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Zusammenfassung
Wälder bedecken 31% der globalen Landoberfläche. Sie spielen eine wichtige Rolle
für den globalen Kohlenstoffkreislauf, da sie als Kohlenstoffspeicher fungieren und
zum globalen Kohlenstofffkreislauf beitragen. Waldökosysteme sind Umweltverän-
derungen ausgesetzt, die auf die Klimaerwärmung und die damit verbundenen Ver-
änderungsprozesse wie Dürren, Hitzewellen, Brände, Stürme oder Schädlingsbefall
zurückzuführen sind, aber auch auf Entwaldung und Fragmentierung. Diese Verände-
rungsprozesse finden schneller, häufiger und immer gleichzeitiger statt.
Waldmodelle tragen zum Verständnis der Wälder und der Dynamik der Ökosysteme
unter sich ändernden Umweltbedingungen bei. Mit der zunehmenden Verfügbarkeit
von Fernerkundungsdaten und der steigenden Rechenleistung ergeben sich neue Mög-
lichkeiten für die Anwendung von Waldmodellen. Dies bedeutet auch, dass Waldmo-
delle angepasst, erweitert oder auf neue Weise angewandt werden müssen, um diese
neuen Bedingungen voll ausnutzen zu können.
In dieser Arbeit werden innovative und neuartige Anwendungen von Waldmodellen
vorgestellt, die dazu beitragen könnten, von diesen neuen Möglichkeiten zu profitie-
ren. Die erste Studie dieser Arbeit (Kapitel 2) etabliert eine neue Art der Nutzung
von Waldmodellen, indem sie den Forest Factory Ansatz erweitert und ihn für Wälder
in verschiedenen Biomen anwendbar macht. Dieser Ansatz erlaubt es, Wälder unter
Verwendung der Architektur und der Prozesse von Waldmodellen zu generieren (hier
verwenden wir das individualbasierte gap modell FORMIND). In dieser Studie wer-
den 700.000 Waldbestände in sieben verschiedenen Ökoregionen mit Hilfe der Forest
Factory 2.0 generiert. Im Gegensatz zur traditionellen Untersuchung der Entwicklung
einzelner Waldbestände über die Zeit, haben wir die Forest Factory 2.0 als Werkzeug
eingesetzt, um durch die Analyse des Zustandsraums der Wälder Wissen über die-
se zu gewinnen. Wir haben eine strukturelle Sensitivitätsanalyse durchgeführt, um die
Beziehungen zwischen den strukturellen Eigenschaften und der Biomasse, der Produk-
tivität sowie der species evenness von Wäldern zu vergleichen. Wir analysieren den
Zustandsraum von Wäldern in verschiedenen Biomen und demonstrieren das Potenzi-
al dieses Ansatzes für die theoretische Ökologie. Mit der Forest Factory 2.0 können
Forscher*innen virtuelle Wälder für ihre Bedürfnisse erzeugen oder die Open-Source-
Walddaten nutzen, um ein digitales Walduniversum von Waldzuständen zu analysie-
ren.
Die zweite Studie in dieser Arbeit (Kapitel 3) gibt Einblicke, wie Fernerkundungs-
messungen in Waldmodelle integriert werden können. Es handelt sich um einen neuen
Ansatz, der die Berechnung der hyperspektralen Strahlungsreflexion von Wäldern er-
möglicht. Er verwendet das mehrschichtige Strahlungstransfermodell mScope und das
individuen basierte Waldmodell FORMIND. Diese Arbeit bietet einen forward model-
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ling Ansatz, um die Waldreflexion mit den Waldeigenschaften in Beziehung zu setzen.
Mit diesem Werkzeug ist es möglich, eine große Anzahl von Waldbeständen und ih-
re entsprechende reflektierte Strahlung (im sichtbaren und nahen Infrarotbereich) zu
analysieren. Dies eröffnet die Möglichkeit zu verstehen, wie Waldreflexion mit Suk-
zession und anderen Waldbedingungen zusammenhängt.
Um die Vorteile der zunehmenden Zahl von Fernerkundungsmessungen zu nutzen und
Synergieeffekte mit Waldmodellen zu erzielen, wäre es sinnvoll, das Design von Satel-
litenmissionen mit den Fähigkeiten von Waldmodellen abzustimmen. Die letzte Studie
dieser Arbeit (Kapitel 4) befasst sich mit der Verwendung der erwarteten Biomassever-
teilungen, die von der bevorstehenden RADAR BIOMASS P-Band-Satellitenmission
(Start im Jahr 2024 durch die Europäische Weltraumorganisation) bereitgestellt wer-
den, um die Produktivität tropischer Wälder vorherzusagen. Die Ergebnisse zeigen
eine hohe Korrelation zwischen der Schätzung der Produktivität und der Biomasse-
verteilung bei einer räumlichen Auflösung von 4 ha und 1 ha. Eine höhere vertikale
Auflösung führt im Allgemeinen zu besseren Vorhersagen für die Produktivität (GPP,
NPP). Außerdem zeigen die Ergebnisse den Einfluss der räumlichen Auflösung mit
Unterschieden zwischen gestörten und ausgewachsenen Wäldern. Der vorgestellte
Ansatz bietet eine Reihe von Innovationen: (i) die Verwendung von erwarteten Fer-
nerkundungsmessungen, (ii) die Verwendung von individuenbasierten Waldmodellen
für Vorstudien zu Satellitenmissionen, (iii) die Verwendung von RADAR-Satelliten-
messungen für die Vorhersage von Produktivität und carbon turnover times und (iv)
die Untersuchung der Vorhersagequalität für verschiedene Waldtypen. Die erzielten
Ergebnisse unterstreichen den Wert der bevorstehenden BIOMASS-Satellitenmission
und verdeutlichen das Potenzial der Ableitung von Waldproduktivität aus Informatio-
nen über die Waldstruktur.
Die in dieser Arbeit vorgestellten Studien bieten eine Grundlage für künftige Anwen-
dungen. Darüber hinaus zeigen sie Beispiele für erste Anwendungen, wie die neu
entwickelten und neuartigen Methoden eingesetzt werden können, um die Beziehung
zwischen Waldstruktur und Produktivität zu untersuchen (Kapitel 2 und 4), um virtuel-
le Fernerkundungsmessungen für eine Fallstudie in Finnland zu untersuchen (Kapitel
3) und schließlich um die Produktivität für typische tropische Wälder mit Hilfe von
Radar-Fernerkundungsdaten zu schätzen (Kapitel 4). Die vorgestellten Anwendungen
können letztlich zu einem besseren Verständnis von Waldökosystemen beitragen.

Schlagworte
Waldmodell, Strahlungstransfer, Vegetationsindizes, individuenbasiert, Waldreflexion,
machine learning, Fernerkundung, RADAR, Waldgenerator, Ökosystemfunktionen,
Produktivität, Waldbiomasse, forest factory
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Abstract
Forests cover 31% of the global land surface. They play a major role for the global
carbon cycle because of their role as carbon storage and their contributions to global
carbon fluxes. Forest ecosystems are exposed to environmental changes due to climate
warming and related change processes as droughts, heat waves, fires, storms or pest
outbreaks, but also deforestation and fragmentation which accelerating and occurring
more and more simultaneously.
Forest models contribute to the understanding of forests and the dynamics of ecosys-
tems under changing environmental conditions. With the increasing availability of
remote sensing data and increasing computing power, new opportunities are emerging
for the application of forest models. This also means that forest models need to be
adapted, extended or applied in new ways to take full advantage of these new condi-
tions.
This thesis presents innovative and novel applications of forest models, which could
help to profit from such new opportunities. The first study of this thesis (Chapter 2)
establish a new way of using forest models by extending the forest factory approach
by and make it applicable for forests in different biomes. This approach allows to
generate forests using the architecture and processes of forest models (here we use the
individual-based gap model FORMIND). In this study, 700,000 forest stands in seven
different ecoregions are generated by using the Forest Factory 2.0. In contrast to the
tradition of investigating the development of individual forest stands over time, we
used the Forest Factory 2.0 as a tool to gain knowledge about forests by analyzing the
state space of forests. We conducted a structural sensitivity analysis to compare the
relationships between structural properties and biomass, productivity, as well as (tree)
species evenness of forests. We analyze the state space of forests in different biomes
and demonstrate the potential of this approach for theoretical ecology. With the Forest
Factory 2.0, researchers can generate virtual forests for their needs or use the open-
source forest data to analyze a digital forest universe of forest states.
The second study in this thesis (Chapter 3) provides insights into how remote sensing
measurements can be incorporated in forest models. It is about a new approach which
enable the calculation of hyperspectral reflectance of forests. It uses the multi-layer
radiative transfer model mScope and the individual-based forest model FORMIND.
This work provides a forward modeling approach for relating forest reflectance to for-
est characteristics. With this tool, it is possible to analyze a large set of forest stands
and their corresponding reflected radiance (in the visible and near infrared range). This
opens up the possibility to understand how forest reflectance is related to succession
and different forest conditions.
In order to take advantage of the increasing number of remote sensing measurements
and to achieve synergy effects with forest models, it would be useful to align the de-
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sign of satellite missions with the capabilities of forest models. The last study of
the thesis (Chapter 4) is about using expected biomass distributions provided by the
upcoming RADAR BIOMASS P-band satellite mission (launching in 2024 by the Eu-
ropean Space Agency) to predict the productivity of tropical forests. The results show
a high correlation for estimating productivity with a biomass distribution at a spatial
resolution of 4 ha and 1 ha. Increased vertical resolution leads generally to better pre-
dictions for productivity (GPP, NPP). Further, the results demonstrate the influence
of spatial resolution with differences between disturbed and mature forests. The pre-
sented approach offers a number of innovations: (i) the use of expected remote sensing
measurements, (ii) the use of individual-based forest models for preliminary studies of
satellite missions, (iii) the use of RADAR satellite measurements for the prediction of
productivity and carbon turnover times and (iv) the exploration of the prediction quality
for different forest types. The obtained results emphasize the value of the forthcoming
BIOMASS satellite mission and highlight the potential of deriving estimates for forest
productivity from information on forest structure.
The studies presented in the thesis are providing a basis for future applications. In ad-
dition, they show first applications of how these newly developed and novel methods
can be used to investigate the relationship between forest structure and productivity
(Chapter 2 and 4), to explore virtual remote sensing measurements for a case study
in Finland (Chapter 3), and finally to estimate productivity for typical tropical forests
using RADAR remote sensing data (Chapter 4). The applications presented may ulti-
mately contribute to a better understanding of forest ecosystems.

Key words
forest model, radiative transfer, vegetation indices, individual-based, forest reflectance,
machine learning, remote sensing, RADAR, forest generator, ecosystem functions,
productivity, forest biomass, forest factory
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1 Introduction

1.1 Overview

Forests cover 31% of the global land surface (FAO 2020; Keenan et al. 2015). They
play a major role for the global carbon cycle because of their function as carbon stor-
age and their contributions to global carbon fluxes (Bonan 2008; Grace et al. 2014).
Forests are important for sustaining biodiversity and provide habitat for 70% of all
terrestrial animal species (Gibson et al. 2011; Myers et al. 2000; Pimm et al. 2014).
Further, forests exhibit a diversity of spatial structures and change their structure due
to natural succession, management or disturbances (Pan et al. 2013).
While forest ecosystems are exposed to environmental change, like all complex adap-
tive systems, they have a certain capacity to cope with it. However, if these change pro-
cesses occur too frequently, on too large spatial scales or/and with too high intensity,
the adaptive capacity of the forests may be exceeded. Global change processes such
as climate change and associated impacts such as droughts, heat waves, fires, storms
or pest outbreaks, but also deforestation (Stocker 2014) and fragmentation (FAO 2022;
R. Fischer 2021; Taubert et al. 2018) are accelerating and occurring more and more
simultaneously. As a result, the dynamics of the forests would change as well as their
tree species composition and structure. Therefore, forests appear to be under increas-
ing pressure (McDowell et al. 2020), affecting forest biodiversity in general as well as
the diversity of functions provided by forests. This shows the urgency of sustaining
their functioning, understanding and enhancing their adaptive capacity, and appropri-
ately adjusting their management.
Determining the impacts of changing drivers on forests development is difficult (Mc-
Dowell et al. 2020). However, there is evidence from individual published studies of
drivers and their effects on plant communities, and new modeling and observational ef-
forts are now providing a more complete picture of disturbance and forest demography
(Hartmann et al. 2018; Pugh et al. 2019; Stovall et al. 2019). Prerequisite for ad-
dressing these challenges, however, is a sound understanding of structure-function re-
lationships, esp. between the properties of forests (species-compositional and spatial-
structural) and their functions (e.g. carbon flux and storage). Unfortunately, there is
no universal relationship between stand structural characteristics and forest function;
rather, this relationship is dependent on environmental conditions, biotic interactions,
stand age, and disturbance intensity within a given forest ecosystem (Ali 2019; Ali &
Mattsson 2017; Paquette & Messier 2011; van der Sande et al. 2017; Yuan et al. 2018;
Y. Zhang & Chen 2015).
Filling knowledge gaps (Courchamp et al. 2015; Franklin et al. 2020) is one goal for
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modern ecological science, where the perspectives of community ecology (organismal
aspects, diversity of species and structure) and ecosystem ecology (matter and energy
flux aspects, biogeochemical cycles) are inseparable. A mechanistic understanding of
the functioning of ecosystems can only be gained if these two perspectives are ade-
quately linked to one another (Loreau 2010). However, although there are many em-
pirical studies based on forest inventories, the number of available samples and plots or
the lack of focus in monitoring makes it difficult to get a sufficiently complete picture
(Lindenmayer & Likens 2009; Lindenmayer et al. 2011). It remains particularly de-
manding to answer questions that deal with continental to global scales, or that relate to
short time periods and thus require recent data (for current applications). In addition,
there is a wide variety of environmental factors that may influence forest character-
istics (species composition and structure) and structure-function relationships. It is
a challenge to capture the inherent spatial heterogeneity of environmental conditions
and how they change in response to projected changing processes, especially among
different biomes. Many of the variables relevant to exploring these relationships are
often not fully covered by existing inventories and measurements.
Parts of the mentioned challenges may be overcome by using remote sensing data, but
relating and condensing these often large-scaled data to the local or individual scale
remains difficult (Ma et al. 2020). However, an increasing amount of field and re-
mote sensing measurements of various spatial and temporal extents and resolutions are
available. It remains demanding to integrate these data into a coherent picture (Chave
2013; Estes et al. 2018; Levin 1992; Maréchaux et al. 2021) and forest models can
help to gain understanding of relationships between changing environment and forest
development as well as to bridge between different spatial-temporal scales. A collabo-
rative effort is needed in which forest models, remote sensing measurements and new
statistical methods must be intertwined. The presented thesis is a contribution to this
collaboration.

1.2 History of forest modelling

Forest modelling, in particular forest gap models and global vegetation models, has
been an important part of ecological research since the 1970s and has been the subject
of a number of reviews in recent decades (e.g., Bugmann 2001; Bugmann et al. 1996;
Dale et al. 1985; Fisher et al. 2018; Liu & Ashton 1995; Maréchaux et al. 2021; Peng
2000; Quillet et al. 2010; Shugart 1998; Shugart et al. 1984; Shugart & Smith 1996;
Shugart & West 1980; Urban & Shugart 1992). In this part of the introduction I follow
the argumentation of Bugmann 2001; Maréchaux et al. 2021; Peng 2000; Shugart &
Smith 1996 and Quillet et al. 2010.
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For a long time, there has been a high level of fascination among scientists and foresters
for describing, understanding and predicting long-term dynamics of forest ecosystems
(Clements 1916; Gleason 1926; Trudgill 2007; Watt 1923; Whittaker 1953). The first
predictions about the behavior of the forest come from forestry. In order to have a
steady supply of timber, foresters need to know how many trees can be harvested.
These thinning rates to maintain forest yield are related to the growth of trees in a
stand, and subsequently to the growth of an individual tree. Empirical observations of
thinning and growth of a large collection of standard trees in forest stands can be con-
densed into these rates through statistical analysis. This upscaling from the growth of a
standard tree has been and continues to be used in empirical forestry in so called yield
tables, the bulwark of forecasting for foresters (Shugart et al. 2018). Nevertheless, it
was difficult to develop methods and quantitative theories for forest dynamics because
of insufficient data availability for sometimes long-lasting processes, environmental
influences, interactions, and the lack of tools to synthesize the data.
In the 1960s and 1970s, the advance of digital computer technology enabled scien-
tists to develop novel mathematical models of forest ecosystems (Newnham & Smith
1964; Siccama et al. 1969). As a result, the first forest models capable of representing
small forest patches were developed. They were designed to reproduce observations
and results from small forests observed in nature. Only data for small forest patches
were available and a certain homogeneity of the forest was necessary to formulate the
model. The first models of this type were primarily designed to provide a quantita-
tive method for forecasting, mainly using information from yield tables and other data
sources. A more complex type of model is the individual-based forest model, in which
establishment, mortality, and growth of each individual tree is simulated as a function
of abiotic (climate and soil) and biotic (competition) factors. The first such model
was the JABOWA model (Botkin et al. 1970, 1972, 1973), which was developed for
forests in New England and which served as a parent model for many other individual
forest models later. The JABOWA model used the gap approach, which is a widely
used approach in combination with individual-based models (Shugart & West 1980).
It simulates the development of a forest on a large number of small independent forest
patches, each patch having the size of a large canopy (e.g. 20 m x 20 m).
By the 2000s, a wide range of gap models had been developed to investigate boreal
forests to tropical forests and even extended to grasslands (Coffin & Lauenroth 1989,
1990; Taubert et al. 2012), alpine tundra (Humphries et al. 1996), and savannas (Me-
naut et al. 1990). This type of model, have since become one of the most widely used
model types in ecology (Botkin et al. 1972; Shugart et al. 2018; Shugart & WEST
1977). By 2016, there were a combined 6.500 publications citing 12 different early
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forest gap models (Shugart et al. 2018).
One successful applied forest model is the individual-based gap model FORMIND
(Köhler & Huth 1998), which has first be used to simulate tropical forests (R. Fischer
et al. 2016; Rödig et al. 2017) but is also used for forests in temperate regions (Bohn
et al. 2014) as well as grasslands (Taubert et al. 2012). It has been in use continuously
for 30 years in 28 locations around the globe. The model considers four main process
groups: growth of single trees, mortality, recruitment, and competition (e.g. for light
and space). It is working on a spatial resolution of 20 m x 20 m and normally on a
yearly time step (also daily time step is used like in Holtmann et al. 2021). Unlike
other gap models, it is able to use plant functional types or specific tree species, and it
includes gaps caused by tree fall (which is an important disturbance regime especially
in unmanaged forests like those in the tropics, Robert 2003). FORMIND is also used
for large scale simulations (Paulick et al. 2017; Rödig et al. 2019) e.g. forest-wide
carbon balances in the Amazon.
Some phenomena cannot be studied in small forest areas, such as competition between
different vegetation types, so other models are needed. Such type of forest models
are global vegetation models and later dynamic global vegetation models (DGVMs,
Friend et al. 1997; Smith 2001) which were developed in the 1990s, with links to for-
est gap models in terms of fundamental model assumptions (Bugmann & Seidl 2022).
DGVMs have their origins in four research fields: plant geography, biogeochemistry,
vegetation dynamics, and biophysics (Prentice et al. 2007). They originally focused on
bio-geochemical processes as the exchange of carbon and water between vegetation
and atmosphere at the global scale (e.g. Bonan et al. 2003; Krinner et al. 2005) on a
low spatial (e.g. 0.5° longitude/latitude in the Biome Mode by Prentice et al. 1992) and
high temporal resolution (hourly to daily). This comes with the cost of a realistic repre-
sentation of forest diversity, competition, and structure (Feeley et al. 2007; Hurtt et al.
1998; Moorcroft et al. 2001). This means that these models were originally developed
to simulate competition between different types of vegetation and not between indi-
vidual trees, which led to the concept of using pools (e.g. for biomass) to summarize
and represent vegetation. In addition, DGVMs use plant functional types to aggregate
functionally similar species to represent functional properties at the biome scale.
One of the first DGVM is the Lund-Potsdam-Jena Model (Sitch et al. 2003; Smith
2001) which incorporates process-based, large-scale representations of terrestrial vege-
tation dynamics and land-atmosphere carbon and water exchanges in a modular frame-
work. LPJ explicitly considers key ecosystem processes such as photosynthesis, car-
bon allocation, mortality, resource competition, fire disturbance and soil heterotrophic
respiration in a modelled area/grid cell of 100 – 2500 km². It includes competition be-
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tween vegetation in different grid cells, but not competition between individual species
or individual trees within a grid cell. LPJ is constantly used and developed over the last
20 years. It has been applied e.g. to simulate global carbon and CH4 emissions and
uptake by different ecosystems (Prentice et al. 2000; Spahni et al. 2011; Wania et al.
2010), to model dynamic interactions and feedbacks between the terrestrial biosphere
and the water cycle (Gerten et al. 2004), to investigate the role of fire disturbance for
global vegetation dynamics (Pfeiffer et al. 2013; Thonicke et al. 2001) or to investigate
the effects of soil freezing and thawing on vegetation carbon density (Beer et al. 2007).
Looking back at the history of forest modelling, different types of models have been
developed for different purposes, such as for regional analysis or for the study of global
trends. However, it is not only the purpose that has driven the different developments,
but also limitations such as data availability or computational costs have led to the need
for new types of models. Due to the relatedness of individual-based models and dy-
namic global vegetation models the boundaries between them are blurred. An example
for that is LPJ-GUESS, a combination of LPJ with the general ecosystem simulator
(Guess). It is able to simulate individuals and cohorts of PFTs (Plant functional types)
in a patch of 0.1 ha (Smith 2001). It is capable of simulating competition between
individual trees or cohorts, but differs from individual-based forest models in that the
simulation is done in such detail only for a sample of patches and then extrapolated
to the entire simulation area. Previous regional applications of LPJ-GUESS explored
vegetation dynamics and plant biogeography in forests in parts of the U.S. (Emmett et
al. 2021; Hickler et al. 2004; Tang et al. 2012) and Europe (Hickler et al. 2012; Koca
et al. 2006; Morales et al. 2007; Smith 2001; Smith et al. 2008). Another example for
implementing interaction between individuals is the is the development of individual-
based global dynamic vegetation models such as SEIB-DGVM (Sato et al. 2007). At
the same time, the applications of individual-based models are expanding from local
to regional scales (e.g. entire Amazon rainforest, Rödig et al. 2019).

1.3 Remote Sensing

To monitor the condition of forests, foresters and ecologists have long relied on mea-
suring forest inventories. Collecting inventories is time-consuming. In addition, for
e.g., in tropical forests, national forest inventories are often missing. Due to the inter-
action of electromagnetic radiation with different components of forests (e.g. chemical
composition of leaves, leaves, branches and trunks) there is another approach to moni-
tor forests. It is based on remote sensing observations, which provide relevant data for
large areas. Different techniques are used for remote sensing applications (Figure 1),
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resulting in a variety of capabilities and satellite products.

Figure 1. Main sensor types used by environmental satellites. Figure from Pettorelli et
al. 2014.

These techniques result in different types of remote sensing measurements: multispec-
tral and hyperspectral measurements, LiDAR and RADAR. Passive sensors (hyper-
and multispectral) measure radiation emitted or reflected by the Earth. Reflected sun-
light of the surface is the most common source of radiation measured by these sensors.
Multispectral imagery is produced by sensors that measure reflected energy within
several specific bands of the electromagnetic spectrum. Hyperspectral sensors, on the
other hand, measure reflected energy in narrower and more numerous bands than mul-
tispectral sensors. This provides a relatively continuous measurement of a portion of
the electromagnetic spectrum. The disadvantage of these passive sensors is that they
can only measure during the day when the sun is shining and there are no clouds.
Active sensors (active RADAR and LiDAR) emit an electromagnetic radiation (pulse)
and later measure the energy bounced back to them. RAdio Detection And Ranging
(RADAR) sensors on-board satellites use longer wavelengths (1 – 10 cm) and are side
looking (off-nadir), while Light Detection And Ranging (LiDAR) sensors emit laser
pulses (usually at 1064 nm, but other wavelengths are possible) and are nadir viewing
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(description of figure from Pettorelli et al. 2014).
RADAR remote sensing has the advantage to observe forests, regardless atmospheric
conditions (such as clouds) through its longer wavelength. RADAR and LiDAR mea-
surements can provide information about the vegetation structure (e.g. tree trunks, tree
height) which enables the estimation of e.g. biomass. As de Paula 2017 summarizes,
RADAR sensors are particularly useful in measuring canopy height, which is an im-
portant component of forest structure (Neumann et al. 2009). Note that there are also
passive RADAR measurements, which are possible because of the emission of long-
wave radiation from the Earth’s surface, and are used, for example, to estimate carbon
loss from forest degradation (Qin et al. 2021). LiDAR, another active remote sensing
concept, typically uses laser pulses to estimate tree heights, and provide predictions
of forest structural parameters (e.g. Zolkos et al. 2013). However, LiDAR measure-
ments for the observation of vegetation were a long time limited to aerial platforms,
which entail high cost and limited areas (Guimarães et al. 2020; Su et al. 2016). The
NASA has successfully launched the Global Ecosystems Dynamics Investigation Li-
dar (GEDI) mission in 2018 and installed a LiDAR module at the International Space
Station (ISS). The resulting measurements are used e.g. for global forest canopy height
maps with the integration of Landsat data (Potapov et al. 2021) or for analysis of forest
disturbances and biomass changes in Italy (Francini et al. 2022 also in combination
with Landsat measurements).
The amount of data is significantly raising with more and more Earth-observing satel-
lite missions launched in the last ten years (Guanter et al. 2015; Zeng et al. 2022).
Most important impact of the application of earth observation satellite data on scien-
tific research have the multispectral satellite missions Sentinel, Landsat and MODIS
(properties of these satellite missions can be found in Table 1) followed by Gaofen/GF
and WorldView (analysis of Remote Sensing Impact Factor by Radočaj et al. 2020;
Zhao et al. 2022). Zhao et al. 2022 analyzed that the number of publications from
Landsat and MODIS account for 40.2% and 31.7% of all investigated publications and
have increased rapidly. Sentinel is a relatively new satellite mission (launched in 2015)
that has the most potential but will take time to accumulate.
These well-known and high impact satellite missions are producing mainly multispec-
tral measurements (except Sentinel-1). Multispectral data can be used to derive so
called vegetation indices. These indices (an overview by Montero et al. 2023; Zeng et
al. 2022) such as Normalized Vegetation Index (NDVI) or Enhanced Vegetation Index
(EVI) can be used to correlate several vegetation processes (e.g. Leaf area of forests
Q. Wang et al. 2005 or estimates of forest productivity Sims et al. 2006).
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Table 1
Properties of selected global open data satellite missions Handbook & Tools 2015;
Missions 2016; Vermote et al. 2011. Landsat 9 has similar characteristics as Landsat
8 but its sensors includes also two thermal infrared bands (Lulla et al. 2021).
Properties Sentinel-2 Landsat 7 Landsat 8 MODIS
Spatial resolution (m) 10, 20, 60 (15), 30, 60 (15), 30, 100 250, 500, 1000
Temporal resolution/
revisit time (days) 2–3 16 16 1–2

Spectral resolution 13 bands 8 bands 11 bands 25 bands
Wavelength range (nm) 442–2186 450–12500 433–12500 459–2155
Supported study
area scale

local,
national

regional,
national

regional,
national

regional,
global

Remote sensing observations offer the opportunity to gain a better understanding of
forests with respect to their structure and dynamics. Satellite measurements vary in
their resolution and coverage. Thus, for global observations, there is a trade-off be-
tween the spatial and temporal resolution of satellite (e.g., Landsat, Sentinel) and air-
borne products. The combined methods of remote sensing and field observations offers
the opportunity to gain a better understanding of forests with respect to their structure
and dynamics. However, the ecological interpretation of remote sensing observations
of forests is challenging, and in many cases still in development. For example, there
are problems of the estimation of LAI and productivity out of NDVI values, because of
saturation effects (A. R. Huete et al. 1997). Additionally, reflected signals from the top
of the canopy is influenced by the understory of the vegetation and soil, which make it
difficult to estimate forest attributes out of the reflectance (Eriksson et al. 2006). In the
detection of forest degradation, the capacity of remote sensing applications is limited
at this stage, particularly in the detection of degradation on a small scale and at a local
level, such as that caused by low-intensity selective logging in specific locations (Ellis
et al. 2017; Y. Gao et al. 2020; Hernández-Gómez et al. 2019).
The advances in remote sensing in the last decades especially the availability of data
and products are resulting in a greater democratization of remote sensing. In this con-
text it means the opportunity for everyone to participate in supporting forest manage-
ment and conservation activities in parts of the world where environmental problems
are most pressing (Lechner et al. 2020).

1.4 Applications of forest models

Over the past 50 years, the complexity of forest models has increased substantially.
This partly reflects enhanced ecological knowledge and strongly increasing computing
power, but partly also the desire to develop models that more realistically represent
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natural processes (Bugmann & Seidl 2022). There is a long tradition of using forest
models to analyze the impact of climate change on forest structure, species composi-
tion, and biogeochemical cycles (e.g., Bugmann & Fischlin 2002; Bugmann & Seidl
2022; Kienast 1991; Solomon 1986). Forest gap models were also used to investigate
questions related to biodiversity (Shugart et al. 2018), for e.g. in a case study the for-
est dynamics of a tropical rainforest with more than 400 tree species was simulated
(Köhler & Huth 2004). In addition to that, logging modules were included in forest
gap models and they have been used e.g. to investigate different logging scenarios to
explore the long-term impacts on forest carbon stocks (Brazhnik et al. 2017; Huth et al.
2004; Köhler & Huth 2004). Also, the impact of other types of disturbances have been
investigated with forest gap models like landslides, forest wildfires and windstorms
(e.g. Brazhnik et al. 2017; Brazhnik & Shugart 2017; Dislich & Huth 2012; Doyle
1981; R. Fischer 2021; Gutiérrez & Huth 2012; Keane et al. 1996; Shugart & Noble
1981; Shuman et al. 2017).
Dynamic global vegetation models have been used e.g. to investigate the changes in
the atmospheric concentration of CO2 (Brovkin et al. 2002; Joos et al. 2004), the green-
ing trend in northern high latitudes (Lucht et al. 2002; New et al. 2000) or the effect
of CO2 and climate warming on productivity (Cao & Woodward 1998; Cramer et al.
2001; Kicklighter et al. 1999; Prentice et al. 2007; Schaphoff et al. 2006). Addition-
ally, they have been applied to ecosystems undergoing disturbance events such as fire,
drought, elevated CO2, land-use change, and insect defoliation (Medvigy et al. 2012;
Miller et al. 2016; Trugman et al. 2016; K. Zhang et al. 2015).
Prentice & Cowling 2013 critically reflect that DGVMs applications to questions of
biophysics (land–atmosphere interactions) and biogeochemistry (carbon and nitrogen
cycling) have tended to dominate over applications to questions of community compo-
sition and biodiversity. These are important perspectives to be included in ecosystem
ecology (Loreau 2010). Nowadays there is a general acceptance of the need to include
cohort models (which are representing several individual trees with the same attributes)
to “bridge” between the small scale and large scale (Argles et al. 2022; Franklin et al.
2020). There are several studies making progress in this regard (Argles et al. 2020;
Burton et al. 2019, overview in Fisher et al. 2018), but there are still challenges, such
as the implementation of plant demography within the explicit modelling of plant sizes
instead of patch age (Argles et al. 2022; Maréchaux et al. 2021; Melton & Arora 2016;
Sakschewski et al. 2015).
Important technical developments have revolutionized the forest modelling field and
improved prediction of forest ecosystem dynamics at large scales (Blanco et al. 2020;
Shugart et al. 2015, 2020):
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• technical innovations in airborne and satellite remote sensing instruments (Bel-
ward & Skøien 2015) and significantly increase of available data (Guanter et al.
2015)

• development of autonomous continuous measurement devices for soil, vegeta-
tion, and atmospheric variables (Guimarães et al. 2020; Sethi et al. 2022)

• development of new statistical methods (Tredennick et al. 2021)

• increased computing power, which is permitting continental scale implementa-
tion of individual-based forest models as well as DGVMs at high spatial and
temporal scales (Argles et al. 2022; Blanco & Lo 2023).

Recent applications of forest models have taken advantage of these new possibilities,
and in the following section I will focus on applications of individual-based models.
As Maréchaux et al. 2021 pointed out, forest models are able to conduct virtual exper-
iments (Fyllas et al. 2017; Morin et al. 2018; Schmitt et al. 2020), as well as to test
assumptions about ecological processes (Maris et al. 2018; Mouquet et al. 2015). They
can also be used to identify potential for improvement and possible gaps in ecological
knowledge, and to guide the design of further field experiments (Medlyn et al. 2016;
Norby et al. 2016). Due to increasing confidence in forest models’ ability to reflect
the true behavior of the system (e.g., due to high agreement in model comparisons -
Bugmann et al. 2019; Cramer et al. 2001; Fisher et al. 2018), they are increasingly be-
ing used to investigate important relationships between different forest characteristics
(e.g., Bohn & Huth 2017; Bohn et al. 2018; Köhler & Huth 2010; Maréchaux & Chave
2017; Morin et al. 2020, 2011; Rödig et al. 2018; Sakschewski et al. 2016; Schmitt et
al. 2020).
Studies which use forest models are more and more incorporating remote sensing mea-
surements which are providing increased potential for large-scale measurements of
forest attributes (Shugart et al. 2015). This is especially true for direct measurements
of forest height and predictions of biodiversity and carbon stocks (Van der Sande et al.
2017). For example, individual-based gap models are used to derive information from
remote sensing measurements about the heterogeneity of forest structure (R. Fischer et
al. 2019) or estimate carbon dynamics of forests with the use of new allometric models
parameterized with tree crown data derived out of airborne measurements (Jucker et
al. 2017). Forest models can be used to derive relationships for the interpretation of
remote sensing measurements, e.g. between forest height and carbon stock (Köhler &
Huth 2010), or to validate correlations for these relationships (Minh et al. 2013). It is
also possible to use remote sensing and gap models to identify patterns across scales
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from micro to global scale (Shugart et al. 2020). In this study, the predictions of a gap
model are compared with data from micrometeorological eddy-covariance towers and
then scaled-up to produce maps of global patterns of evapotranspiration, net primary
production, gross primary production and respiration. The fusion of high-resolution
data, such as those derived from airborne laser scanning, with individual-based forest
modelling can additionally offer insight into how plant size contributes to large-scale
biogeochemical processes (F. J. Fischer et al. 2019). Here individual-based models
can serve as data integrators for dynamic global vegetation models. Forest models in
combination with space-borne LiDAR measurements can be used to improve the car-
bon estimates for large regions like the whole amazon (Rödig et al. 2017).
Moreover, forest models can be used to create virtual remote sensing data by combin-
ing them with forward modelling of LiDAR to directly link measurements to forests
(Knapp et al. 2018). New methods use forest models not only to generate virtual re-
mote sensing data, they also generate virtual forests. Such a generator was developed
by Bohn & Huth 2017, the so-called ‘forest factory approach’. In one of their studies
they generated virtual forest stands that possibly could exist in Central Europe. This
multivariate dataset enabled a multidimensional investigation of the relationships be-
tween structural properties, plant diversity and productivity (Bohn & Huth 2017; Bohn
et al. 2018). This promising approach has shown on the basis of simple mechanisms
that over a broad range of forest stands, several forest properties (biodiversity and
structure) have to be considered to understand forest productivity. The forest factory
approach establishes a new way to analyze forests which does not require simulating
forests over long periods of time. Instead the focus of the analysis is on the state space
of the forests (described by structure properties, like forest height, basal area or oth-
ers).
As Blanco & Lo 2023 pointed out “we are at an exciting moment, in which the devel-
opment of new statistical and measurement techniques is finally creating opportunities
for developing true inter-scale models, from individuals to regions and beyond”. Addi-
tionally, “the need to better understand ecological process is also more important than
ever as climate, biodiversity, and land-use changes move forest ecology of the Earth to
novel conditions”.

1.5 Objectives of this thesis

In the introduction, I emphasized the importance of a deeper understanding of forest
ecosystems because of the changing environment and our dependence on forest ecosys-
tem functions and services. I explained the origins of forest modeling and the needs
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and limitations under which different types of forest models have been developed.
Individual-based forest models face the challenge of applying their well-established,
detailed implementation of mechanistic processes to large scales. DGVMs, on the
other hand, attempt to implement processes such as forest demography in more detail.
New opportunities, such as increasing remote sensing measurements and computing
power, are bringing both families of forest models closer together. But not only have
the historical limitations changed, so have the purpose of forest models, and today we
face new challenges and uncertainties related to climate warming. Some of the most
urgent and important questions today include understanding and quantifying the global
carbon cycle and the role of forest ecosystems and vegetation in it (Cabon et al. 2022;
Harris et al. 2021; Ruehr et al. 2023). Related to this is the importance of quantify-
ing land use change (Song et al. 2018) and to track which forests, are under limiting
environmental factors or disturbances (Curtis et al. 2018; Taubert et al. 2018). Partic-
ularly important in the context of land use change is understanding the role of forest
management, deforestation and degradation (Roebroek et al. 2023), especially in the
Amazon (Albert et al. 2023). Given the new possibilities of improved computational
resources and the availability of new methodologies, the opportunities to apply forest
models are growing, but forest models need to be adapted, extended or applied in new
ways to take full advantage of these conditions.
The first study of this thesis (Chapter 2) establish such a new way of using forest
models by extending the forest factory approach by Bohn & Huth 2017 and make it
applicable for forests in different biomes. This approach allows to generate forests us-
ing the architecture and processes of forest models (here we use the individual-based
gap model FORMIND). In this study, 700,000 forest stands in seven different ecore-
gions are generated by using the Forest Factory 2.0. The main objectives of this study
are:

1. Analyzing the structural state space of virtual forests in different ecoregions and
compare them with each other

2. Comparing the relationships between the structural properties of forests and (i)
biomass (as a proxy for the carbon stock), (ii) above-ground wood production
AWP (as a proxy for the carbon flux), and (iii) species evenness (as an example
for a biodiversity index).

In contrast to the tradition of investigating the development of individual forest stands
over time, the Forest Factory 2.0 is used as a tool to gain knowledge about forests by
analyzing the state space of forests. This analysis shows the potential of the presented
approach for a wide range of research questions.
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Remote sensing data from satellites measuring hyperspectral and multispectral re-
flectance on high resolution is more and more available (1.3 and 1.4). These data
could provide information on forest characteristics related to structure and state. Sub-
sequently, these data need to be analyzed using tools that can relate reflected radiance
to forest dynamics at small scales. One possibility for such tools are individual-based
forest models. The second study in this thesis is about a new combined approach
which enable the calculation of hyperspectral reflectance of forests (Chapter 3). It uses
the multi-layer radiative transfer model mScope (Yang et al. 2017) and the individual-
based forest model FORMIND. The objectives of the second study are:

4. Enlarging the application field of mScope and investigate the calculated reflectance
spectra of boreal forests using forests in Finland as an example

5. Investigation of how the concept of forest representation (simple or detailed
structure) influence the calculated reflectance spectrum of forests

6. Comparing the simulation output with Sentinel-2 data by calculating typical veg-
etation indices of the investigated forests

This work provides a forward modelling approach for relating forest reflectance of ra-
diation to forest characteristics. With this tool, it is possible to analyze a large set of
forest stands (for example in combination with the first study in Chapter 2) with corre-
sponding reflectances (in the visible and infrared range). This opens up the possibility
to understand how reflectance of radiation in forests is related to succession and differ-
ent forest conditions.
In order to take advantage of the increasing number of remote sensing measurements
and to achieve synergy effects with forest models, it would be useful to align the design
of satellite missions with the capabilities of forest models.
The last study of the thesis is about using expected biomass measurements provided
by the upcoming RADAR BIOMASS satellite mission (P-band, launching in 2024 by
the European Space Agency) to predict the productivity of tropical forests (Chapter 4).
The main objectives are:

7. Investigating the relationship between horizontal and vertical distribution of above-
ground biomass and carbon dynamics in forests (GPP, NPP and carbon turnover
time) by using a boosted regression tree

8. Examining the robustness of the research results by applying the approach to
different forest types (disturbed and mature forests)
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1 INTRODUCTION

This study presents a novel approach to estimate forest productivity by combining
P-band RADAR remote sensing measurements, machine learning and an individual-
based forest model. The results highlight the potential of deriving estimates for forest
productivity from information on forest structure and gives information about the qual-
ity of future satellite products.
This thesis presents innovative and novel applications of forest models. It provides
insights into how remote sensing measurements can be incorporated into ecological
research and how path dependencies of forest simulations over time can be overcome
by introducing a globally applicable forest generator. It shows first applications how
these approaches can be used to investigate the relationship between forest structure
and productivity (Chapter 2 and 4), to generate virtual remote sensing measurements
for a case study (Chapter 3), and finally to estimate productivity for typical tropical
forests using RADAR remote sensing measurements (Chapter 4). The applications
presented may ultimately contribute to a better understanding of forest ecosystems.
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2 Creating virtual forests around the globe and analysing
their state space, Henniger et al. 2023

2.1 Abstract

Forests, as one of the most important carbon sinks on earth, are more and more under
stress by environmental changes. The dynamics of forests and consequently their func-
tions in general, begin to change. We therefore present a recent model development,
called "Forest Factory 2.0" , which generates various virtual forest stands for different
biomes on earth. This approach allows to generate forests using the architecture and
processes of forest models (here we use the individual-based gap model FORMIND).
Using Forest Factory 2.0, we generated 700,000 forest stands in seven different ecore-
gions. In contrast to the tradition of investigating the development of individual forest
stands over time, we used the Forest Factory 2.0 as a tool to gain knowledge about
forests by analyzing the state space of forests. We conducted a structural sensitivity
analysis to compare the relationships between structural properties and biomass, pro-
ductivity, as well as species evenness of forests. In this study we analyze the state
space of forests in different biomes and demonstrate the potential of this approach for
theoretical ecology.

2.2 Introduction

Forests cover 25% of the global land surface (Gibson et al. 2011).They play a major
role for the global carbon cycle because of their function as carbon storage and their
contributions to global carbon fluxes (Bonan 2008; Grace et al. 2014). Forests are im-
portant for sustaining biodiversity and provide habitat for 70% of all animal species
(Gibson et al. 2011; Myers et al. 2000; Pimm et al. 2014). Further, forests exhibit a
diversity of spatial structure and change their structure due to natural succession, man-
agement or disturbances (Pan et al. 2013).
While forest ecosystems are exposed to environmental change, like all complex adap-
tive systems, they have a certain capacity to cope with it. However, if these change
processes occur too frequently, on too large spatial scales, with too high intensity, the
adaptive capacity of the forests may be exceeded. Global change processes such as
climate change and related effects such as drought, heat waves, fire, storms or pest out-
breaks (Stocker 2014), but also deforestation (Stocker 2014) and fragmentation (FAO
2022; R. Fischer 2021; Taubert et al. 2018) are accelerating and occur simultaneously.
As a result, the dynamics of the forests would change as well as their tree species
composition and structure. Therefore, forests appear to be under increasing pressure
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(McDowell et al. 2020), affecting forest biodiversity in general as well as the diversity
of functions provided by forests. This shows the urgency of sustaining their function-
ing, understanding and enhancing their adaptive capacity, and appropriately adapting
their management.
Prerequisite for addressing these challenges, however, is a sound understanding of
structure-function relationships, esp. between the properties of forests (species- com-
positional and spatial-structural) and their functions (e.g. carbon flux and storage).
To analyze forests ecosystems the perspectives of community ecology (organismal as-
pects, diversity of species and structure) and ecosystem ecology (matter and energy
flux aspects, biogeochemical cycles) are not separable. A mechanistic understand-
ing of the functioning of ecosystems can only be gained if these two perspectives are
adequately linked to one another (Loreau 2010). However, though there are many em-
pirical studies based on data on forest inventories, the number of available samples
and plots or the lack of focus in monitoring make it difficult to create a sufficiently
complete picture (Lindenmayer & Likens 2009; Lindenmayer et al. 2011). This chal-
lenge may be overcome by using remote sensing data, but relating and condensing
this large scaled data to the local or individual scale remains a challenge (Ma et al.
2019). Another challenge is to capture the inherent spatial heterogeneity of environ-
mental conditions and how they change in response to projected changing processes,
especially among different biomes. Thus, there is a huge variety in the environmen-
tal factors which are supposed to influence forest properties (species composition and
structure) and the shape of the structure-function relationship. The needed relevant
variables are mostly not fully covered by the existing inventories and datasets.
Forest models can help to bridge the gap between multiscale field data and processes
enabling a multivariate view of forests. Nevertheless, different types of models have
different application fields. For example, global vegetation models have a focus on
large spatial scales and time scales, whereas individual-based models focus on smaller
scales, as they consider processes at tree level and can thus also analyze structural dy-
namics (Maréchaux et al. 2021). Thus, individual-based models are particularly suit-
able for considering ecosystem dynamics as an emergent outcome from the interaction
of processes at individual level. This allows the identification of structural properties
and functional characteristics of forests at different spatial scales as they emerge from
the assumed environmental conditions. This also opens up the opportunity for cor-
relative analyses of the structure-function relationship (Rödig et al. 2018; Thurner et
al. 2017). However, the causal relationships underlying them are not yet satisfyingly
understood.
We introduce a new way of sensitivity analysis. The variation of parameter values or
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the comparison of different scenarios is a prominent way of sensitivity analysis to gain
causal understanding of relationships. We perform sensitivity analysis not by varying
parameters, but by analyzing millions of initial states to gain understanding of the rela-
tionship between forest functions and forest structure for different biomes. Performing
this way of sensitivity analysis is not common so far and methods for this are rare.
Examples for such a powerful application are the use of landscape generators in the
context of impact assessments of land use scenarios (Engel et al. 2012; Langhammer
et al. 2019) and the use of weather generators in the frame of climate impact analyses
(Friend 1998; Kumagai et al. 2004).
For forests, such a generator was developed by Bohn & Huth 2017, the so-called ‘forest
factory approach’. In one of their studies they generated virtual forest stands that possi-
bly could exist in Central Europe. This multivariate dataset enabled a multidimensional
investigation of the relationships between structural properties, plant diversity and pro-
ductivity (Bohn & Huth 2017; Bohn et al. 2018). This promising approach has shown
on the basis of simple mechanisms that over a broad range of forest stands, several
forest properties (biodiversity and structure) have to be considered to understand for-
est productivity. The forest factory approach establishes a new way to analyze forests
which does not require simulating forests over long periods of time. Instead the focus
of the analysis is on the state space of the forests (described by structure properties).
Due to the regional limitations of the forest factory by Bohn and Huth (focus on Eu-
ropean forests), it offers potential for further research. To realize the potential and to
analyze a causal relationship between their structural -, diversity -, and productivity
relationships for different biomes, a further development and extension of the forest
factory approach is necessary.
In this study we present a novel software tool - the Forest Factory 2.0 - which creates
millions of virtual forest stands, covering various species compositions and structural
properties for different biomes.
Additionally, we provide a data product generated with the software tool to demon-
strate the potential of this approach for systematic mechanistic analyses of structure-
function relationships across biomes. The data product contains in total 700,000 forest
stands including 12 forest properties. These forest stands consist of over 11 million
individual trees with over 20 tree properties.
In this study, we show examples of ecological analysis based on the generated forests.
First, we compare the state space (based on four structural properties) of forests be-
tween seven regions derived for different biomes. Second, we compare the relation-
ships between the four structural properties of forests and (i) biomass (as a proxy for
the carbon stock), (ii) aboveground wood production AWP (as a proxy for the carbon
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flux), and (iii) species evenness (as an example for a biodiversity index). With the
analysis, we want to show the potential of the presented approach for a wide range of
research questions.

2.3 Methodical concept

With the Forest Factory 2.0 we have developed a software tool that makes it possible
to create virtual natural forests that could exist in nature. The Forest Factory 2.0 allows
through its algorithm a fast and generic generation of forests. In contrast to forest sim-
ulations, the forest factory approach does not consider and simulate forests over a long
period of time. It generates various forests describing different states of succession,
as well as management and disturbed forest stands also for different species mixtures.
The forests can be generated for different regions of the world. In this study we pro-
duced 700,000 forest stands in total for seven different ecoregions. The background
knowledge, i.e. the information and processes for the generation of forests, is provided
by forest inventories and studies which are represented in the parameterizations of for-
est models (here we use the forest model FORMIND). A large number of ecological
properties can be calculated for each generated forest, which allows a detailed analysis
of the relationships between forest properties. Comparison of forest stands for dif-
ferent ecoregions is made possible by using the same algorithm for each forest stand
generated.

2.3.1 Forest Factory 2.0

For processes such as competition and productivity, the Forest Factory 2.0 uses the
individual- and process-based forest model FORMIND. This forest model allows the
simulation of species rich forests and also considers the complex age structure of their
tree community. FORMIND has been extensively tested and applied to tropical forests
(R. Fischer et al. 2014; Gutiérrez & Huth 2012; Huth & Ditzer 2001; Kammesheidt et
al. 2001; Köhler et al. 2003; Köhler & Huth 2004, 2007; Rödig et al. 2019; Rüger et
al. 2008), temperate forests (Bohn et al. 2014; Bruening et al. 2021; Rüger et al. 2007)
and grasslands (Taubert et al. 2012). It is an individual-based model which means that
the growth of every single tree is simulated. The model considers four main process
groups: growth of single trees (increment of tree biomass, stem diameter and height),
mortality, recruitment, and competition (e.g. for light and space). FORMIND is also
used for large scale simulations (Paulick et al. 2017; Rödig et al. 2018) e.g. forest-
wide carbon balances in the Amazon. The Forest Factory 2.0, is implemented as an
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independent module of FORMIND in C++ language and uses processes of the forest
model FORMIND (like competition for light and allometries). The processes of the
forest model can be modified independently of the Forest Factory 2.0. It is possible to
combine the Forest Factory 2.0 with other forest models.
The methodology of the Forest Factory 2.0 follows the Forest Factory (Bohn and Huth,
2017), that generated forest stands for the temperate zone and was implemented in the
language R. In this paper, we introduce a new version of the Forest Factory that in-
cludes important new components and extensions that make it applicable on a global
scale. We also provide an R package that facilitates the use of Forest Factory 2.0 (Fig.
2). This package allows analysis of the data product that we publish or that users gen-
erate themselves.

Figure 2. Interdependencies of FORMIND, Forest Factory 2.0 and the R package. The
Forest Factory use processes of the forest model FORMIND. The R package (wrapper
of C++ code) helps to run the Forest Factory 2.0 and process the generated forest stands
to a data product. It also prevents some features for the analysis of the data product.

The Forest Factory 2.0 can produce a large number of virtual forest stands (20 m x 20 m
base area and funnel shape) for each available parameterization, which is representing
an ecoregion. Every tree in the generated forest stand must have a positive productivity
(gross primary production > respiration). In FORMIND a negative productivity causes
the dying of trees. To calculate the productivity, we calculate the biomass increment
of every placed tree over one year, which results from the different ecoregion-specific
parameterizations (e.g. climate). To create forests for an ecoregion the Forest Fac-
tory needs information on climate conditions and a parameter set which consists of
speciesspecific parameters e.g. concerning the tree geometry, productivity and species
pool (see Section 2.3.3 for details) which are representative for an ecoregion.
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Figure 3. Concept of the Forest Factory 2.0. For each forest, Forest Factory 2.0 pre-
selects a minimum and maximum height of trees, a group of species and a maximum
total crown volume (sum of crown volume of all trees). Each tree is determined by a
height (random from height distribution) and a species (random from the species pool).
A new tree is added to the forest stand until the new tree has no positive productivity
or space. Then the tree is deleted, the forest stand is saved in the data base and a new
forest stand is generated.

As an initial information, which is valid for all generated forest stands, the Forest
Factory 2.0 assumes a minimum and maximum height of the trees Hmin and Hmax, an
overall maximum total crown volume ρmax and an initial species pool. The overall
maximum total crown volume ρmax is the maximum sum of crown volume of all trees
valid for every forest stand. The species pool is defined by the parameterization of each
ecoregion and each species/plant functional type is representing a species or group of
species with similar functional and morphological characteristics. This initial informa-
tion is required to start the Forest Factory 2.0 (Fig. 3).
Once started, the Forest Factory 2.0 pre-selects for each forest stand a minimum and
maximum height of trees hmin and hmax (from the initial Hmin and Hmax), a maximum
total crown volume ρ and a group of plant functional types. The pre-selection for hmin,
hmax and the maximum total crown volume ρ is done by random assuming uniform dis-
tributions (the boundaries are [Hmin, Hmax] and [0, ρmax]). The pre- selection of hmin

and hmax for every forest stands also allows the generation of even aged forests. The
pre-selection of the species pool for each forest stand is done by random assuming a
uniform distribution to select the number of species (more details in Appendix A).
After the pre-selection for the forest stand is done, one tree after another is planted.
The explicit position of a tree in the forest stand is not important due to the spatially
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implicit approach of forest gap models, where the position is randomly chosen at the
end of the tree placement procedure. A tree height for the tree to be planted is selected
from a predefined height distribution (X ∼ Exp(−0.05),h = X |X ∈ [hmin,hmax]). The
selected species pool is used to determine randomly the species type of a new tree (each
species has an equal probability). For each tree these two attributes (height and species
type) are selected and are used to calculate other attributes of the tree. Attributes are
derived from processes and the parameter input of the used forest model (here we use
FORMIND for different forest biomes). For the tree placement, it is checked if: a)
each tree has a positive productivity, b) there is still space for the canopy of this tree
(in each height layer, all tree crowns together must not exceed the boundaries of the
forest stand) and c) the maximum total crown volume is not exceeded (we allow a cer-
tain maximum density in three-dimensional space: the maximum total crown volume).
The selection rules for tree height and tree species is the same for each tree. If b) or
c) is violated, the tree will not be considered, the tree placement for this forest is ter-
minated and the created forest stand is saved in a database. If a) is violated and the
calculated productivity over one year is negative, an attempt is made to replace the tree
with a tree of a different species (with the same height and out of the selected species
pool for this forest stand). If the tree has now a positive productivity, it is placed, if not,
the tree placement for this forest is terminated (and the forest stand is saved). Every
time a new tree is placed the annual productivity of all previous planted trees have to
be recalculated (e.g. due to the change of light availability). If one or more trees have a
negative productivity the algorithm try to replace them with tree(s) of another species
and if this doesn’t work the tree placement for the forest is terminated. The generation
of a new forest stand starts.
In this way, the Forest Factory can be used to generate millions of forests for different
ecoregions and climates (by considering input parameterizations). The forests describe
different states of succession (e.g. by differentiate Hmin and Hmax), as well as managed
(e.g. even aged forests by the selection of Hmin and Hmax values with a small differ-
ence) or disturbed forest stands (e.g. by selecting a low overall maximum total crown
volume ρmax) including different species mixtures. The goal is to generate as many
potential forest states as possible. For specific analyses of e.g. even-aged forests or
late-successional forests, the virtual forests must be filtered according to the desired
attributes.
For the derived forest stands a large number of properties and characteristics can be
calculated by using the methods of the forest model e.g. for leaf area, diameter incre-
ment, LAI per height layer, size distribution, biomass, maintenance respiration, gross
primary production (GPP), net ecosystem carbon exchange (NEE). Since we simulate
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the productivity of each forest over only one year, we here do not focus on temporal
evolution, but on states and benefit from the knowledge contained in widely applied
and long-established forest models (here FORMIND).
The Forest Factory 2.0 enables the possibility for a coupling with other forest models.
The coupling setup would run an iterative process. The Forest Factory provides tree
and forest stand information to the corresponding forest model. The calculation of
productivity and tree attributes (e.g. due to allometry) takes place in the forest model,
and is reported back to the Forest Factory.

2.3.2 Forest Factory (Bohn & Huth 2017) vs. Forest Factory 2.0

In this Section, we will explain the main differences between the Forest Factory by
Bohn and Huth (2017) and the Forest Factory 2.0 and show how we have significantly
extended the approach.
One important advantage of ForestFactory 2.0 compared to the Forest Factory by Bohn
and Huth (Table 2) is a significant speed increase (3 million forest stands per hour, 30
times faster), which allows the creation of a huge number of forest stands. Further, it
is now possible to create forests for all regions of the world for which parameter sets
are available (here for the forest model FORMIND).

Table 2
Improvements of the Forest Factory 2.0 in comparison to the Forest Factory (Bohn and
Huth 2017).
Forest Factory (Bohn, Huth 2017) Forest Factory 2.0
10,000 forest stands per hour
(standard notebook)

3 mio forest stands per hour
(standard notebook)

programming language R
C++ and integration in the actual forest
model (here FORMIND)

only temperate forests forests in different biomes (ecoregions)

15 pre-defined stem diameter
one continuous height distribution for tree
placement

only stem diameters up to 0.5 m no restrictions for stem diameter
planting trees until they are
nonproductive

replacing non-productive trees (by other
species)

algorithm produces clusteredsampling more equally distributed sampling
open source code and open data product

As the Forest Factory 2.0 is a part of the FORMIND model repository, functional
model improvements are automatically available for the forest factory. This allows the
Forest Factory 2.0 to use recently developed sub-modules of the forest model. For ex-
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ample, lidar waveforms or light reflectance spectra can be calculated for the generated
forest stands. It is also possible to use the generated forests directly as input for simu-
lations to analyze future development of these forests.
Compared to the Forest Factory by Bohn and Huth, in the Forest Factory 2.0 the input
parameters were reduced. There is only one function for tree height distribution to
derive stem diameter as input (in the old version there were 15 fixed stem diameter
distributions). This increases the flexibility and the possibilities for analysis. With the
new Forest Factory 2.0, we can investigate the state space of the forests more evenly,
i.e., different characteristics of the forest structure occur with sufficiently equal abun-
dance (Appendix Fig. A1).
We provide an open source R + Phyton package and a data product of forest stands
to enable accessibility to a wide range of users. The R package (git.ufz.de/angermue-
/forestfactory) represents an interface which makes it possible to operate with the For-
est Factory 2.0 from the R platform. An overview of the forest dataset is given in
Appendix (Table A1).

2.3.3 Study sites

The parameterizations (representing ecoregions in Table 3) represent the synthesis
of information of many field measurements and inventories, not only concerning the
species-specific allometric tree attributes but also concerning tree growth and produc-
tivity. Due to this we use for all ecoregions the same kind of information only with
different values. The parameterizations can therefore be interpreted as a kind of recipe
with always the same ingredients, in different quantities. The cooking process - the al-
gorithm of the Forest Factory 2 - works for all parameterizations according to the same
principle. The used parameterizations belong to different forest stands in different re-
gions and we decided to use the names of the ecoregions in the paper to make clear
where the investigated forests are located. For the generation of temperate forests in
Germany we use a daily based climate data set of the Hainich National Park (Thuringia,
Germany) for the year 2007. For the other regions we used reduced climate informa-
tion which is described in the Appendix (Section 3).

2.3.4 Simulation and analysis

In this study we present results for forest stands in seven different ecoregions (see
Table 3). The ecoregions consist of two temperate regions (one in North America,
one in Europe) and five tropical regions (two in South America, one in central Amer-
ica, one in Africa, one in Asia). For each region we generated 100,000 forest stands
with the Forest Factory 2.0 (initial parameters: Hmin = 5 m, Hmax = 65 m and the
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Table 3
Overview of the ecoregions, parameterizations and climate used for this study.
Name in
Paper Biome short description Number

of pfts Paper

Amazon
entire tropical forest in the Amazon
using plant functional types 3 Rödig et al. 2017

Panama
tropical lowland rainforest on
Barro Colorado Island 4 Knapp et al. 2018

Germany temperate forest in central Europe 8 Bohn et al. 2014

US
temperate forest within the
Northeast US 9 Bruening et al. 2021

Ecuador
tropical evergreen montane rain
forest in southern Ecuador 7 Dislich et al. 2009

Malaysia
Southeastern Asian tropical
rainforest (North Borneo,Malaysia) 4

update von
Köhler & Huth 2004

Tanzania
tropical submontane and lower
montane rainforest at Mt.
Kilimanjaro

6 R. Fischer et al. 2015

overall maximum total crown volume ρmax = 0.78). Each region provides an initial
species pool. We analyzed all forest stands for structural attributes (basal area, LAI,
height heterogeneity, maximum height) and functional characteristics (above-ground
wood productivity AWP, aboveground biomass and species evenness as an indicator for
biodiversity. Species evenness is calculated by the Shannon Equitability Index (Heip
1974; Peet 1975). The Shannon Index (Shannon 1948) is normalized by the logarithm
of the maximum number of species (we treat pfts as species here).
In a first step we explored under which structural conditions forests can exist in dif-
ferent ecoregions. For this, we use a state space approach. This space is determined
here by four structural variables: maximum height, basal area, height heterogeneity,
and LAI.
In Section 2.4.1 we investigated this state space of forests (mentioned above), by using
diagrams (Fig. 4) similar to the classical diagrams of Whittaker, in which he analyzed
the relation between climate (average annual temperature and precipitation) and vege-
tation types (Whittaker et al. 1970). Instead of climatic attributes we investigate here
four structural properties (two in each Figure). We analyzed maximum height of trees
(this corresponds to the forest height) and basal area which are typical properties to
describe the structure of forests. Additionally, we investigated the role of tree height
variability (here by using the standard deviation of the tree heights which we define
as height heterogeneity) and leaf area index. Each generated forest stand can be rep-
resented as a point in the state space by a combination of these structural properties.
We generated 700,000 forest stands, each representing a possible state, resulting in
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700,000 points in the state space (100,000 for each ecoregion). To analyze the state
space of the generated forest stands with positive productivity (Section 2.4.1), we ex-
amined the area which is covered by 100,000 forest stands of the same ecoregion by
calculating the envelope around the points (each point represents one forest stand).
These envelopes are calculated with the R package Concaveman (which uses convex
hulls with concavity, for details please see Appendix Section 4).
To investigate the relationship between different forest properties and characteristics
(Section 2.4.2) we derived heatmaps (Fig. 5, 6) where the x and y axis describe
structural properties and the color describe functional characteristics: biomass (car-
bon stock), AWP (carbon flow) and evenness (biodiversity). The maps are rastered so
one cell contains information of several forest stands with the same structural proper-
ties. The shown value for a cell represents the mean value over these forest stands. We
also derived maximum value and standard deviation for these analyses (shown in the
Appendix).
To allow direct comparison of forests between the seven ecoregions, we examined
forests by their functions (biomass, AWP, evenness) that are similar in all four struc-
tural properties (Fig. 7). For these similar structured forests, we calculated the mean
value of their functional characteristics and compared them in a 1:1 graph for three dif-
ferent regions. Additionally, the regression line and the adjusted R2 were calculated.
For all analysis we considered only forest stands with a basal area under 100. In
the Appendix the analysis of the maximum values and the standard deviation of the
biomass, AWP and species evenness have been added (see Appendix Figs. A7-A11).

2.4 Results

2.4.1 Analysis of forest structure in different ecoregions

In the first step, we are looking at the structural characteristics of forest stands for the
different ecoregions created by the Forest Factory 2.0 (Fig. 4) by calculating the basal
area, maximum height, height heterogeneity and LAI for each forest stand. The analy-
sis in Fig. 4 shows which combinations of maximum height/basal area and height het-
erogeneity/ LAI lead to forests with positive productivity. Forests with properties out-
side the envelope line, don’t have positive productivity. We observe mostly similarly-
shaped envelopes with different sizes for the different ecoregions (represented by the
different colors).
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Figure 4. Analysis of the state space of generated forests. We examined the area which
is covered by 100,000 forest stands of the same ecoregion by calculating the envelope
around the points (for more details please see Appendix). Each generated forest stand
can be represented as a point in the state space by a combination of the structural
properties: a) maximum height and basal area; b) tree height heterogeneity and LAI.
Different colors are indicating different ecoregions.

The analysis shows typical limitations of forest stands. Forest stands with a high basal
area and low or moderate maximum height (empty area at the right bottom in Fig. 4a)
do not occur. Large trees have large crowns. This tree allometries in combination with
limited space restrict the abundance of these trees and also influences the resulting
basal area (empty area at top left). The physiological and species-specific allometric
interactions result in a typical shape in the state space that curves to the right.
Our forest stands can also be analyzed in a different state space, consisting of the LAI
and the height heterogeneity. In most ecoregions, the largest values for tree height het-
erogeneity occur for forest stands with low LAI values, while the highest LAI values
occur in forests with low to moderate tree height heterogeneity (Fig. 4b). As expected,
the Brazilian Amazon has a large diversity of forest stands, and the shape of the en-
velope is quite different compared to other regions, e.g., without a peak at the top left
(high height heterogeneity, low LAI).
The smallest area within the envelopes in both Figures (4a + b) is found for mountain
forests of Ecuador (low maximum tree height).
We also investigated the frequency distributions of the forest properties of the forests
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within the illustrated areas (Appendix Fig. A1).

2.4.2 Relationship between forest structure and ecosystem functions in different
ecoregions

The Forest Factory 2.0 allows us also to analyze how structural properties (maximum
height and basal area) affect functional characteristics (biomass, above-ground wood
productivity (AWP), and evenness in the species composition (normalized Shannon
Index as proxy for biodiversity). The biomass-related plots (Fig. 5: a, b, c) re-
veal a structure-function relationship that is quite similar for all investigated regions.
Biomass is largely determined by the basal area and maximum height.
The analysis of the German forest stands (Fig. 5a) shows some interesting details for
forests with high biomass and high basal area (top right area). Forests with a lower
maximum height (40 m - 45 m) have on average a higher biomass than forests with
a larger maximum height (> 45 m). With the Forest Factory, it is possible to analyze
each individual tree of the corresponding forest stands in this area. The result is that all
of these forest stands consist of trees of the species Picea abies. This is the tree species
with the largest maximum height in the analysis for this region, but it has a low wood
density, which leads to a lower forest biomass.
In all three regions, we observe that AWP increases with the basal area and decreases
with maximum height, while shape and strength of the combined effects are region-
specific. Also, the range of AWP values differs due to climate variations between the
temperate (Germany, Fig. 5d) and the tropic regions (Fig. 5: e, f), which leads to lower
AWP values for the German forest stands. Nevertheless, we observe that for Germany
(Fig. 5a) and the Amazon (Fig. 5b), forest stands with high AWP have a high maxi-
mum height and basal area. In all three ecoregions, there occur also forest stands with
high AWP values that have only moderate basal area and height.
Concerning the evenness of species, forest stands (Fig. 5: g, h, i) show a simi-
lar structure-function relationship for the Amazon (Fig. 5h) and Tanzania (Fig. 5i).
Species evenness is increasing with basal area but decreasing with maximum height.
For the temperate forests in Germany (Fig. 5g), the situation is more intricate. Forest
stands between low and medium maximum height (0 m - 35 m) and with medium basal
area have high evenness values.
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Figure 5. Relationship between structural properties (basal area and maximum height
per forest stand) and biomass (a-c), above-ground productivity (d-f) and species even-
ness (g-i) for three selected ecoregions (Germany, Amazon, Tanzania). The color of
each cell in the graph represents the mean value of the investigated property of all
forest stands within one cell. Note that the AWP axes are scaled differently between
the ecoregions (d-f). All other ecoregions, maximum value and standard deviation per
property you can find in the Appendix (Figs. A5-A7). See Appendix Fig. A3 for Fig-
ures d) - f) with common AWP legend.

In a second step, we analyzed how two other structural properties (here: height het-
erogeneity and LAI) affect the functional characteristics of forest stands for the three
investigated ecoregions (Fig. 6).
In all cases, forest stands with large biomass values (Fig. 6: a, b, c) can only be found
if the LAI is high. Additionally, in the Amazon and Tanzania, these forest stands also
need height heterogeneity values above 8 m.
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Figure 6. Relationship between structural properties (LAI and tree height heterogene-
ity) and biomass (a-c), above-ground productivity (d-f) and evenness (g-i) for the gen-
erated forests for three selected ecoregions (Germany, Amazon, Tanzania). The color
of each cell in the graph represents the mean value of the investigated property of all
forest stands within one cell. Note that the AWP axes are scaled differently between
the ecoregions (d-f). All other ecoregions, maximum value and standard deviation per
property you can find in the Appendix (Figs. A8-A10). See Appendix Fig. A4 for
Figures d) - f) with common AWP legend.

We also analyzed forest productivity (Fig. 6: d, e, f). Forest stands with high AWP
values have one pattern in common. High productivity goes along with low height het-
erogeneity and medium LAI in the Amazon and Tanzania (4–7 todmyr−1ha−1) and high
LAI in Germany (5–13 todmyr−1ha−1). Lower AWP values of forest stands in Germany
can be explained by the shorter vegetation period. In contrast to the other ecoregions
for the forests in the Amazon, we also observe highly productive forests with large
LAI (>10) and high height heterogeneity (>10 m), analogous to the biomass.
For Germany, it is remarkable that we observe only a few forest stands with medium
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height heterogeneity (6 m - 10 m) and medium LAI (2–10). Forest stands with these
properties have low AWP values. These forests are next to an area in the state space
without forest stands (white area), possibly due to the negative productivity of trees.
For species evenness (Fig. 6: g, h, i), we got no clear trends (like in the first and second
row). Above a certain LAI (>3), we find Tanzanian forests with high species evenness
(0.5 - 1). The highest evenness values (>0.7) can be found at the outer edge of the
envelope.
The analysis of biomass, AWP and species evenness in German forests (Fig. 6: a, d,
g) shows that forests with height heterogeneity smaller than 3 m and LAI larger than
6 have on average a lower evenness, besides all these forests have a high biomass and
a high productivity. Results for the standard deviation and maximal biomass values,
productivity and species evenness can be found in the Appendix (in Fig. 6, we ana-
lyzed mean values; for details, see methods and Appendix Figs. A8–A10).

2.4.3 Comparison of structure function relationships for different ecoregions

In the previous Sections, we examined structure-function relationships for different
ecoregions. Here, we directly compare the structure-function relationships for three
ecoregions (Amazonian, German and Tanzanian forests) to explore how generally the
derived relationships apply (for comparisons for all ecoregions see Appendix Figs.
A11-A13). Specifically, we compare mean biomasses (blue points in Fig. 7: a, b, c),
mean AWPs (red points in Fig. 7: d, e, f) and mean species evennesses (green points in
Fig. 7: g, h, i) of forest stands that have similar states (according to the four structural
properties used in the Figures above) but are from different regions. We show them in
1:1 graphs. We consider forest states as similar if they have similar maximal height,
height heterogeneity, LAI and basal area (details in Section 2.3.4).
We observe a strong correlation for the biomass (high R2 value). The biomass of forest
stands with similar properties are not identical (not on the 1:1 line).
For the AWP (Fig. 7: d, e, f), we see a good correlation. The four structural dimensions
are sufficient to find relations between AWP for different regions but less effective than
between the biomass.
We see no correlation in the evenness relationships for the different regions (Fig. 7:
g, h, i). That indicates that we may need more information in addition to structural
properties to get a better correlation.
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Figure 7. Comparison of biomass, aboveground productivity and species evenness de-
rived from forests with a similar state space (by a 2% quantile of the four structural
properties LAI, basal area, tree height heterogeneity and maximum tree height). Each
graph compares forest stands out of two ecoregions. We show the pairwise compar-
isons for three illustrative ecoregions. Each point represents the mean values of the
investigated functional characteristics.

2.5 Discussion

In this paper, we explored the Forest Factory 2.0 a new open source software tool to
simulate and analyze forests from different biomes on earth. We demonstrated several
benefits of the approach and provide insights into how this method can increase our
knowledge on structure-function relationships of forests and overall forest function-
ing. Breaking with the tradition of investigating the development of individual forest
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stands over time, we used the Forest Factory 2.0 as a tool to gain knowledge about
forests by analyzing the state space of forests, resulting from species pool and environ-
mental factors.
The simple algorithm of the Forest Factory allows comparison of a large number of
forest stands from different biomes (3 million forest stands per hour) generated with
the same process-driven architecture. This also provides a causal understanding of for-
est structure-function relationships (as we showed in Section 3). In this manuscript, we
present a method to investigate the relationship between structure (maximum height,
basal area, LAI, height heterogeneity) and productivity (biomass and AWP) or biodi-
versity (species evenness) of forests. With the Forest Factory 2.0, it is also possible to
analyze other forest properties, such as diameter increment or net ecosystem exchange.
Additionally, it enables us to explore the role of other more complex structural char-
acteristics like stem size distribution or height-layer specific information. With this
systematic approach we could investigate the causes of the differences and similari-
ties of forest stands e.g. why forests with similar structure show different or similar
biomass or productivity values. This could allow us to calculate transfer functions for
structure-function relationships of forests from one ecoregion to another (outlined in
Section 2.4.3). Here, we generated forest datasets for seven forest regions to illustrate
the approach. It is also possible to use other parameterizations from other forest mod-
els to generate forests for additional regions.
With this approach it is not only possible to create forests that already exist but also
could occur. Using the Forest Factory 2.0 to create forest states beyond the currently
existing ones provides a fuller understanding of forests beyond the constraints of em-
pirical data such as national forest inventories or remote sensing data. Some of these
forest states may be due to current changes in disturbance regimes or management,
and for some forest states it may not even be clear which successional or disturbance
pathways will lead to them. In addition to the promising research area of realistic
forest selection, it is also interesting to study forests that have almost no or even nega-
tive productivity. This analysis can be used to identify stressed forest stands (in forest
inventories) or generally describe and understand the state space of stressed forests.
This might help to detect potential regime shifts and to explore adaptive capacities of
forests and forest ecosystems. As seen in Fig. 6d, there are forests with medium height
heterogeneity and LAI that have low productivity. These forests are next to an area
in the state space without forest stands (white area). White areas may indicate that
forest stands in this area of the state space have negative productivity. Such forests
are not generated by the algorithm due to the productivity condition. Further analysis
could reveal if this white area represents a transition from forests with low positive to
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forests with negative productivity. This area in the state space could give information
on the limits of coping capacity of forest stands. If this were the case, these forests
could change from being a carbon sink to being a carbon source. In this study we pre-
sented how the Forest Factory 2.0 can be used to study region-specific patterns and the
ecological mechanisms behind them. Every forest stand consists of many individual
trees that are modeled by the selected forest model (here FORMIND). For each single
tree, additional information is available (data product of the Forest Factory 2.0). This
allows the analysis of specific forest attributes by analyzing the productivity or other
properties of each tree in the forest, hence yielding a deeper understanding of forest
dynamics. The Forest Factory 2.0 also offers the possibility for jointly addressing re-
search questions from community ecology (organismal aspects, diversity of species
and structure) to ecosystem ecology (matter and energy flux aspects, biogeochemical
cycles) (Loreau 2010).
For making Forest Factory 2.0 easier to use for different user groups it might be useful
to generate forests with only certain tree species for user groups that want to generate
lidar data with Forest Factory 2.0. At the moment, forests with certain tree species can
of course be sorted out of the data product or generated by changing the parameteriza-
tion. Possible tree species should be selected during the initialization of Forest Factory
2.0. Perhaps users only want to study multilayer forests, so it would be interesting to al-
low other height distributions that make these forests more likely (e.g., bimodal height
distributions), even if they already exist in the data product. Another direction would
be to allow different spatial resolutions for Forest Factory 2.0 if users want to create
larger contiguous forests without filtering and rearranging the ones already generated.
An additional extension could be to allow different mechanisms for tree placement. It
would be possible to remove trees in the virtual forest stands to mimic interventions.
Also, we could implement mechanisms which guarantee a denser packing of forest
stands and may widen the envelopes in Fig. 3. Nevertheless, the presented envelopes
show that we can already cover a broad range of different forest structures with the
current approach.
Furthermore, the coupling of the Forest Factory with other modules of FORMIND al-
lows us to explore additional properties and characteristics of the generated forest, for
example to derive typical remote sensing data and indexes based on radiative trans-
fer models. For instance, Bruening et al. 2021 use the Forest Factory 2.0 to explore
the relationship between lidar profiles and aboveground biomass. It is also possible
to combine radiative transfer models with the Forest Factory 2.0 to generate reflec-
tion spectra for a huge number of forest stands (Henniger, Huth, et al. 2023). Virtual
forests are also used in studies by the remote sensing community (Frazer et al. 2011,
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2005; Widlowski et al. 2015). In addition to the typical remote sensing forest variables
(point clouds, lidar profiles), the generated forests allow the calculation of additional
properties (basal area, LAI, AWP, net ecosystem exchange) also at the tree level. Thus,
the presented approach can help to downscale the satellite-imagery-based data and to
translate the remote sensing measurements available for large areas to the level of in-
dividual trees.
It is also possible to combine the Forest Factory 2.0 approach with other forest mod-
els. The new approach of looking at forests in terms of states rather than simulations
over time, along with Forest Factory 2.0’ s free coupling possibility, offers a promising
path to compare forest models and learn more about their capabilities and limitations.
Specifically, it opens up the possibility of using different forest models to generate
different databases of forest stands, as shown in this study with FORMIND, and then
analyzing these comparatively using the methods presented. In addition to the possi-
bility of combining the Forest Factory 2.0 with other forest models, the Forest Factory
2.0 is also an additional test for parameterizations. We can analyze forests that cannot
be created by the forest succession for which the parameterization was made. These
forests may be possible under different environmental conditions (like climate change)
or due to disturbances (e.g. fallen trees).
Another possible application is the use of generated forest stands to initialize mod-
els simulating forest development (for different forest models) over a longer period of
time. With this application it is possible e.g. to analyze the further behavior of these
forests under climate change or management scenarios (natural extinction processes or
implementation of new species). Again, the advantage is that we can simulate forests
with states beyond those that currently exist and gain information that we cannot obtain
from inventory or remote sensing observations. With forest models we can analyze the
development of these forest stands which allows new ways of analysis. For example,
we can explore forest states that are more resilient to climate change and should be
pursued in forest management.
The presented way of analyzing forests in a digital universe of processes and mech-
anisms also offers new possibilities for data scientists. The freely available datasets
of generated forest stands can be used to train artificial intelligence models (AI) that
estimates additional forest/tree attributes from just a few attributes of forest stands.
The resulting relationships could be used to gain a deeper understanding at the level
of individual trees from large-scale remote sensing observations. In addition, all rela-
tionships shown in the graphs and the data product could be condensed into equations
with symbolic regression AIs.
With the Forest Factory 2.0, researchers can generate virtual forests for their needs or
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use the open-source forest data to analyze a digital forest universe of forest states.
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3 A New Approach Combining a Multilayer Radiative
Transfer Model with an Individual-Based Forest
Model: Application to Boreal Forests in Finland

3.1 Abstract

To understand forest dynamics under today’s changing environmental conditions, it
is important to analyze the state of forests at large scales. Forest inventories are not
available for all regions, so it is important to use other additional methods, e.g., remote
sensing observations. Increasingly, remotely sensed data based on optical instruments
and airborne LiDAR are becoming widely available for forests. There is great potential
in analyzing these measurements and gaining an understanding of forest states. In
this work, we combine the new-generation radiative transfer model mScope with the
individual-based forest model FORMIND to generate reflectance spectra for forests.
Combining the two models allows us to account for species diversity at different height
layers in the forest. We compare the generated reflectances for forest stands in Finland,
in the region of North Karelia, with Sentinel-2 measurements. We investigate which
level of forest representation gives the best results and explore the influence of different
calculation methods of mean leaf parameters. For the majority of the forest stands, we
generated good reflectances with all levels of forest representation compared to the
measured reflectance. Good correlations were also found for the vegetation indices
(especially NDVI with R2 = 0.62). This work provides a forward modeling approach
for relating forest reflectance to forest characteristics. With this tool, it is possible to
analyze a large set of forest stands with corresponding reflectances. This opens up the
possibility to understand how reflectance is related to succession and different forest
conditions.

3.2 Introduction

Forests play a major role in the terrestrial component of the global carbon cycle. They
account for about 55% of the global above-ground carbon stock (Pan et al. 2011) and
represent approximately 40% of the global terrestrial carbon sink (Ciais et al. 2014;
Malhi 2010). Forests shape the surface of the Earth by comprising 31% of the land
area (FAO 2022) and they influence the energy balance by reflecting and absorbing
sunlight. They are important for sustaining biodiversity and provide habitat for 70%
of all faunal species (Gibson et al. 2011; Myers et al. 2000; Pimm et al. 2014). Forests
exhibit a diversity of spatial structures that can be dynamic due to natural succession,
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management or disturbances (Pan et al. 2013).
To monitor the state of forests, the conventional standard practice for foresters and
ecologists alike has long been the measurement of forest inventories. Collecting in-
ventories is time-consuming. However, in tropical forests, national forest inventories
are often missing. Another approach to monitor forests is based on remote sensing
observations, which provide relevant data at large scales. The amount of data is signif-
icantly raising with more and more Earth-observing satellite missions launched in the
last ten years (Guanter et al. 2015). The spatial and temporal remote sensing observa-
tions offer the opportunity to gain a better understanding of forests with respect to their
structure and dynamics. Satellite measurements vary in their resolution and coverage.
Thus, for global observations, there is a trade-off between the spatial and temporal
resolution of satellite (e.g., Landsat, Sentinel) and airborne products. The combined
methods of remote sensing and field observations offers the opportunity to gain a bet-
ter understanding of forests with respect to their structure and dynamics. However, the
ecological interpretation of remote sensing observations of forests is challenging, and
in many cases still in development.
One way to obtain information from remote sensing measurements concerning target
vegetation variables (e.g., Leaf Area Index (LAI), species composition, productivity)
is to use models that link the measured remote sensing measurements to the vege-
tation. Vegetation models have been successfully applied to study change in forests
for nearly four decades, many of which differ in their applications. As one example,
dynamic global vegetation models (e.g., ED by Moorcroft et al. 2001 and CLM4 by
Lawrence et al. 2011), were initially developed to represent the interaction between
vegetation and the global carbon cycle as stand-alone simulation models, but also to
represent vegetation dynamics in the context of Earth system models, or alongside
atmospheric (general circulation models), oceanic and cryospheric modeling frame-
works (Maréchaux et al. 2021). These models focus on large-scale applications and
they rely on simplifications to reduce complexity and computational demand (e.g., in-
dividual species simplified to plant functional types). They do not offer information
at the individual tree level. For the analysis of forests in forestry and ecology, there
has been a long tradition (Shugart et al. 2018) of using individual forest models (e.g.,
FORMIND by Köhler & Huth 1998 and LPJ-GUESS by Smith 2001). FORMIND is
able to represent the ecosystem dynamics of the forest by simulating each individual
tree in a forest (forest gap model). FORMIND allows for the simulation of species-rich
forests and also considers the size and age structure of the simulated tree community.
At the same time, with increasing computing capacity, there is an opportunity to use
these models to simulate large forest areas. Due to the simulation of single trees, they
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are also able to consider the heterogeneity of forest structure and dynamics.
An important component in vegetation models is solar irradiance and the competition
for light between plants. One simple way to calculate the light climate is based on
Lambert–Beer’s law, which is often used by forest models. It describes the decreasing
intensity of radiation as it passes through a medium (e.g., tree crowns), depending on
the composition of the medium and the height of the layer. Radiative transfer mod-
els (RTMs) calculate the light climate in the forests in a more detailed way. They
simulate the reflectance, interception, absorption and transmission of light through a
canopy. Radiative transfer is influenced, e.g., by the amount of leaves, their charac-
teristics (i.e., amount of chlorophyll and carotenoids, water content), the angle of the
leaves struck by light and the angle between the leaves and the Sun. All these param-
eters are combined by coupled differential equations and allow for the calculation of
reflectance of a forest for light of different wavelengths (between 300 nm and 2500
nm, depending on the model) including the reflectance, absorption and transmission of
the leaves. Some RTMs are able to provide results for multiple canopy layers, whereas
others assume a homogeneous canopy. RTMs are able to simulate the reflectance of
the canopy, as it is measured by satellites. Canopy radiative transfer is one of the pri-
mary and long-relied-upon mechanisms by which models relate vegetation properties
to surface reflectance as captured by remote sensing (Sellers 1985), as radiative trans-
fer in combination with vegetation can be modeled at different levels of complexity.
The representation of the vegetation for which the radiative transfer is calculated can
range from a simple homogeneous to a detailed and heterogeneous 3D representation
of the vegetation structure. The complexity of the solution of radiative transfer prob-
lems also varies (Kokhanovsky et al. 2013; Kuusk 2018) from numerical Monte Carlo
ray tracing approaches (e.g., Brazhnik & Shugart 2017; Deutschmann et al. 2011) to
analytical solutions using, e.g., four stream technology (e.g., Verhoef et al. 2007).
Some of the global vegetation models are coupled with simple RTMs to calculate re-
flectance for a wavelength from 300 to 2500 nm. The two-stream approximation is
used to calculate radiative transfer in CLM4.5 (Bonan et al. 2011), ED2 (Medvigy et
al. 2009) and CLM(SPA) (Bonan et al. 2014). Mostly, these models only use a few
plant functional types and a low number of canopy layers.
With the new generation of RTMs (such as DART by Gastellu-Etchegorry et al. 2017
and mScope by Yang et al. 2017), it is possible to consider heterogeneous vegetation.
The more complex the structure of the vegetation, the more computationally intensive
the simulation of light reflectance and the interaction with the vegetation. The same
applies to the simulation of vegetation on a global level. As mentioned, global vegeta-
tion models must make strong simplifications in order to be able to simulate large areas
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in appropriate timespans. Individual-based models describe forest structure in a more
detailed way, but they are difficult to apply on a global scale due to the computational
requirements. Nevertheless, they endorse the fundamental premise that the structure
of forests represents an important factor for ecosystem dynamics that is lost in more
aggregated modeling approaches (Shugart et al. 2018).
Individual-based forest models in combination with the new generation of RTMs are
therefore a promising approach to consider the complexity of forest structure and
species. Their combination will aid in the development of a mechanistic understand-
ing of the linkage between forest reflectance and forest properties such as structure and
species diversity. The challenge is to develop an approach which is sensitive to forest
structure and species diversity within the current, but ever-increasing, computational
constraints both in simulating vegetation and radiative transfer, in order to allow for the
analysis of huge forest simulations. Such a tool can also be used to gain a more general
understanding of the relationships between reflectance and vegetation properties.
Here, we present an approach by coupling the new-generation RTM mScope with the
individual-based forest model FORMIND. We enlarge the application field of mScope
and investigate the calculated reflectance spectra of Boreal forests using forests in Fin-
land as an example. Comparing the simulation output with Sentinel-2 data allows us
to answer the following questions: How does the concept of forest representation (ho-
mogeneous or heterogeneous structure) influence the reflectance spectrum? Can the
approach reproduce the variety of reflectance spectra in Finland? Furthermore, how
well can we calculate the vegetation indices of the forests with this approach?

3.3 Materials and Methods

For coupling the individual-based forest model FORMIND and the radiative transfer
model RTM mScope, we implemented mScope (in an adapted version of Yang et al.
2017) as an additional process in the forest model FORMIND. By using inventories
for forest stands in Finland and the forest model, we were able to reconstruct these
forests. In combination with the RTM, it was possible to calculate reflectance spectra
for the visible and near-infrared range. We then compared the simulated reflectance
with measured reflectance spectra from remote sensing observations (Sentinel-2).
To analyze possible applications, different levels of the forest complexity were ana-
lyzed and their influence on the reflection spectra was investigated. In addition, several
vegetation indices were calculated and analyzed.
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3.3.1 Study Site

For this study, we investigated 28 Boreal forest stands in Finland in the region of North
Karelia, which are located in an area of about 150 km × 150 km (see Figure B.1). The
inventory data were collected for the FunDivEUROPE project (http://project.fundiv-
europe.eu, Baeten et al. 2013) in summer (August) in 2012 and again in 2017. Each
of the 28 inventory plots had a size of 30 m × 30 m (Figure 8). The forest inventory
contains information on species type, tree positions (x- and y-coordinates) and stem
diameters at breast height from all trees. Information about the understory (e.g., shrubs,
grasses, mosses) is not provided by the inventory. Based on stem diameter and tree
species, other important forest attributes, such as tree height, crown diameter and leaf
area index (LAI) are calculated by the forest model FORMIND. The investigated forest
stands include as main species Picea Abies (Norway spruce), Pinus Sylvestris (Baltic
pine), Betula Pendula (silver birch) and Betula Pubescens (downy birch). Information
about species richness and evenness, biomass, basal area and LAI can be found in
Table B.2 and Figure B.5.

Figure 8. Visualization of the forest inventory of the 28 forest stands in Finland (re-
construction of 2015). Each circle represents a tree and its location in the plot (x and y
coordinates). The color of the circles represents the species of a tree and the size of the
circle represents its crown diameter. The number in the squares indicates the number
of the forest stand and corresponds to the numbering in the FORMIND simulation.
The forest stands are shown side by side but are originally distributed over an area of
150 km × 150 km (a map is shown in Appendix Figure B.1).

For all forest stands, tree size was measured in 2012 and 2017. Here, we took the
mean stem diameter (at breast height) of the measured stem diameter values of 2012
and 2017 as a proxy for the stem diameter in the year 2015 (same year as the analysis
of Sentinel-2 data Ma et al. 2019) and used these values for the forest reconstruction
with FORMIND. We then compared the calculated reflectance spectra with remote
sensing observation using atmosphere-corrected Sentinel-2 measurements (Ma et al.
2019) from August 2015. For the simulation of the reflectance spectra, information
on observation geometries (Sun and observer, in terms of zenith and azimuth) for each
forest stand was provided by Ma et al. 2019.
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3.3.2 The Individual-Based Forest Model FORMIND

For the simulation of the 28 forest stands, we used the individual- and process-based
forest model FORMIND, which belongs to the model family of individual-based for-
est gap models. This means that the growth of every single tree is simulated and that
individual trees interact with each other. Additionally, FORMIND allows for the sim-
ulation of forests with different tree species and also considers the size structure of the
tree community. FORMIND can be used for small-scale simulations as well as large-
scale simulations (Paulick et al. 2017; Rödig et al. 2018), e.g., in the Amazon.
The model includes four main process groups: recruitment, mortality, competition
(e.g., for light and space) and growth of each individual tree (increment of tree biomass,
stem diameter and height). For our investigations, we implemented the RTM mScope
as an additional process in FORMIND (in an adapted version in C++).
The stem position (x- and y-coordinate), species information and the diameter at breast
height were used as input information in FORMIND. Via different allometry formulas,
FORMIND calculates tree height, crown diameter and LAI. This also depends on a set
of species-specific parameters and allometry equations. FORMIND has been exten-
sively tested and applied to tropical forests (R. Fischer et al. 2014; Gutiérrez & Huth
2012; Huth & Ditzer 2001; Kammesheidt et al. 2001; Köhler et al. 2003; Köhler &
Huth 2004, 2007; Rödig et al. 2018; Rüger et al. 2008), temperate forests (Bohn et al.
2014; Bruening et al. 2021; Rüger et al. 2007), grasslands (Taubert et al. 2012) and
boreal forests (Reyer et al. 2020). The parameterization of Bohn et al. 2014 includes
all tree species of the investigated forest stands (North Karelia, Finland) and is used
for our simulations on a 30 m × 30 m scale.

3.3.3 Coupling mScope with FORMIND

MScope is an RTM which, on the one hand, can handle several canopy layers, and
on the other hand, has a short computation time. For this study, we coupled mScope
(Yang et al. 2017) with FORMIND (as a part of the FORMIND code). It is based
on Scope (Soil Canopy Observation of Photochemistry and Energy fluxes, van der
Tol et al. 2009). The Scope model is a vertical, one-dimensional, integrated radia-
tive transfer and energy balance model, which simulates short-wave reflectance spec-
tra (400–2500 nm) and the fluorescence of homogeneous vegetation. In its original
version, it combines two basic RTMs: Fluspect (Vilfan et al. 2016) (on the base of
PROSPECT, Féret et al. 2017) for calculations of reflectance, transmittance and fluo-
rescence at leaf level and SAIL-based models (Scattering by Arbitrary Inclined Leaves,
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Verhoef 1984) for calculating the radiative transfer in the canopy. Compared to Scope,
mScope has multiple layers to include the variation in the distribution of leaves, which
enables the representation and simulation of heterogeneous vegetation.
We use mScope (Yang et al. 2017) to simulate the reflectance spectra of forest stands.
For calculations at leaf level (reflectance, transmittance and fluorescence), our mScope
version uses the model PROSPECT-D (Féret et al. 2017). At canopy level (radiative
transfer), a modified version of Scope is used.

For the parameterization of the leaf model, the following attributes are used:

• Leaf structure (number of internal leaf layers [layer]);

• The amount of pigments in the leaf (chlorophyll a and b [µg cm−2], carotenoids
[µg cm−2], anthocyanins [µg cm−2], senescent pigments [fraction]);

• Dry matter [g cm−2] and leaf water content [g cm−2];

• Traits describing vegetation structure as the mean and bi-modality of the leaf
inclination distribution function, LAI [m2 m−2], canopy height [m].

The parameters for the different species were taken from the "CABO 2018-2019 Leaf-
Level Spectra Data set" by Kothari et al. 2023 and can be found in Table B.1. These
values are generalized values (measurements from Finland were not available). Due to
physiological similarities, the species Betula Pendula and Betula Pubescens are com-
bined to one species group called Betula (birches). Additional information that is used
is soil reflectance spectra (see Figure B.2) and atmospheric constants, which are taken
from Yang et al. 2017.

3.3.4 Representations of Different Levels of Forest Complexity (Heterogeneous
Structure)

Using the individual-based approach in forest modeling, it is possible to simulate and
describe forest structure at fine scales, which allows for the heterogeneity of a forest
to be considered. Individual-based forest models (here, FORMIND) make it possible
to gain tree- and forest-specific properties for each forest patch (e.g., 30 m × 30 m) in
different height layers (each height layer has a thickness/size ∆h) from the bottom/soil
up to the top of the canopy.
One important property to calculate radiative transfer is the LAI. FORMIND enables
the calculation of LAI distributions for each tree over height (the above-described
height layers). In order to determine the species composition, we used the LAI frac-
tion of a species as a measure of its abundance. MScope uses a fixed number of height
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layers (in the version of Ma et al. 2019: 60 layers). In our modified version, we use a
fixed layer height ∆h = 10 m for a low height resolution and later ∆h = 0.5 m for a high
resolution (see Figure B.4). We analyze forests up to forest heights of 50 m. Thus,
we use 5 or 100 height layers, respectively, for our calculations. Depending on the
structure of the forest, the leaves are located in different height layers. Height layers
without leaves do not contribute to the reflectance spectra.
To calculate leaf reflectance and transmittance (using the leaf model PROSPECT-D),
the RTM utilized information from the forest model for each layer, which included a
leaf parameterization containing leaf properties for each layer. Additionally, the distri-
bution of the orientation of leaves was considered—-it was assumed to be spherical for
all species—but it is also possible to choose other distributions. MScope also includes
observation geometry (Sun and satellite, azimuth and zenith). Vegetation information
from the reconstructed simulated forest, which is provided by the forest model, could
be processed in different ways and then be transferred to the radiative transfer model.
In this paper, we analyze three cases, each resulting in a different representation of the
vegetation. The processing differs according to the LAI and according to the species
composition (Figure 9).
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Figure 9. Different concepts of forest representation. Visualization of the different
representations of a sample forest during the simulation (first column: simple forest
representation, second column: detailed forest representation, third column: spectra-
averaged forest representation). We see how, under the given concept, the forest is
represented in FORMIND (first row), how it is simulated in mScope (second row)
and how the output is built (third row). The sample forest has 3 different species
(represented by the different colors). The concepts of representation are described in
detail in the text below.

1. Simple forest representation
The simplified forest representation only uses reduced information of the forest.
It assumes the same mixture of species and the same LAI for each height layer of
the forest stand. The leaf parameterization is calculated by averaging the leaf at-
tributes of the occurring species (weighted by LAI, as a measure of abundance).
The LAI of the forest stand is equally distributed among all layers.

2. Detailed forest representation
The detailed representation of the forest assigns to each height layer different
mixtures of species and different LAIs. The leaf parameterization for each layer
is calculated by averaging the leaf attributes of the occurring species weighted
by LAI in the height layer, as a measure of abundance. For each layer of the
forest, the calculated LAI of the reconstructed forest stand will be used.

3. Spectra-averaged representation
In this case, the forest is divided into different "sub-forests". In each sub-forest
stand, we maintain the total number of trees and the structure of the main forest
stand. However, we assume that all trees in a sub-forest stand are of only one
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species. Thus, there are as many sub-forests as there are tree species. For each
layer, the calculated LAI of the reconstructed forest stand is used. For each of
these single-species sub-forests, the reflectance spectra are calculated using the
species-specific leaf parameters. The final reflectance spectrum is determined by
averaging the species-specific spectra weighted by LAI fraction, as a measure of
abundance.

The processed Sentinel-2 observations (Ma et al. 2019) include reflectance values for
only 10 wavebands. MScope calculates radiative transfer for wavelengths in the range
from 400 nm to 2500 nm (with a resolution of 1 nm). For better comparability with
the simulated reflectance profiles, we averaged the simulated reflectance values for the
different Sentinel-2A bands (e.g., Sentinel Band 704 nm has a range of 15 nm, so we
averaged 15 reflectance values; for more information on bands see Appendix Table
B.3). This averaged values are shown as dots in Figures 10, 11 and B.13 and are the
basis of the comparisons with Sentinel-2 measurements.
Vegetation indices derived from canopy reflectance are widely used in remote sens-
ing, as they represent proxies for vegetation attributes (e.g., LAI, productivity). We
calculated several vegetation indices (NDVI, EVI, MSI, in appendix: NDMI, kNDVI).
NDVI is chlorophyll-sensitive. EVI (A. Huete et al. 2002) is responsive to canopy
structural variations, including LAI, canopy type and plant physiognomy (X. Gao et
al. 2000). We also analyzed kNDVI (Camps-Valls et al. 2021) as a modification of the
NDVI. The NDMI is partly correlated with the water content of the canopy (Hardisky
et al. 1983). Hunt Jr & Rock 1989 introduced the moisture stress index (MSI, Vogel-
mann & Rock 1986), which utilizes reflectance wavebands in the SWIR (1550–1750
nm) and NIRS (760–900 nm). Additionally to the vegetation indices, we analyzed
the similarity index SAD (spectral angle distance, Kruse et al. 1993, see Appendix
Figure B.12 and Table B.4).
In the mScope model, some code adjustments were made to account for the structure
of the forest models and forests from the inventory. In forest models, it is possible that
there are layers without leaves (vertical gaps). Adjustments were necessary to ensure
that these layers had no influence on the reflectance spectrum. MScope calculates the
probability of viewing a leaf in solar (PS) and observer direction (PO) by assuming a
homogeneously distributed LAI in the forest.

PS = ek·xl·LAI (3.1)

PO = eK·xl·LAI (3.2)

with xl as negative cumulative layer thickness, k as extinction coefficient in direction
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of the Sun, LAI as leaf area index of forest stand and K as extinction coefficient in the
direction of the observer.
This leads to the situation that the probability is also influenced by layers with an LAI
of 0. We have changed the calculation equivalently, allowing for different LAI values
for the height layers.

PS = e−k·LAI(i) (3.3)

PO = e−K·LAI(i) (3.4)

with LAI(i) as leaf area index in height layer i of forest stand, k as extinction coefficient
in the direction of the Sun and with K as extinction coefficient in the direction of the
observer.
The mScope code also includes a correction of PS and PO, which we also considered.

3.4 Results

First, to reduce the complexity of the analysis, we analyzed the reflectance of even-
aged forests, where the RTM uses a low resolution (height layer size ∆h = 10 m, Figure
10). In each layer a homogeneous leaf distribution is assumed. The even-aged forest
stand number 17, which was dominated by one species, and stand number 5, which
contained three species, were used as examples for this analysis. Reflectance was then
calculated for simplified, detailed and spectra-averaged forest representations.
There were differences (up to 140%) in reflectance between the detailed (blue) and the
simplified (orange) forest representation. The simplified representation consistently
produced higher reflectance (especially in comparison to spectra-averaged representa-
tion). Both the modeling and satellite measurements show different reflectance spectra
for the two forests. We found a higher similarity of reflectance for the detailed repre-
sentation.
In the next part of the investigation, we increased the represented complexity of the
forest by assuming a layer height of 0.5 m (Figure 11). Here, the forest model (here
FORMIND) provided mScope with a higher resolution distribution of LAI and species-
specific information over height. As in Figure 10, the results are again shown for the
simplified, detailed and the spectra-averaged representation of the forests for both ex-
ample sites.
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Figure 10. Reflectance spectra for detailed and simplified forest representation by
using layers with a size of 10 m. Visualization of the calculated reflectance profiles for
two forest stands (numbers 5 and 17) in Finland. Forest stand number 17 (left, mainly
one species) and forest stand number 5 (right, three species). Both forest stands are
even-aged (small standard deviation of tree heights: 4.6 m and 4.5 m). Each point
represents the reflectance value averaged over the specific bands (corresponding to
the bands of Sentinel-2). Sentinel measurements are shown in black and simulated
reflectance is shown in orange/blue/pink from coupling a forest model (FORMIND)
with mScope. We used 10 m height layers. The reflection of all other forest stands is
shown in the Appendix (Figure B.6).

Figure 11. Reflectance spectra for detailed and simplified forest representation by
using standard layers with a size of 0.5 m. Visualization of the calculated reflectance
profiles for two forest stands (numbers 5 and 17) in Finland according to Figure 9 is
shown. Each point represents the averaged reflectance value over the specific bands
(corresponding to the bands of Sentinel-2). Sentinel measurements are shown in black
and simulated reflectance is shown in orange/blue/pink from coupling a forest model
(FORMIND) with mScope. We use here 0.5 m height layers. The reflection of all
other forest stands is shown in the Appendix (Figure B.10) Additionally, the reflection
for the complete spectra of all other forest stands is shown in the Appendix (Figure
B.11). Additionally, we calculated the spectral angle distance for all comparisons (see
Appendix Figure B.12).

All three versions produced comparable reflectance spectra (especially for forest stand
number 17). The lowest reflectances were produced with the spectra-averaged forest
representation (in particular for forest stand number 5 with underestimating the NIR
values). For forest stand 17, the spectra-averaged forest representation produces the
same reflectance values as the detailed forest representation version. As the forest
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stand contains only one species, there is no averaging in the leaf parameters and spec-
tra, and we obtained the same results for these versions. The results for all bands were
in agreement with the Sentinel measurements.

Figure 12. Comparison of vegetation indices. The vegetation indices (NDVI left, EVI
middle, MSI right) are calculated from the reflectance values in the different wave-
bands once for the simulated reflectance spectra and for the satellite measurements. In
each row, a different forest representation is used to calculate the results of the indices
from the simulated spectra (1. detailed forest representation, 2. simple forest repre-
sentation, 3. spectra-averaged forest representation; more information about the cases
in Section 3.3.3). Each point represents a forest stand in Finland (gray points indicate
birch forest stands that are not used to calculate the RMSE and R2—see Appendix
Figures B.14–B.17). Results for the calculation of the NDMI and the kNDVI can be
found in the Appendix (Figure B.19). We excluded five forest stands from our analysis
due to inconsistencies in Sentinel-2 measurements (see Appendix Figures B.14–B.17).

The simulated reflectance spectra also enabled the calculation of vegetation indices
(see Section 3.3.3). We analyzed NDVI, EVI and MSI (kNDVI and NDMI in Ap-
pendix Figure B.19) for each forest stand and for each forest representation (Figure
12). Each were then compared with indices calculated using the satellite observations.
We obtained different results for all three forest representations when analyzing NDVI,
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EVI and MSI. Lower R2 and higher RMSE values are obtained for MSI. Measured
Sentinel-2 values were close to each other. NDVI values from simulated reflectance
spectra were within small ranges. We found an R2 of 0.63 (detailed forest represen-
tation) when comparing simulated and measured NDVI values. For the EVI, there is
a larger range of values. EVI led to a lower R2 (about 0.45) and higher RMSE (0.08)
compared to NDVI. The MSI of birch forest stands was overestimated (gray points).
Detailed and simple forest representation show similar results for all three indices.

3.5 Discussion

In this work, we developed a new approach to study forest reflectance for radiation in
the visible and near-infrared spectrum. For this, we coupled the individual-based for-
est model FORMIND with an adapted version of the radiative transfer model mScope.
We then used the coupled models to reconstruct 28 forest stands in Finland and to
calculate reflectance spectra for each. We analyzed three different concepts of forest
representation: simple, detailed and spectra-averaged.
When we compared the simulated reflectance spectra with the Sentinel measurements,
the best results where achieved for the detailed forest representation. However, the
measured reflectance of forests stands with similar forest structure and species mixture
shows large differences in five cases (Appendix Figures B.14–B.17). The analysis of
these cases (outliers) suggests that factors other than LAI distribution and species com-
position are here responsible for the differences such as limitations in the atmospheric
correction or overlapping of tree crowns in the neighborhood of the forest stands. In
addition to this, the approach shows potential for improvement in the sensitivity of
simulated reflectance for Sentinel-2 bands B01, B03 and B04. The quality of the sim-
ulated reflectance spectrum does not depend on certain species or forest structures (we
did not find general relations). This study provides a baseline for further research. The
coupling of individual-based forest models and multi-layer RTMs opens up the oppor-
tunity to analyze a vast range of forests with various structure and species mixtures
and to gain a deeper understanding of the reflectance spectra of complex forests (e.g.,
influence of tree allometries, leaf parameters or role of understory).
An important aspect of our study is the representation of the forest in the the RTM.
The simple and detailed forest representations use an averaged leaf parameterization
for each height layer (using the LAI of the occurring species as weighting factor). In
the spectrum-averaged version, we simulated each occurring species as a monoculture
forest and afterwards averaged the resulting reflectance spectra (using the LAI of the
occurring species as weighting factor). Despite the non-linear nature of the RTM, the
best results were obtained when the input leaf parameters were averaged (simple and
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detailed concept). Less satisfactory results were obtained when the output reflectance
(reflectance spectra for each species) was averaged (spectra-averaged concept). We
obtained similar results for simple and detailed forest representation. The NDVI val-
ues were all within a smaller range. As only a few of the analyzed stands had an LAI
below 2.5, we also observed a saturation of the NDVI values (A. R. Huete et al. 1997).
Forest stands covering a broader spectrum of LAI values will allow for a more general
comparison of satellite-based and modeled indices and should be conducted in future
studies. For the EVI values, a lower correlation and a higher RMSE compared to the
NDVI analysis was observed.
A challenge for the parameterization of radiative transfer models is the selection of
suitable parameters (e. g. for leaf attributes, soil and leaf angle distribution). There are
a large number of measurements available that include different leaf parameters. How-
ever, the leaf parameters of each species can vary depending on the site, the position of
the leaf within the canopy, the day of the year of the measurement and environmental
factors (Bussotti & Pollastrini 2015). Therefore, leaf parameterizations from sites with
the most comparable environmental conditions should be used. A sensitivity analysis
(Jacquemoud & Ustin 2019; Jacquemoud et al. 2009; Kattenborn et al. 2019, 2022)
was used to analyze the influence of leaf parameters on the reflectance spectrum. In
particular, higher sensitivity (Kothari et al. 2023) is observed for those parameters that
influence the visible light spectrum (e.g., pigments). Using hyperspectral data, this
approach can also be used to fit species parameters.
For soil reflectance, often a wet soil type is assumed (due to a lack of data) and, in this
study, we followed this approach. Nevertheless, it is also be possible to model the soil
reflectance spectrum with an additional model (e.g., the BSM model by Verhoef et al.
2018).
In this study, we developed a forward modeling tool for connecting forest reflection
with forest properties. There are further interesting analyses possible based on this ap-
proach. One example may be to analyze more complex forests, such as tropical forests.
The information about reflectance can be used as an addition to, e.g., LiDAR measure-
ments, to analyze forest structure and functions. It is useful to point out here that the
forest model is not only able to investigate structural information but is also able to
calculate characteristics of forest dynamics such as productivity. The combination of
height-dependent information about forest structure with the information about light
reflection spectra may give sufficient information about structure and species compo-
sition, resulting in the capability to derive, e.g., estimates of current carbon pools. In
addition to the work by Rödig et al. 2019, the presented approach makes it possible to
improve the matching of satellite measurements (e.g., LiDAR profiles) to forest sim-
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ulations considering spatially heterogeneous environmental and ecological conditions.
As a result, it can improve the carbon estimates for large regions. Please note that the
presented approach could be used to derive simulated LiDAR profiles (and thus may
improve the LiDAR model used in the mentioned study).
Importantly, this approach can also be used to generate a large number of reflectance
spectra for forests by simulating forests over time and tracking reflectance spectra.
This may allow us to understand the dynamics of reflectance spectra during forest
succession. Disturbed forests show similar characteristics as forests in the early and
mid-successional phases. We can use this knowledge to characterize disturbed forests
based on reflectance. This may help us to distinguish better between natural and dis-
turbed forests.
However, forest simulations also include path dependencies. Not all types of forest
may be covered in simulations, which might occur due to management or disturbances.
To overcome this, the Forest Factory approach (Bohn & Huth 2017; Henniger, Huth,
et al. 2023) generates a broad range of forest states covering various types of for-
est structures and species compositions. This approach can also be used to identify
which forests or forest states provide the same reflectance spectrum, opening up the
possibility of the inversion of reflectance spectra. On the one hand, we can relate a
reflectance spectrum to a set of different forest structures. On the other hand, we could
also attribute a reflectance spectrum to different leaf parameters (Pacheco-Labrador et
al. 2019).
These types of studies could also be conducted for different climate scenarios, for dif-
ferent management strategies and regions/biomes (e.g., using the large set of available
forest parameterizations for FORMIND R. Fischer et al. 2016; Henniger, Huth, et al.
2023). Lookup tables and artificial intelligence can help us analyze such large sets of
forests and their reflectance spectra and, if desired, even offer the possibility to incor-
porate additional information about the forests using the forest model.

3.6 Conclusions

In this work, we have applied an adapted version of the radiative transfer model mScope
to a complex vegetation structure modeled by the individual-based forest model FOR-
MIND. We showed that the weighted averaging of leaf parameters could be a use-
ful approach to simulate reflectance of forests with different species mixtures (sim-
ple/detailed representation). The investigated types of forest representation provide
good simulated reflectance spectra (for optical and NIR-range) compared to satellite
measurements. However, which type of forest representation provides the best results
is influenced by forest structure. In respect to vegetation indices, the best results were
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obtained assuming the simple or detailed forest representation. Good correlations were
found between simulated and measured vegetation indices (especially NDVI). For fu-
ture studies, we intend to take advantage of the detailed representation of the forest, and
plan to study more heterogeneous forest stands, such as tropical forests. In combina-
tion with the forest model, many new perspectives emerge that provide the opportunity
to better understand the relationship between forest reflectance and forest properties.
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4 A new Approach to derive Productivity of Tropical
Forests using Radar Remote Sensing Measurement

4.1 Abstract

Deriving forest net productivity (NPP) and carbon turnover time from remote sensing
still remains challenging. This study presents a novel approach to estimate forest pro-
ductivity by combining radar remote sensing measurements, machine learning and an
individual based forest model. In this study we analyze the role of different spatial
resolutions on predictions in the context of the Radar BIOMASS mission (by ESA). In
our analysis, we use the forest gap model FORMIND in combination with a boosted
regression tree to explore how spatial biomass distributions can be used to predict
GPP, NPP, and carbon turnover time at different resolutions. We simulate different
spatial biomass resolutions (4 ha, 1 ha, and 0.04 ha) in combination with different ver-
tical resolutions (20, 10, and 2 meters). Additionally we analyzed the robustness of
this approach and applied it to disturbed and mature forests. Disturbed forests have
a strong influence on the predictions which leads to high correlations (R2 >0.8) at the
spatial scale of 4 ha and 1 ha. Increased vertical resolution leads generally to better
predictions for productivity (GPP, NPP). Increasing spatial resolution leads to better
predictions for mature forests and lower correlations for disturbed forests. Our results
emphasize the value of the forthcoming BIOMASS satellite mission and highlight the
potential of deriving estimates for forest productivity from information on forest struc-
ture. If applied to more and larger areas, the approach might ultimately contribute to a
better understanding of forest ecosystems.

4.2 Introduction

The carbon exchanges between the land surface and the atmosphere represent the
largest fluxes within the global carbon cycle (Ciais et al. 2014). These fluxes are me-
diated by terrestrial ecosystems, where forests play a dominant role in the biosphere-
atmosphere interface with evident impacts on climate via biophysical and biogeochem-
ical feedbacks that affect water, carbon, energy fluxes (Bonan 2008). Therefore, un-
derstanding the link between the dynamics of forests (growth, competition, mortality
and establishment of new trees) and the carbon cycle dynamics from short to long time
scales are of fundamental interest and will improve our understanding of possible tra-
jectories under future climate change scenarios (Friedlingstein et al. 2014).
To understand the fluxes related to forest dynamics and also to land use change, biomass
is a central driver as it is a key component of the global carbon cycle and therefore iden-
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tified as an Essential Climate Variable by the United Nations Framework Convention
on Climate Change (UNFCCC 2004). Linking biomass to carbon fluxes is important to
quantify ecosystem services and to develop adapted forest biomass management poli-
cies in the context of global warming. In particular, knowledge of biomass in disturbed
forests is important because most carbon emissions from land use change are caused
by deforestation.
Knowledge of the regional and global distribution of biomass is limited. Forest in-
ventories are important for better understanding processes of forest dynamics and for
calibrating remote sensing measurements. Promising knowledge of biomass distribu-
tion over large scales can be obtained from airborne and spaceborne measurements
(Araza et al. 2023; Xiao et al. 2019). Latest satellite technology leads to increasing
progress in quantifying biomass from space (e.g. Avitabile et al. 2016; Quegan et al.
2019; Saatchi et al. 2011). Technological developments are also leading to advances in
the spatial resolution of satellite measurements. At the same time, such developments
are associated with additional costs and possible additional error sources. These trade-
offs raise the question which spatial resolution of satellite measurements are useful to
investigate specific forests characteristics.
To better understand the potential of the expected remote sensing data from future
satellite missions, we use the well-established forest model FORMIND (R. Fischer et
al. 2016; Köhler & Huth 2010; Köhler & Huth 1998). This model was already used
in various studies to better understand the link between remote sensing observations
and forest dynamics (R. Fischer et al. 2019; Knapp et al. 2018; Rödig et al. 2019). It
can simulate the development of carbon stocks, productivity and carbon fluxes from a
single tree up to the whole forests.
With the help of the individual based Forest Model FORMIND we will investigate
which horizontal and vertical resolutions of remote sensing biomass measurements are
best suited to study the link between forest carbon stocks and forest productivity (GPP,
NPP, carbon turnover time). We want to investigate these questions in the context of
the P-band radar BIOMASS mission by the European Space Agency. The primary ob-
jective of the BIOMASS mission is to determine the distribution of forest aboveground
biomass (AGB) worldwide (planned resolution 4 ha) and to reduce the major uncer-
tainties in calculations of carbon stocks using radar space borne observation data.
In our analysis, we (i) introduce an approach where we use the forest gap model FOR-
MIND to better understand the potential of the expected remote sensing data of the
BIOMASS and subsequent satellite missions. We (ii) will investigate the relationship
between horizontal and vertical structures of aboveground biomass and carbon dynam-
ics (GPP, NPP and carbon turnover time) in forests at different spatial scales by using
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a boosted regression tree. We (iii) want to investigate whether our research results are
robust to different forest types.

4.3 Methods

We used the individual-based forest gap model FORMIND to simulate the vertical and
horizontal biomass-distribution over time in an typical tropical forest. These spatial
distributions are used to predict GPP, NPP and carbon turnover time (τ).

4.3.1 FORMIND

FORMIND is an individual-based forest gap model that is used to simulate the growth
of forests. In high diversity forests, like in the tropics, species are classified into differ-
ent plant functional types (R. Fischer et al. 2016, www.formind.org). In this study we
have analyzed a tropical forest using the parameterization of Knapp et al. 2018. The
parameterization has been developed for a tropical lowland rainforest (50 ha megaplot,
1000 m x 500 m) on Barro Colorado Island (BCI), Panama (9.15N, 79.85W), which
has been continuously monitored for more than three decades. The inventory provides
an important source of information for forest model parameterization (Knapp et al.
2018, Kazmierczak et al. 2014) and ground truthing for remote sensing studies (Lobo
& Dalling 2014; Mascaro et al. 2011; Meyer et al. 2013) due to its remarkable spatial
and temporal dimensions and the large number of studies associated with it. Thus, the
parameterization which was developed for the forest gap model FORMIND has been
extensively tested and other sites in south America provide similar results (Rödig et al.
2017).

The model FORMIND simulates the following processes:

• Establishment - Seeds are distributed over the forest area. If light conditions are
suitable, new trees can establish and compete for light and space.

• Growth - The growth of a tree is determined by its gross primary productivity
(GPP), respiration and type-specific physiological parameters.

• Mortality - This process is described by a specific mortality rate. If one tree falls,
neighboring trees can be damaged. Additional mortality occurs due to crowding
in dense stands or due to low stem diameter increments (stress situations).
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• Competition - One of the main driving factors of tree growth is light. FORMIND
calculates the light condition in different height layers of the forest. A small tree
in the shade of a large tree receive less light and therefore reduces its carbon
production.

The model calculates the gross primary production (GPP), growth and maintenance
respiration, and net primary production (NPP) for each tree. Based on tree mortality,
carbon stocks and fluxes between atmosphere, forest stand and soil, the carbon balance
of a forest stand can be derived.

Simulation setting: We simulated a total area of 100 ha of a tropical forest over a period
of 320 years, consisting of 25 independent simulation runs with a resolution of 200 x
200 m each – which corresponds to the envisaged spatial resolution of the main prod-
ucts of the BIOMASS mission (i.e., aboveground biomass). The FORMIND model
has a spatial resolution of 20 x 20 m, which enables us to analyze finer resolutions.

Figure 13. Simulated forest dynamics over time: a) aboveground biomass, b) GPP, and
c) NPP. Each thin line represents the simulated forest dynamics for a 200 m x 200 m
forest plot. The thick lines show the average over all 25 simulations.

The development of the simulated forests covers two phases: The successional phase
in which forest grows from a bare ground until they reach the second, the equilibrium
phase after 160 years (Fig. 13).
In the first phase, pioneer species in particular cause a rapid increase in biomass, GPP
and NPP. At the peak, many of the even-aged large pioneer species die. Afterwards the
forest takes over a diverse height structure of trees and a higher diversity in species,
which is typical for mature forests.

4.3.2 Vertical biomass distribution

In our analysis, we divide the forest into different height layers with a layer size of
∆h. To simplify the analysis, we assume here that biomass is equally distributed over
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the height of a tree (Burt et al. 2021). Figure 14a shows an example of the biomass

distribution in different height layers (Δh = 20 m) of a tree. For the tree A (with a

height of 56 m) the same amount of biomass is allocated in the height layer from 0-20

m and 20-40 m (Fig. 14a). Since the tree is not taller than or equal to 60 m, there

is less biomass in the 40-60 m height layer. With the help of the forest model we

can analyze the vertical distribution of the biomass over the whole simulation area

and investigate the development of biomass in different height layers during forest

succession. Figure 14b shows the simulated biomass according to the different height

layers with a resolution of 200 m x 200 m over time. The higher the height layer is

located, the longer it takes for trees to grow into it and the longer it takes to reach the

equilibrium phase.

Figure 14. (a) Example for the assumed distribution of biomass over height (here

height layers of 20m size) for two trees. The area of the rectangle symbolizes the share

of biomass in the corresponding height layer. (b) Development of biomass for each

4 ha forest stand (thin lines) at a total simulated area of 100 ha for different height

layers Δh = 20 m . The mean biomass for the different height layers are displayed

by the corresponding thick lines (different colors corresponding to the different height

layers).

4.3.3 Linking biomass distribution with carbon fluxes

The forest model FORMIND allows to link the derived biomass with corresponding

carbon fluxes. GPP and NPP are derived directly from the model at a spatial resolution

of 20 x 20m. In this study we also calculate the carbon turnover time (τ), which can be

estimated as follows (Carvalhais et al. 2014):

τ =
biomass

GPP
(4.1)

The calculation of carbon turnover time is developed for forests in equilibrium state.

For exploration we calculate τ also for forests which have not reached the equilibrium

state.
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We developed a framework to calculate GPP, NPP and τ in forests at different spatial
resolutions. The resolution of biomass information varied both horizontally and ver-
tically. In our analyses, we studied the tropical forest at scales of 200, 100 and 20
meters spatial resolution. On the vertical resolution, we have investigated one vertical
layer (∆h = 100 m) and layers with a size of ∆h = 20 m, ∆h = 10 m and ∆h = 2 m.
The simulated forest is the same in all cases (100 ha), only the horizontal and vertical
spatial resolution varies.
We applied boosted regression trees to quantify the predictability of forest productivity
using the information of vertical and horizontal distributed biomass. Boosted regres-
sion trees are a machine learning algorithm using multiple decision (or regression)
trees (Elith et al. 2008). Each model was trained in forward stage-wise procedures to
predict one variable based on the vertical biomass distribution: GPP, NPP or τ using
cross validation. One part of the forest data was used for training and the other part
was used for the validation (for more information see Table A1).
The boosted regression tree uses iterative processes to minimize the squared error be-
tween predicted values and those of the data set. Hereby, part of the data was used
for a fitting procedure and the rest was used for computing out-of-sample estimates of
the loss function using the R package dismo 1.3-14 (Hijmans & Elith 2021). To get
the best regression model, we varied the learning rates, bag fractions and interaction
depths of the boosted regression tree algorithm and assumed a Laplace error structure
(for more information on the boosted regression tree parameters and training settings
see Appendix Tables C.1, C.2, C.3). The obtained best models were used for all further
analyses. To determine the best regression model for disturbed and mature forests, we
redo the whole training procedure using only data from the equilibrium phase (years
160-320) for mature forests and data before equilibrium phase (0-160 years) for dis-
turbed forests. The best model was then used to predict the mature/disturbed forest
data, which were not used for the training.

4.4 Results

4.4.1 Relationships between biomass and GPP, NPP and carbon turnover time τ

Here we analyze succession in tropical forests at the scale of 4 ha (total simulated area
100 ha). As a first step, we analyze the relationships between biomass and GPP, NPP
and carbon turnover time (Fig. 15). Each point represents a forest with a given state
(inludes biomass, productivity or carbon turnover time, and the year of succession).
The relationships between biomass and the target variables are dynamic in the first
100 years. In the last 100 years, when the forest reaches its equilibrium state, the
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forest states accumulate in a cloud of points (dark blue color). The fastest increase of

target variable with increasing biomass is seen in the biomass-GPP relationship (Fig.

15c similar to Fig. 13). After the increase, the GPP remains stable but biomass still

increase until GPP and biomass decrease and forests reach their equilibrium (point

cloud). The biomass-NPP (Fig. 15b) and biomass-τ (Fig. 15c) relationships over time

have a smaller increase and shorter stagnation of NPP as well as τ. In the biomass-τ
relationship, τ continues to increase despite decreasing biomass in the late successional

phase, in contrast to the other cases. The highest correlation between biomass and

the target variables is found in the biomass-NPP relationship (R2 = 0.71). No linear

relationship can be found between GPP and biomass over time (R2 = 0.04).

Figure 15. Relationship between biomass and (a) GPP, (b) NPP and (c) τ (carbon

turnover time). The results are derived from forest simulations (tropical forest, see

Section 4.3). Each point represents the relationship between biomass and the target

variable for a 4-ha forest at a certain age (between 0 and 320 years indicated by color).

Additionally, the R2 is calculated (right bottom corner of each graph).

In a second step we examine how relationships change when we analyze biomass in

different height layers (Fig. 16, here at the 40-60 m height layer). In all four cases we

observe a strong increase GPP, NPP and carbon turnover time in the first years of of

the simulation. Forest states in equilibrium state are found in all graphs (see also Fig.
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15) after a dynamic phase of the relationships (0 - about 150 years). After about 70

years, when the first trees have reached reach the top layer, the relationships with NPP

(Fig. 16b), τ (Fig. 16c) and total biomass (Fig. 16d) show a phase of linear increase.

After this phase, NPP and total biomass decrease with decreasing biomass in the upper

forest canopy (40 - 60 m). τ, on the other hand, remains stable despite decreasing

biomass in the upper forest canopy. GPP (Fig. 16a) increases very rapidly and then

decreases steadily until it reaches equilibrium. The highest correlation is found in the

relationship between total biomass and biomass in the upper forest canopy (R2 = 0.63).

Between the NPP and the biomass in the upper layer we find still an R2 of 0.39.

Figure 16. Relationship between the biomass in the height layer 40 – 60 m (with Δh
= 20 m) and (a) GPP, (b) NPP and (c) τ (carbon turnover time) and (d) total biomass

over time. The results are derived from forest simulations (tropical forest, see Section

4.3). Each point represents a 4-ha forest stand at a certain age (between 0 and 320

years indicated by color). Additionally, the R2 value is calculated (right bottom corner

of each graph).
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4.4.2 Estimation of GPP, NPP and carbon turnover time τ with boosted regres-
sion trees using biomass information at different resolution

Figure 17. Comparison of predicted NPP derived from the boosted regression tree and

reference NPP derived from a forest model. The predicted NPP is derived from the

vertical biomass distributions in the simulated forests (in the height layers Δh = 20 m

and Δh = 2 m). Each point represents a results for (a,b) a 4 ha forest and (c,d) a 0.04 ha

forest (bottom row). The forest age is indicated by the color of points. Total simulated

area was 100 ha (resulting in the different amount of points in top and bottom row).

Results for GPP, carbon turnover times and other resolutions see Appendix C.4 – C.6.

After we explored the relationship of the biomass in one height layer with productiv-

ity and carbon turnover time we want to use the information of biomass of all height

layers. We tested how a boosted regression tree can use this information and which

influence has the spatial and vertical resolution on the estimations. Here we used a

boosted regression tree (more information in Section 2.3.) to predict GPP, NPP and τ
from the biomass distribution over height with different discretization (with Δh of 20

m, 10 m and 2 m). Additionally, we vary the spatial resolution of the analyzed forest

stands (4 ha, 1 ha and 0.04 ha) to find out which cases (spatial area and Δh) provides

good conditions for predicting productivity and carbon turnover time.
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At first, we want to show an excerpt of our analysis and describe the results of the pre-

dicted NPP with the help of the boosted regression tree and biomass information with

Δh = 20 m and 2 m and spatial resolution of 4 ha and 0.04 ha (Fig. 17). For all four

cases the predictions of NPP for forests in early succession are near to the simulated

NPP (yellow points).

The result for NPP after succession phase (forests after 160 years - blue points) are

strongly influenced by the spatial resolution (from 4 ha resolution to 0.04 ha resolu-

tion). For 4 ha forests (Fig. 17a,b) we observe a small equilibrium cloud (already seen

in Fig. 15 and 16) which is getting smaller with a higher number of height layers (Δh

= 2). For 0.04 ha resolution (Fig. 17c,d) there are more forest plots over all (total

simulated area 100 ha) but also more forest plots far from the 1:1 line. With higher

vertical resolution (more height layers, Δh = 2, (Fig. 17d)) there are fewer outliers and

estimations for forest stands are nearer at the 1:1 line (similar effect to 4-ha forests in

Fig. 17b). We observe high correlation for all four cases (R2 > 0.89). With higher

spatial resolution the RMSE and the value range increase.

Comparing the estimated GPP by the boosted regression tree for 0.04 ha forests (Fig.

Figure 18. Comparison of predicted GPP derived from the boosted regression tree and

and reference GPP derived from a forest model. The predicted GPP is derived from the

vertical biomass distributions in the simulated forests (with Δh = 20 m). Each point

represents a results for a 0.04 ha forest. The forest age is indicated by the color of

points. Total simulated area was 100 ha. Results for GPP, carbon turnover times and

other resolutions see Appendix C.4 – C.6.

18) we find a lower correlation (R2 = 0.34 for Δh = 20 m). We observe a high correla-

tion for young forest stands (yellow points near 1:1 line like in Fig. 17), but for forests

with an age between 50 and 100 years the boosted regression tree underestimates GPP.

For 0.04 ha forests with an age over 100 years we observe under- and overestimation
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of GPP.
Analyzing a broad range of spatial resolutions for the entire forest succession of 320
years (Fig. 19), we got a high predictive power of structural information, as the
structure-derived values correlate good with productivity of the forest. Especially for
forest stands of 4 ha and 1 ha the correlation is high for all investigated cases (R2 >
0.8). Only GPP shows weaker correlations with for forest stands of 0.04 ha (details
in Fig. 18a). The more information we have on the vertical biomass distribution in a
forest, the better we can predict GPP, NPP and τ.

Figure 19. Comparison of correlation between the estimated and the reference (a) GPP,
(b) NPP and (c) carbon turnover time (τ). The estimated values have been derived with
a boosted regression tree using information of biomass distribution and the reference
values were calculated by using a the FORMIND forest model. Each point represents
the R2 value of one comparison with a given spatial - (indicated by color) and vertical
resolution (see Fig. 17, 18 and Appendix C.4 – C.6 on the bottom right).

As seen before we observed a high correlation for forest stands of 4 ha and 1 ha when
training boosted regression tree with the biomass information of the whole forest suc-
cession (Fig. 17 and following in Fig. 20). In the next step, we want to analyze how
the correlations change when the forest data set is splitted by assuming two categories
of forests: mature forests in equilibrium with an age between 160 and 320 years and
disturbed forests with an age between 0 and 160 years (Fig. 20). We assume here that
the mature stage is reached after 160 years (see Fig. 13).
We obtain here that the high quality of the prediction with the boosted regression tree
is mainly driven by the disturbed forests (Fig. 20a-c is similar to Fig. 19a-c). When
analyzing mature forests of different sizes, we observe a different picture. The correla-
tions for GPP, NPP and τ are overall lower (highest R2 for NPP, lowest R2 for GPP). In
contrast to the analysis of the whole forest data set (Fig. 19) and disturbed forests (Fig.
20a-c), for mature forests (Fig. 20d-f) the weakest correlations are obtained for forest
stands of 4 ha and 1 ha size. Mature forest stands with a higher vertical resolution (∆h

= 10 m and 2 m) leading to better estimations of NPP, GPP and τ.
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Figure 20. Comparison of correlation between the estimated and the reference GPP,
NPP and carbon turnover time (τ) for different types of forests ((a-c) disturbed forests;
(d-f) mature forests). The estimated values have been derived with a boosted regres-
sion tress using information of biomass distribution and the reference values hav been
derived using a forest model. Each point represents the R2 value of one comparison
with a given spatial - (indicated by color) and vertical resolution (see Appendix Fig.
C.1 – C.3, on the bottom right).

4.5 Discussion

4.5.1 Summary

In our study we investigated a novel approach to estimate GPP, NPP and carbon turnover
time for a tropical forest. Here, we used an individual forest model to simulate for-
est development of a typical tropical forest in combination with a boosted regression
tree to analyze the relationships between biomass and productivity as well as carbon
turnover time at different vertical and horizontal scales. This approach was used to
explore which spatial resolutions (vertical and horizontal scale) are suitable to predict
forest productivity for two different forests categories (mature and disturbed forests).
When comparing simulated with predicted forest productivity we obtained surpris-
ingly high correlations for GPP, NPP, carbon turnover time at the scale of 4 ha and 1
ha (R2>0.8). In case of 0.04 ha scale, carbon turnover time and especially GPP show
lower correlations (Fig. 19a,c). These results are mainly driven by disturbed forests
(results shown in Fig. 19a-c are similar to the results shown in Fig. 20a-c), which is
why we split the forest data. For the prediction of forest productivity of mature forests,
we observe lower correlations. Among them, higher correlations where achieved using
biomass information from spatial scales of 0.04 ha and ∆h = 2 m (R2>0.67).
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4.5.2 Obtained trends

Increased vertical resolution (especially for ∆h = 2 m) always leads to increasing cor-
relations, for disturbed forests as well as mature forests. For disturbed forests (forests
younger than 160 years) the better predictions results from one-to-one relations be-
tween biomass and productivity whereas these relations show ambiguities for mature
forests (forests older than 160 years). For forests younger than 160 years (disturbed
forests), one single biomass value relates to one productivity value, whereas the oc-
currence of one-to-one relations disappears for forests with above an age of 160 years
(Fig. 15). In case of GPP this appearance of ambiguities already occurs for forest older
than 100 years, which explains the lower correlation for GPP of disturbed forests (Fig.
20a).
The decreasing predictability of disturbed forest productivity with increasing spatial
resolution (1 ha and 0.04 ha) seems counter intuitive at first glance. However, the
higher the spatial resolution of biomass distribution is the more ambiguities occur in
the relation to forest productivity and the more difficult it is to predict productivity.
This becomes particularly clear for the estimation of GPP (for both category of forests).
Nevertheless, higher spatial resolution measurements (at the scale of 0.04 ha) have the
potential for improved prediction quality in connection with other sources of informa-
tion (e.g. with measurements of additional forest attributes by remote sensing). For
example height measurements derived from LiDAR (Köhler & Huth 2010) may have
the potential of such synergy effects. Not only the quality of the prediction but also the
categorization of forest types can be improved by additional information.

4.5.3 Limitations

Due to the strong influence of young forests (age < 160 years) on the boosted regres-
sion trees trained for the whole forest data, we decided to realize an additional analysis.
So it turned out to be helpful to divide the training data for the boosted regression tree
into different forest categories (using the age of a forest as an indicator). This partition
of training data leads in our case to two different prediction possibilities (two BRT’s,
one for prediction of productivity of disturbed forest and one for mature forests). By
splitting the forest data with the help of age we assume that complex disturbed ecosys-
tems at the scale of 4 ha can be reconstructed from the set of forest states that occur
during the first 160 years of succession. It is possible that other forest landscapes oc-
cur in which disturbance patterns have caused a different biomass distribution. Future
studies should investigate whether these altered disturbance distributions have an im-
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pact on prediction quality. We here propose to use thresholds of biomass values as an
indicator for the categorizations of forest types which are provided by the BIOMASS
mission anyway.
In addition to that, our approach of categorizing forests as disturbed or mature based
on forest succession is only one way to categorize forests. Different classification may
yield to different results. We analyzed the robustness of this approach by categorize
the forest data and in a next step the analysis could be applied to other forest category
selections and forest data compositions. Our study shows that predictions from satel-
lite data might have weaknesses for specific forest categories that may not be directly
apparent. In addition, the R packages available for boosted regression tree applications
vary in their quality of results and computational requirements. This leads to additional
challenges for the comparability of results (see Appendix Tables C.1, C.2, C.3).

4.5.4 Combining forest modeling and remote sensing

This study demonstrates how individual-based forest models can be used to explore
the link between remote sensing measurements and ecosystem properties as well as
forest processes. Forest models have a long tradition in analyzing the impact of cli-
mate change on forest structure, species composition and biogeochemical cycles (e.g.
Bugmann & Fischlin 2002; Bugmann & Seidl 2022; Kienast 1991; Solomon 1986).
As Maréchaux et al. 2021 pointed out, forest models are also able to conduct virtual
experiments beyond empirical investigations (Fyllas et al. 2017; Morin et al. 2018;
Schmitt et al. 2020), as well as to test assumptions about ecological processes (Maris
et al. 2018; Mouquet et al. 2015). In addition they can be used to reveal potential
of improvements and possible gaps in knowledge as well as to guide the design of
further field experiments (Medlyn et al. 2016; Norby et al. 2016). Due to increasing
confidence in forest models’ ability to reflect the true behavior of the system (e.g.,
due to high agreement in model comparisons - Bugmann et al. 2019; Cramer et al.
2001; Fisher et al. 2018), they are increasingly being used to investigate important re-
lationships between different forest characteristics (e.g., Bohn & Huth 2017; Bohn et
al. 2018; Köhler & Huth 2010; Maréchaux & Chave 2017; Morin et al. 2020, 2011;
Rödig et al. 2018; Sakschewski et al. 2016; Schmitt et al. 2020).
Studies which use forest models are more and more incorporating remote sensing mea-
surements as the amount of remote sensing data is increasing significantly (Guanter et
al. 2015). For example they derive information from remote sensing measurements
about the heterogeneity of forest structure (R. Fischer et al. 2019) or estimate carbon
dynamics of forests with the use of new allometric models parameterized with tree
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crown data derived out of airborne measurements (Jucker et al. 2017). Forest mod-
els can be used to analyze correlations of height related biomass measurements to
aboveground carbon stocks (Minh et al. 2013). Further, forest models can derive re-
lationships for the interpretation of remote sensing measurements e.g. between forest
height and carbon stock (Köhler & Huth 2010). In addition, forest models can be used
to create virtual remote sensing data by combining them with forward modeling of ra-
diative transfer or LiDAR to directly link measurements to forests (Henniger, Bohn, et
al. 2023; Knapp et al. 2018).
Our study can be used (i) to explore general relationships between forest properties
(here for biomass and NPP and possibly for other forest properties), (ii) to explore the
potential of satellite measurements (here for the BIOMASS mission) as well as (iii) to
combine remote sensing, field data and modeling knowledge (e.g. using inventories
or airborne forest measurements in combination with remote sensing measurements
on different spatial scales). For missions that are well advanced in planning, such as
the BIOMASS satellite mission, the approach provides a first estimate of expected
outcomes to derive estimates of forest productivity and carbon turnover time. Future
missions may therefore benefit from similar approaches (with respect to improvements
in vertical or spatial resolution) in the trade-off analysis of technical improvements.

4.5.5 Advantages of the presented approach

In this study, virtual measurements from future satellite missions are used to derive
forest attributes (here GPP, NPP, carbon turnover time). Here, the possibility of fur-
ther development of Level 3 satellite products is offered by the generation of virtual
forests. The method provides good results (e.g. R2 > 0.8 for NPP predictions see Fig.
19b) for the majority of investigated cases, in particular it provides also good results
for predictions using high resolution measurements (especially for mature forests with
R2 > 0.7, Fig. 20e). This is promising and shows the potential of this novel method for
estimating forest productivity from the spatial distribution of biomass within a forest.
One highlight of our study is that we provide a method for predicting carbon turnover
time, as other observation- and modeling based methods are characterized by large un-
certainties (Fan et al. 2020). Additionally we use the advantage of individual based
models in our approach, which allows us to investigate forest structure in detail and
link it to e.g. forest productivity. In contrast, global vegetation models have a focus
on large spatial scales, whereas individual-based models focus on smaller scales, as
they consider processes at tree level and can thus also analyze structural dynamics of
forests (Maréchaux et al. 2021). This allows the identification of structural properties
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and functional characteristics of forest ecosystems at different spatial scales.
An important result of our study is to reveal the potential of tomographic biomass satel-
lite measurements of high resolution in estimating the GPP, NPP and carbon turnover
time. The developed approach enable the estimation of forest productivity based on
Radar remote sensing measurements. Running et al. 2004 provide estimations of GPP
and NPP (with resolution of 25 ha) by using NDVI and FPAR (Fraction of absorbed
Photosynthetic Active Radiation) from MODIS satellite products in combination with
additional models for the estimation of maintenance respiration (in case of NPP). The
quality of these estimates varies for different tropical areas (Avitabile et al. 2016;
Mitchard et al. 2013; Rödig et al. 2019; Turner et al. 2006). In addition, BIOMASS
measurements at long wavelengths in the P-band have the advantage of avoiding satu-
ration effects.

4.5.6 Outlook

The developed framework, which uses machine learning techniques in combination
with an individual-based forest model to derive forest relationships, can also be ap-
plied to other satellite missions (beyond radar). It is able to support satellite missions
in exploring the potential of different spatial resolutions (horizontal and vertical) and
the relationships between observation patterns and target variables of forests. Also
the combination of different measurements (inventory data or other satellite measure-
ments) can be analyzed with the presented mechanistic framework. In that way the
here presented framework might be also interesting for remote sensing platforms like
the ESA-NASA Joint Multi-Mission Algorithm and Analysis Platform (MAAP, Al-
binet et al. 2019). The platform is a collaborative project focused on improving the
understanding of aboveground terrestrial carbon dynamics by sharing data, science al-
gorithms and compute resources in order to foster and accelerate scientific research.
The used forest model FORMIND is also able to connect forest state and structure to
top of canopy reflection (Henniger, Bohn, et al. 2023) or LiDAR measurements (Knapp
et al. 2018). In this study we have analyzed a typical tropical forest and a possible next
step is to applicate this approach to other tropical forests. Rödig et al. 2018 applied
FORMIND in combination with space-borne LiDAR measurements to the whole ama-
zon and it would be possible to use this framework in combination with our approach.
We expect similar trends with different values of GPP and NPP due to climate vari-
ations. Beyond that it is also possible to apply the approach to temperate and boreal
forest (Bohn et al. 2018; Bruening et al. 2021; Henniger, Bohn, et al. 2023) where we
expect even stronger variations of GPP and NPP driven by the shorter vegetation pe-
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riods. Henniger et al. use the forest factory approach (Bohn & Huth 2017; Henniger,
Huth, et al. 2023) to generate virtual forests instead of simulating forests development
over time. This approach generates virtual forests with a forest generator that allows
the analysis of vast virtual forest data (700,000 forest stands) for different eco regions,
including forest conditions beyond those found in forest inventories. This approach is
applied to a variety of other regions around the globe (Henniger, Huth, et al. 2023).
Combining the forest factory approach with the here presented framework could help
to generalize our results about what resolutions are appropriate for predicting different
forest attributes (e.g., biomass and NEE).

4.6 Conclusion

This study presents a novel approach to analyze Radar remote sensing measurements
to predict biomass and productivity at different spatial scales. It shows that structural
details on forests facilitates a meaningful estimation of forest productivity. Further, the
results demonstrate the influence of spatial resolution with differences between dis-
turbed and mature forests. The predictions for mature forests profit from higher spatial
resolutions whereas the prediction quality for disturbed forests decrease with higher
horizontal resolutions and increase with higher vertical resolutions.
Overall, this study highlights the role of spatial resolution in analysis and emphasizes
the need to consider both horizontal and vertical resolution when studying the rela-
tionship between biomass distribution in forests and productivity. It also shows that
forest relationships do not apply equally to all forest categories. The results highlight
the potential of the presented approach and, if applied to more and larger areas, can
provide valuable insights, ultimately contributing to a better understanding of forest
ecosystems and more informed decision making.
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5 Conclusion

It remains a challenge to integrate field and remote sensing data into a coherent picture
(Chave 2013; Estes et al. 2018; Levin 1992; Maréchaux et al. 2021) that contributes
to the knowledge of forest ecosystem processes, especially in the context of climate
change where disturbances are accelerating. Forest models can help to understand and
predict behavior of forest ecosystems. Increasing computing power enables new ap-
plication fields. In a collaboration of forest models, remote sensing, and new method-
ologies, there is potential to bring together knowledge and measurements at different
spatial and temporal scales to understand what human behavior holds for the future.
In this thesis, an advanced forest generator was introduced that is applicable on a global
scale. In addition, an individual-based forest model and a multi-layer radiative trans-
fer model were coupled to simulate hyperspectral reflectance of forests. At least a
new method for estimating forest productivity derived from RADAR remote sensing
measurements was applied to typical tropical forests.

5.1 Main results, limitations and potentials

5.1.1 Virtual forests around the globe

To better understand terrestrial ecosystems, vegetation models simulate forests at dif-
ferent levels of complexity depending on continental or regional applications. Most
models, especially forest models, analyze forests with a simulation starting from bare
ground while exploring possible paths of forest development. In other ecosystems,
there is a tradition of creating virtual environments to understand the behavior of
ecosystems in general, to forecast, or to explore the diversity of such environments
independent of path dependencies, as in forest succession. Examples of such pow-
erful applications are the use of landscape generators which systematically and auto-
matically generate realistic but simplified representations of land cover in agricultural
landscapes and which can provide the input for models analyzing the impact of land
use scenarios (Engel et al. 2012; Langhammer et al. 2019). In addition, weather gener-
ators are used in water engineering design and in agricultural, ecosystem, and hydro-
logic impact studies as a means to fill in missing data or to produce indefinitely long
synthetic weather series from finite station records (Semenov & Barrow 1997; Wilks
& Wilby 1999).
For forests, such a generator was developed by Bohn & Huth 2017, the so-called ‘for-
est factory approach’ which generate virtual forest stands that possibly could exist in
Central Europe and was used for a multidimensional investigation of the relationships
between structural properties, species diversity and productivity (Bohn & Huth 2017;
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Bohn et al. 2018).
In this thesis (Chapter 2), we advanced the forest factory approach and presented the
Forest Factory 2.0, a new open source software tool to simulate and analyze various
forest states from different biomes on earth. This greatly accelerated the speed of forest
stand generation, expanded the application of the forest factory approach to a global
scale, and made the method and data available to the public. We demonstrated several
benefits of the approach and provide insights into how this method can increase our
knowledge on structure-function relationships of forests and overall forest function-
ing. Breaking with the tradition of investigating the development of individual forest
stands over time, we used the Forest Factory 2.0 as a tool to gain knowledge about
forests by analyzing the state space of forests, resulting from species pool and environ-
mental factors.
The simple algorithm of the Forest Factory allows comparison of a large number of
forest stands from different biomes (3 million forest stands per hour with a standard
notebook) generated with the same process-driven architecture. This also provides
a framework for a causal understanding of forest structure-function relationships (as
we showed in Section 2.4.2). In this study, we presented a method to investigate the
relationship between structure (maximum height, basal area, LAI, height heterogene-
ity) and productivity (biomass and AWP) as well as biodiversity (species evenness) of
forests. With the Forest Factory 2.0, it is also possible to analyze other forest proper-
ties, such as stem-diameter increment or net ecosystem exchange. Additionally, it also
enables us to explore the role of other more complex structural characteristics like stem
size distribution or height-layer specific information. With this systematic approach we
could investigate the causes of the differences and similarities of forest stands e.g. why
forests with similar structure show different biomass or productivity values. Here, we
generated forest datasets for seven ecoregions to illustrate the approach. It is also pos-
sible to use other parameterizations to generate forests for additional regions.
This approach is capable of creating not only forests that already exist, but also forests
that could potentially exist. Using the Forest Factory 2.0 to generate forest states be-
yond the currently existing ones provides a fuller understanding of forests beyond the
constraints of empirical data such as national forest inventories or remote sensing mea-
surements. Some of these forest states may occur in future due to current changes in
disturbance regimes or management, and for some forest states it may not even be clear
which successional or disturbance pathways will lead to them.
It is also possible to combine the Forest Factory 2.0 approach with other forest models.
The new approach of exploring forests in terms of states rather than simulations over
time, along with the free coupling possibility of this approach, offers a promising path
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to compare forest models and learn more about their capabilities and limitations. As
Bugmann & Seidl 2022 pointed out: to date, we lack a comprehensive approach to
quantify the (dis)similarity in models. In particular, the Forest Factory 2.0 opens up
the possibility to use different forest models to generate different databases of forest
stands, as shown in Chapter 2 with FORMIND, and to analyze them comparatively
using the methods presented (especially in Figure 7, including comparison of different
models instead of ecoregions).
In addition to the possibility of combining the Forest Factory 2.0 with other forest
models, the Forest Factory 2.0 is also an additional test for parameterizations. Pa-
rameterizations of forest models are a collection of parameters from field studies and
experiments, supplemented by parameters not known for real stands, which are then
usually fitted by comparing the long-term simulations of forests (using the parameter-
ization) with inventory data. By creating forest stands that are not part of long-term
simulations of forest models or part of forest inventories, it is possible that some pro-
cesses and their parameters result in characteristics that are not realistic. This may
be indicative of problems that may also occur due the simulation of disturbances or
changes in climatic conditions and that modelers should be aware of.
Another future application is the use of generated forest stands to initialize models
for simulating forest development over a longer period of time. This allows, e.g.
to analyze the future behavior of these forests under climate change, disturbances or
management scenarios (natural extinction processes, establishment or invasion of new
species). Again, the advantage is that we can initiate forest simulations with states
beyond those that currently exist and gain information that we cannot obtain from in-
ventory or remote sensing observations. For example, we can explore forest states that
are more resilient to climate change and which are interesting for forest management.
The presented way of analyzing forests in a digital universe of processes and mech-
anisms also offers new possibilities for data scientists. The freely available dataset
of generated forest stands can be used to train artificial intelligence models (AI) that
estimates additional forest/tree attributes from just a few attributes of forest stands.
The resulting relationships could be used to gain a deeper understanding of forests on
small scales using large-area remote sensing observations. In addition, all relation-
ships shown in the graphs and the data product could be condensed into equations with
symbolic regression AIs (Chen et al. 2019).
In contrast to the tradition of investigating the development of individual forest stands
over time, we used the Forest Factory 2.0 as a tool to gain knowledge about forests by
analyzing the state space of forests. We conducted a structural sensitivity analysis to
analyze the relationships between structural properties and forest biomass as well as
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productivity and species evenness. In this study we analyze the state space of forests in
different biomes and demonstrate the potential of this approach for theoretical ecology.
With the Forest Factory 2.0, researchers can generate virtual forests for their needs or
use the open-source forest data to analyze a digital forest universe of forest states.

5.1.2 Creating virtual remote sensing measurements

To enlarge the knowledge of forest ecosystems there is the need of mapping relation-
ships between a wide range of forest attributes. An important component in vegetation
models is solar irradiance and the competition for light between plants. One simple
way to calculate the light climate is based on Lambert– Beer’s law, which is often used
by forest models and represents the competition of trees for light. Radiative transfer
models (RTMs) calculate the light climate in the forests in a more detailed way.
Some Dynamic Global Vegetation Models necessarily have to include radiative trans-
fer to calculate the energy balance between the vegetation and the atmosphere (e.g.
CLM4.5 - Bonan et al. 2011, JULES - Mercado et al. 2007, ORCHIDEE-CAN - Naudts
et al. 2015, ED2 - Medvigy et al. 2009). Most of them are coupled with simple RTMs
to derive reflectance for a wavelength from 300 to 2500 nm. Often a two-stream ap-
proximation is used to represent radiative transfer which only use a few plant functional
types and a low number of canopy layers.
Today, with new possibilities to observe forests not only from the ground, and with the
availability of a new generation of RTMs (such as DART from Gastellu-Etchegorry et
al. 2017 and mScope from Yang et al. 2017), there are new opportunities for individual-
based models which include detailed information on the structure of vegetation. They
endorse the fundamental premise that the structure of forests represents an important
factor for ecosystem dynamics that is lost in more aggregated modeling approaches
(Shugart et al. 2018).
The study in Chapter 3 introduced a new approach to study forest reflectance for radi-
ation in the visible and near-infrared spectrum, and could help expand the number of
potentially investigable forest attributes and their interrelationships. The approach in-
cludes the coupling of the individual-based forest model FORMIND with an adapted
version of the radiative transfer model mScope. In this Chapter, the approach is in-
troduced and applied by reconstructing 28 forest stands in Finland and calculating re-
flectance spectra for each forest stand. We analyzed three different concepts to transfer
the detailed forest canopy information of FORMIND into the RTM: simple, detailed,
and spectra-averaged. The simple concept of forest representation uses only reduced
information about the forest and assumes a forest where leaves are evenly distributed
and there is only one average species. The detailed concept uses more information and
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represents a forest with multiple layers, with different amounts of leaves, and different
species distributions. The spectra-averaged approach calculates the reflectance of as
many forest stands as there are species (all forest stands are equal except for the tree
species that occur) by using multiple layers with different amounts of leaves in the
height layers (like in the detailed concept). The reflectance spectra are then condensed
into one average spectrum.
When comparing the simulated reflectance spectra with the Sentinel measurements,
the best results were achieved for the detailed forest representation. However, the
measured reflectance of forests stands with similar forest structure and species mixture
shows large differences in some cases. The analysis of these cases suggests that fac-
tors other than LAI distribution and species composition are here responsible such as
limitations in the atmospheric correction or overlapping of tree crowns in the neighbor-
hood of the investigated forest stands. In addition, the implementation of mScope in
FORMIND could potentially be improved for simulated reflectance values, especially
for Sentinel-2 bands B01, B03, and B04.
There are further interesting analyses possible based on this approach. One example is
to analyze more complex forests, such as tropical forests, or a gradient from degraded
to intact forests. The information about the forest reflectance provided by the approach
can be used as an additional information to, e.g., LiDAR measurements, to analyze for-
est structure and functions. It is useful to point out here that the forest model is not
only able to analyze structural information but is also able to calculate characteristics
of forest dynamics such as productivity. The combination of height-dependent infor-
mation about forest structure with the information about light reflection spectra may
give sufficient information about structure and species composition, resulting in the
capability to derive estimates of productivity.
Rödig et al. 2019 developed an approach to simulate carbon dynamics in the Ama-
zon rainforest by integrating canopy height observations from space-based LiDAR to
quantify spatial variations in forest condition and structure. In addition to the work by
Rödig et al. 2019, the presented approach makes it possible to improve the matching of
satellite measurements (e.g., LiDAR profiles) to forest simulations by including hyper-
or multispectral reflectance measurements. This can improve the carbon estimates for
large regions. Please note that the presented approach could be also used to derive
simulated LiDAR profiles. The approach calculates the reflected radiation of leaves
in different height layers with hyperspectral resolution (including the wavelength of
LiDAR). Subsequently, it is possible to calculate the intensity of LiDAR beam re-
flectance in each height layer of the forest, which may allow the improvement of the
LiDAR model (Knapp et al. 2018).
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Importantly, this approach can also be used to generate a large number of reflectance
spectra by simulating forests over time and tracking reflectance spectra. This can al-
low us to understand the dynamics of reflectance spectra during forest succession.
Disturbed forests probably show similar characteristics as forests in the early- and
mid-successional phases (West et al. 2012). We can use this knowledge to characterize
disturbed forests based on reflected radiation. This may help us to distinguish better
between natural and disturbed forests (Bolton et al. 2015).
This work provides a forward modeling approach for relating forest reflectance to for-
est characteristics. With this tool, it is possible to analyze a large set of forest stands
with corresponding reflectances. This opens up the possibility to understand how re-
flectance is related to succession and different forest conditions.

5.1.3 Using virtual remote sensing measurements

Beyond making new type of remote sensing measurements usable for individual-based
forest models, this thesis also gives an example on how to explore virtual remote sens-
ing measurements. In Chapter 3 we explored the possibility to study forest reflectance
using an individual-based forest model in addition to a radiative transfer model. This
allows the calculation of an additional forest attribute (measurable by remote sensing)
by using a forest model. Now we take it a step further. We investigate another forest
attribute (which will be measured by a future satellite mission) and use this attribute to
estimate more complex forest characteristics.
In the study of Chapter 4, virtual measurements from future satellite missions are used
to derive important forest attributes (here GPP, NPP, carbon turnover time). An indi-
vidual forest model (FORMIND) was used to simulate forest development of a typical
tropical forest (on Barro Colorado Island, Panama) in combination with a boosted
regression tree to analyze the relationships between spatial biomass distribution and
productivity as well as carbon turnover time at different vertical and horizontal resolu-
tions. This approach was used to explore which spatial resolutions of biomass (vertical
and horizontal resolution) are suitable to predict forest productivity for two different
forests categories (mature and disturbed forests). Here, the possibility of advancing
satellite products (here biomass) to productivity estimates is offered by the generation
of virtual forests, based on forest succession.
There are studies investigating the potential of RADAR-derived biomass measure-
ments to estimate forest productivity (Bergen & Dobson 1999; Le Toan et al. 2004). In
this study, we show how this approach could be applied to real RADAR remote sens-
ing measurements (BIOMASS mission will be launched in 2024). Additionally, we
investigate the quality of productivity estimates in relation to the design of the satellite
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mission in terms of the resolution of biomass measurements.
The investigated method provides good results for the majority of investigated cases
(e.g. R2 > 0.8 for NPP predictions, Figure 19), in particular it provides also good re-
sults for predictions using high-resolution measurements (especially for mature forests
with R2 > 0.7, Figure 20). This is promising and shows the potential of the novel
approach for estimating forest productivity from the spatial distribution of biomass
within a forest. One innovation of the study lies in providing a method for predicting
carbon turnover time, as other methods are characterized by large uncertainties (Fan et
al. 2020). Additionally individual-based models allows to investigate forest structure
in detail and link it to e.g. forest productivity in contrast to global vegetation mod-
els which provide a less detailed description of forest structure and operate on larger
spatial scales (Maréchaux et al. 2021). This allows the identification of structural prop-
erties and functional characteristics of forest ecosystems at small spatial scales.
An important result of this study is the demonstration of the potential of high-resolution
tomographic satellite measurements of biomass (at the spatial scale of 0.04 ha and ver-
tical scale of ∆h = 2 m) for estimating GPP, NPP and carbon turnover time. The
developed approach enables the estimation of forest productivity based on RADAR re-
mote sensing measurements. Running et al. 2004 provide estimations of GPP and NPP
(with resolution of 25 ha) by using NDVI and FPAR (Fraction of absorbed Photosyn-
thetic Active Radiation) from MODIS satellite products (multispectral measurements)
in combination with additional models for the estimation of maintenance respiration
(in case of NPP). The quality of these estimates varies for different areas (Avitabile et
al. 2016; Mitchard et al. 2013; Rödig et al. 2019; Thurner et al. 2017). In addition,
BIOMASS measurements using long wavelength P-band radiation have the advantage
of avoiding saturation effects and are independent of day/night and cloud cover.
There are also some limiting factors in the design of the study. In this study we as-
sumed that forest structure of disturbed forests is similar to the forest structure of early-
and mid-successional forests. Based on this the used forest data of disturbed forests
cover a wide and continuous range of biomass (bare ground to maximum biomass).
Disturbances like fire and wind are influencing the age structure of forests and conse-
quently the structure and biomass distribution of landscapes. It is possible that forest
landscapes occur in which disturbance patterns have caused a different distribution
of biomass. Future studies should investigate whether such altered disturbance dis-
tributions have an impact on prediction quality. Another idea of the study is to use
thresholds of biomass values as an indicator for the categorizations of forest types
which are provided by the BIOMASS mission anyway. For this study, this might im-
ply that forests with a biomass between 250 and 350 todmyr−1ha−1 can be interpreted
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as mature forests and disturbed forests have a biomass between 0 - 250 and 350 - 450
todmyr−1ha−1 (for better understanding see figure 13). Note that this concept seems to
be suitable for a horizontal resolution of 4 ha, at other resolutions different thresholds
for disturbed and mature forest might be more appropriate. Another interesting inves-
tigation would be to use other categories of forest types - the approach of classifying
forests as disturbed or mature based on forest succession is only one way to categorize
forests. Other classifications may yield different results.
The developed framework, which uses machine learning techniques in combination
with an individual-based forest model to derive forest relationships, can also be ap-
plied also to other satellite missions (beyond RADAR). The presented approach is able
to support satellite missions in exploring the potential of different spatial resolutions
(horizontal and vertical) and the relationships between observation patterns and target
variables of forests. Also, the combination of different measurements (inventory data
or other satellite measurements) can be analyzed. In that way the here presented frame-
work might be also interesting for remote sensing platforms like the ESA-NASA Joint
Multi-Mission Algorithm and Analysis Platform (MAAP, Albinet et al. 2019). This
platform is a collaborative project focused on improving the understanding of above-
ground terrestrial carbon dynamics by sharing data, science algorithms and compute
resources in order to foster and accelerate scientific research.
In this chapter we have analyzed a typical tropical forest. A possible next step is to
apply this approach to other tropical forests. Rödig et al. 2018 applied FORMIND in
combination with space-borne LiDAR measurements to the whole Amazon. It would
be possible to use this framework in combination with the approach of Rödig et al.
2018. We would expect similar trends with different values of GPP and NPP due to
variations in climate and soil conditions. Beyond that it is also possible to apply the
approach to temperate and boreal forest (Bohn et al. 2018; Bruening et al. 2021; Hen-
niger, Bohn, et al. 2023) where we expect even stronger variations of GPP and NPP
driven by shorter vegetation periods.
The presented approach offers a number of innovations: the exploration of expected
remote sensing data, the use of individual-based forest models for preliminary studies
of satellite missions, the use of RADAR satellite measurements for the prediction of
productivity and carbon turnover times and the exploration of the prediction quality
for different forest types. The obtained results emphasize the value of the forthcoming
BIOMASS satellite mission and highlight the potential of deriving estimates for forest
productivity from information on forest structure. If applied to more and larger areas,
the approach might ultimately contribute to a better understanding of forest ecosys-
tems.
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5.2 Outlook

Virtual forests around the globe

The Forest Factory 2.0 is already being used by five working groups (University of
Maryland, Karlsruhe Institute for Technology, University of Göttingen/Gesellschaft
für wissenschaftliche Datenverarbeitung Göttingen, University of Lund and Helmholtz
Centre of Environmental Research). It has been applied to several research topics, es-
pecially in combination with remote sensing.
Interaction with these groups has revealed potential for novel developments. The soft-
ware tool (via RStudio) and the data of the generated virtual forests are available as
open source. A graphical user interface (GUI) would make the Forest Factory 2.0 eas-
ier to use for groups not so familiar with programming.
Such a GUI could also help to make more use cases available or to make parameters
easier to customize for users. For example, it could be interesting to generate forests
with only selected tree species. Currently, forests with selected tree species can be
filtered out of the data product or generated by changing the parameterization. In fu-
ture, the initialization of the Forest Factory 2.0 may include an option to select the
desired tree species. Given the case that users only want to study multi-layer forests,
it would be interesting to allow also other height distributions that make these forests
more likely (e.g., bimodal height distributions). Even if the desired type of forest is
already included in the provided data, it saves the user time and lowers the barrier to
use the Forest Factory 2.0 if subsequent filtering of the forest data is not required.
Another interesting research direction would be to allow different spatial resolutions
for the Forest Factory if users want to create larger continuous forests without filtering
and rearranging the ones already generated. An additional extension could be to allow
different mechanisms for tree placement. It would be also possible to remove trees in
the virtual forest stands to mimic interventions or management. Another alternative
is to implement mechanisms which guarantee a denser packing of forest stands (for
e.g. with thresholds for minimum density) which may widens the state space in Fig. 4
(Chapter 2.4.1). Nevertheless, the presented envelopes show that we can already cover
a broad range of different forest types and structures with the current approach.

Combining virtual forests and virtual remote sensing measurements

The digital transformation is taking place in various domains, including ecology. Dig-
ital Twins are becoming part of the political sustainability agenda (e.g. in the Desti-
nation Earth program by the European Commission, Nativi & Craglia 2020) with the
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vision to develop Digital Twins for climate, ocean and biodiversity. A Digital Twin
of Earth ecosystems is an information system that provides users with a digital repli-
cation of the state and temporal evolution of parts of the Earth system (e.g. forest
ecosystem), constrained by available observations and the laws of physics (Bauer et al.
2021). These parts, when put together, can result in a Digital Twin of the Earth.
The Forest Factory 2.0 is a tool for generating virtual forests. These forests could be
interpreted as potential Digital Twins of forests. This means that they might be dupli-
cates of real existing forests in nature and represent their forest states at a given point
in time. Consequently, the generated forests either have a real, existing duplicate in
nature or they do not.
If there is a duplicate, the chances of finding potential twins that have similar attributes
are increasing with the growing amount of available forest data (especially from re-
mote sensing, but also from field inventories). Finding these real duplicates allows to
relate the known attributes, e.g. from remote sensing, to all other attributes that can
be calculated with the coupled forest model. Furthermore, it is a starting point for
the simulation of these forests over time and under different environmental conditions,
making them to Digital Twins in the full sense (Bauer et al. 2021; de Koning et al.
2023).
If there is no counterpart, it could be that this forest state has not yet been reached
(due to environmental conditions or lack of disturbance regimes) or because the forest
cannot exist in nature, which the approach tries to avoid but cannot completely rule out
(related to the description of parameterization testing, see Section 5.1.1). If the forest
state has not been reached this gives information about unrealized forest states and en-
ables an out of system analysis (outside of path dependencies). This means that it may
be possible to overcome some of the difficulties in studying forest states that may be
caused by climate change and invasive tree species, as traditionally forest models often
are parameterized without these phenomena.
There are already studies which use virtual canopy surfaces, virtual forest point clouds
and virtual trees (Frazer et al. 2011, 2005; Widlowski et al. 2015). These virtual trees
or forest stands are not related to further forest attributes and are used e.g. to explore
radiative transfer modelling. Using the forest factory approach would allow to have
bigger insight into the functions and properties of the virtual forest. The generated
forests would allow the calculation of additional properties (basal area, LAI, AWP, net
ecosystem exchange) at tree - and forest stand level to explore the connection of remote
sensing data and forest functions on small scales. This could improve the mechanistic
understanding of forests in general and, more specifically, of forests that has limited
access on the ground, such as those in the tropics.
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The Forest Factory 2.0 generates a broad range of forest states covering various types
of forest structures and species compositions (Chapter 2). Furthermore, the coupling of
the Forest Factory 2.0 with other modules of forest models (here we use FORMIND)
allows us to explore additional properties and characteristics of forest, for example
to derive typical remote sensing information (e.g. RADAR in Chapter 4) and indices
based on radiative transfer models (e.g. EVI in Chapter 3). Combining the forest fac-
tory approach with the presented framework in Chapter 4 could help to explore about
what resolutions of future satellite measurements are appropriate for predicting differ-
ent forest attributes on a larger scale (e.g., biomass and NEE).
An additional attribute which is measurable via remote sensing is Solar-induced chloro-
phyll fluorescence (SIF). SIF is a remotely sensed optical signal emitted during chem-
ical photosynthesis. The past two decades have witnessed a strong increase in avail-
ability of SIF data at increasingly higher spatial and temporal resolutions, sparking
applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate,
and socioeconomics; Sun et al. 2023). SIF data is already used in several studies,
which relate these data to forest attributes (Colombo et al. 2018; Hernández-Clemente
et al. 2017; Lu et al. 2018; Pierrat et al. 2022). In Chapter 3 we used the radiative
transfer model mScope (Yang et al. 2017) which also can calculate fluorescence in-
duced by vegetation. A next interesting step would be to apply this part of mScope
to forests e.g. by using FORMIND (like we did in Chapter 3 with reflectance) or by
using the Forest Factory 2.0 (Chapter 2). This would enable to relate forest structure
to SIF. This shows once again the potential to use the Forest Factory/FORMIND as a
kind of interface to embed modules that can calculate worth exploring forest attributes,
which enable the correlation between all calculated forest properties. The advantage
of calculating SIF in addition to NDVI is that it provides independent, complementary
information on seasonal vegetation transitions (X. Wang et al. 2020). It provides a
means to monitor photosynthesis and productivity on a large scale in both deciduous
and evergreen forests. This is in contrast to e.g. NDVI, which is limited in monitoring
changes in photosynthesis in evergreen forests, and other indices that can only relate
photosynthesis to the leaf level of the vegetation (Springer et al. 2017).
The Forest Factory 2.0 has been already used to create virtual forests in combination
with virtual remote sensing measurements. For instance, a group in Maryland (Bruen-
ing et al. 2021) use the Forest Factory 2.0 to explore the relationship between LiDAR
profiles and above-ground biomass in North America. In addition to that a working
group at the KIT use the Forest Factory 2.0 to create synthetic LiDAR point clouds to
train artificial intelligence to estimate forest biomass (Schäfer et al. 2023).
The philosophy to use forest models and the Forest Factory as a kind of interface to cal-
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culate e.g. hyperspectral forest reflectance (Chapter 3)and LiDAR signals (described
in Section 5.1.2) offers the possibility to link different remote sensing signals. The
correlation between different vegetation indices and further between remote sensing
signals derived from different remote sensing systems is an interesting and important
research question. By using virtual forests, it is possible to create and correlate virtual
remote sensing signals of different techniques (e.g. active and passive sensors) for a
large number of forests. The FORMIND working group (Helmholtz Centre of En-
vironmental Research) is developing a RADAR simulator which calculate coherence.
Coherence is described as the complex correlation between the two incoming RADAR
waves, which is an important component of active RADAR measurements. This en-
ables the combination of RADAR, LiDAR and hyperspectral remote sensing measure-
ments, which would be promising. It could provide information on the independence
of different remote sensing techniques, and thus on the question of which remote sens-
ing measurements should be combined to estimate specific forest attributes.
Currently in the SIMWALD project (Helmholtz Centre of Environmental Research) the
Forest Factory 2.0 is used to create one million virtual forest stands and to calculate
the corresponding hyperspectral reflectance spectra. This huge amount of generated
data is used to train artificial intelligence (AI) and machine learning to link the cre-
ated data (virtual forests and reflectance) to real existing forest states. The potential
of this unique data set will be demonstrated in a show case where EnMAP measure-
ments (German hyperspectral satellite mission launched in 2022) for selected forest
areas in Germany will be linked to generated forests by AI. In addition to hyperspec-
tral measurements, information on forest structure is also crucial and can be captured
by RADAR measurements (like in Chapter 4). Therefore, the synergetic use of hyper-
spectral reflectance and RADAR data will be investigated. Especially after extreme
weather events (e.g. droughts) the damage in forests could be identified quickly via
remote sensing and necessary management interventions could be planned. The pre-
sented studies in this thesis provides the scientific basis for the SIMWALD project and
allow an innovative fusion of satellite data with forest models. If successfully applied
it should be possible to derive forest stand characteristics from hyperspectral measure-
ments in high spatial and temporal resolution. This would be a new milestone in forest
research, especially for the development of adapted forest management concepts and
with regard to global climate change and its effects (Begon et al. 2016).
There are many regions for which the Forest Factory is already applicable. With the
help of a these parameterizations, it is possible to create a large amount of possible
forest states, which go beyond local inventories (e.g. from the Bundeswaldinventur).
This allows the construction of regional forest inventories. In Chapter 2, the Forest
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Factory 2.0 in combination with FORMIND is applied to seven ecoregions (out of 28
existing parameterizations, see formind.org). In combination with the parameteriza-
tions of other forest gap models the number of regions where the Forest Factory could
possibly be applied is strongly increased. Historically, on-the-ground forest invento-
ries have been used to document and derive information of forests for each individual
tree. With today’s remote sensing and computing capabilities, it is possible to conduct
forest inventories by satellite. As described in this thesis (Section 1.3) satellites can
only measure certain attributes of forests. However, the Forest Factory is a well-suited
method to link remote sensing measurements to forest attributes. When the Forest
Factory is applied to more ecoregions, there is the potential to generate trillions of for-
est stands, covering a wide variety of forest conditions for many different regions on
Earth. This opens up the possibility of a global forest inventory conducted with the
help of remote sensing measurements and the Forest Factory as an interface to link
the measurements to the generated forests. Linking remote sensing measurements to
generated forests (with their corresponding virtual remote sensing measurements) is
a challenging task, especially in terms of computational power. Artificial intelligence
such as neural networks are well known for solving assignment problems and combi-
natorial optimization, especially for vegetation and remote sensing (Kattenborn et al.
2021), and are able to perform such a task. A global forest inventory could be used
as a starting point for simulations over time and would help resolve uncertainties in
quantifying and understanding the global carbon cycle (Ruehr et al. 2023).

We are at an exciting point in time where the growing amount of remote sensing data
and computational resources are opening up new possibilities for forest research. Ulti-
mately, however, we are not yet at the point where we can simulate every single tree on
Earth. DGVMs have their strength in simulating competition between different veg-
etation types at large scales, and individual-based forest models have advantages in
representing competition and interaction between individual trees. A major challenge
in vegetation modelling is to combine the strengths of both model families to provide
a sufficiently detailed simulation of vegetation at large scales. Both types of models
attempt to make progress in this direction. This thesis presents tools for bridging the
gap between DGVMs and individual-based forest models to take advantage of the new
opportunities provided by increasing remote sensing measurements, increasing com-
putational capacity, and upcoming methods. These tools can help to incorporate forest
structure and local biodiversity in large scale applications. We hope that this thesis will
inspire scientists from different research fields to use the data generated and the meth-
ods presented to gain a deeper understanding of forest ecosystems and to help adapt
policy instruments to preserve a livable planet for future generations.
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Additional Information on the Method Section

Pre-defined forest stand attributes

For each forest stand we select a minimum and maximum tree height hmin and hmax

(a), a species pool (b) and a total crown volume of trees (c). The Forest Factory 2.0
receives as an initial input a minimum and maximum height of the trees Hmin and
Hmax (this applies to all trees in all forest stands). From the range of Hmin and Hmax

a forest stand specific hmin and hmax (a) is chosen randomly for each forest stand. We
assume an equally distributed probability distribution in the mentioned range. The
parameterization of each ecoregion defines the total species pool for Forest Factory
2.0. For each forest stand, a forest stand-specific species pool (b) is chosen. For this
purpose, a number between 1 and the number of species in the total species pool is
chosen uniformly distributed. It determines how many species the forest stand-specific
species pool should contain. Each species has an equal probability of being included in
the forest stand-specific species pool until the next to last species (selected number of
species poo1) is selected. To ensure that it is possible to plant trees within the selected
height range between hmin and hmax (which is different for each forest stand) we check
whether at least one of the species selected so far has a maximum attainable height
greater than or equal to hmax. If this is not the case, the last species is selected so that
a tree with hmax could be placed. Forest Factory 2.0 receives as input also a maximum
total crown volume. This total crown volume can be seen as a kind of crown density
(proportion of crown volume to forest stand volume). None of the generated forest
stands have a total crown volume above this input value. For each forest stand, be-
tween 0 and the maximum total crown volume, a forest stand specific maximum total
crown volume (c) is randomly chosen, assuming an equal probability distribution.

Normalized Shannon Index

The Shannon Index H (Shannon 1948) and the species evenness EH (Shannon equi-
tability Index by Heip 1974, Peet 1975) is calculated by:

H =
S

∑
i=1

pi · ln(pi)
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EH =
H

ln(S)

with pi ... Proportion of trees of species i in the total number of trees

with S ... Set of all species in the initial species pool derived by the parameterization

of

the ecoregion (we treat pfts as species here)

Information about data product

Table A.1
Description of the Data product of 700,000 forests stands from 7 different ecoregions.
Each forest patch has an area of 20 m x 20 m. The total number of trees is accumulated
over all forest stands from one ecoregion. The species mix is described through the
number of pft’s. In addition, the mean and maximum values of basal area and biomass
are shown.

Region
Number
of forest
stands

Total
number
of trees

Number
of pfts

Mean
basal
area
einheit

max
basal
area
einheit

mean
biomass
einheit

max
biomass
einheit

Amazon 100,000 1379,989 3 26.5 99.3 272 1430
Panama 100,000 611,013 4 15.6 57.6 166.3 752
Germany 100,000 1258,893 8 26.5 99.8 163.7 1462
US 100,000 816,839 9 41.4 99.9 383.7 1623
Ecuador 100,000 3851,850 7 20.7 37.5 116.9 228
Malaysia 100,000 1623,988 4 19.9 67.2 269.9 1067
Tanzania 100,000 1222,930 6 32.8 99.7 300.6 1,091

Reduced climate information

The climate information for Hainich climate (Germany) includes daily temperature
values, radiation values and precipitation values. In the case of reduced climate infor-
mation, other values are used for productivity calculation: mean yearly light intensity
above canopy during day-length, length of daily photosynthetic active period, i.e. day-
length, relative length of wet and dry season. More information about these variables
can be found in respective studies and parameterizations (see main text Table 3).
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Realization of envelopes in R

For the analysis of the state space of forests with the help of envelopes we use the
function geom_mark_hull of the R package R/mark_hull.R. It uses the package con-
caveman (github.com/mapbox/concaveman) which allows to adjust concavity of the
resulting hull. We choose the following parameters: con. Cap = 0 and concavity = 2.

Additional results for biomass, productivity and species evenness of forest stands

Figure A.1. Comparison of Forest Factory by Bohn & Huth 2017 and Forest Factory
2.0. Distribution of forest properties for the generated forests of the Forest Factory by
Bohn & Huth 2017 (left) and Forest Factory 2.0 (right). We used here as structural
properties basal area and maximum height per forest stand. The color of each cell
in the graph represents the number of forest stands with the respective value of the
properties.
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Figure A.2. Relationship between biomass and above-ground productivity for analyzed
ecoregions. Each point represents a forest stand in the respective ecoregion (100,000
per ecoregion).

Figure A.3. Relationship between structural properties and above-ground wood pro-
ductivity. We analyzed here structural properties (basal area and maximum height per
forest stand) and above-ground productivity for three selected ecoregions (Germany,
Amazon, Tanzania). The color of each cell in the graph represents the mean value of
the AWP of all forest stands within one cell. In difference to Fig. 5 (main text), we use
for AWP always the same color legend (for all three ecoregions).
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Figure A.4. Relationship between structural properties and above-ground wood pro-
ductivity. We analyzed here structural properties (height heterogeneity and LAI per
forest stand) and above-ground productivity for three selected ecoregions (Germany,
Amazon, Tanzania). The color of each cell in the graph represents the mean value of
the AWP of all forest stands within one cell. In difference to Fig. 6 (main text), we use
for AWP always the same color legend (for all three ecoregions).

Figure A.5. Relationship between structural properties and functional characteristics
of forest stands. Relationship between structural properties (basal area and maximum
height per forest stand) and biomass (first row), above-ground productivity (second
row) and species evenness (third row) for all analyzed ecoregions. The color of each
cell in the graph represents the mean value of the investigated property of all forest
stands within one cell.
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Figure A.6. Maximum values of functional characteristics of forest stands. Relation-
ship between structural properties (basal area and maximum height per forest stand)
and biomass (a-g), above-ground productivity (h-n) and species evenness (o-u) for all
analyzed ecoregions. The color of each cell in the graph represents the maximum value
of the investigated property of all forest stands within one cell.

Figure A.7. Standard deviation of functional characteristics of forest stands. Relation-
ship between structural properties (basal area and maximum height per forest stand)
and biomass (a-g), above-ground productivity (h-n) and species evenness (o-u) for all
analyzed ecoregions. The color of each cell in the graph represents the standard devi-
ation of the investigated property of all forest stands within one cell. Cells consisting
of only one forest stand has no standard deviation (gray color).
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Figure A.8. Relationship between structural properties and functional characteristics of
forest stands. Relationship between structural properties (LAI and height heterogene-
ity per forest stand) and biomass (a-g), above-ground productivity (h-n) and species
evenness (o-u) for all analyzed ecoregions. The color of each cell in the graph repre-
sents the mean value of the investigated property of all forest stands within one cell.

Figure A.9. Maximum values of functional characteristics of forest stands. Relation-
ship between structural properties (LAI and height heterogeneity per forest stand) and
biomass (a-g), above-ground productivity (h-n) and species evenness (o-u) for all ana-
lyzed ecoregions. The color of each cell in the graph represents the maximum value of
the investigated property of all forest stands within one cell.
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Figure A.10. Standard deviation of functional characteristics of forest stands. Rela-
tionship between structural properties (LAI and height heterogeneity per forest stand)
and biomass (a-g), above-ground productivity (h-n) and species evenness (o-u) for all
analyzed ecoregions. The color of each cell in the graph represents the standard devi-
ation of the investigated property of all forest stands within one cell. Cells consisting
of only one forest stand has no standard deviation (gray color).

118



Figure A.11. Comparison of biomass from different regions derived from forests with
a similar state space (by a 2% quantile of the four structural properties LAI, basal
area, tree height heterogeneity and maximum tree height). Each graph compares forest
stands out of two ecoregions. We show the pairwise comparisons for all ecoregions.
Each point represents the mean values of biomass todmyr−1ha−1 for both regions.

119



A APPENDIX CHAPTER 2

Figure A.12. Comparison of above-ground productivity derived from forests with a
similar state space (by a 2% quantile of the four structural properties LAI, basal area,
tree height heterogeneity and maximum tree height). Each graph compares forest
stands out of two ecoregions. We show the pairwise comparisons for three illustra-
tive ecoregions. Each point represents the mean values of AWP todmyr−1ha−1 for both
regions.

120



Figure A.13. Comparison of species evenness derived from forests with a similar state
space (by a 2% quantile of the four structural properties LAI, basal area, tree height
heterogeneity and maximum tree height). Each graph compares forest stands out of
two ecoregions. We show the pairwise comparisons for three illustrative ecoregions.
Each point represents the mean values of species evenness [-] for both regions.
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Additional Information on the Method Section

Figure B.1. Study map of the 28 forest stands in the region North Karelia (blue area),
Finland. The forest stands are distributed over an area of 150 km × 150 km.

Table B.1
Leaf parameters
Leaf Parameter Picea Abies Pinus Silvestrys Betula (Pendula & Pubescens)
Cab [µg cm−2] 21.94 23.92 36.71
Cdm [g cm−2] 0.024 0.025 0.006
Cw [g cm−2] 0.03 0.03 0.0117

Cs [−] 0.01 0.01 0.01
Car [µg cm−2] 4.40 4.50 8.62

N [−] 1.25 1.24 1.77
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Figure B.2. Soil reflection. Shown is assumed the reflection of wet soil. We assume
for all forest stands the same soil reflectance.

Figure B.3. Analysis of allometries in FORMIND. Shown are the relationships be-
tween stem diameter and tree height, crown diameter as well as the total leaf area of a
tree for the tree species simulated in FORMIND.

Figure B.4. Concept of height layers. Shown is the same forest with a different resolu-
tion of height layers (∆h = 10 m and ∆h = 0.5 m). Each layer includes different species
mixtures (indicated by color). We use 5 height layers in the case ∆h = 10 m and 100
height layers in the case ∆h = 0.5 m. All layers which contain leaves contribute to the
resulting reflectance spectrum. Empty height layers (no leaves are in the layer) do not
influence the reflectance spectrum (details see Section 3.3.4).
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Table B.2
Attributes of the forest stands from Finland used for this study (28 plots, 30 m × 30 m).

Plot Basal Maximum Height Species Species Bio- LAI
Number Area Height Hetero- Richness Evenness mass

geneity
[−] [m2 ha−1] [m] [m] [−] [−] [todm ha−1] [−]

1 28.78 30.09 5.31 3 0.49 148.30 3.93
2 19.63 28.63 3.47 2 0.35 106.83 3.23
3 16.31 26.38 2.88 2 0.26 90.74 2.69
4 22.25 29.21 4.54 2 0.41 118.74 3.46
5 19.87 29.71 4.64 5 0.74 109.47 2.26
6 32.84 30.80 4.04 2 0.04 170.06 4.84
7 17.60 23.84 3.36 4 0.16 94.34 3.13
8 17.33 24.59 2.37 3 0.17 95.09 2.94
9 25.66 26.10 3.69 5 0.25 133.24 2.39

10 27.03 30.01 4.59 2 0.05 139.91 3.98
11 17.02 22.70 2.92 3 0.27 85.02 3.15
12 27.35 23.32 3.39 3 0.65 114.86 4.07
13 20.38 21.67 3.28 3 0.59 88.96 2.64
14 18.37 23.34 2.77 1 0.00 86.37 1.67
15 21.37 26.22 3.38 3 0.44 105.38 2.37
16 27.37 26.44 4.08 3 0.10 139.98 2.52
17 24.54 28.80 4.52 2 0.38 125.61 2.58
18 30.99 28.45 4.24 2 0.07 152.92 4.71
19 30.12 28.74 3.61 3 0.47 162.74 3.56
20 30.42 30.30 3.92 2 0.35 164.55 4.52
21 17.60 23.34 2.45 2 0.06 84.49 1.60
22 27.16 25.85 3.96 2 0.43 120.19 3.54
23 29.31 27.40 4.08 2 0.16 139.35 4.44
24 25.45 21.70 2.63 3 0.38 89.55 5.04
25 30.72 27.96 4.61 3 0.62 145.02 4.58
26 26.66 34.41 5.57 4 0.69 138.13 3.67
27 22.03 22.77 2.95 3 0.55 95.38 2.64
28 22.10 25.73 3.21 3 0.50 114.78 2.97

Basal area is defined by the cross-sectional area of trees at breast height. Maximum height describes
the highest tree height in the forest stand. Height heterogeneity describes the standard deviation of tree
height. Richness describes the number of species in the forest. Evenness is defined by the normalized
Shannon index. Biomass describes the sum of all tree biomass.
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Table B.3
Spectral configuration of the 10 Sentinel-2A bands used in this study Ma et al. 2019.

Spectral
Band

Center
Wavelength

[nm]

Band Name Band Width
[nm]

Spatial
Resolution

[m]

B02 490 blue 65 10
B03 560 green 35 10
B04 665 red 30 10
B05 705 red-edge 1 15 20
B06 740 red-edge 2 15 20
B07 783 red-edge 3 20 20
B08 842 NIR 1 115 10
B08a 865 NIR 2 20 20
B11 1610 SWIR 1 90 20
B12 2190 SWIR 2 180 20

Figure B.5. LAI Profiles for each forest stand. Shown are the LAI values (x-axis) in
each height layer (y-axis) per species (red—Betula, green—Picea Abies, blue—Pinus
Sylvestris). The colored lines show the LAI for a particular species (sum of all trees of
the species in the plot). Therefore, the sum of all the lines gives the LAI profile of all
trees in the plot.
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Additional Information on the Result Section

Figure B.6. Comparison of simulated reflectance spectra with Sentinel measurements
assuming a simple forest representation using different descriptions of the vertical for-
est structure (0.5 m or 10 m height layers). The Sentinel 2 spectrum of plot 25 is not
provided by Ma et al. 2019.
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Figure B.7. Comparison of simulated reflectance spectra with Sentinel measurements
assuming a detailed forest representation using different descriptions of the vertical
forest structure (0.5 m or 10 m height layers).

Figure B.8. Comparison of simulated reflectance spectra with Sentinel measurements
assuming a spectra-averaged forest representation using different descriptions of the
vertical forest structure (0.5 m or 10 m height layers).
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Figure B.9. Comparison of simulated reflectance spectra with Sentinel measure-
ments assuming different types of forest representations (simple, detailed and spectra-
averaged) and using 10 m height layers for the description of vertical forest structure.

Figure B.10. Comparison of simulated reflectance spectra with Sentinel measurements
assuming different types of forest representations (simple, detailed, spectra-averaged)
and using 0.5 m height layers for the description of vertical forest structure.
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Figure B.11. Comparison of simulated reflectance spectra assuming different types
of forest representations (simple, detailed, spectra averaged) and using 0.5 m height
layers for the description of vertical forest structure. The resolution of the simulated
reflectance wavelengths is 1 nm.

Figure B.12. Comparison of simulated reflectance spectra and measured reflectance
spectra using a distance index (Spectral Angle Distance, 0 rad: identical, π

2 rad: differ-
ent). Results are shown for 28 forest plots (dots) and different forest representations.
Comparison has been conducted for 10 wavebands of Sentinel-2.
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Figure B.13. Comparison of simulated and measured reflectance of 28 forest stands
(dots) and different forest representations (indicated by colors). Please note that the
scales used for the illustration of measured and simulated reflectance differs for each
band. Reflectance has been averaged for 10 wavebands (described by centered wave-
lengths; for more information on wavebands see Table B.3).
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Analysis of Selected Forest Stands (Outliers)

Figure B.14. Comparison of reflectance spectra and additional information of forest
stand 15 (classified as outlier) with forest stand 5. We compare forest properties of an
outlier (left side) with forest properties of a forest with similar attributes, which is not
an outlier (right side). Therefore, we compare the LAI profile (outer sides top), the
reflectance spectra (in the middle) and the species composition (outer sides bottom).
Despite the similar LAI distribution and species composition we obtained different
Sentinel-measurements for reflectance, but similar simulated reflectance.
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Figure B.15. Comparison of reflectance spectra and additional information of forest
stands 7 and 8 (classified as outliers) with forest stand 11. We compare forest proper-
ties of two outliers (left side) with forest properties of a forest with similar attributes,
which is not an outlier (right side). Therefore, we compare the LAI profile (outer sides
top), the reflectance spectra (in the middle) and the species composition (outer sides
bottom). Despite the similar LAI distribution and species composition, we obtained
different Sentinel measurements for reflectance, but similar simulated reflectance.

Figure B.16. Comparison of reflectance spectra and additional information of forest
stand 19 (classified as outlier) with forest stand 22. We compare forest properties of
an outlier (left side) with forest properties of a forest with similar attributes, which is
not an outlier (right side). Therefore, we compare the LAI profile (outer sides top), the
reflectance spectra (in the middle) and the species composition (outer sides bottom).
Despite the similar LAI distribution and species composition, we obtained different
Sentinel measurements for reflectance, but similar simulated reflectance.
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Figure B.17. Comparison of reflectance spectra and additional information of forest
stand 18 (classified as outlier) with forest stand 23. We compare forest properties of
an outlier (left side) with forest properties of a forest with similar attributes, which is
not an outlier (right side). Therefore, we compare the LAI profile (outer sides top), the
reflectance spectra (in the middle) and the species composition (outer sides bottom).
Despite the similar LAI distribution and species composition, we obtained different
Sentinel measurements for reflectance, but similar simulated reflectance.
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Analysis of LAI and Additional Indices

Figure B.18. Relationship between LAI (x-axis, field data) and NDVI (y-axis, Sentinel-
2 measurements) of 28 Finland forest stands.
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Figure B.19. Comparison of vegetation indices for 28 forest stands in Finland. The
vegetation indices (NDMI left, kNDVI right) for the measured reflectance spectra in
the different wavebands for the simulated reflectance spectra (x-axis) and for the satel-
lite measurements (y-axis). In each row, a different forest representation is assumed
(1. detailed forest representation, 2. simple forest representation, 3. spectra-averaged
forest representation; more information about the cases in Section 3.3.3). Each point
represents a forest stand in Finland (gray points indicate outliers that are not used to
calculate the RMSE and R2—see Appendix Figures B.14–B.17).
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Table B.4
Analysis of vegetation indices for different forest representations. The mean spectral
angle distance is calculated as average of the SAD of 28 forest stands for each forest
representation (height layer size = 0.5 m). More details about the vegetation indices
and spectral angle distance can be found in Section 3.3.4, Figures 12 and B.19.

Simple Forest Detailed Forest Spectra Averaged Forest

NDVI
R2 0.63 0.63 0.59

bias R2 −0.086 −0.097 −0.177
RMSE 0.04 0.04 0.033
MAE 0.033 0.034 0.027

EVI
R2 0.43 0.45 0.25

bias R2 0.086 0.059 0.116
RMSE 0.107 0.081 0.074
MAE 0.092 0.069 0.062

MSI
R2 0.49 0.49 0.47

bias R2 0.141 0.162 0.164
RMSE 0.051 0.059 0.054
MAE 0.041 0.05 0.043

NDMI
R2 0.49 0.5 0.49

bias R2 0.133 0.15 0.156
RMSE 0.057 0.066 0.060
MAE 0.046 0.056 0.049

kNDVI
R2 0.63 0.62 0.59

bias R2 −0.089 −0.098 −0.15
RMSE 0.041 0.042 0.036
MAE 0.034 0.035 0.029

mean SAD 0.101 0.103 0.113
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Figure C.1. Comparison of predicted NPP derived from the boosted regression tree and

reference NPP derived from simulations using the forest model FORMIND. The com-

parison is done for disturbed forests (green) and natural forests (blue). The predicted

NPP from biomass measurements is derived from the simulated vertical and horizontal

biomass distributions (descriptions above and on the right side). Each point represents

a result for a forest. Total simulated area was 100 ha (resulting in the different amount

of points in the rows).
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Figure C.2. Comparison of predicted GPP derived from the boosted regression tree and

reference GPP derived from simulations using the forest model FORMIND. The com-

parison is done for disturbed forests (green) and natural forests (blue). The predicted

GPP from biomass measurements is derived from the simulated vertical and horizontal

biomass distributions (descriptions above and on the right side). Each point represents

a result for a forest. Total simulated area was 100 ha (resulting in the different amount

of points in the rows).
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Figure C.3. Comparison of predicted carbon turnover time (τ) derived from the boosted

regression tree and reference τ derived from simulations using the forest model FOR-

MIND. The comparison is done for disturbed forests (green) and natural forests (blue).

The predicted τ from biomass measurements is derived from the simulated vertical and

horizontal biomass distributions (descriptions above and on the right side). Each point

represents a result for a forest. Total simulated area was 100 ha (resulting in the differ-

ent amount of points in the rows).
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Figure C.4. Comparison of predicted NPP derived from the boosted regression tree

and reference NPP derived from simulations using the forest model FORMIND. The

comparison is done for the whole forest data. The predicted NPP from biomass mea-

surements is derived from the simulated vertical and horizontal biomass distributions

(descriptions above and on the right side). Each point represents a results for a forest

with a certain age (color of points). Total simulated area was 100 ha (resulting in the

different amount of points in the rows).
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Figure C.5. Comparison of predicted GPP derived from the boosted regression tree

and reference GPP derived from simulations using the forest model FORMIND. The

comparison is done for the whole forest data. The predicted GPP from biomass mea-

surements is derived from the simulated vertical and horizontal biomass distributions

(descriptions above and on the right side). Each point represents a result for a forest

with a certain age (color of points). Total simulated area was 100 ha (resulting in the

different amount of points in the rows).
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Figure C.6. Comparison of predicted carbon turnover time (τ) derived from the boosted

regression tree and reference τ derived from simulations using the forest model FOR-

MIND. The comparison is done for the whole forest data. The predicted τ from

biomass measurements is derived from the simulated vertical and horizontal biomass

distributions (descriptions above and on the right side). Each point represents a result

for a forest with a certain age (color of points). Total simulated area was 100 ha (re-

sulting in the different amount of points in the rows).
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Figure C.7. Comparison of correlation between the estimated and the reference GPP,
NPP and carbon turnover time (τ). The estimation was done with a boosted regression
tress using information of biomass distribution and the calculation was done with the
FORMIND forest model. Each point represents the R2 value of one comparison with
a given spatial - (indicated by color) and vertical resolution. Here we include also an
analysis with no height layer (∆h = 100 m, compared to 19 in the main text).

Figure C.8. Comparison of correlation between the estimated and the reference GPP,
NPP and carbon turnover time (τ) for different types of forests (disturbed forests -
top, mature forests - bottom). The estimation was done with a boosted regression
tress using information of biomass distribution and the calculation was done with the
FORMIND forest model. Each point represents the R2 value of one comparison with
a given spatial - (indicated by color) and vertical resolution. Here we include also an
analysis with no height layer (∆h = 100 m, compared to 20 in the main text).

143



C APPENDIX CHAPTER 4

Table C.1
Parameters of the derived Boosted regression trees (BRTs) for the whole forest data (0 - 320
years of simulation). Depending on different spatial resolutions (vertical and horizontal) of the
biomass data we derived different boosted regression trees. Range of settings describe all pos-
sible combinations of settings (LR = learning rate, BF = bag fraction, TC = tree complexity).
Not mentioned settings use the standard values of the R package dismo 1.3-14. The amount
of training data is given in relative and absolute values. Additionally, the parameters of the
final BRTs for GPP, NPP and carbon turnover times τ are shown (normal typesetting, italic,
underlined). We also included the analysis with no height layers (vertical resolution ∆h = 100
m Figure C.7 and C.8).

Data used for BRT Range of setting amount of Used setting
(resolution) [(LR), training data (GPP,NPP,τ)

(BF),(TC)] relative (total) (LR,BF,TC)
4 ha, ∆ h = 100 m [(0.05,0.01,0.005), 50%(3975) (0.01,0.66,3),

(0.3,0.5,0.66),(3)] (0.01,0.5,3),
(0.01,0.66,3)

4 ha, ∆ h = 20 m [(0.05,0.01,0.005), 50%(3975) (0.05,0.5,3)
(0.3,0.5,0.66),(3)] (0.05,0.66,3),

(0.05,0.5,3)
4 ha, ∆ h = 10 m [(0.05,0.01,0.005), 50%(3975) (0.05,0.66,5)

(0.3,0.5,0.66),(5)] (0.05,0.66,5),
(0.05,0.5,5)

4 ha, ∆ h = 2 m [(0.05,0.01,0.005), 50%(3975) (0.05,0.5,7)
(0.3,0.5,0.66),(5,7)] (0.05,0.5,7),

(0.05,0.66,7)
1 ha, ∆ h = 100 m [(0.05,0.01,0.005), 50%(15900) (0.05,0.66,3)

(0.3,0.5,0.66),(3)] (0.01,0.66,3),
(0.05,0.66,3)

1 ha, ∆ h = 20 m [(0.05,0.01,0.005), 50%(15900) (0.05,0.5,3)
(0.3,0.5,0.66),(3)] (0.05,0.66,3),

(0.05,0.5,3)
1 ha, ∆ h = 10 m [(0.05,0.01,0.005), 50%(15900) (0.05,0.66,5)

(0.3,0.5,0.66),(5)] (0.05,0.5,5),
(0.05,0.5,5)

1 ha, ∆ h = 2 m [(0.05,0.01,0.005), 50%(15900) (0.05,0.5,7)
(0.3,0.5,0.66),(5,7)] (0.05,0.5,7),

(0.05,0.5,7)
0.04 ha, ∆ h = 100 m [(0.05,0.01,0.005), 2%(15900) (0.05,0.5,3)

(0.3,0.5,0.66),(3)] (0.05,0.5,3),
(0.05,0.5,3)

0.04 ha, ∆ h = 20 m [(0.05,0.01,0.005), 2%(15900) (0.05,0.5,3)
(0.3,0.5,0.66),(3)] (0.05,0.5,3),

(0.05,0.5,3)
0.04 ha, ∆ h = 10 m [(0.05,0.01,0.005), 2%(15900) (0.05,0.5,5)

(0.3,0.5,0.66),(5)] (0.05,0.5,5),
(0.05,0.5,5)

0.04 ha, ∆ h = 2 m [(0.05,0.01,0.005), 2%(15900) (0.05,0.5,7)
(0.3,0.5,0.66),(5,7)] (0.05,0.5,7),

(0.05,0.5,7)
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Table C.2
Parameters of the derived Boosted regression trees (BRTs) for disturbed forests (0 - 160 years of
simulation). Depending on different spatial resolutions (vertical and horizontal) of the biomass
data we derived different boosted regression trees. Range of settings describe all possible
combinations of settings (LR = learning rate, BF = bag fraction, TC = tree complexity). Not
mentioned settings use the standard values of the R package dismo 1.3-14. The amount of
training data is given in relative and absolute values. Additionally, the parameters of the
final BRTs for GPP, NPP and carbon turnover times τ are shown (normal typesetting, italic,
underlined). We also included the analysis with no height layers (vertical resolution ∆h = 100
m Figure C.7 and C.8).

Data used for BRT Range of setting amount of Used setting
(resolution) [(LR), training data (GPP,NPP,τ)

(BF),(TC)] relative (total) (LR,BF,TC)
4 ha, ∆ h = 100 m [(0.05,0.01,0.005), 50%(1987) (0.05,0.5,3),

(0.3,0.5,0.66),(3)] (0.01,0.66,3),
(0.05,0.66,3)

4 ha, ∆ h = 20 m [(0.05,0.01,0.005), 50%(1987) (0.05,0.5,3),
(0.3,0.5,0.66),(3)] (0.05,0.66,3),

(0.05,0.66,3)
4 ha, ∆ h = 10 m [(0.05,0.01,0.005), 50%(1987) (0.05,0.5,5),

(0.3,0.5,0.66),(5)] (0.05,0.66,5),
(0.05,0.66,5)

4 ha, ∆ h = 2 m [(0.05,0.01,0.005), 50%(1987) (0.05,0.5,7)
(0.3,0.5,0.66),(5,7)] (0.05,0.5,7),

(0.05,0.66,7)
1 ha, ∆ h = 100 m [(0.05,0.01,0.005), 50%(7950) (0.05,0.66,3),

(0.3,0.5,0.66),(3)] (0.01,0.66,3),
(0.01,0.5,3)

1 ha, ∆ h = 20 m [(0.05,0.01,0.005), 50%(7950) (0.05,0.5,3),
(0.3,0.5,0.66),(3)] (0.05,0.66,3),

(0.05,0.5,3)
1 ha, ∆ h = 10 m [(0.05,0.01,0.005), 50%(7950) (0.05,0.66,5),

(0.3,0.5,0.66),(5)] (0.05,0.5,5),
(0.05,0.66,5)

1 ha, ∆ h = 2 m [(0.05,0.01,0.005), 50%(7950) (0.05,0.66,7),
(0.3,0.5,0.66),(5,7)] (0.05,0.5,7),

(0.05,0.5,7)
0.04 ha, ∆ h = 100 m [(0.05,0.01,0.005), 2%(7950) (0.01,0.66,3),

(0.3,0.5,0.66),(3)] (0.05,0.5,3),
(0.01,0.5,3)

0.04 ha, ∆ h = 20 m [(0.05,0.01,0.005), 2%(7950) (0.05,0.5,3),
(0.3,0.5,0.66),(3)] (0.05,0.5,3),

(0.05,0.5,3)
0.04 ha, ∆ h = 10 m [(0.05,0.01,0.005), 2%(7950) (0.05,0.5,5),

(0.3,0.5,0.66),(5)] (0.05,0.5,5),
(0.05,0.5,5)

0.04 ha, ∆ h = 2 m [(0.05,0.01,0.005), 2%(7950) (0.05,0.5,7),
(0.3,0.5,0.66),(5,7)] (0.05,0.5,7),

(0.05,0.5,7)

145



C APPENDIX CHAPTER 4

Table C.3
Parameters of the derived Boosted regression trees (BRTs) for mature forests (160 - 320 years of
simulation). Depending on different spatial resolutions (vertical and horizontal) of the biomass
data we derived different boosted regression trees. Range of settings describe all possible
combinations of settings (LR = learning rate, BF = bag fraction, TC = tree complexity). Not
mentioned settings use the standard values of the R package dismo 1.3-14. The amount of
training data is given in relative and absolute values. Additionally, the parameters of the
final BRTs for GPP, NPP and carbon turnover times τ are shown (normal typesetting, italic,
underlined). We also included the analysis with no height layers (vertical resolution ∆h = 100
m Figure C.7 and C.8). Please note, the R package did not find suitable parameters for the
prediction of GPP in two cases (even with smaller step size and smaller learning rate).

Data used for BRT Range of setting amount of Used setting
(resolution) [(LR), training data (GPP,NPP,τ)

(BF),(TC)] relative (total) (LR,BF,TC)
4 ha, ∆ h = 100 m [(0.05,0.01,0.005), 50%(1987) −,

(0.3,0.5,0.66),(3)] (0.01,0.5,3),
(0.01,0.66,3)

4 ha, ∆ h = 20 m [(0.05,0.01,0.005), 50%(1987) (0.05,0.66,3),
(0.3,0.5,0.66),(3)] (0.01,0.66,3),

(0.05,0.66,3)
4 ha, ∆ h = 10 m [(0.05,0.01,0.005), 50%(1987) (0.05,0.66,5),

(0.3,0.5,0.66),(5)] (0.05,0.66,5),
(0.05,0.5,5)

4 ha, ∆ h = 2 m [(0.05,0.01,0.005), 50%(1987) (0.05,0.66,7),
(0.3,0.5,0.66),(5,7)] (0.05,0.66,7),

(0.05,0.5,7)
1 ha, ∆ h = 100 m [(0.05,0.01,0.005), 50%(7950) −,

(0.3,0.5,0.66),(3)] (0.01,0.66,3),
(0.01,0.5,3)

1 ha, ∆ h = 20 m [(0.05,0.01,0.005), 50%(7950) (0.05,0.66,3),
(0.3,0.5,0.66),(3)] (0.05,0.66,3),

(0.05,0.66,3)
1 ha, ∆ h = 10 m [(0.05,0.01,0.005), 50%(7950) (0.05,0.66,5),

(0.3,0.5,0.66),(5)] (0.05,0.66,5),
(0.05,0.66,5)

1 ha, ∆ h = 2 m [(0.05,0.01,0.005), 50%(7950) (0.05,0.5,7)
(0.3,0.5,0.66),(5,7)] (0.05,0.66,7),

(0.05,0.5,7)
0.04 ha, ∆ h = 100 m [(0.05,0.01,0.005), 2%(7950) (0.01,0.5,3),

(0.3,0.5,0.66),(3)] (0.01,0.5,3),
(0.01,0.66,3)

0.04 ha, ∆ h = 20 m [(0.05,0.01,0.005), 2%(7950) (0.05,0.66,3),
(0.3,0.5,0.66),(3)] (0.05,0.66,3),

(0.05,0.5,3)
0.04 ha, ∆ h = 10 m [(0.05,0.01,0.005), 2%(7950) (0.05,0.5,5),

(0.3,0.5,0.66),(5)] (0.05,0.66,5),
(0.05,0.66,5)

0.04 ha, ∆ h = 2 m [(0.05,0.01,0.005), 2%(7950) (0.05,0.66,7),
(0.3,0.5,0.66),(5,7)] (0.05,0.66,7),

(0.05,0.66,7)
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