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Abstract

User Modeling and Machine Learning for User Modeling have both become
important research topics and key techniques in recent adaptive systems.

One of the most intriguing problems in the ‘information age’ is how to filter
relevant information from the huge amount of available data.

This problem is tackled by using models of the user’s interest in order to in-
crease precision and discriminate interesting information from un—interesting
data.

However, any user modeling approach suffers from several major drawbacks:
User models built by the system need to be inspectable and understandable
by the user himself. Secondly, users in general are not willing to give feedback
concerning user satisfaction by the delivered results. Without any evidence
for the user’s interest, it is hard to induce a hypothetical user model at
all. Finally, most current systems do not draw a line of distinction between
domain knowledge and user model which makes the adequacy of a user

model hard to determine.
This thesis presents the novel approach of conceptual user models.

Conceptual user models are easy to inspect and understand and allow for the
system to explain its actions to the user.

It is shown, that ILP can be applied for the task of inducing user models from
feedback, and a method for using mutual feedback for sample enlargement is
introduced.

Results are evaluated independently of domain knowledge within a clear ma-
chine learning problem definition.

The whole concept presented is realized in a meta web search engine called
OySTER.
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About this Thesis

The thesis as submitted in June, 2001, has been revised for publication during Spring
2002.

e Many typesetting errors, both in spelling and, for example, wrong indices in for-
mulas, have been removed.

e The original thesis has been critizised as not being ‘easy to read’. I included some
material from my lectures on user modeling and machine learning and rearranged
some paragraphs to increase comprehensability. Still, this thesis is not an intro-
ductory textbook. Nevertheless, we hope to get the basic idea across to both the
textbook—reader and advanced researchers.

e The last version before submission was prepared in December 2000. While awaiting
comments, the final version was prepared and then submitted in late June, 2001.
Reviews were published in December 2001.

It is clear that a thesis which is related to a highly dynamic research area is prone
to be outdated by the date of publication. I tried to catch up with the last 12
months.

e Since this is an on-line publication, PDF seems to be the appropriate document
format while the submitted version was prepared using PostScript. As a conse-
quence, all images included in this thesis had to be redrawn in or converted to
PDF—compatible formats. Sadly, the quality of some screenshots suffered from the
conversion because PDF cannot include the high resolution PostScript images.

Paragraphs or footnotes that were added or heavily changed during the revision are
marked with a superscript star: *.



Structure of Thesis

In the first part, the core concepts needed for the thesis are introduced. We give a brief
overview of the contributing disciplines, User Modeling and Machine Learning, and their
intersection, Machine Learning for User Modeling.

The first chapter of the second part provides the reader with a more user— and application—
oriented overview of the approach of conceptual user models. It can be seen as a less
formal but more concrete introductionary part. The rest of part two is the core of the
thesis. The basic idea behind the approach is introduced, formally described and the
framework for induction of conceptual user models is developed in detail. The part closes
with an evaluation of the presented methods.

The final part contains a summary, conclusions and prospects.

During the course of the this thesis many different problems had to be solved which were
not directly related to the core idea of the thesis. Therefore, many of those aspects—
which are referred to in the text—are documented in the appendix. Most of them concern
implementational issues.



Reading Recommendations

The reader who is not familiar with machine learning or user modeling should first read
the according sections in part one, chapter two in order to get the basic ideas that are
needed for the further understanding of the text.

Core of thesis.  Assuming the reader to be familiar with the discipline of machine learning
for user modeling, jump to part two, chapter 4 directly. You might need to resolve a few
backreferences.

Application oriented introduction. To get a first rough picture of the underlying idea,
read section 3.2. Section 3.1.2 relates this idea to our formalization of user adaptive

systems. The realization of the idea is described in section 3.2.2 and the rest of chapter
3.

Modern search engines. Basic concepts from information retrieval are introduced in sec-
tion 2.3.1. A brief comparison on search indices is shown in figure 2.6. Index based
search engines and meta search engines are described in sections 3.1 and 3.3. Section
2.3.3.1 presents related work in the field of recommender systems and chapter 3.2 finally
introduces the adaptive meta search engine OySTER.

A selective overview. The idea behind machine learning for user modeling is illucidated
in section 2.3.2. Paragraph 3.2.1.1 gives a very intuitive introduction in the general idea
behind OySTER and conceptual user models. Section 3.2 gives a more application ori-
ented introduction. The idea behind conceptual user models is described and formalized
in chapter 4. Section 5.1 focuses on representational issues in conceptual user models.
The new user modeling problem is described in section 5.3. In section 5.2, we describe
how to generate large samples from few feedback data. The approach is evaluated in
section 6.3.

Related work is discussed in sections 2.3.3 and 3.3.
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MACHINE LEARNING
FOR
USER MODELING

In this part, we give a brief introduction into the
fields of user modeling and machine learning.

User modeling (UM) is one technique that is used in
adaptive user interfaces (AUIs) which allows for a
better human—computer interaction (Hci). It takes
a considerable amount of intelligent techniques to
enable a system to adapt to a user autonomously.
Therefore, such interfaces are also referred to as in-
telligent user interfaces (Iur).

In machine learning (ML), a system induces a the-
ory (or rather, a hypothesis) which shall explain and
predict phenomena that are being observed based on
a limited set of such observations.

Depending on the paradigm, theory—driven ap-
proaches like decision tree induction (TDIDT) or in-
ductive logic programming (ILP) require a sophisti-
cated domain model but deliver a clear, logic based
hypothesis. Other approaches—Ilike artificial neural
networks (ANN) including self-organizing maps—are
easier to start with, but do not guarantee to deliver
a understandable theory.

We show, that ML is just the right technique that
is needed in AUls to automatically learn about the
user and thus, to adapt to his or her individual needs.
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Chapter 1
INTRODUCTION

1.1 Motivation™

Nowadays, many communication and manipulation interactions are interactions between
humans and computer controlled devices. Human computer interaction (HcCI) ranges
from electronic switchboards to information retrieval systems—from electronic ticket
machines and internet last—minute booking services to tactical head up displays in mili-
tary aircraft.

The opportunities offered by modern computer technology promised a better every day
life, where robots carry out unpleasant tasks, machines are easier to control and intel-
ligent computers would provide us with any information we are looking for. Actually,
we are overwhelmed by a multitude of buttons, wheels and switches on control panels;
instead of wondering whether to find information, we struggle with the task of how to
find relevant information only and quite often we are simply unable to read the desired
information from a variety of screens that display information in different languages
using different graphical user interfaces, designs and presentation methods.

1.1.1 User Modeling and Adaptive User Interfaces

The terms ‘user modeling’ (UM) and ‘adaptive user interface’ (Aul) are sometimes used
interchangeably. Actually, user modeling has older roots than adaptive user interfaces:
In the 70’s, user modeling was mainly concerned with explicit modeling of dialog partners
in the natural language processing Al community’. Then, with the growing impact of
computer science, issues of HCI were discussed throughout all disciplines. At this point,
experience from user modeling entered the discourse to form the discipline of AUl.

In this work, we will use the term ‘user model’ or ‘user modeling’ for a distinct part or
technology used within adaptive user interface systems. ’User modeling’ is the process

LAlfred Kobsa, who worked on belief models and partner modeling in natural language dialogs,
[Kobsa and Trost, 1984], published a paper on ‘user modeling’ in a natural language system in 1986
[Kobsa, 1986].

13



14 CHAPTER 1. INTRODUCTION

of representing and refining user characteristics in a ‘user model’ in order to achieve an
adaptive behavior of the interface. An AUl is the whole system by which a user interacts
with a system.

Intelligent user interfaces, IUIs, adapt themselves to the user by reasoning about the user
and refining their internal model of the user’s needs. The refinement of the user model
is a sequence of inferences based upon several observations of user interactions, com-
monly known as feedback (already introduced into the information retrieval community
in [van Rijsbergen, 1979]). This yields an abstract architecture as shown in figure 1.1.
A user’s information request is translated into a system query by taking into account

AUI
Request Query
Fectbeck | |
U UM S
I |
Answer ﬁesponse

Figure 1.1: An abstract Aur*

knowledge about the domain (i.e. the system S) and knowledge about the user (taken
from the internal user model UM). The system’s response is transformed (by filtering,
arrangement, aggregation etc.) again taking into account the user model UM into an
answer that is presented to the user. The user interactions (including explicit feedback)
are used to refine the user model in order to be able to deliver more precise reuslts next
time.

1.1.2  Machine Learning for User Modeling

In machine learning (ML), we deal with artificial systems which learn how to perform
better through experience. By observing examples from a sample, the learning algo-
rithm LA tries to induce a hypothesis H which approximates a general, unknown law
that explains the nature of all objects of the domain (both observed and unknown).
This inductive inference is supported by a set of background knowldege BGK. As long
as the hypothesis and according predictions disagree with observations, the hypothesis
needs to be refined. This process is depicted in figure 1.2. In user modeling, we are
concerned with building artificial systems that behave differently for different users. It



Sample

— BGK === |A

Figure 1.2: An abstract ML system*

is a straightforward idea to allow a system to learn how to adapt to different individual
users.

Both Machine Learning and User Modeling have been hot topics from the early advent
of artificial intelligence —since both try to make the computer a more ‘intelligent’, more
user and problem adapted system. Similarly, both disciplines are (again) the focus of
current research interest: in an expanding data society, the search for information has
become a difficult task. Machine learning methods are used to extract knowledge out of
huge data sets (e.g. in the data mining community), and user modeling tries to extract
user dependent relevant information out of huge information systems.

How can one build an appropriate user model? In general, user actions have to be
interpreted in order to construct and subsequently refine the user model autonomously.
Now, given a user model and user feedback on fallacies of this model, we have to carry out
a model refinement procedure in order to improve performance.? This already suggests
a strong resemblance to machine learning tasks.

The parallels of user modeling and machine learning are depicted in figure 1.3. The left
hand side depicts an abstract machine learning system.

The input is a sequence of labeled data. The learning algorithm then tries to find a
hypothesis that matches the target function, i.e. the labeling function. This is the same
setting for all machine learning approaches.

On the right hand side, we have sketched an adaptive user interface system. Real world
data (as delivered from the information source) is presented via a user interface that
incorporates a user model. The user now gives feedback on whether the data delivered
was relevant with respect to his needs. This feedback is used in an adaptive algorithm to
change the user model in the user interface—thus, hopefully, producing a better result
to the user’s query.

2‘Improvement of performance’ here means to ‘perform better’, not just ‘faster’.

15



16 CHAPTER 1. INTRODUCTION

(real) World
\j Y
L LITTTTTITITIT] opaa LI T TTITITTII] paa

r'"*v Labeling function r'"*v User Interface
LT T T T T T T Labes L LT T T T T T T T T User Feedback
| |
} \j } Y
| LA KB | AA |=—=| kB
| |
1 1
- YL LT T LT T T T 1 Hypotheses LY T T T T T T userMode

Figure 1.3: The parallels between machine learning and adaptive user interfaces

1.2 OySTER: Searching for information pearls.

Dealing with machine learning, one depends on data. Data is domain dependent. Fur-
thermore, the algorithms are sensitive to data availability, representation, quality and so
on. Thus, the question arises which domain to choose. It is quite popular to choose a
‘chique’ domain that both attracts people and provides data ‘en masse’. Prototypically
this is the world wide web (Www).

Searching for information on the Www is becoming a more and more difficult task:
With the advent of huge search engines the question of being able to find information
has turned into the question of how to find only relevant information. Both precision
and recall on a search of over one billion documents is pretty poor. Therefore, it seems
desirable to have a search mechanism at one’s disposal which guarantees higher precision.
This problem is the subject of several research areas, including natural language inter-
faces® and information retrieval, [van Rijsbergen, 1979]. A recent approach is the use
of user adaptive systems which, in the context of web search, allows for a personalized
query refinement and response filtering.

Both above mentioned observations lead to the same conclusion: The paradigm of ap-
plying machine learning techniques in the context of user modeling in order to learn a
user’s interest. This thesis introduces a new aspect of machine learning for user modeling;
namely the use of conceptual user models. The use of conceptual user models introduces

3Here, the system tries to anticipate what the user exactly is looking for by analyzing and ‘under-
standing’ the query—based on the assumption that natural language is the language which allows for
the most precise query formulation from the user’s point of view. Recent research also takes into account
the whole interaction discourse by interpreting query-response sequences as a dialogue which helps to
further specify the user’s needs, see [Ronthaler, 2000].
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a new unified method of describing a user’s interest with respect to an underlying cat-
egory, and the ability to explain both a model, and the reason why recommendations
were given by the system to a user. Furthermore, the problem posed by the usage of
conceptual expressions as user models gives rise to the usage of inductive logic program-
ming, which is a fairly unknown and underestimated method within machine learning
for user modeling.

In the course of this thesis, we developed an adaptive meta search engine for the World
Wide Web called OySTER. The idea behind implementing OySTER was to create a
testbed for different user modeling techniques in a large domain. The need for more
precise search engines is evident—and users searching for information on the web provide
us with a large amount of data that can be used for machine learning processes.

Some ideas presented in this thesis are realized within OySTER. Additionally, the system
has been developed according to the needs of a real ‘workbench’ It is a highly mod-
ularized multi agent system and allows for easy replacement of different agent families
which carry out the different tasks of wrapping, classification, user modeling, content
based filtering and information presentation. The user’s view on the system is presented
in chapter three; a more in—depth description can be found in the appendices.
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INTRODUCTION



Chapter 2

MACHINE LEARNING FOR USER
MODELING

In this chapter we will introduce the most important ideas of user modeling and ma-
chine learning which contributed to the new and still growing discipline of machine
learning for user modeling (ML4UM). The discipline of ML4UM had its first official ap-
pearance in a workshop at the 6th International Conference on User Modeling in 1997,
[Jameson et al., 1997], where the special interest group ML4UM was founded. Ever since
then, the community grew and met frequently for meetings and workshops in several na-
tional and international surroundings. At this year’s 9th International Conference for
User Modeling, 16 of 100 submissions were directly related to machine learning (plus a
considerable amount of submissions in the field of user modeling, information retrieval
and machine learning).

Due to its impact in both parent disciplines it is hard to categorize research advances.
This holds especially for the machine learning part: Utilized techniques are chosen with
respect to the problem, and since the data available (i.e. user feedback) suffers from
a great amount of inherent noise, only few machine learning techniques are commonly
used.

This thesis is based on a machine learning approach which has not been used frequently
within user modeling, namely inductive logic programming (ILP). Thus we will have to
include a few ‘extra’ pages about this special machine learning approach in this chapter.
First, we will start with an introduction into the field of user modeling.

2.1 User modeling
User modeling has become a synonym for more user friendly systems that adapt to the
user’s behavior or preferences step by step. They actually cover only a fraction of all

systems that are involved in a human—computer—interaction.

19



20 CHAPTER 2. MACHINE LEARNING FOR USER MODELING

2.1.1 Human computer interaction

Human Computer Interaction can only be accomplished with the use of interfaces. These
are, mainly, visual information displayed on screens and the keyboard.

Thinking one step further, interfaces are all kinds of devices that are used by computers,
robots or machines to display (or output) information and all devices we use to control the
machine (like touch screens, joysticks, eye-trackers, voice, and so on). The interface is not
defined by the mere term ‘screen’ but of course by ‘presentation’. There are numerous
graphical user interfaces (Gul)—generic GUIs for operating systems and proprietary
graphical interfaces for special applications (like flight control, life function monitoring,
etc.).

For all Gur standards and application domains there exist different guidelines for the
graphical realization, layout or functionality—but one interface for all users forces people
to learn and to adapt to the system. This might include learning different (query)
languages or domain models which differ and leads to different views and expectations
on both the problem and query formulation as well as on the interpretation of results.
‘Good’ Hci, however, does not neccessarily mean that one needs an adaptive interface.
Any system, that can be controlled by a human with a minimum cognitive effort can be
regarded to as a system with good Hc1. The most important characteristics of such a sys-
tem is visibility and affordance of the interface components. In other words, the controls
themselves must be ‘easy’ to manipulate and both appearance and mode of interaction
should be ‘intuitevly’ mapped onto the function of the control element, [Preece, 1994].
As a metaphoric example, one might compare a human—computer interaction situation
with the problem of getting from the ouside into a building. The doorway corresponds
to an interface: if there is no, there is no way to enter the building at all. With invention
of the door, many new problems arised: lock and unlock, push or pull, access restrictions
and so on. A door with a ‘good” human—door interaction needs not to be an automatic
slide door: it might be appropriate to have a simple swing—door. Good affordance means,
that from the design of the door it is immedietlay clear, whether we have to push or
pull the door (or wheter both is possible). However, automagic slide doors with motion
sensors provide some kind of adaptivity and are—in most cases—much easier to use: you
just walk through them and the door will open itself. Of course, there are bad examples
as well: many automatic doors in hospitals have push—buttons instead of sensors; and
the buttons are located at the wall in a reasonable distance from the door (in order to
allow nurses to both push a bed and open doors). But for a visitor this mechanism is
rather opaque. Another bad example are rotating doors as you might find them at the
entrance to shopping malls: They rotate at a constant speed (to slow for visitors in a
hurry and too fast for the elderly) and the latency period to re-start rotating after a
timeout is rather long.

As a conclusion, it seems, that in certain situations adaptivity is a good method to
increase Hcr—but it is not the one and only method.
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2.1.2 Adaptivity*

Adaption of user interfaces to individual user needs has several facets based on user
characteristics which do not belong to a user model (said to contain information about
the user’s interest) in the strong sense.

Thus, a system can adapt to different physical or mental abilities or disabilities. Exam-
ples for such user ability restrictions are blind or visually disabled people, lacking motory
skills, or cognitively impaired users. Impairment does not necessarily imply physical or
mental disability but also low cognitive or physical capacity due to context—Iike bad
vision in dark or foggy environments, lacking motory skills when wearing heavy pro-
tective garments, and low cognitive capacity due to overload, stress, risk or hazardous
situations.

Taking into account such contextual information, this could help to improve information
presentation on displays (including ergonomic considerations with respect to readability)
and interaction (like button arrangement, default selections and menu organization).
In general, an adaptive user interface tries to increase the quality of Hcr by:

1. building a model of relevant aspects of the user

2. by drawing non—trivial conclusions from

3. observed user interactions

4. and applies the hypothesis about the user characteristics in order to
5. support the user in completing his task

Starting at item (3), one collects evidence describing the user and induces in a process
of upward inferencing (2) a model of the user (3). This model is applied in a downward
inferencing procedure to predict the user’s behavior (4) or support the user in another
way. This yields a function diagram describing an abstract adaptive user interface as
shown in figure 5.1*

Example: Wearable computers for crisis management. Consider a wearable computer de-
signed for the co-ordination of individuals in a rescue team: If the ‘wearable’ recognizes
a hazardous situation in a foggy environment, the user should be alarmed acoustically
instead of visually. In another, harmless situation the user might ask the system about
how to proceed if he encountered a tank leakage with an unknown fluid. Then, the in-
terface might guide the person step by step through a rescue plan, each time asking the
user to acknowledge the last step. If then for example, the system detects a hazardous
situation, it would switch to short directives (instead of guidance through a procedure),

! Adapted from a tutorial on user modeling by kind permission of Anthony Jameson.
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Figure 2.1: Human—Computer Interaction with adaptive interfaces*

then to an acoustic interface (provided there is no noise) with rigid time delays between
the single steps and finally maybe even to just a short message like ‘Get out of here!’.

This scenario has not been described in the literature so far, but there are many similar
projects: for example, [Specht and Kobsa, 1999] describe an adaptive museum guide.
[Petrelli et al., 1999] describe the influence of social context in the same context, while
[Berthold and Jameson, 1999] focus on cognitive aspects.

Example: A user adaptive web shop. As another example, imagine a web—based catalog
of an online shopping service. In general, the same considerations as above apply to this
scenario as well. Here, the information presented is chosen with respect to some idea
about the user’s interest. The presentation itself adapts to user preferences (like more
textual or graphical representation) and to the properties of the communication channel
such as display properties, sound capability or bandwidth, [Jording, 1999]. Similarly,
special knowledge about the user’s abilities or disabilities should be taken into account as
well (motory or cognitive skills), [Trewin and Pain, 1997, Spooner and Edwards, 1997].
In contrast to a guide or control system, a user adaptive interface in an information
transfer—i.e. communication situation—must be a subordinate communication partner:
it must not control the user but the user must be able to control the system. In some
cases, the acceptance of a system can be assisted by the use of humanoid interface
elements, [André and Rist, 2000].

Most applications we deal with in user modeling are similar to the scenario described in
the second example. Furthermore, there is evidence, that user control over the system
is a requirement in user guidance systems as well, see section 2.1.4.
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2.1.3 User modeling

Crafting adaptive user interfaces that change their behavior with respect to the user’s
profile, preferences and interest, requires building user models that contain information
about exactly those characteristics of the user. The user model can then be used to
adapt to the user by means of non—trivial inferences and thus by reasoning about the
user. AUIls with UM can help in any domains; as stated earlier we will present some
examples in section 2.3.3. We will now briefly discuss, what kind of knowledge we need
to store in a user model, how it can be retrieved and which methods we can use in order
to adapt to the user.

2.1.3.1 What's in a user model?

Of course, this depends on the domain. In general, every user model consists of two
parts: a domain dependent part and a domain independent part.

User profiles. The latter characteristics of a user are often referred to as a user ‘pro-
file’ that can be altered in the course of some ‘registration’ process. Nevertheless, this
data is important for more informative user models as well. The data might—among
other data—include information about the age, gender and education of an individual
and maybe his address. Together with his address, it could also contain demographic
information, for example collected or derived in the course of data mining processes on
a large customer database. Domain independent user data for the user profile or user
preferences is usually obtained by explicit user interaction. This process is time con-
suming and bothers the user. Thus, profile data should be acquired only once and then
distributed under different applications.? Furthermore, demographic information can be
used in order to pre—define some aspects of the user profile.

User preferences. Another type of knowledge about the user is information about his
‘preferences’ which are usually defined through a ‘customization’ process. This part
of the user model does not fit in the strict dual discrimination of domain dependency
and independency but rather combines aspects of both: It is rather application depen-
dent information about preferred presentation modes, font sizes, update intervals and so
on. This part of the user model also contains information about the user’s abilities as
described in section 2.1.1. Furthermore it might contain information about the context—
which could be environmental information in the case of a wearable computing scenario
or hard— and software specific information as for example bandwidth in a web based in-
formation retrieval scenario. A bit more application dependent is information about the
current session—as user attention decreases over time due to the user becoming tired.
These phenomena are all user—, task— and domain dependent.

2Sharing customer user profiles is not to be confused with customer profile exchange, CPEX.
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User models. Domain dependent user model information finally contains information
about the user’s individual attitude to the domain—for example his interest with respect
to the domain in an information retrieval scenario, his knowledge level with respect to
course materials in a tutoring scenario, his expertise in an interactive help system and
SO on.

Domain dependent user models are a crucial problem within the user modeling process:
On the one hand, they need to be accurate and should provide a complete and enclosed
image of the user in order to be able to adapt in the right way. On the other hand, it is
hard to obtain all this information. Asking the user to fill in questionnaires reveals two
drawbacks: First, the user is likely to be unwilling to answer lots of questions. Second,
if the user actually tells the system about himself, the information is not very reliable.
This again is for three reasons: First, users want to leave a good impression—accordingly
they sometimes give a user model that is not really adequate with respect to the actual
interests, needs or capabilities of the user. Second, many users only pretend to be willing
to give feedback. A similar situation arises, if the user is forced into a questionnaire: He
will only click some buttons at random just to give any feedback and to get rid of the
form as soon as possible. Finally, there is the inherent problem of misunderstanding:
As an example image a user would have to rank himself as a novice, intermediate or
expert. Boundaries between novice and intermediate are defined differently for different
users—Ilike modest or self confident people. Furthermore, if a tutoring system for com-
puter science asks the student for his current knowledge level, the student, the system
designer and the lecturer might have had different ideas about the relevant knowledge
(applied computer science, programming skills, theoretical computer science, maths, ...)
and its level (basic, intermediate and expert level) that is needed for this course.

This explains the principal problem of communicating the meaning of a user model to
the user himself. In other words: both the user and the systems may have different
models of the domain and they may have different models about each other. This leads
to the investigation of some aspects of cognitive science in the user modeling community
(see 2.1.4).

2.1.3.2 Different methods of user modeling

User modeling techniques are divided into two categories: First, a user can be described
in terms of other user’s properties. Thus a user is assigned a class of users who share
a majority of common features. Since in this approach the growing number of users
together forms classes of user types, this approach is commonly known as collaborative
user modeling. The second approach to user modeling tries to describe a user by discrim-
inating between individual preferences. Thus, one might call this approach individual
user modeling as opposed to collaborative modeling. Since the user’s individual interest
is mostly based on (information) content, and content can be used for the effective fil-
tering of relevant information. Therefore, this approach is also called content based user
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modeling.?

Collaborative user modeling. In this approach, user models contain user actions which
are based on feature representations. Such actions can be explicit feedback or simply any
interaction that can be recorded. The user model is then built up by matching the user
data against all other user’s data; similarly, recommendation is performed by choosing
unknown, yet ‘near’ objects from the domains of matching user models. In other words,
collaborative user modeling can be described as clustering in a high dimensional space.
Clusters represent user groups and using a distance measure, ‘interest’ can be defined
by hyperboles.

Due to its principle, collaborative user modeling can be realized relatively quickly and
easily. One of the big advantages of this technique is, that it does not need any structural
or meta-knowledge about the objects. Furthermore, this approach is able to generalize
easily by taking into account all other user’s models (i.e. by extending the hyperbole
with respect to the next cluster’s centroid).

On the other hand, collaborative user modeling cannot cope with ‘extremely individual’,
say, ‘singular’ user models. As a result, it performs badly with few users or little data
per user.

One of the most prominent examples for collaborative recommender systems is the online
book and media store Amazon. In the context of web based recommendation systems,
the WebWatcher is good example (see 2.3.3.1).

Individual user modeling. In this approach, one tries to build user models which describe
the individual user’s interest regardless of knowledge about other users. Accordingly,
this method requires a much more elaborate domain description which allows for a de-
tailed description of the user. To pick up the clustering metaphor from the last section,
individual user modeling clusters objects instead of users and tries to find entities which
are close to the centroid defined by the user model.

Recommendation is performed by matching information against the user model instead
of matching different user models. In the context of the Amazon example from above,
this means that individual user modeling as content based filtering would recommend
books not based on similarity between users but rather on similarity between objects,
i.e. books: content based recommendation would offer books whose topics are related
to those books already purchased. As a result, individual user modeling tends to re-
quire more representational and performance power than collaborative user modeling.
Once provided with a suitable representation formalism, content based user modeling
allows for an easy inspectability; the system itself can explain to the user why certain
recommendations have been made since both user models and adaptive processes can be

3Tt is noteworthy, that the terms were inspired by application domains. Of course, collaborative user
modeling can be content based, too.
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explained to the user—provided a suitable representation of data*. The system behavior
can be predicted by the user and thus the user feels ‘in charge’.

If not restrained, adaption by machine learning techniques might tend to over—fitting.
This may finally lead to an (unwanted) user guidance instead of user support. In general,
individual user modeling cannot be applied in domains where ‘content is not available’;
i.e. where there is no domain theory describing the objects under consideration.

A very popular example for a content based recommendation system is Syskill&Webert
(c.f. 2.3.3.1).

2.1.3.3 Acquiring user feedback

In order to revise the user model, we need user feedback. User feedback in general can be
divided into two types: explicit and implicit. In the ideal case, a system would interpret
natural user actions without needing any further explicit feedback. It is more likely that
we will have to ask the user for some explicit feedback.

Implicit user feedback. Implicit feedback is hard to detect and hard to interpret. In
our example, domains of user guiding systems, the systems would need to detect the
user’s cognitive condition by, for example, stress pattern detection in voice analysis.
Recently, more and more sensory data about human users has been able to be obtained:
Physiological data, eye-tracking, galvanic skin resistance data, GPS. The problem is how
to interpret these data.

In the domain of web based information systems, several data can be interpreted as
implicit feedback: Clicking a link, time spent on a page, scrolling, printing and so on.
Sadly, all those data share common disadvantages: they all are, if at all, positive evidence
for a user’s interest. Furthermore, they are of decreasing vagueness—a link name can be
misleading such that loading does not at all express the user’s interest since he expected
something completely different. Time spent on a page is unreliable, since the user might
have been distracted from inspecting the page. Printing, for example, could have been a
result of a stress situation, where the user simply did not have enough time to read the
document on the screen and thus sent it to the printer in order to evaluate it at a later
date.’

Explicit user feedback. Explicit feedback is obtained by asking the user whether he liked
something. For a small and static domain description, a first rough picture of a user

4Offering ‘shortcuts’ by predicting user actions from action sequences using an artificial neural net-
work therefore would require the ability to explain the net’s prediction in terms of rules.

5The same argument can be applied to bookmarking which usually is interpreted as a strong evidence
of interest. This emphasizes the fact, that the sample noise in user modeling is rather high. Further
sources of implicit feedback (like mouse movements) are not taken into account here, because such
techniques require higher functionality at the client side.
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model can be derived using questionnaires. Nevertheless, questionnaires have several
drawbacks: First of all, humans are not at all keen on filling in forms. This task is
carried out only in situations where the effect is immediate. This poses a very difficult
problem for user modeling, where from few data with a minimum amount of time a
perfect user model shall be inferred. Second, answers to a questionnaire are not as
reliable as one might expect (this has already been pointed out in 2.1.3.1).

The introduction of ‘hot’ and ‘cold” buttons reduced a questionnaire to a binary form:
If something is rated as a hot topic it is interpreted as positive evidence of the user’s
interest; if something is rated as ‘cold’ it is interpreted as negative evidence. Nevertheless,
it is a well known fact, that positive feedback is given only sparsely—for a good reason:
if the user has found something of interest, he is not willing to co-operate further since
his information need is satisfied. The same applies to negative feedback, except that the
effect is even stronger due to the fact that a user is still more inclined to give feedback like
‘that was good, more of this!” instead of ‘that was uninteresting’.® In general, situations
which provoke negative feedback should be avoided by any means since such situations
repulse even willing users. This leads to a dilemma where we must not ask for negative
feedback though it is desperately needed.

Aware of this situation one tries to get the maximum out of a situation by means of
so called ‘Forced—Feedback Back—Buttons’. Here, the functionality of a ‘Back Button’
which leads from a selected document back to a list of results is enhanced by dividing
it into two buttons: ‘That was a good one; more from the list!” and ‘That was a bad
one, let me take another look’. Sadly though, it has been shown that the use of such
buttons is also highly unreliable; the choice of the button does not significantly differ
from a random choice (see footnote 6).

2.1.4 Goals and caveats of user modeling

Designing adaptive intelligent systems, we are faced with cognitive processes from two
different points of view: First, being adaptive is a cognitive task which means adapting to
a certain situation.” Thus, user modeling can be interpreted as a testbed for evaluating
hypotheses of cognitive processes. The second aspect works the other way around: De-
signing an adaptive systems we want to minimize the ‘cognitive load’ of the user. Thus,
being adaptive means to adapt to a cognitive system. This implies the existence of a
cognitive model of the user which explains the multitude of different tutoring systems,
personal assistants, etc.

SPersonal communication, Mathias Bauer (DFKI Saarbriicken) at the AAAT Spring Symposium on
Adaptive User Interfaces, March 2000; Anthony Jameson, University of Saarbriicken, November 2000.

7Of course, 'being adaptive’ means being adaptive on a higher knowledge level as, for example,
adapting to a user’s interest or abilities. Adaption without a model of what the system adapts to is
not a cognitive process. Therefore, neither simple mechanical devices like thermostats, ’driver adaptive’
automatic gear boxes or interactive but static help systems are addressed here.
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Not everything that can be done, should be done. In [Miller, 2000] it is shown that
Gricean conversational maxims apply to the user modeling problem as well. Imagine an
abstract human—computer interaction situation:

e the system must provide the user with the right (‘relevant’) information.
e the system must provide the user with the right amount of information.

The first rule implies several non—trivial requirements. First, we need to know, what
‘relevant’” means. Relevance is both user and context dependent: Different user’s are
interested in different topics, and different situations ask for different aspects. As a
consequence, we need as much information about the user and his environment as possible
in order to be able to react in an adequate way.

Similarly, the second rule has major implications. While the concern of the first rule
is similar to the question ‘What to say’ (in the sense of content selection), the second
rule deals with the problem of ‘how to say it’ (in the sense of communicating only the
right amount of relevant information in order to avoid ‘over—information’). Again, this
is both user and context dependent. Different users speak different languages or prefer
different modes of presentation, while different situations may force the system to present
information in different as well. As a consequence again, both user models and domain
knowledge help to react adequately.

As an example, consider an adaptive tour guide. Knowing about the user’s interests with
respect to arts, the tour guide could offer different routes in an art museum. Similarly,
the system could offer different explanations for the same exhibits to different users.
Contextual information alters the system’s actions again: A visitor who only has a little
amount of time, might prefer a quick tour or shorter explanations.

There are numerous projects that are dealing with adaptive tour guides. For exam-
ple, [Specht and Kobsa, 1999] mainly concentrates on adaptive routes and explanations,
while [Petrelli et al., 1999] focuses on the contextual aspects.

[Berthold and Jameson, 1999] present a framework for an adaptive airport guide which
tries to approximate the user’s cognitive load by detecting stress patterns and thus gives
adequate route descriptions.

It remains to be seen, what ‘adequate’ means: A system that statically models the
user’s interest and the context would not help or guide but rather force the user into a
certain communication situation. This would inherently contradict the first aim of user
modeling, namely to adapt to the user in order to make the interaction easier for him.
Thus, as a rule of thumb, the system always has to be a subordinate communication
partner.

There are much more adaptive systems around, which all have to meet the requirements
of the Gricean maxims if they want to be accepted by the user. For example, there are
adaptive help systems with pop—up tool tips, adaptive office systems which alter the pull—
down menu structure with respect to the user’s needs, adaptive route advisors which nav-
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igate the driver with respect to his driving preferences ([Goker and Thompson, 2000a])
or artificial fighter pilot’s associates which change their information displays with respect
to the current tactical situation and tactical systems in operation centers ([Miller, 2000,
R.Penner and Steinmetz, 2000]).

From these examples, it becomes clear that all adaptive systems must meet two require-
ments:

e The user is always in charge and rules the system—mnot vice versa.

e The effort required of the user to understand and manipulate the interface is much
less than the effort that is saved by the adaptive interface (in other words: adaption
to the adaptive interface is easier than using a rigid interface).

One of the most important commandments listed in [Miller, 2000] is essential for accep-
tance of user interfaces:

Explain what you are doing.

In many cases, it is essential for the user to have the feeling of understanding the system.
Thus, the user needs to have an idea about what the systems knows and what the systems
assumes about the user. In this way, the user is able to understand why the system
performed a certain step towards adaption. For today’s complex software systems the
understanding of such systems becomes more and more difficult. Accordingly, acceptance
by every-day users is hard to achieve the more complex and the more powerful such
systems are. It is argued, that the reason for this behavior is that humans build models
of how such systems work internally. In other words, users construct models of the
system. Acceptance then depends on whether the system behaves as the user expects on
base of his model of the system. Systems that 'show off” and promise a real 'intelligent’
behavior induce a model which the system is not able satisfy. In consequence, modern
computer systems should ’behave’” in way which makes a user to build an appropriate
model of how the systems work. At this point, human computer interaction enters a
level of meta—user modeling which can be compared to mutual knowledge in human
communication situation (’I think, he knows, that I know, that he knows ..."): Different
users with different background and different goals will build different models of the same
system. Therefore, the appearance of the system needs to be adapted by the system itself
in order to induce the right 'system modeling” process. In a second—but simultaneous—
step, the system then adapts to the user by building a model of the user. Either way,
explainability is a key feature to intelligent user adaptive systems.

However, this does not apply to all problems which deal with adaption. Low level
adaption, such as adaption to motory skills (as in adaptive automatic gear boxes) or
adaption in environments without any risks is not as sensitive to this commandment
as high level or cognitive adaption where the system builds a complete model of the
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user’s interests, behavior, attitudes, opinions et cetera. Another way to circumvent the
requirement of understandability is to adapt imperceptibly.

At this point, the risk of unwanted user manipulation emerges. Of course, users adapt
to systems as well. Sometimes, user adaption is desirable—as long as it is evident and
the user knows about it, but forcing the user against his own explicit will to adapt to a
situation prescribed by a system is forbidden for ethical reasons.

Adaptive systems need to act in the background, but human—computer interaction and
adaptive interfaces depend on feedback. Without feedback, the system has no chance
to determine whether it made a mistake, what the user is interested in or whether a
context change demands for another reaction. Obviously, user adaption without feedback
is impossible. This seems to conflict with another crucial commandment:

Don’t bother the user.

Thus, we need to get going with as few feedback as possible, asking for additional
information as seldomly as possible and presenting as few questionnaires as possible. In
consequence, an adaptive system should be able to interpret the natural user behavior on
all levels as user feedback—without the need for any further explicit feedback. The user
model built upon this knowledge shall be inspectable and easy to understand for the user,
the adaptive process itself should be scrutable, self-explaining and—if necessary—the
user should be able to override system actions.
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2.2 Machine learning

Knowledge and its acquisition plays a central role in intelligent behavior; thus learning
can be regarded to as a key to intelligent behavior. On the other hand, acquisition of
knowledge out of data sets is very important in today’s computing machinery as well.
The amount of data increases more and more—just imagine data warehousing—and
with increasing knowledge we have to efficiently acquire and store this knowledge. In
course of user modeling, we have huge datasets describing users — as, e.g. customer
information in various business applications. A prototypical example for data mining
is extracting knowledge about what credit may safely be granted from data about the
customer’s account (income), his address (social environment) and personal information
(family, fix expenses, etc.). This is also an extreme example for user modeling, since
rules extracted from data describing all customers can be used to derive information
about a special customer. On the other hand, one might like to try to use information
from server logs in order to induce rules that help to predict a user’s next action. This
can be used for pre—caching techniques, context sensitive help systems or recommender
systems.

In this section we will first define the notion of a learning problem which is motivated
by computational learning theory, see [Valiant, 1984]. After that we will go into detail
and describe several methods of machine learning.

2.2.1 Machine learning problem

Valiant defined machine learning as a process, in which a machine acquires new data
by any other means than explicit programming (c.f. [Valiant, 1984]). Of course, there
are many other definitions all of which emphasize different aspects covered by the phe-
nomenon of learning in general.

In general, a learning algorithm receives a sample with annotated classification and
outputs a hypothesis which is a generalized description of the examples.®*

Definition 2.1 (Machine learning problem) A learning algorithm A produces a hy-
pothesis h € Ly with respect to some background knowledge ¥ (encoded in Ls,) on basis
of examples (encoded in Lg), see figure 1.2.

A labeled sample of length m is a sequence of examples together with a label which

81t has been critizised, that definition 2.26 would be easier to understand if the following definition
2.1 would be motivated as an analogy to something that will be defined later on. However, it has been
remarked by the same reviewer, that forward pointing cross—references should be strictly avoided. We
therefore just kindly ask the reader to draw his attention to the following, really fundamental definition
of a machine learning problem.
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indicates whether the example is a member of the target concept h, or not:?

(2.1) s = [(z1, 1), (T2, 22) s ooy (Tins tn)|

where z; € Y and t; = char(h:)(x;) € {0,1}. That is, t; is 1 iff the characteristic
function for hy is 1 on x;. We abbreviate char(h;) by a target function t.

In general, samples are generated by a function S(m,t) which from 4 chooses a sequence
of m examples and labels with respect tot. The choice of examples depends on a unknown
probability distribution A on . The set of all examples that agree with hy is called the
set of positive examples {z|(x, 1) € s} = E* C A; those who disagree form the set of
negative examples E~.

Sometimes, labels ¢; do not correspond to t. This is called noise on the sample. In
contrast to supervised learning tasks, samples can be unlabeled, too: In unsupervised
learning scenarios, t is undefined on all examples: (z;, T).

Learning algorithms can be described by two fundamental properties:

Definition 2.2 (Properties of A) A is called a consistent learning algorithm, iff
(2.2) char(h)(x;) = char(hy)(x;) = t(x;), V (z;, t(z;)) € s

i.e. the classification by h is equal to that of t on s. When clear from context, we will
omit the characteristic function and denote the above by h(z;) = t(x;).
A s called a correct learning algorithm, iff

(2.3) char(h)(x;) = char(hy)(x;) = t(x;), Vo, € U
i.e. the classification by h is equal to that of t on the whole domain.

In other words, a correct learning algorithm is an algorithm which produces a function
h that delivers a sufficiently precise approximation of t (char(h) =~ t). Of course, the
quality of a hypothesis depends on the sample: Samples usually are not deterministic,
but they are not random either. In the PAC—learning setting it is assumed, that S(m,t)
draws examples from 4 according to an unknown probability distribution A on .10
This assumption especially applies to the domain of learning user models: The sample
will consist of user feedback which is unpredictable itself and based on a unknown user
interest (see 2.3.2). In consequence, a A—weighted error sum tells us about the quality
of the target approximation. Abstracting from A, one requires A to produce an error of
at most ¢, regardless to what A actually looks like.

9In general, we assume that h; € L.
10The fact that A itself is unknown to A makes the PAC measure a quite pessimistic though realistic
one.
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2.2.2 Defining machine learning algorithms

Machine learning has several roots. As the key to artificial intelligence it is nearly as old
as mankind. In our context, it is at least as old as modern computer science.

One of its founders, Alan M. Turing, already introduced concepts of machine learning
along the Turing machine in his famous 1936 publication. During the second world
war he devised a machine for the decryption of the Enigma (1939-1940), which was a
mere ad-hoc solution from the viewpoint of his theoretical work in computer science:
his ideas of a learning machine could not be realized in times, when decryption was a
matter of survival. In 1947 and 1948 his work on artificial intelligence and neural nets
already defined the width of current research efforts in machine learning: Symbolic and
subsymbolic machine learning.

Given background knowledge ¥, a learning system (that is, an algorithm) A is a ‘black
box’ containing meta knowledge, which on input examples produces hypotheses h ac-
cording to its goal knowledge. For h € Ly we especially want, that

(2.4) YU{h}rRE" and SU{h}RE"

Once we determined the space of possible solutions we now have to seek for the best
one. Often, we cannot find complete and correct hypotheses—either due to the instance
space and our restricted languages or due to the task of keeping our description of the
target concept as simple as possible. To ‘navigate’ in these cases, we shall use a ratio of
covered negative and positive examples. Such ratios are defined according to the actual
domain and are named coverage and accuracy:

Definition 2.3 (Coverage and accuracy) The coverage of a hypothesis h is defined
by the relative number of target evidence covered by h:

_ e BT U {h} Rk ej
|

(2.5) cov(h)

The accuracy of a hypothesis h is defined by the number of target evidence covered by h
i relation to all covered evidence:

{e € B UM} ko)
(2:6) <) = " em U () ko)

Note, that accuracy and coverage again can be computed with respect to (different)
samples s, to special test samples, and finally (if accessible) to whole . In general,
there are many different measures by which hypotheses and algorithms can be evaluated
(see chapter 5 in [Mitchell, 1997]). The definition above, for example, does not take into
account negative examples. Furthermore, it seems reasonable to measure the quality of
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a hypothesis with respect to data which has not been used for training. In order to do
so, one needs to define a test set T, T N E = (), of positive (T) and negative (7)
examples. Taking into account both negative examples and a designated test sample,
one can redefine accuracy by:

_HeeT"Bu{ht kel + {eec T XU{R} Ee}|
T

(2.7) acc(h)

Taking into account negative evidence, the definition in equation 2.6 equals the definition
of precision in the context of information retrieval (number of retrieved hits in relation
to wanted hits).

Given such measures, we can search for optimal hypotheses. Carrying out such a search
has several other requirements:

1. We must be able to identify our current position, i.e. we need kind of a metric on
the space;

2. within guided search we need a measure of comparison, that is an ordering relation
3. and we finally need a search algorithm which most likely should have

4. several bounds as e.g. a depth search restriction, a language restriction or a breadth
search restriction (i.e. a kind of 'focus’)

We will examine the question of order relations in the section on generality and the
question on boundaries in the section on bias later in detail.

In general, inductive reasoning as one central method of machine learning can be de-
scribed as follows: If we have observed several instances of a rule

Pla) = Q(b1) Plaz) = Qb2) ... Plan) = Q(bn)

induction leads to a general law:

Va(P(r) = Q(y))

Restrictions imposed on the instantiations of the variables x and y then define the degree
of inductive generalization: the less restrictions one applies, the more general is the
inferred rule.

Given ET and E~ one seeks for a more general intensional description of a yet unknown
new concept which satisfies formula 2.4. Due to the nature of induction and its appli-
cation in order to yield a correct hypothesis in the sense of definition 2.3 one further
requires that

(2.8) HelXreand t(e) =1} < [{e|lEU{h} ke and t(e) =1}
(2.9) H{e|X B eand t(e) =0} > [{elEU{h} e and t(e) =0}
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Note, that we cannot argue by deductive closures on ¥ since induction is not truth
preserving. Therefore, induction is a kind of goal directed generalization which leads
from a set of facts to a rule that describes the intensional concept.

2.2.2.1 Subsumption

If term or a proposition ¢ is more general than 1, ¢ subsumes 1) (short ¢ K1). There
are different models of generality; which can roughly be discriminated by their syntactic
or semantic definition. We shall apply the notion of subsumption to syntactic generality,
while generality shall describe semantic generality.

Definition 2.4 (Generality) Let ¢, be formulas. ¢ is called more general than 1), if
p R and ¢ B .

In other words, every model of ¢ is a model of 1, and there is a model of 1) which is not
a model of p. If v is more general than 1 we say that ¢ subsumes v, written ¢ K.
This notion is used regardless to the formal system in which ¢ and ¥ occur.

A special form of subsumption is f—subsumption:

Definition 2.5 ((6—) subsumption, <) A term t; is subsumes a term ty (t1 Kt2), iff
there is a substitution 6 such that
tle - tQ.

For two literals of equal polarity Ly and Lo, L1 K Ly iff L10 = Ly. A term or literal g is
called a generalization over a set of terms or literals t;, iff for every t;, g subsumes t;:

gty s tn} &L vi<i<n: gK .

In this case we also say that g subsumes {ty,...,t,}. The definition of O—subsumption
can easily be extended to clauses as well: Let there be two clauses Cy and Cy. Then,

Def

Cl KCQ <~ 019 - CQ.

The substitution € in the definition above is also known as the 6—difference of ¢; and ¢,.
Note, that ¢ K1) implies that ¢ K1, but not vice versa.

Definition 2.6 (Relative generality) ¢ is more general than 1 relative to x if: !
XN R and x N B .

In general, we shall abstract from the concrete type of generality and denote the gener-
ality relation by K.

"The case that x = ¢ leads to a contradiction (IM : M = (p A ) — M ~ ¢) and is therefore
excluded.
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2.2.2.2 Generalization

Give a (semi-) lattice induced by a relation K, search along K yields successively gen-
eralized or specialized terms or propositions. In context of inductive machine learning,
we seek for a hypothesis derived by generalizing on given data.'?

The largest concept which is consistent with our background knowledge, and excludes
all negative examples is called the most general generalization (mgg). The smallest such
concept is called least general generalization (lgg).

Definition 2.7 (Least general generalization: Igg) ¢ is called a least general gen-
eralization of terms or literals t, and to, iff the following hold:

1. g subsumes both t, and ty:

g {t1,t2}

2. g is the most special generalization; i.e. any other generalization g’ is more general
than g:
gRA{ti,t2} and ¢' K {t1, 2} imply that 'K g

According to [Plotkin, 1970], K wusually is interpreted as 0—subsumption, K .13

On the other hand, one can consider a subsumption relation of a completely different
kind: namely based on logical derivability. So one can define a variant of the subsumption
relation as Do

€

LKL 2% 30,0: 2 U{L} tep C and L' = C¥

or even
Def

LKL < YU{L}Rr L.
It is clear, that such definitions are not applicable in sense of an efficient algorithmic
definition.
To define the Igg of clauses relative to some background knowledge > we transform the
‘context’ into premises:

Definition 2.8 (Relative least generalization (of clauses): rlgg) Let ¥ be a con-
gunction of ground facts. Then,

rlgg({L1, Lo}) = lgg({L1 « X, Ly + ¥})

12Gtill, such a hypothesis can be found by both generalizing bottom up from the data as well as
specializing top down from the maximum of the lattice. This is rather a question of implementation,
not a question of principle.

13A set of well formed formulas ® and the subsumption relation K defines a lattice as follows (¢, 1) €
P): U = lgg(p, v) with o K¢ iff lgg(p, ¢) = ¢ and @ My = unif(p, ¢) with ¢ K¢ iff unif(p, ¢) = .
The result of meet and join operators are unique up to variable renaming. The top element of (®, K )
is a free variable X, the bottom element is defined as a special error symbol L = unif(¢, 1) for two not
unifiable formulas ¢ and .
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One big disadvantage of using rlgg is the possibly huge amount of body literals—which
gives rise to the need for a bias. This way, we have defined an ordering relation K on
our search space the objects of which are clauses.

2.2.3 Concept learning

Decision trees. Given an information system Z (a formal definition will be given in
definition 2.21) the goal is to classify any entity 2 € U as © € ET or x € E~ by
successively asking for attribute values f(z) with f € §. This process is formalized by
so—called decision trees. Decision trees can be constructed using a labeled sample by the
following algorithm:

1. The root of the decision tree subsumes all entities x € &l.
Choose one f € § and create successor nodes for each f(z) € cod(f).

2. For all nodes:

(a) If all entities subsumed by the current node either belong to E* or to E~,
label the node with p or n respectively.

(b) Otherwise, choose another f € § which does not occur on the path from the
current node back to the root and create successor nodes for each f(z) €
cod(f). If there is no attribute left, stop and report ‘Unsuccessful attempt’.

This algorithm is the base for the learning algorithms which perform a top—down induc-
tion of induction trees (TDIDT, c.f. [Quinlan, 1986] and following; see [Quinlan, 1993]
for an overview.). The problem of choice makes brute force approaches intractable.
Furthermore, in most applications, the number of features does not suffice to allow a
discrimination into all classes such that the tree cannot be correct at all. Moreover, it is
often necessary to force inconsistency in the order to avoid overfitting (seemingly better
consistency may imply loss of correctness).

A measure that guides the choice of alternative features is that of information gain. It
is based on Shannon’s entropy measure, [Shannon and Weaver, 1949]:

Definition 2.9 (Entropy, i) Let there be a sample S C L. Then, given n target classes
¢; induced by a classification feature f, the entropy h on S is defined as**

hS)=— Zfrq(S, ¢i) - log, frq(S, ¢;)

i=1
where |cod(f)| =n and

x € S|z agrees with c¢;
(5 — Lt €SIz e it )

M\We use h instead of H in order to avoid confusion with sets of hypotheses.
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For a simple supervised learning task with a binary label function for positive and neg-
ative examples, we obtain:

h(S) = —plogyp — (1 — p) logy(1 — p)

where p is the probability (or rather: frequency) of a positive piece of evidence. Given a
set we now want to have a measure based on A for the information gain we expect when
further partitioning the classes:

Definition 2.10 (Entropy relative to f)

ny(s) =3 LD =B e vy = iy)

=1

Thus, Ay is a f-frequency weighted sum of entropies of all blocks induced by f. Using
h and hy, computing the gain comes down to the mere difference of given entropy and
expected entropy:

Definition 2.11 (Gain, Gn) The best feature f shall be the feature with best informa-
tion gain:

Gn(f,5) = h(S) = hy(5S)

Further measures are introduced along the discussion of the role that bias plays in sym-
bolic machine learning.

2.2.4 Rule induction

Instead of grouping objects into clusters of known or newly invented concepts, rule
induction rather tries to find explanations for newly encountered entities by means of
already acquired knowledge. In our case, we consider Horn clauses as Lg,Ly and Ly
(see definition 2.1). Thus, the goal is to induce a Prolog program which allows the proof
of positive examples and fails for negative ones.

Basic terms. Each resolution step incorporates a unification of the involved complemen-
tary literals. This unification is carried out by applying an mgu. In parallel, the new
hypotheses turn out to be clauses obtained by inverse substitutions.

Definition 2.12 (Inverse substitution) Let t be a term and tq,...,t, subterms of t;
V1, ..., Up are variables. Let 0 be a substitution acting ont. Then, 0~ is called an inverse
substitution, if:

t0o~ =t.
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For 0 = {vi/t1,...,v,/t,} we obtain

) [tb {P<1,1>> -~-ap<1,m1>H /Ul,
6" =

[tm {p<n,1>7 -0 PDinyma,) }} /Um
with py ;) the positions of the subterms in t.

Now, the problem is to define a calculus which provides a set of rules that by application
of inverse substitutions and literal invention allows for the generation of new rules. The
first idea of inverse resolution was published by [Muggleton and Buntine, 1988], who,
among others, introduced the three operators of truncation, intra—construction and ab-
sorption.

Truncation. Any successful resolution proof ends in an empty clause which has been
derived by a single literal resolution. Thus, given two unary clauses one might assume
existence of a unary clause that subsumes both of them.

1. {_|L1} |_|RES {L}O'1 =0
2. {_lLQ} l'RES {L}O‘Q =0

Adding the new hypothesis L’ to the database with L' K LK Ly = {Ci}and L' K LK Ly =
{C3} we can remove C} and C, for they are now redundant clauses. All generalizations
over Ly and Ly are possibly L’ which means, that the original theory can be expanded
by a reasonably large amount of new theorems—potentially too many, if we generalize
too carelessly. A very strict constraint in choosing a generalization would be a restric-
tion to least general generalizations; i.e. instead of choosing an arbitrary o; ' we restrict
ourselves to L' = L = lgg({L1, L2}). Another method is to carry out a best-first-search
in the subsumption lattice. This top—down search then of course has to be guided by
heuristics. We shall investigate the search guidance in the next chapter when speaking
about inductive logic programming.

Intra—Construction. This operator can be illustrated nicely by the fanning and folding
principles known from logic programming (see figure 2.2) plus a generalization compo-
nent. The general rule of intra—construction can be described as follows:

C<—B,Bl C<—B,B2

H+—B (< BH H+« B, rc

That is, given a set of clauses with a set of common literals, the unique literals are used
to define a new predicate. Note, that by way of generalization during defining H, the
new rule set will be more general than the old one.
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Theoretically, we consider two or more parallel resolution steps that are linked together
by using one common but, as yet unknown, parent clause H:

(210) Rl - Cl l_lﬂRES H, RQ - CQ I—IHRES H, . o ,Rn - Cn I_IHRES H

All resolvents R; are elements of Y. H will be the constructed clause and all the C;
will turn out to be specifications of the newly invented predicate we use in the premise
(rule body) of the new clause H. Restricting to unary clauses C; = {L;} we obtain:*
R, = (H — {—L})0y,. Again we compute a generalization R over all R; such that
R= (H — {—L}) and by using the last equation we obtain R; = é@Hi; that means that
On, = R —¢ R;. Since R; have the same term structure, we can find a generalization
R = H —{~L} over all R;. By definition of the resolution principle, 6y 0, is the mgu of
L and L;. Since any substitution can be decomposed, we find that L0y, = L;0c, wherein
vars(—L) C dom(fg,). Therefore it seems to be quite suitable to generate a new n—ary
predicate

(2.11) L=p"(vy,...,0)

with {vy,...,v,} = Jdom(0g,). Of course, L K L; such that unifying L and L; results in
L; again. But,—while LOy, = L;0c,—we also get unif(L, L;) = L;0¢,. Since 0, must be
empty, this finally leads to the following equation: C; = {L;} = {L}0p, which provides
us with the definition of the newly invented predicate p.

Intra-construction without generalization, as described above, actually is—seen by itself
without context of other operators—rather useless in machine learning. The result of
this intuitive procedure is a clause which would be called an overfit hypotheses. It
therefore is not a useful tool for theory enlargement. Furthermore, intra—construction
poses the problem of choosing the right 'relevant’ variables (as in equation (2.11)) which
is computationally intractable without a proper bias.

Absorption. Theoretically, this operator enables one to compose and decompose recur-
sive term structures which are very common in Prolog (every list is a recursive dotted—
pair structure). In practice, decomposing complex recursive terms in Prolog is done by
recursive rules. The absorption rule can be described by

C<—Bl,BQ H<—Bl
C—H B, H—B

Abs

using according inverse substitutions again. Absorption like operators are hardly used
within ILP systems nowadays. This is also due to the huge computational effort that is

15This restriction is due to the theoretical foundations of intra—construction. Nevertheless, one can
run a kind of enhanced intra—construction on non—unary clauses as well. This has been proposed in
several publications, e.g. [Wirth, 1989] and [Miiller, 1995].
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Imagine a set of m clauses with the same rule head c:

C < p(1’1> AN /\p(l,n1>

C < Dim1) AL A Dimnm)

Furthermore, we assume a number of j literals p to occur within each of this clauses; in
other words: all clauses share a set of common body-literals.

31 < g <min{ni,....nn}  Pubpiy = Dipy fori=1,...,mand k=1,...,j

Then, we ‘cut out’ all common literals and move the remaining literals p’<i ) 10tO the
definition of a new predicate ¢:

c «— qADIN...\D;j
¢ — Pagy N APk

¢ — Panay N A1k

Figure 2.2: Folding and unfolding

needed even when provided with a strong bias. Since the invention of recursive rules is
not in focus of our work, we renounce a rather tedious sequence of formulas here and
restrict ourselves to a short description of how absorption could work (instead of why it
should work).

Muggleton and Buntine ([Muggleton and Buntine, 1988]) proposed the algorithm in fig-
ure 2.3 to ‘search’ for suitable substitutions which generate hypotheses for C. Of course,
this algorithm is suitable as a guideline only. Analyzing the algorithm reveals, why one
must not implement this algorithm in order to actually compute a new hypothesis in
a considerable amount of time. Despite of this ‘operational lack’ absorption is a very
powerful theoretical approach to cope with the invention of recursive predicates.

Example. To illucidate the power of the previously defined operators we now give an
example which also shows, how those operators interact in order to induce a new hy-
pothesis.

Given three facts

mammal(mouse). mammal(rat). mammal(weasel).
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Imagine a resolution step C' = (Cy — {L1})6; U (Cy — {L2})bs.
Transforming and replacing yields ((C' — (C; — {L1})61) U {=L,}6,)65".
Restricting C} to unary clauses results in Cy = (C' U {=L;}0,)05".

The following algorithm computes Cs:

— Cand Cy = {L,} given
1. Collect all (sub—) terms t and store them together with their position p within
the clauses in a set T,
2. Now choose an arbitrary subset T, C T,.
3. Construct a partition P on T ]; such that:

(a) every block B € P is of the form:
B = {(r7p1>7 e (r,pn)} U {(57 ql)? e (87 qrn)}

(b) s subsumes 7 (s )

(c) All (r,p;) are terms occurring in C

(d) All (s,q;) are terms occurring in {—L;}
4. Compute 6, for all Bin 0, = |J(s —¢ 1)

5. Then, 05 = {(r,{p1, ..., Pn, q1, -, @m })/V| for all B}, wherein all V are dif-
ferent variables which do not occur within (C'U{—-L4}).

— 02 == (C U {_|L1}01)62_1
Figure 2.3: An intuitive algorithm for absorption

we would obtain mammal(X) by truncation. Of course, this generalization is not true,
as

bird(eagle). bird(falcon). and reptile(gecko). reptile(lizard).

shows. By taking into account new observations
predator(eagle):-claws(eagle). predator(weasel):-claws(weasel).

application of intra—construction, leads to the invention of a new predicate — which we
call carnivore:

predator(X) : - claws(X), carnivore(X)

The definition of the new predicate carnivore is the result of applying substitutions
delivered by the generalization step (this corresponds to the fanning operator in logic
programming).

carnivore(eagle). carnivore(weasel).
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Finally, the system encounters a further new example which describes a new and unknown
concept:

bird_of prey(eagle)

Since we also know the unary clause {predator(eagle)}, absorption infers

{predator(eagle)} {—predator(eagle), bird_of prey(eagle)}

N\ /!
{bird_of_prey(eagle)}

We repeat the process by choosing the newly acquired clause as resolvent of a new
absorption step. The according parent clause is the fact bird(eagle). This time, the
inverse substitution generalizes from eagle to a variable X (we omit positions, since the
term occurs only once).

—predator(X),
{bird(eagle)} —bird(X),
bird_of-prey(X)
N 071 = {eagle/X}
bird_of_prey(eagle),
—predator(eagle)

Thus we have found, that birds of prey are predator birds:

bird of prey(X) :-
predator(X),
bird(X).

Inverse resolution is a suitable means for deriving meaningful hypotheses but the result
crucially depends on

1. examples and their sequential ordering
2. choice of known clauses for applying operators
3. choice of inverse substitutions.

This gives rise to the question of how to define a suitable bias.
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2.2.5 Bias

Following Michalski’s paradigm of learning as search, one needs to restrict the search
space. In terms of machine learning we need a bias.

In this section we will present several kinds of bias and illucidate the ideas of bias by
concrete examples. Especially the refinement operators as used within Progol and the
brief description of Foil are relevant for the theoretical background of this thesis.

When running through a lattice of hypotheses in general an exhaustive search is far too
expensive in terms of computational complexity. Restricting the search space therefore
means defining a bias which guides us through the hypothesis space or restricts it before
carrying out a search.

In other words, to help A, we need a bias § which helps to find a hypothesis more
efficiently. There are different kinds of bias:

e language bias is used to restrict the search space extensionally, a priori. This is
achieved by realizing 3 as a function which chooses an appropriate subset of L.
Here, of course, the definition of 'appropriate’ is crucial: Proposing that t € Ly,
we also want that t € 5(Lg). In order to define a sufficiently efficient search bias,
this cannot be always guaranteed.

e Search bias seems to be of a different kind; since it does not give a prior boundary
on where to look for a hypothesis but, rather, determines the behavior on how to
search for it. Accordingly, § modifies the learning algorithm itself. For example,
different search methods like depth—first or breadth first, greedy search or A* result
in different behavior of A. Here, the purpose is to yield an efficency gain with
respect to the learning domain. It is clear, that different versions of A may deliver
different solutions; sometimes they might be not able to find the best hypothesis
at all, but the tradeoff between the gain of efficency and a loss of correctness up
to a PAC bound may justify this.

e Validation bias is a kind of built—in tradeoff function which tells us to stop as
soon as the ratio of time used and quality has reached a certain level. Speaking of
validation bias or stopping criterions we cannot ensure correctness or consistency;
i.e. sometimes it may be clear that A(s) can never become t (although A is still
consistent for all s).

This is not as bad as one might expect—as long as in the PAC model err(A(s)) < e
with the probability at least 1 — §.16

16T herefore, it is not t which has to be preserved in 3(Ly) but rather at least one ‘sufficient close’
hypothesis.
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Language bias

h—easy ground models. The definition of rlgg gives rise to the question of how to achieve
clauses as required input for an rlgg. The idea is simple, though expensive up to a certain
degree determined by a parameter h:

Definition 2.13 (h—easy ground models, My,,) Let there be a background theory ¥
(a logic program I1) which contains intensional knowledge. We extract from ¥ a set of
ground clauses (i.e. its extension) by computing the closure under s p. The length i of
the derivation—that is the depth of the SLD proof tree —is thereby restricted to h:*"

My, = {@|S Fsp ¢ where i < h}

Using h—easy ground models, the notion of generality based on derivability - (as shown
in definition 2.7) can be further restricted by limiting the maximum proof length.

Determinacy. ij—determinacy bias was introduced with the Golem system described in
[Muggleton and Feng, 1990]. It deals with number of variables used within a literal and
the ‘linkage’ of variables within a certain depth criterion 4.

First of all, dealing wih h—easy ground models means dealing with extensional knowledge
instead of intensional descriptions. A ground model only has a chance to be complete
if there are no infinite paths and finite ground atoms. As one can see by these trivial
considerations, the notion of h—easy ground models is already a severe restriction on L.

Definition 2.14 (Determinacy) An ordered Horn clause
C:-Ly,....L,.
is called determinate (with respect to E and X2) iff for all i = 1,...,n the following holds:
VO : (CO e ET0) — (3o, : {L1, ..., Li_1 }00; € Myy)
A predicate is called determinate if its definition consists of determinate clauses only.

In other words: a literal is determinate if all of its variables that did not occur within
previous literals are uniquely determined in their binding given the instantiations of all
preceding literals. Then, a clause is determinate, if all of its literals are determinate.
Note, that determinacy of clauses is always with respect to the underlying knowledge. So,
for determinate terms (and literals) we have the following intuitive description: When-
ever a new variable occurs in a literal, its binding is completely determined by all other
bindings of variables occurring in the preceding body literals.

ITThis definition is a simplification of the more abstract idea of h—easiness: h is recursive, computable
function, such that for each ¢; which is valid in our model we need at most h(i) derivation steps to
deduce ; in . Here, we implicitly defined h to be constant.
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Furthermore, we find a kind of ‘linkage’ degree which is expressed by the chain length
of variable instantiations which link an arbitrary variable in the rule body to a variable
in the rule head. This idea gives rise to the definition of depth:

Definition 2.15 ((Variable) depth, dep,,.) Consider again an ordered Horn clause
Cl—Ll, ceey Ln
where the head consists of an n—ary predicate p € Prd". We define

[0, for X € vars(C).
depyars(X) = { max({dep(X")| X’ € vars(C' : —Ly,....,L;—1)}) + 1

for a variable X occurring in L; for the first time (i.e. not in any of the Ly, ..., L;_1).
Canonically we widen the definition of dep,.s such that for any literal L, dep,,(L) =
max({dep,,.(X)|X € vars(L)}). By ‘depth of a literal” we denote depth of its determinate
variables.

This basic idea needs further specification with respect to multiple simultaneously oc-
curring variables by the definition of the term degree: Instantiations of variables in the
current literal under consideration can be seen as functions of earlier substitutions. Now,
instantiations of L; needs not to be unary; i.e. the value of multiple variables may de-
pend on the earlier substitutions. Thus, the ratio of the number of determinate and yet
unbound variables also allows a qualitative ordering on clauses. This can be achieved by
means of the term degree:

Definition 2.16 (Degree, deg) Let there be a Horn clause C' «— Ly, ..., L, with an
m—ary body literal
Li = p(th 7tm) with pE Prd™

From those m terms, let there be k uninstantiated variables:*®
Li = p(Xl, vy Xk7 vy tm) with pE Prd™

The degree deg(L;, X;) of the variable X; with 1 < j <k in L; is defined by the number
of those remaining variables, which also occur within the other literals (i.e. which do not
occur only in L;):

deg(L;, X;) = |[({ X1, ... Xi ]\{X;}) Nvars(C, L, ..., L,)|

The degree of a literal deg(L;) is the mazimum degree of all variables occurring in the
literal and the degree of a clause is the maximum degree of all literals.

180rdering of arguments is not significant here.
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In other words, it is the number of variables that the following literals L; 1, ..., L, have
in common with those already considered.

Now we have defined two means for restricting Lg: Degree and depth are two measures
for which we can define dynamic biases for Horn clauses. Together with determinacy we
obtain the following definition:

Definition 2.17 (ij—determinacy) Let IT be a logic program representing % (i.e. by
h—easy ground models). Ezxamples E are represented by unary ground clauses. Then,
C:-Lq,...,L, is called ij—determinate, iff:

1. © is the mazimum depth at which a determinate variable occurs.

2. 7 is the maximum degree of any variable occurring in Ly, ..., L,.

Predicate Schemata. Another idea to restrict the Ly is to introduce predicate schemata
and modes. Schemata like

The target is a 3-literal Horn clause which matches p(_, ., X):-Q(X,Y),p(_, X,Y).
are used in Mobal. Modes like

The target has a head literal, the arguments of which shall satisfy the 1/O
behavior determined by p(+X,+Y, -2)

can be found in Progol as so—called mode declarations or in mFoil.

Mode declarations often also incorporate additional knowledge on possible underlying
signatures; thus describing variable domains (sorts or types), predicate declarations or
even further predicate characteristics such as symmetry or similar. A set of mode dec-
larations MD defines a subset of a given language Ly which can be searched more
efficiently.

Predicate schemata as described in [Kietz and Wrobel, 1992] are used within Mobal (so
called rule-models). Rule models for n—ary clauses have the form I' = L « Ly, ..., L,,
where each L, L; are literal schemata.

Decision tree pruning. Another example for language bias is decision tree pruning. In
order to overcome the problem of overfitting, tree size is restricted. A simple pre—pruning
method would be to demand a minimum information gain; i.e. Gn(f,S) > ¢J. This could
be combined with tree depth, tree size or tree complexity measures in order to inhibit
further node induction at a certain point. Nevertheless, pre-pruning bears the risk of
myopic actions. Imagine a node S with four objects: a™, A=,b~, BT. It has an entropy
of 1. Now, ordering with respect to letter or capitalization would deliver no gain at
all-——and thus would be inhibited by any threshold ¢. Applying both features allows
for an optimal solution which now has been cut off by the myopic pre-pruning process.
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This argument of course also applies to nodes with more objects and more complex
descriptions.

Much more reliable are post—pruning methods, where the decision trees are pruned after
a completed tree induction process. Sadly, this is a more computationally expensive task:
Finding the smallest correct decision tree is a NP-hard problem (since exponential in
5|, as shown by Hyafil and Rivest, 1976; see [Garey and Johnson, 1979]).

Search bias

Different gain functions in decision tree induction. The gain function Gn (see definition
2.11, section 2.2.3) has a severe drawback of overestimating multi-valued attributes (see
[Quinlan, 1993]). This leads to the following definition:

Definition 2.18 (Normalized gain, NGn) Normalized gain is defined as the ratio of
gain Gn and the number of possible values for the chosen feature f:

NGn(f, 5) = —nU-5)

log,(cod(f))
This measure of course may now underestimate multivalued attributes: Imagine a key
feature with n possible values, but only two of them actually given to objects in S: Then,
Gn is penalized by log,(n). In consequence, the feature would be rejected, although it
might have been the optimal choice for obtaining a decision tree (imagine, that the two
feature values induce the same pertition on the current node as t). Thus, we need to
choose f by its actual impact on S. In other words, we need to take into account the
entropy with respect to f and t, not only t.

Definition 2.19 (Split information)

Sl(f.9)=— ) |
cod(f)

fﬁllog2!fﬁl
S| S|

Learning by sl only is condemned to fail, since f does not necessarily express all relevant
properties of t. We therefore define a gain ratio GR of the gain Gn and split information:

Definition 2.20 (Gain ratio)

Gn(f,95)
GR(f.8) = —2*—7
Entropy measure based gain functions are also used as a search bias in induction of rules.
The Foil system uses a gain based heuristic in order to choose literals that shall be added
to the antecedent of a rule.
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The refinement operator in Progol. In the last paragraph we have described the top—
down specialization method as implemented in Foil. The search was upper bounded by
the initial single literal clause C'#;. The greedy information gain heuristic provides a
strong but myopic bias. A lower bound for the search is not defined.

Another problem within the ILP approach is that of missing negative evidence.!® The
heuristic employed in Cigol (c.f. [Muggleton and Buntine, 1988]), which was a pretty
straightforward implementation of the idea of ILP, was based on a compression measure.
Compression was measured in terms of the number of function and predicate symbols
used within a hypothetical logic program. Without any evidence this leads to the most
general and most compressing hypothesis p(X) for some unary target concept p. Of
course, this hypothesis is not of any use.

The problem of choice of operators was solved by Golem (c.f. [Muggleton and Feng, 1990])
which used rlgg as single operator and ij—determinacy to guide the search through a sub-
sumption lattice. But with application of rlgg another problem arises: Theoretically, the
number of literals of rlgg(S(m,t)) is upper bounded by (|X|+1)™. Muggleton and Feng
report clauses of tens of thousands literals while trying to learn arithmetic multiplication.
Actually,

[...] in the case of constructing a rlgg of 6 quicksort examples, with 15 ground
elements of the model of partition, 49 instances of append and 16 instances
of quicksort, the clause will have 15° + 49¢ + 16° + 1 literals.

[Muggleton and Feng, 1990]

which is approximately 14 billion literals.

Progol ([Muggleton, 1995]) tries to overcome the drawbacks that are based upon the
paradigm of searching the subsumption lattice by the notion of implication and (inverse)
entailment. It is obvious, that

(2.12) ¢ K¢ implies ¢ — 1 but ¢ — 1 does not imply ¢ K v

The aforementioned ILP methods were based on the fact, that for a given ¢, a sequence
of ¢ could be generated such that ¢ K ¢ which then implies ¢ — 1. In contrast to that,
there is no constructive efficient method for a given v to generate a sequence of ¢ such
that ¢ — .

Inverting entailment allows for a different view on the topic. Recalling equation (2.4),
we can rewrite the requirements on h as follows:?°

(2.13) Yuielkh
where the over-bar expresses negation of clauses. Now,

(2.14) Yui{elkskh

9 A situation that is very likely to occur in the context of user modeling tasks.
20Note, that H = {h} and ET = {e} consist of only one clause each.
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where 5 = A L; for all (possibly infinitely many) ground literals L; which satisfy > U
{€} k L;. Reversing entailment again, this yields that h ks for all h. A subset of H is
the set of clauses h; for which h; K s holds.

The search space for h is lower bounded by s, and A shall be a clause which #—subsumes
s. But since s can be infinitely large, Progol uses both modes (see 2.2.5) and variable
depth as a bias. An h must satisfy constraints on the usage of head and body literals
(predicate names) as well as on variable instantiation and depth ¢ (see definition 2.15).
By considering only those s; which have a depth of at most ¢ and require a maximum
number d of SLD resolution steps such that

(2.15) XU {Sz} U {é} |_CSlLD 0O,

s; is the most specific hypothesis of the search lattice which is upper bounded by the
empty clause. This lattice is searched using a refinement operator. Starting with a clause
h from H, a sound refinement operator p(h) delivers a subset H' = {h' € H : h|K h'}.
Progol’s refinement operator p basically works as follows: Starting on an example e which
is compatible with mode declarations for the head literal of the target clause, H' in the
next step includes all those clauses which contain at most one more body literal (that
is compatible with body mode declarations) and according sets of substitutions that
allow to unify all A’ with subsets of s;. The number of added literals is upper bounded
by the number of literals in s;. Furthermore, within each step, the substitution 6’ is
required to be constructed from the last step 6 by application of another substitution o.
Alternatively, a variable occurrence may be splitted. In this step, from one variable, two
are made—while the restrictions on the variables are weakened or inherited to only one
of the successor variables. For example, from

mammals([ X |R]) < mammal(X), mammals(R)

one could obtain
mammals([X|[Y|R]]) < mammal(X), mammals(R)

by splitting R in the head into Y and R—where the restrictions on Y are lost.

The search is carried like an A* search with an Occam compression measure as a guiding
heuristic.?!

A detailed and self-contained description of ILP and inverse entailment can be found in
[Muggleton, 1995].

21 As a rough idea, the Occam compression of ¢ relative to 9 is len(c()) — len(c(y)) for two clauses
with ¢ k4 (and an encoding function c).
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2.3 Machine learning for user modeling

The parallels of user modeling and machine learning have already been pointed out in
figure 1.3. The two cycles of ML and UM can be unified in order to yield an abstract
architecture of an ML4UM system. The result is shown in figure 2.4: The user query

/ v \ relevance feedback

A JEEENEEEE

Aull LT T T TT] Learning

User Model

"world"

Figure 2.4: Machine learning and adaptive user interfaces

is sent to an adaptive user interface. By use of an internal user model, the query can
be pre—processed and then submitted to the underlying information system (here, the
‘world’). Responses are, again using the user model, post—processed and presented to the
user. Then, feedback given in relation to the answers is used by an adaptive algorithm
(here, a learning component) to adapt the user model in order to perform better next
time.

This idea is not new, however. Iteratively refining an interface’s capabilities by tak-
ing into account user feedback has been discussed in information retrieval pretty early
already. A short overview on similar approaches to our problem from the information
retrieval community is given in the next section.

2.3.1 Information retrieval*

When talking about ‘information retrieval’ (IR), many people think of database systems
in the first place. Of course, there is much more to it as we shall see in this section. The
underlying idea is to have an abstract system that holds all data and which is able to
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answer certain questions about our data and as such, delivers information to the user.
Such a system is called an information system.

Definition 2.21 (Information systems) An information system T = (4, §) consists
of:
1. A set of objects d, also called Universe 31,22

2. A set of features or attributes §,
3. for each f € § a set cod(f) of possible values, and

4. an information function
inf: 4 x § — | cod(f)
fes
which for each feature f € § assigns a value v € cod(f) to each object d € 14.23*

In 1979, [van Rijsbergen, 1979], the information retrieval community already defined the
term ‘information retrieval” in opposition to ‘data retrieval’, as shown in table 2.1. Due

Data Retrieval Information Retrieval
Matching Exact Partial, Best
Inference Deductive Inductive
Model Deterministic Probabilistic
Query Language Artificial Natural
Query Specification | Complete Incomplete
[tems Wanted Matching Relevant

Table 2.1: Data Retrieval versus Information Retrieval

to the metaphor of dealing with information instead of data one can require to deliver
relevant data instead of matching data. But what is the best? And how shall the system
be able to improve? In [van Rijsbergen, 1979] it is stated that:

[...]| When the retrieval system is on-line, it is possible for the user to change
his request during one search session in the light of a sample retrieval, thereby,
it is hoped, improving the subsequent retrieval run. Such a procedure is
referred to as feedback.

22Here, objects of the domain are web documents. Accordingly, we choose d as a variable name for
elements of the domain: d € Y. In earlier versions, we used x in context of IR, o for abstract objects in
Mr4UM and d, when the domain of the ML4UM problem was restricted to a set of documents. Context
sensitive usage of different variables however decreased readability. We therefore chose d for all those
variables and ask the attentative reader to abstract from the application domain whenever appropriate.

ZSometimes, we will refer to this function as a ternary relation by identifying inf(d, f) = v with
(d, f,v) € inf.
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This leads to an architecture as depicted in figure 2.5 which is a slightly modified version
of an abstract IR system architecture described in [van Rijsbergen, 1979].

Output
* B -
e
/Y \ | Feedback
1 - Processor
N |
Queries
/
Documents

Figure 2.5: An (adaptive) Information Retrieval System

Quality measures: Recall and Precision. The core concepts in IR systems evaluation are
precision and recall which relate to the quality measures of accuracy and coverage in
machine learning. Let L be an information retrieval language. A query ¢ € Ly is an
operation on a information function inf as, for example, in

What is the set of solutions to: fi(d) = a or (f;(d) # a and f(d) = b)?

The result is a set of objects which satisfy the underlying proposition:

ro= {deyul{(d f;),a) €infV (((d, f;),a) ¢ inf A ({d, f),b) € inf)}
= {deUlinf(f,) = aV (inf(d, f;) £ a Ainf(d, ) = b)}

Note, that for different ¢, g2 the resulting operation may be equivalent and thus ry = rs.
It is clear, that the more powerful the operators are, the longer it takes for an IR system
to deliver an answer. Operations on relational algebras, as e.g. products (i.e. select ...
from z,y) and intersections (i.e. select ... from z,y where () soon turn out to be
computationally expensive—and at least queries incorporating lattices in object oriented
databases even turn out to be NP complete. Furthermore, modern IR systems provide
the user with query languages that allow for string matching, near misses, and so on.
Now again let ¢ € Lg be a query; and let r¢ to be the known target response. With
queries incorporating weak or fuzzy quantifiers or operators or with noisy or incomplete
databases (i.e. partial f;), the actual outcome r might differ from r¢. Recall is defined
to be the ratio of actual responses to target responses whereas precision is the ratio of
errors to target responses:
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Definition 2.22 (Recall and Precision) Let ¢ € L;g be a query, and ry a known
target response (i.e. the set of relevant answers) for q.
The recall is the number of relevant retrieved answers in relation to relevant answers:

| N gl
rcly(r) = e

The precision is the number of relevant (ry) retrieved answers (r) in relation to the
number of retrieved answers:

Note, that for unknown |r¢| (uncountable or unknown L) neither recall nor precision can
be evaluated.

A further measure is the fallout; it is defined as the number of irrelevant retrieved answers
in relation to the number or irrelevant answers:

Note that | — r¢| is unknown if b or ¢ is unknown.

Both recall and precision can be incorporated into an integrated quality measure called
the f-measure, where a parameter  allows to emphasize either precision or recall:

Definition 2.23 (f—measure) Let g € Lir be a query, and ry a known target response

forq.
The f—measure with respect to q is defined to be

(6% + 1) rcl(q) pre(q)
B2 rcl(q) + pre(q)

fms(q) =

The smaller the value of 3, the more recall is emphasized. Furthermore, one can relate
precision, recall and fallout by the notion of generality.

Definition 2.24 (Generality) Let q € Lig be a query, and ry a known target response
for q. Furthermore, let |M| = n. Then, generality is the relative frequency of relative

answers in L:
gnr, (ry) = Ire|
g\"t n

Given gnr,(r¢), pre,(r), rcly(r) and fit,(r), the following holds:

rcly(r) - gnr, (7¢)
rcly(r) - gnl’q(rt)) + flty(r) (1 - gnrq(rt))

prc, (T) = (
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Information Retrieval and Adaptive User Interfaces. Obviously, the quality measurements
from IR cannot be applied directly in the domain of user adaptive web search. First of
all, no—one knows the entire web such that neither the number of documents nor the set
of relevant documents actually can be determined. Nevertheless, any search engine will
return a number of results |r| which is much higher than an expected |r¢| (though most
likely, ¢ Z r). Though the biggest search engines still do not cover more than half the
web, recall is not the problem in information retrieval from the web. In contrast to that,
precision is much lower.

This is, where user satisfaction enters the game—mneither precision or recall as a measure
of theoretical system performance can be used to describe a system’s quality. It is rather
the relevance of a document with respect to a users interest that counts for a satisfied
user. Thus, we do not need results of high precision or high recall with respect to a
user query but rather a set of documents that are interesting to the user (and are not
necessarily ‘answers’ to the query).

The problem of precise search with good coverage becomes evident, when looking at the
size of the world wide web and the number of web pages indexed by search engines as
shown in figure 2.6. When starting work on OySTER, the biggest search index was that
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Figure 2.6: Search engine index sizes

of AltaVista, with approximately 150 million pages (left graph). Today (see right graph),
Google’s index is more than ten times bigger, covering 2 billion documents (including
PDF documents and archived Usenet news which date back until 1981, Google claims to
cover even more than 3 billion documents). The estimated number of web sites in the
web has increased from 2,851,000 in 1998 to 8,745,000 today.

However, in the meantime it has become impossible to count the number of documents
in the world wide web. For example, the proportion of dynamically generated documents
increases, many documents are mirrored in several places and many documents can be
retrieved by different addresses and site— or server aliases.
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2.3.2 A brief formal view on the topic

In the previous section, we formally defined a learning problem. Thus it seems reasonable
to extend the formal definition of a learning problem to a formal definition of a user
modeling scenario.

Adaptive user interfaces can be interpreted as a kind of information systems as defined
in the last section.?* An information request is a set of partially instantiated triples
(d, f;,v;) and the response is the set of all elements of inf which unify with them for all s.
Usually a request asks for objects that satisfy certain properties, such that the request
has the form {(-, fi,v;) }ier and the result performs an implicit projection on the first
argument of inf.2

Definition 2.25 (Information interaction) An information interaction scenario is
a situation where a user u submits a query q to a user interface I,, with the intention of
receiving a target response ry.

The query q is translated into a set I,(q) of retrieval tasks inf(-, f;) = v;. The actual
response v of I, is the set of all relevant information objects I,({m1({ds, fi,vi)) }ics) for
which inf(d;, ;) = v; and {(d;, f;,v;) are elements of the information system’s response to
the query translation (-, f;, v;).

Thus, the adaptive interface performs two user dependent actions. The actual response
r is equal to the target response of I, only if I,(q) is a perfect translation of ¢ and the
relevance filter I, is based upon a correct user model as described below. A ‘perfect’
translation and a ‘correct’ user model means, that there is no information loss in the
interface, and thus, the delivered data corresponds to the target (in the sense of a target
function in machine learning). We will illucidate the formal description of an information
interaction again using our architecture of an abstract Aul, figure 2.7: The Request in
figure 2.7 corresponds to the query ¢ in definition 2.25. The interface I, (here, AUI)
translates ¢ and yields Query corresponding to the retrival task. The systems Response
is the set of solutions to the task and it is post-—processed by the interface (I,,) to deliver
an Answer to the user.

The problem is to define the feedback loop in figure 2.7. It is obvious, that the unknown
function from feedback labels to object of the domain defines a machine learning task. We
will therefore define a user modeling problem in analogy to a machine learning problem.
Together with definition 2.1, definition 2.25 can be used to formally describe the circle
in figure 2.4.

24 Adaptive help systems or systems which change their menu structure with respect to a user’s
preferences would not be regarded as information systems in the common sense, but actually those
systems are information systems indeed: The help text needed is the information that is being searched
for—and user interaction with the system is implicit feedback which reveals information need. A similar
argument applies for adaptive menu structures and other adaptive user interface systems.

25 Another form of request is to ask for property values for certain object; in other words, for a subset
of U, (a subset of) § — [J <z cod(f) is requested.
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Figure 2.7: An abstract AUI

Definition 2.26 (User modeling problem) An adaptive user interface I,, produces a
user model M, € Ly for a user u with respect to some background knowledge 2 (encoded
in Lyx;) on the basis of user feedback.

User feedback is a sequence of example response entities d; € r together with a label [
which indicates whether d is an object of the users interest J, %6

(216) f= [<d1, l1> , <d2, l2> R <dm> lm>]

where d; € r and l; = char(3,)(d;) € {0,1}.>" We abbreviate char(J,) by a target
function i,. In a theoretical framework, we assume that feedback given by a user is
generated by a functional F(m,i,) (where m is the sample size). The user model M,

models i, such that M, = d if and only if i,(d) = 1.

This definition allows us to define the special case of a learning problem for the user
modeling component of an adaptive user interface:

Definition 2.27 (User model learning problem) A user model learning algorithm
A produces a hypothesis M,, € Lyg with respect to some background knowledge ¥ (encoded
in Lyx,) on the basis of a sample f which consists of system responses and according user

feedback.

26Tn other words, J,, is the real, unknown user interest which is a predicate on .

2TThe attentative reader will have noticed, that the label was defined by the users interest (I; =
char(3,)(d;)). In footnote 26, however, we stated that this function unknown. Therefore, we assume
that user feedback is realized by a function F'(m,i,), which according to the (unknown) target i, delivers
m examples whose labels ‘agree’ with i,,. This (somehow cyclic) definition corresponds to the standard
definition of learning problems (see definition 2.1) which will be incorporated in the following definition
2.27.
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M., is called correct, if it agrees with i, on f; it is called complete, if it agrees with i, on
24 Note, that i, corresponds to the target function t in a achine learning problem and
the sample s is realized by feedback £ (see definition 2.1).

In other words: the optimal model M,, agrees with the actual user interest i, by learning
from examples f taken from feedback F' in the same sense as a hypothesis h agrees with
a target t learned from a sample s delivered by a sample function S. The final aim of
adaptive user interfaces is to iteratively learn and refine user models M, such that after
repeated queries and responses r is equal to r;,. In other words, f = r x {1}. At this
point we have closed the circle of information flow as displayed in figure 2.4.

Goal of the thesis. The goal of this thesis is to show how one can learn M, which
approximates i,. The overall performance (measured by trying to satisfy f = r x {1})
of I, in our case the search engine OySTER;, is far beyond the scope of this thesis.

The inherent problem of interpreting interactions.* There is, however, one inherent prob-
lem connected to the idea of interpreting observable interactions as feedback: It is the
interpretation function itself. From the viewpoint of a designer of an Aul, the informa-
tion flow in the system can be visualized as in figure 2.8. Observable interactions (as,

Interaction Layer System Layer
Interpretation

tion Interest

Cancel
Relevance

. oice Attributes
perties
Documenis X
¢ Trace

Figure 2.8: Interpreting interactions as feedback*

e.g., mouse clicks or requested documents) need to be interpreted as events or objects
related to actions. All actions, events or objects are usually grouped into higher—level
descriptions which correspond to partial plans in interaction sequences (as, e.g., selec-
tions, requests, deletions). Finally, after interpreting observed interactions, we evaluate
all the data in a system layer, where information regarding the domain and the user
model is processed. At first glance, this process seems to be rather easy to describe and
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realize. But there is one simple example which shows the crucial problem in machine
learning for user modeling: Observing a click on ‘Cancel’” in a web browser is interpreted
as aborting the download of a document. But how shall one interpret this action with
respect to the underlying user model? Is it disinterest in the downloading document or
is a low bandwidth the real reason for cancelling the download?

2.3.3 Examples

As this work focuses on information retrieval from the world wide web we will put
emphasis on recent research in this field only. Thus we give a more detailed overview of
adaptive recommender and information systems and take only a brief look in more or
less related but highly interesting application domains for adaptive user interfaces.

2.3.3.1 Recommender systems

Recommender systems are designed to recommend information to the user that might
be helpful for him. Nevertheless, those systems do not necessarily have to be systems
which are based on individual user models. As an extreme example one might consider
Amazon which recommends books or other media to customers based on collaborative
modeling: ‘...people who have bought this item, also bought ...".

A popular example for a web page recommender system is Syskill&Webert, which was
developed at Uct; see [Pazzani et al., 1996, S.Gaffney et al., 1996]. It consists of a meta
search engine which offers the opportunity to give explicit feedback for each result. The
feedback is used to build an individual user model that contains sets of boolean key word
vectors which consist of n ‘most informative words’. Using trained Bayesian classifiers,
web documents (i.e. links on currently displayed pages) are recommended with respect
to the user model.

The WebWatcher (developed at the Cmu, [Armstrong et al., 1995, Joachims et al., 1996]
and [Joachims et al., 1997]) is a more unobtrusive approach to the same domain. With-
out needing explicit feedback, links are recommended during a web browsing session.
The browsing behavior is recorded in order to build a user model, again consisting
of word vectors that have been derived using TFIDF. Collaborative user modeling is
performed using reinforcement learning. As a successor, the Personal WebWatcher is a
system for web page recommendation based upon individual user modeling techniques,
[Mladenic, 1998].2

A recommender system for news is the News—Dude, developed at the Uci and now
being marketed, [Billsus and Pazzani, 1999]. The NewsDude focuses especially on the
difference between long—term and short—term interests: ‘... a user’s information need

28For further literature consult http://www.cs.cmu.edu/ webwatcher/ for the WebWatcher and
http://www.cs.cmu.edu/afs/cs/project/theo-4/text-learning/www/pww/ for the Personal Web-
Watcher.


http://www.cs.cmu.edu/~webwatcher/
http://www.cs.cmu.edu/afs/cs/project/theo-4/text-learning/www/pww/
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changes as a direct result of interaction with information’. The system reads or displays
news to the user and awaits explicit feedback, including two further types of positive
feedback (‘interesting, but I already know’, formerly often covered by negative feedback,
and ‘tell me more!’). Documents are mapped onto TFIDF-based representations and are
chosen by a nearest—neighbor algorithm for short—term interests and Bayesian classifiers
for long—term interests (again, based on boolean word vectors).

Taking into account different presentation methods such as pagers, mobile phones, office
PCs and home PCs, one needs to decide which news is interesting with respect to the
current location of the user. This question is the topic of the InformationValet project,
Rutgers, described in [Macskassy et al., 2000].

A very nice and comprehensive overview of web based recommendation systems is given
in [Pretschner and Gauch, 1999].

Search or information systems. As already pointed out in the last section, Syskill & Webert
is a user adaptive search engine. Nowadays, nearly any search engine allows for a certain
amount of ‘personalization’, which is mostly restricted to source selection or presentation
methods. Nevertheless, one can imagine the outcome of a mix between AltaVista and
Amazon. On the other hand, it must be stated, that individual user modeling for a
meta search engine for the whole world wide web is beyond all computational means.
The number of a billion web pages and over 200 million web users simply outstrips the
computational power of the whole planet.

Thus, adaptive search services currently are solution for parts of the web only. One
approach for information retrieval of web documents with respect to an classification
ontology is the Ontobroker, [Fensel et al., 1998]. The idea of the Ontobroker is that web
documents are attached additional information which describes type and content of the
document. This information has to be added manually but allows for a very precise,
KL-ONE like query?” with precise results.

Actually, the fusion of OntoBroker and the PersonalWebWatcher together with the tech-
nique also used in the WebKB (see [Craven et al., 1998a, Craven et al., 1998b]) project
defines the idea behind OySTER pretty well: Let there be a conceptual description of
web pages obtained by suitable classifiers. Then, a document is interesting for the user,
if the document’s description fits into his user model. The user model is refined using
explicit feedback from the user.

2.3.3.2 Route and place advisors

Another type of information recommender systems suggest to users is information in the
sense of information about entities or objects.

29Actually, LLilog .
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Navigation systems for cars are becoming more and more ubiquitous. For a given goal
the route is computed independently of the driver. Daimler-Chrysler and the CSLI Stan-
ford developed an adaptive RouteAdvisor, [Langley, 1999], which recommends routes and
alternatives with respect to the driver’s driving preferences. The trick is to offer several
routes which are described by attributes like estimated time driven on a segment, inter-
sections per segment, left—, right— and u—turns and street type (such as road, highway,
freeway). The driver’s choice is interpreted as relation of preference between the vectors
describing those routes. The learning algorithm is a simplified variant of support vector
machines (c.f. [Fiechter and Rogers, 2000])*°: A so—called subjective function f(r) = w-r
models the preference relation by mapping 'better’ routes r described by the feature vec-
tors to smaller values than those describing 'bad’ routes. In other words, w is a user
model describing the user’s driving behavior by means of the features described above.
Once a route has been planned it seems desirable to be able to recommend restaurants as
well. Again, choice of restaurants depends on user’s preferences and the current context
consisting of location, time of day, day of week, history etc. The interactive PlaceAdvisor
tries to recommend suitable restaurants using spoken natural language dialogs (see the
publications [Thompson and Goker, 2000, Goker and Thompson, 2000b]).

2.3.3.3 Personal assistants

Starting with the Advisor recommender systems, there are many other personal assistants
which are enhanced by user modeling techniques.

First of all, one of the first systems in this context were that of Patti Maes; NewT,
a user adaptive news filtering and presentation system, [Maes and Sheth, 1993] which
already learned from examples, might be the best known of the early systems. Today,
the community of all personal agents has grown to an immense number that cannot be
surveyed any more.

Personal agents do not have to be bound to the desktop: Within the HIPS and Hippie
(c.f. [Specht and Kobsa, 1999, Oppermann and Specht, 1999]) projects, handhelds are
used to guide a user through museum exhibitions. The guide can be adaptive but is not
a fully functional adaptive guide yet. More emphasis is put on the adaptive behavior in
the READY project, which simulates an adaptive guide on an airport. This scenario, as
described in [Berthold and Jameson, 1999], deals with all trapdoors and tripwires that
were discussed in section 5.

30Previous versions used a perceptron for learning the target function, [Rogers et al., 1999].
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INDUCING CONCEPTUAL
USER MODELS

In this part, we describe our approach of conceptual
user modeling.

In a first chapter, we give a ‘virtual tour’ through the
OYSTER system which illucidates the idea behind
conceptual user models through a user—centered view
on our approach.

In the following chapter, we define the core concepts
behind conceptual user modeling which is based on
our formalization of user modeling problems from the
first part. We then focus on the user model induction
task.

The last chapter of part two presents results
from our evaluation and gives a short description
of possible improvements and how the obtained
user models can be used for document filtering.
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Chapter 3

THE META SEARCH ENGINE
OYSTER

From the user’s viewpoint, OySTER is a meta search engine. One can submit a search
query which is forwarded to other search services and results are ranked and integrated
into one single result page. In the first part of this chapter we give a brief overview about
search engines on the web. After that, we describe the very high idea of how OySTER,
as a user adaptive meta search engine, helps to overcome the drawbacks of a standard
search engine. The following section provides a short tour through the current meta
search system from a user’s viewpoint and the fourth section discusses enhancements that
have to be made so that the current OySTER system actually meets the requirements
as described in the second section. In the last section of this chapter, we describe the
internals of the system.

3.1 Searching the web

In 1990, Tim Berners-Lee invented the world wide web during his work at CERN. One
year later the first web browser, Mosaic, was released. In 1994, the web traffic on the
first web server ever, was already a thousand times higher than at the beginning. In
the same year, David Filo and Jerry Yang started creating a manually edited web index
for interesting web sites from their own bookmarks. Filo and Yang called themselves
‘yahoos’ since they dared to start such a hopeless project. At this time, the number of
sites (that means hosts) in the Www was about 2,700 with 13.5% being commercial
sites.

Only two years later, in 1996, the number of sites had reached the magic 100,000 with
the proportion of fifty percent being commercial sites.

In November 2000, a company named Yahoo! employs 150 editors which maintain over
one million links to web pages. The number of sites has reached a million with the
majority of providers being commercial sites. At the same time, the largest search engine
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for the world wide web, GOOGLE, has indexed 1,247,000,000 web pages.! Without search
services or catalogs, it is impossible to find relevant information on the world wide web.

3.1.1 Search engines

Search engines do not search the web online. The web is scanned and documents are
indexed and stored in a local database. On these databases the search is carried out.
This suggests a generic architecture as shown in figure 3.1.

Bots

el

€]

Search
interface

| »

Ay

,/ response
i
query| !

Figure 3.1: A generic search engine

Indexing the Www. Given all the data a robot has collected, the Www database needs
to be indexed in order to allow for an efficient search. For each document found, several
data can be used for indexing:

1. Word occurrence, word frequency, n-grams, phrases
2. Domain and language

3. Text Category

The third property seems to be used infrequently (an exception is NorthernLight), whereas
the other two are regarded as almost obligatory. Sadly, none of the search engines reveal
their secret of indexing—since it is their key to precision.

IStatistical data taken from http://www.searchenginewatch.com/ and http://www.mit.edu/
people/mkgray/net/.
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Word occurrence and frequency are mostly determined using derivatives of the TFIDF
measure on stemmed snippets of the document. HTML tags are sometimes used to give
a better ‘significance score’ for keywords. The same method applies to phrases or n—
grams. Another add-on are META tags. They provide a list of keywords, an abstract and
authoring information for some documents.?* The so-derived keywords are used as keys
in the index database and the current document URL is added or updated.

This mechanism needs not be automated; one of the most popular search engines which
also provides a fully browsable theme index does all the indexing manually: Yahoo.

It is worth mentioning that one of the most recent and most popular search engines,
Google, uses a completely different method for indexing and computing a document’s
relevance: Instead of viewing a document as an entity of its own, cross references from
other documents are taken into account. All matching pages are collected in a set r. To
each document d; € r a value is attached which describes the number of links from other
documents d; € r to d;. Thus, pages which are referred to often by other documents
that match the search query receive a higher score.

Searching the index.* When a client u seeks information, a query ¢ submitted by u to a
search engine involves key words or key phrases which the user thinks precisely describe
his interests. Query formulation is a crucial quality argument; since most common search
engines are not user adaptive, the user has to have a certain idea about the expected
result and how the desired result can be achieved by chosing the words he thinks will
yield the best match based on the search engine’s internal indexing methods. Only
few users spend much cognitive effort on this ‘guess’; a search query usually consists of
two or three words only (see below). An alternative is the search service provided by
AskJeeves which accepts complete natural language queries.®* Nevertheless, such queries
are neither parsed nor refined by synonyms or user dependent information. AskJeeves
rather performs a more elaborate stop word filtering which also includes query phrases
like Where can I find.... Google uses the same technique to eliminate common words and
furthermore tries to recognize phrases or other structural properties of queries. As an
example, search strings that resemble addresses are forwarded to the Yahoo map service.
Search queries on the intranet of the University of California, Berkely, collected over a
period of four months in 1997 revealed an average query length of 1.8 words. Considering
search queries for the whole world wide web, the top ten search queries posted to Google
have an average length of 1.4 words only (data as of October 2001). Counting fix phrases
such as names or products like Microsoft Works as single words, the average drops down

2Using data from META tags is prone to noise, since many web authors try to cheat web indexes in
order to gain more web traffic on their web pages. As a consequence, many web pages contain faked
content descriptions. This phenomenon wich is only likely to be observed in rather dubious communities
is referred to as pollution.

3as of December, 2000.
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to 1.1 words per query.**

A query ¢ is processed by the interface (like removal of stop words) and the result
I,(q) is handed over to a database retrieval system. The corresponding result r =
L.(m({d, f,v),)) of the database query is then transformed back into the search query
result page.

Some search engines allow for a minimal configuration by defining a profile that deter-
mines presentation or search scope. In general, modern search engines like AltaVista,
NorthernLight or Google deliver sufficiently good results provided there is a good query.
Subjective precision of the results can be dramatically increased using meta search en-
gines like the MetaCrawler since multiple occurrences of search results are ranked as better
(more precise) results (the MetaCrawler is described in [Selberg and Etzioni, 1995]).

A short note on the revised version.* The last paragraph reflects the intention behind
building a user adaptive search engine that increases search results as it was in 1998 when
the work on the OySTER prototype was started. Also in 1998, Google, a former research
project at Stanford university, became a public search service. It soon stripped out
the then—market leaders AltaVista and Inktomi (see figure 2.6). Meanwhile, with recent
advances in web crawling, indexing techniques and a massive increase of computational
power®*, ‘traditional’, index based search services like Google offer an incredible coverage
of web documents, a stunning precision and even more features like, e.g., document text
classification with respect to the largest ontology (the dmoz-project) at an impressive
speed.

3.1.2 The very high idea behind OySTER

First of all, we tried to increase subjective precision by the simple method of meta
search. A meta search engine does not create its own index of the Www but forwards
the search request to other search engines and then aggregates results. The idea is as
follows: Utilizing several search services s;, we receive responses rs, which build the union
r =, rs;- Now, since r D 7y, and |r| > |r;, N 7|, we gain a better recall but we need
to break down r in order to increase precision. Increasing precision by means of user
adaption is the main goal of OySTER.

41t is a sobering fact, that observations like these are not always taken into account when evaluating
new methods for user adaptive interfaces. In one article for which we deliberately do not want to give
a reference, it is stated that: [...] The average length of queries was 2.30 words. Users averaged 1.31
distinct informational goals per day, and performed 3.27 queries per goal. In this article, a method is
presented that predicts interactive steps (refinement strategies) on an ontology of 15 categories using
Bayesian networks. An evaluation—no matter what kind of evaluation model or assumptions—is not
carried out at all.

5Google uses the world’s largest Linux cluster consisting of 10,000 servers for indexing web documents,
archived Usenet news and PDF documents.



3.1. SEARCHING THE WEB 69

The second idea was to make the search process user adaptive; i.e. I has to be param-
eterized by the user u. Furthermore, the idea was to overcome the lack of opaque user
models, where a description of i, consists of a large word vector. We have already stated,
that in the domain of information retrieval from the Www several quality measures from
all contributing disciplines are often mixed: user satisfaction is measured by acc, pre-
cision of A is approximated by some rcl, and so on. We wanted to draw a distinctive
borderline between the document, its components (i.e. words) and its content (that is, its
meaning). Of course, when modeling a user’s interest or a user’s information need, this
shall not be modeled by words but rather by concepts. Thus, the borderline is realized
by document classification with respect to an underlying ontology of document content
categories. Additionally, we crafted a concept hierarchy of document types which are
interpreted as sorts over categories: When searching for an individual homepage of a
researcher who works on machine learning and user modeling, a query g=homepage user
modeling machine learning is not adequate: the word homepage describes the type of
desired document, but not its content.

Now, given a set of appropriate classifiers, we do not take words into account any more
but instead work on conceptual descriptions of categories. In other words, each document
is described by a vector of conceptual descriptions, where each component is attached
a confidence value. It is a straightforward idea, to represent a user model in terms of
such categories as well: The user model M,, which shall approximate i,, is a conceptual
expression that is lucid and understandable. Basically, one might think of the conceptual
hierarchies as trees, where the user model consists of tagged subtrees. As soon as a new
document is classified into such subtrees, it is assumed that the document is interesting.
This approach also enabled us to clearly define a learning problem for conceptual de-
scriptions with a given feedback sample f derived from feedback F(m,1i,), where:

e the characteristic function of the user’s interest, i, corresponds to the learning
target t,

e the feedback sample f to a machine learning sample s and

e the feedback function together with a sample enlargement function I' corresponds
to the sampling function S(m,t).
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3.2 Searching the web with OySTER

In this section we describe the realization of the idea presented in the last paragraph. We
first give an illustrative tour from the user’s viewpoint and then describe the internals
of the system.

3.2.1 Preliminary remarks

Ordinary search engines present results to the user which are ordered by ‘statistical
relevance’. This relevance measure is not visible to the user. It is not visible to the
public either, since its quality pays off in terms of user satisfaction and thus, turnover.
One can state though, that those measures are based on phrase occurences.

The OySTER approach is different. We will illucidate the idea behind our approach by
a simple metaphor in the next section.

3.2.1.1 Looking for a book in a library

Imagine, you were looking for a book dealing with a certain topic in a library, but you do
not know whether there exists such a book (or a whole set of them) or not. Accordingly,
you do not have knowledge about the title, the author or other bibliographic information.
The usual procedure in such a case is to ask an expert. In other words, one requests a
book about a certain topic from a librarian.

In this metaphor, librarians who work like current index based search engines would have
read every book in the library. They have collected all statistically relevant phrases they
have encountered while reading every single book, and for each book they know, which
phrases occur at which frequency. In order to satisfy your search request, they quickly
write a list of book titles ordered by the frequency of occurence of the words that were
contained in your query. This list will be pretty long, and the results will be pretty bad
for ‘vague’ queries (e.g. if they contain ambigous words).

Librarians who work like OySTER work completely different. For each book, they ask
an expert to classify the book by its content with respect to a taxonomy. The taxonomy
is realized by a huge archive where books are stored in shelves ordered by their content.
Books with multiple topics or books that cannot be classified into one single place are
copied—and each copy is printed in different shades of grey representing the relevance
of the shelf for the book. When you request a book by the same question you asked the
other librarian, interesting things happen:

First, the librarian asks ten other librarians (Al Tavista, E. Xi-Te, G. O’Ogle, and so
on) in different libraries who work the way we have decribed above. The librarian then
collects all the lists, compares them and strikes out all multiple occurences and reorders
the list by aggregating the preorders. He immediatly gives a copy of the list to you, and
asks you to wait until he gets more detailed information.



3.2. SEARCHING THE WEB WITH OYSTER 71

Then, for each book on the list, the librarian asks the classification expert, what an
appropriate location for the book in this library would be. The classifying expert checks
whether he already knows the book and, if so, informs the librarian. If the expert has
never seen the book before, he quickly reads it, makes copies and stores them in the
shelves and reports the location back to the librarian.

The librarian now knows the location for each book, although he does not know the book
itself, nor what the book actually is about. You, as a customer, have an understanding
of the taxonomy of books. Therefore, the librarian’s information about a book location
means to you information about the content of that book.

Nevertheless, it might be the case, that you find same books in some shelves that are not
interesting with respect to your initial request. Since you are a friendly customer, you
go back to the librarian after you have flipped through a few books from some shelves
and tell the librarian which books you liked and which not.

Now, the librarian becomes active (so far he has delegated all work to others: classifying
experts and other librarians): He tries to find out, what is interesting for you. He does
so, by taking a map of the library and marking all shelves with a green dot for each book
you liked from this helf. Books you did not like appear as red dots on his map.

Next time you visit the library, the librarian has a certain impression of your interest: he
knows your preference of shelves—which to you means your interest. Again, you request
a book from the librarian. The librarian proceeds exactly as the last time—until he
receives the classification results from his colleague. Then, he presents those books to
you, which belong to shelves which have the most green dots and the least red dots. The
order of books is determined by the librarian’s idea of whether the book classifies into a
shelf (or near to a shelf) which best fits his impression of the best ‘green shelf’. To you,
it means that the librarian has tried to learn a description of your interest in terms of
the taxonomy.

Provided the taxonomy is broad enough to cover all books and fine enough to distinguish
between different, but similar books and provided that you gave enough feedback, the
classifiers work reliable and the librarian is pretty good in guessing what the ‘ideal green
shelf” would look like, you will be presented the most interesting book first.

3.2.1.2 Looking for a document in the web

OySTER is divided into several parts which correspond to the staff and tasks from the
example in the last section.

First of all, it has to be said that documents are classified into so—called categories by
their content. Additionally, OySTER tries to classify documents by their type as well
(homepages, publications, ...). Both types and categories are arranged in independent
taxonomies. These categories and types and the subsumption relation for the taxonomies
establish the vocabulary by which the user interest is described and by which documents
are represented.
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Taking into account user feedback which describes relevance of documents to the user’s
interest, OySTER tries to induce a user model which describes the interest by conceptual
expressions. Conceptual expressions consist of document categories (describing the con-
tent of the document) and document types. The user model can be used to filter search
results by proving relevance of documents with respect to those conceptual expressions.

3.2.2 A brief overview of OySTER

Initially, OySTER needs to collect data about the user in order to induce a first user
model. This can be accomplished by scanning the user’s homepage which is treated as
a simple web document that has to be classified with respect to our document category
hierarchy (c.f. [Clodo et al., 2000]) but currently is not included in the prototype. Thus
we need another method for gaining a first impression of the user’s interest.

Users are rarely interested in only a single topic but rather have a broader field of
interests that can be described by a set of interest aspects. Aspects represent distinct
topics of interest; together they form the whole user interest. In contrast to similar
approaches, aspects are not used to discriminate between short—term and long—term
interest (c.f. [Billsus and Pazzani, 1999]) but to represent the whole interest as sets of
rather disjoint sub topics of interest.” Since our user models are conceptual descriptions
with respect to a category hierarchy, those models can be visualized very easily and allow
for a understandable presentation and a manual editing process. As an example, see the
user model for the user MuBert in the upper part of figure 3.2. It shows four different
interest aspects (which are interpreted as a disjunction). Each aspect is defined by up
to three types and categories. The first aspect and its definition is displayed in figure
in the lower part of figure 3.2. The natural interpretation of an aspect is a ‘meet’ over
the product lattice of document types and categories where each conjunct has a weight
attached.® In this metaphor, the whole user model corresponds to a ‘join’ operation on
all aspects. Actually, the interpretation of the data that can be used for user modeling
depends on the user modeling techniques one wants to realize within OySTER.

Now, this information can be used in order to carry out a search with more precise
results. After submitting a search request, the user receives a handle by which he may

6Note, that this assumption is not made within the user model learning problem. There, we will try
to learn user models from the scratch; that is by feedback only and without any prior knowldege.

TOf course, interest aspects may overlap. A paper on ‘machine learning for user modeling’ is both
relevant for machine learning and user modeling. However, the idea behind our approach is to make the
user create (or even to suggest to the user to create) a new interest aspect, which only includes such
documents. This way, the disjunction becomes an exclusive disjunction, or, the ‘rather disjoint’ sets
become strictly disjoint.

8The weights that can be added to categories here are not used for the user modeling process as
described later on, since evaluation is based on learning user models without prior knowldege. The
weights displayed here are intended to serve as a relative relevance measure for the filtering process.—
For a description of the lattices of document types and categories, see appendix.
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A user model consists of different aspects:

User MuBert (52)

Interest aspects:

1.

il

Edit Interest

Conceptual User Models edit
O peebication top.science .computer_science.artificial_intelligence knovrdedge_representation (40}
O pebiicadion top.science .computer_science.artificial_intelligence.machine_learming.symbolic (20}
O pebaicadion top.science .computer_science.artificial_intelligence.user_modeling (40}

Low Level UM Reserach groups gdit
O wirtwal grode top.science . cognitive_science (40)
O vitwalgrogy top.science .computer_science.artificial_intelligence.user_modeling (50)
O witwad groge top.science.computer_science.applied_cs (10)

ILP Systems edit
O “fop” top.science .computer_science.artificial_intelligence.machine_leaming.symbolic (100)
o top ()
0 top (0]

ML 4 UM Res. Paper edit
O prbiicalion resesrcipsper 10p.science.computer_science.artificial_intelligence.machine_leaming (500
O pubficalion researcipaper top.science.computer_science.artificial_intelligence.user_modeling (50}
O fop” top (0)

. Define a new aspect

Each aspect is defined in terms of the taxonomy:

aspect Conceptual User Models.

To delete a conjunct, set its weight to 0. All weights must sum up to 100, Mo more than 3 conjuncts allowed.

Mame: |onceptnal vser models

1

top. publication =1 I top science computer_science artificial_inteligence knowledae_representation =1 | -E25
top.publicafion researchpaper = I top science computer_science artificial_inteligence.machine _learning.symiolic =} | |ER
top.publicafion researchpaper — I top.science computer_science artificial_intelligence user_modeling = | _ZEBU

Submit Queryl

Figure 3.2: A user model for user MuBert
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request search results. The reason for this method is to allow for an any—time behavior
of the search engine: The user receives the ‘best’ result at any time, independent of the
states of the responding search engines or the classifiers of the search results.

Your search (233947) far "machine leaming" "user modeling” delivered 83 results so far

7 outof 11 Responding Senvers : Alfa Vist (18 Gooale (20) HotBot (30) Looksmart (30) MorthernLiaht (33) WebCrawler (56) Yshoo [57) . Response Hits: 254

Displapatmost &l | results withatleast 1 | pearls. Sortby Statistical Relevance = | A show Result Stats 4 Show LuckwHit | Change ’—
Hew Search

Use result number restriction only for sorting by statistical relevancel
Please read the news.

7. »»nn®» David W. Aha: Machine Learing Page

Type: [top reference peoplelist] Category: ftop.sciznce computer_scisnce artificial_inteligence maching_learning] » Edit classification info
Etowse this categon

2 »unwn» UM37 Workshop ML for UM

Type: [top.unknown] Category: [top . science computer _science artificial_inteligence. machine_learning] » Edit classification info
EBrowse this category

2 =enn CLIKI - CogSci: 7.202 Machine Leaming for User Modeling

Type: [top publication lecture] Category: [top.scisnce computer_science artificial_inteligence] » Edit classification info
Browse this categors

4 »epnn® CfP: W'l]ﬂ(shl]l! on Machine Leamin!g in User Mndelin!g

Type: [top virtual.conference] Category: [bop.scisnce computer_science artificial_inteligence machine_learning] = Edit classification info
Etowse this categon

Note, that only one category with the highest confidence is displayed in the search result.

Y

Figure 3.3: Search result for "machine learning” ”user modeling”

After a while more results have been gathered and information from the local database
has been added to some of the already known URLs. To receive a search result with
nearly completely classified references as in figure 3.3 it may take up to an hour or more
depending on whether the collected results were known to the local database or not.
Thus, it seems more reasonable to mail the search results to the client instead of forcing
him to call back frequently. After all the results have been classified it is reasonable to
sort results by their document categories.

The effect of clustering the results by document categories reveals one big advantage
of using OySTER: Instead of using query key phrases only, the documents are classified
and thus allow for disambiguation of homonyms. This property becomes especially
important in the context of user adaptive information filtering, where results that belong
to uninteresting classes can be filtered. As an example, consider a single word query for
decompression. The upper part of figure 3.4 shows a few results that were classified as
documents relating to file decompression while the same query also delivered results for
decompression sickness as displayed below. Finally, OySTER asks the user for feedback
regarding a selected search result with respect to all of his interest aspects (figure 3.5).
The simple click action can also be interpreted as a ‘luke warm’ feedback for the aspect
which fits the category best.
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7. =»

2 muw

3=

4 nun
7.
22
23
24
25

decompression as in file decompression:

Rice University Decompression WHilities

Type: [top.unknown] Category: [top science computer_science operating_systems.unix] = Edit classification info

Erowse this category
Decompression

Type: [topunknown] Category: [top science computer_science operating_systems . unix] » Edit classification info

Eirowse this category
Tex

Type: [topvirtual] Category: [top.science .computer _science operating_systems unix] » Edit classification info
Erowse this category

Aaddin Systems - Stuffit Expander file decompression freeware

Type: [top.unknown] Category: [top science computer _science operating_systems dos] » Edit classification info
Erowse this category

decompression as in decompression sickness:

2w Hursing - Decompression lness

Type: [top unknown] Category: [fop.rec sports weter ssuba_diving medical des] = Edt elasaification info
Erowss thiz categore

LT Deep Decompression Stops

Type: [top Upkbown| Category: [op Fec sports water scuba_dbing medical dis] » Edt dassifcation nio
Eirowze s EB.‘Eﬁl][E

BN Effects of Increased Dissolved Nilrogen From Scuba Diving: ...
Tupe: [top unkbown] Categaory: [Fop rec sports water scoba_diving medical dies] > Bt elassification info
Eruyese this cafeqory

»m Back Pain Relief Without Surgery

Type: [top virtual] Categary: [fop rec sports water acuka_diving medical des] + Edit dossification nfo
Eroweze this codegqary

S Decompression Routines

Type: [topunknown| Category: [fop.rec sports water scuba_diing medical des] » Ecit olagsification info
Eivowse this cafegory

Figure 3.4: Results for ambiguous queries: decompression
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OySTER Search result forward

hitp /jumuai.informatik.uni-essen.deffield_of UMUALhtml

Please come back to this page and check hese hoxes..
This result corresponds to my interests:

Conceptual User Models

Shot atall < o auiielll < Excelent!
Low Level Uk Reserach groups
Mot atalll < o] “uielll < Excellent]

ILP Zystems

whiiell!l < Excellent!

W
tAL 410k Bes, Paper
ot atall s v w el < Excellent!

Figure 3.5: Asking for feedback

Mot at all <

3.2.3 Enhancements

Query refinement. Having a certain model of the user in mind, consisting of user in-
terest aspects, this knowledge can easily be used to refine a user’s query. Suppose, a
user submits an ambiguous query like the one shown in figure 3.4. Since all of our cat-
egories are attached a set of key phrases which are used by the classifiers, we can use
those phrases to enlarge ¢q. Given, for example, interest aspects a; which are defined
over categories ¢;,, the query ¢ can be enlarged to |Jkeys(c; ;) U ¢ which is interpreted
as a large (weak) AND query by all other search engines. For many interest aspects this
method would generate a huge overhead of results that have to be filtered after retrieval,
such that a pre-filtered two stage query process seems more reasonable: First, ¢ is pro-
cessed as usual. In a second step, r is clustered with respect to the ontology. Grouper
(c.f. [Zamir and Etzioni, 1998, Etzioni and Zamir, 1999]) performs web document clus-
tering by applying suffix tree clustering on the documents.”

Instead of using the whole powerset we now only use key phrases of those aspects which
can be mapped onto the first n most reported categories.

Gathering feedback. The current version asks for relevance feedback concerning docu-
ments with respect to all interest aspects using a special form as shown in figure 3.5.
This form pops up on result selection and as such is a rather bothersome method for
acquiring explicit feedback. Instead of forcing the user to complete this questionnaire,
we plan to include another method for receiving user feedback which was first proposed
by the Slider interface, [Balabanovic, 1998]. The idea is to present the user interest as-

9The aim of this clustering method is to dynamically generate a search result, where similar (in terms
of words) documents are grouped together. Thus, clusters delivered by this algorithm are not related
to any underlying document category hierarchy.



3.2. SEARCHING THE WEB WITH OYSTER 7

pects as folders which contain interesting links. This bookmark metaphor allows for
re-organizing uninteresting or wrongly categorized messages by simple drag-and-drop
operations. Deletion, re-categorization or re-ordering can thus be interpreted as explicit
feedback. This method has been realized within the Bikini project!?, a student’s project
for user adaptive news classification which was carried out in the context of OySTER
(see [Braun et al., 2001]).

Wrapping. The task of implementing wrappers which extract relevant information from
a web page is a Sysiphus’ like work in our context: The web pages under consideration
are dynamically generated pages of search results from other search engines. Search
engines often change their HTML layout such that a static wrapping procedure has an
average lifetime of about three months only.

This has given rise to the development of automatic wrapper induction (see the PhD
thesis [Kushmerick, 1997]) for special domains (i.e. [Perkowitz et al., 1997]). Presently,
all wrappers used in the OySTER prototype are manually developed and perform a simple
pattern matching search in order to extract URLs, titles and ranks. A conservative
enhancement would be to include snippet extraction for fast keyword detection and the
extraction of score information for a better arithmetic over—all score computation. With
more utilized search engines being involved, wrapper design and maintenance cannot be
carried out manually. Search engine result pages offer a simple structure, from which
patterns can easily be learned by only a few examples. With a set of known results
(i.e. search requests, result URLs and URL titles) we also have an oracle which should
enable supervised learning.

In the course of the Bikini project a wrapper learning tool for newspages on the web has
been developed, [Braun et al., 2001]. The wrapper component consists of a generator
which generates wrapper descriptions for URLs and an interpreter which executes the
wrapper description files and actually extracts information from those URLs. URLs
(submitted by a user as a resource for news pages) are cached until two different versions
of the same URL are known. Then, the source code of both document versions is parsed
and represented as HTML trees. In a next step, differing nodes or subtrees are analyzed.
The problem of extracting URLs for single news from a page that offers a list of links
to several recent news documents is relatively simple: Most of the news offered by the
news server will make use of common URL prefixes. Different methods and a strong bias
realized by several well-motivated heuristics are used to search for the most probable
prefix.

Generating wrappers for the actual news text is a bit more sophisticated, but since there
are only two (unique, distinct and continuous) units of information to be extracted,
the problem is feasible: Starting with an HTML parse of a pair of documents from the
list of URLs, text differences in similar layout environments are searched. If such tag

0C.f. http://www.cl-ki.uni-osnabrueck.de/ bikini.
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environments have been found and proved on a set of URLs, they are stored as wrapper
descriptions that are executed by the wrapper interpreter.

As a fallback solution two robust default wrappers have been implemented. The first one
simply returns the HTML title tag as news title and the heuristically best rated part of
text from the body as the news text. The second default wrapper is a bit more elaborate
and takes into account considerations such as non—tabular formatting of the news body,
precedence relations of title and text, font size and so on. Clearly, this rather ad-hoc
defined method is condemned to fail in several cases as for example in the presence of
cascading style sheets—but it offers a neat basis for further development of wrapper
induction. Another alternative is that presented in the approach HYQL, a hypertext
query language developed at the DFKkI, [Bauer et al., 1999].

With growing demands by incorporating more sophisticated services, an ILP based ap-
proach for learning grammars looks interesting (see [Huck et al., 1998] for a discussion
of pattern and grammar based wrapping, [Hammer et al., 1997] for a pattern extraction
from web resources and [Cohen, 1995] for an ILP approach to text categorization).

3.2.4 OySTER backstage

After the short virtual tour through the surface level of OySTER we now describe the
internal structure of the system. The search engine provides an ideal testbed for user
modeling techniques due to its implementation as a multi-agent system.

OySTER consists of three main components: A user model (database) server which
provides history and feedback information, a URL database server which provides classi-
fications of URLs and a blackboard server. All components communicate using a special
protocol language by way of the blackboard.

Meta search functionality. A search query is added on the blackboard by a CGI agent
which returns a handle to the client. The query is decomposed into a list of queries that
are submitted to a set of search engines by another agent. Results are gathered and
written into a cache database by wrapper agents. Then, the cache database and URL
are updated against each other and additional data is added by classifier agents. Results
can be requested using the handle and are presented by another CGI agent.

Any of these agents can be substituted by variants while the system is running; fur-
thermore multiple instances of those agents can be started on different machines. This
way, we can handle families of agents where different agents of the same functionality
co—operate or compete for the benefit of optimal results. A brief sketch of the OySTER
system architecture is depicted in figure 3.6—a detailed description can be found in the
appendices.
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User modeling. OySTER is a useful tool to generate and collect interesting data about
users. Currently, we can collect user histories including search queries and result queries,
traces with a proxy add-on, reliable explicit feedback given by categorization of results
with respect to interest aspects and vague explicit feedback by detecting simple URL
selection. The domain for user interests is described by two concept hierarchies: one for
document types and one for document categories (see appendix). Both hierarchies are
stored in a database and are accessible through web interfaces which allow for an easy
adaption of the hierarchies. Classifiers for those hierarchies were partially developed in
the course of the Bikini project (for a description of the document type classifiers see
[Heifling, 1999] and [Heifling, 2000]).

User data and domain knowledge can then be used to both induce and explicitly construct

user models using appropriate agents.
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Figure 3.6: Inside OySTER.
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OySTER is a workbench which can easily be used for the empirical evaluation of user
modeling techniques rather than a fully functional meta search web engine. Usage of
OySTER is guaranteed by the implementation of the system as a set of individual agents
and agent families which both co-operate and compete. Any of the involved agents can be
easily replaced, modified or relocated during runtime; similarly the system functionality
can be expanded by simply adding new agents.

In its current version, the workbench is used for inducing conceptual user models which
is in the focus of our current research work. Implementational issues of the underlying
multi agent system are described in the appendix (see also [Miiller, 1999]).

The underlying techniques used for user modeling and machine learning are described
in the next chapter.
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3.3 Related work

Search engines, information retrieval as well as user adaptive information filtering and
recommendation have become research areas of growing interest. This is exemplified by
the multitude of different services, projects and systems that are under construction,
already available on the web or currently being planned or developed. Nevertheless, the
roots can be easily identified: The emergence of the world wide web has emphasized
the need for more sophisticated retrieval methods since the early 90’s. From the 70’s
onwards two distinct research communities worked on user adaptive interfaces in the
domain of information systems: Information retrieval and user modeling. A recently
published concise book which covers exactly the intersection of these two aspects with
the world wide web is [Belew, 2000].

Nevertheless, there are too many systems that deal with machine learning based user
modeling in the Www domain for us to list them all. Thus, we only give a very brief
overview which is by no means complete.

3.3.1 Search

Manually edited catalogs were soon outstripped by search engines with crawlers that
helped to build web indices. AltaVista, which started in 1995, was among the top three
search engines (measured by number of indexed pages) until summer 2000. Competitors
were Inktomi and FastSearch (as well as Excite in 1997). In summer 1998, NorthernLight
entered the scene and was the search engine with the biggest index for a short period in
1999. Google, starting in 1998 as a research project, overtook AltaVista in late summer
2000 and has more than doubled its size since then.

Currently, as of June 2001, it seems that Google is the unchallenged search engine with
respect to index size, rating system and performance.!'* One competitor is NorthernLight
which includes a sophisticated document classification system. 2*

3.3.1.1 Meta search

Since search engine business is a hard business, search accuracy has to be put in relation
to time and computing power needed in order to determine a trade—off. Commercial

11 Although its actual index size is estimated to be something around 600 million (and thus twice as
big as AltaVista’s but not significantly bigger than FastSearch), the method of taking into account links
from indexed pages to unseen pages as well, doubles the index size.

12The trend observed in summer 2001 has continued. Google now (Spring 2002) claims to have indexed
around 1.3 billion documents, more than three times more than NorthernLight. It has also dramatically
improved its functionality including address search, image search and a directory. The speed is simply
stunning; a search for ‘user modeling’ yielded approximatley 949,000 results in 0.29 seconds. Precision
is very high (first hit being the UM Inc homepage) and many of the results are also known from the
web directory.
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search engines do not try to deliver the best results in terms of accuracy and coverage
but rather deliver the best result given a certain budget in order to guarantee a minimum
profit which is determined by expense spent on hardware (computing and bandwidth)
and income by commercial advertising.

Recall and precision of search engines can be enhanced by meta search engines. Fur-
thermore, the development of meta search engines allows for an easy specialization with
respect to the topic of documents. Currently, www.searchenginewatch.com lists 45 dif-
ferent generic (not specialized on certain topics) meta search engines.'®* The first meta
search engines were the MetaCrawler, now Go2Net, and SavvySearch. Another very well
known meta crawler is ProFusion. All abovementioned search services originally started
as research projects.

SavvySearch, [Howe and Dreilinger, 1997], offers an interesting option in querying search
facilities: While usual meta search engines forward the search query to a static set of
search services, SavvySearch builds a meta—index in order to rate search engines with
respect to queries. Then, only selected search engines will be asked and the search
engine quality for the current query is taken into account while ranking the aggregated
results.

The MetaCrawler technology was further enhanced by a clustering mechanism (Grouper)
to yield the HuskySearch engine which performs web document clustering on meta search
results by significant words using suffix trees, see [Zamir and Etzioni, 1998] and the
follow-up [Etzioni and Zamir, 1999]. Since it does not use any conceptual descriptions
or user models, but performs clustering on document phrases (with respect to stemming
and stop words), the delivered clusters often result in a ‘weird’ but still very helpful
organization of results.

3.3.1.2 Wrapper specialists

Finding Homepages. Ahoy! (c.f. [Shakes and Langheinrich, 1997]) is a homepage spe-
cialist. Upon input of a name (first name and last name) and optionally specifying
institution, region and e-mail, Ahoy! returns a list of links to homepages of the sought
person. Ahoy! utilizes heterogenous information sources as input: On the one hand, it
carries out a search on MetaCrawler using the NEAR search facility in order to ensure a
full name search that is invariant to first and last name ordering. Additionally, e-mail
services (WhoWhere) provide user names and a database of institutions (Yahoo) provides
server names. Results are aggregated and grouped by cross filtering, where the ranking of
each service is interpreted as one dimension in the search space. Incremental aggregation
thus means cutting a cube down to a plane, the plane down to a ray, and the ray—in the

13As of June, 2001. Current figures (February 2002) include 15 major generic search services, 11
further global search engines, and 6 collaboratively maintained directory based search engines (such as
dmoz). There are more than 30 news specialized search engines, 21 meta search engines, and over 180
topic specific search engines, not including more than 20 multimedia search services.
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ideal case—to one point. All references returned are grouped by their over-all quality
into “buckets”, where the quality is determined by the position of the document in the
search space. Herein, the dimension that is associated to the MetaCrawler is weighted
more significant as, e.g., the server name database, since the name of the person the user
looks for is assumed to be more important than the person’s location.!* High quality
buckets then include a list of promising candidates. On a test sample Ahoy! has a recall
of approximately 85% and a precision of approximately 75%.'> The recall is 9% percent
higher than that of MetaCrawler which is due to the fact, that Ahoy! tries to guess URLs
where there are none actually found. Several near misses including information about
institutions (as found by MetaCrawler through staff member lists, online publications etc)
deliver hints of where to find a homepage; for example www.isiv.uni-osnabrueck.de
and mir.cl-ki.uni-osnabrueck.de. Together with a query for some person named
Martin Miiller, Ahoy! successively tries to find homepages by guessing URLs by extend-
ing the server info by paths: Such candidates are: /"martin, /"mmueller, /“mmueller,
/"mm or /staff/M.Mueller.html and so on. The URL pattern generator derived 23,000
patterns for 6,000 institutions kept in a local DB by an offline-learning algorithm. Limi-
tations of Ahoy! are multiple (often “fan”) homepages (with a large set of responses from
MetaCrawler) or homepages of non—existent persons (a search request for Alan Turing
delivered 116 results).

Finding cheap bargains. The Shopbot seeks for Www catalogs. The Shopbot project
(c.f. [Perkowitz et al., 1997]) started as a research project at the university of Washington
and became a commercial service at Excite (http://www.jango.excite.com/).

It is specialized on several topics and according web resources. ShopBot aggregates
information from various resources and integrates them into one unifying layout. In
other words, ShopBot is a wrapper par excellence. Using a knowledge base concerning
query interfaces for different online shops, the ShopBot forwards the search query to the
resource services. From the responses, the information is extracted and then put into
the meta—search response document. Again, it is clear, that for a small change in Www
presentation the wrappers have to be redefined. The technical problem of wrapping in
information integration is discussed in detail in [Perkowitz et al., 1997]; the conclusion
was to make the process of wrapper design more comfortable. This resulted in automatic
wrapper induction, see [Kushmerick, 1997] and [Kushmerick and Doorenbos, 1997].

Both the Shopbot and Ahoy! are based on the MetaCrawler: The MetaCrawler is the

14Tt is clear, that here again we have to compare incomparable qualities; a dilemma that cannot be
resolved. But for this domain, the chosen preferences seem to be well founded (for the problem of
evaluation from heterogeneous information sources, see [Miiller, 1996]).

15The test sample was derived from David Aha’s page of machine learning researchers at http:
//www.aic.nrl.navy.mil/~aha/people.html. Precision here means: If the target was listed as first
link—if found at all—delivers a precision of 1. The value of 75% is the average precision over the sample.
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information aggregation component which is prior to further specialization or personal-
ization. From the scientific point of view, the ShopBot has a further ancestor, namely the
internet learning agent, ILA. This agent focused on learning interfaces (and wrappers)
instead of hard-wiring them. An overview of the whole family of softbots created at the
University of Washington is given in [Etzioni, 1997].

3.3.2 User adaptive filtering and recommendation

Some of the most popular systems are the previously mentioned WebWatcher and Syskill&
Webert systems. In section 2.3.3 we also gave a brief overview of the NewsDude system
and the InformationValet prototype.

Letitzia. One of the first web browsing assistants was Letitzia, [Lieberman, 1995]. The
system is a recommender system which tries to guess relevance of web pages based upon
observations. The user model is entirely made up of relevant key words. Therefore,
no additional effort needs to be put into modeling the user’s interest based upon a
background knowledge base. Recommendation is performed by making use of a set of
rather weak heuristics which together contribute to a picture of the user’s interest. The
heuristics take into account time spent on a page in relation to the document’s length,
following further links or navigating back. Since documents are usually read top down
and left to right, skipped links are also interpreted as uninteresting. In contrast to
many similar systems, Letitzia does not classify documents as interesting or irrelevant
but rather ranks the set of links available in the currently viewed document. From such
a preference ordering, relevant documents can be determined by a high ranking. If the
preference ordering is ‘dense’; i.e. all links are ranked similarly, there is no significant
‘most interesting’ link which should be recommended and the system remains silent in
the background. Due to its usage as an online browsing assistant, the system performs
a breadth first search in order to analyze the referenced documents.

Fab. In [Balabanovic and Shoham, 1997], the authors describe a system which by si-
multaneously applying content based and collaborative methods tries to overcome the
drawbacks of each approach by using the advantage of the other. Fab is a web page
recommender, which builds individual user models by means of content based user mod-
eling and compares those models to other user’s models thus performing collaborative
user modeling, too. On the one hand, this allows for derivation of group models and
can be used to prevent overfitting (thus eliminating the drawbacks of content based user
modeling)—on the other hand Fab is able to decide whether to recommend new items,
which have not been rated by other users, on the basis of its content (and thus overcomes
the weakness of collaborative approaches). Content based user modeling requires content
based indexing of the web pages on which recommendation will be performed. Once clas-
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sified and indexed, the pages can be recommended to users with similar, matching user
models (collaborative). Content based recommendation is based on relevance feedback
which the user gives explicitely rating the above recommended pages. There is already
an interesting variant of the idea of user interest aspects within Fab : Instead of a clear
distinction between several aspects, Fab adapts to different kinds of filtering components:
On the one hand, a set of so—called collection agents are adapted to both specialize in
topics as well as to cover the set of all web pages. This process is user independent.
On the other hand, user dependent filtering agents (which implement the individual,
content based user model) choose documents by choosing appropriate collection agents.
The underlying model again is based on the vector space model of word occurrences.

Slider. The Slider interface, [Balabanovic, 1998], is very similar to the OySTER ap-
proach. User models also consist of different aspects (here: topics) and actions per-
formed on incoming news are interpreted as implicit feedback (explicit feedback is not
asked for). In contrast to OySTER, documents and user models are represented using
word vectors. Elements of the vector are chosen canonically by stemming and TFIDF.
The user model is represented by a set of vectors; each vector representmg a topic. A
topic vector ¢ is updated by feedback-weighted document vectors d: t:=t+ A\d. The
user can perform several actions on the set of incoming news, these include: Creation
of new topics, moving news from one topic to another, reading a news item, deleting it,
explicitly rating it or deleting an entire topic. All these actions are mapped onto distinct
topic update functions with different, but fixed, A—values. Moving d from t¢; to t,, for
example, results in t =1t — A and ty = Ty + Ad. The actual weights are chosen in
relation to the reliability of performed actions: A NIL-action sets A = 0.25, reading sets
A = 0.5 and all other actions are described by an update value of A = 3.

Amalthaea. Amalthaea, [Moukas, 1996], is a very close relative of OySTER from the
implementational point of view. Although Amalthaea is keyword based, it consists of two
classes of agents, which—with respect to a user model—filter and discover information.
Discovery agents act as information retrieval components and are being optimized with
respect to their results according to the user model. Information filtering agents act on
user models and refine the models by using explicit feedback from the client.

Profile. Profile, [Simons, 1997], a project at Nijmegen University, deals with information
filtering on a dynamic archive. Queries are refined and extended with respect to the user
model and domain structure is represented in a hand crafted ontology, which corresponds
to C. Profile lies somewhere between Amalthaea (modulo missing ontology) and the
OntoBroker (modulo missing user modeling).
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Chapter 4
CONCEPTUAL USER MODELS

Conceptual user models contain conceptual knowledge about the user. In our case, we
want to describe a user’s interest. In contrast to word occurrences, (sequences of) inter-
action primitives or other direct evidence for user interaction, conceptual user models
contain a description of meaningful symbols representing concepts which can be used to
intensionally describe a complete set of observations. As an example, a conceptual user
model would contain knowledge about ‘Undo-Actions’ instead of a sequence of keystrokes
consisting of deletions, backspacing or mouse clicks on ‘Undo’ buttons.

In this section, we describe the concept lattice we use for describing a user’s interest
in the subdomain of web documents which deal with research publications and related
document types in the field of computer science. We also show, how to represent such
‘ontologies’ in the form of logic programs as a base for the following inductive processes.

4.1 Concepts as descriptions of a user’s interest

In ML4UM user models are often represented by n—ary vectors. Matches are then
determined by applying an appropriate measure in vector space. In the course of
content—based document recommendation, the vectors represent significance of “key”—
phrases for the user’s interest which is defined as the frequency of those phrases in
the documents the user has rated as interesting in the past. Vector length is re-
duced by extracting the most relevant phrases using TFIDF measures and the label-
ing of examples is achieved by relevance feedback which assigns target function values
to vectors, see [Billsus and Pazzani, 1999, Balabanovic, 1998, Billsus and Pazzani, 1997,
Joachims et al., 1997, Pazzani et al., 1996, Lieberman, 1995]. In order to decide whether
to recommend a document or not, the current document’s classification (i.e. the corre-
sponding vector) is compared to the user model vector.

Though the vectors represent a user’s interest, they do not explicitely describe a user’s
interest. This fact can be illustrated by a simple Gedanken experiment: Given a user
model consisting of such a word vector—what would be the system’s answer to the

87
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user’s questions ‘What is your model of my interests?’. Showing the vector to the user
is like answering ‘This is my representation of your interest’ but it is by no means
a description the user could easily understand. Thus, our motivation was to find a
transparent formalism which is accessible to every user and which allows for an easy
translation into the user’s ‘language’. Such a language could be the language of concept
hierarchies.

The idea behind using such category hierarchies is, that they will be used both for
representing documents as well as for representing user models. A pictorial view on the
question of whether a certain document is interesting for a user u with respect to the
underlying user model M,,, is shown in figure 4.1.

Our approach allows for a more lucid explanation in an entirely different problem as well.
In user adaptive systems, where user interest is defined by means of words, the borderline
between classification and recommendation is veiled. Thus, when measuring accuracy
(or rather precision in such cases) of the whole system it is not clear whether significance
of key words or the actual user modeling contributes to increasing performance. When
using conceptual user models, the accuracy of user models is determined by accuracy
measures on the machine learning problem exclusively; word frequencies are invisible to
the conceptual user model.

4.2 Concept hierarchies

Concept hierarchies are graphs, where nodes represent (atomic) concepts with a desig-
nated meaning and edges represent relations between those nodes. Here, we will only
discuss a simple subset of semantic networks: the graph needs to be directed and acyclic;
the direction is defined by the inverse of the only reflexive relation ‘superconcept’. In
other words, the concept hierarchies we are about to discuss are trees. Within OySTER
we use two such concept hierarchies: One for document types (7°) and one for document
content (categories, C).

4.2.1 Concept hierarchies as lattices

More formally, (7,L7) is a semi-lattice of document types ¢t € 7 with an ordering
relation J7 where ¢ 7 t' if and only if ¢ Lz ¢ = t. Similarly, C is a semi-lattice
of document categories ¢ with an ordering relation Jc where ¢ J¢ ¢ if and only if
clUe ¢ = c. We extend C by an artificial bottom element 1. and define ¢Me ¢ = L¢ for
any ¢, ¢ with cMdc ¢ {c,} to yield a lattice (C,U¢,Me). A lattice (7,U7,M7) can be
defined in the same way.

Given such concept hierarchies, a set of appropriate classifier algorithms Ac(d) and
A7 (d) which, for a document d, delivers a category ¢ and a type ¢, we can use to
describe documents by those classifications.
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Documents a and b are assigned a
unique class using the classification al-
gorithm A¢. Document c belongs to at
least two known classes.

C is also used to define a user model M,,
which consists of sets of classes the user
definitely is interested in and definitely
is not interested in.

Thus, the user is interested in docu-
ment b and not in document a. It can-
not be proven, that document ¢ belongs
to those documents, the user is not in-
terested in.

\—shaded nodes represent the user’s interest, while /-shaded nodes represent the user’s disinterest.
The arrows stand for document classifications. The checkmark represents positive user feedback; the

cross—checked (X) document was assigned negative feedback.

Figure 4.1: Using C for both document classification and user models

Document types are independent from document content.! Thus, we interpret 7 as sorts
over expressions in terms of C. In other words, the sorted term ¢ : ¢ with sort (i.e. type)
t € T and category ¢ € C denotes a concept that ‘contains’ any document for which
Ar(d) =t witht Ct and A¢(d) = ¢ with ¢ C ¢.

The concept hierarchies used in the system are described in the appendix.

4.2.2 Describing documents by concepts

Working on document contents instead of word vectors means that we need classifiers.
Definition or implementation of efficient and accurate classifiers is not the main focus
of this thesis. Nevertheless, we needed to implement classifiers for our special domain
since available concept hierarchies with appropriate classifiers were not suitable for our
project.

Choosing a concept hierarchy of document categories. The domain we had to choose had
to be a well defined and mostly self-contained set of documents. Thus, our decision was

'Here, ‘independent’ does not mean independent in the sense of probability theory.
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Figure 4.2: Gerhard: Using the UDC for document classification

to build our own small concept hierarchy which describes the field of artificial intelli-
gence and neighboring communities in the discipline of computer science. The OySTER
category hierarchy C is a handishly coded hybrid that emerged out of the universal dec-
imal classification (UDC), the Google web directory, the dmoz project? and—last but
not least—personal experience with classifying web documents. C could be adapted to
nearly any application domain, as long as all classes are initially described by a set of
phrases which are indispensable for reliable document classification. The initial idea
of incorporating already used ontologies failed due to unavailability, coarseness, incom-
pleteness or complexity reasons. For example, the UDC which was considered due to
the fact that we had existing classifiers at our disposal, offers the advantage of already
including syntactical means in order to describe new classes. The UDC has been used
within the German search index for scientific publications that was developed within
the course of the Gerhard system. The Gerhard project (c.f [Moller et al., 1999]) uses the
Ubc for the automated classification of documents.? Choosing the UDC as the category
ontology seems to be a more promising approach, since it offers three major advantages:
(1) it is much finer, (2) it includes a language for defining new concepts by way of ex-
isting ones using modifiers (where ‘c; modifies ¢;’ differs from ‘c; modifies ¢;”) and (3)
its concept names are generic (i.e. numeric) such that newly invented concepts can be
named in a proper way. As an example of using the UDC, see figure 4.2 for a screenshot
from a Gerhard search result. On the other hand, the UDC inherited many properties
of the Dbc?, which means that some included knowledge structures dating back to the

2See http://www.dmoz.org/about/.
3For documentation, see http://www.gerhard.de/info/index_en.html.
4Dewey Decimal Classification; see, e.g. http://www.oclc.org/fp/.
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last century. Furthermore, the UDC is simply too big: More than 60,000 classes (as in
the ETHZ version) organized in almost arbitrarily deeply nested paths describe nearly
any topic in great detail. But since concepts can be defined by asymmetric modification
relations and lattice operations, it is almost impossible to find a self contained subset
of the Upc. The long tradition behind the UDC also induces several problems: com-
puter science and its sub-discipline artificial intelligence has the superconcept electrical
engineering. This means, in consequence, that in our naive reading of such a hierarchy
either computational learning theory is a part of electrical engineering or that contribu-
tions to learning theory force implications on electrical engineering—which is at least a
questionable proposition.

On the other hand, the Google directory turned out to be too coarse in the required
substructure while the dmoz project yielded an ontology which almost reaches UDC’s
complexity. Another candidate, the classification system of the University of Osnabriick’s
library, which also provided annotated keywords and classifiers as implemented in the
course of the Osiris project (c.f. [Ronthaler, 1998]) was also too coarse and does not allow
for the invention of new classes.

Thus we decided to design a small category hierarchy that best met our needs and
which united the benefits of the aforementioned classification systems by pruning their
drawbacks. The resulting ontology consists of 69 classes with a maximum depth of 5. It
is described in the appendix.

Defining suitable classifiers. Since we crafted our own hierarchy of concepts we also
needed to implement our own classifier. Here, substantial work was carried out in the
Bikini project. The classifiers used are based on a vector space model. Each concept
is represented by a word vector which is compared to the document’s word vector.
The phrases contained within the category vectors were determined by a bootstrapping
method: For each concept we defined a small number of relevant keywords which were
used to generate a set of queries to several search engines (including OySTER itself). The
documents received for each query were concatenated to yield single documents on which
relevant phrases were extracted using a TFIDF method. The resulting phrases were han-
dishly postprocessed. Now, given category description vectors ¢ and word vectors d of
documents d, the document is classified by a simple similarity measure:

T Zci'di

Herein, 9, is a c—specific bias determined by checking pre—classified documents against
¢. The classifiers are described in detail in [Braun et al., 2001, Eilert et al., 2001].

Document types. Similarly we developed a hierarchy of document types which roughly
can be divided into homepages, research articles and lecture material. Document or
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text types are discussed within computational linguistics but are rather unknown in the
domain of text classification for user—centered document retrieval.’

Currently, the classification of documents with respect to their types is carried out using
a simple regular expression match on the URL of the document only. The motivation
behind this approach was to provide the search engine with a fast classifier that returns
preliminary classification results until a deeper investigation of the document delivers
a more accurate result. This has been discussed in [Heifling, 2000]. Document type
classifiers of sufficient accuracy need to take document structure and word or phrase
analysis into account.

The hierarchy of document types contains 35 classes with a maximum tree depth of 4.
The type hierarchy is described in the appendix.

Representing documents. Using our classifiers Az and A7 we represent a document d
by a pair of document classifications:

(4.2) Arye(d) = (Ar(d),Ac(d)) =t :C=(t:p,{c1::p1,Co P2y vy Cp 2 Pp))

where t is the document’s type and p the confidence of the classification and ¢; are
categories with decreasing values of confidence p;. Currently, n is limited to 3 in order
to achieve a stronger bias on the learning task.

4.2.3 Describing user models by concepts

As already mentioned above and illustrated in figure 4.1, the same category hierarchies 7
and C are used to represent the model of a user’s interest. Instead of representing a user’s
interest by a set of word vectors which are used to determine relevance of documents by
use of vector space operations such as cosine measures, the user interest is expressed in
terms of document contents that are described by categories and types. Furthermore,
a user model consists of several aspects as pointed out in section 40. This means, that
a user model is represented as a set of conceptual descriptions which are interpreted as
weighted meets over atomic concepts. One such aspect is depicted in the lower part of
figure 3.2. This aspect is interpreted as:

A document d is considered relevant with respect to the aspect Conceptual
User Models if d is classified as:

5 Although text types like ‘newspaper article’, ‘obituary’ or ‘poem’ are widely accepted, the ‘new’
document types that emerged with the Www have not been discussed to a satisfying extent which
would allow for a reference here. Researchers agree that there are text types like ‘homepage’ but it is
still argued whether those types are already known types which have been adapted to new media (in
this case: ‘application’ or ‘curriculum vitae’) or whether they are genuine types. Either way, to the
author’s knowledge there is no published work which focuses precisely on this topic and which tries to
give a list or hierarchy of known document types.



4.2. CONCEPT HIERARCHIES 93

1. a publication about knowledge representation with a confidence of at
least 40 and

2. a publication about symbolic machine learning with a confidence of at
least 20 and

3. a publication about user modeling with a confidence of at least 40,

Thus, a user model is a conceptual description of the form
(4.3) |_| Mt cip)y,.

In other words, it is a set of Horn clauses C;, whose premises are conjunctions of literals
Li; = (t :: ¢ p)s;. Relevance with respect to an aspect ¢ thus means that all literals L,
are satisfiable.®

4.2.4 The meaning of inheritance

Dealing with concept hierarchies always poses an important question: what does inher-
itance mean? At the beginning of this section we stated that ¢ J¢ ¢ means that ¢ is a
superconcept of ¢’. In the context of real ontologies, the inverse C¢ is usually read as
is_a. Here, the ordering relation actually has two readings:

For representing documents, a nalve interpretation would imply that a document about ¢/
is also about c¢. This only holds to a certain degree, of course. In our case, also_is_about
is realized by taking into account costs that are attached to the edges defined by M.
Roughly, content similarity decreases the closer we get to the top element of the lattice.
Vice versa, it is not the case, that a document about ¢ also covers the topic ¢. In
consequence, one would have to represent the concept hierarchies as a flat hierarchy,
thus losing any inheritance information which is not desirable either.

Regarding the user interest, inheritance or rather implication cannot be defined clearly
as well. Interest in ¢ does not necessarily imply interest in ¢ though it is a kind of
supporting evidence. The dual case does not hold either.

In consequence, we define edge costs and a distance measure on C which reflects the most
important properties of a concept hierarchy.

1. The higher an edge is located in the tree, the higher the cost. The reason for this
is, that the class similarity increases the closer one gets to the leaves.

2. Long paths consisting of more edges are more expensive than short ones.

6 Actually, each aspect again may consist of a set of clauses. This will be motivated and discussed
later on; for clarifying the general idea behind our approach the simplified description given here is
sufficient and more suitable. See section 4.3.
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3. Costs of paths of equal length are correlated to the cost of their highest edge.
To achieve this we first need to extend the definition of J:

Definition 4.1 (Path subsumption, n 3% m) We extend the notion of subsumption
in a lattice by computing the minimum path length p from a node n to m. We write

1. n 32 n for any node n.
2. n Jp m iff:
(a) n#m
(b) n Jem
(¢) n dem andn Je | e m impliesn =1V 1 =m.
3. nggﬂ m iff n 351 and 1 33 m.
This way, 3% calculates path length.

Since our approach for computing distances on the hierarchies will be a cost—based
traversing algorithm, we define costs of a link as follows:

Definition 4.2 (Cost annotation in C, cost) For two nodes n,m with n J; m the
cost attached to the edge is

(4.4) cost(n, m) = cost(m,n) = adep(C) —p(m,n)
where p(m, n) = min{p|T Iz m, T 3¢ n} and dep(C) = max{l|T It ¢ for all ¢ € C}.

For our work a value of & = 1.5 has been proved to deliver satisfying results. Using cost,
we can now penalize edges according to our requirements mentioned previously. Next,
we need to define path costs. Since generalization shall be more expensive than spe-
cialization we need to define two different measures. The cost down(m, n) for traversing
the tree from m strictly downwards to n is defined as the sum of costs of all edges that
establish the path from m to n:

Definition 4.3 (Downward path cost, down) Let z; 3¢ -+ 3¢ @, Then,

n—1
(4.5) down(z1, x,) = Z cost(z;, xi11)
i=1

Note, that specialization becomes cheaper as we get nearer to the leaves. Though interest
in ¢ implies interest in some ¢ with ¢ J¢ ¢, ¢ is a less precise description of interest.
Thus, generalizing paths are additionally penalized by their length:
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Definition 4.4 (Upward path cost, up) Again, let x; 35 x,. Then,
(4.6) up(zy, x1) = logy(p + 1)down(zy, ;)

Now, we can define an asymmetric distance measure § on our document category hier-
archy C as follows:

Definition 4.5 (Distance measure ¢ on C) For two nodes n,m € C, the distance
from n to m is defined as

(4.7) d(n,m) = up(n,l) 4+ down(l, m)

where | = lub({n,m}) and the distance is the sum of costs from n up to | and from there
down to m.

The asymmetric nature of ¢ may sound a bit unfamiliar: Let ¢ J; ¢ and ¢ J2 ¢” but
not ¢ Je¢ ¢”. Then, ¢” is less related to ¢’ than ¢’ to ¢”. Nevertheless, it is well founded
as explained by the following example: Consider, for example, ¢’ =‘symbolic machine
learning and ¢ =‘logic programming’. The least upper bound is ‘artificial intelligence’.
Now, ‘logic programming’ is closer to ‘symbolic machine learning’ than vice versa—since
‘logic programming’ is directly subsumed by ‘artificial intelligence’.

How does this relate to our statement that ¢’ is less related to ¢ than ¢ to ¢’? In
this concrete example it means, that ‘symbolic machine learning’ is less related to ‘logic
programming’ than ‘logic programming’ is related to ‘symbolic machine learning’. In
fact, this can be explained by a simple argument: ‘Symbolic machine learning’ is more
specific than ‘logic programming’, because it is a subtopic of ‘machine learning’ (which
is on the same level in the taxonomy as ‘logic programming’). Therefore, if something
deals with ‘symbolic machine learning’, it may play a certain, but smaller, role in the
general concept of ‘machine learning’. The same holds for ‘artificial intelligence’. In
other words, the relevance of a document about a special category becomes weaker, the
more general the categories are. In order to relate ‘symbolic machine learning’ to ‘logic
programming’, we need two generalization steps and one specialization (which means,
that the target is more general as the source, too). In consequence, ‘symbolic machine
learning’ is related to ‘logic programming’, but not very tightly.

In the inverse case, we come to the conclusion, that ‘logic programming’ is related more
strongly to ‘symbolic machine learning’: Thinking of a relatively more general idea of
logic programming, one can easier relate the general method of ‘logic programming’ to a
more special field such as ‘symbolic machine learning’. The impact of ‘logic programming’
is weakened only once by generalising to ‘artificial intelligence’.

To put it into one simple phrase, an article about ” Efficient SLD resolution” is more
relevant to symbolic machine learning (say, ILP), than an article about ” Bias in symbolic
learning” is relevant to logic programming (say, constraint logic programming).
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Any distance measure or semantics of inheritance are subject to criticism. In our case,
we do not at all postulate to have closed the argument on this issue. During the work on
our formalisation we rather concluded, that the philosopher’s stone providing us with a
true and everlasting formalism of how to craft ontologies slips through our fingers faster
the harder we try to get a grip on it.

Nevertheless, our assumption of decreasing edge cost seems to be well founded. As a
calming fact, cost actually will be the only function we will have to use during the user
model induction process. The distance measure § which might be more questionable
will be used for generating feedback and thus simulating user interaction only; it is not
involved in the learning process. Now one might argue whether such a measure can
simulate a real user’s behavior since its design is not all cognitively founded. Sadly, we
cannot do anything but accept this criticism, although the results we achieved using this
measure actually looked pretty much like feedback of real users. The feedback generated
is slightly worse than expected—which in our case is a big advantage: Modest results
become even more promising, the noisier the training samples and the harder the learning
problems become.

Thus, we could even reverse the argument: The worse the modeling character of §, the
harder is our simulation and the more our approach will work in practice.

4.3 Concept hierarchies and user models as logic progams

As already mentioned in the last section, we will represent both the concept hierarchies
and the user models as logic programs. In order to be able to induce user models, we
also need a suitable representation according to the learning algorithm. Accordingly,
background knowledge like inheritance relations in the document type and category
hierarchies are represented by Horn clauses. We will first discuss the hierarchies.

4.3.1 Representations of lattices

A concept hierarchy C can be represented as a logic program using many different meth-
ods. A simple idea would be to declare any element of a concept hierachy as a tree node
by asserting node(c;). Subsumption can then be represented extensionally by defining
subsumes(c, ) for any ¢ 3} ¢/. Thus, transitivity of inheritance would be modeled
by a depth limited or depth penalized recursive definition on subsumes. Another idea
is to incorporate subsumption information into the node names. Then, a node ¢ with
Te 3% ¢ 3¢ -+ 3¢ ¢, b ¢ would be represented as a list [Te, ¢y, ..., ¢y, ¢]. Subsump-
tion of ¢ J¢ ¢ would be checked by proving that [Te,...,d] = [Te,...,c] o [] which
again is a recursive operation on recursive term structures. Finally, subsumption can
be defined by means of implication. The advantage is that inheritance is implicitely
carried out by a theorem prover. Nevertheless, the notions of is_a_superconcept_of and
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is_also_about suggest two different readings, namely to represent ¢ J¢ ¢ either as c:=¢
or ¢’ :=c. Since the used learning algorithm is based on the principle of inverse entailment
we chose the former method; that is subsumption is represented as c¢: -’ (is_also_about
is realized by reading ‘:-’ as implication ‘«—’; the procedural interpretation realizes
is_a_superconcept_of ).

The category hierarchies C and 7 are represented as a set of Horn clauses which model
inheritance through entailment. This means that the intuitive subsumption relation is_a
is realized as logical implication. Other representations by lists with node names carrying
the whole path and thus allowing for checking subsumption by comparing difference lists
or explicit modeling of inheritance are not suitable for our learning approach.

A relation ¢ J! ¢ is transformed into a Horn clause ¢(X):-¢/(X). Thus, a document d
concerning ¢ also_is_about ¢’. From the procedural viewpoint, 7-c(d) succeeds if we have
direct evidence for d dealing with ¢ or if the proof ?7-¢/(d) succeeds.

This initial representation scheme has to be refined in order to meet two important
requirements: First, by rule of resolution, this means that for any d, T¢(d) holds, which
is not desireable. Second, user models will demand a minimum confidence of classification
confidences as shown in equation 4.2 and 4.3. Thus, generalization along entailment has
to be penalized by a special predicate genpenalty which implements a threshold that
is realized by u as defined in definition 4.6. Accordingly, the above represenation would
yield a rule

(4.8) c(X,C) :- d(X,C"), genpenalty(C’, C).

and genpenalty is defined such that C' < C’. One method for defining this penalty is
to choose

Cl
cost(C”, C')

a stronger threshold would be defined by up(C”, C) instead of cost(C’, C'). We will discuss
the issue of penalties in detail in the section 7.2 about using the induced user models for
document filtering and in section 7.2.1 about proof models for relevance levels. According
to our concept hierarchy, the tree is represented as a set of Horn clauses as shown in
figure 4.3. Representing 7 is carried out analogously.

background knowledge remains to be represented; that is the set of known document
classification data represented as facts. This is shown in figure 4.4.

(4.9) genpenalty(C’,C) iff C =

4.3.2 Representations of conceptual descriptions

Now, given a canonical method for representing concept hierarchies as Horn clauses,
we need to express conceptual descriptions using Horn clauses as well. Consider again

equation 4.3:
|_||_|j(t ).
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cat_..._cs(X,D) :-
cat_..._cs_programming(X,C), genpenalty(C,D).
cat_..._cs_programming(X,D) :-
cat_..._cs_programming_languages(X), genpenalty(C,D).
cat_..._cs_programming_languages(X,D) :-
cat_..._cs_programming_languages_procedural(X), genpenalty(C,D).

Figure 4.3: Representing concept hierarchies as Horn clauses

type_..._publication_researchpaper(urlid_5121,68).
cat_..._intelligence_machine_learning_symbolic(urlid_5121,92).
cat_..._intelligence_nat_lang_proc_generation(urlid_5121,78).
cat_..._intelligence_machine_learning_subsymbolic(urlid_5121,20).

Figure 4.4: Representing classification data

where t is the type interpreted as a sort, c is the category and p is a threshold that
is interpreted as a lower bound for classification confidences. Types t and categories ¢
are interpreted as binary predicates which are defined as shown in figure 4.4. Thus, an
aspect ¢ containing ¢y :: ¢y 2 py Mty =2 co i po for a user u means, that u is interested in
documents that deal with ¢; with a confidence of at least p; and ¢y with a confidence
of at least p,. In principle, the same holds for the document type, but we do not allow
for multiple assignments of text sorts to documents.” Compiling the sorts of 7 into
predicates that are used within the Horn clause representation of C results in ®:

t1(D, ) Aer(D,pr) ANta(D, ) A ca(D, pa)

Relevance of d will be shown by a successful proof (i.e. derivation of an empty clause)
against the background knowledge as shown in figure 4.4.

Aspects.* So far, we have motivated, that the user model consists of a set of Horn
clauses. Taking into account our idea of dividing the user’s interest into several more
specific aspects of interest, the set of clauses should be divided into aspects, too. This
will be explained in detail in section 5.1 which also introduces the explicit modeling of

"This is due to implementational issues. Currently, the text type classifier is not capable of delivering
a vector of the n most probable document types for the document d under consideration. Sadly, this
actually makes our formalization more complicated. If we applied the same methods we use for categories
to types as well the formalization would in fact become easier though not less complex in terms of
computational effort. See also footnote 4.

8Note, that the confidence of document type classification is omitted here, though it is actually
available (again, see figure 4.4).
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disinterest. Accordingly, the user’s interest will be represented as a program consisting
of rules as follows:

(410) interestu(,, D) M tl(D, ,), Cl(D7 P1)7t2(D7 ,), CQ(D, PQ), P1 Z D1, P2 Z D2-

Discrimination between different aspects is obtained by simply introducing aspect iden-
tifiers a which determine unification:

(4.11) interesty(a, D) : = t1(D, ), c1(D, Py),ta(D, ), co(D, Py), P > p1, Py > po.

Talking about a single user u, the interest as modelled by the predicate interest has
the signature interest, which is defined as follows:

(4.12) interest, C A x U

where A is the set of possible aspects a of the user’s u interest and U is the set of all
documents (represented by their unique id’s).

In other words, interest,(a, D) succeeds for an instantiation d of D where d is of type
t; and belongs to c¢; with a confidence of at least p;. This would be interpreted as ‘d is
interesting for u with respect to u’s interest aspect a’. A set of clauses as in equation
(4.11) establishes the definition of an aspect a; sets of those aspect definitions form the
user model of wu.

Now, it is obvious that the restriction to one document type implies a severe drawback.
The clause displayed above can only be satisfied if either ¢; J £y or t5 J t;.

But as already pointed out in footnote 7, our formalization can easily be extended to
multiple document types once we are provided with a suitable classifier. On the other
hand, a clause as shown above is not actually intended as a manual user modeling
formalism but rather as a scheme which is used as a bias for inducing more general rules
describing the user’s interest. This is the topic of the next chapter.
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Chapter 5

INDUCING CONCEPTUAL USER
MODELS

In the last section we have shown how conceptual user models can be represented as Horn
clauses. We have demonstrated the underlying concept hierarchies in which inheritance
is modeled by cost based inverse entailment and we have already pointed out the way in
which user models as Prolog programs can be used for document filtering.

In this section, we will discuss how such user models can be induced given appropriate
evidence in the form of feedback f.

Note, that this approach and the following evaluation is based on several assumptions
and focuses on a special aspect within the whole approach of user adaptive web search:

[A-1]: Knowledge about documents and knowledge about users is strictly discriminated.
Although both documents and user interests are described by categories, classification
knowledge is not available to the user modeling procedure and vice versa. User modeling
approaches which integrate knowledge about documents and users are mainly based on
phrase occurrence. A user model for u’s interest is a representation of a prototypical®
‘most interesting” document d,. Accordingly, relevance of a new document is shown by
similarity: Document d is interesting for w if d is similar to d,,.

Of course, ‘similarity’ is a user dependent as well (see the discussion of ‘relevance’ and
‘interestingness’ below): Two documents, whose content is similar to user u; need not be
similar to user uy. In contrast to this statement, similarity measures used in the above-
mentioned approaches are static in the document space and are not user dependent.
Therefore, we argue, that knowledge about such a similarity between documents is not an
adequate means to formalize user models. User models shall contain information about
the users interest but not the way in which knowledge about the domain is represented
in a user independent part of the system.

IThe prototype d, needs not actually to be a real, existing document, but may have been derived as
an average of documents previously classified as interesting by the user.

101
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We deliberately chose this approach in order to avoid quality statements about user
models which depend on the notion of similarity between documents, although such
additional knowledge makes induction of user models an easier task.

Similarly, knowledge like If user u is interested in d, d most likely belongs to category c
is not used within the classifiers.

[A-2]: ‘Relevance’ and ‘Interestingness’ are synonyms. Following the usual (common sense)
understanding, ‘relevance’ is somehow orthogonal to ‘interestingness’; especially in the
context of information retrieval.

According to the considerations in A-1, different features of the object of our domain
are of different relevance to the user. For example, some users may focus on searching
for a certain document type instead of document content; while for other users content
is more relevant to their interest than type.

In this case, both relevance and interestingness are user dependent; though on different
scales: Examining a user model d,, as in A-1, a representation of relevance corresponds to
a user specific weighting of the components of the vector d,: d, = (r1-fi, 79 fo, .-, T fn)-
Accordingly, one says that features are of different relevance to a user’s interest.
Interestingness of d is—as already described in A-1—measured by d in relation to d,. A
simple measure would be a Hamming distance. A more precise picture of interestingness
can be obtained by taking into account personal relevance weights: When comparing
components of the vectors d and d,,, matching components are weighted by their relevance
r;, thus yielding a higher score in the Hamming distance measure.

In our approach, however, ‘relevance’ is not visible to the user model, since the classifi-
cation of documents is encapsulated and opaque to the user model. In contrast to the
information retrieval community, ‘relevance’ in the context of user modeling is used as
in the term relevance feedback. Relevance feedback given by a user u for a document d
means, that d is relevant with respect to u’s interest. In other words, d is an example
for the users interest, which is interpreted as: u is interested in d.?

[A-3]: Feedback is strictly discriminated from labels. Feedback (‘relevance feedback’; see
A-2) is given with respect to documents: ” This document is interesting with respect to my
interest aspect a.” As a consequence of discriminating knowledge about documents and
knowledge about users, labels are generated by interpreting this feedback as relevance
feedback with respect to categories. A document d which is positive evidence for the
user’s interest and which belongs to category ¢, will result in an example which states
that ¢ supports the model of the user’s interest.

2This assumption does not apply to the relevance values that can be manually added to the user
aspects and which can be used for filtering. See footnote 8.
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At this point it becomes clear, that the learning task we are going to analyze is much
harder than learning a user’s interest by comparing the documents themselves: A single
document is classified into several categories simultaneously. For example, a document
d about ‘machine learning for user modeling’ might be classified as a document about
¢ =‘machine learning’ with a confidence of 65%, while it is also classified as a document
about ¢, =‘user modeling’ with a confidence of, say, 75%. If the user u gives relevance
feedback which states, that d is interesting to u, then both ¢; and ¢y will be labeled
as positive evidence for the user’s interest. It is clear, that for documents which are
‘heterogenous’ according to the underlying category hierarchy, the sample generated out
of the feedback is inherently ‘noisy’ in terms of machine learning.

[A-4]: Learning user models from scratch. The description of our application domain,
web search, and its realization within the web search engine OySTER, were motivated by
the idea that users should be able to investigate the user model the system has induced.
This idea was motivated by the commandment that user models should be scrutable to
the user (see section 2.1.4) and has been realized in the user modeling editing interface
(see figure 3.2) in section 3.2.2).

This methodology might suggest, that the user is required to define an initial user model
which is refined during the learning process. Actually, this method would pose a much
easier learning problem. On the other hand, we try to meet the requirement of not
bothering the user with tedious work. As a consequence, our approach is based on the
assumption, that no prior knowledge is available. This means, that our user modeling
problem can be described by the aim to learn user models from only a few examples
with no further knowledge about the user.

A compromise between both approaches would be to require the user to submit a list
of interesting links (a bookmark file). Such a list can be interpreted as a set of positive
feedback which most likely contains a considerable amount of data (instead of only five
examples).

[A-5]: Evaluation. Learning user models is incorporated into an (user adaptive) infor-
mation retrieval scenario, but is encapsulated and evaluated as an isolated part.

In A-1 to A-3 we have explained, that the problem of learning a user model can be prop-
erly dissected from its surroundings. This allows for the evaluation of the user modeling
process as a machine learning problem. Based on a sample (instead of feedback), we
induce a user model which is independent of the internal representation of the domain
and the way that documents are mapped onto the underlying categories. Even more, the
learning process does not require any additional information nor does our approach pre-
suppose certain properties which restrict the application domain. As a consequence, the
results obtained can easily be outstripped by approaches which either take into account
more information (for example, word occurrences) or impose severe restrictions on pos-
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sible application domains due to prerequisites (for example, independence of features).

This section first defines user modeling samples which are used to learn user models that
represent a user’s interest (see A-1 and A-2). After that, the generation of samples from
feedback (see A-3) is described. This allows the definition of a new learning problem
(A-4) which is evaluated according to A-5 in the next section.

5.1 A more detailed investigation of representing user models

The aim of the presentation of conceptual user models in the last chapter was to demon-
strate the feasibility of representing user models as Horn clauses. However, thinking
towards a working user model induction process and thus having in mind a feasible
learning problem, one needs to refine the rough idea of modeling a user’s interest a bit
further.

5.1.1 Interest, non-interest and disinterest

One of the most prominent problems within user model induction is sparse negative
feedback. This leads to several problems:

1. one would need to employ a learning algorithm which works for little data

2. one would need to employ a learning algorithm which works for positive data only
(as for example shown in [Schwab et al., 2000a, Schwab et al., 2000b])

3. the algorithm will tend to overfitting hypotheses

4. the user model will be very pessimistic since the proof that documents are not in-
teresting by negation as failure will succeed very often for very accurate hypotheses

Thus, we introduced the novel approach of explicitly modeling a user’s ‘disinterest’™: By
interest, we denote what the user is interested in. If something is not of interest or if it
is of non-interest, it means that we have no evidence that the user is interested in this
entity. By disinterest, we refer to concepts the user explicitly is not interested in. And
in parallel, if something is not of disinterest we have no evidence that the user dislikes
the concept.

At a first glance, this notion seems to complicate rather than to help in the solution
of the above problems: All we have done so far is to prepare the ground for defining a
new, kind of dual learning problem. The nice thing about dual problems however, is that
evidence can be mutually interchanged under certain circumstances. We will explain this
method in detail in section 5.2 about generation of feedback samples from evidence. As

3We chose this word in analogy to ‘dis-like’.
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an idea, one might consider, that (positive) evidence for disinterest is negative evidence
for interest and vice versa.

User models for (dis—) interest. Again, consider figure 4.1. Here differently shaded nodes
or subtrees were already used to visualize concepts that were of interest or which were
known not to be of interest. One also could interpret non-interestingness in this figure
as explicit disinterest. This leads to the following definition:

Definition 5.1 (User model with respect to (dis—) interest, M,) A user model
M., is a tuple (M, M), where M models the user’s interest and M, models the user’s
disinterest. M. is formalized using a binary predicate p_interest,; M, is formalized
using a binary predicate n_interest,.

Formally, aspects a are subsets of My: My(a) = (M (a), M, (a)) where each aspect
is meant to represent a special topic of interest (see section 3.2.2). Interest of u with
respect to aspect a is represented by the binary predicate p_interest,(a,-); disinterest

by the according binary predicate n_interest,(a, ).
The following clause is an element of M (a) C M,

p-interest_u(a, D) : —
type_t1(D,T}), ..., type_t,, (D, T,,),
cat_ci1(D,Ch),...,cat_c, (D, C,.),
thresh(7},4), ..., thresh(7},,v,), thresh(C, ¥,41), ..., thresh(C,,, Vo).

(5.1)

where u is the user id, a the aspect id and D is instantiated with the id d of the
document currently under consideration. Document types (¢;) and categories (c;) are
assigned confidence values tc; and ccj, respectively. Finally, thresholds can be defined
in order to require a certain value Vi, (one of {tci, ..., tcy,, ccy, ..., ccn. }) to be greater than
a certain boundary ;.* Currently, thresh is realized by the two relations < and > as
already motivated in equation 4.11.

Note, that explicit modeling of the user’s disinterest is a rather novel approach in user
modeling ([Widyantoro et al., 1999] use three different kinds of feature vectors to de-
scribe long— and short term interest where the short term is described by both explicit
interest and disinterest). Most of the time, M, is identified with M and M is regarded
as negative evidence with respect to M.

For the sake of brevity, M, (a) shall denote the set of all clauses unifying either

p-interest_u(a, D) or n_interest_u(a, D)

for an aspect a; i.e. My(a) = M, (a) U M, (a). Figure 5.1 shows a user model with its

4Thresholds on type classifications (i.e. tcy, ..., te,, which correspond to 91, ...9,) have not proven
to be a very useful tool for appropriate bias because the type classifiers used in the prototype did not
deliver weighted classifications but only a ‘winner—takes—all’ classification. For our evaluation, however,
data was simulated (see the next chapter) thereby bybassing the flaws of the document type classifier;
c.f. footnote 7.
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M., (a1) M., (as) M., (a3) M., (ay)
M., (a;) = (M, (a;), M, (a;))

For this visualization, we assume a content based ordering of documents of
the domain along the vertical dimension of our picture.

The user’s u interest is modeled by four aspects ay, ..., ay (columns from left
to right). Relevance feedback is given in relation to each aspect; brightly
colored bars represent positive (green) and negative (red) feedback. As one
can see, feedback is not given with respect to all documents or aspects.

Each aspect M,(a;) of the user model M, consists of a model of interest
and disinterest: M, (a;) = (M, (a;), M, (a;)). They are represented by faded
color regions around the relevance feedback.

Interest M (a;) is modeled by the predicate p_interest_u(a;,D), while dis-
interest M, (a;) is modeled by a predicate n_interest_u(a;,D).

Note, that the models are much bigger than the region supported by rated
documents. This is due to the generalization and sample enlargement pro-
cedure (see figure 5.2). Note also, that in our implementation feedback and
models cover only a very small fraction of the whole domain.

Figure 5.1: A user model with aspects
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parts describing interest and disinterest and different aspects.

Relevance of documents with respect to aspect is not neccessarily ‘disjoint’: Of course,
the same document can be interesting to several aspects, if the aspects are ‘similar’. For
our formalization, we need assume that feedback is ‘disjoint’. This restriction is required
for using feedback given with respect to aspects a and o’ as a basis for larger samples
which include relevance information from a as examples for a’ and vice versa. For our
evalution we used feedback data which violates this assumption (relevance as indicated
by feedback may overlap for different aspects). In consequence, the problem we will
tackle is harder than the problem our methods are designed for.

5.1.2 Subsumption, implication and entailment

In the previous paragraphs we have informally described both the input data and bias
information which can be used for inducing user models. The background knowledge
consists of 7 and C (see figure 4.3) and document classification data (as shown in figure
4.4). An abstract definition of the sample is a subset of interest,, as defined in equation
(4.12); the target scheme is shown in equation 4.11.

In detail, any hypothesis for the target i, consists of a set of clauses with head literals
which unify with p_interest_u(a, D) or n_interest_u(a, D). Admissible body literals
are specializations of type_... and cat_... literals (as included in the background
knowledge). Furthermore, < and > are admissible body literals, if their first arguments
are bound to variables which occur in type or category declarations. This yields a target
clause as shown in equation 5.2.

Consider now evidence of interest for some document d: p_interest,(a,d) € f,. As-
suming that

Azye(d) = (t:p, {1 p1,c2 i pa, c3 it ps))
this yields a most specific hypothesis clause:
p-interest_u(a, D) : —

(5.2) type-t(D, P), cat_ci(D,Py), cat_co(D,Py), cat_cs(D,Ps),
P2>p, P >p, P> po, Py > ps.

This clause can be generalized using three different methods:

1. decreasing the constants p,pi,...,ps means that the confidence required on the
concept classification is decreased

2. dropping pairs of literals determining the variables P, Py, ..., P; means to abolish
requirements concerning the type ¢ or categories ¢y, ¢, c3, accordingly

3. replace some cat__¢;(D, P;) by cat__c;(D, P;) where cat_c;(D, P):-cat_¢;(D, P)

can be unified with a subset of a clause from X.°

SType restrictions type_c;(D, P;) are treated analogously.
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All three methods, with increasing importance for rule induction are performed during
rule induction by inverse entailment. Thus, a hypothesis derived by inverse entailment
subsumes this most specific clause and also entails examples as intended.

It remains to be explained, how feedback (in the sense of F) has to be interpreted in
order to obtain a sample f which allows for inducing a sufficiently accurate subset of M
which is to approximate i.

5.1.3 Negation*

It is clear, that (explicit) modeling of both interest and disinterest gives rise to several
questions concerning negation. On the one hand, there is no doubt that proving interest
of a certain document by resolving a horn clause means, that the document needs to
meet all requirements as represented by the body literals of the clause (see section 4.2.3).
The reverse case, however means that a document is not interesting as expressed by the
horn clause under consideration. As soon as one literal cannot be resolved, the proof for
the clause fails. This means, that "not being interesting” can be shown by satisfying the
disjunction of the negated literals. To make things even more complicated, negation in
Prolog is simulated by negation as failure.

However, a failing proof for interestingness must by no means be confused with a suc-
ceeding proof for being disinteresting. In other words, for some documents we are able
to prove that it ”is non—interesting” (as opposed to "not being interesting”). In some
cases this helps to overcome the drawback of a weak negation as realized by negation as
failure for interestingness.

Now, one might argue, that conjunctive representations of user models are inappropriate
for representing disinterest:

” I am interested in research articles on machine learning but not in homepages
of researchers or students dea]jng with machine Iearning”

In such a case we again stress the fact, that each aspect is represented by sets of clauses:

(5.3)
n_interest_u(a, D) : —
type__...homepage...researcher (D, T}),
p-interest_u(a, D) : — cat__...machine_learning(D, C}),
type__...researchpaper (D, T}), thresh(71,9,), thresh(C, 92).
cat__...machine learning(D,()), n_interest u(a,D): —
thresh(77,9,), thresh(Cy, Js). type__...homepage...student (D, T7),

cat__..machine_learning(D, (),
thresh(77, ), thresh(C, ¥s).

Although a Prolog program is a DNF representation, disjunction is representable as
shown above. The apparant argument against our formalization is, that modeling dis-



5.2. GENERATING SAMPLES 109

interest this way becomes a tedious work, for one might have to list all possible com-
binations for the different document types (like in this example). At a closer look,
this argument is a strong argument for our approach-—and not against: Collecting two
feedback events where one expresses disinterest in a researcher’s homepage on machine
learning and the second one disinterest in a student’s homepage on machine learning
enables the machine learning component to generalize by making use of the underlying
type hierarchy: In this case homepages in general seem to be non—interesting, such that
the final representation of the disinterest part of the aspect becomes:

n_interest_u(a, D) : —
type__...homepage(D, T}),
cat__...machine_learning(D, C}),
thresh(7y, 9,), thresh(Cy, 0s).

(5.4)

This general formulation of disinterest in homepages on machine learning can even be
weakened again by adding the following clause (given there is evidence):

p_interest u(a, D) : —
type__...homepage...employee(D, T}),
cat__...machine_learning(D, C}),
thresh(73,9,), thresh(Cy, 0s).

(5.5)

Of course, if we now encounter a new document which is classified as an employee
homepage on machine learning, both interest (by the clause in equation (5.5)) as well as
disinterest (by clause (5.4)) can be shown. Inheritance on 7', however, is penalized, such
that the cost for proving disinterest becomes higher than the cost for proving interest
(this is described in section 7.2).

5.2  Generating samples

In our framework, we assume that feedback F;, given by a user u will be used to construct
a labeled sample f, according to the users interest J, using a function I'. We want to
approximate the target function i, which is induced by J, on our domain i by a user
model M,,.

In contrast to user feedback F, ,, which contains feedback with respect to aspects, feed-
back F, does not contain any information regarding interest aspects®. Therefore, user
feedback F, actually only provides information that can be used to build a sample f as
introduced in definition 2.26.

It is clear, that a sample for multiple aspects as it will be defined in definition 5.2 cannot
be generated from feedback F, as specified at the beginning of the next paragraph.

Tn case one restricts user models M, to consist of one aspect only, then F, and F, o contain the
same information.
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Therefore, we will consider two cases: In the first case, interest is interpreted as consisting
of only one single aspect. In this case, F}, is sufficient”. For multiple aspect interests, we
need feedback F,, C U x A x V, where A is the set of aspects.®

This section introduces I'-functions, which allow for generating samples f,, (see definition
5.2 below) which carry much more information.

The feedback given by user u is a relation F, between documents d and feedback values
V ={-2,-1,0,1,2} representing strong and weak dis—/interest and indifferent interest
as shown in the feedback form in figure 3.5. Note, that F' is not a function of u for two
reasons: u will not provide us with feedback concerning every document d. Thus, F is
not total. Second, a single document d can be assigned different feedback values at the
same time.

Furthermore, the sample f, has to provide some more information. Recall, that relevance
feedback is always given with respect to an aspect M, (a). In other words, one single
document d can occur several times within f,: It might be interesting with respect
to a but is not interesting with respect to a’. Furthermore, M, is divided into two
separate models each of which defines an own learning target: M, (p-interest,) and
M, (n_interest,). Thus, samples f in our framework actually carry more information

as described in equation 2.16:

Definition 5.2 (User modeling sample, f,) A sample that is used for a learning
problem in user modeling consists of a sequence of labeled pieces of evidence

(5.6) £ = [<d17 a1, 00 (o, g o) T (a0
where d; € W and v; € {0, 1}, a; are valid aspects in M,, and the superscript denotes the
target M or M, .

Note, that according to definition 5.1, f, actually includes label data that will be used for
different learning targets, namely M. (a;) and M (a;). The sample provides labels v; €
{1,0} for documents d; with respect to a whole set of, say m, aspects: {ai,...,an} =

{a: (-;a,) €f,}.
5.2.1 An example

To clarify the contents and information provided by feedback and different samples
we have depicted an example in figure 5.2°.19* The domain contains three documents

7 Although we will have to introduce a single, new aspect in order to construct triples as in f, instead
of tuples as in f.

80ne can interpret F, as a set F, o where the aspect dimension in figure 5.2 contains only one aspect.

9 Feedback for document d; shows that aspects are disjoint (see end of paragraph 5.1).

10Please note, that this example is not to be mistaken as a definition. It is just to give the reader a
rough idea of the following more formal sections on single and multiple aspect user models.
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Figure 5.2: Feedback F,, and a sample f,

dy,dsy, d3. The learning target is split into two aspects a, a’.

Part (1) shows feedback as given by the user: A plus sign (4) represent a positive
label while a minus sign (-) represents negative feedback. Obviously, document d; is
interesting with respect to a’, but not with respect to aspect a. Document dy on the
other hand, is not interesting with respect to a’; its relevance to a is unknown. The third
document is interesting for a, but relevance with respect to @’ is unknown. For some
documents there is only positive (d3) or only negative evidence (dy). As one can see,
F, . does not describe the whole instance space: There are many ‘gaps’ in the sample
especially if one considers that we have explicit models of interest and dis—interest. Note,
that for m aspects and n documents under consideration, the feedback relation F, most
likely will not contain m -n tuples. It is much more likely, that the user provides us with
partial feedback only such that—especially in the domain of sparse user feedback—we
need to grasp for every straw in order to collect more evidence about the user’s interest.
From this feedback data we want to derive a sample as defined in definition 5.2.

In a first step, (2), the given feedback is mapped one-to—one onto labeled examples.
Upward pointing bars indicate feedback with respect to M., while downward pointing
arrows indicate relevance for disinterest. As an example, consider document ds: Since
it was rated interesting with respect to a, we have positive evidence for M, (a). But
this also means, that ds represents negative evidence for M, (a’). One might claim, that
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from the feedback gathered we might conclude that ds is a negative example for M (a)
as well: The same holds for d; and M, (a). This is shown in part (3).

Thinking a step further, one might even guess, that d, might be of interest with respect
to a—since it is not of interest with respect to a’. The same argument applies to d;
and o, see part (4). Of course, this is a very vague guess which may rather cause noisy
samples instead of large, reliable samples.

Putting it all together we yield a sample as shown in part (5). Note, that in this figure,
we have not depicted whether feedback for some d with respect to a is interpreted as
evidence for M, or M, . This will be formally defined in the following sections.

Now having defined the sample we need for learning user models the question arises how
to generate those samples from feedback. First, we consider single aspect user models
only.

5.2.2 Single aspect user models

The single aspect user model is a user model which contains only one single aspect in M
or M, . For reasons of brevity, we only consider M,"; the dual case can be constructed
canonically.

It is a straightforward idea to use extrema from F, only since they provide the most
reliable information about the user’s interest. Thus, we generate a sample f, from F,
using a simple function I' which is defined as follows:

Definition 5.3 (Sample Generation, I') We generate a sample from given feedback
using a function I' : F,, — £, and a new aspect id a (see footnote 7):

5 o) ={ Gud. ezt

In our case, the extrema in V are —2 and 2. Note, that £, now contains only extreme
feedback, since I' is undefined in all other cases.

Since f, is most likely too small to define a feasible learning task, we can weaken the
condition such that all negative feedback is interpreted as negative examples and all
positive feedback as positive examples:

(53) r@n={ Ge0 s

Now, the sample generated by I' from equation (5.8) contains the sample as generated
using definition (5.7), but the information is less reliable.

We still have much more information available to generate further, larger samples. Recall,
that the user’s interest in M, is modeled by two sets of Horn clauses M, and M, , which
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both represent a separate learning problem on the same set of examples. Clearly, positive
examples in f,, are positive evidence for M., that is for the target predicate p-interest,,.
Similarly, negative examples from f, are negative evidence for p_interest,. This is
the standard interpretation for samples; though sample interpretation is independent of
sample generation, we will denote this case by I'" (meaning that I' produces a sample
for the target concept M;").

Since we learn both interest and disinterest simultaneously, we can use same example
from f, twice. In addition to the considerations above, it is quite reasonable, that the
reverse case holds for the target n_interest,. Thus, an example (d,a,1) is a positive
instance for M (a) and a negative instance for M, . The dual case holds for examples
(d,a,0). Interpreting the sample as input for the learning target M, will be denoted
I'~, respectively. I't and '~ together form I'F.

Since it is likely, that there is only a little negative feedback in F'(i,), we only have
a few examples for n_interest, and only a few examples against p_interest,. Thus
one might conclude that the hypothesis for p_interest, has a bad accuracy, i.e. is too
general, while it will be hard to find a hypothesis for n_interest, at all (and if there is
any, it will be a set of overfitted clauses).

Thus, we need to take into account feedback that was given with respect to different
aspects.

5.2.3 Multiple aspect user models

A document d which is interesting for u with respect to an interest aspect a is most
likely non—interesting for another aspect a’''. Since we want to prove relevance of d with
respect to aspects, a hypothesis for M, (a’) should exclude d. Relevance of d shall only
be provable by means of M, (a). This leads to the idea of using feedback (d, a,v) € F,,
that was given with respect to a certain aspect a as feedback for a’ as well. Figure 5.3
shows different ways to interpret relevance feedback as feedback that will be provided by
f,. Note, that @& and © are interpreted differently according to whether I' was defined
as in equation 5.7 or 5.8. The upper part of the table describes I'* as described in the
previous paragraph. Taking into account relevance feedback with respect to other aspects
a’, f, can be enlarged by decreasingly reliable information as provided by I'y, ..., T'y.

I'; simply states the fact, that aspects are exclusive. In other words, positive evidence
for relevance of d with respect to a’ is negative evidence for interest in a. I's is a kind of
I'T: positive evidence for interest in @’ is interpreted as positive evidence for disinterest
in a. This inference is not as reliable as I'y. Therefore, I'y should only be considered in
cases, where there is very little labeled data available for M, .

"N This assumption is based on the general idea of aspects: they describe rather disjoint fields of
interest which together form a whole picture of the user’s interest. On the other hand, this assumption
has not been empirically validated.
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(d,A,v) € Fo || (d,a,i,(d)) € £,

A v i,(d) | target
' a ® 1 M- p-interest,(a,d)
' |a ® 0 M, :-n_interest,(a, d)
't a S) 0 M+ :-p-interest,(a, d)
' |a S 1 M, n_interest,(a,d)
Iy | d 25 0 M- :-p-interest,(a, d)
Ly | d D 1 M, n_interest,(a,d)
3| d S) 0 M. :-n_interest,(a, d)
Ly|d S) 1 M- p-interest,(a,d)

The :- —sign is used to identify negative examples by the Progol system (section 2.2.5).

Figure 5.3: Generating samples from feedback

['; states that an uninteresting (with respect to a’) document d is not necessarily unin-
teresting for aspect a. Thus, it is (weak) negative evidence for M, (a), too. However,
such documents d can be interesting for M. (a). This is stated by 'y, but is not reliable
at all and prone to generate noise (thus, it is only defined for reasons of symmetry).
Accordingly, we extend our definition of I

Definition 5.4 (Sample Generation with respect to aspects, I'(a)) Given a tar-
get aspect a from M, and another aspect o' # a from M, as well, we define I'(a) as
follows:

(5.9) 5 (a)({d,a,v) = T*((d,v))

(5.10) I (a)((d,d,®)) = (d,a,0)" foralld #a
(5.11) Lo(a)({d,d',®)) = (d,a,1)" foralld #a
(5.12) Is(a)((d,d',©)) = (d,a,0)" foralld' # a
(5.13) Ty(a)((d,d',©)) = (d,a,1)" foralld #a

5.3 A new user model learning problem

5.3.1 Motivation

Given a sufficiently large sample f of relevance feedback, user model induction on 7 x C
is a (sloppily) supervised learning task. Since we neither need to cope with numbers,
complex terms or recursive predicates which, e.g., makes application of Absorption—like
operators much easier and since we have a strong bias on the structure of hypotheses we
will be able to define a feasible learning problem.
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As an intuitive motivation that is oriented on the more theoretical nature of inverse
resolutionas described in section 2.2.4, we give a small example of the idea of ILP in
this context. Note, that the formalization significantly differs from our considerations
in sections 5.1 and 5.1.2 which was driven by the method of inverse entailment already.
Thus, imagine the following initial user model:

interest(u, D) :- interest(u, D) :-
class(D, machine_learning). class(D, user_modeling).

Using classical truncation (c.f. 2.2.4), the induced user model would be interest(u, D)
:— class(D, X). Since X is much too general we can specialize X tomachine_learning
e user modeling. The same applies to sorted expressions, such that the body literals

of

interest(u, D) :- interest(u, D) :-
class(D, pers_hp::machine_learning). class(D, group_hp::user_modeling).

would be generalized to

(pers_hp :: machine learning) Liz«c¢ (group_hp :: user modeling)

= hp :: (machine learningll; user modeling).

Using Intra—Construction (see section 2.2.4), new concepts could be invented for describ-
ing user models: Given

interest(u, D) :- interest(u, D) :-
class(D, pers_hp::machine_learning), class(D, pers_hp::user_modeling),
class(D, group_hp::user_modeling), class(D, res_art::intelligent_agents),
class(D, res_abs::web_search). class(D, group_hp::machine_learning).

we can induce a user model with a body as follows:

class(D,hp :: machine learning e user modeling),

class(D,res :: new_class).
which triggers two actions: Compute or ask for the value of
machine_learning [l; user_ modeling
and ask for a name for the newly invented class

new_class = intelligent_agents Llc web_search.
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Figure 5.4: A more intuitive description of a user model learning task

5.3.2 A more abstract and formal description of the learning task

By now, we are able to define a clear learning problem. The learning problem is situated
in a well defined setting of adaptive user interfaces. To illucidate the notion used in this
thesis, we have put the most important concepts into figure 5.4. The user’s u interest J,
induces a target function i, on our domain. The hypothesis to be learned by A is the
user Model M, which consist of the two target concepts M, and M, which are further
divided into aspects M*(a). In other words, M, shall approximate i,. The input data
is a sample f, which is generated by I' out of user feedback F,. Examples from f, are
represented as positive and negative literals p_interest,(a,d) and n_interest,(a,d),
respectively. Background knowledge provided to A are C and 7 as well as classification
data for documents.

From a procedural point of view, figure 5.4 shows, that documents are represented by
conceptual descriptions (lower left corner). They are represented as factual background
knowledge. A user gives feedback (that is, by his interaction he realizes a function F)
and assigns relevance values to documents with respect to his interest aspects (upper
left corner). I' functions are used to generate a feedback sample f, (see center of the
picture) from which the the learning algorithm A induces a user model M,, which shall
approximate the target (that is, the real user’s interest function i,; shown in the right
hand part of figure 5.4).

As a learning algorithm A we chose ILP. Bias is provided using modes: Hypotheses
for M and M, must be formulated using a clause head p_interest and n_interest,
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respectively. Admissible body literals are any literals which describe concepts from C or
7T and threshold predicates. An example was already given in section 5.1.2.
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Chapter 6
RESULTS

The aim of OySTER was to create a workbench which provided us with real-world data
for evaluation. The data that was expected based on the fact that a search engine
offers an attractive service in these days of information flood. The drawback of this
idea however is that we understimated the actual need for such a search engine. This
resulted in a multitude of users who were searching for documents that were not located
within our domain as covered by C. Actually, OySTER got ‘slashdotted’ several times,
when the service became public and was discussed on a German news web site in July
2000 (http://www.heise.de/).! Soon we were concerned with search queries for cheap
car bargains or even requests for porn sites. As a result, the benefit of using OySTER
as a source for user feedback turned into a drawback: Every-day search requests and
feedback rather polluted the samples.

The evaluation of our approach was carried out in three steps: First, we performed a sim-
ple spot check on how the ILP methods perform in our domain. Section 6.2 summarizes
results that were derived for two users (88 and 90) with rather precise interest and two
users (92 and 93) with an increasingly vague description of interest.?* Our main task in
this first evaluation was to achieve a rough impression of the number, accuracy and cov-
erage of rules that were induced. Accordingly, factual knowledge (i.e. non—compressing
rules) were not taken into account. The results are discussed by inspecting the user
feedback. Having a rough impression in mind from the first spot check, we carried out a
more detailed, statistical evaluation. In order to obtain significant results, we generated
a set of fifty aspects, for each of which we carried out single and multiple aspect learning
tasks by mutually combining the single aspects.

The second evaluation is an optimistic evaluation, where the feedback was noise—free and
interest aspects were very specific. It shows both that accuracy increases with specificity

IThe verb originates from the popular Unix-news site http://www.slashdot.org which often an-
nounces news and programs hosted by third parties. Due to the number of users who follow those links,
the server sites often crash.

2See figures in appendix A.1.
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of interest and with sample size and that the use of I" functions helps to increase accuracy
on small samples rather than on large samples. This evaluation is described in section
6.3.

Finally, a third evaluation was carried out in a worst-case setting: The feedback data
was implicitly (multiple category assignment of documents) and explicitly (simulated
classification errors) noisified. This test was carried out in order to determine a baseline
for the performance of our approach and is described in section 6.4.

6.1 Simulating data for evaluation™

As already pointed out during the introducing remarks of this chapter, we needed to
simulate users with approriate interests who give according feedback.?* The following
sections describe, how data was simulated for the different evaluation tasks.

6.1.1 Domain data: Generating document classifications

In order to be able to simulate feedback, one needs to have documents that have to
be rated. For this reason, we generated 10,000 URLs. All URLs are named http:
//wuw.testurl.org/test/file-n.html, where n is an integer from [0, ...,9999]. The
important part is to simulate classifications for each document which resembles classifi-
cation data from real web documents.

6.1.1.1 Random data for a first impression of learning results

For our first test run, we randomly assigned document categories and types. Recall,
that category classifiers are supposed to deliver a vector of classes and confidence values
(€1 :p1,¢2 1 D2, C3 2 D3, .oy Cp t D), Where p; < p; for ¢ < j. In our approach, we restrict
ourselves to a maximum of three classifications (n = 3). The document type instead is
described by a single type identifier and a confidence value: ¢ : p;. Our test classification
routine randomly defines ¢y, ¢3, c3 and assigns confidence values as follows:

p1 € [100,98, ...,62], ps € [60,58, ...,40], ps € [20,18, ..., 0].

pi is randomly chosen from the interval [62, 64, ..., 100].

In order to obtain a rough impression of the average URL specificity, we measured cate-
groy ‘entropy’ by the average sum of d—distances between ¢;. The average distance sum
for our test URLs is at about d},,, = 27.11. This corresponds, for example, to the distance
between the categories science (second level) and sports (third level) but is still less than

3¢Appropriate’ means, that we needed to restrict the domain of possible interests to the topics covered
by our taxonomy.
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the distances between machine learning and science (28) or clustering and linguistics
(33).

After two months of collecting and classifying real web pages, the average sum of dis-
tances between the ¢; is d;,, = 17.27 which corresponds, e.g. to the distance between
genetic algorithms and programming languages. The longest distance measured within
the science subtree turned out to be about 64, as for example for clustering methods in
machine learning and pragmatics in linguistics. Larger values can only be obtained by
completely crossing the tree at depth 2 already—arterial gas embolism (as a decompres-
sion sicknes in recreational sports diving) and C (as a procedural programming language
in computer science) for example have a distance of 79.

Thus, our test URL classifications are of less quality (that is, ‘noisier’) than those de-
livered by our classifiers on real web documents after the two month harvesting period.
This ensures that the results delivered by our machine learning algorithm perform better
on real data than on simulated data.

Domain data simulated by this method was used in the evaluation described in section
6.2.

6.1.1.2 d—specific simulation of real world documents

In addition to data that was generated as described in the last section, we generated
a second set of URLs and feedback data sets in order to allow for a more detailed
investigation.

Simulating URL classifications by random assignment of categories as described in the
last section provides a setting for a pessimistic evaluation. On the other hand, random
assignments contradict the idea of underlying category hierarchies such that we may as-
sume a document classification diversity value of at most 17.27. As a consequence, a more
realistic simulation requires documents with a more elaborate category classification.
For each category ¢ € C we defined a set of URLs d with

Arye(d) = (t:p,(c1p1,ca i pa,csiips))

where ¢; = ¢ and p; € [85,100]. As in the first generation process, t :: p is chosen
randomly where p € [75, 100] (since we may assume independence of types and categories;
see also footnote 1). ¢ :: p and c3 :: p3 however are chosen in relation to ¢;. Given ¢y,
we compute a ‘circle’ around ¢; with radius r by taking into account § (see figure 6.1).
Let 0, denote the ordered sequence of categories ¢; € C for which d(c, ¢;) < r. From §,,
¢o and c3 are randomly drawn by a function rand:

Coz = 5T2’3[7‘and(2, min{ny 3, |5r2,3|})]

The function rand delivers the index j of the j-th category in 6,,,, where 2 < j <
min{ny 3, 0, ,|}.* Thus, n determines the number of n closest categories under consid-

4Lower bounding j to 2 ensures that ¢; # ca 3.
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eration which can be chosen by rand. Due to the distance measure on C, the category

The ‘radius’ r determines the maximum § distance around ¢. The number of closest
categories which may be considered as candidates for ¢y or c3 is defined by n (here: 8).

Figure 6.1: 9, region around c

density is not uniformly distributed: The more special categories become, the more
neighbors can be found within a radius r. In order to take this behavior into account,
we only consider the n nearest categories

All in all we ran three generation procedures for three classes of URLs whose classification
specificity in the average approximates real data:

1. Narrow class URLs: We generated ten URLs per ¢ with ro = 8 ny = 6 and
r3 = 18,ng = 12. The average sum of d(cy, ¢o) and d(cyq, c3) is approximately 12.40.

2. Average class URLs: For each ¢, we generated five URLs with 79 = 12, n, = 6 and
r3 = 24,n3 > |0,,|.> The average of §(cy, ca) + 6(cy, c3) is approximately 16.84.

3. Random class URLs: Here, the radius ro3 was defined as the maximum distance
over C and ny 3 was defined as the number of all known categories. Accordingly,
this yielded a random distribution (the average sum of all §(cq1, c2) and d(cq, ¢3)
is 55.01 which pretty accuratly approximates the average class distance: 25fwg =
2-27.11 = 54.22).

Confidence values p; > py > ps are chosen as follows: p; € [85,100], p» € [70,p1] and
ps =[50, pa].

The choice of r and n are—of course—subject to criticism. We chose both parameters
as described above with respect to data from the real web: As already mentionend,
the average distances between URL categories after two months of collecting documents

°Setting nz > |d,,| means, that c3 is chosen from all the candidates defined by the circle with radius
r3 (the number of all categories is |dy, ).
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was at about 17.27. We tried to approximate this value by our ‘average class URLs’
by manually tuning r and n; yielding a pretty close value of 16.84. Additionally, we
generated URLs with more specific and more vague classifications (see above); such that
the overall average over all URLS accumulates to (12.40 + 16.84 + 27.11)/3 ~ 18,78
which again is slightly worse than real data and, therefore, a reliable foundation for our
evaluation.

6.1.2 User Feedback: Simulating a user's interest

We assume, that the user’s interest can be described in terms of concepts of our document
category hierarchy.

Accordingly, user interests are simulated by (sets of) ‘centroids’, with each such centroid
representing an individual center of interest (which is not to be confused with aspects).
Single centroids correspond to single nodes of interest as shown in figure 5.4 (last aspect
representation in bottom right corner). Interest aspects of different specificity are sim-
ulated by the number of centroids used per aspect as well as weighted d—radius regions
around the randomly picked categories. Aspects covering several categories are simu-
lated by the union of several single centroids (therefore corresponding to sets of nodes
as in the other aspects shown in figure 5.4).* The actual parameters of simulation, that
is specificity (radius), diversity (number of entroids per aspect) and additional noise are
described along the line with each evaluation in sections 6.2-6.4.

It must be stressed that our simulation of feedback is pessimistic such that the applica-
bility of our approach for real users can be assured within a realistic estimate.

6.1.2.1 A pessimistic ad—hoc simulation

The domain data for the first evaluation was generated randomly (see section 6.1.1.1).
User feedback F' (neither F,, nor F,,) cannot be chosen randomly. It cannot be defined
using rules either—since rules are what we want to learn as M,,. Thus, we generate user
feedback with a d-weighted random distribution over the document category hierarchy.
This way, we obtain artificial noise and rough boundaries of feedback clusters around
randomly chosen centroids.

For each user, one or up to three ‘centroids’ ¢; € C are randomly defined which can
be interpreted as the ‘center of interest’. Then, for each centroid ¢, 200 randomly
chosen URLs (that is, ‘documents’) d; are assigned a feedback value ranging from —2
to +2. The feedback value is determined by the distances §(cq(j),ck) - p(j), where
cq(j) is the j—th category d has been assigned to by Ac. A small bonus is added

6Tf, for example, one wants to simulate an interest aspect “machine learning for user modeling”
one would have to define two centroids: one is located near ”machine learning”, the other near ”user
modeling”.
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for document type agreement. The feedback value is then mapped onto the interval
{-2,-1,0,1,2} = cod(F(i,))-

An example is displayed in figure 6.2. Note, that the visualization veils some important
information: Feedback (indicated by square brackets) is given with respect to docu-
ments. The picture in figure 6.2 shows feedback that is mapped onto categories. Since
every document is represented by several categories and according classification confi-
dence values, the figure was generated taking into account only the most reliable clas-
sification. If, for example, user 88 has rated a document d as very interesting, and
Azye(d) = (t:p,{c1:p1,c2 i pa, s it p3)), then only ¢ is marked [++] in figure 6.2.
As a consequence, this representation veils the fact, that d also belongs to ¢y and ¢3 and
is also a source for inherent noise (except for the case, that only ¢; will be taken into
account; see section 6.1.2.3 and footnote 8).

[+] 1 top science computer_science operating_systerns
-1 top science cormputer _science operating_systemns dos
0 top science computer_science operating_systerns unix
=1 top science cormputer _science operating_systerns unix linus
16 top science cormputer _science programming
4 top science computer_science progranming languages
12 top science cornputer _science programming languages functional
17 top science cornputer _science programming languages functional lisgp

1

1
[+] 0
1
8
2
[53
g
5] 12 top science cornputer _science programming languages functional mi
4
[53
[53
4
4
0
B

[++][++][++][++]

[++]

[++][++][++]

FIE+ ]
[++][++][++]

[++][++]

[++][++][++]

[++][++][++]

FIFI A ]

I+

§ top science computer_science prograrnming languages oo
12 top science cornputer _science programming languaces oo smalltalk
12 top science cormputer _science programming languages predicative
26 top science cormputer _science programming languaces procedural
6 top science computer_science prograrnming languages procedural
0 top science computer_science prograrmming languages procedural cpp
9 top science computer_science prograrmming languages procedural perl
5 7 top science computer_science prograrnming languages procedural python
-1 =1 top science computer _science theoretical_cs
-2 =4 top science linguistics
-3 =5 top science linguistics computational_linguistics
-3 =5 top science linguistics computational_linguistics parsing
-4 =8 top science linguistics computational_linguistics pragratics
-5 =7 top science linguistics computational_linguistics semantics
-3 =7 top science linguistics computational_linguistics syntax
=7 =11 topscience linguistics morpholocgy
-2 =4 top science linguistics phonolocgy
=11 =21 top science linguistics pasycholinguistics

[+

FIFIEFI+]

b It ) B P O L L N P R oy I B oy I L R R

[l -]
(Truncated example)

This table is generated by the feeback browser script £bb. The leftmost column contains
all feedback events collected with respect to the categories listed in the rightmost column.
The second column simply counts the number of feeback events per line (that is, the
number of square bracketed entries in the leftmost column). The next column contains

the score as defined by the sum of all ‘+’—signs minus the sum of all ‘~"—signs. Column
four contains a weighted score which doubles the number for the [++] and [--] feedback
events.

Figure 6.2: Relevance feedback as simulated for user 88.
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This algorithm deliberately performs suboptimally for generating clear boundaries in
interest evidence on C:

1. Single centroids deliver 200 feedbacks, which on the other hand are relatively clear.

2. The higher the centroid is defined, the more probable ’off-topic’ categories are
labeled as interesting due to the definition of §. This corresponds to 'unspecific’
feedback of a new user.

3. The more centroids we have, the more likely it is that the feedback data concerning
one category is ‘mixed’. This corresponds to a user with different interest aspects
that have not been discriminated so far.

The feedback generated by this procedure was taken as input for the first rough evalua-
tion as presented in section 6.2.

6.1.2.2 A worst—case simulation

The user feedback that was simulated as described in the last section is very heterogenous
in terms of frequency of relevance feedback and in terms of the number of different interest
aspects per user. The data was used to obtain a first impression of the performance of our
approach as explained in section 6.2. In table 6.2, the values of accuracy for p_interest
show the impact of different qualities of user feedback. Furthermore it was impossible
to derive decent results for n_interest, since we had no positive evidence for negative
interest (i.e. negative feedback was simulated by growing distances from positive interest
centroids).

In order to overcome these drawbacks and to allow for a more informative evaluation,
we generated feedback that consisted of single aspects only. From those feedback sets
we were able to construct more complicated cases of multiple aspects; where the relation
between the involved aspects could be explicitly triggered.

In general, for each aspect a a centroid ¢, was randomly chosen. The feedback value for
a document d with Azyc(d) = (t :: p, (¢ 2 p1, ..., ¢y 2 Pp)) Whose most reliable category
is ¢, is determined using a sigmoid

n -1
— (M - sz’5(0a, Cz))
fa(d) =5 | 1+e = +x
again, taking into account all classifications per document. Herein, § = 4 and y = —2

are used to normalize fb to the codomain values [—2,2] € R. To control gradient and
null of the function we use p and «. The codomain of fb is divided into five equidistant
intervals [—2,2] € Z.
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The outcome of our feedback function can be artificially noisified. A noise value of ppeise
means that the outcome of the feedback simulation function is randomly changed with
a probability of pnoise.”

The feedback generated by this procedure was taken as input for the detailed pessimistic
evaluation as presented in section 6.4.

6.1.2.3 An average case simulation

Since our aim in the detailed evaluation was to provide results that come close to re-
sults that are to expected from real world data, we needed to reduce noise from ‘cross—
categorization’ as it is inherently generated by the simulations described above. There-
fore, user feedback is here defined only with respect to the most reliable classification
c1 of a document®. Accordingly, we defined four different users’ with 50 aspects each;
each aspect is defined by a center category c that was chosen randomly from the entire
ontology. Then, aspects are centroids defined by d-regions around c¢. The choice of §
is subject to discussion and is based on a crucial assumption: The implicit assumption
is, that ‘primitives’ of interest, that is, (parts of) interest aspects, can be represented
by concepts of our taxonomy. Then, a user model is a collection of complex descrip-
tions based on such primitives. This is exactly the only fundamental assumption in our
approach. We simulate interest by a function that delivers feedback with respect to a
conceptual primitive that represents an aspect of a user’s interest. The learning task is
to induce a model which describes the interest in terms of the concepts without knowing
what the user really is interested in; that is, without taking into account knowledge
about 0. Simulation of feedback F, ,, which is a function of the unknown interest J,,, is
completely separated from the task to approximate the (unknown) learning target i, by
M, based on a sample f generated by I' functions from F;, ,.

The four users we simulate to give feedback differ in the interval of ¢ distances which are
defined as positive or negative evidence for the user. Relevance feedback for documents
d with respect to an aspect with a centroid c is defined as simulated for the different
interest specificity as shown in table 6.1. During the evaluation, the goal was to learn
both M (a) and M, (a) using E™ and E~ for each task.

The feedback generated by this procedure was taken as input for the detailed average
case evaluation as presented in section 6.3.

"The generation of URLs and simulated feedback data was carried out using reserved key features on
the actual OySTER databases using the functions in um/inducum_2/mk_testdata. The following user
model induction, however, was carried out offline on a dumped subset of database contents.

81n this special case, the visualization of feedback as in figure 6.2 actually corresponds to the sample.
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User E* E~
(444) | <3 6>8
(111) | 6<5 6>5
(222) | <7 0>15
(333) | 6 <10 0 >10

4

Table 6.1: User interests of different specificity

6.2 A first evaluation of the approach

The motivation for this first evaluation was to get a rough impression of the capability
of our approach without sample enlargement by I'-functions. We also needed to get a
rough estimate of the runtime behavior of the system such that the further evaluation
could be planned in detail. We therefore started with a rather simple representation
and a stronger biased learning task (excluding thresholds for classification confidence).
Furthermore, we did not evaluate the learning task for several aspects per user but
assumed a single aspect interest setting.” Data used for this evaluation was domain data
as decribed in section 6.1.1.1 and feedback as described in section 6.1.2.1.

Figure 6.2 gave a rough impression about user 88’s interest based upon document feed-
back that was mapped onto the categories. The sample, however, contains much more
information (since documents are described by multiple categories). The rules induced
on the sample derived from all feedback data available are:

p_interest_88(_a,D) :-
cat__top_science_computer_science_programming languages(D,C1).

n_interest_88(_a,D) :-
cat__top_science_linguistics(D,C1).

n_interest_88(_a,D) :-
cat__top_science(D,C1),
cat__top_science_computer_science_artificial_intelligence(D,C2).

Those three rules were found to cover ten pieces of evidence in all. Nevertheless, from
other samples more complex rule sets, as displayed in figure 6.3, have been derived. User
90 shows the nice attribute of being interested in any 'publication’-like document about
‘science’. Furthermore, he seems to be interested in 'computer science’ and 'machine
learning’, if the document belongs to the category 'machine learning’ with a confidence
of at least 57. User 93 is interested in ’programming’ if it coincides with ’artificial

9 Accordingly, the argument of the head literal specifying the aspect id only carries a dummy variable.
The rules presented here were postprocessed by renaming variables for better readability as well as to
match definition (5.1). The files contained in the directory /src/oyster/um/inducum_1/first_run/ of
the CD-ROM have a reversed argument structure in the head literal (the rest remains unchanged).
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p_interest_90(_a,D) :-
cat__top_science_computer_science(D,C1),
cat__top_science_computer_science_[ai] _machine_learning(D,C2),
C2>56.

p_interest_90(_a,D) :-
type__top_publication(D,C1),
cat__top_science(D, C2).

p_interest_93(_a,D) :-
cat__top_science_computer_science_programming(D,C1),
cat__top_science_computer_science_artificial_intelligence(D,C2).

n_interest_93(_a,D) :-
cat__top_science_computer_science_programming(D,C1),
cat__top_rec_sports_water_scuba_diving(D,C2).
n_interest_93(_a,D) :-
cat__top_science(D,C1),
cat__top_science_computer_science_operating_systems_dos(D,C2).

Figure 6.3: Rules describing a user’s interest

intelligence’—but definitely is not interested in documents about 'diving computers’ or
'DOS’".

We have generated different feedback sets for ten simulated users, where Progol did
not deliver any compressing rule at all for two feedback sets; which in one case is due
to the almost equally distributed feedback over all categories.! Results are shown in
table 6.2. The underlying interest consisted of a single centroid (located somewhere in
the "procedural programming’ tree). Due to the nature of §, most negative feedback fell
into the category linguistics which formed a very clear image. Accordingly, only three
rules were induced which deliver a relatively high coverage and accuracy for p_interest.
Since n_interest is modeled by low ¢ values instead of special centroids, the training
data is unspecific and rather noisy.

A growing number of centroids chosen within the feedback simulation function corre-
sponds to multiple centers of interest. Usually, one would like to represent such a diver-
sity of interest by different aspects, but our aim was here to simulate a blurred image of
the user’s single aspect interest. Since multiple aspects were not covered in the first test
series, according results are rather bad: User 92’s single aspect interest was simulated
using two centroids!! that were both located in the upper levels of the ontology’s ’sci-

10T the second case, the depth limit on the search space was exceeded.

1 Again, the use of two centroids does not correspond to multiple aspects! Centroids are simply a
means to simulate user feedback. Therefore, simulating feedback for one aspect using two centroids
means to ‘blur’ the feedback behavior.
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p-interest n_interest
user cov acc  1p(cp) cov acc ry(cp)  time

88 93.8% 722% 1(2) 65.6% 26.1%  2(8) 207
92 51.7% 524%  1(2) 57.1% 29.5% 4(15) 407"
93 41.6% 57.8% 3(12) 322% 26.8% 4(12) 7547

r; is the number of rules induced for the target i; ¢; is the number of facts that are
covered by the rules.

Note, accuracy and coverage are computed only with respect to rules which actually
compressed the sample; remaining rules covering only single pieces of evidence are
not taken into account.

Table 6.2: Coverage & accuracy of induced rules

ence’ part thus yielding a rather uniform distribution of positive feedback with average
noise of interfering negative feedback. Least positive evidence in this branch was given in
the 'computer science’ / 'operating systems’ classes; most positive evidence was located
in the linguistics branch. The large number of rules for n_interest can be explained
by the noisy negative feedback of the large positive field which might also explain the
slightly better accuracy result of n_interest. Most important is the dramatic decrease
in coverage and accuracy of p_interest, though the latter can be easily explained by
inducing only one rule which subsumed the ’linguistics’ branch and left out the whole
branch of ’computer science’ (containing approximately 70% of all positive feedback).

Finally, user 93, whose interest was defined by three centroids, showed the worst results.
Two of the centroids were located in ’artificial intelligence’, while the third was identical
to the node ’science’; which of course yielded (due to its high position in the hierarchy)
lots of noise. Seven rules were induced, three for p_interest, four for n_interest.
Nevertheless, the induced rules showed interesting results (three rules are shown in figure
6.3; a non—compressing rule that was found for user 93 is shown in figure 7.1).

A first conclusion shows that for increasing number of interest topics (as simulated
by growing number of centroids for the feedback function), coverage decreases since
compressing rules need to be more precise—thus generalizing too carefully (see table
6.2). The bad values for n_interest are due to our simulation of negative feedback.

A more pictorial view on the user interest for users 88, 90, 92 and 93 is given in appendix
Al
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6.3 A detailed evaluation

The second evaluation was carried out in order to obtain a more precise estimate of
the quality of the sample generator functions I'. Taking into account several document
categories for each document, the sample is inherently noisy: Positive feedback with
respect to a document yields positive examples for each of the categories the document
was classified. For documents with wide—spread categorizations this means that positive
evidence is distributed among the whole ontology.

For reasons of brevity, we only include a discussion of learning p_interest here; the
impact of applying I for learning n_interest is discussed in detail during the pessimistic
evaluation.

For this evaluation data generated by the procedure as decribed in section 6.1.1.2 was
used; feedback was simulated as described in section 6.1.2.3.

6.3.1 Learning single aspects without sample enlargement

It is clear, that specific interests provide a better base for inducing user models than
shattered or vague feedback. Accordingly, user 444, who has the most specific interest,
draws a rather clear picture of his interest. The left graph in figure 6.4 shows that ac-
curacy increases both in specificity and sample size. As data from table 6.1 suggests,

100
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User 333 ---%---
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Figure 6.4: Learning p_interest for specific interests (user 444)

accuracy for user 444 is the best derived for all users and sample sizes. Similarly, ac-
curacy increases with growing sample size (with decreasing gradient). A more detailed
evaluation of the accuracy for learning p_interest for user 444 only is shown in the
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right graph in figure 6.4 (the graphs on the left hand side are average values derived
from such data files).

6.3.2 Learning multiple aspects with sample enlargement

As described in the last section, accuracy for small samples is rather poor. This motivates
using mutual feedback from other aspects in order to enlarge the sample. In the following
evaluation, interest aspect 8 was chosen as aspect a’ whose feedback data is used by I'
in order to gain more examples for learning aspects a = [1, ..., 50].1? The evaluation was
carried out for users 111-444 with 50 aspects each, thus modeling 200 different aspects
of different specificity. For each user, initial samples of length 5, 10, 25, 50 and 75 were
generated (with an uniform distribution of positive and negative examples). 'y and
I'y enlarged all samples by 15 examples that were generated from feedback given with
respect to aspect 8. Results are shown in figure 6.5. The average accuracy gain for the
test shown in figure 6.5 is described in table 6.3.

Sample size
User 5 10 50
111 |58 % 5.6 % 0%
222 [ 55 % 64 % 0%
333 [45% 50% 0%
444 144 % 6.6 % 0%

Table 6.3: Average positive accuracy gain

6.3.3 Discussion

From the results, we draw two major conclusions:

Only small samples should be enlarged. With growing sample size, the impact of I" func-
tions decreases.

Due to the fact that the accuracy of plainly derived hypotheses increases for larger
samples, application of I' functions does not contribute to the result. In such cases,
enlarged samples noisify the input. As results for sample length 50 show, accuracy on I
samples actually drops significantly below plain learning accuracy.

12This explains bad results for a = 8: The sample is enlarged by labeled data obtained from ¢’ = a = 8
and therefore becomes very noisy.
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From top to bottom: Users 111, 222, 333 and 444; from left to right: Sample size 5, 10, 50

Each graph shows accuracy of user models as learned for each of the fifty text cases. The
solid bars labelled ‘Plain’ show the accuracy gained when trying to learn the user’s single
aspect interest based on the feedback only. This value increases with sample size and
specificity of interest. The ‘+’—sign shows accuracy when trying to learn the aspect under
consideration taking into account I'; applied to feedback from aspect 8. The ‘x’—signs
(connected through a dotted line) show accuracy as obtained by using T'y.

The interesting part of the figures is where the accuracy can be increased by use of I'—
functions. This effect becomes visible in small samples only. It vanishes for growing
sample size or extreme specific or unspecific interest. As a result, the I'-functions behave
as expected and help to improve results for small samples on average interest specificity.

Figure 6.5: Accuracy for users 111-444 for different samples
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Specificity of interest. Over—specific interest as simulated by user 444 leads to highly
accurate hypotheses (see figure 6.4). This explains a rather poor accuracy gain using I’
functions for user 444. The base line of plain learning accuracy can be exceeded in only
very few (five) cases. For five initial examples, average accuracy gain is maximal for
user 111. The accuracy gain values can be related to the number of aspect hypothesis
in which enlarged samples delivered worse results than the initial sample (2, 3, 6 and 5
cases for users 111-444). Optimal results are delivered by specific interests which do
not allow for overfitting.

For the shortest sample and user 111, the best accuracy reached is only 60%. On the
other hand, the average accuracy gain obtained by using enlarged samples is 5.8%, and
more than 20% of all aspects could be learned with a higher accuracy. For a sample size
of 10 examples, similar results can be derived. It is noteworthy, that I" helps to increase
accuracy in 9 cases for user 111 while it helps for only 3 aspects for user 444.

The results obtained by our evaluation can be improved without violating our assump-
tions (A-5): All aspect learning tasks were evaluated using a fixed aspect o' = 8 for
enlarging the sample. During the evaluation we did not take into account ‘disjoint-
ness’ of aspects (the extreme case is the result for learning aspect 8). This means, that
for aspects similar to aspect 8, the results are distorted. A better evaluation method
would have been to choose a set of aspects d’,a”, ... for each learning task M, (a), where
a',a”, ... significantly differ from a (this can be modeled by means of the d—function).
This evaluation method meets the assumption about modeling a user’s interest i, by an
approximation M, which consists of several distinct aspects M, (a) and will most likely
deliver much better results.

Conclusions. It has been shown, that sample enlargement pays off for very small samples
only. Of course, sample enhancement can by no means reach an accuracy gain that can
be obtained by more examples.

Plain learning average accuracy results of between 50 to 52% do not sound very promis-
ing. Even when this level is increased to 58% one cannot feel overly impressed by it.

One must bear in mind though, that samples of length 5 pose a very hard learning
problem. When taking this into account one can conclude that an accuracy gain of 10%
(in relation to accuracy levels by plain learning) can be yielded in up to 20% of all cases
where 5 examples are considered.

Especially in cases where there is very little feedback available (namely 5 or 10 examples)
an accuracy gain of 5% should be viewed as a major improvement.

BThese are the cases where the dotted line for T'y drops below the baselines.
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6.3.4 Further evaluation

So far, we have only evaluated cases, where the sample based on feedback for one aspect
a was enhanced by I on one different aspect a’. It is clear, that for more aspects a”, a”
etc., application of I" yields even larger samples. This hypothesis was not evaluated in
detail, but we tested the method for some chosen sample sets. The results show, that for
an initial sample of length 10, the baseline accuracy (i.e. without sample enlargement
by I'—functions) was 50 %. The sample under consideration was aspect 20 as defined by
user 111; see the top left graph in figure 6.5. As already shown during this evaluation,
application of I to @’ = 8 yielded an accuracy gain of approximately 7 %. The same
result could be derived by applying I to a” = 23.

Incorporating both additional sample data, the accuracy could be further increased to
nearly 60%. These results cannot be generalized, but suggest that a further investigation
at this point may yield even better results.

6.4 A detailed worst—case evaluation

In this section, we describe an evaluation which was performed on deliberately noisy data.
For each document, all categories are taken into account—the probability distribution
by which categories were assigned to documents was a d—weighted random distribution.
Therefore, the outcome of this evaluation can be regarded as a baseline of minimal
performance which is guaranteed by our approach.

During the pessimistic evaluation, the same domain data was used as in the last evalua-
tion (see section 6.1.1.2). In contrast to the evaluation described in the last section, we
take into account all categories of a document. As a result, generating user feedback is a
more sophisticated process. Therefore, the user simulated user feedback is that defined
in section 6.1.2.2.

6.4.1 Learning single aspects without sample enlargement

Again, for a first evaluation, we generated fifty different aspects for an artificial user. All
aspects were single aspects with specific interest functions and five per cent noise.

Size of feedback sets. From each feedback set samples of size 25, 50, 75 and 100 were
generated. A batch run of the rule induction system was then used to verify that larger
samples generally imply a better means for learning compressing rules. Table 6.4 shows,
that for growing samples more rules are derived (upper part). For a sample size of 25
feedback events only 4 out of 50 aspects were partially described by one single rule. With
100 training examples, 54% of all aspects were partially described by rules. In this case,
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Sample type/

Sample size
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No. of Rules 25 50 75 100
nit- ptH=t /14 100% 8% [ 11 73% 22% |15 54% 30% | 15 38% 30%
nit=} pt+=t /2 2 2% 4% | 5 36% 10% | 11 55% 22%
nit=} pi+—t /3 1 10% 2%| 1 7% 2%

sum | 4 8% | 15 26% | 28 42% | 40 54%
ptth=t /14 100% 8% | 9 69% 18% | 8 67% 16% | 8 80% 16%
pttt /2 2 31% 4% | 2 33% 4% | 1 20% 2%
ptt1/3

sum || 4 8% | 13 23% | 12 21% | 10 19%

The bold face number in each cell describes the number of aspects that were described
by a rule set of according cardinality (for example, for a samplesize of 50, 2 aspects were

described by two rules each).

The following percentage shows the distribution of induced rules over the cardinality of
rule sets. As an example, consider the samples of length 100: 55% of all rules belong to
two—rule aspect descriptions. Only seven per cent belong to complex three-rule hypotheses
while 38% belong to single rule aspects.
The last value shows, how many aspects were covered the rules. It corresponds to the term
of the first number divided by 50.

Table 6.4: Learning aspects in relation to sample size*
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55% of all rules belonged to a two-rule aspect description—which means that 22% of all
aspects were described by two rules.

In a second batch run, the goal was to learn rules for only p_interest using both
positive and negative feedback. The results from table 6.4 (lower part) suggest, that
the algorithm performs worse for this learning problem, although the produced rules are
exactly the same as the p{*~} subset in the former test run (detailed information about
aspects for which hypotheses were generated are provided in the appendix; see table
A2).

It remains to be explained why most aspects M. (a) can be described by rules with
relatively small sample sizes (25 to maximum 50), while the number of rules for M, (a)
still increases. This phenomenon can be easily explained by analyzing the samples: Due
to our simulation the relative amount of negative feedback increases with sample size.
This property was intended to reflect the user’s behavior while working with such a
system: First, any user, in general, tends to give positive rather than negative feedback.
Assuming that the first links followed by the user are the best matches delivered by the
search engine upon the user’s request, the first feedback given with respect to a search
query will most likely be positive. In consequence we may assume, that they are not
completely off the topic but rather fit M, instead of M, . This explains, that for larger
samples the hypothesis space is more strongly biased due to the fact that there are more
negative examples and also because of the decreasingly scattered positive examples when
trying to learn M (a). The reverse case holds for learning M, (a).!*

100 T T 100
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without negative evidence in test set + X —+ *

Figure 6.6: Accuracy for p_interest and n_interest

Accuracy is described by the two graphs depicted in figure 6.6 (p_interest left hand

14Tn both cases, constant noise can be neglected.
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side n_interest right side). Both figures display the average accuracy over all aspects
for which at least one rule has been learned (80%; ten aspects could not be compressed).
Accuracy is measured with respect to a test sample and is computed only by taking
into account the inferred rules. Two surprising results are derived from the statistics:
First, accuracy differs significantly for different test sets. If the test set includes negative
evidence for p_interest; i.e. URLs which shall not be provable as elements of M (a),
then accuracy is much higher. In other words: The rules learned for p_interest rather
help filtering documents which are not of interest instead of describing the interest. The
second surprising fact is that accuracy cannot be significantly increased by sample sizes
larger than 50 feedback events.

Similar observations can be derived from the results obtained while learning n_interest,
see the right hand side of figure 6.6: A sample sizes of 25 is not sufficient at all.
Furthermore, it seems that accuracy increases slower and never reaches values as reached
by p_interest. Again, this can be explained by the fact that positive and negative
feedback is not distributed equally (and thus, examples in the sample are not, either).
In contrast to the learning problem p_interest, accuracy of n_interest is much more
sensitive to the presence of negative evidence (in this case, positive feedback). Again,
the hypotheses are more suitable to filter negative examples than describing positive
instances.

6.4.2 Learning multiple aspects with sample enlargement

Results from the last section have explained that taking into account relevance feedback
concerning aspects, other than the current aspect under consideration, should easily help
to improve accuracy of the results. However, this task is not as easy as one might think
in the first place. Accordingly, we start with rather sobering results.

In this section we briefly describe the results obtained while learning the positive interest
p-interest (M;") of a user. The samples provided contained both positive only and
positive and negative feedback. The samples were truncated to different sizes in order
to evaluate the performace of the I' function in relation to the sample length (5, 10, 25,
50). The example generating functions I' need to take into account feedback that was
given with respect to another aspect a’ = 42. This reference aspect was fixed for all test
runs.

Medium size samples. The first evaluation was carried out on samples which contained 25
relevance feedback pieces of evidence each. The target was to learn M, (a). In one case,
the sample contained positive feedback for p_interest only; the other cases contained

15Please note, that the ”constant” values for * and O actually accumulate to an accuracy of 50 %
by pure incident. This can be verified by comparison to the same lines in the left graph and the
non—constant maximum graphs in the right graph.
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Figure 6.7: Accuracy of I'-samples on M (a) feedback with initial length 25

very little negative evidence. The last sample also contained examples for n_interest.
Those samples were enlarged using I'; and I'y (see figure 5.3). However, the results
showed that, on average, hypotheses were no more accurate than the initial hypotheses.
Applying the I'-functions sometimes resulted in an improvement, sometimes in worse
results—with an average that does not significantly differ from the initial data. In other
words, the use of I' resulted in more hypotheses, that showed a slightly less accuracy
than the initial sample, and few hypotheses, which were of significantly better accuracy.
For reasons of brevity, we only show a graph for the behavior of I' with respect to the first
sample provided, namely positive feedback only for M (a) in figure 6.7. The remaining
graphs and statistics can be found in the appendix. Figure 6.7 shows the distribution of
accuracy values of I'“hypotheses around initial hypotheses. The accuracy of the initial
hypotheses is drawn as a diagonal line. Applying I'; (see ‘+'—marks), accurracy values
are distributed rather closely around the baseline accuracy. Distribution increases even
more for I'y (see ‘x’-marks) which explains the different number of points drawn in
figure 6.7.

Large samples. As shown in section 6.4.1, samples of length 50 already displayed nearly
optimal results. In consequence, it is rather unlikely that additional information as
provided by I' helps to boost the accuracy of the derived hypotheses. Indeed, results
show less significant results. Hypotheses generated using I' are still more or less accurate
than initital hypotheses (see figure 6.8) but differ less from the reference hypotheses
than hypotheses do for samples of size 25 (see figure 6.7). The fact that better initial
hypotheses are harder to improve further, can be derived from a direct comparison
of figures 6.7 and 6.8: While in figure 6.7 the hypotheses derived from the sample of
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Figure 6.8: Accuracy of I'-samples on M, (a) feedback with initial length 50

length 25 could be enhanced in some points, figure 6.8 does not show any significant
improvement at all (see aspects 5, 6, 8, 18, 20, 21, 30, 37, 43, 47 and 48 against 5 and
30 only).

Small samples. The quality of initial hypotheses and I'-hypotheses is shown in figure
6.9. As one can see, the impact of I' for very small samples is bigger than for large
samples.

Summary. The results presented in this section are based on a very pessimistic basic
assumption. Feedback was generated taking into account all document classifications
c1,¢o and c3. As a consequence, documents with “multiple topics” (i.e. ¢; with large
average 0 distances), generate noisy learning and evaluation samples. Accordingly, results
are not very promising but still demonstrate the potential behind I'-functions. Accuracy
gain is still obtained in several cases and, neglecting cases where I' actually delivers worse
results'®, follows the general rules of improving learning results. The following table
summarizes results from figures 6.7, 6.8 and 6.9: It shows, that I' performes best if used
on samples of length 25. On shorter samples (length 5 and 10), I' performs slightly worse

16Such cases can be prevented by testing sample accuracy of hypothesis for plain samples and I'-
enhanced samples. If sample accuracy for enhanced samples drops below accuracy on the initial sample,
hypotheses are discarded.
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Figure 6.9: Accuracy of I'-samples on M,'(a) feedback with length 5 (left) and 10 (right)

mmmn;mmlHM

20 40

Sample length | I’y I'y both avg. accuracy gain
21 5 6 6 3.82

10 5 6 6 3.82

251 4 8 8 4.08

50 2 2 2 2.50

Table 6.5: Results for accuracy gain with I" samples
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(in number and average accuracy gain) than in the reference case. For longer samples,
both number of and average accuracy gain are significantly smaller than in the reference
case.

6.5 A brief discussion of the evaluation methods

At first glance, results presented in the preceding sections are not overly impressive.
Partially, this was due to our motivation of giving a base line evaluation instead of
presenting impressive results. In other words: Using our approach on real data, with
better classifiers or more background knowledge, results can only be improved.

On the other hand, the evaluation carried out was even more pessimistic than actually
required by our assumptions. Furthermore, several more effects need to be evaluated in
order to gain a more precise image of how our approch will perform on real data.

The following ideas should be considered for further evaluation:

Bias on the learning algorithm: The language bias allows for building hypotheses which
give both lower and upper bounds on document category confidences. In other words,
both > and < are elements of the hypothesis language. This leads to overfit clauses
which cover only single examples (for an example, where the category confidence was
93, two literals are added to the rule body: C < 94 and C > 92).

It has to be evaluated, how a further language bias, which still satisfies our formalization
(that is, prohibiting the use of <), increases accuracy of our results.

Evaluation of I" functions: During evaluation we chose one fixed reference aspect a’. We
already have motivated, that taking into account further reference aspects, results can
be optimized. Furthermore, our evaluation did not take into account, that aspects from
our artificial users have overlapping regions. At this point, the basis for our evaluation
is much weaker than our basic assumption, that aspects are disjoint.

Aspects: It has to be evaluated, how different characteristics of aspects can be learned.
This includes specificity (as defined by d—thresholds for feedback) as well as diversity
(defined by the number of categories chosen as center of aspect centroids).

A more detailed summary of the results and a discussion of further work is given in the
concluding chapter of the thesis, 8.1.
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Chapter 7
IMPOVEMENTS

7.1 Improvements of the learning algorithm

The hypothesis generated during the induction process is a rule set S. The set of clauses
generated by Progol can be roughly divided into two sets of compressing rules C' and
redundant rules R.! Most of the rules that were not taken into account in sections 6.2
— 6.4 are rules which yield no compression, but nevertheless carry valuable information.
For example, user 93’s (see table 6.2) interest in a certain URL yielded a most specific
clause as an element of R which is shown in figure 7.1. Such clauses are redundant
(because they describe exactly one example) and are not included in the hypothesis,
since this would violate the minimum description length principle.

With respect to the knowledge described by the whole sample, such clauses are overspe-
cific; one could say that such clauses are the most extreme form of overfitting. In order
to prevent overfitting, one would try to generalize hypotheses.

In general, there are two ways to generate rule based hypotheses: One method is called
‘general-to—specific’ which in this case means adding literals to the antecedent of an
intially empty clause. This method is performed by the (m)—Foil systems.

The second version is a specific-to-general method which operates by dropping literals
from the antecedent of the rule. This method is used in the context of post pruning
decision trees.

7.1.1 Learning rules by adding literals

Learning rules by adding literals has been implemented in the Foil systems (as described
in [Quinlan, 1990]). A straightforward idea to learn rules using redundant clauses is to

'Rules in R are called redundant since they have the same expressive power as the fact they were
generated by. Since the encoding length of the rule is much greater than the length of the example,
they are discarded. Thus, R is replaced by the examples F and the output hypothesis H = C U F is
less complex than s.

143
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p_interest_93(_a,D) :-
type__top_publication_publishedbook(D,C1),
cat__top_science(D,C2),
cat__top_science_[cs] (D,C3),
cat__top_science_[cs]_[ai] _machine_learning_learning_theory(D,C4),
cat__top_science_[cs]_[ai] _machine_learning(D,C5),
cat__top_science_[cs] _programming(D,C6),
cat__top_science_[cs]_programming_ languages_functional_lisp(D,C7),
cat__top_science_[cs]_programming_languages_functional (D,C8),
cat__top_science_[cs]_programming_languages_procedural_perl(D,C9),
cat__top_science_[cs]_programming languages_procedural(D,C10),
cat__top_science_[cs] _programming_languages(D,C11),
cat__top_science_[cs]_[ai] (D,C12),
C1>67, C4>71, C5>46, C7>7, C9>75, C10>50, C12>21.

Brackets, i.e. _[cs]_[ai]_, are used to abbreviate long category names.

See also footnote 9 on page 127.

Figure 7.1: A non-compressing rule

collect all literal pairs which share common variables and then run Foil on this set. This
idea is formalized in the algorithm described in figure 7.2.

As a descendant of the attribute—value learning systems, Foil brings a top—down searching
technique into the family of rule learning systems. The system works on large sets
of examples where its search is guided by an information based heuristic. Again, the
heuristic seeks to guarantee maximal compression; i.e. a complex description is preferred
if its bit length does not exceed the number of bits required to encode all examples
covered by the description. Information gain based heuristics can easily be implemented
using a greedy search algorithm which always prefers locally maximal information gain.
Such myopic algorithms may lead to garden paths.

The learning target shall be defined by a logic program; i.e. a set of function free Horn
clauses. Foil runs on ground models just as Golem does, since it also uses 7j—determinacy
as a means for search bias. Examples are tuples of objects for which the corresponding
relations hold. Due to a closed world assumption, negative examples are defined through
positive examples; but they can also be defined explicitely.

While searching for a hypothesis which covers most of E* and as few E~ as possible,
Foil successively specializes the hypothesis clause by literal adding. Once such a literal
is added it cannot be removed again due to the greedy search mechanism. Stopping
criterion is the previously determined description length of concepts.

The top—down algorithm proceeds a follows: Starting with the rule head C' whose pred-
icate name is that of the target concept the system successively adds literals. Suppose,
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e A(s) = H = CUR with accs(H) = covs(H) =1
e Literal adding with FoIL:

foreach r; € R
foreach (L(_,cr),c, = 91) € 74
L=LU {(L(,, CL), Cr, 2 ’l9L)}
done
done

foil(L, s)

e H' = (C U bestof(R).

Figure 7.2: Learning rules by adding literals

we already had a hypothesis
hi—l :CHLh...,Ln

with vars(h) = {X,..., X,,}. There, each variable is bound to a ground term such that
CH € E*. Attached to this intermediate hypothesis is the (ordered) set of used variables,
which is enlarged by introducing a new body literal:

hi:CHLl,...7Ln7Ln+1

where
Ln+1 - p(Xi17 LI 7Xini)

The ordered sets of vars(h;) 2 vars(h;_;) differ by the variables X, introduced by Ly 1.
For the bindings of the X, one demands unique (due to determinacy) ground terms
tiys - - - ti, such that Pty - - ,tini) € Y. In other words, we choose a literal for which
we have a substitution 0;,, = {X;, /t;,,... X;, /t;, } such that L,,10;1, € ¥. This gives
a sequence like

co, € ET
(C — L1)¢9192 - i):nmh
(C = Ly, Ly)0h6h03 € Mgy

(C e Ly,...,L,)010505--- 0,11 € Msn

It remains to be explained which predicate p the algorithm shall choose. This is done
by a modified information gain heuristic: The information gain measure is based on the
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ratio of instantiations of the predicate schemata to positive ground facts to the number
of overall known constants. Accordingly,

|SNET|

Iroin(S) = — log( 5] )

At each step the next literal is chosen with respect to maximal information gain. As a
consequence, one might conclude that the literal which has, relatively, the best support
by positive examples is chosen.

Quinlan writes in [Quinlan, 1991]:

The form of the gain allows significant pruning of the literal space, so that Foil
can usually rule out large subspace without having to examine any literals
in them. Foil thus tames the hypothesis space problem by a stepwise greedy
search for clauses.

Of course, this is not always case: The introduction of new variables is consequently un-
derestimated. This again is due to the fact that, relations are unique in their arguments.
Imagine such a binary literal f(X,Y’). Now that X in vars(L;) and Y is a function f of
X, the enlarged set of variables vars(L;) U {Y} carries exactly the same information! In
other words, if all values for all variables vars(L;) are determinate to ground terms, Y
automatically is determinate to a unique value, too. Consequently, the information gain
must be zero. In such cases, new variables could not be introduced.

7.1.2 Learning rules by dropping literals

The second version is a specific-to—general method which means to drop literals from the
antecedent of the rule. With a growing set of examples induction of decision trees tends
to deliver overfitted hypotheses. As a consequence, accuracy on the training sample
increases, while it drops on an evaluation sample. One method to avoid overfitting
is to stop the tree induction process. This can be achieved by requiring a minimum
information gain in each step. Nevertheless, so called ‘pre-pruning’ (i.e. pruning during
the tree growing procedure) is rather insecure (as it is myopic).

Post—pruning, on the other hand is much more expensive in terms of computing complex-
ity since it includes both growing and iteratively shrinking. In general, such methods try
to prune subtrees which exceed a certain error—complexity measure which is determined
either on the training set or on an exclusive validation set. Pruning of whole subtrees
however poses the problem of re-structuring the tree in cases where intermediate nodes
have been deleted. Intermediate nodes may subsume subtrees which shall remain in the
final tree as well.

Rule based post pruning tries to overcome these drawbacks by first growing a tree to
its maximum depth deliberately allowing for overfitting. The problem of reorganizing
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trees is circumvented by transforming the tree into a set of rules. Hereby, every path is
translated into a rule the antecedent of which consists of the whole path from the root
to the leaf node. Then, the ‘tree’ is reduced by deleting whole rules (i.e. complete paths)
or by literals (that means, intermediate nodes).

In our case this could be achieved by an information gain guided literal dropping method.
Thus, for each rule r € R we recursively drop least informative pairs of literals

(I(_, o), thresh(c;, ¥)))

yielding more general rules ' € R’.? Since coverage increases with each step, the process
is stopped if the information content of the whole rule " drops below a predefined value
(accuracy of r initially is 1; but since 7 is only a part of the complete hypothesis, using
acc as a bias here would be rather myopic). In a second step, we delete rules from R’
until acc(R' U C) reaches a lower bound and output H = R’ U C as a final hypothesis.
This algorithm is shown in figure 7.3. Here, inf corresponds to hs as defined in definition

e A(s) = H = CUR with accs(H) = covs(H) =1
e Drop literals:

foreach r; € R
= 0; ff =Ty
repeat
rF = I\ {L(e) e 2 9L}
with inf(L(_,cp),cp 2 9)) = min(body(rf’l))
until gain (7, ff‘l) < D gain or acc(rF) < Jgee
R:= RU{r}
done

e H' = (C U bestof(R).
Figure 7.3: Learning rules by dropping literals

2.10 while gain can be realized by any of the functions Gn (see definition 2.11), NGn or
GR (see section 2.2.5).

7.1.3 Asking for feedback

Results cannot only be improved by using mutual information for generating larger sam-
ples but also by explicitly asking the user for more feedback. In contrast to interpreting

2A similar technique will help in identifying aspects: sudden leaps in decreasing information gain
while literal dropping suggest a border crossing.
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already existing feedback, this method does not really count as an improvement of the
learning algorithm.

At a certain point, the generation of samples from sparse feedback becomes very vague
and unreliable. Though one central aim is not to bother the user, we can define a concrete
situation in which very little user feedback can help a lot. Thus it seems reasonable to
explicitly ask the user for feedback under certain circumstances.

Imagine some clauses m!, = mJ; i.e. equivalent clauses in different user model aspects
for different users u and v.

By use of collaborative filtering we can use v’s positive feedback for v and vice versa. In
other words, the set of positive examples can be enriched by examples that were labeled
by other users with ‘similar’ interests. Here, similarity can be defined in a completely
discrete manner using our notion of interestingness. Since semantic entailment of differ-
ent user models like M,, k¢ M, is hard to show, we make use of our relations IIF and I-.
The choice of a set of documents d for which the following holds determines the notion
of similarity:

1. If M, IF Azyc(d) implies M, I A7yc(d), u’s interest is similar to v’s interest:
u ~ v. Note, that ~ is not necessarily symmetric.

2. Similarity is weaker, if we replace lI- by IF. Accordingly, we denote this case by
U~ .

More labeling information can be extracted from other users where E~ coincides with
EF. We now consider the case where we will ask u for further feedback (the other case
can be formalized canonically).

We now choose a set of documents Dy, (u) = {d| (d,p) € F, A (d,-) ¢ F,} with positive
feedback evidence p for which M, - Az,¢(d) such that for D, (u) it holds that v ~ u.
In other words, D}rv(u) contains documents v has rated as interesting and u seems to be
interested in according to M, though u has not given any feedback. Now, D}v (u) can be
ordered by the proof costs R we obtain when trying to prove M,, - p_interest,(a, D, R)
(see section 89). Then, the ‘cheapest’ d is the one which is most likely interesting for u,
while the most expensive one is a candidate for disinterest.

Similar to D, (u) we also choose a set Dy, (u) = {d| (d,n) € F, N (d,-) ¢ F,} which con-
tains documents v did not like. After ordering with respect to M, - n_interest,(a, D, R),
the cheapest is most likely un—interesting while the most expensive might be of interest.
We choose exactly those four documents to ask u for explicit feedback. This way, we
obtain new evidence for F,, which defines the most discriminant documents for v and w.
The same method is applied for the dual case u ~ v to obtain more examples in F,.

If however M, and Mv cannot be made disjoint in terms of clauses, the problem seems
to be of a different quality: Suppose, as an extreme case, that M, = M, but for F, and
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F, it holds that:

(d,p) € F,, 1implies (d,z) € F, —x <0
(d,p) € F, implies (d,z)€ F, —x<0

for some p > 0. Then, it is obvious, that v and v have different interests which cannot
be expressed by means of C. In this case we would have to introduce new concepts in C,
which poses the problem of interfering with static ontologies.

7.2 Conceptual user models for filtering

Having induced a user model M,,, the generated Prolog program can be used to deduce
relevance of a web document. Thus our user models allow for a highly individual content
based filtering method. The filtering methods have not been implemented in the current
work of OySTER. Our focus lies on inducing such user models. Since user models as
Prolog clauses also have a pretty clear procedural semantic, the idea of using them for a
filtering process is quite straightforward.

7.2.1 Proving relevance

Given a user model M, relevance actually can be proven: If M.f g p p-interest,(a, d),
u is interested in d (with respect to aspect a) according to the user model. The same
holds for disinterest and a program P, C M, .

For example, consider the following rule which is part of M, (13):3

p_interest_111(13,Doc) :-
type__top_reference_peoplelist(Doc,C), C>99,
cat__top_rec(Doc,E), E>16,
cat__top_rec_sports(Doc,F), F>42,
cat__top_rec_sports_water(Doc,D), D>67,
cat__top_rec_sports_water_scuba_diving medical_age(Doc,G), G>92.

Obviously, M;,(13) describes an interest about lists of people who are associated to
scuba diving and related medical issues. Now imagine we had to decide whether an URL
with urlid 0001 is of any interest to user 111. Looking up urlid 0001 in the database
yields the following classification information:

type__top_reference_peoplelist(urlid_0001,100).
cat__top_rec_sports_water_scuba_diving_medical_age(urlid_0001,97).
cat__top_rec_sports_water(urlid_0001,73).
cat__top_science_computer_science_os_dos(urlid_0001,63).

3Literals have been reordered for the sake of readability.
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Obviously the document contains a list of references to people who are somehow asso-
ciated to scuba diving and DoSs. For example, the document might contain a list of
people who work on computer simulations of decompression processes in diving. Then,
document urlid_0001 could be proven to be interesting for user 111 with respect to his
interest aspect 13:

1. The first pair of literals concerning the document type can be directly inferred from
the first fact (C=100 and 100 > 99).

2. Similarly, the fourth and fifth literals can be proved using facts three and four,
respectively (D=73, G=97)

The second and third literals however cannot be derived directly, but, taking into ac-
count background knowledge about the concept hierarchy, the remaining literals can be
resolved, too:

cat__top_rec(X,D) :-
cat__top_rec_sports(X,C), D is C - 25.
cat__top_rec_sports(X,D) :-
cat__top_rec_sports_water(X,C), D is C - 25.

Since we know, that cat__top_rec_sports_water (urlid_0001,73), we can prove

cat__top_rec(urlid_0001, 23).
cat__top_rec_sports(urlid_0001, 48).

Now, E=23 and F=48, and since 23 > 16 and 48 > 42, we have shown that
p_interest_111(13,urlid_0001).

Therefore it has been shown that urlid_0001 obviously is relevant with respect to user
111’s interests. Proving explicit disinterest is carried out analogously; the goal then is
a literal n_interest_111(a, D) € M,;;. Negations, i.e. non-interest (or non—disinterest)
can be proven by negation as failure: document urlid_0001 is non—interesting, if there
is no proof of p_interest_111(A,urlid 0001). This is explained in the next section.

7.2.2 Different levels of relevance

Taking aspects into account again, documents can be of different levels of interestingness,
too: Given a document d, for which M, (a) Fs p p-interest(a, d), we have shown, that
d is relevant to u with respect to a. If, however, the proof fails, and there is a different
aspect a’, for which p_interest(da’,d), d is still of some interest?. Finally, if there is no

4Taking into account the search query ¢, one can quantify the notion of ‘some’ by trying to classify
q and computing §(C(q),C(d)).


cat__top_rec_sports_water(urlid_0001,73)
urlid_0001
urlid_0001

7.2. CONCEPTUAL USER MODELS FOR FILTERING 151

a, such that relevance of d can be proven, it is likely to say that d is not interesting.
However, d is definitely not interesting if there is some aspect @ for which M, (a) = C(d).
This way, we can define a hierarchy of different levels of interestingness:

Definition 7.1 (Interestingness) Let M, = (M., M) be a user model. We define
the level of interestingness for relevance of a document d as follows:

1. w is interested in a document d, if Ja : M F p_interest(u,a,d).
We denote this case by M, Ik, Aryc(d).
2. d could be interesting for u, if Va : M, t/ n_interest(u,a,d).
We denote this case by M, IF Aryc(d).
3. w is indifferent about d, if Va : MIUM, V/ p_interest(u,a,d)Vn_interest(u,a,d).
We denote this case by M, ¥ Aryc(d).
4. d could be non-interesting for u, if Va : M} t/ p_interest(u,a,d).
We denote this case by M, I Arxc(d).
5. w is not-interested in a document d, if 3a : M, - n_interest(u,a,d).

We denote this case by M, o Arxc(d).

Furthermore, any successful proof by clauses of M or M, (a) (of which there might be
several) has a certain length (since satisfaction of body literals again may have to be
checked against the concept hierarchy). The minimum number of resolution steps used
for a proof thus can be interpreted as a quality measurement as well. The simple sum of
resolution steps can further be weighted by the ¢ distance measure in literal proofs. This
method allows for a more detailed notion of relevance as demonstrated by the example
in section 7.2.1.

Using confidences. In section 7.2.1 we have shown how relevance of a document can be
proven. Irrelevant documents are documents for which disinterest can be proven. Failing
proofs can be used to derive different levels of interestingness (see last paragraph).

Since in most aspect definitions, the membership of documents to classes is combined
with a minimum confidence threshold, one might conclude that for decreasing differences
between actual confidence and required threshold, relevance of the whole document also
decreases. In order to take such information into account, one would need to extend a
hypothesis clause as displayed in equation 5.2 by a return value for confidence which is
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computed by a function p. The abstract scheme for such rules is shown below:®

p-interest_u(a, D, R) : —
type_t1(D,Th), ..., type_t,, (D, T,,),
(7.1) cat__ci(D,CY),...,cat_c, (D, C,,),
thresh(Cy, V), ..., thresh(C,,_, V. ),
I‘hO([(Cl, 191)7 ) (07%7 ﬁnc)]’ R)

Note, that during SLD-resolution, all C; are instantiated and the elements of the result
list can be arithmetically evaluated. Here, R is a newly introduced variable which is
used to describe an overall threshold. Continuing our example from the last section, one
would obtain:

p_interest_111(13,Doc,R) :-
type__top_reference_peoplelist(Doc,C), C>99,
cat__top_rec(Doc,E), E>16,
cat__top_rec_sports(Doc,F), F>42,
cat__top_rec_sports_water(Doc,D), D>67,
cat__top_rec_sports_water_scuba_diving medical_age(Doc,G), G>92.
rho([ (D,67), (E,16), (F,42), (G,92)], R).

In this clause, variables in the last literal were instantiated while proving the former
classification literals. Accordingly, the following substitution has been applied: {D/17,
E/28, F/48, G/97}. Then, rho could return the sum of differences between thresholds
and actual values and return them using the Variable R; in our example, R = 29. Using
a system—wide (predefined) threshold value for R, the predicate rho might fail—although
all other literals have been satisfied. In this example the minimum value for R which
still allows for the other literals to be provable would be 4. If, on the other hand, one
wants to require a higher precision, the overall threshold for R could be set to 15; thus
forcing rho to fail. Dual considerations apply to n_interest: A higher threshold makes
disinterest more precise which results in a more generous filter.

Computing proof cost. A further idea is to use penalties that were collected during a
proof in order to determine the quality of a proof. In the example above, two literals
were not provable by single resolution steps: The system had to consider clauses from
the background knowledge which describe the category hierarchy. Since it was known
that cat__top_rec_sports_water(urlid_0001,73), the clauses

cat__top_rec(X,D) :-
cat__top_rec_sports(X,C), D is C - 25.

°In this example we focus only on document categories. One could easily extend this approach
document types as well.
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cat__top_rec_sports(X,D) :-
cat__top_rec_sports_water(X,C), D is C - 25.

were used to derive two lemmas:

cat__top_rec(urlid_0001, 23).
cat__top_rec_sports(urlid_0001, 48).

Note, that classification confidence was decreased. In our implementation, category
movement (here: generalization) is penalized by a constant factor (25). One could also
use the 0 measure which allows for a more sophisticated penalty system®. Whether one
takes d into account or simply wants to take proof length (which would be equivalent to a
generalization penalty of 1 instead of 25)—both require a slightly different representation
of both the user model clauses and the concept hierarchies. In such a case, each subgoal
needs to report its ‘computing cost’ which can then be aggregated by a modified version
of rho.
p-interest_u(a, D, R) : —

type_t (th D, T, pt1>7 - type_tn, (tnﬂ D, Tnzv Ptn, )7
(7.2) cat_ci(c1, D, C1, pey ), . cat_cy (Cn,, D, Cp., pe,, )

thresh(Cy,v,), ..., thresh(C,,, V,),

rho([(Cl, U1, p01)’ s (Cnc7 Un, pcnt)]v R)

The background knowledge then needs to be reformulated as follows: For each rule
cat_¢;(D,R) : —
cat_¢;(D,S5),
R is S — 25.

one needs to add two new rules. In the case where we are trying to prove the membership
of a document to a category directly, this becomes
cat_ci(¢;, D,0,R) : —

cat_¢;(D, R).

If on the other hand, we need to prove membership by taking into account subsumption,
things get a bit more complicated:”

cat_cs(c;, D,Cost,R) : —
cat_cj(cs, D,0ldCost, OldR),
Cost is OldCost + 6(c;, ¢5),
R is OldR — GENPENALTY.

(7.3)

(7.4)

In order to avoid the result of learning being predetermined by the input, this was not realized
within this work: the J-measure was used to simulate user interests which were used to generate feedback.
Taking into account the §—measure in the learning process would mean to provide much more information
about the user to the system. This argument does not hold for real world applications where the
feedback is real feedback from real users. In such cases one could include the é—measure; most likely
with a significant accuracy gain.

"Categories ¢; and c; are as chosen by the rule displayed in equation 90.
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Imagine, one would have to prove a cat__¢; literal in a goal as displayed in 7.2. If the
document D under consideration actually belongs to ¢;, the proof will succeed using
the rule as shown in equation 7.3, as only the body literal can be satisfied by a fact
from the background (classification) knowledge. If there is no such evidence, category
subsumption has to be taken into account. In such a case, the rule shown in equation
7.4 is triggered:

It has to be shown, that D somehow belongs to category ¢;. Since cat__¢;(D, R) failed,
one considers subconcepts ¢; which are subsumed by categories ¢,. For subsumption
paths of length 1 it holds that ¢; = ¢, such that the first body literal becomes

cat_cs(cs, D,0ldCost, OldR)

This literal can only be satisfied by rules of the former type (equation 90). If the proof
fails again, the same rule scheme as in equation 7.4 is applied again. In this recursive
step, the variables are instantiated as follows: ¢y := ¢;, ¢; := ¢, and the new c¢; are
subconcepts of ¢, (formerly ¢;).

Either way, if the proof succeeds (with a subsumption path length of at least 1), we obtain
values OldC'ost describing the proof annotated cost and OldR for subsumption penalties
(GENPENALTY, a constant 25 in the preceding examples). To those values, d—distances
and generalization penalties are added to yield Cost and R, respectively.

Such an approach would allow for the setting of the GENPENALTY to a minimum value
of 1 thus calculating path length (that is, proof length). Together with the § cost, the
proof length could be further weighted: Cost is OldCost + (cj, cs) - (OldR + 1).
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Chapter 8
SUMMARY AND CONCLUSION

8.1 Summary

This thesis presented both a formal and practical approach to user modeling by inducing
conceptual user models.

After a brief survey of the contributing fields of user modeling and machine learning, we
described the parallels of machine learning and user modeling and introduced a formal
learning problem in section 2.3.2.

In the second chapter, we described the OySTER system as a testbed for evaluating user
modeling techniques. This was followed by a description of related work.

The core chapter of the thesis introduced the notion of conceptual user models. The
idea of representing models of the user’s interest by conceptual user models in terms of
Prolog clauses is a novel approach in user modeling research. The big advantage is that
such models can be visualized as trees (as shown in figure 4.1), explained to and edited
by the user (as, e.g., shown in figure 3.2) and represented and learned by Prolog clauses
as shown in formula 4.11 and in figure 7.1.

A further new and promising idea is that of explicit modeling of disinterest which allows
for more distinct information filtering and sample enhancement.

Based upon the representational properties of user models, we developed a framework
for induction of such user models in chapter 5. Representing conceptual user models
as Prolog clauses defines a clear machine learning task for inductive logic programming
which is described in section 5.3.

8.2 Conclusion
It has been shown, that ILP delivers accurate results for sufficiently large samples and

that accuracy of results for very small samples can be increased by taking into account
mutual information from other interest aspects as well as from explicit disinterest. In
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sections 6.2— 6.4, we presented results that were derived based on pessimistic assump-
tions.

For an initial sample which contained 10 examples only, accuracy of the compressing
rules reached 57% (depending on the specificity of the user’s interest, see figure 6.4). The
relative average accuracy gain when taking into account 10 more examples from different
aspects reached approximately 11 % ( 6.6 % for user 444 and an initial accuracy of 57%,
see table 6.3). Using a pessimistic simulation for user feedback, accuracy gain dropped
to 3.82 % (see table 6.5).

This thesis presented at least three novel approaches to the current research in machine
learning for user modeling:

1. The use of concept hierarchies for describing document contents overcomes the
drawbacks of representing content by word vectors. This allows for better in-
spectability of user models which is one key feature required for a increasing user
acceptance.

Furthermore, this approach allows for discriminating knowledge about users and
knowledge about the domain (see assumption A-1 in section 5), although the lack
of information about the domain poses a harder learning problem.

2. Explicit representation of interest and disinterest allows for the generation of larger
samples than actually provided by sparse feedback.

Furthermore, the label data derived out of feedback data helps to define a better
bias for the user model induction process. Additionally, the dual concepts together
with Prolog’s negation as failure already allows for a multi truth-valued like proof
method for recommendation which can be further enhanced using weighted feed-
back values.

This approach was motivated by the idea of discriminating feedback from samples
(see A-3, section 5) and by the need to generate larger samples from little feedback

data, since we induce user models from scratch instead of refining predefined initial
models (A-4).

3. In order to induce conceptual user models based upon conceptual input data, we
employ methods of inductive logic programming. The logic programs can be used
to prove relevance or irrelevance of retrieved documents. It is noteworthy again,
that the logic programs derived do not describe the user’s interest by means of
word occurrences but by content based conceptual descriptions only.

Of course, our approach also has at least three major disadvantages:
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1. The overall performance of the system cannot be measured in terms of the quality
of the derived user models only. It crucially depends on the quality of text classifiers
which produce the conceptual description. The distinction between document and
category is invisible to the user—and thus a faulty classification may lead to an
erroneous recommendation, although the user model is correct.

2. In this approach we restricted ourselves to a rather static ontology of document
types and contents. Static, handcrafted ontologies have at least two disadvantages:
Firstly the domain that is to be covered cannot be entirely overseen at the time
of building the ontology. This means that for growing document sets, and an
increasing number of documents, the need for more and more special categories
will arise. Secondly, one ontology for all users presupposes a unique understanding
of all categories for all users—which most certainly is not the case.

3. The system as described in this thesis depends on explicit feedback. Although
samples can be enlarged in order to increase precision up to a certain point, it has
been shown, that larger samples (i.e. more feedback) are the only reliable method
for gaining more precise user models. At this point, the tradeoff between bothering
the user and precision gain has to be evaluated very carefully.

Taking into account the ‘ten commandments’, of user adaptive systems ([Miller, 2000],
as briefly described in section 2.1.4; see table 8.1 ) an evaluation of our approach yields
the following result:

Make many correct conversational moves for every error made
Make it very easy to override and correct your errors

Know when you are wrong

Don’t make the same mistake twice

Don’t show off

Be able to talk explicitly about what you are doing and why
Understand the implications of interaction on all levels

Adapt to individual, cultural, social, contextual differences v /-
Be aware of what the user knows (don’t repeat yourself) v
Be cute only to the extent that it helps v

© 00 1O UL Wi
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Table 8.1: The ten commandments of Human—Computer Interaction

The system presented in this thesis is an approach to more transparent individual user
modeling. The subject of the user models are aspects of the user’s interest—thus also
covering a certain type of contextual differences. Still, the system is based on pure indi-
vidual, content based user models which fail to explain cultural, social, or—in general—
collaborative effects (commandment 8).
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Conversational moves in context of a search engine are query/response tuples. The
problem is to define what an ‘error’ means in this context. If a result which contains the
desired information is a correct answer then, due to recall, the overall search procedure
certainly meets the requirement of the first commandment. If, on the other hand, an
error is defined as a greatest lower bound on accuracy, our approach qualifies for a low
error probability provided there is sufficient feedback. Taking into account the categorical
imperative of Hcr, "Don’t bother the user”, one only has little feedback available and
error probability increases, thus violating the first commandment. Similarly, the need
for explicit feedback as the only source for samples shows, that commandment seven
certainly is not fulfilled.

Commandments 2 and 6 are certainly met since they are a direct implication of our
central idea—conceptual user models. The user models can be easily visualized, the
filtering process is lucid to the user and can be verbalized such that the whole system
becomes scrutable. Furthermore, the user interface (see figure 3.2) already allows for
correcting the underlying user model as well as the actual search result (see the ‘Edit
classification info’ facility in figure 3.3).

The system cannot be sure, whether it is wrong or not (though a measurable sample
accuracy may give a hint about the reliability of hypotheses). Nevertheless, once the
system knows it was wrong, this information is incorporated into the user model and
helps to refine filters.



Chapter 9

FUTURE WORK AND OPEN
PROBLEMS

Induction of conceptual user models as introduced in this thesis offers a very promis-
ing base for further research. Accordingly, there are many prospects for both further
theoretical and practical work.

9.1 Inducing concpetual user models

For each problem identified, tackled and solved during our work, a whole set of even
more interesting problems arose. Some of those problems which are worth a deeper
investigation are described in the following paragraphs.

Generating samples from feedback. The I' functions described and used within our eval-
uation yielded a gain of 10%, in relation to initial accuracy, in 20 per cent of all cases
with five examples only.

For an accuracy of 50% after plain learning this means 55% accuracy which is still far to
low. Therefore, different methods for sample generation have to be further investigated.
Two approaches seem to be very promising:

1. Using the d—measure, reliability of I' samples could be increased:

Instead of applying I'y to the whole domain (i.e. transforming every negative feed-
back with respect to a into a positive example for M (a')), inherent noise could
be reduced by taking into account only those negative examples for a, which are
within a d-region around the current center of a. Similar considerations apply
for I's and M, (a’). For the reverse case, only positive examples for a outside a
o-region around the center of a should be used to generate negative examples for
M (a) by I'y and positive examples for M, (a) by T's.

It remains to be evaluated if the tradeoff between noise reduction and sample
shrinking pays off in terms of accuracy.
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2. During our evaluation we only considered pairwise I' enhancement. It is obvious,
that for more than two aspects with a sufficient average § distance the sample
size can be increased even further—even if noise reduction restrictions as described
above are applied. This was shown in section 6.3.4. It remains to be explained,
how to choose a proper § distance and how many different aspects should be taken
into account in order to determine the ideal trade—off between sample enlargement
and additional noise.

Learning from real and little data. The initial idea behind implementing OySTER was to
provide a testbed for different user modeling approaches. One main motivation was to
allow for an evaluation of methods with real world data. As described in the introduction
to chapter 6, we encountered severe problems in trying to obtain real world data: Users
who worked with OySTER gave too little feedback (less than five examples) and in general
had widespread interests which were not covered by the ontology and which were not
divided into aspects. In consequence, our work was evaluated against simulated user
feedback.

Nevertheless, OySTER offers the opportunity of collecting real world data. Given an
ontology, text classifiers can be trained very efficiently for almost any domain. Using
OySTER as a web portal search engine, one could observe users in a rather static context
which focuses user interests onto a certain domain under consideration. Again, it remains
to be explained how feedback can be obtained in such environments.

The idea of asking for feedback where needed has already been discussed in section 7.1.3.
Asking for feedback in order to yield a better precision in each document category gave
rise to newly invented concepts. This leads to the following open question.

Learning ontologies and user models simultaneously. If there is a model M that applies
for several users u;, C obviously is too coarse. Then, by introducing new categories
(i. e. splitting clusters in a clustering approach or predicate invention in an ILP approach),
the F,, now induce new M,,,.

The pitfall which is likely to be overlooked is that dynamic category hierarchies also
demand a constant re-training of classifiers. The problem to re—classify all documents is
even harder. Once all documents are reclassified, the samples f are changed inherently:
Recall, that all documents d in f are interpreted as conceptual descriptions which then
naturally must change.

Similar problems occur when examining the phenomenon of concept drift and concept
shift. Concept drift means a slow movement of the user interest; in our case it forces re-
learning of interest aspects as accuracy decreases over time. Concept shift means sudden
leaps in the user’s interest. In such cases, current interest aspects are not involved
(though some might be less important after a shift) but rather force rapid induction of
new aspects (for example during Olympic games with a temporary interest in certain
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disciplines which were uninteresting before and will be after the games). Both phenomena
also lead to situations where the current ontology needs to be refined in order to be able
to describe the new interest aspects.

Learning ontologies and user models simultaneously poses an interesting learning prob-
lem which deserves further research. One must bear in mind, that the result of such a
learning process might pose even larger problems. The tradeoff thus has to be estimated
very carefully. Within our work, however, it was impossible to also include re-training
classifiers and re-learning user models.

Nevertheless, the task of collaboratively learning an ontology or rather one ontology with
user dependent views on it defines another highly interesting research question. Results
will be of great importance as they provide us with methods that free us from the need
of handishly defining (static) ontologies which will always be the subject of criticism.

Order sorted ILP. Omne main initial motivation for this work was also to incorporate
order sorted ILP as, e.g. described in [Miiller, 1995]. Actually the distinction between
document types and document categories was motivated by the idea of representing types
as sorts and categories as predicates. This approach was described in an example for
order sorted ILP operators in section 5.3.

Since the learning problem for this domain has been specified in detail in section 5.3, it
seems adequate to implement a more problem specific learning system. One successor
system of Progol, the Aleph system!, is completely written in Prolog making use of the
Yap Prolog interpreter?. Thus, an adaption of Aleph and its underlying methods to the
domain of order sorted user models poses a further interesting research question.

Evaluation: Accuracy vs. user satisfaction. The evaluation presented in this thesis is an
evaluation of the learning algorithms only—with respect to accuracy gained measured
by a test sample. Our approach of discriminating classification and user modeling was
mainly driven by the demand of independently evaluating the performance of the user
modeling component. In HcI however, the scale on which adaptive systems should be
measured is defined by user satisfaction.

In order to evaluate OySTER as an adaptive web search engine we would have to au-
tomate and incorporate the user modeling process into the current prototype and then
evaluate the whole system by investigating the change in user satisfaction. The problem
in such an empirical test is that several components of the whole system contribute to
the overall performance but the outcome cannot be traced back to each module. In such
an evaluation many more aspects of Hct would have to be taken into account: Interface
design contributes to interaction and perception of results (including feedback) and thus

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html
2http://www.ncc.up.pt/ vsc/Yap/
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affects user satisfaction in several ways. Ontology design poses the problem of differ-
ent understandings of categories by different users which leads to misunderstanding of
classification results; classifiers themselves are also a constant source of noise.

This list could be added to further—but luckily, the system developed during the course
of the thesis offers an ideal workbench for testing different interfaces, classifiers and user
modeling techniques and its open architecture also allows for gathering data that can be
used for carrying out an evaluation of user satisfaction.

9.2 Implementational issues

Most issues discussed in the thesis have been realized with a first prototype of an adaptive
search engine. However, there still remains a lot of work to be done.

System integration. First of all, the user modeling component has not been integrated
into the online accessible system. This is due to the fact, that evaluation was carried
out on simulated users. Since the definition of initial user models is already supported,
we will first include filtering mechanisms. In a second step, the user modeling process
shall be integrated.

Multi agent system. All parts of the whole system are realized as independent agents.
Since the implementation of a meta search engine was not the focus of the thesis, wrap-
per agents and database update agents are minimalistic ad—hoc solutions. These need to
be re-implemented and enhanced; for example the database is not updated by revisiting
crawlers which check for persistence of URLs. However, the system is currently dis-
tributed over three machines and is (with few exceptions) very stable and robust against
failure of single components. For higher system load an intelligent agent scheduling with
respect to computing resources is indispensable.

Upscaling. Currently, the ontology covers only a tiny part of the web. With a grow-
ing ontology, computational resources increase. Instead of upscaling, it seems more
reasonable to generate several different instantiations of OySTER for different, enclosed
domains. One promising idea is to use OySTER as a search engine for portals or intranets.

User interface. User feedback was assumed to exist. The current prototype relies on
explicit feedback from pop—up windows asking for user ratings for search results. Such
a system behavior is by no means ‘user friendly’ behavior since it severely violates the
rule of not bothering the user.
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Classifiers. Feedback is given in relation to documents, but example labels are based
upon target concepts which are made up from document categories. This means, that
the overall performance of OySTER—and thus user satisfaction—heavily depends on the
accuracy of classifiers. The development of more accurate classifiers is the subject of
ongoing student projects.

One important feature of classifying documents with respect to several categories is to
deliver relative confidences instead of absolute values. Currently, the classifier delivers
a vector Ac(d) = (c1 :: p1,¢2 2 P2, ..., Cy 2 Pn), where each p; € [0,100]. The resulting
noise could be decreased, if the sum of all p; is normalized to 100 and the importance of
p; is weighted (decreasing with growing 7).

Thinking a step further

The experience gathered while working on Inducing Conceptual User models and with
OySTER leads to further research questions. The most intriguing question is how concep-
tual user models and ontologies could be developed and learned simultaneously. From the
viewpoint of OySTER as an application, one would conclude that a generic meta search
engine is only a suboptimal application domain for our theory. As already mentioned
above, web portals seem to establish a more promising application domain for different
reasons. One could imagine a user adaptive forum for a loosely organized special interest
group of researchers. By contributing to the forum and interactively building a glossary
of key words, one could induce a concept graph (rather than a hierarchy). Then, ontolo-
gies are user dependent as well: they are user centered views on the concept graph. At
this point, we could incorporate ‘relevance’ in the sense of importance of features into
the user model (see assumption A-2 in section 5). This allows for customizing classifiers
as well: according to the different models of relevance, the same document could be
classified into different categories for different users.

User adaption would result in user tailored representations of content and recommen-
dations for further retrieval. Data collected in such an environment by far exceeds the
data available in the approach described here: One could not only collect explicit or
implicit feedback but also relationships between documents by means of collaboratively
analyzing transitions between documents and sub—graphs.

Furthermore, the personalization of both the representation of categories and the classi-
fiers need to be described in the user model. This provides the learning algorithm with
a whole set of useful background knowledge (thus weakening the assumptions A-1 and
A-4) which was not available in the approach presented in this thesis.
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Conclusion

This thesis presented the novel approach of conceptual user models. Easy inspectability
and understandability of conceptual user models was demonstrated and scrutability of
the system’s actions was shown.

It has been shown, that ILP can be applied for the task of inducing user models from
feedback, and that feedback concerning different interest aspects can be used for sample
enlargement.

Results were evaluated independently of domain knowledge within a clear machine learn-
ing problem definition.
The whole approach is based on several assumptions (A-1 to A-5), which:

e do not presuppose certain requirements on the domain (like, for example, indepen-
dence of features)

e do not require additional background knowledge about the domain that is incor-
porated into the user model (like word occurrences)

e do not assume prior knowledge about the user (as, for example, initial user models
provided by the user himself or a minimum amount of feedback needed)

The results obtained constitute a baseline of performance using ILP as the machine
learning method in user modeling. Taking into account more knowledge, the results can
only be improved.

During the work on the thesis, most parts of what has been described was realized
in a meta web search engine prototype, OySTER. All code, documentation and data
is published and accessible through the world wide web from the project’s homepage:
http://www.aye-aye.de/oyster/.


http://www.aye-aye.de/oyster/
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Appendix A
EVALUATION DETAILS

A.1 Sample results for a single aspect learning task

The following four figures illustrate the user interests as used in the evaluation of section
6.2. They were generated using the feedback browser interface (fbb) and show the
relevant part of the feedback distribution.
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&1 top science.computer_science artificial _intelligence reasoning nonmonotonic
58 top.science. computer_science artificial_intelligence robotics

55: top.science.computer_science artificial _intelligence search

114: top science computer_science artificial_inteligence user_modeling

73 top.science.computer _science computer _aiced

74 top science. computer_science computer _aided design

76 top science. computer_science computer _aided learning

77 top.science. computer _science computer _aided learning language

75: top.science.computer _science computer _aiced manufacturing

55: top.science.computer_science database_systems

1185: top science computer_science hci

EE: top science. computer_science information_retrieval

102: top science computer _science operating_systemns

105: top science computer_science operating_systerns dos

103: top science computer_science operating_systems unix

104: top science computer_science operating_systems unix linus

i549: top.science.computer _science programming

90: top seience. computer_science programming languages

92 top.science. computer_science programming languages functional

94 top.science. computer _science programming languages functional lisp

95: top.science.computer _science programming Janguages . functional ml

100: top science computer _science programming languages oo

101: top science computer _science programming Janguages oo smalltalk

93: top science. computer_science programming languages predicative

91 : top.science.computer_science programming languages procedural

96 top.science. computer _science programming languages procecural ..

97 top.science.computer _science programming languages procecural cpp
95: top.science.computer _science programming Janguages procedural perl
99 top.science.computer _science programming Janguages procedural python
EE: top science. computer_science theoretical_cs

E7: top science linguistics

63 top.seience linguistics cormputational_linguistics

64: top.science linguistics computational_linguistics parsing

72: top science linguistics computational_linguistics pragmatics

71 top science linguistics computational_linguistics semantics

1

-1

&

=)
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top

toprec

toprec.sports

top rec.sports water

top rec sports water scuba_diving

top rec.sports water scuba_diving ecuipment

1: top rec.sports water scuba_diving locations

top rec.spaorts water scuba_diving medical

top rec.sports water scuba_diving medical age

top rec.sports water scuba_diving medical des

top.science

top.science. cognitive_science

top.science computer _science

top.science. computer _science applied_cs
top.science.computer _science artificial_inteligence
top.science.computer _science artificial_inteligence knowledge _representation
top.science computer _science artificial_intelligence logic_prograrming
top.science . computer _science artificial_inteligence machine_learning
top.science computer _science artificial _inteligence machine _learning .clustering
: top.science.computer _science artificial_inteligence machine_learning.genetic
top.seience. computer _science artificial_intelligence machine _learning learning_theory
top.science.computer _science artificial_inteligence machine_learning . statistical
top.science. computer _science artificial_inteligence machine_learning subsymbolic
top.science. computer _science artificial_inteligence machine_learning symbolic
top.science computer _science artificial _inteligence nat_lang_proc

top.science . computer _science artificial_inteligence nat_lang_proc.generation
top.seience. computer _science artificial_inteligence nat_lang_proc speech_recognition
top.science. computer _science artificial_inteligence planning
top.science.computer _science artificial_inteligence reasoning

top.science. computer _science artificial_inteligence reasoning deduction

: top.science. computer _science artificial _inteligence reasoning nonmonotonic
top.science. computer _science artificial_intelligence robotics

top.seience. computer _science artificial_inteligence zearch

114: top science computer _science artificial_inteligence user_modeling

73
74
7B
77
75
&t

: top.science.computer _science computer_aided

: top. science. computer _science computer_aided design

: top.science. cormputer _science computer _aided learning

: top.science. computer _science computer _aided learning language
: top.seience . computer _science.computer_aided manufacturing

: top.science . computer _science database_systems
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A.2 Detailed evaluation

A more detailed evaluation was carried out in two steps: For a set of pre-classified URLS,
we simulated user feedback. The definitions of user interests were defined by single
aspect user models; complex interests were simulated by merging several aspects. The
optimistic evaluation is carried out on noise—free data while the pessimistic evaluation
is performed on inherently noisy classification data plus a mis-classification noise with
probability of 10%.

The data for the optimistic evaluation is available in the directories 111-444, the pes-
simistic evaluation was carried out on data as provided in the directories 666—-888.

A.2.1 Additional data for pessimistic evaluation

The following tables lists the aspect id’s for which compressing rules have been generated
during the course of our pessimistic evaluation. The data shown in table A.1 was used
for the statistics in table 6.4 on page 135 (upper part). The data shown in table A.2 was

Sample size
No. of Rules 25 50 75 100
per aspect ) n P n ) n ) n
1 14, 08, 19, 40 | 08, 24, 05, 13, | 08, 09, 03, 05,
22, 14, 20, 38, 41, 15,19, | 22, 08, 11,
37, 38 22, 43, 44, 28,29, | 38, 41, 15, 19,
24, 38, 45,48 34, 40, | 43, 44, 28, 33,
41, 44, 44, 48, | 48 44, 46,
48 49, 50 48, 49,
50
Num 4 0 9 2 8 12 8 13
Sum 4 11 20 21
2 37, 43 22,37 24,35 | 37 13, 17,
24, 29,
34, 39,
40
Num 0 0 2 0 2 2 1 7
Sum 0 2 4 8
3 35
Num 0 0 0 0 0 0 0 1
Sum 0 0 0 1
Table A.1: Evaluation (I): Induced rules
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used for the statistics in table 6.4 on page 135 (lower part).

Sample size

No. of Rules || 25 50 75 100

per aspect

1 14, 22, 37, 38 08, 14, 20, 22, | 08, 24, 38, 41, | 08, 09, 22, 38,
24, 38, 41, 44, | 43, 44, 45, 48 41, 43, 44, 48
48

Num 4 9 8 8

2 37, 43 22, 37 37

Num 2 2 1

Table A.2: Evaluation(II): Induced rules

A.2.2 Accuracy of induced interest aspect descriptions

All figures containing an evaluation based on accuracy of induced models are based on
data derived from running several batch jobs.

Generating data. The program bin/mk_testdata is used to generate data as described
in section 6.1.1.2. This includes generation of preclassified URLs, user data, interest
aspect id’s and feedback. It is invoked with one single argument which is one out of U,
R, A or F in order to generate users, UrLs, aspects or feedback, respectively. The range
of URL, user and aspect id’s is defined within the code; furthermore, the Perl program
also includes several variants of feedback generation functions. The feedback variants
determined the feedback behavior of the user thus specifying more specific or rather
blurred pictures of the individual interests.

Note, that every user model consists of one single aspect only; complex models are
simulated by composing several single aspect user models. Furthermore, the number
of feedback values is constant; different feedback behavior is simulated by the sample
generation process (see below). All data is written directly to the respective databases.
With all data generated, bin/mk_sample generates sample files which can be used as
input files for the Progol ILP system. bin/mk_sample takes a number of arguments,
which are:

1. The user id of the user for whom a sample shall be generated

2. The aspect id

3. The sample length (to simulate different numbers of feedback values submitted by
the user)


bin/mk_testdata
bin/mk_sample
bin/mk_sample
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4. A mode description:

(a) At least one out of {P,N}. Defines whether p_interest (P) and/or n_interest
(N) shall be learned.

(b) One out of {w, s} defines weak or strong (i.e. steep) interest functions. For w,
a feedback value > 0 is interpreted as positive feedback; for s, the feedback
value has to be > 1 (and the dual case for negative feedback).

(c¢) Optionally a flag n which determines, whether negative examples (i.e. :-p_
interest or :-n_interest) shall be included in the sample.

5. A posonly flag. Has to be 1 if the learner shall induce models from positive data
only; 0 otherwise.

In order to test hypotheses that were generated using samples generated by mk_sample,
we need test files which include validation data. Those files are generated by bin/
mk_valdata. This program is very similar to mk_sample but delivers randomly chosen
validation data.

Since we would have to run mk_sample and mk_test for every aspect and sample size
(50 x 4 plus special cases;i.e. posonly or different targets) by hand, this procedure was
automated by utilities which generate batch shell scripts. bin/util/mk_mksamplebatch
generates a batch bin/util/samplebatch and mk_mkvaldata generates a batch for gen-
erating test files and Progol command files. All sample data are stored in the directory
evaluation/samples.

Samples that were used for the first evaluation (see section 6.2) are located in the sub-
directory 666.

Available datasets: Optimistic Evaluation. The optimistic evaluation has been carried out
on four simulated users with fifty interest aspects each. The difference between users
111—444 was their specifity of interest (see section 6.1.1.2). Each directory contains
test samples (vXXX_4) for determining accuracy of induced user models (and which were
disjoint from the learning data). The user id (as already determined by the directory
name) is XXX, A is the aspect identifier. The data is then further discriminated with
respect to the learning target which could either be both My and My (these are
the NP-s0 directories) or My, only with (P-s0) or without (P-s0) negative feedback
available. The next directory level distinguishes between the input sample size (5, 10,
25, 50 and 75). The files are named using the following naming convention:

e cM A.pl
Command batch files which are executed by PROGOL. M determines the use of I’
samples (gx—files) that are consulted.


p_interest
n_interest
:-p_interest
:-p_interest
:-n_interest
mk_sample
bin/mk_valdata
bin/mk_valdata
mk_sample
mk_sample
mk_test
bin/util/mk_mksamplebatch
bin/util/samplebatch
mk_mkvaldata
evaluation/samples
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e UXXX_A.pl
Initial user feedback files. These files contain all background knowledge, the target
and bias declarations and the initial input sample

o gM_XXX_A.pl
['-samples include additional information for learning. The values for M correspond
to the definition of I'; as given in figure 5.3. For M=5, both I';y and I'y have been
applied.
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Results of learning are stored in the files cxevlg.pl. The statistical data was extracted
by grepping accuracy values from the files and visualizing them using gnuplot.

Available datasets: Pessimistic Evaluation. Input files used for the evaluation described
in section 6.4 are stored in the subdirectory 777. The naming convention for those files
is as follows:

ur77_a._

25_
50_
75_
100_

NPnsO.pl
Psn0O.pl

Psl.pl

Psnl.pl

[-o]
o]

.0

user 777, aspect a

sample length: 25

sample length: 50

sample length: 70

sample length: 100

steep interest, negative examples, two targets
steep interest, negative examples,
p_interest target only

steep interest, no negative examples, p_
interest target only, posonly flag

output files for Ps1.pl

Evaluation data (test files as generated by bin/mk_valdata in the bin/util/mktestbatch

batch) are named as follows:

ur77_a_

10_
25_

user 777, aspect a
sample length: 10
sample length: 25
P+ positive examples for p_interest
N+ positive examples for n_interest
P- positive/negative examples for p_interest
N- positive/negative examples for p_interest

Finally, the evaluation is triggered by a batch file /evaluation/samples/777/evalbatch
which is generated by the bin/util/mk_eval script. It requires two arguments speci-
fying the target (p or n) to be evaluated and the sample mode to be used for learning


p_interest
p_interest
p_interest
bin/mk_valdata
bin/util/mktestbatch
p_interest
n_interest
p_interest
p_interest
/evaluation/samples/777/evalbatch
bin/util/mk_eval
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(see naming conventions). Running the evalbatch triggers a multitude of Progol runs
which are all logged in files with a postfix evlg. The naming convention is as follows:
u777_a_(ss-ts)Flg _c.pl.evlg where ss is the sample size of the input file used, ts is
the size of the test file and Flg is a flag (+ or -) indicating whether negative examples for
the target concept were contained in the test file (a is an aspect id). Single aspect learn-
ing log files for the target p_interest were stored in the subdirectory evlg-1; evlg-2
contains the files for the target n_interest. Both subdirectories contain:

1. files named u777_a_(ss-ts)Flg_c.pl.evlg (naming convention see above). There
are 800 such files in each directory:

(a) 50 aspects a ([1,50])

(b) 4 sample sizes ss ({25,50,75,100})

(c) 2 test file sizes ({10,25}) and

(d) 2 negative evidence flags ({+, —})

2. the file SUMMARY, which only contains contingency tables from all 800 logs
3. the file SSUMMARY, which only contains the accuracy data

4. 16 files Summary.ss.ts.flg.s with

(a) 4 sample sizes ss ({25, 50,75,100})
(b) 2 test file sizes ({10,25}) and
(¢) 2 negative evidence flags ({+,—})

which contain only appropriate lines from SSUMMARY

5. the file SUMSUMSummary which contains average values computed by the script
ev.pl. Data is divided into blocks that are indexed as input files for gnuplot
(see figure 6.6 on page 136).


evalbatch
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Appendix B
IMPLEMENTATIONAL ISSUES

B.1 Concept hierarchies

Conceptual user models are based upon concept hierarchies. The concepts defined in
such hierarchies are the syntactic elements by which user models are represented.
Within OySTER we used two different concept hierarchies. 7 describes the set of docu-
ment types, while C is used to represent a document’s content (also called category).
Both hierarchies are stored in the local OySTER URL database.

B.1.1 Document types

The document type hierarchy contains 35 classes:

top

top.publication
top.publication.dissertation
top.publication.lecture
top.publication.lecture.notes
top.publication.lecture.resource
top.publication.lecture.syllabu
top.publication.manual
top.publication.manual.document
top.publication.manual.online
top.publication.publishedbook
top.publication.publishedbook.abstract
top.publication.researchpaper
top.publication.researchpaper.abstract
top.publication.researchpaper.full
top.publication.researchpaper.full.published
top.publication.researchpaper.full.unpublished
top.publication.selfdescription
top.reference

top.reference.linklist
top.reference.otherlist
top.reference.peoplelist
top.reference.publicationlist
top.unknown

top.virtual

top.virtual.conference
top.virtual.group
top.virtual.group.university
top.virtual.group.university.facdep
top.virtual.group.university.group
top.virtual.group.university.project
top.virtual.individual
top.virtual.individual.employee
top.virtual.individual.researcher
top.virtual.individual.student
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The document types are stored in the url_dtype table in the oyster_url database on
the URLDB-server. For more interactive browsing an editing tool is provided by the typed
Car script which is located in the cgi subdirectory of OySTER. It can be invoked by
requesting the URL http://localhost/ocgi/typed.!

B.1.2 Document categories

The document content class hierarchy contains 69 classes. On the top level it is di-
vided into two sub-hierarchies: science and rec. The former contains two further
general topics, namely computer_science and linguistics while the latter specializes
to scuba_diving.

top.rec

top.rec.sports

top.rec.sports.water
top.rec.sports.water.scuba_diving
top.rec.sports.water.scuba_diving.equipment
top.rec.sports.water.scuba_diving.locations
top.rec.sports.water.scuba_diving.medical
top.rec.sports.water.scuba-diving.medical.age
top.rec.sports.water.scuba_diving.medical.dcs

This part of the ontology was created to examine the example of resolving the ambiguous
search query for decompression. Actually, classifier accuracy was much higher than
expected (though not evaluated against a manually pre-classified set). This is due to the
set of relevant phrases which was generated using the bootstrapping method described
in section 53. The initial queries used were (in order of the above listed categories):

recreational

recreational, sports

recreational, sports, water

recreational, sports, scuba-diving

scuba-diving, equipment, jacket, bcd, regulator, fin
divespot

scuba-diving, medical

”arterial gas embolism”, AGE

”decompression sickness”, caisson, DCS

The science branch of the ontology is divided into three sub-categories (in addition to
the two further elaborated categories mentioned above, there is terminal node cognitive_
science). The linguistics branch is rather shallow:

top.science.linguistics
top.science.linguistics.computational_linguistics
top.science.linguistics.computational_linguistics.parsing
top.science.linguistics.computational_linguistics.pragmatics
top.science.linguistics.computational_linguistics.semantics
top.science.linguistics.computational_linguistics.syntax
top.science.linguistics.morphology
top.science.linguistics.phonology
top.science.linguistics.psycholinguistics

Within computer_science, the hierarchy mainly distinguishes between artificial in-
telligence, programming and computer_aided:

In case of a distributed installation of the OySTER system, the localhost should be replaced by
the proper name of the CGI server.


url_dtype
oyster_url
URLDB
typed
cgi
http://localhost/ocgi/typed
cognitive_science
cognitive_science
linguistics
computer_science
programming
computer_aided
localhost

B.1.

top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.

science

science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.

CONCEPT HIERARCHIES

cognitive_science
computer_science

computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.

applied_cs

artificial_intelligence
artificial_intelligence
artificial_intelligence

artificial-intelligence.
artificial-intelligence.
artificial-intelligence.
artificial-intelligence.
artificial-intelligence.
artificial-intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
artificial_intelligence.
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.knowledge_representation
Jlogic_programming
machine_learning
machine_learning.clustering
machine_learning.genetic
machine_learning.learning_theory
machine_learning.statistical
machine_learning.subsymbolic
machine_learning.symbolic
nat_lang_proc
nat_lang_proc.generation
nat_lang_proc.speech_recognition
planning

reasoning

reasoning.deduction
reasoning.nonmonotonic
robotics

search

user_modeling

computer_science.computer_aided
computer_science.computer_aided.design
computer_science.computer_aided.learning
computer_science.computer_aided.learning.language
computer_science.computer_aided.manufacturing
computer_science.database_systems

computer_science.

hci

science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.
science.

top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.
top.

computer_science
computer_science
computer_science
computer_science

computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.
computer_science.

information_retrieval

operating_systems
operating_systems.dos
operating_systems.unix
operating_systems.unix.linux
programming

programming.languages
programming.languages.functional
programming.languages.functional.lisp
programming.languages.functional.ml
programming.languages.oo
programming.languages.oo.smalltalk
programming.languages.predicative
.programming.languages.procedural
.programming.languages.procedural.c
.programming.languages.procedural.cpp
.programming.languages.procedural.perl

top.
top.

science.
science.

computer_science
computer_science

.programming.languages.procedural.python

.theoretical_cs

The document categories are stored in the url_dcat table in the oyster_url database
on the URLDB-server. A more interactive browsing editing tool is provided by the onted
Car script which is located in the cgi subdirectory of OySTER. It can be invoked by
requesting the URL http://localhost/ocgi/onted.?

B.1.3 Browsing and Editing

As already mentioned, OySTER includes a CGI script which allows for browsing and
editing of the concept hierarchies more comfortably. A sample screenshot of the docu-
ment type category is shown in figure B.1 on the following page. New categories can be
added by a simple point and click action on the superconcept of the newly introduced
concept. Subsumption relations are computed by the CGI script such that the represen-
tation of the categories in the oyster_url database always remain consistent. The data
structures used to store the hierarchies in the database are explained in the database
documentation on the compact disk.

2See footnote 1 on the preceding page.


url_dcat
oyster_url
URLDB
onted
cgi
http://localhost/ocgi/onted
oyster_url
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Jp.publication.lecture has 3 subclasses: {22,23,24}
Jp.publication.leciure notes

HLpublication.leciure resource
p.publication.leciure svyllabu

ap.publication.manual has 2 subclasses: {33,34}
Jp.publication.manual.document
ap.publication.manual.online
ap.publication.publishedbook  has 1 subclasses: {31}
ap.publication.publishedbool.abstract
ap.publication.researchpaper has 2 subclasses: {26,27}
ap.publication.researchpaper.abstract
ap.publication.researchpaper full has 2 subclasses: {28,29}
ap.publication.researchpaper full published
ap.publication.rese archpaper.full unpublished
Jp.publication.selideschption
reference has 4 subclasses: {4.5.6.7}
reference. linklist

reference.othe

Jreference.peoplelist
reference.publicationlist

unknowin

al has 3 subclasses: {10,14,35)
a.virtual.conference

avirual.group has 1 subclasses: {13]
pvirtual group.university  has 3 subclasses: {1617 18}
ap.virtual .group.university facdop

ap.virtual .group.university .group

p.virtual group.university project

avirtualindividual has 3 subclasses: {11.12.13}
apvirtual.individual.employee

Figure B.1: The OySTER ontology browser/editor
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B.2 The OySTER multi agent system

OySTER is realized as a multi agent system for different reasons. First, computing power
required is too great to be carried out on a single machine in a tolerable amount of time.
When receiving a search request, the system load quickly reaches a peak value of 8 on a
dual Pentium IIT machine. Though the average processor load is rather low it is necessary
to provide high peak performance resources. The second reason is that a multi agent
system (once designed well enough) is robust: On the one hand it is fault—tolerant in the
sense, that missing components do not hinder the other agents. On the other hand, this
allows for easy enhancement of the system since single agents, or sets of agents, can be
changed during runtime. Finally, such an agent system with families of agents which are
specialized on different tasks is scalable in a rather primitive way: If more performance
in a certain subtask is needed, we are able to invoke several independent instances of the
same agent.

For these reasons, the architecture of a multi agent system was chosen during the design
of OySTER. The agent families are roughly divided into interface agents and classifier
agents; the user modeling process is currently carried out offline but would simply estab-
lish a new agent class. Communication between agents is carried out using a blackboard,
which is maintained by a special blackboard server agent. Thus, any communication be-
tween agents is piped through the blackboard using a special protocol. Messages written
on the blackboard may be encoded arbitrarily which enables us to incorporate arbitrary
agents as well.

The architecture of the underlying blackboard centered multi agent system is sketched
in figure B.2 on the next page. Read access could be made much faster if we allow
agents to read the blackboard file themselves. But this would also imply several severe
disadvantages:

1. Security issues

2. Distributed agents would need an NFS accessible blackboard file (thus again secu-
rity)

3. The blackboard syntax should be encapsulated. With a new server agent, a new
blackboard file syntax would force the re-implementation of all agent’s read access
procedures.

Thus, through the price of a large protocol overhead, we avoid the above mentioned
disadvantages and obtain a highly open and flexible multi agent environment.

The blackboard protocol is described in the next section.
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~—— TCPIP ——>

(OBBP)

request
————
response

BBS Server Agent - .

write read .
Blackboard
Postgres Database -

e

—— ™ OBBP (OySTER BlackBoard Protocol)

direct file access

Figure B.2: A brief sketch of the OySTER BBS

B.2.1 The OySTER blackboard protocol

Any request, response or daemon activity is co-ordinated through the blackboard. For
example, instead of a linear process for a CGI triggered meta search the process of
search is decomposed and encapsulated into several independent tasks in the multi agent
environment:

1. a Car agent receives a search request from a client.
2. the search request is sent to the BBS and a response id is returned.

3. the search request is processed based upon the blackboard entries by appropriate
agents

4. Upon a further request by some other agent referring to the response id, an answer
is sent back to the agent which is then read by a client.

The OBBP generally knows three distinct modes of communication:

1. A client agent sends a request to the BBS server;
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2. The BBS server acknowledges a client request
3. The BBS server responds to a client agent.

The OBBP is realized by using TcP/IP sockets; server and port are specified in the
configuration file. Currently, the protocol data is not encrypted; for future releases this
should be considered for privacy reasons in the user modeling process. The plain text
protocol is described in the following sections. In general, the string beginning with the
first non-space character after a key until the next EOL followed by the : : keyword is in-
terpreted as key value (i.e. multiple arguments can be passed by using control characters,
whitespaces or new line characters).

B.2.1.1 A Grammar for the OBBP

Y

Simple juxtaposition including spaces means concatenation. The symbol ‘_ ’ means a
sequence of at least one whitespace character.

(OBBP Item) == (OBBP Start) (OBBP Cont) (OBBP End )

(OBBP Start) ::= ::oyster-bbs-p.01 _ (MessageType)

(OBBP Cont) ::= (::Agent) {::ReqType) (::ReqCmd) (::ReqArg) (::ReqPar) (::Att) (::Addinfo)
(OBBP End ) :=\n ::oyster-bbs-p.0.1 _ end

(MessageType) ::= (request || response || ack)

) :=\n ::agent _ (AgentClass) . (AgentName)

) i=\n ::reqtype (x| v allclld x| n

) :=\n ::reqcmd _ (BBReqType) : (AgentClass) . (AgentCommand)
(::ReqArg) = \n ::reqarg _ ($text$) (see Agent descriptions)

) :=\n ::reqpar _ ($text$) (see Agent descriptions)

) u=\n ::att _ (asap || now || - || (+ ($int$)(M || H)))

) :=\n ::addinfo_ ($text$) (see Agent descriptions)

(AgentClass) ::= ($string$) (see Agent descriptions)
(AgentName) ::= ($string$) (see Agent descriptions)
(AgentCommand) ::= ($string$) (see Agent descriptions)

(BBReqType) ::= (r || a || d)

($int$) :={0,1,2,3,4,5,6,7,8,9}*
($string$) ::= any sequence of characters except for \n
($text$) := any sequence of characters except for \n: :

Remark: The expression
\n ::oyster-bbs-p.0.1 _ end

matches the following character sequences:
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e \n::oyster-bbs-p.0.1 end

e \n::oyster-bbs-p.0.1,, end

e \n::oyster-bbs-p.0.1 \t end
but not any of the following:

e \n ::oyster-bbs-p.0.1, end

e \n::oyster-bbs-p.0.1 \n . end

B.2.1.2 Requests and Responses

Any request sent to the BBS Server is treated as a command or goal that has to be
executed. The request is parsed for correctness and (if security allows) added to the
blackboard. There it waits for an agent to come and execute the task. Upon termination,
the agent sends a signal which causes the server agent to delete the request from the
blackboard.

The OBBP allows for two major classes of messages:

1. Requests and Responses are for information transfer and use mainly the same
message format

2. Acknowledgments from the server are short messages that are used for receipt
notification and transmission error checks.

We first describe the main common protocol for both queries (i.e. requests) and responses.

Example: A Query for database information about an URL. The request displayed in
figure B.3 on the facing page is a query for database information about an URL. In
general this request asks for the title entry in the url url table, where the URL is
http://mir.cl-ki.uni-osnabrueck.de/ martin/oyster.html.

Example: A Response with database information about an URL. In figure B.4 on the next
page you find a query/response pair for an answer read request and the delivered answer.
It corresponds to the very last two interactions in figure B.6 on page 216. An agent which
sends a request and waits for an acknowledgment can be implemented using Perl and
OySTER.pl very easily. An example is shown in figure B.5 on page 196.

In figure B.6 on page 216 we have illustrated the communication flow for a CGI triggered
database lookup for an URL title. As one can easily extract from the picture, it is a
massive communication overkill for passing the single information that the title for the
URL XYZ is foo-bar. But, on the other hand, the diagram also shows the advantage
of the multi agent architecture.


http://mir.cl-ki.uni-osnabrueck.de/~martin/oyster.html
OySTER.pl
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::oyster-bbs-p.0.1
:ragent

::reqtype

::reqcmd

::reqarg

::reqgpar

pratt
::oyster-bbs-p.0.1

request # this is a request
cgi.url-info # from a cgi agent named "url-info"
W # write to the blackboard the following ...

r:dbi.url-url.read # "a read request for dbi agents
full_url=http://mir.cl-ki.uni-osnabrueck.de/ martin/oyster.html

title # get the title for that url
- # not time critical
end # Good bye.

(Line counters and comments are not part of the OBBP!)

::oyster-bbs-p.0.1
::agent

::reqtype

::reqcmd

::reqarg

::regpar

pratt
::oyster-bbs-p.0.1

::oyster-bbs-p.0.1
:ragent

::reqtype

::reqcmd

::ireqarg

::reqgpar

(ratt
::oyster-bbs-p.0.1

Figure B.3: OBBP Request

request # this is a request
cgi.url-info # from a cgi agent named "url-info"
r # read from the blackboard ...

a:dbi.url-url.read # an answer about
full_url=http://mir.cl-ki.uni-osnabrueck.de/ martin/oyster.html

a.123 # with that id
asap # now
end # Good bye.

The according response is:

response # this is a response
bbs # from the bb server agent
r # which read information follows:

a:dbi.url-url.read # "an answer about
full_url=http://mir.cl-ki.uni-osnabrueck.de/"martin/oyster.html

a.123::title=foo-bar # ... with that id" delivered "title=foo-bar"
- #
end # Good bye.

(Line counters and comments are not part of the OBBP!)

Figure B.4: AOBBP Request/Response pair
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#!/usr/bin/perl

#

# Blackboard test client

# ____________________________________________________________________________
# Author : Martin E. Mueller

#

require 5.002;
require "flush.pl";
require "OySTER.pl";
use Socket;

&__oy_initvars() or
&__oy_decease(1l, "Variable intialisation failed") ;

&__oy_bbsconnect ("SOCK") or

&__oy_decease(2, "BB Conn couldn’t be established") ;
%msg = (agent => "cgi",
reqtype => "a",
reqcmd => "r:dbi.url_url.read",
reqarg => "url=http://mir.cl-ki.uni-osnabrueck.de",
reqgpar => "title",

att => "now" );

&__oy_bbssend( "request", # send a request
"SOCK", # to stream SOCK
$msg # with this content

) or

&__oy_decease(3, "BBS send failed") ;
&__oy_bbsdisconnect ("SOCK") ;

exit;

Figure B.5: A OBBP Agent
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Actually, any pair of boxes representing an agent that sends and receives can be instances
of different agents. Or, they can be different processes or threads. Thus, many agents
from nearly anywhere can access the blackboard at “any” time. For example, after
the answer has been written to the blackboard, many agents may read it—until it gets
deleted either by a explicit delete command or by a garbage collector that clears the
blackboard from already processed commands.

In detail, the communication runs as follows:

1.

10.
11.

12.

A user asks for a title for an URL; either explicitly or implicitly during the course
of a search request. The request is caught by a CGI agent which then starts the
whole communication process.

The CaI agent sends a request to the blackboard server in order to force a Write
on the blackboard which represents a Request for title information about url=XYZ.
The addressed agent class is dbi; the information source is the url_url table, and
the action to perform is a read.

The BBSERVer agent writes the Req to the blackboard and implicitly Marks it as
todo. This request is assigned a unique blackboard id r:123.

. The BBSERver agent acknowledges receipt of a Write Request with arguments as

above and returns the id r:123.

Now, a DBI agent sends a request; namely to Check for Requests that are waiting
to be processed by an agent from the dbi class.

The BBSERVer finds an according entry and acknowledges the request by addi-
tionally returning the id of the matching blackboard entry (r:123).

Using this id, a DBI agent requests to Read the Req with id r:123.

The BBSERvVer’s response includes all information that was initially sent by the
first Write request.

A DBI agent uses this id to Mark the Req as being in in_process in order to prevent
others doing the same work.

This is canonically acknowledged by the server.

Now, the actual lookup takes place, where a DBI agent queries the URL database
using title as selection criterion and url=XVY as restriction.

The outcome (title=foo-bar) is then sent to the blackboard as a request for an
Answer Write. Simultaneously, an implicit Mark is carried out, which switches the
state of r:123 to ready.
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13. During the Write, the BBSERVer assigns a unique id a:123 to this entry.
14. This id is sent back along with the acknowledgment of the Write request.
15. Finally, a CGI agent again Checks for Answers matching the initial Request
16. The server sends an ack including the id a:123,

17. this is used as a last request for an Answer Read.

18. Finally, the response includes the information, that the title is foo-bar.

19. This is used by a Car agent to forward the desired information to the client.

B.2.2 The blackboard database

The blackboard itself is realized as the table bb in the database oyster_bb on the
blackboard server. The only program with actual read/write access on this table is the
blackboard server agent bb_server (in the directory /oyster/bbs/bb_server_agents).
The server agent bb_server connects via Pg sockets on port 5432 to the postmaster
and listens for client requests on port 4711.

The database oyster_bb contains one static table bb which is described in the docu-
mentation on the compact disk. Specific blackboard maintenance tasks are performed
by so—called daemon agents. All daemons reside in the bbs/bb_daemons subdirectory.
Currently, these are:

1. bbs_clean.d
marks expired idle entries as zombies and old zombies to be deleted.

2. bbs_del.d

triggers deletion of entries.?

B.2.3 Miscellanea
B.2.3.1 A Perl Module for the OySTER blackboard protocol

In order to allow for a more comfortable Tcp/IP communication using the OySTER
blackboard protocol, we provide a special OySTER Perl library. It defines several prim-
itive functions that are frequently used by Perl agents that interact with the OySTER
prototype. These are:

3Deleting a blackboard entry means to send a request for deletion to the blackboard server. Although
deletion can be triggered by any agent, it is recommended to mark entries as "to be wiped out” from
the blackboard. This wipe-out is encapsulated in bbs_del.d which re-spawns at given time intervals.


bb
oyster_bb
bb_server
/oyster/bbs/bb_server_agents
bb_server
oyster_bb
bbs/bb_daemons
bbs_del.d
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1. __oy_initvars
reads from the standard configuration file (/usr/local/oyster/etc/oyster.conf)
all variable settings and stores them in the global hash tables.

2. __oy_logmsg
logs messages. The log file location is stored in the settings as read by __oy_initvars.
Arguments:
(a) (int) Message Level—not used.
(b) (string) the Message. Usually starting with [MSG] or [ERR]

3. __oy_decease
throws a __oy_logmsg and triggers a Perl die. Arguments:

(a) (string) the Message.

4. __oy_bbsconnect
establishes a client connection to the blackboard server. Arguments:

(a) (string) Socket name to be used.

5. __oy_bbsdisconnect
closes client connection to the blackboard server. Arguments:

(a) Socket/Stream name.

6. __oy_bbssend
sends a message to the bb server. Arguments:

(a) Message type. One out of {request,response,ack}.
(b) Stream. Where to write to. Usually, ”SOCK” or ”STDOUT”.
(c) Reference on a hash of protocol contents. Hash keys are:

i. agent: sender agent name
ii. reqtype: {"r”,7a”, 7d”, ’x”, ...}
i.e. the command the server agent performs on the blackboard.
iii. reqcmd: R/A :AgClass. AgName.AgCmd
iv. reqarg
V. regpar

vi. att : time stamp

As an example, see figure B.5 on page 196.


/usr/local/oyster/etc/oyster.conf
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7. __oy_bbslisten
listens for a message; usually for an ack. Arguments:

(a) Expected Message type. One out of {request, response, ack}; most likely
ack.

(b) Stream. Where to listen. Usually, ”SOCK” or ”"STDOUT”

(c¢) Reference on a hash of protocol contents. As above.

8. __oy_bbsreceive
Receives a message from the server. Arguments:

(a) Socket name to be used.
Returns a reference on a hash carrying the response.

9. __oy_initdbconn Initializes DB connection. Returns a Pg database handle.

B.2.3.2 Blackboard inspection interface

A Www interface which displays the current blackboard entries and the last 30 lines
of the log file also exists. This CacI script does not use the OBBP, but accesses the
blackboard database directly.

It is located in the cgi subdirectory of the appropriate CGI server. Currently, it can be
accessed via http://mir.cl-ki.uni-osnabrueck.de/ocgi/oydbbbi.pl.

B.2.4 Interacting with the blackboard server agent

In this section, we briefly describe the requirements of how requests to the blackboard
server agent have to be formulated in order to make it perform the desired actions,
namely the request types as specified by the ::reqtype tag of each message. In other
words, the following paragraphs describe the abstract syntax of commands that can be
submitted using the __oy_bbssend Perl routine described in the last section.

Writing.  As the command name suggests, it is used to write messages onto the black-
board.

The acknowledgment carries the appended information of the new blackboard message
id in the reqpar tag: id:bbid. Note, that it is appended to the current reqpar with
a trailing blank (thus, a blank reqpar starts with a blank).

Adding. Adding something to the blackboard (a) is synonymous to writing (w).


cgi
http://mir.cl-ki.uni-osnabrueck.de/ocgi/oydbbbi.pl
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Checking. Checking the blackboard is the most important action, since it delivers the
desired blackboard message id by acknowledgment.

This id is used for reading, deleting, marking and canceling.

For any such request, a SQL command is generated. Roughly, it is:

SELECT * FROM bb WHERE
type =T AND
address ~ ’command’ [AND reqarg]
order by stamp;

If reqarg is, for example, state = ’can’, then it is added to the command:

SELECT * FROM bb WHERE

type =T AND
address ~ ’command’ AND
state = ’can’

order by stamp;

Reading. After an agent has written something on the blackboard, which is addressed
to another agent, the latter one needs to read the message after he has checked for
messages The according read request will not be acknowledged, but a response is sent
from the server, containing all data in the appropriate protocol fields.

Deleting. Although the protocol allows for explicit deletion, deletion shall only be trig-
gered by the blackboard garbage collector and the wiper agents (c.f. B.2.5.2 on page 203
and B.2.5.2 on page 203, respectively). Instead of explicit deletion, corresponding entries
should be marked as to be deleted (see below).

The generated SQL commands are appropriate for specified id’s

DELETE FROM bb
WHERE id=reqarg AND state=’del’;

or (if reqarg is not specified):

DELETE FROM bb
WHERE reqpar;

The acknowledgment carries the appended information of the blackboard message id
that has been deleted (redundant, but why not?).
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Marking. The mark-command is used for toggling the state of a blackboard entry. This
is used when a request is being processed and thus changes from idl to prc, or when
the garbage collector combs out zombies (zom).

The SQL command that is carried out is

UPDATE bb SET
state = reqpar
WHERE reqarg;

Canceling. Canceling (x) is synomymous to marking (m) with reqgpar being can.

B.2.5 Agents
B.2.5.1 Client agents

Query Processing. Meta search queries are added to the blackboard by interface agents
(currently, queries by CaGI only). The bbs/bb_client_agents/ms.qry.d agent expands
any meta search request into a set of search queries which are to be submitted to the
utilized search engines.

This agent’s functionality allows for a more detailed query processing as, e.g. query
expansion, simple meta search or user model filtered meta search. Currently, however,
it only supports a simple meta search.

As soon as the request has been read from the blackboard it is being checked as being
processed. Then, for each utilized search service, meta search requests are added.

Wrapping. The commands generated by bbs/bb_client_agents/ms.qry.d are sub-
ject to the wrapper agents bbs/bb_client_agents/ms.wrp.de. The bbs/bb_client_
agents/ms.wrp.de agents (multiple instance running) read the user’s search request
from the blackboard and receive the search engine that has to be asked. Accordingly,
search engine specific HTTP queries are generated and sent to the search services. The re-
turned result is processed (with respect to the search engines HTML layout) and resulting
URLSs are written to the oyster_url:mstmpr cache table.

Updating the URL database. The local database oyster_url:url_url is updated with
information collected in the mstmpr cache. This task is carried out periodically by the
bbs/bb_client_agents/dbi.url_url.upd agent and thus ensures up-to-date informa-
tion about URL classifications on the database. Simultaneously, the cache entry is altered
such that it includes a back-reference to the newly introduced or updated entry in the
local URL database.


bbs/bb_client_agents/ms.qry.d
bbs/bb_client_agents/ms.qry.d
bbs/bb_client_agents/ms.wrp.de
bbs/bb_client_agents/ms.wrp.de
bbs/bb_client_agents/ms.wrp.de
oyster_url:mstmpr
oyster_url:url_url
mstmpr
bbs/bb_client_agents/dbi.url_url.upd
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Updating the cache oyster_url:mstmpr. Both oyster_url:mstmpr and oyster_url:
url_url are mutually updated against each other as shown in figure 3.6 on page 79.
Updating the cache is performed by the REBOL agent bbs/bb_daemon_agents/dbi.
mstmpr.upd every minute. It simply copies the oyster_url:url_url:id and classifi-
cation data from oyster_url:url_url for those entries in mstmpr, where oyster_url:
mstmpr:urlid is undefined and the full URL of the entry is known in the local database.

Classifying URLs. Whenever a new URL is encountered and added to oyster_url:
mstmpr, a request for type and category classifiers is sent to the blackboard as well. Those
requests are processed by the document type classifier bbs/bb_client_agents/db.
update.d and the document category classifier bbs/bb_client_agents/oyster_cat.r.
Results are written back to oyster_url:mstmpr and data in oyster_url:url_url is
updated by bbs/bb_client_agents/dbi.url_url.upd.

B.2.5.2 Daemons

As already mentioned in the last section, the blackboard server agent delegates tasks for
scheduling deletion and garbage collections to daemon agents for reasons of security.

Blackboard Garbage Collector. This agent collects idle expired requests and expired zom-
bies. Recall, that deletion of entries is not supposed to be triggered by client agent agents.
Instead, they are supposed to be marked as to be deleted. The garbage collector and
especially the Blackboard Wiper will trigger the actual deletion process.

The Blackboard Garbage Collector is realized by the bbs/bb_daemons/bbs_clean.d
daemon. It checks the blackboard from time to time, thereby

e turning expired idle entries into zombies and

e turning expired zombies into entries that are to be deleted.

Blackboard Wiper. This agent, implemented by the bbs/bb_daemons/bbs_del.d dae-
mon, is the only component that actually triggers a physical deletion of blackboard
entries. It tells the server to delete entries (thus, the server is the only agent that actu-
ally performs a physical deletion). Deletion is triggered in fixed time intervals—removing
all del-tagged entries from the blackboard database table.

Cache Garbage Collector. Search results are stored in the oyster_url:mstmpr table,
from which result pages are generated upon client HTTP requests. Of course, the mstmpr
table has to be cleared periodically. This task is performed by the bbs/bb_daemons/
ms.tmpdb.del agent. Every five minutes it deletes those URLs which already have been
synchronized with the local oyster_url:url_url database and which are in the cache


oyster_url:mstmpr
oyster_url:url_url
oyster_url:url_url
bbs/bb_daemon_agents/dbi.mstmpr.upd
bbs/bb_daemon_agents/dbi.mstmpr.upd
oyster_url:url_url:id
oyster_url:url_url
mstmpr
oyster_url:mstmpr:urlid
oyster_url:mstmpr:urlid
oyster_url:mstmpr
oyster_url:mstmpr
bbs/bb_client_agents/db.update.d
bbs/bb_client_agents/db.update.d
bbs/bb_client_agents/oyster_cat.r
oyster_url:mstmpr
oyster_url:url_url
bbs/bb_client_agents/dbi.url_url.upd
bbs/bb_daemons/bbs_clean.d
bbs/bb_daemons/bbs_del.d
oyster_url:mstmpr
mstmpr
bbs/bb_daemons/ms.tmpdb.del
bbs/bb_daemons/ms.tmpdb.del
oyster_url:url_url
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for more than 48 hours. URLs which are present for more than 96 hours are deleted
regardless as to whether or not they were incorporated into the URL database?.

B.3 Installation

OySTER is a fully functional meta web search engine which can easily be adapted to
special needs. A minor disadvantage of the system are static wrappers which need to be
maintained handishly in order to be able to extract results from changing search engine
layouts. Currently, the system includes wrappers for eleven different search engines
including Google, AltaVista and NorthernLight.

Due to its multi agent architecture, the system can easily be enhanced by special agents
or agent families.

B.3.1 System requirements

OySTER currently runs on four Linux servers which share tasks for CaGis, classification,
wrapping agents, blackboard management, database serving and user model induction.
To install OySTER at least one machine with the following software is required:

e APACHE web server version 1.3.3 and above.
e POSTGRES version 6.4 and above.
e PERL version 5.005_02 and above; including libraries for CGIs and PG interaction.

This does not include the user model induction component, which further needs Progol,
Swi-Prolog and a considerable amount of additional scripts.

All code is SMP compatible; two of the currently employed servers are Linux SMP sys-
tems. Any newer (SMP-) kernel version (but at least 2.2.14) will do; it is recommended
to run OySTER only on hardware that has been proved to work flawlessly in advance.
The hardware currently used includes a dual Pentium I11-550 (750MB; blackboard, clas-
sification, learning), a dual Pentium I11-400 (750MB; database, wrapping), a Pentium
11-400 (128MB; classification, watchdog) and a Pentium I-300 (128MB; Cari).

B.3.2 System preparation

The whole system needs to be installed in the directory /usr/local/oyster/ (contents
are as directory names indicate):

4This is mainly for non—existing URLs which have been reported by utilized search engines due to
their outdated indices.


/usr/local/oyster/
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martin@soyuz:/usr/local/oyster > 1ls -al

total 22

drwxrwxr-x 8 martin  oyadm 1024 May 18 11:33 ./
drwxr-xr-x 13 root root 1024 May 18 11:35 ../
drwxrwxr-- 5 martin  oyadm 1024 May 18 17:30 bbs/
drwxr-xr-x 4 wwwrun oyadm 1024 Nov 19 1999 cgi/
drwxrwxr-— 5 martin  oyadm 1024 May 18 18:07 db/
drwxrwxr-— 2 martin oyadm 1024 Apr 6 15:19 etc/
drwxrwxr-x 2 martin  oyadm 14336 May 19 09:00 log/
drwxr-xr-x 2 martin  users 1024 Oct 8 1999 src/

If you are running dedicated servers for different tasks, only according directories need
to be installed on those servers. Distributed installation includes three tripwires:

1. The configuration file /usr/local/oyster/etc/oyster.conf needs to be adjusted
OnN every server.

2. The log directory /usr/local/oyster/log/ should be cross-mounted by NFS to
all involved machines.

3. The Perl module located in src should be copied to each engine’s Perl directory.

Since log files grow rapidly, it is recommended to link the log directory to an external
volume. In the current prototype version, it is linked to /var/log/oyster/.

B.3.3 Configuration file

The configuration file must be installed in the same directory on any machine /usr/
local/oyster/etc/oyster.conf. It consists of several sections describing the location
of OySTER subservices. It also includes a list of processes/agents that are to be started
on the according machine. This list us used by the /oyster/bbs/mk_bbs script which
generates start and kill scripts for each machine.’

# H
o
o=
w
;_]
=
=
o
o
=]
5
o
[0)¢]
=1
s
©
ot
.
o
B
h
s
=
®

This file holds several OySTER-wide used variables.
It is read by most OySTER components and agents and
MUST reside in /usr/local/oyster/etc

H H H HH

5Those scripts can be used to (re-) start OySTER upon reboot or as a cron-job.


/usr/local/oyster/etc/oyster.conf
/usr/local/oyster/log/
src
log
/var/log/oyster/
/usr/local/oyster/etc/oyster.conf
/usr/local/oyster/etc/oyster.conf
/oyster/bbs/mk_bbs
cron
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START-SECTION: misc

VERSION: 0.9

ADMIN: Martin Mueller

MAIL: Martin.Mueller@cl-ki.uni-osnabrueck.de
OYSTER_DIR: /usr/local/oyster/

END-SECTION: misc

START-SECTION: hosts
CGI: mir.cl-ki.uni-osnabrueck.de
BBS: energia.cl-ki.uni-osnabrueck.de

DBS: soyuz.cl-ki.uni-osnabrueck.de

END-SECTION: hosts

START-SECTION: bbs

PORT: 4713
OYSTER_BBS_DIR: bbs/
OYSTER_BBS_FILE: bb

BB_SERVER: bb_server

BB_DB_SERVER: energia.cl-ki.uni-osnabrueck.de
BB_DB_PORT: 5432

BB_DB_NAME: oyster_bbs

END-SECTION: bbs

START-SECTION: um

UM_DB_SERVER: energia.cl-ki.uni-osnabrueck.de
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UM_DB_PORT: 5432
UM_DB_NAME: oyster_um

END-SECTION: um

START-SECTION: wldb

DB_SERVER: energia.cl-ki.uni-osnabrueck.de
DB_PORT: 5432
DB_NAME: oyster_wl

END-SECTION: wldb

START-SECTION: urldb

DB_SERVER: soyuz.cl-ki.uni-osnabrueck.de
DB_PORT: 5432
DB_NAME: oyster_url

END-SECTION: urldb

START-SECTION: tmpdb

DB_SERVER: soyuz.cl-ki.uni-osnabrueck.de
DB_PORT: 5432
DB_NAME: oyster_url

END-SECTION: tmpdb

START-SECTION: thishost

NAME: soyuz.cl-ki.uni-osnabrueck.de
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IPN: 141.173.157.177

END-SECTION: thishost

START-SECTION: runs
# server-01: bbs/bb_server_agents/bb_server

client-01: bbs/bb_client_agents/db.update.d
client-03: bbs/bb_client_agents/dbi.url_url.upd
client-04: bbs/bb_client_agents/ms.wrp.d
client-05: bbs/bb_client_agents/ms.qry.d

daemon-01: bbs/bb_daemons/dbi.mstmpr.upd
daemon-02: bbs/bb_daemons/ms.tmpdb.del

# daemon-03: bbs/bb_daemons/bbs.clean.d
# daemon-04: bbs/bb_daemons/bbs.del.d

END-SECTION: runs

B.3.4 Databases

OySTER’s any—time behavior is mainly achieved by extensive usage of databases. Search
results are not generated sequentially but are developed in collaboration of different
agents. The collaborative, parallel work is co-ordinated through the blackboard, which
is realized by a database table as well. The search result is stored in a temporal database,
from which it is requested by the according CGI script.

In addition to the search results collected from the search engines, we need to locally
store document classification data. This is done by a special URL database.

Finally, all user information that is needed to induce user models is stored in a distinct
database, too.

B.3.4.1 Blackboard

The blackboard is realized by the table oyster_bbs:bb. It can be accessed exclusively
by the bb_server agent.

A detailed description of the database design is available with the OySTER manuals.


oyster_bbs:bb
bb_server
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B.3.4.2 URL database

The URL database oster_url mainly contains a table for all URLs and their respective
classifications as well as the concept hierarchies. The main table is the url_url table.
It contains links to several URL component tables which describe protocol, server, path
and filename of the document behind the URL.

For reasons of brevity, we only include a description of the most important tables. In-
formation conceerning the rest of the database design can be taken from the OySTER
manuals.

Data concerning all URLs and information about the document behind it is stored in
the table url_url.

| Table: URL_URL (oyster_url) URL_URL

This table actually contains all URL / document relevant information

Field name: id
Description:  Unique id for URLs (indexed)
Type: int4 from id_url_url_seq

The following five fields can be used to simultaneously build up an indexed database on URL
databases. Every URL is decomposed into protocol, server, path, file and extension and each
of those is stored separately. Furthermore, the path itself becomes decomposed into directory
names. The according tables then were used to induce document type classifiers that took into
account only URL components instead of the documents themselves.

Field name:
Description:
Type:

url_protocol
First URL component: Protocol id
int4 from url_protocol.id

Field name:

Description:

Type:

Field name:

Description:

Type:

Field name:

Description:

Type:

Field name:

Description:

Type:

url_server
Second URL component: Server id (indexed)
int4 from url_server.id

url_path
Third URL component: Path id (indexed)
int4 from url_path.id

url_ file
Fourth URL component: Filename id (indexed)
int4 from url_file.id

url_extension
Fifth URL component: Filename extension id
int4 from url_extension.id


oster_url
url_url
url_url
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Field name:

Description:

Type:

Field name:

Description:

Type:

Field name:

Description:

Type:

full url
Contains full URL for indexing purposes (indexed)
text

full url_ lcsp

Contains id to URL with longest common server postfix (for com-
pression purposes in future versions)[deprecated]

int4 from url_url.id

full url_ lcpp

Contains id to URL with longest common path prefix (for compres-
sion purposes in future versions)[deprecated|

int4 from url_url.id

The timestamp fields are used for URL maintenance. They allow for updating the local database
against the current state of the URL. For example, if a search engine delivers a different title for
an URL as stored here, the lastchange attribute can be used to determine, whether an update
of this entry is reasonable. Furthermore, any URL with a lastrequest that is long ago should
be checked whether it is still existent at all.

Field name: lastvisit

Description: Timestamp for last check

Type: timestamp

Field name: lastchange

Description: Timestamp for last detected file change
Type: timestamp

Field name: lastrequest

Description:  Timestamp for last OySTER URL request
Type: timestamp

Field name: title

Description:

Type:

Field name:

Description:

Type:

Field name:

Description:

Type:

contains the title of the document as specified in its HTML title
tag. If the tag is not specified, it is empty (i.e. it does not contain
the URLL.)

text

snippet
May contain a snippet (including HTML tags).
text

meta_author

May contain information from the content field of HTML meta tag
where name is author or equivalent.

text


lastchange
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Field name: meta_keywords

Description: May contain information from the content field of HTML meta tag
where name is keywords or equivalent.

Type: text

Field name: doc_type

Description:  Contains a single expression (sort) of the document type as pro-
vided by the hierarchy in url_dtype. Determined by agents. (in-
dexed)

Type: int4 from url_dtype.id

Field name:

Description:

Type:

Field name:

Description:

Type:

Field name:

Description:

Type:

doc_type_ag

Contains id of agent which determined doc_type. For simulated
URLs we use a special reserved id 77.

int4

doc_type_time
Contains timestamp of when doc_type was last changed.
int4d

doc_type_confidence
Contains confidence; int2 range to be interpreted in [0..1].
int2

This section was initially motivated by the idea that a search request also could be specified by
the author of a web page; i.e. a user looks for a page of type t that is about ¢ and which was
written by a person t’.

Field name:

Description:

Type:

Field name:

Description:

Type:

Field name:

Description:

Type:

Field name:

Description:

Type:

doc_type_author

Contains a single expression (sort) of the document author as pro-
vided by the hierarchy in url_dtype. Determined by agents.

int4 from url_dtype.id

doc_type_author_ag

Contains id of agent which determined doc_type_author. For sim-
ulated URLs we use a special reserved id 77.

int4

doc_type_author_time
Contains timestamp of when doc_type_author was last changed.
int4

doc_type_author_confidence
Contains confidence; int2 range to be interpreted in [0..1].
int2
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Most important to the user model induction process is the document category classification data.
Document categories c1,co and c3 are stored here together with their confidences pi1, ps and ps,

respectively.

Field name:
Description:

Type:

Field name:
Description:

Type:

Field name:

Description:

Type:

Field name:
Description:

Type:

doc_category, doc_category_2, doc_category_3
Contains document category id as determined by agents.
text

doc_category_ag

Contains id of agent which determined doc_category. For simu-
lated URLs we use a special reserved id 77.

int4

doc_category_confidence, doc_category_confidence_2,
doc_category_confidence_3

Contains confidence; int2 range to be interpreted in [0..1].
int2

doc_category_time
Contains timestamp of when doc_category was last changed.
int4

Field name:
Description:

Type:

Field name:
Description:

Type:

Field name:
Description:

Type:

Field name:
Description:

Type:

Field name:
Description:

Type:

url_ftype
Pointer to file type id
int4 from url_ftype

source
Source of URL. There are different versions: CMU indicates that the
URL and its classification has been taken from the CMU Dataset.
CH_wget identifies URLs that were collected by Christian Heifling
during his work on document type classifiers. For artificially gener-
ated URLs that were used during the evaluation of the user model
induction process, we used the key testdata. URL that have been
added during the normal meta search operation are labeled Oy
msqry (uid:id), where id is the Blackboard id of the last re-
quest which delivered this URL.

text

url_fserver
full server name
text

url_fpath
full path
text

url file
full file name
text
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For the meta search we need a temporary URL Cache which is realized by the mstmpr

table.

| Table: MSTMPR (oyster_url)

MSTMPR

This table contains URLs that have been found by recent search requests.

Field name: wuid

Description:  User id

Type: int4

Field name: rid

Description: Request id as noted on the blackboard
Type: int4

Field name: uip

Description:  User IP-number

Type: text

Field name: url

Description: URL

Type: text

Field name: wurlid

Description: URL id as id from url_url
Type: int4

Field name: host

Description: URL of the URL host system.
Type: text

Field name: hostid

Description:  URL id of the URL host system.
Type: int4

Field name: foundby

Description:

Type:

Field name:

Key word(s) for result source.
text from url_extension.id

foundtimes

Description: Integer describing how many resources reported that URL
Type: int4

Field name: hostorurl

Description:  [deprecated|

Type:
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Field name: 1listed.at

Description:  Unix timestamp for adding this URL to mstmpr
Type: int4

Field name: added.at

Description:  Unix timestamp for adding this URL to url_url
Type: int4

Field name: last_request

Description:  Unix timestamp for last client query for URL
Type: int4

Field name: rank

Description:  Aggregate rank value

Type: float8

B.3.4.3 User model database

The database oyster_um is used to store user data, user profiles and user feedback from
which samples are derived.
We here only give an overview of the table holding all data about user proided and

simulated feedback.

| Table: USERFEEDBACK (oyster_um) USERFEEDBACK

The userfeedback table is the most important part for the user model induction pro-
cess. Here, feedback of the user with respect to distinct aspect

Field name: uid

Description:  User id as defined in userdata

Type: int4

Field name: wurlid

Description: URL id as defined in oyster_url:userdata
Type: int4

Field name: time

Description: Local Unix time of feedback submission
Type: int4

Field name: aspect

Aspect id as defined in oyster_um:aspects:id. Feedback is given
with respect to aspects.
int4

Description:

Type:


oyster_um
userfeedback
userdata
oyster_url:userdata
oyster_um:aspects:id

Type:

Field name:

of artificial data. It contains document category id’s (oyster_url:
url_dcat:id) which were considered as so—called centroids during
the process of simulating feedback. See section 6.1.2.

int4d

sign

Description:  Optional feature which was used to discriminate positive and
negative interest centroid. Only used in the first test series (c.f. sec-
tion 6.2)

Type: char
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Field name: feedback
Description:  Feedback value from [-2, 2].
Type: int4
Field name: type
Description: Contains optional keys in order to identify learn- and testdata
which was generated during the evaluation of user model induction.
Type: text
Field name: centroid
Description: This is an additional optional field which was used for generation

B.3.4.4 Word lists

In addition to the databases mentioned above, the training of classifiers required a
database for word lists.
All data concerning word lists and classifier training is stored in the database oyster _wl.


oyster_url:url_dcat:id
oyster_url:url_dcat:id
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CGI Request for title of URL XYZ

request  Write) Req 3
dbi.url_url.read url=XYZ title

Time

rite
dbi.url_url.read url=XYZ title id:r.123

implicit Mark)

Write)

Req  dbi.url_urlread url=XYZ title

todo

request  Clheck)  Req
dbit . in_process

ready

eck)  Req

ack c(h
dbi.url_url.read A idir123 inplicit  Mark)

request  R(ead)
dbi.url_url.read

response  R(ead)
dbi.url_url.read url=XYZ title  id:r.123

request  Mark)

Req
id:r.123 in_process Mark)

Mark)  Req
id:r.123 in_process

Write)

Ans  dbi.url_url.read url=XYZ title
id:a.123  title=foo-bar

Write)  Ans
id:a.123 id:r.123 13
Symbols:
request
OBBP Packet Type
request  C(heck)  Ans
dbi.url_url.read url=XYZ title Req
o heck) Blackboard Entry Type
ack C(heck)  Ans Write)
dbi.url_url.read url=XYZ title  id:a.123 Blackboard Action
dbi.url_url.read url=XYZ title
Agent Command/Argument
id:r.123
Blackboard Entry 1D
request  Riead)  Ans
dbi.url_url.read url=XYZ title
Identity of Agent (proc)
response R(ead)  Ans o Blackboard rw Access
18 dbi.url_urlread url=XZtitle  id:a.123 BBServerBBFile
title=foo-bar
.~ OBBP Communication
v

CGI Output of title=foo-bar

Figure B.6: A sample communication flow.
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