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Introduction

Even though J.P. May was the �rst to use the name operad ([May72]),
the concept was introduced earlier by J.M. Boardman and R.M.Vogt in
[BV68]. In their work operads appeared as the data, determining certain
kinds of theories, called categories of operators in standard form. This de�-
nition was inspired by earlier notions like the PACTs and PROPs of Adams
and MacLane or the formal group laws of Lazard.

In a few short words an operad encodes algebraic structures on objects
of symmetric monoidal categories, like the categories of topological spaces,
of di�erentially graded modules over a ring k, or of categories (topological
and discreet). More precisely it consists of a family fA(n)gn2N of objects,
encoding families of composable n-ary operations X
n ! X, together with
actions of the symmetric groups �n, permuting the arguments. After their
successful premiere in algebraic topology, operads were and are applied in
homological algebra, category theory, algebraic geometry and mathematical
physics.

This thesis consists of four independent parts, containing results about
di�erent topics in the �eld of operads. Each of them is based on ideas or
discoveries which arose during my attempt to prove the following

Conjecture. Let f : A! A0 be a topological equivalence of topological
operads (i.e. f is a map of operads and each map f(n) : A(n)! A0(n) is a
homotopy equivalence) and B a \co�brant" operad. Then the map f 
 idB :
A
B ! A0 
B is a topological equivalence of operads.

Unfortunately I did not succeed in this particular task. But the results
given here may justify the e�ort.

The �rst part, Strongly Homotopy Commutative Monoids Revisited, is al-
ready published ([Bri00]). It has two connections with operads, even though
there is no explicit mention of them. The described structure on monoids
is an example of two interchanging operadic structures (cmp. section 7),
namely those of the associative monoid multiplication and an additional
non-associative multiplication. Another connection is the usage of the W -
construction, which was originally introduced by Boardman and Vogt to
provide a functorial, co�brant resolution for PRO(P)s, and therefore for op-
erads. In this part a result of Sugawara ([Sug60]) is extended by proving that
the classifying space of an associative, well-pointed and grouplike monoid
has a non-associative multiplication, if and only if the multiplication of the
monoid is a homomorphism up to coherent homotopies. Furthermore we de-
�ne a homotopy category of monoids, such that the classifying space and the
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6 INTRODUCTION

Moore loop space functor induce an adjoint pair of functors to the homotopy
category of based spaces.

The second part, The Tensor Product of Little Cubes, is an extension
of a result of G. Dunn ([Dun88]) regarding the little n-cube operads Cn.
These were some of the �rst, and perhaps still the most important, examples
of operads. Boardman and Vogt introduced and used them in [BV68] and
[BV73] to recognize and approximate n-fold loop spaces, as did May in
[May72]. In short, I prove there that the tensor product Cn1 
 � � � 
 Cnk is
topologically equivalent to Cn1+���+nk , i.e. the underlying spaces are homotopy
equivalent but the maps do not preserve the structures.

The third and longest part, Homotopy Algebras and Lax Operads, gener-
alizes the concept of operads in two ways. First I introduce, based on an idea
of Boardman and Vogt, colored operads, which allow a "uni�cation" of the
notions of classical, cyclic and modular operads by describing them as alge-
bras over certain colored operads. Furthermore a reformulation of topological
categories in operadic terms is given. Secondly the structure of operads them-
selves is weakened up to coherent homotopies, introducing lax operads and
algebras over them. Again this is done via the W -construction of Boardman
and Vogt and their notions of homotopy algebras and homomorphisms. In
addition this leads to a homotopy theory of operads and homotopy algebras,
and to a model for the localization of the category of algebras over operads
along the topological equivalences. Finally the operadic description of topo-
logical categories is used to de�ne a topological analogue of A1-categories.

In the fourth part, The Milgram Non-Operad, which is already published
(cmp. [Bri99]), it is proved that the operad structure claimed by C. Berger
in [Ber96] on the Milgram models for free loop spaces (cmp. [Mil66]), is
not well-de�ned.



Strongly Homotopy-Commutative Monoids Revisited

In [Sug60] Sugawara examined structures on topological monoids, which
induce H-space multiplications on the classifying spaces. He introduced a
form of coherently homotopy commutative monoids, which he called strongly
homotopy commutative. His main result is that a countable CW -group G is
strongly homotopy-commutative if and only if its classifying space BG is an
H-space. The proof proceeds as follows. One �rst shows that the multiplica-
tion G �G! G of a strongly homotopy commutative group is a homotopy
homomorphism (Sugawara called such maps strongly homotopy multiplica-
tive), i.e. a homomorphism up to coherent homotopies. Then one shows that
this map induces an H-space structure on BG. The proof of the converse is
very sketchy and far from convincing.

We start with an easy to handle reformulation of the notion of homotopy
homomorphisms. The well-pointed and grouplike monoids (cmp. Def. 2.4)
and homotopy classes of these homotopy homomorphisms form a category
HGrH . If Top

�
H is the category of well-pointed spaces and based homotopy

classes of maps, then the classifying space and the Moore loop space functors
induces functors BH : HGrH ! Top�H and 
H : Top�H ! HGrH . We �rst
prove the following strengthening of a result of Fuchs ([Fuc65]).

Theorem (3.7). The functor BH is left adjoint to 
H .
The adjunction induces an equivalence of the full subcategories of monoids

in HGrH of the homotopy type of CW -complexes and of the full subcategory
of Top�H of connected spaces of the homotopy type of CW -complexes.

We then reexamine Sugawara's result starting with grouplike monoids
whose multiplications are homotopy homomorphisms. They give rise to H-
objects (i.e. Hopf objects) in the category HGrH . We obtain the following
extension of Sugawara's theorem.

Theorem (3.8 and 4.2). The classifying space of a grouplike and well-
pointed monoid M is an H-space if and only if M is an H-object in HGrH .

As mentioned above, the multiplication of a strongly homotopy commu-
tative monoid is a homotopy homomorphism. We were not able to prove the
converse and consider it an open question.

This part of my thesis is already published ([Bri00]).
I would like to thank Rainer Vogt for his guidance and help during the

preparation of this paper, and James Stashe� for his corrections and sugges-
tions. The author was supported by the Deutsche Forschungsgemeinschaft.
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8 STRONGLY HOMOTOPY-COMMUTATIVE MONOIDS REVISITED

1. The W-construction

Let Mon be the category of well-pointed, topological monoids and con-
tinuous homomorphisms between them. Here well-pointed means that the
inclusion of the unit is a closed co�bration.

Remark 1.1. One can functorially replace any monoid M by well-
pointed one by adding a whisker (cmp. [BV68], pg 1130f.). This does not
change the (unbased) homotopy type of M .

Definition 1.2. Let M and N be topological monoids. A homotopy
Ht :M ! N is called a homotopy through homomorphisms if for each t 2 I
the map Ht :M ! N is a homomorphism.

Definition 1.3. (cmp. [BV73],[Vog73],[SV86]) We de�ne a functor
W :Mon!Mon. For M 2 obMon the monoid WM is the space

WM =
a
n2N

Mn+1 � In= �

with the relation

(x0; t1; x1; : : : ; tn; xn) =8>>><
>>>:
(x0; : : : ; ti�1; xi�1xi; ti+1; : : : ; xn) for ti = 0

(x1; t2; : : : ; xn) for x0 = e

(x0; : : : ; xi�1;max(ti; ti+1); xi+1; : : : ; xn) for xi = e

(x0; : : : ; tn�1; xn�1) for xn = e:

The multiplication is given by

(x0; : : : ; tn; xn) � (y0; s1; : : : ; yk) = (x0; : : : ; tn; xn; 1; y0; s1; : : : ; yk):

A continuous homomorphism F :M ! N is mapped to WF : WM !WN
with

WF (x0; t1; x1 : : : ; xn) =
�
F (x0); t1; F (x1); : : : ; F (xn))

�
:

The augmentation "M : WM ! M with "M (x0; : : : ; xn) = x0 � � � � � xn
de�nes a natural transformation " : W ! id. If iM : M ! WM is the
inclusion, which maps every elementx ofM to the chain (x), we get "MÆiM =
idM and a non-homomorphic homotopy ht : WM ! WM from iM Æ "M to
idM , given by

ht(x0; t1; x1; : : : ; tn; xn) = (x0; tt1; x1; : : : ; ttn; xn):

Therefore "M is a homotopy equivalence andM a strong deformation retract
of WM at space level, i.e. its homotopy inverse is no homomorphism.

One of the most important properties of theW -construction is the follow-
ing lifting theorem, which is a slight variation of [SV86, 4.2] and is proven
in the same way.

Theorem 1.4. Given the following diagram in Mon with 0 � n � 1
such that
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WM

F ����������
H �� B

L����������

N

1. M is well-pointed and
2. L is a homotopy equiva-

lence.

Then there exists a homomorphism H : WM ! B and a homotopy
Kt : WM ! N through homomorphisms from L ÆH to F . Furthermore H
is unique up to homotopy through homomorphisms.

2. Homotopy homomorphisms

Definition 2.1. Let M and N be two well-pointed monoids. A homo-
topy homomorphism F from M to N is a homomorphism F :WM ! WN .
The map f := "N Æ F Æ iM :M ! N is the underlying map of F .

Let HMon be the category whose objects are well-pointed, topological
monoids, and whose morphisms are homotopy homomorphisms.

Remark 2.2. Our homotopy homomorphisms are closely related to Sug-
awara's approach. If we compose a homotopy homomorphism with the aug-
mentation, we obtain a map WM ! N which is, up to the conditions for
the unit, a strong homotopy multiplicative map in Sugawara's sense. Since
"N is a homotopy equivalence, the resulting structures are equivalent, after
passage to the homotopy category.

The Moore loop-space construction 
MX and the classifying space func-
tor B de�ne functors 
W : Top� ! HMon and BW : HMon ! Top� by

W (X) = 
MX and BW (M) = B(WM) on objects and 
W (f) = W
Mf
and BW (F ) = BF on morphisms.

For a based map f : X ! Y let [f ]� denote its based homotopy class.
For a homomorphism F of monoids, let [F ] denote its homotopy class with
respect to homotopies through homomorphisms.

Let Top�H be the category of based, well-pointed spaces and based ho-
motopy classes of based spaces and HMonH the category of well-pointed
monoids and homotopy classes of homotopy homomorphisms.

Remark 2.3. One can prove that the homotopy homomorphisms, which
are homotopy equivalences on space level, represent isomorphisms in
HMonH.

Since 
W and BW preserve homotopies, they induce a pair of functors.

BH : Top�H � HMonH : 
H

Definition 2.4. A monoidM with multiplication � and unit e is called
grouplike, if there a continuous map i : M ! M such that the maps x 7!
�(x; i(x)) and x 7! �(i(x); x) are homotopic to the constant map on e.

Since the Moore loop-spaces are grouplike and since this notion is homo-
topy invariant, an additional restriction is necessary for Theorem 3.7 to be
true. Let HGr be the full subcategory of HMon, whose objects are group-
like, and let HGrH be the corresponding homotopy category. Then BH and

H give rise to a pair of functors

BH : Top�H � HGrH : 
H :
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We make use of a construction from [SV86]. For an arbitrary monoidM
let EM be the contractible space with right M -action such that EM=M '
BM . We de�ne a monoid structure on the Moore path space

P (EM ; e;M) :=�
(!; l) 2 EMR+ �R+ : !(0) = e; !(l) 2M;!(t) = !(l) for t � l

	
:

The product of two paths (!; l) and (�; k) is given by (�; l + k), with

�(t) =

(
!(t) if 0 � t � l

!(l) � �(t� l) if l � t � l + k:

The end-point projection �M : P (EM ; e;M) ! M; (!; l) 7! !(l) is a con-
tinuous homomorphism. Since P (EM ; e;M) is the homotopy �ber of the
inclusion i : M ,! EM and since EM is contractible, �M is a homotopy
equivalence.

By Theorem 1.4 there exists a homomorphism �TM : WM !
P (EWM ; e;WM) such that the following diagram commutes up to homo-
topy through homomorphisms.

WM
�TM ��

���������

���������
P (EWM ; e;WM)

�WM��������������

WM

Because �WM is strictly natural in WM , �TM is natural up to homotopy
through homomorphism.

Obviously we have P (BWM; �; �) = 
MBWM . Hence the projection
pWM : EWM ! BWM induces a natural homomorphism P (pWM ) :
P (EWM ; e;WM) ! 
MBWM . Because WM is grouplike, P (pWM ) is a
homotopy equivalence. Therefore we obtain a homomorphism TM : WM !
W
MBWM , which is induced by Theorem 1.4 and the following diagram.

WM
TM ��

�TM
��

W
MBWM

"
MBWM

��
P (EWM ; e;WM)

P (pM)
�� 
MBWM

Since all morphisms are natural up to homotopy through homomorphisms,
the TM form a natural transformation [T ] from idHGrH to 
HBH and each TM
is a homotopy equivalence and hence an isomorphism in HGrH . Its inverse
[KM ] can be constructed by Theorem 1.4 and the following diagram.

W
MBWM
KM ��

�������������

������������� WM

TM�������������

W
MBWM



2. HOMOTOPY HOMOMORPHISMS 11

For each well-pointed space X, we chose EX to be the dotted arrow in
the following diagram.

BW
MBW
MX
BK
MX ��

B"
MBW
MX

��

BW
MX

B"
MX

��
B
MBW
MX

eBW
MX

��

B
MX

eX

��
BW
MX

EX

�� X

Here the e� are the maps described in Proposition 5.1. Since all solid arrows,
except for eX , are based homotopy equivalences the morphism EX exists and
is uniquely determined up to based homotopy. The naturality of EX follows
from the naturality up to homotopy of all other maps. Hence we have a
natural transformation [E]� from BH
H to the identity on Top�H .

Theorem 2.5. The functor BH : HGrH ! Top�H is left adjoint to 
H .
The natural isomorphism [T ] is the unit, and the natural transformation [E]�
the counit of this adjunction.

Proof. The de�nition of EBWM and the naturality of several morphisms
imply

[EBWM ÆBTM Æ eBWM ]� = [eBWM ]�
and since eBWM is a based homotopy equivalence by Proposition 5.1 this
results in

[EBH(M)]� ÆBH [TM ] = [EBWM]� Æ [BTM]� = [idBM ]�:

The de�nition of EX implies

[W
MEX ÆW
MeBW
MX ÆW
MB"
MBW
MX ÆW
MBT
MX] =

[W
MeX ÆW
MB"
MX ]

and the naturality of several maps leads to

[W
MEX ÆW
MeBW
MX ÆW
MB"
MBW
MX ÆW
MBT
MX] =

[W
MeX ÆW
MB"
MX ÆW
MBW
MEX ÆW
MBT
MX ] :

Since "
MX and 
MeX are homotopy equivalences the homomorphisms
W
MeX and W
B"
MX represent isomorphisms in HGrH . Therefore we
have

[W
MBW
MEX ÆW
MBT
MX] = [idW
MBW
MX] :

The facts that T
MX is an isomorphism in HGrH and that

[T
MX ÆW
MEX Æ T
MX ] =

[W
MBW
MEX ÆW
MBT
MX Æ T
MX ]

imply

H [EX]� Æ [T
H(X)] = [W
MEX Æ T
MX ] = [idW
MX ] :
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3. Hopf-objects

Definition 3.1. An H- or Hopf-object (X;�; �) in a monoidal category1

(C;
; e) is a non-associative monoid, i.e. an object X of C together with
morphisms � : X 
X ! X and � : e! X such that the following diagram
commutes.

e
X
�
idX ��

' ������������ X 
X

�

��

X 
 e
idX
���

'		����������

X:

A morphism of H-objects (or H-morphism) f : X ! Y is a morphism such
that �Y Æ (f 
 f) = f Æ �X . The H-objects of C and the H-morphisms form
a category HopfC.

Proposition 3.2. Let (C;�; eC) and (D;
; eD) be monoidal categories
and

(F;G; �; ") : C ! D

an adjunction of monoidal functors2 such that the diagrams

Y � Y
�Y��Y

��

�Y�Y

��

GFY �GFY

��
GF (Y � Y ) G(FY 
 FY )��

FGX 
 FGX ��

"X
"X
��

F (GX �GX)

��
X 
X FG(X 
X)��

commute for each X 2 C and Y 2 D, then there exists an adjoint pair of
functors

HopfF : HopfHC � HopfD : HopfG:

Proof. HopfF is given by

HopfF (X;�; �) = (FX;F� Æ ';F�) and HopfF (f) = Ff;

with ' : FX 
 FX ! F (X � X) the natural transformation. Its adjoint
HopfG is given analogously. The two commutative diagrams imply that the
units �X and the counits "Y of the adjunction are H-morphisms. Therefore
they form the unit and counit of an adjunction.

Example 3.3. Top�H with its product is a monoidal category. The H-
objects in Top�H are precisely the H-spaces with the base point as unit. The
homotopy class [�]� of the multiplication is calledH-space structure ofX. H-
morphisms are the homotopy classes of H-space morphisms up to homotopy.

Example 3.4. HGrH has a monoidal structure 
 given on objects by
M 
N = M �N . For morphisms F : WM ! WM 0 and G : WN ! WN 0

we de�ne F 
 G : W (M � N) ! W (M 0 � N 0) as follows: Let SM;N =

1For a de�nition of monoidal categories see [McL71].
2For a de�nition of monoidal functors see [BFSV98b]
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(WprM ;WprN ) : W (M �N)!WM �WN be induced by the two projec-
tions. Then the diagram

W (M �N)
SM;N ��

"M�N 

											
WM �WN

"M�"N��













M �N:

commutes. Obviously SM;N is a homotopy equivalence. By Theorem 1.4 the
homotopy class of SM;N in HMon is uniquely determined.

For two homotopy homomorphisms F : WM ! WM 0 and G : WN !
WN 0, we de�ne F 
G :W (M �N)! W (M 0 �N 0) to be the lifting in the
following diagram.

W (M �N)
F
G ��

SM;N

��

W (M 0 �N 0)

SM 0;N 0

��
WM �WN

F�G
�� WM 0 �WN 0:

This construction is compatible with the composition and we can de�ne
a functor 
 : HGrH � HGrH ! HGrH with M 
 N = M � N and
[F ]
 [G] = [F 
G].

The projections [PM ] and [PN ] on M 
N are given by [pi ÆSM;N ], where
pi is the according projection from WM �WN . It is easy to check that 

and these projections form a product in HGrH and that the trivial monoid
� is a terminal and initial object of HGrH . Therefore HGrH is monoidal
and we have a notion of H-objects in HGrH.

The unit of an H-object in HGrH is always the unit of the underlying
monoid.

Lemma 3.5. If (M; [F ]) is a H-object in HGrH, then the underlying map
f of F is homotopic to the multiplication � of M .

Proof. The homomorphism �F = "M Æ F has the property [ �F ÆWik] =
["M ] for k = 1; 2. The homotopy ht : M � M ! M with ht(x; y) =
�F
�
(x; e); t; (e; y)

�
runs from f(x; y) to f(x; e)f(e; y), and hence f and � are

based homotopic.

Thus the multiplication � of an H-object (M; [F ]) in HGrH is homotopic
to the underlying map of F , and therefore homotopy-commutative with the
commuting homotopy from xy to yx derived from F

�
(e; y); t; (x; e)

�
. The

relations in W (M � M) de�ne higher homotopies so that the underlying
monoid is homotopy commutative in a strong sense.

We now want to examine the structure on a monoidM , that leads to the
existence of an H-space multiplication on its classifying space.

Proposition 3.6. BH and 
H are monoidal functors.

Proof. For M;N 2 HGrH the morphism

sM;N : BW (M �N)! BWM �BWN
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is given by the based homotopy equivalence (BWp1; BWp2), where p1; p2 :
M �M !M are the projections.

For X;Y 2 Top�H the morphism 
H(X � Y ) ' 
HX 
 
HY is given by
W (
Mp1;
Mp2) : W
M(X � Y )! W (
MX � 
MY ).

Theorem 3.2 now implies

Theorem 3.7. BH and 
H induce an adjunction

HopfBH : HopfHGrH � HopfTop�H : Hopf
H

with

HopfBH (M; [F ]) = (BWM; [BF Æ sM;M ]�)

and

Hopf
H (X; [�]�) = (
MX; [W
M� ÆRX;X]):

Theorem 3.8. The classifying space BM of a grouplike and well-pointed
monoid M is an H-space if and only if M is an H-object in HGrH .

Proof. If M is an H-object, then BWM and thus BM are H-spaces.
Now let BM be an H-space. Then 
MBWM is an H-object in

HopfHGrH . Since TM : WM ! W
MBWM is a homotopy equivalence,
M is an H-object, too.

4. Extensions

A monoid in HopfTop�H is a homotopy-associative H-space (X;�). A
monoid in HopfHGrH consists of a well-pointed and grouplike monoid
together with homotopy homomorphisms F2 : W (M � M) ! WM and
F3 :W (M �M �M)! WM such that (M; [F2]) is an H-object and

[F2 Æ (F2 
 id)] = [F3] = [F2 Æ (id
 F2)]:

We call the H-object (M; [F2]) associative.
Since these structures are invariant under isomorphisms we obtain, sim-

ilar to the non-associative case, the following

Theorem 4.1. The classifying space BM of a well-pointed, grouplike
monoid M is an homotopy associative H-space, if M is an associative H-
object in HGrH .

As we realized earlier, the morphism eX : B
MX ! X need not be a
homotopy equivalence. But by Proposition 5.1 
MeX is a based homotopy
equivalence. Hence, if we restrict to connected, based spaces of the homotopy
type of CW -complexes, eX is a homotopy equivalence.

This implies that the adjunction

BH : HGrH � Top�H : 
H

induces an equivalence of categories, if we restrict to the full subcategories
of based spaces of the homotopy type of connected CW-complexes and grou-
plike monoids of the homotopy type of CW -complexes.
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Theorem 4.2. The full subcategories HopfHGrCWH � HopfHGrH of
H-objects of the homotopy type of CW-complexes, and HopfTop�;CWH �
HopfTop�H of connected H-spaces of the homotopy type of CW -complexes,
are equivalent.

5. Appendix: The evaluation map

This section is dedicated to the proof of the following theorem.

Proposition 5.1. For each based space X there exists a natural map
eX : B
MX ! X such that

1. 
MeX is a homotopy equivalence for each based space X and
2. if M is a grouplike wellpointed monoid then eBM is a homotopy equiv-

alence.

To prove this we will use based simplicial spaces. A based simplicial space
is a functor from the dual of the category � of �nite, ordered sets [n] =
f0; 1; : : : ; ng to Top�. The based standard simplices r�(n) are given by the
quotient space r(n)=Vn with r(n) the n-th standard simplex and Vn its
subspace of vertices. They induce a based cosimplicial space r� : �! Top�.

We de�ne the based geometric realization of a based simplicial space X
as

j � j� =
a
n

X(n) ^r�(n)= �

with the relation � generated by the same equalities as in the unbased case.
This induces a functor j � j� from the category of based simplicial spaces to
Top�.

Analogous to the unbased singular complex we can de�ne the based sin-
gular complex S�X : �op ! Top� of a based space X by

[n] 7! Top�(r�(n);X):

S� induces a functor from Top� to the category of based simplicial sets. As
in the unbased case this right adjoint to the based realization j � j�. The unit
�� : id! S�j � j� is given by

��;X(x) = (t 7! (x; t)) ; x 2 Xn; t 2 r�(n)

and the counit �� : jS� � j� ! id by

��;X(!; t) = !(t); ! 2 S�Y (n); t 2 r�(n):

Definition 5.2. (cmp. [Seg74, A.4.]) A based simplicial space X is good
if for each n and 0 � i � n the inclusion si(Xn�1) ,! Xn is a closed co�bra-
tion.

Now observe that the based realization jXj� coincides with the unbased
realization jXj if the simplicial space X has only one 0-simplex. Therefore we
obtain the following lemma from well-known facts.
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Lemma 5.3. (cmp. [Seg74, A.1]) Let X and Y be good, based simplicial
spaces with X0 = � = Y0 and let f : X ! Y be a based simplicial map. If
each map fn is a based homotopy equivalence, then the map

jfj� : jXj� ! jYj�

is a based homotopy equivalence.

In the following we will show that the nerve 
�
MX of the Moore loop

space of an arbitrary wellpointed spaceX is homotopy equivalent to its based
simplicial complex. There exists a based simplicial map a : 
�

MX ! S�X,
given by

an(!1; : : : ; !n)(t0; : : : ; tn) = (!1 + � � �+ !n)

 
nX
i=1

iX
j=1

tilj

!

(lj is the length of the loop !j and + the loop addition). Let ej = (t0; : : : ; tn)
be the vertex of r(n) given by tj = 1; tk = 0; k 6= j. Then a maps the loop
!j to the edge running from ej�1 to ej .

En := f(t0; : : : ; tn) 2 r(n) : ti + ti+1 = 1 for some ig is a strong deforma-
tion retract of r(n) and there exists a sequence of homotopy equivalences

Top� (r�(n);X) ' Top� (En;X) ' (
X)n ' (
MX)n

such that the composition of a with these maps is the endomorphism of
(
MX)n which changes the length of the loops to length 1. This map is ho-
motopic to the identity, and hence a is a homotopy equivalence. Furthermore
a is natural in X and de�nes a natural transformation from 
�

M to S�. If X
and hence 
MX and Top� (r�(n);X) are wellpointed, then aX is a based
homotopy equivalence.

The map eX := ��;X Æ jaXj� : j
�
MXj� ! X is natural in X and therefore

induces a natural transformation from j
�
M � j� to id. Since 
�

M is the nerve
of a topological monoid, e is in fact a natural transformation from B
M to
idTop�.

By [Seg74, 1.5] the canonical map �
MX : 
MX ! 
B
MX with
�
MX(!)(t) = (!; 1� t; t) is a homotopy equivalence because 
MX is grou-
plike. The composition 
eX Æ �
MX : 
MX ! 
X is the map normalizing
the loops to length 1 and hence a homotopy equivalence. Therefore 
eX is a
homotopy equivalence. Since the maps 
MX ! 
X are natural in X, this
implies the �rst statement of Proposition 5.1.

Let M be a wellpointed grouplike monoid. Using the adjunction of the
based realization and the based singular complex functors, we obtain a se-
quence

BM = jM�j� j��;M j�
�� jS�BM j� ��;BM

�� jM�j� = BM

The map ��;BM Æ j��;M�j� is the identity. S�BM(1) is precisely the non-
associative loop space 
BM and, by [Seg74, 1.5], the map ��;M� is a ho-
motopy equivalence on the 1-simplices. Furthermore S�BM(n) is based ho-
motopy equivalent to (
MBM)n and S�BM(n) is special, i.e. it satis�es
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the conditions of [Seg74, 1.5]. Therefore ��;M� is a based homotopy equiva-
lence in each dimension and thus j��;M�j� and ��;BM. Since jaBMj� is a based
homotopy equivalence this implies the second statement of Proposition 5.1.
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The Tensor Product of Little Cubes

Operads were introduced by Boardman and Vogt in 1968 to study the
algebraic structure of iterated loop spaces (they called them categories of
operators in standard form) [BV68]. Their results were re�ned in [BV73]
and independently by May in [May72]. They proved that any n-fold loop
space is homotopy equivalent to a grouplike Cn-space and vice versa, where
Cn is the operad of little n-cubes.

For n � 2 the iterated loop space 
nX has a homotopy-commutativemul-
tiplication, satisfying an increasing number of coherence conditions, which
are codi�ed by actions of the operad Cn. This lead to the de�nition of En-
spaces, as spaces on which an operad D, homotopy equivalent to Cn, oper-
ates.

Since an (n + k)-fold loop space can be regarded as a k-fold loop space
in the category of n-fold loop spaces, one might think that an En+k-space
is an Ek-space in the category of En-spaces. This type of structure, i.e. a
D-space in the category of C-spaces, where C and D are operads, is codi�ed
by the tensor product C 
D of operads (see section 7 below). Therefore the
naive assumption arises, that the tensor product of an En-operad with an
Ek-operad is homotopy equivalent to Cn+k, and hence an En+k-operad.

In general this is not true. The operad M of associative monoids is an
E1-operad, i.e. its grouplike algebras are precisely the one-fold loop spaces.
But the tensor product with itself is the operad of commutative monoids,
which is an E1-operad.

A better version of the naive approach is the following

Conjecture. The tensor product of a co�brant En-operad with an Ek-
operad is an En+k-operad.

Here the notion co�brant has to be made precise. One possible choice is
given in [Vog99].

A step in this direction was made by Dunn in [Dun88]. He proved that
the n-fold tensor product of C1 with itself, i.e. C


n
1 is homotopy equivalent to

Cn. But unfortunately this result does not imply the equivalence of Cn
Cm
and Cn+m, since the tensor product of operads does not respect homotopy
equivalences.

Remark 5.4. The little cube operads Cn are not co�brant in the sense
of [Vog99].

In this paper we extend Dunn's result to our

Main Theorem. For all l � 2; n1; : : : ; nl 2 N and n = n1+� � �+nl there
exists a map Cn1
� � �
Cnl ! Cn of operads, which is a local �-equivalence.

19
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In the �rst three sections we recall the de�nition of operads in the topo-
logical setting, give a short overview over the interchange and the tensor
product of operads and repeat the de�nition of the little cubes operads,
which is extended to an operad of compact spaces in section 9. In addition
we introduce a model CnjCm for the tensor product Cn
Cm as a suboperad
of Cn+m, which is based on Dunn's ideas.

The last three sections contain an analysis of this model, which leads
together with some tools of Dunn to our main theorem.

Throughout this paper we work in the category Top of compactly gener-
ated Hausdor� spaces in the sense of [Vog71].

During the preparation of this paper the author was supported by the
Deutsche Forschungsgemeinschaft.

6. Topological operads and trees

Definition 6.1. A collection is a family fA(j)gj2N of spaces in Top such
that �j acts on A(j) from the right. For � 2 A(j) we call j the number of
inputs of �.

A map of collections f : A ! B is a family ffj : A(j) ! B(j)gj2N of
equivariant maps.

The category of collections and maps between them is called �Top.

Definition 6.2. A local �-equivalence between two collections A and B
is a map f : A ! B of collections such that each fj : A(j) ! B(j) is an
�j-equivariant homotopy equivalence.

Definition 6.3. An operad A is a collection, together with a unit id 2
A(1) and a series of compositions � Æ � : A(k) � A(j1) � � � � � A(jk) !
A(j1 + � � � + jk) such that

� �� Æ (�1; : : : ; �k) = � Æ (���1(1); : : : ; ���1(k)) Æ �� for each � 2 A(k); �i 2
A(ji) and � 2 �k, where �� permutes the blocks given by j1; : : : ; jk)
according to �,

� � Æ (id; : : : ; id) = � and id Æ � = � and
� � Æ

�
�1 Æ (

1
1 ; : : : ; 

1
i1
); : : : ; �j Æ (

j
1; : : : ; 

j
ij
))
�
=�

� Æ (�1; : : : ; �j)
�
Æ (11 ; : : : ; 

1
i1
; : : : ; jij)

A map f : A! B of operads is a map of the underlying collections such
that f(id) = id and

f
�
� ÆA (�1; : : : ; �k)

�
= f(�) ÆB

�
f(�1); : : : ; f(�k)

�
;

where ÆA is the composition of A, and ÆB the one of B.
The category of operads and maps between them is called operTop.

Remark 6.4. Since we require an operad to have a unit id, our notion
is equivalent to the Æi-approach of Markl in [Mar96].

A very good notion for the work with operads - if not the best (free
operads are constructed this way) - are trees. Since all results in the following
are well-known, we just give a short description of all the terms, ideas and
constructions needed. For details the reader is referred to the literature.
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An edge of a graph is called internal if it is bounded by two vertices and
external otherwise. External edges of directed graphs, with no vertex at their
starting point are called inputs, and edges with no vertex at their end point
are called output. A tree T is a connected, directed graph without loops,
with exactly one output such that each vertex has precisely one output. The
valence of a vertex v in a tree is the number in(v) of its incoming edges. A
vertex of valence 0 is called a stump.

Remark 6.5. The graph with no vertex and only one external edge, is
a tree.

A labeled planar tree is a tree T together with a bijection � : in(T ) !
f1; : : : ; jin(T )jg from the set of inputs of T . We represent it graphically by

T

�1 �������

: : : �j
������

where T is a tree with j inputs.
It is well-known that the labeled trees form a topological operad Tree

such that Tree(j) is the set of trees with j inputs. The composition is given
by grafting the trees along their roots and inputs.

Definition 6.6. The j-the space of the free operad FA of a collection
A is the quotient of the space of all labeled trees with vertex labels, i.e. each
vertex v of a tree is assigned a label �v 2 A(in(v)), under the relation

S

Æ�� 2 A(k)

T1 ����

: : : Tk
����

=

S

Æ � 2 A(k)

T��1(1)
����

: : :T��1(k)
����

The topology on FA(j) is the topology of the according quotient space
of a

T2Tree(j)

 Y
v2T

A
�
in(v)

�!
:

The unit of FA is the trivial tree with no vertex.

The free operads imply a functor F : �Top ! operTop, which is left-
adjoint to the forgetful functor U : operTop! �Top.

Remark 6.7. Since we need an order to de�ne the product, we use the
natural order on the vertices of a tree, given by left-traversion.

For our purposes we need a slight extension of this notion of trees.

Definition 6.8. A bi-colored tree (T; c) consists of a tree T and a map
c : ver(T )! f0; 1g from the set of vertices of T . The number c(v) is called
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the color of the vertex v. An internal edge is calledmonochrome, if its vertices
have the same color.

Graphically we represent bi-colored trees by trees whose vertices are white
(c(v) = 0) or black (c(v) = 1).

Example 6.9.

Æ

�������

Æ������

�������

�������

������� Æ������

The sets BiTree(j) of labeled bi-colored trees form an operad BiTree. As
in the monochrome case the composition is given by the grafting of trees.

Bi-colored trees are very useful in the description of the direct sum AtB
of operads. Let T be a bi-colored tree with j inputs and (A;B)T the space

(A;B)T =
Y

v 2 ver(T )

c(v) = 0

A(in(v))�
Y

v 2 ver(T )

c(v) = 1

B(in(v)):

Then the free operad F (At�B), generated by the coproduct At�B of the
underlying collections, is given by the spaces

`
T2BiTree(j)(A;B)T modulo

the relations of De�nition 6.6. The composition is induced by the grafting of
trees. The identity (or unit) is the trivial tree with no vertex.

Example 6.10.

Æ� 2 A(3)

�����
�����
� 2 B(2)

�����
�����

Lemma 6.11. AtB(j) is the quotient of F (At� B)(j), by the relations

1. Monochrome edges may be shrunk and their vertices composed,
2. The identities of A and B are identi�ed with the trivial tree and
3. The relation of De�nition 6.6

7. Interchange

The concept of interchange of operad structures and the tensor product
of operads is well-known. Boardman and Vogt used it in [BV73] to describe
homomorphisms between theories and algebras over theories, and May's no-
tion of a pairing of two operads is closely related to the interchange of the
two structures.
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Definition 7.1. Let A;B and C be operads and f : A ! C and g :
B ! C two maps of operads. We say f and g interchange, if the diagram

A(j)�B(k)
id�� ��

'
��

A(j)�B(k)j
fj�gjk �� C(j)� C(k)j

�Æ�

��

B(k)�A(j)

id��
��

B(k)�A(j)k
gk�fkj

�� C(k)� C(j)k �Æ�
�� C(jk)

commutes for all j; k 2 N. Here � always means the appropriate diagonal.

If we apply this de�nition to algebras over A and B, i.e. if we choose
C = EndX , then the structures of A and B on X interchange if and only if
the diagrams

(Xk)j

'
��

�j �� Xj

�

��
(Xj)k

�k
�� Xk

�

�� X

commute for all � 2 A(j) and � 2 B(k).
The tensor product A
B of two operads A and B is an operad, which

codi�es the interchange of operad maps (cmp. [BV73]). This means that
there exist two maps iA : A ! A 
 B and iB : B ! A 
 B such that the
operad maps f : A ! C and g : B ! C interchange if and only if there
exists a map h : A
B ! C such that f = hÆiA and g = hÆiB. Its j-th space
A
B(j) is the quotient of A tB(j) under the additional shu�e-relation

S

Æ �

�									

�

T1;1���

: : : T1;k
��� : : : �










�

Tj;1���

: : : Tj;k
���

=

S

� �

Æ									

�

T1;1���

: : : Tj;1
��� : : : Æ










�

T1;k���

: : : Tj;k
���

As Dunn noted in [Dun88] the tensor product A
B is universal for pairings
of operads in the sense of [May80].

8. The little cubes

For convenience we will use the following notations. The n-dimensional
interval [a1; b1] � � � � � [an; bn] of R

n will be denoted with [a; b]. For a =
(a1; : : : ; an) and b = (b1; : : : ; bn) in Rn we will write a < b if aj < bj for
each j. In the same fashion we will write a � b. We denote the vector
(a1b1; : : : ; anbn) with ab.

Definition 8.1. Let Cn(j); j � 1; be given as the set of ordered j-tuples
of n-dimensional intervals [ai; bi] in In = [0; 1]n with disjoint and non-empty
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1
2

3

1
2

3

Figure 1. The left example is an element of C2(3) the right is not

interiors, i.e. with ai < bi. The space Cn(0) consists only of the empty tupel
().

The composition � Æ (�1; : : : ; �k) of � =
�
[a1; b1]; : : : ; [ak; bk]

�
2 Cn(k)

with �i = ([c1;i; d1;i]; : : : ; [cji;i; dji;i]) 2 Cn(ji) for 1 � i � k is given by
replacing the i-th interval [ai; bi] of � with the following j-tupel�

[ai + (bi � ai)c1;i; ai + (bi � ai)d1;i]; : : :

: : : ; [ai + (bi � ai)cji;i; ai + (bi � ai)dji;i]
�

(recall that the ai; bi; ci;j and di;j are vectors). This operation corresponds to
the replacement of the i-th interval of � with a scaled-down copy of �i.

Æ =

1

2

1

1
2

1

2
3

Figure 2. Example of a composition in C2

Definition 8.2. A little cube c 2 Cn(j) is called decomposable, if : : :

1. : : : j 2 f0; 1; 2g or
2. : : : there exist a d 2 Cn(2) and decomposable c1; c2 with ck 2 Cn(jk)

for jk > 0; k = 1; 2 such that c = �(d; c1; c2).

It is easy to see that the decomposable cubes of Cn form a suboperad
Dn. Furthermore D1 = C1 and Dn(j) = Cn(j) for j � 3.

A more geometrical description of decomposability is given by the inser-
tion of a hyper plane. c 2 Cn(j) is decomposable, if and only if there exists
an 1 � i � n and a hyper plane L of codimension 1, parallel to the i-axis,
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which hits no interior of the component cubes of C, such that each of the
two parts is decomposable and contains at least one component cube (cmp.
[Dun88]). We call such a hyper plane separating.

Proposition 8.3. (cmp. [Dun88, Prop. 2.3.]) The inclusion Dn ! Cn
is a local �-equivalence.

1 2

3 4

1

2

3

4

Figure 3. The left cube is decomposable (the dashed lines
are separating hyper planes), the right is not.

Now let H � Cn and V � Cm be two suboperads. Each of them can be
embedded into Cn+m as a suboperad. For H we use the inclusion�

[a1; b1]; : : : ; [ak; bk]
�
7!
�
[(a1; 0); (b1; 1); : : : ; (ak; 0); (bk; 1)]

�
;

where (ai; 0) is the (n+m)-tupel (a1i ; : : : ; a
n
i ; 0; : : : ; 0) and (bi; 1) is the tupel

(b1i ; : : : ; b
n
i ; 1; : : : ; 1). Similar we have an inclusion of V into Cn+m with�
[c1; d1]; : : : ; [cl; bl]

�
7!
�
[(0; c1); (1; d1)]; : : : ; [(0; cl); (1; dl)]

�
:

Graphically the two inclusions iH and iV are described by Figure 4.
These two operad morphisms induce two maps H(j)�V (k)! Cn+m(jk)

of collections for each pair j; k of natural numbers, given by

(h; v) 7! iH(h) Æ (iV (v); : : : ; iV (v))| {z }
k�times

and
(h; v) 7! iV (v) Æ (iH(h); : : : ; iH(h))| {z }

l�times

:

The image of the �rst map is called hjv.
It is easy to check that the �rst morphism is given by��
[a1; b1]; : : : ; [ak; bk]

�
;
�
[c1; d1]; : : : ; [cl; kl]

��
7!�

[(a1; c1); (b1; d1)]; : : : ; [(a1; cl); (b1; dl)]; [(a2; c1); (b2; d1)]; : : :
�

and the second by��
[a1; b1]; : : : ; [ak; bk]

�
;
�
[c1; d1]; : : : ; [cl; kl]

��
7!�

[(a1; c1); (b1; d1)]; : : : ; [(ak; c1); (bk; d1)]; [(a1; c2); (b1; d2)]; : : :
�
:
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1 2

1 2

1

2

1

2

1

2

3

4

�
iH

?

iV

hjv

	

Figure 4. The inclusions iH and iV and the cube hjv =
iH(h) Æ (iV (v); iV (v)).

If we order the tuples (ai; cj) and (bi; dj) lexicographically by their indeces,
the we see that the two images coincide up to a transposition. Comparing
this with the interchange condition shows that iH and iV interchange. This
leads to the existence of a morphism H 
 V ! Cn+m. Let HjV � Cn+m
be the image of this morphism and ' : H 
 V ! HjV the induced map of
morphisms.

Since this construction is based on the addition of �trivial� coordinates,
it is easy to see that the suboperads (HjM)jV and Hj(M jV ) of Cn+l+m with
H � Cn;M � Cl and V � Cm are equal.

9. The closed cubes

For the proofs of the main theorem we need an extension �Cn of the little
n-cubes such that each �Cn(j) is a compact subset of R2nj. We start with an
alternative description of Cn(j). Let � = ([a1; b1]; : : : ; [aj; bj]) be an element
of Cn(j). The property that all intervals [ai; bi] have non-empty interiors can
be described by the inequalities ai < bi. The disjointness of the interiors of
di�erent cubes is more diÆcult.

Let C(i;k)
n (j) be the space of tupels ([a1; b1]; : : : ; [aj; bj]) 2 I2nj with non-

empty interior for 1 � i < k � j such that [ai; bi] and [ak; bk] have disjoint
interiors. Obviously we have

Cn(j) =
\

1�i<k�j
C(i;k)
n (j):

The cube [ai; bi] de�nes 2n parts of In, which are of the form��
(0; : : : ; 0); (1; : : : ; ail; : : : ; 1)

��
or

��
(0; : : : ; bil; 0); (1; : : : ; 1)

��
;
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iA
(i;k)
1

A
(i;k)
2

B
(i;k)
2

B
(i;k)
1

Figure 5. The A
(i;k)
l s and B

(i;k)
l s

whose union is the complement of the interior of [ai; bi] (recall that ai =

(ai1; : : : ; a
i
n) and bi = (bi1; : : : b

i
n)). Let A

(i;k)
l (j) be the subspace of C(i;k)

n (j)

such that [ak; bk] lies in the l-th part of the �rst form and let B
(i;k)
l (j) be the

subspace of C(i;k)
n (j) such that [ak; bk] lies in the l-th part of the second form.

[ak; bk] and [ai; bi] have disjoint interiors, if and only if [ak; bk] lies in one

of these parts. Hence C(i;k)
n (j) is the union of the 2n subspaces A(i;k)

l (j) and

B
(i;k)
l (j) of R2nj,

Cn(j) =
\

1�i<k�j

 [
1�l�n

A
(i;k)
l (j) [B(i;k)

l (j)

!
:

Now we use this (quite complicated) description to obtain a closed (and
hence compact) subset �Cn(j) of I2nj, which contains Cn(j). We de�ne

�Cn(j) =
\

1�i<k�j

0
@ [

�l�n

�A(i;k)
l (j) [ �B(i;k)

l (j)

1
A ;

where �A
(i;k)
l (j) is the set of all tupels ([a1; b1]; : : : ; [aj; bj]) in I2nj such that

ai � bi, i.e. the interiors are allowed to be empty, and [ak; bk] lies in the l-th

part of I2nj, generated by [ai; bi]. �B
(i;k)
l (j) is de�ned accordingly. Since these

properties can be described by the inequalities aim � bim for 1 � i � j and
1 � m � n, and either bk � (1; : : : ; ail; : : : ; 1) or (0; : : : ; b

i
l; : : : ; 0) � ak , these

two spaces are closed in I2nj.

Remark 9.1. �Cn(2) does not consist of all little n-cubes with arbitrary
interior. For example the con�guration in Figure 6 is not an element in �C2(2),
since each of the intervals does not lie in one of the four parts de�ned by the
other.

In C2(3) and C2(4) the same con�guration can appear, since then we can
split one or two of the intervals at their intersection.

In fact a tupel � = ([a1; b1]; : : : ; [aj; bj]) of j intervals in In is an element

of A(i;k)
l (j) if and only if the inequality bkl � ail holds. And it is an element
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Figure 6. A non-example of a closed cube

of B(i;k)
l if and only if bil � akl . Hence � is an element of Cn(j) if and only if

there exists an 1 � l � n for each pair 1 � i < k � j such that either bkl � ail
or bil � akl .

Now Let � = ([a1; b1]; : : : ; [aj; bj]) be an element of �Cn(j) and i =
([c1;i; d1;i]; : : : ; [ck;i; dk;i]); 1 � i � j, elements of �Cn(ki). As in Cn, we can
de�ne � Æ (1; : : : ; k). It is not very hard to see that this is an element in
�Cn(k1 + � � � + kj). Therefore the �Cn(j) form an operad �Cn, which contains
Cn as a suboperad. We call �Cn the operad of closed n-cubes.

As for Cn and Cm, we obtain a suboperad �Cnj �Cm of �Cn+m, which contains
CnjCm as a suboperad. Again �Cnj �Cm is given as the image of a morphism
�Cn 
 �Cm ! �Cn+m.

Definition 9.2. Let

� =
�
[a1; b1]; : : : ; [aj; bj]

�
and � =

�
[c1; d1]; : : : ; [ck; dk]

�
be two elements of �Cn. � is called a frame of � if there exists a surjective
map ' : k! j such that

[ci; di] � [a'(i); b'(i)]

for all i 2 k. The map ' is called a framing of � into �.

Definition 9.3. Let � 2 �Cn(j) and �0 2 �Cn(l) be two frames of � 2
�Cn(k). If �0 if a frame of �, then � is called tighter than �0.

Lemma 9.4. Let � 2 �Cn(j) and �
0 2 �Cn(j

0) be two frames of � 2 �Cn(k).
Then there exists a frame � \ �0 of �, which is tighter than � and �0.

Proof. Let � be of the form (: : : [ai; bi] : : : ) and �0 of the form
(: : : [�ai;�bi] : : : ) and � of the form (: : : [ci; di] : : : ). Furthermore let '� and
'�0 be two framings of � into � and �0.

The intervals of � \ �0 are all intervals of the form

[a'�(i); b'�(i)] \ [�a'�0(i);�b'�0(i)]

for each 1 � i � k. Then each interval [ci; bi] of � is contained in the i-th
intersection. The intervals of � \ �0 can be ordered arbitrarily. In addition
the map ('�; '�0) : k! j� j0 implies a surjective map from k into its image.
This map is a framing of � into � \ �0 (the latter one has as many inputs
as the image has elements). The maps k ! j � j0 ! j and k ! j � j0 ! j0

induce framings of � \ �0 into � and �0.
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Lemma 9.5. Let � 2 �Cn(j) and �0 2 �Cn(j0) be two frames of � such
that � is tighter than �0 and vice versa. Then � and �0 coincide up to a
permutation, i.e. there exists a permutation � such that �� = �0.

Proof. Let ' : j! j0 be a framing of � into �0 and  : j0 ! j a framing
of �0 into �. Since both maps are surjective, their compositions are. This
again implies that ' and  ' are bijective and that j = j0.

Let � 2 �j be the map  '. We know �j! = id and furthermore

[ci; di] � [a'(i); b'(i)] � [c�(i); d�(i)] � � � � � [c�
j!(i); d�

j!(i)] = [ci; di];

where [ci; di] is the i-th interval of � and [ai; bi] the one of �0. The i-th interval
of � is precisely the '(i)-th interval of �0. Since ' is bijective the statement
follows.

Obviously we have

Proposition 9.6. If � 2 �Cn(j) is of the form � Æ (1; : : : ; k) with � 2
�Cn(k) such that each i has at least one input, then � is a frame of �.

Lemma 9.7. Let � 2 �Cn(1) be a frame of � 2 �Cn(j). Then there exists a
�0 2 �Cn(j) such that � = � Æ �0.

Proof. Let [a; b] be the only interval of � and let [ci; di]; 1 � i � j, be
the i-th interval of �. We de�ne

�cil =

(
ci
l
�al

bl�al if bl 6= al
i�1
j

if bl = al
and �dil =

(
di
l
�al

bl�al if bl 6= al
i
j

if bl = al;

for 1 � i � j and 1 � l � n. Now let �0 be given by ([�c1; �d1]; : : : ; [�cj; �dj ]). We
have to check, that this sequence of intervals is a complete cube.

Choose � i < k � j. Following Remark 9.1 we have to �nd 1 � l � n
such that either �dkl � �cil or

�dil � �ckl . We know that there exists an l such that
either dkl � cil or d

i
l � ckl holds. If al 6= bl we are done. Otherwise we have

two cases. In the �rst, k � i� 1, we have

�dkl =
k

j
�
i� 1

j
= �cil:

For i+ 1 � k we have

�dil =
i

j
�
k � 1

j
= �ckl :

Corollary 9.8. Let � 2 �Cn(k) be a frame of � 2 �Cn(j). Then there
exist �0i 2 �Cn; 1 � i � k such that � = � Æ (�01; : : : ; �

0
k).

Proof. Let ' be a framing of � into �. Let Ii � f1; : : : ; jg be the
preimage of i 2 f1; : : : ; kg of under '. Then we can kill all inputs of �,
except for the inputs whose label is in Ii, by composition with stumps. We
obtain �i 2 �Cn. Furthermore the i-th interval [ai; bi] of � is a frame of �i. By
Lemma 9.7 exists a �0i such that �i = ([ai; bi]) Æ �0i. This implies

� = � Æ (�01 : : : ; �
0
k):
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Lemma 9.9. Let � 2 �Cn(k) and � 2 �Cn(j) and ([a; b]) 2 �Cn(1) such that
([a; b]) Æ � is a frame of ([a; b]) Æ �. Then there exists a �0 such that � is a
frame of �0 and such that

([a; b]) Æ � = ([a; b]) Æ �0:

Proof. Let [ai; bi] be the i-th interval of � and [ci; di] the i-th interval
of � and ' a framing of ([a; b]) Æ � into ([a; b]) Æ �. We chose � 0 to be the
tupel ([�c1; �d1]; : : : ; [�cj; �dj]) with

�cil =

(
cil if al 6= bl
a
'(i)
l

+b
'(i)
l

2
if al = bl

and �dil =

(
dil if al 6= bl
a
'(i)
l

+b
'(i)
l

2
if al = bl;

for 1 � i � j and 1 � l � n.
First we prove, that � is in �Cn(j). Let 1 � i < k � j. Since � 2 �Cn(j),

we know that there exists a 1 � l � n such that either dil � ckl or d
k
l � cil.

If al 6= bl, we are done. If al = bl we have �cil =
�dil and �ckl =

�dkl . Hence one of
the necessary inequalities holds.

Now let ' be the framing of ([a; b])Æ� into ([a; b])Æ�. Then the inequality

al + (bl � al)a
'(i)
l � al + (bl � al)c

i
l � al + (bl � al)d

i
l � al + (bl � al)b

'(i)
l

holds for each 1 � l � n and 1 � i � j. If al 6= bl this immediately leads to

a
'(i)
l � cil � dil � b

'(i)
l :

If bl = al we have

a
'(i)
l � �cil =

�dil � b
'(i)
l :

Thus � is a frame of �0 and ' is a framing of �0 into �.
The fact that ([a; b]) Æ � is equal to ([a; b]) Æ �0 is easy to see.

Together with Corollary 9.8 this leads to

Corollary 9.10. Let � and � be two elements of �Cn such that ([a; b])Æ�
is a frame of �. Then there exists a �0 such that � is a frame of �0 and
� = ([a; b]) Æ �.

10. Reduced representations

Obviously the map �Cn t �Cm(j) ! �Cn 
 �Cm(j) is a surjection for each
j 2 N and the map �Cn 
 �Cm(j) ! �Cnj �Cm(j) is surjective by de�nition.
Therefore every element of �Cnj �Cm(j) and every element of �Cn 
 �Cm(j) can
be represented by an element of ( �Cn; �Cm)T with T a labeled, bi-colored tree
with j inputs.

Remark 10.1. In the following we denote an element of F ( �Cn t�
�Cm)

and the trees underlying its representations with the same name. It should
be clear from the context whether the vertex labels are of importance.

Definition 10.2. A labeled, bi-colored tree with j > 1 inputs is reduced,
if

� it contains no monochrome edge,
� it contains no vertex of valence 0 and
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� it contains no sequence of valence 1, i.e. there is no subtree with more
than two vertices which all have valence 1.

A tree with 0 inputs is reduced if and only if it is a stump, and a tree
with one input is reduced if it contains at most two vertices of valence 1 and
di�erent colors.

There are only �nitely many reduced trees with j inputs. The maximal
number of vertices a reduced tree with j inputs can have, is given by the
number of vertices of a binary tree with j inputs, plus the number of all
edges (split an edge by one vertex of valence 1), i.e. (j � 1) + (2j � 1).

Lemma 10.3. For each c 2 �Cnj �Cm(j) there exists a reduced tree T with
j inputs and an representation Tc 2 ( �Cn; �Cm)T of c.

Proof. For j = 0 the statement is trivial, since �Cn+m(0) consists only of
one point. For a given representation Sc 2 ( �Cn; �Cm)S of c 2 �Cnj �Cm(j) for j �
1, we construct a reduced representation Tc. If S contains monochrome edges,
we can shrink them them by composing the labels at their vertices. Hence we
can replace Sc with a representation which contains no monochrome edge.

Now assume that Sc contains no monochrome edge. Since the images of
vertices of valence 0 of both colors coincide in �Cn+m(0), their colors can be
changed without a�ecting the image of the tree. Hence all outgoing edges of
a vertex of valence 0 can be assumed to be monochrome. Therefore we can
shrink them by composing their vertices. This kills one input of the root of
the corresponding edge and the stump.

Now we assume that Sc contains no monochrome edge and no stump. It
is easy to see that the two trees

Æ h

� v
and

� h

Æ v

represent the same element in �Cn+m(1). Therefore we can change the order
in a sequence of valence 1 arbitrarily. Thus we can sort them by color and
then shrink the obtained monochrome edges. Hence we can assume that each
sequence of valence 1 consists only of two vertices of di�erent colors. For j = 1
we are done now. For j > 1, this sequence is connected to another vertex of
arbitrary color (either at the input or at the output). If the connecting edge
is not monochrome, we exchange the two vertices of valence 1 and obtain at
least one monochrome edge, which again can be shrunk. This last step kills
(at least) one of the two vertices of valence 1.

Corollary 10.4. �Cnj �Cm(j) is the union of �nitely many compact sub-
spaces and hence compact.

Proof. For each reduced tree T with j inputs, the space ( �Cn; �Cm)T is
compact, because it is a product of compact spaces. Therefore its image KT

in �Cnj �Cm(j) is compact. Since each element is represented by a reduced tree,
�Cnj �Cm(j) is the union of the �nitely many KT .

In the same way we get
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Corollary 10.5. �Cn 
 �Cm(j) is compact.

Since there exists a continuous morphism �Cn 
 �Cm ! �Cnj �Cm, two el-
ements of F ( �Cn t�

�CM ), which represent the same element in �Cn 
 �Cm,
represent the same element in �Cnj �Cm. For the proof of the converse situa-
tion, we construct �minimal� representations.

11. Minimal representations

Definition 11.1. A Æ-representation of � 2 �Cnj �Cm(j); j > 0; is a repre-
sentation of � in ( �Cn; �Cm)T such that the root vertex of T has the color Æ (or
0). Similarly a �-representation is a representation of �, whose root has the
color � (or 1). If there exists a Æ-representation of �, with h 2 �Cn as root,
then h is called a Æ-root of �.

Definition 11.2. A Æ-frame of � 2 �Cnj �Cm(j) is an element h 2 �Cn such
that hjid is a frame of �. Similarly a �-frame of � is an element v of �Cm such
that idjv is a frame of �.

The following lemma is a consequence of the proof of Lemma 9.4.

Lemma 11.3. If h and h0 are Æ-frames of �, then the intersection hjid \
h0jid is given by a Æ-frame h \ h0.

Lemma 11.4. For � 2 �Cnj �Cm(j) with j > 1, exists a Æ-root h 2 �Cn(k)
or a �-root v 2 �Cm(k) with k > 1.

Proof. If � has more than one input, then there exists a reduced rep-
resentation (either Æ or �), which has at least one vertex of a valence higher
than 1. In general it is of the form

S

�

T1 ����

: : : Tl
����

where � is either Æ or �. Since we know that the trees

Æ h

�����
v : : : �����

v
and

� v

Æ����
h : : : Æ����

h

represent the same element in �Cnj �Cm, we can push the lowest vertex of
valence > 1 down to the root.

Lemma 11.5. h 2 �Cn(k) is a Æ-frame of � 2 �Cnj �Cm(j) if and only if it
is a Æ-root.

Proof. By Proposition 9.6 each Æ-root of � is a Æ-frame.
Now let h 2 �Cn(k) be a Æ-frame of � 2 �Cnj �Cm(j) and ' a framing of �

into hjid. Assume that the statement is true for k = 1. Then for k > 1 we can
kill all inputs of �, which do not lie in the i-th input of hjid, i.e. all l 2 j with
'(j) 6= i. We obtain �i 2 �Cnj �Cm, which is framed by hi := ([ai; bi]), where
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[ai; bi] is the i-th interval of h. Therefore we can �nd a Æ-representation of �i
with the root hi, i.e. it is of the form

Æhi

Ti
:

If �i is the cube represented by Ti, we obtain (hjid) Æ (�1; : : : ; �k). Therefore
h is a Æ-root of �.

We still have to prove the theorem for k = 1. For j = 1 the statement is
quite obvious, since each reduced Æ-representation is of the form

Æ h0
� v0

:

If h is a Æ-frame of �, it is obviously a frame of h0, and by Lemma 9.7 there
exists a h00 2 �Cn with h0 = h Æ h00.

For j > 1 and k = 1 we have to use the fact that there exists at least
one representation (Æ or �), whose root has a valence greater than 1 (cmp.
Lemma 11.4). Let it be of the form

Æh0
T1 ��

: : : Tl
�� :

If h is a frame of h0, then we are done, since by Corollary 9.8 there exists an
h00 2 �Cn(l) such that h0 = h Æ h00.

If h is not a frame of h0, we consider �i := ([ai; bi])jidÆ�i for each 1 � i � l,
where [ai; bi] is the i-th interval of h0 and �i is the cube represented by Ti.
Since �i can be obtained from � by the composition with stumps at all inputs,
which do not belong to Ti, it is an element of �Cnj �Cm(ji), where 1 � ji < j.
By induction there exists a Æ-representation of �i, of the form

Æ([a; b]\ [ai; bi])

Si

because ([a; b] \ [ai; bi]) is a Æ-frame of �i.
The Æ-frame h \ h0 of � consist of the intervals [a; b]\ [ai; bi], and hence

� is represented by

Æh \ h0
S1 ��

: : : Sl
��

Since h is a frame of h \ h0, we can �nd a h00 2 �Cn(l) with h \ h0 = h Æ h00.
If the root of valence greater than 1 has the color �, we can proof the

statement by similar means.

Lemma 11.6. Let � 2 �Cnj �Cm(j); h 2 �Cn(k);H 0 2 �Cn(k0) and [a; b] � In

an interval such that

� h is a Æ-frame of �,
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� ([a; b]) Æ h is a frame of H 0 and
� H 0 is a Æ-frame of ([a; b]) Æ �.

Then there exists h0 2 �Cn(k0) such that

� H 0 = ([a; b]) Æ h0,
� h is a frame of h0.
� h0 is a Æ-frame of �.

Proof. Let ' : j ! k be a framing of � into hjid and hence from
([a; b])jidÆ� into (([a; b])Æ h)jid and �0 : j! k0 a framing from ([a; b])jidÆ�
into H 0jid and  : k0 ! k a framing of H 0 into ([a; b]) Æ h. We can assume
that  Æ �0 = '.

We de�ne h0 2 �Cn(k0) to be the tupel (: : : [�ci; �di] : : : ) with

�cil =

(
ci
l
�al

bl�al if al 6= bl

min
�
asl : s 2 �0�1(i)

�
if al = bl

and

�dil =

(
dil�al
bl�al if al 6= bl

max
�
bsl : s 2 �0�1(i)

�
if al = bl;

for 1 � l � n, where [ai; bi] is the i-th interval of � and [ci; di] the i-th interval
of H 0.

First we prove that h0 is an element of �Cn(k0). Let 1 � i < h � k0. If
[�ai;�bi] is the i-th interval of h, then there exists an l with 1 � l � n such that

either �a (i)l � �b (h)l or �a (h)l � �b (i)l . Since  is a framing of H 0 into ([a; b])Æh,
we know

al + (bl � al)�a
 (i)
l � cil � dil � al + (bl � al)�b

 (i)
l :

If bl 6= al, this immediately leads to

�a (i)l � �cil �
�dil �

�b (i)l :

The same inequality follows for h instead of i. Together they imply that
either �cil �

�dhl or �c
h
l �

�dil holds.
If al = bl, we use the fact that [as; bs] � [�ai;�bi] and hence

�ail � asl � bsl � �bil

for all s 2 ��1(i). Since � =  �0 we also have �0�1(i) � ��1( (i)), and
therefore

�cil = min
�
asl : s 2 �0�1(i)

�
� min

�
asl : s 2 ��1( (i))

�
� �a (i)l

and

�dil = max
�
bsl : s 2 �0�1(i)

�
� max

�
bsl : s 2 ��1( (i))

�
� �b (i)l :

This implies that either �cil � �a (i)l � �b (h)l � �bhl or �chl � �a (h)l � �b (i)l � �dil.
From these observations also follows, that  is a framing of h0 into h.

To prove that h0 is a Æ-frame of � with framing �0, we have to check that
for each 1 � l � n and 1 � i � j, the inequality

�c�
0(i)

l � ail � bil � �d�
0(i)

l
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is true. If al 6= bl this follows from

c
�0(i)
l � al + (bl � al)a

i
l � al + (bl � al)b

i
l � d

�0(i)
l ;

which again holds, because �0 is a framing of H 0jid to ([a; b])Æ�. For al = bl
the inequality is ful�lled since i 2 �0�1 (�(i)).

It remains to check, that H 0 = ([a; b]) Æ h0. But this is an immediate
consequence of the de�nition of h0.

Theorem 11.7. For each � 2 �Cnj �Cm(j) there exists a (up to permuta-
tions) uniquely determined Æ-frame h 2 �Cn(k) of � and a Æ-representation
of the form

Æh

T1 ��
: : : Tk

��

such that each Æ-frame h0 of � is also a frame of h.

Proof. We prove the theorem via induction over the number j of inputs
of �. For j = 0 the only reduced Æ-representation is the stump of color Æ.
Hence the theorem holds trivially.

For j = 1 the reduced Æ-representation of � is uniquely determined and
of the form

Æ h

� v
:

Obviously h is tighter than any other Æ-frame of �.
If � has more than one input we have to di�erentiate between two basic

cases. First let all Æ-representations of � have a root of valence 0, i.e. every
Æ-representation is of the form

Æ h

T

For each 1 � i � k we can chose an interval hi = ([ci; di]) 2 �Cn(1) such
that dii � cii is minimal under all Æ-roots. (Intervals of this kind exist, since
�Cnj �Cm(j) is a Hausdor�-space and since ( �Cn; �Cm)T is compact for each bi-
colored, labelled tree T .) Each hi is a Æ-frame of �. Hence their intersection
h is a Æ-frame and therefore a Æ-root of �.

If h0 is another Æ-frame of �, then the intersection h00 := h\h0 would be a
frame, which is tighter than h and h0. Hence there exists a Æ-representation
with h00 as root. Since h is the intersection of �minimal� roots hi, this implies
h00 = h, because otherwise there has to exists a coordinate such that h00 is
�smaller� in the i-th direction than the according hi.

In the second case we assume that there exists a reduced Æ-representation
of � of the form

Æ h

T1 ��
: : : Tk

��
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for k > 1. Then each Ti has ki inputs with 1 � ki < j. By induction we can
�nd hi 2 �Cn(li) and Æ-representations of �i 2 �Cnj �Cm(ki), represented by Ti,
of the form

Æ hi

Si1 ����

: : : Sili
����

such that every Æ-frame of �i is wider than hi.
Together these form a Æ-representation

Æ h Æ (h1; : : : ; hk) =: H

S1
1 ����

: : : Skli
����

of �.
Now letH 0 be another frame of �. Without restriction we can assume that

H 0 is tighter than H (replace it with H \H 0). By composition with stumps,
we can kill all inputs of �;H and H 0, which are represented by inputs on
another subtree than Ti. We obtain �i 2 �Cnj �Cm(ki) and two Æ-frames Hi

and H 0
i such that H 0

i is tighter than Hi. The cube �i is the composition
([ai; bi])jid Æ �i and Hi the composition ([ai; bi]) Æ hi, where [ai; bi] is the i-th
interval of h. By Lemma 11.6 there exists an h0i 2 �Cn such that

� H 0
i = ([ai; bi]) Æ h0i,

� h0i is a Æ-frame of �i and
� hi is a frame of h0i.

The second property implies that h0i is a frame of hi. Together with the
third property and Lemma 9.5 this implies that hi and h0i coincide up to
permutation. Hence we can assume that they are equal. Therefore we have
Hi = H 0

i. This again implies that H and H 0 are equal up to a permutation.
Hence H is a minimal Æ-root.

The uniqueness of H is an immediate consequence of Lemma 9.5.

Definition 11.8. We call the (up to permutation) unique root of The-
orem 11.7 the minimal Æ-root. We de�ne a minimal �-root analogously.

Definition 11.9. A reduced representation T of � 2 �Cnj �Cm is called
minimal, if every vertex is a minimal root of the element represented by the
subtree with the vertex as root.

The algorithm for the construction of a minimal representation is quite
clear. We choose the color of the root, construct the minimal root of this
color, and then recursively construct the minimal representations of the sub-
trees whose root has the other color. Since the minimal roots are uniquely
determined (up to permutation) we obtain the following

Proposition 11.10. There exists an (up to permutations) uniquely de-
termined minimal Æ-representation for each � 2 �Cnj �Cm(j)-

Remark 11.11. With �up to permutations� we mean one permutation
for each vertex of the tree.
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Theorem 11.12. The images of an arbitrary reduced Æ-representation
T 2 F ( �Cn t�

�Cm) of � 2 �Cnj �Cm(j); j > 0; and the minimal Æ-representation
under the projection p : F ( �Cn t�

�Cm)! �Cn 
 �Cm coincide.

Proof. First recall, that the application of a permutation to a vertex
of a tree in F ( �Cn t�

�Cm) does not change the image under p. Hence we can
ignore ambiguities which occur when choosing permutations.

For j = 1 the reduced Æ-representation is minimal. Hence the statement
is trivial.

If � has more than one input and its minimal Æ-root hmin has more than
one input, then, as seen in the proof of Theorem 11.7, hmin is the composition
of the root h of T and the minimal Æ-roots hi of the �i := pr(Ti), where T is
of the form

Æ h

T1 ��
: : : Tl

�� :

Since each Ti has at least one input and less than j, the statement follows
by induction.

If � has more than one input and its Æ-root only has one input, then its
�-root has more than one input (follows from Lemma 11.4). As above we can
prove that each reduced �-representation has the same image as the minimal
�-representation, if the minimal �-root has more than one input.

T has to be of the form

Æ h

S

where S is a �-representation of an element � 2 �Cnj �Cm(j). The minimal
�-root of T has more than one input (otherwise the minimal Æ-root of T has
to have more than one). Thus p(S) = p(Smin), where Smin is the minimal
Æ-representation of �.

Let the minimal Æ-representation Tmin of � be of the form

Æhmin

� v

T1 ��
: : : Tl

��

with l > 1. We know that h is a frame of the minimal Æ-root hmin of �. By
Corollary 9.8 we can �nd an h0 2 �Cn(1) such that hmin = h Æ h0. Thus the
tree

Æ h0
� v

T1 ��
: : : Tl

��
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is a representation of �. Since the interchange condition holds, the image of
this tree coincides with the image of the tree T 0, which is of the form

� v

Æ����
h0
T1

: : : Æ����
h0

Tl

which is a �-representation of �. Hence we now that it image under p coincides
with the one of Smin and hence with the one of S. Since p is a map of operads,
it follows that the images of T and Tmin coincide.

The construction of a reduced from an arbitrary representation in Lemma
10.3 shows that their image under p coincide. Hence we obtain the following

Corollary 11.13. Let T and S be two Æ-representations of � 2
�Cnj �Cm(j) for j < 0. Then p(T ) = p(S) 2 �Cn 
 �Cm(j).

12. The tensor product of little cubes

Now we use the minimal representations, to construct a homeomorphism
between the two operads �Cnj �Cm and �Cn
 �Cm. We then show, that Cn
Cm is
locally �-equivalent to Cn+m. One direction of the homeomorphism, namely
�Cn 
 �Cm ! �Cnj �Cm, is already known. The minimal representations make it
possible to construct an inverse map.

Theorem 12.1. The morphism ' : �Cn 
 �Cm ! �Cnj �Cm is a homeomor-
phism of operads.

Proof. First we construct an inverse map  j : �Cnj �Cm(j)! �Cn
 �Cm(j)
for each j � 0. For j = 0 the map is trivial, since both spaces are. For j > 0
we choose  to be given by  (x) := p(T ) where T 2 F ( �Cn t�

�Cm) is a
Æ-representation of x, and p : F ( �Cn t�

�Cm) ! �Cn 
 �Cm and q : F ( �Cn t�
�Cm)! �Cnj �Cm are the projections. Let T and T 0 be two Æ-representations of
x 2 �Cnj �Cm(j). By Corollary 11.13 this implies p(T ) = p(T 0) and hence  is
well-de�ned for each j.

Since ' Æ p = q holds, we have

 Æ ' Æ p(T ) =  Æ q(T ) = p(T )

for each Æ-representation T . Every element of �Cn
 �CM has a Æ-representation
and this implies  Æ ' = id. On the other hand we have

' Æ  Æ q(T ) = ' Æ p(T ) = q(T ):

which leads to ' Æ  = id. Hence ' and  are bijective maps of set operads.
It remains to prove that  is continuous. By Corollary 10.5 �Cn 
 �Cm(j)

is compact. Since ' is continuous and bijective and �Cnj �Cm(j) is a Hausdor�-
space, ' is a homeomorphism.

Since ' : �Cn 
 �Cm ! �Cnj �Cm maps non-degenerated cubes, i.e. elements
of Cn
Cm, surjectively to non-degenerate cubes, i.e. elements of CnjCm, we
obtain
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Corollary 12.2. ' : Cn 
 Cm ! CnjCm is a homeomorphism of oper-
ads.

Up to this point we just examined tensor products of two little cubes
operads. But a look at the results of the preceding sections reveals, that it is
possible to adapt the proof to the tensor product of three or more little cubes.
In the following we just give a short overview over the necessary changes.

In the combinatorial part, i.e. the construction of the minimal represen-
tations, we just have to use multi-colored trees instead of trees with only
two colors, i.e. we need one color i for each factor Cni in the tensor prod-
uct Cn1 
 � � � 
 Cnl . In addition we have to modify the notion of reduced
representations. They still are not allowed to have monochrome edges and
vertices of valence 0. But they are allowed to have sequences of valence 1
of a length less than l such that each vertex of this sequence has a di�erent
color. As in the bicolored case we can �nd a reduced representation for each
element of �Cn1j : : : j �Cnl � �Cn with n = n1 + � � �+ nl.

With this modi�cation, the results of sections 10 and 11 remain valid.
We just have to take the increased number of colors into account. Basically
this results in more bookkeeping. But we still obtain

Corollary 12.3. The map ' : Cn1 
 � � � 
 Cnl ! Cn1 j : : : jCnl is a
homeomorphism of operads for each l � 2 and each choice n1; : : : ; nl 2 N

In the following we use the suboperad of decomposable cubes Dn(j) �
Cn(j), to obtain our �nal result.

Lemma 12.4. DnjDm(j) is precisely the space Dn+m(j).

Proof. For j = 0; 1 the spaces Dn(j) and Cn(j) coincide. Hence the
equality of DnjDm(j) and Dn+m(j) follows directly from the fact that
CnjCm(j) = Cn+m(j) for j = 0; 1.

An element � of Cn+m(j); j � 2, is decomposable, if and only if there
exists an i 2 f1; : : : ; n +mg and a hyper plane orthogonal to the i-th axis,
which separates � into two non-trivial parts (i.e. parts with at least on input
each). This is equivalent to the existence of � 2 Cn+m(2) of the form

� =

��
(0; : : : ; 0); (1; : : : ; r

i
; : : : ; 1)

�
;
�
(0; : : : ; r

i
; : : : ; 0); (1; : : : ; 1)

��
and �k 2 Dn+m(jk) for k = 1; 2 such that 1 � jk < j and � = � Æ (�1; �2).
Obviously � is an element of CnjCm(2). It even is of one of the forms hjid or
idjv with h 2 Dn(2) = Cn(2) or v 2 Dm(2) = Cm(2), depending whether i
is less or equal to n or not. Hence we see, by induction over the number of
inputs of �, that Dn+m(j) is a subspace of DnjDm(j) for each j.

On the other hand each element of the form hjid with h 2 Dn(j) is
decomposable in Cn+m(j) and the same holds for idjv for v 2 Dm(j). This
implies that each element of DnjDm(j) is a composition of decomposable
elements in Cn+m(j) and hence itself decomposable, what again leads to
DnjDm(j) � Dn+m(j) for each j.

Corollary 12.5. Dn1 j : : : jDnl(j) � Cn1 j : : : jCnl(j) is precisely the
space Dn(j) � Cn(j) for all j; n1; : : : ; nl 2 N; l � 2 and n = n1 + � � �+ nl.
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Lemma 12.6. For each j 2 N; l � 2 and all n1; : : : ; nl 2 N the space
Dn1 j : : : jDnl(j) is a �j-equivariant deformation retract of Cn1 j : : : jCnl(j).

Proof. Since Dn(j) = Cn(j) for all n and j = 0; 1; 2, the statement is
trivial in this cases.

Now let n = n1 + � � �+ nl. Following [Dun88, Lem. 2.2.] there exists an
equivariant deformation retraction h : I � Cn(j)! Cn(j) of Cn(j) to Dn(j)
and a map u : Cn ! I such that

h(s; �) = � Æ
�
�su(�); : : : ; �su(�)

�
;

where �t 2 Cn(1) is of the form

�t =

��
1

2
t; 1�

1

2
t

�n�
:

h maps Cn1 j : : : jCnl(j) into itself, because Cn1 j : : : jCnl(1) = Cn(1). Together
with the equality of Dn1 j : : : jDnl(j) and Dn(j), this implies the statement.

Putting together all the collected pieces, we obtain the diagram

Cn1 
 � � � 
 Cnl(j) ��

'

��

Cn(j)

Dn(j)
��

'
��

Cn1j : : : jCnl(j)


Dn1 j : : : jDnl(j)'

��

for each j � 0. Since all maps, except for the diagonal and the map at the
top, are known to be either homeomorphisms or local �-equivalences, we
obtain

Main Theorem. The operad-map Cn1 
 � � � 
 Cnl ! Cn is a local �-
equivalence for all l � 2; n1; : : : ; nl 2 N and n = n1 + � � �+ nl.



Homotopy Algebras and Lax Operads

In topology it is often useful to weaken algebraic structures up to co-
herent homotopies. The main goal is the description of homotopy invariant
structures, i.e. structures which are preserved if the underlying spaces are
changed up to homotopy equivalence or the underlying maps up to homo-
topy. If the structure can be described by an operad, there are two possible
approaches.

On one hand, one can construct an operad which encodes the homotopy
structure and the homotopies. One example for this are Stashe�'s associahe-
dra (cmp. [Sta63]) which form a non-symmetric operad, whose algebras are
spaces with a homotopy associative multiplication, such that there exist co-
herent homotopies of �nite products, the so-called A1-spaces. In some sense
the little cube operads of Boardman and Vogt (cmp. [BV68]) are other
examples. They encode coherently homotopy commutative and homotopy
associative multiplications.

On the other hand one can weaken the axioms of operads to obtain lax
operads, whose structures are only given up to coherent homotopies. In this
paper we will use the same language to describe both approaches.

Our main tool, Colored operads originate from [BV73] where Boardman
and Vogt introduced colored PROs and PROPs, or categories of operators,
the predecessors of operads. The main idea behind colored operads is the
restriction of the compositions. We apply colors, i.e. elements of an arbitrary
set, to the inputs and output of an operation and only allow them to be
composed, if the color of the output and the corresponding input coincide.
It is immediately clear, that a monochrome operad in this sense is precisely
a classical operad.

As we will see, operads can be described as algebras over a certain operad,
colored by the natural numbers. Furthermore we obtain descriptions of cyclic
and modular operads, as introduced by Getzler, Kapranov and Markl (cmp.
[GK98], [Mar96]), as algebras over certain colored operads. Another notion,
which can be described using colored operads, are topological categories with
discret object sets.

We apply the homotopy theory of PRO(P)s and algebras over them, as
described by Boardman and Vogt in [BV73], to operads and develop a the-
ory of homotopy algebras over colored operads. Using the W -construction
of Boardman and Vogt, we relax the conditions on algebras over operads.
Instead of strictly commutative diagrams, we just require that the compo-
sition of the operad and the evaluation on the algebra are compatible up
to coherent homotopies. As a consequence we also have to relax the axioms
of morphisms between algebras over operads. This leads to the notions of

41
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homotopy algebras over an operad and homotopy homomorphisms between
them.

A homotopy algebra over a given colored operad A is an algebra over a
certain operad WA, which is a kind of co�brant resolution of A. A homotopy
homomorphism between two such homotopy algebras is an algebra over the
co�brant resolution WMorA of the operad MorA, describing morphisms
between A-algebras. We will describe a category MapA whose objects are
the homotopy algebras over A and whose morphismsm are homotopy classes
of homotopy homomorphisms.

By identifying homotopic A-algebra morphisms, we obtain another cat-
egory HomTopA. The homotopy category of A-algebras is the localization
HomTopA[��1] of this category along the class � of topological equivalences,
i.e. the morphisms of A-algebras whose underlying maps are homotopy equiv-
alences. As Boardman and Vogt did in the case of PROPs, we will prove that
the category MapA is equivalent to the homotopy category HomTopA[��1]
of A-algebras.

Using these notions of homotopy algebras and the description of operads
as algebras over a colored operad Op, we can de�ne lax operads as algebras
and lax operad morphisms as homotopy homomorphisms between them. The
universal properties of the W -construction imply several homotopy invari-
ance properties of this notion. For example the structure of a lax operad (and
hence a strict one) can be transferred to any homotopy equivalent family of
spaces.

In the last section we use the description of categories as algebras over
operads, to de�ne topological A1-categories and -functors. Furthermore we
prove that the homotopy category of topological categories is equivalent to
our category of A1-categories.

13. Colored operads

In the following, let (V;
; k) be a closed, symmetric monoidal category
with product 
 and unit object k. We assume that V is complete and co-
complete. Furthermore let C be a non-empty set, the set of colors.

13.1. C-colored collections. Let � be the category of all �nite (or-
dered) sets n = f1; : : : ; ng including the empty set 0, and bijective maps.
Then C� := � # C denotes the category, whose objects are maps � : n! C
and whose morphisms � : (� : n ! C) ! (� : n ! C) are permutations
� : n! n such that � Æ � = �.

Definition 13.1. A C-colored collection (or shorter C-collection) A in
V is a functor A : C � (C�)op ! V. A C-morphism f : A ! B of C-
collections is a natural transformation of functors C � (C�)op. The category
of C-collections and C-morphisms in V will be denoted with collCV.

If C consists of only one element, a C-collection A will be called mono-
chrome.

Each map � : n! C can be interpreted as an n-tupel (�1; : : : ; �n) in C
such that �i = �(i) for each i. Hence A consists of a family

fA(o;�1; : : : ; �n)go;�j2C
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of objects in V, and (iso)morphisms

�� : A(o;�1; : : : ; �n)! A(o;��(1); : : : ; ��(n))

for each � 2 �n such that
(�� )� = � ���:

The �i are the colors of the inputs, and o is the output color. A mor-
phism f : A ! B of C-collections in V consists of a family of morphisms
f(o;�1; : : : ; �n) : A(o;�1; : : : ; �n)! B(o;�1; : : : ; �n) such that

f(o;��(1); : : : ; ��(n))�
� = ��f(o;�1; : : : ; �n):

Since collCV is a category of functors, the following lemma is obvious.

Lemma 13.2. collCV is (co)complete, if V is.

If there exists a map ' : D ! C of sets, we obtain a functor coll' :
collCV ! collDV, with

coll'A(o; a1; : : : ; an) = A('(o);'(a1); : : : ; '(an)):

And for each monoidal functor F : V ! W, there exists a functor collF :
collCV ! collCW, given by

collFA(o; a1; : : : ; an) = FA(o; a1; : : : ; an):

13.2. C-colored operads. Basically a C-colored operad is an operad
with restricted compositions. Similar to a category, we are not allowed to
compose any two operations. Instead we have to take the colors of outputs
and inputs into account.

For easy notation, we introduce the following compositions on the sym-
metric groups. For � 2 �n; � 2 �m and 1 � l � n the permutation
� Æl � 2 �n+m�1 is given by

� Æl � (i) =

8>>>>><
>>>>>:

�(i) 1 � i < l; �(i) < �(l)

�(i) +m� 1 1 � i < l; �(i) > �(l)

�(l) + � (i� l + 1)� 1 l � i < l+m

�(i�m+ 1) l +m � i < n +m;�(i) < �(l)

�(i�m+ 1) +m� 1 l +m � i < n +m;�(i) > �(l):

In fact this composition is exactly the composition of the (pseudo) operad
of monoids. Hence the Æi compositions, de�ned above, are associative. This
means

(� Æi � ) Æj � =

8><
>:
(� Æj �) Æi+l�1 � 1 � j � i� 1

� Æi (� Æj�i+1 �) i � j � i+m� 1

(� Æj�m+1 �) Æi � i+m � j � n+m� 1

for � 2 �n; � 2 �m; � 2 �l and 1 � i � n; 1 � j � n +m� 1. Furthermore
we have

((�� ) Æi (��)) = (� Æi �)(� Æ�(i) �):

For � 2 Cn and � 2 Cm, we de�ne � Æi � 2 Cn+m�1 to be the tupel

� Æi � = (�1; : : : ; �i�1; �1; : : : ; �m; �i+1; : : : ; �n);
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where �i is the i-th coordinate of � and �j the j-th of �. For � 2 �n the
tupel �� will be given by

�� = (��(1); : : : ; ��(n)):

Definition 13.3. A C-operad A in V consists of a C-collection A in V,
and compositions

� Æi � : A(o;�) 
A(�i;�)! A(o;� Æi �);

for all n;m 2 N; 1 � i � n and o 2 C;� 2 Cn; � 2 Cm such that the
following axioms hold.

1. Associativity. For � 2 Cn; � 2 Cm and  2 C l, the following holds
on A(o;�)
A(�j;�)
A((� Æj �)i; ).

Æi(Æj 
 id) =

8><
>:
Æj+l�1(Æi 
 id)(id
 � ) 1 � i < j � n

Æj(id
 Æi�j+1) j � i � j +m� 1

Æj(Æi�n+1 
 id)(id
 � ) j +m � i;

where � is the commuting isomorphism of V.
2. Equivariance. On A(o;�)
A(�i;�) the following holds for any � 2

�n; � 2 �m and 1 � i � n

Æi(�
� 
 ��) = (� Æi �)

� Æ�(i) :

By comparison with the axioms in [Mar96] we see that a monochrome
Operad in our sense is precisely a pseudo-operad in the sense of Markl. In this
case we often write A(n) for the object A(�;�); � 2 f�gn, of the underlying
collection.

A morphism f : A ! B of C-operads is a morphism of C-collections,
which respects the compositions. Therefore it is a collection of maps f(o;�) :
A(o;�) ! B(o;�) for o 2 C and � 2 Cn such that for any 1 � i � n and
� 2 Cm

A(o;�)
A(�i;�)
Æi ��

f
f
��

A(o;� Æi �)

f

��
B(o;�)
B(�i;�) Æi

�� B(o;� Æi �)

and for each � 2 �n

A(o;�)
�� ��

f

��

A(o;��)

f

��
B(o;�)

��
�� B(o;��):

Since these conditions are compatible with the composition of morphisms,
the C-operads in V and the morphisms between them, form a category
operCV. As for the collections, we obtain functors oper' : operCV ! operDV
for each map ' : D ! C. But only a monoidal functor F : V ! W induces
a functor operF : operCV ! operCW.
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Notation 13.4. Let A be a C-operad. The morphism

� Æ � : A(o;�)

nO
i=1

A(�i;�
i)! A(o;�);

where � 2 Cm;m = m1 + � � � +mn; is the tupel obtained by combining the
�i 2 Cmi, is given by the iterative composition

(� Æm1+���+mn�1+1 �) Æ � � � Æ (� Æ1 �
 id
 � � � 
 id); i:e:

x Æ (y1; : : : ; yn) = ((x Æ1 y1) Æm1+1 y2) Æm1+m2+1 y3 : : : :

Example 13.5. The Endomorphism C-operad. Since V is a closed
symmetric monoidal category, there exists an internal hom-functor Hom :
Vop �V ! V together with a natural adjunction isomorphism

V [X 
 Y;Z] ' V [X;Hom(Y;Z)]

for all objects X;Y;Z in V, and a composition

Hom(X;Y )
Hom(Y;Z)! Hom(X;Z):

Since C can be interpreted as a discrete category, there exists a functor
category VC . For a functor X : C ! V and � 2 Cn let

X(�) :=

nO
j=1

X(�j)

if � 2 Cn with n > 0 and X(�) = k if � 2 C0. Each permutation � 2 �n
induces an isomorphism X(�) : X(�) ! X(��), by permuting the objects
in the product. This de�nes a functor X : (C�)op ! V.

Applying the internal hom-functor of V, we obtain a C-collectionEndCX
with

EndCX(o;�) := Hom (X(�);X(o)) :

With the natural adjunction isomorphisms and the composition, we can de-
�ne morphisms

� Æi � : EndCX(o;�) 
EndCX(�i;�)! EndCX(o;� Æi �)

such that EndCX is a C-operad, the Endomorphism operad of X. The as-
sociativity and equivariance of the compositions follow directly from the
associativity of the composition in V and the symmetry of 
.

Notation 13.6. If X is a C�f0; : : : ; ng-family in V, then the C-family
Xi with 0 � i � n is given by Xi(o) = X(o; i). The endomorphism operad
EndC�f0;:::;ng(X) will also be denoted with EndC(X0; : : : ;Xn).

13.3. The non-symmetric case. As in the monochrome case, we can
drop the equivariance axioms from the de�nition of C-collections and C-
operads. This leads us to the non-symmetric C-collections and -operads.

Definition 13.7. A non-symmetric C-collection A in V is a functor A :
C � (CN)op ! V, where CN is the discrete category of maps from �nite sets
n = f1; : : : ; ng, including the empty set 0, to C (i.e. its objects are those of
C�).
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A non-symmetric C-operad in V is a non-symmetric C-collection, to-
gether with compositions

� Æl � : A(o;�) 
A(�(l);�)! A(o;� Æl �);

for each � : n! C; � :m! C and l 2 n such that the associativity axiom
of De�nition 13.3 holds.

Exactly as in the symmetric case, we have the categories n� collCV and
n � operCV of non-symmetric C-collections and -operads. Obviously there
exists a forgetful functor UC : n� operCV ! n� collCV.

Furthermore we get functors U coll
C : collCV ! n � collCV and Uoper

C :
operCV ! n � operCV by forgetting the equivariance. There exist functors
ScollC : n� collCV ! collCV and SoperC : n� operCV ! operCV, given by

SC(A)(o;�) =
M
�2�n

A(o;��);

for o 2 C;� 2 Cn and � 2 �n. For � 2 �n the morphism �� : SCA(o;�) !
SCA(o;��) is given on the Summand A(o;�� ) by

(��1�� ) : A(o;�� )! A(o;��� )! SCA(o;��):

If A is a non-symmetric operad, the composition

� Æi � : SCA(o;�)
 SC(�i;�)! SCA(o;� Æi �)

of the symmetrization SCA is induced by the morphisms

A(o;��)
A(�i;�� )
Æ
��1(i)�� A(o;�� Æ��1 �� ):

ScollC is left adjoint to U coll
C and SoperC to Uoper

C .

13.4. The unitary case. Until now, we have not used units. In this
section we will give a description, of how to include them into the concept
of colored-operads. The unit k of V plays an important role in this setting.
Furthermore V contains an initial object ;, because it is cocomplete. The
unit C-collection IC is given by

IC(o;�) =

(
k if � = (o) 2 C1

; otherwise:

IC is a C-operad with trivial compositions.

Definition 13.8. A C-operad A is called unitary, if there exists a mor-
phism u : IC ! A of C-operads such that for each � 2 Cn; o 2 C and
1 � i � n, the following diagrams commute.

k 
A(o;�)
'

��������������

u(o;o)
id
��

A(o; o)
A(o;�) Æ1
�� A(o;�)

A(o;�)
 k

'
��������������

id
u(�i;�i)
��

A(o;�)
A(�i;�i) Æi
�� A(o;�)

The main di�erence to the monochrome case lies in the fact, that a uni-
tary C-operad has an identity for each color c 2 C.
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Example 13.9. Let D be a V-enriched category. Then we can de�ne a
unitary obD-colored operad in V, by

D(o;�) =

(
D(o; �) if o; � 2 obD

; otherwise.

for each object o in D and each � 2 obDn. The operad-compositions are
given by the compositions in the category D. The morphism IobD ! D is
given by the identities.

Example 13.10. If X is an object of VC, then the endomorphism C-
operad EndCX is unitary. The morphism u : IC ! EndCX is given by the
morphisms k ! V(X(o);X(o)), which is adjoint to the identity of X(o).

Remark 13.11. Our de�nition of colored operads does not correspond
to the \usual" de�nition of operads as monoids in the monoidal category of
collections. Instead we use Markl's pseudo-operads. But the usual operads
are unitary pseudo-operads.

13.5. Algebras over a C-operad.

Definition 13.12. Let A be a C-operad. An A-algebra (or an algebra
over A) is a family X = fX(c)gc2C of objects in V together with morphisms
ev : A(o;�)
X(�)! X(o) such that the diagram

A(o;�)
A(�i;�)
X(� Æi �) ��

Æi
id
��

A(o;�)
X(�)

ev

��
A(o; ; � Æi �)
X(� Æi �) ev

�� X(o);

where the top row is basically the evaluation

A(�i;�)
X(�)! X(�i);

and the diagram

A(o;�)
X(�)
ev ��

��
��
��

X(o)

A(o;��)
X(��)

ev

��������������

commute for all � and � in C�, and 1 � i � n.
A morphism f : X ! Y of A-algebras is a family f = ff(c) : X(c) !

Y (c)gc2C such that the following diagram commutes for all o 2 C and � 2
Cn.

A(o;�)
X(�)
ev ��

id
f(�)
��

X(o)

f(o)
��

A(o;�) 
 Y (�)
ev �� Y (o)

The category of algebras over A and morphisms between them is called
VA.

By checking the axioms and de�nitions and using the adjunction in the
closed monoidal category V, we get the following
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Proposition 13.13. If A is a C-operad, then X 2 VC is an A-algebra
if and only if there exists a morphism A! EndCX of C-operads.

Definition 13.14. A unitary algebra X over a unitary C-operad A, is
an A-algebra such that the following diagram commutes for each o 2 C.

k 
X(o)

u(o;o)
id
��

'


�����������

A(o; o)
X(o)
ev �� X(o)

Remark 13.15. We do not distinguish between non-symmetric, symmet-
ric, unitary and non-unitary algebras, since we always assume that an algebra
X over a C-operad A has the same attributes as A. Thus if A is unitary,
then X is unitary.

Example 13.16. A unitary algebra X of a unitary C-operad A, is an
A-algebra such that the C-operad-morphism A! EndCX is unitary.

SinceC can be regarded as a discrete category, we have a functor category
VC, whose objects are families X = fX(c)gc2C of objects in V and whose
morphisms from X to Y are families ff(c) : X(c) ! Y (c)gc2C . If A is a
C-operad, we have a functor U : VA ! VC, which maps an A-algebra to its
underlying C-family.

Example 13.17. Let C be an arbitrary set of colors. Then there exists
a C-operad OC in Sets with

OC(o;�) =

(
� if � 2 C and �1 = o

; otherwise

The compositions are trivial.
An algebra over this operad is a C-family and morphisms between alge-

bras over OC are maps of C-families.
We often identify C and the operad OC .

We are going to describe the free algebra of a C-operad A generated by
a C-family X 2 VC. We only describe the symmetric construction.

There exists a functor X : C�;op ! V, with X(�) =
Nn

i=1X(�i) and
�� : X(�) ! X(��), which is given by the permutation of the coordinates.
Together with the functor A : C � C�;op ! V, we get a functor �AX :
C � C�;op ! V, given by

�AX(o;�) = A(o;�)
X(�):

Now let AX be the colimit of this functor over C�;op,

AX = colimV�;op �AX:

Therefore AX is a C-family. We can de�ne morphisms ev : A(o;�) 

AX(�)! AX(o), which are induced by the compositions

A(o;�)

nO
i=1

A(�i;�
i)
X(�i)! A(o;� Æ (�1; : : : ; �n))


nO
i=1

X(�i);
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where �j 2 Cnj and

� Æ (�1; : : : ; �n) = (: : : (� Æn �
n) Æn�1 : : : ) Æ1 �1:

The associativity of the compositions ensures, that these evaluations are
compatible with the compositions of A. The equivariance of the compositions
of A shows the equivariance of the evaluations. Hence AX is an A-algebra.

Now let f : X ! Y be a morphism of families. Af : AX ! AY ,
induced by id 
 f(�) for each � 2 Cn, is a morphism of A-algebras and
compatible with the composition of C-family morphisms. Hence we have a
functor F : VC ! VA with F (X) = AX and F (f) = Af .

It is obvious that AX is a unitary algebra, if A is a unitary C-operad. In
this case we even get the following

Lemma 13.18. Let A be a unitary C-operad. Then F : VC ! VA is left
adjoint to U : VA ! VC.

Proof. Let X be an arbitrary C-family. �X : X ! AX is the natural
C-family morphism given by

X(o) ' k 
X(o)! A(o; o) 
X(o)! AX(o):

For an A-algebra Y the morphism "Y (o) : AY (o)! Y (o) is induced by the
evaluation

ev : A(o;�)
 Y (�)! Y (o):

These form a natural morphism "Y : AY ! Y of A-algebras.
The morphism "Y �Y : Y ! AY ! Y is induced by the top row in the

diagram

Y (o)
' �� k 
 Y (o)

'

��

u(o)
id�� A(o;O) 
 Y (o)
ev �� Y (o);

and therefore the identity.
"AXA�X is induced by the top row and the right column of the diagram

A(o;�) 
X(�)
' �� A(o;�) 


Nn

i=1(k 
X(�i))

��
A(o;�)


Nn

i=1(A(�i;�i)
X(�i))

��
A(o;�)


Nn

i=1X(�i)

and hence the identity.

If ' : D ! C is a map of sets, A is a C-operad and X is an A-algebra,
then we obtain a 'A-algebra 'X with

'X(o;�) = X('(o);'�):

For each morphism f : X ! Y of A-algebras, we obtain a morphism 'f :
'X ! 'Y of 'A-algebras, which is given by

'f(o;�) = f('(o);'�):
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Since this de�nition is compatible with the composition, we obtain a functor
' : VA ! V'A.

Example 13.19. Let C be a set of colors and A a C-operad. For each
subset D of C, we have an inclusion i : D ,! C and a D-operad B = iA
given by B(o;�) = A(o;�) for o 2 D and � 2 Dn. The compositions are
precisely the compositions of A. We call B the suboperad of A given by the
colors in D. In the same way we can restrict morphisms of C-operads to
morphisms of suboperads given by D.

If X is an A-algebra, we also have a B-algebra Y = iX, which is given by
Y (d) = X(d). The evaluations are the evaluations of X. We call Y the sub-
algebra of X given by the colors in D. And again we can restrict morphisms
of A-algebras to morphisms of subalgebras given by D.

13.6. Homogeneous families and multiplicative maps. In the fol-
lowing, we will often use operads whose colors consist of two coordinates, i.e.
operads whose sets of colors are of the form C�L. we call the C-component
of a color the primary and the L component the secondary color. Most times
we will write the color (o; l) 2 C � L as ol. If � is a tupel in Cn the symbol
�l for l 2 L will denote the tupel (�l1; : : : ; �

l
n) 2 (C � L)n.

As we will see, we often can restrict our attention to operations whose
inputs all have the same secondary color. Operations of this type are called
homogeneous. More precisely we de�ne

Definition 13.20. (cmp. section II.7 of [BV73]) Let A be a C � L-
collection. The homogeneous collection HLA of A consists of all spaces
A(ol;�l

0
) with l; l0 2 L; o 2 C and � 2 Cn for some n 2 N. If A is an

operad, then HLA is called the homogeneous operad of A.

Obviously the homogeneous operad of an operad is not a suboperad,
since the composition of two homogeneous operations, does not need to be
homogeneous. But nonetheless it makes sense to consider the composition.

Proposition 13.21. Let A be a C � L-operad. Then the C-families Al

with Al(o;�) = A(ol;�l) are C-operads.

Proof. Obviously each Al is a C-family. The compositions � Æi � are
induced by the compositions

A(ol;�l)
A(�li;�
l)! A(ol; (� Æi �)

l):

Definition 13.22. Let A and B be C � L-operads. A morphism f :
HLA ! HLB of families is called multiplicative, if it respects the composi-
tions, i.e. the following diagram commutes for all choices of colors.

A(ol1;�l2) 

Nn

i=1A(�
l2
i ;�

i;l3)
f

ni=1f��

Æ
��

B(ol1;�l2)

Nn

i=1B(�
l2
i ;�

i;l3)

Æ
��

A(ol1; (�1; : : : ; �n)l3)
f

�� B(ol1; (�1; : : : ; �n)l3)
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In fact in the unitary setting the homogeneous families are a generaliza-
tion of operads. Each C-colored operad can be viewed as the homogeneous
family of an C��-colored operad (namely itself). A multiplicative morphism
between two such (unitary) homogeneous families is precisely a morphism of
(unitary) operads.

Remark 13.23. Boardman and Vogt did not require that homogeneous
PROPs are parts of complete PROPs. But since our examples all will be of
this type, we restrict to our notion.

14. Colored trees

14.1. The unlabelled colored trees. An unlabelled C-tree is a �nite,
oriented, planar tree T , drawn with the root at the bottom, whose edges
(including the inputs and the outputs) have colors in C.

For planar trees, we have a natural order on the inputs, vertices and edges
of a tree, given by left traversion of the tree. Thus the inputs are ordered
from left to right. For the edges, the order is described by the following facts:

1. The output of a vertex is bigger than all inputs of this vertex.
2. The inputs of a vertex are ordered clockwise, starting with the input

next to the output.

A similar description describes the order of the vertices.

1. The children of a vertex are smaller than the vertex itself.
2. The children of a vertex are ordered clockwise, starting with the child

next to the output.

We call a vertex w of a tree a child of a vertex v, if the output of w is an
input of v. v is called the parent of w.

Example 14.1.
i1 i2

��������v1

e1��

��
e2��

��

i3 i4

��������v2

e3��

��
e4 e5��

��

e6

For this tree we have the order i1 < i2 < i3 < i4 on its inputs, e1 < e2 <
e3 < e4 < e5 < e6 on its edges and v1 < v2 on its vertices.

For o 2 C and � 2 Cn let n � TreeC(o;�) be the set of C-trees with n
inputs, output color o and color �i on the i-th input. Let T 2 n�TreeC(o;�)
and S 2 n�TreeC(�i;�) be C-trees. The Æi-composition in n�TreeC is given
by the C-tree T ÆiS, whose underlying uncolored tree is obtained by grafting
the output of S along the i-th input of T , and the edges are colored according
to T and S. The coloring is well-de�ned, since the only edge, which appears
in both trees is the output of S, resp. the i-th input of T , and both are
assumed to have the same color. Since the grafting of trees is associative,
the Æi-compositions in n � TreeC are associative. Therefore n � TreeC is a
C-operad in the category FSets of �nite sets.
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For each set E � edges(T ) of internal edges of a planar, �nite tree T ,
we can de�ne a tree T=E, obtained from T , by shrinking the internal edges
in E. For uncolored trees and E = feg this operation is described by the
following picture.

T = Æ
Æ					

��� ��� Æ
e








��� ���

T =e = Æ
Æ					

��� ��� ��� ���

We have edges(T=E) = edges(T ) n E. In colored trees the colors of the
shrunken edges are simply dropped.

We write T > S if there exists a non-empty set E � edges(T ) such that
S = T=E. This induces a partial order on n � TreeC(o;�) for each o 2 C
and � 2 Cn. Obviously the minimal element of n � TreeC(0;�) is

Æ

o

�1 						

						
�2���

���� : : :
�n�1
���

���
�n















The partial order allows us to regard n� TreeC as a non-symmetric operad
in the category of categories.

14.2. Labelled colored trees. To obtain a symmetric C-operad, we
introduce a labelling of the inputs. A labelled C-tree, is a pair (T; � ), with
T a C-tree with n inputs and a bijective map � : n ! inputs(T ), called
the labelling of the tree. For n > 0 the map � assigns to each label in
n = f1; : : : ; ng a unique input of T . Since we have a natural order on the
inputs, we can assume � to be a permutation.

For o 2 C and � 2 Cn let TreeC(o;�) be the set of all labelled C-trees
(T; � ) such that �i is the color of the input with label i. Therefore TreeC(o;�)
is the set of all pairs (T; � ) with � 2 �n and T 2 n� TreeC(o;���1).

For each permutation � 2 �n, we have a map �� : TreeC(o;�) !
TreeC(o;��), given by (T; � ) 7! (T; ��). Obviously we have ���� = (��)�

and hence a C-collection TreeC of labelled C-trees.
The grafting of trees along the input with label i induces compositions

Æi : TreeC(o;�) � TreeC(�i;�)! TreeC(o;� Æi �);

given by (T; � ) Æi (S; �) = (T Æ�(i) S; � Æi �). These are associative and equi-
variant and hence de�ne a C-operad structure on TreeC in FSets.

As in the unlabelled case, we can regard TreeC(o;�) as a partial ordered
set. We write (T; � ) > (S; � ), if T > S.

14.3. Shape orbits. For each unlabelled C-tree T 2 n�Tree(o;�) with
n inputs, we de�ne the set �(T ) by

�(T ) =
O

v2ver(T )
�jvj;
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where jvj is the number of inputs of the vertex v. Each element of �(T )
can be interpreted as a vertex-labelling of the tree T , where the label of
a vertex is a permutation of its inputs. Using the non-symmetric pseudo-
operad structure on the permutations, we can evaluate this labelled tree and
get a permutation in �n. Hence we get an evaluation ev : �(T ) ! �n for
each tree T 2 n � TreeC(o;�) with o 2 C and � 2 Cn.

For � 2 �(T ) we de�ne the unlabelled C-tree T� recursively by the
following equations.

� For � 2 �n we have0
BBBB@ Æ

o

�1���

����
: : : �n

���

����
1
CCCCA� = Æ

o

��(1)
���

��� : : :
��(n)
���

���

� For � = (�;�1; : : : ; �n) with � 2 �n; �j 2 �(Tj) we have0
BBBBBBBB@

Æ

o

T1

�1�����

���
: : :

Tn

�n
�����

���

1
CCCCCCCCA
� = Æ

o

T�(1)��(1)

��(1)
����

��
: : :

T�(1)��(1)

��(n)
����

��

Hence the coordinate of �(T ) which corresponds to the vertex v, permutes
the subtrees on its inputs. It is clear that �(T ) and �(T�) are isomorphic
(we don't change the valence of vertices, we just change the order). Therefore
it is possible to compose an element � of �(T ) with an element � of �(T�).
The composition �� 2 �(T ) is given by the coordinate wise composition,
after reordering � accordingly.

If T is an arbitrary unlabelled C-tree, then its shape orbit �T is the set of
all trees, which are obtained from T , by an iterated application of elements
of �(T ). Therefore �T is a set with a right �(T )-action. Often we will write
�(�T ) for �(T ).

The isotropy group Sym(T ) � �(T ) of T , i.e. the subgroup which consists
of all elements � such that T� = T , is called symmetry group of the shape
T .

The �(T )-action on the unlabelled C-trees can be extended in a natural
way to the labelled trees. We just permute the labels together with the
subtrees. Formally this can be expressed by the equation

(T; � )� = (T�; ��1� ) := (T�; ev(�)�1� ):

By taking a close look on the action of �(T ), we see that for each tree
(T; � ) 2 TreeC(o;�) and each � 2 �(T ), the tree (T; � )� = (T�; ��1� ) is
an element of TreeC(o;�), too. This fact can be used to de�ne a category
TreeC(o;�) for each o 2 C and � 2 Cn. The objects are the labelled C-trees
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(T; � ). The morphisms �� : (T; � ) ! (T; � )� are the elements of �(T ), and
the composition is given by ���� = (��)�.

15. Topological C-operads

We are mainly interested in topological C-operads. Therefore we restrict
our attention to the case V = Top, where Top is the category of compact-
generated topological spaces in the sense of [Vog71].

15.1. The free topological C-operad. Let A be a topological C-
collection for an arbitrary non-empty set C of colors. For o 2 C and � 2 Cn

let �FCA(o;�) be the space

�FCA(o;�) =
M

(T;�)2TreeC(o;�)
A(T; � )

where
A(T; � ) = A(T ) =

O
v2ver(T )

A(out(v); in(v)):

Here out(v) is the output color of the vertex v and in(v) is the tuple � 2 C jvj,
whose i-th coordinate is the color of the i-th input of v. Its elements can be
interpreted as C-colored trees, whose inputs are numbered and whose vertices
are labeled by elements in the acorresponding space A(out(v); in(v)) of A.

The space FCA(o;�) of the free C-operad generated by A is the quotient
of �FCA(o;�) with the following relation

S

Æ

bi

x

T1

a1 ����

��
: : :

Tn

an
����

��

=

S

Æ

bi

��(x)

T�(1)

a�(1) 						

			
: : :

T�(n)

a�(n)













The composition T ÆiS of two such trees is given by grafting the output of
S along the input with label i of T . The map �� : FCA(o;�)! FCA(o;��)
for � 2 �n is given by relabelling the inputs of the tree.

Remark 15.1. If A is a non-symmetric C-collection, we have no mor-
phisms �� : A(o;�)! A(o;��). Therefore the free non-symmetric C-operad
of A consists of the spaces �FCA(o;�).

Remark 15.2. If A is a unitary C-collection, the free unitary C-operad
FCA is obtained from the non-unitary version by the application of an ad-
ditional relation, namely by

S

Æ

a

id

T

a

=

S

T

a :
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A morphism f : A! B of C-collections induces a map

f(T; � ) =
O

v2ver(T )
f(out(v); in(v)) : A(T; � )! B(T; � )

for each labelled C-tree (T; � ) and thus a map

�FCf(o;�) : �FCA(o;�)! �FCB(o;�):

Since f is equivariant, �FCf respects the relation on FCA and FCB and hence
induces a map FCf : FCA! FCB of C-operads. The de�nition of this map is
compatible with the composition of morphisms of C-collections and enables
us to de�ne a functor FC : collCTop! operCTop.

We still have to show, that FC is left adjoint to the forgetful functor
UC : operCTop ! collCTop. Since the tree To;� with one vertex, output
color o 2 C and input colors � 2 Cn is an element of TreeC(o;�), and since
A(To;�; � ) = A(o;�), we have a map �(o;�) : A(o;�) ! FCA(o;�). The
equality

Æ

o

x�

��1(1)

��(1)
���

��
: : : ��1(n)

��(n)
���

��

= Æ

o

x

(�� )�1(1)

�1����

���
: : : (�� )�1(n)

�n
����

���

in �FCA implies the commutativity of the diagram

A(o;�)
�(o;�)

��

��

��

FCA(o;�)

��

��
A(o;��)

�(o;��)
�� FCA(o;��)

for each permutation � 2 �n. In addition the diagram

A(o;�)
�A ��

f

��

FCA(o;�)

FCf

��
B(o;�)

�B
�� FCB(o;�)

commutes. Therefore the �A induce a natural transformation � : id! UCFC
of endofunctors of collCTop.

Now let A be a topological C-operad. We can de�ne a continuous map
�"A(o;�) : �FCA(o;�)! A(o;�), by composing the vertex labels and applying
the labelling of the tree to the result. The equivariance of the composition
in A ensures, that �"A respects the relations on FCA. Therefore we obtain a
continuous map "A : FCUCA! A of C-operads. If f : A! B is a morphism



56 HOMOTOPY ALGEBRAS AND LAX OPERADS

of C-operads the following diagram commutes.

FCUCA(o;�)
FCUCf��

"A

��

FCUCB(o;�)

"B

��
A(o;�)

f
�� B(o;�)

Thus they form a natural transformation " : FCUC ! id of endofunctors of
operCTop.

By de�nition the composition "A�A is the identity for any C-operad A.
If B is a C-collection, the map "FCBF�B : FCB ! FCUCFCB ! FCB is
the identity, too. FC�B maps the vertex label in B of a tree in FCB to the
corresponding vertex labels in FCB. Then "FCB composes these label-trees to
form a tree in FCB, which is exactly the original tree. Thus FC is left-adjoint
to UC .

Remark 15.3. In all settings (non-symmetric, symmetric, unitary, non-
unitary) we will denote the free C-operad of a C-collection by FCA. If the
context is not clear, we will use the appropriate adjectives.

Remark 15.4. The following diagram of forgetful functors commutes.
Hence the two left adjoints FCSC and SCFC of the two paths in the diagram
are isomorphic. Here the SC are the symmetrization functors, which were
introduced in section 13.3.

operCV

��

�� n � operCV

��
collCV �� n � collCV

Let �G be a non-symmetric C-collection and G = SCG. Since FCG is the
free symmetric C-operad generated by G = SC �G, we can assume that it
is the symmetrization SCFC �G of the free non-symmetric C-operad FC �G.
Translated into the language of labelled trees, this implies that it does not
matter if we apply the labelling to the inputs of the vertices of the trees,
or to the inputs of the tree itself. Obviously the second choice is easier to
handle.

15.2. Generators and relations. All important examples of C-oper-
ads we are going to use will be given in terms of generators and relations
between them. In this section we will give a precise de�nition of this termi-
nology in the topological case. In algebraic settings a similar thing can be
done in a more natural way.

Definition 15.5. Let A be a (topological) C-operad. An ideal I of A is
a C-collection such that for each o 2 C;� 2 Cn and � 2 Cm the following
holds.

1. I(o;�) � A(o;�)�A(o;�)
2. (x; x) 2 I(o;�) for each x 2 A(o;�)
3. xÆiy := (x1Æiy; x2Æiy) 2 I(o;�Æi�) for each x = (x1; x2) 2 I(o;�); y 2
A(�i;�) and 1 � i � n
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4. z Æi x := (z Æi x1; z Æi x2) 2 I(o;� Æi �) for each z 2 A(o;�); x =
(x1; x2) 2 I(�i;�) and 1 � i � n

5. ��(x) := (��(x1); ��(x2)) 2 I(o;��) for each x = (x1; x2) 2 I(o;�)
and � 2 �n

Remark 15.6. For x = (x1; x2) 2 I(o;�) and y = (y1; y2) 2 I(�i;�), the
pair x Æi y := (x1 Æi y1; x2 Æi y2) obviously is an element of I(o;� Æi �). Thus
we have compositions

� Æi � : I(o;�)� I(�i;�)! I(o;� Æi �):

Lemma 15.7. Let A be a C-operad and I an ideal of A. Then the spaces
A=I(o;�), which are the coequalizers of the diagram

I(o;�)
��
�� A(o;�) �� A=I(o;�);

where the maps on the left are the projections onto the �rst and second co-
ordinate, form a C-operad A=I. The maps A(o;�)! A=I(o;�) form a map
p : A! A=I of C-operads.

Proof. For each permutation � 2 �n and o 2 C;� 2 Cn, the following
diagram commutes.

I(o;�)
��
��

��

��

A(o;�) ��

��

��

A=I(o;�)

��

��
I(o;��)

��
�� A(o;��) �� A=I(o;��)

The induced maps �� : A=I(o;�)! A=I(o;��) are the maps of the under-
lying C-collection.

Now let � 2 Cm and 1 � i � n, Then the diagram

I(o;�)� I(�i;�)
��
��

Æi
��

A(o;�) �A(�i;�) ��

Æi
��

A=I(o;�)�A=I(�i;�)

Æi
��

I(o;� Æi �)
��
�� A(o;� Æi �) �� A=I(o;� Æi �)

commutes and induces a map Æi : A=I(o;�) � A(�i;�) ! A=I(o;� Æi �).
These maps are the compositions of the C-operad A=I. The associativity
and equivariance follow directly from the properties of the compositions on
A. The de�nition of the compositions and the maps �� imply that the maps
A(o;�)! A=I(o;�) form a map p : A! A=I of C-operads.

If A is unitary then A=I is it, too. The unit morphism u : IC ! A=I is
given by the composition IC ! A! A=I.

Corollary 15.8. Let f : A! B be a map of C-operads and I an ideal
of A such that

I
p1 ��

p2

��

A

f

��
A

f

�� B
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commutes. Then there exists a uniquely determined map �f : A=I ! B of
C-operads such that

A
p ��

f ���������� A=I

�f
��
B:

Proof. Obviously there exist uniquely determined maps

�f (o;�) : A=I(o;�)! B(o;�)

for each o 2 C and � 2 Cn. The equivariance of these maps is a result
of the fact that the composition �� �f : A=I(o;�) ! B(o;��) is induced by
��f = f��. The second term in this equation induces �f��. The compatibility
of �f with the compositions follows in a similar fashion.

Lemma 15.9. Let A be a C-operad and J a family of spaces

J = fJ(o;�) � A(o;�)�A(o;�)go2C;�2Cn:

Let (J)(o;�) be the space, which contains all elements of A(o;�) �A(o;�),
which are of one of the following forms.

1. (x; x) for all x 2 A(o;�),
2. ��(x) = (��(x1); ��(x2)) for x 2 J(o;�) and � 2 �n,
3. ��(y Æi x) 2 A(o;�)�A(o;�) for y 2 A;x 2 J and � 2 �n,
4. ��(x Æj y) 2 A(o;�)�A(o;�) for y 2 A;x 2 J and � 2 �n.
5. ��(z Æi (x Æj y)) 2 A(o;�)�A(o;�) for x 2 J; z; y 2 A and � 2 �n.

These spaces form an ideal (J) of A. This ideal is called the ideal generated
by J in A.

If I is an ideal of A such that J(o;�) � I(o;�) for each o 2 C and
� 2 Cn, then we have (J)(o;�) � I(o;�).

Proof. �� : (J)(o;�)! (J)(o;��) is given by

x = (x1; x2) 7! (��(x1); ��(x2)):

Therefore (J) is a C-collection. The fact that (J) is an ideal of A follows
directly from the de�nition.

Since I is an ideal, each element ��(z Æi (x Æj y)) of (J) is also an element
of I. This proves the second statement.

Remark 15.10. In the non-symmetric case we can drop the application
of �� in the de�nition of (J).

Ideals of C-operads and the notion of an ideal generated by a family
of subspaces of A � A allow us to de�ne C-operads using the notions of
generators and relations. The generators are the elements of a C-collection
G and the relations are pairs (x1; x2) of objects in FCG(o;�), which form a
family R = fR(o;�)go2C;�2Cn of spaces. The C-operad generated by G with
relations R is the C-operad FCG=(R).

Lemma 15.11. Let A and B be C-operads such that A is generated by
the collection G with relations R, that is A = FCG=(R). If f : G ! B is a
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morphism of C-collections such that for all o 2 C and � 2 Cn and each pair
x = (x1; x2) 2 R(o;�) the equation

�f(x1) = �f (x2); where �f : FCG! B is induced by f;

holds, then there exists a uniquely determined map F : A! B of C-operads
such that

FCG ��

�f ���������� A

F

��
B

commutes.

Proof. It suÆces to show, that the diagram

(R)
p1 ��

p2

��

FCG

�f

��
FCG �f

�� B

commutes. Hence we have to show that (in the worst case) the equation

�f��(z Æi (x1 Æj y)) = �f��(z Æi (x2 Æj y))

holds for each pair x = (x1; x2) 2 R;x; y 2 FCG and each permutation �.
But this is true, since �f is a morphism of C-operads.

Before we proceed to the examples, we observe, that in fact any C-operad
can be described by generators and relations. But unfortunately this descrip-
tion is trivial.

Lemma 15.12. Let A be a C-operad. Then A is homeomorphic to
FCA=(R), where R is the family of spaces given by

R(o;�) =

8>>>><
>>>>:

0
BBBB@ Æ x

���

Æ
i

y

��� ���

���
; x Æi y

1
CCCCA : x 2 A(o;�); y 2 A(�i; ); � Æi  = �

9>>>>=
>>>>;
:

Proof. Since the square

(R)
p1 ��

p2

��

FCA

"A

��
FCA "A

�� A

commutes, we have a uniquely determined map ' : FCA=(R) ! A of C-
operads such that

FCA
p ��

"A �������������
FCA=(R)

'

��
A:
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In the opposite direction we have the composition  = �Ap : A ! FCA !
FCA=(R).

Since "A�A = id the composition ' is the identity. The other composi-
tion  ' is the top row in the following commuting diagram.

FCA=(R)
' �� A

�A �� FCA
p �� FCA=(R)

FCA

p

��

A

�A

��

�����������������

�����������������

�A
�� FCA

p

��

By the universal property of FCA the map  'p : FCA! FCA=(R) is induced
by the map p�A : A ! FCA=(R) and hence we have  'p = p. Because of
the universal property of the coequalizer this induces  ' = id.

15.3. The free algebra. The free A-algebra generated by a C-family
X, can be described with cherry-trees. A cherry tree (T; �; �) consists of a (la-
belled) C-tree (T; � ) with vertex labels in A and a map � : n!

L
c2CX(c),

which assigns to each label i an element in X(�i) (in the non-symmetric
case, we assume the labelling to be the identity). xi is called the i-th cherry
of (T; �; �).

Cherry trees will be represented graphically in the form

T

o

	
�����x1

�1��

���
: : : 	
�����xn

�n
��

���

where T is a tree in TreeC(o;�) and xi 2 X(�i).
The space AX(o) of the free A-algebra is a quotient of the space of all

cherry trees with output color o and only one vertex. The relations are given
by

Æ

o

��(a)

x�(1)��������
��(1)

���

��
: : : x�(n)��������

��(n)
���

��

= Æ

o

a

	
�����x1

�1���

��
: : : 	
�����xn

�n
���

��

:

The evaluation ev : A(o;�)�AX(�)! AX(o) is given by the composition
of the vertices of the cherry trees with the operation in A(o;�).

If the C-operad A is given in terms of generators G and relations R, the
vertex label of an element in AX is represented by a tree in FCG. If we
replace the vertex by this tree, we obtain a cherry tree in FCG(o;�)�X(�),
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which represents the same element. The relations onM
�2Cn

FCG(o;�) �X(�)

given by the relation above and the ones given by R. In addition the cherries
must be permuted if the labelling of the inputs is changed.

16. Examples of colored operads and algebras

As already mentioned, the classical notion of operads is the special case
of a monochrome operad in the colored setting. But we have more than
that. A classical operad is also an algebra over a certain N-colored operad.
By choosing the correct set of colors and the right colored operad, we can
describe cyclic and modular operads in this way. Furthermore we will give a
describtion of topological categories in the terms of colored operads.

16.1. Monochrome and colored operads. We want to describe an
N-colored operad Op in Top such that its algebras are precisely the unitary
topological (pseudo-)operads. If X is an operad, we have spaces X(n) for
each n 2 N. For n;m 2 N and each 1 � i � n and � 2 �n we also have a
composition Æi : X(n)
X(m)! X(n+m�1) and a map �� : X(n)! X(n).
In addition we have an element id 2 X(1), the identity such that x Æi id = x
and id Æ1 x = x for each x 2 X(n); n 2 N.

To encode this, we de�ne the N-collection O to be the symmetrization of
the non-symmetric N-collection �O with

�O(o;�) =

8>>><
>>>:
� if o = 1 and � 2 N0

�o if � 2 N and �1 = o

f1; : : : ; �1g if � 2 N2 and o = �1 + �2 � 1

; otherwise :

Each O(o;�) has the discrete topology. This is a unitary non-symmetric
N-collection. The identity in O(n;n) is the identity of �n.

It is clear that each algebra X over FO = FNO consists of spaces X(n)
for each n 2 N, with compositions Æi and morphisms �� as described above.
But this does not suÆce for an operad-structure on X. In addition we have
to introduce relations, which encode the axioms of operads.

The associativity of compositions can be described by the equality of the
elements of the following pairs.

1. For i � j � 10
BBBBBBBBBB@ Æ

l+m+n�1

i

Æ

l+m�1����

����
j

1

l����

����
2

m����

����

3

n����

���� ;

Æ

l+m+n�1

j + n� 1

Æ

l+n�1����

����
i

1

l����

����
3

n����

����

2

m����

����

1
CCCCCCCCCCA
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2. For j � i � j + l � 10
BBBBBBBBBB@ Æ

l+m+n�1

i

Æ

l+m�1����

����
j

1

l����

����
2

m����

����

3

n����

���� ;

Æ

l+m+n�1

j

1

l����

����
Æ

m+n�1����

����
i� j + 1

2

m����

����
3

n����

����

1
CCCCCCCCCCA

3. For j +m � i � n+m� 10
BBBBBBBBBB@ Æ

l+m+n�1

i

Æ

l+m�1����

����
j

1

l����

����
2

m����

����

3

n����

����;

Æ

l+m+n�1

j

Æ

l+n�1����

����
i�m+ 1

1

l����

����
3

n����

����

2

m����

����

1
CCCCCCCCCCA

The equivariance conditions correspond to the pairs

1. For �; � 2 �n 0
BBBBBBBBB@Æ

n

�

Æ

n

�

n

; Æ

n

��

n

1
CCCCCCCCCA

2. For � 2 �n; � 2 �m and 1 � i � n0
BBBBBBBBBB@ Æ

n+m�1

i

Æ

n����

����
�

1

n

Æ

m����

����

�

2

m

;

Æ

n+m�1

� Æi �

Æ

n+m�1
�(i)

1

n����

����
2

m����

����

1
CCCCCCCCCCA

The identity is codi�ed by0
BBBBB@ Æ

n

i

1

n����

����
Æ

1����

����

�

; Æ

n

id

1

n

1
CCCCCA and

0
BBBBB@ Æ

n

1

Æ

1����

����
� 1

n����

����

; Æ

n

id

1

n

1
CCCCCA :
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Now let R be the family fR(o;�)g which consists of these pairs. Then
Op is the N-operad generated by O with the relations R. That means

Op = FNO=(R):

Theorem 16.1. The topological operads are precisely the algebras over
Op, and the morphisms between operads are precisely the morphisms between
Op-algebras.

Proof. Let X be a topological operad. As mentioned above X is an
algebra over FO. Hence we have a map f : FO! EndNX of N-operads. The
operad-axioms ensure, that we have f(x1) = f(x2) for each pair x = (x1; x2)
given above. This implies the existence of a map Op ! EndNX of N-
operads, which in turn is equivalent to the fact that X is an Op-algebra.

Now letX be an Op-algebra. That means it is a family fX(n) : n 2 Ng of
spaces, together with maps Æi : X(n)�X(m)! X(n+m� 1) for 1 � i � n
and �� : X(n) ! X(n) for � 2 �n. The relations imply that these maps
ful�ll the axioms of an operad.

Now let f : X ! Y be a morphism of operads. Since X and Y are Op-
algebras, there exist morphisms eX : Op! EndNX and eY : Op! EndNY
of N-operads. The axioms for morphisms of monochrome operads imply that
the diagram

Top(X(�);X(o))
f(o)�

�����������������

O(o;�)

eX (o;�)
��������������

eY (o;�) ��������������
Top(X(�); Y (o))

Top(Y (�); Y (o))
f(�)�

�����������������

commutes for all o 2 N and � 2 Nn. Since the compositions in EndNX and
EndNY are given by the composition of maps, this implies the commutativity
of

Top(X(�);X(o))
f(o)�

�����������������

FO(o;�)

eX(o;�)
��������������

eY (o;�) ��������������
Top(X(�); Y (o)):

Top(Y (�); Y (o))

f(�)�

�����������������

We obtain an adjoint diagram

FO(o;�)�X(�)
evX ��

id�f(�)
��

X(o)

f(o)
��

FO(o;�) � Y (�)
evY

�� Y (o)

which commutes. The evaluations evX and evY are given by the Op-algebra
structures on X and Y (they are adjoint to eX and eY ). Therefore both paths
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in this diagram induce the same morphism Op(o;�) � X(�) ! Y (o) and
hence f is a morphism of Op-algebras.

Now let f : X ! Y be a morphism of Op-algebras. X and Y are operads.
The compositions in X are given by the map

X(n)�X(m)! O(n +m� 1;n;m)�X(n) �X(m)! X(n +m� 1)

with (x; y) 7! (i; x; y) 7! x Æi y and the action of �n on X(n) is given by
X� = ��(x). The same holds for Y . Since f is a morphism of Op-algebras,
the diagram

O(o;�) �X(�)
ev ��

id�f
��

X(o)

f

��
O(o;�) � Y (�)

ev
�� Y (o)

commutes. Hence we have f(xÆi y) = f(x)Æi f(y) and f(x�) = f(x)�, which
again proves that f is a morphism of operads.

Corollary 16.2. The category oper�Top of (monochrome) topological
operads is isomorphic to TopOp, the category of algebras over Op.

This isomorphism of categories has an interesting interpretation.We have
two di�erent ways to describe the free monochrome operad generated by
an N-collection X. The �rst is the description in oper�Top. In this case we
interpret an operation in FX(n) as a labelled tree with n inputs, and vertex-
labels in X. The composition is described by the grafting of trees. Since the
vertex labels correspond to operations in X, we call this trees operation-trees.

The second approach is the free Op-algebra in TopOp. Here we think of
an operation in OpX(n) as a tree with output color n, cherries in X and
natural numbers and permutations as vertex-labels. These trees will be called
composition-trees, because the vertex labels correspond to the compositions
of operations (which are the cherries).

The two approaches are isomorphic, since the universal properties co-
incide. Therefore there has to be a one-to-one correspondence between
composition- and operation-trees. In fact we can describe a recursive algo-
rithm, which translates a composition tree into the corresponding operation
tree.

We start with the most trivial composition trees, i.e. with those which
have only one vertex.

Æ

n

�

������� x
n

corresponds to Æ

n

��x

1

n����

����

: : : n

n����

����
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and

Æ

n+m�1

i

������� x
n����

����

������� y
m����

����

corresponds to

Æ x

1

1

														

: : : Æ

i

y

i ��������

i+m� 1
��������
: : : n+m� 1

n















A stump in a composition-tree is ignored, i.e.

Æ

n+m�1

i

������� x
n����

����
Æ

1����

����

corresponds to Æ x

1

1

														

: : :
i

: : : n

n

















To describe the correspondence in the general case, we use the observation
that each composition-tree is semi-binary, that means its vertices have at
most two inputs. To construct the operation-tree, we start with the root
vertex of the composition-tree. If it is unary, we take the operation-tree which
corresponds to the subtree above the root vertex and apply the permutation,
labelling the root vertex, to it (i.e. we relabel the inputs). If it is binary and
has the label i, we take the operation-tree, corresponding to the left subtree
and compose it along its input with label i with the operation-tree, which
corresponds to the right subtree. In our graphical language

Æ

n

�

T

n

corresponds to T�

and

Æ

n+m�1

i

T

n����

����
S

m����

����

corresponds to T Æi S:

In addition to the standard composition, there exists an additional com-
position. A cherry of a composition-tree can be replaced with a whole new
subtree, which has the same output color as the cherry. In the terms of
operation-trees this corresponds to the replacement of a vertex with a sub-
tree.
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16.1.1. Colored Operads. Now Let C be an arbitrary set of colors and
let TC be the set of all tupels (o;�) with o 2 C;� 2 Cn and n 2 N. Then
we can de�ne, similar to the monochrome case, a TC-colored operad OpC ,
whose algebras are precisely the C-colored operads.

The generating vertices are of the following forms.

Æ

(o;o)

�

for each o 2 C;

Æ

(o;��)

�

(o;�)

for each o 2 C;� 2 Cn and � 2 �n

Æ

(o;�Æi�)

i

(o;�)����

����
(�i;�)����

����

for each o 2 C;� 2 Cn; � 2 Cm and 1 � i � n:

The relations are given in analogy to the monochrome case.

Example 16.3. Let C = f0; : : : ; ng and Tn := TC. The Tn operad
Opn+1 := OpC is the operad, whose algebras are operads with n+1 colors.

16.2. Cyclic Operads. Cyclic operads were introduced by Getzler and
Kapranov in [GK95]. Basically they are operads, which not only allow to
permute the inputs (via the action of the symmetric group), but also the
output. This exchange of inputs and outputs is realized by an additional
action of the cyclic group Zn+1 on X(n), the n-th space of the underlying
operad X. The elements of the cyclic group correspond to the powers of the
cycle (12 : : : n+ 1) in �n+1 and the permutations in �n to the permutations
in �n+1 with �x point n+ 1. Hence every element of �n+1 is generated by a
uniquely determined pair of elements in Zn+1 and �n. Therefore we have an
action of �n+1 on X(n). Together with this extension we get an additional
relation given by

(a Æn b)
� = b� Æ1 a�

for any a 2 X(n) and b 2 X(m), where a� is the element a[1] and [1] 2Zn+1
the generator.

To construct Cyc, the N-colored operad, whose algebras are the cyclic
operads, we have to extend our description of Op. First we have to introduce
additional generators representing the action of Zn+. Let �Z be the non-
symmetric N-collection, which is given by

�Z(o;�) =

8>>><
>>>:
� if o = 1 and � 2 N0

�o [Zo+1 if � 2 N and �1 = o

f1; : : : ; �1g if � 2 N2 and o = �1 + �2 � 1

; otherwise.
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Let Z be the symmetrization SN�Z. Let R = fR(o;�)go2N;�2Nn be the family,
which consists of the pairs for the monochrome operads and of the pairs0

BBBBBBBBBB@ Æ

n

[k]
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n

[l]
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n

; Æ

n

[k + l]
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1
CCCCCCCCCCA
;

0
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n
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n

; Æ

n

id

1

n

1
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and 0
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Æ
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Æ

m����

����
[1]
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m

Æ

n����

����

[1]

1

n

1
CCCCCCCCCCA
:

By checking the axioms in [GK98] we get the following

Theorem 16.4. The topological cyclic operads are precisely the algebras
over Cyc, and the morphisms between cyclic operads are precisely the mor-
phisms between Cyc-algebras.

Corollary 16.5. The category cycTop of topological cyclic operads is
isomorphic to TopCyc, the category of algebras over Cyc.

Let Graph0(n) be the set of all graphs without loops and n+ 1 legs, i.e.
edges which only have vertex such that the legs are labelled by the natural
numbers from 0 to n. The leg with label 0 is the output of the graph and
the remaining legs are inputs. These sets form a generic cyclic operad, a
generalization of trees. The i-th composition x Æi y of two such graphs is
given by grafting the output of y along the i-th input of x. The action of the
symmetric group �n on Graph0(n) is given by relabelling of the inputs. The
action of the cyclic group Zn+1 is generated by [1], which relabels inputs and
outputs. The output becomes the input with label n and the �rst input the
new output. The remaining labels are shifted accordingly.

Similar as in the classical case, the free cyclic operad of a monochrome
cyclic collection X, i.e. a monochrome collection with an additional action
of Zn+1 on X(n), is given by adding labels to the vertices of such graphs.

16.3. Modular Operads. Another generalization of operads are mod-
ular operads, which were introduced by Getzler and Kapranov in [GK98].
Basically a (topological) modular operad X is a family fX(g; n)gg;n2N of
spaces such that the familyX(n) = [g2NX(g; n) is a cyclic operad such that
the compositions preserve the additional grading given by g, i.e. we have
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compositions

Æi : X(g; n) �X(h;m)! X(g + h; n+m� 1)

for each 1 � i � n, which satisfy relations analogous to the ones of mono-
chrome and cyclic operads.

In addition there are contractions �ij : X(g; n) ! X(g + 1; n � 2) for
1 � i; j � n with i 6= j such that

1. �ij�� = �̂���(i)�(j) for each � 2 �n; a 2 X(g; n), where �̂ 2 �n�2
is obtained from � by removing i and j from the set f1; : : : ; ng and
mapping it bijectively and order preserving to f1; : : : ; n� 2g.

2. �ij�kl = �kl�il for pairwise di�erent i; j; k and l.
3. (a) �12(� Æn �) = �12(�) Æn�2 �

(b) �n;n+1(� Æn �) = � Æn �12(�)
(c) �n�1;n(� Æn �) = �n+m�2;n+m�1(� Æn�1 ��)
for � 2 X(n; g) and � 2 X(m; g).

For X(g; n) the number g is called genus and n valence.
Again it is possible to construct a colored operad Mod, whose algebras

are exactly the modular operads. This time the set of colors is N � N. The
generators for the compositions are given by trees

Æ

(g+h;n+m�1)

i

1

(g;n)���

���
2

(h;m)
���

���

:

The generators for the permutations and the elements of the cyclic groups
are given as for Cyc, but for each genus g. The generators for Cyc for each
genus g, plus the generators for the contractions

Æ

(g+1;n�2)

�ij

1

(g;n)

:

The relations are given by the relations for Cyc, preserving the genus, plus
the pairs which codify the axioms given above. The precise formulation of
this relations is left to the reader.

Again we have a generic modular operad, which "generates" the free
construction. It is given by the sets Graph(g; n) of graphs with genus g and
n + 1 legs. Again the legs are labelled by the natural numbers from 0 to
n, where 0 is the label of the output. The action of �n and Zn+1 and the
compositions are given as in the cyclic case. The contractions �ij are given
by joining the i-th and the j-th input of the tree, which increases the genus
by one, but decreases the number of inputs by two.
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16.4. Morphisms of algebras. The next example will be a colored
operad, whose algebras are morphisms between algebras over a C-operad A.
This operad MorA is a C � f0; 1g-Operad. For easy reference, we will write
the second color as superscript, i.e. ox is the pair (o; x) 2 C � f0; 1g. For
� 2 Cn and x 2 f0; 1g the symbol �x will denote the tupel (�x1; : : : ; �

x
n).

Furthermore we will call the base primary and the exponent secondary color.
The generators of MorA are given by the family A' with

1. A'(ox;�x) = A(o;�) for x 2 f0; 1g and o 2 C;� 2 Cn and
2. A'(o1; o0) = f'g for o 2 C.

In all other cases the set of generators will be empty. The following relations
are applied for x 2 f0; 1g.

1.

0
BBBBBBBBBB@ Æ

ox

a

1

�x1						

						

: : : Æ

�xi

b

i

�x1���

���
: : : i+m� 1

�xm���

���

: : : n+m� 1

�xn











 ; Æ

ox

a Æi b

1

�x1���

���
: : : n +m� 1

�xn���

���

1
CCCCCCCCCCA

2.

0
BBBBBBBBBB@ Æ

o1

'

Æ

o0

a

1

�01���

���
: : : n

�0n���

���

;

Æ

o1

a

Æ

�11����

����
'

1

�01

: : : Æ

�1n����

����
'

n

�0n

1
CCCCCCCCCCA

There exist two canonical inclusions di : C ! C � f0; 1g; i = 0; 1, given
by di(c) = (c; i). Hence an algebra over MorA consists of two C-families
Xi; i = 0; 1 with Xi(c) = X(c; i). The �rst type of generators and the �rst
relation ensures that X0 and X1 are A-algebras. The second set of gen-
erators corresponds to the existence of maps '(c) : X0(c) ! X1(c). The
second relation guarantees that these form a morphism of A-algebras. Hence
everyMorA-algebra is a morphism of A-algebras and every morphism of A-
algebras induces a MorA-algebra. In fact this correspondence is a bijection.

Remark 16.6. In [BV73] this operad is called A 
 L1, where 
 is the
tensor product of operads, and L1 is the f0; 1g-colored unitary operad with
only one non-trivial operation in L1(1; 0).

Now let H;G be MorA-algebras, which correspond to morphisms h :
X ! Z and g : Z ! Y . Then we can de�ne a MorA-algebra G ÆH, which
corresponds to the composition g Æh. We set (GÆH)0 = X and (GÆH)1 = Y .
For the generator ' of MorA, the evaluation (G Æ H)(o; 0) ! (G ÆH)(o; 1)
is given by

X(o)
h �� Z(o)

g �� Y (o) :
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The evaluations for the generators (A; i) are given by the A-algebra struc-
tures on X0 and Y1. The relations are respected, since both, g and h are
A-algebra morphisms.

Remark 16.7. In the following, we often identify a homomorphism
f : X ! Y of A-algebras with the induced homomorphism MorA !
EndC(X;Y ). We denote both with f .

This description ofMorA uses operation-trees, i.e. we use the description
of the free operad in operTop and then apply additional relations. Alterna-
tively we can use the description of the free operad as a free algebra over
OpTC�f0;1g. In this case MorA is generated by all cherry trees in OpTC�f0;1g
whose cherries are the given generators of MorA.

The relations are given by the pairs0
BBBBB@ Æ

(ox;(�Æi�)x)

i

������� a
(ox;�x)���

���
������� b

(�xi ;�
x)

���

���

;

������� c
(ox;(�Æi�)x)

1
CCCCCA with c = a Æi b

and 0
BBBBBBBBBB@

Æ

(o1;�0)

1

��������'
(o1;o0)���

���
������� a

(o0;�0)
���

���

;

Æ

(o1;�0)

n

��������'
(�1n;�

0
n)���

���
Æ1

��������'
(�11;�

0
1)���

���

������� a
(o1;�1)���

���

1
CCCCCCCCCCA

16.5. Diagrams of algebras. The previous example can be generalized
to diagrams of algebras. Let D be a small category and A a C-operad. The
C � obD-operad AD is given by the following generators

1. the A-generators (a; d) 2 AD((o; d);�d) for each d 2 obD; o 2 C;� 2
Cn and a 2 A(o;�),

2. and the D-generators ' 2 AD((o; d0) : (o; d)) for each morphism ' :
d! d0 in D

and the following relations.

1. Each internal edge whose vertices are A-generators is deleted and the
labels are composed.0

BBBBBBBBB@ Æ

d

(a; d)

d�����

�����
d�����

�����
Æ

d

(b; d)

d�����

�����
d�����

�����

; Æ

d

(a Æi b; d)

d�����

�����
d�����

�����
d

1
CCCCCCCCCA
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2. An '-generator can be pushed up.0
BBBBBBBBB@ Æ

d0

'

Æ

d

(a; d)

d�����

�����
d�����

�����

;

Æ

d0

(a; d0)

Æ

d0����

����
'

d

Æ

d0����

����

'

d

: : :

1
CCCCCCCCCA

3. Two adjacent D-generators can be composed.0
BBBBBBBBB@Æ
d00

 

Æ

d0

'

d

; Æ

d00

 Æ '

d

1
CCCCCCCCCA

If X is an AD-algebra, then there exists an A-algebra Xd for each object
d of D. It is given by Xd(c) = X(c; d) for each c 2 C. The A-structure is
given by the restriction to the suboperad of AD of the colors (c; d). For each
morphism ' : d! d0 exists a MorA-Algebra X' given by X'(c; 0) = X(c; d)
and X'(c; 1) = X(c; d0). Furthermore we have X' Æ X = X'Æ for each
composable pair of morphisms in D. Hence an AD-algebra is precisely a
functor from D to TopA, the category of A-algebras. On the other hand each
functor F : D ! TopA gives rise to an AD-algebra X. It is easy to see that
these two correspondences are inverse to each other.

Theorem 16.8. Let D be a small category. Then the categories TopAD

and Func(D;TopA) are isomorphic.

Example 16.9. Let IsoA be the operad, which belongs to the diagram
consisting of two objects and two morphisms between them, which are inverse
to each other, i.e.

0

'

��
1

 

��

with  Æ ' = id0 and ' Æ  = id1.
Let H : IsoA ! EndC(X;Y ) be a homomorphism. By restriction to

trees of constant secondary color, we obtain two homomorphisms HX : A!
EndC(X) and HX : A ! EndC(Y ). Similar we obtain a homomorphism
HX;Y : EndA ! EndC(X;Y ) by interpreting every tree in MorA as an
element in IsoA. If we also exchange the secondary colors, we obtain a ho-
momorphism HY;X :MorA ! EndC(Y;X).

If H : IsoA ! EndC(X;Y ) is a morphism of operads, then the homo-
morphisms HX;Y :MorA ! EndC(X;Y ) and HY;X :MorA ! EndC(Y;X)
of A-algebras are inverse to each other.
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Example 16.10. LetMornA be the operad, which belongs to the diagram
Ln, consisting of the objects 0; : : : ; n and exactly one morphism i! j if i � j.
Thus a MornA algebra consists of n + 1 algebras over A and a sequence of
morphisms between them.

The generators of MornA are the elements of the family An
' with

1. An
'(o

x;�x) = A(o;�) for 0 � x � n and o 2 C;� 2 Cn and

2. An
'(o

j ; oi) = f'g for o 2 C and 0 � i < j � n.

For 0 � i � n and ! 2 TC�f0;:::;n�1g let Æi(!) :Morn�1A (!)!MornA(Æi!)
be the map, which changes the secondary colors according the injective, order
preserving map Æi : f0; : : : ; n� 1g ! f0; : : : ; ng, given by

Æi(j) =

(
j if j < i

j + 1 if j � i:

Similar we can de�ne �i(!) : Morn+1A (!)!MornA(�i!) for each surjective,
order preserving map �i : f0; : : : ; n+ 1g ! f0; : : : ; ng with

�i(j) =

(
j if j � i

j � 1 if j > i:

The images Æi(Morn�1A (!)) � WMornA(Æi!) form a TC�f0;:::;n�1g-operad,
which we will call DiMornA. Similar the images �i(Morn+1A (!)) form a
TC�f0;:::;n+1g-operad SiMornA.

If X0; : : : ;Xn are spaces, then a homomorphism

F :MornA ! EndC(X0; : : : ;Xn)

induces homomorphisms

diF :Morn�1A ! EndC(: : : ;Xi�1;Xi+1; : : : )

for 0 � i � n, which are given by diF (T ) = F (ÆiT ). Similar we have homo-
morphisms

siF :Morn+1A ! EndC(: : : ;Xi;Xi; : : : )

given by siF (T ) = F (�iT ).
The homomorphisms F :MornA ! End(X0; : : : ;Xn) are the n-simplices

of a simplicial class. The simplicial operations are given by the two construc-
tions above.

Remark 16.11. MornA is the operad A
Ln of [BV73].

16.6. Categories. Let S be an arbitrary set of colors. The (S � S)-
operad CatS � OpS is the suboperad, generated by all vertices of the form

Æ

(c;b)

1

1

(c;a)����

����
2

(a;b)
����

����

and

Æ

(a;a)

�

:

Hence the CatS-algebras are all S-operads, which contain only unary opera-
tions. But there is another interpretation. Each CatS -algebra A consists of a
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family fA(a; b)ga;b2S of spaces, together with maps ida : � ! A(a; a), which
correspond to an element ida, the identity of a, and compositions

�a;b;c : A(a; b)�A(b; c)! A(a; c) for all a; b; c 2 S:

These compositions are associative, i.e. the diagram

A(a; b)�A(b; c)�A(c; d)
�a;b;c�A(c;d) ��

A(a;b)��b;c;d
��

A(a; c)�A(c; d)

�a;c;d

��
A(a; b)�A(b; d)

�a;b;d
�� A(a; d)

commutes for all a; b; c; d 2 S. Furthermore the following diagrams commute.

� �A(a; b)
ida�A(a;a) ��

'
��������������������

A(a; a)�A(a; b)

�a;a;b

��
A(a; b)

A(a; b)� �
A(a;a)�idb ��

'
��������������������

A(a; b)�A(b; b)

�a;b;b

��
A(a; b)

Therefore the (topological) CatS -algebras are precisely the small topological
categories with object set S.

Remark 16.12. The operad CatS is not only a reduction of OpS, but
also an extension of the operad of associative topological monoids, which is
precisely Cat�.

Since the colors are not changed, the morphisms of CatS -algebras are
precisely the functors between topological operads with object set S, which
are the identity on the object sets. We denote the category TopCatS by TCatS.
For the description of arbitrary functors, we have to expand our construction.

We will denote a small topological category by a pair (A;S), where S is
the set of objects of the category, and A the CatS-algebra consisting of the
morphism spaces. An arbitrary functor (F;') : (A;S)! (B;T ), consists of
a map ' : S ! T and a family of continuous maps

F (a; b) : A(a; b)! B (obF (a); obF (b)) ;

which respect the compositions and which map the identites to identites, i.e.
the following diagram commutes.

�
ida

����������� id'(a)

�������������

A(a; a)
F (a;a)

�� B ('(a); '(a))

Via the map ', we can de�ne a (S � S)-family 'B with

'B(a; b) = B ('(a); '(b)) for all a; b 2 S:
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The compositions in B induce associative compositions on 'B. Since the
maps F (a; a) map identities to identities, this makes 'B into aCatS-algebra.
The family fF (a; b)ga;b2S induces a morphismF : A! 'B ofCatS -algebras.

On the other hand each morphism F : A! 'B of CatS-algebras induces
a functor F : (A;S) ! (B;T ) of the underlying categories. We will use
this correspondence to formulate a operadic interpretation of topological
categories.

For the sake of readability, we denote the category TopCatS with TCatS .
For eachmap ' : S ! T of sets, we obtain a functor TCat' : TCatT ! TCatS ,
given by

TCat'(A)(a; b) = 'A(a; b) = A ('(a); '(b))

and

TCat'(F )(a; b) = 'F (a; b) = F ('(a); '(b)) for F : A! B:

Together the form a functor

TCat� : Setsop ! Cat:

Now we can give an alternative description of the category TCat of small
topological categories in this operadic setting. The objects of TCat are pairs
(A;S) with S a set and A a topological category with object set S. The
morphisms are pairs (F;') : (A;S)! (B;T ) with ' : S ! T a map of sets
and F : A! 'B a morphism of CatS-algebras. If (F;') : (A;S)! (B;T )
and (G; ) : (B;S)! (C;U) are two such morphisms, then their composition
is given by

(G; ) Æ (F;') := ('G Æ F; Æ ') :

The identity of (A;S) is given by (idA; idS). The functor induced by the
composition (G; ) Æ (F;') is given by the family

('G Æ F ) (a; b) = 'G(a; b) Æ F (a; b) = G ('(a); '(b)) Æ F (a; b):

Hence it corresponds to the composition of the induced functors.

17. The bar-construction

Let A be a C-operad and X an algebra over A. It is easy to see that
we lose the structure if we replace X by a homotopy equivalent family Y .
The same holds if we replace a morphism f : X ! X 0 of A-algebras by
a homotopic map of C-families. In [BV73] Boardman and Vogt described
a way to obtain homotopy invariant algebras and morphisms over PROs
and PROPs. We use the close relation of colored operads to their notions
to obtain a homotopy invariant notion of homotopy algebras and (strong)
homotopy homomorphisms over a C-operad A.

As in the monochrome case, which is described in [Vog99], we can con-
struct a "co�brant resolution" of a colored operad. This means for each
topological C-operad A we can construct a C-operad WA, whose underly-
ing spaces are homotopy equivalent to the spaces of A, and which satis�es
certain universal homotopy-invariant properties.

Remark 17.1. From now on we assume all operads to be unitary.
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Let A be a unitary C-operad and TA(o;�) for o 2 C and � 2 Cn the set
of all labelled C-trees with vertex labels in A and lengths le 2 [0; 1] for each
internal edge e. Hence an element of TA(o;�) is a tupel (T; �; v; l) with (T; � )
a labelled C-tree, v a map which assigns to each vertex of T an element in
A(out(v); in(v)) and l a map which assigns to each internal edge a length in
[0; 1]. Each external edge (that is each input or output) is assumed to have
the length 1. The topology on TA(o;�) is induced by the vertex labels in A
and the lengths of the edges. The grafting of trees de�nes compositions Æi of
these trees. The newly formed internal edge is assigned the length 1.

Now let R(o;�) � TA(o;�)� TA(o;�) be the spaces which are given by
pairs of the following forms.

1. For all trees S and T in TA such that at least one contains at least
one vertex, the pair 0

BBBBBB@
S

Æ
c;t1

id

T

c;t2

;

S

T

c;max(t1;t2)

1
CCCCCCA

is contained in R, i.e. vertices labelled by an identity can be deleted.
The length of the new edge is the maximum of the lengths of the
deleted edges.

2. For each y 2 A(�i;�) and x 2 A(o;�) we have0
BBBBBBBBBBBBBB@

S

Æ
o;s

x

T1

�1;t1���

���

Æ

�i;0

y

Ti

�1;r1���

���

: : : Ti+m�1

�m;rm���

���

Tm+n�1

�n;tn���

���
;

S

Æ
o;s

x Æi y

T1

�1;r1���

���

: : : Tm+n�1

�n;rn���

���

1
CCCCCCCCCCCCCCA
;

i.e. an edge of length 0 can be shrunk. The labels of its vertices are
composed.

3. For each � 2 �n and x 2 A(o;�) with o 2 C and � 2 Cn we have0
BBBBBB@

S

Æ
o;s

��(x)

T�(1)

��(1);t�(1)					

					

: : : T�(n)

��(n);t�(n)













;

S

Æ
o

x

T1

�1;t1���

���

: : : Tn

�n;tn���

���

1
CCCCCCA

Remark 17.2. We write the lengths of the edges as a second color. Thus
the pair �i; t on an edge corresponds to the color �i and the length t.
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Definition 17.3. The bar- or W-construction WA of a C-operad A is
the C-operad

WA = TA=(R):

The homomorphism "A(o;�) :WA(o;�)! A(o;�) is given by shrinking
the edges of a tree inWA to length 0. These form a morphism "A :WA! A
of C-operads, the augmentation of A.

Definition 17.4. A homomorphism f : A ! B of topological C-
operads is called a topological equivalence if each map f(o;�) is a based
and equivariant homotopy equivalence.

Here equivariant and based means, that there exist homotopy inverses
g(o;�) of f(o;�) for a topological equivalence f : A! B such that

B(o;�)
�� ��

g(o;�)
��

B(o;��)

g(o;��)
��

A(o;�)
��

�� A(o;��)

and

B(o; o)

g(o;o)

��

�

�����������

�����������

A(o; o)

commute.Obviously this notion can be adapted to the non-symmetric and/or
non-unitary cases.

Theorem 17.5. (cmp. Prop. 3.6 of [BV73]) The augmentation "A :
WA ! A is a topological equivalence. Its inverse is given by the map
i : A ! WA of families, which maps an operation a in A to the tree in
WA with only one vertex and label a.

17.1. Lifting results. We will now recollect some lifting results from
[BV73]. Most of them are stated in the homogeneous setting. But since each
unitary C-operad can be viewed as the homogeneous part of a C ��-operad
these results can be applied to the non-homogeneous case also.

Definition 17.6. Two homomorphisms f0; f1 : A! B of C-operads are
called homotopic in operCTop, if there exists a homotopy ft(o;�) : A(o;�)!
B(o;�) such that for each t 2 [0; 1], the maps ft form a homomorphism
ft : A! B of C-operads.

Definition 17.7. A topological equivalence f : A ! B is called a ho-
motopy equivalence of operads, if there exists a morphism g : B ! A of
operads such that f Æ g is homotopic in operCTop to idB and g Æ f to idA.

Since we require homogeneous operads to be parts of regular operads,
these two de�nitions directly imply the corresponding notion for the homo-
geneous case. We just have to replace "morphism of operads" by "multiplica-
tive morphism".

Definition 17.8. AC�L-tree T , labelled or unlabelled, with or without
vertex labels and lengths, is called homogeneous if all inputs have the same
secondary color.
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Let A be a C � L-operad and T a homogeneous, unlabelled C � L-tree
with output color ol and input colors �l

0
. The group �(T ) (see section 14.3)

acts from the right on the space of all trees in TA, whose underlying tree
lies in the shape orbit �T . The action is described by the second relation on
WA.

For q 2 N; q � 1; let PT;q be the subspace of TA(ol;�l
0
) of all trees of

shape T , which have at most q edges of a length less than 1 and whose inputs
are labelled by the identity, i.e. numbered from left to right. The symmetry
group Sym(T ) � �(T ) of the shape T acts on PT;q from the right, by �rst
applying the action of �(T ) and then relabelling the tree.

The subspace QT;q � PT;q is given by all elements such that either

1. at least one vertex is labelled by the identity,
2. at least one internal edge has the length 0,
3. there exists a collection of edges of length 1, which separates the tree

into homogeneous trees or
4. there are less than q edges of a length less than 1.

In the unitary, non-homogeneous case the third condition is automatically
satis�ed, since there exists only one secondary color.

Definition 17.9. Let A be a C �L-operad and B a suboperad of WA.
For each unlabelled, homogeneous C � L-tree T let BT;q be the subspace
of PT;q, which consist of all elements representing an element in B. The
suboperad B is called admissible in HLWA if the following statements hold.

1. Each BT;q is closed in PT;q.
2. Each inclusion QT;q [ BT;q ,! PT;q is an Sym(T )-equivariant, closed

co�bration.
3. If x Æi y is an element of HLB, then x and y are elements of HLB.

Theorem 17.10. (cmp. Prop 3.14 of [BV73]) Let A and D be C �
L-operads and B an admissible suboperad of WA. Suppose there exists a
multiplicative map f : HLWA ! HLD and a homotopy ht : HLB ! HLD
through multiplicative maps such that h0 is the restriction of f to B. Then
there exists a homotopy ft : HLWA! HLD of multiplicative maps such that
ft is an extension of ht and f0 = f .

Theorem 17.11. Lifting-Theorem (cmp. Thm. 3.17 of [BV73])
Given a diagram

HLB

ht
��

� �

i

��

k �� HLE

f

��
HLWA

g
�� HLD

of the homogeneous parts of C � L-operads and multiplicative maps between
them such that

1. B is an admissible suboperad of WA,
2. f is a topological equivalence, and
3. ht is a homotopy of multiplicative maps from f Æ k to g Æ i.
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Then there exists a lift �g : HLWA ! HLE such that �g Æ i = k, and a
homotopy Ht of multiplicative maps from f�g to g, which extends ht. Any two
such lifts are homotopic through multiplicative maps.

Remark 17.12. This theorem is a slight variation of the original lifting
theorem in [BV73]. But the proof there can be adapted to show this more
general result.

In the unitary, non-homogeneous case we assume L = � and hence we
can drop the restriction to the homogeneous parts and replace multiplicative
by morphisms of C-operads.

17.2. Examples of admissible suboperads.

Definition 17.13. A unitary C-operad X is called wellpointed if all
maps uC(o) : � ! A(o; o) are closed co�brations.

Proposition 17.14. Let A be a wellpointed C-operad. Then the subop-
erad B consisting of the identities is admissible.

Proof. We regard A as a C � �-operad. Since the inclusion of f0; 1g
into the unit interval and the inclusion of the identity into A(o; o) are closed
co�brations, the inclusion QT;q ! PT;q is a Sym(T )-equivariant closed co�-
bration for each unlabelled tree T and each natural number q. Furthermore
BT;q is contained in QT;q, because a vertex of a tree in BT;q is either labelled
by an identity, or it is part of a subtree with at least two vertices, whose
edges all have length 0. Hence BT;q is contained in QT;q.

If a tree in BT;q contains an edge of length 1, then both parts represent
an identity, since otherwise the tree can not be equivalent to an identity.

Lemma 17.15. If A is wellpointed, then the trees in the TC �f0; : : : ; ng-
operad WMornA, whose edges all have the same secondary color, form an
admissible suboperad of WMornA.

Proof. First we have to prove that the trees with constant secondary
color form a suboperad. But this is clear, because it is only possible to
compose two of these trees if their secondary colors coincide.

Now let B be this suboperad. Then the spaces BT;q are either PT;q if
the tree T contains only one secondary color, or empty otherwise. Hence
the statement follows, if each QT;q ,! PT;q is a closed, Sym(T )-equivariant
co�bration. But this is true, since A is wellpointed.

If a tree in BT;q contains an edge of length 1, then the two parts have
constant secondary colors, and hence are elements of BT;q.

As for MornA, we have maps Æi : WMorn�1A (!) ! WMornA + (Æi!) for
each ! 2 TC�f0;:::;n�1g, induced by the injective order preserving maps Æi :
f0; : : : ; n� 1g ! f0; : : : ; ng for 0 � i � n. Again only the secondary colors
are changed. The images Æi(WMorn�1A (!)) form a TC�f0;:::;n�1g-operad, which
we will denote by DiWMornA.

Lemma 17.16. Let A be a wellpointed C-operad and B � WMorn+1A a
suboperad generated by all or some faces DiWMorn+1A for i 2 I � f0; : : : ; n+
1g. Then B is admissible.
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Proof. We are in the non-homogeneous case, i.e. we assume that
WMorn+1A is a (TC � f0; : : : ; n+ 1g)� �-operad.

Let T be an unlabelled TC � f0; : : : ; n+ 1g-tree. If there exists an i 2 I
such that no edge of T has the secondary color i, then each element of
the space PT;q of De�nition 17.9 represents an element in the i-th face of
WMorn+1A . Hence in this case the space BT;q is precisely PT;q.

If T contains edges of all secondary colors i 2 I, then an element in PT;q
represents an element in D if and only if there exist edges of length 1, which
separate the tree into several subtrees which represent elements in one of the
faces. HenceBT;q is a closed subspace of QT;q. SinceA is wellpointed,Morn+1A

is also. Therefore the inclusion QT;q ,! PT;q is a closed, Sym(T )-equivariant
co�bration.

Since a tree in WMorn+1A is decomposable if and only if it contains an
edge of length 1, the two parts of a composition xÆiy 2 B are again elements
of B.

18. Homotopy algebras and homotopy homomorphisms

18.1. Homotopy algebras. Now we can use the "co�brant resolution"
WA to de�ne homotopy invariant notions of algebras over a C-operad and
morphisms between them.

Definition 18.1. A homotopy algebra (X;') of a C-operad A is a WA-
algebra X with a structure homomorphism ' : WA! EndC(X).

For each homomorphism � : WMorA ! EndC(X;Y ) of C � f0; 1g-
operads, we can de�ne a homomorphism d1� : WA ! EndC(X), which is
given by

d1�(T )(x1; : : : ; xn) = �(T 0)(x1; : : : ; xn)
where T 0 2 WMorA(o0;�0) is obtained from T 2 WA(o;�) simply by adding
the secondary color 0 to all edge colors. Or, in other words, d1� is completely
described by the images of monochrome trees of secondary color 0. Similar
we can de�ne d0� : WA! End(Y ).

Definition 18.2. A homotopy homomorphism (h;H) : (X;') ! (Y;  )
of homotopy A-algebras consists of a C � f0; 1g-operad homomorphism H :
WMorA ! EndC(X;Y ) such that ' = d1H : WA ! EndC(X) and  =
d0H : WA! EndC(Y ), and a map h : X ! Y of C-families, given by

h(o)(x) = H

0
BBBBB@ Æ

o1

'

������� x
o0

1
CCCCCA :

h is called the underlying map of H. (h;H).

In fact there are strong parallels to the algebraic setting, as described
by M. Markl in [Mar99]. A homotopy algebra is an algebra over a co�brant
resolution of an C-operad, and a homotopy morphism between such algebras
is an algebra over a co�brant resolution of MorA.
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Unfortunately there is no obvious or natural way to de�ne a composi-
tion of two homotopy homomorphisms. But Boardman and Vogt de�ned a
simplicial class, which satis�es the restricted Kan-condition (see de�nition
4.8. of [BV73]). This implies the existence of a fundamental category, whose
objects are the 0-simplices of the simplicial class, and whose morphisms are
the simplicial homotopy classes of 1-simplices.

Let F : WMornA ! EndC(X0; : : : ;Xn) be a homomorphism. Then we
can de�ne a homomorphism

diF : WMorn�1A ! EndC(: : : ;Xi�1;Xi+1; : : : )

for 0 � i � n, given by diF (T ) = F (ÆiT ), where ÆiT is obtained from
T by replacing the secondary colors according to the usual injective and
order preserving map Æi : f0; : : : ; n�1g ! f0; : : : ; ng (cmp. Example 16.10).
Similarly the homomorphism

siF : WMorn+1A ! EndC(: : : ;Xi;Xi; : : : )

is given by siF (T ) = F (�iT ) for the surjective and order preserving map
�i : f0; : : : ; n+ 1g ! f0; : : : ; ng.

Definition 18.3. (and Lemma) SMapA is the simplicial class, whose
n-simplices are the homomorphisms WMornA ! EndC(X0; : : : ;Xn) of Tn-
colored operads, with X0; : : : ;Xn arbitrary spaces. The simplicial operations
are given as above.

Remark 18.4. The homomorphisms d1� : WA! EndC(X) and d0� :
WA! EndC(Y ), induced by � : WA ! EndC(X;Y ), are precisely the 0-
and 1-face of the 1-simplex � in SMapA.

Definition 18.5. (def. 4.10 of [BV73]) Two homotopy homomorphisms
(f; F ); (g;G) : (X;') ! (Y;  ) are called simplicially homotopic, if there
exists a 2-simplex H : WMor2A ! EndC(X;Y; Y ) in SMapA such that
d2H = F; d1H = G and d0H = s0 .

Proposition 18.6. (Thm. 4.9 of [BV73]) The simplicial class SMapA
satis�es the restricted Kan-condition.

Definition 18.7. Two homotopy homomorphisms (f0; F0); (f1; F1) :
(X;') ! (Y;  ) are homotopic, if there exist a homotopy Ft : WMorA !
EndC(X;Y ) through homomorphisms such that each Ft is a homotopy ho-
momorphism from (X;') to (Y;  ). The induced homotopy homomorphisms
form a homotopy (ft; Ft) : (X;')! (Y;  ).

Remark 18.8. Note that for the second version of homotopy the struc-
tures on the underlying spaces, induced by each Ft, do not change. This
means d1Ft = ' and d0Ft =  for all t 2 [0; 1].

Proposition 18.9. (cmp. Lem. 4.9 of [BV73]) Two homotopy homo-
morphisms are simplicially homotopic if and only if they are homotopic.

This allows us to de�ne the fundamental category of SMapA in the fol-
lowing way.
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Definition 18.10. ([BV73], section IV.2.) Let A be a topological C-
operad.MapA is the category, whose objects are homotopy A-algebras (X;')
and whose morphisms are homotopy classes of homotopy homomorphisms
(f; F ) : (X;') ! (Y;  ). The composition (g;G)�(f; F ) : (X;') ! (Z; �)
of two such homotopy classes, represented by (f; F ) : (X;') ! (Y;  ) and
(g;G) : (Y;  ) ! (Z; �), is given by the face d1H, of a 2-simplex H with
d0H = G and d2H = F .

Several homotopy invariance properties of these notions were proved in
[BV73]. We just state the results and give a reference. For the formulation of
these results, we use the same notation as in Example 16.9. This means that
for a homomorphism H : W IsoA ! EndC(X;Y ) we have homomorphisms
HX : WA! EndC(X) and HY : WA! EndC(Y ), obtained by restriction
to trees of constant secondary color. In addition we have homomorphisms
HX;Y : WMorA ! EndC(X;Y ) and HY;X : WMorA ! EndC(Y;X), given
by interpreting every tree in WMorA as a tree in W IsoA and, in the second
case, exchanging the secondary colors.

Proposition 18.11. ([BV73], 4.14) Let (f; F ) : (X;') ! (Y;  ) be a
homotopy homomorphism of homotopy A-algebras and f = ff(o)g the family
of underlying maps. If g = fg(o) : X(o) ! Y (o)g is a map of C-families
and ht a family of homotopies from f to g, then there exists a homotopy
homomorphism (g;G) : (X;') ! (Y;  ), with g as underlying map and a
homotopy (ht;HT ) from (f; F ) to (g;G).

Proposition 18.12. ([BV73], 4.16) Let X and Y be two C-families
and fp(c) : X(c) ! Y (c)gc2C a family of topological equivalences. Then
there exists a morphism H : W IsoC ! EndC(X;Y ) such that the p are the
underlying maps of the homomorphism HX;Y .

Proposition 18.13. ([BV73], 4.17) Let H : W IsoA ! EndC(X;Y )
be a homomorphism of operads. Then the two homotopy homomorphisms
(hX;Y ;HX;Y ) : (X;HX ) ! (Y;HY ) and (hY;X ;HY;X) : (Y;HY ) ! (X;HX)
are inverse to each other in MapA.

Proposition 18.14. ([BV73], 4.18) Let B be a sub-C-operad of A such
that each inclusion B(o;�)! A(o;�) is an equivariant, closed co�bration.

If (X;') is a homotopy B-algebra, (Y;  ) a homotopy A-algebra and if
there exist a homomorphism H : W IsoB ! EndC(X;Y ), with HY =  jWB

and HX = ', then there exists a homomorphism �H :W IsoA ! EndC(X;Y )
such that H = �HjW IsoB and �HY =  . This implies that there exists a homo-
topy B-algebra structure �HX , extending '.

Proposition 18.15. ([BV73], 4.19) Let B be a sub-C-operad of A such
that each inclusion i(o;�) : B(o;�)! A(o;�) is an equivariant, closed co�-
bration. Furthermore let (p; P ) : (X;') ! (Y;  ) be a homotopy homomor-
phism of homotopy A-algebras such that p : X ! Y is a topological equiva-
lence.

If there exists a homomorphism �Q : W IsoB ! EndC(X;Y ) such that
�QX;Y = P jWMorB , then there exists an extension Q :W IsoA ! EndC(X;Y )
of �Q such that QX;Y = P .
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18.2. Reduced Homotopy Homomorphisms. Before we describe a
left adjoint of the functor J : HomTopA ! MapA, we restrict ourself to a
special kind of homotopy homomorphism.

Let WrMorA(o;�) be the quotient of WMorA(o;�) under the relation,
that a tree T is equivalent to the tree T 0, obtained by shrinking all edges of
secondary color 1 to length 0. These spaces form a C-operadWrMorA, which
is topologically equivalent to MorAA. The projections form a topological
equivalence � :WMorA ! WrMorA of C � f0; 1g-operads.

Since each homomorphism F : WrMorA ! EndC(X;Y ) can be inter-
preted as a homomorphismWMorA ! EndC(X;Y ), there exist homomor-
phisms d1(F Æ�) :WA! End(X) and d0(F Æ�) : WA! End(Y ). But the
latter one factors through A. Therefore we interpret d1F as a homomorphism
from A to End(Y ) if F :WrMorA ! End(X;Y ) is a homomorphism.

Definition 18.16. Let A be a C-operad, (X;') a homotopy A-algebra
and (Y;  ) a strict one. A reduced homotopy homomorphism (f; F ) : (X;')!
(Y;  ) consists of a morphism F :WrMorA ! EndC(X;Y ) such that d0F =
' and d1F =  , and the underlying map f : X ! Y of F Æ �.

On the �rst view, our de�nition of reduced homotopy homomorphisms
seems to di�er from the one introduced by Boardman and Vogt. They only
require the homogeneous part to be reduced. But, as they noted in chapter
4, section 5 of [BV73], their reduced version of WMorA is precisely the
homogeneous part of our version. As we will see in Lemma 18.21, this implies
that the two notions are equivalent.

Notation 18.17. We will write HA for the homogeneous part Hf0;1gA
of a C � f0; 1g-operad A. We will use this notation especially for morphism
operads.

Definition 18.18. Let A be a C-operad and (X;') and (Y;  ) be
two homotopy algebras over A. A homogeneous homotopy homomorphism
(f; F ) : (X;') ! (Y;  ) consists of a multiplicative map F : HWMorA !
HEndC(X;Y ) with d0F = ' and d1F =  , and an underlying map
f : X ! Y of C-families, given by

f(o)(x) = F

0
BBBBB@ Æ

o1

'

������� x
o0

1
CCCCCA

Definition 18.19. Let A be a C-operad, (X;') a homotopy A-algebra
and (Y;  ) a strict one. A reduced homogeneous homotopy homomorphism
(f; F ) : (X;') ! (Y;  ) consists of a multiplicative map F : HWrMorA !
HEndC(X;Y ) with d0F = ' and d1F =  , and an underlying map f : X !
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Y of C-families, given by

f(o)(x) = F
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Lemma 18.20. Let A be a C-operad and (X;') and (Y;  ) homotopy A-
algebras. Suppose there exists a family

F (o1;�0) :WMorA(o
1;�0)! EndC(X;Y )(o

1;�0)

of maps such that

1. F (R Æ (S1; : : : ; Sn)) = F (R) Æ ('(S1); : : : ; '(Sn)) if each Si contains
only edges of secondary color 0, and

2. F (R Æ (S1; : : : ; Sn)) =  (R) Æ (F (S1); : : : ; F (Sn)) if R contains only
edges of secondary color 1.

Then there exists a uniquely determined homogeneous homotopy homomor-
phism (f; F ) : (X;')! (Y;  ), which extends the given family.

The same result holds for reduced homogeneous homotopy homomor-
phisms if (Y;  ) is a strict A-algebra and the given family is reduced.

Proof. Obviously we have to use the structures ' and  to extend the
given family to a map F : HW(r)MorA ! HEndC(X;Y ) of families. The
two conditions imply that this family is multiplicative.

Lemma 18.21. Let A be a C-colored operad, (X;') a homotopy A-algebra
and (Y;  ) a strict one. If (f; F ) : (X;')! (Y;  ) is a reduced, homogeneous
homotopy homomorphism, then there exists a unique reduced homotopy ho-
momorphism (f; �F ) : (X;') ! (Y;  ) such that �F is an extension of the
morphisms F on the homogeneous part of WrMorA.

Proof. Let T be a non-homogeneous tree of WrMorA, i.e. its output
has the secondary color 1 and at least one of its inputs has the secondary
color 0. Since we are in the reduced setting, the tree T is a composition of a
tree of constant secondary color 1 and several reduced, homogeneous trees.
Hence the image of T is uniquely determined by the given data.

Since F : HWrMorA ! HEndC(X;Y ) is multiplicative, this construc-
tion is compatible with the relations on WrMorA. Hence we obtain an ex-
tension �F : WrMorA ! EndC(X;Y ) of �F .

For the composition of homotopy homomorphisms with reduced ones,
Boardman and Vogt used a reduced version of WMornA. Their "suboperad"
consisted of all operations of WMornA whose inputs either all have the sec-
ondary color n or all have a secondary color less than n. In addition they
introduced the additional relation, that all edges of secondary color n in these
trees may be shrunk and their vertices composed. We will call this family
~WrMornA. Similar to homogeneous families, we have a restricted composition
on this family. Therefore we can consider multiplicative maps.
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We do not restrict to special operations, as Boardman and Vogt did.
Instead we use the operad WrMorA, obtained from WMorA, by applying
the additional relation, that each tree T is equivalent to the tree T 0 obtained
from T by shrinking each edge of secondary color n to length 0. The family
~WrMornA is a subfamily of this operad. Using the same technique as in
Lemma 18.21, we can prove

Lemma 18.22. Let H : ~WrMornA ! End(X0; : : : ;Xn) be a multiplica-
tive map of families. The there exists a homomorphism �H : WrMornA !
End(X0; : : : ;Xn) of operads such that the restriction of �H to ~WrMornA is
H.

Proof. If the output of a tree in WrMornA has a secondary color less
than n, then it is an element of ~WrMornA, and its image is given by H. If
The output has the secondary color n and at least one input has a di�erent
secondary color, we can decompose the tree into one tree whose edges all
have secondary color n and several trees in ~WrMornA. In this case the image
is uniquely determined by the composition of the images of the smaller trees.
If the tree has only inputs of secondary color n, then it is again contained in
~WrMornA, and its image is given by H.

There exist homotopy lifting results for the version of Boardman and
Vogt, similar to Theorem 17.10 and Theorem 17.11, for reduced homotopy
homomorphisms. For details the reader is referred to section 5 of chapter 4
of [BV73]. We only need a corollary of these results.

Proposition 18.23. Given a homotopy homomorphism (f; F ) :
(X;'X) ! (Y; 'Y ) and a reduced homotopy homomorphism (g;G) :
(Y; 'Y ) ! (Z;'Z). Then there exists a reduced homotopy homomorphism
(h;H) : (X;'X) ! (Z;'Z), which is homotopic to the composition
(g;G)�(f; F ) in MapA.

Proof. Following prop. 4.46 of [BV73], there exists a multiplicative
mapH : ~WrMor2A ! End(X;Y;Z) such that the homotopy homomorphism
d2H : WMorA ! End(X;Y ), given by the secondary colors 0 and 1, is
precisely F , and such that the reduced homotopy homomorphism d0H :
~WrMorA ! End(Y;Z) isG. By Lemma 18.22 this induces a homomorphism
�H : WMor2A ! WrMor2A ! End(X;Y;Z), with d2 �H = F; d0 �H = G.
The composition d1 �H of (f; F ) and (g;G) in MapA, is a reduced homotopy
homomorphism.

Corollary 18.24. Each homotopy homomorphism (f; F ) : (X;') !
(Y;  Æ ") into a strict A-algebra is homotopic to a reduced one.

Proof. We use the fact that the identity of Y induces a reduced ho-
motopy homomorphism from (Y;  Æ ") to (Y;  ). Therefore there exists a
reduced homotopy homomorphism, which is homotopic to the composition
of (f; F ) with the identity, and thus to (f; F ) itself.

Definition 18.25. (cmp. Remark 4.5 of [BV73]) Let (X;'X ) be a ho-
motopy A-algebra and (Y; 'Y ) and (Z;'Z) be two strict ones. Furthermore
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let (f; F ) : (X;'X) ! (Y; 'Y Æ ") and (g;G) : (X;'X) ! (Z;'Z Æ ") be
two (reduced) homotopy homomorphisms and h : (Y; 'Y )! (Z;'Z) a strict
homomorphism. (g;G) is called a (reduced) canonical composition of (f; F )
and h, if for all o 2 C; �� 2 (C �f0; 1g)n; T 2 WMorA(o1; ��) and u1; : : : ; un,
with ui 2 X(�i) for ��i = �0

i and ui 2 Y (�i), for ��i = �1
i , the following

equation holds:

h (F (T )(u1; : : : ; un)) = G(T )(v1; : : : ; vn);

where vi = ui if ��i = �0
i and vi = h(ui) if ��i = �1

i .

Lemma 18.26. If (f; F ) : (X;'X) ! (Y; 'Y ) is a reduced homotopy
homomorphism and h : (Y; 'Y ) ! (Z;'Z) a strict homomorphism of A-
algebras, then there exists a uniquely determined reduced canonical composi-
tion h(f; F ) of h and (f; F ). The underlying homomorphism G :WrMorA !
End(X;Z) of h(f; F ) is given by

G(T )(u1; : : : ; un) = h (F (T )(u1; : : : ; un))

for all homogeneous trees T 2 WrMorA(o1;�0). Furthermore h(f; F ) is the
only reduced canonical composition.

Proof. The equation de�nes a family G(o1;�0) : WrMorA(o1;�0) !
EndC(X;Z)(o1;�0) of maps, which satisfy the conditions of Lemma 18.20.
Hence there exists a reduced homogeneous homotopy homomorphism (g;G) :
(X;'X)! (Z;'Z Æ "), which, following Lemma 18.21, can be extended to a
reduced homotopy homomorphism h(f; F ).

Since each tree in WrMorA whose output has the secondary color 1
either is homogeneous or can be decomposed into a tree whose edges all
have secondary color 1 and several homogeneous trees, (g;G) is a reduced
canonical composition.

As we have seen, the equation in the statement already uniquely describes
a reduced canonical composition. Since the equation is required by the prop-
erties of a canonical composition, this implies that each reduced canonical
composition is of the given form.

A simple check of the construction of the reduced canonical composition
proves the following

Corollary 18.27. Let f : (X;'X) ! (Y; 'Y ) and g : (Y; 'Y ) !
(Z;'Z) be homomorphisms of A-algebras and (e;E) : (W;'W )! (X;'X) a
reduced homotopy homomorphism. Then we have

g (f(e;E)) = (g Æ f)(e;E):

Theorem 18.28. Let (X;'X) be a homotopy A-algebra and (Y; 'Y ) and
(Z;'Z) two strict ones. If (g;G) : (X;'X)! (Y; 'Y ) is a reduced homotopy
homomorphism and f : (Y; 'Y )! (Z;'Z) a strict homomorphism, then the
reduced canonical composition f(g;G) is a composition of Jf and (g;G) in
MapA.

Proof. Let B be the operad, which consists of the quotients ofWMor2A
under the additional relation, that each tree T is equivalent to the tree T 0,
obtained by shrinking the lengths of all edges of secondary colors 1 and 2
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to 0. The compositions on B are induced by the compositions in WMor2a,
i.e. by the grafting of trees. Therefore the projection WMor2A ! B is a
homomorphism of operads.

For i 2 f0; 1g let

�H : B(oi; ��)! End(X;Y;Z)(oi; ��)

be given by G. Since the relations on B(oi; ��) are precisely the relations on
WrMorA, this maps are well de�ned.

For B(o2; ��), we use a recursive de�nition. Let T be a tree representing
an element in B(o2; ��). If T has no vertex, �H is given by

�H

 
o2

!
= idZ :

If T has at least one vertex, we have three cases.

1. �H

0
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o2

a

T1

�21���

���
Tn

�2n���

���: : :

1
CCCCCA = 'Z(a) Æ

�
�H(T1); : : : ; �H(Tn)

�

2. �H

0
BBBBB@ Æ

o2

'

T

o1

1
CCCCCA = f (G(T ))

3. �H
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o2

'

T

o0;t

1
CCCCCA = f

0
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T

o0;t
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1
CCCCCA :

In all three cases we neglect the lengths of all edges of secondary color 1
or 2 and assume that they have length 1. Therefore �H respects the additional
relations on B. It remains to prove that it respects the relations onWMor2A.

Since G respects all relations on all trees of B, whose output has the
secondary color 0 or 1, it suÆces to check all relations involving edges of
secondary color 2. But �rst observe that for a tree of the form

T = R

o2

T1

�2i��

��
Tn

�2n��

��

: : :

the equation
�H(T ) = 'Z(R) Æ

�
�H(T1); : : : �H(Tn)

�
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holds. Therefore we only need to check the relations occurring at the root
vertex. Otherwise, we can decompose the given tree as above such that one
of the root vertices of the Ti is involved.

The equivariance relation is respected, since we have

'Z(�
�(a))

�
�H(T�(1)); : : : �H(T�(n))

�
= 'Z(a) Æ

�
�H(T1); : : : ; �H(Tn)

�
:

If the root vertex is labelled by an identity, then we have

'Z(id) Æ ( �H(T1)) = �H(T1);

which implies that we can delete it.
In the case that an input of the root vertex has the length 0, we use

the fact, that f is a strict and G a reduced homotopy homomorphism. This
implies that the map respects the composition of two vertices as well, as the
interchange with '-vertices.

18.3. The recti�cation. In this section we describe a recti�cation of a
homotopy A-algebra X, i.e. we construct a strict A-algebra MAX, which is
topologically equivalent to X. Furthermore MAX satis�es several universal
properties, regarding reduced homotopy homomorphisms.

For o 2 C let �MAX(o) be the space

�MAX(o) =
M
�2Cn

WrMorA(o
1;�0)�X(�):

Each element (T ;x1; : : : ; xn) 2 �MAX(o) can be interpreted as a cherry tree
of the following form.

T

o1

x1	
�����
�01��

��
xn	
�����

�0n��

��
: : :

MAX(o) is the quotient of �MAX(o) under the following relations:

1. (T Æi S;x1; : : : ; xm+n�1) = (T ;x1; : : : ; xi�1; y; xi+n; : : : ; xm+n�1) with
y = '(S)(xi; : : : ; xi+n�1) for T 2 WrMorA(o1;�0) and S 2
WrMorA(�0

i ;�
0); � 2 Cm; � 2 Cn and 1 � i � m. In other words

a cherry tree of secondary color 0 above an edge of length 1 can be
replaced by its value in X.

2. For all cherry trees T1; : : : ; Tn; a 2 A(o;�), each tree T and � 2 �n we
have

T

Æ

oi

a

T1

�i1���

���
: : : Tn

�in���

���

=

T

Æ

oi

��(a)

T�(1)

�i
�(1)��

��
: : : T�(n)

�i
�(n)��

��

This also holds, if the trees Ti consist only of cherries.
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The evaluations ev : A(o;�)�MAX(�)!MAX(o) are given by

(a; (T1;x
1); : : : ; (Tn;x

n)) 7! Æ

o1

a

T1

�11;0����

����

: : : Tn

�1n;0����

����

:

This means we graft the cherry trees T1; : : : ; Tn along their roots to the inputs
of a tree with one vertex, output color o1, input colors �1

i and vertex label a.
Since the new internal edges have the color 1, their lengths are not important
and can be set to 0. The reduction of edges of secondary color 1 implies that
this de�nes an A-algebra structure �' on MAX.

Theorem 18.29. (Thm. 4.49 of [BV73]) Let A be a C-operad and
(X;') a homotopy A-algebra and (Y;  ) a strict one.

1. There exists a reduced homotopy homomorphism (iX; IX) : (X;') !
(MAX; �').

2. For each reduced homotopy homomorphism (f; F ) : (X;')! (Y;  Æ")
there exists a unique homomorphism �f : (MAX; �') ! (Y;  ) of A-
algebras such that (f; F ) = �f(iX ; IX).

3. If (g;G) : (X;')! (Y;  Æ ") is homotopic to (f; F ), then the induced
homomorphisms �f and �g are homotopic through homomorphisms of
A-algebras.

Proof. Let iX(o) : X(o)!MAX(o) be given by

x 7! Æ

o1

f

x������� 
o0

:

For T 2 WrMorA(o1; ��) with o 2 C and �� 2 (C � f0; 1g)n, the map IX :
WrMorA ! EndC(X;MAX) is given by

IX(T )(u1; : : : ; un) = (T Æ (S1; : : : ; Sn);v1; : : : ;vn)

where

(Si;vi) =

(
(id; ui) if ��i = �0

i and ui 2 X

(S; z) if ��i = �1
1 and ui = (S;v) 2MAX:

Graphically we reinterpret the cherries of (T ;u1; : : : ; un) again as cherry
trees. For ��i = �1

i the cherry yi is a cherry tree (S;v) in WrMorA, with
output color 1 and input colors 0. For ��i = �0

i the cherry yi 2 X(�i) can
be interpreted as the cherry tree consisting of one vertex with the iden-
tity as label, the cherry yi and output and input color 0. Since the output
colors of these small trees are the same as the color of the corresponding
inputs of T , we can compose them and obtain a bigger cherry tree with out-
put color 1 and input colors 0, which represents an element in MAX. For
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T 2 WrMorA(o0;�0) the homomorphism IX : WrMorA ! End(X;MAX)
is given by the structure homomorphisms ' of X.

The �rst relation on MAX ensures that the restriction of IX to
WrMorA(o1;�1) is exactly the structure �' Æ " of MAX. Therefore we have a
reduced homotopy homomorphism (iX; IX) :WrMorA ! EndC(X;MAX).

Now let (f; F ) : (X;') ! (Y;  Æ ") be a reduced homotopy ho-
momorphism of homotopy A-algebras. Since for each homogeneous tree
T 2 WrMorA(o1;�0) and (x1; : : : ; xn) 2 X(�) the equation

I(T )(x1; : : : ; xn) = (T ;x1; : : : ; xn) 2 MAX(o)

holds, the map �f(o) :MAX(o)! Y (o) is uniquely determined by the equa-
tion of De�nition 18.25.

For T 2 WrMorA(o1; ��) and ui 2 X(�i) if ��i = �0
i and ui 2MAX(�i) if

��i = �1
i , we have

�f (I(T )(u1; : : : ; un)) = �f(T Æ (S1; : : : ; Sn);v1; : : : ;vn)

= F (T Æ (S1; : : : ; Sn))(v1; : : : ;vn)

= F (T )(F (S1)(v1); : : : ; F (Sn)(vn));

where the (Si;vi) are given as above. Since this equation holds, and since
(f; F ) is reduced, the map �f of C-families is an A-homomorphism. This
proves part (b) of the theorem.

(c) is a direct consequence of (b). IfHt : (X;')! (Y;  Æ") is a homotopy
through reduced homotopy homomorphisms from F to G, then there exists
a unique homomorphism �ht : (MAX; �')! (Y;  ) for each t 2 [0; 1] with

�ht(o)(T ;x1; : : : ; xn) = Ht(T )(x1; : : : ; xn)

for each (T ;x1; : : : ; xn) 2 MAX(o). Therefore the �ht form a homotopy
through homomorphisms of A-algebras from �f to �g.

Notation 18.30. The image of a reduced homotopy homomorphism
(f; F ) : (X;')! (Y;  Æ ") will be called �f .

Corollary 18.31. Let (X;') be a homotopy A-algebra and (Y;  ) a
strict one. Then the set of reduced homotopy homomorphisms (f; F ) :
(X;') ! (Y;  Æ ") is bijective with the set of homomorphisms �f :
(MAX; �') ! (Y;  ). The bijection is given by (f; F ) 7! �f and its inverse
by �f 7! �f�(iX; IX).

Theorem 18.32. (cmp. Thm 4.49 of [BV73]) The maps iX(o) : X(o)!
MAX(o), underlying the reduced homotopy homomorphism (iX ; IX) :
(X;')! (MAX; �' Æ "), are homotopy equivalences.

Proof. The inclusion X(o)!MAX(o) is given as above.
Obviously each element (S;x) of MAX(o) can be represented by an ele-

ment (S0;x0) such that S0 has no internal edge of color 1, i.e. its only edge
of color 1 is the root. The deformation retraction Ht :MAX(o) ! MAX(o)
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is given on these representations by

Ht

0
BBBBB@ Æ

o1

f

T

o0;r

1
CCCCCA =

Æ

o1

f

Æ

o0;t

id

T

o0;r

:

For t = 0 this is the identity and for t = 1, we can reduce the tree above
to its image in X(o), and therefore obtain an element in the image of the
inclusion iX .

18.4. The Homotopy categories. In addition to the simplicially de-
�ned categoryMapA, we can de�ne a homotopy category of strict A-algebras
in a more classical way.

Definition 18.33. Let (X;') and (Y;  ) be two strict A-algebras. Two
homomorphisms f; g : (X;') ! (Y;  ) of A-algebras are called homotopic
if there exists a homotopy ht : (X;') ! (Y;  ) from f to g such that each
ht : (X;')! (Y;  ) is a homomorphism.

Remark 18.34. If we interpret ht as a homotopy ht : MorA !
EndC(X;Y ) of homomorphisms, then the homomorphisms d0ht : A !
EndC(X) and d1ht : A ! EndC(Y ), induced by the trees of secondary
color 0 and 1, are precisely ' and  .

Definition 18.35. Let A be a topological C-operad. HomTopA is the
category, whose objects are A-algebras (X;') and whose morphisms are
homotopy classes of strict A-homomorphisms f : (X;')! (Y;  ). The com-
position is given by the composition of the representing morphisms.

Since the augmentation "A : WA ! A is a morphism of C-operads, we
can interpret every A-algebra (X;') as a homotopy A-algebra (X;' Æ ").
A strict A-morphism f : (X;') ! (Y;  ) induces a homotopy morphism
(f; F ) : (X;' Æ "MorA) ! (Y;  Æ "MorA), with F = f Æ "MorA : WMorA !
MorA ! EndC(X;Y ). Therefore we obtain a functor J : HomTopA !
MapA with J(X;') = (X;' Æ ").

The recti�cation of homotopy algebras induces a functor MA :MapA !
HomTopA. The image MA(f; F ) : (MAX; �') ! (MAY; � ) of a homotopy
homomorphism (f; F ) : (X;') ! (Y; ') is given by the homomorphism
induced by the composition (iY ; IY )�(f; F ).

(X;')
(iX ;IX)

��

(f;F )

��

(MAX; �' Æ ")

MA(f;F )
���
�
�

(Y;  )
(iY ;IY )

�� (MAY; � Æ "):
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Here we use that, according Proposition 18.23, the composition
(iY ; Iy)�(f; F ) can be chosen to be a reduced homotopy homomorphism.
This de�nes a functor, because the diagram

(X;'X)
(iX ;IX)

��

(f;F )
��

(MAX; �'X Æ ")

MA(f;F )
��

(Y; 'Y )
(iY ;IY )��

(g;G)
��

(MAY; �'Y Æ ")

MA(g;G)
��

(Z;'Z)
(iZ ;IZ)�� (MAZ; �'Z Æ ")

commutes in MapA for any two homotopy homomorphisms (g;G) :
(Y; 'Y )! (Z;'Z) and (f; F ) : (X;'X)! (Y; 'Y ), and because

(MA(g;G) ÆMA(f; F )) (ix; IX) = J (MA(g;G) ÆMA(f; F ))�(ix; IX)

= JMA(g;G)�JMA(f; F )�(ix; IX):

Therefore the uniqueness of the construction implies that MA(g;G) Æ
MA(f; F ) is homotopic toMA ((g;G)�(f; F )). According to Corollary 18.31,
we even have

Corollary 18.36. (cmp. 4.51 of [BV73]) The functor MA : MapA !
HomTopA is left adjoint to the functor J : HomTopA !MapA. The unit of
this adjunction is given by the reduced canonical homotopy homomorphisms
(iX; IX) : (X;') ! (MAX; �'). The counit �Y : (MAY;  Æ ") ! (Y;  ) is
induced by the identity of an strict A-algebra (Y;  ), i.e.

(Y;  Æ ")
(iY ;IY )��

id 

												
(MAY;  Æ ")

J�Y
��

(Y;  Æ ")

Proof. Corollary 18.31 implies that the set of homotopy classes of ho-
momorphisms �f : (MAX; �') ! (Y;  ) is bijective with the set of homotopy
classes of reduced homotopy homomorphisms (f; F ) : (X;') ! (Y;  ). Ac-
cording to Corollary 18.24 each homotopy homomorphism is homotopic to a
reduced one. Hence we obtain a bijection

HomTopA ((MAX; �'); (Y;  )) 'MapA ((X;'); (Y X; Æ ")) :

The unit of the resulting adjunction is given by the images of the identities
of (MAX; �'), and therefore by (iX ; IX). The counit is given by the images of
the identities of (Y;  Æ "), and therefore by �Y .

Now we will recollect the results of Boardman and Vogt which show that
MapA is a model of the homotopy category of topological A-algebras.

Definition 18.37. Let V be a category and � � V a family of mor-
phisms in V. The localization V[��1] of V along � is a category together
with a functor P : V ! V[��1] such that for each functor F : V ! D which
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maps all morphisms of � to isomorphisms, there exists a unique functor
�F : V[��1]! D with F = �F Æ P .

It is well known that the localization V[��1] can be constructed similarly
to the free group of a monoid (see for example [GZ67]). Furthermore V[��1]
has the same objects as V.

Now let � be the class of topological equivalences in homTopA. Since
J preserves these equivalences, it induces a functor Ĵ : HomTopA[��1] !
MapA.

Theorem 18.38. (cmp. 4.53 of [BV73]) The functor Ĵ is an equivalence

of categories, whose adjoint is P ÆM . The unit id! Ĵ Æ (P ÆM) = J ÆM
of this adjunction is given by the natural, reduced homotopy homomorphisms
(iX; IX) : (X;')! (MAX; �').

Proof. The natural transformation (iX; IX) : id! J ÆM = Ĵ Æ (P ÆM)
is a natural isomorphism. In addition the counit � : M Æ J ! id induces a
natural transformation from (P ÆM) Æ J to P . According to lemma 1.2 in
chapter 1.1 of [GZ67], this implies that the morphisms P� form a natural

transformation from (P ÆM) Æ Ĵ to the identity on HomTopA[��1]. Since
each �(Y; Y ) : (MAY;  Æ ") ! (Y;  ) is a topological equivalence, P� is a
natural isomorphism.

Since the projection TopA ! HomTopA maps topological equivalences to
topological equivalences, we also get a functor TopA[��1]! HomTopA[��1].
Here we abusively use � for both, the class of topological equivalences in
TopA and in HomTopA, but this should not cause problems.

Proposition 18.39. (cmp. 4.54 of [BV73]) The functor TopA[��1]!
HomTopA[��1] is an equivalence of categories.

18.5. Homotopies between Homotopy Homomorphisms. Up to
this point we have considered only homotopiesHt :WMorA ! EndC(X;Y )
through (reduced) homotopy homomorphisms, which are constant on the
monochrome parts, i.e. diHt = diH0. This was necessary, since each stage
of the homotopy should represent the same (reduced) homotopy homomor-
phism between the homotopy (or strict) A-algebras (X; d1H0) and (Y; d0H0).
In this section we are going to examine homotopies Ht : WMorA !
EndC(X;Y ), which do not ful�ll this condition.

Lemma 18.40. Let A be a wellpointed C-operad and X a space. If there
exists a homotopy 't : WA! EndC(X) through homomorphisms, then the
homotopy A-algebras (X;'0) and (X;'1) are isomorphic.

Proof. Following Lemma 17.16 the suboperad B �WMorA generated
by the facesD0WMorA and D1WMorA, i.e. the two copies ofWA, is admis-
sible. Let ��t : B ! EndC(X;X) be given on D1WMorA by the constant
homotopy on '0 and on D0WMorA by the homotopy 't. The homomor-
phism ��0 is a restriction of the 1-simplex s1'0 : WMorA ! EndC(X;X) in
SMapA. By Theorem 17.10 exists an extension �t :WMorA ! EndC(X;X)
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of ��t such that �0 = s1'0. Graphically we represent this extension by the
diagram

'0
�1 ��

�t

'1

'0
s1'0

'0

't

Similar we obtain an extension 	t :WMorA ! EndC(X;X) of the form

'1
	1 ��

	t

'0

'0

't

'0

s1'0

Now let D � WMor2A be the admissible suboperad generated by all
faces of WMor2A. The homotopy �Ht : D ! EndC(X;X;X) is given on
D2WMor2A by �t, on D0WMor2A by 	T and on D1WMor2A by s1'0.

'0

����������

�t

'0

'1

����������

	t

'0

��������

��������
'0

'0

��������

��������

Since the homotopies �t and 	t and the constant homotopy on s1'0 coincide
on the monochrome parts, i.e. on the intersectionsDiDjWMor2A of two faces,
this homotopy is well de�ned.

The homomorphism �H0 is the restriction of s1s1'0. By Theorem 17.10 ex-
ists a homotopy Ht : WMor1A ! EndC(X;X;X) through homomorphisms,
which extends �Ht and such that H0 = s1(s1'0). The homomorphism D1H1 :
WMorA ! EndC(X;X;X) represents a composition ( 1;	1)�('1;�1) in
MapA. Hence we obtain

( 1;	1)�('1;�1) = s1'0 = id(X;'0):

Very similar we can de�ne a homotopy �Gt : D ! EndC(X;X;X)
through homomorphisms such that �Gt is given on D2WMor2A by 	t, on
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D0WMor2A by �t and on D1WMor2A by the homotopy s1't.

'1

����������

	t

'1

'0

����������

�t

'0

��������

��������
'0

'0

��������

��������

Then �G0 is an extension of s1s1'0 and there exists a homotopy Gt :
WMor2a ! EndC(X;X;X) through homomorphisms, which extends �Gt

such that G0 = s1(s1'0). Therefore we have

('1;�1)�( 1;	1) = s1'1 = id(X;'1):

Lemma 18.41. Let Ft :WMorA ! EndC(X;Y ) be a homotopy through
homomorphisms. If d1(ft; Ft) : (X; d1F0) ! (X; d1F1) is the isomorphism
induced by the homotopy d1Ft, and d0(ft; Ft) : (Y; d0F0)! (Y; d0F1) the one
induced by d0Ft, then the following diagram commutes.

(X; d1F0)
(f0;F0)��

d1(ft;Ft)
��

(Y; d0F0)

d0(ft;Ft)
��

(X; d1F1)
(f1;F1)

�� (Y; d0F1)

Proof. Let B � WMor2A be the admissible suboperad, which is
generated by the faces D0WMor2A and D2WMor2A. The homotopy �Ht :
B ! EndC(X;X;X) is given on D0WMor2A by the homotopy Ft, and
on D2WMor2A by the homotopy induced by the construction of d1(ft; Ft).
Graphically we have

(X; d1F0) �� (X; d1F1)
(f1;F1)��

d1Ft Ft

(Y; d0F1)

(X; d1F0) (X; d1F0)
(f0;F0)

�� (Y; d0F0)

This is well de�ned, since the two homotopies coincide on D1D0WMor2A.
The homomorphism �H0 is the restriction of the two-simplex s0F :

WMor2A ! EndC(X;X; Y ) in SMapA. By Theorem 17.10 exists an ex-
tension Ht : WMor2A ! EndC(X;X; Y ) of �Ht such that H0 = s0F . Fur-
thermore we have

d1H1 = (f1; F1)�d1(ft; Ft):

Let D � WMor2A be the suboperad generated by all faces. The homo-
topy d1Ht can be combined with the homotopy, which induces the isomor-
phism d0(ft; Ft), and the constant homotopy F0, to a homotopy �Gt : D !
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EndC(X;Y; Y ).

(X; d1F0)
(f0;F0)

������������

F0

d1H1 �� (Y; d0F1)

d0Ft(Y; d0F0)

��

(X; d1F0)

(f0;F0) ������������

(f0;F0) �� (Y; d0F0)

����������

����������

(Y; d0F0)

Since �G0 is the restriction of s2F0, Theorem 17.10 implies the existence of
an extension Gt : WMor2A ! EndC(X;Y; Y ) of �G such that G0 = s2F .
Therefore we have

d0(ft; Ft)�(f0; F0) = d1H1 = (f1; F1)�d1(ft; Ft):

Let f : A ! B be a homomorphism of C-operads. Then there exists a
functor Mapf :MapB !MapA, given by

Mapf (X;') = (X;' ÆWf) and

Mapf(g;G) = (g ÆMorf ; G ÆWMorf );

for each homotopy homomorphism (g;G) : (X;') ! (Y;  ) of homotopy
B-algebras. The homomorphism Morf : MorA ! MorB is given by the
application of f to all A-labels of the representing trees.

For each composition (g1; G1)�(g0; G0) of homotopy homomorphisms
of B-algebras, exists a 2-simplex H in SMapB such that d2H = G0 and
d0H = G1. The remaining face d1H represents the composition. By com-
position with the homomorphism WMor2f : WMor2A ! WMor2B, which
is given in analogy to WMorf , we obtain a 2-simplex in SMapA such
that di(H Æ WMor2f ) = diH Æ WMorf . Therefore the image of the com-
position (g1; G1)�(g0; G0) is a composition of the images. Similar we have
s1(' Æ Wf) = s1' Æ WMorf , for each B-algebra (X;'). This proves that
Mapf is a functor.

If g is an homomorphism B ! D of C-operads, then the composition
Mapf ÆMapg :MapD !MapA is the functor MapgÆf . Since MapidA is the
identity on MapA, we have a contravariant functor Map from the category
operCTop of topological C-operads to the category Cat of categories.

Lemma 18.42. Let f0; f1 : A! B be two homomorphisms of C-operads
and ft : A ! B a homotopy through homomorphisms between them. Then
the functors Mapf0 and Mapf1 are naturally isomorphic.

Proof. For each homotopy B-algebra (X;'), the structures of the im-
ages Mapfi(X;') are given by ' ÆWfi. Therefore there exists a homotopy
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through homomorphisms between them, given by 'ÆWft. Following Lemma
18.40 we have an isomorphism �(X;') :Mapf0(X;')!Mapf1(X;').

If (g;G) : (X;') ! (Y;  ) is a homotopy homomorphism between
homotopy B-algebras, then Mapf0(g;G) and Mapf1(g;G) are homotopic
through homomorphisms. The homotopy is given by GÆWMorft. The faces
di(G ÆWMorft) are precisely diG ÆWft for i = 0; 1, where d1G = ' and
d0G =  . By Lemma 18.41 the following diagram commutes.

Mapf0(X;')
Mapf0

(g;G)
��

�(X;')

��

Mapf0(Y;  )

�(Y; )

��
Mapf1(X;')

Mapf1
(g;G)

�� Mapf1(Y;  )

Therefore the isomorphisms �(X;') form a natural isomorphism between
Mapf0 and Mapf1.

Theorem 18.43. Let A and B be two C-operads and f : A ! B a
homotopy equivalence between them. Then the functor Mapf : MapB !
MapA is an equivalence of categories.

Proof. Let g : B ! A be a homotopy inverse of f . Then there exist a
homotopy ht : A ! A through homomorphisms from g Æ f to the identity
of A. Since Mapf ÆMapg = MapgÆf the natural isomorphism to MapidA =
idMapA is induced by Lemma 18.42.

19. Lax operads

A lax C-operad (or homotopy C-operad) should be a C-operad, whose
compositions are only associative up to coherent homotopies. In addition this
notion should be homotopy invariant. Since a C-operad is an algebra over
the TC -operad OpC a natural choice is the notion of homotopy algebras over
OpC .

Definition 19.1. A lax C-operad (A; �) is a homotopy algebra A over
OpC , i.e. an algebra over WOpC, with structure homomorphism � :
WOpC ! EndTC(A). A morphism (f; F ) : (A; �)! (B;�) of lax C-operads
is a homotopy homomorphism. The category LaxOpC of lax C-operads and
morphisms between them is the category MapOpC .

Notation 19.2. In the following we will drop the index OpC from the
notation if we are working with the recti�cation MOpC

A of a lax C-operad.

In the following description of the structure of a lax operad, we restrict
to the monochrome case. To obtain the general case, one just has to replace
the N-colors of the edges by appropriate tupels in TC.
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If A is a lax operad, we have compositions Æi : A(n) � A(m) ! A(n +
m� 1) for 1 � i � n, given by the evaluations of the following cherry trees.

!"#$%&'(
n+m�1

i

������� x
n����

����

������� y
m����

����

These compositions are not associative. Instead we have homotopies, which
connect the appropriate compositions. For j � i � j + l� 1 for example, we
have the homotopies

Æ

l+m+n�1

i

Æ

l+m�1;1����

����
j

������� a
l����

����

������� b
m����

����

������� c
n����

���� �

Æ

l+m+n�1

i

Æ

l+m�1;0����

����
j

������� a
l����

����

������� b
m����

����

������� c
n����

����

and

Æ

l+m+n�1

j

������� a
l����

����
Æ

m+n�1;1����

����
i� j + 1

������� b
m����

����

������� c
n����

����

�

Æ

l+m+n�1

j

������� a
l����

����
Æ

m+n�1;0����

����
i� j + 1

������� b
m����

����

������� c
n����

����

:

If we denote the two equivalent trees on the right by (a; b; c)j;i, we obtain a
homotopy

(a Æj b) Æi c � (a; b; c)j;i � a Æj (b Æi�j+1 c):

Similarly we obtain homotopies

(a Æj b) Æi c � (a; b; c)j;i � (a Æi c) Æj+n�1 b

for i � j � 1 and

(a Æj b) Æi c � (a; b; c)j;i � (a Æi�l+1 c) Æj b:

For a 2 A(n); b 2 A(m); c 2 A(l); d 2 A(h) and 1 � i � n; 1 � j � l and
i � k � i+m� 1, we get the model of Figure 7.
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Figure 7. The "standard" associahedron

This model corresponds to an operation-tree of the form

Æa
��� ���

Æb

��� ���

Æc
��� ���

Æd

��� ���

;

i.e. each corner of the pentagon corresponds to a certain bracketing of the
word abcd and we are in the case of a two-dimensional associahedron, with
the usual trees describing its cellular decomposition.

For the operation-tree

Æa

Æ

i

										

b

�������

������� Æ

j













c

Æ

k

������

d

�����
�����

�������

we also get a subdivision of the pentagon (see Fig. 8). But the trees used
for the parts are di�erent. We have not only a choice of how to analyze the
associativity of a; c and d, i.e. how to choose the bracketing, but also a choice
of the order in which we evaluate the tree. We can �rst compose a with b
and then with the composition of c and d or, we can compose a with c, then
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with b and then compose the resulting operation with d. This results in the
occurrence of several permutations in the trees, given by a reordering of the
inputs.

�����������������������������

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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c��� d���

Figure 8. The "non-standard" associahedron

But for the operation tree

Æa

Æ

i

										

b

��� ��� Æ
j

c
��� ��� Æ

k













d

��� ���

with 1 � i < j < k � n, we do not get a pentagon. Since the associativity
relations on Op correspond to the transposition of two of the operations
b; c and d, we obtain a hexagon, whose vertices correspond to the possible
permutations of three elements. This means that for this tree we have the
2-dimensional permutohedron (cmp. Fig. 9).

For an increasing number of vertices the situation becomes more compli-
cated. For example the operation tree the a \linear" tree with n vertices, i.e.
a tree of the form

Æa1

��� ���

Æa2

��� ���

Æan

��� ���

;
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Figure 9. The permutohedron

leads to the n-th associahedron, since there is only a choice for the brackets.
But a tree of the form

Æa1

Æ

i2

										

a2

��� ��� : : : Æ

in













an

��� ���

is associated with the (n�1)st permutohedron, whose vertices correspond to
the permutations of the vertices a2 to an. Hence the resulting model depends
on the form of the corresponding operation tree. In the two extreme cases we
either have the associahedron or the permutohedron. The boundary of the
models of intermediate steps is given by combinations of lower dimensional
models of these two basic polyhedra.

The action A(n)��n ! A(n) of the symmetric group on a lax operad is
also weakened up to coherent homotopies. We only have a homotopy of the
maps A(n) � �n � �n ! A(n), given by (x; �; � ) 7! x(�� ) and (x; �; � ) 7!
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(x�)� of the form

!"#$%&'(
n

�

!"#$%&'(
n;1

�

������� x
n

�

!"#$%&'(
n

�

!"#$%&'(
n;0

�

������� x
n

= !"#$%&'(
n

��

������� x
n

Similar the equivariance of the compositions is weakened up to coherent
homotopies.

Furthermore the unit is not strict. Instead we get homotopies

x Æi id = Æ

n

i

������� x
n����

����
Æ

1;1���

���

�

� Æ

n

i

������� x
n����

����
Æ

1;0���

���

�

= x

and

id Æ1 x = Æ

n

1

������� x
n����

����

Æ

1;1���

���
�

� Æ

n

1

������� x
n����

����

Æ

1;0���

���
�

= x;

which are compatible with the associating and permutating homotopies.
The homotopy invariance results 18.11 to 18.15 induce several homotopy

invariance results for lax operads. We just formulate and prove one lemma,
which regards the extension of a given strict C-familiy structure, i.e. actions
of the symmetric groups, to C-operad structures.

Let �C � OpC be the TC-suboperad generated by the permutations.
Since each OpC(!; �) with ! 2 TC and � 2 T nC is a discret set, the inclusion
of �C(!; �) is a closed co�bration. Furthermore �(!; �) is empty if n 6= 1.
Hence the inclusion is obviously a �n-invariant co�bration.

Definition 19.3. Let A and B be two C-collections. A homotopy equiv-
alence f : A ! B is a map of C-collections such that there exists a map
g : B ! A of C-collections and homotopies through maps of C-collections
from idA to g Æ f and from idB to f Æ g.

Lemma 19.4. Let (B; �) be a lax C-operad with a strict action of the
symmetric group, i.e. the restriction of � to W�C � WOpC factors through
the augmentation "�C .

If A is a C-collection and if there exists a homotopy equivalence f : A!
B of collections with inverse g : B ! A, then A is a lax operad with structure
 and there exist two homotopy homomorphisms (f; F ) : (A; )! (B; �) and
(g;G) : (B; �)! (A ) which are inverse to each other.
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Proof. Since f and g are homotopy inverse, there exists a homo-
morphism H : W IsoTC ! EndTC(A;B) by Proposition 18.12 such that
HA;B = f . Since A and B are C-collections they both are �C -algebras.
Furthermore f induces a homotopy homomorphism (f; f Æ ") of (homo-
topy) �C -algebras, i.e. (homotopy) C-collections. Because f is a topologi-
cal equivalence, Proposition 18.15 induces the existence of a homomorphism
H 0 : W Iso�C ! EndTC (A;B) with H

0
A;B = f Æ ". The morphisms H 0

A and
H 0
B are the given C-collection structures.
Proposition 18.14 induces the existence of a homomorphism H 00 :

W IsoOpC ! EndTC (A;B) extending H
0 such that H 00

B = �. Furthermore
we obtain a lax operad structure on the collection A, extending H 0

A and the
C-collection structure of A.

By Proposition 18.13 the map �g : B ! A of C-families underlyingH 00
B;A is

homotopy inverse to f and hence homotopic to g as a C-map. Following 18.11
there exists a homotopy homomorphism (g;G) : (B; �) ! (A; ) such that
G is homotopic to H 00

B;A. Hence (g;G) is inverse to (f; F ) in MapOpC .

Example 19.5. Obviously the k-th space Cn(k) of the little cubes op-
erad is �k-equivarantly homotopy equivalent to the space Fn(k) of ordered
con�gurations of k points in (0; 1)n. The map 'n;k : Cn(k)! Fn(k) is given
by ([a1; b1]; : : : ; [ak; bk]) 7! (c1; : : : ; ck) where ci is the center point of the cube
[ai; bi].

In the other direction we can \blow up" the points in (0; 1)n to k distinct
little cubes of the same size such that the interiors are pairwise disjoint. We
can do it up to a maximal length rp

2
of the cubes, where r is the minimum of

all distances between two points or one point and the boundary of In. Since
r is contiuously determined by the con�guration, we obtain a �k-equivariant
map  n;k : Fn(k)! Cn(k).

The composition 'n;k Æ n;k is the identity, and via the deformation of the
given cubes into the "blow ups" of the centers we obtain a �k-equivariant
homotopy from the identity to  n;k Æ 'n;k.

By Lemma 19.4 the N-collection Fn(k) is a lax operad with a structure
� : WOp ! EndN(Fn) extending the symmetric group actions. Further-
more there exist homotopy homomorphisms (';�) : (Cn; �) ! (Fn; �) and
( ;	) : (Fn; �)! (Cn; �), where � is the operad structure of the little cubes,
extending 'n;k and  n;k. These homotopy homomorphisms are inverse to each
other.

In addition to the induced structure � on Fn we have "nice" multiplica-
tions, which are given by

(c1; : : : ; ck) Æi (d1; : : : ; dl) := 'n;k+l�1 ( n;k(c1; : : : ; ck) Æi  n;l(d1; : : : ; dl)) :

This means we �rst blow up both con�gurations and then compose them in
Cn. After that we shrink the cubes again to their center point. In terms of
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trees in W IsoOp, this operation is described by the following tree.

Æ

(k+l�1)0

'

Æ

(k+l�1)1;1
i

Æ

k1;1����

����
 

1

k0

Æ

l1;1����

����
 

2

l0

Here the secondary color 0 stands for the con�gurations and 1 for the little
cubes. By shrinking the edges to length 0, we obtain a homotopy from this
"nice" composition to the induced one, given by the tree

Æ

(k+l�1)0
i

1

k0����

����
2

l0����

����

:

19.1. Algebras over Lax Operads. In the strict case an algebra over
a C-operad A consists of a family fXogo2C of spaces and a morphism A!
EndC(X) of C-operads. In the lax setting we do it in exactly the same way.

Definition 19.6. An algebra (X; (';�)) over a lax C-operad (A; �) is a
family fXogo2C together with a reduced homotopy homomorphism (';�) :
(A; �)! EndC(X).

Notation 19.7. In the following we will drop the index Op from the
notation if we are working with the recti�cation MOpA of a lax operad.

Example 19.8. Let Mon be the operad of associative monoids, i.e.
Mon(n) = �n. Then we can interpret Mon as a lax operad. An alge-
bra over this lax operad is a space X together with a reduced homo-
topy homomorphism (';�) : (Mon; � Æ ") ! End(X). The homomor-
phism � : WMorOp ! EndN(Mon;End(X)) induces a multiplication
� � � : X �X ! X, given by

� ('2) (id2) 2 End(X)(2) = Top(X �X ! X);

where 'i is the tree

Æ

i1

'

i0

and id2 the identity in �2. Furthermore there exists a map

� (�) : � ! End(X)(0) = Top(�;X)
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where � is the tree
Æ
11

�
:

This map corresponds to an element e 2 X.
For shorter (and less confusing) notation, we will omit the Mon ar-

gument, i.e. for a tree T 2 WMorOp(o1;�0) the term �(T ) will denote
both, a map Mon(�) ! End(X)(o) and the map Xo ! X, given by
�(T )(id; : : : ; id).

In this notation the product x � e is represented by

�('2) (x;�(�)(�)) = �

0
BBBBBBBBB@ Æ

11

2

Æ

11����

����
�Æ

21����

����
'

20

1
CCCCCCCCCA
(x)

The last tree is equivalent to the following trees.

Æ

11

2

Æ

11����

����

'

Æ

10

�

Æ

21����

����
'

20

=

Æ

11

'

Æ

10;0

2

20����

����
Æ

10����

����
�

The identity on X can be codi�ed in the form

�('1) = � ('1) = �

0
BBBBBBBBBB@ Æ

11

'

Æ

10;1

2

20����

����
Æ

10����

����
�
1
CCCCCCCCCCA
:

Hence the homotopy

�

0
BBBBBBBBBB@ Æ

11

'

Æ

10;t

2

20����

����
Æ

10����

����
�
1
CCCCCCCCCCA
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for t 2 [0; 1] runs from the map x 7! x � e to the identity. Similarly, we obtain
a homotopy from x 7! e � x to the identity. Therefore e is a homotopy unit
of the multiplication on X.

In addition the multiplication is coherently homotopy associative. The
homotopy from x � (y � z) to (x � y) � z is given by the following trees

Æ

31

'

Æ
30;0

2

20���

���
21���

���

�
Æ

31

'

Æ
30;1

2

20���
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���

=̂ Æ

31

'

30;1

=̂
Æ

31

'

Æ
30;1

1

20���

���
21���

���

�
Æ

31

'

Æ
30;0

1

20���

���
21���

���

For four arguments, we get a pentagon, subdivided into ten cubical mod-
els (cmp. Fig. 10). lax, the face s = 1 of each square collapses, and we get
triangles. The parameter s is running radially toward the center, i.e. the bor-
der corresponds to s = 0. The parameter t is running from the center of the
edges towards the vertices. In general we get the But since Mon is a strict
operad interpreted as (n� 2)-dimensional associahedron, if we examine the
product of n elements.
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Figure 10. The pentagon for homotopy associative algebras
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Example 19.9. Let Com be the operad of commutative monoids, i.e.

Com(n) = �:

If we interpret Com as a lax operad, each algebra X over this lax operad is
also an algebra over the lax version of Mon. Hence there exists a multiplica-
tion on X, which is coherently homotopy associative, and a homotopy unit.
But furthermore there exists a commuting homotopy given by the trees

Æ

21

'

Æ

20;t

�

20

;

where � 2 �2 is the transposition. For t = 0 this tree induces the map
(x; y) 7! yx and for t = 1 the usual multiplication.

This commuting homotopy, together with the coherent homotopies for
the associativity, imply maps from the permutoassociahedra of M. Kapra-
nov (cmp. [Kap93]) into the endomorphism sets Top(Xn;X). For three ar-
guments the model is given by Figure 11.
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Figure 11. The permutoassociahedron
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The commuting sections Ci;� with i 2 f1; 2g and � 2 �3 are given by
squares of the type

"�$
t

�)) s

"�$t

�))s

Æ'

Æ
s
�

Æ
0

�����
Æ

t��
���

while the sections Ai;j;� are given by the squares
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i
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�����

Æ'

Æ
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�

Æ
t
j

�����
�����

In both cases the parameter s runs radially to the center. For Ci;�, the
parameter t runs anti-clockwise, and for Ai;� The right section becomes the
section in clockwise direction.

For s = 1 the map X3 ! X induced by the tree is completely determined
by the number of inputs the operation has. Hence the edge with s = 1
collapses and we obtain a triangular decomposition.

The correspondence of reduced homotopy homomorphisms with strict
homomorphisms, described in Theorem 18.29, leads to the following

Theorem 19.10. Let X be a space and (A; �) a lax C-operad. The set
XA of A-algebra structures on X is bijective with the set XMA of MA-
structures on X. The bijection is given by

(X; (';�)) 7! (X; �');

where the homomorphism �' :MA! End(X) is induced by (';�).

According to the last theorem a possible choice for the category of al-
gebras over a lax operad is TopMA. The objects correspond precisely to our
notion of algebra structures. But since we are interested in homotopy invari-
ant notions, the better choice isMapMA, i.e. the localization of the homotopy
category HomTopMA along the topological equivalences.

Remark 19.11. Another possibility would be the construction of a lax
T1-operad LaxA such that a morphism between two algebras X and Y over
the lax operad A, are codi�ed by the reduced homotopy homomorphisms
LaxA ! End(X;Y ). It is possible to de�ne an alternative, lax Tn-operad
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structure on MornMA, which is a good candidate for this approach. But un-
fortunately we were not able to de�ne a strict composition on these \mor-
phisms". Instead we had to de�ne a simplicial class consisting of the re-
duced homotopy homomorphisms LaxnA ! End(X0; : : : ;Xn), which is a
�-category in the sense of [SV92]. Using the techniques given in that pa-
per it is possible to construct a category of algebras over the lax operad
A and morphisms between them. But since we have no application of this
construction, we believed that the result would not justify the e�ort.

If we chooseMapMA as the category of algebras over a lax operad (A; �),
then our notion is homotopy invariant, regarding the underlying spaces of the
algebras. But what happens if we change the lax operad A up to topological
equivalences?

Let (g;G) : (A; �A)! (B; �B) be a morphism between two lax operads an
�g :MA!MB a homomorphism representing the homotopy class M(g;G).
Then we have a functor Map�g : MapMB ! MapMA. If �g

0 : MA ! MB
is another representation of M(g;G), then �g and �g0 are homotopic through
homomorphisms. Hence, following Lemma 18.42, the two functorsMap�g and
Map�g0 are naturally isomorphic.

If (h;H) : (B; �B) ! (C; �C) is another morphism of lax operads, then
the composition Map�g ÆMap�h is naturally isomorphic to MaphÆg, where �h

is an representation of M(h;H) and h Æ g one of M((h;H)�(g;G)).
If g is a topological equivalence, then (g;G) is an isomorphism in

LaxOp =MapOp, and henceM(g;G) an isomorphism in HomTopOp. There-
fore �g is a homotopy equivalence between operads. By Theorem 18.43 the
functor Map�g : MapMB ! MapMA is an equivalence of categories. This
shows that algebras over lax operads are preserved, if the operad is changed
by a topological equivalence.

20. Topological A1-categories

20.1. A1-categories. In section 16.6 we described categories with a
given object set S as algebras over an operad CatS, whose colors are pairs
of objects. In addition we described functors as morphisms between two such
algebras. We are now going to transfer this description to homotopy CatS-
algebras and homotopy homomorphisms. As we will see this leads to a model
for the homotopy category of small, topological categories.

Recall that a small, topological category is a pair (A;S) with S the set
of objects and A a CatS-algebra. The functors are pairs (F;') : (A;S) !
(B;T ) with ' : S ! T a map of sets and F : A ! 'B a morphism of
CatS -algebras. Here 'B is the (S � S)-family given by

'B(a; b) = B ('(a); '(b)) for a; b 2 S:

The composition of two functors (F;') : (A;S) ! (B;T ) and (G; ) :
(B;T )! (C;U) is given by

(G; ) Æ (F;') = ('G Æ F; Æ ') :

Using the notion of homotopy algebras, we can weaken the notion of
categories up to coherent homotopies.
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Definition 20.1. An A1-category ((A; �); S) consists of an object set
S and a homotopy CatS-algebra (A; �).

Remark 20.2. In the category of (graded) modules of a ring k, an A1-
category C consists of a set S of objects, k-modules C(a; b) for a; b 2 S and
compositions

ma1;:::;ak : C(a1; a2)
 C(a2; a3)
 � � � 
 C(ak�1; ak)! C(a1; ak)

satisfying several coherent associativity conditions (see for example [KF95]).
Or in shorter terms an A1-category C is an algebra over the S-colored
analogue of the operad of A1-algebras, which is a co�brant resolution of the
operad of assocoative algebras. This corresponds precisely to our situation.

CatS is the S-colored analogue of the operad of associative monoids and
WCatS the analogue of the algebraic operad of A1-algebras.

Before we proceed to describeA1-functors, we give a rough description of
the structure of an A1-category A. First there exists a composition A(a; b)�
A(b; c)! A(a; c), given by the tree

Æ

(a;c)

1

1

(a;b)����

����
2

(b;c)
����

����

in WCatS . But this composition is only associative up to coherent homo-
topies. The homotopy is given by the trees

Æ

(a;d)

1

3

(c;d)
����

����
Æ

(a;c);t����

����
1

1

(a;b)����

����
2

(b;c)
����

����

and

Æ

(a;d)

1

1

(a;b)����

����
Æ

(b;d);t
����

����
1

1

(b;c)����

����
2

(c;d)
����

����

:

For t = 0 the induced operations A(a; b)�A(b; c)�A(c; d)! A(a; d) coincide.
For t = 1 the �rst tree corresponds to the composition (f Æ g) Æ h and the
second to f Æ (g Æ h). If we look at compositions of four morphisms, we get a
pentagon like the one in Figure 7. Each vertex corresponds to one bracketing
of a word with four letters. In general we obtain the n-th associahedron for
compositions of n+2 morphisms. In this sense, an A1-category is a category
up to coherent homotopies.

In addition to this homotopy associative composition we have identites,
given by the operations � ! A(o; o), induced by the tree

Æ

(o;o)

�

:

But again, as in the case of lax operads, they are only an identity up to
homotopy.
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To de�ne functors between A1-categories, we have to examine the trans-
fer of colors in the setting of homotopy CatS -algebras. Let ' : S ! T
be a map of sets and (A; �A) a homotopy CatS- and (B; �B) a homotopy
CatT -algebra. Each tree R in WCatS induces a tree 'R in WCatS , which
is given by replacing the edge colors (a; b) by ('(a);'(b)). This induces a
WCatS -structure '�B on 'B, with '�B(R) = �B('R). More general, we
obtain a n-simplex 'H in SMapCatS for each n-simplex H in SMapCatT ,
given by 'H(R) = H('R), where 'R is obtained from R, by applying '
to the components of the primary color. Since the underlying trees and all
labels remain unchanged, these maps de�ne a map of simplicial spaces and
therefore a functor '� :MapCatT !MapCatS .

Definition 20.3. An A1-functor ((f; F ); ') : ((A; �A); S) !
((B; �B); T ) consists of a map ' : S ! T of sets and a homotopy homo-
morphism (f; F ) : (A; �A)! '�(B; �B).

Let ((f; F ); ') : ((A; �A); S) ! ((B; �B); T ) and ((g;G);  ) :
((B; �B); S) ! ((C; �C); U) be two A1-functors. Then their composition
is given by

((g;G);  ) Æ ((f; F ); ') = ('�(g;G)�(f; F ); gob Æ fob ) :

Since '� is a functor, this composition is associative. The identity of
((A; �); C) is the pair (id(A;�); idC). The category of A1-categories and -
functors will be denoted with MapCat.

Remark 20.4. Of course the nameMapCat is an abuse of notation, since
there exists no operad Cat of categories. But since A1-categories and -
functors are basically given by objects in the categories MapCatS for all sets
S, we think this notation is reasonable.

Now let ((f; F ); ') : ((A; �A); S)! ((B; �B)); T ) be an A1-functor such
that ' is bijective and (f; F ) : (A; �A) ! '�(B; �B) is a topological equiv-
alence. Then there exists an inverse (g;G) : '�(B; �B) ! (A; �A) of (f; F ).
Furthermore let  : D! C be an inverse of '. Then we have

 � ('�B) (a; b) = '�B ( (a);  (b)) = B (' Æ  (a); ' Æ  (b)) = ('Æ )�B(a; b):

Therefore  �(g;G) is a homotopy homomorphism from (B; �B) to  �(A; �A)
and we have an A1-functor ( �(g;G);  ) : ((B; �BT )! ((A; �A); S), which
is inverse to ((f; F ); '). In fact we have

Lemma 20.5. An A1-functor ((f; F ); ') : ((A; �A); S)! ((B; �B); T ) is
an isomorphism, if and only if ' is bijective and (f; F ) is an isomorphism
in MapCatS . The inverse is given by ( �(g;G);  ), where  is an inverse of
' and (g;G) one of (f; F ).

Proof. Let ((h;H);  ) be an inverse of ((f; F ); '). Since we have

((h;H);  ) Æ ((f; F ); ') = ('�(h;H)�(f; F );  Æ ') ;

' has to be bijective and (f; F ) an isomorphism. On one hand, we have
'�(h;H)�(f; F ) = id(A;�A) and on the other  �(f; F )�(h;H) = id(B;�B).
The second equation implies

(f; F )�'�(h;H) = '� ( �(f; F )�(h;H)) = '�
�
id'�(B;�B)

�
= id(B;�B):
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Therefore (g;G) := '�(h;H) is an inverse of (f; F ). Since (h;H) =  �(g;G),
this implies the statement.

Now we are going to prove, that the category of A1-categories and -
functors is equivalent to the \usual" homotopy category of TCat, given by
homotopy classes of functors.

Definition 20.6. Let A and B be two categories and ' : obA! obB
a map of the morphism sets. A family Ft(o; i) : A(o; i) ! B('(o); '(i)) for
o; i 2 obA is called a homotopy through functors, if each family Ft is a
functor. The two functors F0 and F1 are said to be homotopic.

It is well known that the relation "homotopic" is an equivalence relation.
Therefore we have a category HomTCat of small topological categories and
homotopy classes of functors between them.

Similarly to the category of algebras over an operad, we have a notion of
homotopy equivalences, which correspond to isomorphisms in the homotopy
category HomTCat. We also have a notion of topological equivalence, i.e.
functors, whose underlying maps are homotopy equivalences of spaces.

Definition 20.7. A functor f : A! B of two topological categories, is
called a topological equivalence if the map of object sets is bijective and each
map f(o; i) : A(o; i)! B(f(o); f(i)) is a homotopy equivalence.

There exists a functor

J : HomTCat!MapCat

given by J(A; �) = JS(A; �) and J(F;') = (JSF;'), where JS : HomTCatS =
HomTopCatS ! MapCatS is the known functor. Since JS maps topologi-
cal equivalences to isomorphisms in MapCatS , the functor J : HomTCat !
MapCat maps topological equivalences of categories to isomorphisms. If � is
the class of topological equivalences in HomTCat, we obtain a unique functor

�J : HomTCat
�
��1�!MapCat:

Theorem 20.8. The functor �J : HomTCat [��1] ! MapCat and the
projection TCat[��1] ! HomTCat[��1] are equivalences of categories. Here
� denotes the class of topological equivalences in TCat as well as in HomTCat.

This theorem will be proved in section 20.3.

20.2. The Grothendiek Construction. Before we prove Theorem
20.8 we describe the well-known Grothendiek construction (see for example
[Tho79]) and examine their localization. Usually the Grothendiek construc-
tion is de�ned for covariant functors into the category of categories. We will
adapt the construction to the contravariant case. For the remainder of this
section, let V be an arbitrary but �xed category.

Let F : Vop ! Cat be a functor. We will denote the category F (S) for
an object S in V by FS. Similar F' will denote the functor F (') : FS ! FT
for a morphism ' : S ! T in V.



112 HOMOTOPY ALGEBRAS AND LAX OPERADS

Definition 20.9. Let V be a category and F : Vop ! Cat a functor. The
Grothendiek construction F

R
V on F is the category with objects the pairs

(X;S) with S 2 obV and X 2 obFS, and with morphisms (f; ') : (X;S)!
(Y; T ), where ' : S ! T is one in V and f : X ! F'(Y ) one in FS. The
composition is de�ned by

(g;  ) Æ (f; ') = (F'(g) Æ f;  Æ ') :

The composition is associative and the identity of (X;S) is the pair
(idX ; idS). Furthermore each natural transformation I : F ! F 0 of func-
tors induces a functor I

R
V : F

R
V ! F 0RV with

I

Z
V(X;S) = (IS(X); S) and I

Z
V(f; ') = (IS(f); ') :

Notation 20.10. In the following we di�erentiate between functors and
natural transformations by using di�erent brackets. The image of an objectX
under a functor F is written as F (X), while the morphism F (X)! G(X) of
a natural transformation � : F ! G will be denoted with �[X]. The indexes
are reserved for objects and morphisms of V.

Definition 20.11. Let F;F 0 : Vop ! Cat be two functors. A lax natural
transformation (I; �) : F ! F 0 consists of a family fIS : FS ! F 0

SgS2obV
of functors and natural transformations �' : IS Æ F' ! F 0

' Æ ID for each
morphism ' : S ! D in V such that

1. �idS [X] = idIS(X) and
2. F 0

' (� [X]) Æ �' [F (X)] = � Æ'[X] for ' : S ! T; : T ! U and
X 2 FU .

Remark 20.12. Each strict natural transformation I : F toF 0 can be
interpreted as a lax natural transformation by setting

�'[X] = idISÆF'(X) = idF 0'ÆID :

Lemma 20.13. Let F;F 0 : Vop ! Cat be two functors and (I; �) : F ! F 0

a lax natural transformation. Then there exists a functor (I; �)
R
V : F

R
V !

F 0RV given by

(I; �)

Z
V(X;S) = (IS(X); S)

for S 2 obV and

(I; �)

Z
V(f; ') = (�'[Y ] Æ IS(f); ')

for (f; ') : (X;S) ! (Y; T ).

Proof. For each object S of V we have

(I; �)

Z
V(idX ; idS) = (�idS [X] Æ IS(idX); idS)

=
�
idIS(X); idS

�
:
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For (f; ') : (X;S)! (Y; T ) and (g;  ) : (Y; t)! (Z;U) we have

(I; �)

Z
V(g;  )ÆI

Z
V(f; ') = (� [Z] Æ IT (g);  ) Æ (�'[Y ] Æ IS(f); ')

=
�
F 0
' (� [Z] Æ IT (g)) Æ �'[Y ] Æ IS(f);  Æ '

�
=
�
F 0
' (� [Z]) Æ �' [F (Z)] Æ IS (F'(g)) Æ IS(f);  Æ '

�
= (� Æ'[Z] Æ IS (F'(g) Æ f) ;  Æ ')

= (I; �)

Z
V (F'(g) Æ f;  Æ ')

= (I; �)

Z
V ((f; ') Æ (g;  )) :

Lemma 20.14. Let (I; �) : F ! F 0 and (J; �) : F 0 ! F 00 be two lax
natural transformations. Then there exists a lax natural transformation (J Æ
I; �) : F ! F 00, given by (I Æ J)S = IS Æ JS and

�'[X] = �' [IT (X)] Æ JS (�'[X])

for ' : S ! T and X 2 FT . This natural transformation is called the
composition of (I; ') and (J;  ).

The proofs of this and the following lemma are straightforward and left
to the reader.

Lemma 20.15. Let (I; �) : F ! F 0 and (J; �) : F 0 ! F 00 be two lax
natural transformations. Then we have

(J; �)

Z
V Æ (I; �)

Z
V = ((J; �) Æ (I; �))

Z
V:

Corollary 20.16. Let F : Vop ! Cat be a functor and A an arbitrary
category. If there exist functors IS : FS ! A for each object S in V, and
natural transformations �' : IS Æ F' ! IT for each morphism ' : S ! T in
V such that

�idS [X] = idIS(X) and � [Z] Æ �' [F (Z)] = � Æ'[Z]

for ' : S ! T; : T ! U;X 2 obFS and Z 2 obFU , then there exists a
functor �K : F

R
V ! X.

Proof. There exists a functor A : Vop ! Cat, mapping each object of
V to A and each morphism to the identity of A. The conditions induce a
lax natural transformation (I; �) : F ! A and therefore a functor (I; �)

R
V :

F
R
V ! A

R
V. The composition with the projection functor PA : A

R
V !

A, given by (X;S) 7! A and (f; ') 7! f induces a functor �K := PA Æ
(K; �)

R
V.

Definition 20.17. Let F;G : Vop ! Cat be functors and (I; �); (J; �) :
F ! G be lax natural transformations. A lax natural 2-transformation � :
(I; �)! (J; �) is a family of natural transformations �S : IS ! JS for each
object S of V such that

G' (�D[Y ]) Æ �'[Y ] = �'[Y ] Æ �S [F'(Y )]
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for each morphism ' : S ! T of V and each object Y of FT .

Lemma 20.18. Let F;G : Vop ! Cat be functors, (I; �); (J; �) : F !
G lax natural transformations and � : (I; �) ! (J; �) an lax natural 2-
transformation. Then there exists a natural transformation �

R
V : (I; �)

R
V !

(J; �)
R
V given by

�

Z
V[X;S] = (�S [X]; idS) :

Again the proof is left to the reader.
Now we are going to apply these results to localization problems. For the

remainder of this section let F : Vop ! TCat be an arbitrary, �xed functor.
We assume that there exists a space �S of morphisms in FS for each object
S in V such that for each morphism ' : S ! T in V and for each f 2 �T
the image F'(f) is an element of �S or an isomorphism in FS.

The universal property of the localization Fc[��1
c ] implies that each mor-

phism ' : S ! T induces a unique functor

F'[�
�1] : FT [��1

T ]! FS[�
�1
S ]

such that the diagram

FS
f' ��

PS
��

FT

PT
��

FS[�
�1
S ]

F'[��1]
�� FT [�

�1
T ]

commutes. More general, we obtain a functor F [��1] : Vop ! TCat, with

F [��1](c) = FS[�
�1
S ]:

The space � of morphisms F
R
V is the subspace of all morphisms (f; ') :

(X;S) ! (Y; T ) such that ' is an isomorphism in V and such that f is an
element of �S. We can form the localization F

R
V[��1].

Theorem 20.19. The localization F
R
V[��1] is isomorphic to the cate-

gory F [��1]
R
V.

Proof. The functors PS : FS ! FS[�
�1
S ] induce a natural transforma-

tion from F to F [��1] and a functor

P

Z
V : F

Z
V ! F [��1]

Z
V:

If (f; ') : (X;S) ! (Y; T ) is an element of �, i.e. ' is an isomorphism and
f an element of �S , then we have

P

Z
V(f; ') = (PS(f); ') ;

which is an isomorphism in F [��1]
R
V. Hence P

R
V induces a uniquely deter-

mined functor

J : F

Z
V[��1]! F [��1]

Z
V

such that P
R
V = J Æ P .
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On the other hand we have functors KS : FS ! F
R
V[��1], given by

KS(X) = (X;S) and KS(f) = (f; idS):

Furthermore we de�ne

�'[X] :=
�
idF'(X); '

�
: (F'(X); S)! (X;T )

for each morphism ' : S ! T and each object X in FT . It is easy to
see that the �'[X] form natural transformations �' from KS Æ F' to KT ,
and that they satisfy the conditions of Corollary 20.16. The induced functor
K : F

R
V ! F

R
V[��1] is the projection P , given by the universal property

of the localization.
Since KS maps each morphism in �S to an isomorphism in F

R
V[��1],

there exist uniquely determined functors �KS : FS[�
�1
S ] ! F

R
V[��1] such

that �KS Æ PS = KS . By Lemma 1.2 in chapter 1.1 of [GZ67] we have a
uniquely determined natural transformations ��' : �KS Æ F'[��1]! �KT such
that

��' [PT (X)] = �'[X]:

Therefore ��' satis�es the conditions of Corollary 20.16 and there exists a
functor

�K : F [��1]
Z
V ! F

Z
V[��1]

such that �K Æ P
R
V = K = P .

We obtain �K Æ J Æ P = �K Æ P
R
V = P and therefore

�K Æ J = idF
RV[��1]:

On the other hand we have J Æ �K Æ P
R
V = J Æ P = P

R
V. If we can prove,

that this implies, that J Æ �K is the identity, we are done.
J Æ �K induces functors (J Æ �K)c : Fc[��1

c ]! F [��1]
R
V, given by

(J Æ �K)S(x) = J Æ �K(X;S) and (J Æ �K)S(f) = J Æ �K(f; idS):

Similarly we have functors�
J Æ �K Æ P

Z
V

�
: FS ! F [��1]

Z
V:

This functors are equal to the compositions (J Æ �K)S Æ PS and to IS Æ PS ,
where IS : FS[��1

c ]! F [��1]
R
V is the functor induced by the identity. The

universal property of the localization FS[�
�1
C ] implies (J Æ �K)S = IS. Now

we can apply the decomposition

(f; ') =
�
idF'(Y ); '

�
Æ (f; idS)
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for each morphism (f; ') : (X;S)! (Y; T ) and obtain

J Æ �K(f; ') =
�
J Æ �K

�
idF'(Y ); '

��
Æ
�
J Æ �K(f; idS)

�
=

�
J Æ �K Æ P

Z
V
�
idF'(Y ); '

��
Æ
�
(J Æ �K)S(f)

�
= P

Z
V
�
idF'(Y ); '

�
Æ IS(f)

=
�
idF'(Y ); '

�
Æ (f; idS)

= (f; '):

Here we used the fact that the identites in FS[�
�1
S ] are the images of the

identities in FS under the projection PS . Since P
R
V is the identity on the

objects, we also have J Æ �K(X;S) = (X;S).

20.3. The proof of Theorem 20.8. For the remainder of this section
let F : Setsop ! Cat be the functor, which assigns to each set S the category
FS = MapCatS and to each map ' : S ! T of sets functor F' = '� :
MapCatT ! MapCatS . Furthermore let G : Setsop ! Cat be the functor
given by GS = HomTCatS and G' = '� : HomTCatT ! HomTCatS . Directly
from the de�nitions follows that MapCat is the category F

R
Sets and that

HomTCat is G
R
Sets.

Let � be the class of topological equivalences in HomTCat, i.e. the ele-
ments of � are the pairs (f; ') : (X;S)! (Y; T ) with ' : S ! T a bijection
of sets and f : X ! G'(Y ) a topological equivalence, i.e. an element in �S .
Then the classes �S and � �t into the preliminaries of Theorem 20.19. Hence
we obtain an isomorphism

G

Z
Sets

�
��1� ' G[��1]

Z
Sets

where �G := G[��1] : Setsop ! Cat is the functor given by

�GS = GS [�
�1
S ] and �G' = G'[�

�1
S ]:

Following Corollary 18.36 the functor JS : HomTCatS ! MapCatS is
right adjoint to the functor MS : MapCatS ! HomTCatS. If �S is the class
of topological equivalences in HomTCatS then, by Theorem 18.38, these two
functors induce an equivalence

�MS : FS =MapCatS � HomTCatS[�
�1
S ] = �GS : �JS

of categories. For each map ' : S ! T of sets the image G'(f) of an element
in �T is an element of �S , since the underlying maps of morphism spaces
still are homotopy equivalences.

Since JS does not change the underlying spaces of CatS-algebras and
the underlying maps of morphisms between them, the JS form a natural
transformation from G to F . Hence we obtain a functor

J

Z
Sets : G

Z
Sets! F

Z
Sets
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given by �J
R
Sets(X;S) = (JS(X); S) and �J

R
Sets(f; ') = (JS(f); '). The

functor �J : HomTCat[��1]!MapCat given in Theorem 20.8 is precisely the
functor induced by J

R
Sets. The isomorphism

G

Z
Sets

�
��1� ' �G

Z
Sets

translates �J into the functor

�J

Z
Sets : �G

Z
Sets! F

Z
Sets;

which again is given by the natural transformation from �G to F induced by
the �JS. Hence it suÆces to prove that �J

R
Sets is an equivalence of categories.

We need an inverse. Unfortunately the functors �MS do not induce a
natural transformation from F to �G. But we can de�ne a lax natural trans-
formation (E; �) : F ! �G, which induces a functor

(E; �)

Z
Sets : F

Z
Sets! �G

Z
Sets:

As seen above, we have an equivalence �MS : FS � �GS : �JS , whose unit
is given by functors

IS : idFS ! �JS Æ �MS

and whose counit is given by functors

ES : �MS Æ �JS ! id �GS :

For each map ' : S ! T of sets and each object X 2 FT let �'[X] be the
morphism

�'[X] := ES
�
�G'( �MT (X))

�
Æ �MS (F'(IT [X])) : �MS (F'(X))! G'

�
�MT (X)

�
:

Here we use again the convention that terms in parentheses are arguments for
functors, and that terms in square brackets relate to natural transformations.
The indices are reserved for sets and maps of sets.

These morphisms �'[X] induce natural transformations

�' : �MS Æ F' ! �G' Æ �MT

for each map ' : S ! T , because we have for each f : X ! Y in FT

�'[Y ] Æ �MS (F'(f)) = ES
�
�G'

�
�MT (Y )

��
Æ �MS (F' (IT [Y ]) Æ F'(f))

= ES
�
�G'

�
�MT (Y )

��
Æ �MS

�
F'
�
�JT
�
�MT (f)

�
Æ IT [X]

��
= ES

�
�G'

�
�MT (Y )

��
Æ �MS

�
�JS
�
�G'

�
�MT (f)

��
Æ F' (IT [X])

�
= �G'

�
�MT (f)

�
Æ ES

�
�G'

�
�MT (X)

��
Æ �MS (F' (IT [X]))

= �G'

�
�MT (f)

�
Æ �'[X]:

In this series of equations we only used the naturality of several morphisms
and the fact that F' Æ �JT = �JS Æ �G'.

Furthermore we have

�idS [X] = ES
�
�MS(X)

�
Æ �MS (IS[X])
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which is the identity, because IS and ES are the unit and counit of the
adjunction of �JS and �MS . We also obtain

� Æ'[X] = �G (� [X]) Æ �' [F (X)]

for ' : S ! T; : T ! U and X in FU . Hence (E; �) is a lax natural
transformation from F to �G and we obtain a functor

(E; �)

Z
Sets : F

Z
Sets! �G

Z
Sets:

Using the several naturalities, the fact that IS and ES are the unit and
counit of the adjunction ��MS : FS � �GS : �JS and the fact that F' Æ �JT =
�JS Æ �G' we can prove that there exist lax natural 2-transformations

I : (id; id)! ( �J; id) Æ ( �M;�) =
�
�JS Æ �MS ; �JS(�'[X])

�
given by

IS : idFS ! �JS Æ �MS

and
E : ( �M;�) Æ ( �J; id) =

�
�MS Æ �JS ; �'[ �JT (X)]

�
! (id; id)

given by
ES : �MS Æ �JS ! id �GS

which induce two natural transformations

I

Z
Sets : idF

R
Sets ! ( �J; id) Æ ( �M;�)

Z
Sets

and

E

Z
Sets : ( �M;�) Æ ( �J; id)

Z
Sets! id �G

R
Sets

which are given by

I

Z
Sets[X;S] = (IS[X]; idS) and E

Z
Sets[X;S] = (ES [X]; idS):

SinceES[X] is an isomorphism inHomTCatS[�
�1
S ] and IS[X] one in �MapCatS ,

the functors ( �J; id)
R
Sets and ( �M;�)

R
Sets are equivalences of categories. This

completes the proof of Theorem 20.8.



The Milgram Non-Operad

In [Mil66] R.J. Milgram introduced geometric models Jn for the iterated
loop-space operads 
n�n. Later J.M. Boardman, R.M. Vogt and P. May
proved that n-fold loop spaces are closely related to En operads in general,
and thus to the little cube operads (see [BV68], [BV73], [May72]). Hence
the question arises if the operad structure of 
n�n translates to the geometric
model Jn.

In [BFSV98a] C. Balteanu, Z. Fiedorowicz, R. Schw�anzl and R.M. Vogt
construct an operadMn, which codi�es n-fold monoidal categories, a catego-
rial analog of n-fold loop spaces. They observe that an equivalent preoperad
is embedded inMn, whose free space is of the same homotopy type as JnX
. For n = 2 the spaces are even homeomorphic (see [BFSV98a, 3.12 { 14]).

Due to the underlying polytopes, the permutohedra, the Milgram-
construction Jn is of some importance for the examination of coherent ho-
motopy-commutativity. Similar to the associahedra introduced by Stashe�
in [Sta63], Williams uses the permutohedra and the Milgram-construction
in [Wil69] to de�ne his notion of Cn-spaces, which is used in several subse-
quent papers, and is occurring in papers of McGibbon and Hemmi (see for
example [McG89] and [Hem91]).

In fact there exists an operad structure with the permutohedra as un-
derlying spaces (this was pointed out to me by Clemens Berger and Zig
Fiedorowicz), simply by using the convex extension of the permutation op-
erad. But since the permutohedra are contractible this is an E1 operad in
the sense of Boardman and Vogt (i.e. the symmetric group action does not
need to be free). Therefore an algebra of this operad is homotopy equivalent
to an in�nite loop space and hence its associated monad can not be of the
same homotopy type as the Milgram construction Jn which is just an n-fold
loop space.

In [Ber96] and [Ber97] C. Berger conjectured an En operad structure
of the permutohedra, whose associated monad is the Milgram construction
Jn.

I will show that Berger's construction does not work. The �rst observation
is that the would-be operad bears a structure far too strong, namely that
of strictly abelian monoids. This collapse of structure is then used to show
that the suggested structure does not de�ne an operad at all. In fact the
proof shows that the multiplication de�ned by Berger does not respect the
degeneration conditions.

Nonetheless the construction de�nes preoperads J (n), which are homo-

topy equivalent to the little n-cubes. In particular, the k-th space J (n)
k is �n-

equivariantly homotopy equivalent to the real con�guration space F (Rn; k).

119
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Furthermore the "non-monad" associated to the preoperad J (n) is an alter-
native description of the Milgram construction Jn.

I would like to thank Zig Fiedorowicz and especially Clemens Berger
for some helpful and enlightening discussions, and James McClure for the
discovery of some mistakes and errors in an earlier version of this paper.

I thank the Deutsche Forschungsgemeinschaft for support during the
preparation of this paper.

21. The Permutohedra and Berger's construction

Let � be the category of �nite sets n = f1; : : : ; ng and injective maps.
Each injective map ' : n ! m has an unique decomposition of the form
' = 'inc Æ '\, such that 'inc : n ! m is increasing and '\ : n ! n is a
permutation.

Definition 21.1. The Permutation preoperad � : �op ! Top is the
functor with �(n) = �n and '� := �(') : �m ! �n given by � 7! (� Æ ')\

for ' 2 �(n;m)
The multiplications of the Permutation Operad � are given by

�n;i1;:::;in : �n � �i1 � � � � � �in ! �i1+���+in
(�; �1; : : : ; �n) 7! �(i1; : : : ; in) Æ (�1 � � � � � �n)

where �(i1; : : : ; in) permutes the blocks (see [Ber97, 1.15.(a)]) and ��� :
�n ��m ! �n+m is the canonical product of permutations.

The product �i1�� � ���in � �i1+���+in will be denoted with �(i1; : : : ; in).

For more details about (pre)operads in general the reader is referred to
[Ber96], [Ber97] or [May72].

In contrary to Clemens Berger I will use the left action of the symmetric
group on Rn, which seems to be the more common description.

Definition 21.2. For n � 1 the symmetric group �n acts on Rn from
the left by permuting the coordinates in the following way.

�(x1; : : : ; xn) =
�
x��1(1); : : : x��1(n)

�
:

The n-th Permutohedron Pn � R
n is the convex hull of the orbit of

(1; 2; : : : ; n) 2 Rn under this operation.
The convex hull of the orbit of �(i1; : : : ; ir) � �n will be denoted with

P (i1; : : : ; ir) � Pn.
The point �(1; : : : ; n) 2 Pn will be denoted with �.

Remark 21.3. The notation of � for the point (��1(1); : : : ; ��1(n))
seems somewhat confusing. But since we will extend the permutation operad
to the permutohedra, we can calculate the vertices right from the permuta-
tions, without applying it to the Rn.

The geometric and simplicial properties of these polygons were examined
in [Mil66], [Wil69] and [Bau80]. Here I will give only a rough sketch of the
few details I will use.
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P1 consists of only one point, P2 is homeomorphic to the unit interval
in R and P3 to the hexagon in R2. In general Pn is a (n � 1) dimensional
polytope.

Obviously there exists a left �n-action on Pn. The vertices are mapped
to vertices, and for each � 2 �n the map Pn ! Pn with x 7! �x is a homeo-
morphism. But unfortunately this action is not free, since the barycenter of
each permutohedron is a �xed point.

An arbitrary point x 2 Pn will be denoted by a linear combination of
permutations

x =
X
�2�n

t�� with
X
�2�n

t� = 1:

If x =
P

�2�n s�� and y =
P

�2�m t�� are points of Pn resp. Pm, the point
x� y 2 Pn+m is given by

x� y =
X
�2�n

X
�2�m

s�t�� � �:

In [Mil66] Milgram de�ned maps Ik : Pk�Pn�k ! Pn given by (x; y) 7! x�y
mapping the product of two permutohedra into certain faces of a higher
dimensional permutohedron. More general the codimension (r � 1) faces of
Pn are in one-to-one correspondence with the ordered partitions of f1; : : : ; ng
of type (i1; : : : ; ir) with i1 + � � �+ ir = n; ik � 1.

Remark 21.4. Each partition of type (i1; : : : ; ir) can be interpreted as
a permutation of i1 + � � �+ ir elements. If the classes are given by

fj1; : : : ; ji1g; fji1+1; : : : ; ji1+i2g; : : : ; fji1+���+ir�1+1; : : : ; ji1+���+irg

with jk < jl for im � k < l < im+1, then the corresponding permutation is
given by k 7! jk for 1 � k � i1 + � � �+ ir.

The converse does not hold, since the same permutation can be associated
to di�erent partitions. For example the identity in �3 corresponds to the
partition f1g; f2; 3g and to f1; 2g; f3g.

The vertices of the codimension (r�1) face, corresponding to a partition
of type (i1; : : : ; ir), with associated permutation � 2 �n, are given by the
coset ��(i1; : : : ; ir). In addition there is a homeomorphism I� : Pi1 � � � � �
Pir ! �P (i1; : : : ; ir) � Pn with

(x1; : : : ; xr) 7! �(x1 � � � � � xr):

Using the (right) weak Bruhat order on the symmetric groups, the 1-
skeleton of these faces can be oriented.

Definition 21.5. The inversion index inv(�) of a permutation � 2 �n
is the number of ordered pairs (i; j); 1 � i < j � n, whose orders are inverted
by �, i.e. �(i) > �(j).

The (right) Weak Bruhat Order of �n is the partial order generated by
� < � , if � is the composition of � and a transposition of two subsequent
numbers, that is � = � Æ (i; i+ 1), and inv(�) < inv(� ).
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Remark 21.6. Since we use the left action of �n on Rn, we have to
use the right weak Bruhat order, instead of the left weak Bruhat order, as
Clemens Berger did.

Example 21.7. �3 is given by the Poset

(123)

��+++++++++

��,,,,,,,,,

(213)

��

(132)

��
(231)

��,,,,,,,,,
(312)

��+++++++++

(321)

Here and in the following the permutation�
1 2 : : : n

�(1) �(2) : : : �(n)

�
will be denoted with (�(1); �(2); : : : ; �(n)) (the commas will be left, if un-
necessary).

Remark 21.8. If the vertices of the poset (i.e. the permutations) are
interpreted as points in R3, it does not seem to describe the border of P3 -
the points (2; 3; 1) and (3; 1; 2) have to be exchanged. But since we use the left
action of �n on Rn, the permutation (231) corresponds to the point (3; 1; 2)
and the permutation (312) to the point (2; 3; 1). In fact the correspondence
holds for all vertices of P3 and the poset �3.

Applying this partial order to the permutohedra the edges will be ori-
ented. The face corresponding to a certain partition of type (i1; : : : ; ir) and
associated permutation � has exactly one initial vertex, given by � and a
unique terminal vertex, given by the permutation that turns the classes of
the partition "upside-down", i.e.

l 7! kl0 with l0 = 2(i1 + : : : il) + il+1 � l + 1 if il < l � il+1:

Definition 21.9. An interval [�1; �2] in �n with the weak Bruhat order
is called admissible, if it is the vertex set of some coset ��(i1; : : : ; ir). Hence
�1 is the initial and �2 the terminal vertex of a face of Pn.

The geodesic of an arbitrary interval [�1; �2] of the weak Bruhat order in
�n, is the average of all oriented edge-paths between �1 and �2 in Pn. The
barycenter of [�1; �2] is the barycenter of its geodesic.

The barycenter of an admissible interval coincides with the barycenter of
the corresponding cell. For example the geodesic of [(123); (213)] � �3 is the
corresponding edge of P3, and its barycenter the barycenter of the interval.
The geodesic of [(123); (321)] � �3 is the line between (123) and (321) and
its barycenter is the point B. The geodesic of the non-admissible interval
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B

(231)

(213)

(123)

(132)

(312)

(321)

f3g;f1;2g

f2g;f1;3g

f1;2g;f3g f1g;f2;3g

f1; 3g;f2g

f2;3g;f1g

Figure 12. The geodesic and barycenter of P3

[(123); (231)] � �3 consists of the two edges [(123); (213)] and [(213); (231)]
of P3. Hence its barycenter is the point (213) 2 P3 (see Fig. 12).

To de�ne an operad-multiplication on the permutohedra we have to de�ne
maps Pr�Pi1�� � ��Pir ! Pi1+���+ir which satisfy the associativity conditions.
But the intention to formulate an operad, whose associated monad is the
Milgram construction gives certain additional restrictions to the choice of
the multiplication.

The operad structure has to extend the permutation operad �. This can
be done very easily by mapping the vertices of the product Pr�Pi1�� � ��Pir
to the corresponding vertices of Pi1+���+ir , given by �. But the extension of
this map can be done in two di�erent ways.

(123)

(312)

(132)

(12); (1); (12) (12); (1); (21)

(231)

(213)
(21); (1); (12) (21); (1); (21)

(321)

P3P2 � P1 � P2

Figure 13. The convex multiplication

The �rst possibility is the convex extension of the permutation operad,
by mapping Pr �Pi1 � � � � �Pir to the convex hull of the image vertices (see
Fig. 13). This construction does in fact de�ne an operad whose n-th space
is Pn. It is E1 in the sense of Boardman and Vogt, i.e. its underlying spaces
are contractible but the actions of the symmetric groups does not need to be
free. Thus its algebras are homotopy equivalent to in�nite loop spaces (cmp.
[BV73] section VI.3 ). But since the Milgram construction is only a model
for n-fold loop spaces the associated monad of the convex extension is of the
wrong homotopy type.

Berger tried to get the correct operad by application of two changes
to the convex extension of the permutation operad. First he deformed the
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multiplication such that it respects the relations on the borders of the per-
mutohedra, given in Milgram's construction. But this does not a�ect the
homotopy type of the spaces. In a second step he made the action of the
symmetric group free, which would give the correct homotopy type. 1 In the
Milgram construction the border of Pr � Pi1 � � � � � Pir has to be mapped
to the border of Pi1+���+ir . Berger did this by using a cubical extension of the
symmetric operad instead of the convex one. He de�ned the operad-multipli-
cation Pn;i1;:::;in : Pn � Pi1 � � � � � Pin ! Pi1+���+Pin as the aÆne extension of
the permutation operad, such that the barycenter of any interval in �i1+���+in
is mapped to the barycenter of its geodesics in Pi1+���+in (see Fig. 14). Hence
for n = 2 and i1 + i2 = 3 the squares A,B,C and D of P2 � P1 � P2, resp.
P2 � P2 � P1 are mapped to the corresponding segments of P3.

(123)

(123) (321)

(12); (1); (12) (12); (1); (21)

C

B

B C

(231)

(213)

(312)

(132)

DA

(21); (1); (12) (21); (1); (21)

D

A

(21); (12); (1) (21); (21); (1)

(12); (21); (1)

(321)

C

(213)

(231) (312)

(132)

DA

B

A

D

B

C

(12); (12); (1)

P2;1;2

P2;2;1

P2 � P1 � P2

P2 � P2 � P1

Figure 14. The cubical multiplication

The second step, in which the symmetric group action is made free, is
done in the de�nition of the would-be operad. For each permutation in �n
a copy of P k

n is added and an appropriate quotient of the space P k
n � �n is

taken to be the n� th space of the new Ek operad.
Here I will only describe the suggested construction for the operad J (2)

corresponding to J2, i.e. 2-fold loop spaces.

Definition 21.10. (cmp. [Ber97, 2.12]) Let J (2)
n be the quotient space

of Pn � �n under the relation

(�x;�) � (x; ��)

for any partition � 2 �n of type (i1; : : : ; ir); i1+� � �+ir = n, x 2 P (i1; : : : ; ir)
and � 2 �n.

The action of ' 2 �(n;n) is induced by

'� : Pm � �m ! Pn � �n

(x;�) 7!
�
x(�')inc; (�')\

�
:
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Remark 21.11. Since I use the left instead of the right action, the rela-
tion given by Berger has to be changed slightly.

Following [Ber97, 2.14] the � structure and the maps Pi1;:::;ir � �i1;:::;ir
induce an E2-operad structure on J

(2)
n .

22. The commutativity of Berger's construction

In the following we assume that Berger's construction de�nes an operad.
If (X; �) is a J (2)-algebra, there exist maps Fn : Pn � �n �Xn ! X. These
ful�ll certain conditions, induced by the operad structure and the relations

on J
(2)
n . Used here are

1. the associativity condition

Fn
�
s;Fi1 = (t1;x

1
1; : : : ; x

1
i1
); : : : ; Fin(tn;x

n
1 ; : : : ; x

n
in
)
�

= Fi1+���+in
�
n;i1;:::;in(s; t1; : : : ; tn);x

1
1; : : : x

n
in

�
;

2. the degeneration relations on the associated monad, induced by the
two maps 1! 2 F2(s;x; �) = F1(�;x) = x = F2(s; �; x)

3. and the �n-equivariance: Fn(s�;x1; : : : ; xn) =
Fn
�
s;x��1(1); : : : ; x��1(n)

�
:

Remark 22.1. Since only the identities of �n are used, in the future this
coordinate will be dropped.

There is a multiplication on X, given by xy = F2

�
(12);x; y

�
. The asso-

ciativity of the permutation operad shows the associativity of this multipli-
cation. Since the degeneration relations hold � is a unit. Therefore X is a
associative monoid with strict unit.

Obviously the map ' : I ! P2 with t 7! (12)(1 � t) + (21)t is a homeo-
morphism. Thus there exists a homotopy ht : X �X ! X with

ht(x; y) = F2

�
(12)(t � 1) + (21)t;x; y

�
;

running from h0(x; y) = xy to h1(x; y) = F2

�
(21);x; y)

�
= F2

�
(12); y; x

�
=

yx.
Via F3 and the degenerations one gets even stricter conditions for the

commuting homotopy ht. The maps P2;1;2 and P2;2;1 are homeomorphisms.
Therefore there exist si; ti 2 P2; i = 1; 2 for each r 2 P3 such that

P2:2;1
�
s2; t2; (1)

�
= r = P2;1;2

�
s1; (1); t1

�
:

Hence for x; y 2 X one gets

F2(s2;x; y) = F3(r; �; x; y) = F2(t1;x; y)

In the �rst case the homotopy ht is mapped to the edges [(123); (132)] and
[(231); (321)] (cmp. Fig. 15). In the second case ht is mapped to the geodesics
of the intervals [(123); (312)] and [(213); (321)], such that the center point of
the homotopy h 1

2
(x; y) is mapped to (132) and (231). Thus the homotopy

needs to be equal to xy on its �rst half and equal to yx on the second
half (In the �rst case the edge [(213); (231)] is mapped to xy and the edge
[(132); (312)] to yx). Thus (X; �) must be an abelian monoid.



126 THE MILGRAM NON-OPERAD

ht(x; y)

(213)

(231)

(321)

(312)

(132)

(123)

xy

(21); (1); (21)

(12); (1); (21)(12); (1); (12)

(21); (1); (12)

(123)

xy

P2;1;2

(213)

xy

(231)

ht(x; y)

(132)

yx

(312)

yx

(321)

(21); (21); (1)(21); (12); (1)

ht(x; y)

(12); (21); (1)(12); (12); (1)

P2;2;1ht(x; y)

yx

Figure 15. The commuting homotopy

Remark 22.2. Since the permutation coordinate wasn't used, the free-
ness of the symmetric group action is not involved in the failure of the sug-
gested construction. In fact the cubical extension of the multiplication does
not ful�ll the needed degeneration properties.

Now letX be a 2-connected CW-complex with non-degenerate base point
� (i.e. the inclusion � ,! X is a closed co�bration). Then the two-fold Moore
loop space Y := 
2

MX of X is a connected CW-complex. The canonical
evaluation map e : �2
2

MX ! X induces a homomorphism of monoids

2
Me : 


2
M�2Y ! Y .

If J (2) is an E2 operad, whose associated monad is the Milgram con-
struction, there exists a homomorphism of monoids  : J (2)Y ! 
2

M�
2Y

(the map is given in [Mil66, 5.2.]). Therefore we get a homomorphism
' := 
2

Me Æ  : J (2)Y ! Y . From the construction of  in [Mil66] one
can see that the diagram

J (2)Y
 �� 
2

M�2Y

2
M e

�� Y

Y��

,,����������� ��

�� ++++++++++

++++++++++

with the inclusion i : Y ,! 
2
M�2Y given by

(i(y)) (s; t) = y ^ s ^ t;

commutes. Therefore The homomorphism ' = 
2
M is an extension of the

identity and hence surjective.
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Since J (2)Y is the free J (2)-algebra of the space Y , it is an abelian monoid.
The surjectivity of ' now shows that Y = 
2

MX is strictly commutative,
too. But obviously this is wrong. Therefore J (2) can not be an operad whose
associated monad is the Milgram construction.
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