cpol
d

denote the infimum of the natural numbers c such that

c′P = UC(c′P )

for all lattice d-polytopes and all natural numbers c′ ≥ c.
Moreover, if P ⊂ Zd is a lattice d-polytope, we can associate with such a

polytope P the submonoid SP of Zd+1 generated by the elements (x, 1), x ∈
P ∩Zd. Then we say that P is a normal polytope if the monoid SP is normal.
(SP is obviously an affine monoid, because the set P ∩ Zd is finite and,
hence, SP is finitely generated.) A normal polytope P for which, additionally,
gp(SP ) = Zd+1 will be called integrally closed.

Let us now come back to the field of cones. The extreme (integral) gen-
erators of a cone C ⊂ Rd are defined as the generators of the monoids l∩Zd

where l runs through the edges of C. Then we define ∆C as the convex hull
of these extreme generators and 0. Consequently, a cone is simplicial if and
only if ∆C is a simplex. And a simplicial cone C for which the simplex ∆C

is empty is called an empty simplicial cone. Additionally, we define the mul-
tiplicity µ(C) of a simplicial cone as the multiplicity µ(∆C) of the simplex
∆C .

Analogously to the unimodularity of simplices, we will now define uni-
modular cones and unimodular covers of cones. A unimodular cone C ⊂ Rd

is defined as a simplicial cone for which ∆C is a unimodular simplex, and
a unimodular cover of a cone C is defined as a finite system of unimodular
cones whose union is equal to C. A unimodular triangulation of a cone C
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is given as a unimodular cover which, additionally, is a triangulation, i.e.
the covering cones just coincide along faces. Now we can provide the second
central definition of this thesis.

We define ccone
d to be the infimum of all natural numbers c such that every

d-dimensional cone C ⊂ Rd admits a unimodular cover C = C1∪ . . .∪Ck for
which

Hilb(Cj) ⊂ c∆C , j ∈ {1, . . . , k}.
To construct covers and triangulations of cones, we will often apply stellar

subdivision by a vector x ∈ C to a cone C = R+v1 + · · · + R+vd ⊂ Rd. Let
x = α1v1+· · ·+αdvd. Then this simply means that the cone C is triangulated
by the subcones

Di = R+v1 + · · ·+ R+vi−1 + R+x + R+vi+1 + · · ·+ R+vd ⊂ Rd

for which αi 6= 0 (1 ≤ i ≤ d). In the same manner we can apply stellar subdi-
vision with respect to a point x ∈ ∆ to a lattice simplex ∆ = conv(v0, . . . , vr)
(see Figure 1.2).
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Figure 1.2 Stellar subdivision with respect to x

Remark 1.2.5. Lemma 1.2.4 will always be implicitly used if we apply stellar
subdivision to a simplex ∆ = conv(0, v1, . . . , vd) or a cone C = R+v1 + · · ·+
R+vd ⊂ Rd by x ∈ ∆ respectively x ∈ C. Then the lemma provides us with
the multiplicities of the cones respectively simplices that triangulate the cone
C respectively the simplex ∆. Let me illustrate this in the case of a cone
C = R+v1 + · · ·+ R+vd ⊂ Rd and a vector x ∈ C. Let x = α1v1 + · · ·+ αdvd

such that αi ≥ 0 for all i. If we apply stellar subdivision by x to the cone C,
then we end up with a triangulation C = Di1 ∪ . . . ∪Dik , where αij 6= 0 for
all j. Consequently, it follows by Lemma 1.2.4 that

µ(Dij) = µ(∆Dij
) = | det(v1, . . . , vij−1, x, vij+1, . . . , vd)|.

But we also have | det(v1, . . . , vij−1, x, vij+1, . . . , vd)| = αij | det(v1, . . . , vd)| =
αijµ(C). Therefore, µ(Dij) = αijµ(C).
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Remark 1.2.6. As we have mentioned before, the set par(v1, . . . , vd) con-
tains exactly one representative from each residue class of Zd modulo U =
Zv1 + . . . + Zvd. Consequently, for x ∈ par(v1, . . . , vd), the term 〈x〉 shall
simply denote the subgroup of Zd/U generated by the element x.

Moreover, we will implicitly use the following lemma in Chapters 2 and 3.
It shows that for every simplicial d-cone C = R+v1 + · · ·+ R+vd ⊂ Rd there
always exist vectors x ∈ par(v1, . . . , vd) of a very special form. In the further
chapters it will become clear that the existence of such vectors is essential to
the new procedures for the unimodular cover and triangulation of simplicial
cones.

Lemma 1.2.7. Let C = R+v1 + · · ·+ R+vd ⊂ Rd be a simplicial d-cone with
µ(C) =

∏m
i=1 pai

i , pi prime and ai 6= 0 for all i. Then for every i there exists
a vector x 6= 0 such that

x =
d∑

j=1

lj
pi

vj ∈ Zd, 0 ≤ lj < pi, lj ∈ N. (∗)

Proof. By the theorems of Sylow we know that every abelian group G
with |G| =

∏m
i=1 pai

i (pi prime and ai 6= 0 for all i) contains an element of
order pi for all i = 1, . . . ,m. Let U := Zv1 + · · · + Zvd. Then Zd/U is an
abelian group with µ(C) = |Zd/U | = par(v1, . . . , vd) due to Lemma 1.2.4.
Because a representative of an element of Zd/U in the set par(v1, . . . , vd),
which has order pi, is of the form (∗), it follows that we find the desired
vector for every i . �

1.3 Former results concerning ccone
d and cpol

d

Now that we have developed the necessary notation let us come back to the
very beginning of this introduction and review in detail and in the words of
our new notation the most important results, which we have outlined in the
problem definition. Furthermore, we will also give some additional results
concerning the values ccone

d and cpol
d .

We already mentioned in the problem definition that Bruns and Gube-
ladze showed in [3] that ccone

d and cpol
d are bounded by superexponential func-

tions. In [4] they provide even better bounds. More precisely, they proved
that

ccone
d ≤ (d + 1)d

2

(⌈√
d− 1

⌉
(d− 1)

)(2 ln 2)d+1
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for all d ≥ 2 and that

cpol
d ≤ (d + 1)2 · d1.5

2

(⌈√
d− 1

⌉
(d− 1)

)(2 ln 2)d+1

for all d ≥ 2.
The obvious similarity between these two upper bounds is owed to the

following inequality, which was also proven by Bruns and Gubeladze in [3].

ccone
d ≤ cpol

d ≤
√

d(d + 1)ccone
d , d ∈ N.

In fact, they first established the upper bound for ccone
d and then derived the

upper bound for cpol
d from the last inequality.

Before the work of Bruns and Gubeladze no other general results about
ccone
d and cpol

d were known. Only in dimensions d = 1, 2, 3 we have concrete
results.

For ccone
d we have the trivial result that ccone

1 = 1. Furthermore, we know
that ccone

2 = 1, because the empty simplicial cones in dimension d = 2 are
unimodular (as we will prove later on). In dimension d = 3 we have ccone

3 = 2.
This result is due to Sebö, who showed in [11] that every cone C in dimension
d = 3 admits a unimodular triangulation by cones which are generated by
vectors from the Hilbert basis Hilb(C) of C. Together with the fact that
Hilb(C) ⊂ (d− 1)∆C for all d, this gives us the desired result.

Sebö also conjectured in [11] that in all dimensions d every cone C ⊂
Rd admits a unimodular cover by cones which are exclusively generated by
elements of the Hilbert basis Hilb(C) of C. The correctness of this conjecture
would have implied that ccone

d ≤ d−1 for all d. Taking into account the result
of Ewald and Wessels [7], who showed that there exist cones in all dimensions
d ≥ 3 such that Hilb(C) is not contained in (d−2)∆C , it would have followed
that ccone

d = d− 1 for all d ≥ 3. But in [1] Bruns and Gubeladze provided a
counterexample to the conjecture of Sebö. Apart from the above, no other
general or concrete results concerning ccone

d were known before the work of
Bruns and Gubeladze.

For cpol
d we have cpol

1 = 1. It is obvious that in dimension d = 1 every
lattice polytope admits a unique unimodular triangulation and, hence, a uni-
modular cover. In dimension d = 2 we can triangulate every lattice polytope
into lattice simplices. Furthermore, one can (by the successive application
of stellar subdivision) triangulate these lattice simplices into empty lattice
simplices. Then we are done, because every empty lattice simplex is unimod-
ular in dimension d = 2 (thus every empty simplicial cone is unimodular in
dimension d = 2).

To illustrate this, let ∆ = conv(0, v1, v2) with v1, v2 ∈ Z2 be an arbitrary
empty lattice simplex shifted to the origin. Furthermore, let x ∈ par(v1, v2).
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This means that x = α1v1 + α2v2 such that 0 ≤ αi < 1. It follows that
either α1 + α2 < 1 or β1 + β2 < 1 with βi := 1− αi. This implies that either
x ∈ ∆ or y := β1v1 + β2v2 ∈ ∆. Since ∆ is empty, it follows that either
x = 0 (αi = 0 for i = 1, 2) or y = 0 ( βi = 0 for i = 1, 2). But the latter
case can be excluded, since otherwise x = v1 + v1 /∈ par(v1, v2), which is a
contradiction. Therefore, x = 0, which implies that par(v1, v2) = {0}. Hence
∆ is unimodular.

That every polygon admits a unimodular triangulation leads to the equa-
tion cpol

2 = 1. Moreover, due to Kantor and Sakaria [9] we know that cpol
3 = 2.

Coming back to the work of Bruns and Gubeladze in which they estab-
lished the upper bounds for ccone

d and cpol
d , we have to mention that one of

the most critical and important theorems in the proof is the following one.

Theorem 1.3.1. Every simplicial d-cone C ⊂ Rd, d ≥ 3, admits a unimod-
ular cover C = D1 ∪ . . . ∪DT such that

Hilb(Dt) ⊂

(
d

2

(
3

2

)µ(∆C)−2
)

∆C , t ∈ [1, T ].

This theorem is derived from a quite simple procedure to cover simpli-
cial cones by unimodular cones using successive stellar subdivisions. Any
improvement of this theorem directly affects the quality of the upper bound
for ccone

d and, hence, also the one for cpol
d . Most of this thesis is about provid-

ing a better procedure to cover simplicial cones, where “better” means that
the unimodular cones that are derived by the new procedure should have
generators as short as possible with respect to ∆C .
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2 A new covering procedure

In Chapter 2 we will provide a new procedure for covering simplicial cones.
Furthermore, we will prove that the inclusion of this procedure into the proof
of Bruns and Gubeladze in [3] results into polynomial upper bounds for ccone

d

and cpol
d .

2.1 The procedure

Right at the very beginning of this chapter, we will present the algorithm
which provides us for every simplicial d-cone with a good unimodular cover
of cones in a sense that the generating vectors of the covering cones are short
with respect to ∆C . So let C := R+v1 + · · · + R+vd ⊂ Rd be an arbitrary
simplicial d-cone. Then the call UC((v1, . . . , vd), ∅) will return a unimodular
cover of C given as the set CO of covering cones.

Procedure 1 Unimodular Cover – UC

1: C := R+v1 + · · ·+ R+vd ⊂ Rd

2: if µ(C) = 1 then
3: return CO ∪ {C}
4: else
5: p := min{q ∈ P : q|µ(C)}
6: Determine a vector x = l1

p
v1 + · · ·+ ld

p
vd ∈ par(v1, . . . , vd) \ {0}

7: for all i = 1, . . . , d do
8: if li 6= 0 then

9: Determine the vector xi = p−1
p

vi +
∑

j 6=i

lij
p
vj ∈ 〈x〉

10: ri := gcd(p− 1, li1, . . . , l
i
i−1, l

i
i+1, . . . , l

i
d)

11: yi := xi

ri

12: Di := R+v1 + · · ·+ R+vi−1 + R+yi + R+vi+1 + · · ·+ R+vd

13: CO := UC((v1, . . . , vi−1, y
i, vi+1, . . . , vd), CO)

14: end if
15: end for
16: return CO
17: end if

So what does this procedure do? First of all, it checks if the given cone C is
unimodular. If this is the case, then it just returns {C}. Otherwise Procedure
1 covers C by certain cones Di with smaller multiplicities µ(Di) ≤ p−1

p
µ(C)
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(as we will prove in the following) and recursively calls itself on the cones Di.
Finally, this will provide us with the desired unimodular cover. Furthermore,
we have to mention that line 12 of Procedure 1 is only included, because this
will help us to address the covering cones Di in the following.

Before we go on, we will give a short example to illustrate how Procedure
1 works.

Example 2.1.1. Let C := R+v1 + R+v2 ⊂ R2 with v1 := 6e1 + e2 and
v2 := e1 + e2. Then µ(C) = 5 ∈ P and par(v1, v2) = 〈x〉 for x := 1

5
v1 + 4

5
v2 =

2e1 + e2. Therefore, Procedure 1 comes up with the vectors

y1 =
4

5
v1 +

1

5
v2 = 5e1 + e2

and

y2 =
1

5
v1 +

4

5
v2 = 2e1 + e2.

As a result, D1 = R+y1 + R+v2 and D2 = R+v1 + R+y2 (see Figure 2.1).
Furthermore, µ(D1) = µ(D2) = 4.

Now let us see how the cone D1 is covered by Procedure 1. Because
µ(D1) = 22 and par(y1, v2) = 〈z〉 with z = 1

4
y1 + 3

4
v2, Procedure 1 comes up

with the vectors

z1 =
1

2
y1 +

1

2
v2 = 3e1 + e2

and

z2 =
1

2
y1 +

1

2
v2 = z1.

So, Procedure 1 covers cone D1 by the cones E1 = R+z1 + R+v2 and E2 =
R+y1 + R+z1. This means that the cone D1 is not only covered but also
triangulated by the cones E1 and E2. Finally, Procedure 1 triangulates the
cones E1 and E2 by stellar subdivision by the vectors

u = 2e1 + e2 = y2

respectively
w = 4e1 + e2

into unimodular subcones (see Figure 2.1).

2.2 Results

At first, we prove that the procedure above does really provide us with a
unimodular cover of an arbitrary simplicial d-cone. And second, we will
show that the generating vectors of the covering cones are short.

13
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Figure 2.1 Example 2.1.1

Theorem 2.2.1. For all simplicial d-cones C ⊂ Rd the algorithm UC pro-
vides us with a unimodular cover of cone C.

Proof. For the proof of this theorem it is just necessary to show that
in every recursive call the algorithm provides us with a cover of the current
cone C by cones Di. That this procedure will lead to a unimodular cover of
the initial cone then follows by the fact that the multiplicities of the covering
cones Di are smaller than the multiplicity of the covered cone C in every
recursive call (here we exclude the trivial case that C is already unimodular).
We have

µ(Di) =
p− 1

pri

µ(C) < µ(C).

To show that ⋃
i

Di = C,

we have to prove that for every w ∈ C there exists an i such that w ∈ Di.
So let w ∈ C, i.e.

w =
d∑

j=1

λjvj

with λj ≥ 0. Furthermore, let λk be defined as the infimum of all λj (j =
1, . . . , d) for which there exists a vector

z =
d∑

l=1

γlvl ∈ par(v1, . . . , vd)

with γj 6= 0. (If there is no such index j, then C was already unimodular.)
Then

w =
prkλk

p− 1
yk +

∑
j 6=k

(
λj −

lkj λk

p− 1

)
vj.

14



Therefore, we have w ∈ Dk, because both

prkλk

p− 1
≥ 0

and also

λj −
lkj λk

p− 1
≥ 0

for all j 6= k. The first statement is obvious, the second one shall be discussed
in more detail. Here we have to distinguish between two cases.

Case 1. It exists a vector x = θ1v1 + · · · + θdvd ∈ par(v1, . . . , vd) such
that θj 6= 0. By definition λk ≤ λj. Because xk ∈ par(v1, . . . , vd), we have
lkj ≤ p− 1. It follows that λj(p− 1) ≥ lkj λk.

Case 2. For all x = θ1v1 + · · · + θdvd ∈ par(v1, . . . , vd) we have θj = 0.

Hence lkj = 0, because xk ∈ par(v1, . . . , vd). This implies λj −
lkj λk

p−1
= λj ≥ 0.

So the theorem is proven. �

In the next lemmas we will mention the generations of the cones given
by the algorithm UC. So, when we mention the cone of the 0-th generation,
we mean the initial cone C. Moreover, the cones of the first generation are
defined as the cones Di = R+v1 + · · ·+ R+vi−1 + R+yi + R+vi+1 + · · ·+ R+vd

if the initial cone C is generated by the vectors v1, . . . , vd. Consequently, the
cones of the first generation are just those generated by the algorithm in the
first recursive call. Then the cones of the second generation are defined as
the ones which are constructed by the algorithm to cover the cones of the
first generation and so on.

When we mention the vectors of the first generation, we mean the vectors
yi generated in the first recursive call of the algorithm. Furthermore, the
vectors of the second generation are the vectors (except of the ones generating
the cones of the first generation) needed to generate the cones of the second
generation and so on.

From now on the notation yk shall always indicate that we face a vector of
the k-th generation, whereas the vector yk is a vector from the first recursive
call, which has the form

yk =
p− 1

prk

vk +
∑
j 6=k

lkj
prk

vj.

15



Theorem 2.2.2. All unimodular cones F which – given by Procedure 1 –
constitute a unimodular cover of the initial cone C are out of generations

gF ≤ 2 ld(µ(C)).

Proof. We will prove this theorem by induction on the multiplicity µ(C).
If µ(C) = 1, then the cone C itself constitutes a unimodular cover of C. Let
now µ(C) > 1. Then we distinguish between two cases.

Case 1. µ(C) is even. In this case it follows that p = 2 is the smallest
prime divisor of µ(C). Hence each covering cone Di has multiplicity µ(Di) =
µ(C)

2
. By induction the application of Procedure 1 to the cone Di results

into a cover of each cone Di by unimodular cones H i which are all out of
generations gHi ≤ 2 ld(µ(Di)) ≤ 2 ld(µ(C)) − 2 (regarding the cone Di as
being of the 0-th generation.). This proves that the unimodular cones H i

covering cone C are out of generations gHi ≤ 2 ld(µ(C))− 1 with respect to
cone C.

Case 2. µ(C) is odd. In this case xi = p−1
p

vi +
∑

j 6=i

lij
p
vj where p is an

odd prime number.
Now we again distinguish between two cases. Either the numbers lij are

coprime, i.e. ri = 1, or not. In the first case the resulting cone Di has
multiplicity µ(Di) = p−1

p
µ(D). Hence µ(Di) is even. This means we are in

Case 1. We have seen there that all unimodular cones H i resulting from
an application of Procedure 1 to the cone Di are out of generations gHi ≤
2 ld(µ(Di))−1. It follows that the unimodular cones H i are out of generations
gHi ≤ 2 ld(µ(C)) with respect to cone C.

If the numbers lij are not coprime, i.e. ri > 1, then the resulting cones

have multiplicities µ(Di) = p−1
rip

µ(C) ≤ µ(C)
2

. Therefore the unimodular

cones H i resulting from the application of Procedure 1 to the cones Di are
by induction out of generations gHi ≤ 2 ld(µ(Di)) ≤ 2 ld(µ(C)) − 2, which
proves the claim. �

In the following we will take a closer look at the vectors yi which are
generated by the algorithm UC. When we apply the procedure to a cone
D = R+w1 + · · · + R+wk, then all vectors yi generated in the first recursive
call are elements of the parallelepiped spanned by the generators wj of D,
i.e. yi ∈ par(w1, . . . , wd). Therefore, yi ∈ d∆D.

The next lemma shows that we can say a bit more about the form of
these vectors. It says that when we do not only restrict ourselves to vectors
of the first generation but have a look at vectors y1, . . . , yf of the first, . . . , f -

16



th generation given by the algorithm UC to construct a unimodular cone F
of the f -th generation, then at least half of them have a very special form.
More precisely, it states that they are of the form

yi =
d∑

j=1

λjuj

such that λj ≤ 1
2

if E = R+u1 + · · · + R+uk is the cone of the (i − 1)-th
generation to which we apply stellar subdivision by the vector yi. This also
means that we have a better upper bound for the lengths of these vectors
with respect to ∆E. It implies that

yi ∈
d

2
∆E.

This will be important when we provide an upper bound for the lengths of
the vectors which generate the unimodular cones covering the underlying
cone C.

Lemma 2.2.3. Let F be a unimodular cone which is generated by the algo-
rithm UC. And let y1, y2, . . . , yf (with f ≤ 2 ld(µ(C)) due to Theorem 2.2.2)
be the sequence of vectors of the first, second, . . ., f -th generation provided
by the algorithm to construct the cone F . Then at least f

2
of these vectors yk

are of the form

yk =
d∑

j=1

λjwj

where λj ≤ 1
2

for all j and G = R+w1 + · · · + R+wk is the cone of the
(k − 1)-th generation that contains F .

Proof. We will prove this theorem in the same manner as Theorem 2.2.2
by induction on the multiplicity µ(C). If µ(C) = 1, then f = 0 and f

2
= 0

vectors yi are of the desired form. Now let µ(C) > 1. Then we distinguish
between two cases.

Case 1. µ(C) is even. Let F be a unimodular cone which is generated
by the algorithm UC. And let y1, y2, . . . , yf be the sequence of vectors of
the first, second, . . ., f -th generation provided by the algorithm to construct
the cone F . Because p = 2 is the smallest prime divisor of µ(C), the vector

y1 is of the form y1 =
∑d

j=1
lj
2
vj where C := R+v1 + · · · + R+vd ⊂ Rd and

lj ∈ {0, 1}.

17



Furthermore, it follows by induction that at least f−1
2

of the vectors

y2, . . . , yf are of the desired form. Hence at least f+1
2

of the vectors y1, . . . , yf

are of the desired form.

Case 2. µ(C) is odd. Let F be a unimodular cone which is generated by
the algorithm UC. And let y1, y2, . . . , yf be the sequence of vectors of the
first, second, . . ., f -th generation provided by the algorithm to construct the

cone F . In this case xi = p−1
p

vi +
∑

j 6=i

lij
p
vj where p is an odd prime number.

Now we again distinguish between two cases. Either the numbers lij are
coprime, i.e. ri = 1, or not. In the first case the vector y1 might not be of
the above form, but the resulting cone Di has multiplicity µ(Di) = p−1

p
µ(D).

Hence µ(Di) is even. This means y2 is of the desired form. Furthermore,
it follows by induction that at least f−2

2
of the vectors y3, . . . , yf are of the

above form. Finally, at least f
2

of the vectors y1, . . . , yf are of the desired
form.

If the numbers lij are not coprime, i.e. ri > 1, then y1 is of the desired

form. Furthermore, we have by induction that at least f−1
2

of the vectors

y2, . . . , yd are of the above form. Finally, it follows that at least f+1
2

of the
vectors y1, . . . , yd are of the desired form. �

The next lemma will provide us with the essential tool for showing that
that the vectors yi in Procedure 1 are short.

Lemma 2.2.4. Let g ∈ N and ν ∈ {1, 2}g. Furthermore, let ak
1 := |{i : 1 ≤

i ≤ k and νi = 1}|, ak
2 := |{i : 1 ≤ i ≤ k and νi = 2}|. We define the

increasing sequence hk, k ≥ −d, of numbers as follows:

hk = 1, k ≤ 0,

hk =

(
d

2

)
· 2ak

1

(
3

2

)ak
2−νk+1

, 1 ≤ k ≤ g.

Then we have

hk ≥
1

νk

(hk−1 + · · ·+ hk−d), 1 ≤ k ≤ g.

Proof. Let g ∈ N and ν ∈ {1, 2}g. That the sequence hk is increasing is
due to the facts that ak

i ≥ ak−1
i for i = 1, 2 and that ak

2 > ak−1
2 if 2 = νk >

νk−1 = 1.
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We will now prove the second statement by induction on k. So let k = 1.
If ν1 = 1, then we have

h1 = d ≥ 1

νk

(h0 + · · ·+ h−d+1) = d.

If ν1 = 2, then we have

h1 =
d

2
≥ 1

νk

(h0 + · · ·+ h−d+1) =
d

2
.

Therefore, the statement is true for k = 1.
Let now k ≥ 2. In this situation we will distinguish between four cases.

Case 1. νk = νk−1 = 1. Due to the definition, hk = 2hk−1. Furthermore,
by induction it follows that

2hk−1 = hk−1 + hk−1 ≥ hk−1 + (hk−2 + · · ·+ hk−d).

Therefore, we are done.

Case 2. νk = 1 and νk−1 = 2. Due to the definition, hk = 3hk−1.
Furthermore, by induction it follows that

3hk−1 = hk−1 + 2hk−1 ≥ hk−1 + (hk−2 + · · ·+ hk−d).

Therefore, we are done.

Case 3. νk = 2 and νk−1 = 1. Due to the definition, hk = hk−1. Further-
more, by induction it follows that

hk−1 =
1

2
hk−1 +

1

2
hk−1 ≥

1

2
hk−1 +

1

2
(hk−2 + · · ·+ hk−d).

Therefore, we are done.

Case 4. νk = νk−1 = 2. Due to the definition, hk = 3
2
hk−1. Furthermore,

by induction it follows that

3

2
hk−1 =

1

2
hk−1 + hk−1 ≥

1

2
hk−1 +

1

2
(hk−2 + · · ·+ hk−d).

Therefore, we are done.

Finally, Lemma 2.2.4 is proven. �
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Now we are in the position to prove the central theorem of this chapter.

Theorem 2.2.5. For all unimodular cones F = R+u1 + · · · + R+ud ⊂ Rd

which the algorithm UC returns as elements of the unimodular cover of C =
R+v1 + · · ·+ R+vd ⊂ Rd we have

ui ∈
(

d

2

)
· µ(C)ld(3)∆C , i = 1, . . . , d.

Proof. Let F be an arbitrary unimodular cone generated by the algorithm
UC and let y1, y2, . . . , yf (with f ≤ 2 ld(µ(C)) due to Theorem 2.2.2) be the
sequence of vectors of the first, second, . . . f -th generation given by the algo-
rithm to construct the cone F . Furthermore, let D0 = C, D1, D2, . . . , Df = F
be the corresponding cones of the 0-th, first, second, . . . , f -th generation
which are generated by these vectors. This means if Dl = R+w1 + · · ·+R+wd

for 0 ≤ l ≤ f − 1, then Dl+1 is given as the cone

Dl+1 = R+w1 + · · ·+ R+wj−1 + R+yl+1 + R+wj+1 + · · ·+ R+wd

for a certain j. Furthermore, let ν ∈ {1, 2}f indicate the form of each vector
yl. Thus if Dl−1 = R+w1 + · · ·+ R+wd and νl = 2, then we have

yl = t1w1 + · · ·+ tdwd

such that tj ≤ 1
2

for all j. Otherwise if νl = 1, then we have

yl =
t1
p

w1 + · · ·+ td
p

wd

with p ∈ P \ {2} and 0 ≤ tj ≤ p− 1.
Now we claim that (for hl defined as in Lemma 2.2.4 by the above given

vector ν)
yl ∈ hl∆C (∗)

for all l with 1 ≤ l ≤ f . We simply prove this claim by induction on l. If
l = 1 and νl = 1, then

y1 =
t1
p

v1 + · · ·+ td
p

vd

such that p ∈ P \ {2} and 0 ≤ tj ≤ p− 1. Therefore,

y1 ∈

(
d∑

j=1

tj
p

)
∆C ⊂ d∆C .
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If l = 1 and νl = 2, then

y1 = t1w1 + · · ·+ tdwd

such that tj ≤ 1
2
. So

y1 ∈

(
d∑

j=1

tj

)
∆C ⊂ d

2
∆C .

It follows that the claim is true for l = 1. Let now 1 < l ≤ f and let
Dl−1 = R+w1 + · · ·+ R+wd. Then we distinguish between two cases.

Case 1. νl = 1. This implies

yl =
t1
p

w1 + · · ·+ td
p

wd

such that p ∈ P \ {2} and 0 ≤ tj ≤ p− 1. Because the wj /∈ {v1, . . . , vd} are
all out of different generations and since the sequence (hk) is increasing, we
can assume that w1 ∈ hl−1∆C , w2 ∈ hl−2∆C , . . . , wd ∈ hl−d∆C . Therefore, it
follows by induction and by Lemma 2.2.4 that

yl ∈

(
d∑

j=1

tj
p

hl−j

)
∆C ⊂

(
d∑

j=1

hl−j

)
∆C ⊂ hl∆C .

Case 2. νl = 2. Then we have

yl = t1w1 + · · ·+ tdwd

such that tj ≤ 1
2
. Therefore, we have by induction and due to Lemma 2.2.4

that

yl ∈

(
d∑

j=1

tjhl−j

)
∆C ⊂

(
1

2

(
d∑

j=1

hl−j

))
∆C ⊂ hl∆C .

So the claim is true.

Let now af
1 and af

2 be defined as in Lemma 2.2.4. It follows by Lemma
2.2.3 that

af
2 ≥

f

2
, af

1 ≤
f

2
.
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Hence we have

hf =

(
d

2

)
· 2af

1

(
3

2

)af
2−νf+1

≤
(

d

2

)
· 2

f
2

(
3

2

) f
2

,

whereas the inequality is also due to νf ≥ 1. Moreover, by Lemma 2.2.2 it
follows that

hf ≤
(

d

2

)
· 2ld(µ(C))

(
3

2

)ld(µ(C))

=

(
d

2

)
· µ(C)ld(3).

Finally, by (∗) and the inequality above we arrive at

yl ∈
(

d

2

)
· µ(C)ld(3)∆C

for all l. This, of course, implies for all ui (recall that F = R+u1 + · · ·+R+ud

and, hence, ui ∈ {y1, . . . , yf} ∪ {v1, . . . , vd}) the desired result that

ui ∈
(

d

2

)
· µ(C)ld(3)∆C .

�

It immediately follows from Theorem 2.2.5:

Corollary 2.2.6. Every simplicial d-cone C = R+v1 + · · · + R+vd ⊂ Rd,
d ≥ 3, has a unimodular cover C = D1 ∪ . . . ∪Dt such that

Hilb(Di) ⊂
(

d

2

)
· µ(C)ld(3)∆C , i = 1, . . . , t.

If we follow the argumentation of Bruns and Gubeladze presented in [3]
and, additionally, take into account Corollary 2.2.6, then we obtain a better
upper bound for the value ccone

d . How is this result derived? Let us outline
the proof of Bruns and Gubeladze in [3].

First of all, we provide the following lemma, which allows us to restrict
the argumentation to empty simplicial cones.

Lemma 2.2.7. Every cone C ⊂ Rd can be triangulated into empty simplicial
cones D such that ∆D ⊂ ∆C

Proof. Every cone C can be triangulated into simplicial cones E which
are generated by extreme generators of C. Hence ∆E ⊂ ∆C . Furthermore,
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if we triangulate a nonempty simplicial cone E into simplicial cones F by
stellar subdivision by a vector v ∈ ∆E ∩ Zd, then it follows that ∆F ⊂ ∆E

and |∆F ∩ Zd| < |∆E ∩ Zd|. Hence, by the successive application of stellar
subdivisions, we arrive at a triangulation of C into empty simplicial cones D
for which ∆D ⊂ ∆C . �

Moreover, let us define

γ(d) :=
⌈√

d− 1
⌉

(d− 1)

and

κ(d) := γ(d) · d(d + 1)

2
· γ(d)ld(3).

We will prove that ccone
d ≤ κ(d) for d ≥ 2 by induction on the dimension

d. The inequality holds for d = 2, since ccone
2 = 1 and κ(2) = 3. Furthermore,

because κ(d) ≥ κ(d−1)+1, we can assume by induction that ccone
d−1 ≤ κ(d)−1.

Then Bruns and Gubeladze provided the following lemma.

Let C be a cone and v one of its extreme generators. Then we say that a
system {Cj}k

j=1 of subcones Cj ⊂ C covers the corner of C at v if v ∈ Hilb(Cj)

for all j and the union
⋃k

j=1 Cj contains a neighborhood of v in C.

Lemma 2.2.8. Suppose that ccone
d−1 < ∞, and let C be a simplicial d-cone

with extreme generators v1, . . . , vd.

(a) Then there is a system of unimodular subcones C1, . . . , Ck ⊂ C covering
the corner of C at v1 such that Hilb(C1), . . . , Hilb(Ck) ⊂ (ccone

d−1 + 1)∆C .

(b) Moreover, each element w 6= v1 of a Hilbert basis of Cj, j ∈ [1, k],
has a representation w = ξ1v1 + · · ·+ ξdvd with ξ1 < 1.

Therefore, because we can assume that ccone
d−1 ≤ κ(d) − 1, Lemma 2.2.8

provides us for every i with a system of unimodular cones Ci
1, . . . , C

i
ki
⊂ C

covering the corner of C at vi such that

Hilb(Ci
j) ⊂ κ(d)∆C , j ∈ [1, ki].

Of course, the system of cones Ci
j will in general not provide us with a

unimodular cover of the whole cone C. This means we have to extend the
corner covers far into C. But how far do we have to extend the corner covers?
Before we can answer this question, we have to provide some definitions and
results. Let Γ0 be defined as the facet conv(v1, . . . , vd), let

Hi = Aff(0, vi+(d−1)v1, . . . , vi+(d−1)vi−1, vi+(d−1)vi+1, . . . , vi+(d−1)vd)
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for i = 1, . . . , d and
Γi = conv(vi, Γ0 ∩Hi).

Then Hi is the vector subspace of dimension d− 1 through the barycenter of
Γ0, i.e. (1/d)(v1 + · · ·+ vd), that is parallel to the facet of Γ0 opposite to vi.
It follows that

d⋃
i=1

Γi = Γ0.

Therefore, to prove that ccone
d ≤ κ(d) it suffices to show

Claim A. For each i = 1 . . . , d there exists a system of unimodular cones
Di1, . . . , Diki

⊂ C such that

Hilb(Dij) ⊂ κ(d)∆C

for all j, and

Γi ⊂
ki⋃

j=1

Dij.

This claim answers the above question. It tells us that it suffices to extend
the corner cover at vi beyond Hi. We will now restrict ourselves to the case
that i = 1. For simplicity of notation, let Cj := C1

j for all j = 1, . . . , k1, and
k := k1.

Furthermore, let us fix an index j ∈ [1, k]. Then the simplicial d-cone
D ⊂ Rd shall be defined by the following conditions:

(i) Cj ⊂ D,
(ii) the facets of D contain those facets of Cj that pass through O and

v1,
(iii) the remaining facet of D is in H1.

Figure 2.2 describes the situation in the cross-section Γ0.
Because the cones Cj cover the corner at v1, it follows that to prove Claim

A it is enough to show the following

Claim B. There exists a system of unimodular cones D1, . . . , DT ⊂ C such
that

Hilb(Dt) ⊂ κ(d)∆C , t ∈ [1, T ],

and

D ⊂
T⋃

t=1

Dt.
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Claim B precisely tells us what it means to extend the corner cover at v1:
We have to find unimodular cones Dt ⊂ C covering D. Of course, Cj is
a unimodular subcone of D, but in general Cj does not, roughly speaking,
reach beyond the subspace H1.

Finally, Bruns and Gubeladze showed in [3] that it is indeed possible to
extend the corner cover far enough into C. This means they provided, again
roughly speaking, a system of cones D1, . . . , DT ⊂ C such that

Hilb(Dt) ⊂ γ(d)(d + 1)∆C , t ∈ [1, T ], (∗)

and D ⊂
⋃T

t=1 Dt. But here we loose unimodularity, which means that the
cones Dt are in general not unimodular. However, the multiplicities µ(Dt)
of the cones Dt are bounded by γ(d).

And at that point of the proof Corollary 2.2.6 comes into play. It ensures
that each of the cones Dt admits a unimodular cover Dt = Et

1 ∪ . . . ∪ Et
kt

such that

Hilb(Et
j) ⊂

(
d

2

)
· γ(d)ld(3)∆Dt , j ∈ [1, kt]. (∗∗)

The statements (∗) and (∗∗) together imply the desired result. Hence we
have

Theorem 2.2.9. Let γ(d) :=
⌈√

d− 1
⌉
(d− 1). Then

ccone
d ≤ d(d + 1)

2
· γ(d)ld(3)+1, d ≥ 2.

Bruns and Gubeladze also proved the following theorem, which states a
connection between ccone

d and cpol
d .
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Theorem 2.2.10. Let d be a natural number. Then cpol
d is finite if and only

if ccone
d is finite, and, moreover,

ccone
d ≤ cpol

d ≤
√

d(d + 1)ccone
d .

Finally, the Theorems 2.2.9 and 2.2.10 directly imply

Theorem 2.2.11. Let γ(d) :=
⌈√

d− 1
⌉
(d− 1). Then

cpol
d ≤ d1.5(d + 1)2

2
· γ(d)ld(3)+1, d ≥ 2.

26



3 A new triangulation procedure

In the second chapter we presented a new algorithm for the unimodular cover
of simplicial cones. In this chapter we will provide a similar algorithm for
the unimodular triangulation of simplicial cones. This algorithm will not
improve the upper bounds for ccone

d and cpol
d we derived in Chapter 2, but

might be of interest itself.

3.1 The procedure

In Section 1.4 we mentioned Theorem 1.3, which is built on a quite simple
way to triangulate simplicial cones. The next theorem shows that we can do
much better if the underlying cone C has multiplicity µ(C) equal to a power
of two. This result motivates us to come up with a triangulation procedure
which at first triangulates the underlying cone into cones D with µ(D) = 2l

(l ∈ N), and subsequently triangulates these cones D.

Theorem 3.1.1. Let d ≥ 3 and let C = R+v1 + · · · + R+vd ⊂ Rd be a
simplicial d-cone with µ(C) = 2l (l ∈ N). Then there exists a unimodular
triangulation C = C1 ∪ . . . ∪ Ck such that

Hilb(Cj) ⊂

(
d

2

(
3

2

)l
)

∆C , 1 ≤ j ≤ k.

Proof. The proof of this theorem is related to the proof of Theorem 4.1 in
[3]. The following sequence of numbers plays an important part in this proof.
(We already introduced a related sequence of numbers in Lemma 2.2.4.) It
will provide us, roughly speaking, with an upper bound for the lengths of the
vectors of the covering cones.

hk = 1, k ≤ 0, h1 =
d

2
, hk =

1

2
(hk−1 + · · ·+ hk−d), k ≥ 2.

Because we have

hk − hk−1 =
1

2
hk−1 −

1

2
hk−d−1

for k ≥ 3 and h1 > hl for l ≤ 0, it follows by induction that this sequence is
increasing. Since for k ≥ 3

hk =
1

2
hk−1 +

1

2
(hk−2 + · · ·+hk−d−1)−

1

2
hk−d−1 =

3

2
hk−1−

1

2
hk−d−1 <

3

2
hk−1,
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and because h1 = d
2
, h2 < 3d

4
, we arrive at

hk ≤
d

2

(
3

2

)k−1

for k ≥ 1. This result will be needed in the following.
Let C = R+v1 + · · · + R+vd ⊂ Rd be an arbitrary simplicial d-cone with

µ(C) = 2l (l ∈ N). If C is already unimodular (i.e. l = 0), we are done. If C
is not unimodular (i.e. l ≥ 1), then by Lemma 1.2.7 there exist ij ∈ {1, . . . , d}
with 1 ≤ j ≤ m ≤ d and ij 6= ik for j 6= k such that

u =
1

2
(vi1 + · · ·+ vim) ∈ Zd \ {0}.

Now we apply stellar subdivision to the cone C by the vector u, which will
give us the cones

Cis = R+v1 + · · ·+ R+vis−1 + R+u + R+vis+1 + · · ·+ R+vd, 1 ≤ s ≤ m ≤ d.

For these cones of the first generation (we regard the initial cone C as the
cone belonging to the 0-th generation) we have

µ(Cis) = | det(v1, . . . , vis−1,
1

2
(vi1 + · · ·+ vim), vis+1, . . . , vd)| =

1

2
µ(C) = 2l−1.

If µ(Cis) = 1, then the procedure stops. Otherwise it is continued until we
end with a triangulation of the initial cone C by unimodular cones of the
l-th generation.

For the vectors wk which have been used for the stellar subdivisions of
the cones of the (k − 1)-th generation we get

wk ∈ hk∆C .

We will prove this statement by induction on k. For k = 1 this is obvious,
because 1

2
(vi1 + · · · + vim) ∈ d

2
∆C . For k > 1 we have that all generators

u1, . . . , ud of a certain cone C ′ = R+u1+· · ·+R+ud of the (k−1)-th generation
either belong to the initial vectors v1, . . . , vd or are vectors which have been
used for stellar subdivisions of cones of different generations. So by induction
it follows

ui ∈ hni
∆C , ni ≤ k − 1,

where the ni are pairwise different. The equality

wk =
1

2
(uj1 + · · ·+ ujv), 1 ≤ v ≤ d,
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immediately leads us to

wk ∈
1

2
(hk−1 + · · ·+ hk−d)∆C = hk∆C ,

because the hi are increasing. Hence we are done. �

The next lemma will be of great importance for the new procedure for
the triangulation of an arbitrary simplicial cone. More precisely, it will be
essential in the process of triangulating the underlying cone C by cones D
for which µ(D) = 2l (l ∈ N). As we have explained before, this will be done
by the successive application of stellar subdivisions. The vectors needed for
these stellar subdivisions have to fulfill some properties to be of use in this
process. And here the next lemma comes into play.

Lemma 3.1.2. Let m and p be two odd integers with p
2

< m < p. Then
there exist natural numbers s ≤ ld(p) and t < p

2
such that

2st = (2s−1 − 1)p + m.

Proof. Let s be defined as the infimum of all natural i > 0 such that

p−m 6≡ 0 (mod 2i).

Obviously, we have s > 1, since both m and p are odd. Furthermore, there
exist x, y ∈ N and u /∈ 2N such that

m = 2sx + u, p = 2sy + 2s−1 + u,

since p−m 6≡ 0 (mod 2s), p−m ≡ 0 (mod 2s−1) and p > m. It follows that

m + (2s−1 − 1)p = 2s(x + (2s−1 − 1)y) + (2s−1 − 1)(2s−1 + u) + u

is divisible by 2s, because (2s−1 − 1)(2s−1 + u) + u = 2s−1(u− 1 + 2s−1) and
u− 1 + 2s−1 is even due to u being odd and s > 1. Therefore,

t :=
(2s−1 − 1)p + m

2s

is a natural number.
It remains to show that s ≤ ld(p) and t < p

2
. The first statement follows

easily from the fact that

p−m 6≡ 0 (mod 2bld(p)c),
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because 0 < p−m < p
2

< 2bld(p)c. From this we can conclude that

s ≤ bld(p)c.

The second statement simply follows from m < p, because this implies that

(2s−1 − 1)p + m

2s
=

2s−1p + (m− p)

2s
<

2s−1p

2s
.

�

Remark 3.1.3. Lemma 3.1.2 is perhaps the most critical step in my proof.
Improving this result (in a sense that we could find natural numbers s �
ld(p), t < p

2
and x such that 2st = xp + m for given odd numbers m and p

with p
2

< m < p), would critically effect the main results.

Before we provide the triangulation procedure, we will at first describe
this procedure in prose. The aim of this procedure is to triangulate the
original cone C by cones D in a way that the multiplicities of all the cones
D are powers of two and that the generators of the cones D are relatively
short with respect to the simplex ∆C .

What is the motivation for this? As Theorem 3.1.1 shows, cones whose
multiplicities are a power of two admit a unimodular triangulation by cones
whose generators are very short with respect to ∆C . Therefore, it might be
a good idea to triangulate a cone first by cones whose multiplicity is a power
of two and then take advantage of this good property.

So how do we reach a triangulation of an arbitrary cone C by cones D
with µ(D) = 2f (f ∈ N) and short generators? We successively apply stellar
subdivisions with special vectors x ∈ C to the cones C = R+v1+· · ·+R+vd ⊂
Rd. Due to Lemma 1.2.7 we know that there exists a vector

x =
d∑

j=1

zj

p
vj ∈ par(v1, . . . , vd) \ {0}

for all prime divisors p of µ(C). As we will see later on, it makes things
easier (in a way that we end up faster with a triangulation of C by cones
D with µ(D) = 2f ) if zj is either a composite number or small (here this
means zj ≤ p

2
). Because in general not all zj fulfill these properties, we add

certain multiples kvj (k ∈ N) of vj to the vector x if zj is a prime number
and zj > p

2
. This results in a vector x′ ∈ C with

x′ =
d∑

j=1

z′j
p

vj
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such that all z′j are of the form z′j = 2fj tj with natural numbers fj ≤ ld(p)
and tj < p. Additionally (due to Lemma 3.1.2), the numbers tj do fulfill the
desired restrictions, i.e. tj ≤ p

2
or tj is a composite number.

Of course, we wish the vectors x′ to be as short as possible. Therefore,
we want to avoid the situation that both z′j is big and vj is a long vector,
because this would also mean that x′ would be long. And there a set MC

comes into play. MC is given as a certain subset of all generators of the
cone C which have been used for a stellar subdivision beforehand. So it tells
us which vectors of C are possibly long, because vectors used for a stellar
subdivision can be much longer than the other generators of a cone C.

Furthermore, we have in general that z′j is much bigger than zj. As a
result, to keep the vector x′ as short as possible, we need to have that zj is
either composite or zj ≤ p

2
for all j with vj ∈ MC . This is because then we

would not have to add multiples of vj to the vector x to arrive at x′.
After these statements ,we will now present the procedure which provides

us for a simplicial d-cone C = R+v1 + · · ·+ R+vd ⊂ Rd with a triangulation
of C by cones D with µ(D) = 2f (f ∈ N).

Procedure 2 Power two triangulation – PTT

1: CO := {C}
2: MC := ∅
3: while CO contains a cone D such that µ(D) is not a power of two do
4: if CO contains a cone D = R+w1 + · · ·+ R+wd such that

I) µ(D) 6= 2l (l ∈ N) and such that there exists
II) x =

∑d
j=1

zj

p
wj ∈ par(w1, . . . , wd) \ {0} with

IIa) p = max{pi ∈ P : pi | µ(D)} and
IIb) for all vj ∈ MD we have that

IIb1) zj is a composite number or
IIb2) zj ≤ p

2
or

IIb3) zj = 2 and p = 3 then
5: for all j = 1, . . . , d do
6: if zj /∈ P or zj ≤ p

2
or zj = 2 then

7: z′j := zj

8: else
9: z′j := zj +kp with k ∈ N such that zj +kp = 2st where s ≤ ld(p)

and t < p
2

(due to Lemma 3.1.2)
10: end if
11: end for
12: x′ :=

∑d
j=1

z′
j

p
wj
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13: for all E ∈ CO with x′ ∈ E do
14: Apply stellar subdivision to E by x′ (let Ej (j = 1, . . . ,m) be the

resulting cones)
15: CO := (CO \ {E}) ∪ {Ej : j = 1, . . . ,m}
16: for all j do
17: MEj

:= ME ∪ {x′}
18: end for
19: end for
20: else
21: for all D ∈ CO do
22: MD := ∅
23: end for
24: end if
25: end while

3.2 Results

The triangulation of the initial cone C resulting from this procedure has some
good properties. We will provide them in the following.

First of all, we will gather some properties which all the cones, vectors
and sets MC fulfill. And in the end we will show that these properties ensure
that both the multiplicities of the cones D ∈ CO are relatively small and
that the vectors generating the cones D ∈ CO are short.

Definition 3.2.1. We say that a cone D ∈ CO is of the k-th generation if
it is one of the cones generated by the application of stellar subdivision to
a cone of (k − 1)-th generation. The initial cone C is said to be of the 0-th
generation.

Lemma 3.2.2. Let D = R+w1 + · · · + R+wd be a cone to which we apply
a stellar subdivision by a vector x′ in the above procedure. Then x′ is of the
form

x′ =
d∑

j=1

lj
pmax

wj, pmax := max{p ∈ P : p | µ(D)},

such that for all j we have (1) lj = 2gjmj (gj ∈ N, gj ≤ ld(pmax)) and (2)
mj ≤ 2

3
pmax or mj < pmax is a composite number.

Proof. To prove this lemma, we have to take a look at the lines 4 and

32



9 of Procedure 2. Then we see in line 4 that we do not change coefficients
zj which are composite numbers or for which zj ≤ pmax

2
or zj = 2 (when

pmax = 3). Of course, the coefficients which were not changed by Procedure
2 do fulfill the above conditions. To see this, we simply set gj = 0. Then
mj = zj, and therefore mj is a composite number or mj ≤ pmax

2
≤ 2

3
pmax or

mj = 2 (when pmax = 3).
Otherwise we change the coefficient zj and come up with a coefficient z′j

due to line 9 of the above procedure such that z′j = 2st with s ≤ ld(p) and
t < p

2
(due to Lemma 3.1.2). Hence z′j does also fulfill the conditions above.

To see this, we have to set gj = s and mj = t. So we are done. �

From now on, when we mention the iterations of Procedure 2, we always
mean the iterations of the dominant while loop starting in line 3 of the
procedure.

Theorem 3.2.3. For a simplicial d-cone C the above procedure constitutes
a triangulation of C.

Proof. We will prove by induction that after every iteration of the while
loop (starting in line 3) of Procedure 2 the set CO constitutes a triangulation
of the underlying cone C. Obviously, before the first iteration (after setting
CO := {C}) the set CO gives us a triangulation of the cone C.

Let us now assume that the set CO constitutes a triangulation of C
before the k-th iteration. Then in the k-th iteration we choose a certain
vector x′ ∈ C and apply stellar subdivision to all cones D ∈ CO for which
x′ ∈ D by x′. This provides us with a new triangulation of the cone C taking
into account that CO already constituted a triangulation of C before the
k-th generation. �

The following lemma is important. This is because it shows that, roughly
speaking, if we choose a vector x ∈ D for the application of stellar subdivision
to a cone D and x is short with respect to ∆D, then it is also short with
respect to ∆E for all other cones E with x ∈ E.

Lemma 3.2.4. After every iteration of the above procedure we have for all
D, E ∈ CO that

x ∈ MD ∩ E ⇒ x ∈ ME.

Proof. We will prove the lemma by induction on the number of iterations.
Before the first iteration, the claim is obviously true, because CO = {C} and
MC = ∅. So let the claim be true after the r-th iteration. Then in the (r+1)-
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th iteration we either do not find a cone D such that it fulfills the conditions
given in line 4 of Procedure 2 or we do find one.

In the first case either all cones D have multiplicity µ(D) = 2l (l ∈ N)
and the procedure stops which means that we are done. Or we have MD = ∅
for all cones D ∈ CO (see line 22) after the (r + 1)-th iteration. Obviously,
the claim is also true for the latter case.

In the second case we find a cone D = R+w1 + · · · + R+wd ∈ CO which
fulfills the conditions of line 4 of the procedure above for a certain vector
x′ ∈ D. Then we apply stellar subdivision to all the cones E ∈ CO with
x′ ∈ E by x′. Finally, we substitute the cones E ∈ CO for which x′ ∈ E by
the cones Ej resulting from the stellar subdivision to E by x′. And we set
MEj

:= ME ∪ {x′}. So let G, H be two arbitrary cones in the set CO after
the (r + 1)-th iteration and let y be a vector such that y ∈ MG ∩H. Then
we distinguish between five cases

Case 1. y = x′. It follows that H = Ek for some k. Therefore, we also
have y ∈ MH .

Case 2. y 6= x′ and G 6= Ej, H 6= Ek for all j, k. In this case it simply
follows by induction that y ∈ MH , because both the sets MG and MH do not
change in the (r + 1)-th iteration.

Case 3. y 6= x′, there exists a j such that G = Ej and H 6= Ek for all k.
Because y 6= x′ and MEj

= ME ∪ {x′} (see line 17), it follows that y ∈ ME.
Therefore, it follows by induction that y ∈ MH , since the set MH does not
change in the (r + 1)-th iteration.

Case 4. y 6= x′, G 6= Ej for all j and there exists a k such that H = Ek.
Because Ek ⊂ E, it follows that y ∈ E. This implies by induction that
y ∈ ME, since MG does not change in the (r + 1)-th iteration. Therefore,
y ∈ MH = ME ∪ {x′}.

Case 5. y 6= x′ and there exist j, k such that G = Ej and H = Ek.
Because MEj

= MEk
= ME ∪ {x′}, it follows that y ∈ MH . �

So why is Lemma 3.2.4 important for our considerations? To answer
this question, we have to focus on the vectors x′ which have been chosen
in an iteration of Procedure 2 to apply a stellar subdivision. So let D =
R+w1 + · · ·+ R+wd and x ∈ D with x =

∑d
j=1

zj

p
wj ∈ Zd be the pair of cone

and vector – chosen in line 4 of Procedure 2 – such that zj < p is a composite
number or zj ≤ p

2
or zj = 2 (and p = 3) for all wj ∈ MD.
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Let now CO be given as the set of covering cones before we chose the pair
of cone D and vector x. This implies that D ∈ CO. Furthermore, let E ∈ CO
be an arbitrary cone such that x′ ∈ E. Then we have wj ∈ E for all j with
zj 6= 0, because the set of cones CO constitutes a triangulation of the initial
cone C and x′ ∈ D. Moreover, we have that zj < p is a composite number or
zj ≤ p

2
or zj = 2 (and p = 3) for all wj ∈ ME. Otherwise there would exist a

k which does not fulfill these conditions from line 4 of Procedure 2 and for
which wk ∈ ME. But this is a contradiction, since wk ∈ ME ∩D ⊂ MD due
to Lemma 3.2.4.

So, when we choose a cone D and a vector x′ ∈ D – due to the procedure
above –, then the components of x′ corresponding to the vectors wj ∈ MD are

relatively small, because for x′ =
∑d

j=1
lj
p
wj we have lj < p for all wj ∈ MD.

Lemma 3.2.4 does now tell us that the components of x′ corresponding to the
vectors wj ∈ ME (for a cone with x′ ∈ E) are also relatively small, simply
because wj ∈ ME if wj ∈ MD ∩ E. Therefore, we are never in danger of
choosing a vector x′ which might be relatively short with respect to the set
of vectors MD but long with respect to the set ME.

More precisely, Lemma 3.2.4 ensures that whenever for an arbitrary cone
E ∈ CO there exists a vector x ∈ E such that x fulfills the conditions from
line 4 of Procedure 2 for the set ME, then E is definitely triangulated by
stellar subdivision by a vector y that fulfills the conditions from line 4 for
the set ME. This result will be used implicitly throughout the remainder of
this chapter.

The next lemma provides us with an auxiliary function and its nice prop-
erties. It will help us to show that the multiplicities of the cones which
constitute the final set CO are relatively small and that this also true for the
number of generations.

Definition 3.2.5. Let n be a natural number, n =
∏∞

i=1 pαi
i be its prime

decomposition. Furthermore, let pmax(n) := max{pi : αi 6= 0} for n > 1
and pmax(1) = 1. Then we define the function u : N 7−→ R as follows:
u(n) := ld(n)−r(n), where r(n) :=

∑∞
i=1 αi. Moreover, we define the function

t : N 7−→ N as follows: t(n) := n · 2−α1 (where p1 = 2).

The function u has some nice properties, which we will need in the fol-
lowing.
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Lemma 3.2.6. We have that
(1) u(ab) = u(a) + u(b), a, b ∈ N,
(2) there exists s ∈ N such that n = 2s if and only if u(n) = 0,
(3) pmax(n) ≤ 2u(n)+1.

Proof. The first statement is obvious, because both the functions ld :
R 7−→ R and r : N 7−→ N fulfill property (1). Therefore, u = ld− r also does.
The second statement is also obviously correct.

We will prove statement (3) by induction on n. For n = 1 we have
pmax(1) = 1 ≤ 2u(n)+1 = 2. So let n > 1. We distinguish between two cases.
Either n is a prime number or composite. In the first case it follows that
pmax(n) = n and 2u(n)+1 = 2ld(n) = n, and therefore the statement is true. In
the latter case we have n = st with s, t ∈ N and s, t > 1. This implies that
pmax(n) = max{pmax(s), pmax(t)}. On the other hand, we have by induction
that pmax(s) ≤ 2u(s)+1 and pmax(t) ≤ 2u(t)+1. From this we can conclude that
pmax(n) ≤ max{2u(s)+1, 2u(s)+1}. Because u(n) = u(s) + u(t) and u(m) ≥ 0
for all m ∈ N, it follows that pmax(n) ≤ 2u(n)+1. �

Theorem 3.2.7. For a simplicial d-cone C the above procedure provides
a triangulation of C by cones D which are all out of generations nD ≤
2 u(µ(C)).

Proof. Procedure 2 does not substitute a cone C by other cones – re-
sulting from a stellar subdivision – if its multiplicity µ(C) is a power of two.
Furthermore, the procedure stops if for all cones D ∈ CO we have µ(D) = 2l

(l ∈ N).
Consequently, to prove the lemma we have to show that for all cones D

which are element of the final set CO there exists a k ≤ 2 u(µ(C)) such that
D is of the k-th generation. But this means to show that 2 u(µ(C)) is an
upper bound for the generations of all cones in the final set CO. We will
prove the last claim by induction on the value t(µ(C)) (see Definition 3.2.5).

If t(µ(C)) = 1, the statement is obviously correct, because it follows that
µ(C) = 2l (l ∈ N) and 2 u(µ(C)) = 0. Moreover, the cone C itself constitutes
a cover of C of the desired kind.

So let C = R+v1 + · · · + R+vd be an arbitrary simplicial d-cone with
t(µ(C)) > 1. Then in the first iteration of the above procedure we come up
with cones E of the first generation. Let us pick an arbitrary cone E from
these. Due to Lemma 3.2.2 the cone E is generated by the stellar subdivision
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of the cone C with respect to a vector

x′ =
d∑

j=1

lj
p

vj, lj = 2gjmj,

where p := pmax(µ(C)), gj ∈ N, and mj < p is a composite number or
mj ≤ 2p

3
.

Hence there exists a j such that

E = R+v1 + · · ·+ R+vj−1 + R+x′ + R+vj+1 + · · ·+ R+vd.

It follows

µ(E) =
lj
p

µ(C).

Therefore, 2 u(µ(E)) = 2 u(µ(C)) + 2 u(lj)− 2 u(p). Now we will distinguish
between two cases. (It is to say that the two cases do not exclude each other,
but this does not affect our argumentation.)

Case 1. lj = 2gjmj with mj ≤ 2
3
p. In this case it follows by Lemma 3.2.6

2 u(p)− 2 u(lj) = 2 ld(p)− 2− 2 u(mj) ≥ 2 ld(p)− 2− 2

(
ld

(
2p

3

)
− 1

)
≥ 1.

Case 2. lj = 2gjmj with mj < p being a composite number. This means
that mj = ab < p with natural numbers a, b > 1. In this case Lemma 3.2.6
implies

2 u(p)− 2 u(lj) = 2 u(p)− 2 u(a)− 2 u(b) ≥ 1.

Altogether, we can conclude that 2 u(µ(E)) ≤ 2 u(µ(C)) − 1 in both
cases. On the other hand, we have t(µ(E)) = t(µ(C)) − t(p) + t(lj) by
definition of the function t. But t(p) = p and t(lj) = t(mj) < p. Hence
t(µ(E)) < t(µ(C)). Therefore, by induction 2 u(µ(E)) is an upper bound
for the generations of all cones which are provided by the above procedure
as a triangulation of cone E. Because of this and because the cone C is
triangulated by the cones E of the first generation, we have that

2 u(µ(C)) ≥ 2 u(µ(E)) + 1

is the corresponding upper bound for the cone C. �

Theorem 3.2.7 immediately implies
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Corollary 3.2.8. For a simplicial d-cone C the above procedure consti-
tutes a triangulation of C by cones D which are all out of generations nD ≤
max(2 ld(µ(C))− 2, 0).

Proof. Due to the definition of the function u we have 2 u(µ(C)) ≤
2(ld(µ(C))− 1) if µ(C) > 1. If µ(C) = 1, then C is already unimodular and
therefore C (as the cone of the 0-th generation) constitutes already its own
unimodular triangulation. �

Theorem 3.2.9. For a simplicial d-cone C the above procedure constitutes
a triangulation of C by cones D such that for every cone D there exists a
natural number w ≤ 2 (ld (µ(C)))2 with

µ(D) = 2w.

Proof. Due to Lemma 3.2.2 every cone Dk of the k-th generation is
generated by a stellar subdivision to a cone Dk−1 = R+w1 + · · · + R+wd of
the (k − 1)-th generation with respect to a vector

x′ =
d∑

j=1

lj
p

wj with lj = 2gjmj,

where p := pmax(µ(Dk−1)), gj ∈ N and mj ≤ p. Furthermore, due to Lemma
3.1.2 (see also line 9 of Procedure 2) we also have that gj ≤ ld(p). Because

µ(Dk) =
lj
p
µ(Dk−1), it follows that

µ(Dk) ≤ p · µ(Dk−1) ≤ µ(C) · µ(Dk−1),

This implies that for all cones of the k-th generation we have

µ(Dk) ≤ µ(C)k+1, (∗)

taking into account that C is of the 0-th generation. Due to Corollary 3.2.8
the cones D that are elements of the final set CO, and for which µ(D) = 2w

(w ∈ N), are out of generations nD ≤ max(2 ld(µ(C))− 2, 0). Together with
(∗) it follows that for all these cones which are elements of the final set CO
we have

µ(D) = 2w ≤ µ(C)nD+1 ≤ µ(C)2 ld(µ(C)).

Thus µ(D) = 2w such that w ≤ 2(ld(µ(C)))2. �

In the following we will refer to a special variant of the Prime Number
Theorem which J. Rosser and L. Schoenfeld proved in 1962 [10].
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Theorem 3.2.10. (Prime Number Theorem) For x > 0 let π(x) denote the
number of prime numbers p with p < x. Then for all x > 11 we have

x

ln(x)
< π(x) <

(
1 +

3

2 ln(x)

)
x

ln(x)
.

Now we will show that the vectors generating the cones D ∈ CO are
short. But before we do so, we establish a lemma that will help us in the
following.

Lemma 3.2.11. Let X be a finite set and let M, N ⊂ X. Furthermore,
let (σi)i∈X be a family of permutations σi : X 7−→ X, i ∈ X, such that
σj(x) 6= σk(x) for all j 6= k, x ∈ X. Then there exists l ∈ X such that
σl(x) /∈ N for all x ∈ M if

|M | · |N | < |X|.

Proof. Let M, N ⊂ X such that |M | · |N | < |X|. Because σj(x) 6= σk(x)
for all j 6= k and x ∈ X we have

N =
⋃̇
i∈X

(
{σi(x)} ∩N

)
for all x ∈ X. This implies that

|M | · |N | =
∑
x∈M

∣∣∣∣∣⋃̇
i∈X

(
{σi(x)} ∩N

)∣∣∣∣∣ .
On the other hand,

∑
x∈M

∣∣∣∣∣⋃̇
i∈X

(
{σi(x)} ∩N

)∣∣∣∣∣ =
∑
x∈M

(∑
i∈X

∣∣{σi(x)} ∩N
∣∣)

=
∑
i∈X

(∑
x∈M

∣∣{σi(x)} ∩N
∣∣) .

Now, assume that the statement of Lemma 3.2.11 is false. This would
mean that ∣∣∣∣∣ ⋃̇

x∈M

(
{σi(x)} ∩N

)∣∣∣∣∣ ≥ 1 (∗)
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for all i. Hence we would arrive at

|M | · |N | =
∑
i∈X

(∑
x∈M

∣∣{σi(x)} ∩N
∣∣) ≥ |X|,

where the last inequality is due to (∗). But this contradicts the conditions
of the lemma. Therefore, the statement must be true. �

Remark 3.2.12. Let p ∈ P be an arbitrary prime number and let X :=
{1, . . . , p − 1}. Then the family of permutations (σk)k∈X is given as σk :
X 7−→ X,

σk(x) := kx (mod p).

Consequently, σj(x) 6= σk(x) for all j 6= k, x ∈ X.

Lemma 3.2.13. Let v1, . . . , vd ∈ Zd, p ≥ 3 be a prime number and x =∑d
i=1

li
p
vi ∈ Zd \{0} with 0 ≤ li < p and M ⊂ {v1, . . . , vd}. Then there exists

a vector y =
∑d

i=1
mi

p
vi ∈ Zd \ {0} such that both 0 ≤ mi < p and mi /∈ P>2

for all vi ∈ M if

|M | ≤ ln(p)

2
.

Proof. Let X := {1, . . . , p − 1} and (σk)k∈X be defined as in Remark
3.2.12. Then for all elements y ∈ 〈x〉 (where 〈x〉 is meant as the subgroup of
Zd modulo U := Zv1 + · · ·+ Zvd) with

y =
d∑

i=1

mi

p
vi

we have that there exists a number k ∈ X such that

σk(lj) = mj

for all j = 1, . . . , d. Furthermore, let N := P>2 ∩ {1, . . . , p − 1} and let
M ′ := {lj : vj ∈ M}. Due to Lemma 3.2.11 there exists r ∈ X such that

σr(lj) /∈ N

for all lj if
|M ′| · |N | < |X|.

But this means that there exists a vector y of the desired form if

|M ′| · |N | = |M ′| · (π(p)− 1) < p− 1.
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Furthermore, it follows due to the prime number theorem in the variant of
Rosser and Schoenfeld that

π(p)− 1 < 2 · p− 1

ln(p)

for all p ≥ 3. All in all we have that there exists a vector y of the desired
form if |M ′| ≤ |M | ≤ ln(p)

2
. Thus the lemma is true. �

The next theorem will provide us with the central numerical consequence
resulting from our triangulation procedure.

Due to line 22 of Procedure 2 it could happen that for some cone D
the set MD – which might not have been the empty set beforehand, i.e.
MD = {y1, . . . , yr} 6= ∅ – is reset to the empty set. Afterwards, the set MD

will be the empty set throughout all iterations of Procedure 2. But in fact,
from now on we will be interested in the set MD = {y1, . . . , yr} before the
reset. Therefore, whenever we mention the set MD from now on, we always
mean the set MD = {y1, . . . , yr} given as the set MD before it is reset to ∅.

Theorem 3.2.14. For all vectors x which are used in the above procedure
for a stellar subdivision of a cone C we have

x ∈
(
d · (µ(C))

log 3
2
(e2) · 22 ld(µ(C))

)
∆C .

Proof. Let Ck again be a cone of the k-th generation with µ(Ck) = 2s

(s ∈ N). Furthermore, let x1, x2, . . . , xk−1 be the vectors which are used in a
stellar subdivision to produce the cone Ck by generating the cones C1, C2, . . .
of the first, second, . . . generation in which the cone Ck is embedded.

We define a(j) (0 ≤ j ≤ f) to be the generation of the cone Ca(j) which
is the j-th cone in the sequence C1, C2, . . . of cones for which

|MCa(j)
| ≥ |MCa(j)+1

| = 1.

This implies that MCa(j)+1
= {xa(j)+1}. Thus the cones Ca(0)+1, Ca(1)+1, . . . ,

Ca(f)+1 are the only cones for which

|MCa(0)+1
| = |MCa(1)+1

| = . . . = |MCa(f)+1
| = 1.

We set a(0) := 0. Furthermore, let b(j) be the greatest prime factor of the
multiplicity µ(Ca(j)). Hence

b(j) := max{p ∈ P : p | µ(Ca(j))}.
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Finally, we define c(j) as the cardinality of the set MCa(j)
, thus

c(j) := |MCa(j)
|.

Moreover, let w1, . . . , wd be the generators of the cone Ca(j), i.e.

Ca(j) = R+w1 + · · ·+ R+wd.

Then – according to the definition of a(j) – there does not exist a vector

y =
d∑

i=1

mi

b(j)
wi ∈ Zd \ {0}

such that both 0 ≤ mi < b(j) and mi /∈ P>2 for all vi ∈ MCa(j)
. (See line 4

of Procedure 2. In fact, we only take into account that the conditions IIb1)
and IIb3) are not fulfilled.) Otherwise, if there would be such a vector y,
then we would have that MCa(j)+1

= MCa(j)
∪{y}, hence |MCa(j)

| < |MCa(j)+1
|.

But this would be a contradiction. Due to Lemma 3.2.13 this implies that

c(j) >
ln(b(j))

2
.

But we also have by means of the procedure that the cardinality c(j) of
the set MCa(j)

is equal to the difference a(j) − a(j − 1). So we arrive at

a(j)− a(j − 1) > ln(b(j))
2

, hence

e2(a(j)−a(j−1)) > b(j),

which directly implies

t∏
i=1

b(i) < e2
∑t

i=1(a(i)−a(i−1)) = e2(a(t)−a(0)) (∗)

for all t ≤ f . For a cone Ck of the k-th generation with p := pmax(µ(Ck−1))
we have

µ(Ck) =
l

p
µ(Ck−1)

such that l = 2gm with g ∈ N, g ≤ ld(p) and m ≤ p is a composite number
or m ≤ 2p

3
due to Lemma 3.2.2. Furthermore, with t : N 7−→ N given as in

Definition 3.2.5, we have

t(µ(Ck)) ≤
2

3
· t(µ(Ck−1)).
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This implies immediately that

t(µ(Ca(i))) ≤
µ(C)(
3
2

)a(i)
.

for all i. Therefore, we have

b(i) ≤ µ(C)(
3
2

)a(i)
. (∗∗)

Furthermore, let the increasing sequence (hn) be defined (we already used
similar sequences in Lemma 2.2.4 and in Theorem 3.1.1) as follows:

hn = 1, n < 1, h1 = d, hn = hn−1 + · · ·+ hn−d, n > 1.

Now we will prove the following lemma by induction.

Lemma 3.2.15. Let xz – as described above – be a vector of the z-th gener-
ation such that a(s) < z ≤ a(s + 1) for s + 1 ≤ f respectively a(s) < z ≤ k
if s = f . Then we have

xz ∈

((
s∏

i=0

b(i)

)
hz

)
∆C .

Proof. We will prove the lemma for s = 0 by induction on z. For 0 =
a(0) < z = 1 the statement is obviously true, because in this case the vector
x1 is of the form

x1 =
d∑

i=1

qivi with qi ≤ b(0)

for all i. It follows
x1 ∈ (b(0)h1)∆C .

Now let us suppose that the statement is true for a(0) < z ≤ a(1) − 1.
Then the vector xz+1 is used for a stellar subdivision of the cone Cz =
R+w1+· · ·+R+wd. For these vectors wi we have wi ∈ {v1, . . . , vd, x1, . . . , xz}.
Furthermore, MCz = {x1, . . . , xz}, because by definition z < a(1). Hence we
have

xz+1 =
d∑

i=1

qiwi with qi < 1 if wi ∈ {x1, . . . , xz}

and qi ≤ pz ≤ b(0) if wi ∈ {v1, . . . , vd},
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where pz is the greatest prime factor of µ(Cz). Because by induction xi ∈
(b(0)hi)∆C for i ≤ z and vi ∈ ∆C (i = 1, . . . , d) we have

xz+1 ∈

(
b(0)

(
z∑

i=z−d+1

hi

))
∆C ,

which is what we wanted to show.
So let us suppose the lemma is true for s ≥ 0. Again we will prove that

it is also true for s + 1 by induction on z. For z = a(s + 1) + 1 we have that
xz is of the form xz =

∑d
i=1 qiwi where Cz−1 = R+w1 + · · ·+ R+wd and

qi ≤ 2ld(b(s+1)) = b(s + 1)

due to Lemma 3.2.2. Because the wi are all out of different generations
fi ≤ z − 1 = a(s + 1) (we also regard the vectors v1, . . . , vd to be out of the
different generations 0, . . . ,−d + 1), we have

wi ∈

((
s∏

i=0

b(i)

)
hfi

)
∆C ,

and therefore

xz ∈

(
b(s + 1)

(
s∏

i=0

b(i)

)(
z−1∑

i=z−d

hi

))
∆C .

Now the induction step is done in the same way as in the case s = 0, where it
is just to be taken into account that here MCz = {xa(s+1)+1, . . . , xz}. There-
fore, the lemma is proven. �

So we can go on in the proof of Theorem 3.2.14. By (∗) and (∗∗) it follows
that

t∏
i=1

b(i) ≤ e2(a(t)−a(0)) =

(
3

2

)log 3
2
(e2)a(t)

=

((
3

2

)a(t)
)log 3

2
(e2)

≤
(

µ(C)

b(t)

)log 3
2
(e2)

for all t ≤ f . Therefore, we have for all t ≤ f that

t∏
i=1

b(i) ≤ (µ(C))
log 3

2
(e2)

.
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Together with Lemma 3.2.15 and Corollary 3.2.8 which says that all cones G
arising from the above procedure are out of a generation nG ≤ 2 ld(µ(C)) as
well as the fact that hn ≤ d2n for n ≥ 0 it follows that the theorem is true.
�

If we do now collect the results from the Theorems 3.1.1, 3.2.9 and 3.2.14
and additionally keep in mind that the procedure provides us with a trian-
gulation of the cone C by cones D for which µ(D) is a power of two, then
we arrive at the desired result

Theorem 3.2.16. Let ε := log 3
2
(e2) + 2. Then every simplicial d-cone

C = R+v1 + · · · + R+vd ⊂ Rd, d ≥ 3, has a unimodular triangulation C =
D1 ∪ . . . ∪Dt such that

Hilb(Di) ⊂

(
d2

2
· (µ(C))ε ·

(
9

4

)(ld(µ(C)))2
)

∆C , i ∈ [1, t].

Proof. After a proper ordering of the above terms it becomes clear that
the above statement is equivalent to

Hilb(Di) ⊂

(
d2

2
· (µ(C))ε · 22 ld(µ(C)) ·

(
3

2

)2(ld(µ(C)))2
)

∆C ,

which is a direct consequence of the results given by the Theorems 3.1.1,
3.2.9 and 3.2.14. �
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4 Stellar subdivisions and triangulations

In this chapter we will pose a lot more questions than we will provide answers.
These questions arise from the following observations.

When we look back to the preceding chapters, we see that all results
have been achieved by applying successively stellar subdivisions to cones
respectively polytopes such that in the end we came up with a unimodular
triangulation of a cone or a polytope which is at its best unimodular or fulfills
some other properties.

Hence one might ask: Is it just owed to the simplicity of this tool (stellar
subdivision) or the narrowness of the author that it was used so often in the
preceding chapters? Or are stellar subdivisions absolutely essential when we
deal with triangulations of lattice simplices? Are they essential in a sense that
a lattice simplex ∆ which admits a unimodular triangulation does also admit
a unimodular triangulation resulting from a successive stellar subdivision?

More naively, one might even ask if all triangulations of a lattice simplex
are just the result of a successive stellar subdivision. In dimension d = 1 this
is obviously true. But the following example shows that already in dimension
d = 2 this is not the case.

Example 4.0.1. Let ∆ = conv(0, 2e1, 2e2). Then ∆ = conv(0, e1, e2) ∪
conv(e1, e2, e1 + e2)∪ conv(e1, 2e1, e1 + e2)∪ conv(e2, 2e2, e1 + e2) constitutes
a unimodular triangulation of ∆ which can not be achieved by a successive
stellar subdivision (see Figure 4.1).
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Figure 4.1

So let us come back to the questions we posed initially. At first, it is
to say that stellar subdivisions obviously play a crucial part in the field of
polytopes and cones, especially when we deal with triangulations. This is
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because a stellar subdivision of a cone C respectively a stellar subdivision
of a lattice simplex ∆ by a vector x respectively a point x does provide us
with information about the multiplicities of the resulting cones respectively
lattice simplices. But are they essential in a sense that a lattice simplex
∆ which admits a unimodular triangulation does also admit a unimodular
triangulation which is only achieved by the successive application of stellar
subdivisions?

4.1 Some conjectures

The first conjecture directly refers to the question above. So let ∆ ⊂ Rd be
an arbitrary lattice d-simplex.

Conjecture 4.1.1. ∆ admits a unimodular triangulation if and only if ∆
admits a unimodular triangulation which results from a successive stellar
subdivision.

In fact, it is even not obvious that the multiples k∆ (k ∈ N) of a uni-
modular simplex ∆ always admit a unimodular triangulation achieved by
successive stellar subdivision. But Francisco Santos Leal has communicated
in November 2007 that this is true and has delivered a proof.

When we discuss the meaning of stellar subdivisions for triangulations
of lattice simplices, we do not have to restrict ourselves to unimodular tri-
angulations. Having in mind that a unimodular triangulation of a lattice
d-simplex ∆ is simply a triangulation of ∆ into k = vol(∆) (where vol(∆)
is defined as the standardized volume of ∆) other lattice simplices, we could
also ask for the correctness of this more general conjecture.

Conjecture 4.1.2. There exists a triangulation of ∆ by at least k lattice
simplices if and only if there exists a triangulation achieved by a successive
stellar subdivision of ∆ by at least k lattice simplices.

As we mentioned before, Conjecture 4.1.1 follows from Conjecture 4.1.2
simply by setting k = vol(∆), because a triangulation of a lattice d-simplex
by k = vol(∆) other lattice simplices Γj means that vol(Γj) = 1 for all j.
Hence the triangulation is unimodular.

A much weaker version of Conjecture 4.1.1 (and thus also of Conjecture
4.1.2) is the following one.

Conjecture 4.1.3. There exists a map g : N → R such that if ∆ ⊂ Rd
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admits a unimodular triangulation, then there exists c ≤ g(d) such that c∆
admits a unimodular triangulation which is achieved by a successive stellar
subdivision.

This conjecture follows from Conjecture 4.1.1 by setting g(d) = 1 and
c = 1 for all d ∈ N.

Furthermore, the correctness of Conjecture 4.1.3 would also provide us
with a very interesting and significant relation between triangulations in gen-
eral and triangulations which are achieved by successive stellar subdivision
as the correctness of Conjecture 4.1.1 would do.

Conjecture 4.1.3 has an analogue in the field of cones. So let C be an
arbitrary simplicial d-cone C.

Conjecture 4.1.3’. There exists a map g : N → R such that if C ⊂ Rd

admits a unimodular triangulation C = G1∪. . .∪Gd with Hilb(Gi) ⊂ k∆C for
all i, then there exists c ≤ g(d) such that C admits a unimodular triangulation
C = H1 ∪ . . . ∪Hd with Hilb(Hi) ⊂ ck∆C for all i and which is achieved by
a successive stellar subdivision.

Furthermore, we know that the analogue of Conjecture 4.1.1 in the field
of cones is obviously true, because every cone C admits a unimodular trian-
gulation which results from a successive stellar subdivision (see e.g. [6], p.
6, Theorem 3.1.2).

Let us now suppose that Conjecture 4.1.1 is true. What would this mean?
It would imply that a lattice simplex which does not admit a unimodular tri-
angulation achieved by a successive stellar subdivision would also not admit
any other kind of unimodular triangulation.

Moreover, let c ∈ N be defined as the smallest number such that the mul-
tiple c∆ of a lattice simplex ∆ admits a unimodular triangulation. And let
c′ ∈ N be the smallest number such that the multiple c′∆ of the same lattice
simplex ∆ admits a unimodular triangulation resulting from successive stel-
lar subdivisions. Then, if the Conjecture 4.1.1 would be true, we would have
that c = c′. Therefore, you would just have to deal with stellar subdivisions
in these situations.

4.2 Triangulations, stellar subdivisions and lattice sim-
plices

The preceding section should motivate us to have a closer look at unimodular
triangulations of lattice simplices which result from successive stellar subdi-
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visions. (From now on we will call these special unimodular triangulation
shortly SUTs.)

More precisely, it should motivate us to ask the following questions:
Which lattice simplices ∆ admit a SUT respectively under which conditions
does a lattice simplex ∆ admit a SUT? Which conditions does a lattice sim-
plex ∆ fulfill that admits a SUT?

If ∆ = conv(0, v1, . . . , vd), then we define par(∆) as follows:

par(∆) := par(v1, . . . , vd).

Furthermore, let ∆, ∆′ ⊂ Rd be two lattice d-simplices such that ∆ =
conv(0, v1, . . . , vd) and ∆′ = conv(0, w1, . . . , wd). Then we say that these two
simplices ∆ and ∆′ are isomorphic if there exists a linear map φ : Rd 7−→ Rd

such that φ(vi) = wi for all i, | det(φ)| = 1, and φ(ei) ∈ Zd for all
i = 1, . . . , d. Then we have

Lemma 4.2.1. Let ∆, ∆′ ⊂ Rd be two lattice d-simplices such that ∆ =
conv(0, v1, . . . , vd) and that ∆′ = conv(0, w1, . . . , wd). Furthermore, let V :=
vol(∆) = vol(∆′) and let there be numbers a1, . . . , ad ∈ N such that both
x := a1

V
v1 + · · · + ad

V
vd ∈ ∆ ∩ Zd and y := a1

V
w1 + · · · + ad

V
wd ∈ ∆′ ∩ Zd.

Moreover, let par(∆) = 〈x〉 and par(∆′) = 〈y〉. Then the simplices ∆ and
∆′ are isomorphic.

Proof. Let C := R+v1 + · · ·+R+vd. Because every simplicial cone admits
a unimodular triangulation, there exist vectors z1, . . . , zd with

zi = ui + livi ∈ C, li ∈ N,

such that

ui =
∑ bi

1

V
v1 + · · ·+ bi

d

V
vd ∈ par(∆)

for all i and such that the simplex Γ := conv(0, z1, . . . , zd) is unimodular.
Because par(∆′) = 〈y〉 and par(∆) = 〈x〉 for x := a1

V
v1 + · · ·+ ad

V
vd ∈ ∆ and

y := a1

V
w1 + · · ·+ ad

V
wd ∈ ∆′, it follows that

u′i =
∑ bi

1

V
w1 + · · ·+ bi

d

V
wd ∈ par(∆′).

Let z′i := u′i + liwi for all i. Then the lattice simplex Γ′ := conv(0, z′1, . . . , z
′
d)

is also unimodular, because vol(∆) = vol(∆′). In particular, we have that Γ
and Γ′ are isomorphic. But this implies that the simplices ∆ and ∆′ are also
isomorphic. �
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Now suppose that the group Zd modulo U := Zv1 + · · · + Zvd is cyclic.
Hence for ∆ = conv(0, v1, . . . , vd) there exist ai ∈ N with 0 ≤ ai < V such
that

par(∆) =
〈a1

V
v1 + · · ·+ ad

V
vd

〉
, V := vol(∆).

Due to Lemma 4.2.1 it is justified to refer to the above notation instead of to
concrete lattice simplices ∆, because all lattice simplices ∆ = conv(0, v1, . . . ,
vd) for which par(∆) =

〈
a1

V
v1 + · · ·+ ad

V
vd

〉
are isomorphic.

So let us come back to this question: Which conditions does a lattice
simplex ∆ = conv(0, v1, . . . , vd) ⊂ Rd fulfill that admits a SUT? For example,
we can provide the following results (which are indeed not really satisfying).

Theorem 4.2.2. Let ∆ = conv(0, v1, . . . , vd) ⊂ Rd be a lattice d-simplex
which admits a unimodular cover by subsimplices of ∆. Furthermore, let us
suppose that there exists x ∈ par(∆) and an index i with 1 ≤ i ≤ d such that
x = 1

V
vi +

∑
j 6=i

aj

V
vj, where V := vol(∆). Then we have

x ∈ par(∆) ∩∆.

Proof. Because x = 1
V

vi +
∑

j 6=i
aj

V
vj is an element of par(∆), it follows

that the group Zd modulo U := Zv1 + · · · + Zvd is cyclic and generated by
x, since

|〈x〉| = V = | par(∆)|.
Therefore, the face F = conv(0, v1, . . . , vi−1, vi+1, . . . , vd) of ∆ is empty. But
∆ admits a unimodular cover. This implies that there exists a unimodular
subsimplex ∆′ of ∆ which contains face F . Since F is empty, it follows that
∆′ must be of the form

∆′ = conv(0, v1, . . . , vi−1, y, vi+1, . . . , vd)

such that y ∈ ∆∩ par(∆). Furthermore, ∆′ is unimodular, hence y = x, and
therefore x ∈ par(∆) ∩∆. �

For example, Theorem 4.2.2 implies that all lattice simplices ∆ = conv(0,
v1, v2, v3) ⊂ R3 such that

par(∆) =

〈
1

4
v1 +

2

4
v2 +

2

4
v3

〉
do not admit a unimodular cover, and hence no SUT, since

1

4
v1 +

2

4
v2 +

2

4
v3 /∈ ∆.
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∆ = conv(0, 4e1 − 2e2 − 2e3, e2, e3) ⊂ R3 gives us an example for such a
simplex (see Figure 4.2, where ∆ is shifted by the vector z = −2e1 + e2 + e3).
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Figure 4.2

One might ask now if this simplex ∆ = conv(0, 4e1 − 2e2 − 2e2, e2, e3),
which does not admit a unimodular cover, is normal or even integrally closed.
In fact, at present no integrally closed lattice polytope which admits no uni-
modular cover is known in dimension d = 3. But there exists an example
of an integrally closed lattice polytope which admits no unimodular trian-
gulation in dimension d = 3 (see [9]). And we also have an example of an
integrally closed polytope which admits no unimodular cover in dimension
d = 5 (see [1]).

So, let us have a look at ∆. We have

∆ ∩ Zd = {0, 4e1 − 2e2 − 2e3, e2, e3, 2e1 − e2 − e3}.

Furthermore, S∆ is defined as the submonoid of Z4 which is generated by
the elements (x, 1), x ∈ ∆ ∩ Z3. It follows that the subgroup gp(S∆) of Z4
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generated by S := S∆ is given as

gp(S) = 2Ze1 + Ze2 + Ze3 + Ze4.

Hence the index of gp(S) in Z4 equals 2 and S is not integrally closed in Z4.
On the other hand, S is normal, i.e. S := Sgp(S) = S.

Let x ∈ S. On the one hand, this means that there exist z1, z2, z3, z4 ∈ Z
such that

x = 2z1e1 + z2e2 + z3e3 + z4e4. (∗)
On the other hand, there exists m ∈ N such that

mx ∈ S.

But this implies that there exist ni ∈ N, i = 1, . . . , 4, such that

mx = (2n4 + 4n5)e1 + (n3 − n4 − 2n5)e2+

(n2 − n4 − 2n5)e3 + (n1 + n2 + n3 + n4 + n5)e4.

Together with (∗) it follows that m | n4 + 2n5, m | n3, m | n2, and
m | n1 − n5. Now we distinguish between two cases. Either n1 ≥ n5 or
n1 < n5. In the former case we set r1 := n1−n5

m
, r2 := n2

m
, r3 := n3

m
, r4 :=

n4+2n5

m
, r5 := 0. Then ri ∈ N for all i and hence

x = (2r4 + 4r5)e1 + (r3 − r4 − 2r5)e2+

(r2 − r4 − 2r5)e3 + (r1 + r2 + r3 + r4 + r5)e4 ∈ S.

If n1 < n5, then we set r1 := 0, r2 := n2

m
, r3 := n3

m
, r4 := n4+2n1

m
, r5 := n5−n1

m
.

Again we have ri ∈ N for all i and hence

x = (2r4 + 4r5)e1 + (r3 − r4 − 2r5)e2+

(r2 − r4 − 2r5)e3 + (r1 + r2 + r3 + r4 + r5)e4 ∈ S.

Besides, Theorem 4.2.2 also implies that there does not exist a unimodular
cover of a lattice simplex ∆ with

par(∆) =

〈
1

V
v1 +

1

V
v2 +

2

V
v3

〉
and V odd. This follows from the fact that, due to Theorem 4.2.2, ∆′ =
conv(0, v1, v2, x) must be one of the covering simplices, where

x =
b

V
v1 +

b

V
v2 +

1

V
v3 ∈ par(∆) ∩∆,
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if ∆ would admit a unimodular cover. Since par(∆) =
〈

1
V

v1 + 1
V

v2 + 2
V

v3

〉
and because V is odd, we have b =

⌈
V
2

⌉
. Therefore, b + b > V and hence

x /∈ ∆. This is a contradiction. Therefore, ∆ admits no unimodular cover.
Let ∆ = conv(0, v1, v2, v3) be such a simplex with v1 = V e1 − e2 − 2e3,

v2 = e2, v3 = e3, and V > 3 is an odd number. Again we might ask if this
simplex ∆ is normal or even integrally closed. Here we have

e1, e2, e3 ∈ ∆ ∩ Zd,

since e1 = 1
V

v1 + 1
V

v2 + 2
V

v3. Therefore, gp(S∆) = Z4. But on the other hand,
by definition wi ∈ S∆ ⊂ Z4, i = 1, . . . , 4, where w1 = e1 + e4, w2 = e2 + e4,
w3 = e4, w4 = V e1 − e2 − 2e3 + e4. This implies that

x := (V + 1)e1 − 2e3 + 4e4 = w1 + w2 + w3 + w4 ∈ S,

but, because V is odd, it follows that x
2
∈ Z4. Hence ∆ is not normal, since

x
2

/∈ S, as one might check easily.

Furthermore, we can generalize the result above in the following way.

Remark 4.2.3. A lattice d-simplex ∆ with

par(∆) =
〈a1

V
v1 + · · ·+ ad

V
vd

〉
such that a1 = · · · = ar = 1, ad = r and gcd(r, V ) = 1 does not admit a
SUT. Otherwise, due to Theorem 4.2.2, we would have that

b1

V
v1 + · · ·+ bd−1

V
vd−1 +

1

V
vd ∈ par(∆) ∩∆

if ∆ would admit a unimodular cover. But it follows that bi >
⌈

V
r

⌉
if 1 ≤

i ≤ r. Therefore,
r∑

i=1

bi > V

and hence x /∈ ∆, which is a contradiction. It follows that ∆ admits no
unimodular cover and hence no unimodular triangulation and, of course, no
SUT.

Furthermore, we have

Theorem 4.2.4. Let ∆ = conv(0, v1, . . . , vd) ⊂ Rd be a lattice d-simplex
which admits a unimodular triangulation ∆ = Γ1∪ . . .∪Γt. Let Γj be a lattice
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simplex with 0 ∈ Γj, i.e. Γj = conv(0, w1, . . . , wd) for some w1, . . . , wd ∈
∆ ∩ Zd. If {w1, . . . , wd−1} * {v1, . . . , vd}, then there exists k such that Γk =

conv(0, w1, . . . , wd−1, x) and x = −wd +
∑d−1

i=1 ziwi, zi ∈ Z.

Proof. Let ∆ = Γ1 ∪ . . . ∪ Γt be a unimodular triangulation of ∆ and
let Γj be a lattice simplex with 0 ∈ Γj, i.e. Γj = conv(0, w1, . . . , wd) for
some w1, . . . , wd ∈ ∆. Since ∆ = Γ1 ∪ . . . ∪ Γt constitutes a triangula-
tion of ∆, it follows that there exists k such that Γk coincides with Γj

along face F := conv(0, w1, . . . , wd−1). This simply means that we have
Γk = conv(0, w1, . . . , wd−1, x) with x ∈ par(∆). Because both Γj and Γk are
unimodular, we have that x must be of the form

x = −wd +
d−1∑
i=1

ziwi

such that zi ∈ Z for all i. �

All these statements about the properties which lattice simplices must
fulfill when they admit a SUT are unsatisfactory. (In fact, these properties
do not even take into account that the simplices admit a unimodular triangu-
lation resulting from a successive stellar subdivision, but they just take into
account that either the simplex admits a unimodular cover or a unimodular
triangulation.) Nothing enlightening can be provided. This and the following
shall motivate us to deal with a special kind of SUTs.

Besides, when we look back to the former chapters we see that it was
always, roughly speaking, very helpful if we could apply stellar subdivision
to a cone (lattice simplex) by a vector x which lies in the interior of this
cone (lattice simplex) and not on one of its faces. Why was this so useful?
Because when you faced a set of cones (lattice simplices) which constituted
a triangulation of an underlying cone C (lattice simplex ∆), then getting
another triangulation of this cone by stellar subdivision meant to apply stellar
subdivision to all faces F on which vector x was lying. Therefore, you had
to, again roughly speaking, take care for all the cones D (lattice simplices
Γ) with F ⊂ D (F ⊂ Γ). So applying stellar subdivision to a cone (lattice
simplex) by a vector x ∈ int(C) (x ∈ int(∆)) made things easier.

So let us have a closer look at unimodular triangulations of lattice sim-
plices ∆ ⊂ Rd resulting from successive stellar subdivisions by vectors which
always lie in the interior of the corresponding simplices and do not lie on
any face F with dim(F ) < d. We will call this special kind of unimodular
triangulations shortly ISUTs.

As in the case of unimodular triangulations and SUTs it must be said

54



that not every SUT is achieved by an ISUT, as one might naively conjecture.
Concretely, if a lattice simplex ∆ admits a unimodular triangulation ∆ =
Γ1∪. . .∪Γt which results from successive stellar subdivisions, then it might be
impossible to achieve this triangulation ∆ = Γ1∪ . . .∪Γt by successive stellar
subdivisions using just inner points in every step. The following example
illustrates this statement.

Example 4.2.5. Let par(∆) =
〈

1
7
v1 + 2

7
v2

〉
. Then ∆ admits a SUT. An

instance of ∆ with v1 = e1 − 2e2 and v2 = 3e1 + e2 is depicted in Figure 4.3.
In fact, the unimodular triangulation of ∆, which is illustrated in Figure

4.3, is the only one that ∆ admits. Therefore, this example also shows that
there exist lattice simplices which do admit a SUT but no ISUT.
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Figure 4.3

Furthermore, we have the following examples for ISUTs.

Examples 4.2.6. (1) par(∆) =
〈

1
7
v1 + 1

7
v2 + 4

7
v3

〉
. At first, apply stellar

subdivision by x = 1
7
v1 + 1

7
v2 + 4

7
v3 and then by y = 2

7
v1 + 2

7
v2 + 1

7
v3.

(2) Every lattice simplex ∆ ⊂ Rd with par(∆) =
〈

1
n
v1 + · · ·+ 1

n
vd

〉
, where

n := | par(∆)| and n− 1 ≡ 0 (mod d), admits an ISUT. Apply stellar subdi-
vision by x1 = 1

d
v1 + · · ·+ 1

d
vd, x2 = 2

d
v1 + · · ·+ 2

d
vd, . . . , xr = r

d
v1 + · · ·+ r

d
vd

to the simplex ∆, where r := n−1
d

.

So what can be stated about lattice simplices which admit an ISUT?
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What properties do they have? The Examples 4.2.5 and 4.2.6 give us a
hint. In Example 4.2.5 we had | par(∆) ∩ ∆| = 4, in Example 4.2.6 (1) we
had | par(∆) ∩ ∆| = 3 and in Example 4.2.6 (2) we had | par(∆) ∩ ∆| =
d−1(| par(∆)|+ d− 1). (Recall that 0 ∈ par(∆)∩∆.) Is this true in general?
Is

| par(∆) ∩∆| = | par(∆)|+ d− 1

d

a necessary condition for the existence of an ISUT?
The following theorem gives us an answer to this question.

Theorem 4.2.7. If the lattice d-simplex ∆ = conv(0, v1, . . . , vd) admits an
ISUT, then we have

| par(∆) ∩∆| = | par(∆)|+ d− 1

d
.

Proof. Let ∆ be a lattice d-simplex which admits an ISUT. This means
that there is an order x1, x2, . . . , xf with f = | par(∆)∩∆|−1 of all points xi ∈
(par(∆)∩∆) \ {0} such that the successive application of stellar subdivision
to ∆ by x1, x2, . . . , xf provides us with a unimodular triangulation of ∆.

Because the triangulation is unimodular, it consists of exactly n :=
| par(∆)| lattice simplices.

Furthermore, this means that in every step (when we apply stellar sub-
division by xi) a simplex Γ which is part of the current triangulation is
substituted by exactly d + 1 other simplices Γ1, . . . , Γd+1. This is, because
xi is lying in the interior of one of the triangulating simplices (here: Γ).
It follows that in every step the number of simplices which triangulate the
underlying simplex ∆ increases by d. Therefore, after the successive stellar
subdivision with all points x1, x2, . . . , xf , we end up with a triangulation of
∆ with fd + 1 simplices.

It follows that n = fd + 1, hence f = n−1
d

. And finally, this implies

| par(∆) ∩∆| = f + 1 =
n + d− 1

d
=
| par(∆)|+ d− 1

d
.

�

Now we know that the condition | par(∆) ∩ ∆| = | par(∆)|−1
d

is necessary
for the existence of an ISUT. But in fact, this condition is also sufficient in
dimension d > 2 as the next statements will show.

Let ∆ = conv(v0, v1, . . . , vd) ⊂ Rd be a lattice d-simplex. Then we define
F∆

x as the minimal face of ∆ containing x. This means that x ∈ F∆
x and
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that there exists no other face G of ∆ with G ⊂ F∆
x and x ∈ G. For x /∈ ∆

we set dim(F∆
x ) := 0.

Lemma 4.2.8. Let ∆ = conv(v0, v1, . . . , vd) ⊂ Rd be a lattice d-simplex and
let x, y ∈ ∆ ∩ Zd. Furthermore, let ∆ = Γ0 ∪ . . . ∪ Γt be the triangulation of
∆ resulting from a stellar subdivision of ∆ by x. Then we have

t∑
i=0

dim(F Γi
y ) ≥ dim(F∆

y ).

Proof. Without loss of generality we can assume that F∆
x = conv(v0, . . . ,

vt) with t ∈ {0, . . . , d}. Then let

Γi := conv(v0, . . . , vi−1, x, vi+1, . . . , vd), i = 0, . . . , t,

be the simplices resulting from the stellar subdivision by x to ∆. Further-
more, we have

F Γi
y = F Γj

y

if y ∈ Γi and y ∈ Γj. Otherwise, F Γi
y ∩F

Γj
y would be a face of Γi and Γj which

is strictly contained in F Γi
y and in F

Γj
y and contains y. This is a contradiction.

Let now l ∈ {0, . . . , t} such that y ∈ Γl. Now we distinguish between two
cases.

Case 1. x /∈ F Γl
y . It follows that F∆

y = F Γl
y . Therefore,

t∑
i=0

dim(F Γi
y ) ≥ dim(F Γl

y ) = F∆
y .

Case 2. x ∈ F Γl
y . Let F Γl

y = conv(x, w1 . . . , ws) with wi ∈ {v0, . . . , vd}
for all i. Then we define A := {v0, . . . , vt} and B := {w1, . . . , ws}. Due to
the definition of Γi (i = 0, . . . , t) it follows that y ∈ Γi if and only if vi /∈ B.
Therefore,

|{Γi : y ∈ Γi}| = |A \B|.

This implies that

t∑
i=0

dim(F Γi
y ) = |{Γi : y ∈ Γi}| · s = |A \B| · |B|.
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On the other hand, we can deduce that y ∈ conv(v0, . . . , vt, w1, . . . , ws), hence

dim(F∆
y ) ≤ |A ∪B| − 1.

Since |A ∪B| − |B| = |A \B|, it follows that

t∑
i=0

dim(F Γi
y ) ≥ dim(F∆

y ).

�

Lemma 4.2.9. Let ∆ = conv(v0, v1, . . . , vd) ⊂ Rd. be lattice simplex. Then
a triangulation of ∆ into empty lattice simplices resulting from successive
stellar subdivisions consists of at least

τ∆ :=
∑

x∈∆∩Zd

dim(F∆
x ) + 1

simplices.

Proof. Let ∆ ⊂ Rd be a lattice d-simplex. We will prove the lemma by
induction on the standardized volume vol(∆) of ∆. If vol(∆) = 1, then ∆ is
unimodular. Hence ∆ is empty and τ(∆) = 1. Therefore, the statement is
correct in this case.

So let vol(∆) > 1. If ∆ is empty, we are done. So let us assume that
there exists x ∈ ∆ ∩ Zd such that x /∈ {v0, . . . , vd}. Then we apply stellar
subdivision by x to the simplex ∆, which results into a triangulation ∆ =
Γ1∪ . . .∪Γr. Because vol(Γi) < vol(∆) for all i, it follows by induction that a
triangulation of ∆ into empty simplices – starting with the stellar subdivision
by x – consists of a least

r∑
i=1

τΓi
=

∑
y∈(∆∩Zd)\{x}

(
r∑

i=1

dim(F Γi
y )

)
+ r,

simplices, where dim(F Γi
y ) = 0 if y /∈ Γi.

But due to Lemma 4.2.8 it follows that∑
y∈(∆∩Zd)\{x}

(
r∑

i=1

dim(F Γi
y )

)
≥

∑
y∈(∆∩Zd)\{x}

dim(F∆
y ).

Because r−1 = dim(F∆
x ), a triangulation of ∆ into empty simplices resulting

from successive stellar subdivision (starting with the stellar subdivision by
x) has at least

τ∆ :=
∑

z∈∆∩Zd

dim(F∆
z ) + 1
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simplices. �

Theorem 4.2.10. Let ∆ = conv(0, v1, . . . , vd) ⊂ Rd (d > 2) be a lattice
simplex with empty faces. If

| par(∆) ∩∆| = | par(∆)|+ d− 1

d
,

then ∆ admits an ISUT.

Proof. Let ∆ = conv(0, v1, . . . , vd) ⊂ Rd (d > 2) be a lattice d-simplex
with empty faces such that

| par(∆) ∩∆| = | par(∆)|+ d− 1

d
.

We will prove the theorem by induction on the number m := | par(∆)∩∆|.
If m = 1, then it follows, due to the identity | par(∆) ∩ ∆| = | par(∆)|+d−1

d
,

that | par(∆)| = 1. Therefore, ∆ is unimodular and admits an ISUT.
Let now m > 1. Due to Lemma 4.2.9 ∆ admits a triangulation into at

least | par(∆)| simplices, which means that ∆ admits a unimodular triangu-
lation. And because the faces of ∆ are empty and | par(∆)| > 1, there must
exist a vector x ∈ par(∆) ∩∆ such that

x =
a1

V
v1 + · · ·+ ad

V
vd

with V := | par(∆)|, a1 = 1 and gcd(ai, V ) = 1 for all i. Then let us
apply stellar subdivision by x to the simplex ∆. If Γ0, . . . , Γd with Γi =
conv(0, . . . , vi−1, x, vi+1, . . . , vd) are the resulting simplices, then we have

d∑
i=0

| par(Γi)| = | par(∆)|. (∗)

(In a strict sense | par(Γ0)| is not defined, because 0 /∈ Γ0. So let Φ =
conv(u0, . . . , ud) be an arbitrary lattice d-simplex with 0 /∈ Φ. Then we set
| par(Φ)| := | par(0, u1−u0, . . . , ud−u0)|. Analogously, we set | par(Φ)∩Φ| :=
| par(0, u1 − u0, . . . , ud − u0) ∩ (−u0 + Φ)|. Obviously, these definitions are
independent from the choice of u0.) Now we will distinguish between two
cases. Either the faces of all resulting simplices Γ0, . . . , Γd are empty or they
are not.

Case 1. The faces of all resulting simplices Γ0, . . . , Γd are empty. Then
we have

| par(Γi) ∩ Γi| ≤
| par(Γi)|+ d− 1

d
, (∗∗)
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for all i. Otherwise there would exist a t such that, due to Lemma 4.2.9, Γt

admits a triangulation into

τΓt = d · (| par(Γi) ∩ Γi| − 1) + 1 > | par(Γi)|

empty simplices. But this is a contradiction. Moreover, because all faces
of the simplices Γi are empty and because x ∈ Γi for all i, it follows that∑d

i=0 | par(Γi)∩Γi| = | par(∆)∩∆|+d− 1. Due to (∗) and (∗∗), this implies

| par(Γi) ∩ Γi| =
| par(Γi)|+ d− 1

d

for all i. Therefore, we conclude by induction that all simplices Γi admit an
ISUT. Hence ∆ also admits an ISUT.

Case 2. There exist z ∈ Zd\{0, v1, . . . , vd, x} and t ∈ {0, . . . , d} such that
z lies on one of the faces of Γt. Let us assume that F Γt

z = conv(w1, . . . , wr)
with wi ∈ {0, v1, . . . , vd, x} for all i. Then x ∈ {w1, . . . , wr}.

Now we will show that

dim
(
F Γi

z

)
= r − 1 = 1.

for all i with z ∈ Γi. Since |{Γi : z ∈ Γi}| = (d + 1− r), we have

d∑
i=0

dim
(
F Γi

z

)
= (d + 1− r) · (r − 1).

So, if 1 < dim
(
F Γi

z

)
< d, then

∑d
i=0 dim

(
F Γi

z

)
> d. But due to Lemma 4.2.9

∆ admits a triangulation into at least

d∑
i=0

τΓi
=

∑
y∈(∆∩Zd)\{x}

(
d∑

i=0

dim
(
F Γi

y

))
+ d + 1

empty simplices. Because
∑d

i=0 dim
(
F Γi

z

)
> d and, due to Lemma 4.2.8,

d∑
i=0

dim
(
F Γi

y

)
≥ dim

(
F∆

y

)
= d

for all y ∈ (∆ ∩ Zd) \ {0, . . . , vd, x}, it follows that

d∑
i=0

τΓi
> | par(∆)|,
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since | par(∆) ∩∆| = | par(∆)|+d−1
d

. This is a contradiction.
Finally, we know that z lies on a line segment u1u2 with u1, u2 ∈

{0, v1, . . . , vd, x}. Because the line segments vivj are empty, since all faces
of ∆ are empty and the line segments vix (i 6= 1) are empty, because the
simplex Γ1 = conv(0, x, v2, . . . , vd) is unimodular, it follows that

z ∈ conv(v1, x).

Now we will show that there exist no other lattice points on the simplices
Γi than than the points on the line segment conv(v1, x). We have already
excluded that there are any other lattice points on any faces F of the simplices
Γi with dim(F ) < d. Consequently, if there is any lattice point in one of
the simplices Γi, it would have to be a point in the interior of one of these
simplices. Hence let us assume that there exist s ∈ {0, . . . , d} and w ∈ Γs∩Zd

such that w ∈ int(Γs). This means that dim(F Γs
w ) = d.

Then we apply stellar subdivision by the vector w to the simplex Γs

(see Figure 4.4 for the situation in dimension d = 2). This gives us the
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triangulation Γs = Λ0∪. . .∪Λd. Due to Lemma 4.2.9 ∆ admits a triangulation
into at least

n :=
∑
i6=s

τΓi
+

d∑
i=0

τΛi

empty simplices. But from Lemma 4.2.8 we can conclude
∑d

i=0 dim
(
F Γi

y

)
≥

dim
(
F∆

y

)
and

∑d
i=0 dim

(
FΛi

y

)
≥ dim

(
F Γs

y

)
. Hence it follows, due to the
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definition of τ∆, that

n ≥
∑

y∈(∆∩Zd)\{x,w,z}

dim(F∆
y ) +

∑
i6=s

dim(F Γi
z ) +

d∑
i=0

dim(FΛi
z ) + 2d + 1.

Furthermore, dim(F Γi
z ) = 1 for all i 6= 1, dim(FΛi

z ) = 1 for all i with z ∈ Λi.
But |{Λi : z ∈ Λi}| = d − 1. Out of this reason, we have (with ε :=
| par(∆) ∩∆|)

n ≥ (ε− 4)d + (d− 1) + (d− 1) + 2d + 1 = ε · d− 1.

This implies that ∆ admits a triangulation into empty simplices with at least
n ≥ | par(∆)|+ d− 2 simplices. This is a contradiction if d > 2.

Therefore, the only points y ∈ (∆ ∩ Zd) \ {0, . . . , vd} are the ones on
the line segment conv(v1, x). On the other hand, we already mentioned
that, due to Lemma 4.2.9, each triangulation of ∆ into empty simplices
(resulting from successive stellar subdivision) is unimodular. It follows that
a2 = · · · = ad. (Recall that x = a1

V
v1 + · · ·+ ad

V
vd with V := | par(∆)|, a1 = 1

and gcd(ai, V ) = 1 for all i.) As a result, there also exists a lattice point

x′ =
b

V
v1 +

1

V
v2 + · · ·+ 1

V
vd.

Of course, x′ ∈ ∆. Otherwise ∆ would not admit a unimodular triangulation
due to Theorem 4.2.2.

Now we can forget about the point x. Instead we will apply stellar sub-
division to ∆ by x′. Let ∆ = Γ′

0 ∪ . . . ∪ Γ′
d be the resulting triangulation

such that Γ′
i = conv(0, . . . , vi−1, x

′, vi+1, . . . , vd). Then the faces of all these
simplices must be empty. This is because Γ′

i is unimodular if i 6= 1.
Hence we are in Case 1. Finally, Theorem 4.2.10 is proven. �

Remark 4.2.11. At first, one might suppose that, because, roughly speak-
ing, much points are needed in the set M := par(∆) ∩ ∆ (due to Theorem
4.2.10) to come up with an ISUT, only polytopes of the form given in Exam-
ple 4.2.6 (2) admit an ISUT. But in fact, Example 4.2.6 (1) shows that this
is not the case.

Remark 4.2.12. Lemma 4.2.9 also shows that r := d−1(| par(∆)| + d − 1)
is an upper bound for the number of points in the set M := par(∆) ∩ ∆
if ∆ is a lattice simplex with empty faces. Otherwise we could provide a
triangulation of this lattice simplex ∆ with more than n := | par(∆)| lattice
simplices. But this is a contradiction. Moreover, Example 4.2.6 (2) tells us
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that this upper bound is optimal in a sense that in every dimension d ≥ 3
there exists an empty lattice simplex ∆ for which |M | = r. Furthermore, the
proof of Theorem 4.2.10 is also constructive. It provides us with an algorithm
to construct an ISUT for a lattice simplex with empty faces which fulfills the
property of Theorem 4.2.10.

Remark 4.2.13. In dimension d = 2 things are different. There the condi-
tion | par(∆) ∩∆| = d−1(| par(∆)|+ d− 1) is not sufficient.

On the one hand, we have that all lattice simplices ∆ ⊂ R2 which have a
nonempty face F do not admit an ISUT, because by definition all vectors x
used for stellar subdivision have to be elements of the interior of ∆. On the
other hand, if ∆ is a lattice simplex for which all faces F with dim(F ) = 1
are empty, then we have

| par(∆) ∩∆| = | par(∆)|+ 1

2
.

Why is that true? Let ∆ = conv(0, v1, v2). Then for every x ∈ par(∆) \ {0}
with x = α1v1+α2v2 we have y := β1v1+β2v2 ∈ par(∆), where β1 := (1−α1)
and β2 := (1−α2), because α1, α2 6= 0 (since there are no points on the faces
along the vectors v1 and v2). Therefore, either α1 + α2 < 1 or β1 + β2 < 1
(the case α1 + α2 = 1 can be excluded, since there is no point on the line

segment v1v2). This implies that exactly | par(∆)|+1
2

of the vectors x ∈ par(∆)
are also elements of ∆, since 0 ∈ ∆.

But not all lattice simplices for which all faces are empty admit an ISUT
as Example 4.2.5 shows. Therefore, the condition is not sufficient in dimen-
sion d = 2.

Do the theorems above also shed any light on the problem with SUTs?
First of all, it gives us a criterion by which we could check whether a simplex
has a SUT in dimension d > 2, simply because an ISUT is also a SUT. But, of
course, the condition is just sufficient in the case of SUTs, and not necessary.
For example, the lattice simplex ∆ ⊂ R3 with

par(∆) =

〈
1

8
v1 +

3

8
v2 +

3

8
v3

〉
admits a SUT (simply apply successively stellar subdivision to ∆ by x1 :=
1
8
v1 + 3

8
v2 + 3

8
v3 and x2 := 3

8
v1 + 1

8
v2 + 1

8
v3), but

2 = | par(∆) ∩∆| 6= | par(∆)|+ d− 1

d
=

10

3
.
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Honestly, we must say that apart from the above statement, the theorems
do (on the first view) not shed any light on SUTs. In fact, we just hope
that they might be helpful to gain similar results concerning SUTs or even
unimodular triangulations. We hope that we could provide a similar relation
between the number of points in the set M := par(∆)∩∆ and the existence
of a SUT, or even an arbitrary unimodular triangulation, of ∆.
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