
N E U R A L C O M P U TAT I O N A N D T I M E

pascal nieters

Doktor der Naturwissenschaft (Dr. rer. nat.)
Neuroinformatics

Institute of Cognitive Science
University Osnabrück

December 2021

Pascal Nieters: Neural computation and time © December 2021

supervisors:
Prof. Dr. Tim Kietzmann
Prof. Dr. Michael Franke
Prof. Dr. Gordon Pipa

location:
Osnabrück

disputation:
11.05.2022

A B S T R A C T

Time is not only the fundamental organizing principle of the universe,
it is also the primary organizer of information about the world we per-
ceive. Our brain encodes these perceptions in sequential patterns of
spiking activity. But different stimuli lead to different information en-
coded on different timescales; sometimes the same stimulus carries in-
formation pertaining to different perceptions on different timescales.
The orders of time are many and the computational circuits of the
brain must disentangle these interwoven threads to decode the un-
derlying structure.
This thesis deals with solutions to this disentanglement problem im-
plemented not at the network level, but in smaller systems and single
neurons that represent the past by clever use of internal mechanisms.
Often, these solutions involve the intricate tools of the neural dend-
rite or other peculiar aspects of neural circuits that are well known to
physiologists and biologists but disregarded in favor of more homo-
geneous models by many theoreticians. It is at the intersection of the
diverse biological reality of the brain and the difficulty of the compu-
tational problem to disentangle the threads of temporal order that we
find new and powerful computational principles:
Symbolic computation on the level of single neurons via dendritic
plateau potentials, embedding history in delayed feedback dynamics
or consecutive filter responses, or the idea that learning a generalized
differential description of a systems can largely forgo the need to re-
member the past – instead, patterns can freely be generated.
Together, the different challenges that information ordered in differ-
ent, asynchronous times present require a diverse palette of solutions.
At the same time, computation and the structure imposed by time are
deeply connected.

iii

P U B L I C AT I O N S

In chapter 2 - chapter 3, I follow ideas and figures first developed
in close collaboration with Johannes Leugering and elaborate on and
revise them in the context of this thesis. chapter 4 follows up on some
of these ideas and develops them deeper. The contents are largely
new and have no yet been published. The following contributions are
relevant:

section B.1 Preprint, under review, shared first author:
Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘A min-
imal model of neural computation with dendritic plateau po-
tentials.’ In: bioRxiv (2021), p. 690792

section B.2 Conference abstract, first author:
Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Active
dendrites implement probabilistic temporal logic gates.’ In: Proc.
of the Computational Cognition Workshop Osnabrück. 2019

section B.3 Patent, shared first author:
Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘Neur-
omorphic Pattern Detector and Neuromorphic Circuitry Here-
with’. Pat. DE:102019134044:A1. June 2021

In chapter 5 I summarize and put results first published in the
following contributions into the wider context of the thesis:

section B.4 Peer reviewed published journal article, first author:
Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Neur-
omorphic computation in multi-delay coupled models’. In: IBM
Journal of Research and Development 61.2/3 (2017), pp. 8–7

section B.5 Conference abstract, shared first author:
Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Neur-
omorphic Adaptive Filters for event detection, trained with a
gradient free online learning rule’. In: Cognitive Computing –
Merging Concepts with Hardware. 2018

section B.6 Peer reviewed published book chapter:
Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘Com-
putational Elements of Circuits’. In: The neocortex. Ed. by Wolf
Singer, Terrence J Sejnowski and Pasko Rakic. MIT Press, 2019,
pp. 195–209

v

Lastly, chapter 6 summarizes and puts into context results from
work in collaboration with Rahel Vortmeyer-Kley:

section B.7 Peer reviewed, published journal article, shared first author:
Rahel Vortmeyer-Kley, Pascal Nieters and Gordon Pipa. ‘A trajectory-
based loss function to learn missing terms in bifurcating dynam-
ical systems’. In: Scientific reports 11.1 (2021), pp. 1–13

section B.8 Conference abstract:
Rahel Vortmeyer-Kley, Pascal Nieters and Gordon Pipa. ‘A tra-
jectories’ guide to the state space-learning missing terms in bi-
furcating ecological systems’. In: EGU General Assembly Confer-
ence Abstracts. 2021, EGU21–16159. doi: 10.5194/egusphere-
egu21- 16159. url: https://doi.org/10.5194/egusphere-
egu21-16159

vi

https://doi.org/10.5194/egusphere-egu21-16159
https://doi.org/10.5194/egusphere-egu21-16159
https://doi.org/10.5194/egusphere-egu21-16159
https://doi.org/10.5194/egusphere-egu21-16159

A C K N O W L E D G E M E N T S

Support on my journey to this completed dissertation was plentiful,
otherwise I am sure i would not have arrived at the end. Still, a public
display of feelings in prose makes me deeply uncomfortable. There-
fore, an abridged summary of support I am deeply grateful for:
My parents and my family, for keeping my feet mostly on the ground
and allowing me to become who I am.
My friends of old, whom I’ve been with since school, for accepting
who I am and who I want to be. Also for keeping in touch when I
continue to be bad at it.
My colleagues many of whom I now consider friends – both in the
smaller Neuroinformatics lab of old and the newer, significantly lar-
ger version – for many stimulating discussion and fantastically sup-
portive work environment. A particular nod to Johannes, for endless
sessions of complaining about theoretical neuroscience while trying
to do theoretical neuroscience.
The entire Institute of Cognitive Science for the advice and support I
was given – both in administrative matters and in science.
A special thank you to my supervisor, Gordon. If not for you, I would
have never considered a career in science or that it may be possible
for me to write a doctoral thesis at all in the first place. Along the
way, you have offered support and advice when needed but gave me
and others, the freedom to find out who we are as scientists. More
importantly, however, I do not think I would have taken any of it if
you weren’t the person you are. So, thank you, deeply.
An ode to my wonderful partner and wife will remain missing from
this list. No words can do justice to the support and love you have
given and continue to give, and the support and love you allow me
to return. You make me a better person.

vii

C O N T E N T S

1 introduction : computation in time 1

2 sequential organization of information in the

brain. 9

2.1 Sequences in neural representations. 10

2.2 The neural basis of sequence processing in single neur-
ons. 15

3 segmented dendritic trees 23

3.1 The SDT Model . 23

3.2 Example: Detecting paths from place cell activity . . . 29

4 computation in neurons with active dendrites . 35

4.1 Structured computation and Events in SDT neurons. . 39

4.2 SDT Neurons and Networks. 52

4.3 A neuromorphic hardware implementation of the SDT
neuron. 57

5 predicting time-series with dynamic computing

systems 61

6 learning generalized dynamics from trajector-
ies . 71

7 discussion 77

i appendix 83

a appendix : additional methods 85

a.1 Implementation of the navigation experiment 85

a.2 Simulation framework for dendritic plateau computation 86

a.3 A method for experimental verification. 86

b publications and contributions 89

b.1 Paper: A minimal model of neural computation with
dendritic plateau potentials 89

b.2 Conference Abstract: Active dendrites implement tem-
poral logic gates . 107

b.3 Patent: Neuromorphic Pattern Detector and Neuromorphic
Circuitry . 109

b.4 Paper: Neuromorphic computation in multi-delay coupled
models . 132

b.5 Adaptive Filters . 133

b.6 Book Chapter: Computational Elements of Circuits . . 135

b.7 Paper: A trajectory-based loss function to learn missing
terms in bifurcation dynamical systems 136

b.8 Conference Abstract: A trajectories’ guide to the state
space - learning missing terms in bifurcating ecological
systems . 150

ix

x contents

bibliography 151

L I S T O F F I G U R E S

Figure 1 computers operate on synchronized clocks 2

Figure 2 neurons operate on internal clocks . 3

Figure 3 natural stimuli can contain inform-
ation on many different time-scales . 4

Figure 4 computation and memory strategies . 6

Figure 5 examples : sequences in the brain . . . 11

Figure 6 sketch : an sdt simplifies the struc-
ture of a neuron’s dendritic tree . . . 24

Figure 7 generation of plateaus in biology and

in the model 28

Figure 8 path-detection from place cell activ-
ity. 30

Figure 9 spatiotemporal receptive fields of sdt

neurons . 32

Figure 10 simple and complete representations

of sdt neurons 39

Figure 11 computational events from a spike ras-
ter . 41

Figure 12 encoding and decoding stimulus un-
certainty. 44

Figure 13 rank-ordering of sequential real-time

events . 46

Figure 14 rank-ordering of parallel events and

inhibition. 47

Figure 15 rank ordering of multiple events . . . 48

Figure 16 evaluating an sdt expression with de-
terministic synapses 50

Figure 17 converting mcculloch and pitts nets . 54

Figure 18 reducing sdt neurons to single seg-
ment models 56

Figure 19 a simple sdt segment hardware imple-
mentation. 58

Figure 20 reservoir computers represent past in-
puts in their activation vector 63

Figure 21 computation in delay-coupled systems

with multiple delays 66

Figure 22 filter banks can represent a signal

on multiple timescales 67

Figure 23 proof of concept : adaptive filter neuron 69

Figure 24 learning missing terms in the selkov

model . 73

Figure 25 mse and lda based loss function 74

xi

xii List of Figures

Figure 26 td distribution selkov model 75

Figure 27 dendritic morphology imposes timing

constraints 87

1
I N T R O D U C T I O N : C O M P U TAT I O N I N T I M E

For living organisms, including us, the world changes in time from
the past to the future. We remember what we ate for breakfast yester-
day and know who you are discussing tomorrow’s dinner plans with
right now. Time orders our experience of the world, and we are nat-
urally skilled at dealing with it [100].
Explaining our experience of time, or even capturing what time is
scientifically has proven much more difficult. In his book “The order
of time”, the physicist Carlo Rovelli calls it ’[...] perhaps the greatest
remaining mystery.’ [206, p. 2]. In the fundamental description of the
universe, something peculiar happens and time looses its meaning
that we are so accustomed to in every day life. First, time looses it’s
directionality – in a world described by quantum fields, there is no
distinction between past and future. Then, time looses universality
becomes deeply personal – how fast your own clock ticks depends
on your position in relation to centres of gravity, like the earth, and
even changes depending on how fast you are moving. In one attempt
to find a quantum theory of gravity, called loop quantum gravity, the
variable “time” vanishes from the equation all together [46].
What remains of the description of the world is a network of events,
ever changing processes, partially-ordered by what physicists call the
arrow of time. The direction of the arrow of time emerges in accord-
ance with the second law of thermodynamics, that entropy never
decreases and disorder grows. Rovelli notes that ’[...] entropy is the
quantity that counts how many are the different configurations that
our blurred vision does not distinguish between.’ [206, p. 30]. In our
particular, blurred perception of the world entropy increases and the
familiar concept of time materializes and seprates past from future.
But, even then, time is experienced differently by different people in
different situations [36]. We operate on our own, personal clocks that
order our perception of the world.
Herein lies a fundamental question: Time orders our perception of
the world, but it does so according to a different, personal clock for
everything in it – so how do we understand it?

Understanding the world, the cognitive process of integrating per-
ception with a mental model, is a computational process of the brain.
Any computation is an operation on a set of inputs, which trivially
requires that the operation is carried out when all inputs are available.
Fulfilling this simple requirement in a physically realized computing
system, however, is not at all trivial. Modern computers run on chips

1

2 introduction : computation in time

2

5

3

8

7

5

+ + +

2

5

+ + +

8 5

73

7 11 12

8 15 12

+

Figure 1: computers operate on synchronized clocks . A fictional
computer that receives two data and one instruction signal. Its job
is to add the first two numbers, the second two numbers, etc. It
does so by adding the last two numbers seen since the last instruc-
tion signal on the current instruction signal. a. When both data
signals are aligned with the same global clock as the instruction
signal, the computer computes correctly. b. But when the clocks
of the data signals are missaligned and operate on varying clock
speeds, the computer has no mechanism to associate the correct
two data signals with the current instruction signal. The computa-
tions are wrong.

architected as von-Neumann digital machines [258] that are specific-
ally engineered to synchronize data and operations with global clock
signals (Fig. 1a). If data and instruction are desynchronized because
each signal has its own personal clock, the computer still computes
numbers, it just doesn’t give the right answers anymore (Fig. 1b).
The parallel and distributed neural network in the brain works differ-
ently. A neurons computation is responsive to it’s input, if there is no
input the neuron remains quiescent1. To be able to compute whether
for example the sum of active neurons in two populations is larger
then a particular threshold, a very simple point neuron integrates the
evoked post-synaptic potential (EPSP) in response to each spike of
each population as it arrives. The duration of the post-synaptic re-
sponse to the spike and the timescale of the neurons leaky membrane
potential can be understood as a very short memory cache that main-
tains intermediate results of the computation until it completes with
a spike. Implicitly, the dynamic internal timescales of the neurons
together with spike-triggered responsive computation determine the
irregular internal clock of the neuron. This process is able to easily
deal with minor delays in spike signals (Fig. 2a), but when differ-
ent input populations desynchronize and input signals do not arrive
in the correct, required short time window afforded by the dynamic

1 This is not true for all biological neurons but describes all computational models of
neurons commonly used.

introduction : computation in time 3

a.

+ > 10

b.

+ > 10

1

2 31

2 3

1

2

3

1

1

2

2

3

3

Figure 2: neurons operate on internal clocks . This simplified car-
toon neuron receives spiking input from two populations (blue
and magenta) and has to emit a spike when a total of ten af-
ferent neurons spiked in the first, second, or third volley. Each
spikes leaves an exponential trace in the membrane potential that
is summed over and compared against this threshold. a. This en-
dows the neuron with a short, dynamic and responsive memory
cache in case the two input populations are slightly delayed but
are aligned to a common clock. b. If each input population fires on
different timescales, i. e.has its own clock, the missaligned inputs
1, 2, and 3 cannot be summed correctly anymore.

membrane response we have the same problem a traditional com-
puter has without a global clock (Fig. 2b). We may still get answers,
but the questions they are answers to may have shifted in unexpected
ways and are no longer what we intended to ask.
In cognitive science, neuroscience, and neural network theory this
problem is sometimes referred to as the temporal binding problem
[60]. Temporal correlation was famously suggested as a strategy to
coherently transmit information about one stimulus or event in time
[225, 256] although the theory has come under critique more recently
[28, 186].
We presupposed that it is not only simultaneity that is required by
the encoding of stimuli. Instead, it is the temporal order of stimuli
that is decisively important in our perception of the world and our
understanding of it [130]. How the brain’s neural circuitry can com-
pute responses to ordered sequential stimuli with independent clocks
on multiple different timescales remains mystery at the heart of our
understanding of the brain.

Potential solutions to the problem of storing past inputs for a partic-
ular computation are heavily dependent on the question the computa-
tion must answer. Imagine the wooden bars of a xylophone arranged
as a musical staircase. If you push a marble down it, you can observe

4 introduction : computation in time

c
e

g
c

0.0

-0.2

0.2

say can you see

Cmaj

a.

b.

c.

d.

Figure 3: natural stimuli can contain information on many

different time-scales . A marble hopping down a set of mu-
sical stairs generates many temporal stimuli that the brain can un-
derstand. a. It’s movement trajectory can be extrapolated to predict
the time of the next impact. b. the sequence of sounds resulting
from each impact may be recognized as the beginning melody of
the American national anthem, or c. as a single C-major chord, for
example out of John Lennon’s “Imagine”, if the sounds overlap. d.
If the song “The Star-Spangled Banner” is instead sung, the wave-
form of the audio our ears receives contains the tone of voice of
the singer and the actual words sung.

it hopping from note to note and listen to the sound (Fig. 3a). Your
brain will be able be extrapolate the trajectory of the marble based
on its previous path and velocity. You are able to predict when the
marble will hit the next note. This problem can be solved by storing
a short past of the trajectory as a number of sampled points, as well
as the positions of each bar.
You also hear the notes in sequence as the melody and recognize it
from the beginning of the American national anthem “A Star-Spangled
Banner” (Fig. 3b). In this case, the individual notes should be stored
as separate events in the correct order and for long enough to identify
the next element in the sequence. If the marble takes the dashed line,
resulting in an alternative timing and rhythm but the same order of

introduction : computation in time 5

notes, you are likely still able to identify the melody.
Alternatively, especially if the notes ring out, you can hear the C-
major chord, extensively featured throughout music. John Lennon’s
“Imagine” is a particular example that comes to mind. Now, from
the perspective of recognizing the chord C-major, each note adds to
the evidence for the chord. Their particular order may modify our
musical perception, but it is not fundamentally important to the iden-
tification of the chord. You do have to store all notes in memory, at
least until the major triad c-e-g rings out, to confidently solve the
problem.
Lastly, a vocal recording of the phrase “say can you see” from the be-
ginning of the anthem contains an even richer tapestry of information.
The periodicity, the envelope, and the fine-structure of the signal can
be decoded to identify the singer, to register the tone of voice and ar-
ticulation, and connect emotionally to the musical performance [204].

Which strategy to keep past information in memory during a com-
putation is therefore inherently dependent on the question the com-
putation is tasked to answer.
Examples from language illustrate how time can be the organizing
principle for discrete and structured information. “The cat sits on the
table” means something entirely different then “The table sits on the
cat”. Common to examples where time organizes the structure of in-
formation is that the specific timing of each element in a sequences
does not change the semantic meaning and should often be ignored.
Here, a good strategy is a real-time version of a finite-state automaton
that requires the correct order in its input sequence and maintains
each state for some time before it resets and can be reused for a new
computation (Fig. 4a).
Alternatively, the sequence in question may be best thought of as a
continuous trajectory through a space. Examples include the hopping
marble or a baseball hurtling towards you, but also the more abstract
situation such as the time-series of a stock prize one may want to
forecast and predict. We can conceptualize these examples as con-
tinuously changing dynamic systems, and of the sequence as a series
of sampled measurement of it that have no inherent structure beyond
belonging to the same system. In this case, it is often a good strategy
to keep a sufficient number of these sampled measurements in access-
ible memory and use all of them in the prediction and forecasting of
the trajectories future (Fig. 4b).

If we study the systems we observe, we are often able to generalize
and predict their future and past behavior from a single measurement
and a set of parameters of the system. This can be done if we have
access to the systems governing differential equation that describes

6 introduction : computation in time

Com pu ter

Com

Com

Com

pu

pu

pu

ter

ter

time

time

time

time

tt-1t-2t-8

a.

b.

c.

signal & reset

Figure 4: computation and memory strategies .
a. Structured information ordered in time can be memorized by
the current state of a finite-state automaton. Each correct, new
syllable corresponds to a transition until the word is complete.
The final state (green) marks successful recognition, which can be
marked by a signal and a reset to initial position to restart the
automaton. If the correct syllable is not heard for a time τ, failure
is assumed and the automaton resets.
b. To predict and forecast the behavior of a particular time-series,
a collection of sampled points along it must be kept in memory. A
black box model f, for example a generalized linear model or an
artificial neural network, can then be used to learn the prediction
of a new point along the trajectory.
c. A differential equation dx

dt = g(x, t) describes the continuous
change of system with respect to time. If we can find the function
g in a data-driven way, we can predict both the future and past of
any point on a trajectory without the need to explicitly store more
information in memory.

the change of the variables in relation to each other and time2. Dis-
covering differential equations is one of the core pursuits of scientific
inquiry, but we can also use modern machine learning and artificial
neural networks to approximate the differential equation in a data-

2 Usually in the universal, Newtonian sense.

introduction : computation in time 7

driven way. In this approach, the approximation of the differential
equation encodes a generalized version of change in the system that
we can use to predict, forecast and analyze without further explicit
need for memory (Fig. 4c).

At the center of this thesis is the question how neural circuits can
represent information about past inputs relevant to a particular com-
putation. In large parts, we will focus on seemingly simple solutions
that can be implemented even in computing systems as small as
single neurons and do not require the external labeling of order, the
external discretization and synchronization of different clocks, or the
externalization of memory. This internalized processing of informa-
tion irregularly ordered by time is what we know brains are able to
do. We suggest the diversity of biological processes may lead to di-
verse solutions adapted to different problems and make the following
contributions:

1. Segmented dendritic trees respond to spiking input by gener-
ating a long plateau potential that matches the timescale of se-
quentially organized information in the brain (chapter 2). The
interaction of plateau potentials convincingly decodes the rank-
order of sequential events in single neurons independent of pre-
cisely clocked timing (chapter 3). The model can also form the
basis for a symbolic computational architecture of the brain and
offers a new perspective on neural computation (chapter 4).
Related publications and conference contributions:
B.1, B.2, B.3

2. Single-node systems with delayed feedback and filtering are
able to represent trajectories of dynamical systems and time-
series in their own dynamic state. Prediction and forecasting
questions can therefore be answered by systems that have a
simple physical implementation but complex dynamics (chapter 5).
Related publications and conference contributions:
B.4, B.5, B.6

3. Differential equations are the generalized and symbolic repres-
entation of changing, dynamic systems and are one of the most
important tools to scientifically understand our ever changing
universe. Neural networks, as a data science and artificial in-
telligence tool, can approximate this equation. By changing the
loss function in this data-driven approach to discovering a gen-
eralized representation of system change, we are able to find
missing terms in systems with bifurcations from single traject-
ories (chapter 6).
Related publications and conference contributions:
B.7

2
S E Q U E N T I A L O R G A N I Z AT I O N O F I N F O R M AT I O N
I N T H E B R A I N .

The brain constantly processes information encoded in temporal se-
quences of spiking activity. Much of it emerges from sensory input,
our perception of the world as it changes in time across multiple dy-
namically varying timescales. But the brain is also perfectly capable of
generating sequences internally. Karl Lashley noted as early as 1951

that many behaviors simply cannot be explained by a succession of
external stimuli mapping onto an action, as each stimulus must be in-
tegrated into a system that is already excited and organized [130]. He
raised the problem of serial order. He argued that a theory is missing
which explains "[...] how people store and retrieve a sequence of item
in the correct order." as Henson and Burgess summarized [95, page 1].
Henson and Burgess [95] further discuss how the problem can poten-
tially be solved by different codes and representations in cognitive
architectures, but they leave out the question of neural implementa-
tion. Yet, if the brain encodes the world in temporal sequences, and
generates temporal sequences on its own, and if decoding the serial
order of these sequences is a key component of behavior and cogni-
tion, then there must be some neural circuitry or mechanism that can
robustly decode this information. Currently, this circuitry or mechan-
ism is unknown.

First of all, we must know how exactly the brain organizes inform-
ation sequentially. In recent years, a number of investigations into
often completely different regions of the brain, engaged a variety of
tasks and involving different sensory modalities, have started to col-
lect evidence. Putting them side-by-side not only reveals that there
are significant similarities in how external sequences are represented,
but that the brain seems at least in part specifically organized to sup-
port the organization and generation of sequences (see Fig. 5 for an
overview in the next section). This allows us to paint a clear picture
of what the scope of the problem is: Sequence elements are encoded
on a fast timescale, typically less then 30ms. Sequences are presented
on a much slower timescale of around 200ms or more. The core chal-
lenge is to decode the ranked order of sequence elements and com-
pute a response that is sensitive to this order. The global timescale
of sequences can vary drastically and is simply too long for typically
assumed timescales of single neurons. The next section summarizes
the evidence for this analysis from different brain regions and exper-

9

10 sequential organization of information in the brain.

iments.
In the following section, we reexamine the computational toolkit of
single neurons. We suggested in the introduction that a stable, main-
tained memory of the state of a computation can be a robust solu-
tion to this problem. A relatively recently discovered neural process,
the dendritic plateau process [4], fits this description perfectly. Even
though the vast majority of neural tissue is occupied by neural dend-
rites [15] and the structure and active processes of the dendrite may
be vitally important to solve problems on the single neuron level [144]
including working memory [84], they are frequently ignored in com-
putation models of the brain. Therefore, we reevaluate the core neuro-
biological assumptions that must be made for a model based on plat-
eau potentials compared to more typical point neuron approaches in
the second section of this thesis.

2.1 sequences in neural representations .

Sequences of spikes and brain activity are ubiquitous. This is not sur-
prising at all, as we record activity over time. However, the brain is
unlikely to care very much about the time pieces we use to record its
activity [31]. Instead we have to understand how these sequences are
internally organized. In the following, we have summarized a num-
ber of investigation ranging from the processing of speech in auditory
cortex, to the representation of movement through space and poten-
tially time more generally in hippocampus, to the identification of
consecutive odors and visual stimuli (see Figure 5).

auditory processing The first example is the most apparent
and follows from the example in the introduction: Auditory processing
of speech in the human brain is sequentially organized. Somewhat
unsurprisingly, speech contains dynamics on multiple timescales nat-
urally analysed in the signal processing framework of frequencies
and envelopes [204]. What recent investigations began to shed light
on is how the brain understands this intricate signal.
Firstly, multiple behavioral studies found that speech processing can

1 All image credits (CCA/wiki licenses) for Fig. 5:
Nose/Ear adapted by user “hunotik”
https://thenounproject.com/icon/laryngology-42647/
Pepper adapted by user “the mother of japan”
https://commons.wikimedia.org/wiki/File:Paprika.svg
Chocolate cake by user “Candyman777”
https://commons.wikimedia.org/wiki/File:Choc_cake_ill_01.svg
Speaker by user “Mobius”
https://pt.wikipedia.org/wiki/Ficheiro:Speaker_Icon.svg
Brain adapted from Patrick J. Lynch
https://en.wikipedia.org/wiki/File:Skull_and_brain_normal_human.svg

https://thenounproject.com/icon/laryngology-42647/
https://commons.wikimedia.org/wiki/File:Paprika.svg
https://commons.wikimedia.org/wiki/File:Choc_cake_ill_01.svg
https://pt.wikipedia.org/wiki/Ficheiro:Speaker_Icon.svg
https://en.wikipedia.org/wiki/File:Skull_and_brain_normal_human.svg

2.1 sequences in neural representations . 11

Com pu ter

a.

b. c.

d.

Figure 5: examples : sequences in the brain encode information in
olfaction (a.), in auditory processing (b.), in the consecutive rep-
resentation of visited locations (c.) and in moving visual stimuli
(d.)1

be linked to two specific timescales. On a local level, sounds for indi-
vidual phonemes are processed on a short timescale of up to 50ms
whereas the global temporal order of individual sounds, for example
in syllables, is encoded on a longer timescale of around 200ms. Intel-
ligibility tests showed that both local information and global, struc-
tural information about a stimulus is important for identification [33,
247] and behavioral performance suggests that the global structure
is represented as prototypes in the brain [162]. Judging the order of
stimuli is also a classical task in auditory processing. This task is in-
teresting because tokenization of the individual sequence elements is
important and their order is much harder to distinguish when less
than 15ms to 20ms separate sounds [98]. The same local-global aud-
itory process is associated with the same timescales. The longer times-
cale can be varied in many cases without effecting the task signific-
antly [246].
Importantly, MEG analysis supports information processing in the
brain on the these timescales, too. Luo and Poeppel [150] find two
distinct integration windows of 20ms and 200ms. The slower integ-
ration window resets and thus represents a “privileged timescale”,
which encodes speech syllables [149].
The multiple timescale encoding that can be found in the analysis
speech recordings is thus reflected in both behavioral and brain re-
cording data, supporting the claim that it is an encoding used by the
brain internally. The slower timescale does not seem to be tuned to
the timing of sequence elements. Global structure, such as a syllable,

12 sequential organization of information in the brain.

are defined by their order.

representation of location The second example of sequen-
tial organization of information highlights the independence of the
sequential code from the specific timing of sequence elements. Place
cells in the hippocampus [181] have receptive fields centered at spe-
cific locations in a physical environment and therefore encode the
location of an agent in this environment. During navigation the agent
will inevitably traverse multiple locations in sequence, and the timing
between these visits is dependent on the agent’s movement speed.
Thus, place cell populations activate in sequence, and their relative
timing reflects movement speed [2]. It is, however, not the only factor
that influences the timing of sequential place cell activation.
Firstly, in a 200mswindow (corresponding to a theta cylce) a number
of place cell populations activate for 25ms sequentially (correspond-
ing to a gamma cycle) [182] in a phenomenon that can be explained
by the dynamics of recurrent networks [250]. These 200ms sequence
episodes combine past, present and predicted future location of the
agent [49].
Secondly, sequential activation of place-cells can be replayed during
slow-wave sleep, but at 20-fold faster speed [132]. A sequence of
neural activation that unfolded over 5 s during navigation was re-
corded again during sleep compressed to 100ms. Later experiments
discovered, that sequences of place cells can also be “preplayed” dur-
ing rest or sleep before exploration [50]. Preplay of place-cells can also
encode a path to a goal in the environment at compressed timescales
of 100ms [189].
In sum, place cell population activity is organized in sequences whose
timing can reflect movement speed on behavioral timescales, an in-
ternal “encoding-rhythm” or compressed sequence replay during sleep
or preplay in anticipation of a navigation task.

a general principle The sequential coding principles for place
cells seem in fact to be a strategy generally employed by the hippo-
campus [266], as it integrates time, space, and memory [58]. Eichen-
baum [57] finds that so called time cells in the hippocampus are re-
sponsible for sequential organization of events and related variables
as well as episodic memories, thereby encoding time. Buzsáki and
Tingley [31] agree that the hippocampus primary function is sequence
generation but change the perspective and argue it’s change that is
encoded. Resorting to external measures of time is not necessary, the
sequences and their precise ordering [52] are really the point. In a
recent study Schuck and Niv [211] were able to show that effects
such as replay are also not limited to spatial navigation in rats. They

2.1 sequences in neural representations . 13

studied human fMRI in a sequential decision making task and found
that complex task-related states were encoded in sequences in the
hippocampus and also replayed during the rest phase. Another im-
portant observation they made emphasizes that it is the order of se-
quences and not their timing that must be decoded. The quality of
the measured replay in hippocampus was related to the quality of
representation in orbitofrontal cortex, which in turn was related to
task performance. If hippocampal replay is indeed a training mech-
anism as this observation suggests, then the trained area must be able
to decode both the replay sequence as well as the sequence induced
by the active task.
The involvement of the hippocampus in many important tasks is al-
ways accompanied by sequential organization of information, sug-
gesting that ordered sequences, often presented with different spe-
cific timings, are indeed a fundamental principle of information pro-
cessing in the brain.

olfactory and visual stimuli More evidence can be collec-
ted from different sensory areas. Odor representations for exampl,
evolve over 200ms in sequential, history-dependent activity in lo-
custs [22]. In zebrafish [71], the evolving representation of odors can
become more and more dissimilar over time for similar odors, high-
lighting a potential benefit of temporal coding. Sequences of odors
are also represented in the hippocampus, including replay, in hu-
mans [270] and hippocampal lesions can lead to failure in tasks where
the order of odor events must be recalled in rats [69].
In visual cortex, sequences of neural activation naturally occur in
almost the same manner described in the place cell example, ex-
cept now it’s the stimulus that is moving instead of the agent. As
a dot moves through the visual field of a rat for example, neurons
in primary visual cortex with receptive fields at the stimulus loca-
tions activate in sequence [269]. What is particularly interesting is
that these V1 neurons can replay the previously presented sequence
when a cue is presented. The timescale of replay was compressed and
seemed reflective of internal properties of the neural system and not
of the speed of movement of the stimulus. Lu et al. [148] were able to
reproduce both findings in humans. Repeated exposure of stimulus
sequences can lead to adaptations in V1 that enhance cue triggered
reactivation [78]. Eagleman and Dragoi [56] found that sequences of
random images induce sequence reactivate in the correct order in
macaque V4 when the image sequence is expected to occur but does
not. This reactivation occurred on the timescale of the original stimu-
lus.
Even the mechanism of time-compressed preplay coding for anticip-
ated events can be found in human primary visual cortex [59], al-

14 sequential organization of information in the brain.

though it seems to be dependent on the involvement of the hippo-
campus directly [65].
Sequences of visual stimuli in visual cortex are not only dependent
on the external movement. Visual information is sampled by saccades
that occur on average every 250ms, creating sequences of visual stim-
uli on the timescale we previously found important for the represent-
ation of sequences [109, 157].

In summary, the brain reflects the sequential organization of our
perceived world in its encoding. But it also explicitly produces se-
quential codes throughout, often with some involvement of the hip-
pocampus. In most cases, the structure of the sequence is remark-
ably similar. Sequence elements are encoded on a shorter timescale
of about 25ms2, and the global sequence are presented on a longer
timescale of about 25ms3. However, this second timescale can vary
widely, either because of the external stimulus or because the se-
quence was internally compressed, often to about 100ms. These times-
cales seem to be remarkably consistent across different species [30].
The key information carrying feature of the sequence is the order of
its elements and not their relative timing. This is illustrated clearly
by the independence of linguistic content from the speaker’s words-
per-minute, the independence of a path taken through a mace from
an agents movement speed and generally by compressed replay of
sequences. The information that must be communicated is the scale-
free rank-order of the sequence elements.
From the perspective of a computing device that must process this in-
formation, for example a neural circuit, the input signal comes with
its own private and changing clock, its own time. But it still must be
able to compute a response. Computer engineers spend a significant
amount of time synchronizing operations and inputs with the help of
shared global clocks, neurons on the other hand do not share a clock
with their inputs. Further, their own internal clock, the membrane
time constant, is simply too fast to keep distinctly in memory more
than a single sequence element Therefore, performing any operation
on an ordered sequence of unaligned inputs is a deeply difficult prob-
lem. The abundance of sequential codes with their own clocks in the
brain gives an indication of how important a solution of this problem
is.
We suggest that an ideal candidate solution should maintain a stable
memory of past inputs for a just long enough amount of time that
the system is largely independent of the various and varying clocks
of its input. The extended plateau potential in the dendrites of single
neurons could implement exactly this mechanism on a neural level.
In the next section, we examine the neurobiological underpinnings

2 Which would correspond to a gamma phase.
3 which would correspond to a theta phase.

2.2 the neural basis of sequence processing in single neurons . 15

of dendritic plateaus and formulate the assumptions that allow us to
formulate a qualitative model of plateau-based computation in the
next chapter.

2.2 the neural basis of sequence processing in single

neurons .

In computational and theoretical neuroscience, models of single neur-
ons must be sufficiently simple to learn about and understand the
computation the neuron performs. They must make assumptions about
what is considered a critical component of neuronal dynamics to be
considered, and what can be ignored. For example, when McCulloch
and Pitts [161] examined what nets of neurons can principally com-
pute, they started by clearly stating a set of assumptions based on the
then-known neurophysiology:
The activity of neurons is an “all-or-none” response to some fixed
number of inputs within a “period of latent addition” independent
of previous excitations of the neuron. Delays are only significant at
the synapse, and any inhibitory activation prevents the excitation of
a a neuron. Unlike in many theories today, learning networks was
not yet core to their approach, so they assumed that the structures
of their nets would not change with time and focused on what could
principally expressed in nets of neurons.
For many, the inclusion of learning in a theory of neural nets rep-
resents the origin of all modern neural network theory. Hebb [94] in-
troduced the learning principle What wires together, fires together, now
named after its inventor (“Hebb’s Rule”), in his important first at-
tempt to formulate a theory of neural computation that explains how
behavior results from processing of cell assemblies in the brain. A
few years later, Rosenblatt [205] introduced the Perceptron, a first im-
plementation of Hebb’s theory that computed the adaptation of syn-
apses in response to input. The Perceptron was able to learn to recog-
nize patterns and kickstarted neural networks as a model for artificial
intelligence. Neurobiologically speaking it was essentially still based
on the assumption McCulloch and Pitts made some years ealier, ex-
cept networks now changed over time and learning became central
to this line of research.

coincidence detection and plateau generation In par-
allel, many more details about the physiology of neurons were dis-
covered and continue to be discovered to this day. Firstly, following
the investigation into the biophysical implementation of spike initi-
ation by Hodgkin and Huxley [99], significant effort has gone into
constructing simplified dynamical models that can capture the range
of spiking behavior in cortex [110]. Accurate models often do depend-

16 sequential organization of information in the brain.

ent on previous activity of the neuron [21].
Secondly, on the input side of the neuron, details of the mechan-
ism of how one spiking neuron can ellicit an excitation in another
neuron’s membrane potential were discovered. AMPA receptor (AM-
PAr) channels [101, 102] that are activated by pre-synaptic glutamate
release become conductive to a mixture of positively charged ions.
This leads to the excitatory post-synaptic potential (EPSP) that can
sum and cross a neuron’s response threshold. Different stereotypical
forms of the EPSP elicited by AMPAr channels are often included
in theoretical neuroscientific models of neural computation as kernel
functions [117]. Each synapse is a collection out of multiple AMPAr
channels, and the weight one neuron assigns to an input roughly cor-
responds to the number of AMPAr per synapse which changes the
height of the EPSP.
Inhibitory synapses are activated by the GABA neurotransmitter and
are permeable to Cl− ions. Their effect, the inhibitory post-synaptic
potential (IPSP) counteracts the excitatory response [118, Chapter 10].
The shunting inhibition effect can lead to both a subtractive and di-
visive modification of the post-synaptic potential [89].
Of particular interest for the generation of plateau potentials is the
NMDA receptor (NMDAr) channel that is co-located with AMPAr
channels on dendritic spines – small, mushroom-like protrusions along
the dendritic tree that form excitatory (Type II) synapses by connec-
tion to a presynaptic terminal [9]. It has a comparatively slower gating
dynamic [134] and only opens after both pre-synaptic glutamate at-
tached to the receptor and a blocking Mg2+ ion has been dislodged
from the channel [85, 169, 180]. This happens when the local mem-
brane potential is large enough, for example because a number of
neighboring synapses generated coincident EPSPs in response to spik-
ing input [145]. A high membrane potential without local EPSPs is not
sufficient to trigger a plateau, as this would indicate that no presyn-
aptic glutamate was released – no AMPAr channels are open – and
one of the conditions for NMDAr activation has not been met. Exper-
imental as well as simulation studies report that the required number
of spikes in a volley of coincident EPSPs is 4-20 or even up to 50 co-
incident pre-synaptic spikes within 1ms to 1ms, depending on the
location along the dendritic tree [14, 76, 77, 145]. NMDAr channels are
particularly permeable to Ca2+ ions, which means that the dendritic
response to such local, coincident spike input can be seen in in-vivo
experiments with two photon calcium imaging [236]. The channel
is also permeable to other ions and its opening therefore triggers a
massive influx of different ionic currents that lead to a full depolar-
ization of the local dendritic membrane potential. The global effect
of this processes on membrane potentials at the soma cannot be cap-
tured with a model that simply sums the contribution of individual
incoming spikes [164], especially so when spikes are temporally syn-

2.2 the neural basis of sequence processing in single neurons . 17

chronized [12]. The isolated NMDAr response is reported to last for
around 25ms [201], but in-vivo recordings show that voltage-gated
calcium channels inside the dendritic membrane can be subsequently
activated [230] which prolongs the active dendritic response. The de-
polarization can last from tens to hundreds of milliseconds [156] and
is what we and others refer to as a dendritic plateau potential. Plateau
potentials are ubiquitous in the nervous system [4, 183] and are our
candidate solution for memory traces that are stable for a long time.
Nevertheless, they are often not included in computational neuron
models (see chapter 4 for models that do).
Strategically placed GABAergic inhibitory synapses also interact with
active dendritic trees as they can control dendritic excitability [82] or
gate specific dendritic signals from reaching the soma altogether [172].
Their direct effect on plateaus can be dramatic and interrupt or pre-
vent the generation of plateau potentials altogether [47, 53, 121].
This gives us the first cardinal ingredient for computation based on
plateaus. Coincident spikes lead to coincident EPSPs that can gener-
ate a plateau response on a significantly longer time scale. Inhibitory
synapses interact with this process by preventing or disabling plat-
eaus.

unreliable synapses Neurons signal their spiking activity to
other neurons by releasing neurontransmitters such as glutamate or
GABA at pre-synaptic terminals – at least in the case of chemical
synapses. These lead to the activation of post-synaptic channels and
electrical activity in the receiving neuron which may be used for com-
putation. However, the presynaptic neurotransmitter release is in fact
stochastic. The process is described by the “quantal” theory of neuro-
transmitter release [32, 234] which treats each transmission of a spike
as a probabilistic event with probability pr. In hippocampal synapses,
for example, pr has a distribution with median 0.22 across all syn-
apses [18]. The variance of the distribution is largely explained by
the position of the synapse in the neurons dendritic tree. Nearby syn-
apses that can collectively generate a plateau potential have much
more homogeneous release probabilities.
In popular firing-rate models of neural computation [43, Chapter 7]
this fact has little significance. From the perspective of each neuron,
it merely changes the rate of an incoming connection. Whether a rate
model which assumes that inputs aren’t very correlated is appropri-
ate is intimately connected to the question of whether the neuron
integrates synaptic inputs or detects coincidences between them. The
latter of course assumes that inputs are in fact correlated significantly.
For pyramidal neurons in particular, this assumption is traditionally
hotly debated [125, 228]. However, there is little doubt that plateau
potentials are responses to coincident spike volleys. In fact, there

18 sequential organization of information in the brain.

is convincing evidence that spines along the dendrite form clusters
whose distinguishing feature is that they regularly receive coincident
spike input [241]. These are the ideal conditions for the generation of
an active dendritic response. Therefore, we cannot simply absorb the
stochastic transmission of spikes into another variable of the model.
Instead, the individually stochastic transmission of spikes at unreli-
able synapses is the second fundamental ingredient for computation
based on plateaus.

functional compartmentalization in dendritic trees

Aside from the properties of spike transmission from pre- to post-
synaptic neurons via chemical synapses, we’ve also learned much
more about how information is passed around in the dendritic tree.
The post-synaptic potential at a synaptic site in response to a pre-
synaptic spike must contribute to the generation of a spike at the axon
hillock, proverbial miles away at the soma, by travelling through the
extensively branched dendritic tree towards the soma of the neuron.
Rall [199] was able to correct membrane time constants by taking
into account the properties of this dendritic cable and proceeded to
develop a full theoretical model of dendritic transmission [200]. One
important finding that turned into an assumption for point-neuron
models in theoretical neuroscience is that branching dendrites can
be reduced to an “equivalent cylinder” under certain conditions4. All
synapses can now be thought of as connecting to a single, unbranched
cable and the only difference between them is that the EPSPs at dis-
tant synapses are attenuated so heavily that barely any signal arrives
at the soma [238]. This can be accounted for by a principle called
synaptic democracy [91] in which distal EPSPs are simply appropri-
ately larger to compensate for the attenuation. The effect has been
observed in experiments [154], although it may be a neuron specific
phenomenon [220] and more distant synapses may rely on different
effects such as dendritic spikes to contribute to computation at the
soma [176]. Therefore, it is assumed in many point neuron models
that all synapses can be treated equally and as part of one, single
neuron compartment no matter where they might be positioned on
the dendritic tree [27].
However, many neurons in the brain see little point in adhering to
the terms and conditions of the “equivalent cylinder” model and the
propagation of membrane potentials instead is intimately depend-
ent on specific properties of the branching points in the dendritic

4 The rule is that the diameter of the parent branch (0) and the two parent branches

(1) and (2) follow d
3
2

0 = d
3
2

1 + d
3
2

2 . This leads to impedance matching at the branch
point and allows for a complete collapse of the dendritic branching structure onto a
single cable, if the input and membrane resistances are also the same in all branches,
terminal points end in the same boundary condition, and all terminal branches have
the same electric distance from the origin in the main branch [124]

2.2 the neural basis of sequence processing in single neurons . 19

tree [231]. For example, an impedance mismatch at these branching
points in the dendritic trees of various retinal ganglion cells can lead
to distinct, electrically isolated functional subunits [123]. Each sub-
unit has roughly equal local membrane potentials throughout but its
membrane potential is only weakly coupled to that of their neigh-
boring units. A similar independent computation subunit is found
in thin dendrites of neocortical pyramidal neurons of rats and can
add an additional layer of non-linear integrators to the neuron [192].
Branco and Häusser [17] identify functional subunits in invididual
dendritic branches and suggest that these may constitute the “atomic
unit” of computation in neural systems. Which section of the dend-
ritic tree is electrically compartmentalized and can therefore act as
a functional subunit does not have to correspond single branchlets.
Wybo et al. [267] present a method that can identify a range of differ-
ent compartmentalizations for different neurons and dendritic trees.
They observed that the specific topology of subunits may even be dy-
namically modified depending on the input statistics and shunting
inhibition.
Losonczy, Makara and Magee [146] distinguish weakly and strongly
propagating branchlets that can generate NMDA spikes but differ in
how strongly they affect neighboring branches. Plateau potentials can
be locally generated in functional subunits and then elevate voltages
in neighboring subunits which effectively lowers the threshold for
plateau initiation in that subunit [155]. This seems particularly im-
portant because the increase number of coincident spikes required to
initiate plateaus closer to the soma may render them too unlikely to
occur in most input conditions. Even in the absence of functional sub-
units, plateau potentials and active dendritic processes can attenuate
towards the soma along the dendritic tree [129]. This may be sufficient
to allow distal plateaus to sufficiently depolarize more proximal sec-
tions of the dendrite that can then easily generate a plateau as well [4].
It was shown that single dendrites support direction selective activ-
ation of NMDAr channels which implements sequential recognition
of patterns [16].
How dendritic plateaus influence the generation of other dendritic
plateaus is the last important ingredient in a model computation
for plateau-based computation. Plateaus are generated locally in and
do not actively propagate out of what we simply call dendrite seg-
ments. Dendrite segments are weakly coupled to neighboring seg-
ments, either by branching that supports compartmentalization or
simply by distance and attenuation. Plateaus in one dendrite segment
therefore lead to sub-threshold depolarization of neighbors which can
enable them to initiate a plateau without requiring an exorbitant num-
ber of synchronous input spikes.
As a side effect of this interaction of plateau potentials and the asym-
metry of attenuation along the dendritic tree, we assume that plat-

20 sequential organization of information in the brain.

eaus interact this way in a directed fashion towards the soma. In the
reverse direction towards the distal regions of the dendrite, plateau
potentials would passively depolarize segments. Because plateaus are
all-or-none responses, as soon as one segment initiates a plateau the
feedforward signal does not reflect whether any more distal segments
initiated a plateau at some other point in time.

In addition to investigations into the underlying biophysical mech-
anism, active dendrites have now been firmly established to play an
important role in a range of behavioral tasks. They may even con-
tribute significantly to surface recordings such as EEG, as the asso-
ciated calcium spikes in dendrites are detectable even through the
scalp [239].
Briefly, Xu et al. [268] show that global Ca2+ produced by dendritic
plateau events can be observed in an object-localisation task when
mice received both whisker sensory input and primary motor cor-
tex activity. Several subthreshold calcium events corresponding to
orientation specific synaptic input can also be found widely distrib-
uted throughout the dendritic tree, while events for different orient-
ations are interspersed. This indicates that the imaged neuron was
able to code for multiple orientations of a stimulus via computation
in its dendrite [116]. Active dendrites in cortex are further directly in-
volved in perceptual detection of tactile and whisker deflection sens-
ory events in mice [240, 242]. Kerlin et al. [119] were able to image
the soma and 300µm of contiguous dendrite in mice during a tact-
ile decision-making task. They found that the dendritic branching
structure compartmentalized calcium signals in a task-associated way,
including the activation of entire branches and only segments of a
branch. This emphasizes that understanding the computational role
of dendritic plateaus is not only important as an elegant candidate
solution to the range of multiple timescale sequence detection prob-
lems reviewed above, but because they are fundamentally involved
in neural processing.

2.2 the neural basis of sequence processing in single neurons . 21

In summary, we model the computation enabled with dendritic
plateau potentials based on the following assumptions:

(i) Coincident excitatory input in a dendrite segment triggers plat-
eau potentials in a dendrite segment, if the dendrite segment is
sufficiently depolarized by other dendritic plateau activity.

(ii) Plateau potentials are all-or-none responses that last signific-
antly longer than post-synaptic changes in response to spiking
input.

(iii) Inhibitory spikes prevent or interrupt the plateau process.

(iv) Spikes are transmitted stochastically.

Additionally, we assume the computational properties of SDT com-
putation are not fundamentally changed by considering additional
detail:

(v) We can ignore passively backpropagating plateaus and only
consider computation in the direction towards the soma.

(vi) We can ignore sub-plateau-threshold interactions between dend-
rite segments.

3
S E G M E N T E D D E N D R I T I C T R E E S

Sequential patterns of spiking activity are ubiquitous in the brain. In
many tasks, it is important to distinguish the order of each of the se-
quence elements whereas the specific relative timing of each sequence
element is not. We hypothesize that plateau potentials in the active
neural dendrite are uniquely suited to this task and present a much
simpler solution than precisely configured network dynamics. Based
on the assumptions derived from in-vivo and in-vitro measurements
presented in the previous chapter, we define a qualitative model to
test this hypothesis. In it, the dendritic tree is functionally compart-
mentalized into dendrite segments that generate a plateau potential
response to coincident, excitatory spiking input.
We are particularly interested in capturing the interaction between
events on two timescales: short, spike-triggered excitatory post-synaptic
potentials and long dendritic plateau potentials as a local response to
coinciding spiking input. More detailed subthreshold dynamics in
each dendrite segment are not considered in this thesis and their in-
teraction with the plateau computation process is left to future work.
How do interactions of plateau potentials lead to computation that
solves the timing invariant detection of ordered sequences? Our model
enables us to test the presumption that plateau potentials solve se-
quence detection in an example experiment with sequentially activ-
ated place cells. In the following chapter, it will also enable us to
understand the contribution of dendritic plateau potentials to neural
computation.

3.1 the sdt model

Firstly, we model the structural relationships of dendrite segments
along the biological dendritic tree in a tree data structure (Fig. 1). In
it, each segment’s parent is the one neighboring segment connected
in the somatic direction, and all child segments are connected in the
distal direction. We define a segmented dendritic tree (SDT) recurs-
ively as the current segment s and a list of subtrees, each another SDT,
we call its children.

SDT : s [s[1], . . . , s[n]] (1)

Each subtree s[i] again contains a segment and a new list of subtrees
of this node’s children. The current node, segment s, is called the par-
ent of its children and the recursion ends when the list of subtrees is
empty. These segments are called leafs of the tree structure and cor-

23

24 segmented dendritic trees

respond to distal regions of a neuron’s dendritic tree. The recursion
starts at the root node of the tree, the segment in the tree that has
no parents. In our model, the root of the SDT contains the soma and
proximal regions of the neuron.

N1

Figure 6: sketch : an sdt simplifies the structure of a neuron’s
dendritic tree . Connected regions of the dendritic tree that can
initiate plateau potentials map onto segments in the SDT model.
Each of these regions is weakly coupled to connected segments.
This is represented by the parent - child relation in the SDT.1

How does a segmented dendritic tree correspond to the biological
structure of a neural dendritic tree? Segments are connected regions
of the dendritic tree that can cooperatively initiate a plateau and are
electrically compartmentalized from other segments in the dendritic
tree. As we have reviewed, plateau initiation zones do not necessarily
correspond to individual branches. In Figure 6 we have sketched one
example pyramidal neuron and colored in how connected regions of

1 Image Credit: the modified pyramidal neuron was originally created by the wiki-
pedia user Fabuio under a Creative Commons license. Original work at: ht-
tps://en.wikipedia.org/wiki/Pyramidal_cell.

https://en.wikipedia.org/wiki/Pyramidal_cell
https://en.wikipedia.org/wiki/Pyramidal_cell

3.1 the sdt model 25

the dendrite may map onto the simplified segmented dendritic tree
structure.

Next, we model how an isolated SDT segment s responds to spik-
ing input. A segment is itself similar to a spiking point neuron in
that it generates a non-linear response when the membrane potential
crosses a threshold. But instead of generating a short spike, a dend-
rite segment generates and maintains a long plateau response. Here,
the local post-synaptic potential Vs due to local synaptic currents is
the difference between the excitatory post-synaptic potential (EPSP)
and the inhibitory post-synaptic potential (IPSP):

Vs(t) =
∑
q∈Q

N∑
i=1

wqξ
i
qκE(t− tiq)︸ ︷︷ ︸

EPSP

−
∑
r∈R

M∑
j=1

wrκI(t− tjr)︸ ︷︷ ︸
IPSP

(2)

Q is set of excitatory synapses at the segment, and each synapse
q ∈ Qs has a synaptic weight wq. Spikes arrive at these synapses
at spike arrival times tiq ∈ Tq and are transmitted stochastically with
probability pq. The binary random variable ξiq ∼ Bernoulli(pq) in-
dicates whether transmission was successful for the i-th spike ar-
riving at synapse q at time tiq. The effect of one successfully trans-
mitted spike on the local membrane potential is described by a re-
sponse kernel κE. Different kernel responses such as an exponential
or double-exponential ("alpha") response have been proposed in lit-
erature [117]. We will emphasize the different duration of synaptic
responses and the active plateau response on dendrites and there-
fore choose without loss of generality the very simple rectangular
response kernel with duration τE:

κE(t) =

1 if 0 6 t 6 τE

0 otherwise
(3)

R is the set of inhibitory synapses at the segment, and each synapse
r ∈ R has a synaptic weight wr. Spikes arrive at inhibitory synapses
at spike arrival times tjr ∈ Tr. The synaptic response is again cap-
tured with a rectangular response kernel with duration τI specific to
inhibitory synapses:

κI(t) =

1 if 0 6 t 6 τI

0 otherwise
(4)

Note that the interaction of the EPSP and IPSP in equation 2 is lin-
ear, even though the effect of active inhibitory channels on both the
generation and continued maintenance of plateau potentials is strik-
ingly nonlinear. We use the linear form of the membrane potential

26 segmented dendritic trees

and choose wr appropriately large such that inhibition can gate plat-
eau activity by preventing a threshold crossing. This can capture the
non-linear effect of inhibition on the threshold process of plateau gen-
eration in an uncomplicated way.
Note also that all excitatory and inhibitory spike arrival times must
individually be at least the duration of one response kernel apart, be-
cause our model doesn’t accurately capture repeated high frequency
stimulation of single synapses. This means that: |tiq − t

j
q| > τE ∀i 6= j

and |tir − t
j
r| > τI ∀i 6= j.

To generate a plateau response, the first condition is that Vs(t) crosses
a segment specific synaptic threshold θs: Vs(t) > θs This indicates
a high post-synaptic potential but also sufficient glutamate at the
NMDA receptors of excitatory synapses, which are the necessary con-
ditions for NMDA receptors to open.

In leaf nodes of the SDT, corresponding to the most distal regions
of the dendrite, this first condition would be enough to elicit a plat-
eau response in the dendrite segment. But in the general case we
must also consider attenuated plateau input, Vd(t) from a segments
children.

Vd(t) =

N∑
k=1

ωks[k](t) (5)

The second condition we required to trigger a plateau potential is
sufficient dendritic input which we model with a second threshold:
Vd(t) > θd. For leaf segments, θd is simply 0. We can then char-
acterize the typical plateau response by its onset and shutoff times
according to a chosen plateau duration τP:

Ton
i ≡ min

t
t > Toff

i−1 : Vs(t) > θS ∧ Vd(t) > θD

Toff
i ≡ Ton

i + τP

This initially is highly similar to the stereotypical rectangular syn-
aptic response kernels kE and kI. But, because inhibition can interact
with plateau potentials after they have already activated, the plateau
response can be much more heterogeneous. We therefore have to con-
sider inhibitory spike arrival times a second time:

Ton
i ≡ min

t
t > Toff

i−1 : Vs(t) > θS ∧ Vd(t) > θD

toff ≡ min
t
t > Ton

i : t ∈
⋃

r∈R
Tr

Toff
i ≡ min {Ton

i + τP, toff}

(6)

3.1 the sdt model 27

where toff is the earliest possible inhibitory spike after the plateau was
initiated. We can now define the output of the segmented dendritic
tree.

s(t) =

1 if ∃i : Ton
i 6 t 6 Toff

i

0 otherwise
(7)

Because each segment can have multiple children, we might find
ourselves in the situation that a parent segment enters the plateau
state because one of its children generated a plateau before, but all
other children are not yet in a plateau state. Because the dendrite
leads to asymmetric attenuation, we can generally say that the effect
of parents on children is much stronger. Therefore, children inherit
the plateau state of their parent segments.
Moreover, equation 6 does not trigger a plateau if the segment is
already in a plateau state. From biology we know that plateaus may
be prolonged by additional input but not indefinitely. Hence, we can
consider τP a prototypical plateau length and keep it simple.

The model is summarized in Figure 7. All model components relate
to properties of a biological pyramidal neuron and qualitatively cap-
ture the behavior as it relates to plateau generation. AMPAr channels
are responsible for excitatory EPSPs that, together with dendritic in-
put, can displace the Mg2+ blocker at NMDA receptors, opening the
NMDAr channel and generating a plateau response. Glutamate, the
neurotransmitter required for AMPAr and NMDAr activation, is re-
leased stochastically at the presynapse. Inhibitory input, represented
here as a GABA receptor channel that is permeable to Cl−, inhibits
plateau generation by counteracting the local synaptic contribution
to the membrane potential as well as shunting any ongoing plateau
potential.

Lastly, we have to adjust the model for the root of a neuron’s seg-
mented dendritic tree, the soma. Instead of a plateau response, a so-
matic spike is generated in response to spiking input. We can model
this within our framework by adjusting the condition for a response
initiation and replacing equations 6 with:

T
spike
i ≡ min

t
t > T

spike
i−1 + τH : Vs(t) > θS ∧ Vd(t) > θD (8)

The timescale τH gives the hysteresis time preventing the neuron to
emit another spike. By setting the specific synaptic threshold θS = 0

at the soma, this model can produce regular somatic spiking in re-
sponse to high dendritic activity with frequency 1

τH
, otherwise the

dendritic input signals a neural UP-State in an extremely simple spike-
response model (the membrane response kernel η is a simple inverted

28 segmented dendritic trees

AMPAr channel
NMDAr channel
VGCC

spine

pre synaptic
terminal

7

GABAr channel

+

+

&

reset trigger

2 - excit. syn.

3 - inhib. syn.

1 - dendr. input

4 - plateau gen.

a. b.

Figure 7: generation of plateaus in biology and in the model .
a. The sketch shows a sequence of events that can lead to plateau
generation and shunting in a region of the dendritic tree. After
glutamate is release stochastically at the presynapse (1), AMPAr
channels open leading to an influx of ions. If sufficient dendritic
input is present (0), the local membrane potential will be large
enough (3) to remove the Mg2+ block at the NMDAr channel. Be-
cause the NMDAr channel has also bound glutamate from the
transmitter release that activated the AMPAr channel, it opens
leading to a large influx of ions and depolarization of the dendrite
in an NMDAr spike. Local voltage-gated calcium channels (VGCC)
are also recruited (5), leading to a prolonged plateau potential that
is passively transmitted along the dendrite (6). When GABA is
release at the terminal of an inhibitory synapse (7), the GABAr
channel opens. The influx of Cl− ions interrupts the previously
stable plateau potential.
b. In our model, these steps are mirrored. If both dendritic input (1)
and sufficient excitatory input (2) are available and no inhibitory
input is present(3), the conditions for a plateau are met and it is
generated (3) and transmitted to parent segments. If an inhibitory
spike arrives during a plateau potential, the process is reset.

3.2 example : detecting paths from place cell activity 29

rectangular function that simply prevents a spike for τH seconds).
This concludes the definition of the segmented dendritic tree (SDT)
model of neural computation. Assumptions based on biological ob-
servations and spotlighting processes that directly interact with the
generation of plateau potentials lead to a conceptual model that for-
goes some amount of accuracy with respect to the moment to moment
local membrane potential in order to concisely capture that idea that
plateaus interacting in segmented dendrites can implement computa-
tion (see also the next chapter). But first, we can verify the qualitative
effects of plateau potentials by computing the SDT response to spik-
ing input in experiments that specifically require timing invariance
and the detection of sequential order. In the next section we show
this in an example of path detection from sequential place cell activ-
ity. The model and all experiments are available in a Julia package
and published open source (see section A.2).

3.2 example : detecting paths from place cell activity

A good proof-of-concept example to illustrate how dendritic plateau
computation can function in a close-to-real-world example is the de-
tection of sequential patterns in place cells. As we have reviewed
earlier, place cells naturally activate sequentially as an animal tra-
verses different locations encoded by different place cell populations
during navigation. The traversed path is dependent only on the or-
der of activation, but the timing depends on the animals movement
speed. The path decoding task therefore naturally requires timing in-
variance and computation on multiple timescales to decode the path
from the sequence of place cell activations.

In order to verify that an SDT neuron can solve this task, we set up a
computational experiment (see Figure 8). The environment was a hy-
pothetical rectangular space tiled by place cell populations (20 Neur-
ons each) with 2D-Gaussian receptive fields aligned to a hexagonal
grid. Each population emitted spike volleys – a number of synchron-
ized spikes in a small τs time window such that the EPSPs of the
spikes would overlap – at a rate of 50Hz. Each neuron in a popula-
tion participated in a spike volley with a probability proportional to
the distance of the animals position to the center population’s of the
receptive field. Additionally, each neuron would randomly fire with
a background firing rate of 5Hz. To simulate a wide range of pos-
sible movement through the environment, we drew random paths
through the environment by varying the direction of the path and
the movement speed along it according to a stochastic differential
equation (see section A.1 for additional detail). In sum, the problem
has the two distinct time scales typical for sequential information in
the brain. Here, they correspond to the fast estimation of the current

30 segmented dendritic trees

time [ms]x coordinate [mm]

y
co

or
di

na
te

 [
m

m
]

Effective pathsa. b. Activity for the highlighted path

N2

Figure 8: path-detection from place cell activity. The sequence
detection neuron N2 was connected to three place cell populations
green, orange, and purple. a. The randomly drawn paths through
these three populations that were recognized by neuron N2 are
shown. b. A spike train raster for the pink path in panel a. indicates
plateau initiation times (boxes) and plateau activation in consecut-
ive segments (shaded region indicates plateau potential). The long
plateau memory allowed for significant timing-invariance between
initiation of consecutive plateaus.

location via the detection of noisy spike volleys and slow integration
of the traversed path represented by sequential activation of different
populations. The slow time scale would additionally vary based on
the varying movement speeds along the trajectory.
To solve this task, the SDT neuron was set up with three consecut-
ive segments corresponding to three consecutive place cell receptive
fields. All weights were set to wq = 1, all transmission probabilities
were set to pq = 0.5, and the synaptic threshold was θs = 6 in all
segments. The configuration of the three segments N2 is illustrated
on the right in figure 8. The root segment (purple), or soma, was
connected to one child segment (orange) with a dendritic threshold
of θd = 1 which means that it could only fire if its child segment
was already emitting a plateau. The orange segment was set up in
the same way but its child segment (green) had no further children
and did not require any dendritic input (θd = 0). Each segment was
connected to a place cell population encoded in the same color and
corresponding to a short, straight path through the environment.
Figure 8a shows this environment and the receptive fields of the three
place cell populations connected to the SDT neuron. We also show
all random paths that resulted in at least one spike emitted by this
neuron: All are aligned with the bottom-left to top-right path we ex-
pected, giving an indication of the neurons spatiotemporal receptive
field. Panel b shows the spiking activity the neuron received when
the pink path indicated in panel a was simulated. The shaded back-
ground shows the plateaus initiated by coincident spikes, the colored
boxes indicate the spike volley that triggered the plateau. Clearly, the
timing between the spike volleys that initiated the plateau didn’t mat-
ter because the plateau potentials remained active for a long time.

3.2 example : detecting paths from place cell activity 31

Anytime during the plateau potential, the parent segment can initiate
a new plateau that indicates that a previous detection, namely that of
its child segment, was successful and that enough evidence in form of
successfully transmitted spikes out of a spike volley indicated that the
animal was close to the center of the receptive field of the connected
place cell population. This is exactly the timing-invariant detection of
sequences required to solve this path detection problem.
How good is the SDT neuron N2 as a detector for the path "green —
orange — purple"? To answer this question, we measured the prob-
ability that the neuron emitted a spike in response to systematically
varied paths through the environment (Figure 9). Given a prototyp-
ical path through the center of all 3 receptive fields along it, we in-
dependently varied the speed at which the animal traveled and the
center-rotation and parallel translation of the path in space (Fig. 9 top
panels). For each sampled path, we ran the experiment and recorded
whether the neuron emitted a spike or not. The results are plotted in
the bottom panels of figure 9.
Firstly, the response probability to the optimal path peaks at 90%
when the animal moved at 0.5ms−1 (Fig. 9a solid line). If the animal
moved at a slower speed and the time difference between spike vol-
leys exceeded the plateau duration, the response probability dropped
rapidly. If instead the movement speed was three times faster, the
neuron would still respond in 30% of the cases. For very fast move-
ment speeds, the encoding place cell populations may fail to emit a
spike volley before the animal has already moved towards a new loc-
ation, resulting in low response probabilities. The longer the animal
spend close to the receptive field center of one place cell population,
the higher the number of spike volleys that can be detected by each
segment. This explains the shape of the response curve over varying
movement speeds. It peaks when the speed is just fast enough for
plateaus to reliably overlap but the animal also has enough time to
detect the current position by sampling multiple spike volleys. Nev-
ertheless, the response probability remains high for a wide range of
movement speeds and shows that the receptive field is not specific to
precise timing.
An even stronger invariance to timing can be observed if the seg-
ment specific threshold to detect volleys is lowered to θs = 3 (Fig.
9a dashed line). Despite running at six times the optimal movement
speed at 3ms−1, the response probability remains above 30%.

Instead of varying the movement speed, we can also vary spatial
properties of the path and keep the speed constant at the optimal
0.5ms−1 to identify how specific the SDT neuron’s receptive field is
(Fig. 9b and c). Firstly, parallel translation of the path towards the
edges of the receptive field shows expected behavior. Because spike

32 segmented dendritic trees

Translated pathsb.

offset [mm]

x coordinate [mm]

Rotated pathsc.

angle [deg]

x coordinate [mm]

Optimal patha.

run speed [mm/ms]

sp
ik

e
pr

ob
ab

il
ity

y
co

or
di

na
te

 [
m

m
]

x coordinate [mm]

Figure 9: spatiotemporal receptive fields of sdt neurons . a. The
SDT neuron N2 responds optimally to a center path run at a slow
speed through the three receptive fields. The response probabil-
ity falls off slowly for higher movement speeds, indicating a high
degree of timing invariance. b. Translating the optimal path or-
thogonal to the optimal version lowers the response probability.
Closer to the center, the neuron exhibits a graded response that
falls to zero if the path is completely outside the spatial receptive
field. c. Rotation about the center of the path instead of translation
shows a similar graded response that falls to zero when just two
of the three paths are not part of the running trajectory. In all three
experiments, the base response probability can be increased by de-
creasing the synaptic specific threshold to detect a spike volley.
The width of the receptive field also widens.

volleys of large magnitude are much less likely at the edge of each re-
ceptive field, the response probability falls off sharply and the recept-
ive field is highly specific. If the threshold is lowered to θs = 3, the
response probability generally increases and plateaus around 0.27%
instead of dropping to 0 for paths with a translational offset larger
than 25mm symmetrically in either direction.
Rotating the path around its central point tells a similar story for the
higher threshold of θs = 6: A sharp-drop off for deviations larger
than 40° around the 60° orientation of the optimal path. Here, how-
ever, decreasing the synaptic threshold has a stronger effect and the
receptive field is less specific to the exact orientation.
The experiment shows, that the receptive field of SDT neurons can
be quite specific and indicate deviations from the optimal stimulus in
graded response. It’s primary feature is the detection of a completed
sequence in the correct order. Reliably detecting just one out of three
sequence components (see figure 9 c) was not enough to increase the

3.2 example : detecting paths from place cell activity 33

neuron’s response probability unless the threshold was low enough
to also sometimes detect false positive spike volleys. At the same time,
the specific timing between plateau initiations does not matter nearly
as much and the neuron could still respond to the correct path at
vastly different running speeds.

However, repeated measurement of the SDT neuron’s binary re-
sponse to recover the presented graded response is not a realistic
scenario for computation in the brain. The long duration of the en-
tire sequential pattern and the fact that plateau potentials are long
all-or-none responses would require repeated presentation of the en-
tire sequence on a time scale of ∼ 3τP. Instead, this suggests that the
graded response is encoded in a population or ensemble code instead
of a single neuron rate code. Across an ensemble of SDT neurons
that have the same spatiotemporal receptive-field, stochastic synapses
transmit independently in the same way they transmitted independ-
ently over multiple presentations of the same pattern in the experi-
ment above. Therefore, all SDT neurons in an ensemble will respond
to the same pattern with the same probability. If ensembles of SDT
neurons can coordinate such that co-activated neurons emit spikes
synchronously, the graded response is encoded in the magnitude of
a spike volleys in the same way we encoded the distance to place cell
receptive field centers.
Thus, the SDT neuron’s mechanism for sequence detection processes
sequences of events encoded as coherent spike volleys and in turn
can signal the detection of a sequence as a graded ensemble response
which is again encoded in a spike volley. This suggests that compu-
tation based on dendritic plateau potentials may in fact be a gen-
eral computational principle in which case they ought to be seriously
considered in models of neural computation. In the next chapter, we
therefore investigate if plateau potentials in segmented dendritic trees
do in fact introduce new computational capabilities.

4
C O M P U TAT I O N I N N E U R O N S W I T H A C T I V E
D E N D R I T E S .

A central idea in neuroscience and cognitive science is to understand
the mind by investigating the physical, chemical, and biological pro-
cesses in the brain in terms of the computational function they imple-
ment [68, 214]. To understand how the brain implements cognition as
computation [196], one therefore has to understand the brain’s com-
putational architecture [127].
The deep connection between computers and the brain is also evident
in the work of computer science pioneers. Alan Turing did not only
propose the “Imitation Game” to test whether a computing machine
can think [252], he also investigated neural networks – “B-Type Unor-
ganized Machines” – built out of initially randomly connected not-
and gates that would organize based on experience [252, Chapter 11].
John von Neumann also discussed parallels between the early com-
puters he helped design and the brain [257]. He noted that the brain
can be regarded as a digital machine and the neuron as a “typical,
digital, active organ”. But he also points out that it will be difficult
to understand how memory is implemented in the brain, and that
synchronicity of inputs is by no means certain and effects the compu-
tation.
What exactly can be computed by neural networks? McCulloch and
Pitts [161] construed a model of neural computation in which the
threshold process that leads to spiking activity in neurons and inhib-
ition that prevents it is regarded as the logical operation the neuron
implements. Based on this formalism, nets of neurons, even those that
contain cycles (recurrent nets) can be constructed. The operations are
synchronous and each neuron can compute its output at t+ 1 by con-
sidering its inputs at discrete time t. Under the assumptions made,
the authors argue, neural nets can compute some but not all numbers
that can be computed by a Turing machine. Again, the issue lies with
the system’s memory. While a net without cycles in combination with
an external tape memory can compute all Turing functions, memory
in a net with cycles is not quite sufficient1. In fact, Carl Petri showed
in his dissertation that an implementation of memory in a physical
computer would need to be extensible and operate asynchronously to

1 Franklin and Garzon [70, Chapter 3] recall that Turing-equivalence of neural net-
works was for a long time assumed in the community of neural network researchers
with few recalling a proof. McCulloch and Pitts work seems to be the origin. Proofs
that one can construct Turing machines as networks of simple neurons were given
by Franklin and Garzon themselves, as well as for example Minksy and Papert [166]
or Siegelmann and Sontag [221].

35

36 computation in neurons with active dendrites .

meet this standard [188].

Since then, neural network theory has evolved from Hebb Assem-
blies [94] to the Perceptron [205], the Multi-Layer Perceptron [207],
and Deep Learning [131]. Compared to the earlier work by McCul-
loch & Pitts, neurons are no longer threshold units and are instead
linear-non-linear point neurons that map input vectors of real num-
bers onto scalars by taking the dot product with a weight vector and
applying a non-linear transformation. At the same time, larger and
larger networks of these simple units derive their impressive prob-
lem solving abilities from the way in which they are connected, the
weights between the units, and the way they can learn.
Trained by copious amounts of data and supported by extensive com-
putational resources, deep learning models are able to beat every hu-
man player in the games of Go and Chess [222] and produce sus-
piciously convincing texts on many topics [23]. Connectionism [226]
establishes the relation of this type of neural network to a cognitive
theory of distributed representation and computation. Consequently,
this family of models are considered by many to be the best compu-
tational description of brain function we currently have. Apart from
their success in artificial intelligence applications, the fact that they
seem to at least mimick some of the principles of brain computation
supports this connectionist hypothesis [235].
Critics point to the weaknesses that still exist in these models [160],
such as distinctly non-human mistakes [7], and some have argued for
decades that any connectionist account of the mind is ill equipped to
explain the structure of thought we experience [67]. Advocates con-
tinue to develop new ways to train and setup networks to achieve ar-
tificially intelligent systems that operate more like humans [10, 208].
Nevertheless, the question whether connectionist neural networks
can ultimately explain computation in the brain and the emergence
of the mind is unanswered.
In light of an increasing number of discoveries illuminating the in-
tricacies of neuronal processes we examined earlier in this thesis, the
reliance of our best theories of neural computation on the simple
point neuron model may seem foolishly simple. However, the suc-
cesses of these theories in artificial intelligence speak for themselves
and are convincing to many. Further, determining at what level of
detail the biological processes must be captured in a computational
model of a neuron to accurately represent the computational function
of said neuron is in general an open and difficult question [96]. Bio-
logical discoveries have thus inspired multiple theoretical studies on
the topic, but no consensus has emerged. Ujfalussy et al. [253] con-
cluded that the somatic membrane potential in layer II/III pyramidal
neurons can be explained to a large degree by a completely linear
statistical model. Adding an additional non-linearity and modelling

computation in neurons with active dendrites . 37

the neuron hierarchically improved model accuracy significantly, but
further compartmentalization and additional hierarchical layers only
lead to minor improvements in model accuracy. Similarly, Li et al.
[139] argue that the properties of dendritic integration can be ap-
proximately captured in a point-neuron model with a more intricate
and interdependent model for synaptic currents. But seminal work
by Poirazi, Brannon and Mel [191] suggests that in fact a 2-layer artifi-
cial neural network is required to capture the input-output mapping
of a single neuron. This implies that the computational, expressive
power may be on a similar level, too. These earlier results analyzed
the neuron in a static framework. Beniaguev, Segev and London [11]
also incorporated the temporal evolution of membrane dynamics and
found that capturing the I/O mapping of a cortical pyramidal neuron
accurately required a temporally convolutional deep neural network
with 5 to 8 layers. This complexity was on the one hand necessary to
capture the non-linear, time varying response exhibited by pyramidal
neuron, largely attributable to NMDA-mediated dendritic processes.
On the other hand, it suggests a significant increase the computa-
tional power of single neurons compared to point neurons.

If active dendritic processes indeed have a large influence on the
input - output mapping of neurons, then we should find that they
add something fundamentally new to the computational function
of single neurons and neural networks. Poirazi, Brennen, and Mel’s
work [191] is still a classic in this department and ascribes a flexible
and more expressive non-linear function approximation capability to
single neurons. From the computational perspective on neural net-
works, this doesn’t introduce any new capabilities to the model be-
cause each node in the more complex neuron can also be replaced by
a more traditional linear-non-linear point-neuron leading to admit-
tedly large and specially constructed but otherwise classical neural
network.
More recent theoretical models address dendritic processes in three
distinct categories: Backpropagation, local learning, and sequence pro-
cessing.
Backpropagation [207] is the key algorithmic ingredient in the suc-
cess of deep learning [131], the modern incarnation of connectionism
and cybernetics. Because a direct biological implementation of back-
propagation in biological neural networks is implausible, one hypo-
thesis is that the credit assignment problem solved by backpropaga-
tion in artificial neural networks may be solved by feedback con-
nections that terminate in segregated sections of the dendrite [202].
Plateau potentials achieve the overlap between input and feedback
signal [87]. This influences the local plasticity at each neuron via
the credit assigned in the feedback pass. The mechanism can eleg-
antly be used for other learning paradigms such as reinforcement

38 computation in neurons with active dendrites .

learning [141], but is at odds with the finding that dendritic plateau
potentials are the primary driver for synaptic plasticity at the plat-
eau initiation site in the absence of feedback from other parts of the
neuron [90, 143]. Fundamentally, these models aim to approximate
deep learning in models that are closer to biology and therefore can-
not introduce any new functionality.
Urbanczik and Senn [254] introduce a model where plasticity in one
dendritic compartment is dependent on the difference of dendritic
and somatic voltage. Because the soma can also be driven by fixed
synapses (nudged), different learning schemes can be implemented
with this rule. They extend the concept and enable prospective learn-
ing by increasing the learning window when the soma is nudged to
find earlier and earlier predictions for these events [20].
In a larger neural network scheme, Illing et al. [105] use a similar
idea and are able to successfully train neural networks without back-
propagation. These models, too, fundamentally rely on the function
approximation analogy in their feedforward computation. However,
their novel approach to credit assignment certainly alters the perspect-
ive on how biological neural networks may find good configuration
without relying on a global, task specific loss that locally changes syn-
apses based on their contributions to this global measure.
Lastly, Hawkins and Ahmad [92] show that dendritic plateaus can
in fact introduce fundamentally new computational functions into
neural networks. In their work, pyramidal neurons enter a predictive
UP-states based on input to a basal compartment of their dendrite by
neurons in the same layer. A plateau in this department depolarizes
the soma and permits the neuron to generate a spike response. The re-
sponse of an entire layer to input is thus dependent on which neurons
are currently in the predictive UP-state. At each discrete time step, the
set of neurons currently in this UP-state changes. This endows the en-
tire layer with sequence memory and allows it to be used as a neural
implementation of the hierarchical temporal memory (HTM) archi-
tecture of information processing based on sequences by the same
group [79].
The SDT model presented in the previous chapter can also capture
this effect of prolonged depolarization at the soma due to a dend-
ritic plateau potential. But it also permits dendritic UP-states: dend-
rite segments can depolarize neighboring dendrite segments and en-
able the generation of new plateaus. It concisely encodes the cardinal
processes involved in computation with interacting plateau poten-
tials: stochastic coincidence detection on short time-scales to trigger
plateaus, much longer plateau processes that remember coincidence
events, and functionally compartmentalized dendritic trees into dend-
rite segments which enables the neuron to rank-order these events
and compute functions on them.
Hence, it is uniquely suited to investigate what the novel contribu-

4.1 structured computation and events in sdt neurons . 39

tions of plateau potentials to computation are and whether they should
therefore be regarded as fundamental in computational theories of
the brain.

We find that the event-based computation enabled by dendritic
plateaus can be regarded as fundamentally symbolic. The structure of
the dendritic tree determines the constituent structure of expressions
evaluated by the SDT neuron over input sequences rank-ordered in
real-time. The stochastic nature of synaptic transmission leads to a
probabilistic evaluation of these expressions that is proportional to
the evidence encoded in spike volleys by input populations. This sug-
gests that dendritic plateau potentials should indeed be regarded as
a fundamental mechanism in neural computation.

4.1 structured computation and events in sdt neurons .

b

c d

e

f

A

B

C

D

E

F

a

a.

e f

A
a

b

c

d

B

D

C

E
F

B

b.

e f

a

b

c

d

c.

Figure 10: simple and complete representations of sdt neurons

a. Neuron N1 (from prev. chapter) with named segments a, . . . , f
connected to input populations A, . . . , F. b. The structure of N1

can be captured in a simple diagram where children connect
to parents via vertical lines. The number of vertical lines gives
the dendritic threshold of the parent segment. Each segment is a
named horizontal line. c. Adding filled circles for excitatory con-
nections and empty circles for inhibitory connections to segments
allows connections to input populations represented by named
squares.

In order to talk about the computational properties of SDT neur-
ons, we must describe their computational function firstly in relation
to their internal structure and secondly, how this internal structure
relates to external inputs. We will name neurons with different in-

40 computation in neurons with active dendrites .

ternal structure N1, N2, . . . and so forth.
The recursive definition of SDT neurons in the last chapter (Equa-
tion 1) centered on individual segments. However, the global struc-
ture of a neuron is difficult to understand from the hierarchically nes-
ted lists of children with associated dendritic thresholds. For example,
neuron N1 that is redrawn in figure 10a is technically specified by:

N1 ≡ [f : [e : [d : [], c : [b : [],a : []]]]]

&[θd(f) = 1, θd(e) = 2, θd(d) = 0, θd(c) = 1, θd(b) = 0, θd(a) = 0]

where individual segments are lowercase letters and θd(s) specifies
the dendritic threshold of some segment s. This encodes more inform-
ation about N1 because the dendritic thresholds were not captured by
the sketch, but it is hardly useful.
Instead, we will specify the structure of SDT neurons by simple graph-
ical representations. Figure 10b shows how this is done for neuron
N1: Each segment is a horizontal line, named by a lowercase letter.
Children connect to parents from left to right via vertical line seg-
ments. The number of vertical line segments indicates the dendritic
threshold of the parent segment. In this simple Neuron, all dendritic
weightsωk are 1, we will deal with more complicated branching later.
Additionally, we may want to specify which input populations con-
nect to excitatory or inhibitory synapses at each segment. Figure 10a
indicates a number of input populations which we have labeled with
uppercase letters A, . . . , F that connect to the different segments. The
sketch doesn’t show which connections are to inhibitory or excitatory
synapses respectively. In Figure 10c, we indicate excitatory input con-
nections by linking the named input population to a filled in circle,
whereas inhibitory synapses are indicated by an empty circle.

Two types of synaptic events significantly interact with dendritic
plateau generation. Firstly, a spike volley event refers to a set of
spikes in the afferent population of a segment s such that the sum
of their weighted EPSPs exceeds the local, segment specific synaptic
threshold θs under the assumption that all spikes are transmitted
successfully. All spike volley events can be defined iteratively:

ti+1s ≡ min
t
t > tis :

∑
q∈Q

wqκE(t− t
i
q) > θs (9)

The equation captures threshold crossing times of the local post-synaptic
potential (Equation 2) due to the EPSP only and under the assump-
tion that all spikes were successfully transmitted. All tis in Equation 9

therefore fulfill the minimum condition for a plateau potential: If no
inhibitory synapse is active and all spikes are transmitted, a spike
volley will always lead to a plateau potential. Figure 11 shows how
this works in our specific case with the rectangular EPSP kernel κE

4.1 structured computation and events in sdt neurons . 41

and time scale τs.
The second set of events relevant for computation are inhibitory events.
In the SDT model, we have simplified the effect of inhibition to be
a plateau potential veto that either prevents a plateau if inhibitory
spikes arrive up to τI seconds before a spike volley or shuts down
the plateau process if inhibitory spikes arrive during an active plateau
potential. Therefore, we can simply identify inhibition events with all
spikes send by afferent populations to inhibitory synapses at a seg-
ment (see Fig. 11).

ti+1¬s ≡ min
t
t > ti¬s : t ∈

⋃

r∈R
Tr (10)

We will later see that spike volley events can sometimes turn into
inhibitory events if the same population is connected to different syn-
apse types at different segments. In this sense, inhibitory events are
spike volleys with just at least one spike, which is always true for
spike volley events.
In this simpler world of spike volley and inhibition events on seg-

af
fe

re
nt

 n
eu

ro
n

id

1

2

3

4

5

6

7

8

9

10

time

events

1

2

3

ex
ci

ta
to

ry
in

hi
bo

to
ry

Figure 11: computational events from a spike raster . Spike volley
events (blue) occur when a sufficient number of excitatory affer-
ent neurons have emitted a spike. Here, the threshold is θs = 5,
all weights are 1 and τs is the time scale of the excitatory post-
synaptic kernel κE. Inhibitory events (red) are identified with
spikes emitted by inhibitory afferent neurons.

mented dendritic trees, we can discuss the three main aspects of com-
putation in SDT neurons:

1. Probabilistic synapses enable a graded plateau response prob-
ability proportional that reflects confidence in the input.

2. The overlap of plateau responses required for SDT computation
rank-orders real-time events such that they can be represented

42 computation in neurons with active dendrites .

in an internal ranked time invariant to small perturbations and
delays in timing.

3. The structure of the SDT neuron, reflecting the structure of the
compartmentalization of the neural dendritic tree, determines
structured expressions. Computation in an SDT neuron means
evaluation of these expressions.

probabilistic synapses . Whether spike volley events can lead
to a plateau potential is dependent on the successful transmission
of sufficiently many spikes by the stochastic synapses. Whether this
stochasticity, or unreliability, of presynaptic neurotransmitter release
has a computational function or is instead a consequence of signaling
spikes with a limited number of vesicles at chemical synapses [147] is
a hotly debated and open question. Proponents of probabilistic codes
and Bayesian computation in the brain [122, 193] argue that the brain
encodes uncertainty about stimuli or parameters in probability dis-
tributions in order to make Bayesian optimal choices given the data
available. In circuit models, probabilistic synapses can generate the
required variability [170] and sample from distributions encoded in
network connections [174]. In SDT neurons, can stochastic responses
due to unreliable synapses encode uncertainty about a stimulus or
must they be considered additional noise?

Consider a stimulus that is encoded by a population AwithN neur-
ons. Segment a is connected to A and evaluates whether the stimulus
was present or not by generating a plateau if the post-synaptic po-
tential was high enough. In any spike volley ta, the uncertainty that
the stimulus is present is encoded in the independent probability q
of each neuron to fire a spike at this point or not. The spike volley
magnitude for the spike volley event |ta| = na is then distributed
according to a binomial distribution:

na ∼ f(na;N,q) =
(
N

na

)
qna(1− q)N−na

At segment a, each spike in the spike volley is independently trans-
mitted with homogeneous probability p and added with the same
weight w 2. The number of successfully transmitted spikes ma is also
distributed as a binomial distribution with na synapses flipping coins
with bias p:

ma ∼ f(ma;ma,n) =
(
na

ma

)
pma(1− p)na−ma

2 The assumption that all synapses transmitting the same spike volley have the same
transmission probability and weight. This is well supported by the fact that this set
of synapses would be subject to the same learning due to local plateaus [90] and
observations [18, 241].

4.1 structured computation and events in sdt neurons . 43

The distribution of successfully transmitted spikes given a stimulus
uncertainty q, an encoding population size N and transmission prob-
ability p then is:

p(ma|q) =

N∑
na=0

p(ma|na)p(na|q) =

N∑
na=0

f(ma;na,p)f(na;N,q)

We can rewrite the condition for plateau generation given that we
know which synapses have overlapping rectangular EPSPs, i.e. all
ma synapses that receive inputs in a volley, as wm > θs which is
equivalent to:

m > bθs
w
c (11)

Because of this, we can assume without loss of generality that w = 1

for all synapses and the threshold θs at segment a is some integer.
The probability that segment a responds by generating a plateau
given q is the probability that ma > θs, which is given by:

p(r|q) = 1−

θ−1∑
ma=0

p(ma|q) = 1−

θ−1∑
ma=0

N∑
na=ma

f(ma;na,p)f(na;N,q)

where we have dropped terms from the sum in whichm > na, which
have probability 0.
We can now plot the stimulus uncertainty or strength q against the

probability that a plateau would be generated by coincidence de-
tection (Fig. 12). In sum, the response of the segment is extremely
sharp when the transmission probability is 1 and synapses are not
stochastic. Lowering the transmission probability significantly leads
to a graded response that can be shifted to along the x-axis by adapt-
ing the threshold (Fig. 12c). This enables the tuning of the response
curve such that the plateau response probability is proportional to
the certainty about the input encoded in q and therefore encodes the
confidence that a plateau should be initiated [194]. Since the plateau
is a long all-or-none response, the stochastic synapse is on the one
hand the only way to get create a graded response proportional to
the encoded certainty or uncertainty q about a stimulus. As many
authors have pointed out (e.g. in Doya et al. [48]), this information is
required to make decision and reason under uncertainty [113] – the
default for computation in the brain.
However, the long plateau response prevents repeated sampling of
the it. After we have discussed the two other aspects of computation,
rank-ordering and evaluating SDT structured expressions, we will
return to this question and show that probabilistic synapses enable
probabilistic computations in ensembles of SDT neurons.

44 computation in neurons with active dendrites .

va
r

p(
r|q

)

0.05

0.00

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

q

T = 10
T = 30
T = 50
T = 70
T = 90

input

0.00 0.25 0.50 0.75 1.00

q

P = 0.10
P = 0.15
P = 0.20
P = 0.25
P = 0.30

input

0.00 0.25 0.50 0.75 1.00

q

T = 2
T = 5
T = 8
T = 10
T = 13

input
P = 0.05
P = 0.10
P = 0.15
P = 0.20
P = 0.25

var. treshold var. transmission
probability combineda. b. c.

Figure 12: encoding and decoding stimulus uncertainty. The top
row shows the uncertainty q of encoded stimulus Q against
the probability of generating a plateau by coincidence detection.
Dashed line corresponds to a linear mapping. Bottom row shows
the Bernoulli variance p(1− p) for both the plateau response and
the stimulus (dashed line). a. If the transmission probability is 1,
the sigmoidal transfer function approaches a step function and
the uncertainty of the stimulus is not reflected in the plateau re-
sponse. Different thresholds are shown, shifting position of the
step. The variance is narrowly distributed around the steep sec-
tion of the transfer function. b. If the threshold is fixed at 10, vary-
ing the transmission changes the slope of the transfer function.
For low transmission probabilities, even a high confidence in the
stimulus results in unreliable responses. The variance widens ac-
cordingly with lowering transmission probabilities. c. If both the
threshold and probability are varied, the plateau response prob-
ability can approach a linear encoding of the stimulus certainty
and remains proportional to q in the entire range.

rank-ordering input events . Which spike volley events ulti-
mately to plateau potentials and therefore contribute to computation
in the SDT neuron depends not only on successful transmission of a
sufficient number of spikes but also previous activations of dendrite
segments. We cannot a priori know which spike volley events lead
to plateaus, since each plateau response is probabilistic and different
numbers of previous plateaus in child segments may be required to
initiate a plateau at any particular segment. Here, we are interested
in finding out which spike volley events could potentially contribute

4.1 structured computation and events in sdt neurons . 45

to a computation before we give the expression that is evaluated over
these spike volley events.
What decides whether two spike volley events ta at segment a and
spike volley event tb at segment b are considered in the same com-
putation? Depending on the morphology of the dendritic tree, their
plateaus have to overlap in either an ordered manor if one segment is
a child of the other, or in an unordered manor if they are the children
of the same parent node. Additionally, there must be a continuous
path of overlapping plateaus from the soma at a time t at which we
are interested to find out which events contribute to the two events
by the same rules. Here, t is the query time at which we consider
the computation of the SDT neuron and can in principle be arbitrary.
Often, we will take t to be the time of a query spike or spike volley
at the soma, which would lead to an output spike immediately if the
computation in the dendritic tree is successful.
Let’s look at an example (Fig. 13). Neuron N1, which we’ve previ-
ously used to recognized paths from place cell activations invariant
to movement speed, has three consecutive segments, one of which is
the soma. If we drive the neuron with spiking input, we can think
of spike-volley events and plateau responses sequentially: First, A
activates a, then B activates b, then C activates c and a spike is trans-
mitted. Instead, we can ask which spike volleys would be considered
for a computation at time t represented by a spike volley at the soma.
Recursively, each spike volley can be affected by a spike volley in
a previous plateau length. We can draw the connected events in a
simple rank-ordered time tree (ROTT) and give each depth of the
tree a rank-order. Numbering from left to right, N1 transforms three
events in real, continuous time a(ta),b(ta), c(t) into a discretely rank-
ordered sequence a1,b2, c3 at t1 and b1, c2 at t2.

If segments are instead parallel to each other, events must occur in
the same plateau window defined by the spike volley event of a par-
ent segment. These events should get the same rank-order. Inhibition,
however, must be treated differently because it interacts only with the
local spike volley event and can either precede the spike volley by τI
to prevent a plateau potential or locally interrupt any plateau poten-
tial during it. It always has the same rank-order as the local spike
volley event it is associated with. Neuron N3 illustrates and explains
this (Fig.14). a(ta),b(tb), c(t) is ordered as a1,¬a1,b1,¬b1, c2 at t1
and as a1, c2 at t2. The example also shows that spike volley events
can always double as inhibitory events if populations are connected
to different synapses at different segments.

This covers all the core rank-ordering procedure that is inherently
performed by dendritic plateau potentials in simple cases. In general,
if we are given a rank-ordering of spike volley events due to some

46 computation in neurons with active dendrites .

21

a
A

b
B

c

C

Rank: 1 2 3

A

B

C

t1

Plateau Window

reference time

t2

N2

Figure 13: rank-ordering of sequential real-time events .
Neuron N1 rank orders spike-volley events in its input popu-
lations A and B according to a reference spike at the soma at
time t1 and t2. Each spike volley on a segment can recursively
consider all spike volleys at its child segment for one plateau
duration.
The black path gives the rank-ordering of spike volley events
starting at t1 and t2 respectively. The final rank-order can be
represented by a simple rank-ordered time tree (ROTT) with one
rank-order per level according to the depth.

ordering operation O implemented by a neuron, we can say the fol-
lowing is true for any two events a1 and b1:

(i) For any two events a(ta) and b(tb) that we order as a1 and b2,
we know a(ta) precedes b(tb) by at most one plateau length
τP:

O(a(ta),b(tb)) = (a1(ta),b2(tb))→ ta ∈ [tb − τP, tb]

(ii) For any two events a(ta) and b(tb) that we order as a1(ta) and
b1(tb), we know that there must be some interval of length τP
during which both events occurred.

O(a(ta),b(tb)) = (a1(ta),b1(tb))→ ∃t : ta, tb ∈ [t− τP, t]

(iii) For any pair of one spike volley event a(ta) and one inhibitory
event ¬a(t¬a) that we order as a1 and ¬a1, we know that there
must be some interval of length τP during which a(ta) occured,
and ¬a(t¬a) either occured before ta within an inhibitory inter-
val of length τI, or after ta but before t.

O(a(ta),¬a(t¬a)) = (a1,¬a1)

→∃t : ta ∈ [t− τP, t]∧ t¬a ∈ [ta − τI, t]

4.1 structured computation and events in sdt neurons . 47

b

B c

C

A

a
A B

1 2Rank: 1 2

Inhibition Window

reference time

A

B

C

t1 t1

N3

Figure 14: rank-ordering of parallel events and inhibition.
Parallel events occur during the same plateau window referenced
to a spike volley in a parent segment. The rank-ordering path and
resulting graph branch at the parent volley event. The window in
which an inhibitory event can affect a spike volley event extends
into the future of said event, corresponding to a plateau disable.
The length of this window stretches from the reference event to
the time of the parent segments reference events. If the spike was
already send at segment s, inhibition at b no longer has an ef-
fect. The same is true for plateaus. It also extend into the past
of any reference events for the duration of the inhibitory kernel.
The path connecting inhibitory events to spike volley events is
painted red. In the ROTT, inhibition is always a parallel event
indicated with a red connection to the reference event.

Colloquially, we may summarize that maximal memory length of
an SDT neuron is d(N)τP where d(N) gives the depth of neuron N’s
SDT, but all events considered in one computation can also occur
within a much shorter interval, say τP

10 . The representation in internal
rank-ordered time and the ROTT is the same in both cases. Each level
of depth in the SDT can correspond to a layer in the rank-ordered
representation. From child to parent, the relation of events is a strict
successor relation within one plateau length, whereas siblings must
have events in the same plateau interval given by the parent. The ef-
fect of inhibition dynamically depends on the context, but only affects
the local segment and rank-order directly.

This is not the entire story. When multiple events arrive within the
same plateau interval, which ones are we to consider? We give the
generalized form of the ROTT by example and return to neuron N1

together with a possibly more realistic timeline of events by popula-

48 computation in neurons with active dendrites .

tions A through E (Fig. 15).
At time t, multiple spike volley events at segments c from popula-
tion C and segment a from population A must be considered. In the
ROTT, we can deal with this by adding an additional branching node,
possibility branches, at the rank-ordering boundary that represents
multiple possible realizations of the rank-ordering. In practice, only
one will actually initiate a plateau, but all must be considered.
Further, we can annotate the rank-ordered spike volley events with
their magnitude and original time, so that we can distinguish mul-
tiple events assigned to the same rank. For example, the spike volley
event ta due to an excitatory connection from population A and with
nA(ta) may be written as a1[|(ta)|]. If we simply number all multiple
events as ta1, ta2, ta3, we can mark the set a1[|ta1|, |ta2| , |ta3|] for the
a branch of the rank-ordering. The ROTT and this set of associated
spike volley and inhibitory events with a given rank order captures
all events considered in the SDT computation at time t.

C
e

A
a

b

c

d

D

C

B E

Rank: 1 2 3

A

B

C

D

E

t

N4

Figure 15: rank ordering of multiple events . If multiple events
overlap with in the same plateau window, all must be considered
to evaluate the response of the SDT neuron. This introduces a
second type of branching point, possibility branches, in the ROTT
(black dots at rank boundary) that represents not branching in the
SDT neuron, but branching between different possible pasts.

The ROTT gives a good representation of events ordered in time
and different possible pasts, but it is easy to imagine that even this
representation will quickly run into the limits of feasibility. This is
indicative of the fact that describing multiple different asynchronous
streams of events in a general fashion is a fundamentally difficult ex-
ercise. Event logics [217] and timed automata [3] are two theoretical

4.1 structured computation and events in sdt neurons . 49

frameworks that illustrate the point.
In relatively simple cases, the ROTT does the trick and also preserves
the fundamental intuition about computation in trees the SDT model
relies on. Each event node can be evaluated independently as true or
false depending on whether a plateau was generated in the determ-
inistic case where all synapses transmit reliably. If they do not, the
probability of a synapse driven threshold crossing can be calculated
independently. This is the basis for computation across the different
segments presented in the next paragraph.

evaluating sdt expressions . In SDT neurons, synaptic weights
do not have as decisive a role as they do in most neural network
models. At each segment, they largely decide the threshold of m suc-
cessfully transmitted spikes (see 11) and are homogeneous among
synapses that frequently contribute collectively to plateau generation
via spike volleys. Instead, the coupling of different segments to each
other determines the computational function of the neuron in con-
junction with coincidence detection at each segment. In the following,
we assume that inputs are already available in a rank-ordering and
that synapses transmit reliably for now.
For a segment s with child segments s[1], s[2], . . . , s[n] the condition
for a dendritic threshold crossing was given by Equation 5 and dend-
ritic threshold θd:

Vd(t) =

N∑
k=1

ωks[k](t− 1)

Vd(t) > θd

(12)

The second and third condition for a plateau was the existence of
a sufficiently large spike volley and the absence of inhibitory input.
As spike volleys and inhibitory events are available in discrete, rank-
ordered time we can transform the conditions for plateau generation
into a predicate logic expression following a similar argument to Mc-
Culloch and Pitts [161].
Let κi be the set of subsets ofωk such that the sum over it exceeds θd.
Then, the condition for plateau generation is given by the following
predicate expression over spike volley events, inhibitory events and a
recursive dependence on expressions of child segments:

St = st︸︷︷︸
excitation

∧ ¬st︸︷︷︸
inhibition

∧
∑
π∈κ

∏
j∈π

S[j]t−1︸ ︷︷ ︸
dendritic gating

(13)

where
∏

is the logical multiplication (∧) and
∑

is the logical sum
(∨). Small letters are events that may be part of any particular ROTT,
fat capital letters are predicate sentences. If a segment has no inhib-

50 computation in neurons with active dendrites .

itory inputs, we simply leave out the symbol and the absence of a
particular event evaluates as false.
We can then recursively ascribe expressions to previously seen neur-
ons for which ωk was implicitly 1 for all k and get very simple for-
mulas:

S(N1) ≡ ft ∧ et−1 ∧ dt−2 ∧ ct−2 ∧ (at−3 ∨ bt−3)

S(N2) ≡ ct ∧ bt−1 ∧ at−2
S(N3) ≡ ct ∧ ((at−1 ∧¬bt−1)∨ (bt−1 ∧¬at−1))

S(N4) ≡ et ∧ ((dt−1 ∧¬ct−1)∨ (ct−1 ∧ at−2 ∧ bt−2))

N3 for example implements an exclusive or operation (XOR) on the
input populations of a and b at any point in time t in accordance with
the rank-ordering constraints given in the previous section. Whenever
a neuron N sends an output, we know that S(N) was true at that par-
ticular point in time.

We can plug in a ROTT into such a formula similarly to how one
might plug in a row of truth values from a truth table into a stand-
ard predicate logic formula and evaluate whether the neuron would
respond at time t given p = 1 for all synapses. For each possibility
branch in the ROTT, we must evaluate the corresponding subformula
for the branch in question and logically sum over all possibilities,
starting at the lowest rank. Figure 15 shows how this procedure may
work in the deterministic case.

1 2 3

Figure 16: evaluating an sdt expression with deterministic

synapses . Together with a ROTT of time-ordered events and
assumed deterministic synapses, the truth value of an SDT ex-
pression (S(N4)) can be evaluated directly. By evaluating from
the first rank and innermost segment expression previous possib-
ility branches can be merged by evaluating the logical sum over
all possibilities of the given subformula.

4.1 structured computation and events in sdt neurons . 51

In general, the rank-ordered spike volley events ati, btj, . . . aren’t
evaluated deterministically but are probabilistic symbols associated
with plateau response probabilities p(r||ati|). As we have seen earlier,
this probability encodes the confidence that the symbol encoded by
population A that send out the spike volley is actually present. Intern-
ally, the SDT neuron evaluates deterministic expressions over probab-
ilistic symbols, constrained to the rank-ordering enforced by plateau
potentials. The rules by which we can derive the probabilistic expres-
sion are simply:

P(ati ∧ btj) = P(ati)P(btj)

P(ati ∨ btj) = P(ati) + P(btj) − P(ati)P(btj)

This is possible because we can consider spike volley events ati, btj, . . .
independent events that are observed as a side effect of the rank-
ordering process. The probability model for N2 for example then is:

P(N2) ≡ P(ct ∧ bt−1 ∧ at−2)
= P(ct)P(bt−1)P(at−2)

Inhibition events aren’t stochastic, so they continue to evaluate as true
or false with probability 1 depending on whether they are existent or
not3. The probability model for the XOR neuron N3 then is:

P(N3) ≡ P(ct ∧ ((at−1 ∧¬bt−1)∨ (bt−1 ∧¬at−1)))

= P(ct)(¬bt−1P(at−1) +¬at−1P(bt−1)

−¬(bt−1 ∧ at−1)P(at−1)P(bt−1)

To merge multiple possibility branches in the ROTT given a probab-
ilistic model, we replace the probability of individual events at pos-
sibility branch with the probability of the union over all probabilities.
For example, for a1[|ta,1|, |ta,2|, |ta,3|] the probability of a to generate
a plateau is given by P(

⋃
i r||ta,i|), the union over all possible plat-

eau generating events. Because P(
⋃
i r||ta,i|) > P(r||ta,j|) for any indi-

vidual j, repeated volleys increase the confidence in the presence of
the stimulus associated with population A at the segment a.
Applying these algebraic rules to possibility branches and SDT ex-
pression to find algebraic forms of the probability model quickly be-
comes cumbersome. The insight they provide is that SDT computa-
tion is consistent. We were able to draw a direct line from multiple
rank-ordered input spike volley and inhibition events to structured

3 Stochastic inhibition causes implementation headaches in the mechanistic model be-
cause it leads to stochastically sampled events affecting the model at multiple points.
It is however easy to see what the effect of stochastic inhibitory synapse would ulti-
mately be in the probabilistic model

52 computation in neurons with active dendrites .

expressions that define the computational function. The entire expres-
sion represented by the SDT is probabilistically evaluated with each
symbol encoding the confidence that a particular term in the expres-
sion is true at the time of computation t.
To read the encoded confidence in the computation, we can make use
of a simple network motif and create a neural ensemble out of mul-
tiple neurons that represent the same expression. At the same query
time t, each of these neurons will have the same independent prob-
ability to fire because they received the same spike volley input trans-
mitted by independent stochastic synapses. At time t, the ensemble
will therefore emit a spike volley that encodes in its magnitude the
confidence the ensemble has in its expression. This exactly the encod-
ing our input populations used to encode certainty in a stimulus. The
output of an SDT ensemble can therefore be used as input to another
SDT neuron or ensemble.
Each component of the biological mechanism illustrated in chapter 2

and encoded in the model assumptions plays an important, distin-
guished role in this process. The long duration and sequential gat-
ing of plateau processes rank-orders inputs and renders the computa-
tion invariant to individual clocks of different input signals. Different
degrees and structure of functional compartmentalization between
dendrite segments in the dendritic tree and strategically placed in-
hibitory synapses determine the structure of computation implemen-
ted by the SDT neuron. Due to the interaction of coincidence detec-
tion and probabilistic synapses, symbols encode confidence in the
presence of associated stimuli. As a result, the evaluation of the en-
tire computational expression implemented by the SDT neuron turns
probabilistic such that the response probability encodes the confid-
ence in the expression being true over all input symbols.

4.2 sdt neurons and networks .

The connection to the formalism McCulloch and Pitts (McP) intro-
duced runs deeper than the fact that threshold functions can be rep-
resented as predicate expressions. SDT neurons with only the somatic
segment are for all intents and purposes equivalent to McP neurons,
but this analogy misses the point. So far, we have argued that the
inputs at a single segment should be regarded as inputs from a pop-
ulation that emits spike volleys. Therefore, formulating the threshold
function at a single segment as a predicate expression misses the
point of the SDT model: Long, interacting memory due to plateaus
and a more biologically realistic, probabilistic model of coincidence
detection that encodes stimulus confidence. Instead, we can represent
any McP order 0 net by SDT neurons constructed by the following
procedure:

1. For each neuron in the McP net, introduce an SDT neuron.

4.2 sdt neurons and networks . 53

2. For each afferent neuron Mi with an excitatory connection to
McP neuronMj, introduce a child segment ci with an excitatory
connection to Ni at SDT neuron Nj.

3. For each afferent neuron Mk with an inhibitory connection to a
McP neuron Mj, connect Nk to every child segment ci of SDT
neuron Nj.

4. Set the dendritic threshold of the soma at Nj to the threshold
of Mj, set the dendritic weight ωi to mi for each segment
and respective afferent neuron. The soma of Nj has a synaptic
threshold of 1, and all child segments ci have a synaptic threshold
of 1.

The expression of each SDT neuron is then given by

S(Ni)(t) ≡
∏
k

¬ckt−1

∑
π∈κ

∏
i∈π

cit−1 (14)

because the common inhibitory terms can be written outside the sum
over child segments and the recursion can be replaced with spike vol-
ley events directly. This is equivalent to a McP net of order 0 without
cycles if we make the same assumptions about timing4. In our case,
this would require a plateau reset on every dendrite segment via in-
hibition and a spike trigger signal on the soma all supplied by the
same clock. This is of course also what happens in an McP net, but be-
cause their model isn’t inherently asynchronous like the SDT model
it doesn’t have to be dealt with explicitly. Figure 17a-d show how this
procedure can be used to transform McP nets to simple SDT nets.
Can we find asynchronous solutions that implement the same com-
putation? The example in figure 17c encodes the perception of heat
felt when a cold object briefly touches the skin (node 3) that turns
cold when the object is held to the skin for a longer time (node 4).
Node 1 is meant to represent a heat receptor, and node 2 a receptor
for cold. Hence, heat is either felt if node 1 is active or if node 2 is act-
ive, but is inactive a short while after. If node 2 is active for a longer
time, cold is felt. The diagram in figure 17e shows how a simpler and
asynchronous solutions is available as an SDT model. Given that the
receptors might be noisy, the encoding of heat and cold signals as
spike volleys may also be sensible.

That we can implement McP nets with SDT neurons means that
the temporal propositional logic introduced for events in discrete time
is also implementable in SDT neurons (Theorem 2) and that propos-
itional sentences in disjunctive normal form can be represented by
such neurons, but only when there is no term in any of the individual

4 See their assumption about synaptic delay advancing the clock by 1 per operation.

54 computation in neurons with active dendrites .

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

a. c.

d.b.

31

2

4

3

e.

Figure 17: converting mcculloch and pitts nets . Examples from
McCulloch and Pitts:
a. N4(t) ≡ N1(t− 1)∨N2(t− 1)∧¬N3(t− 1) as well as
c. N3(t) ≡ N1(t− 1)∨N2(t− 3)∧¬N2(t− 2)
and N4(t) ≡ N2(t− 2)∧N2(t− 1).
b. implements a. directly with SDT neurons, d. implements c. dir-
ectly with SDT neurons. Both solutions require the assumed clock
in the McCulloch and Pitts nets to coordinate inputs and cancel
plateaus early (see Text). e. implements the logic of c. asynchron-
ously on rank-ordered inputs. The soma may be queried by ex-
ternal spikes here.

conjunctions that contains purely negated terms (Theorem 3). This re-
flects the fact that inhibitory synapses can prevent but not generate a
signal.
The read/write head of a Turing machine, a finite-state machine, is
implementable by McP nets without cycles, and therefore by SDT
nets as well. This is no surprise since the internal operations of an
SDT neuron may be modeled by simple finite state machine (see
chapter 1).
In sum, the SDT neuron can also implement point neuron models, but
with less strict requirements on the timing of signals carrying data for
the computation. It also computes a probabilistic graded response to
a graded stimulus in form of a spike-volley. This means that the com-
putation is robust to additional noise in the signal and deteriorates
gracefully.
However, thinking of dendritic plateau computation as a more robust
re-implementation of threshold neurons doesn’t paint the complete
picture. We started out with the question whether dendritic plateaus
and their interaction on the dendritic tree add a fundamentally new
quality to neural computation. Let’s therefore consider whether the
SDT neuron could reasonably be reduced into smaller units. A good
candidate is a somatic segment and a dendritic segment together. This
preserves the long memory that was our initial motivation to invest-

4.2 sdt neurons and networks . 55

igate dendritic plateaus if the soma persistently fires spikes, like for
example delay cells do [84]. When the soma responds to a pattern
of activation, a spike volley, this corresponds to the HTM neuron
model [92].
Figure 18 shows two solutions we may come up with to implement
the functionality of N4. In the first solution with 5 distinct smaller
neurons, we need an inconsistent model that sometimes has determin-
istic synapses when connections come from neurons previously part
of the dendritic tree or probabilistic synapses when external popu-
lations are connected. If we instead consider an ensemble for each
of the previous segments, this inconsistency can be eliminated. But
we now have the issue that the populations with segments d and c
terminate on the same segment e, which means that spike volleys of
the two populations can add up and low confidence in either signal
can erroneously add up to high confidence that either signal true. We
might then argue that we can prevent this by preventing the popula-
tions, d for example, from permanently firing, similar to c. But if we
are then interested in populations for c and d5 active at the same time,
we are back at the asynchrony problem we started at. If a and b aren’t
permanently firing during plateau potentials, the problem would oc-
cur at segment c, too. The signal isn’t bound by a plateau potential
overlap and must be somehow externally synced even though the
populations may code for stimuli on different clocks. Neurons must
now change their firing behavior depending the function their signal
is to be used in later.
In parallel, we have now turned the previously deterministic connec-
tion from children to parents within the dendritic tree into probabil-
istic connections which may introduce a second source of noise and
requires near perfect linear encoding and decoding of uncertainty at
each state.
This circle that contradictions which seem solvable at first lead to

solution with a different problem instead is no accident. The SDT
model strictly separates computation relating to external and internal
representations.
Externally, the SDT model follows a typically connectionist model:
Representations are distributed among many different input neur-
ons, each individual spike can be considered subsymbolic [226, 227]
in the truest sense of the word, no meaning can be ascribed to it.
With the initiation of a plateau due to a spike volley, the subsym-
bolic, distributed external representation turns symbolic. Internally,
the SDT model follows a classical, symbolic structure: Representa-
tions are local6 and symbolic, and part of an expression with obvious
constituent structure. The meaning of the whole is made up out of

5 Ignoring the inhibitory connection from C to d for the sake of the argument.
6 As many authors have pointed out, symbolic architectures are not limited to local

representations, but local representations are typical of them. The same is true for
distributed representations and connectionist architectures.

56 computation in neurons with active dendrites .

C
e

A
a

b

c

d

D

C

B E

b

B

A
a

C

d

D

c

C

e

E

b

B

A
a

C

d

D

c

C

e

E

N4

a.

b.

Figure 18: reducing sdt neurons to single segment models . Two
options to reduce a single SDT neuron N4 into networks of neur-
ons with only a single segment. a. Replacing each segment with
a single segment neuron that forms a deterministic connection
to the parent segment or b. replace each segment with a single
segment neuron population that forms probabilistic synapses.
Circles indicate ensembles of neurons with the same structure.
See the text for a discussion.

the meaning of its parts, and changing one part changes the meaning
of the expression. The SDT model follows the idea of mapping sym-
bolic expressions to structures of physical states discussed by Pyly-
shyn [196]. In his book “The algebraic mind”, Gary Marcus proposes
treelets [159] as a possible foundation for a computational cognitive
architecture that follow the same branching structure that SDT neur-
ons follow.
In many of the discussions between proponents of the connection-
ist point of view and representatives of good old fashioned A.I. and
a symbolic view of the mind, questions revolve around whether our
symbolic language of thought can or cannot arise from an implement-
ation in connectionist hardware [34, 66]. And if it can, should we think

4.3 a neuromorphic hardware implementation of the sdt neuron. 57

of the mind as connectionist?
The brain might have been one step ahead. Dendritic plateau compu-
tation analyzed through the SDT model suggests that pyramidal neur-
ons may be tiny, symbolic computers that are then connected through
a connectionist network of synapses. The hardware is both connec-
tionist and symbolic, different problems seem to require different
solutions. Both the routing of information via synaptic connections
and the extraordinary diversity of dendritic structure across different
neurons have a role to play. This presents an exciting new perspective
for neural computation and answers the question whether dendritic
plateaus and their interaction contribute novel computational capab-
ilities to single neurons: They do.

4.3 a neuromorphic hardware implementation of the

sdt neuron.

This exciting new perspective also extends to the field of neuromorphic
hardware. It’s central goal is to develop computer hardware that dir-
ectly implements ideas derived from the computational principles of
the brain for technological benefit or to help understand computa-
tion in the brain [106]. Historically, this has often meant to imple-
ment computation with spiking neurons in super low voltage ranges
of transistor leading to particularly energy efficient circuits [163]. For
example, modern analog neuromorphic computing systems such as
BrainScaleS [210] can be used to simulate neural circuits that imple-
ment a deep neural network at 10e5x biological time.
The second defining characteristic of brain computation, information
transmission via spikes, can lead to sparse communication patterns
and reduce energy consumption that way. It can also make extremely
parallel computation viable. The SpiNNaker project uses this to en-
able the simulation of neural networks for research over 2,500 pro-
cessors in a super computer [74].
Since the successes of deep learning, the technological prospects of
neuromorphic hardware have also come into focus. Both IBM and In-
tel have developed neuromorphic chips that leverage modern, digital
semiconductor technology and merge it with spike-based communic-
ation and extremely parallel processing [42, 165].
Ultimately, the application of these technologies is to be the brain of
autonomously behaving, cognitive artificial systems [35]. Here, the
challenges for the computing system are the same we have discussed
in chapter 1: All inputs are presented in time, but all inputs follow
their own, internal clock.
This is where a neuromorphic implementation of the SDT model can
contribute. The focus isn’t so much an analog implementation or
spike-based communication. Instead, the goal is to develop techno-
logy for an asynchronous neural computer that can reliably compute

58 computation in neurons with active dendrites .

on asynchronous inputs.
In Leugering, Nieters and Pipa [137], we have presented an imple-
mentation of an SDT ensemble. The core computational component,
the dendrite segment with coincidence detection and dendritic plat-
eau computation, is built out of very simple units. The reactive data
path of spikes and plateau potentials is not linked to any clock and
drives the computation. Clocks are only used to discount each spike
we have counted after one kernel length τE, and to disable the plateau
after τP. The exact length is not precise because the plateau and spike
onsets are not synced to either clock. This implementation maintains
the long memory of the SDT neuron as well as the extremely fast
reaction to inputs. Figure 19 gives an indication of the design that
is presented in detail in section B.3 and also includes configuration,
inhibition and stochastic synapses in binary branching SDT neurons
embedded in an ensemble.

+

-

>

10
SET

RESET

Serial spike in.
async.

Child 1 Child 2

ParentCoincidence
Detection

Plateau
Computation

fast clock

slow clock

D
en

d
ri

te
 S

eg
m

en
t

Figure 19: a simple sdt segment hardware implementation. Each
segment is connected to two child segments and one parent seg-
ment. The signal from the serialized spike input line and the par-
allel child segments are not clocked and trigger gates and compu-
tational elements on the rising edge of their signal. A Plateau is
set, when more than a threshold spikes are currently in the spike
counter and at least one child segment is on. A fast external clock
subtracts a spike from the spike counter roughly τE after it was
added. A slow external clock resets the plateau signal roughly τP
after it was set.

The implementation does not require any arithmetic logic units and
is therefore quite simple. A considerable amount of gates and logic
still has to be used to generate long enough timescales to reset the
contribution of a spike to the post-synaptic potential or to disable

4.3 a neuromorphic hardware implementation of the sdt neuron. 59

the clock. Future work should further reduce the reliability on ex-
ternal clocks that cannot be synced to fundamentally asychronous
inputs and increase the configurability of dendritic trees. The focus
on timescales, particularly slow ones, also makes the model ideal for
new computing technologies such as volatile memristors [263], the
purposefully forgetting cousin to more stable memristors that have
previously been used to implement synaptic weights [8].
In the broader picture of implementing a technical brain for autonom-
ous agents SDT neurons are unlikely to be the only computational
building block required. As we have discussed in the introduction,
different problems require different types of memory. A good basis
for a neuromorphic system with a diverse toolbox of solutions for dif-
ferent problems may be mixed-signal architectures that include ana-
log computation alongside digital systems [173]. In the next chapter,
we will discuss how problems for which data is best viewed as con-
tinuous time series can be handled by small dynamical computing
systems that can complement SDT computation.

5
P R E D I C T I N G T I M E - S E R I E S W I T H D Y N A M I C
C O M P U T I N G S Y S T E M S

The time-series view of temporally ordered information differs from
the discrete and structured sequences of events we have considered
so far. A discrete time-series is often thought of as series of temporally
equidistant samples of a system that is continually changing in time.
The discreteness, which is fundamental in sequences of linguistic ut-
terances, is not a feature of the signal itself but just a relic of the
fact that we cannot easily store continuous information. This puts
different constraints and requirements on the representation of the
time-series in memory.
A loose motivation for what a representation of the past has to accom-
plish to enable the prediction and forecasting of dynamical systems
comes from the mathematical study of dynamical systems. When
studying chaotic systems such as turbulence in fluids, forecasting and
understanding any particular system is notoriously difficult. Takens
[243] and Packard et al. [185] showed that, surprisingly, the delay
embedding of the time-series of just a single, derived variable is suf-
ficient to accurately reconstruct the strange attractor that governs the
system’s chaotic behavior. The variable observed in the delay embed-
ding must link to all variables in the system of interest, and we need to
measure a system with d variables at at least 2d+ 1 different delayed
points to be able to reconstruct the dynamics in the observed and
potentially derived variable. The application of the approach to real
world measurements of dynamical systems proves to be more diffi-
cult than the simplicity of the statement suggests. Particular formal
demands are placed on the delay embedding in practice – for ex-
ample in the estimation of causality in delay-coupled systems such
as activity across different brain regions [213]. But the intuition that
a compact representation of a system’s history is a powerful basis
to predict its future is powerful, especially in time-series prediction
tasks [248].
In reservoir computing [111, 152], recurrent and randomly connected
neural networks are driven by dynamically varying stimuli. At any
one point in time, a readout, i.e. a memory-free mapping of the cur-
rent reservoir states onto an output variable, can predict the dynam-
ics of the system or compute other features of the system dynamics
(Fig. 20a). This mapping can be as comparatively simple as a gen-
eralized linear model [175] or as complex as a feedforward neural
network and is trained to map the dynamics of the input driven ran-
dom recurrent system onto the target output. Often, a simple readout

61

62 predicting time-series with dynamic computing systems

model suffices as the neural network dynamics are already non-linear.
In order to do so successfully, the dynamics of the reservoir should
represent a non-linear expansion of its current and past inputs. A
sufficient condition for such dynamics is the “echo-state” property
which means that networks cannot be chaotic and have to be inde-
pendent of inputs at some point in the past. Reservoir computing
near the “edge-of-chaos” [133], i.e. systems that have a long depend-
ence of the past, has been shown to work well in many applications.
The randomness of the connections in a reservoir computer can be
interpreted as being non-specific. On the one hand, this means that
the weights that recurrently connect neurons in the network need
not be specific to a particular task. This generic approach to circuit
connections has lead to reservoir computing as an explanatory frame-
work for the intricate dynamics in cortical networks [26, 224]. On the
other hand, it means that the dynamics of the reservoir must fulfill
the requirements for reservoir computing but which input driven dy-
namical system in particular is used is not important. This second
property has made the reservoir computing framework appealing
for researchers investigating new computing substrates and materials
both in the brain-inspired research on neuromorphic hardware and
other unconventional computing approaches [40]. A reservoir can be
as simple as a bucket of water [62], an autonomous Boolean network
reminiscent of Turing’s type-B machines [5], build out of high-tech
materials such as carbon nanotubes [39], or networks build out of
electrochemical transistors meant to act as embedded biosignal mon-
itors [37]. Reservoir computing has opened the door to many novel
and decisively different computing devices.

Of particular interest here is the single-node delay-coupled reser-
voir computer (DCR). In a DCR, a non-linear node is driven by an
input signal and its own delayed feedback [6]. The input time-series
u(t) changes on the time-scale of this delayed feedback while the
DCR undergoes rapid changes during each delay cycle. In a tradi-
tional reservoir computer we represent a non-linear expansion of the
history of an input time-series in the parallel vector of activation of
all nodes at one point in time. The DCR does this mapping not in
parallel but on the much faster time-scale of its internal, complex
dynamics. We can therefore rapidly sample the activity of the DCR
multiple times during one delayed feedback cycle and get a represent-
ation of the stimulus’ past analogous to the reservoir but constructed
sequentially in-time (Fig. 20b).
This method is particularly well suited to neuromorphic hardware
approaches than can leverage very high frequency updates and can
be as simple as a single Boolean node with delayed feedback [93]
and has frequently been used in optical or opto-electronic comput-
ing devices with delay lines [25, 97, 184]. Networks of delay-coupled

predicting time-series with dynamic computing systems 63

cycle length τ

Readout

Reservoir

t t+1t-1t-2

Readout

Delay-Coupled Reservoir

t t+1t-1t-2

τ τcycle length τ

a.

b.

time

time

u
u

Figure 20: reservoir computers represent past inputs in their

activation vector .
a. Traditionally, reservoir computers are simple recurrent net-
works with unspecific, random internal connections W that rep-
resent past inputs from a time-series in the activation of their
nodes ~x(t) at one point in time. This information can be used by
linear models in the simplest case to predict the time-series.
b. In a delay-coupled reservoir computer, a single node coupled
to a delayed feedback of its own activity can compute a vector
that represents the past not by recurrently connected parallel
nodes but by undergoing rapid, dynamic change according to
a delay differential equation. Each feedback cycle of length τ cor-
responds to one new input. Sampling the DCR activity N times
during this cycle gives a vector that can be mapped onto a predic-
tion target analogous to the recurrently connected reservoir. The
specific form of the DCR used here is based on Mackey-Glass
dynamics [153].

systems show, that the delay-coupling approach can be embedded in
larger computational systems [187] and the dynamics of a single node
with multiple delayed feedback signals can be used to emulate much
more complicated deep neural networks [233].
But the concept may be more general: Small, delay-coupled systems
can represent a long history of information on the timescale of their
delays in their inherent dynamics. If another systems can read and
integrate the dynamics on a timescale potentially much faster than
that of the delay and input, it can use the delay-couple system as a

64 predicting time-series with dynamic computing systems

reservoir and predict the target signal.
Whether the brain can make use of delay-coupled mechanics to retain
information in small circuits or single neurons remains speculative for
now. However, neurons are known to form autapses [255], electrical
or chemical self-synapses, that have been proposed as a particular im-
plementation of working memory [216]. They are often modeled as
delayed feedback from soma to dendrite [197, 261] and have function-
ally been linked to coherent activity in interneurons. This property
is shared with electrical synapses, or gap junctions, generally. These
types of synapses can be traced to form large networks between in-
hibitory interneurons [72, 73]. Electrical synapses and autapses may
form single-node systems or small motifs in which delayed interac-
tions can lead to memory much longer than the delay.

Unlike a recurrently connected neural network, a single-node sys-
tem does not have degrees of freedom in the weight matrix between
nodes (Fig. 20a) that can be changed to adapt the dynamics and is
instead governed by a delay differential equation (DDE). Figure 20

shows the delay differential equation for a Mackey-Glass system [153]
that includes an exponential decay and a non-linear dependency on
the activity at delay τ and can be used as a DCR. Input to the system
is constant for one τ-cycle, randomly perturbed by a mask M that is
periodic in τ and mixed with the delayed feedback in the non-linear
term of the the DDE. In a physical system that implements the dy-
namics, we can sample the activity N times during each τ cycle and
compute the prediction of our input based on this sampling vector.
Analytically, DDEs are difficult to handle. Solutions can typically only
be defined for one τ cycle i, given that the solution on the previous
τ cycle i − 1 is already known. Because each solution is a function,
solving a DDE requires a map from function to function that could
in theory be infinitely dimensional for each τ.
Outside of exchanging the DDE used in the DCR, these intricate dy-
namics are difficult to change. In keeping with relatively simple phys-
ical realization of the computing system that makes the DCR so in-
teresting, one approach is to simply add additional delayed feedback
lines. However, given that the first delay already made the dynam-
ics of the DCR difficult to analyse, can we understand the dynamics
that enable computation in a two delay DCR? Nieters, Leugering and
Pipa [177] show how this simple addition of a second delay can in-
deed increase the performance of a DCR on a non-linear, history de-
pendent time-series prediction task significantly. But it can also lead
to decrease in performance by the same factor if the second delay is
chosen incorrectly. The reason is that the second delay introduces a
new layer of computation that can interfere with or add to the ability
of the DCR to represent a non-linear expansion of the past.

predicting time-series with dynamic computing systems 65

To analyze the system, it is useful to think of the sampled activity
along one τ cycle in the DCR as a network of virtual nodes and derive
the equation that updates each virtual node directly from an analytic
solution of the Mackey-Glass DCR [212]. If we sampleN virtual nodes
v = [v1, . . . , vN]T equidistantly, they are each spaced θ = τ/N apart.
The update equation for the DCR becomes:

vi = b(
θ

2
fi0 + θ

i
0) +

θ

2
Cfi (15)

where b =




e−αθ

e−2αθ

...

e−Nαθ




and C =




1 0 · · · 0

2e−αθ 1 0
...

. . . 0

2e−(N−1)αθ · · · 2e−αθ 1




and fi =




fi1

fi2
...

fiN




b captures the dependence of each solution vi for the i-th τ-cycle on
the initial value at ti0 and C is the implicit connectivity of the network
of virtual nodes. The vector f is the non-linear activation of the nodes
activity one τ cycle ago and the current input, similar to the activa-
tion of a node in a neural network: fij = f(x(t

i
0 + jθ− τ) +M(jθ)u(ti0)

and f(x) = x
1+x . If we add a second delay, this simply becomes

fij = f(x(ti0 + jθ− τ1) + x(t
i
0 + jθ− τ2) +M(jθ)u(ti0)). In this formu-

lation, we can distinguish the implicit dependency structure in the
DCR due to the inertia of the system and represented by C and the
explicit dependency introduced by additional delays in f.
Figure 21a shows different explicit dependency structures depending
on how τ2 is chosen in relation to τ1. Integer multiples for example
reinforce the dependency of a node vik onto itself in previous cycles
vi−1k . Generally, for τ2 = τ1 +mθ, additional dependencies on differ-
ent virtual nodes vjl and l 6= k in different cycles j < i are introduced.
Independent of the specific cycle, each new node in the dependency
set Dk of the original node vk is recursively dependent on virtual
nodes by the same rules. The size of this dependency set is given by

66 predicting time-series with dynamic computing systems

|Dk| =
N
d where d = GCD(τ1, τ2) is the greatest common divisor

between the two delays (see section B.4 for more details).

Jk
i

ii-1i-2i-3i-4i-5i-6i-7
st

at
e

x

dep. for τ2 = 1.4τ1 dep. for τ2 = 1.5τ1 dep. for τ2 ∊ {1.4τ1,1.5τ1}

cycle

k

N
R

M
S

E
G

C
D

(τ
1,
τ 2

)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2

0.4

0.6

0.8

1

1.2

τ2 in Θ

800 1200 1600 2000 2400

400

800

a.

b.

Figure 21: computation in delay-coupled systems with mul-
tiple delays a. Diagram of dependencies of virtual nodes in
a delay-coupled reservoir with more than one delay. In each τ-
cycle i, i− 1, . . . , nodes are coupled via the exponential decay of
the system. Across cycles, virtual nodes are coupled via the delay
term. While the first delay determines the cycle, the second delay
can add new dependencies.
b. Which nodes are newly coupled via the second delay has signi-
ficant effects. In a time-series prediction task the correct choicde
of the second delay can massively increase or deteriorate perform-
ance (green curve). Disabling the exponential decay in the system
reveals that this structure depends on the GCD of the two delays
as measured in virtual nodes in one τ-cycle (red curve and bot-
tom panel). Measured is the normalized root mean squared error
(NRMSE) on a non-linear autoregressive moving average time-
series (NARMA) with a time horizon of 10 time steps.

By increasing the speed of the decay α – i.e. α → ∞ – in equation
15, we can eliminate the effect of the implicit dependencies and invest-
igate the effect of explicit dependencies only vi = θ

2 fi. We found that
performance was consistently bad if the GCD between two delays
was large – such as τ2 = 2τ1 and τ2 = 3

2τ1 – and consistently very

predicting time-series with dynamic computing systems 67

good if the GCD was small – i.e .1when the two delays were co-prime
(Fig. 21b). Reintroducing the implicit coupling via C blurs this effect
but a large dependency set remains the correct strategy for a long
history dependence and optimal performance.
In sum, introducing delayed dependencies into simple systems is
a simple yet effective strategy to maintain a flat representation of
the past that can be used to compute predictions. Adding additional
delays can vastly expand the memory of the system without requiring
significantly longer delays. Instead, the longer memory is achieved
with an additional layer of dependencies resulting from the interac-
tion of the two delays over time. This suggests that discrete delays
may be a computational building block in neural circuits that rely on
a flexible working memory implementation [135].

+

u(t)

w1 w2 wN

u(t)
+ + +w1 w2 wN

u(t)

+ + +w1 w2 wN

a.

b.

c.

k=1
k=2
k=3
k=4
k=5

t

gk

Figure 22: filter banks can represent a signal on multiple

timescales . Concatenated exponential filters lead to gamma
response kernels of different degree. a. The individual responses
can be combined to represent an adaptive, parameterized filter
over a signal by a weighted summation of the individual taps. b.
The linearity of the convolution allows for the multiplication to
precede the filter operation. c. The filter can also be used on the
output of a node as a feedback signal.

Another strategy to represent the past of a particular stimulus is to
filter it on different timescales. A particular good candidate for this
is a filter bank of gamma filters [195]. In it, each filter individually

68 predicting time-series with dynamic computing systems

has an exponential filter response, but their concatenation results in a
gamma filter kernel gk(t) =

µk

(k−1)!t
k−1e−µt for the k-th filter in the

filter bank (Fig. 22a). For k = 1 we get an exponential filter response,
for k = 2 we get the double-exponential response. Both are familiar
as synaptic response kernels.
The responses of the different filter taps in the filter bank create a
continuous representation of the signals past, with the highest de-
gree kernel having the longest memory horizon, but also the widest
low-pass filter response. Similar to the DCR, a readout model can
weight the responses of each filter tap to create an adaptive, paramet-
erized filter response. But the linearity of the convolution operation
allows us to move this weighting operation around, and we can in-
stead weight each input directly (Fig. 22b). This approach can also
be used to create a feedback filter bank for single nodes or neurons
(Fig. 22c) which one can think of as a continuous version of the pre-
viously discussed delay-coupling with multiple delays.
De Vries and Principe [44] formulated a model of neural computation
based on gamma filter banks and delays [45] to implement recursive
memory structures and extended it to maintain in memory the activ-
ation of an entire neural network [171].

In a proposal (section B.5), we have outlined how the different
strategies to represent the past of the input and the activation can be
combined in a single neuron model to detect keywords in an audio
stream (Fig. 23a). The model combines filtering of input signals with a
feedback filter bank and spike generation and uses a local, gradient-
free learning rule adapted from the Tempotron learning mode [88]
together with a variance based intrinsic plasticity [138]. As a proof of
concept, all variables in the model are dynamically evolved in a dif-
ferential equations solver. Learning is triggered based on an external
trigger when the target was detectable and relies on internal traces
for each weight to compute a weight update (Fig. 23b).
To test the system, an audio signal from the speech commands data-
base [264] was decomposed into 10 signals according to the mel-
frequency log scale [83], each of which was passed to a gamma filter
bank with 10 taps, one filter bank was reserved as a feedback filter.
The system was able to learn a smooth membrane response that lead
to above chance performance on detecting "UP" (Fig. 23c).
The linearity of filtering operations allows for much flexibility in
designing new learning rules and employing a vast number of dif-
ferent filters in contrast to the simple filtering operation and a small
number of delays in a DCR. The same property also allows mul-
tiple inputs to be filtered by the same filter bank as long as learning
signals can be kept separate. This would allow for straight-forward,
adaptable analog hardware implementations of this adaptive filter-
ing framework [195]. Conversely, the filter responses can be much

predicting time-series with dynamic computing systems 69

broader and less specific in time and can require relatively long filter-
ing timescales depending on the problem to be solved. Nevertheless,
models inspired by the original work by De Vries and Principe [44]
can lead to intricate single neurons that absorb filtering into the com-
putational process. This is particularly well suited for complex, fast
and noisy temporal signals such as audio waveforms.
For modelling of neurons, the width of a synaptic response of a distal
synapse as recorded at the soma suggests [238] that a variety of syn-
aptic response kernels as degrees of a gamma response may be useful
to increase the spatial resolution and memory of single neurons and
include distance to the soma as a factor in the model.

a.

b. c.

Figure 23: proof of concept : adaptive filter neuron a. The adapt-
ive filter neuron combines input and feedback filter gamma filter
banks with an adapted version of the Tempotron learning rule
by dynamically tracking the activity at each filter tap and adding
an adaptive spiking mechanism ("Signal"). b. The system can be
entirely described as a coupled differential equation with missed
or triggered spikes adapting weights. c. The procedure can learn
to recognize the command "UP" from a mel-frequency decompos-
ition of a noisy audio file.

In theory, the continuous and unstructured representations of the
past of a stimulus or a system we have presented here can be suf-
ficient to provide the memory for a version of a universal Turing
machine [151]. In practice, using a dynamic computer that can keep
information about the past in its state when the input and target have
different inherent has proven difficult. Because the timescale of the in-
put, the reservoir and the output are tightly linked, adaptations to the

70 predicting time-series with dynamic computing systems

model are required to accommodate some independence [158, 244].
Nonetheless, the approach provides an elegant solution to store in-
formation in a flat, unstructured way that makes the past of a stim-
ulus or signal expanded in the non-linear dynamics of the system
available at a single point in time. Combined with a read-out model
that can be surprisingly simple this embedding is ideally suited to
predict and forecast the evolution of time-series and many dynamical
systems. It is in these important problems that the concept shines and
suggests that the circuitry required to solve these problems may be
much simpler than previously imagined.

6
L E A R N I N G G E N E R A L I Z E D D Y N A M I C S F R O M
T R A J E C T O R I E S .

In the previous chapter we have seen how trajectories can be fore-
cast into the future based on a a limited set of previously sampled
points along it. This intuition enabled a number of different dynam-
ically evolving computing systems as simple as single-nodes to solve
non-linear prediction tasks. But this approach is not sufficient to cap-
ture the general dynamics of more complex systems that change their
behavior. Sampled trajectories then only reflect the version of the sys-
tem currently observed.
Finding general descriptions in the form of governing differential equa-
tions of dynamical systems is the domain of many scientific discip-
lines. It not only enables the forecasting of trajectories from any given
state without requiring any further memory of additional previous
states, it also permits the study of tipping points: Sudden, fundamental
changes that lead to entirely different dynamical behavior of a sys-
tem.
A system’s dynamics are described by trajectories in state space, a
space defined by all variables of the system. It contains stable and
unstable manifold, separatrices and different types of attractors that
repel, attract, and separate trajectories and form the organizing struc-
ture that determines the dynamic behavior of the system [237]. A
change in this organizing structure due to the shift of an external
parameter is called a bifurcation of the system.
Unfortunately, stories about tipping points are now familiar to many
from the news: The impact of oceanic flows on both the global and
local climates [223], the impact of CO2 on the global warming of the
climate [232], the population levels of different species fighting for
survival, and many other examples [63].
Differential equations have a second advantage over purely predict-
ive models. Because they define the governing equations of a system
completely, trajectories from the system can be generated from any
initial value without the need to sample previous activations or any
memory at all. The most overt example of generative systems in be-
having animals is movement.
Here, dynamical system analysis has been used to analyze the move-
ment of professional athletes [41], and dynamical systems are used as
pattern generators and control policies in robotics [104, 209]. In these
cases, bifurcations in the dynamical system can be used to smoothly
switch between different movement patterns in an action [120].
In both ecological models and models describing the movement pat-

71

72 learning generalized dynamics from trajectories .

terns of animals and humans, careful observation, analysis, and hy-
pothesis generation and testing is usually required to find the appro-
priate set of differential equations. Often, for example in the case of
phytoplankton [219], our knowledge of the system is incomplete. In
case we can gather data from the system in question, new data-driven
methods and technologies are now being developed in machine learn-
ing that can help discover missing pieces in these models, or to learn
black box dynamical models from scratch.
In the framework of Universal Differential Equations (UDE) [198], we
reformulate the general equation for a dynamical system slightly. In-
stead of the general ẋ = f(x, t) we also include a universal function
approximator UAp that can be learned during data-driven training
of the model:

ẋ = f(x, t, UAp(x, t)

Because neural networks are shown to be universal function approx-
imators [38, 103], they are a good candidate for the function UA. In
this case, the parameters p represents the weights of the neural net-
works. We can include algebraic terms in the function f if we already
know something about the dynamics or train UA to approximate the
entire time differential.
The critical technological advancement is the training procedure to
find p. It is directly connected to the recent explosion in deep learn-
ing technologies. As Yann LeCun, one of the central figures in deep
learning research, exclaimed: “Deep Learning est morst. Vive Dif-
ferentiable Programming!”1. Differentiable programming means the
construction of a computer program in which parameters can be ad-
apted by gradient-descent. This is done by automatic differentiation
tools that can apply the chain rule to arbitrary code by tracking para-
meters. It is the basis of deep learning frameworks such as tensor-
flow [1], but the technique can also be applied to programs that aren’t
a neural network. In the case of the UDE, this program includes the
numerical solver for the differential equation.
The procedure then is very similar to training a neural network. We
first guess a set of initial parameters and solve the UDE on an in-
terval and initial condition for which we have previously collected
training data from a dynamical system. This will produce a trajectory
in state space that is likely considerably different from the observed
trajectory. Now, calculate a loss function based on the mean-squared
error (MSE) LMSE =

∑n
i

∑m
j (xji − p

j
i)
2 for an m-dimensional system

and n sample points at which the trajectories are compared. x is the
target trajectory and p is the prediction by the UDE. Automatic dif-
ferentiation can then take the gradient and adapt the parameter p of

1 Facebook users may find the post here
https://www.facebook.com/yann.lecun/posts/10155003011462143.
For everyone else, here is repost:
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814

https://www.facebook.com/yann.lecun/posts/10155003011462143
https://gist.github.com/halhenke/872708ccea42ee8cafd950c6c2069814

learning generalized dynamics from trajectories . 73

the neural network UA. Using a set of tools in the Julia programming
language, this process is straight-forward for the user [13, 107, 108].

a. Learned Dynamics Loss MSE

t

x,
y

UAp(x,y)

Training Data

Universal Differential Equation b. Learned Dynamics Loss LDA

t

x,
y

t

x,
y

Selkov Model

Figure 24: learning missing terms in the selkov model . A UDE
of the Selkov model that replace a term of the original model
with a neural network is trained to learn to generate the original
dynamics. a. When the MSE loss is used, this reconstruction fails
fundamentally. Instead of the oscillatory behavior of the system,
the UDE has learned a steady state solution. b. When the LDA
loss (see below) is used during training, the dynamics are recon-
structed perfectly.

In Vortmeyer-Kley, Nieters and Pipa [260], we investigated whether
this approach can be applied successfully to systems that can bifurc-
ate. The simple two dimensional Selkov model [215] used to model
the metabolic pathway of Glycolysis shows that a straightforward
solution using the approach as is fails (Fig. 24a). The free parameters
in the neural network UA are chosen randomly before training and
can lead to a dynamical regime in the UDE that is different from our
target trajectory. Instead of an oscillatory solution, we learn a steady
state solution and gradient descent is not able to recover from a local
minimum on the wrong side of the Hopf-bifurcation of the system.
The effectiveness of gradient descent optimization in deep learning
models is still not entirely understood, but for particular networks
theoretical analysis has shown that even a single neuron can render
local minima global [140] and the gradient descent finds the global
minima [54].
In the differentiable programming setup of UDEs this does not hold.
Figure 25b (blue curve) shows how measuring the loss of the UDE
in a simplified model with UA(x,y) = wyy leads to a maximum in
the loss landscape that separates the true global minimum from the
locally minimal landscape for wy < 0. We developed the simple in-
tuition that we should instead measure the difference in length of

74 learning generalized dynamics from trajectories .

vectors along the trajectory and the difference in angle between these
vectors separately and combine both in a new loss function (Fig. 25c).

LLDA =

n∑
i=1


k1 ·

√
(|~xi|− |~pi|)2

|~xi|+ |~pi|︸ ︷︷ ︸
length difference

+k2 ·
1− ~xi·~pi

|~xi|·|~pi|
2︸ ︷︷ ︸

angle difference


 (16)

Both components individually have local minima as well but at dif-
ferent values for wy which means we can smooth out the separating
global maximum in the parameter space. We hypothesized that in
higher dimensional parameter spaces this could suffice to learn the
dynamics of bifurcating systems if the correct weighting k1 and k2 is
chosen.

x

y

Mean Squared Error Loss

Cosine Difference

Length Difference

Combined LDA Loss

Legend

a. b.

c.

M
S

E

L
D

A
 C

om
po

ne
nt

s
L

D
A

Figure 25: mse and lda based loss function a. The UDE estimated
trajectory (red) and the target trajectory (gray) are compared at
different sample points. The MSE (dark blue) compares the dis-
tance of each variable at the sample point independently. The
LDA based loss compares the angle of the two vectors (cyan) and
the difference in length (purple) independently, but both are de-
pendent on both components of the state space vector. b. Shows
how the errors compare in the Selkov model with the simple
UA(x,y) = wyy. All errors separate large parts of the parameter
space from the global minimum at wy = 0.1 due to a global max-
imum. c. A weighted sum of the LDA loss components allows
a smoother combined loss, the LDA loss. Different weights are
shown, k1 = 0.25 (length) and k2 = 0.75 (angle) is marked as the
thick orange line.

In the Selkov model this was indeed the case and we were able find
the correct solution (Fig. 24b). However, we are still somewhat reliant
on the initial parameterization of the neural network. The effect of
the LDA loss is that it increase the basin of attraction of the correct,
global minimum and a significant portion of inital parameters learn
the correct behavior. When we trained the system in different config-
urations close to the bifurcation of the system from steady state to

learning generalized dynamics from trajectories . 75

oscillation and plot the distribution of errors after training we can see
this effect clearly (Fig. 26). To compare the solutions of both loss func-
tions on the same scale, we calculated the trajectory diffence between
the final solution of the UDE and the training trajectory.

TD =
1

n

n∑
i

‖xi − pi‖

If the system is close to bifurcation, the TD distribution over multiple
training runs with different initial parameters becomes bimodal and
the second mode corresponds to initial conditions that ended up in
the wrong dynamic regime. Using the LDA loss, this happens much
less frequently as the median of the distribution shows. Additional
details on the experiment as well as additional simulations for dif-
ferent parameterizations of the dynamical system and a number of
other bifurcating dynamical systems can be found in section B.7.

0.
15

0.
28

0.
34
5

0.
37
7

0.
39
4

0.
40
2

0.
40
6

0.
41
3

0.
41
6

0.
42
2

0.
43
4

0.
45
8

0.
50
5

0.
6

bifuraction parameter

0.0

0.2

0.4

0.6

0.8

1.0

1.2 0.2 0.3 0.4 0.5 0.6

0.0
0.1
0.2
0.3
0.4
0.5

m
ed

ia
n

tr
aj

ec
to

ry
 d

if
fe

re
nc

e

steady state oscillation

Figure 26: td distribution selkov model The UDE for the Selkov
model is trained with a range of different bifurcation paramet-
ers (the first term in the equation, 0.6 in the previous example)
used for the training data. We measured the trajectory difference
(TD) between the final UDE trajectory and the target to compare
solutions on the same scale. For each parameter, 50 different ini-
tial parameters were randomly drawn and the networks trained.
Red violin plots show the resulting TD distribution for training
with the MSE, blue violin plots the results for the LDA. The bars
and the inset show the median of the distribution.

A particularly attractive property of the UDE approach is that it
gives an extremely good estimate of the derivative of a dynamical
system which can be used in system identification schemes like the re-
cently propose “Sparse Identification of Nonlinear Dynamics” (SINDy)
[24] to replace the black box neural network model with a white box
algebraic equation, even in bifurcating systems[260]. This highlights
the potential of data-driven approaches in all areas of science that are
data-rich but in which it is difficult to formulate complete dynamical
models. However, in order to confidently deal with bifurcating sys-

76 learning generalized dynamics from trajectories .

tems more work is required on understanding and eliminating the
significant problem with local minima and underexploration of the
parameter space that can occur during training.

The function approximation model used in the presented experi-
ments is a simple, feedfoward multilayer perceptron. The complexity
of the approach did not originate in the neural network architecture
but was instead related to how the dynamic trajectory generated by
the system could be compared to the trajectory. The function approx-
imation capabilities of deep learning networks may indeed also be
approximated with trained spiking neural circuits in the brain [245,
272]. This suggests that dynamic control of, for example, movement
may also be learned by approximating the governing, pattern gener-
ating dynamical system. Similar to the suggestions made in Richards
and Lillicrap [202], our results on the learning of dynamical equation
advocate for a focus on the objective function used in optimization
instead of the complexity of the neural circuit. It is the problem state-
ment that matters most.
Importantly, the neural network used here is memory-free and can
still reliably organize dynamics in time by computing only the change
to the current state vector. This means that patterns can be gener-
ated from a cold start which in turn is also required to freely switch
between generated trajectories.

7
D I S C U S S I O N

How can neural circuits can represent information about the past
such that it is available for a computation at the right time? In our in-
vestigation, we learned that clever and quite different solutions to this
problem can be found in surprisingly simple systems. Delay-coupled
reservoirs obtain their ability to embed a long history of a signal by
simple, delayed self-connections. Concatenated filters along a delay
line can achieve a similar effect if inputs are connected at the correct
position. The encoded signal history can then be used to predict it.
In Universal Differential Equations, we can replace part of a differen-
tial equation – or replace it in its entirety – with simple multi-layer
perceptrons and learn from data. This would equate to a general-
ized model of a particular dynamical system. We do not even need
memory for prediction and generation of patterns from the dynam-
ical system if this generalization is available. Admittedly, we do need
a representation of the current state that we can update.
Lastly, we learned that dendritic plateaus are a fantastic candidate
to decode the rank-order of sequences of events that may operate on
different clocks than the computing neuron does. We formulated the
segmented dendritic tree neuron model to investigate whether the
principle of overlapping plateaus across functional subunits in the
neural dendrite should be regarded as a fundamental component of
neural computation from a theoretical perspective. We learned that
SDT neurons separate the external network of distributed represent-
ations over sub-symbolic spikes from an internal, locally symbolic
representation. Computation in SDT neurons means to probabilistic-
ally evaluate an expression structured by the dendritic tree, and the
response probability is proportional to the confidence in each con-
stituent component.
Because this offers an exciting and new perspective, we will first dis-
cuss the most pressing open questions and what is next for the SDT
model and then give a general outlook and conclusion to this thesis.

experimental verification of the sdt model . We haven’t
yet discussed how the role of dendritic plateaus in computation as
outlined by the SDT model can be validated experimentally. Because
an antagonist for NMDAr channels, ketamine [81], has been known
for some time, there are numerous behavioral studies in which NM-
DAr channel activity has been inhibited. Generally, ketamine can
have a broad range of effects and result in cognitive deficits inlcud-
ing schizophrenic and dissociative states [128]. Driesen et al. [51]

77

78 discussion

report a more specific effect of impaired performance in a spatial
working memory task and reduced activation during “encoding and
early maintenance” as measured by fMRI recordings. Wang et al.
[262] show that specific NMDAr blocking reduces delay cell [84] fir-
ing in dorso-lateral prefrontal cortex (dlPFC) resulting in impaired
working memory. In accordance with these studies, theoretical mod-
els have included the longer NMDAr induced post-synaptic potential
as a source of working memory instead of synaptic change [55, 142].
The SDT model can reproduce the behavior of delay cells of the syn-
aptic threshold at the soma is set to 0, and one key property of the
model is the longer memory induced by dendritic plateaus. The res-
ults from the behavioral studies support the key function of NMDAr
channel mediated active dendrites in computation and thus back a
fundamental assumption of the SDT model as well.
However, this doesn’t yet implicate that the symbolic computation on
rank-ordered sequences achievable based on the structured memory
in SDT neurons is also used in the brain. Here, the theory relied
strongly on the possibility that plateau potentials can interact in a
branching dendritic tree with functional subunits. We argued that
there is sufficient evidence that pyramidal neuron can implement this
computation. To verify that they do would instead require that plat-
eau initiation in dendritic trees is causally linked to previous plateaus
in the dendritic tree. Kerlin et al. [119] did record isolated calcium
events compartmentalized by dendritic branching. Dendritic spikes
in the distal preforant path of CA1 pyramidal neurons are gated from
reaching the soma if Schaffer-collateral synapses receive no input in
experiments [112]. Together, this presents at least cursory evidence
that this mechanism is a serious possibility. In section A.3 we suggest
a method to measure the relative timing of calcium events and com-
pare them to our model. The analysis could be used once even larger
sections of the neural dendrite can be imaged at high temporal resol-
utions.
Conversely, our model also implicitly relied on spatiotemporal spike
patterns in which synchronous volleys of spikes are central. Numer-
ous studies have confirmed that these do in fact exist and are of-
ten associated with spine clusters on dendrites [241], but how often
they occur depends on the data analysis used and has consequently
sparked fierce debates [190, 218]. Whether rank-ordered spike volleys
form a code is therefore not entirely clear. New methods to analyze
recorded spatiotemporal patterns of brain activity are now being de-
veloped and may be used to independently verify that our assumed
code of sequences of spike volleys is in fact expressed by neural cir-
cuits [229, 249].
The rapid development of experimental tools in recent years lead to
the convincing evidence for sequential codes in the brain on times-
cales that match dendritic plateaus (chapter 2). At the same time,

discussion 79

new experiments are painting a more detailed view of the function
of single neurons. To meet these advances and ever more detailed
measurements, models with different levels of abstractions must be
developed in which the plateau potential still takes center stage, but
different, measurable biophysical variables such as true membrane
voltages should be included to enable quantitative predictions. Fur-
ther, procedures to fit the behavior of measured neurons with act-
ive dendrites similar to spike-response models [80] can provide ad-
ditional insights into the importance of the long history dependency
induced by plateau potentials to explain the current spiking behavior.

an incomplete model of neural computation and cogni-
tion. Despite numerous criticisms of deep learning and connec-
tionist theories over the years [66, 160, 167], it is in many ways the
only game in town that combines a plausible approach to cognition
with the practicality of modelling the learning of a wide range of dif-
ficult artificial intelligence tasks.
In the SDT model, two puzzle pieces are still missing. Firstly, Hebbian
plasticity mechanisms adapting both pre- and postsynapse can enable
segments to find input populations that frequently emit synchronous
spikes volleys. Experiments support the claim that plasticity favors
coincident inputs and forms clusters to generate active dendritic re-
sponses Takahashi et al. [241]. Presynaptic release probabilities are
also set by local dendritic activity [18]. The challenge is that these syn-
aptic adaptations are dominated in experiments by the local plateau
signal itself, which is absolutely required for long term potentiation
(LTP) [19], and not by signals from other parts of the neuron such as
backpropagating action potentials [90, 143]. While these results em-
phasize the importance of active dendritic events and dendritic plat-
eaus for learning, they also pose a problem. The individual segments
in SDT neurons however must learn to cooperate to express salient
features, otherwise the neuron will never engage in plateau compu-
tation because the gating cascade from distal dendrite segments to
soma is never engaged. A potential solution may involve a combin-
ation of the local plateau potential and backpropagating action po-
tential [265] that can still be larger than the previously initiated plat-
eau if propagated without failure [75] and the calcium hypothesis for
plasticity [61, 86] that suggests that synaptic adaptations change in
strength and sign (LTP or LTD) based on duration and amplitude of
locally induced calcium concentrations. Together with a global modu-
lation of plasticity based on neuromodulaters [203], there is reason to
believe that the credit assignment problem may be solved in complex
SDT neurons and rank-ordered codes can be discovered directly from
data.
An exciting prospect for SDT neurons is the inclusion of other plasti-

80 discussion

city mechanisms that are typically rarely considered in computational
models but would have significant and important effects in our model.
This is seen most clearly in structural plasticity: Whether a particular
afferent population connects to a distal or more proximal dendrite
segment is what defines the computational function of any particu-
lar SDT neuron. Butz, Wörgötter and Ooyen [29] review variety of
structural changes in cortical circuits that include spontaneous cre-
ation of new synaptic connections, reactive structural changes after
lesions and in response to electrical activity, and neurogenesis. Re-
cent evidence suggests that pro-brain-derivded neurotrophic factor
(proBDNF) may play a role as a reward or punishment signal in the
development of synapses and dendritic spines [114, 271]. New brain
imaging techniques also reveal that even the brains white matter, the
axon’s insulation, changes and may be involved in plasticity that op-
timizes the synchronous transmission of signals [64].
In sum, while the theory still needs a convincing plasticity rule that
can coordinate learning between segments based on signals that are
locally available, there is a vast body of evidence emphasizing the im-
portance of active dendritic processes for plasticity. Further, forms of
plasticity that are harder to investigate in experiments and collected
under the umbrella term structural plasticity may have significant im-
plications for learning in segmented dendritic trees.
Secondly, the coordination by recurrent network connections to cre-
ate, enhance and manipulate the rank-ordered code of spike volleys
is crucially important to complete the model. This is what links the
internal symbolic model of one neuron to another. Since the hip-
pocampus is well known to generate sequential activations, several
models have been proposed which can account for the typical theta
and gamma sequential rhythms that activate cellular assemblies in
sequence (e.g. [115, 250]). The specific response of recurrently connec-
ted neurons can also specifically change based on past activation due
to dynamic synapses [168, 251] or the state of each neuron at the cur-
rent time as in the HTM model of sequence memory [92].
Particularly interesting is work by Korndörfer et al. [126] that shows
how the coherence of spikes from a population can be dependent on
the familiarity of a population with that specific stimulus. In the con-
text of SDT neurons, this gives an alternative encoding axis for pop-
ulations as not only the firing probability but also the coherence of
emitted spikes can be used to increase the number of spikes per spike
volley. The bias, interpreted as previous familiarity with the input, of
a population may be encoded along this dimension, meaningfully ex-
tending the coincidence population code used in our model.

a diversity of solutions . The fact that network coordination
in SDT network models may yet again require a slightly different per-
spective on computation compared to the single SDT neuron is em-

discussion 81

blematic of a common theme in this thesis: Diverse problems require
diverse solutions. We have seen that SDT neurons are particularly
well suited to computation over rank-ordered events and may offer
a mechanism for symbolic computation at the neural level, but they
are a bad fit when a time-series must be predicted and velocity is an
important signal.
Delay-coupled reservoirs are ideal candidates to create non-linear em-
bedings of such continuous signals in very simple systems with fast
internal dynamics.
If the signal itself is already very fast and the information must be
filtered on multiple slower timescales to extract the relevant signal, a
concatenated filter may be the right approach.
The study of data-driven learning of differential equations showed
that some problems may not need memory after all, if the general-
ized dynamics can instead be learned by a function approximating
neural network in the deep learning tradition. This however shifted
the problem to correctly evaluating a loss or credit function, and time
is still an important factor in these system to match the desired velo-
city in the generated dynamics.
It comes as no surprise that all solutions – some more than others
– potentially have an analogous implementation in neural systems.
Biology generates diversity as a strategy. Integrating these diverse
strategies into coherent models is therefore an important task. A com-
putational account of behavior ultimately includes the perception of
visual scenes and sounds to symbolic reasoning processes and back to
a motor command that orchestrates a specific pattern of motor move-
ments.
Neuromorphic computing as the basis for autonomous, artificially in-
telligent systems behaving in and interacting with a real and uncon-
trolled environment provides an excellent platform to develop such
integrated computing platform of diverse solutions – the range of dif-
ferent problems to be solved justifies it.
The increase in diversity also comes with an explosion in complex-
ity. This has led to computational and theoretical models in neuros-
cience focusing sharply on specific phenomena and feigning ignor-
ance about the rest. This thesis has certainly followed this trend in
parts. For example, do integrative computation and dendritic plateau
computation coexist in pyramidal neurons? If diverse solutions must
be considered, we must make an effort to reintegrate. What are the
distinct components of this integrated standard model of neural com-
putation?

82 discussion

conclusion : the many faces of time . We began the thesis
by exploring how the concept of universal time familiar to us – at
least in modern everyday life with alarm clocks and appointments –
vanishes from the fundamental descriptions of the universe and then
reappears, ordering events into past, present and future. Usually, this
is where the story ends. Ask any physicist.
But, as we kept walking deeper into the woods of computational
mechanisms with which we perceive the world ordered in time, its
universality was once again lost. Different percepts seem attached
to different and sometimes varying clocks that may or may not be
synchronized to the clock of our computing devices and they cer-
tainly do not seem to care. Even in the perception of a single, simple
scene, time shows its many faces. The processing of perceivable dis-
crete sequences requires a different computer than the processing of
a perceived continuous signal. Different clocks and different repres-
entations.

We made an effort to accept this challenge, process information as
we receive it, and find strategies to remember what was important to
decode the many orders of time. In doing so, we found that time is
a strong organizational principle in the brain [31] and the basis for
structure in internal representations on a fundamental level. When
writing a piece of code to analyze some data, we often make an effort
to remove or abstract the temporal dimension only to turn around
and execute our program which sequentially feeds data and instruc-
tions to the CPU to compute the result.
Time and the structure it imposes are close friends to computation.

Part I

A P P E N D I X

A
A P P E N D I X : A D D I T I O N A L M E T H O D S

a.1 implementation of the navigation experiment

To simulate the stochastic movements of an animal in a two-dimensional
environment, random paths are generated with time-varying loca-
tion l(t) = (X(t), Y(t)) ∈ R2 as solutions of the following system
of stochastic differential equations:

dX = cos(2πA)Vdt

dY = sin(2πA)Vdt

dA = 0.25dWA
dV = 10.0(0.25− V)dt+ 0.1dWV

(17)

A represents the angular heading of the animal, V represents its ve-
locity inms−1 andWA,WV represent independent standard Brownian
motion processes. Each path is generated with a randomized initial
position within a rectangular domain of 10 cm× 9.5 cm , a random
angular heading and a random velocity according to the marginal
stationary distribution of V in the equation above, and is simulated
for a fixed duration of 200ms. Three populations of place cells, each
20 neurons strong, are centered on a hexagonal grid with center-to-
center distance of r ≈ 2.9 cm. Each population randomly emits spike
volleys following a homogeneous Poisson process with rate λ = 50Hz.
The magnitude of each spike volley is determined by the popula-
tion’s mean activity at the time which depends on the animal’s loc-
ation within the environment through a receptive field tuning curve.
The tuning curves model the probability of each individual neuron
within the population to participate in a given spike volley by the
bell-curves fi(x) = exp(−x−µi

2σ2
) with coefficient σ = 9.7mm, centered

on the tiles of the hexagonal grid. The total number of spikes emitted
during a volley from population i at time t is therefore a random vari-
able distributed according to a Binomial distribution with population
size n = 20 and probability p = fi(l(t)). Additionally, each neuron
in the population emits random spikes at a rate of 5Hz to emulate
background activity. Each spike is transmitted through stochastic syn-
apses independently with probability 0.5.

Each of the simulated neuron’s dendrite segments receives spiking
input from the 20 neurons of one population and requires either 6 or
3 coincident spikes to trigger a plateau potential. The three segments
are connected in a chain that requires sequential activation by spike

85

86 appendix : additional methods

volleys from the input populations in correct order to fire a spike. A
random path is considered to be accepted by the neuron if the neuron
responds with a spike at any point in time during the corresponding
simulation run.

To evaluate the rotation and location sensitivity of the neuron, we
also generate straight paths with constant movement speed v = 3r

200ms ≈
43 cms−1 that are either rotated around the center of the environment
by an angle α or offset from the center by a distance ∆x orthogonal to
the optimal movement direction. For each angle or offset, respectively,
the empirical firing probability of the neuron in response to that path
is estimated by simulating the path and the neuron’s responses 500
times each.

a.2 simulation framework for dendritic plateau com-
putation

All simulations are implemented in a custom package developed in
the Julia programming language [13], publicly available via the code
repository hosted at https://github.com/jleugeri/DPC.jl and a fork
specific to the thesis at https://github.com/pnieters/DPC.jl.
The simulator implements the neuron model outlined in this paper
using a fast and extensible event-based formalism. All experiments
and configuration files can be found in the examples subfolder of the
repository.
Further documentation of the simulator, its interfaces, and imple-
mentation details can be found there as well.

a.3 a method for experimental verification.

The method presented here was jointly developed with Johannes Leugering
and was part of a previous pre-print version of [136] found at
https://www.biorxiv.org/content/10.1101/690792v3.full.pdf
with minor corrections.

Figure 27 demonstrates how the relative timings of plateaus in
dendritic trees can reveal whether they follow the assumption of gat-
ing of dendritic plateaus by dendritic plateaus. If plateau timings
and initiations can be measured, this method could form the basis
of experimental verification of this assumption and enable analysis
of dendritic structure by plateau timings.

https://github.com/jleugeri/DPC.jl
https://github.com/pnieters/DPC.jl
https://www.biorxiv.org/content/10.1101/690792v3.full.pdf

A.3 a method for experimental verification. 87

Figure 27: dendritic morphology imposes timing constraints .
The computational function implemented by the dendritic gating
of plateau generation imposes constraints on the timing of plat-
eau initiation that can be measured. Here, we show the timing of
two connected segments, either consecutively or in parallel with
threshold 1 or 2 in relation to a third segment in a a joint dis-
tribution of ∆tB,∆tC of dendritic plateaus directly preceding a
somatic spike or plateau event at tA.

a. If segments are connected consecutively, the distribution of tim-
ings has a parallelogram structure because Bmust always precede the
spike at A, but C must have also preceded B by at most 100ms each
in this configuration with plateau length τP = 100ms. All measured
events in a computationally produced sample fall into this boundary.

b. A parallel AND connection instead enforce timings in a narrow
100ms window on both axis as plateaus must overlap but need not be
ordered.

c. A parallel OR connection results in a much broader distribution
L-shaped joint distributions as a plateau in either segment would suf-
fice.

B
P U B L I C AT I O N S A N D C O N T R I B U T I O N S

b.1 paper : a minimal model of neural computation with

dendritic plateau potentials

Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘A minimal
model of neural computation with dendritic plateau potentials.’ In:
bioRxiv (2021), p. 690792

Abstract

Over the last two decades, advances in neurobiology have established
the essential role of active processes in neural dendrites for almost
every aspect of cognition, but how these processes contribute to neural
computation remains an open question. We show how two kinds of
events within the dendrite, synaptic spikes and localized dendritic
plateau potentials, interact on two distinct timescales to give rise to
a powerful model of neural computation. In this theoretical model
called dendritic plateau computation, a neuron’s computational func-
tion is determined by the compartmentalization of its dendritic tree
into functionally independent but mutually coupled segments. We
demonstrate the versatility of this mechanism in a simulated navig-
ation experiment, where it allows an individual neuron to reliably
detect a specific movement trajectory over hundreds of milliseconds
with a high tolerance for timing variability. We conclude by discuss-
ing the implications of this model for our understanding of neural
computation.

89

A MINIMAL MODEL OF NEURAL COMPUTATION WITH
DENDRITIC PLATEAU POTENTIALS.

Johannes Leugering*

Fraunhofer Institute for Integrated Circuits
johannes.leugering@iis.fraunhofer.de

Pascal Nieters∗
Osnabrück University, Germany
pnieters@uni-osnabrueck.de

Gordon Pipa
Osnabrück University, Germany
gpipa@uni-osnabrueck.de

May 31, 2021

ABSTRACT

Over the last two decades, advances in neurobiology have established the essential role of active
processes in neural dendrites for almost every aspect of cognition, but how these processes contribute
to neural computation remains an open question. We show how two kinds of events within the
dendrite, synaptic spikes and localized dendritic plateau potentials, interact on two distinct timescales
to give rise to a powerful model of neural computation. In this theoretical model called dendritic
plateau computation, a neuron’s computational function is determined by the compartmentalization
of its dendritic tree into functionally independent but mutually coupled segments. We demonstrate
the versatility of this mechanism in a simulated navigation experiment, where it allows an individual
neuron to reliably detect a specific movement trajectory over hundreds of milliseconds with a high
tolerance for timing variability. We conclude by discussing the implications of this model for our
understanding of neural computation.

1 Introduction1

The vast majority of neural tissue is occupied by neural dendrites [1], the extensively branching tree structures on which2

almost all synapses terminate. Yet, most simplified neuron models have focused on the diverse dynamics underlying3

somatic spike generation [2]. In recent years, however, it has become increasingly evident that the computational4

function of a neuron is largely determined by properties and dynamics of its dendrite [3]. In particular, a steadily5

increasing number of studies find dendrites that generate active responses to spiking input. Further, these active dendritic6

processes appear to be fundamental to brain function [4, 5, 6, 7]. The observed effects range from short-lived Na+7

spikes [8] to the particularly striking dendritic plateau potential [9] — an intricate dynamic response mediated by8

NMDA receptors that maintains a strong depolarization of the local dendritic membrane potential for long periods9

of time. The complexity of these mechanisms and the diversity of neuron types makes determining the right level of10

abstraction for a single model of neural computation difficult [10].11

For example, a recent study by Ujfalussy et al. [11] concluded that the somatic membrane potential in layer II/III12

pyramidal neurons can largely be explained by a linear statistical model. A simple non-linear model can improve the13

result, but the introduction of additional non-linearities only leads to minor improvements. Li et al. [12] also argue, that14

the properties of dendritic integration can be approximated well by a point-neuron model, if specific synaptic current15

effects are incorporated. On the other hand, seminal work by Poirazi et al. [13] suggests that in fact a 2-layer artificial16

neural network may be necessary to capture the input-output mapping of a single neuron, implying that the neuron’s17

expressive power may be on a similar level. Whereas these earlier results analyzed the neuron in a static framework,18

Beniaguev et al. [14] incorporate temporal dynamics as well, and instead conclude that a temporally convolutional deep19

∗Both authors contributed equally.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

neural network is better suited to model the single neuron’s behavior. However, it is difficult to draw direct conclusions20

about the computational capabilities of a complex neuron from the complexity of a quantitative model of the neuron’s21

membrane potential.22

The most popular metaphor for neural computation to date is the linear-nonlinear (LN) point neuron that inspired the23

development of artificial neural networks [15]. LN neuron models make no use of dendritic complexity at all, and24

instead rely on a complex network of synaptic interconnections between individually simple neurons. This approach25

has worked exceedingly well for deep learning [16] and provides a compelling model for some forms of fast sensory26

processing e.g. in early visual areas [17], but it neglects a dimension critical for any interaction with the real world —27

time. Many behavioral or higher cognitive tasks require the ability to integrate, process and retain information across28

multiple, dynamically varying time scales. Consider, for example, a rodent navigating an environment in search of food.29

Receptive fields of place and grid cells tile a spatial map of this environment and encode the current position by their30

population activities [18, 19]. To navigate successfully, the animal needs to know not only its present location, but also31

the path it took through the environment. Decoding this path from sequential place and grid cell activity requires the32

integration of information on behavioral time scales that can span hundreds of milliseconds or more [20, 21]. Similar33

long sequential patterns can be found also in olfaction [22, 23] and cortical auditory processing [24], and they are likely34

involved in higher cognitive tasks such as language understanding, as well.35

But how can such long temporal patterns of neural activity be processed by volatile neurons with membrane dynamics36

on the time scale of only tens of milliseconds or less [25]?37

Our main idea is this: Neurons with active dendrites that generate dendritic plateau potentials have a form of working38

memory on a much longer time scale than that of individual spike responses. The interaction of these dendritic plateaus39

establishes a computation that enables single neurons to process information on long time scales and in a structured40

way. We derive this concept from a wealth of recent biological findings, which we categorize into four fundamental41

modelling assumptions (Section 2), and find that:42

• A qualitative neuron model captures dendritic plateau computation in a tree structure of dendrite segments. The43

computational complexity of the model results from the interactions of these segments on the long timescale44

of plateau potentials (Section 3)45

• The computational capabilities of dendritic trees can be characterized by a small set of elementary motifs46

(Section 4)47

• Dendritic segments can robustly decode sequential activations of neuron populations. An example of path48

detection from place cell activity illustrates two key properties of dendritic plateau computation, timing49

invariance and a graded stochastic response, that lead to an intricate spatiotemporal receptive field (Section 5)50

• Single neurons can implement structured computations over symbol-like inputs, motivating a new view on51

neural computation (Section 6)52

2 Biological evidence for neural computation based on dendritic plateaus53

Active generation of localized dendritic plateau potentials. Most of a cortical pyramidal neuron’s excitatory synaptic54

inputs terminate on dendritic spines [26], where post-synaptic ion channels are activated via the stochastic, pre-synaptic55

release of glutamate-carrying vesicles [27, 28]. The activated channels, primarily controlled by α-amino-3-hydroxy-56

5-methyl-4-isoxazolepropionic acid receptors (AMPArs) [29], become conductive to a mixture of ions, which leads57

to a brief depolarization in the corresponding spine, referred to as the excitatory post-synaptic potential (EPSP) [30].58

In addition to AMPArs, the synaptic release of glutamate can also activate N-methyl-D-asparate receptor (NMDAr)59

gated ion-channels [29], but they do not become conductive unless a channel-blocking Mg+ ion is first displaced by a60

sufficiently strong depolarization [31, 32]. However, coincident EPSPs from multiple nearby spines can accumulate61

and thus induce this required depolarization of the local dendritic membrane potential [33]. Experimental as well as62

simulation studies report that this requires a volley of 4-20 or even up to 50 spikes within 1 ms to 4 ms, depending63

on the location along the dendritic tree [33, 34, 35, 36]. The opening of NMDAr channels triggers a massive influx64

of different ionic currents that lead to a full depolarization of the local dendritic membrane potential. Although the65

isolated NMDAr response itself is reported to only last on the order of around 25 ms [37], in vivo recordings reveal66

that voltage-gated channels in the dendritic membrane [38] prolong this effect, resulting in an actively maintained67

depolarization that can last from tens to hundreds of milliseconds [39] (see Fig. 1b for an illustration of this mechanism).68

Such active long-lasting dendritic processes, dendritic plateau potentials, are ubiquitous [9, 40], and provide neurons69

with potentially useful memory traces that can last hundreds of milliseconds. Because NMDAr channels are gated by70

both depolarization and the presence of glutamate, plateau potentials remain localized, and do not actively propagate71

along the dendrite [41].72

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

b. Dendritic plateau process

AMPAr channel
NMDAr channel
VGCC

spine
synapse
segment

c. Simplified mechanisma. Segmented dendritic tree

+
+

&

reset trigger

2 - excit. syn.

3 - inhib. syn.

1 - dendr. input

4 - pulse gen.

Figure 1: How dendritic plateau potentials are generated, and how they interact. (a.) A stylized neuron with
dendritic arbor. (b.)Summary of the biological processes involved. A spike (1) releases glutamate, which opens
AMPAr-gated ion-channels that depolarize the post-synaptic spine and cause an EPSP (2). If sufficiently many EPSPs
coincide with up-stream dendritic input (0), the local membrane potentials rises (3) and NMDAr-gated ion-channels
become de-inactivated, causing a further localized depolarization (4). Additional voltage-gated calcium channels
can amplify and prolong this process (5) and cause a plateau potential, which can in turn moderately depolarize the
parent segment (6 & 0). (c.) An algorithmic approximation of the biological mechanisms. If a dendrite segment is
depolarized by sufficiently strong input from its child segments (1) and receives sufficiently strong excitatory input from
its stochastic synapses (2), a local plateau potential is initiated. If the plateau is not interrupted by shunting inhibitory
input (3), it depolarlizes the parent segment for an extended period of time.

Passive asymmetrical propagation of membrane potentials. The passive propagation of membrane potential through73

the dendrite is described by neural cable theory [42]. Only for very specific branching patterns, the complex dendritic74

tree can be reduced to an equivalent model of a cylinder, Rall’s ball-and-stick model, in which the contribution of75

individual synaptic inputs sum (sub-)linearly and nearly instantaneously [43]. Due to its simplicity, this special case is76

often used to motivate abstract point-neuron models such as leaky integrate-and-fire neurons, which ignore the spatial77

dimension of the dendritic tree entirely and instead model the neuron as if it were a single electric compartment [44].78

But in general, the passive spread of membrane potentials depends on the morphology and electrical impedance of79

the dendritic tree, specifically on the relationships of branch-diameters at the branching points [8]. For example, a80

back-propagating action potential moving in retrograde direction from soma to apical dendrite is only slightly attenuated81

if the dendritic branches become progressively thinner. However, the attenuation of singals in the anterograde direction82

is so strong, that synaptic input onto thin apical dendrites has little measurable effect on the membrane potential at the83

soma [45, 38]. One proposed solution to restoring “dendritic democracy” [46] and ensuring similar contribution of84

all synapses to the somatic membrane potential regardless of its position along the dendrite is an increased synaptic85

efficacy at distal synapses, which has been observed in hippocampal pyramidal neuron [47]. Another solution is86

the active amplification of distal synaptic input by active dendritic processes, which was shown to be required for87

somatic spiking [48]. Complex spike bursts in particular require the activation of NMDA receptors [49]. The resulting88

plateau potentials are also subject to anterograde attenuation along the dendritic cable, and thus only have a moderately89

depolarizing effect on their immediate neighborhood [50]. This effectively raises the local resting potential for the90

duration of the plateau potential, thus lowering the amount of coinciding spikes required to initiate a plateau potential in91

this neighbourhood [51].92

Functional compartmentalization of dendrites. The structure of dendritic arbors has long been conjectured to play an93

important role for neural computation. Koch et al. [52] calculated, that due to impedance mismatch at branching points94

in the dendrites of various types of retinal ganglion cells, distinct electrically isolated functional subunits emerge, i.e.95

regions with a roughly equal local membrane potential throughout, which are only weakly coupled to their neighboring96

regions. For example, experiments in rats confirmed that thin dendrites in neorcortical pyramidal neurons can act as97

independent computational subunits that provide neurons with an additional non-linear integration site, increasing98

the potential computational power of the single neuron [53]. This behavior is not limited to pyramidal neurons, but99

rather appears to be a general principle that can be found in various forms across different cell types. For example,100

Purkinje cells in the cerebellum also generate localized Ca2+ events in response to coincident input on individual101

dendrite segments [54, 55], and thalamo-cortical neurons respond to strong synaptic input by localized plateaus in distal102

dendritic branches [56]. Branco and Häusser [57] identify such functional subunits with individual dendritic branches,103

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

which they suggest constitute the “atomic unit” of computation in neural systems.104

Rather than a single branch, one such functional compartment can also, stretch across multiple nearby branches, as105

long as synapses carrying correlated input signals cooperate to trigger local, regenerative events. Wybo et al. [58]106

present evidence for such compartmentalization and point out that structural plasticity may even allow the neuron to107

dynamically change the structure of its functional compartmentalization. We view dendrites as complex structures108

composed of functional subunits in this sense and will refer to them as dendrite segments.2. The segmentation implies,109

that only nearby synapses cooperate to trigger local regenerative events such as plateau potentials. To effectively drive a110

neuron, inputs therefore have to be clustered such that correlated spikes arrive at the same dendrite segment at the same111

time. This is observed in experiments [59] and suggests an alternative view of spike-based communication in which112

clustered groups of synaptic spines receive highly synchronized spiking inputs [60]. Since the resulting simultaneous113

EPSPs are required to trigger the NMDAr response, we therefore consider these highly synchronized spike volleys as114

the atomic unit of spike-based communication.115

Stochastic excitation and shunting inhibition. An AMPAr or NMDAr response to an afferent neuron’s input spike116

requires the prior release of neurotransmitter at the pre-synaptic terminal of a synapse. This process, however, is117

stochastic and best described by a “quantal” theory of neurotransmitter release [27, 28], according to which the118

successful transmission of a spike at a synapse is a random event with probability pr. Branco et al. [61] found that in119

hippocampal synapses, pr is distributed with a median of 0.22, which emphasizes the fundamentally stochastic nature120

of neural computation. The considerable variance of this distribution can be largely explained by the location of the121

synapse in the dendritic tree. The release probabilities of nearby synapses are much more homogeneous, which provides122

further evidence of the aforementioned functional segmentation of the dendrite.123

AMPAr mediated EPSP responses as well as NMDAr mediated plateau responses can also be modified by inhibitory124

input at GABAA or GABAB synapses. The resulting shunting inhibition current can have both a subtractive and divisive125

effect on post-synaptic membrane potential [62]. The effect of shunting inhibition on active dendrites can be even more126

dramatic, outright stopping the generation of plateau potentials [63]. The interactions of plateaus and inhibition can127

be intricate [64], and inhibitory synapses tend to be placed critical positions within the dendrite to control dendritic128

excitability [65] or gate layer specific input from reaching the soma [66].129

3 A computational model for dendritic plateau computation130

From the biological observations outlined above, we derive a simple, qualitative model of active dendrites. At the core131

of this model lies the interaction of two types of events on distinct time-scales — short, spike-triggered EPSPs and long,132

actively generated dendritic plateau potentials — in a tree structure of dendrite segments. We define a segment as a133

minimal part of the dendritic tree, e.g. a single physical branch or stretching across multiple branches, that behaves as134

one functional, electrically isolated integration site. In other words, the synaptic inputs of a segment can cooperatively135

generate a plateau potential that stays confined to the segment. These dendrite segments form a tree structure with the136

soma at its root and thin dendrite branchlets as leaves.137

Let’s consider the function of one individual dendrite segment i in more detail (see figure 1c for a schematic).138

We distinguish excitatory and inhibitory synapses, which respectively produce excitatory (EPSPs) and inhibitory139

postsynaptic potentials (IPSPs). An excitatory synapse from neuron k to segment i only successfully transmits each140

spike with probability pi,k. If the synapse transmits the spike, it induces an EPSP κE(t) with duration τE and a141

magnitude wi,k, which depends on the synaptic efficacy. Likewise for an inhibitory synapse, only that the duration τI of142

the IPSP is typically slightly longer. We model the shape of the post-synaptic potentials by rectangular pulses:143

κE(t) =

{
1 if 0 ≤ t ≤ τE
0 otherwise

, κI(t) =

{
1 if 0 ≤ t ≤ τI
0 otherwise

We use exci and inhi to represent the set of excitatory and inhibitory neurons targeting segment i, we denote the time144

of the mth spike by neuron k with tmk , and introduce the i.i.d. random variables ξmi,k ∼ Bernoulli(pi,k) to simplify145

notation. We can then define the combined effect of excitatory as well as inhibitory input for segment i3:146

2We avoid the term “compartment” to prevent confusion with the concept of multi-compartment neuron models, which are
commonly used as a spatially discretized solution to partial differential equation models of neurons.

3We assume that spike arrival times tmi,k are at least τE apart.

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

EPSPi(t) =
∑

k∈exci

∑

m|tmk ≤t
ξmi,kwi,kκE(t− tmk) (1)

IPSPi(t) =
∑

k∈inhi

∑

m|tmk ≤t
ξmi,kwi,kκI(t− tmk) (2)

PSPi(t) = EPSPi(t)− IPSPi(t) (3)

One of the necessary preconditions for generating a dendritic plateau potential is a sufficiently strong net depolarization147

of the dendrite by synaptic input, i.e. larger than a segment-specific synaptic threshold TSi, caused by the coincidence148

of multiple synchronous spikes. In thin dendrite branchlets, i.e. the leaf nodes of our tree structure, this is sufficient149

to trigger a plateau potential. But in the general case, additional depolarizing input from dendritic child branches is150

required. Here, we are only interested in the large depolarizing effects that actively generated plateau potentials have on151

directly adjacent segments, and we ignore the much weaker passive propagation of sub-threshold voltages along the152

dendrite.153

We therefore introduce additional notation: childi denotes the set of the direct children of segment i (if any), and154

Ok(t), k ∈ childi is the effect that the child segment k exerts on i at time t. Just like we did for the post-synaptic155

potentials, we can then define the total dendritic input Di(t) into segment i:156

Di(t) =
∑

k∈childi

Ok(t) (4)

The segment-specific dendritic threshold TDi determines, how much dendritic input is required in addition to synaptic157

input to trigger a plateau potential in segment i. For leaf nodes of the dendritic tree, i.e. segments without any children158

of their own, we set TDi = 0.159

When both conditions become satisfied, i.e. there is sufficient synaptic and dendritic input, then a plateau potential is
initiated. We use Tmi to denote the starting-time of the mth plateau potential in segment i:

Tmi = min t ≥ Tm−1i such that PSPi(t) ≥ TSi ∧Di(t) ≥ TDi (5)

The plateau plateau then typically ends at time T̃mi = Tmi + τP after the fixed duration τP , unless it is interrupted by160

shunting inhibition, or it is prolonged by additional synaptic inputs.4 We formalize these special cases as follows: The161

first inhibitory spike, if any, from neuron k ∈ inhi at time tlk ∈ [Tmi ;Tmi + τP] can end the plateau, i.e. in that case162

T̃mi = tlk. Otherwise, if another plateau is triggered at time Tm+1
i ∈ [Tmi ;Tmi + τP] before the previous plateau has163

run its course, the first seamlessly flows into the second, i.e. T̃mi = Tm+1
i .164

We can now define the output of segment i as a sequence of binary pulses, the plateau potentials:165

Oi(t) =

{
1 if ∃m : t ∈ [Tmi ; T̃mi]

0 otherwise
(6)

This formalism can be iteratively applied to all segments of a neuron, including the soma, only that the segment produces166

a spike event followed by a brief refractory period τrefrac instead of each long-lasting plateau potential. 5167

Conceptually, each dendrite segment acts first and foremost as a coincidence detector for a volley of synchronized168

spikes on the fast time scale of EPSPs. On the second, slower time scale of dendritic plateaus each segment is gated169

by its children in the dendritic tree. The computation of the neuron thus depends on a sequence of activations of its170

segments by spike volleys, which can be interrupted by shunting inhibition.171

4 Motifs of dendritic plateau computation172

The structure of the tree of dendrite segments determines which activation patterns lead to dendritic plateau potentials in173

all dendrite segments of a neuron, and therefore determines the computation implemented by the neuron. Each segment174

4In engineering terms, this resembles a re-triggerable monoflop with reset.
5In addition to the forward-propagation of membrane potentials that we focused on so far (i.e. from child branches to the parent),

the reverse direction typically has an even stronger effect — strong enough for the parent segment to depolarize its child segments by
itself. To capture this effect, we recursively define that a neuron segment k’s membrane potential Vk(t) = Ok(t)∨ Vi(t), k ∈ childi

is depolarized whenever either the segment itself or any of its ancestors produces a plateau potential. However, while this peculiarity
may be relevant for learning, it cannot impact the forward model of dendritic plateau computation that we present here.

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

C

B

A

a. Sequential segments

C

B

A

b. Parallel segments (either required)

0 200 400

time [ms]

C

B

A

c. Parallel segments (both required)

Figure 2: Various dendrite motives respond to different inputs. dendrite segments A, B and C receive spike volleys
from corresponding neuron populations (color coded). We indicate for each segment, when it is enabled by its children
(weakly shaded) or in a plateau state itself (shaded). (a.) If segments A, B and C form a chain, then C can only be
activated while B is in a plateau state, whereas B can only be activated while A is in a plateau state. (b.) If both A and
B are child-branches of C, either of which suffices to enable C, then C can be activated at any point where either A or B
is in a plateau state. (c.) If both A and B are required, then C can only be activated while both A and B are in a plateau
state.

is a coincidence detector for spike volleys, but additional input from a number of child segments may be necessary for175

a plateau potential to be triggered. The morphology of the dendritic tree defines these parent-child relations and the176

thresholds TD for required dendritic input. Changing these two variables changes the computation implemented, which177

we demonstrate in three prototypical motifs of dendritic plateau computation. Inhibition augments these motifs, for178

example to increase the specificity of pattern detection. Finally, stochastic synapses turn the otherwise deterministic179

neuron into a probabilistic pattern detector.180

In the following examples, we look at neurons with several dendrite segments, each of which is connected to a small181

population of neurons that occasionally emits a volley of synchronized spikes. We are primarily interested in which182

patterns of spike volleys successfully trigger a somatic spike, and which do not. All experiments are simulated using183

open-source software (Section 8.2).184

Dendrite structure determines computation185

For example, dendritic segments can form a chain (Fig. 2 a), where each segment requires the previous one to be active186

(TDi = 1). A spike volley of at least five coincident spikes (TDi = 1) can therefore only trigger the most proximal187

segment, if a specific sequence of spike volleys activates each segment in the chain in the correct consecutive order.188

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

a. Volleys of spikes from population A, B and C

C

B

A

b. Without inhibition

0 200 400

time [ms]

C

B

A

c. With inhibition

A
B

C C
B
A

C
B
A

C
B
A

C

B

A

C

B

A
¬C

Figure 3: Shunting inhibition can prevent false detections. (a.) A neuron receives a sequence of spike volleys from
three populations A, B and C. (b.) A neuron with a chain of dendrite segments A and B and soma C fires whenever
they are activated in the correct order A → B → C, e.g. at time t1. This also results in a false detection at t2 if the
desired sequence A→ B → C is contained in fast repetitions of the undesired sequence C → B → A. (c.) By adding
shunting inhibition, the false detection at t2 can be prevented.

However, because plateau potentials last for a comparatively long duration, the exact timing of the spike volleys within189

these time-intervals is not crucial, making the detection of spike-volley sequences largely timing invariant.190

In the example Fig. 2 a, a spike volley from population A can trigger a plateau in the first segment, which in turn191

enables the second segment for the duration of the plateau τP = 100 ms. If a volley from population B arrives at the192

second segment during that time-interval, it will trigger another plateau there, which in turn enables the third segment,193

and so on. If the first segment is not triggered first, or if its plateau has already ended, a volley from population B to194

the second segment remains ineffective. The chain of three segments shown here would therefore detect the sequence195

A→ B → C of spike volleys from populations A, B and C in that order, as long as the volleys come within 100 ms of196

each other or less.197

What happens when one dendrite segment branches into two child segments? If either of the two child segments can198

provide enough dendritic input to enable the parent segment, i.e. TDi = 1 (see Fig. 2 b), then a spike volley from199

either population A or B can trigger a plateau that enables the third segment. In this motif, the third segment fires200

whenever a volley from C occurs within 100 ms after a volley from A or a volley from B. If instead the dendritic input201

from both child segments is required, i.e. TDi = 2 (see Fig. 2 c), then the third segment only fires if a volley from C202

occurs within 100 ms after both a volley from A and B.203

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

Shunting inhibition prevents false positives204

So far, we only looked at excitatory synaptic inputs and how they generate plateau potentials, but the shunting effect of205

inhibitory synapses plays an equally important role. To illustrate this, consider the example in Fig. 3. Our objective206

is to detect (within some timing constraints) any sequence A→ B → C of spike volleys from the populations A, B207

and C in that order. A chain of two dendrite segments and the soma, a motif we already saw above, will do just that.208

However, if we rely solely on excitatory synaptic input, any additional unnecessary inputs have no effect. This may be209

desirable in some cases but it may lead to false positives in others. For example, we might actually want to recognize210

the sequence A → A → B → B → C → C to contain the desired sub-sequence A → B → C. But the sequence211

C → B → A→ C → B → A→ C → B → A shows three fast repetitions of the undesired sequence C → B → A,212

while still containing the desired sub-sequence A→ B → C, and the neuron would fire all the same (see Fig. 3 a).213

To prevent the response to the anti-pattern C → B → A, we can add inhibitory input from population C to the two214

dendrite segments tasked with detecting A and B (see Fig. 3 b). In that case, a volley from population C would215

terminate any ongoing plateau potentials in these two segments, thus preventing a response to the undesired sequence216

C → B → A → C → B → A → C → B → A while leaving the response to the desired sequence A → B → C217

unaffected. We can write this sequences with inhibition as (A ∧ ¬C)→ (B ∧ ¬C)→ C.218

Shunting inhibition is therefore an important complementary mechanism for dendritic plateau computation, in particular219

if we consider that in our model, inhibiting the output of one segment at a branching point can effectively “veto” the220

entire computation of the corresponding subtree.221

Stochastic synapses enable probabilistic computation222

The various motifs shown above in combination with shunting inhibition can realize a wide range of operations via223

dendritic plateau computation. However, this mechanism responds to a rather long sequence of incoming spike volleys224

(potentially hundreds of milliseconds long) with an all-or-none response, i.e. a somatic spiking or nothing. Because the225

inputs to a neuron are also typically noisy, this might make an individual neuron’s output too sparse and unreliable226

to base important decisions on it. We can overcome this problem, because the inherent stochasticity of synaptic227

transmission turn the probability that the neurons response into a graded response.228

Let’s consider an individual dendrite segment i = 0, that receives a spike volley from a population of n = 10 neurons229

(see Fig. 4 a). If each synapse independently transmits each spike it receives with the same probability P0, then the230

number of actually transmitted spikes in a spike volley is a binomial random variable ∼ Binomial(P0, n), and the231

probability that this number suffices to trigger a plateau potential depends on both P0 and the segment’s synaptic232

threshold TD0. For a given threshold, the plateau probability Pplateau = f(P0) is hence a non-linear, sigmoidal function233

of both the volley size and the synaptic transmission probability. Despite the fact that the neuron has an all-or-none234

response for any individual spike volley, the expected value of its output, i.e. the probability to fire, is non-linear, graded235

response that reflects the size of the incoming volley.236

If we extend this analysis to motifs of multiple dendrite segments, then the neuron’s probability to fire is a non-linear237

function of the size of all incoming spike volleys. For example, to trigger a chain of two sequential segments with high238

probability, both segments have to be individually triggered with high probability, i.e. the neuron will only respond with239

high probability if both incoming spike volleys are large (see Fig. 4 b). The AND-like operation between plateaus that240

we observed in the deterministic case thus becomes a multiplication Pchain = f(P1) · f(P2) of plateau probabilities in241

the stochastic case. Similarly, if only one of two parallel segments needs to be activated (see Fig. 4 c), this happens242

with a probability Por = 1 − (1 − f(P1)) · (1 − f(P2)) = f(P1) + f(P2) − f(P1) · f(P2). The shown simulation243

results confirm this prediction.244

This procedure can be applied inductively to more complex dendritic trees, as well. The neuron responds with a245

probability that depends on the size of all incoming spike volleys, and the expected value of the spike response thus246

encodes the “confidence” of the neuron in the result of a computation or detection. By combining multiple neurons247

with identical structure and synaptic input from the same source populations, we can construct an ensemble of neurons248

with a graded, probabilistic response. This ensemble can then respond to any potentially relevant sequence of incoming249

spike volleys with a volley of its own, such that the size of the emitted volley encodes the “confidence” of the ensemble250

in this detection.251

5 Detecting movement trajectories from place cell activity252

A good example to illustrate how dendritic plateau computation can function in a close-to-real-world example is253

the detection of sequential patterns in place cells. The location of an animal in its environment is represented by254

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

Figure 4: Stochastic synapses allow for graded responses. (a.) Out of a volley of ten spikes, the number of transmitted
spikes is a Binomial distribution B(10, P1). A single dendrite segment, excited by such a volley, thus generates a
plateau with a probability that depends on the synaptic transmission probability P1 and the threshold TS1 (color
coded). (b.) Assuming two appropriately timed spike volleys activate two chained segments, then the probably that the
second segment fires depends on both transmission probabilities P1 and P2 of the two synapse populations. The result
resembles a probabilistic AND-gate. (c.) The probability of triggering at least one of two parallel segments resembles a
probabilistic OR-gate.

place-cells [18, 19], each of which has a “receptive field” centered at a specific location. Navigation naturally produces255

sequential activation patterns as different locations are visited. The time scale of these patterns can be long and is256

variable because it is directly linked to the movement speed of the animal [21]. Further, active dendritic process257

have been shown to be selective for specific sequences of synaptic inputs [67] and dendritic spikes occur much more258

frequently in cortical pyramidal neurons of freely moving rats [68]. Applying our model to the problem of path decoding259

at varying movement shows how single neurons can solve this detection problem across multiple time scales.260

We numerically simulate a rat moving through a small, 2-dimensional environment by generating stochastic paths at261

varying movement speed (more details in Section 8.1). The environment is tiled in a hexagonal grid by the receptive262

fields of place cell populations, each 20 neurons strong. These populations emit spike volleys with a varying magnitude263

that depends on the animal’s distance to the center of the respective receptive field (Figure 5 a and b). Dendritic264

plateau computation allows a single neuron to detect specifically those paths, that traverse the receptive fields of three265

place cell populations in the correct order: from the bottom left (in green) through the center (in orange) to the top266

right (in purple). The neuron is composed of two sequentially chained dendrite segments and the soma, each of which267

receives synaptic input from exactly one of the place-cell populations and requires TSi = 8 coincident spikes to fire a268

plateau. In the presence of noise, this requires the fast detection of coincident spikes from each place cell population in269

order to distinguish legitimate spike volleys from background noise, as well as the interaction of long-lasting plateau270

potentials to detect the slow transition from one receptive field to the next on a behavioral time-scale. The problem thus271

has to two distinct time scales: fast estimation of the current location and slow integration of the traversed path.272

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

Figure 5: A simple neuron with three dendrite segments as shown to the right of panel b can detect directed paths
on a timescale of 300 ms. (a.) The receptive fields of place cell populations tile the environment into a hexagonal
grid. Random trajectories are generated through a stochastic process with randomized initial positions, velocities and
angular heading to simulate the animal’s movements. Only those trajectories are shown that elicit a spike response by
the neuron. (b.) While the animal follows the highlighted trajectory (purple) through space, the place cell populations
generate spikes, which in turn trigger plateau potentials in the corresponding dendrite segments (color coded). After
initiation, plateau potentials can be extended by super-threshold inputs, as shown by the vertical lines. (c.) The neuron
responds with highest probability to a path that traverses the center of the desired receptive fields at an optimal speed
(top). Varying the movement speed (bottom) affects the probability of the neuron to detect the sequence (solid line).
For a decreased threshold, the neuron’s sensitivity is decreased, and the overall firing-probability is increased (dotted
line). (d.) Changing the orientation or (e.) laterally shifting the path away from the optimal path rapidly decreases the
probability of the neuron to fire, as well. Note that while the neuron is highly selective to orientation and offset, the
firing probability only gradually changes as speed varies over an order of magnitude.

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

We can characterize the behavior of this path-detecting neuron by changing the speed, orientation and lateral offset of273

the path through then environment, and recording the neuron’s probability to respond with a spike (Fig. 5 c-e). Firstly,274

the response probability for the optimal path is largest (almost 90 %) with an optimal run-speed of around 0.5 m s−1,275

but even for a three times faster run speed, the neuron would still be able to detect it with roughly 30 % probability.276

This is due to the fact that the dendritic plateau computation is, within some limits, invariant to the specific timings of277

individual spike volleys. However, if the animal moves so slowly that the time-difference between spike volleys exceeds278

the plateau duration, or if it moves so quickly that a place-cell population fails to produce a spike volley, at all, then279

the probability to fire decreases. If a lower threshold TSi = 4 is chosen for each segment i, the sensitivity decreases,280

because even locations relatively far from the center of a receptive field can occasionally generate spike volleys of small281

magnitude (Fig. 5 c dashed line).282

Secondly, our model neuron can be highly sensitive to the specific orientation and lateral offset of the desired path283

in space (Fig. 5 d and e). For a high threshold TSi = 8, only a narrow range of ±30° around the optimal direction284

of 60° are reliably detected. By lowering the threshold to TSi = 4, each segment can be made less selective and285

the orientation-specificity of the neuron decreases substantially (Fig. 5 d dashed line), but as a side-effect the false286

detection probability also increases. When we shift the path orthogonally to the direction to the optimal path, only287

those pathes shifted by at most ±10 mm from the center are reliably detected (Fig. 5 e). Just like for the rotated paths,288

decreasing the plateau firing threshold in each segment decreases sensitivity and increases the noise floor in the neuron’s289

expected response.290

6 Structured computation in single neurons291

The issue of how working memory bridges the fast time scales of synaptic responses and the slower time scales of292

behavior is often addressed in recurrent networks of neurons, for example by slow emergent network dynamics [69], by293

fast synaptic plasticity [70], or as fading memory inherent in network dynamics [71]. However, if neurons generate294

dendritic plateaus in dendrite segments, then they already have access to internal memory. Moreover, this internal295

memory enables structured computation: the plateaus maintain a hidden state that can only be advanced if the correct296

input is seen at the correct segment in the correct time-frame. More formally, the single neuron is a (hidden-) state297

machine that accepts expressions of the form “A and B, then C” or similar, where the relative timing is restricted to the298

interval in which plateau potentials remain active. The specific form of the expression is determined by the dendritic299

tree itself, i.e. by the location of synapses and the strength of the coupling between the individual segments.300

The “symbols” in these expressions are encoded into spike volleys and the timing of these spike volleys matters. Their301

order is particularly important, because it determines whether a sequence of spike volleys can activate a neuron or302

not. Therefore, neurons can process information in an event-based fashion where coherent spike events on a fast time303

scale trigger interacting plateau events on a slower time scale. This mode of computation allows neurons to respond304

much faster than a rate-code would permit, which is in line with empirical evidence on the level of single spikes in305

somatosensory cortex [72].306

Structured, symbolic representations of information have been explored extensively in cognitive psychology, cognitive307

science, linguistics and artificial intelligence, but the most widely used analogy for neural computation are artificial308

neural networks, which are rooted in a connectionist view of cognition [73]: Simple and homogeneous individual units309

interact in a complex network to form distributed representations. Our perspective lies between these two extremes, and310

may help to resolve the apparent disconnect [74]: We conjecture that much of the richness of neural computation is311

derived from the structured internal memory processes of diverse and intricate neurons.312

In our model, dendritic plateau computation allows neurons to detect specific, rare sequences of events and indicate313

this detection with as little as a single spike. This can result in an extremely sparse and hence metabolically efficient314

code, but it naturally comes at a price: if each pattern to be detected can last hundreds of milliseconds, then each neuron315

can only reliably detect one of these every couple of hundred milliseconds. The independent response of neurons in316

an ensemble can help in this regard. We suggest that the temporal coherence of spikes reflected in the magnitude of317

spike volleys is a mechanism through which a graded response can be encoded, for example the uncertainty about318

the occurrence of an input symbol A . As a result of the independent and stochastic synaptic transmission of spikes,319

dendrite segments can respond to this input symbol with a probability proportional to the volley magnitude. This in320

turn leads ensembles of neurons, which are sensitive to the same incoming patterns of spike volleys, to respond with321

spike volleys of their own. We therefore expect such ensembles that decode and encode information in spike timing and322

magnitude of spike volleys to be an integral building block in neural computation.323

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

7 Discussion324

Our qualitative model of dendritic plateau computation aims to explain and formalize the mounting biological evidence325

of neural computation in active dendrites. It asserts, that dendrites are segmented into functional units, each of which326

can generate and maintain a plateau potential when excited by a volley of spikes, and that the interaction of these plateau327

states allows a single neuron to detect remarkably complex temporal patterns. Our work is closely related to recent work328

by Hawkins and Ahmad [75], which proposes the use of active coincidence detection in dendrite segments to generate a329

long UP state at the soma. Similarly, Brea et al. [76] present an elegant two compartment model and a corresponding330

learning rule in which a basal dendrite segment learns to predict activation at the soma. In the “hierarchical temporal331

memory” model of neural computation, longer temporal sequences are detected by laterally connected neurons of this332

type [77].333

We analyzed computation in single neurons, but what are the broader implications of this shift in perspective? Firstly, we334

have not addressed plasticity and learning. In fact, the reliance of our model on long-lasting plateau potentials and the335

ordering, rather than precise timing, of spike volleys poses a real challenge to most commonly used learning rules: On336

the one hand, this complicates temporal credit assignment for training paradigms that rely on instantaneous error signals,337

such as gradient backpropagation or related methods. On the other hand, the substantial, long-lasting depolarization of338

the membrane potential by localized plateau potentials within the dendrite with an accompanying high Ca2+ was shown339

to be the primary driver of synaptic plasticity [78, 79], which calls the role of backpropagating action potentials into340

question. In our model, the plateaus precede any potential somatic spiking. Besides the magnitude of synaptic weights,341

our model also makes extensive use of other properties of synapses, namely the transmission probability, the location of342

the synapse within the dendrite, and the delay, which can affect the synchronization of spike volleys. This increases the343

importance of structural plasticitity [80], homeostatic processes that adjust synaptic transmission probabilities [81]344

and recently proposed mechanisms for optimizing transmission delays through controlled (de-)myelinization [82] and345

opens the door for new learning rules insipred by these mechanisms.346

Given a better understanding of plasticity and learning in dendritic plateau computation, we can approach the second347

challenge: constructing and optimizing large and useful networks from such complex neurons. The central theoretical348

questions are how the structured representation of information inside a neuron can be utilized in the context of a network,349

and in turn, how networks can reliably produce the synchronous spike volleys that encode relevant information in their350

magnitude, for example feature familiarity [83]. Recent advances in analysis techniques of brain data have shown351

promising results in this direction, which may help to establish direct empirical evidence of the spike-volley based352

representation of information we have proposed in this paper [84, 85]. On a more conceptual level, this event-based,353

symbolic view of neural computation could help to substantially reduce the gap between neural networks and cognitive354

architectures [74].355

The prospect of energy efficient dendritic computation has also motivated research of potential implementations in356

neuromorphic hardware. For example, Intel’s Loihi chip [86] and the DYNAPSE architecture [87] support some form357

of active non-linear processing in functionally isolated dendrite segments. Our model provides a new perspective358

on how these existing capabilities could be utilized for computation. But the simplicity of our proposed mechanism359

also suggests novel hardware implementations that use complex dendrite structures, rather than complex ion-channel360

dynamics or larger networks, to boost computational efficiency. We believe that this trade-off between structural and361

dynamic complexity of neurons will remain a critical topic for further research.362

8 Materials and Methods363

8.1 Implementation of the navigation experiment364

To simulate the stochastic movements of an animal in a two-dimensional environment, random paths are generated365

with time-varying location l(t) = (X(t), Y (t)) ∈ R2 as solutions of the following system of stochastic differential366

equations:367

dX = cos(2πA)V dt

dY = sin(2πA)V dt

dA = 0.25dWA

dV = 10.0(0.25− V)dt+ 0.1dWV

(7)

A represents the angular heading of the animal, V represents its velocity in m s−1 and WA,WV represent independent368

standard Brownian motion processes. Each path is generated with a randomized initial position within a rectangular369

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

domain of 10 cm × 9.5 cm , a random angular heading and a random velocity according to the marginal stationary370

distribution of V in the equation above, and is simulated for a fixed duration of 200 ms. Three populations of place cells,371

each 20 neurons strong, are centered on a hexagonal grid with center-to-center distance of r ≈ 2.9 cm. Each population372

randomly emits spike volleys following a homogeneous Poisson process with rate λ = 50 Hz. The magnitude of each373

spike volley is determined by the population’s mean activity at the time, which depends on the animal’s location within374

the environment through a receptive field tuning curve. The tuning curves model the probability of each individual375

neuron within the population to participate in a given spike volley by the bell-curves fi(x) = exp(−x−µi

2σ2) with376

coefficient σ = 9.7 mm, centered on the tiles of the hexagonal grid. The total number of spikes emitted during a377

volley from population i at time t is therefore a random variable distributed according to a Binomial distribution with378

population size n = 20 and probability p = fi(l(t)). Additionally, each neuron in the population emits random spikes379

at a rate of 5 Hz to emulate background activity. Each spike is transmitted through stochastic synapses independently380

with probability 0.5.381

Each of the simulated neuron’s dendrite segments receives spiking input from the 20 neurons of one population and382

requires either 8 or 4 coincident spikes to trigger a plateau potential. The three segments are connected in a chain that383

requires sequential activation by spike volleys from the input populations in correct order to fire a spike. A random384

path is considered to be accepted by the neuron, if the neuron responds with a spike at any point in time during the385

corresponding simulation run.386

To evaluate the rotation and location sensitivity of the neuron, we also generate straight paths with constant movement387

speed v = 3r
200ms ≈ 43 cm s−1 that are either rotated around the center of the environment by an angle α or offset from388

the center by a distance ∆x orthogonal to the optimal movement direction. For each angle or offset, respectively, the389

empirical firing probability of the neuron in response to that path is estimated by simulating the path and the neuron’s390

responses 500 times each.391

8.2 Simulation framework for dendritic plateau computation392

All simulations are implemented in a custom package developed in the Julia programming language [88], publicly393

available via the code repository hosted at https://github.com/jleugeri/DPC.jl. The simulator implements the neuron394

model outlined in this paper using a fast and extensible event-based formalism. All experiments and configuration files395

can be found in the examples subfolder of the repository.396

Further documentation of the simulator, its interfaces ,and implementation details can be found there as well.397

References398

[1] Valentino Braitenberg and Almut Schüz. Cortex: statistics and geometry of neuronal connectivity. Springer399

Science & Business Media, 2013.400

[2] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks, 14(6):1569–1572,401

2003.402

[3] Michael London and Michael Häusser. Dendritic computation. Annu. Rev. Neurosci., 28:503–532, 2005.403

[4] Hongbo Jia, Nathalie L Rochefort, Xiaowei Chen, and Arthur Konnerth. Dendritic organization of sensory input404

to cortical neurons in vivo. Nature, 464(7293):1307–1312, April 2010.405

[5] Ning-Long Xu, Mark T Harnett, Stephen R Williams, Daniel Huber, Daniel H O’Connor, Karel Svoboda, and406

Jeffrey C Magee. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature,407

492(7428):247–251, December 2012.408

[6] Naoya Takahashi, Thomas G Oertner, Peter Hegemann, and Matthew E Larkum. Active cortical dendrites409

modulate perception. Science, 354(6319):1587–1590, 2016.410

[7] Aaron Kerlin, Mohar Boaz, Daniel Flickinger, Bryan J MacLennan, Matthew B Dean, Courtney Davis, Nelson411

Spruston, and Karel Svoboda. Functional clustering of dendritic activity during decision-making. Elife, 8:e46966,412

2019.413

[8] Nelson Spruston, Greg Stuart, and Michael Häusser. Principles of dendritic integration. Dendrites, 351(597):1,414

2016.415

[9] Srdjan D Antic, Wen-Liang Zhou, Anna R Moore, Shaina M Short, and Katerina D Ikonomu. The decade of the416

dendritic NMDA spike. J. Neurosci. Res., 88(14):2991–3001, November 2010.417

[10] Andreas V M Herz, Tim Gollisch, Christian K Machens, and Dieter Jaeger. Modeling single-neuron dynamics418

and computations: a balance of detail and abstraction. Science, 314(5796):80–85, October 2006.419

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

[11] Balázs B Ujfalussy, Judit K Makara, Máté Lengyel, and Tiago Branco. Global and multiplexed dendritic420

computations under in vivo-like conditions. Neuron, 100(3):579–592.e5, November 2018.421

[12] Songting Li, Nan Liu, Xiaohui Zhang, David W McLaughlin, Douglas Zhou, and David Cai. Dendritic computa-422

tions captured by an effective point neuron model. Proc. Natl. Acad. Sci. U. S. A., 116(30):15244–15252, July423

2019.424

[13] Panayiota Poirazi, Terrence Brannon, and Bartlett W Mel. Pyramidal neuron as two-layer neural network. Neuron,425

37(6):989–999, 2003.426

[14] David Beniaguev, Idan Segev, and Michael London. Single cortical neurons as deep artificial neural networks.427

Cold Spring Harbor Laboratory, page 613141, March 2020.428

[15] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error429

propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.430

[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.431

[17] Nikolaus Kriegeskorte. Deep neural networks: a new framework for modeling biological vision and brain432

information processing. Annual review of vision science, 1:417–446, 2015.433

[18] J O’Keefe and J Dostrovsky. The hippocampus as a spatial map. preliminary evidence from unit activity in the434

freely-moving rat. Brain Res., 34(1):171–175, November 1971.435

[19] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I Moser. Microstructure of a spatial436

map in the entorhinal cortex. Nature, 436(7052):801–806, August 2005.437

[20] Martin Stemmler, Alexander Mathis, and Andreas V M Herz. Connecting multiple spatial scales to decode the438

population activity of grid cells. Sci Adv, 1(11):e1500816, December 2015.439

[21] Howard Eichenbaum. On the integration of space, time, and memory. Neuron, 95(5):1007–1018, August 2017.440

[22] Brice Bathellier, Derek L Buhl, Riccardo Accolla, and Alan Carleton. Dynamic ensemble odor coding in the441

mammalian olfactory bulb: sensory information at different timescales. Neuron, 57(4):586–598, February 2008.442

[23] Bede M Broome, Vivek Jayaraman, and Gilles Laurent. Encoding and decoding of overlapping odor sequences.443

Neuron, 51(4):467–482, August 2006.444

[24] Huan Luo and David Poeppel. Phase patterns of neuronal responses reliably discriminate speech in human445

auditory cortex. Neuron, 54(6):1001–1010, June 2007.446

[25] Ofer Melamed, Wulfram Gerstner, Wolfgang Maass, Misha Tsodyks, and Henry Markram. Coding and learning447

of behavioral sequences. Trends Neurosci., 27(1):11–4; discussion 14–5, January 2004.448

[26] C Beaulieu and M Colonnier. A laminar analysis of the number of round-asymmetrical and flat-symmetrical449

synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J. Comp. Neurol., 231(2):180–189,450

January 1985.451

[27] J del Castillo and B Katz. Quantal components of the end-plate potential. J. Physiol., 124(3):560–573, June 1954.452

[28] C F Stevens. Quantal release of neurotransmitter and long-term potentiation. Cell, 72 Suppl:55–63, January 1993.453

[29] Michael Hollmann and Stephen Heinemann. Cloned glutamate receptors. Annual review of neuroscience,454

November 2003.455

[30] JC Watkins and RH Evans. Excitatory amino acid transmitters. Annual review of pharmacology and toxicology,456

21(1):165–204, 1981.457

[31] H Monyer, N Burnashev, D J Laurie, B Sakmann, and P H Seeburg. Developmental and regional expression in the458

rat brain and functional properties of four NMDA receptors. Neuron, 12(3):529–540, March 1994.459

[32] T Götz, U Kraushaar, J Geiger, J Lübke, T Berger, and P Jonas. Functional properties of AMPA and NMDA460

receptors expressed in identified types of basal ganglia neurons. J. Neurosci., 17(1):204–215, January 1997.461

[33] Attila Losonczy and Jeffrey C Magee. Integrative properties of radial oblique dendrites in hippocampal CA1462

pyramidal neurons. Neuron, 50(2):291–307, April 2006.463

[34] Sonia Gasparini, Michele Migliore, and Jeffrey C Magee. On the initiation and propagation of dendritic spikes in464

CA1 pyramidal neurons. J. Neurosci., 24(49):11046–11056, December 2004.465

[35] Sonia Gasparini and Jeffrey C Magee. State-dependent dendritic computation in hippocampal CA1 pyramidal466

neurons. J. Neurosci., 26(7):2088–2100, February 2006.467

[36] Jacopo Bono and Claudia Clopath. Modeling somatic and dendritic spike mediated plasticity at the single neuron468

and network level. Nat. Commun., 8(1):706, September 2017.469

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

[37] Paul Rhodes. The properties and implications of NMDA spikes in neocortical pyramidal cells. J. Neurosci., 26470

(25):6704–6715, June 2006.471

[38] Nelson Spruston. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci., 9(3):472

206–221, March 2008.473

[39] Guy Major, Matthew E Larkum, and Jackie Schiller. Active properties of neocortical pyramidal neuron dendrites.474

Annu. Rev. Neurosci., 36:1–24, July 2013.475

[40] Katerina D Oikonomou, Mandakini B Singh, Enas V Sterjanaj, and Srdjan D Antic. Spiny neurons of amygdala,476

striatum, and cortex use dendritic plateau potentials to detect network UP states. Front. Cell. Neurosci., 8:292,477

September 2014.478

[41] R Angus Silver, Andrew F MacAskill, and Mark Farrant. Neurotransmitter-gated ion channels in dendrites.479

Dendrites, 3rd edn. Oxford University Press, New York, pages 217–257, 2016.480

[42] Steven S Goldstein and Wilfrid Rall. Changes of action potential shape and velocity for changing core conductor481

geometry. Biophysical journal, 14(10):731–757, 1974.482

[43] W Rall. Electrophysiology of a dendritic neuron model. Biophys. J., 2(2 Pt 2):145–167, March 1962.483

[44] A N Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol. Cybern., 95484

(1):1–19, July 2006.485

[45] Greg Stuart and Nelson Spruston. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites.486

Journal of Neuroscience, 18(10):3501–3510, 1998.487

[46] Michael Häusser. Synaptic function: dendritic democracy. Current Biology, 11(1):R10–R12, 2001.488

[47] Jeffrey C Magee and Erik P Cook. Somatic epsp amplitude is independent of synapse location in hippocampal489

pyramidal neurons. Nature neuroscience, 3(9):895–903, 2000.490

[48] Tim Jarsky, Alex Roxin, William L Kath, and Nelson Spruston. Conditional dendritic spike propagation following491

distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci., 8(12):1667–1676, December492

2005.493

[49] Christine Grienberger, Xiaowei Chen, and Arthur Konnerth. Nmda receptor-dependent multidendrite ca2+ spikes494

required for hippocampal burst firing in vivo. Neuron, 81(6):1274–1281, 2014.495

[50] Matthew E Larkum, Thomas Nevian, Maya Sandler, Alon Polsky, and Jackie Schiller. Synaptic integration in tuft496

dendrites of layer 5 pyramidal neurons: a new unifying principle. Science, 325(5941):756–760, 2009.497

[51] Guy Major, Alon Polsky, Winfried Denk, Jackie Schiller, and David W Tank. Spatiotemporally graded NMDA498

spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J. Neurophysiol., 99(5):2584–2601,499

May 2008.500

[52] C Koch, T Poggio, and V Torre. Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos.501

Trans. R. Soc. Lond. B Biol. Sci., 298(1090):227–263, July 1982.502

[53] Alon Polsky, Bartlett W Mel, and Jackie Schiller. Computational subunits in thin dendrites of pyramidal cells.503

Nat. Neurosci., 7(6):621–627, June 2004.504

[54] Yunliang Zang, Stéphane Dieudonné, and Erik De Schutter. Voltage- and Branch-Specific climbing fiber responses505

in purkinje cells. Cell Rep., 24(6):1536–1549, August 2018.506

[55] CF Ekerot and O Oscarsson. Prolonged depolarization elicited in purkinje cell dendrites by climbing fibre impulses507

in the cat. The Journal of physiology, 318(1):207–221, 1981.508

[56] Sigita Augustinaite, Bernd Kuhn, Paul Johannes Helm, and Paul Heggelund. NMDA spike/plateau potentials in509

dendrites of thalamocortical neurons. J. Neurosci., 34(33):10892–10905, August 2014.510

[57] Tiago Branco and Michael Häusser. The single dendritic branch as a fundamental functional unit in the nervous511

system. Curr. Opin. Neurobiol., 20(4):494–502, August 2010.512

[58] Willem A M Wybo, Benjamin Torben-Nielsen, Thomas Nevian, and Marc-Oliver Gewaltig. Electrical compart-513

mentalization in neurons. Cell Rep., 26(7):1759–1773.e7, February 2019.514

[59] Matthew E Larkum and Thomas Nevian. Synaptic clustering by dendritic signalling mechanisms. Curr. Opin.515

Neurobiol., 18(3):321–331, June 2008.516

[60] Naoya Takahashi, Kazuo Kitamura, Naoki Matsuo, Mark Mayford, Masanobu Kano, Norio Matsuki, and Yuji517

Ikegaya. Locally synchronized synaptic inputs. Science, 335(6066):353–356, January 2012.518

[61] Tiago Branco, Kevin Staras, Kevin J Darcy, and Yukiko Goda. Local dendritic activity sets release probability at519

hippocampal synapses. Neuron, 59(3):475–485, August 2008.520

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

[62] Jiang Hao, Xu-Dong Wang, Yang Dan, Mu-Ming Poo, and Xiao-Hui Zhang. An arithmetic rule for spatial521

summation of excitatory and inhibitory inputs in pyramidal neurons. Proc. Natl. Acad. Sci. U. S. A., 106(51):522

21906–21911, December 2009.523

[63] Michael Doron, Giuseppe Chindemi, Eilif Muller, Henry Markram, and Idan Segev. Timed synaptic inhibition524

shapes NMDA spikes, influencing local dendritic processing and global I/O properties of cortical neurons. Cell525

Rep., 21(6):1550–1561, November 2017.526

[64] K Du, Y W Wu, R Lindroos, Y Liu, and others. Cell-type–specific inhibition of the dendritic plateau potential in527

striatal spiny projection neurons. Proceedings of the, 2017.528

[65] Albert Gidon and Idan Segev. Principles governing the operation of synaptic inhibition in dendrites. Neuron, 75529

(2):330–341, July 2012.530

[66] William Muñoz, Robin Tremblay, Daniel Levenstein, and Bernardo Rudy. Layer-specific modulation of neocortical531

dendritic inhibition during active wakefulness. Science, 355(6328):954–959, March 2017.532

[67] Tiago Branco, Beverley A Clark, and Michael Häusser. Dendritic discrimination of temporal input sequences in533

cortical neurons. Science, 329(5999):1671–1675, 2010.534

[68] Jason J Moore, Pascal M Ravassard, David Ho, Lavanya Acharya, Ashley L Kees, Cliff Vuong, and Mayank R535

Mehta. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science, 355(6331),536

March 2017.537

[69] Yulia Sandamirskaya and Gregor Schöner. An embodied account of serial order: how instabilities drive sequence538

generation. Neural Netw., 23(10):1164–1179, December 2010.539

[70] Gianluigi Mongillo, Omri Barak, and Misha Tsodyks. Synaptic theory of working memory. Science, 319(5869):540

1543–1546, March 2008.541

[71] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Fading memory and kernel properties of generic542

cortical microcircuit models. Journal of Physiology-Paris, 98(4):315–330, July 2004.543

[72] Rufin VanRullen, Rudy Guyonneau, and Simon J Thorpe. Spike times make sense. Trends Neurosci., 28(1):1–4,544

January 2005.545

[73] Paul Smolensky. On the proper treatment of connectionism. Behav. Brain Sci., 11(1):1–23, March 1988.546

[74] J A Fodor and Z W Pylyshyn. Connectionism and cognitive architecture: a critical analysis. Cognition, 28(1-2):547

3–71, March 1988.548

[75] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of sequence memory in549

neocortex. Frontiers in neural circuits, 10:23, 2016.550

[76] Johanni Brea, Alexisz Tamás Gaál, Robert Urbanczik, and Walter Senn. Prospective coding by spiking neurons.551

PLOS Computational Biology, 12(6):1–25, 06 2016. doi: 10.1371/journal.pcbi.1005003. URL https://doi.552

org/10.1371/journal.pcbi.1005003.553

[77] Dileep George and Jeff Hawkins. Towards a mathematical theory of cortical micro-circuits. PLoS Comput. Biol.,554

5(10):e1000532, October 2009.555

[78] John Lisman and Nelson Spruston. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike556

timing-dependent plasticity. Nat. Neurosci., 8(7):839–841, July 2005.557

[79] Jason Hardie and Nelson Spruston. Synaptic depolarization is more effective than back-propagating action558

potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. J. Neurosci.,559

29(10):3233–3241, March 2009.560

[80] Andreas Knoblauch and Friedrich T Sommer. Structural plasticity, effectual connectivity, and memory in cortex.561

Front. Neuroanat., 10:63, June 2016.562

[81] Gina Turrigiano. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function.563

Cold Spring Harbor perspectives in biology, 4(1):a005736, 2012.564

[82] R Douglas Fields. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev.565

Neurosci., 16(12):756–767, December 2015.566

[83] Clemens Korndörfer, Ekkehard Ullner, Jordi García-Ojalvo, and Gordon Pipa. Cortical spike synchrony as a567

measure of input familiarity. Neural computation, 29(9):2491–2510, 2017.568

[84] Rory G Townsend and Pulin Gong. Detection and analysis of spatiotemporal patterns in brain activity. PLoS569

Comput. Biol., 14(12):e1006643, December 2018.570

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

A PREPRINT - MAY 31, 2021

[85] Min Song, Minseok Kang, Hyeonsu Lee, Yong Jeong, and Se-Bum Paik. Classification of spatiotemporal neural571

activity patterns in brain imaging data. Sci. Rep., 8(1):8231, May 2018.572

[86] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios573

Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak574

Mathaikutty, Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan, Yi-Hsin Weng, Andreas575

Wild, Yoonseok Yang, and Hong Wang. Loihi: A neuromorphic manycore processor with On-Chip learning. IEEE576

Micro, 38(1):82–99, January 2018.577

[87] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. A scalable multicore architecture with578

heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans.579

Biomed. Circuits Syst., 12(1):106–122, February 2018.580

[88] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical computing.581

SIAM review, 59(1):65–98, 2017.582

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint

B.2 conference abstract : active dendrites implement temporal logic gates 107

b.2 conference abstract : active dendrites implement tem-
poral logic gates

Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Active dend-
rites implement probabilistic temporal logic gates.’ In: Proc. of the Com-
putational Cognition Workshop Osnabrück. 2019

Abstract

The recognition of patterns is a primary function of the brain. Of-
ten, relevant patterns occur on time-scales that vary in length. For
example, place and grid cells encode location and therefore activate
in sequential patterns that depend on an animal’s varying movement
speeds. Encoded in these patterns are directed paths through an en-
vironment that are important to – for example – find the way back out
of a maze. Further patterns on time-scales on the order of hundreds
of milliseconds have been observed elsewhere in cortex, for example
in the sequential codes for different odors in the olfactory bulb, and
the segmentation length of speech signals in auditory cortex. Neuron
models used in the theoretical analysis of cortical circuits predom-
inantly model the passive integration of synaptic currents, and are
therefore limited to the short and fixed time-scale determined by the
passive electrical properties of neurons. Since these integrate-and-fire
neurons cannot inherently solve the problem of long, temporal integ-
ration, the implementation of the required working-memory is releg-
ated to the dynamics of attractor networks and synapses undergoing
fast, plastic changes. Here, we argue that intricate biophysical mech-
anisms along dendrites of pyramidal neurons, that have recently been
detailed in experiments, implement an elegant alternative solution we
call active dendritic sequence processing (ADSP).

Active dendrites implement probabilistic temporal logic gates.
Pascal Nieters

University Osnabrück
Johannes Leugering

Fraunhofer IIS
Gordon Pipa

University Osnabrück

The recognition of patterns is a primary function of the brain.
Often, relevant patterns occur on time-scales that vary in length.

For example, place and grid cells encode location [7] and therefore
activate in sequential patterns that depend on an animal’s varying
movement speeds. Encoded in these patterns are directed paths
through an environment that are important to – for example – find
the way back out of a maze. Further patterns on time-scales on the
order of hundreds of milliseconds have been observed elsewhere in
cortex, for example in the sequential codes for different odors in the
olfactory bulb [1], and the segmentation length of speech signals in
auditory cortex [2].
Neuron models used in the theoretical analysis of cortical circuits
predominantly model the passive integration of synaptic currents,
and are therefore limited to the short and fixed time-scale determined
by the passive electrical properties of neurons. Since these integrate-
and-fire neurons cannot inherently solve the problem of long, tempo-
ral integration, the implementation of the required working-memory
is relegated to the dynamics of attractor networks [5] and synapses
undergoing fast, plastic changes [4]. Here, we argue that intricate
biophysical mechanisms along dendrites of pyramidal neurons, that
have recently been detailed in experiments [3], implement an elegant
alternative solution we call active dendritic sequence processing
(ADSP).
ADSP relies on the dynamics of NMDAr ion channels that activate
when multiple spikes arrive at a local cluster of synapses in a short
period of time. Their opening due to the availability of Glutamate
and high enough postsynaptic depolarization induced by overlap-
ping EPSPs leads to supra linear dendritic plateau potentials that
can last for up to hundreds of milliseconds. However, they do not
actively propagate along the dendrite and are subject to the strong
attenuation of the dendritic cable as well as functional dendritic
compartmentalization [6].
We call clusters of synapses that can initiate a plateau a dendritic
segment that functions as a coincidence detector and only weakly
interacts with neighboring dendritic segments. When one segment
initiates a plateau potential in response to strong, coincident input,
neighboring segments increase their resting voltage for the duration
of the plateau, enabling them to initiate a plateau themselves. A
cascade of overlapping plateau plateau potentials can start in distal
segments and propagates towards the soma. A successful cascade
leads to a neuronal UP-state that signifies the recognition of a se-
quential pattern of coincident spike inputs on a time-scale of the
plateau-length times the number of dendritic segments in the cas-
cade.
In the tradition of McCulloch & Pitts, we abstractly model this
dendritic computational behavior as temporal logic gates in a tree
structure, with a second time-scale that enables local memory for
asynchronous computation. To reflect richer computational func-
tions, AND and OR - type gates can be implemented by requiring
at least N child segments to have initiated a plateau for the current
node to be active and be able to initiate its own plateau. This deter-
ministic model of neural computation extends naturally to stochastic
synapses as the probability of a neuronal UP-state is directly propor-

A B

C D

E

E
D
C
B
A

Dendritic Tree as a
temporal logic gate:

tA

tC

tE

tB

tAtC tE
tB

voltage traces

Figure 1: Plateaus in response to spike volleys interact in the mor-
phology of dendritic segments. The function of this dendritic tree can
be expressed as a temporal logic gate.

tional to the number of coincident spikes at individual segments. In
a population ensemble of neurons with the same input connections
and independent synapses, the number of coincident output spikes
encodes this signal strength.
We show that ADSP can solve the temporal integration problem on
long and varying time-scales with the example of path integration
from place cell activity. The temporal logic gate model directly maps
dendritic morphology to computational function. Cells other than
pyramidal neurons may implement the same general computational
principle by other biomechanistic implementations. We connect
the sub-symbolic and dynamic processes of dendritic integration to
logical functions on symbols defined by coincident spike events, ad-
dressing a long standing problem of connectionist models to explain
and account for the inherent structure of reasoning.

REFERENCES

[1] B. Bathellier, D. L. Buhl, R. Accolla, and A. Carleton. Dynamic ensem-
ble odor coding in the mammalian olfactory bulb: sensory information
at different timescales. Neuron, 57(4):586–598, Feb. 2008.

[2] H. Luo and D. Poeppel. Phase patterns of neuronal responses reliably
discriminate speech in human auditory cortex. Neuron, 54(6):1001–
1010, June 2007.

[3] G. Major, M. E. Larkum, and J. Schiller. Active properties of neocortical
pyramidal neuron dendrites. Annu. Rev. Neurosci., 36:1–24, July 2013.

[4] G. Mongillo, O. Barak, and M. Tsodyks. Synaptic theory of working
memory. Science, 319(5869):1543–1546, Mar. 2008.

[5] A. Seeholzer, M. Deger, and W. Gerstner. Stability of working memory
in continuous attractor networks under the control of short-term plasticity.
PLoS computational biology, 15(4):e1006928, 2019.

[6] N. Spruston. Pyramidal neurons: dendritic structure and synaptic inte-
gration. Nat. Rev. Neurosci., 9(3):206–221, Mar. 2008.

[7] M. Stemmler, A. Mathis, and A. V. M. Herz. Connecting multiple
spatial scales to decode the population activity of grid cells. Sci Adv,
1(11):e1500816, Dec. 2015.

B.3 patent : neuromorphic pattern detector and neuromorphic circuitry 109

b.3 patent : neuromorphic pattern detector and neur-
omorphic circuitry

Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘Neuromorphic
Pattern Detector and Neuromorphic Circuitry Herewith’. Pat. DE:102019134044:A1.
June 2021

English Abstract

The present invention relates to a neuromorphic pattern detector (2),
which is designed to receive at least two 1-bit input signals (E1-EN)
of a pattern to be recognized, with at least two comparison circuits
(3), which are each designed to one of the 1- Bit input signals (E1-
EN) to receive the number of "high" states or the "low" states of the
respective 1-bit input signal (E1-EN) within a predetermined period
of time, the number of counted states with a to compare the predeter-
mined threshold value of the respective comparison circuit (3) and to
indicate that the pattern to be recognized has been recognized when
the threshold value is exceeded.

(19) *DE102019134044A120210617*

(10) DE 10 2019 134 044 A1 2021.06.17

(12) Offenlegungsschrift

(21) Aktenzeichen: 10 2019 134 044.6
(22) Anmeldetag: 11.12.2019
(43) Offenlegungstag: 17.06.2021

(51) Int Cl.: G06N 3/063 (2006.01)

(71) Anmelder:
Universität Osnabrück, 49074 Osnabrück, DE

(74) Vertreter:
Holz, Christian, Dipl.-Ing. Dr.-Ing., 30159
Hannover, DE

(72) Erfinder:
Leugering, Johannes, 49076 Osnabrück, DE;
Nieters, Pascal, 49124 Georgsmarienhütte, DE;
Pipa, Gordon, Prof. Dr., 49205 Hasbergen, DE

(56) Ermittelter Stand der Technik:
US 2016 / 0 292 569 A1

Leugering, Johannes; Nieters, Pascal; Pipa,
Gordon: Event-based pattern detection in active
dendrites. In: bioRxiv, 02.07.2019, 1-13. https://
www.biorxiv.org/content/early/2019/07/02/
690792.full.pdf [abgerufen am 11.12.2020]

Prüfungsantrag gemäß § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen.

(54) Bezeichnung: Neuromorpher Musterdetektor und neuromorphe Schaltkreisanordnung hiermit

(57) Zusammenfassung: Die vorliegende Erfindung betrifft
einen neuromorphen Musterdetektor (2), welcher ausgebil-
det ist, wenigstens zwei 1-Bit Eingangssignale (E1-EN) eines
zu erkennenden Musters zu erhalten, mit wenigstens zwei
Vergleichsschaltungen (3), welche jeweils ausgebildet sind,
eines der 1-Bit Eingangssignale (E1-EN) zu erhalten, die An-
zahl der „high“-Zustände oder der „low“-Zustände des jewei-
ligen 1-Bit Eingangssignals (E1-EN) innerhalb eines vorbe-
stimmten Zeitraums zu zählen, die Anzahl der gezählten Zu-
stände mit einem vorbestimmten Schwellwert der jeweiligen
Vergleichsschaltung (3) zu vergleichen und bei Überschrei-
ten des Schwellwerts auf die erfolgte Erkennung des zu er-
kennenden Musters hinzuweisen.

DE 10 2019 134 044 A1 2021.06.17

2/22

Beschreibung

[0001] Die vorliegende Erfindung betrifft einen neu-
romorphen Musterdetektor gemäß dem Patentan-
spruch 1 sowie eine neuromorphe Schaltkreisanord-
nung gemäß dem Patentanspruch 13.

[0002] Zur Verarbeitung ihrer Informationen können
analog erfasste Signale, welche z.B. sensorisch er-
fasste Informationen repräsentieren können, in digi-
tale Signale gewandelt und dann verarbeitet werden.
Die Erfassung der analogen Signale kann üblicher-
weise mittels elektrischer Spannung erfolgen, wel-
che einen zeit- und wertkontinuierlichen Verlauf, d.h.
eine durchgängigen Verlauf der elektrischen Span-
nung über der Zeit, aufweist. Ein derartiges elektri-
sches Analogsignal kann mittels eines Analog-Digi-
tal-Umsetzers in ein digitales Signal in Form eines
zeit- und wertdiskreten Verlaufs gewandelt werden,
um die Information der digitalen Signalverarbeitung
zugänglich zu machen. Ein derartiges digitales Si-
gnal kann auch als binäres Signal bezeichnet werden
und zwei unterschiedliche Zustände in Form von un-
terschiedlich hohen elektrischen Spannungspegeln
aufweisen, so dass über die Länge bzw. Dauer des
Signalverlaufs zwischen niedrigen und hohen Span-
nungspegeln unterschieden werden kann. Die niedri-
gen Spannungspegel können als „low“-Zustände und
die hohen Spannungspegel als „high“-Zustände be-
zeichnet werden. Hierdurch können die Zustände „0“
und „1“ dargestellt werden.

[0003] Die digitale Signalverarbeitung mittels ent-
sprechender elektronischer Bauelemente wie z.B. di-
gitale Signalprozessoren und Mikroprozessoren bie-
tet dabei Vorteile und Möglichkeiten, welche mit ana-
log arbeitender Elektronik gar nicht oder lediglich mit
hohem Aufwand umsetzbar wären. Dabei werden die
digitalen Signale üblicherweise nicht als die binären
Signale eines Verlaufs von Nullen und Einsen in Form
von niedrigen und hohen Spannungszuständen ver-
arbeitet sondern als Werte etc. z.B. in Folgen von
acht Bits, auch Byte genannt, dargestellt, gespeichert
und durch Software verarbeitet. Die entsprechenden
Algorithmen, welche die Verarbeitung der digitalen
Signale durchführen, werden hierzu als Programm-
code einer geeigneten Programmiersprache umge-
setzt und z.B. auf einem Mikroprozessor oder auf ei-
ner CPU (Central Processing Unit) als serielle Abfol-
ge der Programmierschritte ausgeführt. Mit anderen
Worten werden in der digitalen Signalverarbeitung
üblicherweise die Instruktionen numerischer Algorith-
men von Prozessorarchitekturen auf Binärzahlen im-
plementieren, was die sequentielle Abarbeitung in
arithmetisch-logischen Einheiten (ALU) und die Ver-
wendung einer Speichereinheit bedingt.

[0004] Zur Verarbeitung digitaler sowie analoger In-
formationen in Form digitaler Signale können auch
sog. künstliche neuronale Netze bzw. Netzwerke ver-

wendet werden, bei denen mittels künstlicher Neu-
ronen die Funktionsweisen biologischer Neuronen
bzw. biologischer neuronaler Netze bzw. Netzwer-
ke nachgebildet werden. Die einzelnen künstlichen
Neuronen arbeiten dabei zeitlich parallel zueinander,
vergleichbar der Vorbilder der biologischen Neuro-
nen. Da eine derartige Arbeitsweise mit den sequen-
tiell arbeitenden Prozessoren strukturbedingt jedoch
nicht möglich ist, kann die parallele Arbeitsweise der
künstlichen Neuronen auch bei Verwendung mehre-
rer paralleler Prozessoren bzw. Prozessorkerne nur
unzureichend implementiert werden. Dies erschwert
die tatsächliche Implementierung parallel arbeitender
Verfahren zur digitalen Signalverarbeitung mit künst-
lichen neuronalen Netzen.

[0005] Zur Implementierung von künstlichen neuro-
nalen Netzen bzw. Netzwerken werden daher auch
neuromorphe Schaltkreise verwendet, welche jeweils
ein biologisches Neuron als elektronische Schaltung
abbilden und durch ihr Zusammenwirken das künst-
liche neuronale Netz bzw. Netzwerk ergeben. Die
einzelnen neuromorphen Schaltkreise können da-
bei tatsächlich parallel zueinander arbeiten und hier-
durch die Signalverarbeitung beschleunigen bzw. die
als Vorbild dienenden biologischen Neuronen besser
nachbilden.

[0006] Typischerweise wird das Verhalten des ein-
zelnen künstlichen Neurons dynamischen Systemen
aus den theoretischen Neurowissenschaften wie z.B.
dem Leaky-Integrate-and-Fire-Modell nachempfun-
den, durch digitale Arithmetik approximiert und der
Datenaustausch zwischen den künstlichen Neuronen
durch die Übertragung von Paketen realisiert. Dies
erfordert jedoch den Einsatz vieler Recheneinheiten
bzw. vieler arithmetisch-logischer Einheiten und stellt
hohe Anforderungen an das Paket-Routing zwischen
den einzelnen Recheneinheiten. Im speziellen Be-
reich der Spiking-Neuromorphic-Hardware wird dabei
pro künstlichen Neuron und pro Zeitschritt lediglich
ein binäres Signal erzeugt.

[0007] In einem parallel signalverarbeitenden neuro-
morphen Netz bzw. Netzwerk der Digitaltechnik soll-
ten somit folgende technische Probleme gelöst bzw.
folgende technische Eigenschaften realisiert werden:

• Künstliche Neurone sollte Eingangssignale von
vielen anderen künstlichen Neuronen integrie-
ren können. Dies erfordert einen Mechanismus,
um Eingangssignale aufzuaddieren und mit ei-
nem kritischen Grenzwert vergleichen zu kön-
nen. In bestehenden Ansätzen der digitalen Si-
gnalverarbeitung wird dies mittels ALUs durch
Ganzzahlarithmetik realisiert.

• Das Einsatzgebiet von digitaler Signalverarbei-
tung ist häufig durch das Erfordernis der Echt-
zeitfähigkeit ausgezeichnet, d.h. durch die Fä-
higkeit des Betriebssystems der Recheneinheit

DE 10 2019 134 044 A1 2021.06.17

3/22

bzw. der Recheneinheiten, digitale Signale in-
nerhalb einer vorbestimmbaren Frist sicher ver-
arbeiten zu können. Die Einhaltung einer Reak-
tion auf das digitale Signal innerhalb dieser Frist
muss in diesem Fall sichergestellt sein.

So sind die Zeitskalen, auf welche ein analoges Si-
gnal in der Außenwelt relevante und zu verarbeiten-
de Charakteristika aufweist, nicht fest und zum Teil
auf schnellen oder langsamen Skalen variiert. Daher
müssen die Zeitskalen der Verarbeitung digitaler Si-
gnal im integrierten Schaltkreis von denen in der Au-
ßenwelt entkoppelt werden. Klassische Ansätze der
digitalen Signalverarbeitung in z.B. Mikrokontrollern
umgehen dieses Problem, indem Zwischenergebnis-
se im dedizierten Arbeitsspeicher abgelegt werden.

[0008] In neuromorphen Ansätzen wird Information
meist stattdessen lokal im Zustand der einzelnen
Neuronen gehalten. Ggfs. kann die Rate, mit der sich
der Zustand des Neurons pro Zeitschritt ändert, ska-
liert und auf die relevante Zeitskala des Eingangssi-
gnals abgestimmt werden. Die Verarbeitung langsa-
mer Signale mit einem schnellen Takt erfordert daher
einen hoch aufgelösten internen Zustand der Neuro-
nen.

• Um komplexere Funktionalitäten wie das
Erkennen von Mustern mittels neuromorpher
Schaltkreise abzubilden, müssen viele Neuro-
nen sinnvoll miteinander verschaltet werden.
Dies wird gegenwärtig durch verschiedene Me-
sh- und Crossbar-Routing-Systeme implemen-
tiert, welche bestimmte Konfigurationen zulas-
sen und Output-Signale dem Input verschiede-
ner Neuronen zuordnen. Die Verbindungen zwi-
schen einzelnen Neuronen sind dabei meist un-
terschiedlich gewichtet, was einen entsprechen-
den Mechanismus zur verbindungsspezifischen
Konfiguration und Signalübertragung erfordert.

• Um mit verrauschten Eingangssignalen umge-
hen zu können, sollte als Ausgangssignal nicht
nur das gewünschte Signal, z.B. ob ein gege-
benes Muster erkannt wurde oder nicht, son-
dern auch ein Maß der zugehörigen Unsicher-
heit generiert werden. Dies kann von bestehen-
den Ansätzen lediglich mittelbar unter Rückgriff
auf bestimmte Netzwerkarchitekturen realisiert
werden, ist aber nicht in der Hardware selbst an-
gelegt.

[0009] Somit weisen die bestehenden Ansätze
spike-basierter neuromorpher Hardware, welche auf
gepulsten neuronalen Netzen (Englisch: spiking neu-
ral networks - SNN) beruhen, verschiedene Nachtei-
le auf. So erfordert die Verwendung von Ganzzahl-
arithmetik und Paket-Routing den Einsatz von Mi-
kroprozessoren, was die technische Komplexität der
Hardware erhöhen und aufgrund ihrer sequentiellen
Operation zu Latenzen führen kann. Auch kann die

Beschränkung auf einfache generische Neuronen-
modelle mit gewichteten Verbindungen, welche nicht
für die Analyse von kontinuierlichen Signalströmen
entwickelt wurden, zur Verwendung von notwendi-
gerweise großen Netzwerken führen, deren interne
Kommunikation viel Platz-, Energie- und bzw. oder
Zeitressourcen beanspruchen kann.

[0010] Eine Aufgabe der vorliegenden Erfindung ist
es, einen neuromorphen Schaltkreis bereitzustellen,
um die zuvor genannten technischen Probleme zu
lösen bzw. die zuvor genannten technischen Eigen-
schaften zu realisieren. Insbesondere soll ein zu er-
kennendes Muster in einem binären Eingangssignal
schneller und bzw. oder zuverlässiger als bisher be-
kannt erkannt werden können. Zumindest soll eine
Alternative zu bekannten derartigen neuromorphen
Schaltkreisen bereitgestellt werden.

[0011] Die Aufgabe wird erfindungsgemäß durch ei-
nen neuromorphen Musterdetektor mit den Merkma-
len des Patentanspruchs 1 sowie durch eine neu-
romorphe Schaltkreisanordnung mit den Merkmalen
des Patentanspruchs 13 gelöst. Vorteilhafte Weiter-
bildungen sind in den Unteransprüchen beschrieben.

[0012] Somit betrifft die Erfindung einen neuromor-
phen Musterdetektor, welcher ausgebildet ist, we-
nigstens zwei 1-Bit Eingangssignale eines zu erken-
nenden Musters zu erhalten, mit wenigstens zwei
Vergleichsschaltungen, welche jeweils ausgebildet
sind, eines der 1-Bit Eingangssignale zu erhalten, die
Anzahl der „high“-Zustände oder der „low“-Zustän-
de des jeweiligen 1-Bit Eingangssignals innerhalb
eines vorbestimmten Zeitraums zu zählen, die An-
zahl der gezählten Zustände mit einem vorbestimm-
ten Schwellwert der jeweiligen Vergleichsschaltung
zu vergleichen und bei Überschreiten des Schwell-
werts auf die erfolgte bzw. auf die erfolgreiche Erken-
nung des zu erkennenden Musters hinzuweisen. Der
neuromorphe Musterdetektor ist vorzugsweise mit-
tels Digitaltechnik umgesetzt.

[0013] Mit anderen Worten werden wenigstens zwei
1-Bit Datenströme, welche gemeinsam ein zu er-
kennendes Muster in Form einer parallelen Bitfolge
enthalten, dem erfindungsgemäßen neuromorphen
Musterdetektor in Form einer neuromorphen Schal-
tung zugeführt. Über eine vorbestimmte Anzahl von
Bit, welche dem vorbestimmten Zeitraum entspre-
chen, werden nun die „high“-Zustände oder die „low“-
Zustände, d.h. die hohen Signalpegel oder die nied-
rigen Signalpegel, gezählt. Diese Anzahl wird fort-
laufend mit einem Schwellwert verglichen. Wird die-
ser Schwellwert überschritten, so wird hieraus ge-
schlussfolgert, dass zu erkennende Muster in dem je-
weiligen 1-Bit Datenstrom der jeweiligen Vergleichs-
schaltung erkannt zu haben. Dies wird von dem neu-
romorphen Musterdetektor nach außen angezeigt,
z.B. über ein entsprechendes Ausgangssignal.

DE 10 2019 134 044 A1 2021.06.17

4/22

[0014] Auf diese Art und Weise kann erfindungsge-
mäß vergleichsweise einfach mittels einer neuromor-
phen Schaltung eine Mustererkennung in einem digi-
talen Signal erfolgen.

[0015] Gemäß einem Aspekt der Erfindung ist die
eine Vergleichsschaltung der anderen Vergleichs-
schaltung erstrangig untergeordnet, wobei die über-
geordnete Vergleichsschaltung ausgebildet ist, nur
dann auf die erfolgte Erkennung des zu erkennenden
Musters hinzuweisen, falls der Schwellwert der über-
geordneten Vergleichsschaltung überschritten und
zeitgleich von der erstrangig untergeordneten Ver-
gleichsschaltung auf die erfolgte Erkennung des zu
erkennenden Musters hingewiesen wird.

[0016] Dies kann es ermöglichen, die Entschei-
dung der übergeordneten Vergleichsschaltung von
der Entscheidung der untergeordneten Vergleichs-
schaltung, das vorbestimmte Muster erkannt zu ha-
ben oder nicht, abhängig zu machen.

[0017] Gemäß einem weiteren Aspekt der Erfindung
weist der neuromorphe Musterdetektor wenigstens
eine weitere Vergleichsschaltung auf, welche paral-
lel zu der untergeordneten Vergleichsschaltung an-
geordnet ist, wobei die übergeordnete Vergleichs-
schaltung ausgebildet ist, nur dann auf die erfolg-
te Erkennung des zu erkennenden Musters hinzu-
weisen, falls der Schwellwert der übergeordneten
Vergleichsschaltung überschritten und zeitgleich von
den erstrangig untergeordneten Vergleichsschaltun-
gen jeweils auf die erfolgte Erkennung des zu erken-
nenden Musters hingewiesen wird.

[0018] Dies kann es ermöglichen, die Entschei-
dung der übergeordneten Vergleichsschaltung von
der Entscheidung der beiden untergeordneten Ver-
gleichsschaltungen, das vorbestimmte Muster er-
kannt zu haben oder nicht, abhängig zu machen.

[0019] Gemäß einem weiteren Aspekt der Erfin-
dung weist der neuromorphe Musterdetektor wenigs-
tens eine weitere Vergleichsschaltung auf, welche
zweitrangig untergeordnet zu der erstrangig unter-
geordneten Vergleichsschaltung angeordnet ist, wo-
bei die erstrangig untergeordnete Vergleichsschal-
tung ausgebildet ist, nur dann auf die erfolgte Er-
kennung des zu erkennenden Musters hinzuweisen,
falls der Schwellwert der erstrangig untergeordneten
Vergleichsschaltung überschritten und zeitgleich von
der zweitrangig untergeordneten Vergleichsschal-
tung auf die erfolgte Erkennung des zu erkennenden
Musters hingewiesen wird.

[0020] Dies kann es ermöglichen, die Entscheidung
der erstrangig untergeordneten Vergleichsschaltung
von der Entscheidung der zweitrangig untergeordne-
ten Vergleichsschaltung, das vorbestimmte Muster
erkannt zu haben oder nicht, abhängig zu machen.

[0021] Dabei können die zuvor beschriebenen Mög-
lichkeiten der Anordnung von mehr als zwei Ver-
gleichsschaltungen auch miteinander kombiniert wer-
den, indem wenigstens zwei erstrangige und wenigs-
tens eine zweitrangige Vergleichsschaltung verwen-
det und wie zuvor beschrieben miteinander und bzw.
oder seitens der übergeordneten Vergleichsschal-
tung in Abhängigkeit gesetzt werden.

[0022] Gemäß einem weiteren Aspekt der Erfindung
bilden die wenigstens drei Vergleichsschaltungen ei-
nen Binärbaum mit wenigstens zwei Ebenen. Un-
ter einem Binärbaum, auch binärer Baum genannt,
wird eine besondere Unterart eines Baumes verstan-
den, wie er in der Informatik für hierarchische Da-
tenstrukturen verwendet wird. Der Ausgangspunkt,
wie hier die übergeordnete Vergleichsschaltung, wird
als Wurzel oder auch Binärbaumwurzel bezeichnet,
von welcher sich der Binärbaum in verschiedenen
Ebene wie hier der erstrangigen und zweitrangigen
Vergleichsschaltungen einzeln oder paarweise ver-
zweigt, bis der jeweilige Ast an einem Binärbaumblatt
endet.

[0023] Entsprechend können die Eigenschaften und
Vorteile derartiger hierarchischer Datenstrukturen auf
die erfindungsgemäße neuromorphe Schaltung über-
tragen und dort genutzt werden.

[0024] Gemäß einem weiteren Aspekt der Erfindung
sind die Vergleichsschaltungen identisch ausgebil-
det. Dies kann die Umsetzung vereinfachen, da der
Entwurf der neuromorphen Schaltung mit geringe-
rem Aufwand ausfallen kann, in dem das Design der
Vergleichsschaltung mehrfach verwendet wird. Auch
kann dies die Vergrößerung der Schaltung des neu-
romorphen Musterdetektors vereinfachen und hier-
durch eine Skallierbarkeit ermöglichen.

[0025] Gemäß einem weiteren Aspekt der Erfindung
wird bei Überschreiten des Schwellwerts ein 1-Bit
Ausgangssignal der jeweiligen Vergleichsschaltung
auf den „high“-Zustand, ansonsten auf den „low“-Zu-
stand, gesetzt, oder umgekehrt. Dies kann es ermög-
lichen, dass Hinweisen der jeweiligen Vergleichs-
schaltung auf die erfolgte Erkennung des zu erken-
nenden Musters einfach umzusetzen.

[0026] Gemäß einem weiteren Aspekt der Erfindung
sind die Vergleichsschaltungen ausgebildet, jeweils
ein 1-Bit Steuersignal zu erhalten und in Reaktion
auf einen „high“-Zustand oder auf einen „low“-Zu-
stand des jeweiligen 1-Bit Steuersignals das 1-Bit
Ausgangssignal der jeweiligen Vergleichsschaltung
auf den „low“-Zustand zu setzen. Hierdurch kann ei-
ne Möglichkeit geschaffen werden, die entsprechen-
de Vergleichsschaltung mittels des jeweiligen 1-Bit
Steuersignals wieder zurückzusetzen. Mit anderen
Worten kann die Vergleichsschaltung von außen re-
setted werden. Dies kann es insbesondere ermög-

DE 10 2019 134 044 A1 2021.06.17

5/22

lichen, alle Vergleichsschaltungen zurückzusetzen,
um anschließend mit dem Erkennen eines neuen
Musters beginnen zu können, ohne dass der zuvor
erfolgte Vorgang auf dessen Ergebnis Auswirkungen
haben kann.

[0027] Gemäß einem weiteren Aspekt der Erfin-
dung gibt der vorbestimmte Schwellwert der Anzahl
der Zustände der jeweiligen Vergleichsschaltung vor,
wann das zu erkennende Muster als erkannt ange-
sehen wird. Mit anderen Worten kann durch die Hö-
he des Schwellwerts in Relation zur Länge bzw. Kür-
ze des vorbestimmten Zeitraums bzw. der vorbe-
stimmten Anzahl von Bit des Eingangssignals vorbe-
stimmt werden, wie deutlich eine Übereinstimmung
zwischen dem jeweiligen Eingangssignal und dem
vorbestimmten Muster vorliegen muss, um das vor-
bestimmte Muster im jeweiligen Eingangssignal als
erkannt anzusehen. Dies kann für jedes zu erkennen-
de Muster und für jede Vergleichsschaltung vorge-
geben werden. Dies kann über die Konfiguration der
Vergleichsschaltungen erfolgen.

[0028] Gemäß einem weiteren Aspekt der Erfin-
dung weisen die Vergleichsschaltungen jeweils einen
Schiebefensterdetektor auf, welcher jeweils ausgebil-
det ist, das jeweilige 1-Bit Eingangssignal zu erhalten
und die Anzahl der „high“-Zustände oder der „low“-
Zustände des jeweiligen 1-Bit Eingangssignals inner-
halb des vorbestimmten Zeitraums zu zählen. Dies
kann die Umsetzung dieser Funktion der Vergleichs-
schaltungen einfach und bzw. oder zuverlässig er-
möglichen.

[0029] Gemäß einem weiteren Aspekt der Erfin-
dung erfolgt das Zählen der Anzahl der „high“-Zu-
stände oder der „low“-Zustände des jeweiligen 1-Bit
Eingangssignals innerhalb des vorbestimmten Zeit-
raums mittels eines bidirektionalen Schieberegisters
des jeweiligen Schiebefensterdetektors. Dies kann
die Umsetzung dieser Funktion der Vergleichsschal-
tungen einfach und bzw. oder zuverlässig ermögli-
chen.

[0030] Gemäß einem weiteren Aspekt der Erfindung
erhalten die Vergleichsschaltungen, vorzugsweise
deren Schiebefensterdetektor, jeweils ein Taktsignal
zur Steuerung der Verarbeitung der Pulse und ein
Taktsignal zur Steuerung der Länge der Plateaus,
wobei die beiden Taktsignale unterschiedlich sind.
Unter einem Puls bzw. Spike ist der Zustand eines
Signals im Zustand „high“ nach und vor einem Zu-
stand „low“ zu verstehen. Unter einem Plateau ei-
nes Signals ist die Zeitdauer bzw. die Signallänge
im Zustand „high“ zu verstehen. Mit anderen Wor-
ten ist unter eine Plateau eine Funktion vergleichbar
einem volatilen Cache-Zwischenspeicher zu verste-
hen, welcher für eine konfigurierbare Zeit, d.h. die
Zeitdauer des Plateaus, ein Zwischenergebnis spei-
chert. Auf diese Art und Weise kann die Mustererken-

nung der Vergleichsschaltungen und damit auch des
neuromorphen Musterdetektors in Abhängigkeit von
wenigstens zwei unterschiedlichen Taktsignalen er-
folgen.

[0031] Die vorliegende Erfindung betrifft auch eine
neuromorphe Schaltkreisanordnung mit einer Mehr-
zahl von neuromorphen Musterdetektoren wie zuvor
beschrieben, wobei jeder neuromorphe Musterdetek-
tor ausgebildet ist, das gleiche 1-Bit Eingangssignal
zu erhalten, ein unterschiedliches 1-Bit Zufallszah-
lensignal zu erhalten, das jeweilige 1-Bit Eingangs-
signal mit dem entsprechenden 1-Bit Zufallszahlen-
signal zu verändern, und die Anzahl der „high“-Zu-
stände oder der „low“-Zustände des jeweiligen verän-
derten 1-Bit Eingangssignals innerhalb eines vorbe-
stimmten Zeitraums zu zählen.

[0032] Unter einem 1-Bit Zufallszahlensignal ist ein
Signal mit einer Bitfolge zu verstehen, welche zufällig
erzeugt wurde. Dies kann deterministisch oder nicht-
deterministisch erfolgen. Ein deterministisch erzeug-
tes 1-Bit Zufallszahlensignal kann auch als Pseudo-
Zufallszahlensignal bezeichnet werden. Dabei kann
die Verwendung eines pseudo-zufälligen 1-Bit Zu-
fallszahlensignals vorteilhaft sein, da dies einfacher
als ein nicht-deterministisches 1-Bit Zufallszahlensi-
gnal erzeugt werden und zur Erzielung der entspre-
chenden Eigenschaften und Vorteile ausreichend
sein kann.

[0033] Somit können mehrere der zuvor beschrie-
benen neuromorphen Musterdetektoren parallel zu-
einander angeordnet und verwendet werden, um je-
weils das gleiche vorbestimmte Muster in dem glei-
chen Eingangssignal zu erkennen. Hierbei können
die beiden 1-Bit Datenströme jeweils unterschiedlich
stochastisch verändert werden, so dass das gleiche
Muster jeweils in unterschiedlichen Eingangssigna-
len der einzelnen neuromorphen Musterdetektoren
erkannt werden muss. Dies kann eine Aussage über
die Zuverlässigkeit der Mustererkennung erlauben,
da die gleichen Eingangssignal mit dem zu erken-
nenden Muster durch die 1-Bit Zufallssignale unter-
schiedliche verfremdet bzw. gestört jeweils identisch
durch die neuromorphen Musterdetektoren bearbei-
tet werden.

[0034] Diesbezüglich sei angemerkt, dass ein (pseu-
do-)zufälliges Maskieren eines Datenstroms in meh-
rere sich zufällig unterscheidende Datenströme auch
unabhängig von einer neuromorphen Schaltkreisan-
ordnung wie zuvor beschrieben und insbesondere
unabhängig von einer Mehrzahl von neuromorpher
Musterdetektoren wie zuvor beschrieben umgesetzt
und angewendet werden kann. Dies kann es ermögli-
chen, die entsprechenden Eigenschaften und Vortei-
le auch unabhängig umzusetzen und anzuwenden.

DE 10 2019 134 044 A1 2021.06.17

6/22

[0035] Gemäß einem Aspekt der Erfindung weist
wenigstens eine Vergleichsschaltung, vorzugsweise
weisen alle Vergleichsschaltungen jeweils, ein Und-
Gatter auf, welches ausgebildet ist, das jeweilige
1-Bit Eingangssignal und das entsprechende 1-Bit
Zufallszahlensignal zu kombinieren. Hierdurch kann
die Veränderung der gleichen Eingangssignal durch
die unterschiedlichen stochastischen 1-Bit Zufalls-
zahlensignal umgesetzt werde.

[0036] Gemäß einem weiteren Aspekt der Erfindung
ist die neuromorphe Schaltkreisanordnung ausgebil-
det, die Anzahl der 1-Bit Ausgangssignale der jeweili-
gen Vergleichsschaltung, welche zeitgleich im „high“-
Zustand oder im „low“-Zustand sind, zu erfassen und
aus dem Verhältnis der Anzahl von 1-Bit Ausgangssi-
gnalen im „high“-Zustand oder im „low“-Zustand und
der Anzahl der neuromorphen Musterdetektoren ei-
nen Grad der Übereinstimmung zwischen 1-Bit Ein-
gangssignal und zu erkennendem Muster zu bestim-
men. Hierdurch kann diese Information bestimmt und
zur Verfügung gestellt werden.

[0037] Gemäß einem weiteren Aspekt der Erfindung
weist wenigstens eine Vergleichsschaltung, vorzugs-
weise weisen alle Vergleichsschaltungen jeweils, ei-
nen Zeitmultiplexer auf, welcher ausgebildet ist, par-
allele Ausgangssignale der neuromorphen Muster-
detektoren zu einem 1-Bit-Ausgangssignalder neuro-
morphen Schaltkreisanordnung zusammenzuführen.
Auf diese Art und Weise kann ein einziger resultieren-
den 1-Bit Datenstrom als Ausgangssignal der neuro-
morphen Schaltkreisanordnung erzeugt werden.

[0038] Ein Ausführungsbeispiel und weitere Vortei-
le der Erfindung werden nachstehend im Zusammen-
hang mit den folgenden Figuren rein schematisch
dargestellt und näher erläutert. Darin zeigt:

Fig. 1 eine schematische Darstellung eines
Symbols eines Schaltkreises einer Population
der Fig. 2;

Fig. 2 eine schematische Darstellung eines
Schaltkreises der Population der Fig. 1;

Fig. 3 eine schematische Darstellung eines
Symbols eines Schaltkreises eines Neurons der
Fig. 4;

Fig. 4 eine schematische Darstellung eines
Schaltkreises des Neurons der Fig. 3;

Fig. 5 eine schematische Darstellung eines
Schaltkreises eines Binärbaumzweigs;

Fig. 6 eine schematische Darstellung eines
Schaltkreises eines Abschlusszweigs;

Fig. 7 eine schematische Darstellung eines
Symbols eines Schaltkreises eines Segments
der Fig. 8;

Fig. 8 eine schematische Darstellung eines
Schaltkreises des Segments der Fig. 7;

Fig. 9 eine schematische Darstellung eines
Symbols eines Schaltkreises eines Schiebe-
fensterdetektors der Fig. 10;

Fig. 10 eine schematische Darstellung eines
Schaltkreises des Schiebefensterdetektors der
Fig. 9;

Fig. 11 eine schematische Darstellung eines
Symbols eines Schaltkreises eines Zeitmultiple-
xers der Fig. 12; und

Fig. 12 eine schematische Darstellung eines
Schaltkreises des Zeitmultiplexers der Fig. 11.

[0039] Fig. 1 zeigt eine schematische Darstellung ei-
nes Symbols eines Schaltkreises einer Population 1
der Fig. 2. Fig. 2 zeigt eine schematische Darstellung
eines Schaltkreises der Population 1 der Fig. 1.

[0040] Unter einer Population 1 im Sinne von Com-
putersoftware wird eine Anordnung von gleichen
Computerprogrammen verstanden, welche gemein-
sam die Population 1 bilden. Wird dies auf neuromor-
phe Schaltkreise übertragen, so kann die o.g. Popu-
lation 1 mittels neuromorpher Schaltkreise als neuro-
morphe Schaltkreisanordnung 1 gebildet werden, in-
dem mehrere neuromorphe Musterdetektoren 2, wel-
che auch als Neuronen 2 bezeichnet werden können,
gleicher Struktur in Form von identisch ausgebildeten
neuromorphen Schaltkreisen miteinander zur Popu-
lation 1 verschaltet werden, siehe Fig. 2.

[0041] Die Population 1 besteht dabei gemäß dem
dargestellten Ausführungsbeispiel aus einer Anzahl
K von Neuronen 2, von welchen in der Fig. 2 das ers-
te, das zweite und das K-te Neuron 2 von links nach
rechts dargestellt sind. Jedes Neuron 2 erhält den-
selben eingehenden Datenstrom E als Eingangssi-
gnal E, welches aus einer Anzahl N von einzelnen 1-
Bit Eingangssignalen E1-EN besteht. Das Eingangs-
signal E enthält ein zu erkennendes Muster, welches
auch als Pattern bezeichnet werden kann.

[0042] Jedes Neuron 2 erhält ferner parallel das-
selbe Steuersignal I, welches aus einer Mehrzahl
von einzelnen 1-Bit Steuersignalen l1-lN besteht. Das
Steuersignal l kann zum Zurücksetzen von Ver-
gleichsschaltungen 2, auch Segmente 3 genannt, in-
nerhalb der Neuronen 2 verwendet werden, wie wei-
ter unten näher beschrieben werden wird.

[0043] Ferner erhält jedes Neuron 2 eine Anzahl N
von binären Zufallszahlensignalen M1,1-MK,N, welche
deterministisch erzeugt und für jedes Neuron 2 un-
terschiedlich pseudo-zufällig sind. Genauer gesagt
wird der Population 1 für jedes der N Eingangssignale
E1-EN und für jedes der K Neuronen 2 ein zufälliges
1-Bit Zufallssignal M1,1-MK,N zur Verfügung gestellt.

DE 10 2019 134 044 A1 2021.06.17

7/22

[0044] Des Weiteren erhält jedes Neuron 2 drei
unterschiedliche Taktsignal CLKPLT, CLKSPIKE und
CLKPROG. Das Taktsignal CLKPLT ist ein Taktsignal
zur Steuerung der Länge der Plateaus der Ver-
gleichsschaltungen 3, wie weiter unten noch näher
erläutert werden wird. Das Taktsignal CLKSPIKE ist ein
Taktsignal zur Steuerung der Verarbeitung von Spi-
kes, d.h. von Pulsen, der Vergleichsschaltungen 3,
wie ebenfalls weiter unten noch näher erläutert wer-
den wird. Das Taktsignal CLKPROG ist ein Taktsignal
eines Konfigurationssignals DPROG bzw. DPROGO, wie
ebenfalls weiter unten noch näher erläutert werden
wird.

[0045] Ein Konfigurationssignal DPROG der Populati-
on 1 wird als Eingangssignal dem ersten Neuron 2
zugeführt, dort zur Konfiguration des ersten Neurons
2 verwendet und als Konfigurationssignal DPROGO von
dem ersten Neuron 2 an das zweite Neuron 2 ausge-
geben. Das zweite Neuron 2 erhält somit das Konfi-
gurationssignal DPROG als Eingangssignal usw. Das
Konfigurationssignal DPROGO als Ausgangssignal des
letzten K-ten Neurons 2 ist das Konfigurationsaus-
gangssignal DPROGO der Population 1.

[0046] Jedes der K Neuronen 2 erzeugt ein binäres
Ausgangssignal P1-PK, welche parallel einem Zeit-
multiplexer 5 als dessen Eingangssignale S1-SK zu-
geführt werden. Die Verarbeitung dieser Eingangssi-
gnale S1-SK zu einem Ausgangssignal O des Zeitmul-
tiplexers 5, welches auch das Ausgangssignal O der
gesamten Population 1 darstellt, wird weiter unter be-
schrieben.

[0047] Fig. 3 zeigt eine schematische Darstellung ei-
nes Symbols eines Schaltkreises eines Neurons 2
der Fig. 4. Fig. 4 zeigt eine schematische Darstellung
eines Schaltkreises des Neurons 2 der Fig. 3. Fig. 5
zeigt eine schematische Darstellung eines Schalt-
kreises eines Binärbaumzweigs 21, 22. Fig. 6 zeigt
eine schematische Darstellung eines Schaltkreises
eines Abschlusszweigs 20.

[0048] Jedes Neuron 2 besteht im Wesentlichen aus
einem rekursiv eingebetteten, binären Baum, auch
Binärbaum genannt, mit einem ersten Binärbaum-
zweig 21, einem zweiten Binärbaumzweig 22 sowie
dem zuvor bereits erwähnten Segments 3, siehe z.B.
Fig. 4. Jeder der beiden Baumzweige 21, 22 kann in
jeder Ebene des binären Baums entweder ein weite-
res Neuron 2 mit zwei weiteren Binärbaumzweigen
21, 22 und einem Segment 3, siehe Fig. 5, oder ein
Abschlusszweig 20 mit lediglich einem Segment 3,
siehe Fig. 6, sein. Die beiden Binärbaumzweige 21,
22 können auch als innere Knoten des Binärbaums
21, 22 oder als Nested Branches 21, 22 bezeichnet
werden. Der Abschlusszweig 20 kann auch als Binär-
baumblatt 20 oder als Terminal Branch 20 bezeich-
net werden. Das Neuron 2 selbst kann daher auch
als Binärbaumwurzel 2 bezeichnet werden. Mit ande-

ren Worten wird jeder Binärbaumzweige 21, 22 ent-
weder aus einem weiteren Neuron 2, welches seiner-
seits wieder zwei Binärbaumzweige 21, 22 aufweist,
oder aus einem Abschlusszweig 20 gebildet.

[0049] Dabei besitzt das jeweilige Segment 3, wel-
ches die Wurzel des Binärbaums bildet, die gleiche
Struktur wie die Binärbaumzweige 21, 22 der wei-
teren Ebenen des binären Baums mit dem Unter-
schied, dass das Segment 3 der Wurzel des Binär-
baums statt dem Taktsignal CLKPLT das Taktsignal
CLKSPIKE erhält. Die Binärbaumzweige 21, 22 erhal-
ten das Taktsignal CLKPLT. Dies führt dazu, dass das
Ausgangssignal P1-Pk des Neurons 2 als kurze Spi-
kes mit dem Taktsignal CLKSPIKE und nicht lange Pla-
teaus mit dem Taktsignal CLKPLT aufweist.

[0050] Das Konfigurationssignal DPROG des Neurons
2 wird jedem Binärbaumzweig 21, 22, jedem Ab-
schlusszweig 20 sowie jedem Segment 3 zugeführt.

[0051] Jedes Segment 3 jeder Ebene des binä-
ren Baums erhält eines der 1-Bit Eingangssignale
E1-EN sowie das entsprechende 1-Bit Steuersigna-
le l1-lN und das entsprechende Zufallszahlensignal
M1,1-MK,N. Die Funktion des Segments 3 wird weiter
unten erklärt werden. Auch erhält jedes Segment 3 je-
der Ebene des binären Baums die Taktsignale CLK-
PLT, CLKSPIKE und CLKPROG zu den zugehörigen Si-
gnalen.

[0052] Der Abschlusszweig 20 besteht lediglich aus
einem Segment 3 mit zwei konstanten Eingangssi-
gnalen B1, B2, welche beide den Zustand „high“ auf-
weisen. Ferner erhält das Segment 3 ebenfalls ei-
nes der 1-Bit Eingangssignale E1-EN sowie das ent-
sprechende 1-Bit Steuersignale l1-lN und das entspre-
chende Zufallszahlensignal M1,1-MK,N.

[0053] Fig. 7 zeigt eine schematische Darstellung ei-
nes Symbols eines Schaltkreises eines Segments 3
der Fig. 8. Fig. 8 zeigt eine schematische Darstellung
eines Schaltkreises des Segments 3 der Fig. 7.

[0054] Das Segment 3, welches wie zuvor beschrie-
ben jeweils identisch in jedem Neuron 2 mehrfach
auf verschiedenen Ebenen des binären Baums ver-
wendet wird, erhält stets die Ausgangssignale P der
Binärbaumzweige 21, 22 derselben Ebene als Ein-
gangssignal B1, B2. Die beiden Eingangssignale B1,
B2 sind parallel sowohl auf ein erstes Oder-Gatter
30 als auch auf ein erstes Und-Gatter 31 geschaltet.
Die Ausgangssignale der beiden ersten Gatter 30, 31
können entweder ein konstantes „high“-Signal oder
ein konstantes „low“-Signal sein, welche parallel ei-
nem 4-fach Multiplexer 32 zugeführt werden. Zusätz-
lich zu den beiden Ausgangssignalen der beiden ers-
ten Gatter 30,31 werden ein konstantes „low“-Signal
und ein konstantes „high“-Signal parallel dem 4-fach
Multiplexer 32 zugeführt. Dabei wird das Ausgangs-

DE 10 2019 134 044 A1 2021.06.17

8/22

signal des 4-fach Multiplexers 32 von einem ersten 2-
bit SIPO Schieberegister 33 (SIPO: serial-input-par-
allel-output) gewählt und einem zweiten Und-Gatter
34 zugeführt.

[0055] Die zwei 1-Bit Eingangssignale E1-EN und
M1,1-MK,N des jeweiligen Segments 3 werden von ei-
nem dritten Und-Gatter 35 verschaltet, dessen Aus-
gangssignal in einen Schiebefensterdetektor 4 als
dessen Eingangssignal DIN geschaltet wird, welcher
auch als Slider 4 bezeichnet werden kann und weiter
unten näher erläutert werden wird. Der Schiebefens-
terdetektor 4 wird durch den Datenstrom des Konfi-
gurationssignals DPROG mit dem zugehörigen Taktsi-
gnal CLKPROG konfiguriert. Das Ausgangssignal des
Konfigurationssignals DPROGO des Schiebefensterde-
tektors 4 ist wiederum das Eingangssignal des ersten
2-bit SIPO Schieberegisters 33, welches seinerseits
durch die steigende Flanke des Taktsignals CLKPROG
weitergeschoben wird. Das erste 2-bit SIPO Schie-
beregister 33 erzeugt dabei parallel zu der zuvor be-
schriebenen Auswahl des Ausgangssignals des 4-
fach Multiplexers 32 das Ausgangssignal des Konfi-
gurationssignals DPROGO des Segments 3.

[0056] Der Schiebefensterdetektor 4 erzeugt parallel
zu dem Konfigurationssignals DPROGO des Schiebe-
fensterdetektors 4 ferner ein Ausgangssignal DOUT,
welches das zweite Eingangssignal des zweiten Und-
Gatters 34 ist, dessen Ausgangssignal einen 1-Bit
Flipflop 36 zu jeder steigenden Flanke in den „high“-
Zustand versetzt. Das Ausgangssignal des 1-Bit Flip-
flops 36 ist auch das Ausgangssignal P des jeweili-
gen Segments 3.

[0057] Zu jeder steigenden Flanke des Taktsignals
CLKPLT wird ein zweites N-bit SIPO Schieberegister
37 um einen Schritt geschoben, wodurch das aktuel-
le Ausgangssignal des 1-Bit Flipflops 36 ausgelesen
wird. Das letzte Bit des parallelen Ausgangssignals
des zweites N-bit SIPO Schieberegisters 37 bildet ein
Eingangssignal eines zweiten Oder-Gatters 38. Das
andere Eingangssignal des zweiten Oder-Gatters 38
ist das entsprechende 1-Bit Steuersignale l1-lN. Wenn
eines der beiden Eingangssignale des zweiten Oder-
Gatters 38 den „high“-Zustand aufweist, ist auch das
Ausgangssignal des zweiten Oder-Gatters 38 „high“
und die steigende Flanke schaltet den Zustand des 1-
Bit Flipflops 36 zurück sowie setzt hierdurch alle Bits
des zweites N-bit SIPO Schieberegisters 37 auf „low“,
d.h. in den „low“-Zustand.

[0058] Fig. 9 zeigt eine schematische Darstellung ei-
nes Symbols eines Schaltkreises eines Schiebefens-
terdetektors 4 der Fig. 10. Fig. 10 zeigt eine schema-
tische Darstellung eines Schaltkreises des Schiebe-
fensterdetektors 4 der Fig. 9.

[0059] Der Schiebefensterdetektor 4 dient dazu zu
erkennen, ob die Anzahl der „high“-Bits, d.h. der Bits

im „high“-Zustand, in seinem Eingangssignal DIN in-
nerhalb der letzten N-bits, d.h. innerhalb eines vor-
bestimmten Zeitraums, welcher durch das Konfigu-
rationssignal DPROG konfigurierbar ist, des 1-Bit Ein-
gangssignals DIN einen konfigurierbaren Schwellwert
übersteigt. Hierzu wird das 1-Bit Eingangssignal DIN
des Schiebefensterdetektors 4 einem ersten Und-
Gatter 40 als dessen erstes Eingangssignal zuge-
führt.

[0060] Das Ausgangssignal des ersten Und-Gatters
40 wird als Eingangssignal in ein erstes N-bit SIPO
Schieberegister 41 geleitet, welches das serielle Ein-
gangssignal parallelisiert und mit jeder steigenden
Flanke im Taktsignal CLKIN einen Schritt weiterge-
schoben wird. Das N-te parallele Ausgangssignal des
ersten N-bit SIPO Schieberegisters 41 ist das links-
schiebende Eingangssignal SL in ein zweites bidi-
rektionales M-bit SIPO-Schieberegister 42. Das Aus-
gangssignal des ersten Und-Gatters 40 selbst ist das
rechtsschiebende Eingangssignal SR des zweiten bi-
direktionalen M-bit SIPO-Schieberegisters 42.

[0061] Zu jeder steigenden Flanke des Taktsignals
CLKIN wird das zweite bidirektionale M-bit SIPO-
Schieberegister 42 einen Schritt in die Richtung nach
rechts geschoben, falls das rechtsschiebende Ein-
gangssignal SR „high“ und das linksschiebende Ein-
gangssignal SL „low“ ist. Wenn das rechtsschieben-
de Eingangssignal SR „low“ und das linksschieben-
de Eingangssignal SL „high“ ist, wird das zweite bidi-
rektionale M-bit SIPO-Schieberegister 42 hingegen in
die Richtung nach links geschoben. Ansonsten bleibt
das zweite bidirektionale M-bit SIPO-Schieberegister
42 unverändert.

[0062] Falls das zweite bidirektionale M-bit SIPO-
Schieberegister 42 in die Richtung nach rechts ge-
schoben wird, wird ein „high“-Bit von links eingefügt.
Falls hingegen das zweite bidirektionale M-bit SIPO-
Schieberegister 42 in die Richtung nach links gescho-
ben wird, wird ein „low“-Bit von rechts eingefügt. Das
letzte Bit des parallelen Ausgangssignals des zweiten
bidirektionalen M-bit SIPO-Schieberegisters 42 wird
invertiert als zweites Eingangssignal des ersten Und-
Gatters 40 genutzt.

[0063] Ein M+1fach Multiplexer 43 wird von K 1-Bit
Eingangssignalen konfiguriert und generiert so ent-
weder ein konstantes „high“-Ausgangssignal oder se-
lektiert einen der M parallelen Ausgangssignale des
zweiten bidirektionalen M-bit SIPO-Schieberegisters
42. Das selektierte Signal ist das Ausgangssignal des
M+1fach Multiplexers 43 und des gesamten Schiebe-
fensterdetektors 4.

[0064] Welches der M+1 <= 2^K (M plus 1 klei-
nergleich 2 hoch K) Eingangssignale mittels des M
+1fach Multiplexers 43 ausgesucht wird, wird von
dem parallelen Ausgangssignals eines dritten K-bit

DE 10 2019 134 044 A1 2021.06.17

9/22

SIPO-Schieberegisters 44 festgelegt, welches von
einem Bitstrom des Eingangssignals DPROG mit ei-
nem dazugehörigen Taktsignals CLKPROG betrieben
wird. Das letzte parallele Ausgangssignal des dritten
K-bit SIPO-Schieberegisters 44 ist der zusätzliche
Konfigurationssignal DPROGO als Ausgangssignal des
Schiebefensterdetektors 4, um mehrere Segmente 3
bzw. Neuronen 2 in Serie verschalten zu können.

[0065] Fig. 11 zeigt eine schematische Darstellung
eines Symbols eines Schaltkreises eines Zeitmulti-
plexers 5 der Fig. 12. Fig. 12 zeigt eine schematische
Darstellung eines Schaltkreises des Zeitmultiplexers
5 der Fig. 11.

[0066] Der Zeitmultiplexer 5 ist in der Lage, eine Fol-
ge von K 1-Bit parallelen Eingangssignalen S1-SK in
ein serielles 1-Bit Ausgangssignal O zu enkodieren.
Die steigende Flanke eines der K Eingangssignale
S1-SK setzt ein korrespondierendes Flipflop 50 einer
Anzahl K von identischen und parallel zueinander an-
geordneten Flipflops 50 in den „high“-Zustand. Die
Ausgangssignale der Flipflops 50 sind jeweils eines
der beiden Eingangssignale eines jeweils korrespon-
dierenden Und-Gatters 51 einer Anzahl K von iden-
tischen und parallel zueinander angeordneten Und-
Gattern 51.

[0067] Zu jeder steigenden Flanke des Taktsignals
CLKSPIKE wird ein selbst initialisierter K-bit Ringzäh-
ler 52 weitergeschoben, dessen parallele Ausgangs-
signale jeweils das zweite Eingangssignal der Und-
Gatter 51 sowie das zurücksetzende Signal, d.h. das
Reset-Signal, für die Flipflops 50 sind. Zu jedem Zeit-
punkt ist genau ein Bit des Ringzählers 52 im Zustand
„high“ während alle anderen Bit des Ringzählers 52
im Zustand „low“ sind. Zur fallenden Flanke des Re-
set-Signals wird das jeweilige Flipflop 50 in den „low“-
Zustand geschaltet.

[0068] Während beide Eingangssignale eines der
Und-Gatter 51 im Zustand „high“ sind, ist auch das
Ausgangssignal dieses Und-Gatters 51 im Zustand
„hoch“, ansonsten im Zustand „low“. Wenn eines
der K Und-Gatter 50 ein Ausgangssignal im Zustand
„hoch“ hat, ist das Ausgangssignal eines Oder-Gat-
ters 53 ebenfalls im Zustand „high“, sonst im Zu-
stand „low“. Zur steigenden Flanke des Taktsignals
CLKSPIKE wird das Ausgangssignal des Oder-Gatters
53 für einen Taktzyklus in einem D-Flipflop 54 zwi-
schengespeichert. Das Ausgangssignal des D-Flip-
flops 54 ist das Ausgangssignal des Zeitmultiplexers
5.

[0069] Das Taktsignal CLKPROG ist an den Daten-
strom des Konfigurationssignals DPROG zur Konfigu-
ration der Segmente 3 gekoppelt und hat lediglich die
Funktion, die Segmente 3 innerhalb des jeweiligen
Neurons 2 sowie die Neuronen 2 innerhalb der Popu-
lation 1 untereinander zu synchronisieren.

[0070] Das Taktsignal CLKSPIKE steuert die Verar-
beitung von sog. „Spikes“, d.h. von Pulsen als „high“-
Zustände. Zum einen wird mit der Frequenz des Takt-
signales CLKSPIKE das Ausgangssignal der Populati-
on 1 in der Zeit multiplexed. Zum anderen wird das
Taktsignal CLKSPIKE im zweiten bidirektionalen M-bit
SIPO-Schieberegister 42 des Schiebefensterdetek-
tors 4 genutzt, um dieses Eingangssignal synchroni-
siert zu verarbeiten. Somit ist der ausgehende Daten-
strom des zweiten bidirektionalen M-bit SIPO-Schie-
beregisters 42 an das Taktsignal CLKSPIKE gebun-
den. Auch hängen alle eingehenden Datenströme
des Eingangssignals E, des Kontrollsignals I sowie
der binären Zufallszahlensignal M, welche zur Mus-
tererkennung dienen, an dem Taktsignal CLKSPIKE•

[0071] In der Verarbeitung des Eingangssignals E,
des Kontrollsignals I sowie der binären Zufallszah-
lensignal M zur Mustererkennung gilt insbesondere,
dass das Zeitfenster des Schiebefensterdetektors 4
N * 1/f(CLK-SPIKE) ist, also durch den Horizont des
n bidirektionalen M-bit SIPO-Schieberegister 42 des
Schiebefensterdetektors 4 und durch die Frequenz
des Taktsignals gegeben ist. In der Anwendung lässt
sich durch die Wahl der Frequenz die Population 1
auf die Zeitskalen anpassen, auf denen Teilmuster
erkannt werden sollen, wobei ein Teilmuster das ist,
was ein Segment 3 alleine durch den Schiebefens-
terdetektor 4 erkennt.

[0072] Das Taktsignal CLKPLT steuert ausschließlich
die Länge der Plateaus in den einzelnen Segmen-
te 3, also die Zeitdauer bzw. Signallänge, für die ein
einzelnes Segment 3 sich die Erkennung eines Teil-
musters zusammen mit ausreichendem Signal aus
dem binären Baum merkt: Cache für das Zwischener-
gebnis. Im Speziellen wird das asynchron geschalte-
te „high“-Ausgangssignal des Segments 3 nach min-
destens N * 1/f(CLKPLT) und nach maximal (N+1) *
1/f(CLKPLT) wieder ausgeschaltet. Die Spanne ergibt
sich dadurch, dass das Zählen im Schiebefensterre-
gister 4 zum Ausschalten vom Anschalten des Aus-
gangssignals entkoppelt ist. Damit lässt sich über die
Wahl von N die zeitliche Präzision auf Kosten von
Bauteilen und über die gemeinsame Wahl von N und
der Frequenz des Taktsignals CLKPLT die Zeitskala
regeln, auf der Zwischenergebnisse und Teilmuster
gespeichert werden. Das Taktsignal CLKPLT stellt so-
mit eine zweite Zeitskala in der Mustererkennung dar.

[0073] Die Kombination der Taktsignale CLKSPIKE
und CLKPLT, um Teilmuster auf zwei unabhängig
wählbaren Zeitskalen zur Mustererkennung zu kom-
binieren, stellt eine Besonderheit der Neuronen 2
dar. Isoliert kontrolliert jedes Taktsignal CLKSPIKE und
CLKPLT wie bisher üblich einen Teil des Neurons 2
über Flankensteuerung. Genauer betrachtet werden
jedoch erfindungsgemäß die Segmente 3 innerhalb
des Neurons 2 von den verschiedenen Taktsigna-
len CLKSPIKE und CLKPLT gesteuert und dies zur Im-

DE 10 2019 134 044 A1 2021.06.17

10/22

plementierung von Algorithmen zur Mustererkennung
verwendet.

[0074] Die zuvor beschriebene Population 1 kann
dazu verwendet werden, mit niedriger Latenz Mus-
ter in kontinuierlichen, digitalen Datenströmen (Bit-
streams) zu erkennen. Da aufgrund von Störsignalen
oder zeitlicher Impräzision niemals dieselben Muster
in gleicher Form auftreten, können dabei auch unge-
fähre Übereinstimmungen erkannt und der Grad der
Übereinstimmung quantifiziert werden. Dabei sind
die zu erkennenden Muster konfigurierbar, d.h. kön-
nen vorbestimmt werden.

[0075] Hierzu werden die zuvor beschriebenen Neu-
ronen 2 als mehrere Musterdetektoren in Gruppen in
Form von Populationen 1 zusammengefasst. Jedes
einzelne Neuron 2 ist hier eine hierarchische Struktur
der Segmente 3, welche untereinander verknüpft sind
und, je nach problemspezifischer Konfiguration, je-
weils eigene Eingangssignale verarbeiten. Wenn ein
komplexes Muster als Eingangssignal alle Segmen-
te 3 in der richtigen zeitlichen Sequenz aktiviert, er-
zeugt das jeweilige Neuron 2 in seinem Ausgangs-
signal ein positives Bit, d.h. ein Ausgangssignal mit
dem Zustand „high“; sozusagen „feuert“ das Neuron
2 bzw. das Neuron 2 erzeugt einen Pulse bzw. einen
„Spike“.

[0076] Die Wahrscheinlichkeit, mit der ein einzelnes
Neuron 2 feuert, reflektiert dabei den Grad der Über-
einstimmung zwischen dem geforderten, d.h. dem
konfigurierten vorbestimmten, und dem gesehenen,
d.h. der Population 1 zugeführten, Muster. In einer
Population 1 lesen alle K gleichkonfigurierten Neuro-
nen 2 den gleichen Datenstrom als Eingangssignal
E und versuchen, das gleiche Muster in dem Ein-
gangssignal E zu erkennen, erhalten jedoch durch ei-
ne pseudo-zufällige Maskierung der Eingangssigna-
le E mit den binären Zufallszahlensignalen M sto-
chastisch voneinander verschiedene Eingangssigna-
le E. Dies bedeutet, dass auf jedes Muster W von K
Neuronen 2 reagieren, wobei W den Grad der Über-
einstimmung zwischen dem zugeführten Muster und
dem konfigurierten vorbestimmten Muster abbildet.
Die technische Umsetzung kommt hierbei gänzlich
ohne Mikroprozessoren aus und ist gänzlich in den
zuvor beschriebenen Schaltkreisen umsetzbar.

[0077] Hierzu wird der eingehende Datenstrom E, in
welchem ein Muster erkannt werden sollen, als ge-
taktetes binäres Signal E in Form von N 1-Bit Ein-
gangssignalen E1-EN auf mehreren parallelen Leitun-
gen gelegt und der Population 1 zugeführt. Dies gilt
ebenso für das Kontrollsignal I und die binären Zu-
fallszahlensignale M.

[0078] Innerhalb der Population 1 werden auf der
Eingangsseite die gleichen Eingangssignale E und
Kontrollsignale I an jedes Neuron 2 geleitet, wo die

Eingangssignale E mit den neuronenspezifischen bi-
nären Zufallssignalen M maskiert werden. Die einzel-
nen Ergebnisse der Neuronen 2 werden dann im Zeit-
multiplexer 5 zusammengeführt, um einen einzelnen
Datenstrom O als Ausgang der Population 1 zu ge-
nerieren, welcher wie gefordert die Qualität des er-
kannten Musters in den eingehenden Datenstrom E
widerspiegelt.

[0079] Jedem einzelnen Neuron 2 innerhalb Popu-
lation 1 kommt dabei die Aufgabe zu, das konfigu-
rierbare, vorbestimmte Muster im jeweiligen 1-Bit Ein-
gangssignal E1-EN der N 1-Bit Eingangssignale E1-EN
zu erkennen. Hierzu sind die Neuronen 2 jeweils aus
den einzelnen N Segmenten 3 aufgebaut, von de-
nen jedes eines der eingehenden N 1-Bit Eingangs-
signale E1-EN verarbeitet. Jedes Segment 3 reagiert
dabei auf ein relevantes Signal in seinem zugeord-
neten 1-Bit Eingangssignal E1-EN, d.h. das k-te Seg-
ment 3 auf ein relevantes Signal im 1-Bit Eingangs-
signal Ek, indem das Segment 3 für eine bestimm-
te Zeit eingeschaltet, d.h. in den „high“-Zustand ver-
setzt, wird. Untereinander sind diese Segmente 3 in
dem binären Baum derart verschaltet, dass jedes ein-
zelne Segment 3 nur dann durch das jeweilige 1-
Bit Eingangssignal E1-EN eingeschaltet werden kann,
wenn - je nach Konfiguration - Null, Eins oder Zwei
der untergeordneten Binärbaumzweige 21, 22 oder
Abschlusszweige 20 im binären Baum bereits einge-
schaltet sind. Wie lange ein Segment 3 eingeschal-
tet ist, wird durch das Taktsignal CLKPLT festgelegt,
welches nicht an das Taktsignal CLKSPIKE des Ein-
gangssignals E gekoppelt ist.

[0080] In jedem Neuron 2 ist diese Verschachte-
lung in dem Binärbaum abgebildet. Ein Neuron 2 hat
für jedes Segment 3 ein jeweils zugeordnetes 1-Bit
Eingangssignal E1-EN der N 1-Bit Eingangssignale
E1-EN, mit welchem das jeweilige Segment 3 für ei-
ne feste Zeit eingeschaltet, d.h. in den Zustand „high“
gebracht, werden kann (Plateau). Jedes Segment 3
hat ebenso ein jeweils zugeordnetes 1-Bit Kontroll-
signal I1-IN der N 1-Bit Kontrollsignale I1-IN, mit wel-
chem das Segment 3, falls es bereits in den Zu-
stand „high“ ist, durch das jeweils zugeordnete 1-Bit
Kontrollsignal I1-IN als externes Signal wieder aus-
geschaltet, d.h. in den „low“-Zustand gebracht, wer-
den kann. Einzelne Segmente 3 bekommen das kon-
figurierbare Taktsignal CLKPLT, welches die zeitliche
Dauer bestimmt, für die ein Segment 3 eingeschaltet
ist. Das Segment 3 an der Wurzel der Baumstruktur,
d.h. in der obersten Ebene es binären Baums, gene-
riert kurze Pulse, auch Spikes genannt, mit derselben
Taktung des Taktsignals CLKSPIKE wie die Eingangs-
signale E anstatt längere Plateaus zu erzeugen, wie
in den übrigen Segmenten 3.

[0081] Jedes der Segmente 3 wird zunächst durch
die Eingangssignale B1, B2 anderer im binären Baum
untergeordneter Segmente 3 getrieben, sofern die-

DE 10 2019 134 044 A1 2021.06.17

11/22

se existieren. Hier kann konfiguriert werden, ob Null,
Eins oder Zwei Segmente 3 eingeschaltet sein müs-
sen. Weiter wird der eingehende Datenstrom E in
dem Schiebefensterdetektor 4 verarbeitet, welches
für kurze Zeit eingeschaltet ist, falls die Anzahl der
gesetzten Bits in einem festen Zeitfenster einen kri-
tischen Pegel überschreitet. Das Eingangssignal in
den Schiebefensterdetektor 4 wird vorher mit dem
binäres Zufallszahlensignal M maskiert. So ist die
Antwort jedes Schiebefensterdetektors 4 auf dassel-
be Eingangssignal E stochastisch und unterscheidet
sich, wie oben beschrieben, von anderen Schiebe-
fensterdetektoren 4 in der Population 1, welche auf
das gleiche Eingangssignal E abweichend reagieren.

[0082] Falls sowohl das jeweils zugeordnete 1-Bit
Eingangssignal E1-EN das konfigurierte Kriterium der
untergeordneten Binärbaumzweige 21, 22 bzw. Ab-
schlusszweige 20 erfüllt und der Schiebefensterde-
tektor 4 des Segments 3 im zugeordneten 1-Bit Ein-
gangssignal E1-EN ein Signal erkannt hat, schaltet
sich das Segment 3 ein. In dem zweiten bidirektio-
nalen M-bit SIPO-Schieberegister 42 wird dieser Zu-
stand für eine feste Anzahl an Takten des Taktsignals
CLKPLT gehalten, worauf sich das Segment 3 selbst
wieder ausschaltet. Weiter kann das jeweils zugeord-
nete 1-Bit Kontrollsignal I1-IN den zweiten bidirektio-
nalen M-bit SIPO-Schieberegister 42 zurücksetzen
und das Segment 3 frühzeitig ausschalten. Intern ist
das Ausgangssignal des Segments 3 lediglich indi-
rekt über den Schiebefensterdetektor 4 an ein Takt-
signals CLKSPIKE gebunden. Das Segment 3 reagiert
ansonsten mit einer zu vernachlässigen Verzögerung
der einzelnen Bauteile.

[0083] Dem Schiebefensterdetektor 4 kommt dabei
die Aufgabe zu, zu detektieren, falls die Anzahl der
gesetzten Bits, d.h. der Bits im „high“-Zustand, in ei-
nem festen vorbestimmten Zeitfenster des getakte-
ten Datenstroms einen kritischen Wert überschrei-
tet. Hierzu wird seitens des Schiebefensterdetektors
4 pro Segment 3 die Anzahl der eingehenden Pul-
se, d.h. der Bits im Zustand „high“, in dem festen
Zeitfenster in dem jeweiligen Datenstrom DIN ge-
zählt. Jedes eingehende gesetzte Bit, d.h. Bit im Zu-
stand „high“, schiebt das zweite bidirektionale M-bit
SIPO-Schieberegister 42 vorwärts und wird gleich-
zeitig in einer durch das zweite bidirektionale M-bit
SIPO-Schieberegister 42 und durch das Taktsignal
CLKSPIKE des Datenstrom E implementierten Delay-
line gespeichert. Nach diesem Delay wird das zweite
bidirektionale M-bit SIPO-Schieberegister 42 wieder
zurückgeschoben.

[0084] Konfigurierbar ist, an welcher Stelle im zwei-
ten bidirektionalen M-bit SIPO-Schieberegister 42 ein
Bit gesetzt sein muss, um ein Ausgangssignal zu er-
zeugen. So signalisiert das zweite bidirektionale M-
bit SIPO-Schieberegister 42, wann mehr als ein kon-
figurierbarer, vorbestimmter Schwellwert 1-Bit-Signa-

le in dem durch das Taktsignal CLKSPIKE und durch
die Länge der Delayline festgelegten Zeitfenster im
Datenstrom DIN zu finden waren.

[0085] Der Schiebefensterdetektor 4 dekodiert somit
1-Bit Signale, welche genau der Kodierung des Aus-
gangssignals der Population 1 entsprechen. Die An-
zahl der Pulse in kurzer Zeit kodiert dabei die Stärke
des Signals. Der Schwellwert im zweiten bidirektio-
nalen M-bit SIPO-Schieberegister 42 legt fest, wann
ein Signal stark genug war.

[0086] Das Konfigurationssignal DPROG, welches
sich durch alle Bauteile der Population 1 zieht, er-
möglicht die Konfiguration der Population 1 und aller
enthaltener Bauteile.

[0087] Im Vergleich zu bekannten Lösungen zur di-
gitalen Signalverarbeitung und Mustererkennung, be-
sonders im Bereich neuromorpher Technologien, er-
geben sich eine Reihe von Vorteilen aus den zuvor
beschriebenen Neuronen 2 sowie der hieraus aufge-
bauten Population 1.

[0088] So ermöglicht der zuvor beschriebene Ansatz
die Erkennung von konfigurierbaren Mustern auf ver-
schiedenen Zeitskalen und ist somit tolerant gegen-
über Störungen im Signal oder im Timing. Dies er-
laubt den Einsatz in erschwerten Bedingungen, z.B.
im Verbund mit unpräziser Sensorik oder mit Signa-
len mit hoher Variabilität.

[0089] Auch kann durch die Nutzung stochastischer
Eingangssignale als die binären pseudo-zufälligen
Zufallszahlensignale M nicht nur ein gegebenes Mus-
ter erkannt werden, sondern es kann auch der Grad
der Übereinstimmung quantifiziert werden.

[0090] Sowohl das Eingangssignal E als auch das
Ausgangssignal O der Population 1 sind kompati-
bel, um mit weiteren Populationen zu kommunizieren,
und erlauben somit die Verschaltung zu großen Net-
zen.

[0091] Die Informationsverarbeitung erfolgt gänzlich
ohne den Einsatz von Mikroprozessoren oder Pa-
ket-Routing, was technisch einfacher umsetzbar ist,
ein hohes Maß an Parallelisierung ermöglicht und zu
niedrigen Latenzen führt.

[0092] Die Kommunikation zwischen Populationen 1
und das An- bzw. Ausschalten von Segmenten 3 ist
an zwei verschiedene Taktsignale, nämlich die Takt-
signale CLKPLT und CLKSPIKE, gebunden. Hierdurch
wird das Taktsignal CLKSPIKE, auf welchem Muster
im Datenstrom E als Eingangssignal E erkannt wer-
den sollen, von dem Taktsignal CLKPLT entkoppelt.
Auf diese Art und Weise können im bestimmungs-
gemäßen Gebrauch im Datenstrom E Teilmuster er-
kannt werden, welche auf einer von dem Datenstrom

DE 10 2019 134 044 A1 2021.06.17

12/22

E entkoppelten Zeitskala, nämlich dem Taktsignal
CLKSPIKE, mit anderen Teilmustern des Datenstroms
E verbunden werden.

[0093] Zum Beispiel können viele Pulse im Daten-
strom E in sehr kurzer Zeit übertragen werden und
auf ein wichtiges Ereignis wie zum Beispiel das Über-
schreiten eines kritischen Wertes eines Temperatur-
sensors hinweisen. Ein zweites Ereignis wie zum Bei-
spiel das Überschreiten eines kritischen Wertes ei-
nes Beschleunigungssensors kann ebenfalls schnell
mittels des Taktsignals CLKSPIKE übertragen werden.
Beide Ereignisse können als Teil eines Muster „kri-
tische Temperatur und dann kritische Beschleuni-
gung“ dann aber auf einer Zeitskala, welche von dem
Taktsignal CLKSPIKE entkoppelt und durch das Takt-
signal CLKPLT zum Beispiel deutlich langsamer defi-
niert ist, kombiniert werden. Durch die Kombination
beider Taktsignale CLKSPIKE, CLKPLT kann ein Seg-
ment 3 auf die speziellen externen Timing-Anforder-
rungen der Anwendung angepasst werden.

[0094] Werden die Neuronen 2 mit einer höheren
Komplexität in Form eines binären Baums mit zahl-
reichen Ebenen umgesetzt, so können mehr Informa-
tionen im internen Zustand der Neuronen 2 verarbei-
tet und gespeichert werden. Daher sind für dieselbe
Leistung weniger individuelle Neuronen 2 erforder-
lich, was die Größe der resultierenden Population 1
und damit die Komplexität der notwendigen Kommu-
nikationsinfrastruktur deutlich reduzieren kann.

[0095] Weitere Ausgestaltungen der Erfindung, wel-
che von dem betrachteten Ausführungsbeispiel ab-
weichen, sind vorstellbar. Jedes einzelne der oben
genannten Bauteile kann in seinem Funktionsumfang
erweitert oder in der Umsetzung angepasst werden.
Auch können mehrere Populationen 1 zu Netzen ver-
schaltet werden, die eingesetzt werden könnten, um
komplexere Probleme zu lösen.

Bezugszeichenliste

B1 Eingangssignal eines
Segments 3 seitens ei-
nes ersten Binärbaum-
zweigs 21

B2 Eingangssignal eines
Segments 3 seitens ei-
nes zweiten Binärbaum-
zweigs 22

CLKPLT Taktsignal zur Steue-
rung der Länge der Pla-
teaus der Vergleichs-
schaltungen 3

CLKSPIKE Taktsignal zur Steue-
rung der Verarbeitung
der Spikes der Ver-
gleichsschaltungen 3

CLKPROG Taktsignal des Konfigu-
rationssignals DPROG,
DPROGO

DIN Eingangssignal eines
Schiebefensterdetektors
4

DOUT Ausgangssignal eines
Schiebefensterdetektors
4

DPROG Konfigurationssignal als
Eingangssignal

DPROGO Konfigurationssignal als
Ausgangssignal

E, E1-EN Eingangssignal der Po-
pulation 1; eingehender
Datenstrom

i Zählindex

I, I1-IN Kontrollsignal

J Anzahl der Eingangs-
signale des Abschluss-
zweigs 20

K Anzahl der Neuronen

M, M1,1-MK,N 1-Bit bzw. binäres Zu-
fallszahlensignale

N Anzahl der Segmente

O Ausgangssignal des
Zeitmultiplexers 5 bzw.
der Population 1

P1-Pk 1-Bit Ausgangssignale
der Neuronen 2, der Ab-
schlusszweige 20, der
Binärbaumzweige 21, 22
und der Segmente 3

S1-SK Eingangssignale des
Zeitmultiplexers 5

SL linksschiebendes Ein-
gangssignal des zweiten
bidirektionalen (M-bit SI-
PO-) Schieberegisters
42 des Schiebefenster-
detektors 4

SR rechtsschiebendes Ein-
gangssignal des zweiten
bidirektionalen (M-bit SI-
PO-) Schieberegisters
42 des Schiebefenster-
detektors 4

W Grad der Übereinstim-
mung zwischen zuge-
führtem Muster und kon-
figurierten vorbestimm-
ten Muster

DE 10 2019 134 044 A1 2021.06.17

13/22

1 neuromorphe Schalt-
kreisanordnung; Popula-
tion

2 neuromorpher Muster-
detektor; Neuron; Neu-
ronen-Schaltkreis; Binär-
baumwurzel

20 Abschlusszweig; Bi-
närbaumblatt; Terminal
Branch

21 erster Binärbaumzweig;
erster innerer Knoten
des Binärbaums; erster
Nested Branch

22 zweiter Binärbaum-
zweig; zweiter innerer
Knoten des Binärbaums;
zweiter Nested Branch

3 Vergleichsschaltung;
Segment

30 erstes Oder-Gatter

31 erstes Und-Gatter

32 (4-fach) Multiplexer

33 erstes (2-bit SIPO-)
Schieberegister

34 zweites Und-Gatter

35 drittes Und-Gatter

36 (1-Bit) Flipflop

37 zweites (N-bit SIPO-)
Schieberegister

38 zweites Oder-Gatter

4 Schiebefensterdetektor;
Slider

40 erstes Und-Gatter

41 erstes (N-bit SIPO-)
Schieberegister

42 zweites bidirektionales
(M-bit SIPO-) Schiebere-
gister

43 ((M+1)-fach) Multiplexer

44 drittes (K-bit SIPO-)
Schieberegister

5 Zeitmultiplexer; Time
Multiplexer

50 Flipflops

51 Und-Gatter

52 selbst initialisierter (K-
bit) Ringzähler

53 Oder-Gatter

54 D-Flipflop

Patentansprüche

1. Neuromorpher Musterdetektor (2),
welcher ausgebildet ist, wenigstens zwei 1-Bit Ein-
gangssignale (E1-EN) eines zu erkennenden Musters
zu erhalten,
mit wenigstens zwei Vergleichsschaltungen (3), wel-
che jeweils ausgebildet sind,
eines der 1-Bit Eingangssignale (E1-EN) zu erhalten,
die Anzahl der „high“-Zustände oder der „low“-Zu-
stände des jeweiligen 1-Bit Eingangssignals (E1-EN)
innerhalb eines vorbestimmten Zeitraums zu zählen,
die Anzahl der gezählten Zustände mit einem vor-
bestimmten Schwellwert der jeweiligen Vergleichs-
schaltung (3) zu vergleichen und
bei Überschreiten des Schwellwerts auf die erfolgte
Erkennung des zu erkennenden Musters hinzuwei-
sen.

2. Neuromorpher Musterdetektor (2) nach An-
spruch 1, dadurch gekennzeichnet, dass die ei-
ne Vergleichsschaltung (3) der anderen Vergleichs-
schaltung (3) erstrangig untergeordnet ist, wobei die
übergeordnete Vergleichsschaltung (3) ausgebildet
ist, nur dann auf die erfolgte Erkennung des zu erken-
nenden Musters hinzuweisen, falls der Schwellwert
der übergeordneten Vergleichsschaltung (3) über-
schritten und zeitgleich von der erstrangig unterge-
ordneten Vergleichsschaltung (3) auf die erfolgte Er-
kennung des zu erkennenden Musters hingewiesen
wird.

3. Neuromorpher Musterdetektor (2) nach An-
spruch 2, gekennzeichnet durch
wenigstens eine weitere Vergleichsschaltung (3),
welche parallel zu der untergeordneten Vergleichs-
schaltung (3) angeordnet ist,
wobei die übergeordnete Vergleichsschaltung (3)
ausgebildet ist, nur dann auf die erfolgte Erkennung
des zu erkennenden Musters hinzuweisen, falls der
Schwellwert der übergeordneten Vergleichsschal-
tung (3) überschritten und zeitgleich von den erstran-
gig untergeordneten Vergleichsschaltungen (3) je-
weils auf die erfolgte Erkennung des zu erkennenden
Musters hingewiesen wird.

4. Neuromorpher Musterdetektor (2) nach einem
der Ansprüche 2 oder 3, gekennzeichnet durch
wenigstens eine weitere Vergleichsschaltung (3),
welche zweitrangig untergeordnet zu der erstrangig
untergeordneten Vergleichsschaltung (3) angeordnet
ist,
wobei die erstrangig untergeordnete Vergleichs-
schaltung (3) ausgebildet ist, nur dann auf die erfolg-

DE 10 2019 134 044 A1 2021.06.17

14/22

te Erkennung des zu erkennenden Musters hinzu-
weisen, falls der Schwellwert der erstrangig unterge-
ordneten Vergleichsschaltung (3) überschritten und
zeitgleich von der zweitrangig untergeordneten Ver-
gleichsschaltung (3) auf die erfolgte Erkennung des
zu erkennenden Musters hingewiesen wird.

5. Neuromorpher Musterdetektor (2) nach An-
spruch 3 oder 4, dadurch gekennzeichnet, dass die
wenigstens drei Vergleichsschaltungen (3) einen Bi-
närbaum mit wenigstens zwei Ebenen bilden.

6. Neuromorpher Musterdetektor (2) nach einem
der vorangehenden Ansprüche, dadurch gekenn-
zeichnet, dass die Vergleichsschaltungen (3) iden-
tisch ausgebildet sind.

7. Neuromorpher Musterdetektor (2) nach einem
der vorangehenden Ansprüche, dadurch gekenn-
zeichnet, dass bei Überschreiten des Schwellwerts
ein 1-Bit Ausgangssignal (P1-Pk) der jeweiligen Ver-
gleichsschaltung (3) auf den „high“-Zustand, ansons-
ten auf den „low“-Zustand, gesetzt wird, oder umge-
kehrt.

8. Neuromorpher Musterdetektor (2) nach An-
spruch 7, dadurch gekennzeichnet, dass die Ver-
gleichsschaltungen (3) ausgebildet sind, jeweils ein
1-Bit Steuersignal (I1-IN) zu erhalten und in Reakti-
on auf einen „high“-Zustand oder auf einen „low“-Zu-
stand des jeweiligen 1-Bit Steuersignals (I1-IN) das 1-
Bit Ausgangssignal (P1-Pk) der jeweiligen Vergleichs-
schaltung (3) auf den „low“-Zustand zu setzen.

9. Neuromorpher Musterdetektor (2) nach einem
der vorangehenden Ansprüche, dadurch gekenn-
zeichnet, dass der vorbestimmte Schwellwert der
Anzahl der Zustände der jeweiligen Vergleichsschal-
tung (3) vorgibt, wann das zu erkennende Muster als
erkannt angesehen wird.

10. Neuromorpher Musterdetektor (2) nach ei-
nem der vorangehenden Ansprüche, dadurch ge-
kennzeichnet, dass die Vergleichsschaltungen (3)
jeweils einen Schiebefensterdetektor (4) aufweisen,
welcher jeweils ausgebildet ist, das jeweilige 1-Bit
Eingangssignal (E1-EN) zu erhalten und die Anzahl
der „high“-Zustände oder der „low“-Zustände des je-
weiligen 1-Bit Eingangssignals (E1-EN) innerhalb des
vorbestimmten Zeitraums zu zählen.

11. Neuromorpher Musterdetektor (2) nach An-
spruch 10, dadurch gekennzeichnet, dass das Zäh-
len der Anzahl der „high“-Zustände oder der „low“-Zu-
stände des jeweiligen 1-Bit Eingangssignals (E1-EN)
innerhalb des vorbestimmten Zeitraums mittels eines
bidirektionalen Schieberegisters (42) des jeweiligen
Schiebefensterdetektors (4) erfolgt.

12. Neuromorpher Musterdetektor (2) nach einem
der vorangehenden Ansprüche, dadurch gekenn-
zeichnet, dass
die Vergleichsschaltungen (3), vorzugsweise de-
ren Schiebefensterdetektor 4, jeweils ein Taktsignal
CLKSPIKE zur Steuerung der Verarbeitung der Pulse
und ein Taktsignal CLKPLT zur Steuerung der Länge
der Plateaus erhalten,
wobei die beiden Taktsignale CLKSPIKE und CLKPLT
unterschiedlich sind.

13. Neuromorphe Schaltkreisanordnung (1)
mit einer Mehrzahl von neuromorphen Musterdetek-
toren (2) nach einem der vorangehenden Ansprüche,
wobei jeder neuromorphe Musterdetektor (2) ausge-
bildet ist,
das gleiche 1-Bit Eingangssignal (E1-EN) zu erhalten,
ein unterschiedliches 1-Bit Zufallszahlensignal (M1,1-
MK,N) zu erhalten,
das jeweilige 1-Bit Eingangssignal (E1-EN) mit dem
entsprechenden 1-Bit Zufallszahlensignal (M1,1-MK,N)
zu verändern, und
die Anzahl der „high“-Zustände oder der „low“-Zu-
stände des jeweiligen veränderten 1-Bit Eingangs-
signals (E1-EN) innerhalb eines vorbestimmten Zeit-
raums zu zählen.

14. Neuromorphe Schaltkreisanordnung (1) nach
Anspruch 13, dadurch gekennzeichnet, dass we-
nigstens eine Vergleichsschaltung (3), vorzugsweise
alle Vergleichsschaltungen (3) jeweils, ein Und-Gat-
ter (35) aufweist, welches ausgebildet ist, das jewei-
lige 1-Bit Eingangssignal (E1-EN) und das entspre-
chende 1-Bit Zufallszahlensignal (M1,1-MK,N) zu kom-
binieren.

15. Neuromorphe Schaltkreisanordnung (1) nach
Anspruch 13 oder 14, dadurch gekennzeichnet,
dass
die neuromorphe Schaltkreisanordnung (1) ausgebil-
det ist,
die Anzahl der 1-Bit Ausgangssignale (P1-Pk) der je-
weiligen Vergleichsschaltung (3), welche zeitgleich
im „high“-Zustand oder im „low“-Zustand sind, zu er-
fassen und
aus dem Verhältnis der Anzahl von 1-Bit Ausgangs-
signalen (P1-Pk) im „high“-Zustand oder im „low“-Zu-
stand und der Anzahl der neuromorphen Musterde-
tektoren (2) einen Grad (W) der Übereinstimmung
zwischen 1-Bit Eingangssignal (E1-EN) und zu erken-
nendem Muster zu bestimmen.

16. Neuromorphe Schaltkreisanordnung (1) nach
einem der Ansprüche 13 bis 15, dadurch gekenn-
zeichnet, dass wenigstens eine Vergleichsschaltung
(3), vorzugsweise alle Vergleichsschaltungen (3) je-
weils, einen Zeitmultiplexer (5) aufweist, welcher aus-
gebildet ist, parallele Ausgangssignale (P1-PK) der
neuromorphen Musterdetektoren (2) zu einem 1-Bit-

DE 10 2019 134 044 A1 2021.06.17

15/22

Ausgangssignal (O) der neuromorphen Schaltkreis-
anordnung (1) zusammenzuführen.

Es folgen 7 Seiten Zeichnungen

DE 10 2019 134 044 A1 2021.06.17

16/22

Anhängende Zeichnungen

DE 10 2019 134 044 A1 2021.06.17

17/22

DE 10 2019 134 044 A1 2021.06.17

18/22

DE 10 2019 134 044 A1 2021.06.17

19/22

DE 10 2019 134 044 A1 2021.06.17

20/22

DE 10 2019 134 044 A1 2021.06.17

21/22

DE 10 2019 134 044 A1 2021.06.17

22/22

Das Dokument wurde durch die Firma Jouve hergestellt.

132 publications and contributions

b.4 paper : neuromorphic computation in multi-delay coupled

models

Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Neuromorphic
computation in multi-delay coupled models’. In: IBM Journal of Re-
search and Development 61.2/3 (2017), pp. 8–7

Abstract

Neuromorphic computing provides a promising platform for pro-
cessing high-dimensional noisy signals on dedicated hardware. Using
design elements inspired by neurobiological findings and advances in
machine learning methodology, delay-coupled systems have recently
been developed in the field of neuromorphic computing. Delayed
feedback connections enable such systems to generate a complex rep-
resentation of injected input in the internal state of single nodes,
which in our context refer to hardware components with nonlinear
behavior and without any memory. In contrast to classical combinat-
orial circuits or feed-forward networks, this state is not distributed
in space but in time. Hardware implementations with low hardware
component counts are therefore particularly easy to design for delay-
coupled systems. In this paper, we present an argument for using
delay-coupled reservoirs using multiple feedback terms with differ-
ent delays. We present a theoretical analysis of the resulting system,
discuss surprising effects pertaining to the precise choice of delays,
and provide a guideline for the optimal design of such systems.

Full-print is omitted from the online version of this thesis due to copy-
right reasons. The full DOI of the publication is:
10.1147/JRD.2017.2664698

https://doi.org/10.1147/JRD.2017.2664698

B.5 adaptive filters 133

b.5 conference abstract : neuromorphic adaptive filters

for event detection, trained with a gradient free

online learning rule

Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Neuromorphic
Adaptive Filters for event detection, trained with a gradient free on-
line learning rule’. In: Cognitive Computing – Merging Concepts with
Hardware. 2018

Abstract

Machine learning problems are typically framed in a regression, clas-
sification or prediction setting, where a set of distinct data points is
to be identified with corresponding labels. Artificial neural networks
excel at such problems, because their universal function approxim-
ation capability and differentiability can be leveraged for powerful
gradient-based optimization algorithms. Neuromorphic hardware how-
ever, interacting with its environment in real time, faces challenges
that defy this framework. One such example is the detection of spe-
cific events in real time, where the mapping from a continuous stream
of noisy input signals onto a discrete set of events is to be learned. The
temporal dimension of this task entails a credit assignment problem
for learning, cine the detector must evaluate a history of input sig-
nals and needs to be afforded some flexible processing delays, which
makes defining a differentiable loss function for the event detection
task difficult. This is aggravated in a setting where the target sig-
nals themselves are delayed. The constraints of neuromorphic hard-
ware design further restrict the available learning algorithms to "any-
time" computations implementable just by (traces of) locally avail-
able information, which precludes many of the established gradient-
based optimization procedures. We propose a neuromorphic event
detector, the Neuromorphic Adaptive Filter (NAF) and ensembles
therefore, that utilizes Gamma Filter banks to learn a parameterized
multidimensional signal filter through a supervised gradient-free on-
line learning rule.

134 publications and contributions

B.6 book chapter : computational elements of circuits 135

b.6 book chapter : computational elements of circuits

Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘Computational
Elements of Circuits’. In: The neocortex. Ed. by Wolf Singer, Terrence J
Sejnowski and Pasko Rakic. MIT Press, 2019, pp. 195–209

Abstract

Information processing in the brain is implemented across several
temporal and spatial scales by populations of neurons. This chapter
addresses how single neurons, small network motifs, and larger net-
works, in which emergent dynamics are largely shaped by the con-
nectivity of the system, contribute to this processing of information.
Computation is defined as a semantic mapping; that is, it is the pro-
cess by which representations of external (e.g., stimulus-driven) or
internal (e.g., memories) information change. A feature specific to
neuronal computation is that mappings are mostly local, constrained
by connectivity patterns between neurons. This implies that complex
mappings from local information onto representations that are highly
relational and abstracted, and which rely on information between dis-
tant parts of the system, require mechanisms that can bridge, bind,
and integrate pieces of information across large scales. An overview
of this process in the nervous system is delineated: Local informa-
tion processing is described at the level of individual neurons and
small motifs. Emergent phenomena are addressed that implement
information processing across large recurrent neuronal populations.
Finally, an omnipresent but mostly ignored feature of neuronal sys-
tems, delay-coupled computation, is described

Full-print is omitted from the online version of this thesis due to
copyright reasons. The ISBN for the complete book is: 9780262043243

https://mitpress.mit.edu/books/neocortex

136 publications and contributions

b.7 paper : a trajectory-based loss function to learn

missing terms in bifurcation dynamical systems

Rahel Vortmeyer-Kley, Pascal Nieters and Gordon Pipa. ‘A trajectory-
based loss function to learn missing terms in bifurcating dynamical
systems’. In: Scientific reports 11.1 (2021), pp. 1–13

Abstract

Missing terms in dynamical systems are a challenging problem for
modeling. Recent developments in the combination of machine learn-
ing and dynamical system theory open possibilities for a solution.
We show how physics-informed differential equations and machine
learning – combined in the Universal Differential Equation (UDE)
framework by Rackauckas et al. – can be modified to discover miss-
ing terms in systems that undergo sudden fundamental changes in
their dynamical behavior called bifurcations. With this we enable the
application of the UDE approach to a wider class of problems which
are common in many real world applications. The choice of the loss
function, which compares the training data trajectory in state space
and the current estimated solution trajectory of the UDE to optim-
ize the solution, plays a crucial role within this approach. The Mean
Square Error as loss function contains the risk of a reconstruction
which completely misses the dynamical behavior of the training data.
By contrast, our suggested trajectory-based loss function which op-
timizes two largely independent components, the length and angle
of state space vectors of the training data, performs reliable well in
examples of systems from neuroscience, chemistry and biology show-
ing Saddle-Node, Pitchfork, Hopf and Period-doubling bifurcations.

1

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports

A trajectory‑based loss
function to learn missing terms
in bifurcating dynamical systems
Rahel Vortmeyer‑Kley1,2*, Pascal Nieters1,2 & Gordon Pipa1

Missing terms in dynamical systems are a challenging problem for modeling. Recent developments in
the combination of machine learning and dynamical system theory open possibilities for a solution.
We show how physics-informed differential equations and machine learning—combined in the
Universal Differential Equation (UDE) framework by Rackauckas et al.—can be modified to discover
missing terms in systems that undergo sudden fundamental changes in their dynamical behavior
called bifurcations. With this we enable the application of the UDE approach to a wider class of
problems which are common in many real world applications. The choice of the loss function, which
compares the training data trajectory in state space and the current estimated solution trajectory of
the UDE to optimize the solution, plays a crucial role within this approach. The Mean Square Error as
loss function contains the risk of a reconstruction which completely misses the dynamical behavior
of the training data. By contrast, our suggested trajectory-based loss function which optimizes two
largely independent components, the length and angle of state space vectors of the training data,
performs reliable well in examples of systems from neuroscience, chemistry and biology showing
Saddle-Node, Pitchfork, Hopf and Period-doubling bifurcations.

Interacting oceanic flows governing our climate, increasing CO2 levels causing global warming, competing spe-
cies for coexistence, dominance or extinction—we live in a changing world. Understanding the impact of these
often slow and gradual changes is important. But sometimes, a system can undergo a sudden fundamental change
and end up in a totally different dynamical behavior. These points are sometimes called tipping points or regime
shifts. Since the middle of the last century, the theory of dynamical systems has been applied to characterize the
behavior of changing systems and real world phenomena in particular1–5 and examples therein.

The dynamics of the system can be described by the behavior of trajectories in a space defined by the state
variables of the system. This state space contains repelling, attracting and separating structures—namely stable
and unstable manifolds, and separatrices, and different types of attractors and coherent structures—that can act
as organizing structures by governing the dynamical behavior of trajectories6,7.

When modeling real world systems in simple equations we still face difficulties because our knowledge or
understanding of the underlying processes is limited (e.g.8–10). Here machine learning can help discover missing
knowledge about the dynamical relationships between state variables from observed data by statistical infer-
ence. For example, Universal Differential Equations (UDE)11 are a recently proposed method to learn dynami-
cal systems from data with machine learning and can be combined with the Sparse Identification of Nonlinear
Dynamics (SInDy) algorithm12 to estimate an algebraic form of the dynamical system from data (see the next
section for details). We show how this approach can be applied to learn missing terms in systems that can undergo
sudden fundamental changes in their dynamics called bifurcation.

The goal of this work is to investigate the role of the loss function used to compare the learned dynamics and
the training data given as time series data in learning a UDE. In particular, we propose a new loss function for
optimization that compares angle and length of vectors in state space independently. Usually, the mean-squared
error is used to compare time series for each variable in the system independently. Our idea is that this new
Length Difference and Angle Difference (LDA) loss is more reliable when learning a UDE in many bifurcating
systems and therefore is better suited to find missing terms in bifurcating systems. The examples we use for this
comparison cover on the one hand a broad range of different bifurcation types (Saddle-Node, Pitchfork, Hopf
and Period-doubling bifurcation) and on the other hand show the importance of bifurcations in various fields
of research (e.g. neuroscience, biology, chemistry). Firstly, we set up a statistical comparison of how well the two
loss functions perform in each of these systems in two different parameter regimes representing two different

OPEN

1Institute of Cognitive Science, Osnabrück University, Wachsbleiche 27, 49090 Osnabrück, Germany. 2These authors
contributed equally: Rahel Vortmeyer-Kley and Pascal Nieters. *email: rahel.vortmeyer-kley@uni-osnabrueck.de

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

dynamics respectively. We then narrow this comparison by focusing on nested intervals around the bifurcation
parameter as well as different trajectory starting points in state space. Finally, we show by way of example that
an algebraic reconstruction of the missing terms using SInDy is possible if a UDE was trained successfully and
discuss our results.

Universal differential equations (UDE) and sparse identification of nonlinear dynamics
(SInDy).  In this work, we investigate a complete, data-driven pipeline to discover the equations that describe
a dynamical system in the context of bifurcating systems. The approach follows recently published work by
Rackauckas et al. and combines the estimation of a UDE11 from data and the subsequent identification of alge-
braic terms from the UDE using SInDy12. We have illustrated the main steps involved in Fig. 1, starting with time
series measurements from the system in question which will be used as training data.

Firstly, a Universal Differential Equation generally describes the dynamics of a system as ẋ = f (x, t, UAp(x, t))
where the function UAp is a parameterized and differentiable universal function approximator. For example, a
partially known two dimensional system with variables x and y may be described as:

where functions f and g describe the known dynamics for x and y respectively, but we want to estimate an addi-
tional additive term in the dynamics of x. Given an initial x(t0) and y(t0) as well as initial parameters pinit the UDE
can numerically be solved and trajectories x̂(t) and ŷ(t) are estimated. Using a loss function, the Mean Squared
Error loss (cf. next section) for each variable of a system as in the original work, the estimated trajectories based
on the UDE can be compared against the actual system measured at sample points ti . The entire program, from
the definition of the unknown function UAp and the UDE through to the numerical solution of the system and
the calculation of the loss, can be differentiated with respect to parameters p using automatic differentiation in
the Julia programming language13,14. This enables the optimization of these parameters by gradient descent on the
loss function, and thereby allows a user to find a UDE with parameterized function UAp optimal that approximates
the measured time series of the original system well.

Using differentiable models in machine learning problems is a generalized view of highly successful deep
and artificial neural network (ANN) models16 that have previously been used to solve differential equations17,18.
Physics-informed neural networks, for example, aim to combine advantages of data-driven machine learning
with knowledge about underlying physical laws in the training process to reconstruct dynamics of a system19–21.
In this paper, we use ANNs as the parameterized universal function approximater22,23 UAp . The disadvantage
is that neural networks are black boxes and do not allow us to learn about systematic relationships between the
variables of the dynamical systems that may be the drivers of underlying dynamics.

Therefore, we also use the SInDy algorithm12 to identify algebraic terms that can replace the neural network
black box. In SInDy, finding the algebraic form of a differential equation is formulated as a linear regression
problem. A matrix of non-linear functions � applied to the state vector x of the system multiplied by a matrix of
sparse coefficient vectors � recovers the standard form of many non-linear dynamical systems: ẋ = f (x) = �(x)�
(see the original paper12 for examples). If measurements for both x and ẋ are available at several sample points in
time we can write Ẋ = �(X)�+ ηZ where X and Ẋ have rows for each sample point, �(X) is a design matrix of
non-linear functions applied to the data, and ηZ is independent and identically distributed Gaussian noise with
magnitude η . This is a standard linear regression problem in multiple variables24 where finding the sparse coef-
ficient vectors � = [ξ1, . . . , ξn] for a system with n state variables by using for example the LASSO algorithm25
can find those non-linear functions in x in the design matrix that best explain the data.

(1)

dx

dt
= f (x, y, t)+ UAp(x, y)

dy

dt
= g(x, y, t)

t

x,
y

t

x,
y

Universal Differential Equation

t

x,
y Training

Data

INPUT
RESULT

Trajectory-based
Loss

Mean Squared Error
Loss

Neural Networks
as Universal Function

Approximator

SInDy:

Algebraic Form

Figure 1.   Schematic sketch of the concept of UDE11. Depending on a successful approximation of the training
data, the application of SInDy12 is possible. The time series qualitatively correspond to the Selkov model15 in
Table 2 second row. This figure is plotted using Inkscape (Version 1.0.1, https://​inksc​ape.​org) and Julia package
Plots (Version v1.16.6, https://​github.​com/​Julia​Plots/​Plots.​jl).

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

Often, data for x is not abundant and ẋ is not immediately available. In these cases, we can still estimate the
UDE that fits the data. Given a UDE, it is easy to calculate ẋ from any given x and SInDy can be applied. Doing so
will find functions in x that are much easier to understand and analyze than a neural network and we have suc-
cessfully removed the black box from the UDE. Furthermore, if partial knowledge about the system is included
in the UDE, we can still use SInDy to find algebraic terms for the contribution by solving the regression problem
UAp optimal(x) = �(x)�+ ηZ in isolation and complete the algebraic description of the dynamical system.

Results
The loss function and the trajectories.  Generally speaking, the objective function or loss function in an
optimization problem must be chosen in accordance with the goal of the optimized model. In neural network
regression models, which we use here to find an approximation to missing terms in the UDE, this is typically
done by minimization of the Mean Squared Error (MSE) loss function26. However, more specialized practition-
ers of model optimization have sometimes found that particular choices of one subtly different loss function over
another can significantly alter the quality of the model fit, for example in financial modeling of option pricing27.

In the UDE approach, the MSE is used to compare observed dynamics to the estimated dynamics of the UDE
by treating each component of the i-th sampled state space vector xi (observed) and pi (estimated) independently:

where xji resp. pji is the j-th component in m dimensional state space, and the i-th point on a trajectory of length
n (cf. blue difference vectors in Fig. 2a). This can work well in practice in many different UDE problems11,28.
However, when trying to find a missing term in a potentially bifurcating system, this particular choice of loss
function can lead to unsatisfactory results.

For example, if the data generating system can undergo a Hopf bifurcation from a stable state solution to
an oscillatory solution, a UDE trained with an MSE loss often does not achieve dynamics in the correct regime
and does not produce dynamics that fit the original system’s structure of nullclines and attractors (see animated
state space portrait example of the oscillatory state of the Selkov model15 in the Supplementary video material
S1 panel c).

How can the optimization fail so spectacularly? If we simplify the problem and replace the neural network by
a simple linear regression with three parameters, one for each dimension of the state space and a bias parameter,
we can visualize the loss function across any axis. If bias and weight for state variable x from the example in
Fig. 1 (cf. Selkov model in Table 2 second row) are chosen correctly as 0, the correct solution for the weight for
y is 0.1 in this case. Indeed, the MSE loss has its minimum at the correct value (Fig. 2b blue line), but it also has

(2)LMSE =

n∑

i=1

m∑

j=1

(x
j
i − p

j
i)
2,

x

y

Mean Squared Error Loss

Cosine Difference

Length Difference

Combined LDA Loss

Legend

a b

c

Figure 2.   Schematic sketch of the concept of MSE and LDA loss function. (a) The UDE estimates trajectories
P = (p1, p2, . . . , pn) (red) in state space, the training data is X = (x1, x2, . . . , xn) (gray). The MSE measures
relative difference in each dimension of the sample point independently (blue lines), whereas the LDA measures
the difference in angle (cyan) and difference in vector length (purple). (b) Comparing trajectories for the
Selkov model15 (cf. Table 2 second row) based on MSE (blue), angular difference (cyan) via the cosine similarity
and length difference (purple) all show a maximum that splits the loss landscape into two regions, one where
the correct minimum can be reached and one where it cannot. Trajectories are compared based on a simple
regression model in which only the weight for y : wy in the Selkov model is unknown and gives the x-axis here.
(c) A weighted sum of the angular and length difference gives the LDA loss. Different sums are shown, with
k1 = 0.25 (length) and k2 = 0.75 (angle) marked as the thick orange line that gives a good compromise between
the two components. This figure is plotted using Inkscape (Version 1.0.1, https://​inksc​ape.​org) and Julia package
Plots (Version v1.16.6, https://​github.​com/​Julia​Plots/​Plots.​jl).

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

a significant peak just below 0. For values smaller than 0, the gradient-descent based optimization of the UDE
runs into an alternative local minimum. This alternative local minimum acts like a “black hole of loss” in the
loss landscape and cannot be escaped. It becomes impossible to find the true solution. Thus, the quality of the
approximation is entirely dependent on initial conditions (see results below as well as the animated state space
portrait in the Supplementary video material S1 panel c).

In the setup using a neural network, we also observe the phenomenon that trajectories of the estimated and
real system must first diverge so that the correct dynamical regime can be reached. While the loss landscape over
many ANN parameters is not easily visualized, it can still contain local minima that represent alternative stable
solutions and act as “black holes of loss”.

We realized that this problem is unlikely to be solved by a single loss function and were inspired by the view
of the dynamics as a trajectory of state space vectors. These can also be described by their angle and length always
having the origin in state space as their common reference.

We construct the Length Difference and Angle Difference Loss (LDA):

where the first component describes the normalized length difference between the position vectors xi and pi of
the i-th point on a trajectory of length n and the second component the normalized difference between the angles
between the two position vectors (namely a normalized cosine similarity, cf. Fig. 2a).

Each component of LDA individually also has false local minima (Fig. 2b purple and cyan), but, crucially at
different points. However, the global minimum is at the same location in both functions. The ratio of these two
components can be weighted with the hyperparameter k1 and k2 (Fig. 2c) chosen for each problem. In most cases
k1 and k2 are chosen equal to 0.5 except for the Selkov model, where k1 equals 0.2 and k2 equals 0.8. Exceptions
to these values are indicated in the text.

This constructed loss function can be used to train the UDE successfully and is less dependent on the initial
ANN parameter guess. The UDE now reconstructs the state space portrait of the original describing differential
equation faithfully (see the animated state space portrait in the Supplementary video material S1 panel a).

In the simplified example, the combined LDA loss cannot fully eliminate a second erroneous local minimum
using a simple weighting of each component. However, when using a neural network as the model, the parameter
space has much larger dimensionality. We hypothesized that the basin of attraction for a correct minimum is
much larger when using the LDA loss with appropriate weight parameters. This should result in a much higher
chance to find a UDE that fits the data given random initial parameters than the MSE loss. Furthermore, we
expected this effect to also depend on the bifurcation itself. In the following we tested both hypotheses extensively
in computational experiments on four example systems with bifurcations.

The loss functions and different bifurcating systems.  What happens if these loss functions are
applied to different bifurcating systems from neuroscience, biology and chemistry? We considered the following
four systems as examples of four different types of bifurcation:

•	 Saddle-Node bifurcation: The FitzHugh–Nagumo model29,30 describes resting and excited states of neurons.
Specific parametrizations of the system can lead to a bistable behavior (“excitable”) with three fixed points
where two are stable and one unstable (saddle). When the bifurcation parameter changes, the left stable fixed
point and the saddle merge and disappear in a Saddle-Node bifurcation; the right stable fixed point remains
and the system is monostable. (cf. Table 1)

•	 Pitchfork bifurcation: The Gardner model31,32 describes a genetic toggle switch in Escherichia coli. In one
parametrization, the system is monostable with a stable fixed point but undergoes a Pitchfork bifurcation as
the bifurcation parameter decreases, leading to bistable behavior with two stable fixed points and one saddle
where each fixed point has its own basin of attraction. (cf. Table 1)

•	 Hopf bifurcation: The Selkov model15 describes oscillatory behavior in the enzyme reactions of the glycolysis
process. The systems shows either steady state behavior with a stable fixed point or—undergoing a Hopf
bifurcation—ends up in oscillatory behavior with a stable limit cycle. (cf. Table 2)

•	 Period-doubling: The Rössler model33,34 can describe chemical reactions, but is often chosen as example for
a simple period-doubling cascade. Here we focus on the transition from a period-one limit cycle to a period-
two limit cycle with changing parametrization. (cf. Table 2)

We wanted to evaluate the performance of a UDE trained with the LDA loss function against a UDE trained with
the MSE loss function for each model with two different parametrizations leading to the two different dynamical
behaviors of the systems named above. Furthermore, we considered three different levels of normal distributed
noise added to the training data to test the robustness of our results under more realistic conditions.

The universal function approximator UAp(x, y) (Equation 1) in all examples was a neural network with a
single hidden layer and 16 neurons with tanh-activation function to accommodate a wide variety of possible non-
linear functions with a limited number of ANN parameters. The initial weights of the Neural Network are chosen
randomly using the Glorot initializer35 with a Normal Distribution as its basis. We used the ADAM optimizer36
and added weight decay to train the UDE (see Supplementary Table S1 for additional details).

(3)LLDA =

n�

i=1









k1 ·

�

(|xi| −
�
�pi

�
�)2

|xi| +
�
�pi

�
�

� �� �

length difference

+k2 ·
1

2
·

�

1−
xi · pi

|xi| ·
�
�pi

�
�

�

� �� �

angle difference









,

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

Tables 1 and 2 show representative results of the longterm prediction of the UDE model trained with LDA,
where four times the length of the training data is used.

To compare estimated trajectories of the UDE trained with LDA or MSE loss objectively, we calculated the
trajectory difference (TD) as the sum over the length of difference vectors over the sample points of the UDE
and samples from the full differential equation:

where the true trajectory is described by the position vectors of the n trajectory points xi and the approximated
position vectors of the n trajectory points pi.

Because the initial weights winit of the machine learning model can considerably determine the success of
UDE training (cp. Fig. 2), we independently drew 100 different sets of initial weights winit per model, model
parametrization and loss function and calculated TD for each independent experiment.

In Fig. 3 we show the distribution of a normalized version of TDs we get over all these 100 trained UDEs to
compare the quality of the UDE solutions across different systems, parametrizations and loss function used in
one figure. The general form of these distributions remains stable across all noise levels. All results for different
noise levels can be found in Supplementary Figs. S1 and S2.

Systems with a changing number of fixed points.  The Pitchfork and Saddle-Node bifurcations lead to a changing
number of fixed points in the Gardner and FitzHugh–Nagumo systems, respectively. A good approximation of

(4)TD =
1

n
·

n∑

i=1

||xi − pi||,

Table 1.   Overview of the models used with changing number of fixed points: FitzHugh–Nagumo model and
Gardner model. First column: UDE for the systems in a general x and y notation with UAp(x, y) as machine
learnable blank; second column: example of a trajectory’s longterm behavior trained with LDA (blue) in state
space in comparison to the true solution’s trajectory (black). The nullcline given by the known part of the
differential equation is dotted gray and the second nullcline of the true solution is gray dashed.; third column:
corresponding time series of the longterm behavior of trained x (blue) and y (red) variable in comparison to
the true solution (black, mainly masked by the predicted time series). The vertical gray line marks the end
of the training data; fourth column: corresponding SInDy estimate of UAp(x, y) based on the approximation
of the training data in comparison to the true missing term. The figures are plotted using Julia package Plots
(Version v1.16.6, https://​github.​com/​Julia​Plots/​Plots.​jl) and color-corrected and converted to eps using Adobe
Illustrator (Version 25.4.1).

UDE State space Time series SInDy estimate

Monostable
FitzHugh–
Nagumo

dx
dt = x − x3

3 − y + 1.2

dy
dt = 1.25 · (0.9− y)+ UAp(x, y)

UAp(x, y) = 0.625481 · x,

cf. missing term = 0.625 · x

Saddle-Node
bifurcation

Bistable
FitzHugh–
Nagumo

dx
dt = x − x3

3 − y + 1.0

dy
dt = 1.25 · (0.9− y)+ UAp(x, y)

UAp(x, y) = 0.624665 · x,

cf. missing term = 0.625 · x

Saddle-Node
bifurcation

Monostable
Gardner

dx
dt = UAp(x, y)− x

dy
dt = 1.5

1+x2
− y

UAp(x, y) =
1.499501
1+y2

,

cf. missing term = 1.5
1+y2

Pitchfork
bifurcation

Bistable
Gardner

dx
dt = UAp(x, y)− x

dy
dt = 3.5

1+x2
− y

UAp(x, y) =
3.498237
1+y2

,

cf. missing term = 3.5
1+y2

Pitchfork
bifurcation

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

the system’s longterm behavior, indicated by small TD between the approximated and the true solution’s trajec-
tory, is in general possible with both loss functions (see Fig. 3).

However, for the FitzHugh–Nagumo model, the results using the MSE as the loss function show a higher
median compared to the LDA loss and a larger distribution width in case of the monostable parametrization (cf.
Fig. 3a). The reason why is that the predicted trajectories vary more around the true solution’s trajectory which
leads to a number of trajectories ending in alternative stable states along the given nullcline (see Supplementary
Fig. S3c,d). This effect is also visible in the outliers of the TD distribution for the bistable case for the MSE loss
function, which make up around 12% of all trajectories end up in alternative stable states along the nullcline
given by the known part of the differential equation in the region of the second fixed point (cf. Fig. 3b and Sup-
plementary Fig. S3b). This second stable fixed point is also the only stable fixed point in case of the monostable
parametrization (cf. Tabel 1). The LDA loss function does not lead to this behavior, because the angular differ-
ence between trajectories favors the correct curvature of the trajectory compared to absolutely correct values
and guides the trajectory during training towards the correct fixed point. This reflects more precisely what we
hope to achieve with the learned UDE, and leads to a compact TD distribution for the longterm prediction.

Table 2.   Overview of the models used with oscillatory behavior: Selkov model and Rössler model. First
column: UDE for the systems in a general x and y resp. x, y and z notation with UAp(x, y) resp. UAp(x, y, z) as
machine learnable blank; second column: example of a trajectory’s longterm behavior trained with LDA (blue)
in state space in comparison to the true solution’s trajectory (black). In case of the Selkov model the nullcline
given by the known part of the differential equation is dotted gray and the second nullcline of the true solution
is gray dashed.; third column: corresponding time series of the longterm behavior of trained x (blue) and y
(red) and in case of Rössler z (cyan) variable in comparison to the true solution (black, mainly masked by the
predicted time series). The vertical gray line marks the end of the training data; fourth column: corresponding
SInDy estimate of UAp(x, y) resp. UAp(x, y, z) based on the approximation of the training data in comparison
to the true missing term. The figures are plotted using Julia package Plots (Version v1.16.6, https://​github.​com/​
Julia​Plots/​Plots.​jl) and color-corrected and converted to eps using Adobe Illustrator (Version 25.4.1).

UDE State space Time series SInDy estimate

Steady state
Selkov

dx
dt = −x + UAp(x, y)+ x2 · y

dy
dt = 0.15− 0.1 · y − x2 · y

UAp(x, y) = 0.100014 · y,

cf. missing term = 0.1 · y
 Hopf bifurcation

Oscillatory
Selkov

dx
dt = −x + UAp(x, y)+ x2 · y

dy
dt = 0.6− 0.1 · y − x2 · y

UAp(x, y) = 0.099735 · y,

cf. missing term = 0.1 · y
Hopf bifurcation

Period-one
Rössler

dx
dt = −y − z

dy
dt = x + UAp(x, y, z)

dz
dt = 0.1+ z · x − 4.0 · z

UAp(x, y, z) = 0.100181 · y,

cf. missing term = 0.1 · y
 Period-doubling

Period-two
Rössler

dx
dt = −y − z

dy
dt = x + UAp(x, y, z)

dz
dt = 0.1+ z · x − 6.0 · z

UAp(x, y, z) = 0.100183 · y,

cf. missing term = 0.1 · y
Period-doubling

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

Only around 2% of the trajectories in the bistable case end in the alternative stable state (cf. Fig. 3b and Sup-
plementary Fig. S3a).

The same but somewhat weakened effect is observed for the bistable Gardner model (cf. Fig. 3b). Here, the
results using the MSE loss function show 6–7% of the predicted longterm trajectories terminating in the alterna-
tive stable state on the given nullcline close to the fixed point the true solution’s trajectory ends up in (cf. Table 1
and Supplementary Fig. S4b). The results using the LDA loss function only show up to 5% of the trajectories
ending in alternative stable states (see Supplementary Fig. S4a).

The main difference in the bistable parametrization of the FitzHugh–Nagumo compared to the bistable Gard-
ner model is, that the alternative states in the Gardner model are not linked to either the second stable fixed point
or the stable fixed point in the monostable parametrization. Rather, they only occur spuriously in the functions
permitted by the UDE in its current parametrization. The underlying dynamical structure of the Gardner sys-
tem separates the state space into regions that specify to which fixed point all trajectories starting in this region
converge. This dynamical behavior cannot be broken during the training. The alternative stable states can likely
be linked to a new parametrization of the bistable Gardner system that co-evolves during training of the UDE.

In case of the monostable parametrization of the Gardner system, both loss functions lead to approximately
equally good approximations of the longterm behavior of the system (cf. Fig. 3a and Supplementary Fig. S4c,d).

monostable FitzHugh-Nagumo
(Saddle-Node)

monostable Gardner
(Pitchfork)

steady state Selkov
(Hopf)

period one Rössler
(period-doubling)

0.00

0.25

0.50

0.75

1.00

bistable FitzHugh-Nagumo
(Saddle-Node)

bistable Gardner
(Pitchfork)

oscillatory Selkov
(Hopf)

period two Rössler
(period-doubling)

0.00

0.25

0.50

0.75

1.00

Figure 3.   Distribution of the trajectory difference (TD) for the longterm prediction of the bifurcating systems
over 100 neural network initializations trained using MSE loss function (red) or LDA loss function (blue). The
horizontal bar indicates the median of the respective distribution. The training data contain additive normal
distributed noise of noise level 0.0001. The trajectory difference is normalized by TD = 1.0 for FitzHugh–
Nagumo, by TD = 0.1 for the Gardner, by TD = 1.0 for the Selkov and by TD = 2.0 for the Rössler model. All
normalized values larger than one are clipped to one. The starting positions of the trajectories are chosen as
for the examples in Tables 1 and 2. (a) Monostable, steady state and period-one parametrization (b) bistable,
oscillatory and period-two parametrization. This figure is plotted using Julia package Plots (Version v1.16.6,
https://​github.​com/​Julia​Plots/​Plots.​jl) and color-corrected and converted to eps using Adobe Illustrator (Version
25.4.1).

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

Systems with oscillatory behavior.  The Hopf and period-doubling bifurcation lead to changing dynamical
behavior in the Selkov and Rössler systems, from non-oscillatory to oscillatory behavior or from period one to
period two oscillatory behavior respectively.

For steady state behavior of the Selkov system, both loss functions lead to good approximations of the
longterm behavior of the system without strong dependence on the noise level, with a median TD of around
0.006 for the LDA loss function and around 0.012 for the MSE (cf. Fig. 3a and Supplementary Fig. S5c,d). By
contrast, for the case of the oscillatory parametrization of the Selkov system, the results using the MSE loss func-
tion have a bimodal TD distribution, whereas the trajectory-based LDA loss function still leads to a narrow TD
distribution and consistently good approximations (cf. Fig. 3b).

This is because many initial conditions in the MSE case lead to an alternative steady state solution during
optimization which is a local minimum on the loss function that cannot be left (cf. Fig. 2b and Supplementary
video material S1 panel b). The bimodal nature of the TD distribution reflects this: if the initial condition is
favorable, the learning process finds the correct solution, if it is not, it fails completely (see supplemental Fig. S5b).
The calculated median of the TD distribution shifts depending on the number of successful approximations and
complete failures (see Supplementary Fig. S2b).

The LDA loss function on the other hand benefits from the combination of angular loss and the vector length
loss, which allow for detours in state space (cf. Supplementary video material S1 panel a) bringing the approxi-
mated solution during training in the region of the training data. The solutions reliably reproduce the correct
oscillations of the original system in nearly all cases (see Supplementary Fig. S5b).

For the case of the Rössler system, the approximations of the training data for both parametrizations show
median values of TD around 0.04 for both parametrizations for the MSE and around 0.03 for both parametriza-
tions for the trajectory-based loss function. The distribution is compact around the median with a few outliers
(see Supplementary Fig. S6). By contrast, the longterm prediction of both used loss functions show median
values of TD around 1.04 (period-one parametrization) resp. 1.22 (period-two parametrization) for MSE and
around 0.95 (period-one parametrization) resp. 1.10 (period-two parametrization) for the LDA loss function (cf.
Fig. 3a,b). Only a few runs yield good approximations. The reason why is that the training data do not include
the typical excursions of the Rössler system in z-direction in state space which are included in the longterm
prediction (cf. Table 2). These excursions are not approximated well by either of the trained networks. Longer
training data could improve these results. Nevertheless, the accurate approximation of the short term training
data enables a proper reconstruction of the algebraic form of the missing term as in Table 2.

The loss functions around the bifurcation.  In the previous section we observed very different dis-
tributions for the trajectory difference depending on the chosen loss function and the parametrizations of the
systems. To investigate if the distributions show a gradual change from one type to the other across the bifurca-
tion, we performed 50 training runs for the FitzHugh–Nagumo and the Selkov model each with 14 different
parametrization chosen from an interval nesting of the bifurcation parameter around the bifurcation. The bifur-
cation parameter for the case of FitzHugh–Nagumo is the 4th term in the first equation in Table 1 and in case
of Selkov the first term in the second equation in Table 2. The FitzHugh–Nagumo and the Selkov model were
chosen because they show the most different distributions of the trajectory difference TD for the two different
dynamical behaviors (cf. Fig. 3). The results are presented in Fig. 4.

Firstly, we see a change of the shape of the MSE loss distribution as soon as the curvature of the trajectory
increases (FitzHugh–Nagumo model Fig. 4a) or as soon as strongly damped oscillations start (Selkov model
Fig. 4b between the light gray and the gray bar). The median of the LDA TD distribution is only sensitive to this
in a narrow band of parameters shortly after the bifurcation in the FitzHugh–Nagumo model (cf. inset in Fig. 4a).
Thus, the distributions reflect the bifurcation, too. As the curvature of the trajectory changes drastically across
the bifurcation for both systems, the difference in the quality of the approximation using either loss function
is markedly different. The reason for this behavior is that MSE only optimizes the difference in each variable in
state space independently. This approach misses differences in the curvature of the training data trajectory and
the current approximated solution. Thus, the MSE is often not suited to approximate a proper solution for a
randomly chosen first guess of the approximated solution that belongs to a different dynamical regime than the
training data and must be transferred to another dynamical regime during training by temporarily changing the
curvature of the approximated solution drastically.

In contrast, the LDA loss function indirectly contains information about the curvature difference in its angle
part of the loss function at a specific position in state space (length difference part of the loss function). Therefore,
the LDA loss can capture changes in curvature earlier and permits the randomly chosen first guess UDE in the
wrong dynamical regime to change to the dynamical regime of the training data more reliably. On the other hand
considering small changes in the direction of a trajectory can immediately cause bad performance of LDA for
specific noisy trajectory passing very close to a saddle. These small changes in the direction of the trajectory can
lead to a switch of the dynamical behavior and a broader TD distribution (cf. Fig. 4a parameter 1.139 and 1.143).

In sum, there is an abrupt change from one type of distribution to another around the bifurcation reflecting
the ability of the loss functions to reliable capture changes in curvature or not.

The loss functions and different starting points of trajectories.  To investigate the impact of the
starting position of the trajectories in state space on the performance of a UDE trained with the LDA loss func-
tion against a UDE trained with the MSE loss function, we again trained 50 UDEs for the FitzHugh–Nagumo
and the Selkov model in the two parametrizations used in Tables 1 and 2 respectively. We chose starting points
with very different dynamical behavior of the trajectories, namely slow and fast dynamics in state space as well
as weak and strong curvatures of the trajectories. The results are presented in Fig. 5.

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

For both models we observe a strong dependence of the success of the training on the starting position in
state space when using MSE. Less successful approximations are often linked with strong curvatures or oscilla-
tory behavior. In case of the LDA loss function for the monostable FitzHugh–Nagumo model we observe less
successful training for starting position B, C and E (cf. Fig. 5b). B and C share the common feature that they
pass very slowly close to the saddle and the training data trajectory ends in this region, thus small changes of the
trajectory due to noise can lead to a broadening of the distribution of the longterm prediction. Starting position
E corresponds to a trajectory with a fast dynamics in case of the monostable parametrization and an extremely
curved trajectory in case of the bistable parametrization. While we observe a wider distribution of trajectory
differences in the monostable case, the LDA loss still captures the correct dynamical regime in case of the bistable
parametrization and does not converge to a different fixed point as is possible for the MSE (cf. Fig. 5c).

When learning the Selkov model, the MSE shows a bimodal distribution for the oscillatory parametrization
as expected, but this is also the case for starting point E in the steady state parametrization (cf. Fig. 5e). E is very
close to second nullcline in state space which is unknown for the UDE. One possible explanation is that during
training two different solution classes (steady state and oscillatory) are realized. We even observe a bimodal
distribution in case of the LDA for the steady state and the oscillatory parametrization if we apply the standard
values for the factors k1 and k2 used in the experiments above. If we adjust k1 to 0.1 and k2 to 0.9, the bimodal
distribution vanishes and successful training is possible (cf. E in Fig. 5e,f). The same effect occurs for D in case

1.
0

1.
06

8

1.
10

1

1.
11

8

1.
12

7

1.
13

1

1.
13

3

1.
13

6

1.
13

7

1.
13

9

1.
14

3

1.
15

1

1.
16

8

1.
2

bifuraction parameter

0.0

0.5

1.0

1.5

2.0

2.5
Saddle Node Bifurcation (FitzHugh-Nagumo model)

1.00 1.05 1.10 1.15 1.20
bifurcation parameter

0.0
0.5
1.0
1.5

m
ed

ia
n

0.
15

0.
28

0.
34

5

0.
37

7

0.
39

4

0.
40

2

0.
40

6

0.
41

3

0.
41

6

0.
42

2

0.
43

4

0.
45

8

0.
50

5

0.
6

bifuraction parameter

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hopf Bifurcation (Selkov model)

0.2 0.3 0.4 0.5 0.6
bifurcation parameter

0.0
0.1
0.2
0.3
0.4
0.5

m
ed

ia
n

Figure 4.   Distribution of the trajectory difference (TD) for the longterm prediction of the bifurcating systems
over 50 neural network initializations trained using the MSE loss function (red) or LDA loss function (blue)
for FitzHugh–Nagumo (a) and Selkov model (b) around the bifurcation (gray bar). The light gray bar in case of
the Selkov model indicates the onset of strongly damped oscillations. The horizontal bar indicates the median
of the respective distribution. The median of the distribution is plotted in the inset. The training data contain
additive normal distributed noise with the noise level set to 0.0001. The trajectory difference larger than 1.2 are
clipped to 1.2 in case of the Selkov model (b). The bifurcation parameter in case of FitzHugh–Nagumo is the 4th
term in the first equation in Table 1 and in case of Selkov the first term in the second equation in Table 2. The
trajectories start at (−2.0,−0.25) in case of FitzHugh–Nagumo and at (1.0, 1.0) in case of Selkov. This figure is
plotted using Julia package Plots (Version v1.16.6, https://​github.​com/​Julia​Plots/​Plots.​jl) and color-corrected and
converted to eps using Adobe Illustrator (Version 25.4.1).

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

of the oscillatory parametrization (cf. Fig. 5f), whereas a change of k1 and k2 does not impact the results for C
(cf. Fig. 5f).

To sum up, the starting position of the trajectory and its resulting properties can impact the success of the
training. This is especially the case for the MSE, where there are no further hyperparameters to tune the solution.

SInDy’s answer: algebraic form of the missing term.  Finally, to get an idea of the algebraic form of
the missing term, an approach for sparse identification of nonlinear dynamical systems (SInDy)12 by Brunton
et al. was applied to examples trained with the LDA loss function. This approach was chosen to show by way of
example that a successful trained UDE system can be translated into an algebraic form. The examples are chosen
from the statistical analysis with the lowest noise level such that the trajectory difference between the approxi-
mated solution of the training data and the training data itself is smallest. We investigated one example for each
parametrization and each model. To improve the performance of SInDy, outliers in the beginning and the end of
the approximated guess of the dynamics of the missing term are removed before SInDy is applied. The optimizer
used by SInDy is STRRidge12. The basis functions from which SInDy can select its guess are polynomials up to
order of 5, except for the case of the Gardner model where polynomials up to order of 3 are combined with terms
of the form 1

1+zn with z being either x or y and n = 1, 2, 3 . This exception was chosen to identify the term more
clearly and not hidden it in a polynomial expansion of the function.

−2 −1 0 1 2
x

−0.5

0.0

0.5

1.0

1.5

y

Saddle Node Bifurcation
(FitzHugh-Nagumo model)

A B C D E F
0.0

0.5

1.0

1.5

2.0

2.5
monostable

A B C D E F
0.0

0.5

1.0

1.5

2.0

2.5
bistable

0 1 2 3 4 5
x

0
1
2
3
4
5
6

y

Hopf Bifurcation
(Selkov model)

A B C D E F
0.0

0.2

0.4

0.6

steady state

A B C D E F
0.0
0.2
0.4
0.6
0.8
1.0
1.2

oscillatory

Figure 5.   Distribution of the trajectory difference (TD) for the longterm prediction of the FitzHugh–Nagumo
model (b, c) and the Selkov model (e, f) over 50 neural network initializations trained using the MSE loss
function (red) or LDA loss function (blue) for starting position A to F of the trajectories (a, d) using two
different parametrizations. The horizontal bar indicates the median of the respective distribution. The training
data contain additive normal distributed noise with the noise level set to 0.0001. The red trajectories correspond
to the bistable case (a) resp. oscillatory case (d), the blue one to the monostable case (a) resp. steady state (d).
The black curve is the nullcline given by the known part of the differential equation, the dashed red (blue) curve
is the second nullcline corresponding to the bistable resp. oscillatory state (to the monostable resp. steady state)
in (a) resp. (b). This figure is plotted using Julia package Plots (Version v1.16.6, https://​github.​com/​Julia​Plots/​
Plots.​jl) and color-corrected and converted to eps using Adobe Illustrator (Version 25.4.1).

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

The results are shown in Tables 1 and 2. All in all, the algebraic form of the missing terms as well as the system
parameters are approximated well.

The approach is not limited to the examples shown. It is possible to learn other terms or several terms at the
same time. A crucial precondition for a successful reconstruction of the missing term with SInDy is an accurate
approximation of the dynamics of the missing term with the UDE approach, which is directly linked with the
successful reconstruction of the dynamical behavior of the training data. Thus, the success of the SInDy approach
is directly linked with the accuracy of the results of the UDE approach. Furthermore, an accurate reconstruction
of the missing term with SInDy based only on the approximation of the training data might give better results
for the longterm prediction of the dynamics than the UDE, because the sparsity criterion of SInDy suppresses
numerical fluctuations present in the UDE that might interfere with the longterm prediction.

Discussion and conclusion
In summary, the LDA loss function leads to more stable and accurate approximation of the longterm dynami-
cal behavior in systems with a changing number of fixed points or a change in oscillatory behavior due to a
bifurcation.

Often, trained networks using MSE as loss function lead to a solution which is only slightly worse than the
networks using the LDA loss function, but there is a risk of complete failure of the approximation depending
on the network initialization. Local minima in the MSE loss function due to different dynamical regimes of the
UDE can represent completely different dynamical solutions, which gradient-based learning cannot recover
from by adapting the gradient-descent procedure with, for example, momentum37 or adaptive learning rates36.

We used the LDA loss, which optimizes two components, the length and angle of state space vectors, with
different local minima. A weighted combination of both components allowed us to estimate the dynamics of
bifurcating systems more accurately, and avoided the catastrophic scenario of local minima leading to different
dynamic regimes. While some randomly chosen initial parameters for the neural network can still lead to a bad
fit of the UDE, we found that in examples where the MSE loss often finds local minima in the wrong dynamic
regime, the basin of attraction of the optimization process was indeed much larger when we used the LDA loss
instead. In some cases the choice of the factors weighting the two components can improve the results of the
training as shown in case of the study of different starting points. We demonstrated that in applications, the loss
function has to be chosen with great care based on the dynamics of the measured trajectories. This is because
there is no gradual change from the possibility of successful training to failure across the bifurcation.

A more general open questions of UDE is the impact of the training data length and its temporal resolution on
the successful approximation of the system. A preliminary survey of this question for examples of the LDA loss
does not indicate a clear effect for the temporal resolution (cf. supplementary Fig. S7) but as expected the trajec-
tory differences between the approximated and the true solution trajectory decreases with increasing training
data length (cf. supplementary Fig. S8). A more comprehensive study should be the content of further research,
because in any real data set of measured time series the length and temporal resolution is fixed.

In real-world applications, physics-informed neural network approaches have successfully been applied
to, among others, fluid dynamical problems38,39. SInDy has also shown good results in complex data-driven
settings40–42. Universal Differential Equations11 elegantly bring together two important aspects of these
approaches: the advantages of knowledge about the underlying physics in the form of a differential equation,
and the statistical estimation of dynamics via machine learning. SInDy12 can be used to open the black box of
machine learning and reconstruct algebraic terms to complete a differential equation. This approach to knowledge
discovery is powerful. It implies that some interactions in the system of interest are not yet discovered, which is
particularly true for—for example—ecosystems that cannot completely be examined in the lab or for systems for
which the underlying governing equation is unknown. In such systems tipping points and potentially unknown
bifurcations are of particular interest.

We have demonstrated, that UDEs can be used to estimate and reconstruct missing terms even in bifurcat-
ing systems. However, all examples shown here are simple compared to real-world applications. But even at this
basic level we only have a rough idea of the interaction of the learning process and the bifurcation properties of
the system. The interaction of both the dynamics of gradient-descent optimizing a loss function and the dynam-
ics of the system of interest itself is highly fascinating and not yet understood. At this stage more fundamental
research is necessary.

Particular care has to be taken in how the loss function is constructed for the optimization process, because
the optimization process itself can lead to bifurcations. Nonetheless, our results suggest that dynamics in real-
world, not yet fully described systems can be discovered using the LDA loss function.

Data availability
All experiments have been implemented in the Julia programming language13 based on packages developed par-
ticularly to fit UDEs with neural networks (https://​github.​com/​SciML/​DiffE​qFlux.​jl) and SInDy (https://​github.​
com/​SciML/​DataD​riven​DiffEq.​jl). The code to produce all data presented in the paper is available publically at
https://​github.​com/​pniet​ers/​Gener​alize​dDyna​micsF​romDa​ta.

Code availability
Accession codes The code to produce all data presented in the paper is available publically at https://​github.​com/​
pniet​ers/​Gener​alize​dDyna​micsF​romDa​ta.

Received: 28 May 2021; Accepted: 21 September 2021

12

Vol:.(1234567890)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

References
	 1.	 Steffen, W. et al. Trajectories of the Earth system in the anthropocene. Proc. Natl. Acad. Sci. 115, 8252–8259. https://​doi.​org/​10.​

1073/​pnas.​18101​41115 (2018).
	 2.	 Simonnet, E., Dijkstra, H. A. & Ghil, M. Bifurcation analysis of ocean, atmosphere, and climate models. In Handbook of Numerical

Analysis, 187–229. https://​doi.​org/​10.​1016/​s1570-​8659(08)​00203-2 (Elsevier, 2009).
	 3.	 van Nes, E. H., Rip, W. J. & Scheffer, M. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems 10, 17–28.

https://​doi.​org/​10.​1007/​s10021-​006-​0176-0 (2007).
	 4.	 Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230. https://​doi.​org/​10.​1111/j.​2153-​3490.​

1961.​tb000​79.x (1961).
	 5.	 Feudel, U., Pisarchik, A. N. & Showalter, K. Multistability and tipping: From mathematics and physics to climate and brain–Mini-

review and preface to the focus issue. Chaos Interdiscip. J. Nonlinear Sci. 28, 033501. https://​doi.​org/​10.​1063/1.​50277​18 (2018).
	 6.	 Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G. & Haller, G. A critical comparison of Lagrangian methods for coher-

ent structure detection. Chaos Interdiscip. J. Nonlinear Sci. 27, 053104. https://​doi.​org/​10.​1063/1.​49827​20 (2017).
	 7.	 Mancho, A. M., Small, D. & Wiggins, S. A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows

defined as finite time data sets: Theoretical and computational issues. Phys. Rep. 437, 55–124. https://​doi.​org/​10.​1016/j.​physr​ep.​
2006.​09.​005 (2006).

	 8.	 Boers, N., Ghil, M. & Rousseau, D.-D. Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles.
Proc. Natl. Acad. Sci. 115, E11005–E11014. https://​doi.​org/​10.​1073/​pnas.​18025​73115 (2018).

	 9.	 Shimoda, Y. & Arhonditsis, G. B. Phytoplankton functional type modelling: Running before we can walk? A critical evaluation of
the current state of knowledge. Ecol. Model. 320, 29–43. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2015.​08.​029 (2016).

	10.	 Edwards, A. M. & Brindley, J. Oscillatory behaviour in a three-component plankton population model. Dyn. Stab. Syst. 11, 347–370.
https://​doi.​org/​10.​1080/​02681​11960​88062​31 (1996).

	11.	 Rackauckas, C. et al. Universal differential equations for scientific machine learning. arXiv preprintarXiv:​2001.​04385​v1, v2, v3
(2020).

	12.	 Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynami-
cal systems. Proc. Natl. Acad. Sci. 113, 3932–3937. https://​doi.​org/​10.​1073/​pnas.​15173​84113 (2016).

	13.	 Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to numerical computing. SIAM Rev. 59, 65–98. https://​
doi.​org/​10.​1137/​14100​0671 (2017).

	14.	 Innes, M. Don’t unroll adjoint: Differentiating ssa-form programs. arXiv preprintarXiv:​1810.​07951 (2018).
	15.	 Sel’kov, E. E. Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4, 79–86. https://​doi.​org/​10.​1111/j.​1432-​

1033.​1968.​tb001​75.x (1968).
	16.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://​doi.​org/​10.​1038/​natur​e14539 (2015).
	17.	 Lagaris, I. E., Likas, A. & Fotiadis, D. I. Artificial neural networks for solving ordinary and partial differential equations. IEEE

Trans. Neural Netw. 9, 987–1000. https://​doi.​org/​10.​1109/​72.​712178 (1998).
	18.	 Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. Neural ordinary differential equations. arXiv preprintarXiv:​1806.​

07366 (2018). (Accessed 26 April 2021).
	19.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. https://​doi.​org/​10.​1016/j.​
jcp.​2018.​10.​045 (2019).

	20.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Multistep neural networks for data-driven discovery of nonlinear dynamical systems.
arXiv preprintarXiv:​1801.​01236 (2018). (Accessed 26 April 2021).

	21.	 Psichogios, D. C. & Ungar, L. H. A hybrid neural network-first principles approach to process modeling. AIChE J. 38, 1499–1511.
https://​doi.​org/​10.​1002/​aic.​69038​1003 (1992).

	22.	 Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314. https://​doi.​org/​10.​
1007/​BF025​51274 (1989).

	23.	 Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257. https://​doi.​org/​10.​1016/​
0893-​6080(91)​90009-T (1991).

	24.	 Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).
	25.	 Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B (Methodol.) 58, 267–288. https://​doi.​org/​10.​

1111/j.​2517-​6161.​1996.​tb020​80.x (1996).
	26.	 Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning Vol. 1 (MIT Press Cambridge, 2016).
	27.	 Christoffersen, P. & Jacobs, K. The importance of the loss function in option valuation. J. Finan. Econ. 72, 291–318. https://​doi.​

org/​10.​1016/j.​jfine​co.​2003.​02.​001 (2004).
	28.	 Xiao, T. & Frank, M. Using neural networks to accelerate the solution of the Boltzmann equation. arXiv preprintarXiv:​2010.​13649

(2020). (Accessed 26 April 2021).
	29.	 FitzHugh, R. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278. https://​

doi.​org/​10.​1007/​bf024​77753 (1955).
	30.	 FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466. https://​doi.​org/​

10.​1016/​s0006-​3495(61)​86902-6 (1961).
	31.	 Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342. https://​

doi.​org/​10.​1038/​35002​131 (2000).
	32.	 Bose, I. & Ghosh, S. Bifurcation and criticality. J. Stat. Mech. Theory Exp. 2019, 043403. https://​doi.​org/​10.​1088/​1742-​5468/​ab11d8

(2019).
	33.	 Rössler, O. E. An equation for continuous chaos. Phys. Lett. A 57, 397–398. https://​doi.​org/​10.​1016/​0375-​9601(76)​90101-8 (1976).
	34.	 Rössler, O. E. Chaotic behavior in simple reaction systems. Zeitschrift für Naturforschung A 31, 259–264. https://​doi.​org/​10.​1515/​

zna-​1976-3-​408 (1976).
	35.	 Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, 249–256 (JMLR Workshop and Conference Proceedings, 2010).
	36.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In International Conference on Learning Representations (ICLR)

(2015).
	37.	 Nesterov, Y. E. A method for solving the convex programming problem with convergence rate O (1/k2 ). In Dokl. akad. nauk Sssr

269, 543–547 (1983).
	38.	 Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations.

Science 367, 1026–1030. https://​doi.​org/​10.​1126/​scien​ce.​aaw47​41 (2020).
	39.	 Raissi, M. & Karniadakis, G. E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.

Phys. 357, 125–141. https://​doi.​org/​10.​1016/j.​jcp.​2017.​11.​039 (2018).
	40.	 Champion, K., Zheng, P., Aravkin, A. Y., Brunton, S. L. & Kutz, J. N. A unified sparse optimization framework to learn parsimoni-

ous physics-informed models from data. IEEE Access 8, 169259–169271. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30236​25 (2020).
	41.	 Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl.

Acad. Sci. 116, 22445–22451. https://​doi.​org/​10.​1073/​pnas.​19069​95116 (2019).

13

Vol.:(0123456789)

Scientific Reports | (2021) 11:20394 | https://doi.org/10.1038/s41598-021-99609-x

www.nature.com/scientificreports/

	42.	 Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614.
https://​doi.​org/​10.​1126/​sciadv.​16026​14 (2017).

Acknowledgements
R.V.-K. and P.N. thank Georg Schröter for intensive discussions.

Author contributions
R.V.-K. developed the trajectory-based loss function. P.N. and R.V-K. designed the numerical experiments. P.N.
implemented the experiments. Overall supervision was done by G.P. All authors contributed in preparing this
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​99609-x.

Correspondence and requests for materials should be addressed to R.V.-K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

150 publications and contributions

b.8 conference abstract : a trajectories’ guide to the

state space - learning missing terms in bifurcating

ecological systems

Rahel Vortmeyer-Kley, Pascal Nieters and Gordon Pipa. ‘A trajector-
ies’ guide to the state space-learning missing terms in bifurcating eco-
logical systems’. In: EGU General Assembly Conference Abstracts. 2021,
EGU21–16159. doi: 10.5194/egusphere-egu21-16159. url: https:
//doi.org/10.5194/egusphere-egu21-16159

Abstract

Ecological systems typically can exhibit various states ranging from
extinction to coexistence of different species in oscillatory states. The
switch from one state to another is called bifurcation. All these be-
haviours of a specific system are hidden in a set of describing dif-
ferential equations (DE) depending on different parametrisations. To
model such a system as DE requires full knowledge of all possible in-
teractions of the system components. In practise, modellers can end
up with terms in the DE that do not fully describe the interactions or
in the worst case with missing terms.

The framework of universal differential equations (UDE) for sci-
entific machine learning (SciML) [198] allows to reconstruct the in-
complete or missing term from an idea of the DE and a short term
timeseries of the system and make long term predictions of the sys-
tem’s behaviour. However, the approach in has difficulties to recon-
struct the incomplete or missing term in systems with bifurcations.
We developed a trajectory-based loss metric for UDE and SciML to
tackle the problem and tested it successfully on a system mimicking
algal blooms in the ocean.

https://doi.org/10.5194/egusphere-egu21-16159
https://doi.org/10.5194/egusphere-egu21-16159
https://doi.org/10.5194/egusphere-egu21-16159

B I B L I O G R A P H Y

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geof-
frey Irving, Michael Isard et al. ‘Tensorflow: A system for
large-scale machine learning’. In: 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16). 2016,
pp. 265–283.

[2] Omar J Ahmed and Mayank R Mehta. ‘Running speed alters
the frequency of hippocampal gamma oscillations’. en. In: J.
Neurosci. 32.21 (May 2012), pp. 7373–7383.

[3] Rajeev Alur and David L Dill. ‘A theory of timed automata’.
In: Theoretical computer science 126.2 (1994), pp. 183–235.

[4] Srdjan D Antic, Wen-Liang Zhou, Anna R Moore, Shaina M
Short and Katerina D Ikonomu. ‘The decade of the dendritic
NMDA spike’. en. In: J. Neurosci. Res. 88.14 (Nov. 2010), pp. 2991–
3001.

[5] Stefan Apostel, Nicholas D Haynes, Eckehard Schöll, Otti D’Huys
and Daniel J Gauthier. ‘Reservoir Computing Using Autonom-
ous Boolean Networks Realized on Field-Programmable Gate
Arrays’. In: Reservoir Computing. Springer, 2021, pp. 239–271.

[6] Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der
Sande, Jan Danckaert, Serge Massar, Joni Dambre, Benjamin
Schrauwen, Claudio R Mirasso and Ingo Fischer. ‘Information
processing using a single dynamical node as complex system’.
In: Nature communications 2.1 (2011), pp. 1–6.

[7] Anish Athalye, Logan Engstrom, Andrew Ilyas and Kevin Kwok.
‘Synthesizing robust adversarial examples’. In: International con-
ference on machine learning. PMLR. 2018, pp. 284–293.

[8] Mostafa Rahimi Azghadi, Bernabe Linares-Barranco, Derek Ab-
bott and Philip HW Leong. ‘A hybrid CMOS-memristor neur-
omorphic synapse’. In: IEEE transactions on biomedical circuits
and systems 11.2 (2016), pp. 434–445.

[9] C Beaulieu and M Colonnier. ‘A laminar analysis of the num-
ber of round-asymmetrical and flat-symmetrical synapses on
spines, dendritic trunks, and cell bodies in area 17 of the cat’.
en. In: J. Comp. Neurol. 231.2 (Jan. 1985), pp. 180–189.

[10] Yoshua Bengio, Tristan Deleu, Edward J Hu, Salem Lahlou,
Mo Tiwari and Emmanuel Bengio. ‘GFlowNet Foundations’.
In: arXiv preprint arXiv:2111.09266 (2021).

151

152 bibliography

[11] David Beniaguev, Idan Segev and Michael London. ‘Single cor-
tical neurons as deep artificial neural networks’. en. In: Neuron
109.17 (Sept. 2021), 2727–2739.e3.

[12] O Bernander, R J Douglas, K A Martin and C Koch. ‘Synaptic
background activity influences spatiotemporal integration in
single pyramidal cells’. en. In: Proc. Natl. Acad. Sci. U. S. A.
88.24 (Dec. 1991), pp. 11569–11573.

[13] Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B
Shah. ‘Julia: A fresh approach to numerical computing’. In:
SIAM review 59.1 (2017), pp. 65–98.

[14] Jacopo Bono and Claudia Clopath. ‘Modeling somatic and
dendritic spike mediated plasticity at the single neuron and
network level’. en. In: Nat. Commun. 8.1 (Sept. 2017), p. 706.

[15] Valentino Braitenberg and Almut Schüz. Cortex: statistics and
geometry of neuronal connectivity. Springer Science & Business
Media, 2013.

[16] Tiago Branco, Beverley A Clark and Michael Häusser. ‘Dend-
ritic discrimination of temporal input sequences in cortical
neurons’. In: Science 329.5999 (2010), pp. 1671–1675.

[17] Tiago Branco and Michael Häusser. ‘The single dendritic branch
as a fundamental functional unit in the nervous system’. en. In:
Curr. Opin. Neurobiol. 20.4 (Aug. 2010), pp. 494–502.

[18] Tiago Branco, Kevin Staras, Kevin J Darcy and Yukiko Goda.
‘Local dendritic activity sets release probability at hippocam-
pal synapses’. en. In: Neuron 59.3 (Aug. 2008), pp. 475–485.

[19] Federico Brandalise, Stefano Carta, Fritjof Helmchen, John Lis-
man and Urs Gerber. ‘Dendritic NMDA spikes are necessary
for timing-dependent associative LTP in CA3 pyramidal cells’.
In: Nature communications 7.1 (2016), pp. 1–9.

[20] Johanni Brea, Alexisz Tamás Gaál, Robert Urbanczik and Wal-
ter Senn. ‘Prospective Coding by Spiking Neurons’. en. In:
PLoS Comput. Biol. 12.6 (June 2016), e1005003.

[21] Romain Brette and Wulfram Gerstner. ‘Adaptive Exponential
Integrate-and-Fire Model as an Effective Description of Neur-
onal Activity’. In: Journal of Neurophysiology 94.5 (2005). PMID:
16014787, pp. 3637–3642. doi: 10.1152/jn.00686.2005. eprint:
https : / / doi . org / 10 . 1152 / jn . 00686 . 2005. url: https :

//doi.org/10.1152/jn.00686.2005.

[22] Bede M Broome, Vivek Jayaraman and Gilles Laurent. ‘En-
coding and decoding of overlapping odor sequences’. en. In:
Neuron 51.4 (Aug. 2006), pp. 467–482.

https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1152/jn.00686.2005

bibliography 153

[23] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell et al. ‘Language mod-
els are few-shot learners’. In: arXiv preprint arXiv:2005.14165
(2020).

[24] Steven L Brunton, Joshua L Proctor and J Nathan Kutz. ‘Dis-
covering governing equations from data by sparse identific-
ation of nonlinear dynamical systems’. In: Proceedings of the
national academy of sciences 113.15 (2016), pp. 3932–3937.

[25] Julián Bueno, Daniel Brunner, Miguel C Soriano and Ingo Fisc-
her. ‘Conditions for reservoir computing performance using
semiconductor lasers with delayed optical feedback’. In: Op-
tics express 25.3 (2017), pp. 2401–2412.

[26] Dean V Buonomano and Wolfgang Maass. ‘State-dependent
computations: spatiotemporal processing in cortical networks’.
In: Nature Reviews Neuroscience 10.2 (2009), pp. 113–125.

[27] A N Burkitt. ‘A review of the integrate-and-fire neuron model:
I. Homogeneous synaptic input’. en. In: Biol. Cybern. 95.1 (July
2006), pp. 1–19.

[28] Samuel P Burns, Dajun Xing and Robert M Shapley. ‘Is gamma-
band activity in the local field potential of V1 cortex a “clock”
or filtered noise?’ In: Journal of Neuroscience 31.26 (2011), pp. 9658–
9664.

[29] Markus Butz, Florentin Wörgötter and Arjen van Ooyen. ‘Activity-
dependent structural plasticity’. en. In: Brain Res. Rev. 60.2
(May 2009), pp. 287–305.

[30] György Buzsáki, Nikos Logothetis and Wolf Singer. ‘Scaling
brain size, keeping timing: evolutionary preservation of brain
rhythms’. In: Neuron 80.3 (2013), pp. 751–764.

[31] György Buzsáki and David Tingley. ‘Space and time: The hip-
pocampus as a sequence generator’. In: Trends in cognitive sci-
ences 22.10 (2018), pp. 853–869.

[32] J del Castillo and B Katz. ‘Quantal components of the end-
plate potential’. en. In: J. Physiol. 124.3 (June 1954), pp. 560–
573.

[33] Maria Chait, Steven Greenberg, Takayuki Arai, Jonathan Z Si-
mon and David Poeppel. ‘Multi-time resolution analysis of
speech: evidence from psychophysics’. In: Frontiers in neuros-
cience 9 (2015), p. 214.

[34] David J Chalmers. ‘Connectionism and compositionality: Why
Fodor and Pylyshyn were wrong’. In: (1993).

154 bibliography

[35] Elisabetta Chicca, Fabio Stefanini, Chiara Bartolozzi and Gi-
acomo Indiveri. ‘Neuromorphic electronic circuits for build-
ing autonomous cognitive systems’. In: Proceedings of the IEEE
102.9 (2014), pp. 1367–1388.

[36] John Cohen. ‘Psychological time’. In: Scientific American 211.5
(1964), pp. 116–125.

[37] Matteo Cucchi, Christopher Gruener, Lautaro Petrauskas, Peter
Steiner, Hsin Tseng, Axel Fischer, Bogdan Penkovsky, Chris-
tian Matthus, Peter Birkholz, Hans Kleemann et al. ‘Reser-
voir computing with biocompatible organic electrochemical
networks for brain-inspired biosignal classification’. In: Science
Advances 7.34 (2021), eabh0693.

[38] George Cybenko. ‘Approximation by superpositions of a sig-
moidal function’. In: Mathematics of control, signals and systems
2.4 (1989), pp. 303–314.

[39] Matthew Dale, Julian F Miller, Susan Stepney and Martin A
Trefzer. ‘Evolving carbon nanotube reservoir computers’. In:
International Conference on Unconventional Computation and Nat-
ural Computation. Springer. 2016, pp. 49–61.

[40] Matthew Dale, Julian F Miller, Susan Stepney and Martin A
Trefzer. ‘Reservoir Computing in Material Substrates’. In: Reser-
voir Computing. Springer, 2021, pp. 141–166.

[41] Keith Davids, Paul Glazier, Duarte Araujo and Roger Bartlett.
‘Movement systems as dynamical systems’. In: Sports medicine
33.4 (2003), pp. 245–260.

[42] Mike Davies et al. ‘Loihi: A Neuromorphic Manycore Pro-
cessor with On-Chip Learning’. In: IEEE Micro 38.1 (Jan. 2018),
pp. 82–99.

[43] Peter Dayan and Laurence F Abbott. Theoretical neuroscience:
computational and mathematical modeling of neural systems. Com-
putational Neuroscience Series, 2001.

[44] Bert De Vries and Jose C Principe. ‘The gamma model—A new
neural model for temporal processing’. In: Neural networks 5.4
(1992), pp. 565–576.

[45] Bert De Vries and José Príncipe. ‘A theory for neural networks
with time delays’. In: Advances in neural information processing
systems 3 (1990).

[46] Bryce S DeWitt. ‘Quantum theory of gravity. I. The canonical
theory’. In: Physical Review 160.5 (1967), p. 1113.

bibliography 155

[47] Michael Doron, Giuseppe Chindemi, Eilif Muller, Henry Markram
and Idan Segev. ‘Timed Synaptic Inhibition Shapes NMDA
Spikes, Influencing Local Dendritic Processing and Global I/O
Properties of Cortical Neurons’. en. In: Cell Rep. 21.6 (Nov.
2017), pp. 1550–1561.

[48] Kenji Doya, Shin Ishii, Alexandre Pouget and Rajesh PN Rao.
Bayesian brain: Probabilistic approaches to neural coding. 2007.

[49] George Dragoi and György Buzsáki. ‘Temporal encoding of
place sequences by hippocampal cell assemblies’. In: Neuron
50.1 (2006), pp. 145–157.

[50] George Dragoi and Susumu Tonegawa. ‘Preplay of future place
cell sequences by hippocampal cellular assemblies’. In: Nature
469.7330 (2011), pp. 397–401.

[51] Naomi R Driesen, Gregory McCarthy, Zubin Bhagwagar, Mi-
chael H Bloch, Vincent D Calhoun, Deepak C D’souza, Ralitza
Gueorguieva, George He, Hoi-Chung Leung, Ramachandran
Ramani et al. ‘The impact of NMDA receptor blockade on
human working memory-related prefrontal function and con-
nectivity’. In: Neuropsychopharmacology 38.13 (2013), pp. 2613–
2622.

[52] Céline Drieu and Michaël Zugaro. ‘Hippocampal sequences
during exploration: mechanisms and functions’. In: Frontiers
in cellular neuroscience 13 (2019), p. 232.

[53] K Du, Y W Wu, R Lindroos, Y Liu and others. ‘Cell-type–
specific inhibition of the dendritic plateau potential in striatal
spiny projection neurons’. In: Proceedings of the (2017).

[54] Simon Du, Jason Lee, Haochuan Li, Liwei Wang and Xiyu
Zhai. ‘Gradient descent finds global minima of deep neural
networks’. In: International Conference on Machine Learning. PMLR.
2019, pp. 1675–1685.

[55] Daniel Durstewitz, Jeremy K Seamans and Terrence J Sejnowski.
‘Neurocomputational models of working memory’. In: Nature
neuroscience 3.11 (2000), pp. 1184–1191.

[56] Sarah L Eagleman and Valentin Dragoi. ‘Image sequence react-
ivation in awake V4 networks’. In: Proceedings of the National
Academy of Sciences 109.47 (2012), pp. 19450–19455.

[57] Howard Eichenbaum. ‘Time cells in the hippocampus: a new
dimension for mapping memories’. In: Nature Reviews Neuros-
cience 15.11 (2014), pp. 732–744.

[58] Howard Eichenbaum. ‘On the Integration of Space, Time, and
Memory’. en. In: Neuron 95.5 (Aug. 2017), pp. 1007–1018.

156 bibliography

[59] Matthias Ekman, Peter Kok and Floris P de Lange. ‘Time-
compressed preplay of anticipated events in human primary
visual cortex’. In: Nature Communications 8.1 (2017), pp. 1–9.

[60] A K Engel, P Fries, P König, M Brecht and W Singer. ‘Tem-
poral binding, binocular rivalry, and consciousness’. en. In:
Conscious. Cogn. 8.2 (June 1999), pp. 128–151.

[61] RC Evans and KT Blackwell. ‘Calcium: amplitude, duration,
or location?’ In: The Biological Bulletin 228.1 (2015), pp. 75–83.

[62] Chrisantha Fernando and Sampsa Sojakka. ‘Pattern recogni-
tion in a bucket’. In: European conference on artificial life. Springer.
2003, pp. 588–597.

[63] Ulrike Feudel, Alexander N Pisarchik and Kenneth Showalter.
‘Multistability and tipping: From mathematics and physics to
climate and brain—Minireview and preface to the focus issue’.
In: Chaos: An Interdisciplinary Journal of Nonlinear Science 28.3
(2018), p. 033501.

[64] R Douglas Fields. ‘A new mechanism of nervous system plasti-
city: activity-dependent myelination’. en. In: Nat. Rev. Neurosci.
16.12 (Dec. 2015), pp. 756–767.

[65] Peter SB Finnie, Robert W Komorowski and Mark F Bear. ‘The
spatiotemporal organization of experience dictates hippocam-
pal involvement in primary visual cortical plasticity’. In: bioRxiv
(2021).

[66] J A Fodor and Z W Pylyshyn. ‘Connectionism and cognitive
architecture: a critical analysis’. en. In: Cognition 28.1-2 (Mar.
1988), pp. 3–71.

[67] Jerry A Fodor. The language of thought. Vol. 5. Harvard univer-
sity press, 1975.

[68] Jerry A Fodor. ‘The mind-body problem’. In: Scientific american
244.1 (1981), pp. 114–123.

[69] Norbert J Fortin, Kara L Agster and Howard B Eichenbaum.
‘Critical role of the hippocampus in memory for sequences of
events’. In: Nature neuroscience 5.5 (2002), pp. 458–462.

[70] Stan Franklin and Max Garzon. ‘Neural computability’. In:
Progress in neural networks 1.128,144 (1990).

[71] Rainer W Friedrich and Gilles Laurent. ‘Dynamic optimization
of odor representations by slow temporal patterning of mitral
cell activity’. In: Science 291.5505 (2001), pp. 889–894.

bibliography 157

[72] Takaichi Fukuda and Toshio Kosaka. ‘Gap Junctions Linking
the Dendritic Network of GABAergic Interneurons in the Hip-
pocampus’. In: Journal of Neuroscience 20.4 (2000), pp. 1519–
1528. issn: 0270-6474. doi: 10.1523/JNEUROSCI.20-04-01519.
2000. eprint: http://www.jneurosci.org/content/20/4/1519.
full.pdf. url: http://www.jneurosci.org/content/20/4/
1519.

[73] Takaichi Fukuda, Toshio Kosaka, Wolf Singer and Ralf AW
Galuske. ‘Gap junctions among dendrites of cortical GABAer-
gic neurons establish a dense and widespread intercolumnar
network’. In: Journal of Neuroscience 26.13 (2006), pp. 3434–3443.

[74] Steve B Furber, Francesco Galluppi, Steve Temple and Luis A
Plana. ‘The spinnaker project’. In: Proceedings of the IEEE 102.5
(2014), pp. 652–665.

[75] Peng P Gao, Joseph W Graham, Wen-Liang Zhou, Jinyoung
Jang, Sergio Angulo, Salvador Dura-Bernal, Michael Hines,
William W Lytton and Srdjan D Antic. ‘Local glutamate-mediated
dendritic plateau potentials change the state of the cortical
pyramidal neuron’. In: Journal of Neurophysiology 125.12 (2021),
pp. 23–42.

[76] Sonia Gasparini and Jeffrey C Magee. ‘State-dependent dend-
ritic computation in hippocampal CA1 pyramidal neurons’. en.
In: J. Neurosci. 26.7 (Feb. 2006), pp. 2088–2100.

[77] Sonia Gasparini, Michele Migliore and Jeffrey C Magee. ‘On
the initiation and propagation of dendritic spikes in CA1 pyr-
amidal neurons’. en. In: J. Neurosci. 24.49 (Dec. 2004), pp. 11046–
11056.

[78] Jeffrey P Gavornik and Mark F Bear. ‘Learned spatiotemporal
sequence recognition and prediction in primary visual cortex’.
en. In: Nat. Neurosci. 17.5 (May 2014), pp. 732–737.

[79] Dileep George and Jeff Hawkins. ‘Towards a mathematical the-
ory of cortical micro-circuits’. en. In: PLoS Comput. Biol. 5.10

(Oct. 2009), e1000532.

[80] W. Gerstner. ‘Spike-response model’. In: Scholarpedia 3.12 (2008).
revision #91800, p. 1343. doi: 10.4249/scholarpedia.1343.

[81] MOHAMED M Ghoneim, James V Hinrichs, STEVEN P Me-
waldt and Ronald C Petersen. ‘Ketamine: behavioral effects of
subanesthetic doses.’ In: Journal of clinical psychopharmacology
5.2 (1985), pp. 70–77.

[82] Albert Gidon and Idan Segev. ‘Principles governing the oper-
ation of synaptic inhibition in dendrites’. en. In: Neuron 75.2
(July 2012), pp. 330–341.

https://doi.org/10.1523/JNEUROSCI.20-04-01519.2000
https://doi.org/10.1523/JNEUROSCI.20-04-01519.2000
http://www.jneurosci.org/content/20/4/1519.full.pdf
http://www.jneurosci.org/content/20/4/1519.full.pdf
http://www.jneurosci.org/content/20/4/1519
http://www.jneurosci.org/content/20/4/1519
https://doi.org/10.4249/scholarpedia.1343

158 bibliography

[83] Ben Gold, Nelson Morgan and Dan Ellis. Speech and audio sig-
nal processing: processing and perception of speech and music. John
Wiley & Sons, 2011.

[84] Patricia S Goldman-Rakic. ‘Cellular basis of working memory’.
In: Neuron 14.3 (1995), pp. 477–485.

[85] T Götz, U Kraushaar, J Geiger, J Lübke, T Berger and P Jo-
nas. ‘Functional properties of AMPA and NMDA receptors
expressed in identified types of basal ganglia neurons’. en. In:
J. Neurosci. 17.1 (Jan. 1997), pp. 204–215.

[86] Michael Graupner and Nicolas Brunel. ‘Calcium-based plas-
ticity model explains sensitivity of synaptic changes to spike
pattern, rate, and dendritic location’. en. In: Proc. Natl. Acad.
Sci. U. S. A. 109.10 (Mar. 2012), pp. 3991–3996.

[87] Jordan Guerguiev, Timothy P Lillicrap and Blake A Richards.
‘Towards deep learning with segregated dendrites’. en. In: Elife
6 (Dec. 2017).

[88] Robert Gütig and Haim Sompolinsky. ‘The tempotron: a neuron
that learns spike timing–based decisions’. In: Nature neuros-
cience 9.3 (2006), pp. 420–428.

[89] Jiang Hao, Xu-Dong Wang, Yang Dan, Mu-Ming Poo and Xiao-
Hui Zhang. ‘An arithmetic rule for spatial summation of excit-
atory and inhibitory inputs in pyramidal neurons’. en. In: Proc.
Natl. Acad. Sci. U. S. A. 106.51 (Dec. 2009), pp. 21906–21911.

[90] Jason Hardie and Nelson Spruston. ‘Synaptic depolarization is
more effective than back-propagating action potentials during
induction of associative long-term potentiation in hippocam-
pal pyramidal neurons’. en. In: J. Neurosci. 29.10 (Mar. 2009),
pp. 3233–3241.

[91] Michael Häusser. ‘Synaptic function: dendritic democracy’. In:
Current Biology 11.1 (2001), R10–R12.

[92] Jeff Hawkins and Subutai Ahmad. ‘Why neurons have thou-
sands of synapses, a theory of sequence memory in neocortex’.
In: Frontiers in neural circuits 10 (2016), p. 23.

[93] Nicholas D Haynes, Miguel C Soriano, David P Rosin, Ingo
Fischer and Daniel J Gauthier. ‘Reservoir computing with a
single time-delay autonomous Boolean node’. In: Physical Re-
view E 91.2 (2015), p. 020801.

[94] Donald Olding Hebb. The organization of behavior: A neuropsy-
chological theory. Psychology Press, 1949.

[95] Richard NA Henson and N Burgess. ‘Representations of serial
order’. In: 4th Neural Computation and Psychology Workshop, Lon-
don, 9–11 April 1997. Springer. 1998, pp. 283–300.

bibliography 159

[96] Andreas V M Herz, Tim Gollisch, Christian K Machens and
Dieter Jaeger. ‘Modeling single-neuron dynamics and compu-
tations: a balance of detail and abstraction’. en. In: Science
314.5796 (Oct. 2006), pp. 80–85.

[97] Konstantin Hicke, Miguel Angel Escalona-Morán, Daniel Brun-
ner, Miguel Cornelles Soriano, Ingo Fischer and Claudio R
Mirasso. ‘Information processing using transient dynamics of
semiconductor lasers subject to delayed feedback’. In: IEEE
Journal of Selected Topics in Quantum Electronics 19.4 (2013), pp. 1501610–
1501610.

[98] Ira J Hirsh. ‘Auditory Perception of Temporal Order’. In: J.
Acoust. Soc. Am. 31.6 (June 1959), pp. 759–767.

[99] Alan L Hodgkin and Andrew F Huxley. ‘Resting and action
potentials in single nerve fibres’. In: The Journal of physiology
104.2 (1945), pp. 176–195.

[100] Christoph Hoerl and Teresa McCormack. ‘Thinking in and
about time: A dual systems perspective on temporal cogni-
tion’. In: Behavioral and Brain Sciences 42 (2019).

[101] Michael Hollmann and Stephen Heinemann. ‘Cloned Glutam-
ate Receptors’. en. In: Annual review of neuroscience (Nov. 2003).

[102] Tage Honoré, Jørn Lauridsen and Povl Krogsgaard-Larsen. ‘The
binding of [3H] AMPA, a structural analogue of glutamic acid,
to rat brain membranes’. In: Journal of neurochemistry 38.1 (1982),
pp. 173–178.

[103] Kurt Hornik. ‘Some new results on neural network approxim-
ation’. In: Neural networks 6.8 (1993), pp. 1069–1072.

[104] Auke Jan Ijspeert, Jun Nakanishi and Stefan Schaal. ‘Move-
ment imitation with nonlinear dynamical systems in humanoid
robots’. In: Proceedings 2002 IEEE International Conference on Ro-
botics and Automation (Cat. No. 02CH37292). Vol. 2. IEEE. 2002,
pp. 1398–1403.

[105] Bernd Illing, Jean Robin Ventura, Guillaume Bellec and Wul-
fram Gerstner. ‘Local plasticity rules can learn deep represent-
ations using self-supervised contrastive predictions’. In: Thirty-
Fifth Conference on Neural Information Processing Systems. 2021.

[106] Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton,
André Van Schaik, Ralph Etienne-Cummings, Tobi Delbruck,
Shih-Chii Liu, Piotr Dudek, Philipp Häfliger, Sylvie Renaud
et al. ‘Neuromorphic silicon neuron circuits’. In: Frontiers in
neuroscience 5 (2011), p. 73.

[107] Michael Innes. ‘Don’t unroll adjoint: Differentiating ssa-form
programs’. In: arXiv preprint arXiv:1810.07951 (2018).

160 bibliography

[108] Mike Innes. ‘Flux: Elegant machine learning with Julia’. In:
Journal of Open Source Software 3.25 (2018), p. 602.

[109] Junji Ito, Pedro Maldonado, Wolf Singer and Sonja Grün. ‘Saccade-
related modulations of neuronal excitability support synchrony
of visually elicited spikes’. In: Cerebral cortex 21.11 (2011), pp. 2482–
2497.

[110] Eugene M Izhikevich. ‘Simple model of spiking neurons’. In:
IEEE Transactions on neural networks 14.6 (2003), pp. 1569–1572.

[111] Herbert Jaeger. ‘The “echo state” approach to analysing and
training recurrent neural networks-with an erratum note’. In:
().

[112] Tim Jarsky, Alex Roxin, William L Kath and Nelson Spruston.
‘Conditional dendritic spike propagation following distal syn-
aptic activation of hippocampal CA1 pyramidal neurons’. en.
In: Nat. Neurosci. 8.12 (Dec. 2005), pp. 1667–1676.

[113] Edwin T Jaynes. Probability theory: The logic of science. Cam-
bridge university press, 2003.

[114] H Shawn Je, Feng Yang, Yuanyuan Ji, Guhan Nagappan, Bar-
bara L Hempstead and Bai Lu. ‘Role of pro-brain-derived neur-
otrophic factor (proBDNF) to mature BDNF conversion in activity-
dependent competition at developing neuromuscular synapses’.
en. In: Proc. Natl. Acad. Sci. U. S. A. 109.39 (Sept. 2012), pp. 15924–
15929.

[115] Ole Jensen and John E Lisman. ‘Hippocampal CA3 region pre-
dicts memory sequences: accounting for the phase precession
of place cells.’ In: Learning & memory 3.2-3 (1996), pp. 279–287.

[116] Hongbo Jia, Nathalie L Rochefort, Xiaowei Chen and Arthur
Konnerth. ‘Dendritic organization of sensory input to cortical
neurons in vivo’. en. In: Nature 464.7293 (Apr. 2010), pp. 1307–
1312.

[117] Renaud Jolivet, Timothy J Lewis and Wulfram Gerstner. ‘Gen-
eralized integrate-and-fire models of neuronal activity approx-
imate spike trains of a detailed model to a high degree of ac-
curacy’. en. In: J. Neurophysiol. 92.2 (Aug. 2004), pp. 959–976.

[118] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven
Siegelbaum, A James Hudspeth and Sarah Mack. Principles of
neural science. Vol. 4. McGraw-hill New York, 2000.

[119] Aaron Kerlin, Mohar Boaz, Daniel Flickinger, Bryan J MacLen-
nan, Matthew B Dean, Courtney Davis, Nelson Spruston and
Karel Svoboda. ‘Functional clustering of dendritic activity dur-
ing decision-making’. In: Elife 8 (2019), e46966.

bibliography 161

[120] Farshad Khadivar, Ilaria Lauzana and Aude Billard. ‘Learning
dynamical systems with bifurcations’. In: Robotics and Autonom-
ous Systems 136 (2021), p. 103700.

[121] H G Kim, M Beierlein and B W Connors. ‘Inhibitory control
of excitable dendrites in neocortex’. en. In: J. Neurophysiol. 74.4
(Oct. 1995), pp. 1810–1814.

[122] David C Knill and Alexandre Pouget. ‘The Bayesian brain:
the role of uncertainty in neural coding and computation’. In:
TRENDS in Neurosciences 27.12 (2004), pp. 712–719.

[123] C Koch, T Poggio and V Torre. ‘Retinal ganglion cells: a func-
tional interpretation of dendritic morphology’. en. In: Philos.
Trans. R. Soc. Lond. B Biol. Sci. 298.1090 (July 1982), pp. 227–
263.

[124] Christof Koch. Biophysics of computation: information processing
in single neurons. Oxford university press, 2004.

[125] Peter König, Andreas K Engel and Wolf Singer. ‘Integrator or
coincidence detector? The role of the cortical neuron revisited’.
In: Trends in neurosciences 19.4 (1996), pp. 130–137.

[126] Clemens Korndörfer, Ekkehard Ullner, Jordi García-Ojalvo and
Gordon Pipa. ‘Cortical spike synchrony as a measure of input
familiarity’. In: Neural computation 29.9 (2017), pp. 2491–2510.

[127] Nikolaus Kriegeskorte and Pamela K Douglas. ‘Cognitive com-
putational neuroscience’. In: Nature neuroscience 21.9 (2018),
pp. 1148–1160.

[128] John H Krystal, Laurence P Karper, John P Seibyl, Glenna
K Freeman, Richard Delaney, J Douglas Bremner, George R
Heninger, Malcolm B Bowers and Dennis S Charney. ‘Subanes-
thetic effects of the noncompetitive NMDA antagonist, ketam-
ine, in humans: psychotomimetic, perceptual, cognitive, and
neuroendocrine responses’. In: Archives of general psychiatry 51.3
(1994), pp. 199–214.

[129] Matthew E Larkum, Thomas Nevian, Maya Sandler, Alon Pol-
sky and Jackie Schiller. ‘Synaptic integration in tuft dendrites
of layer 5 pyramidal neurons: a new unifying principle’. In:
Science 325.5941 (2009), pp. 756–760.

[130] Karl Spencer Lashley. The problem of serial order in behavior. Vol. 21.
Bobbs-Merrill, 1951.

[131] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. ‘Deep learn-
ing’. In: nature 521.7553 (2015), pp. 436–444.

[132] Albert K Lee and Matthew A Wilson. ‘Memory of sequential
experience in the hippocampus during slow wave sleep’. In:
Neuron 36.6 (2002), pp. 1183–1194.

162 bibliography

[133] Robert Legenstein and Wolfgang Maass. ‘Edge of chaos and
prediction of computational performance for neural circuit mod-
els’. In: Neural networks 20.3 (2007), pp. 323–334.

[134] R A Lester, J D Clements, G L Westbrook and C E Jahr. ‘Chan-
nel kinetics determine the time course of NMDA receptor-
mediated synaptic currents’. en. In: Nature 346.6284 (Aug. 1990),
pp. 565–567.

[135] Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘Com-
putational Elements of Circuits’. In: The neocortex. Ed. by Wolf
Singer, Terrence J Sejnowski and Pasko Rakic. MIT Press, 2019,
pp. 195–209.

[136] Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘A min-
imal model of neural computation with dendritic plateau po-
tentials.’ In: bioRxiv (2021), p. 690792.

[137] Johannes Leugering, Pascal Nieters and Gordon Pipa. ‘Neur-
omorphic Pattern Detector and Neuromorphic Circuitry Here-
with’. Pat. DE:102019134044:A1. June 2021.

[138] Johannes Leugering and Gordon Pipa. ‘A unifying framework
of synaptic and intrinsic plasticity in neural populations’. In:
Neural computation 30.4 (2018), pp. 945–986.

[139] Songting Li, Nan Liu, Xiaohui Zhang, David W McLaughlin,
Douglas Zhou and David Cai. ‘Dendritic computations cap-
tured by an effective point neuron model’. en. In: Proc. Natl.
Acad. Sci. U. S. A. 116.30 (July 2019), pp. 15244–15252.

[140] Shiyu Liang, Ruoyu Sun, Jason D Lee and Rayadurgam Srik-
ant. ‘Adding one neuron can eliminate all bad local minima’.
In: Advances in Neural Information Processing Systems 31 (2018),
pp. 4350–4360.

[141] Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Aker-
man and Geoffrey Hinton. ‘Backpropagation and the brain’.
en. In: Nat. Rev. Neurosci. 21.6 (June 2020), pp. 335–346.

[142] John E Lisman, Jean-Marc Fellous and Xiao-Jing Wang. ‘A role
for NMDA-receptor channels in working memory’. In: Nature
neuroscience 1.4 (1998), pp. 273–275.

[143] John Lisman and Nelson Spruston. ‘Postsynaptic depolariza-
tion requirements for LTP and LTD: a critique of spike timing-
dependent plasticity’. en. In: Nat. Neurosci. 8.7 (July 2005), pp. 839–
841.

[144] Michael London and Michael Häusser. ‘Dendritic computa-
tion’. en. In: Annu. Rev. Neurosci. 28 (2005), pp. 503–532.

[145] Attila Losonczy and Jeffrey C Magee. ‘Integrative properties
of radial oblique dendrites in hippocampal CA1 pyramidal
neurons’. en. In: Neuron 50.2 (Apr. 2006), pp. 291–307.

bibliography 163

[146] Attila Losonczy, Judit K Makara and Jeffrey C Magee. ‘Com-
partmentalized dendritic plasticity and input feature storage
in neurons’. In: Nature 452.7186 (2008), pp. 436–441.

[147] Xuelin Lou, Fan Fan, Mirko Messa, Andrea Raimondi, Yumei
Wu, Loren L Looger, Shawn M Ferguson and Pietro De Ca-
milli. ‘Reduced release probability prevents vesicle depletion
and transmission failure at dynamin mutant synapses’. In: Pro-
ceedings of the National Academy of Sciences 109.8 (2012), E515–
E523.

[148] Junshi Lu, Lu Luo, Qian Wang, Fang Fang and Nihong Chen.
‘Cue-triggered activity replay in human early visual cortex’. In:
Science China Life Sciences 64.1 (2021), pp. 144–151.

[149] Huan Luo and David Poeppel. ‘Phase patterns of neuronal
responses reliably discriminate speech in human auditory cor-
tex’. en. In: Neuron 54.6 (June 2007), pp. 1001–1010.

[150] Huan Luo and David Poeppel. ‘Cortical oscillations in aud-
itory perception and speech: evidence for two temporal win-
dows in human auditory cortex’. In: Frontiers in psychology 3

(2012), p. 170.

[151] Wolfgang Maass, Prashant Joshi and Eduardo D Sontag. ‘Com-
putational aspects of feedback in neural circuits’. In: PLoS com-
putational biology 3.1 (2007), e165.

[152] Wolfgang Maass, Thomas Natschläger and Henry Markram.
‘Real-time computing without stable states: A new framework
for neural computation based on perturbations’. In: Neural
computation 14.11 (2002), pp. 2531–2560.

[153] Michael C Mackey and Leon Glass. ‘Oscillation and chaos
in physiological control systems’. In: Science 197.4300 (1977),
pp. 287–289.

[154] Jeffrey C Magee and Erik P Cook. ‘Somatic EPSP amplitude
is independent of synapse location in hippocampal pyramidal
neurons’. In: Nature neuroscience 3.9 (2000), pp. 895–903.

[155] Guy Major, Matthew E Larkum and Jackie Schiller. ‘Active
properties of neocortical pyramidal neuron dendrites’. en. In:
Annu. Rev. Neurosci. 36 (July 2013), pp. 1–24.

[156] Guy Major, Alon Polsky, Winfried Denk, Jackie Schiller and
David W Tank. ‘Spatiotemporally graded NMDA spike/plat-
eau potentials in basal dendrites of neocortical pyramidal neur-
ons’. en. In: J. Neurophysiol. 99.5 (May 2008), pp. 2584–2601.

[157] Pedro Maldonado, Cecilia Babul, Wolf Singer, Eugenio Rodrig-
uez, Denise Berger and Sonja Grun. ‘Synchronization of neur-
onal responses in primary visual cortex of monkeys viewing
natural images’. In: Journal of neurophysiology 100.3 (2008), pp. 1523–
1532.

164 bibliography

[158] Luca Manneschi, Matthew OA Ellis, Guido Gigante, Andrew
C Lin, Paolo Del Giudice and Eleni Vasilaki. ‘Exploiting mul-
tiple timescales in hierarchical echo state networks’. In: Fronti-
ers in Applied Mathematics and Statistics 6 (2021), p. 76.

[159] Gary F Marcus. The algebraic mind: Integrating connectionism and
cognitive science. MIT press, 2003.

[160] Gary Marcus. ‘Deep learning: A critical appraisal’. In: arXiv
preprint arXiv:1801.00631 (2018).

[161] Warren S McCulloch and Walter Pitts. ‘A logical calculus of the
ideas immanent in nervous activity’. In: The bulletin of mathem-
atical biophysics 5.4 (1943), pp. 115–133.

[162] Josh H McDermott, Michael Schemitsch and Eero P Simon-
celli. ‘Summary statistics in auditory perception’. en. In: Nat.
Neurosci. 16.4 (Apr. 2013), pp. 493–498.

[163] Carver Mead. ‘Introduction to VLSI systems’. In: IEE Proceed-
ings I-Solid-State and Electron Devices 128.1 (1980), p. 18.

[164] B W Mel. ‘Synaptic integration in an excitable dendritic tree’.
en. In: J. Neurophysiol. 70.3 (Sept. 1993), pp. 1086–1101.

[165] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, An-
drew S Cassidy, Jun Sawada, Filipp Akopyan, Bryan L Jack-
son, Nabil Imam, Chen Guo, Yutaka Nakamura et al. ‘A mil-
lion spiking-neuron integrated circuit with a scalable commu-
nication network and interface’. In: Science 345.6197 (2014),
pp. 668–673.

[166] Marvin Minksy and Seymour Papert. Perceptrons. MIT Press,
1969.

[167] Melanie Mitchell. ‘Why AI is harder than we think’. In: arXiv
preprint arXiv:2104.12871 (2021).

[168] Gianluigi Mongillo, Omri Barak and Misha Tsodyks. ‘Synaptic
theory of working memory’. In: Science 319.5869 (2008), pp. 1543–
1546.

[169] H Monyer, N Burnashev, D J Laurie, B Sakmann and P H
Seeburg. ‘Developmental and regional expression in the rat
brain and functional properties of four NMDA receptors’. en.
In: Neuron 12.3 (Mar. 1994), pp. 529–540.

[170] Rubén Moreno-Bote. ‘Poisson-like spiking in circuits with prob-
abilistic synapses’. In: PLoS computational biology 10.7 (2014),
e1003522.

[171] Mark A Motter and Jose C Principe. ‘A gamma memory neural
network for system identification’. In: Proceedings of 1994 IEEE
International Conference on Neural Networks (ICNN’94). Vol. 5.
IEEE. 1994, pp. 3232–3237.

bibliography 165

[172] William Muñoz, Robin Tremblay, Daniel Levenstein and Bern-
ardo Rudy. ‘Layer-specific modulation of neocortical dendritic
inhibition during active wakefulness’. en. In: Science 355.6328

(Mar. 2017), pp. 954–959.

[173] Alexander Neckar, Sam Fok, Ben V Benjamin, Terrence C Stew-
art, Nick N Oza, Aaron R Voelker, Chris Eliasmith, Rajit Man-
ohar and Kwabena Boahen. ‘Braindrop: A mixed-signal neur-
omorphic architecture with a dynamical systems-based pro-
gramming model’. In: Proceedings of the IEEE 107.1 (2018), pp. 144–
164.

[174] Emre O Neftci, Bruno U Pedroni, Siddharth Joshi, Maruan
Al-Shedivat and Gert Cauwenberghs. ‘Stochastic synapses en-
able efficient brain-inspired learning machines’. In: Frontiers in
neuroscience 10 (2016), p. 241.

[175] John Ashworth Nelder and Robert WM Wedderburn. ‘Gener-
alized linear models’. In: Journal of the Royal Statistical Society:
Series A (General) 135.3 (1972), pp. 370–384.

[176] Daniel A Nicholson, Rachel Trana, Yael Katz, William L Kath,
Nelson Spruston and Yuri Geinisman. ‘Distance-dependent dif-
ferences in synapse number and AMPA receptor expression in
hippocampal CA1 pyramidal neurons’. In: Neuron 50.3 (2006),
pp. 431–442.

[177] Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Neur-
omorphic computation in multi-delay coupled models’. In: IBM
Journal of Research and Development 61.2/3 (2017), pp. 8–7.

[178] Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Neur-
omorphic Adaptive Filters for event detection, trained with a
gradient free online learning rule’. In: Cognitive Computing –
Merging Concepts with Hardware. 2018.

[179] Pascal Nieters, Johannes Leugering and Gordon Pipa. ‘Act-
ive dendrites implement probabilistic temporal logic gates.’ In:
Proc. of the Computational Cognition Workshop Osnabrück. 2019.

[180] L Nowak, P Bregestovski, P Ascher, A Herbet and A Prochi-
antz. ‘Magnesium gates glutamate-activated channels in mouse
central neurones’. en. In: Nature 307.5950 (1984), pp. 462–465.

[181] J O’Keefe and J Dostrovsky. ‘The hippocampus as a spatial
map. Preliminary evidence from unit activity in the freely-
moving rat’. en. In: Brain Res. 34.1 (Nov. 1971), pp. 171–175.

[182] J O’Keefe and M L Recce. ‘Phase relationship between hippo-
campal place units and the EEG theta rhythm’. en. In: Hippo-
campus 3.3 (July 1993), pp. 317–330.

166 bibliography

[183] Katerina D Oikonomou, Mandakini B Singh, Enas V Sterjanaj
and Srdjan D Antic. ‘Spiny neurons of amygdala, striatum,
and cortex use dendritic plateau potentials to detect network
UP states’. en. In: Front. Cell. Neurosci. 8 (Sept. 2014), p. 292.

[184] S Ortín, Miguel C Soriano, L Pesquera, Daniel Brunner, D San-
Martín, Ingo Fischer, CR Mirasso and JM Gutiérrez. ‘A unified
framework for reservoir computing and extreme learning ma-
chines based on a single time-delayed neuron’. In: Scientific
reports 5.1 (2015), pp. 1–11.

[185] Norman H Packard, James P Crutchfield, J Doyne Farmer and
Robert S Shaw. ‘Geometry from a time series’. In: Physical re-
view letters 45.9 (1980), p. 712.

[186] Agostina Palmigiano, Theo Geisel, Fred Wolf and Demian Battaglia.
‘Flexible information routing by transient synchrony’. In: Nature
neuroscience 20.7 (2017), pp. 1014–1022.

[187] Bogdan Penkovsky, Xavier Porte, Maxime Jacquot, Laurent
Larger and Daniel Brunner. ‘Coupled nonlinear delay systems
as deep convolutional neural networks’. In: Physical review let-
ters 123.5 (2019), p. 054101.

[188] Carl Adam Petri. ‘Communication with automata’. In: (1966).

[189] Brad E Pfeiffer and David J Foster. ‘Hippocampal place-cell se-
quences depict future paths to remembered goals’. In: Nature
497.7447 (2013), pp. 74–79.

[190] Gordon Pipa, Sonja Grün and Carl Van Vreeswijk. ‘Impact of
spike train autostructure on probability distribution of joint
spike events’. In: Neural Computation 25.5 (2013), pp. 1123–
1163.

[191] Panayiota Poirazi, Terrence Brannon and Bartlett W Mel. ‘Pyr-
amidal neuron as two-layer neural network’. In: Neuron 37.6
(2003), pp. 989–999.

[192] Alon Polsky, Bartlett W Mel and Jackie Schiller. ‘Computa-
tional subunits in thin dendrites of pyramidal cells’. en. In:
Nat. Neurosci. 7.6 (June 2004), pp. 621–627.

[193] Alexandre Pouget, Jeffrey M Beck, Wei Ji Ma and Peter E
Latham. ‘Probabilistic brains: knowns and unknowns’. In: Nature
neuroscience 16.9 (2013), pp. 1170–1178.

[194] Alexandre Pouget, Jan Drugowitsch and Adam Kepecs. ‘Con-
fidence and certainty: distinct probabilistic quantities for dif-
ferent goals’. In: Nature neuroscience 19.3 (2016), pp. 366–374.

[195] Jose C Principe, Bert De Vries and Pedro Guedes De Oliveira.
‘The gamma-filter-a new class of adaptive IIR filters with re-
stricted feedback’. In: IEEE transactions on signal processing 41.2
(1993), pp. 649–656.

bibliography 167

[196] Zenon W Pylyshyn. Computation and cognition: Toward a found-
ation for cognitive science. The MIT Press, 1986.

[197] HuiXin Qin, Jun Ma, WuYin Jin and ChunNi Wang. ‘Dynamics
of electric activities in neuron and neurons of network induced
by autapses’. In: Science China Technological Sciences 57.5 (2014),
pp. 936–946.

[198] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin
Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ra-
madhan and Alan Edelman. ‘Universal differential equations
for scientific machine learning’. In: arXiv preprint arXiv:2001.04385
(2020).

[199] W Rall. ‘Experimental monosynaptic input-output relations in
the mammalian spinal cord’. en. In: J. Cell. Comp. Physiol. 46.3
(Dec. 1955), pp. 413–437.

[200] W Rall. ‘Electrophysiology of a dendritic neuron model’. en.
In: Biophys. J. 2.2 Pt 2 (Mar. 1962), pp. 145–167.

[201] Paul Rhodes. ‘The properties and implications of NMDA spikes
in neocortical pyramidal cells’. en. In: J. Neurosci. 26.25 (June
2006), pp. 6704–6715.

[202] Blake A Richards and Timothy P Lillicrap. ‘Dendritic solutions
to the credit assignment problem’. en. In: Curr. Opin. Neurobiol.
54 (Feb. 2019), pp. 28–36.

[203] Pieter R Roelfsema and Anthony Holtmaat. ‘Control of syn-
aptic plasticity in deep cortical networks’. In: Nature Reviews
Neuroscience 19.3 (2018), pp. 166–180.

[204] S Rosen. ‘Temporal information in speech: acoustic, auditory
and linguistic aspects’. en. In: Philos. Trans. R. Soc. Lond. B Biol.
Sci. 336.1278 (June 1992), pp. 367–373.

[205] Frank Rosenblatt. ‘The perceptron: a probabilistic model for
information storage and organization in the brain.’ In: Psycho-
logical review 65.6 (1958), p. 386.

[206] Carlo Rovelli. The order of time. Riverhead books, 2019.

[207] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams.
Learning internal representations by error propagation. Tech. rep.
California Univ San Diego La Jolla Inst for Cognitive Science,
1985.

[208] Sara Sabour, Nicholas Frosst and Geoffrey E Hinton. ‘Dynamic
routing between capsules’. In: arXiv preprint arXiv:1710.09829
(2017).

[209] S Schaal, S Kotosaka and D Sternad. ‘Non-linear dynamical
systems as movement primitives’. In: Proc. IEEE International
Conference on Humanoid Robotics, 2000. 2000.

168 bibliography

[210] Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas
Grübl, Maurice Guettler, Andreas Hartel, Stephan Hartmann,
Dan Husmann, Kai Husmann, Sebastian Jeltsch et al. ‘Neur-
omorphic hardware in the loop: Training a deep spiking net-
work on the brainscales wafer-scale system’. In: 2017 interna-
tional joint conference on neural networks (IJCNN). IEEE. 2017,
pp. 2227–2234.

[211] Nicolas W Schuck and Yael Niv. ‘Sequential replay of non-
spatial task states in the human hippocampus’. en. In: Science
364.6447 (June 2019).

[212] Johannes Schumacher, Hazem Toutounji and Gordon Pipa. ‘An
analytical approach to single node delay-coupled reservoir com-
puting’. In: International Conference on Artificial Neural Networks.
Springer. 2013, pp. 26–33.

[213] Johannes Schumacher, Thomas Wunderle, Pascal Fries, Frank
Jäkel and Gordon Pipa. ‘A statistical framework to infer delay
and direction of information flow from measurements of com-
plex systems’. In: Neural computation 27.8 (2015), pp. 1555–
1608.

[214] Terrence J Sejnowski, Christof Koch and Patricia Smith Church-
land. ‘Computational neuroscience’. In: Science 241.4871 (1988),
pp. 1299–1306.

[215] EE Sel’Kov. ‘Self-Oscillations in Glycolysis 1. A Simple Kinetic
Model’. In: European Journal of Biochemistry 4.1 (1968), pp. 79–
86.

[216] H Sebastian Seung, Daniel D Lee, Ben Y Reis and David W
Tank. ‘The autapse: a simple illustration of short-term ana-
log memory storage by tuned synaptic feedback’. In: Journal
of computational neuroscience 9.2 (2000), pp. 171–185.

[217] Glenn Shafer, Peter R Gillett and Richard Scherl. ‘The logic of
events’. In: Ann. Math. Artif. Intell. 28.1 (Oct. 2000), pp. 315–
389.

[218] Mina Shahi, Carl van Vreeswijk and Gordon Pipa. ‘Serial Spike
Time Correlations Affect Probability Distribution of Joint Spike
Events’. In: Frontiers in computational neuroscience 10 (2016), p. 139.

[219] Yuko Shimoda and George B Arhonditsis. ‘Phytoplankton func-
tional type modelling: Running before we can walk? A critical
evaluation of the current state of knowledge’. In: Ecological
modelling 320 (2016), pp. 29–43.

[220] Seth L Shipman, Bruce E Herring, Young Ho Suh, Kather-
ine W Roche and Roger A Nicoll. ‘Distance-dependent scal-
ing of AMPARs is cell-autonomous and GluA2 dependent’. In:
Journal of Neuroscience 33.33 (2013), pp. 13312–13319.

bibliography 169

[221] Hava T Siegelmann and Eduardo D Sontag. ‘On the computa-
tional power of neural nets’. In: Journal of computer and system
sciences 50.1 (1995), pp. 132–150.

[222] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Ant-
onoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel et al. ‘A general re-
inforcement learning algorithm that masters chess, shogi, and
Go through self-play’. In: Science 362.6419 (2018), pp. 1140–
1144.

[223] Eric Simonnet, Henk A Dijkstra and Michael Ghil. ‘Bifurcation
analysis of ocean, atmosphere, and climate models’. In: Hand-
book of numerical analysis. Vol. 14. Elsevier, 2009, pp. 187–229.

[224] W Singer. ‘Cortical dynamics’. In: The neocortex. MIT Press,
2019, pp. 167–194.

[225] Wolf Singer, Andreas K Engel, Andreas K Kreiter, Matthias
HJ Munk, Sergio Neuenschwander and Pieter R Roelfsema.
‘Neuronal assemblies: necessity, signature and detectability’.
In: Trends in cognitive sciences 1.7 (1997), pp. 252–261.

[226] Paul Smolensky. ‘On the proper treatment of connectionism’.
en. In: Behav. Brain Sci. 11.1 (Mar. 1988), pp. 1–23.

[227] Paul Smolensky. ‘Tensor product variable binding and the rep-
resentation of symbolic structures in connectionist systems’.
In: Artificial intelligence 46.1-2 (1990), pp. 159–216.

[228] William R Softky and Christof Koch. ‘The highly irregular fir-
ing of cortical cells is inconsistent with temporal integration of
random EPSPs’. In: Journal of neuroscience 13.1 (1993), pp. 334–
350.

[229] Min Song, Minseok Kang, Hyeonsu Lee, Yong Jeong and Se-
Bum Paik. ‘Classification of Spatiotemporal Neural Activity
Patterns in Brain Imaging Data’. en. In: Sci. Rep. 8.1 (May 2018),
p. 8231.

[230] Nelson Spruston. ‘Pyramidal neurons: dendritic structure and
synaptic integration’. en. In: Nat. Rev. Neurosci. 9.3 (Mar. 2008),
pp. 206–221.

[231] Nelson Spruston, Greg Stuart and Michael Häusser. ‘Principles
of dendritic integration’. In: Dendrites 351.597 (2016), p. 1.

[232] Will Steffen, Johan Rockström, Katherine Richardson, Timothy
M Lenton, Carl Folke, Diana Liverman, Colin P Summerhayes,
Anthony D Barnosky, Sarah E Cornell, Michel Crucifix et al.
‘Trajectories of the Earth System in the Anthropocene’. In: Pro-
ceedings of the National Academy of Sciences 115.33 (2018), pp. 8252–
8259.

170 bibliography

[233] Florian Stelzer, André Röhm, Raul Vicente, Ingo Fischer and
Serhiy Yanchuk. ‘Deep neural networks using a single neuron:
folded-in-time architecture using feedback-modulated delay
loops’. In: Nature communications 12.1 (2021), pp. 1–10.

[234] C F Stevens. ‘Quantal release of neurotransmitter and long-
term potentiation’. en. In: Cell 72 Suppl (Jan. 1993), pp. 55–63.

[235] Katherine R Storrs, Tim C Kietzmann, Alexander Walther, Jo-
hannes Mehrer and Nikolaus Kriegeskorte. ‘Diverse deep neural
networks all predict human IT well, after training and fitting’.
In: bioRxiv (2020).

[236] Christoph Stosiek, Olga Garaschuk, Knut Holthoff and Arthur
Konnerth. ‘In vivo two-photon calcium imaging of neuronal
networks’. en. In: Proc. Natl. Acad. Sci. U. S. A. 100.12 (June
2003), pp. 7319–7324.

[237] Steven H Strogatz. Nonlinear dynamics and chaos with student
solutions manual: With applications to physics, biology, chemistry,
and engineering. CRC press, 2018.

[238] Greg Stuart and Nelson Spruston. ‘Determinants of voltage at-
tenuation in neocortical pyramidal neuron dendrites’. In: Journal
of Neuroscience 18.10 (1998), pp. 3501–3510.

[239] Mototaka Suzuki and Matthew E Larkum. ‘Dendritic calcium
spikes are clearly detectable at the cortical surface’. en. In: Nat.
Commun. 8.1 (Aug. 2017), p. 276.

[240] Naoya Takahashi, Christian Ebner, Johanna Sigl-Glöckner, Sara
Moberg, Svenja Nierwetberg and Matthew E Larkum. ‘Active
dendritic currents gate descending cortical outputs in percep-
tion’. en. In: Nat. Neurosci. (Aug. 2020).

[241] Naoya Takahashi, Kazuo Kitamura, Naoki Matsuo, Mark May-
ford, Masanobu Kano, Norio Matsuki and Yuji Ikegaya. ‘Loc-
ally synchronized synaptic inputs’. en. In: Science 335.6066 (Jan.
2012), pp. 353–356.

[242] Naoya Takahashi, Thomas G Oertner, Peter Hegemann and
Matthew E Larkum. ‘Active cortical dendrites modulate per-
ception’. In: Science 354.6319 (2016), pp. 1587–1590.

[243] Floris Takens. ‘Detecting strange attractors in turbulence’. In:
Dynamical systems and turbulence, Warwick 1980. Springer, 1981,
pp. 366–381.

[244] Gouhei Tanaka, Tadayoshi Matsumori, Hiroaki Yoshida and
Kazuyuki Aihara. ‘Reservoir Computing with Diverse Times-
cales for Prediction of Multiscale Dynamics’. In: arXiv preprint
arXiv:2108.09446 (2021).

bibliography 171

[245] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kherad-
pisheh, Timothée Masquelier and Anthony Maida. ‘Deep learn-
ing in spiking neural networks’. In: Neural Networks 111 (2019),
pp. 47–63.

[246] Xiangbin Teng, Yue Sun and David Poeppel. ‘Temporal or-
der judgment reveals local-global auditory processes’. In: Acta
Acustica united with Acustica 104.5 (2018), pp. 817–820.

[247] Xiangbin Teng, Xing Tian and David Poeppel. ‘Testing multi-
scale processing in the auditory system’. In: Scientific reports
6.1 (2016), pp. 1–13.

[248] Timo Teräsvirta. ‘Specification, estimation, and evaluation of
smooth transition autoregressive models’. In: Journal of the amer-
ican Statistical association 89.425 (1994), pp. 208–218.

[249] Rory G Townsend and Pulin Gong. ‘Detection and analysis of
spatiotemporal patterns in brain activity’. en. In: PLoS Comput.
Biol. 14.12 (Dec. 2018), e1006643.

[250] Misha V Tsodyks, William E Skaggs, Terrence J Sejnowski and
Bruce L McNaughton. ‘Population dynamics and theta rhythm
phase precession of hippocampal place cell firing: a spiking
neuron model’. In: Hippocampus 6.3 (1996), pp. 271–280.

[251] Misha Tsodyks, Klaus Pawelzik and Henry Markram. ‘Neural
networks with dynamic synapses’. In: Neural computation 10.4
(1998), pp. 821–835.

[252] Alan M Turing. ‘Computing machinery and intelligence’. In:
Parsing the turing test. 1950.

[253] Balázs B Ujfalussy, Judit K Makara, Máté Lengyel and Tiago
Branco. ‘Global and Multiplexed Dendritic Computations un-
der In Vivo-like Conditions’. en. In: Neuron 100.3 (Nov. 2018),
579–592.e5.

[254] Robert Urbanczik and Walter Senn. ‘Learning by the dendritic
prediction of somatic spiking’. en. In: Neuron 81.3 (Feb. 2014),
pp. 521–528.

[255] Hendrik Van Der Loos and Edmund M Glaser. ‘Autapses in
neocortex cerebri: synapses between a pyramidal cell’s axon
and its own dendrites’. In: Brain research 48 (1972), pp. 355–
360.

[256] Christoph Von Der Malsburg. ‘The correlation theory of brain
function’. In: Models of neural networks. Springer, 1994, pp. 95–
119.

[257] John Von Neumann. ‘The computer and the brain’. In: New
Haven, Conn.: Yale Uni (1958).

172 bibliography

[258] John Von Neumann. ‘First Draft of a Report on the EDVAC’.
In: IEEE Annals of the History of Computing 15.4 (1993), pp. 27–
75.

[259] Rahel Vortmeyer-Kley, Pascal Nieters and Gordon Pipa. ‘A tra-
jectories’ guide to the state space-learning missing terms in bi-
furcating ecological systems’. In: EGU General Assembly Confer-
ence Abstracts. 2021, EGU21–16159. doi: 10.5194/egusphere-
egu21- 16159. url: https://doi.org/10.5194/egusphere-
egu21-16159.

[260] Rahel Vortmeyer-Kley, Pascal Nieters and Gordon Pipa. ‘A
trajectory-based loss function to learn missing terms in bi-
furcating dynamical systems’. In: Scientific reports 11.1 (2021),
pp. 1–13.

[261] Chunni Wang, Shengli Guo, Ying Xu, Jun Ma, Jun Tang, Faris
Alzahrani and Aatef Hobiny. ‘Formation of autapse connec-
ted to neuron and its biological function’. In: Complexity 2017

(2017).

[262] Min Wang, Yang Yang, Ching-Jung Wang, Nao J Gamo, Lu E
Jin, James A Mazer, John H Morrison, Xiao-Jing Wang and
Amy FT Arnsten. ‘NMDA receptors subserve persistent neur-
onal firing during working memory in dorsolateral prefrontal
cortex’. In: Neuron 77.4 (2013), pp. 736–749.

[263] Ruopeng Wang, Jia-Qin Yang, Jing-Yu Mao, Zhan-Peng Wang,
Shuang Wu, Maojie Zhou, Tianyi Chen, Ye Zhou and Su-Ting
Han. ‘Recent advances of volatile memristors: Devices, mech-
anisms, and applications’. In: Advanced Intelligent Systems 2.9
(2020), p. 2000055.

[264] Pete Warden. ‘Speech commands: A dataset for limited-vocabulary
speech recognition’. In: arXiv preprint arXiv:1804.03209 (2018).

[265] Jack Waters, Andreas Schaefer and Bert Sakmann. ‘Backpropagat-
ing action potentials in neurones: measurement, mechanisms
and potential functions’. In: Progress in biophysics and molecular
biology 87.1 (2005), pp. 145–170.

[266] Andrew M Wikenheiser and A David Redish. ‘Hippocampal
sequences and the cognitive map’. In: Analysis and Modeling
of Coordinated Multi-neuronal Activity. Springer, 2015, pp. 105–
129.

[267] Willem A M Wybo, Benjamin Torben-Nielsen, Thomas Nevian
and Marc-Oliver Gewaltig. ‘Electrical Compartmentalization
in Neurons’. en. In: Cell Rep. 26.7 (Feb. 2019), 1759–1773.e7.

https://doi.org/10.5194/egusphere-egu21-16159
https://doi.org/10.5194/egusphere-egu21-16159
https://doi.org/10.5194/egusphere-egu21-16159
https://doi.org/10.5194/egusphere-egu21-16159

bibliography 173

[268] Ning-Long Xu, Mark T Harnett, Stephen R Williams, Daniel
Huber, Daniel H O’Connor, Karel Svoboda and Jeffrey C Magee.
‘Nonlinear dendritic integration of sensory and motor input
during an active sensing task’. en. In: Nature 492.7428 (Dec.
2012), pp. 247–251.

[269] Shengjin Xu, Wanchen Jiang, Mu-ming Poo and Yang Dan.
‘Activity recall in a visual cortical ensemble’. In: Nature neuros-
cience 15.3 (2012), pp. 449–455.

[270] Andrew I Yang, Gulce N Dikecligil, Heidi Jiang, Sandhitsu
R Das, Joel M Stein, Stephan U Schuele, Joshua M Rosenow,
Kathryn A Davis, Timothy H Lucas and Jay A Gottfried. ‘The
what and when of olfactory working memory in humans’. en.
In: Curr. Biol. (Aug. 2021).

[271] Jianmin Yang et al. ‘proBDNF negatively regulates neuronal
remodeling, synaptic transmission, and synaptic plasticity in
hippocampus’. en. In: Cell Rep. 7.3 (May 2014), pp. 796–806.

[272] Friedemann Zenke and Surya Ganguli. ‘Superspike: Super-
vised learning in multilayer spiking neural networks’. In: Neural
computation 30.6 (2018), pp. 1514–1541.

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of 25th May 2022 (classicthesis).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	Acronyms
	1 Introduction: Computation in time
	2 Sequential organization of information in the brain.
	2.1 Sequences in neural representations.
	2.2 The neural basis of sequence processing in single neurons.

	3 Segmented Dendritic Trees
	3.1 The SDT Model
	3.2 Example: Detecting paths from place cell activity

	4 Computation in neurons with active dendrites.
	4.1 Structured computation and Events in SDT neurons.
	4.2 SDT Neurons and Networks.
	4.3 A neuromorphic hardware implementation of the SDT neuron.

	5 Predicting time-series with dynamic computing systems
	6 Learning generalized dynamics from trajectories.
	7 Discussion
	Appendix
	A Appendix: Additional Methods
	A.1 Implementation of the navigation experiment
	A.2 Simulation framework for dendritic plateau computation
	A.3 A method for experimental verification.

	B Publications and Contributions
	B.1 Paper: A minimal model of neural computation with dendritic plateau potentials
	B.2 Conference Abstract: Active dendrites implement temporal logic gates
	B.3 Patent: Neuromorphic Pattern Detector and Neuromorphic Circuitry
	B.4 Paper: Neuromorphic computation in multi-delay coupled models
	B.5 Adaptive Filters
	B.6 Book Chapter: Computational Elements of Circuits
	B.7 Paper: A trajectory-based loss function to learn missing terms in bifurcation dynamical systems
	B.8 Conference Abstract: A trajectories' guide to the state space - learning missing terms in bifurcating ecological systems

	Bibliography
	Colophon

