³¹P-NMR-spektroskopische Untersuchungen von Heterocyclen mit

 α -P₄S₃-, α -P₄Se₃- und P₃Se₄-Gerüst

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

Fachbereich Biologie/Chemie

der Universität Osnabrück

eingereicht von

Dipl.-Chem. Jörg Lutz

Osnabrück 2000

Die vorliegende Arbeit wurde in der Zeit von Februar 1995 bis Februar 2000 im Fachbereich Biologie/Chemie der Universität Osnabrück unter der Leitung von Prof. Dr. R. Blachnik durchgeführt.

Datum der Abgabe: 12.04.2000

Datum der Prüfung: 22.05.2000

Referent: Prof. Dr. R. Blachnik

Korreferent: Dr. habil. K. Karaghiosoff

Mein Dank gilt

- Herrn Prof. Dr. R. Blachnik für die interessante Themenstellung und sein stetes Interesse am Fortgang dieser Arbeit.
- Herrn Dr. habil. K. Karaghiosoff f
 ür die Übernahme des Korreferats und viele hilfreiche Anregungen und Diskussionen.
- Herrn Dr. B. W. Tattershall (University of Newcastle upon Tyne) für Diskussionen und seine Hilfsbereitschaft, insbesondere für den lehrreichen und interessanten Aufenthalt in Newcastle.
- Herrn Dr. M. N. S. Hill (University of Newcastle upon Tyne) für lehrreiche Diskussionen und die Hilfestellung bei NMR-Messungen.
- Allen Mitarbeitern und Kollegen der Arbeitsgruppe für interessante und anregende Diskussionen.
- Dem DAAD (ARC-Programm) f
 ür die Finanzierung des Aufenthaltes in Newcastle upon Tyne / GB.

INHALTSVERZEICHNIS

1. Einleitung	
1.1. Grundgerüste	3
1.2. Substitutionsreaktionen	4
2. Apparatives	5
2.1. ³¹ P-NMR-spektroskopische Messungen	5
2.2. Handhabung empfindlicher Substanzen	5
2.3. Verwendete Ausgangssubstanzen	6
3. Die Aminoderivate von α-P ₄ Se ₃ und P ₃ Se ₄	7
3.1. Experimentelles	8
3.2. Ergebnisse	8
4. Die Verbindungen P ₃ Se ₄ CN und P ₃ Se ₄ F	
4.1. Experimentelles	
4.2. Ergebnisse	
5. Mercapto- und Selenomercapto-Liganden	
5.1. Experimentelles	
5.1.1. Photochemische Reaktionen	
5.1.2. Substitutions-Reaktionen	13
5.2. Ergebnisse	14
5.2.1. Zuordnung der NMR-Signale	14
5.2.2. Die ³¹ P-NMR-Parameter	16
5.2.3. Diskussion der NMR-Parameter	20
6. Umsetzung von P ₃ Se ₄ I mit sekundären Aminen	23
6.1. Experimentelles	23
6.2. NMR-spektroskopische Untersuchung	
$6.2.1. P_3Se_4I + HNMe_2$	
$6.2.2. P_3Se_4I + HNEt_2$	

$6.2.3. P_3 Se_4 I + HNMePh$	
6.3. Die ³¹ P-NMR-Parameter	
6.3.1. Zuordnung der NMR-Signale	
6.3.2. Die ³¹ P-NMR-Daten	
6.4. Linienformanalyse	30
6.4.1. Ergebnisse der kinetischen Untersuchung	
7. Analyse der ³¹ P-NMR-Parameter von α-P ₄ S ₃ L ₂ , α-P ₄ Se ₃ L ₂ und P ₃ Se ₄ L	
7.1. Ergebnisse und Diskussion	33
7.1.1. Die chemischen Verschiebungen	
7.1.2. Die Kopplungskonstanten	
7.1.3. Statistische Auswertung der NMR-Parameter mittels Substituentenkonstanten	
8. Zusammenfassung	41
9. Anhang	43
9.1. ³¹ P-NMR-Daten von $P_5S_2(SMe)$	43
9.2. NMR-Daten	44
10. Literatur	48

1. Einleitung

1.1. Grundgerüste

Als Begründer der Phosphorthiaiodid-Chemie kann *Ouvrard* angesehen werden, der Ende des 19. Jahrhunderts eine Reihe von neuen Verbindungen dieses Typs entdeckte [Ouv92, Ouv94]. *Topsom* und *Wilkins* stellten 1956 durch verbesserte analytische und präparative Möglichkeiten fest, daß es sich dabei hauptsächlich um Gemische und nicht um Reinsubstanzen handelte [Top56]. Die Verbindung mit der Zusammensetzung P₄S₃I₂ konnte von ihnen und von anderen Autoren jedoch bestätigt werden. Die von *Topsom* und *Wilkins* angewendeten Darstellungsmethoden aus den Elementen und in Lösung werden, in etwas modifizierter Form, bis zum heutigen Tage verwendet.

$$4 P + 3 S + I_2 \rightarrow \alpha - P_4 S_3 I_2 \tag{1}$$

$$P_4S_3 + I_2 \rightarrow \alpha - P_4S_3I_2 \tag{2}$$

Zwei Jahre später konnte die Struktur von Wright und Penfold [Wri58] aufgeklärt werden.

Eine Verbindung der Zusammensetzung $P_4Se_3I_2$ konnte schon 1927 von *Mai* bei der Reaktion von P_4Se_3 mit Iod in Schwefelkohlenstoff synthetisiert und anschließend isoliert werden [Mai27]. Erst 57 Jahre später gelang es *Blachnik* et.al. α -P₄Se₃I₂ über die thermische Reaktion von P₄Se₃ mit Iod darzustellen und die Struktur zu bestimmen [Bla84].

Penney und *Sheldrick* wiesen im Jahre 1969 die bis dahin unbekannte Verbindung β -P₄Se₃I₂ nach [Pen70]. Sie entsteht in CS₂ bei der Addition von Iod an den basalen P₃-Ring des P₄Se₃.

Nur ein Jahr später wurde sowohl von *Hunt* und *Cordes* [Hun71], als auch von *Penney* und *Sheldrick* [Pen71], die entsprechende Schwefelverbindung synthetisiert und ihre Struktur bestimmt.

Als Nebenprodukt bei der thermischen Darstellung von α -P₄Se₃I₂ aus P₄Se₃ und Iod entsteht P₃Se₄I, das erstmals 1986 von *Blachnik* et.al. nachgewiesen wurde [Bla87]. In den folgenden Jahren gelang *Baldus* die Synthese von P₃Se₄I in Lösung, wobei er P₄Se₃ und Selen in Schwefelkohlenstoff mit Iod umsetzte [Bal89].

$$4 P_4 Se_3 + 12 I_2 \rightarrow 3 P_3 Se_4 I + 7 PI_3$$
(3)

$$3 P_4 Se_3 + 7 Se + 2 I_2 \rightarrow 4 P_3 Se_4 I \tag{4}$$

1.2. Substitutionsreaktionen

Da die Phosphor-Iod Bindung mit 184 kJ/mol relativ schwach ist, bietet sich ein Austausch von Iod gegen andere Liganden an. Durch diese Substitutionsreaktionen erschließt sich ein völlig neues Gebiet der Phosphorchalkogenchemie. Weiterentwicklungen in der Phosphor-Kernresonanzspektroskopie, die zur Verbesserung der Auflösung und Empfindlichkeit der Spektren führten, ermöglichten die genaue Analyse der dabei entstehenden Verbindungen.

Die ersten Substitutionsreaktionen wurden von *Fluck* et.al. durchgeführt, indem sie α -P₄S₃I₂ mit Silberbromid, -chlorid, -cyanid und -rhodanid zu α -P₄S₃X₂ (X = Br, Cl, CN, NCS) umsetzten [Flu76]. Diese Reihe wurde 1989 von *Baldus* um die Selenderivate α -P₄Se₃X₂ und P₃Se₄X (X = Br, Cl) erweitert [Bal89]. Durch Einsatz der reaktiveren Bismut- und Queck-silbersalze konnten auch die entsprechenden β -Isomere dargestellt werden [Bla91].

Die Darstellung von Phosphorgerüstmolekülen mit organischen Liganden wurde erstmals 1985 von *Tattershall* am Beispiel von α -P₄S₃(SR)₂ (R= Me, Et, Ph) durchgeführt [Tat85]. Seitdem sind zahlreiche Verbindungen dieses Typs synthetisiert worden. Als Reaktionspartner zur Einführung der Liganden in α -P₄S₃L₂, β -P₄S₃L₂, α -P₄Se₃L₂, β -P₄Se₃L₂ und P₃Se₄L wurden eingesetzt: Dithiocarbamate, Amine, Imine, Carboxylate, Alkoxide, Mercapto, Selenomercapto, -PR₂, -P(S)R₂, Malonate, Oxide, Sulfide, Selenide, Hydride, Fluoride, Halogenalkyle [Tat85, Tat91, Tat93, Ken93, Lön93, Kar94, Hac94, Bla94, Tat94, Bla95a, Bla95b, Lut95, Bla96a, Bla96b, Net96, Lut99].

In der vorliegenden Arbeit werden bestimmte Molekülklassen durch die Darstellung der noch fehlenden Verbindungen ergänzt. Weiterhin wird der Einfluß der Substituenten auf die ³¹P-NMR-Parameter von α -P₄S₃L₂, α -P₄Se₃L₂ und P₃Se₄I untersucht.

2. Apparatives

2.1. ³¹P-NMR-spektroskopische Messungen

Die NMR-Spektren wurden, sofern nicht anders vermerkt, mit einem Bruker Avance-250 DPX Spektrometer in 5 mm Probenröhrchen aufgenommen. Die Meßfrequenz für Phosphor betrug 101,256 MHz. Die chemischen Verschiebungen beziehen sich auf 85% H₃PO₄/H₂O-Lösungen. Als Lösemittel diente Schwefelkohlenstoff, dem zur Frequenzstabilisierung Deuterobenzol in einer abgeschmolzenen Glaskapillare beigegeben wurde. Mit Ausnahme der Messungen zur Linienformanalyse wurden alle Spektren bei 298 K aufgenommen.

Die Auswertung der Spektren erfolgte mit dem Spektrensimulations- und Iterationsprogramm WinDaisy [Bru96]. Berechnungen zur Linienformanalyse wurden mit DNMR5 [Ste78] durchgeführt.

2.2. Handhabung empfindlicher Substanzen

Die verwendeten und synthetisierten Verbindungen sind gegenüber Feuchtigkeit und Sauerstoff empfindlich. Daher wird entweder in Schutzgasapparaturen unter getrocknetem Argon oder in einer Glove-Box Typ MB 120 der Firma Braun gearbeitet. Die Stickstoff-Atmosphäre in der Glove-Box wird über eine Trockenstrecke und eine mit BTS-Katalysator gefüllte Reaktionsstrecke umgewälzt.

Die photochemischen Versuche werden mit dem Quecksilberhochdruckbrenner TQ 150 der Firma SCS durchgeführt.

Die thermische Präparation der Proben erfolgt in evakuierten Duran- oder Quarz-Glasampullen. Bei Reaktionen in Lösung wird, sofern nicht anders vermerkt, mit Schwefelkohlenstoff als Lösemittel gearbeitet. Schwefelkohlenstoff ist giftig, leicht entzündlich und teratogen.

Der Schwefelkohlenstoff wurde über P_4O_{10} getrocknet. Toluol wurde über Natrium-Kalium-Legierung frisch destilliert und anschließend verwendet.

Eine Besonderheit der in CS₂ gelösten Phosphor-Selen-Verbindungen ist die Abscheidung von elementarem Selen bei Lichteinwirkung. Die Apparatur wird deshalb mit Aluminiumfolie

umhüllt, und nur beim Umfüllen in das NMR-Röhrchen ist die Probe kurz dem Licht ausgesetzt.

Substanz	Bezugsquelle	Reinheit
Phosphor (rot)	Knapsack	99,9999 %
Schwefel	Riedel-de Haën	99,95 %
Selen	Retorte	99,999 %
Iod	Riedel-de Haën	99,98 %
Diphenyldisulfid	Fluka	>97 %
Diphenyldiselenid	Merck-Schuchardt	>97 %
Dimethyldiselenid	Aldrich	98 %
(Methylthio)trimethylsilan	Fluka	>98 %
(Ethylthio)trimethylsilan	Aldrich	90 %
Dimethylamin	Fluka	>99 %
Diethylamin	Merck	>99 %
N-Methylanilin	Fluka	>98 %
N-Ethylanilin	Merck-Schuchardt	zur Synthese
N-iso-Propylanilin	Lancaster	98 %
1,2,3,4-Tetrahydrochinolin	Merck-Schuchardt	>98 %
Anilin	Merck	zur Analyse
2-Aminofluoren	Fluka	>97 %
4-Triphenylmethylanilin	Merck-Schuchardt	>96 %
1-Adamantanammoniumchlorid	Merck-Schuchardt	>99 %
Toluol	Fluka	>99,5 %
Schwefelkohlenstoff	Riedel-de Häen	zur Analyse

3. Die Aminoderivate mit α-P₄Se₃- und P₃Se₄-Gerüst

 α -P₄Se₃I₂ und P₃Se₄I wurden mit primären und sekundären Aminen in CS₂ umgesetzt. Die Reaktionen führten zu exo,exo-Isomeren von α -P₄Se₃L₂ und zu P₃Se₄L. Der Ligand L ist N*i*PrPh oder THC (1,2,3,4-Tetrahydrochinolin) für α -P₄Se₃ bzw. NHPh, NHFlu (2-Aminofluorenyl), NHTPMP (4-Triphenylmethylphenylamino), NMePh oder NEtPh für P₃Se₄.

Tattershall [Tat91] gelang es, Iodliganden in α -P₄S₃I₂ durch die Reste NMePh und NEtPh auszutauschen. *Hackmann* [Hac94] und *Blachnik* et.al. [Bla96a] setzten α - und β -P₄S₃I₂ mit primären Aminen wie tert.-Butylamin, Anilin, Methylamin und mit Ammoniak um und erhielten außer offenen mono- und diaminosubstituierten Isomeren auch geschlossenes α -P₄S₃NL⁴. NL⁴ ist ein zweibindiger Rest.

Abbildung 1: Strukturformeln von P_3Se_4L , α - $P_4E_3L_2$ und β - $P_4E_3L_2$ (E = S oder Se)

Abbildung 2: Strukturformeln der Aminoliganden 2-Aminofluoren (NHFlu), Triphenylmethylphenylamin (NHTPMP) und 1,2,3,4-Tetrahydrochinolin (THC)

3.1. Experimentelles

Alle Reaktionen wurden ohne Zusatz von Triethylamin zum Abfangen von Iodwasserstoff durchgeführt. Statt dessen wurde ein entsprechender Überschuß des umzusetzenden Amins verwendet, da die Reaktion von α -P₄Se₃I₂ mit sekundären Aminen sehr gut gelingt und Triethylamin bei P₃Se₄I zur Zersetzung des Phosphor-Chalkogen-Gerüstes führt.

Reaktion von α - $P_4Se_3I_2$ *mit sekundären Aminen:*

0,2 g (0,33 mmol) α -P₄Se₃I₂ werden in 40 mL CS₂ gelöst. 1,32 mmol Amin werden in 20 mL CS₂ gelöst und innerhalb von 30 Minuten zugetropft. Die gelbe Lösung wird auf die Hälfte eingeengt.

Nach *Tattershall* [Tat91] lassen sich die Iodliganden in α -P₄Se₃I₂ in Gegenwart von überschüssigem Amin zum Abfangen von HI leicht durch Aminoreste ersetzen.

$$\alpha - P_4 Se_3 I_2 + 4 R^1 R^2 NH \to \alpha - P_4 Se_3 ((NR^1 R^2)_{exo})_2 + 2 R^1 R^2 NH_2 I$$
(5)

Diese Reaktionen verliefen in CS₂-Lösung ohne Bildung von Zersetzungsprodukten.

Reaktion von P₃Se₄I mit primären und sekundären Aminen:

0,1 g (0,19 mmol) P_3Se_4I werden in 30 mL CS_2 suspendiert. 0,38 mmol Amin werden in 20 mL CS_2 gelöst und innerhalb von 30 Minuten zugetropft. Bei der Umsetzung mit 4-Triphenylmethylanilin wird ein 4-facher Überschuß des Amins eingesetzt. Die dunkelorange Lösung wird auf die Hälfte eingeengt.

$$P_3Se_4I + 2 R^1R^2NH \rightarrow P_3Se_4(NR^1R^2) + R^1R^2NH_2I$$
(6)

Die Reaktion von P₃Se₄I mit 1-Adamantylamin gelingt nicht ohne Zugabe einer Base zum Abfangen von HI, da die Basizität von 1-Adamantylamin nicht ausreicht. Bei Zugabe von Triethylamin kommt es zu einer Zersetzung des P₃Se₄-Gerüstes, wie auch bei dem Versuch der Substitution von Iod durch den tert.-Butylaminoliganden.

3.2. Ergebnisse

Die Charakterisierung der Verbindungen erfolgte mittels ³¹P-NMR-Spektroskopie. Mit den gängigen Trennmethoden war es nicht möglich, die einzelnen Verbindungen aus den Produktgemischen zu isolieren.

Für die Spektren von [AX]₂-Spinsystemen wurden als Startwerte ³¹P-NMR-Parameter ähnlicher Verbindungen verwendet und anschließend iterativ mit dem Programm WinDaisy [Bru96] angepaßt. Die Signalverbreiterung der an ¹⁴N-Kernen gebundenen Phosphoratome erleichterte die eindeutige Zuordnung der Signale wesentlich. Die relativen Vorzeichen der meisten Kopplungskonstanten wurden analog zu strukturverwandten Molekülen vergeben. Für die ${}^{3}J_{BB}$ -Kopplungen sind negative und positive Vorzeichen möglich, so daß eine Bestimmung nötig war.

	P ₃ Se ₄ L			
L	NHPh	NHFlu	NHTPMP	
	Die chemischen	Verschiebungen		
$\delta_{\rm A}$	64,8	64,6	64,6	
δ_{B}	115,3	116,0	115,1	
$\delta_{\rm C}$	112,2	112,1	112,0	
Die	Phosphor-Phosph	or-Kopplungen []	Hz]	
\mathbf{J}_{AB}	-289,74 (02)	-291,46 (02)	-291,54 (03)	
J _{AC}	99,20 (01)	103,06 (01)	102,91 (02)	
J _{BC}	39,07 (02)	38,95 (02)	39,07 (03)	
R-Wert [%]	3,5	13,0	8,1	

Tabelle 1: ³¹P-NMR-Parameter von P_3Se_4L (L = NHPh, NHFlu und NHTPMP)

	P ₃ Se ₄ L			
L	NMePh	NEtPh	N ⁱ PrPh	THC
	Die chemi	schen Verschieb	ungen	
$\delta_{\rm A}$	56,9	56,9	57,0	56,6
$\delta_{\rm B}$	138,6	137,7	139,8	132,9
$\delta_{\rm C}$	119,3	117,0	117,5	118,7
	Die Phosphor-l	Phosphor-Kopplu	ungen [Hz]	
\mathbf{J}_{AB}	-315,07 (05)	-316,8 (1)	-321,31 (04)	-317,0 (2)
J _{AC}	105,91 (05)	104,6 (1)	106,40 (03)	104,8 (1)
J _{BC}	44,41 (05)	44,5 (1)	44,15 (04)	44,2 (2)
R-Wert [%]	8,7	19,7	48,6	21,5

Tabelle 2: ³¹P-NMR-Parameter von P_3Se_4L (L = NMePh, NEtPh, N^{*i*}PrPh und THC)

	α -P ₄ Se ₃ L ₂			
L	NMePh	NEtPh	N ⁱ PrPh	THC
	Die chen	nischen Verschie	bungen	
$\delta_{\rm A}$	81,4	79,0	79,0	80,3
$\delta_{\rm B}$	151,9	151,5	154,7	145,0
	Die Phosphor	-Phosphor-Kopp	lungen [Hz]	
\mathbf{J}_{AB}	-326,8 (2)	-327,8 (3)	-334,12 (02)	-327,3 (1)
$\mathbf{J}_{\mathbf{A}\mathbf{A}^{*}}$	59,9 (3)	59,2 (5)	60,68 (04)	58,3 (2)
$\mathbf{J}_{\mathbf{AB}^{\star}}$	12,8 (2)	11,7 (2)	12,83 (02)	11,9 (1)
$J_{BB^{\prime}}$	-9,4 (2)	-9,6 (4)	-9,33 (03)	-11,1 (2)
R-Wert [%]	10,9	16,3	12,0	10,9

Tabelle 3: ³¹P-NMR-Parameter von α -P₄Se₃L₂ (L = NMePh, NEtPh, N^{*i*}PrPh und THC)

Abbildung 3: Experimentelles (oben) und simuliertes (unten) ³¹P-NMR-Spektrum von P₃Se₄(NHPh)

4. Die Verbindungen P₃Se₄CN und P₃Se₄F

4.1. Experimentelles

Reaktion von P₃Se₄I mit Silbercyanid

0,1 g (0,19 mmol) P_3Se_4I werden in 30 mL CS_2 suspendiert und 0,13 g (0,95 mmol) AgCN zugegeben. Die Suspension wird 48 Stunden unter Lichtausschluß gerührt und auf die Hälfte eingeengt.

Reaktion von P₃Se₄I mit Tri-tert.-Butylzinnfluorid

0,1 g (0,19 mmol) P_3Se_4I werden in 30 mL CS_2 suspendiert. 0,19 mmol ^tBu₃SnF werden in 20 mL CS_2 gelöst und innerhalb von 30 Minuten zugetropft. Die Lösung wird weitere 30 Minuten gerührt und auf die Hälfte eingeengt.

	P ₃ Se ₄ CN P ₃ Se ₄ I			
Die c	hemischen Verschiebu	ngen		
δ _A	89,9	76,1		
δ_{B}	17,1	197,8		
δ _C	123,5	118,5		
Die Phosphor-Phosphor-Kopplungen [Hz]				
J_{AB}	-255,6 (1)	-265,5 (1)		
J _{AC}	129,8 (1)	104,7 (1)		
J _{BC}	44,6 (1)	52,9 (1)		
Die Phosphor-Fluor-Kopplungen [Hz]				
J _{AX}		0,0 (1)		
J_{BX}		-1052,3 (1)		
J _{CX}		-11,2 (1)		
R-Wert [%]	15,3	36,4		

4.2. Ergebnisse

Tabelle 4: ³¹P-NMR-Parameter von P₃Se₄CN und P₃Se₄F

5. Mercapto- und Selenomercapto-Liganden

5.1. Experimentelles

5.1.1. Photochemische Reaktionen

Reaktion von P_4S_3 *bzw.* P_4Se_3 *mit Diphenyldiselenid bzw. Dimethyldiselenid:*

0,2 g (0,91 mmol) P₄S₃ bzw. (0,55 mmol) P₄Se₃ werden in 10 mL CS₂ gelöst. Zu der Lösung wird eine äquimolare Menge von Diphenyldiselenid bzw. Dimethyldiselenid zugegeben. Die rot-orangefarbige Lösung läßt man für 1 Woche an Tageslicht stehen. Im Laufe der Zeit hellt sich die Lösung auf und es entsteht eine orange-gelbe Lösung, die ³¹P-NMR-spektroskopisch untersucht wird.

$$P_4S_3 + R-Se-Se-R \rightarrow \beta - P_4S_3(SeR)_2 \rightarrow \alpha - P_4S_3(SeR)_2$$
(7)

$$P_4Se_3 + R-Se-Se-R \rightarrow \beta - P_4Se_3(SeR)_2 \rightarrow \alpha - P_4Se_3(SeR)_2 + P_3Se_4(SeR)$$
(8)

$$(R = Ph oder Me)$$

*Reaktion von P*₄*Se*₃ *mit Diphenyldisulfid:*

0,2 g (0,55 mmol) P_4Se_3 werden in 15 mL CS_2 gelöst. Zu der Lösung wird eine äquimolare Menge von Diphenyldisulfid zugegeben. Die rot-orangefarbige Lösung wird mit dem Quecksilberhochdruckbrenner TQ 150 der Firma SCS 20 Minuten lang bestrahlt. Die nach der Bestrahlung orange-gelbe Lösung wird ³¹P-NMR-spektroskopisch untersucht.

$$P_4Se_3 + Ph-S-S-Ph \rightarrow \beta - P_4Se_3(SPh)_2 \rightarrow \alpha - P_4Se_3(SPh)_2 + P_3Se_4(SPh)$$
(9)

Eine Variante dieser Reaktion von P_4Se_3 mit Diphenyldisulfid in einem Verhältnis von 2 zu 3 wird verwendet, um β - P_4Se_4 herzustellen. Die Belichtungszeit beträgt 120 Minuten. Die Probe wird 2 Wochen unter Lichtausschluß gelagert und anschließend NMR-spektroskopisch vermessen.

$$P_4Se_3 + 6 Ph-S-S-Ph \rightarrow 3 SeP(SPh)_3 + P(SPh)_3$$
(10)

$$P_4Se_3 + SeP(SPh)_3 \rightarrow \beta - P_4Se_4 \tag{11}$$

5.1.2. Substitutions-Reaktionen

Reaktion von α -P₄Se₃I₂ und P₃Se₄I mit Me₃Si-SMe bzw Me₃Si-SEt

0,2 g (0,33 mmol) α -P₄Se₃I₂ bzw. (0,38 mmol) P₃Se₄I werden in 10 mL CS₂ suspendiert. Die

äquimolare Menge des Trimethylsilylmercaptans wird, gelöst in 5 mL CS₂, innerhalb von 30 Minuten zugetropft. Die Lösung wird weitere 30 Minuten gerührt und anschließend ein ³¹P-NMR-Spektrum der Probe aufgenommen.

$$\alpha - P_4 Se_3 I_2 + 2 Me_3 Si - SR \rightarrow \alpha - P_4 Se_3 (SR)_2 + 2 Me_3 SiI$$
(12)

$$P_3Se_4I + Me_3Si - SR \rightarrow P_3Se_4(SR) + Me_3SiI$$
(13)

(R=Me oder Et)

5.2. Ergebnisse

5.2.1. Zuordnung der NMR-Signale

Moleküle mit P₃Se₄-Gerüst

Verbindungen mit P₃Se₄-Gerüst zeigen im ³¹P-NMR-Spektrum ein AMX-Spinsystem, mit einer großen, negativen ¹J-Kopplung, einer großen, positiven ²J-Kopplung und einer kleineren ²J-Kopplung. Zur Zuordnung der chemischen Verschiebungen zu den einzelnen Phosphoratomen lassen sich folgende Tatsachen nutzen:

- Die große ¹J-Kopplung zwischen Phosphor A und B
- Die große ²J-Kopplung zwischen Phosphor A und C
- Die kleinere ²J-Kopplung zwischen Phosphor B und C

Dadurch lassen sich alle chemischen Verschiebungen eindeutig zu den entsprechenden Phosphorkernen zuordnen.

Moleküle mit α-P₄E₃-Gerüst

Verbindungen mit dem α -P₄E₃-Gerüst zeigen im ³¹P-NMR-Spektrum [AX]₂-Spinsystem mit folgenden Charakteristika:

- Eine große negative ¹J-Kopplung zwischen den Phosphorkernen A und B
- Eine größere, positive ²J-Kopplung zwischen P_A und P_A.
- Eine kleinere, positive ²J-Kopplung zwischen P_B und P_A.
- Eine kleine ³J-Kopplung zwischen P_B und P_B, die sowohl positiv als auch negativ sein kann

Die Problematik dieses Spinsystems liegt darin, daß es zwei unterschiedliche Ergebnisse für die Lösung dieses Systems gibt. Vertauscht man die beiden chemischen Verschiebungen der Phosphorkerne A und B und zusätzlich die ${}^{2}J_{AA}$ - und ${}^{3}J_{BB}$ -Kopplung, so erhält man bei der Simulation ein identisches Spektrum. Das bedeutet, daß die Zuordnung der NMR-Signale zu den Phosphoratomen A und B nicht über die Kopplungen gemacht werden kann. Um dennoch eine eindeutige Zuordnung machen zu können, bestehen folgende Möglichkeiten:

- Es existieren Wechselwirkungen zwischen Ligand und ligandentragendem Phosphorkern, wodurch eine eindeutige Zuordnung gewährleistet wird. Dies kann eine Signalverbreiterung durch ¹⁴N-Kerne (Kapitel 3 und 6) oder auch eine Kopplung, wie sie z. B. bei Fluor als Ligand (Kapitel 4) auftritt, sein.
- Bei Verbindungen, die Selen enthalten, läßt sich durch Auswertung der Satelliten-Spektren die Zuordnung eindeutig bestimmen, da sich hier das Spinsystem ändert und unterschiedliche Kopplungen der beiden Phosphorkerne zu den ⁷⁷Se-Kernen bestehen.
- Über Analogie-Beziehungen zu ähnlichen Verbindungen, in denen die Zuordnung der chemischen Verschiebungen und Kopplungen aufgrund einer der beiden vorher genannten Möglichkeiten klar ist.

Moleküle mit β-P₄E₃-Gerüst

Die Verbindungen mit β -P₄E₃-Gerüst zeigen im ³¹P-NMR-Spektrum die Signale eines AB₂X-Spinsystems mit einer großen, negativen ¹J-Kopplung zwischen den Kernen A und B, einer großen ²J-Kopplung zwischen den Kernen A und C und einer kleineren ²J_{BC}-Kopplung. Aufgrund der großen Kopplung und der geringen Differenz der chemischen Verschiebungen der Phosphorkerne A und B sind die Spektren höherer Ordnung und müssen, um korrekte NMR-Parameter zu erhalten, mittels Spektreniteration angepaßt werden. Die Zuordnung der chemischen Verschiebungen zu den einzelnen Phosphorkernen ist aufgrund des Spinsystems eindeutig.

5.2.2. Die ³¹P-NMR-Parameter

	α -P ₄ S ₃ (SePh) ₂	β -P ₄ S ₃ (SePh) ₂
Die c	hemischen Verschiebunge	en
δ _A	109,1	112,8
$\delta_{\rm B}$	124,6	91,4
δ _C		174,1
Die Phosp	hor-Phosphor-Kopplunge	n [Hz]
\mathbf{J}_{AB}	-276,43 (04)	-282,70 (02)
J _{AA'/AC}	62,13 (06)	75,86 (02)
$J_{AB'/BC}$	22,21 (03)	49,65 (01)
J _{BB} ,	-7,27 (06)	
R-Wert [%]	3,65	6,17

Tabelle 5: ³¹P-NMR-Parameter von α -P₄S₃(SePh)₂ und β -P₄S₃(SePh)₂

Abbildung 4: Strukturformeln von P_3Se_4L , α - $P_4E_3L_2$ und β - $P_4E_3L_2$ (E = S oder Se)

 $P_4S_3 + Me$ -Se-Se-Me:

	α -P ₄ S ₃ (SeMe) ₂	β -P ₄ S ₃ (SeMe) ₂	
Die c	hemischen Verschiebung	gen	
$\delta_{\rm A}$	105,2	105,1	
$\delta_{\rm B}$	122,4	89,4	
δ _C		172,5	
Die Phosphor-Phosphor-Kopplungen [Hz]			
\mathbf{J}_{AB}	-281,89 (03)	-284,30 (01)	
J _{AA'/AC}	60,74 (05)	74,60 (02)	
$J_{AB^{\prime}\!/BC}$	21,84 (03)	49,40 (01)	
$J_{BB^{\prime}}$	-9,50 (04)		
R-Wert [%]	3,29	7,19	

Tabelle 6: ³¹P-NMR-Parameter von α -P₄S₃(SeMe)₂ und β -P₄S₃(SeMe)₂

 $P_4Se_3 + Ph$ -S-S-Ph:

	α -P ₄ Se ₃ (SPh) ₂ ¹	β -P ₄ Se ₃ (SPh) ₂	$P_3Se_4(SPh)^2$	β -P ₄ Se ₄
	Die cher	nischen Verschie	bungen	
$\delta_{\rm A}$	97,5	121,0	83,9	84,7
$\delta_{\rm B}$	133,9	102,5	127,6	233,1
$\delta_{\rm C}$		153,8	119,5	185,6
	Die Phosphor	r-Phosphor-Kopp	lungen [Hz]	
\mathbf{J}_{AB}	-277,74 (04)	-296,38 (01)	-280,82 (05)	-195,38 (04)
J _{AA'/AC}	69,79 (06)	78,57 (02)	116,71 (05)	59,77 (06)
$J_{AB^{\prime}\!/BC}$	22,87 (03)	49,17 (01)	40,07 (05)	12,49 (03)
$J_{BB^{\prime}}$	-8,81 (06)			
R-Wert [%]	7,62	7,62	7,62	9,61

 $\textbf{Tabelle 7:} \ ^{31}\text{P-NMR-Parameter von } \alpha - P_4Se_3(SPh)_2, \ \beta - P_4Se_3(SPh)_2, \ P_3Se_4(SPh) \ und \ \beta - P_4Se_4$

 $^{^{1}\}delta_{A}~94,6~ppm,~\delta_{B}~131,3~ppm,~^{1}J_{AB}~-277,7~Hz,~^{2}J_{AA^{*}}~69,8~Hz,~^{2}J_{AB^{*}}~23,9~Hz,~^{3}J_{BB^{*}}~-10,1~Hz~[Bla96b]$

 $^{^{2}\,\}delta_{A}\,81,2\text{ ppm},\,\delta_{B}\,125,0\text{ ppm},\,\delta_{C}\,116,7\text{ ppm},\,^{1}J_{AB}\,-280,3\text{ Hz},\,^{2}J_{AC}\,115,9\text{ Hz},\,^{2}J_{BC^{*}}\,39,7\text{ Hz}\ [Bal89]$

 $P_4Se_3 + Ph$ -Se-Se-Ph:

	α -P ₄ Se ₃ (SePh) ₂ ³	β -P ₄ Se ₃ (SePh) ₂	P ₃ Se ₄ (SePh)
δ _A	94,1	115,9	80,7
δ_{B}	126,1	89,9	121,4
$\delta_{\rm C}$		148,9	117,2
	Die Phosphor-Phosphor	r-Kopplungen [Hz]	
$\mathbf{J}_{\mathbf{AB}}$	-270,50 (05)	-285,51 (03)	-273,40 (03)
J _{AA'/AC}	71,89 (08)	83,42 (05)	117,16 (03)
$J_{AB'/BC}$	22,37 (05)	47,20 (03)	38,57 (03)
$J_{BB'}$	-9,27 (08)		
R-Wert [%]	9,61	15,59	7,04

Tabelle 8: ³¹P-NMR-Parameter von α -P₄Se₃(SePh)₂, β -P₄Se₃(SePh)₂ und P₃Se₄(SePh)

 $P_4Se_3 + Me$ -Se-Se-Me:

	α -P ₄ Se ₃ (SeMe) ₂	P ₃ Se ₄ (SeMe)	
$\delta_{\rm A}$	90,7	109,9	78,8
δ_{B}	124,5	88,5	122,1
$\delta_{\rm C}$		148,5	117,0
	Die Phosphor-Phospho	or-Kopplungen [Hz]	
\mathbf{J}_{AB}	-275,35 (03)	-286,71 (02)	-280,04 (03)
J _{AA'/AC}	69,91 (05)	81,58 (03)	118,34 (03)
J _{AB'/BC}	22,69 (03)	47,43 (02)	38,96 (03)
$J_{BB^{\prime}}$	-11,84 (04)		
R-Wert [%]	11,84	15,03	11,84

Tabelle 9: ³¹P-NMR-Parameter von α -P₄Se₃(SeMe)₂, β -P₄Se₃(SeMe)₂ und P₃Se₄(SeMe)

 $^{^{3}\}delta_{A}$ 126,1 ppm, δ_{B} 93,9 ppm, $^{1}J_{AB}$ –270,5 Hz, $^{2}J_{AA^{*}}$ 71,7 Hz, $^{2}J_{AB^{*}}$ 22,9 Hz, $^{3}J_{BB^{*}}$ -9,9 Hz [Kar94]

	α -P ₄ Se ₃ (SMe) ₂	$P_3Se_4(SMe)$							
Die chemischen Verschiebungen									
δ _A	92,2	96,6	80,7						
$\delta_{\rm B}$	132,7	131,3	121,4						
δ _C		101,7	117,2						
δ _D		138,0							
	Die Phosphor-Phosphor	-Kopplungen [Hz]							
\mathbf{J}_{AB}	-284,34 (01)	-238,68 (01)	-273,40 (03)						
J _{AA'/AC}	68,14 (02)	76,98 (01)	117,16 (03)						
J _{AD}		25,65 (01)							
$J_{AB'/BC}$	22,81 (01)	17,40 (01)	38,57 (03)						
$J_{BB^{\prime}\!/\!BD}$	-11,02 (02)	-4,38 (01)							
J _{CD}		-285,29 (01)							
R-Wert [%]	5,14	5,14	7,04						

α -P ₄ Se ₃ l	2 bzw.	P_3Se_4I -	+ Me ₃ Si-	SMe:
--	--------	--------------	-----------------------	------

Tabelle 10: 31 P-NMR-Parameter von α -P₄Se₃(SMe)₂, α -P₄Se₃I(SMe) und P₃Se₄(SMe)

	$\alpha - P_4 Se_3 (SEt)_2^4 \qquad P_3 Se_4 (SEt)_2^4 = P_3$							
Die chemischen Verschiebungen [ppm]								
δ _A	90,86	79,81						
$\delta_{\rm B}$	127,92	125,20						
δ _C		115,94						
δ _D								
Die Phosp	hor-Phosphor-Kopplunge	en [Hz]						
\mathbf{J}_{AB}	-283,67 (02)	-288,11 (03)						
J _{AA'/AC}	67,95 (04)	115,62 (03)						
$J_{AB^{\prime}\!/BC}$	22,89 (02)	40,48 (03)						
J _{BB} ,	-10,87 (04)							
R-Wert [%]	4,92	8,81						

 α - $P_4Se_3I_2$ bzw. $P_3Se_4I + Me_3Si$ -SEt:

Tabelle 11: ³¹P-NMR-Parameter von α -P₄Se₃(SEt)₂ und P₃Se₄(SEt)

5.2.3. Diskussion der NMR-Parameter

Vergleich von β -P₄S₃(SeMe)₂ bzw. β -P₄S₃(SePh)₂ mit den entsprechenden Verbindungen mit Mercaptoliganden

Die Differenz der chemischen Verschiebungen von Phosphoratom A zwischen SMe und SPh beträgt 11,1 ppm und zwischen SeMe und SePh 7,7 ppm. Daraus folgt, daß δ_A bei den Mercaptoliganden stärker vom Rest R (R = Me, Ph) abhängig ist als bei den Selenomercaptoliganden. Die Mittelwerte von $\delta_A(SR)$ und $\delta_A(SeR)$ sind annähernd gleich.

Im Gegensatz dazu zeigt die chemische Verschiebung des Phosphoratoms B einen deutlichen Unterschied zwischen SR und SeR. Hierbei führen die Selenomercaptoliganden aufgrund der etwas geringeren Elektronegativität wie erwartet zu einer Hochfeldverschiebung. Der Einfluß des Restes R ist gering, denn er beträgt für SR 1 ppm und SeR 2 ppm. SePh führt im

 $^{^{4} \}delta_{A} \, 89,8 \text{ ppm}, \, \delta_{B} \, 126,9 \text{ ppm}, \, ^{1}J_{AB} - 283,7 \text{ Hz}, \, ^{2}J_{AA^{*}} \, 72,3 \text{ Hz}, \, ^{2}J_{AB^{*}} \, 22,3 \text{ Hz}, \, ^{3}J_{BB^{*}} - 9,5 \text{ Hz} \ [Bla96b]$

 $^{^{5}}$ δ_{A} 79,5 ppm, δ_{B} 125,4 ppm, δ_{C} 116,5 ppm, $^{1}J_{AB}$ –286,6 Hz, $^{2}J_{AC}$ 115,4 Hz, $^{2}J_{BC}$ 39,5 Hz [Bal89]

Vergleich zu SeMe aufgrund des –I-Effektes des Phenylrestes erwartungsgemäß zu einer Tieffeldverschiebung. Im Gegensatz dazu kommt es bei SPh im Vergleich zu SMe zu einer Hochfeldverschiebung. Dies läßt sich nicht über einen induktiven Effekt erklären, es handelt sich vermutlich um einen sterischen Effekt.

Die chemischen Verschiebungen des Phosphoratoms C verhalten sich ähnlich wie bei P_B , die Unterschiede sind jedoch kleiner.

Die Absolutwerte der ${}^{1}J_{AB}$ -Kopplungen der Mercaptoliganden sind ca. 11 Hz größer als die der Selenomercaptoliganden. Die Auswirkung des Ersatzes von Methyl durch Phenyl ist bei den SR-Resten ebenfalls größer.

Bei der ${}^{2}J_{BC}$ -Kopplung verhält es sich gleich, nur daß die Unterschiede sehr viel geringer sind. Die ${}^{2}J_{AC}$ -Kopplungen weisen ein gegensätzliches Verhalten auf, hier ist die Kopplung bei den Selenomercaptoliganden um ca. 4 Hz größer. Die Differenz zwischen SMe und SPh bleibt jedoch größer als bei SeMe und SePh.

Vergleich von β -P₄Se₃(SeMe)₂ bzw. β -P₄Se₃(SePh)₂ mit β -P₄S₃(SeMe)₂ bzw. β -P₄S₃(SePh)₂

Die Unterschiede der chemischen Verschiebungen zwischen SeMe und SePh als Liganden sind im β -P₄S₃-Gerüst größer als beim Selenisomeren. Bei der ¹J_{AB}-Kopplung verhält es sich entsprechend. Die ²J_{AC}-Kopplung zeigt eine etwas größere Differenz zwischen Me und Ph beim β -P₄Se₃-Gerüst. Ein gegensätzliches Verhalten weist die ²J_{BC}-Kopplung auf. Während β -P₄S₃(SePh)₂ eine etwas größere ²J_{BC}-Kopplung als β -P₄S₃(SeMe)₂ hat, ist ²J_{BC} bei β -P₄Se₃(SePh)₂ kleiner als im entsprechenden SeMe-Derivat. Dies deutet auf unterschiedliche sterische Einflüsse des Liganden bei den Schwefel- bzw. Selen-Käfigmolekülen hin.

Vergleich der Verbindungen β -P₄S₃(ER)₂ mit α -P₄S₃(ER)₂

Die Differenzen der chemischen Verschiebungen und Kopplungskonstanten zwischen Verbindungen mit Mercaptoliganden und Selenomercaptoliganden sind bei β -P₄S₃L₂ größer als bei α -P₄S₃L₂. Bei der ¹J_{AB}-Kopplung ist die Differenz zwischen SR und SeR in α -P₄S₃L₂ größer als in β -P₄S₃L₂. Moleküle mit β -Gerüst zeigen im Bezug auf die chemische Verschiebung einen deutlichen Unterschied zwischen SR und SeR, während bei α -P₄S₃L₂ die ¹J_{AB}-Kopplung der empfindlichste Parameter ist.

Vergleich der Verbindungen β -P₄Se₃(SeR)₂ mit α -P₄Se₃(SeR)₂

Die chemische Verschiebung δ_A sowie die ${}^1J_{AB}$ -Kopplung dieser Verbindungen verhalten sich entsprechend den Schwefelgerüstmolekülen. Die Differenzen zwischen SeMe und SePh von β -P₄Se₃(SeR)₂ und α -P₄Se₃(SeR)₂ sind bei δ_B , ${}^2J_{AC}$ und ${}^2J_{BC}$ annähernd gleich.

Die neue Verbindung mit AM₂X-Spinsystem

Aufgrund der hohen Konzentrationen von P_4Se_3 und $SeP(SPh)_3$ in der Lösung, ist eine Reaktion zwischen diesen beiden Molekülen wahrscheinlich. Dabei wird ein Selenatom von $SeP(SPh)_3$ auf P_4Se_3 übertragen und in eine Phosphor-Phosphor-Bindung des P_3 -Ringes von P_4Se_3 insertiert. Die entstehende Verbindung, bei der es sich vermutlich um β - P_4Se_4 handelt, besitzt die gleiche chemische Struktur und ähnliche chemische Verschiebungen und Kopplungen wie β - P_4S_4 .

Abbildung 5: Experimentelles (oben) und simuliertes (unten) Spektrum von β -P₄Se₄

6. Umsetzung von P₃Se₄I mit sekundären Aminen

Die Arbeiten zu diesem Kapitel wurden in Newcastle upon Tyne in England in Zusammenarbeit mit Dr. B. W. Tattershall durchgeführt.

Reaktionen mit dem Phosphor-Chalkogen-Iodid P₃Se₄I sollten, analog zu α -P₄S₃I₂ und α -P₄Se₃I₂, zu einer Reihe von Derivaten P₃Se₄R führen [Bla94a]. Die Darstellung von P₃Se₄Br , P₃Se₄Cl, P₃Se₄CN, P₃Se₄F und P₃Se₄NHR gelingt auf dem gleichen Weg wie für α -P₄S₃I₂ bzw. α -P₄Se₃I₂. Die Umsetzung von P₃Se₄I mit sekundären Aminen sollte daher zu den erwarteten Produkten P₃Se₄NR¹R² führen. Da die Reaktion mit sekundären Aminen, aufgrund der Bildung von Dithiocarbaminsäuren, nicht in CS₂ durchgeführt werden kann, wird als Lösemittel Toluol verwendet. Die Löslichkeit von P₃Se₄I in Toluol ist allerdings so gering, daß es zu einem Überschuß von Amin in der Lösung kommt. Als Folge davon wird ein Teil von P₃Se₄I zersetzt. Aus den Fragmenten und unzersetzten P₃Se₄I bzw. α -P₄Se₃I₂, das sich in der Reaktionslösung durch Disproportionierung von P₃Se₄I bildet, entstehen Verbindungen des Typs P₃Se₄SeP(Se)(NR¹R²)₂ bzw. α -P₄Se₃(SeP(Se)(NR¹R²)₂)₂.

6.1. Experimentelles

0,5 g (0,93 mmol) P_3Se_4I werden in 10 – 20 mL Toluol suspendiert. Um eine günstige Verteilung der Teilchengröße zu erreichen, wird die Suspension 30 Minuten bei 50°C gerührt und anschließend auf Raumtemperatur abgekühlt. Die äquimolare Menge des sekundären Amins wird in 10 mL Toluol gelöst und in einen Tropftrichter gegeben. Für die Umsetzung mit Dimethylamin wird Me₂NH in einen Rundkolben, der mittels einer Trockeneis/Aceton-Mischung auf –78°C gekühlt wird, kondensiert und in 20 mL Toluol gelöst. Von dieser ca. 0,3 molaren Lösung wurden 6 mL in einen Tropftrichter gegeben. Die Amin-Lösung wird innerhalb einer Stunde unter Rühren zur P_3Se_4I -Suspension zugetropft und weitere 1 bis 2 Tage unter Lichtausschluß gerührt. Von dieser Lösung wird eine Probe entnommen und ³¹P-NMR-spektroskopisch vermessen.

Die Toluol-Lösung wird im Vakuum zur Trockene eingedampft. Der Rückstand wird in 10 mL CS₂ suspendiert und NMR-spektroskopisch vermessen.

6.2. NMR-spektroskopische Untersuchung

Die Aufnahme der NMR-Spektren erfolgte mit einem Bruker WM-300-WB mit Aspect 3000 und Array-Prozessor. Die Meßfrequenzen für die Kerne Phosphor und Selen waren: 121,497 MHz für ³¹P bezogen auf 85% H₃PO₄/H₂O und 57,315 MHz für ⁷⁷Se bezogen auf eine gesättigte H₂SeO₃/H₂O-Lösung. Die Messungen wurden in 10 mm-Proberöhrchen, in die zur Frequenzstabilisierung je eine abgeschmolzene Glaskapillare mit Deuteroaceton insertiert war, gemessen. Die entkoppelten Spektren wurden mit der Invers-Gated-Technik gemessen, um Intensitätsverfälschungen durch den NOE-Effekt zu vermeiden.

Abbildung. 6 Intramolekulare Umwandlung der beiden Enantiomere bei Verbindungen des Typs $P_3Se_4(SeP(Se)L_2)$ mit L = NMe₂, NEt₂ und NMePh

Da es sich bei Verbindungen des Typs $P_3Se_4(SeP(Se)(NR_2)_2)$ um bei Raumtemperatur fluktuierende Systeme handelt (siehe Abb. 6), wurden die NMR-Spektren bei 240 K gemessen. Bei dieser Temperatur beträgt die Fluktuationsrate nur noch etwa 5 s⁻¹. Um eine Aussage über die intramolekulare Umwandlung der beiden Enantiomere machen zu können, wurden Spektren bei verschiedenen Temperaturen aufgenommen.

6.2.1. P₃Se₄I + HNMe₂

Toluol-Lösung

Die Messung der Toluol-Lösung ergab:

- kein P₃Se₄I, kein P₂Se₅, wenig P₄Se₃
- großes Singulett bei 34 ppm mit ⁷⁷Se-Satelliten (8% des Hauptsignals, $J_{PSe} = 861 \text{ Hz}$)
- [AMX]₂- bzw. AA'MM'XX'-Spinsystem (α-P₄Se₃(SeP(Se)(NMe₂)₂)₂)
- Drei Singuletts, 4 Dubletts, ein Triplett und ein Dublett von Dublett, die nicht zugewiesen werden konnten

CS₂-Lösung

Die Messung der CS₂-Lösung ergab:

- P_3Se_4I , P_2Se_5
- großes Singulett bei 34 ppm mit ⁷⁷Se-Satelliten (8% des Hauptsignals, $J_{PSe} = 863$ Hz)
- AFMX-Spinsystem (P₃Se₄(SeP(Se)(NMe₂)₂))
- zwei Singuletts, ein Dublett und ein Triplett, die nicht zugewiesen werden konnten

6.2.2. P₃Se₄I + HNEt₂

Toluol-Lösung

Die Messung der Toluol-Lösung ergab:

- kein P₃Se₄I, kein P₂Se₅, sehr wenig P₄Se₃
- $[AMX]_2$ bzw. AA'MM'XX'-Spinsystem (α -P₄Se₃(SeP(Se)(NEt₂)₂)₂)
- 4 Singuletts, 6 Dubletts, ein Triplett und ein Quadruplett, die nicht zugewiesen werden konnten

CS₂-Lösung

Die Messung der CS₂-Lösung ergab:

- wenig P₃Se₄I, P₂Se₅, sehr wenig P₄Se₃
- großes Singulett bei 17 ppm mit ⁷⁷Se-Satelliten (8% des Hauptsignals, $J_{PSe} = 852 \text{ Hz}$)
- AFMX-Spinsystem (P₃Se₄(SeP(Se)(NEt₂)₂))

- wenig [AMX]₂- bzw. AA'MM'XX'-Spinsystem (α-P₄Se₃(SeP(Se)(NEt₂)₂)₂)
- ein Singulett, ein Dublett und ein Triplett, die nicht zugewiesen werden konnten

6.2.3. P₃Se₄I + HNMePh

CS₂-Lösung

Die Messung der CS₂-Lösung ergab:

- kein P₃Se₄I, kein P₂Se₅, sehr wenig P₄Se₃
- großes Singulett bei 69 ppm mit ⁷⁷Se-Satelliten (8% des Hauptsignals, $J_{PSe} = 846$ Hz)
- AFMX-Spinsystem (P₃Se₄(SeP(Se)(NMePh)₂))
- P₃Se₄NMePh
- ein Singulett, das nicht zugewiesen werden konnte

6.3. Die ³¹P-NMR-Parameter

6.3.1. Zuordnung der NMR-Signale

Die zu den intensiven Singuletts mit ⁷⁷Se-Satelliten gehörigen Verbindungen konnten nicht einwandfrei identifiziert werden. Aufgrund der großen J_{PSe} -Kopplung von 846-863 Hz und der Intensität der ⁷⁷Se-Satelliten, die eindeutig ein P:Se-Verhältnis von 1:1 belegen, ist sicher, daß alle ein P=Se-Strukturfragment enthalten. Aufgrund der chemischen Verschiebung und der Kopplung kann es sich dabei weder um SeP(NR₂)₃ [McF72, Kro79a, Kro79b] noch um SePI₃ [Bau73] handeln. Vermutlich handelt es sich bei diesen Verbindungen um SeP(NR₂)_xI_{3-x} mit x = 1 oder 2.

Moleküle mit P₃Se₄-Gerüst

Die Verbindungen $P_3Se_4(SeP(Se)(NR^1R^2)_2)$ zeigen im ³¹P-NMR-Spektrum für das Isotopomere ohne ⁷⁷Se ein AFMX-Spinsystem, mit einer großen, negativen ¹J-Kopplung, zwei großen, positiven ²J-Kopplungen und einer kleineren ²J-Kopplung besteht. Zur Zuordnung der chemischen Verschiebungen zu den einzelnen Phosphoratomen lassen sich folgende Tatsachen nutzen:

- Die große ¹J-Kopplung zwischen den Phosphoratomen A und B
- Die großen ²J-Kopplungen zwischen Phosphor A und C sowie B und X

• Die kleinere ²J-Kopplung zwischen Phosphor B und C

Dadurch lassen sich alle chemischen Verschiebungen eindeutig zu den entsprechenden Phosphorkernen zuordnen.

Moleküle mit α-P₄Se₃-Gerüst

Die Verbindungen α -P₄Se₃(SeP(Se)(NR¹R²)₂)₂ zeigen im ³¹P-NMR-Spektrum für das Isotopomere ohne ⁷⁷Se die signale eines [AMX]₂-Spinsystems mit folgenden Charakteristika:

- Eine große negative ¹J-Kopplung zwischen den Phosphorkernen A und B
- Zwei größere, positive ²J-Kopplungen zwischen P_A und $P_{A'}$ sowie P_B und P_X
- Eine kleinere, positive ²J-Kopplung zwischen P_B und P_A.
- Eine kleine ³J-Kopplung zwischen P_B und P_B, die sowohl positiv als auch negativ sein kann

Aufgrund der zusätzlichen Kopplung zwischen P_B und P_X , im Vergleich zu α - $P_4E_3L_2$ mit NMR-inaktivem Rest, lassen sich alle Phosphoratome eindeutig den chemischen Verschiebungen zuordnen.

	α-P ₄ Se ₃ (Se	$P(Se)L_2)_2$	$P_3Se_4(SeP(Se)L_2)$					
L	NMe ₂	NEt ₂	NMe ₂	NEt ₂	NMePh			
Lösemittel	Toluol	Toluol	CS_2	CS_2	CS_2			
T [K]	240	240	240	240	240			
	D	ie chemischen	Verschiebungen					
δ _A	99,0	97,2	79,6	77,2	82,0			
$\delta_{\rm B}$	124,7	125,0	119,3	119,8	116,2			
$\delta_{\rm C}$			124,3	123,5	125,3			
δ_X	83,0	71,7	83,5	71,9	67,6			
Die Phosphor-Phosphor-Kopplungen [Hz]								
\mathbf{J}_{AB}	-269,9 (1)	-273,7 (1)	-268,4 (1)	-270,21 (06)	-273,94 (04)			
$J_{AA^{\prime }\!/AC}$	74,1 (2)	73,6 (2)	117,5 (1)	116,70 (06)	117,83 (04)			
$J_{AB^{\prime}\!/BC}$	23,9 (1)	24,6 (1)	36,6 (2)	36,63 (06)	35,65 (04)			
\mathbf{J}_{AX}	16,2 (1)	18,8 (1)	20,0 (1)	23,29 (06)	16,74 (04)			
J _{AX'/CX}	-0,6 (1)	-0,3 (1)	-0,2 (1)	-0,23 (06)	-0,02 (04)			
$J_{BB^{\prime}}$	0,2 (2)	-0,4 (2)						
J_{BX}	61,2 (2)	71,1 (1)	64,1 (1)	71,27 (06)	63,25 (04)			
$J_{BX^{\star}}$	0,7 (1)	0,2 (1)						
J _{XX} .	0,0 (2)	0,0 (2)						
	Die	Phosphor-Seler	n-Kopplungen [H	Iz]				
$J_{P(X)Se(X)}$	-361,4	-339,1		-342,2	-374,6			
J _{P(X)Se(Y)}	-829,3	-821,9		-817,1	-834,1			
rms [Hz]	0,699	0,564	0,185	0,096	0,073			

6.3.2. Die ³¹P-NMR-Daten

Tabelle 12: 31 P-NMR-Parameter von α -P₄Se₃(SeP(Se)L₂)₂ und P₃Se₄(SeP(Se)L₂)

Abbildung 7: Strukturformeln von $P_3Se_4(SeP(Se)L_2)$ und α - $P_4Se_3(SeP(Se)L_2)_2$

Abbildung 8: Experimentelles (oben) und simuliertes (unten) Spektrum von P₃Se₄(SeP(Se)(NEt₂)₂) bei 240 K

Abbildung. 9: Experimentelles (oben) und simuliertes (unten) Spektrum von α -P₄Se₃(SeP(Se)(NMe₂)₂)₂ bei 240 K

6.4. Linienformanalyse

Die NMR-Spektroskopie liefert außer den statischen Parametern der chemischen Verschiebungen und Kopplungskonstanten, die einen Einblick in die chemische Struktur erlauben, auch dynamische Daten über das Relaxationsverhalten und Austauschprozesse [Gie97]. Dies ist möglich, weil in der NMR-Spektroskopie kohärente elektromagnetische Strahlung benutzt wird, die eine Phasen-Beziehung zwischen quantenmechanischen Zuständen der Mikrosysteme induziert. Dadurch entsteht makroskopisch beobachtbare Strahlung. Die zufällige Bewegung der Moleküle in Flüssigkeiten und Gasen führt zur Wiederherstellung der statistischen Phasenverteilung. Die spektroskopischen Methoden, die sich mit diesem Phänomen beschäftigen, werden als dynamische Spektroskopie bezeichnet.

Die Bezeichnung "dynamic NMR" bzw. "DNMR", die 1968 von *Binsch* [Bin68] für die Untersuchung von Austauschprozessen eingeführt wurde, ist heutzutage etabliert.

Es gibt zwei prinzipiell unterschiedliche Methoden, um Austauschprozesse zu untersuchen:

- Mittels Polarisationstransfer wird der Effekt der Bewegung auf die Intensitäten der Übergänge beobachtet, welche verschiedenen chemischen Positionen, die sich gegenseitig austauschen, entsprechen. Die zweidimensionale Variante dieser Methode ist identisch mit der NOESY-Pulsfolge, wird aber oft als EXSY-Experiment bezeichnet, wenn sie zur Aufklärung von Austauschphänomenen benutzt wird.
- Die Ausnutzung des Effektes, daß die Linienform in einem eindimensionalen Spektrum vom chemischen Austausch beeinflußt wird. Die Methode wird als "Linienformanalyse" oder "line shape analysis" bezeichnet [Bin80].

6.4.1. Ergebnisse der kinetischen Untersuchung

Für eine vollständige Linienformanalyse war das Signal-Rausch-Verhältnis aufgrund der geringen Löslichkeit der Verbindungen nicht gut genug und es hätten deutlich mehr Messungen bei verschiedenen Temperaturen gemacht werden müssen [Bin80, Gie97]. Dies war wegen der langen Meßzeiten jedoch nicht möglich. Daher wird auf die Angabe der Aktivierungsenthalpie und Aktivierungsentropie verzichtet, da die Verläßlichkeit dieser berechneten Werte nicht ausreichend gesichert wäre.

Temperatur	Fluktuationsrate k [s ⁻¹]						
[K]	$P_3Se_4(SeP(Se)(NMe_2)_2)$	$P_3Se_4(SeP(Se)(NEt_2)_2)$	P ₃ Se ₄ (SeP(Se)(NMePh) ₂)				
240	4,7	3,5	2,0				
260	30	30					
280	260	300					
294	950	1050	450				
310	2500						

Tabelle 13:Fluktuationsraten von $P_3Se_4(SeP(Se)(NR_2)_2)$ mit R = Me, Et bei verschiedenen
Temperaturen.

Die Aufnahme der Spektren bei unterschiedlichen Temperaturen und die Bestimmung der Fluktuationsraten für die entsprechenden Temperaturen (siehe Tab. 13) macht die Anwendung der Eyring-Gleichung zur Bestimmung der Aktivierungsenthalpie $\Delta H^{\#}$ und der Aktivierungsentropie $\Delta S^{\#}$ möglich.

$$\ln(k/T) = 23,76 - (\Delta H^{\neq}/R) \cdot 1/T + (\Delta S^{\neq}/R)$$
(14)

R = allgemeine Gaskonstante

In einer graphischen Darstellung wird $\ln(k/T)$ gegen 1/T aufgetragen. Die Korrelationskoeffizienten R² von 0,998 bzw. 0,996 sind recht gut. Da es sich allerdings nur um vier bzw. fünf Meßpunkte handelt, darf dieses Ergebnis nicht überbewertet werden.

Aus der Steigung der Regressionsgeraden läßt sich die Aktivierungsenthalpie $\Delta H^{\#}$ ableiten. Die Aktivierungsentropie leitet sich vom Achsenabschnitt ab. Die Zuverlässigkeit der erhaltenen Werte ist nicht so gut wie die Einfachheit der Methode suggeriert. Sogar im Falle von exakten Temperaturgleichgewichten und Messungen, guten Übereinstimmungen von simulierten und experimentellen Spektren und einer guten linearen Korrelation von ln k_R/T gegen 1/T nach der Eyring-Gleichung ist der Wert der Aktivierungsentropie Gegenstand von signifikanten Fehlern. Das rührt von der Tatsache, daß $\Delta S^{\#}$ anfälliger für Fehler ist als k oder $\Delta H^{\#}$. Die Hauptfehlerquelle ist die intrinsische Linienbreite, die bei der Messung auch ohne Austausch existiert. Dieser Parameter wird für die Simulation von temperaturabhängigen NMR-Spektren benötigt, weil die Linienverbreiterung durch den Austausch zu der schon vorhandenen hinzukommt. Die Linienbreite ohne Austausch kann nicht aus den experimentellen Spektren erhalten werden, da die niedrigen Temperaturen, bei denen der Austausch ausgeschlossen werden kann, aus technischen Gründen nicht erreicht werden können. Um dieses Problem zu umgehen, wird die Linienbreite ohne Austausch von einer Resonanz, die nicht von Austauschprozessen beeinflußt wird, aber im selben Spektrum vorhanden ist, ermittelt. In diesem Falle wird vorausgesetzt, daß die Linienbreite von allen Signalen des Spektrums eine ähnliche Temperaturabhängigkeit in Abwesenheit von chemischem Austausch zeigen, was nicht immer zutreffend ist.

7. Analyse der ³¹P-NMR-Parameter von α -P₄S₃L₂, α -P₄Se₃L₂ und P₃Se₄L

Durch eine Analyse der ³¹P-NMR-Daten von sieben symmetrischen Verbindungen des Typs α -P₄S₃L₂ ermittelte *Tattershall* [Tat87] Substituentenkonstanten und berechnete daraus ³¹P-NMR-Parameter. In späteren Arbeiten konnten *Tattershall* und *Kendall* [Tat94] durch eine weitere Substituentenkonstante diese Korrelation auf 17 α -P₄S₃L₂-Verbindungen erweitern. *Blachnik* et.al. [Bla94a], *Hepp* [Hep98] und *Kendall* [Ken93] wiesen auf den Zusammenhang zwischen ³¹P-NMR-Parameter und Elektronegativität der Halogenliganden in symmetrischen und unsymmetrischen Verbindungen mit P₃Se₄-, α -P₄S₃-, α -P₄Se₃- und P₅S₂-Gerüst hin.

Zur weiteren Aufklärung des Einflusses der Liganden werden die ³¹P-NMR-Parameter δ_A , δ_B , ¹J_{AB}, ²J_{AA}, ^{/2}J_{AC}, ²J_{AB}, ^{/2}J_{BC} und ³J_{BB}, von α -P₄S₃L₂, α -P₄Se₃L₂ und P₃Se₄L (L = F, Cl, Br, I, NHR¹, NPhR², THC, SMe, SEt, SPh, SeMe, SePh, PSe₂(NMe₂)₂ und PSe₂(NEt₂)₂) verwendet. Der Rest R¹ entspricht ^{*i*}Bu, Ad, Ph, Flu, TPMP und R² entspricht Me, Et, ^{*i*}Pr. Die Abkürzungen der Reste R¹ und R² sind: Me = Methyl, Et = Ethyl, ^{*i*}Pr = iso-Propyl, ^{*i*}Bu = tertiär-Butyl, Ad = 1-Adamantyl, Ph = Phenyl, Flu = 2-Fluorenyl, TPMP = 4-Triphenylmethylphenyl, THC = 1,2,3,4-Tetrahydrochinolin.

7.1. Ergebnisse und Diskussion

Die Unterschiede der chemischen Verschiebungen der Phosphorkerne in Phosphor(III)-Verbindungen hängen im wesentlichen von drei Faktoren ab [Let97]:

- Der Differenz der Elektronegativität der Kerne der P-X-Bindung $\Delta \chi_x$,
- der Änderung der π -Elektronen-Überlappung Δn_{π} und
- der Änderung des Bindungswinkels $\Delta \Theta$

$$\Delta \delta = C \,\Delta \chi_{\rm x} + k \,\Delta n_{\pi} + A \,\Delta \Theta. \tag{15}$$

In den Fällen, in denen nur ein Parameter geändert wird, ergeben sich für die Interpretation und Vorhersage von ³¹P-NMR-chemischen Verschiebungen innerhalb einer Verbindungsklasse nützliche Korrelationen, wie der lineare Zusammenhang zwischen der Elektronegativität von Halogenliganden X (X= Cl, Br, I) und der chemischen Verschiebung der ligandentragenden Phosphoratome [Bla94a]. Fehlen Elektronegativitäten, wie bei den Aminoliganden, kann versucht werden, durch Vergleich der ³¹P-NMR-Daten von einer Reihe von Aminoderivaten unterschiedlicher Phosphorchalkogenide, Aussagen über die Einflüsse der Substituenten zu erhalten. Für diesen Vergleich wurden die ³¹P-NMR-Parameter δ_A , δ_B , ¹J_{AB}, ²J_{AA}./²J_{AC}, ²J_{AB}./²J_{BC} und ³J_{BB}.verwendet, wobei die Werte von α -P₄Se₃L₂ als Ordinate jeweils gegen die entsprechenden Daten von α -P₄S₃L₂ und P₃Se₄L aufgetragen wurden. ³¹P-NMR-Daten von Verbindungen, die nicht in den Kapiteln 3, 4, 5 und 6 dieser Arbeit aufgeführt sind, wurden der Literatur entnommen [Tat87, Bla91, Tat91, Bla94a, Bla95a, Bla96a, Tat97, Hep98]. Die folgenden statistischen Auswertungen sollen zeigen, wie unterschiedliche Substituenten die ³¹P-NMR-Parameter der drei Gerüststrukturen beeinflussen. Eine gute Korrelation bedeutet, daß die Liganden in gleicher Art und Weise die elektronische Umgebung der Phosphorkerne bestimmen.

Die Steigung der Regressionsgeraden gibt an, wie stark der jeweilige NMR-Parameter von α -P₄S₃L₂ bzw. P₃Se₄L relativ zu α -P₄Se₃L₂ von den Liganden L beeinflußt wird. Ist die Steigung kleiner, gleich oder größer eins, so ist auch der mittlere Einfluß der Liganden auf einen Käfig kleiner, gleich oder größer als in α -P₄Se₃L₂. Die Steigung ist somit ein Maß für die Empfindlichkeit des jeweiligen NMR-Parameters gegenüber einer Substitution im Vergleich zum α -P₄Se₃-Gerüst.

	Steigung der Regressionsgeraden (Standardabweichung R ²)						
	$\alpha - P_4 S_3 L_2$	P_3Se_4L					
δΑ	1,40 (0,970)	0,72 (0,720)					
δΒ	0,91 (0,965)	0,63 (0,973)					
$^{1}J_{AB}$	0,99 (0,992)	0,90 (0,947)					
$^{2}J_{AA^{\prime}\!/AC}$	0,93 (0,967)	0,65 (0,787)					
$^{2}J_{AB^{\prime}/BC}$	0,96 (0,920)	-0,58 (0,391)					
${}^{3}J_{BB'}$	1,11 (0,798)						

 Tabelle 14: Die Steigungen der Regressionsgeraden

7.1.1. Die chemischen Verschiebungen

Das Phosphoratom B ist der ligandentragende Kern und wird deshalb am stärksten vom Substituenten beeinflußt. Die Korrelationen der chemischen Verschiebungen von Phosphor B zeigen, daß der Einfluß des Liganden bei allen drei Strukturtypen praktisch gleich ist (R^2 =0,965 bzw. 0,973) (Abb. 9). Bemerkenswert ist dabei, daß die Regression sehr gut ist, obwohl die Substituenten unterschiedliche sterische und elektronische Eigenschaften haben. Wäre der sterische Einfluß groß, sollten die Auswirkungen auf die Phosphorchalkogen-Gerüste unterschiedlich sein und sich Abweichungen ergeben, was nicht zutrifft. Die Empfindlichkeit gegenüber einer Substitution ist sowohl bei α -P₄S₃L₂ mit 0,91, als auch bei P₃Se₄L mit 0,63 kleiner als in α -P₄Se₃L₂.

Abbildung 10: Die chemische Verschiebung des Phosphoratoms B

Abbildung 11: Die chemische Verschiebung des Phosphoratoms A

Abbildung 12: Die chemische Verschiebung des Phosphoratoms A

Das Phosphoratom A ist der direkte Nachbar von P_B. Die Regression für die chemische Verschiebung von Phosphor A ist für α -P₄S₃L₂ mit R²=0,970 sehr gut, für P₃Se₄L schlechter $(R^2=0,720)$ (Abb. 10). Die Diskrepanz im Falle von P₃Se₄L wird vom unterschiedlichen Einfluß der Liganden NHR¹ und NPhR² verursacht. Abbildung 11 zeigt, daß die Differenzen der chemischen Verschiebungen δ_A von α -P₄S₃L₂ und α -P₄Se₃L₂, sowie α -P₄Se₃L₂ und P₃Se₄L mit Ausnahme der sekundären Amine überall ungefähr gleich sind. Der Kern P_A in α -P₄S₃L₂ und α -P₄Se₃L₂ wird durch NPhR² stärker entschirmt als durch NHR¹. Der entschirmende Einfluß ist jedoch im α-P₄Se₃L₂ deutlich größer. Im Gegensatz dazu wird Phosphoratom A in P₃Se₄L durch NPhR² im Vergleich zu NHR¹ stärker abgeschirmt. Dieser Effekt kann sowohl sterische als auch elektronische Ursachen haben. Vermutlich spielt dabei die Veränderung der Bindungswinkel am Stickstoffatom eine entscheidende Rolle. Die relative Empfindlichkeit gegenüber Substitution, die sich aus der Steigung der Regressionsgeraden ergibt, ist für α -P₄S₃L₂ 1,40 und für P₃Se₄L 0,72. Die deutlich größere Abhängigkeit vom Substituenten bei α -P₄S₃L₂ gegenüber α -P₄Se₃L₂ ist auf stärkere sterische Wechselwirkungen aufgrund der kürzeren Bindungslängen zwischen Phosphor und Schwefel im Vergleich zu Phosphor und Selen zurückzuführen.

7.1.2. Die Kopplungskonstanten

Die Regression für ¹J_{AB} ist für α -P₄S₃L₂ und P₃Se₄L sehr gut (R²=0,992 bzw. 0,947) (Abb. 12). Die ¹J-Kopplungen der drei Käfigmolekültypen mit jeweils gleichem Substituenten unterscheiden sich nur wenig (größter Unterschied 14,7 Hz (~5%), mittlerer Unterschied 4,6 Hz). Die Steigungen der Regressionsgeraden sind sowohl für α -P₄S₃L₂ mit 0,99 als auch für P₃Se₄L mit 0,90 die am nächsten an eins liegenden aller hier untersuchten NMR-Parameter. Dieses Verhalten deutet darauf hin, daß in allen drei Käfigfamilien nahezu gleiche Bindungsverhältnisse zwischen den Phosphoratomen A und B herrschen. Unterschiede in den anderen NMR-Parametern der drei Verbindungsklassen sollten daher hauptsächlich durch unterschiedliche Chalkogen-Umgebungen der P_A-P_B-Gruppen verursacht werden.

Die statistische Analyse der ${}^{2}J_{AA}$ - bzw. ${}^{2}J_{AC}$ -Kopplungen ergab für α -P₄S₃L₂ einen sehr guten R²-Wert von 0,967 und für P₃Se₄L einen Wert von 0,787 (Abb. 13). Der Substituenteneinfluß ist für alle drei Käfigmolekülfamilien groß. Es liegt keine unsymmetrische Verzerrung des Gerüstes vor, da sonst eine schlechtere Regression zu erwarten wäre.

Die lineare Korrelation der ${}^{2}J_{AB}$ - bwz. ${}^{2}J_{BC}$ -Kopplungen von α -P₄Se₃L₂ und α -P₄S₃L₂ ist gut (R²=0,920), für P₃Se₄L ist der Korrelationskoeffizient allerdings schlecht (R²=0,391)

(Abb. 14). Entfernt man den Wert für P₃Se₄F, so steigt der R²-Wert auf einen akzeptablen Wert von 0,739. Die Steigung der Regressionsgeraden ist für α -P₄S₃L₂ 0,96 und damit entspricht die Empfindlichkeit gegenüber einer Substitution ungefähr der von α -P₄Se₃L₂. Die Steigung für P₃Se₄L ist allerdings –0,58. P₃Se₄L verhält sich somit entgegengesetzt zu den Molekülen mit α -P₄E₃-Struktur. Die Substituenten müssen sich also auf die ²J_{BC}- und ²J_{AB}--Kopplung unterschiedlich auswirken. Eine mögliche Erklärung wäre, daß die Winkel im P_A-P_B-Se-P_C-Se-Se-Sechsring in P₃Se₄L von denen im P_A-P_B-E-P_A-P_B-E-Sechsring in α -P₄E₃L₂ stärker abweichen.

Die Regression der ${}^{3}J_{BB}$ -Kopplung von α -P₄Se₃L₂ mit der von α -P₄S₃L₂ ergibt nur einen R²-Wert von 0,798 (Abb. 16). Diese Kopplung ist sehr empfindlich gegenüber Verzerrungen des Molekülgerüstes. Unterschiedliche sterische und/oder elektronische Effekte machen sich deshalb besonders deutlich bemerkbar.

Abbildung 13: Die ¹J_{AB}-Kopplung

Abbildung 14: Die ²J_{AA'/AC}-Kopplung

Abbildung 15: Die ²J_{AB'/BC}-Kopplung

Abbildung 16: Die ³J_{BB}-Kopplung

7.1.3. Statistische Auswertung der NMR-Parameter mittels Substituentenkonstanten

Tattershall [Tat87] hat für α -P₄S₃L₂ die sechs NMR-Parameter miteinander korreliert und hierfür die Substituentenkonstanten organischer Reste F und R von *Swain* und *Lupton* [Swa68] verwendet. Diese Konstanten geben die elektronischen Einflüsse der Liganden wieder. Die Anwendung dieser Konstanten auf die NMR-Parameter der in dieser Arbeit beschriebenen Verbindungen konnte nicht überzeugen. Die Konstante F, die den induktiven Effekt widerspiegelt, besitzt für Halogene einen annähernd gleichen Wert (F = 0,45 (F), 0,42 (Cl), 0,45 (Br), 0,42 (I)), während die Konstante R, welche den Resonanz-Einfluß beschreibt, eine Abnahme der elektronenschiebenden Wirkung von Fluor zu Iod aufweist (R = -0,39 (F), -0,19 (Cl), -0,22 (Br), -0,24 (I)) [Han91]. Diese geringfügigen Unterschiede in der Konstante F und die Werte für die Konstante R sind mit den chemischen Verschiebungen des Phosphorkerns B, der einem starken Elektronegativitätseinfluß unterliegt, nicht vereinbar. Die Anwendung auf die chemische Verschiebung von Phosphorkern A führt jedoch zu einer guten Übereinstimmung (R² für die Korrelation zwischen experimentellen und berechneten Werten ist 0,967).

8. Zusammenfassung

Kapitel 5 beschäftigte sich mit der Darstellung von $P_4S_3L_2$, $P_4Se_3L_2$ und P_3Se_4L mit Mercapto- und Selenomercapto-Resten als Liganden. Die Umsetzung von α - $P_4Se_3I_2$ bzw. P_3Se_4I mit Trimethylsilylmercaptan führte zu α - P_4Se_3 - und P_3Se_4 -Verbindungen mit Methylmercapto- und Ethylmercapto-Liganden. Bei der photochemischen Reaktion von P_4S_3 und P_4Se_3 mit Diphenyldisulfid, Diphenyl- und Dimethyldiselenid entstand β - $P_4E_3(ER)_2$ (E = S oder Se, ER = SPh, SePh oder SeMe). Unter Umwandlung von β - $P_4S_3(ER)_2$ in die thermodynamisch stabilere α -Form bildete sich α - $P_4S_3(ER)_2$. Aus β - $P_4Se_3(ER)_2$ entstand neben dem α -Isomer auch noch $P_3Se_4(ER)$.

Bei einer Variante der Reaktion von P_4Se_3 mit Diphenyldisulfid waren im ³¹P-NMR-Spektrum Signale zu beobachten, die mit großer Wahrscheinlichkeit dem bislang unkannten Phosphorselenid β -P₄Se₄ zugeschrieben werden konnten.

In den Kapiteln 3 und 6 wurden die Verbindungen α -P₄Se₃I₂ und P₃Se₄I mit primären und sekundären Aminen umgesetzt. Die Reaktionen in Schwefelkohlenstoff führten zu exo,exo-Isomeren von α -P₄Se₃L₂ und zu P₃Se₄L. Die Umsetzung mit Dimethyl- und Diethylamin wurde in Toluol durchgeführt, da diese Amine mit CS₂ Dithiocarbaminsäuren bilden. Durch einen Überschuß von Amin in der Lösung, hervorgerufen durch die geringe Löslichkeit von P₃Se₄I in Toluol, kommt es zur teilweisen Zersetzung und anschließenden Reaktion mit unzersetzten P₃Se₄I. Aufgrund der Disproportionierung von P₃Se₄I ist ebenfalls α -P₄Se₃I₂ in der Reaktionslösung vorhanden. Dadurch entstehen Verbindungen des bisher unbekannten Typs P₃Se₄SeP(Se)(NR¹R²)₂ und α -P₄Se₃(SeP(Se)(NR¹R²)₂)₂.

Bei den Phosphorchalkogenmolekülen $P_3Se_4SeP(Se)(NR^1R^2)_2$ handelt es sich um fluktuierende Systeme. Die ³¹P-NMR-Parameter und die Fluktuationsraten bei unterschiedlichen Temperaturen wurden bestimmt.

Die statistische Auswertung hat gezeigt, wie unterschiedliche Substituenten die ³¹P-NMR-Parameter von α -P₄S₃L₂, α -P₄Se₃L₂ und P₃Se₄L beeinflussen. Die Empfindlichkeit gegenüber der Substitution ist bei P₃Se₄L generell kleiner als bei den beiden anderen Gerüstmolekülen. Bei α -P₄S₃L₂ und α -P₄Se₃L₂ sind die Steigungen der Regressionsgeraden in etwa gleich, mit Ausnahme der chemischen Verschiebungen von Phosphoratom A, bei dem sterische Wechselwirkungen eine größere Rolle spielen. Der Einfluß des Liganden ist bei δ_B am größten. Die ¹J_{AB}-Kopplungen der drei Käfigmolekülfamilien mit jeweils gleichem Substituenten unterscheiden sich nur wenig. Daraus folgt, daß die Bindungsverhältnisse zwischen den Phosphoratomen A und B nahezu gleich sind.

9. Anhang

9.1. ³¹P-NMR-Daten von P₅S₂(SMe)

	$P_5S_2(SMe)$
δ _A	-81,81
$\delta_{\rm B}$	-51,94
$\delta_{\rm C}$	20,53
δ _D	148,82
$\delta_{\rm E}$	-215,54
\mathbf{J}_{AB}	-194,89 (02)
J _{AC}	61,58 (02)
\mathbf{J}_{AD}	18,22 (02)
\mathbf{J}_{AE}	-173,50 (02)
J_{BC}	55,37 (02)
\mathbf{J}_{BD}	-12,49 (02)
\mathbf{J}_{BE}	-188,75 (02)
J _{CD}	-278,43 (02)
J _{CE}	23,14 (02)
J _{DE}	-382,75 (02)
R-Wert [%]	13,7

9.2. NMR-Daten

	δ _A	δ _B	δ _C	J _{AB}	J _{AC/AA'}	J _{AB'/BC}	J _{BD/BB'}	Literatur
$\alpha - P_4 S_3 F_2$	122,41	227,05		-277,60	51,40	19,50	-8,90	Bla95a
α -P ₄ S ₃ Cl ₂	133,43	161,74		-262,20	65,90	20,00	10,30	Tat87
α -P ₄ S ₃ Br ₂	132,05	151,15		-254,30	70,10	19,70	11,70	Tat87
α -P ₄ S ₃ I ₂	128,72	125,06		-243,70	74,80	21,60	9,30	Tat87
α -P ₄ S ₃ (NHPh) ₂	80,48	106,40		-292,30	44,40	20,20	-0,10	Bla96a
$\alpha - P_4 S_3 (2 - AF)_2$	80,38	107,28		-292,20	45,60	18,60	-6,00	Now96
α -P ₄ S ₃ (NH-TMP) ₂	80,27	106,46		-292,50	45,90	18,50	-5,40	Now96
α -P ₄ S ₃ (NH-Ad) ₂	74,20	110,63		-304,50	40,60	17,50	-2,30	Now96
α -P ₄ S ₃ (NH- ^t Bu) ₂	72,89	111,70		-305,30	38,80	18,20	0,00	Bla96a
α -P ₄ S ₃ (NMePh) ₂	85,11	135,25		-330,60	48,30	11,98	-12,70	Tat91
α -P ₄ S ₃ (NEtPh) ₂	81,77	135,66		-332,00	47,40	12,00	-11,80	Tat91
α -P ₄ S ₃ (N ^{<i>i</i>} PrPh) ₂	85,60	139,11		-335,07	50,77	10,98	-8,39	Lut99
α -P ₄ S ₃ (THC) ₂	84,22	129,72		-331,11	45,18	11,57	-12,51	Lut99
α -P ₄ S ₃ (SMe) ₂	105,74	126,62		-290,10	57,80	22,10	-9,00	Tat85
α -P4S ₃ (SEt) ₂	103,74	122,72		-288,80	58,10	22,30	-8,40	Tat85
α -P ₄ S ₃ (SPh) ₂	109,49	127,48		-282,40	60,30	21,70	-6,00	Tat85
α -P ₄ S ₃ (SeMe) ₂	105,23	122,43		-281,89	60,74	21,84	-9,50	Kapitel 5
α -P ₄ S ₃ (SePh) ₂	109,09	124,63		-276,43	62,13	22,21	-7,27	Kapitel 5

	δ _A	δ_{B}	δ _C	J _{AB}	J _{AC/AA'}	J _{AB'/BC}	J _{BD/BB'}	Literatur
α -P ₄ Se ₃ F ₂	99,97	247,92		-280,17	66,61	18,85	-3,86	Hep98
α -P ₄ Se ₃ Cl ₂	111,58	170,37		-261,60	79,80	19,50	4,30	Bla91
α -P ₄ Se ₃ Br ₂	110,13	156,96		-251,10	79,00	17,80	6,60	Bla91
α -P ₄ Se ₃ I ₂	105,40	126,15		-240,60	87,80	21,30	6,00	Bla91
α -P ₄ Se ₃ (NHPh) ₂	71,63	119,87		-291,93	54,08	21,62	-2,88	Lut99
α -P ₄ Se ₃ (2-AF) ₂	72,07	121,31		-291,37	53,65	20,49	0,99	Lut99
α -P ₄ Se ₃ (NH-TMP) ₂	70,74	118,88		-291,40	54,30	20,90	-4,50	Now96
α -P ₄ Se ₃ (NH-Ad) ₂	66,95	124,34		-303,10	49,80	19,10	-7,00	Now96
α -P ₄ Se ₃ (NH- ^t Bu) ₂	66,66	126,30		-304,95	47,73	20,47	-0,40	Lut99
α -P ₄ Se ₃ (NMePh) ₂	81,36	151,94		-326,82	59,94	12,84	-9,37	Lut99, Kapitel 3
α -P ₄ Se ₃ (NEtPh) ₂	79,01	151,50		-327,75	59,19	11,73	-9,63	Lut99, Kapitel 3
α -P ₄ Se ₃ (N ^{<i>i</i>} PrPh) ₂	78,97	154,65		-334,12	60,68	12,83	-9,33	Lut99, Kapitel 3
α -P ₄ Se ₃ (THC) ₂	80,26	145,02		-327,25	58,31	11,86	-11,11	Lut99, Kapitel 3
α -P ₄ Se ₃ (SMe) ₂	92,21	132,71		-284,34	68,14	22,81	-11,02	Kapitel 5
α -P ₄ Se ₃ (SEt) ₂	90,86	127,92		-283,67	67,95	22,89	-10,87	Bla96b, Kapitel 5
α -P ₄ Se ₃ (SPh) ₂	97,46	133,88		-277,74	69,79	22,87	-8,81	Bla96b, Kapitel 5
α -P ₄ Se ₃ (SeMe) ₂	90,68	124,48		-275,35	69,91	22,69	-11,84	Kapitel 5
α -P ₄ Se ₃ (SePh) ₂	94,06	126,10		-270,50	71,89	22,37	-9,27	Kar94, Kapitel 5
α -P ₄ Se ₃ (SeP(Se)(NMe ₂) ₂) ₂	98,96	124,73		-269,86	74,05	23,90	0,19	Kapitel 6
α -P ₄ Se ₃ (SeP(Se)(NEt ₂) ₂) ₂	97,23	125,03		-273,71	73,56	24,56	-0,37	Kapitel 6

	δ _A	δ _B	δ _C	J _{AB}	J _{AC/AA'}	J _{AB'/BC}	J _{BD/BB'}	Literatur
P ₃ Se ₄ F	76,14	197,80	118,45	-265,48	104,44	52,96		Lut99, Kapitel 4
P ₃ Se ₄ Cl	88,48	142,33	122,99	-254,70	115,74	44,91		Bla94a
P ₃ Se ₄ Br	85,13	132,97	124,32	-245,76	117,85	43,13		Bla94a
P ₃ Se ₄ I	80,48	113,61	125,06	-234,43	120,99	41,10		Bla94a
P ₃ Se ₄ (NHPh)	64,81	115,33	112,15	-289,74	99,20	39,07		Lut99, Kapitel 3
$P_3Se_4(2-AF)$	64,60	116,01	112,06	-291,46	103,06	38,95		Lut99, Kapitel 3
P ₃ Se ₄ (NH-TMP)	64,56	115,06	112,02	-291,54	102,91	39,07		Lut99, Kapitel 3
P ₃ Se ₄ (NMePh)	56,92	138,60	119,33	-315,07	105,91	44,41		Lut99, Kapitel 3
P ₃ Se ₄ (NEtPh)	56,91	137,65	117,03	-316,78	104,56	44,46		Lut99, Kapitel 3
$P_3Se_4(N^iPrPh)$	56,96	139,80	117,48	-321,31	106,40	44,15		Lut99, Kapitel 3
$P_3Se_4(THC)$	56,62	132,85	118,70	-317,03	104,76	44,19		Lut99, Kapitel 3
$P_3Se_4(SMe)$	80,65	121,44	117,21	-273,40	117,16	38,57		Kapitel 5
$P_3Se_4(SEt)$	79,81	125,20	115,94	-288,11	115,62	40,48		Bal89, Kapitel 5
$P_3Se_4(SPh)$	83,87	127,59	119,49	-280,82	116,71	40,07		Bal89, Kapitel 5
$P_3Se_4(SeMe)$	78,78	122,09	116,96	-280,04	118,34	38,96		Kapitel 5
$P_3Se_4(SePh)$	80,65	121,44	117,21	-273,40	117,16	38,57		Kapitel 5
$P_3Se_4(SeP(Se)(NMe_2)_2)$	79,55	119,27	124,31	-268,36	117,49	36,60		Kapitel 6
$P_3Se_4(SeP(Se)(NEt_2)_2)$	77,22	119,75	123,50	-270,21	116,70	36,63		Kapitel 6

10. Literatur

- [Bal89] H. P. Baldus, Dissertation, Universität Osnabrück 1989.
- [Bau73] M. Baudler, B. Volland, H. W. Valpertz, *Chem. Ber.*, **1973**, *106(3)*, 1049
- [Bin68] G. Binsch, *Top. Stereochem.*, **1968**, *3*, 97.
- [Bin80] G. Binsch, H. Kessler,Angew. Chem., Int. Ed. Engl., 1980, 19, 729.
- [Bla84a] R. Blachnik, G. Kurz, U. Wickel, Z. Naturforsch., **1984**, 39b, 778.
- [Bla84b] R. Blachnik, U. Wickel, P. Schmitt, Z. Naturforsch., 1984, 39b, 1135.
- [Bla87] R. Blachnik, W. Buchmeier, C. Schneider, U. Wickel, Z. Naturforsch., 1987, 42b, 47.
- [Bla91] R. Blachnik, K. Hackmann, H. P. Baldus, Z. Naturforsch. 1991, 46b, 1165.
- [Bla92] R. Blachnik, P. Lönnecke, *Phosphorus, Sulfur, and Silicon* **1992**, *65*, 103.
- [Bla94a] R. Blachnik, P. Lönnecke, B. W. Tattershall, Z. Anorg. Allg. Chem. 1994, 620, 1115.
- [Bla94b] R. Blachnik, A. Hepp, P. Lönnecke, J. A. Donkin, B. W. Tattershall, Z. Anorg. Allg. Chem., 1994, 620, 1925
- [Bla95a] R. Blachnik, K. Hackmann,Z. Anorg. Allg. Chem. 1995, 621, 1015.
- [Bla95b] R. Blachnik, K. Hackmann, U. Peukert, Z. Anorg. Allg. Chem. 1995, 621, 1211.

- [Bla96a] R. Blachnik, K. Hackmann, B. W. Tattershall, *Polyhedron* **1996**, *15*, 1415.
- [Bla96b] R. Blachnik, U. Peukert, H. P. Baldus, Z. Anorg. Allg. Chem., 1996, 622, 958.
- [Bru96] WinDaisy, Spektreniterationsprogramm, Version 4.0, Bruker Franzen Analytik, 1996.
- [Flu76] E. Fluck, S. Yutronic, W. Haubold,Z. Anorg. Allg. Chem., 1976, 420, 247.
- [Gie97] K. Gierling, Dissertation, Universität Tübingen 1997
- [Hac94] K. Hackmann, Dissertation, Universität Osnabrück 1994.
- [Han91] C. Hansch, A. Leo, R. W. Taft, *Chem. Rev.* 1991, 91, 165.
- [Hep98] A. Hepp, *Dissertation*, Universität Osnabrück 1998.
- [Hun71] G. W. Hunt, A. W. Cordes, *Inorg. Chem.*, **1971**, *10*, 1935.
- [Kar94] K. Karaghiosoff, *private Mitteilung*
- [Ken93] N. Kendall, Ph. D. Thesis, University of Newcastle upon Tyne/UK 1993.
- [Kro79a] R. D. Kroshefsky, R. Weiss, J. G. Verkade, *Inorg. Chem.*, **1979**, *2*, 469
- [Kro79b] R. D. Kroshefsky, J. G. Verkade, *Phosphorus and Sulfur*, **1979**, *6*, 397
- [Let97] J. H. Letcher, J. R. van Wazer, *Top. Phosphorus Chem.* **1997**, *5*, 75.
- [Lön93] P. Lönnecke, Dissertation, Universität Osnabrück 1993

- [Lut95] J. Lutz, Diplomarbeit, Universität Osnabrück 1995
- [Lut99] J. Lutz, H. Nowottnick, R. Blachnik,Z. Anorg. Allg. Chem., 1999, 625, 1019.
- [Mai27] J. Mai, Chem. Ber., **1927**, 60, 2222.
- [McF72] W. McFarlane, D. S. Rycroft, J. Chem. Soc. Chem. Comm., 1972, 302
- [Net96] A. Neto,*Dissertation*, Universität Osnabrück 1996
- [Now96] H. Nowottnick, Diplomarbeit, Universität Osnabrück 1996
- [Ouv92] L. Ouvrard, Compt. Rend., **1892**, 115, 1301.
- [Ouv94] L. Ouvrard, Ann. Chim. Phys., **1894**, 7, 221.
- [Pen70] G. J: Penney, G. M. Sheldrick, Acta Cryst., 1970, B26, 2092.
- [Pen71] G. J: Penney, G. M. Sheldrick, J. Chem Soc. (A)., 1971, 1100.
- [Ste78] D. S. Stephenson, G. Binsch, *QCPE 11*, **1978**, 365
- [Swa68] C. G. Swain, E. C. Lupton, Jr., J. Am. Chem. Soc. 1968, 90, 4328.
- [Tat85] B. W. Tattershall,J. Chem. Soc. Dalton Trans., 1985, 1707.
- [Tat87] B. W. Tattershall,J. Chem. Soc. Dalton Trans., 1987, 1515
- [Tat91] B. W. Tattershall,J. Chem. Soc. Dalton Trans. 1991, 483.

- [Tat93] B. W. Tattershall, N. L. Kendall, J. Chem. Soc. Dalton Trans. 1993, 3163.
- [Tat94] B. W. Tattershall, N. L. Kendall, Polyhedron 1994, 13, 1507.
- [Tat96] B. W. Tattershall,J. Chem. Soc. Dalton Trans. 1987, 1515.
- [Tat97] B. W. Tattershall, E. L. Sandham, W. Clegg, J. Chem. Soc. Dalton Trans. 1997, 977.
- [Top56] R. D. Topsom, C. J. Wilkins,*J. Inorg. Nucl. Chem.*, **1956**, *3*, 187.
- [Wri58] D. A. Wright, B. R. Penfold, *Acta Cryst.*, **1959**, *12*, 455.