
Parameters, Interactions, and Model Selection

in Distributional Semantics

Gabriella Lapesa

A thesis submitted in fulfilment of the requirements
for the degree of Ph.D in Cognitive Science

University of Osnabrück, Institute of Cognitive Science
May 2019



Committee
Prof. Dr. Stefan Evert, FAU Erlangen-Nürnberg (supervisor)
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Abstract

Distributional Semantic Models are one of the possible answers produced in (computa-
tional) semantics to the question of what the meaning of a word is. The distributional
semantic answer to this question is a usage-based one, as distributional semantics mod-
els (henceforth, DSMs) are employed to produce semantic representations of words from
co-occurrence patterns in texts or documents (Sahlgren, 2006; Turney & Pantel, 2010).

DSMs have proven to be useful in many applications in the domains of Natural
Language Processing (Schütze, 1998; D. Lin, 1998), Information Retrieval (Salton et al.,
1975), and Cognitive Modeling (Lund & Burgess, 1996; Landauer & Dumais, 1997; Padó
& Lapata, 2007; Baroni & Lenci, 2010). Recently, the field of Distributional Semantics
has moved towards new challenges, such as predicting brain activation (T. Mitchell et al.,
2008; Murphy et al., 2012; Bullinaria & Levy, 2013) and modeling meaning composition
(Baroni, Bernardi, & Zamparelli, 2014, and references therein), and towards the use
of neural word embeddings (Mikolov, Chen, et al., 2013; Mikolov, Wen-tau, & Zweig,
2013; Mikolov, Sutskever, et al., 2013). Despite this progress, a full understanding of the
different parameters governing a DSM and their influence on model performance (which,
in fact, is also important for getting a better linguistic understanding of neural word
embeddings) has not been achieved yet. This is precisely the goal of this dissertation.

Taken together, the experiments presented in this thesis represent (to the best of our
knowledge) the largest-scope study in which window and syntax-based DSMs have been
tested in all parameter settings. As a further contribution, the thesis proposes a novel
methodology for the interpretation of evaluation results: we employ linear regression as a
statistical tool to understand the impact of different parameters on model performance.
In this way, we achieve a solid understanding of the influence of specific parameters and
parameter interactions on DSM performance, which can inform the selection of DSM
settings that are robust to overfitting.

This thesis has s strong focus on cognitive data, that is, on DSM parameters that
lend themselves to a cognitive interpretation and on evaluation tasks in which DSMs are
tested in their capability of mirroring speakers’ behavior in psychological tasks (semantic
priming and free associations). One of the most important contributions of this thesis
is the consistent finding that neighbor rank (i.e., the rank of a word among the distribu-
tional neighbors of a target) is a better indicator of semantic similarity/relatedness than
the distance in the semantic space, which is commonly used in the literature. The cog-
nitive interpretation of this result is straightforward: neighbor rank, which is evaluated
systematically for the first time in this thesis, is able to capture asymmetry in the rela-
tion between two words, while distance metrics, commonly employed in distributional
semantics, are symmetric.
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Introduction

Distributional Semantic Models are one of the possible answers produced in (computa-
tional) semantics to the question of what the meaning of a word is. The Distributional
Semantic answer to this question is a usage-based one: distributional semantics models
(henceforth, DSMs) are employed to produce semantic representations of words from
co-occurrence patterns in texts or documents (Sahlgren, 2006; Turney & Pantel, 2010).

Building on the Distributional Hypothesis (Harris, 1954; Miller & Charles, 1991),
DSMs quantify the amount of meaning shared by words as the degree of overlap of the
sets of contexts in which they occur. A widely used approach operationalizes the set of
contexts as co-occurrences with other words within a certain window. Window-based
DSMs (also known as bag-of-words, term-term, or vanilla) can be represented as a co-
occurrence matrix in which rows correspond to target words, columns correspond to
context words, and cells store the co-occurrence frequencies of target words and context
words. Alternatively, DSMs can be constructed relying on the occurrence patterns of
target words in sentences or documents. Document-based (or term-document) DSMs
can be represented as an occurrence matrix in which rows correspond to target words,
and columns correspond to documents or sentences. Taken together, term-term and
term-document models are an instance of an approach to the collection of co-occurrence
which is based on accumulation of co-occurrence counts. An alternative approach adopts
neural network architectures which are trained in the task of predicting co-occurrences
and in doing so learn dense and low-dimensional distributional representations called
neural embeddings (Mikolov, Chen, et al., 2013; Mikolov, Wen-tau, & Zweig, 2013;
Mikolov, Sutskever, et al., 2013).

DSMs have proven to be useful in many applications in the domains of Natural
Language Processing (Schütze, 1998; D. Lin, 1998), Information Retrieval (Salton et al.,
1975), and Cognitive Modeling (Lund & Burgess, 1996; Landauer & Dumais, 1997; Padó
& Lapata, 2007; Baroni & Lenci, 2010). Recently, the field of Distributional Semantics
has moved towards new challenges, such as predicting brain activation (T. Mitchell et al.,
2008; Murphy et al., 2012; Bullinaria & Levy, 2013) and modeling meaning composition
(Baroni, Bernardi, & Zamparelli, 2014, and references therein), and towards the use
of neural word embeddings (Mikolov, Chen, et al., 2013; Mikolov, Wen-tau, & Zweig,
2013; Mikolov, Sutskever, et al., 2013). Despite this progress, a full understanding of the
different parameters governing a DSM and their influence on model performance (which,
in fact, is also important for getting a better linguistic understanding of neural word
embeddings) has not been achieved yet. This is precisely the goal of this dissertation:

1



Chapter 1. Introduction 2

it introduces a novel evaluation methodology and discusses the results of its application
to a large-scale evaluation study of DSMs.

Scope When it comes to DSM evaluation, there are always more parameters and
tasks to explore. Evaluation studies, however, face practical issues and the choice of
parameters (e.g., window size) and parameter values (e.g., one, ten, twenty words)
is determined by the interplay of many factors, for example: practical considerations
concerning what is computationally feasible; the state of the art in the field and the
designer’s feeling of what is yet to be explored or deserves a more thorough exploration;
the nature of the datasets to be modeled. With this in mind, let us proceed to define
the scope of this thesis.

As far as the class of the evaluated DSMs is concerned, we focus on window-based
and syntax-based DSMs and do not consider document-based DSMs and neural em-
beddings. Document-based DSMs fall out of the scope of this work because of their
limited parameter space (they provide no room for DSM parametrization as far as the
extraction of co-occurrence information is concerned) and the fact that, albeit popular
in early Distributional Semantic work (Landauer & Dumais, 1997), the focus of the
research community has now shifted to term-term DSMs. Further, window-based and
syntax-based DSMs have taken priority over their neural-embedding counterparts for
three main reasons. First, neural embeddings lack interpretable dimensions, which is
a crucial limitation when dealing with tasks or applications that rely on interpretable
distributional features. Second, it has been shown in the literature that some successful
word embeddings are indeed mathematically equivalent to a term-term DSM (Levy &
Goldberg, 2014b) – so the results from this dissertation also apply to embeddings to
some degree. Third, in the field of neural embeddings, new architectures keep on being
devised, often as slight variations of previous models, which makes it difficult to identify
a clear-cut parameter space.

Readership Given that distributional semantics is situated at the interface of various
disciplines, the potential readership of this dissertation goes beyond the NLP commu-
nity. In particular, it should be of interest for scholars in Cognitive Science (due to its
focus on cognitive datasets and cognitive parameters), Corpus Linguistics (as its findings
contribute to a better understanding of the association measures commonly employed
to detect collocations), as well as Theoretical Linguistics (since a solid understanding
of the underlying representations of distributional models is the only way for them to
be used for addressing theoretical issues).

1.1 Contributions

The main contributions of the present thesis are at multiple levels, which are spelled
out below.

A large scale evaluation study involving all parameter combinations. Taken
together, the experiments presented in this thesis represent (to the best of our knowl-
edge) the largest-scope study in which window and syntax-based DSMs have been tested
in all parameter settings. While this goal required a significant computational effort, it
also allowed to draw robust conclusions – in particular in combination with the proposed
evaluation methodology.
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A novel methodology for interpreting DSM performance. We employ linear
regression as a statistical tool to understand the impact of different parameters on
model performance. DSM parameters and their interactions are considered predictors
of model performance. In this way, we achieve a solid understanding of the impact of
specific parameters and parameter interactions on DSM performance, which can inform
the selection of DSM settings that are robust to overfitting.

Cognitive tasks and cognitive parameters. In this thesis, a strong focus is put on
cognitive data, that is to say, on DSM parameters that lend themselves to a cognitive
interpretation and on evaluation tasks in which DSMs are tested in their capability of
mirroring speakers’ behavior in psychological tasks (semantic priming experiments and
generation of free associations). One of the most important contributions of this thesis
is the consistent finding that neighbor rank (i.e., the rank of a word among the distribu-
tional neighbors of a target) is a better indicator of semantic similarity/relatedness than
the distance in the semantic space, which is commonly used in the literature. This is
particularly true for the aforementioned cognitive tasks – which is not surprising, given
the capability of neighbor rank to capture asymmetric relations between words.

1.2 Thesis overview

In what follows, we provide an overview of the thesis by presenting a short summary of
the content of each chapter.

Chapter 2 (Introducing distributional semantic models) sets up the stage of this dis-
sertation. It starts by outlining the history and the motivation of Distributional Seman-
tics as an empirical methodology and proceeds to review the linguistic and cognitive
desiderata for Distributional Semantics as a theory of meaning. Then the chapter takes
a formal turn and frames its description of DSM parameters into a formal definition of
distributional semantic models which extends previous proposals in the literature. The
chapter concludes by reviewing alternative ways to build distributional representations
from co-occurrence data.

Chapter 3 (Evaluation of DSMs) reviews existing tasks proposed for DSM evaluation.
The chapter opens by discussing criteria for a taxonomy of DSM evaluation tasks and
then zooms in on word-level similarity and cognitive modeling, which are in the focus
of the thesis.

Chapter 4 (Experimental setting) defines the scope of the experiments presented in
the thesis and provides all details concerning evaluated parameters, evaluation tasks,
and computational tools employed to carry out the experiments.

Chapter 5 (Interpreting DSM performance) describes the linear regression approach to
the interpretation of DSM performance which is proposed in this thesis. In doing so, it
motivates the features of the proposed methodology with respect to previous approaches
in the literature and provides the technical coordinates to interpret the results and the
plots presented in the following chapters.

Chapter 6 (Evaluation of window-based DSMs: Word similarity tasks) presents the re-
sults of the evaluation of window-based DSMs on word similarity tasks (multiple choice
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synonymy task, prediction of similarity ratings, noun clustering). The fine-grained dis-
cussion provided in this chapter is also meant as a hands-on guideline for the application
of the regression methodology described in chapter 5.

Chapter 7 (Syntax-based DSMs: Are they worth the effort? ) complements the window-
based experiments in chapter 6 with evaluation of syntax-based DSMs on the same tasks.

Chapter 8 (Modeling syntagmatic and paradigmatic relations) turns to cognitive datasets
and presents the results of experiments on a multiple-choice task based on priming
datasets and on the prediction of free association norms. Additionally, it explores to
what extent the results obtained on similarity tasks carry over to cognitive tasks.

Chapter 9 (Conclusion) summarizes the main findings and contributions of the thesis
and describes potential future research directions. In addition, it provides an overview
of further work in the domain of cognitive modeling which has been conducted within
the frame of the dissertation.

1.3 Publications

The output of the research described in this thesis integrates and extends the results
which have been presented in a number of earlier publications and conference presenta-
tions. The list of these publications and presentations is given below.

• Lapesa, G., & Evert, S. (2017). Large-Scale Evaluation of Dependency-Based
DSMs: Are They Worth the Effort? In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers (pp. 394–400). Valencia, Spain.

• Lapesa, G., & Evert, S. (2014). A Large Scale Evaluation of Distributional Se-
mantic Models: Parameters, Interactions, and Model Selection. Transactions of
the Association for Computational Linguistics, 2, 531-545.

• Lapesa, G., & Evert, S., & Schulte im Walde, S. (2014). Contrasting Syntagmatic
and Paradigmatic Relations: Insights From Distributional Semantic Models. In
Proceedings of the Third Joint Conference on Lexical and Computational Seman-
tics (*SEM 2014) (pp. 160–170). Dublin, Ireland.

• Gabriella Lapesa, Stefan Evert (2014). NaDiR: Naive Distributional Response
Generation. In Proceedings of the 4th Workshop on Cognitive Aspects of the Lex-
icon (CogALex) (pp. 50-59). Dublin, Ireland.

• Lapesa, G., & Evert, S. (2013). Evaluating Neighbor Rank and Distance Measures
as Predictors of Semantic Priming. In Proceedings of the Fourth Annual Workshop
on Cognitive Modeling and Computational Linguistics (CMCL) (pp. 66-74). Sofia,
Bulgaria.

• Lapesa, G., Schulte im Walde, S., & Evert, S. (2014). Judging Paradigmatic Re-
lations: A Collection of Ratings for English. Poster presented at the Architecture
and Mechanisms of Language Processing conference (AMLAP-2014). Edinburgh,
UK.
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• Lapesa, G., & Evert, S. (2013). Thematic Roles and Semantic Space. Insights
from Distributional Semantic Models. Paper presented at the Quantitative Inves-
tigations in Theoretical Linguistics conference (QITL-5). Leuven, Belgium.
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2

Introducing Distributional Semantic Models

Distributional Semantic Models (henceforth, DSMs) are computational models em-
ployed to produce semantic representations of words from co-occurrence patterns in
texts or documents (Sahlgren, 2006; Turney & Pantel, 2010). Building on the Distribu-
tional Hypothesis (Harris, 1954; Miller & Charles, 1991), DSMs quantify the amount of
meaning shared by words in terms of the degree of overlap between the sets of contexts
in which they occur.

A DSM can be considered as a collection of lexical entries which aims at covering a
certain proportion of words in a language. A DSM lexical entry for a target word (e.g.,
student) is neither a descriptive definition of the type we would find in a dictionary
(e.g., A person who is studying at a university or other place of higher education1),
nor a set-theoretic definition of the type we would encounter in formal semantics (e.g.,
λx.student(x), the set of all x’s of which it is true that x is a student).

DSM lexical entries are tuples of numerical values (i.e., vectors) of the type student =
(5, 0, 100). Every position in a lexical entry is related to a specific feature which charac-
terizes the meaning of the target word, while the corresponding numerical value quan-
tifies the extent to which that feature is representative for the target word. In more
detail, the features contained in DSM lexical entries (also referred to as contexts)
usually correspond to the words which are mentioned together with the target in a
collection of texts (e.g., for our student example, w1 = adolescent ; w2 = flour ; w3 =
university), but they can also correspond to documents in which the target occurs (e.g.,
d1 = an article about education; d2 = a pizza recipe; d3 = a university leaflet). At
this point, the reader may ask why DSM lexical entries (henceforth, distributional
vectors) need to contain zeros, or, in other words, why do we need to keep track of the
absent contexts (in our example, the second position of the student vector, correspond-
ing to w2 in the words-as-contexts DSM and to d2 in the documents-as-contexts DSM).
The reason is that distributional semantic modeling is usually not concerned with the
meaning of one word (e.g., student), but aims at quantifying similarity between words
(e.g., student vs. baker). To ensure vector comparability, all lexical entries in a DSM
need to contain information about all possible features (all the feature words or all the
documents in the text collection). Needless to say, the frequency information needs
to be stored in the same order for all distributional vectors in the same DSM (e.g.,
student = (w1 = 5, w2 = 0, w3 = 100) , baker = (w1 = 2, w2 = 100, w3 = 2)). By
definition, a DSM is a collection of vectors: a matrix. Distributional vectors can also

1Definition from the Oxford Advanced learner’s Dictionary.

7



Chapter 2. Introducing Distributional Semantic Models 8

be seen as the coordinates of points in a multidimensional space which has as many
dimensions as there are positions in the vectors (in our examples, we would be dealing
with a three-dimensional space). Since each word in the DSM is identified as a point in
the same space, the semantic similarity between words can be quantified by calculating
the distance between the corresponding points; for a review of the geometric metaphor
of meaning, see Widdows (2004).

In the previous paragraph we sketched the two main approaches to the collection
of co-occurrence information for a DSM, which we defined, for the sake of introduc-
tory simplicity, words-as-contexts and documents-as-contexts approach. In the DSM
literature, words-as-contexts DSMs are usually known as term-term, bag-of-words,
or window-based (because co-occurrence information is extracted by making refer-
ence to a specific window-size, e.g., 5 words to the left and to the right of the target),
while documents-as-contexts DSMs are referred to as term-document or document-
based.2

Once the DSM matrix has been collected, a number of operations can still be per-
formed on it, in order to improve the semantic representations or to make the matrix
more manageable. One example of an issue addressed by matrix manipulation is high-
frequency bias: contexts words with high frequency or very long documents tend to
occur with many target words, making target vectors in which they occur more similar
than desired. To smoothen such bias, vectors can be weighted by employing a number
of association measures (Evert, 2008), while a number of mathematical transformations
can be applied to scored vectors in order to reduce the skewness of co-occurrences (see
section 2.3.3.1 for concrete examples of weighting and transformation operations). Since
co-occurrence matrices tend to be very large and sparsely populated, dimensionality re-
duction techniques are often used to obtain more compact representations. Landauer &
Dumais (1997) claim that dimensionality reduction also improves the semantic represen-
tation encoded in the DSM matrix, because it captures latent relations between context
dimensions and reduces the noise present in the co-occurrence data.3 Finally, distances
between the row vectors of the matrix are computed and – according to the Distribu-
tional Hypothesis – interpreted as a correlate of the semantic similarities between the
corresponding target words.

Literature shows that different design choices can lead to quite different similarities
for the same words (Sahlgren, 2006): the aim of this chapter is to provide a general
introduction to DSMs by reviewing the many parameters involved, as well as their
implications for the resulting semantic representations.

Section 2.1 discusses the theoretical motivations of Distributional Semantics with
respect to linguistic theory, psychology, and cognitive modeling, and it reviews the dif-
ferent sources of criticism to the view of DSMs as linguistic and cognitive models of
semantic knowledge. Section 2.2 starts by reviewing some formal definitions of DSMs
proposed in the literature, and then updates them to account for the recent develop-

2A terminological alternative is proposed by Sahlgren (2006), and is based on the type of relations
among words that a specific type of model is able to capture. Based on a number of evaluation ex-
periments, Sahlgren defines term-document models syntagmatic, and the term-term ones paradigmatic.
This classification is not adopted in this thesis, for two reasons: first, the syntagmatic vs. paradigmatic
distinction pertains to a different level (interpretative and not descriptive); second, the experiments
reported in chapter 8 show that the picture is not as clear cut as depicted in Sahlgren’s experiments.

3Note that feature weighting, transformations on the counts, and dimensionality reduction are not
applied to neural embeddings.



Chapter 2. Introducing Distributional Semantic Models 9

ments in the field of Distributional Semantics. Relying on the theoretical framework
sketched in section 2.2, section 2.3 describes in detail the steps necessary to build a DSM
along with the parameters associated with every step. Finally, section 2.4 reviews al-
ternative approaches to the extraction of distributional representations, including, but
not limited to the neural-network approach for the extraction of neural embeddings
(Mikolov, Chen, et al., 2013; Mikolov, Wen-tau, & Zweig, 2013; Mikolov, Sutskever, et
al., 2013).

2.1 Motivation

In this section we review the motivation of Distributional Semantics as a research field,
with a focus on the evolution of theoretical and psychological approaches to distribu-
tional semantic representations. The section is structured chronologically. The review
of the evolution of theoretical and psychological theories is paired with a brief descrip-
tion of the corpus-based work corresponding to each conceptual step in the development
of the Distributional Hypothesis. We conclude by summarizing the main problematic
issues about the nature of the semantic representations encoded in DSMs.

In the 1950s, the intuition that the statistical distribution of linguistic elements can
be a powerful tool for the investigation of the structure of language gave rise to an inno-
vative methodology developed in the Structuralist framework and primarily focussed on
morphology and phonology (Harris, 1954); in the same years, the early Corpus Linguis-
tics tradition (Firth, 1957) proposed to exploit statistical distribution to characterize
word meaning: “You shall know a word by the company it keeps.”(Firth, 1957). Section
2.1.1 provides a review of the early distributional analyses for the facts of language.

Section 2.1.2 discusses how, in the 1990s, the distributional methodology devised in
the Structuralist framework turned into a full-fledged theory of the representation and
acquisition of word meaning. Among the factors which determined such evolution are
the development of usage-based theories in psychology and psycholinguistics (Miller &
Charles, 1991) and the progress of distributional models for information retrieval (Salton
et al., 1975; Deerwester et al., 1990; Schütze, 1992) and cognitive modeling (Lund &
Burgess, 1996; Landauer & Dumais, 1997).

Section 2.1.3 and 2.1.4 review different points of criticism moved to DSMs. Section
2.1.3 is concerned with the criticism coming from the Theoretical Linguistics side, and
it sketches the progress triggered by the need of addressing theoretical issues. Section
2.1.4 focuses on the most problematic aspects connected with the status of DSMs as
cognitive models.

2.1.1 Linguistics as Mathematics: Structuralism and early Corpus
Linguistics

Zelig Harris’ Distributional Structure (Harris, 1954) is credited as the first proposal for
the use of distribution as a scientific procedure to investigate word meaning. Even if this
is fully motivated from a methodological point of view, the main focus of Distributional
Structure is within the fields of morphology and phonology (word meaning being only
marginally touched upon as a further application), and the meaning of morphemes and
phonemes as discrete categories is a somewhat different entity from the meaning of
words that Distributional Semantics is concerned with.
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Before Harris, the need for a mathematical linguistics had been advocated by Martin
Joos: “We must adopt a technique of precise treatment, which is by definition a math-
ematics. We must make our ’linguistics’ a kind of mathematics, within which
inconsistency is by definition impossible.” (Joos, 1950, p. 702). In particular,
linguistics was identified with discrete mathematics: this implied that all phenomena
that are continuous in nature had to be kept out of the scope of linguistic analysis4: “All
continuity, all possibilities of infinitesimal gradation, are shoved outside of linguistics in
one direction or the other. There are in fact two such directions in which we can and
resolutely do expel continuity: semantics and phonetics.”(Joos, 1950, p. 705). In Joos
view, the meaning of a morpheme corresponds to “the set of conditional probabilities
of its occurrence in context with all other morphemes – of course without inquiry into
the outside, practical, or sociologist’s meaning of any of them.”(Joos, 1950, p. 708).
Interestingly, the possibility of a “structural semantics” was therefore not completely
ruled out, but made conditional to further mathematical transformations on the set of
conditional probabilities (the largest probabilities replaced by one and the smaller ones
by zero) to satisfy the discreteness assumption.

Zelig Harris defines the distributional structure of language as the description of
the occurrence of linguistic elements relative to other linguistic elements
(Harris, 1954)5, and he devises an empirical methodology firmly grounded in the
Structuralist tradition (Saussure, 1916). In the Structuralist view, linguistic signs have
no value independent of the system of oppositions defined by the language system to
which they belong: linguistic signs can only be defined differentially, i.e., by describing
their differences from other linguistic signs within the same system. In Harris’s view, a
distributional methodology can make a twofold contribution to the structuralist descrip-
tion of the facts of language. First, the quantification of relative occurrence between
items allows the identification of those items that can be considered constitutive ele-
ments of the linguistic system under investigation (e.g., a set of phonemic or morphemic
solutions for a given language). Second, the description of the relative occurrence of
linguistic elements allows the quantification of the similarities (and differences) holding
among them, placing the items in a network of relations, as an empirical implementation
of the differential approach to linguistic analysis.

A number of arguments are provided, which support the application of distributional
methodology for language analysis:

• distribution is a constitutive feature of language: when we speak, we do not
displace linguistic items arbitrarily with respect to each other;

• distribution allows for gradedness, providing a description of language facts that

4“The linguistic categories are absolutes which admit of no compromise. [...] The correspondence
between the discrete categories of the language and the continuous phenomena of the real world is
not and cannot be precise. Our reaction, as linguists, to this situation is very simple: all phenomena,
whether popularly regarded as linguistic (such as the tone of anger in an utterance) or not, which we
find we cannot describe precisely with a finite number of absolute categories, we classify as non-linguistic
elements of the real world and expel them from linguistic science. Let sociologists and others do what
they like with such things – [...] – in a word, for us they represent that ’continuity’ which we refuse to
tolerate in our own science.”(Joos, 1950, p. 705)

5“The distribution of an element will be understood as the sum of all its environments. An envi-
ronment of an element A is an existing array of its co-occurrents, i.e. the other elements, each in a
particular position, with which A occurs to yeld an utterance. A’s co-occurrents in a particular position
are called its selection for that position.”(Harris, 1954, p. 775)
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is both exact (e.g., the relative co-occurrence of class members can be stated
exactly) and flexible (e.g., the membership of elements to a specific class can be
defined in terms of frequency or probability);

• distribution is a self-sufficient criterion for the description of linguistic data:
relative position of linguistic elements is an empirical fact, that can always be
established;

• distribution allows for mathematical generalization: this property enables the
researcher to identify less complex systems for the explanation of large amounts
of data.

Similarly to what proposed by Joos and in accordance to the Structuralist tradition,
meaning is discarded from the pool of potential explanatory factors for the facts of
language: “As Leonard Bloomfeld pointed out, it frequently happens that when we
do not rest with the explanation that something is due to meaning, we discover that
it has a formal regularity or ’explanation’.” (Harris, 1954, p. 785). Meaning cannot
satisfactorily explain linguistic facts because it is not a unique property of language but
rather a general characteristic of human activity: as a consequence, we cannot rely on
a one-to-one relation between language and meaning. However, even if meaning cannot
play the role of the explanans in linguistic analysis, it can still be on the explanandum
side. That part of meaning which surfaces in language can be described in terms of
the distributional regularities with which it correlates: “... if we consider words or
morphemes A and B to be more different in meaning than A and C, then we will
often find that the distributions of A and B are more different than the distributions
of A and C. In other words, difference of meaning correlates with difference of
distribution.” (Harris, 1954, p. 776).

In the same years, within Computational Linguistics, the sub-discipline of Corpus
Linguistics originated from the Firthian notion of “habitual collocations”(Firth, 1957):
word meanings can be characterized in terms of a ranked list of other word with which
they have a strong tendency to co-occur (i.e., the contexts of its common usage). The
concerns of Corpus Linguistics were focussed on language documentation and lexicogra-
phy, and corpus-based lexicographers went that far in claiming that word senses do not
exist as an abstract entity, but they can only be gathered from the observation of con-
crete examples of word usage (Kilgarriff, 1997). While Corpus Linguistics shared with
the Structuralist tradition the empirical methodology based on contextual information
and a general agnosticism concerning what meaning is outside of linguistic utterances,
the main element of novelty was the fact that words and their meanings were posited
as the basic object of interest of the linguistic analysis.

2.1.2 Distributional Hypothesis and first distributional models

While Harris’s Distributional Structure constitutes the methodological foundation of
Distributional Semantics, the Contextual Hypothesis elaborated by George Miller and
Walter Charles in the ’90s provided the psychological argument for a usage-based char-
acterization of meaning on the basis of distributions. The Contextual Hypothesis inte-
grates the notion of semantic similarity (a structuring principle of the semantic memory
in the psychological tradition) with the associative learning mechanisms described in
the neo-behaviorist theories.
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According to Miller and Charles’ Contextual Hypothesis (Miller & Charles, 1991), the
connection between meaning, use, and context is not simply an empirical method
for the description of the facts of language, but a principle governing the way word
meanings are learnt and used.6

In this approach, the basic building blocks of the semantic memory are contextual
representations, defined as a “cognitive representation of a word in some abstraction or
generalization derived from the contexts that have been encountered. That is to say,
a word’s contextual representation is not itself a linguistic context, but is
an abstract cognitive structure that accumulates from encounters with the
word in various (linguistic) contexts.” (Miller & Charles, 1991, p. 5)

As pointed out in Lenci (2008), the empirical methodology devised in the Struc-
turalist framework (Weak Distributional Hypothesis) has become a full-fledged cognitive
hypothesis about the form and the origin of semantic representations (Strong Distribu-
tional Hypothesis). Word distributions, from being the epiphenomenon of a somewhat
mysterious entity (meaning), are now credited a specific causal role in the formation of
the semantic representations.

In the early 1990s, context-based theories of word meaning met the progress made
in Computational Linguistics, and, in particular, the development of the first DSMs for
the needs of Natural Language Processing and Information Retrieval (Deerwester et al.,
1990; Schütze, 1992), which were in turn inspired by the seminal work of Salton et al.
(1975). Such DSMs represented an extremely promising tool for testing psychological
hypotheses concerning words and concepts, because they were, in a sense, concrete
implementations of feature-based theories of semantic representations.

In the late 1990s two DSMs were developed for the purposes of cognitive modeling,
that are still considered the prototype of the respective model classes: Hyperspace
Analogue to Language (Lund & Burgess, 1996) and Latent Semantic Analysis (Landauer
& Dumais, 1997). Given the historical/introductory nature of this section, we will not
provide technical details concerning the implementations of those models (see Section
2.3), and we will instead discuss their status as cognitive models and their contribution
to the development of the Distributional Hypothesis.

Hyperspace Analogue to Language (henceforth, HAL) is a term-based model devel-
oped by Lund & Burgess (1996) to provide the basis for a representational model of
semantic memory. Co-occurrence information between words is collected from a corpus,
resulting in vectors of the type word = (w1 = x,w2 = y, w3 = z, w4 = r); co-occurrence
frequencies are collected keeping track of the position of the feature word with respect
to the target (i.e., storing separate co-occurrence counts for context words occurring to
the left and to the right of the target) and of the distance between them (e.g., given
the sequence “the horse fell” with fell being the target, horse is assigned a higher fre-
quency value than the). Burgess and Lund suggest that HAL dimensions can be seen as
a corpus-based version of the hand-coded lists of concept features (or semantic norms)
traditionally used in psychology, but of a larger scale and of a better quality: corpus-

6“What people know when they know a word is not how to recite its dictionary definition they
know how to use it (when to produce it and how to understand it) in everyday discourse [...]. Knowing
how to use words is a basic component of knowing a language, and how that component is acquired is
a central question for linguists and cognitive psychologists alike. The search for an answer can begin
with the cogent assumption that people learn how to use words by observing how words are used. And
because words are used together in phrases and sentences, this starting assumption directs attention
immediately to the importance of context.” (Miller & Charles, 1991, p. 4)
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based feature representations based on statistical distributions ensure that the resulting
semantic representation will not be dependent on pre-defined list of features (e.g., an-
imate, mammal, etc.); moreover, DSM semantic representations are acquired “in an
unsupervised fashion in a noisy, conversation-like environment” (Lund & Burgess, 1996,
p. 207): that is to say, the setting in which corpus-based features are collected is more
natural and representative than a psychology laboratory.

Latent Semantic Analysis (henceforth, LSA) is a document-based DSM developed
by Landauer & Dumais (1997) to address Plato’s induction problem, the “mystery of
excessive learning”: “the fact that people have much more knowledge than appears to
be present in the information to which they have been exposed”. While HAL dimensions
correspond to features of the target concepts, the ones in LSA correspond to possible
topics of the documents in which the target word occurs. The implementation of LSA
follows two steps: first, frequency information concerning the occurrence of target words
in a collection of documents is collected, resulting in vectors of the type word = (d1 =
x, d2 = y, d3 = z); then, LSA semantic representations are abstracted from the raw
occurrence information through an inductive generalization process implemented with
a mathematical data analysis technique: Singular Value Decomposition (henceforth,
SVD). SVD captures latent similarities between model dimensions, producing a space
with reduced dimensionality. For more details on SVD, refer to section 2.3.3.2.

LSA and HAL were successfully tested for the computational simulation of tasks con-
nected to the representation, acquisition and processing of semantic knowledge. The
assumption behind those simulations was that, if the representations encoded in the
DSMs were comparable to the speakers’ semantic representations, then the computa-
tional models would have exhibited similar performance patterns to the human subjects
in the modeled experiments. LSA reached human-level performance in the TOEFL mul-
tiple choice semantic similarity task and it proved capable of acquiring knowledge of the
full English vocabulary at a comparable rate to school children; HAL was successfully
tested on the simulation of semantic priming effects (Lund & Burgess, 1996), on other
tasks related to semantic/syntactic knowledge (Burgess & Lund, 1995) and as the basis
for a model of cerebral asymmetries in lexical/semantic processing (Burgess & Lund,
1998).

2.1.3 The linguist’s view on DSMs

Section 2.1.2 reviewed the success of early DSMs in the simulation of human semantic
competence. Since then, DSMs have been successfully used to tackle a wide variety of
further tasks in Natural Language Processing (D. Lin, 1998), Cognitive Modeling (Padó
& Lapata, 2007; T. Mitchell et al., 2008; Murphy et al., 2012; Bullinaria & Levy, 2013),
and in supporting theoretical linguistics with the modeling of thematic fit and verb
classes alternations (Baroni & Lenci, 2010). Chapter 3 provides an extensive overview
of all the tasks in which DSMs have been evaluated. Despite their success in practical
applications and in language modeling, DSMs have been questioned both as linguistic
and as cognitive models of semantic knowledge.

In this section, we review the challenges coming from Theoretical Linguistics, and
we show how (and to what extent) the issues concerning the adequacy of the semantic
representation encoded in DSMs have been addressed theoretically and have been solved
by devising appropriate applications to exploit the information encoded in DSMs lexical
entries.
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2.1.3.1 DSM representations and word polysemy

Early criticism to DSMs targeted their inadequacy in the representation of the
meaning of polysemous words. As each target word is represented by a unique
aggregated distributional vector extracted from all its contexts, the senses of polysemous
words get conflated, sort of flattened into the same representation. DSMs, however,
proved successful in word sense disambiguation, the task of discriminating among the
senses of a target word on the basis of the distributional information provided by the
context of use. In what follows, we sketch pieces of work which are representative of
two approaches to the task: disambiguation based on raw co-occurrence in the seminal
work by Schütze (1998), and syntax-aware disambiguation (Erk & Padó, 2008; Thater
et al., 2011).

Schütze (1998) showed how word-based DSM can be used to identify word senses
in a two step process. First, distributional lexical entries for all words in the corpus
are collected, with a bag-of-words approach gathering DSM vectors for word types: at
this stage, a polysemous word like suit (which is ambiguous between the legal and the
piece of clothing sense) is indeed assigned a unique, unsatisfactory vector. In a second
step, the disambiguation algorithm goes through the corpus and builds bag-of-words
representations for all the sentences in which potentially ambiguous words occur. Bag-
of-words representations for sentences are calculated as the average (centroid) of the
vectors of the words occurring in the sentence. Under the assumption that polysemous
words are used only with one sense per sentence, bag-of-word sentence vectors for poly-
semous words are then clustered (i.e., grouped according to their similarity), identifying
the different senses for a target word.

Erk & Padó (2008) propose a Structured Vector Space model for word meaning in
context which integrates the notion of selectional preference in the process of disam-
biguation. To build context-adjusted representation of target words, for example draw
in draw a horse vs. a horse draws, Erk & Padó (2008) combine the lexical vector of the
target draw with the vector of things that are typically done to a horse (inverse object
preference of horse) and with the vector of things that a horse typically does (inverse
subject preference of horse). From a theoretical point of view, the argument-based dis-
ambiguation implemented here corresponds to the co-composition process described in
Pustejovsky (1998): it is a type functional application in which the predicate selects the
argument, and the argument picks up a meaning component of the predicate.

2.1.3.2 Semantic similarity in DSMs is too underspecified

One of the main criticisms against DSMs is that their implementation of semantic
similarity may be just too broad to be useful, as it encompasses a wide range
of relations with different logical properties (Sahlgren, 2006; Padó & Lapata, 2007;
Lenci, 2008). Much research has been conducted in the direction of a refinement of
the distributional notion of semantic similarity, showing that DSMs can learn similarity
among relations between pairs of words (Turney, 2008; Baroni & Lenci, 2010), and that
they can also learn relation-specific representations to discriminate between pairs of
candidate relations: synonymy vs. antonymy (Scheible et al., 2013; Santus et al., 2014),
hypernymy vs. hyponymy (Weeds & Weir, 2003; Weeds et al., 2004; Lenci & Benotto,
2012).

One of the strategies adopted for the classification of synonym/antonym pairs (e.g.,
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happy/sad) is to identify the appropriate contextual features to support the distinc-
tion between competing relations: Scheible et al. (2013), to mention just one example,
found that verbs are better than nouns when used as distinctive features between pairs
of antonymous adjectives (happy people smile vs. sad people cry). Another strategy
mentioned in the literature on this task is to quantify the extent and the salience of
the intersection between the two words, under the assumption that synonyms share a
significantly higher number of contexts than antonyms (Santus et al., 2014).

The classification of hypernymy/hyponymy relations has received plenty of attention
in Distributional Semantics. The main DSM approaches to this issue are based on the
Distributional Inclusion Hypothesis (Geffet & Dagan, 2005; Kotlerman et al., 2010),
which is the intuition that for a given pair of hyponym/hypernym words, the features
of the hyponym should be a subset of the features of the hypernym (Weeds et al., 2004;
Clarke, 2009; Lenci & Benotto, 2012).

2.1.3.3 DSMs and reference

From large amounts of generic and episodic mentions of words collected from a cor-
pus, DSMs abstract a generalization which has to do with world-knowledge more than
with linguistic categories. As frequently remarked in the literature and summarized
in Baroni, Bernardi, & Zamparelli (2014), DSMs (“if they are able to extract any fac-
tual information at all”) can capture generic knowledge, a typical application of
corpus-based semantics being “the extraction of commonsense-knowledge factoids that
are generally useful while not universally true: bananas are yellow, birds fly, etc.” (p.
258).7

DSMs represent the meaning of symbols (words) as distributions over other symbols
(words), and are therefore are unable to address those aspects of word meaning that have
to do with reference to the world. The issue of reference in DSMs has been addressed
both theoretically (Baroni, Bernardi, & Zamparelli, 2014) and experimentally (Herbelot,
2015), but is far from being fully solved.

Baroni, Bernardi, & Zamparelli (2014) point out that “[...] the divide between DSM
and denotational semantics is not reference/lack of reference, but rather reference to
linguistic strings (which we can easily record) or to objects (which we cannot).” (p. 259).
Distributional Semantics stands in a complementary relation to denotational semantics,
and the authors suggest that when we hear a sentence, the distributional representation
of its constituents helps us to build a “sketch of the typical contexts in which it can be
uttered truthfully, which can orient our perceptual system to pick up the relevant cues
to determine if a dog is indeed barking right now, so that we can evaluate the referential
meaning of the sentence.” (p. 260).

7Whether corpus-based models can provide an exhaustive representation of the set of features as-
sociated to concepts has been (and still is) a matter of debate in the psychological and computational
linguistics literature (Murphy, 2002; Baroni & Lenci, 2008; Baroni et al., 2010). Corpus-based models
proved to be suited to capture properties related to taxonomic (e.g., “birds – animals”), or script knowl-
edge (e.g., “birds – sky” ) and functional properties (e.g., typical actions such as “birds – fly”), with
large variation due to the different model implementations (see Baroni & Lenci (2008) for an overview).
The extraction of visual features (e.g., “bananas – yellow”) from co-occurrence information remains,
however, problematic, because typical visual properties are often not among the most frequent collocates
of a target word; recent work showed how the integration of visual information extracted from images in
the corpus-based representation encoded in “standard” distributional vectors can significantly improve
DSM performance with respect to the identification of typical visual features (Bruni et al., 2012).
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Herbelot (2015) reports experimental work on a subclass of referring expressions
with well established theoretical properties: proper names. It is shown that DSMs can
successfully (i.e., with good performances, and in a theoretically sound way) model
the meaning of proper names of fictional characters. More specifically, proper names
are encoded in context-adjusted representations of kind vectors: “We propose that on
encountering Mr Darcy for the first time, a reader might simply attribute him the prop-
erties of the lexical item man, as given by the relevant distribution in a large corpus,
and then specialize the representation as per the context where Darcy occurs.”(Herbelot,
2015, p. 158) First, the bag-of-words vector for the individual Mr Darcy is extracted
from a novel, which is additionally annotated with proper name semantic classes. As Mr
Darcy is labelled as man, the distributional vector of the lexical item man (extracted
from larger reference corpus) is selected as kind vector. The MrDarcy-instance-of-man
vector is obtained by contextualizing the man vector with respect to the contexts in
which Mr Darcy occurs; in practice, this is achieved by re-weighting the components
of man. The re-weighting algorithm has specific parameters which guarantee that in-
stantiation (the property of being an instance of the relevant kind) does not overwrite
uniqueness (the property of being a unique entity) and individuality (the property of
being separable from the kind vector) of the proper name.

As a consequence of the lack of appropriate DSM representations for function words,
an account for the meaning of other classes of referring expressions (such as definite
descriptions) has not yet been developed.

2.1.3.4 DSMs and entailment

Entailment (|=) is a fundamental logical property of natural language. An entailment
relation holds between a proposition (antecedent) and another proposition (consequent)
when the truth of the first implies the truth of the second, in any circumstance. Even
if in Formal Semantics truth values can only be assigned to propositions (sentences),
entailment relations are also established between smaller linguistic units, such as words
(car |= vehicle) or phrases (all cars |= some cars).

Section 2.1.3.2 discussed the DSM approaches for modeling the hypernymy relation
(car |= vehicle), an instance of lexical entailment. Knowing that car is a hyponym of
vehicle allows humans and machines to recognize that if John drives a car is true, John
drives a vehicle is true as well.

Besides the lexical level, entailment relations also hold between quantified phrases
(all cars |= some cars). From a set-theoretic point of view, quantifiers express relations
between sets (e.g, the set of the entities that are cars, the set of the entities that
are polluting). Knowing that a property which applies to many members of a set
also applies to some members of the same set allows to draw textual inferences such
many cars are polluting |= some cars are polluting. Inferences drawn from explicitly
quantified statements have been widely investigated in natural logics (MacCartney &
Manning, 2008). Baroni et al. (2012) show that DSM representations can also be used
to identify pairs of entailing quantifiers (e.g., many |= some; many 6|= all). DSMs vectors
are extracted for quantified phrases (e.g., ~vmany cars, ~vno cars, ~vall cars), and are fed in
pairs to a Support Vector Machine classifier as positive (e.g., ~vmany cars, ~vsome cars) and
negative (e.g., ~vmany cars, ~vno cars) training examples. Baroni et al. (2012) show that
the SVM classifier successfully learns to classify unseen pairs of quantified phrases as
entailing or not entailing, on the basis of the information encoded in the DSM vectors,
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without relying on explicit entailment rules.

2.1.3.5 DSMs and non-distributional semantic knowledge

In the previous section, we discussed how DMSs can be used to model entailment
relations between quantifiers. Sentences containing quantified phrases (e.g., all dogs
are mammals) can be interpreted as probabilistic statements concerning the relation
between a target concept (dog) and one of its defining features (is a mammal). If
a speaker utters the sentence all dogs are mammals, this means that, according to his
representation of what the world is like, he is totally certain that every dog will have the
property of being a mammal. Such probabilistic mapping is not always linguistically
encoded by explicit quantifiers: properties can also be ascribed to concepts with the
use of kind-denoting bare plurals (e.g, birds have wings). The interpretation of bare
plurals is, however, often ambiguous (e.g, birds have wings=all, birds fly=most) and
it is heavily dependent on the non-distributional knowledge speakers resort to while
interpreting the linguistic input.

In this connection, Herbelot & Vecchi (2015) contribute to a set-theoretic characteri-
zation of the interface between distributional and non-distributional semantic knowledge
by showing that DSMs can be used to learn weighted relations between concepts and
their features. In their work, they assume “the existence of a mapping between language
and a shared set of beliefs about the world, as negotiated by a group of speakers.” (p.
23). Such a mapping can be learnt as a functional relation between two vector spaces.
The first vector space is a standard bag-of-words model. The second vector space, cor-
responding to the “shared set of beliefs about the world” and defined “set-theoretic”,
is based on a dataset of feature norms (McRae, Cree, et al., 2005): context dimensions
correspond to features (e.g., for the target bird : has wings, flies, sings), and the target-
context values are manually annotated with general quantifiers (e.g, bird – has wings
= all; bird – flies = most) converted to numerical values (e.g., all=1,some=0.35,
etc.). A function to map distributional vectors into feature vectors is learnt with linear
regression, exploiting the systematic correspondences between context dimensions in
the two spaces. The mapping function is then used to produce weighted feature-based
representations by taking DSM vectors as input (e.g., for cat, predict 1 (all) for mam-
mal, 0 (no) for human, etc.). The learnt mapping space replicates with high correlation
the quantifier information from the gold annotation, and it also proved successful in the
generation of quantifiers for target/feature pairs from the test data.

2.1.3.6 DSM representations above the word level

The criticisms reviewed so far are either concerned with the limitations of DSM lexi-
cal representations for single words (polysemy, reference, concept features) or pertain
to the comparison between word vectors (semantic relations, entailment at the lexical
level). An adequate model of lexical meaning should, however, also allow the construc-
tion of meaning representations for complex expressions, based on the meaning of its
components. The notion of compositionality (the meaning of sentences is built incre-
mentally by combining the constituent meanings) is crucial in Formal Semantics, and
it has been extensively addressed in Distributional Semantics in the last years.

Broadly speaking, the strategies for implementing compositionality in Distributional
Semantics fall into two categories.
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The first strategy is vector mixture (J. Mitchell & Lapata, 2008, 2010). Given
the distributional vectors for two words, ~a and ~b, a composed vector ~c is calculated
as a mathematical combination of ~a and ~b. The most common methods for vector
combination are the addition and multiplication of corresponding vector components:
as both operations are symmetric, they are insensitive to word order and to potential
predicate-argument asymmetries holding between ~a and~b.8 Additive methods for vector
composition were the most common in early work in Distributional Semantics (Landauer
& Dumais, 1997; Schütze, 1998): in this case, the composed vector ~c retains all the
features (components) in ~a and ~b (union of ~a and ~b); in the case of vector element-
wise multiplication, ~c will retain only the features shared by ~a and ~b (intersection of
~a and ~b). J. Mitchell & Lapata (2010) compared additive and multiplicative methods
in the task of predicting similarity judgments (i.e., how similar are little dog and big
cat?). Multiplication turned out to be the best-performing method, and it proved to
be the most competitive also in further work on composition tasks (E. Grefenstette &
Sadrzadeh, 2011; Vecchi et al., 2011; Boleda et al., 2012)

The second approach to composition in DSM is a syntax-driven one in which com-
position in the distributional space is implemented as function application (Baroni,
Bernardi, & Zamparelli, 2014). Building on Frege’s (1892) distinction between complete
and incomplete expressions, Baroni, Bernardi, & Zamparelli (2014) distinguish between
classes of words whose meaning can be defined in terms of a distributional vector (such
as nouns) and words whose meaning is better described as the transformation undergone
by the vectors of the words they modify (such as adjectives and verbs). Distributional
vectors for nouns are extracted in the standard, bag-of-words fashion, while verbs and
adjectives are learnt as distributional functions. Composition is implemented by apply-
ing distributional functions (e.g., fsmall for the adjective small) to lexical distributional
vectors (e.g., ~vcat) or to other functions, yielding distributional representations for ex-
pressions of potentially arbitrary complexity. In the case of adjective-noun composition,
the output of the function application is a predicted vector which approximates the vec-
tor of the target composed expression: fsmall(~vcat) ≈ ~vsmall cat.

Distributional functions for verbs and adjectives are learnt in a two-step process.
Let us suppose we want to learn the distributional function for the adjective small :
fsmall. In the first step, the distributional vectors for all nouns in the corpus are col-
lected (~vdog, ~vhouse, etc.), as well as the vectors for all adjective-noun combinations
in which small acts as a noun modifier (~vsmall dog, ~vsmall house, etc.), in the same
feature space. In the second step, linear regression is used to learn the distribu-
tional function fsmall through a comparison between its input and the desired output:
fsmall(~vdog) = ~vsmall dog, fsmall(~vhouse) = ~vsmall house, etc. The distributional function
fsmall has the form of a matrix of weights describing how the position of nouns in
the semantic space changes when the adjective small modifies them. Thanks to its
mathematical properties, the regression learner is able to capture complex displacement
dynamics which go beyond vector shifting (summation), reweighting (element-wise mul-
tiplication), and linear scaling of feature dimensions.

This approach proved successful in a number of tasks (see Baroni, Bernardi, &
Zamparelli (2014), and references therein), including the assessment of the similarity
of complex expressions (~vlittle dog vs. ~vlittle criminal) and the detection of semantically

8Given the non-technical nature of this section, we do not discuss here weighted additive and multi-
plicative methods.
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anomalous expressions (i.e., finding out that, out of two equally unattested adjective-
noun combinations, such ~vcoastal mosquito vs. ~vcoastal subtitles, the latter is a less plausible
combination).

2.1.4 The grounding problem

In the previous section a number of criticisms were reviewed, targeted at DSMs as
linguistic models of semantic knowledge. More than criticisms, those issues can be
considered as “desiderata” for a theoretically adequate representation of meaning. We
showed that a large portion of them has been successfully addressed by devising the
appropriate DSM application. In this section, we turn to criticism from Psychology and
Cognitive Science, and to the grounding problem: DSMs which are built only from
textual data, are disembodied from the world and they turn out to be inadequate for
the representation of human semantic knowledge. We show that this problem cannot
be addressed DSM-internally (language corpora are not enough), but it requires the
integration of multi-modal information in distributional representations

Glenberg & Robertson (2000) argue that DSMs cannot be considered psychologically
valid models of semantic representations, because they define abstract symbols (words)
in terms of their relations with other abstract symbols (words) and because symbol co-
variation cannot, be considered an adequate representation of meaning by itself (Searle,
1980). In this connection, the need for grounded semantic representations (i.e., repre-
sentation anchored in the real world) can be considered the psychological/neuroscientific
counterpart of the reference problem which has been discussed in the previous section
from a theoretical linguistics point of view.

Embodied theories of cognition (Barsalou, 1999), with robust support from neuro-
scientific data (see Barsalou (2008) and references therein), establish that concepts are
inherently modal entites. Concepts (and, as a consequence, word meanings) are ac-
quired and stored in the sensory-motor system: the meaning of a word is an embodied
simulation which allows the speaker to re-enact the perceptual experiences associated
with the corresponding concept.

The approaches to the grounding problem in Distributional Semantics are charac-
terized by a shared global strategy: bringing together perception and distribution by
learning a mapping between perceptual and distributional data. They differ, however,
with respect to the way perceptual data are represented. One possibility is to rely on
speaker generated features as a rough approximation of perceptual data (Andrews et
al., 2009).9 As an alternative, actual visual information can be integrated with distri-
butional information. Bruni et al. (2013) propose an implementation of this “radical”
approach to the integration of perceptual information in DSMs: by exploiting computer
vision techniques, visual information is extracted from images labeled with words. Bag-
of-visual-words are extracted, which extend the bag-of-words DSM concept to images,
“describing them as a collection of discrete regions, capturing their appearance and
ignoring their spatial structure (the visual equivalent of ignoring word order in text).”
(Bruni et al., 2013, p. 7). Bag-of-words and bag-of-visual-words are integrated in a

9The approach described in Herbelot & Vecchi (2015) is definitely an instance of integration of
distributional (a bag-of-words model) and non distributional (a vector space based on feature norms)
information. Given its focus on the language/logic interface, however, we considered it less representative
of DSM approaches to the grounding problem than of the application of DSMs to tackle theoretical
linguistics issues.
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multimodal distributional semantic model which proved superior to a purely text-based
approach, in a number of empirical tests.

Vinson et al. (2013) point out that the grounding problem, initially perceived as
a major limitation of the Distributional Hypothesis (and one that was impossible to
overcome), in fact led to a redefinition and extension of the hypothesis: “Rather than the
relevant context of a word being just its linguistic context, we can extend the definition
of context to include the extralinguistic or real-world context in which the word occurs,
‘combined models’ in other words. From this, the more general distributional hypothesis
is that the meaning of a word is acquired from the contexts of its usage, regardless of
whether these contexts are intralinguistic or extralinguistic.” (Vinson et al., 2013, p.
141)

2.2 Formal definitions of DSMs

As anticipated in the introductory section, the main goal of this chapter is to provide
a taxonomy for the multiple design choices that are available when constructing and
using a DSM. As pointed out in Lowe (2001), a fundamental preliminary step towards
a proper understanding of DSMs is an explicit mathematical formulation of the over-
arching theoretical framework in which DSMs are grounded. In this section, we review
formal definitions proposed in the literature (Lowe, 2001; Padó & Lapata, 2007) and
discuss their limitations and possible extensions to account for different classes of DSMs.

Lowe (2001, p. 676) defines a a semantic space model as a “method of assigning
each word in a language to a point in a real finite dimensional vector space”. Each
target word t is assigned a distributional profile, which has the form of a vector
containing frequency information concerning the occurrence of t in a set of documents
or its co-occurrence with other words in the corpus. In Lowe’s account, a semantic space
is formally defined as a quadruple 〈B,A,S,M〉:

• A set of basis elements (B) which are considered to be representative contexts
and constitute the dimensions of the semantic space (inflected words, lemmas,
documents);

• A lexical association function (A), which turns co-occurrence frequencies between
target words and basis elements into values which are assigned to the correspond-
ing positions of the distributional profiles. As the application of a lexical associ-
ation function is optional, assigned values can also be identical to co-occurrence
frequency; given the properties of word distributions, though, it is recommended
to use association measures which provide a more sensible interpretation of co-
occurrence frequency, and account for frequency bias (Evert, 2008);

• A similarity measure (S) which maps pairs of vectors into a continuous value which
quantifies their contextual similarity;

• A transformation (M), optionally applied to map a semantic space (the DSM ma-
trix) into another semantic space, typically with fewer (and, at least theoretically,
more meaningful) basis elements (i.e., fewer dimensions).

A limitation of the formal definition proposed by Lowe (2001) concerns the status
of the co-occurrence extraction criteria (e.g., size of the context window), which cannot
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be framed in any of the defining elements of the proposed quadruple: B only defines the
valid contexts, A applies to already extracted co-occurrences, S and M are concerned
with further steps in the manipulation and use of the distributional information encoded
in the semantic space matrix. The extraction of co-occurrences from a source corpus is
a crucial step in the construction of a DSM and it involves a number of design choices
which will be thoroughly reviewed as DSM parameters in sections 2.3.1 to 2.3.2.3. We
summarize them here to better define the scope of the phenomena a formal definition
for DSMs needs to account for.

As pointed out in Evert (2008) the operationalization of the notion of co-occurrence
requires a precise definition for the “nearness” of two words.10 If a surface-based view
on co-occurrence is adopted, two words are said to co-occur if they appear close to each
other within a distance which is quantified in terms of intervening words; such distance,
defined context window or collocational span, is set as an extraction parameter; further
design choices, just to mention a few, are: whether to use both the left and the right
context; whether to stop at sentence boundary while extracting co-occurrences; whether
to consider punctuation when computing the context window. Table 2.1 illustrates the
extraction of co-occurrence information from the sentence “a cute dog barks”, with a
context window of size 3. The extraction window slides through the text collecting
co-occurrence counts for targets/nodes based on the absolute difference between the
positional index of the target, ind(t), and the positional index of the collocate.

ind(t)-3 ind(t)-2 ind(t)-1 t ind(t)+1 ind(t)+2 ind(t)+3

# # # a cute dog barks
# # a cute dog barks #
# a cute dog barks # #
a cute dog barks # # #

Table 2.1: A cute dog barks - surface co-occurrence

If a syntax-based perspective to co-occurrence is adopted, “nearness” is defined by
the presence of a direct syntactic relation between the node and a collocate (e.g., direct
object, subject, etc.); in our running example, if we focus on the subject relation the
only node-collocate pair extracted would be <barks, dog>.11

Padó & Lapata (2007) propose an extension of the formal definition for DSMs devised
by Lowe (2001). Padó & Lapata (2007) explicitly design their formal definition for an
application to syntax-based DSMs, but they point out that it could be also be applied
to surface-based DSMs. We adopt their formal definition and spell out the assumptions,
formal details, and necessary extensions for its application to the parameter space of
surface-based DSMs.

The basic building block of the formal definition proposed by Padó & Lapata (2007)
is the notion of path (π). A path is a co-occurrence pattern connecting a target

10Following the Corpus Linguistic terminology, we use the term node to refer to the word whose
co-occurrence profile we are interested in (corresponding to the target in the DSM terminology) and
collocate to refer to a word occurring “near” the node (roughly corresponding to the notion of feature
in a DSM).

11A further option is textual co-occurrence, according to which two words co-occur if they appear in
same textual unit (e.g., a sentence, a paragraph, a document). If the adopted textual unit is a sentence,
this approach is equivalent to a surface-based one with no pre-established window size.



Chapter 2. Introducing Distributional Semantic Models 22

a cute dog barks

Figure 2.1: A cute dog barks: precedence graph

a cute dog barks

det

amod

subj

Figure 2.2: A cute dog barks: syntax-based graph, labelled with dependency information

word with a context word. The notion of co-occurrence path relies on a graph-
based representation of the textual unit; here, we adopt the sentence as a textual unit
within which co-occurrence is computed. Graph nodes correspond to inflected words,
optionally annotated with lemma and part of speech information. The edges of the
graph can encode different types of information: simple linear order (from the first
word in the sentence to the second one, to the third, and so on) or syntactic relations
holding between the nodes (from predicate words to their arguments, e.g., from a verb
to its subject): window-based DSMs rely on the former, dependency-based DSMs on
the latter. Note that the standard implementation of surface-based co-occurrence (table
2.1) can be derived from a graph representation of linear ordering (figure 2.1).

The graph representation for the sentence a cute dog barks is displayed in figures
2.1 (precedence graph encoding linear order information) and 2.2 (syntactically struc-
tured version). The comparison between the two graphs highlights a further (optional)
property of graph edges: their label. Edge labels characterize the nature of the relation
holding between the connected nodes: in the graph in figure 2.2, we identify a subject
(label: subj) relation between barks and dog, an adjectival modification relation (label:
adj) between dog and cute, and a determiner relation (label: det) between dog and a. In
surface-based graphs, the direction of the edges mirrors the linear order of the words
in the text, while in the syntax-based graphs it encodes dependency information (i.e.,
the edge points at the argument).

The graph representations in 2.1 and 2.2 are quite restrictive with respect to the
available paths. In the graph in 2.1, for example, only the right context is accessible
and no co-occurrence information is available for barks. In the updated graph in 2.3
the full context is accessible for each word, thanks to the introduction of inverse edges
pointing in the opposite direction and labelled accordingly (right vs. left). In a similar

a cute dog barks

right right right

left left left

Figure 2.3: A cute dog barks: surface-based graph, labelled with direction information
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a cute dog barks

det

amod subj

det-1

amod-1 subj-1

Figure 2.4: A cute dog barks: syntax-based graph, with inverse dependencies

way, in 2.2 we can reach dog starting from barks, but not the other way round. Figure
2.4 shows an updated version of the original graph, in which inverse dependencies (Erk
et al., 2010) are introduced and labelled accordingly (a “-1” string is concatenated to
the relation label).

Given the graph representation for a sentence s, a path π is defined as an ordered
sequence of nodes anchored (i.e., starting) at a source node a and ending at a node
b. To be efficiently employed in the construction of a semantic space, paths need to
be acyclic, i.e., each node can be traversed only once in the same path. A number
of basic operations can be devised, which apply to a path and return its starting node
(start(π)), its end node (end(π)), and its length (equal to the number of its edges). If
edge labels are available, the labels of the edges composing a path can be concatenated
to assign composite labels to a path; a labelling function (label : Π → R) is defined,
which maps paths (Π) into sequences of edge labels (R).

In Padó & Lapata (2007) account, a semantic space is formally defined by the tuple
〈T,B,M,A, cont, µ, ν〉.12 The extension proposed in this thesis builds on their formal
definition and introduces two further mapping functions: µb and µt. In more detail, the
updated formal definition contains:

• A set of target elements T , a set of basis elements B, and a co-occurrence matrix
M = T ×B.

• A context selection function: cont(t) = {π ∈ Πt| criteria(π)}
Given a target word (t) the context selection function determines which paths of
all those anchored at it (Πt) can be considered distributionally informative on the
basis of one or more criteria. Context selection can operate on path length: for
example, the function cont(t) = {π ∈ Πt | ‖π‖ = 1} selects only paths linking
the target to immediately adjacent words in the sentence graph. For an extensive
review of the context selection criteria, see section 2.3.2.

• A path value function ν : Π→ R
The path value function specifies the relative contribution of different paths to the
quantification of co-occurrence. The basic option is to assume that all paths have
the same weight: νplain = 1. This approach characterizes the mainstream take on
window-based co-occurrence, according to which all words in the context window

12Note that while Lowe (2001) uses M for matrix transformation, Padó & Lapata (2007) use this
symbol to refer to the co-occurrence matrix. Matrix transformation (Lowe’s M) does not enter the
formal definition by Padó & Lapata (2007) because their experiments do not involve dimensionality
reduction, but it can be unproblematically introduced as an additional element.
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(e.g., 2 words to the left and to the right of the context) have the same weight
in the distributional profile for a target word t. Refer to section 2.3.2.2 for more
details concerning the path value function.

• Three mapping functions:

– A basis mapping function: µ : Π→ B
Given a target word (t) and the subset of paths anchored at t defined by
the context selection function cont(t), the basis mapping function creates
the dimensions of the semantic space by collapsing paths that are considered
equivalent. The most elementary basis mapping option deems all paths end-
ing at the same word equivalent: µ(π) = end(π); this take on basis mapping
characterizes, for example, bag-of-words models with an undirected context
window. More examples are discussed in section 2.3.2.3.

– A target mapping function: µt : T → T
The target mapping function is introduced here as an extension of Padó and
Lapata’s formal definition, to make the framework fully flexible in terms of
DSM parametrization. If node annotation (e.g., stem, lemma, and/or part
of speech) is available, the target mapping function µt maps the target to
one of its available versions; for example, it maps targets from their inflected
forms (e.g., books) to part-of-speech disambiguated lemmas (book verb). See
section 2.3.2.3 for further discussion of target mapping properties.

– A secondary basis mapping function: µb : B → B
The secondary basis mapping function is introduced here as an extension
of Padó and Lapata’s formal definition, to account for pattern-based co-
occurrence (Baroni & Lenci, 2010). Secondary basis mapping operates on
the dimensions of the semantic space after a “first pass” of basis mapping
and frequency aggregation; it is employed when paths have a complex struc-
ture, like in Baroni and Lenci’s Distributional Memory and operates on the
path component of the basis element which is usually reduced to a “more
general” subpart, leaving the context word unaffected. For more details on
the approaches for the computation of co-occurrences (frequency aggregation
vs. pattern-based co-occurrence), see section 2.3.2.4.

• A lexical association function A and a similarity measure S, whose definition fully
correspond to the one proposed by Lowe (2001);

The crucial extension of the formal definition by Padó & Lapata (2007) with re-
spect to the one by Lowe (2001) is represented by the three functions which regulate
the extraction of co-occurrence information: the context selection function, the basis
mapping function, and the path value function. In particular, the separate treatment
of co-occurrence paths and basis elements makes the framework flexible and suitable as
a general framework for vector based models. In this section, we discussed how it can
be made fully compatible with window-based DSMs if a graph representation of surface
co-occurrence is assumed; the formal definition defined in this section is complemented
by the discussion of strategies of frequency quantification (frequency aggregation vs.
pattern-based frequency) discussed in section 2.3.2.4.

The formal definition by Padó & Lapata (2007) is explicitly designed for term-
based DSMs. Document-based DSMs could be accounted for by representing both
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documents and words as nodes, with edges encoding the occurrence of a target word
t in a document d, corresponding to a basis element; the generalization power of the
extraction functions would, however, stay unexploited, as a word either occurs in a
document or doesn’t. As already discussed in the introductory chapter, document-
based DSMs fall out of the scope of this thesis.

2.3 DSM parameters: a taxonomy

The aim of this section is to provide an overview of the many design choices available
when building a DSM. The focus of this chapter is therefore on DSM parameters, and
not on DSM performance and evaluation which are discussed in chapter 3. It is, however,
quite difficult to discuss DSM parameters without giving the reader at least a general
idea of their effect on DSM performance: for this reason, in the remainder of this chapter,
we will at times refer to DSM performance in standard semantic similarity tasks, without
giving further details on the specific tasks. For reasons of space, the literature review
conducted in this section will tackle DSM modeling conducted on English, and its scope
of the literature review will be kept on medium-to-large scaled DSM evaluation studies.

This section is structured according to the steps to be taken to build a DSM
(pipeline) and to the coordinates provided by the formal definition introduced in the
previous section. We start from a preliminary step, namely corpus selection and
preparation (section 2.3.1). We then proceed to the extraction of co-occurrence
information (section 2.3.2), which we characterize in terms of the extraction functions
defined by Padó & Lapata (2007). The output of the extraction step produces a co-
occurrence matrix which already corresponds to a DSM, and can be used to compute
similarity among target vectors; the literature on DSMs shows, however, that further
manipulation of the co-occurrence matrix is almost always applied to improve
the semantic representation: an overview of such matrix manipulation options, ranging
from feature selection, weighting and thinning to dimensionality reduction is provided
in section 2.3.3. Section 2.3.4 discusses the options available for the computation of
semantic similarity.

2.3.1 Corpus selection and pre-processing

When building a DSM, the first choice to be made concerns the corpus from which
co-occurrence information is extracted. The possible reasons for selecting a source
corpus are theoretical (e.g., for cognitive modeling purposes, choosing a corpus which
is representative of a speaker’s language experience), practical (e.g, choosing a corpus
whose size is manageable for the available computing resources, or for which linguistic
annotation is already available), or simply determined by the state-of-the-art of the task
at issue.

Corpora differ with respect to many features:

• Size: small corpora vs. large web corpora;

• Language type: written vs. spoken;

• Quality: professionally edited texts (book corpora) vs. web pages collected from
the Internet without any further editing;
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• Distribution of genres: focus on specific genres (e.g., narrative or encyclope-
dia/newspaper articles) vs. balanced sample of different genres;

• Register and degree of objectivity: colloquial and opinion-oriented (e.g., social
media) vs. formal and factual (e.g., encyclopedia articles) vs. narrative and
fictional (e.g., book corpora).

The literature on DSM evaluation reveals a preference for the following corpora,
which are employed separately (one corpus, one DSM) or in a concatenation (three
corpora, one DSM):

• The British National Corpus13 (henceforth, BNC), a high quality 100 million
token collection of written and spoken English texts from a wide range of sources.
Evaluation work on the BNC has been conducted by Bullinaria & Levy (2007);
Padó & Lapata (2007); Kiela & Clark (2014). BNC is also included as a subcorpus
(e.g., concatenated with other corpora) in Distributional Memory by Baroni &
Lenci (2010) and in the evaluation study by Baroni, Dinu, & Kruszewski (2014).

• Different snapshots of the English Wikipedia. Baroni & Lenci (2010) and Ba-
roni, Dinu, & Kruszewski (2014) include the publicly available WaCkypedia EN
corpus,14 a 2009 dump of the English Wikipedia (800 million tokens). Sridha-
ran & Murphy (2012), Polajnar & Clark (2014) and Levy et al. (2015) employ a
2012 and a 2013 Wikipedia snapshot, both of 1.7 billions tokens Polajnar & Clark
(2014). Kiela & Clark (2014) employ a sub-spaced version of Wikipedia (Stone
et al., 2008), collected by querying it with the words in the evaluation datasets
and collecting the top 10 ranked documents (10 million tokens). Despite the dif-
ferences in size, the different dumps of Wikipedia share a high text quality due to
peer rewiewing and constant updates, and a formal, fully factual register.

• The ukWaC corpus:15 a 2 billion word corpus collected by crawling the Web
within the .uk domain with medium frequency words from the BNC as seeds.
Despite the cleaning procedure, language samples from ukWaC may present some
of the typical features of web-crawled data, such as sentence repetitions, non-
standard language, lists and residual html annotation. Due to its size and to
the large coverage of topics, genres, and registers ukWaC is the most commonly
employed corpus in large scale evaluation studies such as Bullinaria & Levy (2007,
2012); Kiela & Clark (2014); Baroni & Lenci (2010); Baroni, Dinu, & Kruszewski
(2014).

Corpora of bigger sizes than BNC, Wikipedia and ukWaC are also available, e.g.,
EnCOW16 (10 billions tokens) or the Google N-gram corpora: the Web Google N-grams,
1 trillion tokens (Brants & Franz, 2006), the Google Book N-grams corpus, 350 billions
tokens in the English section (Michel et al., 2011), and the syntactically annotated
version of the Google Book N-grams (Goldberg & Orwant, 2013). However, building,
manipulating and evaluating a DSM from such large text collections is computationally

13http://www.natcorp.ox.ac.uk/
14http://wacky.sslmit.unibo.it/doku.php?id=corpora
15http://wacky.sslmit.unibo.it/doku.php?id=corpora
16http://corporafromtheweb.org/encow14/

http://www.natcorp.ox.ac.uk/
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very costly; it is therefore not common to conduct extensive evaluation on such corpora,
with the exception of Sridharan & Murphy (2012) and Kiela & Clark (2014).17

The quality-quantity trade-off The relation between corpus size and corpus
quality, and their joint impact on DSM performance have been investigated by Bullinaria
& Levy (2007, 2012) and Sridharan & Murphy (2012).

Bullinaria & Levy (2007) compare BNC to a very poor quality corpus built from a
random selection of Internet-based newsgroup messages (168 millions tokens) and Bul-
linaria & Levy (2012) compare BNC to ukWaC. Furthermore, Bullinaria & Levy (2007,
2012) build DSMs from different subcorpora of the selected source corpora (e.g., 10,
50, 100 millions tokens, etc.) and performances are compared on a number of standard
semantic similarity tasks. This methodology allows the authors to draw empirical con-
clusions at two different levels: from a within-corpus point of view, they test the impact
of quantity keeping quality constant; from a between-corpora point of view, they test
whether the performance peak of smaller corpus is comparable to the performance of a
larger corpus, at the same size (e.g., full BNC vs. 100 millions tokens from ukWaC). At
full size, BNC outperforms the Internet newsgroup message corpus but is outperformed
by ukWaC (though not dramatically in all tasks); at comparable sizes, however, BNC
outperforms ukWaC (and it does so also for larger subcorpora of ukWaC), showing that
larger amounts of textual material are needed to compensate for poor quality (Bullinaria
& Levy, 2012, p. 896).

Comparable results are reported by Sridharan & Murphy (2012), who provide further
experimental evidence for the strong impact of the corpus quality on DSM performance.
Their study represents the only attempt to integrate the Google n-gram corpora in a
large scale evaluation study; DSM evaluation is conducted on the following corpora
(reported sizes are after preprocessing; see the original paper for more details): Google
Web n-grams (353.4 billions tokens), Google books n-grams (199.4 billions), a corpus of
Twitter texts (2.1 billions tokens), a 2012 dump of the English Wikipedia (1.7 billions).
DSMs are evaluated in a neurolinguistic decoding task and in a number of standard
semantic similarity tasks. Sridharan & Murphy (2012) show that a corpus of small size
and high quality (Wikipedia) outperforms larger corpora of poorer quality at comparable
corpus sizes (i.e., when the larger corpora are reduced to subsample of the same size of
Wikipedia).

Linguistic annotation After selecting a source corpus, it is often necessary to
perform a number of pre-processing operations on the raw text before extracting co-
occurrence information, such as tokenization, normalization (case-folding) or lemmati-
zation, part-of-speech tagging, dependency parsing. Commonly used corpora already
include at least some linguistic annotation in their official distributions.

The official BNC distribution, in the XML-TEI format, is tokenized, lemmatized
and part-of-speech tagged with the CLAWS tagger;18 further annotation concerning
structural properties of the texts is also available. If dependency-based DSMs have to
be extracted from the BNC, syntactic annotation needs to be added to the original

17Kiela & Clark (2014) focus on dependency-based contexts employing the syntactic N-grams from
the Google Books (Goldberg & Orwant, 2013).

18http://ucrel.lancs.ac.uk/claws/
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distribution: for example, Padó & Lapata (2007) employ minipar 0.5,19 Kiela & Clark
(2014) use the parser by S. Clark & Curran (2007), and Baroni & Lenci (2010) annotate
BNC with the Tree-Tagger (Schmid, 1995) and MALT parser (Nivre, 2003).

The ukWaC and WaCkypedia EN corpora are distributed with part-of-speech tag-
ging and lemmatization performed with the Tree-Tagger (Schmid, 1995), and dependency-
parsing annotation performed with the MALT parser (Nivre, 2003). This off-the-shelf
annotation is commonly used in reference studies (Baroni & Lenci, 2010; Baroni, Dinu,
& Kruszewski, 2014). The 2012 Wikipedia snapshot used by Polajnar & Clark (2014)
has been annotated with the morphological analyser by Minnen et al. (2001). Kiela &
Clark (2014) annotate ukWaC with the parser by S. Clark & Curran (2007).

The original distributions of the Google Ngram corpora are based on tokenized text;
since the source text from which they have been extracted is not available, it is not
possible to further annotate them. Goldberg & Orwant (2013), however, made avail-
able a morphologically and syntactically annotated version of the Google Books Ngram
corpus using state-of-the-art tools: a Conditional Random Field (CRF) based tagger
(Lafferty et al., 2001; Y. Lin et al., 2012) and a beam-search shift-reduce dependency
parser (Zhang & Clark, 2008).

2.3.2 Extraction: from a corpus to a matrix

In the previous section, we described the preliminary steps for the construction of a
DSM: selection of the source corpora and pre-processing. In this section, we discuss
the design choices related to the extraction of a co-occurrence matrix from a corpus
(or selection of corpora). This section is structured according to the the theoretical
coordinates established by the formal definition discussed in section 2.2, and builds on
the following preliminary assumptions:

• We assume the input to the context selection function to be a corpus of precedence
graphs encoding surface co-occurrence (cf. figure 2.3) or a corpus of dependency
graphs encoding syntactic co-occurrence (cf. figure 2.4).

• We assume the graph nodes to correspond to inflected words, with further an-
notation specifying lemma, part of speech information, and global frequencies in
the whole corpus; this annotation is exploited at the context selection and ba-
sis mapping level, and it is accessed by the functions lemma(node), pos(node),
frequency(node), frequencylemma(node), frequencypos−lemma(node).

• We assume closed-class words to be part of the sentence graphs, while punctuation
is excluded from them.

In what follows, we will characterize the extraction functions outlined in the previous
section (context selection, path-value, and basis mapping function) in terms of their
theoretical properties and concrete implementations in the DSM literature. Before that,
however, another crucial design step which pertains to co-occurrence extraction but is
preliminary to the application of the extraction function needs to be characterized: the
selection of the set of target terms (T ), often referred to as the vocabulary of a DSM. At
a general level, there are two of possible strategies for the selection of target items: either
let evaluation guide target selection and include in T only the items from the evaluated

19https://gate.ac.uk/releases/gate-7.0-build4195-ALL/doc/tao/splitch17.html
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datasets (Kiela & Clark, 2014), or employ a predefined list of target items, containing all
the items from the evaluated datasets and a representative lexical sample of the target
language (Baroni & Lenci, 2010; Baroni, Dinu, & Kruszewski, 2014; Levy et al., 2015).20

Although somewhat disregarded in the DSM literature (DSM evaluation reports often
do not explicitly state whether only items from the evaluated datasets were used, or a
larger set of words), the selected vocabulary (T ) has a notable impact on the output
of feature weighting (section 2.3.3.1) and dimensionality reduction (section 2.3.3.2),
because they rely on global co-occurrence facts stored in the co-occurrence matrix.
As a consequence, restricting the vocabulary to the experimental items would affect
feature marginal frequencies or prevent reduction techniques like SVD to capture latent
similarities across dimensions; on the other hand, a very large vocabulary increases the
complexity of approaches to semantic similarity which require the computation of a
distance matrix involving all items in the vocabulary (section 2.3.4).

2.3.2.1 Context selection function

The context selection function cont(t) is responsible for the identification of the
distributionally informative paths among those anchored at a token for a target t (Πt, t ∈
T ). The context selection function cont(t) = {π ∈ Πt| criteria(π)} defines a subset
of the paths anchored at each target in the vocabulary, according to quantitative or
qualitative criteria applied either to the paths or to the nodes at which the paths end.

Let us start from context selection criteria operating on path properties. In
this domain, path length is an unavoidable design choice: for example, the function
cont(t) = {π ∈ Πt | ‖π‖ = 1} selects only paths linking the target to immediately
adjacent words in the sentence graph. In bag-of-words DSMs, the context selection
function regulates the size of the context window; in dependency-based models, it
regulates the presence of mediated dependency relations holding between targets
and context features: for example, paths with ‖π‖ = 2 connect the subjects with the
objects of their head verbs, while paths with with ‖π‖ = 3 connect adjective modifiers
of subject nouns with the objects of their head verbs.21

Besides path length, context selection criteria can also be guided by qualitative con-
straints on the edges composing the paths. Within surface-based bag-of-words models,
employing qualitative criteria determines the asymmetry of the context window:

• cont(t) = {π ∈ Πt | label(π) = left} selects paths pointing at the word occurring
immediately before the target. In figure 2.3, this implementation of the context
selection function would select, for the node barks, the path: left + dog;

20Distributional Memory (Baroni & Lenci, 2010) is built from a target set of approximately 30k pos-
disambiguated lemmas. The set of words from the evaluated dataset is integrated with a further sample
selected on the bases of frequency in the concatenated BNC, ukWaC and WaCkypedia EN: the top 20k
most frequent nouns, and the top 5k most frequent verbs and adjectives. Baroni, Dinu, & Kruszewski
(2014) collect distributional vectors for the 300k most frequent words in the same corpora. Levy et
al. (2015) build DSMs from a 2013 dump of Wikipedia, ignoring words occurring less than 100 times,
resulting in a vocabulary of 189,533 terms.

21Padó & Lapata (2007) propose an alternative formulation of the context selection function,
which accounts for the window size criterion (k) in surface-based DSMs relying on the positional in-
dexes (position) of the start and end node of the path: cont(t) = {π ∈ Πt |position(start(π)) −
position(end(π)) ≤ k}. Here, we propose a graph-based implementation of the context selection func-
tion which is based on path length and applies to surface- and syntax-based models alike.
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• cont(t) = {π ∈ Πt | ‖π‖ ≤ 2 ∧ label(π) ∈ {left}∗} selects the first two words
occurring to the left of the target. In figure 2.3, this implementation of the con-
text selection function would select, for the node barks, the paths left + dog,
left left + cute;

• cont(t) = {π ∈ Πt | label(π) ∈ {left}∗} selects the left context of the target,
up to the beginning of the sentence. In figure 2.3, this implementation of the
context selection function would select, for the node barks, the paths: left+dog,
left left + cute, and left left left + a;

Within syntax-based DSMs, qualitative criteria on path labels correspond to lin-
guistic constraints on the nature of the encoded dimensions. For example:

• cont(t) = {π ∈ Πt | label(π) ∈ {amod, subj}} selects paths consisting of either an
adjectival modifier or a subject. In figure 2.4, this implementation of the context
selection function would select two paths: amod + cute, anchored at dog, and
subj + dog, anchored at barks;

• cont(t) = {π ∈ Πt | label(π) ∈ {amod, subj}∗} selects paths consisting of an
adjectival modifier, a subject, or their combinations. In figure 2.4, this implemen-
tation of the context selection function would select three paths: amod + cute,
anchored at dog, subj+ dog, anchored at barks, and subj amod+ cute, anchored
at barks;

Besides the properties of the paths, context selection can also operate also on prop-
erties of the nodes at which the paths end, e.g., their part of speech or frequency. For
example:

• cont(t) = {π ∈ Πt | pos(end(π)) ∈ {noun,verb,adjective}} selects paths end-
ing at open-class words;22

• cont(t) = {π ∈ Πt | pos(end(π)) ∈ {noun,verb,adjective}∧freq(end(π)) > f}
selects paths ending at open-class words whose frequency is above a threshold f ;

• cont(t) = {π ∈ Πt | lemma(end(π)) 6∈ S} selects paths ending at words whose
lemma does not belong to a list of stop-words (S).

Parameter overview In this section, we review the DSM parameters connected
to the manipulation of the context-selection function.

As discussed above, path length is a crucial context-selection criterion. Within
surface-based DSMs, it determines the size of the context window, a parameter which
has been widely explored in the literature on DSM evaluation. In what follows, the terms
window size and path length will be used interchangeably. Sahlgren (2006) experiments
with π ranging from 1 to 20 at incremental steps of one, while Bullinaria & Levy (2007,

22Note that, in this formulation, closed-class words are not selected as context features but they are
still taken into account for the computation of the context window. Excluding closed-class words also
from the computation of the context window is, of course, a possibility for the construction of bag-of-
words DSMs: within the framework described in this section, this design choice is implemented at the
pre-processing step (removing the nodes from the sentence graph).
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2012) extend the context window up to 100 words.23 Such a large evaluation scope for π
is computationally expensive, and performances are shown to dramatically drop at very
large window sizes (π > 10), and consistently across evaluation tasks. For this reason,
DSM evaluation studies tend to either focus on a smaller range, or to set window size
to a fixed value to ease comparisons across different model settings and tasks: Kiela
& Clark (2014) adopt π = 1, 2, 4, 8 and full sentence; Baroni, Dinu, & Kruszewski
(2014) experiment with π = 2, 5; Padó & Lapata (2007) and Baroni & Lenci (2010)
adopt a window size of 5, while Polajnar & Clark (2014) sets the context window to
the full sentence. At a (very) general level, the take-home message of those studies is
that smaller window sizes are sufficient for detecting synonymy relations, while larger
window sizes bring semantic relatedness into the picture (i.e., words that albeit not
interchangeable, are yet distributionally similar because they occur in similar contexts).
Within syntax-based DSMs, seminal work (G. Grefenstette, 1994; D. Lin, 1998; D. Lin
& Pantel, 2001, and, more recently, Kiela & Clark, 2014) focuses on paths of length one
(‖π‖ = 1). Padó & Lapata (2007) experiment with models built from dependency paths
up to 4 edges long (finding ‖π‖ ≤ 3 to be an optimal configuration for many of the
involved tasks). Baroni and Lenci (2010) and Rothenhäusler & Schütze (2009) do not
manipulate path length as an evaluation parameter, but a closer look at the selected
paths reveals that their studies involved paths of length up to three edges.

We now turn to the context-selection criteria operating on path labels. Within
surface-based DSMs, it regulates the asymmetry of the context-window: evaluation work
comparing DSMs built from left vs. right vs. left and right context (Sahlgren, 2006;
Bullinaria & Levy, 2007, 2012) showed a clear superiority of symmetric windows over
the asymmetric ones. Within syntax-based DSMs, the selection of the distributionally
informative contexts is guided by qualitative (linguistic) criteria. While in earlier studies
(G. Grefenstette, 1994; D. Lin, 1998) all relations were employed for the construction of
the semantic space, later work focuses on a subset of core syntactic relations (e.g., such as
subject, object, noun modifiers, prepositional complements, conjuncts) identified either
via manual selection (Rothenhäusler & Schütze, 2009; Baroni & Lenci, 2010), or by
adopting quantitative criteria on the frequency of the dependency relation in the parsed
corpus (Padó & Lapata, 2007). Of the mentioned evaluation studies, only Rothenhäusler
& Schütze (2009) further manipulate the context-selection function, by comparing model
performance when different dependency relations are involved in the construction of
the semantic space (e.g., subjects vs. subjects and objects vs. subjects, objects, and
conjuncts, etc.): their results, albeit limited to only one task (noun categorization),
clearly show that a very limited set of relations (in their case, object, adjectival modifiers,
and conjuncts) already produces the best DSM performances.

Let us now discuss the parameter space of the context-selection functions operating
on end node properties. The simplest context-selection strategy is to employ the same
vocabulary used for the target to define of the set of potential contexts (Baroni & Lenci,
2010; Baroni, Dinu, & Kruszewski, 2014). As an alternative, DSM evaluation targets the
application of a frequency threshold (e.g., selecting only words above or below a certain
frequency threshold), or the selection of candidate context words based on their rank in

23When such large context windows are employed, co-occurrence operates across sentence boundaries.
Even though this implementation of the extraction of surface co-occurrences cannot straightforwardly
be implemented in our formal account, in which every sentence is represented by either a precedence
or a dependency graph, it can easily be accommodated considering the entire corpus as a precedence
graph.
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the corpus frequency list (e.g., considering only the most frequent n words as potential
contexts). Frequency thresholds or ranks are used to filter out words that are too infre-
quent to significantly contribute to the semantic representations of the targets, or, to the
opposite, too frequent and potentially “distributionally promiscuous” (Sahlgren, 2006,
p. 105) to be discriminative. Sahlgren (2006) experiments with both minumum (up to
10 occurrences) and maximum (from 5k to 100k occurrences) frequency thresholds: the
results, albeit limited to one semantic similarity task and to relatively small corpora
(BNC and TASA), show no effect for the minimum frequency, and strong interactions
with corpus size for the maximum frequency thresholds. Overall, the frequency rank
approach is the most employed in the DSM literature. Bullinaria & Levy (2007, 2012)
experiment with up to the 100k most frequent words in the respective corpora (BNC or
UkWaC), Kiela & Clark (2014) with up to the 500k most frequent words in the BNC
(even if the evaluated corpora are larger). The general trend identified in such studies is
that not more than 50k dimensions are usually necessary to ensure good performances,
making 50k the reference value for studies which do not evaluate frequency-based con-
text selection (Polajnar & Clark, 2014); for smaller corpora, even fewer dimensions (e.g.,
10k) turn out to be sufficient, and more may even have detrimental effects on DSM per-
formance. Under the assumption that words with very high-frequencies just introduce
noise and increase the computational cost, with no clear advantage for the resulting se-
mantic representations (cfr. Sahlgren’s maximum frequency threshold discussed above),
Bullinaria & Levy (2012) test the effect of discarding the 201 most frequent words or
using a list of stop-words24 (which mostly contains function words), and find out that
small improvements can be achieved with this context selection technique; they also ob-
serve, however, that vector optimization (e.g., context weighting techniques discussed in
section 2.3.3) already reduces the impact of the high-frequency words on the semantic
representations. Comparable results can also be achieved by combining a threshold on
frequency rank and a filter on the part-of-speech of the context words, e.g., by allowing
only open-class words as context dimensions.

When it comes to syntax-based DSMs, it is possible to identify two main strategies
for the application of frequency thresholds in context selection. The first is to apply
the filter to the frequency of the context words (Baroni & Lenci, 2010), before basis
mapping creates the dimensions of the semantic space (see section 2.3.2.3). As an al-
ternative frequency thresholds can be applied to the basis elements, after the context
dimensions have been created by the basis mapping function (Padó & Lapata, 2007).25

Note that the application of a frequency filter after basis mapping and frequency ag-
gregation (e.g., based on the frequency of subj+bark in the co-occurrence matrix vs.

24In addition, Bullinaria & Levy (2012) compare the performances of DSMs built with a context-word
stop-list with those of DSs built from a stopped corpus, i.e., a corpus from which the words in the stop
lists have been removed before co-occurrence extraction, and therefore do not enter into the computation
of the size of the context window. Their comparisons do not show any significant advantage for the use
of a stopped corpus, besides the speed up in the computations related to a reduced corpus size. DSMs
performances, it is observed, only display a shift towards smaller windows. Please note that the use
of a stopped corpus, discussed here for ease of comparison with the discussion of stop-lists, is a design
choice which pertains to pre-processing and not to context selection.

25Padó & Lapata (2007) evaluate DSMs built from the most frequent 500, 1k and 2k basis elements
from the BNC, finding optimal performances with the highest threshold. Given that word-based map-
ping is applied (see section 2.3.2.3 for more details), that the most frequent syntactic relations are
selected and that all words are used as targets, we can assume the frequency ranking of basis elements
to be reasonably similar to the word frequency ranking among open-class words in the full BNC.
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frequency of bark in the corpus) belongs, theoretically, to the dimensionality reduction
strategies which will be discussed in section 2.3.3.2. In their experiments on the parsed
UkWaC, Rothenhäusler & Schütze (2009) do not employ any frequency filter on the
basis mapping output.

2.3.2.2 Path value function

The path value function determines the relative contribution of different paths to the
quantification of co-occurrence, and it operates on quantitative (length) or qualitative
(edge labels) properties of the set of paths identified by the context selection function
cont(t).

The default option is to assume that all paths have the same weight, independently
of their properties (constant weighting), i.e., ν(π) = 1: all words in the context window
(e.g., 2 words to the left and to the right of the context), and all dependency paths
licensed by the context-selection function have the same weight in the distributional
profile for a target word t. As an alternative, the path value function can be employed
to assign a stronger weight to basis terms that occur closer to the target. The path
value function regulates the parameter which, in the DSM terminology, is referred to
as the shape of the context window. Figure 2.5 displays the distribution of path
values according the most common window shapes:26

• the window is rectangular if no weighting is applied (figure 2.5, upper panel):

νrec(π) = 1

• the window is offset rectangular if the closest words to the target (i.e., words
whose distance to the target is below a threshold z) are excluded from the context
window, and all the other words have the same weight (figure 2.5, second panel
from top):

νoff(π) =

{
1, if ‖π‖ > z

0, otherwise

• the window is triangular if path weight reduces with distance. Example imple-
mentations are:

– HAL’s path-value function (Lund & Burgess, 1996) (figure 2.5, third panel
from top27):

26Example sentence “The rain in Spain stays mainly in the plain”, surface co-occurrence, symmetric
window of size k=4.

27In the original HAL implementation exemplified in Lund & Burgess (1996, p. 204, Table 1), path
values range from 1 to the size of the context window, with maximum values assigned to closest words:
for example, with k = 4, context words immediately adjacent (‖π‖ = 1) are assigned a co-occurrence
value of 4. For better comparability with the other weighting schemes discussed in this section, and in
accordance with the description of HAL’s weighting scheme provided by the authors (“Words within
this window are recorded as co-occurring with a strength inversely proportional to the number of other
words separating them within the window.”, p. 204), in figure 2.5 (third panel from top) we report path
weights scaled over the size of the context window.
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the rain in Spain stays mainly in the plain

νrec(π)=1 νrec(π)=1 νrec(π)=1 νrec(π)=1 νrec(π)=1 νrec(π)=1 νrec(π)=1 νrec(π)=1

the rain in Spain stays mainly in the plain

νoff(π)=1 νoff(π)=1 νoff(π)=1 νoff(π)=0 νoff(π)=0 νoff(π)=1 νoff(π)=1 νoff(π)=1

the rain in Spain stays mainly in the plain
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νhal(π)=.25

the rain in Spain stays mainly in the plain

νlen(π)=.25 νlen(π)=.33
νlen(π)=.50

νlen(π)=1 νlen(π)=1

νlen(π)=.50
νlen(π)=.33 νlen(π)=.25

Figure 2.5: Path value function and window shape: rectangular vs. triangular

νhal(π) = 1 + (k − ‖π‖)
– Inverse path length function (figure 2.5, lower panel):

νlen = 1
‖π‖

A further option, which applies to both surface and dependency-based DSMs is to
distribute path weights according to qualitative criteria: for example, in a surface-based
DSM, by assigning stronger weights to the left or to the right context; in a dependency-
based DSM, by giving more weight to paths containing arguments with respect to those
encoding adjuncts.

Parameter overview Within window-based bag-of-words models, the shape of
the context window has been widely investigated in earlier work (Lund & Burgess, 1996;
Sahlgren, 2006; Bullinaria & Levy, 2007) which led the DSM community to the consensus
that a rectangular window (ν(π) = 1) is the most reasonable choice in standard semantic
similarity tasks.

Within dependency-based models, very little evaluation work on the manipulation
of the path-value function has been conducted. The only exception is the evaluation
conducted by Padó & Lapata (2007) who experiment with both a quantitative and a
qualitative implementation of the path-value function. They compare an unweighted
path-value function (ν(π) = 1) with two weighted versions of it. The first is a triangular
context window based on path length (νlen(π) = 1/‖π‖), penalizing paths which encode
mediated dependency relations (e.g., from the adjective modifier to a verb, through a
modified noun noun). The second is linguistically informed, and relies on a saliency
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hierarchy between grammatical relations (subjects are more salient than objects, which
are in turn more salient than prepositional phrases and genitives); more specifically,
Padó & Lapata (2007) employ the obliqueness hierarchy by Keenan & Comrie (1977)
to define a weighting scheme which assigns stronger weights to more salient relations,
independently of path length:

νgram-rel(π) =





5, if subj occurs in label(π)

4, if obj occurs in label(π)

3, if obl occurs in label(π)

2, if gen occurs in label(π)

1, otherwise

Evaluation conducted on a benchmark dataset identified in the length-based path-
value function the most sensible option for weighting dependency paths, with the
linguistically-informed version performing even worse than its unweighted counterpart.

2.3.2.3 Target and basis mapping functions

The target mapping function, µt : T → T operates on available node annotation
(e.g., stem, lemma, and/or part of speech) and maps a target token to different versions
of it: for example, dogs can be mapped to dogs (no target mapping on target), dog
(lemma), or dog noun (part-of-speech disambiguated lemma). DSMs built from inflected
words retain semantically-relevant morphological information such as the opposition
between singular and plural within the nominal domain, and aspectual information
within the verbal domain; moreover, inflectional morphology in some cases does perform
an implicit part-of-speech disambiguation (e.g., booking and booked are verbs). DSMs
built from lemmatized data are denser than their inflected counterparts, because all
the inflected variants of a target words are conflated. A third commonly used option
is to employ part-of-speech disambiguated lemmas, building DSMs which benefit from
word-class disambiguation (e.g., book noun vs. book verb), but are sparser than their
lemmatized counterparts.

Let us now turn to the basis mapping function, which belongs to the original
formalization proposed by In Padó & Lapata (2007). The basis mapping function
µ : Π → B maps the distributionally representative paths for a target t (output of
the context selection function) to basis terms (the dimensions of the semantic space)
by collapsing paths that are considered equivalent. Basis mapping operates on path
labels, node annotations, or both. In turn, basis mapping involving path labels can
be implemented via a word-based mapping strategy or a structured mapping strategy.

When word-based mapping is applied, all paths ending at the same word are con-
sidered equivalent, and mapped to the word at which they end: µ(π) = end(π). This
approach to basis mapping characterizes both surface-based DSMs and dependency-
based DSMs in which dependency information is used as a co-occurrence filter, i.e., to
discard words that co-occur with the target in a sentence, but stand in no syntactic re-
lation with it (Padó & Lapata, 2007). For example, given the context selection function
cont(t) = {π ∈ Πt | ‖π‖ = 1}, µ(π) = end(π) would map the target dog to the nodes
cute and barks in the surface-based graph in figure 2.3, and to the nodes cute, barks,
and a in the syntax-based graph in figure 2.4.
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When structured mapping is applied, paths are mapped to a concatenation of
their label with the word at which they end: µ(π) = (label(π), end(π)). In surface-based
models, structured mapping leads to the collection of separate co-occurrence counts for
the left and the right portion of the context window (Lund & Burgess, 1996). This choice
results in context dimensions of the type left+ cute,right+ barks for the target dog
in figure 2.3, with cont(t) = {π ∈ Πt | ‖π‖ = 1}. With ‖π‖ > 1, structured mapping
distinguishes between different positions within the context windows: for example, the
target cute in figure 2.3 is assigned the features right+dog and right right+barks.
To achieve a less sparse representation, it is possible to map paths to a concatenation
of their end label with the word they end at: µ(π) = (label(π)‖π‖, end(π)). In this case,
with , with cont(t) = {π ∈ Πt | ‖π‖ ≤ 2}, the target cute in figure 2.3 would be mapped
to the dimensions right+dog and right+dog and right+barks. In dependency-based
models based on structured mapping (G. Grefenstette, 1994; D. Lin, 1998; D. Lin &
Pantel, 2001), the context dimensions correspond to features encoding both words and
path labels (e.g., amod + cute, subj-1 + barks for the target dog from the graph in
figure 2.4).

The basis mapping function regulates the trade-off between the expressivity of the
context dimensions and the sparsity of the resulting space. In a window-based DSM the
relative position of a context word with respect to a target can be considered an approxi-
mation of the syntactic relation holding between the two words; in a syntax-based DSM,
the encoding of the syntactic relation in which a specific context word (dog) stands with
respect to the target (bark) allows to tackle finer-grained linguistic tasks such as the
modeling of selectional preferences. On the sparsity side, however, structured mapping
produces co-occurrence matrices which are sparser than their word-based counterparts
(target-context pairs of the type < bark, left+dog > or < bark, subj+dog > compared
to < bark, dog >). DSMs based on structured mapping are also highly dimensional, and
thus computationally more costly: a window-based DSM based on structured mapping
(right vs. left of the target word) has twice as many context-dimensions as the corre-
sponding word-based one; a dependency-structured DSM can virtually have a number
of dimensions equal to the number of distinct paths (which range from a dozen to
hundreds, if the paths are lexicalised) times the number of distinct words at the end
nodes (typically ranging from a few to hundreds thousands). It is a matter of eval-
uation to establish whether the increased computational cost is justified by increased
performances.

Basis mapping operating on node annotation follows the same criteria discussed
for the target mapping function. It can be parametrized to map the path to different
instances of the word corresponding to their end node end(π): for example, depending on
the desired degree of linguistic granularity, the target dog is assigned the basis elements
right + barks vs. right + bark vs right + bark noun.

Parameter overview In what follows, we provide an overview of basis mapping
approaches that exist in the DSM evaluation literature. Let us start with basis mapping
which operates on path labels (word-based mapping vs. structured mapping).

Within surface-based DSMs, word-based mapping is the default basis-mapping strat-
egy. There are not many examples of bag-of-words DSMs based on structured mapping,
the most notable being HAL (Lund & Burgess, 1996). Bullinaria & Levy (2007, 2012)
compare word-based mapping (i.e., total counts for a context word achieved by adding
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left and right counts) to structured mapping (i.e., double length vectors with separate
counts for left and right context) in a selection of semantic tasks, and do not find a con-
sistent advantage of one approach over the other; the lack of strong empirical support
for the use of structured mapping led to the conclusion that word-based mapping, much
more convenient from the point of view of the extraction complexity, can be considered
a reasonable default option for bag-of-words DSMs. To the best of our knowledge, no
further evaluation study produced evidence against this assumption.

Within dependency-based DSMs, word-based mapping produces a filtered (and
sparser) version of the corresponding window-based space (Padó & Lapata, 2007),
while structured mapping produces a typed version of the dependency-filtered space
(G. Grefenstette, 1994; D. Lin, 1998; Rothenhäusler & Schütze, 2009; Baroni & Lenci,
2010). The properties of the two classes of syntax-based DSMs discussed here (filtered
vs. typed) have been studied in two types of evaluation settings.

One type of evaluation compares dependency-filtered models (Padó & Lapata, 2007)
or dependency-typed models (Rothenhäusler & Schütze, 2009) to window-based mod-
els (word-based mapping); in these studies, the performance of syntactically-informed
spaces is found to be comparable to or better than the one of bag-of-words models, with
variations related to different semantic similarity tasks.

Another type of evaluation targets the degree of path lexicalization in dependency-
typed models: Baroni & Lenci (2010) evaluate dependency-typed models characterized
by different degrees of path lexicalization, and they extend the comparison to window-
based and other state-of-the-art DSMs. A dependency-typed DSM with a very low
degree of lexicalization, DepDM, is built with path labels corresponding to syntactic
relations (e.g., in the sentence “the soldier used a gun” the feature verb+gun is assigned
to the target soldier) or prepositions (e.g., in the sentence “the soldier talked with a
sergeant” the feature with+sergeant is assigned to the target talk). A model with a very
high degree of lexicalisation, LexDM, is built from the same co-occurrence data. LexDM
is based on complex paths, further articulated into a pattern and a suffix. The pattern
encodes the syntactic path connecting the start (target word) and the end node, the
same relations of DepDM are encoded, with the crucial difference than high frequency
verbs are lexicalised (e.g., use+gun replaces verb+gun) and multiword patterns are
included (e.g., “such as”, “a number of”, etc.). The suffix encodes the presence of
surface features such as determiners, auxiliaries, adjectives or adverbs linked to either
the start and end node of the path. For example, in the sentence “the soldier used a gun”
the LexDM path linking soldier to gun is use+the-n+a-n: the pattern is use, and the
suffix the-n+a-n specifies that the target is a definite (the) singular noun (n) and the
end node of the path is an indefinite (a) singular noun (n). Overall, LexDM contains
more than 3 mln. paths types while DepDM contains 800 path types. The high sparsity
of the LexDM space (0.00001% nonzero entries, vs. the 0.01% of DepDM ) negatively
affects DSM performance, with DepDM outperforming LexDM in all tasks at issue.
Baroni & Lenci (2010), however, show how the rich information encoded in LexDM ’s
paths can be exploited to build a DSM which achieves state-of-the-art performances in
all tasks at issue: TypeDM. Given that the difference between TypeDM and LexDM
is not in terms of basis-mapping, but in terms of quantification of co-occurrence (co-
occurrence counting vs. type-counting), we do not provide more details here and will
be describe type counting in more detail in section 2.3.2.4.

Let us now review approaches to basis mapping which operates on node anno-
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tation. The common approach in DSM modeling is to employ lemmatized words as
both targets and contexts. This choice has a practical reason (most evaluation datasets
contain lemmatized words) and is supported by evaluation studies. Bullinaria & Levy
(2012) compare DSMs built from raw (normalized), stemmed and lemmatized data; in
a selection of semantic similarity tasks, a slight advantage is found for lemmatized and
stemmed data over the raw ones (with variations due to the different tasks, and to
the interaction with other parameters). In a different selection of tasks, Kiela & Clark
(2014) compare DSMs whose context words are characterized by different degrees of
granularity: inflected, stemmed, lemmatized, pos-tagged, and CCG-tagged:28 better
performances are reported for stemmed data, with no clear advantages for an increased
feature granularity. Similar results are reported by (Lapesa & Evert, 2013a), albeit
in a more specific task (modeling of semantic priming); no significant differences in
performances were found when comparing DSMs built from lemmatized data in three
configurations: untagged, with part-of-speech tags on the targets,29 and with part-of-
speech tags for both targets and contexts.

2.3.2.4 Quantifying co-occurrences

In the previous sections, we described the three functions which regulate the extraction
of co-occurrence data (context-selection, path value, and basis mapping), and defined
their parameter space both theoretically and in practice, with a survey of the DSM
evaluation literature. In this section, we characterize the strategies for the aggregation
of co-occurrence on the basis of the information collected by the extraction functions.
Before discussing the issues connected to the quantification of co-occurrence and the
creation of the DSM matrix, let us take stock and spell out the input and the output
of each of the extraction functions.

The input of the context selection function cont(t) is a corpus of precedence or
dependency graphs (cfr. 2.3 or 2.4, respectively) and a list of targets T . Its output is a
set of <target node, path, context node> triples like the following:

{ < dog, subj-1, barks >, < cute, amod-1+subj-1, barks >, etc. }
The path components of the triples produced by the context selection function (e.g.,
{subj-1, amod-1+subj-1}) constitute the input of the path value function, ν : Π→ R.
Based on the path properties discussed in section 2.3.2.2, the path value function assigns
to each path a numerical value corresponding to its weight; this information is then
integrated into the triple set defined above, to be employed for frequency aggregation
after basis mapping. For example, the path value function ν(π)length = 1/‖π‖ will
produce the following output:

{ < dog, subj-1, barks , 1 >, < cute, amod-1+subj-1, barks, 0.5 > }
The basis mapping function maps paths into basis elements: µ : Π → B. In practice,
it turns the <target, path, context, weight> quadruples produced into <target, basis
element, weight> triples, thus creating the dimensions of the DSM matrix. In our
running example, word-based mapping would produce the following set:

28CCG tags correspond to lexical categories, and can be considered a finer-grained version of the
commonly employed part-of-speech tags.

29Formally, the use of part-of-speech tags for the targets does not pertain to basis mapping but to
the definition of the target vocabulary, discussed at the beginning of this section.
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{ < dog, bark , 1>, < cute, bark, 0.5 > }

From the same example, structured basis mapping would produce the following output:

{ < dog, subj-1+bark, 1 >, < cute, amod-1+subj-1+bark, 0.5 > }

Co-occurrence quantification operates on the set of triples produced by the
basis mapping function. Frequency aggregation is the most commonly employed
approach for the quantification of co-occurrence: given a target t and a basis element
b, the co-occurrence frequency of t and b is calculated as the sum of the values for all
paths anchored at t which are mapped onto b.30 In case of structured basis mapping,
marginal frequencies for feature terms (their global frequencies in the corpus, em-
ployed in the computation of association measures as discussed in section 2.3.3.1) are
usually computed after basis mapping, and they correspond to the joint co-occurrence
frequency of <path, context node> pairs. Let us consider the following set of tuples:

{ < dog, subj-1+bark, 40 >, < boss, subj-1+bark, 10 >,
< chiwawa, subj-1+bark, 20 >, < dog, subj-1+chase, 20 > }

The marginal frequency of the feature subj-1+bark amounts to 70, that of subj-
1+chase to 20. Baroni & Lenci (2010) calculate marginal frequencies separately for
paths and context nodes. In our example tuples the marginal frequency of subj-1
amounts to 90.

A possible alternative to frequency aggregation is pattern-based co-occurrence
(Baroni & Lenci, 2010), which assigns to the target t and the basis element b a weight
which is based on the number of different paths linking t and b in the corpus (instead
of their plain co-occurrence frequency). This approach to the quantification of co-
occurrence is based on the assumption that “the variety of patterns connecting a concept
and a potential property31 is a good indicator of the presence of a true semantic link
(as opposed to simple collocational association)” Baroni & Lenci (2010, p. 229). Type
Distributional Memory (Baroni & Lenci, 2010) is the only example of a DSM based
on pattern-based co-occurrence.32 Pattern-based co-occurrence falls out of the scope
of the general framework defined by Padó & Lapata (2007), and of the present work.
It can, however, be accounted for in terms of the formal coordinates discussed in this
section: in what follows, we propose a generalization of Padó and Lapata’s theoretical
framework which allows the repetition of the basis mapping step, which is employed to
map paths into basis elements (µ : Π → B), and, additionally, to map basis elements
into new basis elements (µb : B → B).

Let us start from the Distributional Memory example in section 2.3.2.3: we discussed
how, in the sentence “the soldier used a gun”, the highly lexicalised LexDM maps the
target “soldier” to the basis term use+the-n+a-n+gun. TypeDM builds on the co-
occurrence information stored in LexDM, but exploits the pattern/suffix substructure

30In the formal definition proposed by Padó & Lapata (2007), a distinction is established between
local and global co-occurrence frequency of t and b. Global co-occurrence frequency measures the
co-occurrence of t and b over the entire corpus; it is calculated by summing the local co-occurrence
frequencies of b with all instances of t.

31“Concept” and “property” in Baroni et al. (2010) correspond to what is referred to in this thesis
as “target” and “basis element”.

32The only other instance of such approach to the quantification of co-occurrence is Strudel (Baroni
et al., 2010), which is a predecessor of TypeDM.
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of the paths (in our example, use is the pattern, and the-n+a-n the suffix) to implement
a pattern-based approach to the quantification of co-occurrence. To better illustrate the
pattern-based approach to co-occurrence implemented in TypeDM, let us introduce a few
additional sentences containing the target “soldier”, and the respective tuples extracted
through context selection:

• “the soldier used the gun”: <soldier, use+the-n+the-n, gun>

• “soldiers have feelings”: <soldier, have+ns+ns, feeling>

After the application of the path value (like in Distributional Memory, we assume
all path weights to be equivalent) and basis mapping functions frequency aggregation
is applied. As a result, a set of co-occurrence tuples is produced, which corresponds to
the LexDM representation:

{<soldier, use+a-n+the-n+gun, 20>, <soldier, use+the-n+the-n+gun, 10>,
<soldier, have+ns+ns+feeling , 50 >}

A pattern-based quantification of co-occurrence can be achieved on the basis of the
LexDM representation, by applying the following steps:

1. The frequency values are transformed via binarization:

{<soldier, use+the-n+a-n+gun, 1>, <soldier, use+the-n+the-n+gun, 1>,
<soldier, have+ns+ns+feeling , 1 >}

2. Secondary basis mapping is applied to turn basis elements into new basis
elements: µb : B → B. When turning LexDM into TypeDM, all paths with the
same pattern and the same end word are considered equivalent. In practice, basis
mapping reduces the paths to their pattern component (use and have), discards
the suffixes, and leaves the context words unaffected. In our running example, the
TypeDM implementation of pattern-based co-occurrence produces the following
output:

{<soldier, use+gun, 1>, <soldier, use+gun, 1>, <soldier, have+feeling , 1 >}

3. Frequency aggregation applies, yielding the count of distinct surface realizations
(i.e., TypeDM suffixes) instantiating the relation between targets and basis terms:33

{<soldier, use+gun, 2>, <soldier, have+feeling , 1 >}

As an alternative to the binarization approach to the quantification of pattern-based
co-occurrence of TypeDM, it is also possible (but not explored in the literature) to first
apply basis mapping to get rid of the suffix component of the pattern, and then compute

33The TypeDM implementation requires the calculation of different marginal frequencies for target,
path and context node. Marginal frequencies for target and context node are calculated from the set of
tuples resulting from pattern-based frequency aggregation, that of path (e.g., use) is calculated from
the set of tuples prior to secondary basis mapping. It corresponds to the number of distinct surface
realizations for a path (i.e., the number of different suffixes in which it occurs). In our example, the
marginal frequency of the path use is 2 (i.e., ||{the-n + the-n, the-n + a-n}||).
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co-occurrence by applying a maximum function (output: <soldier, use+gun, 20>) or
an average function (output: <soldier, use+gun, 15>).

In this section, we have discussed two main approaches to the quantification of co-
occurrences, namely frequency aggregation on co-occurrence counts and pattern-based
co-occurrence. The output of co-occurrence quantification is a set of triples of the form
<target, basis term, frequency>, from which a sparse distributional matrix M of shape
T × B is constructed. In principle, M is a full-fledged DSM, and it can already be
employed to quantify word similarity as discussed in section 2.3.4. In practice, however,
the semantic representation encoded in M can be further optimized and improved by
applying a number of operations on co-occurrence counts and on the whole matrix:
these will be defined in section 2.3.3 below.

2.3.3 Manipulation of the co-occurrence matrix

In the previous section, we described the process of extraction of co-occurrences from
a corpus, as well as the options for the quantification of co-occurrence. The output
of the extraction/quantification process is a sparse co-occurrence matrix, which can
in principle already be employed for the computation of word similarities (see section
2.3.4). Such matrix is, however, suboptimal with respect to a number of features.

First, the co-occurrence matrix contains raw co-occurrence counts, which are noto-
riously likely to produce high frequency effects. To better characterize a target word
t, we are interested in the most informative contexts, i.e., those which allow a better
discrimination between t and other target words; from this perspective, a very frequent
context word is not necessarily the most discriminative one (think about closed class
words as determiners, or very unspecific open class words such as get, have, or thing).
Section 2.3.3.1 discusses the mathematical operations that can be performed on the co-
occurrence data to alleviate frequency bias and “sharpen” the semantic representations:
computation of association measures which statistically weight the strength of the as-
sociation between targets and contexts; mathematical transformations applied to feature
vectors (i.e., to the columns of the co-occurrence matrix), or to row vectors (to prevent
distances from being dominated by a few dimensions, being them the most frequent or
most informative); vector thinning (based on frequency or association strength). The
common feature of these techniques is that they do not affect the dimensionality of the
matrix, but the way co-occurrence strength distributes over target-context pairs. Please
note that, in this perspective, matrix sparseness is not a negative feature: as a matter
of fact, most of the mathematical operations described in section 2.3.3.1 increase the
sparseness of the matrix, thus gaining discriminatory power (Curran & Moens, 2002).

The high dimensionality of the co-occurrence matrix is addressed by applying di-
mensionality reduction techniques, which we review in section 2.3.3.2. Dimensional-
ity reduction can be implemented as feature selection: matrix dimensions (columns)
are ranked according to a number of criteria (e.g., frequency, variance, number of non-
zero entries) and only the top-ranked dimensions are retained for the computation
of similarity. Before or after the application of feature selection, further dimension-
ality reduction is often applied in the DSM literature by resorting to a number of
low rank matrix factorization techniques, such as Principal Component Analysis,
Singular Value Decomposition, and Non-negative Matrix Factorization.34 The sparse,

34Word embeddings (discussed in detail in section 2.4.2) can also be considered a form of dimensional-
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high-dimensional representation of the original co-occurrence matrix (in the order of
thousands dimensions) is projected into a dense, low dimensional space (in the order
of hundreds). Matrix factorization are designed to ensure that at the desired reduced
dimensionality, the reduced matrix a good approximation of the original one (that is
to say, it preserves most of its variance). The common feature of matrix factorization
techniques for dimensionality reduction is that they uncover latent relations among the
context dimensions; the resulting reduced dimensions, however, tend to be more opaque
than the unreduced ones, and thus more difficult to interpret.

2.3.3.1 Feature weighting and transformation

In this section, we provide an overview of feature weighting, a general term which
labels a family of mathematical operations performed on the word vectors to highlight
the most informative contexts (basis elements) for each target word t. Once feature
weighting has applied (or independently of feature weighting, on the raw co-occurrence
vectors), a number of further operations can be performed on the vectors to reduce the
skewness of co-occurrences (e.g., logarithmic transformation) or to sharpen the distribu-
tional representations by increasing the sparseness of the matrix (vector positivization
and/or thinning).

Let us start from some general considerations concerning feature weighting. From
a mathematical point of view, feature weighting operations quantify the strength of
the association between the target t and each basis term; they do so by comparing the
frequency values stored in the cells of the co-occurrence matrix with reference values
which characterize either the basis term by itself (e.g., does it occur with almost all tar-
gets?) or the statistical properties of both target and basis term (e.g., how many times
would target and basis have occurred together if their association would have been due
to chance?). From a geometrical point of view, feature weighting operations perform
a non-uniform scaling of the components of the vectors which are pulled in the direction
of their most discriminative dimensions. From a cognitive point of view, weighting
operations pick up the most salient features of each target, thereby improving the dis-
criminative power of the distributional representations encoded in the co-occurrence
matrix.

Feature weighting has been extensively employed since early work in Distributional
Semantics. As discussed in section 2.1.2, early DSMs (primarily LSA) took inspira-
tion from Information Retrieval applications (Salton et al., 1975; Deerwester et al.,
1990); such applications are based on a document-term matrix35 and employ the term-
frequency/inverse document frequency measure (henceforth, tf-idf) to weight the rep-
resentativity of a word w for a target document. In the tf-idf scheme, the frequency
of occurrence of w in a document (term frequency) is multiplied with the logarithm
of the ratio between the total number of documents in the corpus and the number of
distinct documents in which w occurs (inverse document frequency). Inverse document

ity reduction. Levy & Goldberg (2014b) show that the embedding matrix can be considered a low-rank
factorization of a PPMI matrix shifted by a global constant (see section 2.3.3.1 for more details).

35Information Retrieval applications use words as features of documents, thereby building document-
term matrix. Their goal is usually to retrieve documents (corresponding to target words in a term-
term matrix) based on the similarity between the list of keywords provided by the user (user query is
represented as a vector of word) and the vector of the words contained in each document (the feature
columns, corresponding to words in a term-term model, or to documents in a term-document model).
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frequency quantifies the dispersion of the word across the target documents: the higher
the dispersion, the lower the discriminativity. Albeit devised for document-term mod-
els, tf-idf can be straightforwardly computed for a term-term matrix: term frequency
corresponds to the co-occurrence frequency stored in the matrix cells; inverse ”docu-
ment” frequency is calculated as the logarithm of the ratio between the total number
of target words in the corpus and the number of distinct target words with which the
feature occurs; an alternative way of quantifying feature dispersion is the number of
non zero entries in the matrix columns (G. Grefenstette, 1994). Tf-idf shrinks the less
informative dimensions by penalizing the columns of the corresponding contexts. In
geometrical terms, this implies that the impact of the less informative dimensions on
the position of the distributional vectors is reduced for every target in the distributional
matrix.

A desirable outcome for an appropriate feature weighting scheme, however, would be
to identify the most representative dimensions on a per-target-and-context basis, and let
the dimensions of the most representative contexts for each target determine the position
of the corresponding vector in the distributional space. Collocation statistics provides
well-established mathematical tools for the quantification of the association between
targets and contexts, thereby playing a key role in DSM when it comes to feature
weighting. Association measures devised to identify true collocates and multiword
expressions (Evert, 2008) have become a standard approach for the identification of
the most discriminative features for a target word. They quantify the attraction
between a target and a context by comparing their observed co-occurrence frequency
(henceforth, O) to their expected co-occurrence frequency (henceforth, E). Expected co-
occurrence frequency is an approximation of the number of times target (node) and
context (collocate) would have occurred together if their association had been due to
chance (i.e., if we had randomly shuffled the words in the corpus), and it is calculated
as:

E = k · fnode ·
fcollocate

N
,

where fnode and fcollocate are the global frequencies of the node and collocate in the
corpus, commonly referred to as marginal frequencies in the collocation literature; N
is the sample size (number of tokens in the corpus); k is an adjustment factor equal to
the total span size (e.g., 10 for a symmetric 5 words context window).36

In what follows, we provide a brief overview of the most popular association mea-
sures. For a more exhaustive list and discussion, see (Evert, 2008). The most intuitive
way of comparing observed and expected frequencies to quantify the amount of evidence
provided by O against the null hypothesis of independence (E) is to take the ratio of
O/E. This strategy is implemented in the Pointwise Mutual Information (PMI)

36When calculating expected frequency for surface-based co-occurrence, a span size adjustment is
necessary because for every target node there are k slots in which a collocate can potentially occur. See
Evert (2008) for a full-fledged description of the calculation of marginal frequencies from contingency
tables for node-collocate pairs, and for a discussion of the caveats connected to the span size adjustment.
Note that the graph-based approach to surface co-occurrence proposed in this thesis is in principle
equivalent to the one outlined in Evert (2008): if marginal frequencies are calculated from the list of
target/basis element pairs (i.e., node/collocate) extracted from the sentence graphs, the marginals for
both target and basis elements will be inflated by a factor of k, and so will N , keeping Egraph equivalent
to E calculated according to the standard co-occurrence model defined by Evert (2008).
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measure (Church & Hanks, 1990), which quantifies in bits (i.e., on a logarithmic scale)
the degree of shared information between node and collocate:

PMI = log2
O

E

PMI distinguishes both attraction and repulsion between a node and its collocate by
assigning positive values to the former and negative values to the latter.

PMI has a tendency to assign high scores to low-frequency word pairs with very
small E (for example when both feature and target are infrequent, in particular in big
corpora where the sample size N is particularly large). Alternative association measures
are available within the PMI family, which address the low-frequency bias issue by giving
more weight to O in the calculation of the association score. This is the case of Local
Mutual Information (LMI) and exponential MI (MIk), which are calculated as follows:

LMI = O · log2
O

E
MIk = log2

Ok

E

Another strategy to counter the low-frequency bias of PMI is to smooth the frequency
distribution to increase the value of E. In practice, this is achieved by raising fcollocate

and N to a power α < 1 (Levy et al., 2015) before computing E.

MIsmoothed = log2
O

Eα
with Eα = k · fnode ·

fαcollocate

Nα

As an alternative to the O/E ratio at the core of the MI family, z-score and t-score
compare the difference between O and E (O − E) to E and O, respectively:

z-score =
O − E√

E
t-score =

O − E√
O

Both z-score and t-score distinguish between positive and negative scores; z-score
suffers from low-frequency bias, like PMI.

Simple log-likelihood (simple-ll) operationalizes the log-likelihood ratio G2 (Dun-
ning, 1993) in terms of O and E, and it inherits its robustness to low expected frequen-
cies:

simple-ll = 2 · (O · logO
E
− (O − E))

Differently from all the association measures listed so far, simple-ll does not distinguish
between positive and negative association.37

We now turn to vector transformation to characterize a family of operations
performed on the matrix to further improve the quality of the semantic representations:

• To reduce the skewness of co-occurrences, a logarithmic transformation can be
applied to raw frequency values (and, in principle, also to the association scores
produced by feature weighting). Logarithmic is the most employed (and cogni-
tively motivated) transformation applied to distributional vectors, but other op-
tions are available as well, e.g., square root, binarization or sigmoid transformation
(a soft binarization);

37As pointed out in Evert (2008), the distinction between positive and negative association can be
easily re-established by assigning positive scores to node/collocate pairs with O > E, and negative
scores to pairs with O < E.
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• To sharpen the semantic representation encoded in the distributional vectors the
sparseness of the co-occurrence matrix can be further increased by applying two
types of transformations:

– Positivization applies to the output of feature weighting, and capitalizes
from the distinction between positive and negative association by setting the
negative weights to zero;38

– Thinning applies to the raw co-occurrences or to association measures alike:
it identifies a subvector for each target by selecting its top-weighted n dimen-
sions and setting all the others to zero.

Summing up, the feature weighting and transformation operations outlined in this
section take as an input a matrix M of shape |T | × |B| and produce a new matrix
Mscored which has (at least in theory)39 the same shape of M , is usually sparser than
M if positive association measures are employed or, differently from M , may contain
negative values (if association measures which distinguish between positive and negative
association have been used, without positivization). If we look at M and Mscored as
multidimensional spaces, feature weighting does not affect the coordinate system of
M (the dimensions of M and Mscored are the same) but it affects the position of the
target vectors in it, because in Mscored target vectors are dominated by the most salient
dimensions identified by the association measures.

Parameter overview In this section, we provide a summary of the feature weight-
ing schemes and transformations employed in reference evaluation studies.

As far as early DSMs are concerned, HAL (Burgess & Lund, 1998) employs raw
co-occurrences, while LSA (Landauer & Dumais, 1997) adopts an entropy-based nor-
malization weighting scheme which can be considered a transposed variant of tf-idf.
Term frequency corresponds in LSA to the (log-transformed) frequency stored in the
cells of the term-document matrix, and inverse document frequency corresponds to the
inverse entropy of the target vector; vector entropy is yet another way of computing
context dispersion, as it quantifies the extent to which a target word is a good predictor
of the contexts in which it occurs: the same co-occurrence frequency value will have
a higher weight for low-entropy targets than in high entropy targets; once again, the
higher the entropy, the lower the discriminativity.40 Albeit popular in earlier DSM work
(G. Grefenstette, 1994; Landauer & Dumais, 1997; Sahlgren, 2006) and still present in
more recent evaluation studies (Kiela & Clark, 2014), the tf-idf family41 fell out of the

38For example, positive PMI is calculated as: PPMI = max(PMI(node, collocate), 0)
39Positive association measures and vector thinning do not, theoretically, affect the overall shape of

the co-occurrence matrix because they operate in a per-target fashion. It is possible, however, that some
context dimensions will turn out to be negatively associated to each target and therefore discarded by
positive association measures; it is even more likely that some of the dimensions will turn out to be not
among the top n of any target, and therefore discarded by vector thinning.

40Landauer & Dumais (1997) point out that multiplying frequency by inverse entropy “accomplishes
much the same thing as conditioning rules such as those described by Rescorla & Wagner (1972), in
that it makes the association better represent the informative relation between the entities rather than
the mere fact that they occurred together” (p. 208).

41Here, we use the label “tf-idf family” to refer to a group of weighting schemes which weight co-
occurrence frequency against dispersion measures for the columns (G. Grefenstette, 1994; Sahlgren,
2006) or rows of the matrix (Sahlgren, 2006)
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focus of the DSM community, which converged on the use of collocation statistics for
the purpose of feature weighting. In this perspective, evaluation studies targeted the
identification of the best performing association measure among those put forward in
the corpus linguistics literature.

In their evaluation study on bag-of-words models, Bullinaria & Levy (2007) compare
conditional probability based on raw co-occurrences (corresponding to L1 normalization,
see section 2.3.4.1) to PMI, ratio of probabilities (unlogged PMI) and positive PMI
(negative weights are set to zero), finding that the latter ensures the best performances
in semantic similarity tasks.

Within dependency-based models, little evaluation work has been conducted which
compares different weighting schemes: Rothenhäusler & Schütze (2009) compare g-score
(log-likelihood) to t-score and positive t-score (negative weights are set to zero). Positive
t-score turned out to be the best performing measure. Larger scale evaluation studies
focus on just one measure: Padó & Lapata (2007) employ simple log-likelihood, Baroni
& Lenci (2010) use LMI.42

A number of recent studies confirmed that positive PMI (henceforth, PPMI) is the
best association measure across tasks in the following comparison settings:

• Polajnar & Clark (2014): PPMI vs. t-test (calculated as in the z-score formula
given above, comparable performances to PPMI) and raw frequency;

• Kiela & Clark (2014): PPMI vs. raw frequency, MI, t-test (calculated as in
the z-score formula given above, comparable performances to PPMI), chi-squared
(Curran, 2003), and a number of measures from the tf-idf family;

• Baroni, Dinu, & Kruszewski (2014): PPMI vs. LMI.

PMI is nowadays considered the best performing weighting scheme, and it is an
established finding that discarding negative weights (PPMI) improves DSMs perfor-
mances robustly across tasks. Further evaluation work conducted by Levy et al. (2015)
targeted the improvement of PPMI by testing two additional parameters:

• Smoothing context distributions: experiments on the manipulation of α in
the MIsmoothed formula given above showed that setting α to values smaller than
1 improves PPMI performance robustly across tasks;

• Shifting PPMI values by a global constant: experiments conducted on the
manipulation of a global constant k to be subtracted to the PMI values43 showed
that setting k to values above 1 improves DSM performances in word similarity
tasks. Shifting PPMI by a positive value results in a sparser matrix than the
corresponding PPMI one, because it increases the number of values which are set
to zero. For this reason, it can also be seen as a form of thinning.

42Note that Baroni & Lenci (2010) calculate a ”three-way” LMI, i.e., by comparing O to the corre-
sponding expected count under independence for the triple <target, dependency path, collocate> (e.g.,
<dog, subj-1, bark>). Refer to section 2.3.2.4 for more details on the calculation of marginal frequencies
for feature terms. In the experiments presented in this thesis (section 4.3), we follow a more standard
approach to collocation analysis, in which collocates are basis elements, and calculate expected counts
for the <target, basis element> pairs (e.g., <dog, subj-1+bark>).

43Shifted PPMI is calculated as: SPPMI(node, collocate) = max(PMI(node, collocate)− log k, 0).
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PPMI achieves significant improvements by discarding the negatively weighted di-
mensions which are replaced by additional zero entries. Building on this established
property of PPMI (and positive association measures), further evaluation by Polajnar &
Clark (2014) tested the hypothesis that, even among the positively weighted dimensions,
not all of them are necessarily beneficial for the quality of the semantic representations.
Additional improvements can be achieved by thinning the vector by retaining only the
n highest weighted context words. The experiments carried out by Polajnar & Clark
(2014) on the manipulation of n show that a surprisingly small number of dimensions
need to be retained, with variations across the different weighting schemes: out of 10k
of the original DSM, 20 dimensions per vectors were sufficient with raw frequencies, 140
for t-test (z-score), 240 for PPMI.

2.3.3.2 Dimensionality reduction

The large dimensionality of Mscored can be a problem for further applications which
take DSM vectors as an input, e.g., computation of vector similarity (which is com-
putationally more expensive at high dimensionalities) or machine learning applications
(where separate weights need to be learnt for each dimension of the matrix). Moreover,
the dimensionality of Mscored is problematic at a qualitative level, as well, as Mscored is
likely to contain noise and redundancy. Noise is introduced by contexts whose variation
cannot be explained in terms of their relation to the target words; redundancy is intro-
duced by clusters of highly correlated dimensions (because the corresponding contexts
occur with the same targets).

Dimensionality reduction filters away redundancy and noise by reshaping the multi-
dimensional semantic space, i.e., by transforming its coordinate system. There are two
strategies to reduce the dimensionality of a multidimensional space: feature selection,
which discards one or more columns deemed less relevant based on their mathemati-
cal properties (e.g., variance, number of non-zero entries, or overall frequency); feature
extraction, which identifies clusters of highly correlated dimensions, builds a statistical
summary of the co-occurrence information encoded in these dimensions, and replaces
them with this summary (a new dimension which does not correspond to any observed
context).

Let us start with a toy example in a two-dimensional space with coordinates x and
y (figure 2.6), and let us assume we want to reduce the space to a one-dimensional
representation.

x1

x2

•

•

•

•

Figure 2.6: Toy space
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In our toy space feature selection can pick either x1 or x2 (figure 2.7); once one of
the two dimensions is selected, the points in the space are projected on it (dotted blue
line for dimension x1, dotted red line for dimension x2): the projection, straightforward
in this case, assigns a value which encodes its position on the selected dimension, and
the other dimension is not any longer taken into account. In the high-dimensional space
defined by the co-occurrence matrix, this amounts to discarding some of the matrix
columns.

x1

x2

•

•

•

•

× × × ×

×

×

×

×

Figure 2.7: Dimensionality reduction by feature selection

Figure 2.8 illustrates the feature extraction procedure for our toy space. A new
dimension is introduced which is considered an appropriate replacement of x and y
(the criteria that the new dimension must match are a property of the dimensionality
reduction algorithm, and will be discussed later on in this section). The points are
projected on the newly introduced dimension (the red line), x1 and y2 are discarded,
and each point is now defined in terms of its position on the red line.
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Figure 2.8: Dimensionality reduction by feature extraction

Dimensionality reduction by feature extraction is implemented by employing low
rank matrix factorization techniques which project a multidimensional space Xm×n
into a space of a reduced dimensionality Ym×d with d 6 n.44 Matrix factorization al-
gorithms are designed to ensure that, at the desired dimensionality d, Y is a good
approximation of X “in some sense”. The criteria for what it means to be a good
approximation differ across factorization algorithms; geometrically, for example, a suit-

44Technically, d also has to be smaller than the rank of the matrix X (i.e., the number of linearly
independent columns or rows in X).
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able criterion would be that the projected points are as close as possible to the original
points.

Principal Component Analysis (PCA) and Singular Value Decomposition
(SVD) implement the projection of X into Y with the tools of statistical analysis and
linear algebra, respectively. PCA and SVD can be seen as methods for describing the
original data in an alternative way : they identify a ranked list of directions which
do a better job at capturing the variance in X than the original dimensions. The
new directions are the dimensions of Y , referred to as eigenvectors or principal
components in PCA and as singular vectors in SVD. Principal components and
singular vectors are orthogonal. In geometrical terms, the mapping between X and
Y is implemented as an orthogonal projection followed by a rotation of X over Y by
converting the position of each point (i.e., the row vectors in X) from the coordinate
system of X into the “condensed” coordinate system of Y .

Figure 2.9 (Jurafsky & Martin, in press) illustrates the application of PCA to a
bi-dimensional space, displayed in panel (a). The first principal component, PCA di-
mension 1 in panel (b), is the direction which accounts for most of the variance in the
original space. The second principal component is the direction orthogonal to PCA1
which accounts for most of the variance left unaccounted. Panel (c) shows the result
of the rotation from the original space to the space which has PCA1 and PCA2 as
coordinates. Keeping both principal components reconstructs the original space, while
selecting only the first one produces an approximation of it and performs dimensionality
reduction.

2 CHAPTER 16 • SEMANTICS WITH DENSE VECTORS

the next most variance, and so on. Fig. 16.1 shows a visualization. A set of points
(vectors) in two dimensions is rotated so that the first new dimension captures the
most variation in the data. In this new space, we can represent data with a smaller
number of dimensions (for example using one dimension instead of two) and still
capture much of the variation in the original data.
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Figure 16.1 Visualizing principle components analysis: Given original data (a) find the
rotation of the data (b) such that the first dimension captures the most variation, and the
second dimension is the one orthogonal to the first that captures the next most variation. Use
this new rotated space to represent each point (c).

16.1.1 Latent Semantic Analysis
The use of SVD as a way to reduce large sparse vector spaces for word meaning,
like the vector space model itself, was first applied in the context of information
retrieval, briefly called latent semantic indexing (LSI) (Deerwester et al., 1988) but
most frequently referred to as LSA (latent semantic analysis) (Deerwester et al.,LSA

1990).
LSA is a particular application of SVD to a |V | × c term-document matrix X

representing |V | words and their co-occurrence with c documents or contexts. SVD
factorizes any such rectangular |V | × c matrix X into the product of three matrices
W , Σ, and CT . In the |V |×m matrix W , each of the w rows still represents a word,
but the columns do not; each column now represents one of m dimensions in a latent
space, such that the m column vectors are orthogonal to each other and the columns
are ordered by the amount of variance in the original dataset each accounts for. The
number of such dimensions m is the rank of X (the rank of a matrix is the number
of linearly independent rows). Σ is a diagonal m×m matrix, with singular values
along the diagonal, expressing the importance of each dimension. The m× c matrix
CT still represents documents or contexts, but each row now represents one of the
new latent dimensions and the m row vectors are orthogonal to each other.

By using only the first k dimensions, of W, Σ, and C instead of all m dimensions,
the product of these 3 matrices becomes a least-squares approximation to the orig-
inal X . Since the first dimensions encode the most variance, one way to view the
reconstruction is thus as modeling the most important information in the original
dataset.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |×k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original X .

Figure 2.9: Principal Component Analysis

SVD is mathematically equivalent to PCA and it is often employed to perform PCA
decomposition more efficiently.45 A key difference between SVD and PCA is that SVD
skips the centering of features required by PCA, and can thus be applied to a sparse
matrix.

SVD’s low-rank projection is achieved by factorizing the Mw×c into three further
matrices, as shown in figure 2.10.

• W : a column-orthonormal matrix of shape w × d, containing the left singular
vectors;

45SVD is more efficient than PCA because it does not require the computation of the full covariance
matrix. A detailed discussion of the mathematics of PCA/SVD will not be provided here, because their
comparison is not in the scope of this thesis.
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M

w × c

≈ W

w × d

Σ

d× d

CT

d× c

Figure 2.10: SVD low-rank matrix factorization

• Σ: a diagonal matrix of shape d × d containing the ranked singular values of M
(which quantify the variance of the dimensions of W )

• C: a column-orthonormal matrix of shape c × d, containing the right singular
vectors.

The multiplication of W , Σ, and CT produces the best approximation (in the least-
square sense) of the original matrix M at the desired dimensionality d. Reduced “latent”
vectors for the targets in M are computed by multiplying W with Σ (i.e., by scaling
the left singular vectors by the singular values in Σ). Differently from PCA, the first
dimensions of W × Σ don not capture the largest amount of variance but instead they
constitute the best approximation of M at the desired dimensionality.

SVD (and PCA) have been criticized because they negatively affect the transparency
of the semantic dimensions by destroying their non-negativity (it is unclear what
negativity on a semantic scale stands for) and turning the sparse representation
into a dense one. Further criticism to SVD targets its treatment of high frequency
words, which receive either too much or too little weight, and the excessive weight put
on the many zero cells of the sparse matrix (Levy & Goldberg, 2014a; Levy et al., 2015).

Various other factorization techniques are available, which address these shortcom-
ings, the most known example being non-negative matrix factorization (NMF).
NMF (Lee & Seung, 2000) enforces that the matrices in the factorization contain el-
ements greater or equal to zero, producing reduced vectors which are still sparse and
therefore more interpretable. For a discussion of experimental results of NMF in distri-
butional modeling see Dinu & Lapata (2010) (bag-of-words) and Van De Cruys (2010)
(dependency-based).

Besides SVD and NMF, further low-rank matrix factorization techniques are avail-
able, such as GloVe (Pennington et al., 2014) or the word embeddings discussed in
section 2.4.2. Given that the experimental focus of this thesis is kept on the popular
and efficient SVD, we do not further elaborate further on these techniques.

Parameter overview In this section, we briefly sketch the DSM evaluation liter-
ature with respect to dimensionality reduction strategies.

As far as feature selection is concerned, it is necessary to stress the difference
between the dimensionality reduction operations discussed in this section and context
selection based on global frequency values discussed in section 2.3.2.1. Feature selection
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operates on the co-occurrence matrix after basis mapping and co-occurrence quantifi-
cation. It is therefore likely to produce different results than context selection if a re-
stricted target vocabulary is employed, in case of structured mapping and dependency
filtered bag-of-words models where only a subset of the available syntactic relations
are allowed by the context selection function (Padó & Lapata, 2007). By inspecting
the DSM literature, it is not always easy to disentangle whether reported experiments
should be classified as context selection or dimensionality reduction. In what follows,
we discuss a few cases for which it is clear that feature selection was performed on
the co-occurrence matrix, after basis mapping. Within bag-of-words models, Burgess
& Lund (1998) apply feature selection based on column variance after the structured
basis mapping characterizing HAL (whose co-occurrence matrix distinguishes between
right and left contexts); they find that most of the effects on DSM performance are due
to the 100/200 most variant dimensions (out of 140k).46 Kiela & Clark (2014) operate
feature selection by sliding a 10k window across the columns of a 50k bag-of-words co-
occurrence matrix, trying to identify the most optimal “contiguous subvector” in terms
of frequency range of the selected contexts; they find out that, on matrices containing
raw co-occurrence frequencies, focusing on low frequency contexts may improve DSM
performance in some tasks. Within dependency-filtered bag-of-words models Padó &
Lapata (2007) explicitly report on feature selection based on basis terms frequency (best
configuration on their development task: 2000 basis elements from the BNC).

When it comes to dimensionality reduction by feature extraction, SVD plays the
key role since early DSM work. Landauer & Dumais (1997) employ SVD in LSA, point-
ing out that this method does not only make the space more manageable by reducing the
size of the term-document matrix, but that it also improves the quality of the semantic
space by inducing latent relations holding among the contexts encoded in the matrix
dimensions (in LSA term-document setting, SVD dimensions encode latent document
topics). As far as the parameter space is concerned, there are two main (and connected)
parameters which have been explored, namely:

• The number of reduced dimensions retained from the full SVD space.
Since LSA (which employed 300 reduced dimensions), the DSM community con-
verged on the tendency to retain only a few hundred dimensions from the reduced
matrix. Bullinaria & Levy (2012), however, conducted extensive experiments on
the dimensionality of the reduced matrix showing that: a) on term-term models
the improvement achieved by applying SVD is less dramatic than reported with
LSA; b) in order to improve DSM performance on term-term model, SVD usually
requires more than the “standard” 300 dimensions; further improvements can be
achieved by discarding the first reduced dimensions, associated to the strongest
singular values and thus having the highest variance.
Baroni, Dinu, & Kruszewski (2014) compare SVD and NMF in set of standard
task, and at a range of reduced dimensions ranging from 200 to 500, and found bet-
ter performances at the higher dimensionalities, with SVD clearly outperforming
NMF.

46Rohde et al. (2006) point out that “as the magnitude of a set of values is scaled up, the variance
of that set increases with the square of the magnitude. Thus, it happens to be the case that the most
variant columns tend to correspond to the most common words and selecting the k columns with largest
variance is similar in effect to selecting the k columns with largest mean value, or whose corresponding
words are most frequent increases with the square of the magnitude.”
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• The manipulation of the singular values in the computation of the reduced
vectors WS.
Caron (2001) found out that raising Σ to a power p smaller than 1 (thereby
emphasizing later components, with smaller singular vectors) improves the effect
of SVD on LSA. This result has been replicated by Bullinaria & Levy (2012) and
Levy et al. (2015) for term-term models.

2.3.4 Projecting meaning in space

In the previous sections, we discussed and motivated the DSM design choices connected
to the extraction of co-occurrence information and to the enhancement of the semantic
representation via frequency weighting or dimensionality reduction. In this section,
we discuss the quantification of the semantic similarity on the basis of the contextual
information stored in DSM vectors. It is at this stage that the abstract notion of
meaning similarity is translated into the geometric notion of distance and thus
empirically quantified. In section 2.3.4.1 we provide a taxonomy of the distance metrics
which are most commonly employed in the DSM literature, and we discuss the symmetric
vs. asymmetric contrast which characterizes these measures. Section 2.3.4.2 presents
an alternative approach to the computation of word similarity which is still based on
vector distances but takes a finer-grained perspective on the network of relations in
which target words are placed. It quantifies relatedness in the semantic space based on
properties of the semantic neighborhood of the target t: in practice, this means that
to know how similar t and t1 are it is not sufficient to compare ~t and ~t1, but we need to
calculate their similarities to all targets in the DSM vocabulary. Such approaches, based
on neighbor ranks or graphs, are inherently asymmetric, and thus of particular interest
when it comes to modeling cognitive processes which are notoriously not symmetric.

2.3.4.1 Distance measures

Broadly speaking, there are two approaches for the quantification of meaning similar-
ity based on the co-occurrence information encoded in a DSM. The first approach is
grounded in the geometric interpretation of meaning (Widdows, 2004): DSM vectors are
seen as a set of coordinates in a multidimensional space and meaning similarity is quan-
tified as the distance between vectors in this space. The second approach is grounded
in information theory: DSM vectors are interpreted as probability distributions and
compared in terms of their shared information content.

The geometric approach to the quantification of meaning similarity is implemented
by employing distance metrics: a distance metric d(x, y) is a function which maps
pairs of points (x and y) into real values quantifying how far apart the points are in the
multidimensional space in which they live; in a DSM application, the closer the points,
the more similar the meanings of the corresponding words.

Given a set of points X, distance metrics satisfy the following properties for all x, y, z
in X:

• non-negativity: d(x, y) > 0;

• symmetry: d(x, y) = d(y, x) (Tversky, 1977);

• coincidence: d(x, y) = 0 ⇐⇒ x = y;
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• triangle inequality: d(x, z) 6 d(x, y) + d(y, z)

The cosine coefficient, the most commonly employed measure in the quantification
of meaning similarity, is not a distance metric. Given two vectors ~u and ~v, cosine
similarity is calculated as follows:

scosine(~u,~v) =

∑i=n
i=1 ui · vi√∑
i u

2
i ·

√∑
i v

2
i

The computation of cosine similarity is based on the inner product between ~u and ~v:
it measures the overlap between the dimensions of ~u and ~v, as any zero entry in either
~u or ~v sets the corresponding product to zero. Other similarity measures from the
inner product family are the Jaccard and the Dice coefficients, and the Lin’s measure.47

Similarity measures which range from 0 to 1 (cosine is bound to [0, 1] in the positive
space) can be turned into dissimilarity measures by taking their complement to 1, i.e.,
d = 1−{scosine, sJaccard, sDice}; note that dissimilarity measures cannot be considered as
distance metrics, as they often don’t satisfy the triangle inequality. A further possibility
which exists only for cosine similarity is to convert it to angular distance, which is a
full-fledged distance metric: cos α(~u,~v) = scosine(~u,~v)

Distance metrics from the Minkowski family are based on the (absolute) pairwise
differences between corresponding dimensions of ~u and ~v. For p ≥ 1, Minkowski distance
is calculated as follows:

dp(~u,~v) = p
√∑n

i=1 |ui − vi|p

Well-known members of the Minkowski family are the Manhattan or taxi-cab or L1
distance (p = 1) and the Euclidean or L2 distance (p = 2).48 Differently from cosine,
these metrics are sensitive to vector magnitude: for this reason, it is is crucial that
vectors are normalized (i.e., converted to unit length) by employing the compatible
norm (the length of the vector, i.e., the distance of the point from the origin of the
axes):

‖~u‖p = p
√∑n

i=1 |ui|p

For example, L1 normalization adjusts feature weights such that
∑n

i=1 |ui| = 1,
effectively turning the input into a probability distribution.

Let us now turn to the information theoretic view on similarity, which inspires a
number of distance measures (not metrics) based on Shannon’s notion of probabilistic

47Albeit based on information-theoretic considerations, Lin’s measure (D. Lin, 1998) is classified here
because it is based on the intersection between ~u and ~v, and thus connected to the inner product family:
“the similarity between A and B is measured by the ratio between the amount of information needed to
state the commonality of A and B and the information needed to fully describe what A and B are”. The
inner product of ~u and ~v, as well as their harmonic mean can also be employed to quantify similarity.
Note that Jaccard, Dice and Lin coefficient only make sense for non-negative spaces with transparently
paired dimensions and are therefore not suitable for reduced vectors.

48Maximum (or Canberra) distance is a special case of the Minkowski family with p→∞; the distance
between u and v is calculated as the highest value among pairwise differences of the corresponding
dimensions: dp→∞(~u,~v) = max|(ui − vi)|. Inclusion measures (see Lenci and Benotto, 2011 for an
overview), which quantify the extent to which a vector is a subset of another vector, can be considered
as an asymmetric, non metric member of the Minkowski family based on the min(~u,~v) function and on
the L1 norm of ~u.
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uncertainty or entropy. The most known member of the information theoretic family
is the Kullback-Leibler divergence, which is asymmetric: two words a and b are similar if
the probability distribution of a is a good approximation of the probability distribution
of b. Given two vectors ~u and ~v, KL divergence assumes ~u and ~v to be in form of a
probability distribution (non-negative and L1 normalized), which we will denote as U
and V . It is calculated as follows:

dKL(~u,~v) = D(U‖V ) =
∑n

i=1 ui · log2
ui
vi

KL divergence is problematic for DSMs because it is equal to ∞ whenever a 0 in the
probability distribution ~v corresponds to a non-zero in ~u. Jensen-Shannon divergence
and α-skew divergence are designed to address this issue, the former with a symmetric
result, the latter with an asymmetric result.

Parameter overview In this section, we provide an overview of the parameter
space responsible for the computation of distance/similarity in a distributional space.
Since early work in distributional semantics, the geometric approach to the computation
of similarity has been preferred to the information theoretic one: LSA employs cosine
similarity, while HAL resorts to the Minkowski family with p = {1, 2} (Manhattan and
Euclidean distance).

More recent DSM evaluation work converged on cosine as the most robust choice for
the computation of similarity; besides being robust across tasks and evaluation settings,
cosine is also adopted because it is computationally more efficient.

Within bag-of-words models:

• Bullinaria & Levy (2007) compare cosine to Euclidean and City-block distance,
KL divergence and other measures from the information-theoretic family;

• Padó & Lapata (2007) compare cosine to Lin coefficient;

• Kiela & Clark (2014) compare cosine similarity to a number of other measures
from the inner product family (correlation, Dice, Jaccard, Tanimoto and Lin
coefficient), from the Minkowski family (Manhattan, Euclidean and Maximum
distance) and from the information theory family (Jensen-Shannon and α-skew
divergence);49

• Polajnar & Clark (2014) compare cosine to Jaccard and Lin coefficient;

• Bullinaria & Levy (2012), Levy et al. (2015), and Baroni, Dinu, & Kruszewski
(2014) simply adopt cosine as a similarity measure.

Within syntax-based models:

• Padó & Lapata (2007) evaluate cosine, Euclidean and Manhattan distance, Jac-
card and Lin coefficient, KL and α-skew divergence; based on results on a de-
velopment task, they adopt Lin similarity measure (D. Lin, 1998) in their main
experiments;

49In the evaluation conducted by Kiela and Clark (2014), cosine is the most robust measure together
with correlation and Tanimoto coefficient.
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• Baroni & Lenci (2010) and Rothenhäusler & Schütze (2009) adopt cosine similarity
without further evaluation;

Besides evaluation work conducted on specific tasks, the comparison carried out by
Weeds et al. (2004) is of particular interest. Their study targets a comprehensive set of
distance/similarity measures from the three families described in the previous section,
quantifying the variation in the nearest neighbours determined by the chosen measure
in terms of overlap among the top neighbors for 2000 target nouns (dependency filtered
DSM, direct object relation, BNC). They find substantial differences between the sets
of neighbors defined by different measures. Furthermore, they address the questions
of whether certain distance measures are more biased towards high frequency words
than others, and whether the frequency of the target noun itself influences the set of
generated neighbors. They identify a set of measures which show a tendency to select
high frequency words as nearest neighbors regardless of the frequency band of the target,
namely cosine similarity, Jensen-Shannon divergence and α-skew divergence; they also
identify a set of measures which show a tendency to generate set of neighbors from a
comparable frequency band of the target noun, namely Jaccard and Lin coefficient.

2.3.4.2 Relatedness in the semantic space

In distributional semantic modeling, similarity between words is calculated according
to Euclidean geometry: the more similar two words are, the closer they are in the
semantic space. As discussed in the previous section, one of the axioms of spatial
models is symmetry (Tversky, 1977): the distance between point a and point b is equal
to the distance between point b and point a. Cognitive processes, however, often violate
the symmetry axiom: for example, asymmetric associations are often found in word
association norms (Griffiths et al., 2007) and similarity ratings (Lapesa, Schulte im
Walde, & Evert, 2014). In this section, we discuss two approaches to the quantification
of similarity/relatedness in the semantic space which are based on distance/similarity
but can also capture asymmetries thanks to their sensitivity to the topology of the high-
dimensional distributional space. The basic intuition behind these approaches is that to
characterize the similarity between a word w1 and a word w2 the distance between ~w1

and ~w2 is not sufficient, but rather it is necessary to consider the network of similarities
of w1 with respect to all the other words in the lexicon (i.e., the vocabulary of the
target DSM) or at least with respect to the top n most similar ones (in case the full
vocabulary is too large).

The first approach is based on neighbor rank: given a word pair w1 and w2, the
degree of relatedness between w1 and w2 can be quantified as the position of w2 in the
ranked list of neighbors of w1. Crucially, the same distance can correspond to a different
position in the ranked neighbors of a target word, as shown in the toy example in figure
2.11. The symmetric relation encoded in the angular distance between knife and lancet
(left panel) can be made asymmetrical if the density of the neighborhood is taken into
account; the same angular distance corresponds in this case to different rank values,
with knife being the third neighbor of lancet (central panel), but lancet being only the
fifth neighbor of knife (right panel) because of higher number of intervening neighbors.

Neighbor rank assigns higher values to unrelated words, ranging from 0 or 1 (the
rank of a target word in its own ranked neighbors) to the size of the DSM vocabulary;
thus it obeys to the non-negativity constraint and the coincidence constraint discussed
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Figure 2.11: Vector distance vs. neighbor rank

in the previous section. Besides symmetry, it also violates triangle inequality. The
potential of neighbor rank in cognitive modeling has already been tested by Hare et al.
(2009) and Lapesa & Evert (2013a); Zeller et al. (2014) successfully employed it for the
quantification of the semantic relatedness between derivationally related words. One of
the main contributions of the present thesis is to extend the evaluation of neighbor rank
to standard tasks in distributional semantic modeling.

Building on the intuition that distance between two points in a distributional space is
not fully satisfactory, Cuba Gyllensten & Sahlgren (2015) propose to employ neighbor-
hood graphs as an alternative for the quantification of word similarity or relatedness.
Neighborhood graphs allow the identification of the local structure (topology) of the
network of relations defined by the nearest neighbors of the target words in the DSM
vocabulary. Cuba Gyllensten & Sahlgren (2015) employ relative neighborhood graphs
(RNG) in a Word Sense Induction task (WSI), which is otherwise usually tackled by
inspecting the top k nearest neighbors of a target word (k-NN). k-NN approaches face
two main issues: the fact that k needs to be set as a further experimental parameter and
the possibility that a ranked list of top k neighbors will conflate the different senses of
a polysemous target word. According to Cuba Gyllensten & Sahlgren (2015), a RNG-
based approach has the potential of overcoming both issues. In an RNG, two points
are considered neighbors only if the region between them is empty:50 in practice, this
means that two words are considered neighbors only if they are the closest neighbors of
each other. Their experiments shed light on the distribution of neighborhood reciprocity
in different DSM architectures (PMI vs. embeddings) and show that embeddings tend
to produce more asymmetric (and syntagmatic) neighborhoods than unreduced PMI
spaces. For further details concerning the comparative evaluation of k-NN and RNG in
the WSI task, see Cuba Gyllensten & Sahlgren (2015).

2.4 DSM representations based on signal vectors

Section 2.3 discussed the class of bag-of-words DSMs, which are in the focus of the
present thesis. Even though bag-of-words models are a commonly adopted methodol-
ogy for the extraction of distributional representations, an alternative approach exists,
namely one that relies on signal vectors. This section discusses three types of DSMs
based on signal vectors and explains the reasons why such DSMs are outside the scope
of this work.

50“A point b lies between two points a and c if it is closer to both a and c than they are to each other”
(Cuba Gyllensten & Sahlgren, 2015, p. 2454).
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Like in the case of bag-of-words models, DSMs based on signal vectors collect co-
occurrence information for a target word t by scanning the corpus with a sliding window,
which defines representative contexts for t. Yet differently from bag-of-words DSMs,
they assign two vectors to each word w:

• A signal vector, which is initialized the first time w is encountered, and does
not change during training. Static signal vectors contain a random sequence of
numbers (usually zeros and ones) which plays the role of a unique identifier for
w in the training process, but bears no relation with the semantics of w. Signal
vectors are orthogonal or nearly orthogonal to each other and, from a cognitive
point of view, interpreted as a static representation of the invariant properties of
a word (e.g., its phonetic or orthographic representation).

• A memory vector, which characterizes the semantics of w as a target. The
memory vector for w is updated every time w is encountered in the corpus, and it
corresponds to the output of a training process which takes the signal vectors of
the words co-occurring with w as an input. Memory vectors are dense, and their
dimensionality is lower than the one of state-of-the-art bag-of-word models: for
this reason, the models reviewed in this section can also be seen as methods for
dimensionality reduction (cfr. section 2.3.3.2).

Co-occurrence information is not encoded in terms of frequency values stored in
the cells of a high-dimensional, sparse matrix (as in bag-of-words models). Instead, it
is stored in a dense, low-dimensional vector representation: the embedding matrix,
which contains the memory vectors. The DSMs described in this section adopt different
strategies for the extraction of memory vectors based on the signal-vector representation
of context words,51 which are built either by accumulating signal vectors based on
co-occurrence information (e.g., adding to the memory vector of w the signal vectors
of context words) or by training a neural-network52 language model in the task of
predicting co-occurrence data (e.g., given the signal vector of w, predict w+1). The
review presented in the following sections adopts the terminology established in Baroni,
Dinu, & Kruszewski (2014): DSMs based on accumulation of co-occurrence counts are
referred to as count DSMs, while those based on neural networks architectures are
referred to as predict DSMs.

In the following sections, we describe two count DSMs based on accumulation of
signal vectors: BEAGLE (acronym for Bound Encoding of the AGgregate Linguistic

51In this work, we adopt the terminological opposition between signal and memory vectors established
by Recchia et al. (2010). In the following sections, when describing the features of specific DSM
implementations, we will specify the terminological mapping between the general concepts of signal and
memory vector and the corresponding labels.

52An artificial neural network (Bishop, 1995) is a computational model inspired by the architecture
and the processing dynamics of the human brain. It consists of a large number of processing units
(neurons) arranged in at least two layers: the input and the output layer. Neurons are linked through
weighted, directed connections responsible for the spread of activation from one neuron to one or more
neurons in a different layer. It is common to introduce at least one intermediate layer between the input
and the output: the hidden layer. In a neural network containing three layers, the input layer activates
the hidden layer, which in turn activates the output layer. Depending on the network architecture
and on the training dynamics, neural networks can be seen as algorithms for classification (assign the
stimulus encoded in the input layer to one or more classes, corresponding to the pattern of activation of
the output layer) or for prediction (given the stimulus encoded in the input layer, predict the upcoming
stimulus by producing the corresponding pattern in the output layer).
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Environment), a cognitively inspired DSM designed to encode contextual as as well as
sequential information (Jones & Mewhort, 2007); Random Indexing (Sahlgren, 2005),
an incremental word space model designed to address the scalability issue affecting
DSMs. We then turn to predict DSMs and describe word2vec (Mikolov, Chen, et al.,
2013), the most prominent case of a neural-network architecture used to learn low-
dimensional and high-quality vector representations from co-occurrence data.

2.4.1 Count DSMs based on signal-vectors

The DSMs reviewed in this section, BEAGLE (Jones & Mewhort, 2007) and Random
Indexing (Sahlgren, 2005), can be considered the signal-based counterpart of bag-of-
word DSMs discussed in section 2.3.2. The collection of co-occurrence information is
based on the same general principle: updating co-occurrence counts each time a target
word is encountered. While in bag-of-words DSMs counts update is implemented by in-
crementing the frequency values a target/feature pair is encountered within the context
window, in signal-based count DSMs the update is implemented by accumulating signal
vectors. As pointed out in Jones & Mewhort (2007), accumulation of random vectors is
a cognitively plausible method for collecting co-occurrence information because it lets
the semantic representations emerge gradually from the initial randomness; moreover,
it is powerful because it allows to keep a relatively low dimensionality without using
computationally expensive decomposition methods.

BEAGLE (Bound Encoding of the AGgregate Linguistic Environment) is a DSM
designed to encode both contextual and word order information (Jones & Mewhort,
2007). BEAGLE’s signal vectors (environmental vectors) have low dimensionality (2048
dimensions) and are dense, with values drawn from a normal distribution with mean
equal to zero and standard deviation equal to the inverse of the square root of the
vector dimensionality. In the publicly available implementation of BEAGLE, memory
vectors for 90000 inflected target words have been extracted from the TASA corpus53

using sentence boundaries as a defining criterion for the context window. Under the
assumption that word meaning and usage can be learned together in a single pattern of
vector elements (Jones & Mewhort, 2007, p. 5), BEAGLE’s memory vectors (composite
lexical vectors), are dynamically updated during training with contextual and word
order information. Every time a target word t is encountered in a new sentence, its
memory vector (~mt) is updated by superposition with the context (~ct) and the order
(~ot) vector: ~mt = ~mt + ~ct + ~ot.

Context and order vectors are calculated with different mathematical operations on
the signal vectors of the words occurring in the sentence. In more detail:

• A context vector (~ct, encodes which words occur with t in the sentence) is calcu-
lated by summing the random signal vectors (~sw) of all the words in the sentence,
excluding t.
For example, in the sentence “dogs eat bones” the contextual vector for the target
eat is calculated as follows: ~ceat = ~sdogs + ~sbones;

• An order vector (~ot, encodes the position of t relative to the other words in the
sentence) is calculated by extracting all n-grams containing t and, for each n-gram,

53The TASA corpus is a collection of English texts compiled by Touchstone Applied Science Associates
which is considered equivalent to the amount of texts read by an average college-level student and was
also used to train the Web version of LSA (Landauer & Dumais, 1997).
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binding the environmental vectors of the context words using directional circu-
lar convolution (∗). The order vector for a target t in a sentence is the sum of
the convolutions of all the n-grams in that sentence.
Directional circular convolution (Murdock, 1982; Plate, 2003) is a method for com-
pressing the tensor product of two vectors; this method presents a number of prop-
erties which BEAGLE fully exploits. First, it is non- commutative (~a ∗~b 6= ~b ∗~a),
and therefore appropriate to model word transitions. Second, its output encodes
associative information between ~a and ~b, without losing track of which features
belong to ~a or ~b: as a consequence, once two vectors are convoluted into a third
one (~a ∗~b = ~z), it is possible to apply a decoding operation (called deconvolution
or correlation54) to get a noisy version of each vector by probing the convoluted
output with the other vector (e.g., ~a#~z ≈ ~b). Third, the convoluted output ~z has
the same dimensionality of the input vectors: this is a necessary property in the
BEAGLE implementation, as order vectors need to be added to memory vectors.
In our example sentence, the set of relevant n-grams (with φ as a static vector
acting as a placeholder for t) is {dogs φ; φ bones; dogs φ bones} and the corre-
sponding order vector is calculated as follows: ~oeat,dogs eat bones = (~sdogs ∗φ) + (φ∗
~sbones) + (~sdogs ∗ φ ∗ ~sbones).

Jones & Mewhort (2007) evaluate BEAGLE in a number of tasks and show that
adding order information to the context information improves the quality of the semantic
representations, and that the order information encoded in the memory vectors allows
to model sentence processing data without introducing word transition rules external
to the DSM.

While BEAGLE is a specific DSM, Random Indexing (henceforth, RI) has been
developed a dimensionality reduction method (Sahlgren, 2005). In the RI approach,
signal vectors (index vectors) are sparse and ternary (the range of the random values
is restricted to -1, 1 or 0). The dimensionality of the signal vectors is independent
of the size of the vocabulary and it is set as a model parameter (it usually ranges
from a few hundred to a few thousands dimensions). The memory vector (context
vector, in the RI terminology) for a target word t is accumulated by applying a context
window and summing the signal vectors of the words in the context, which differ
from BEAGLE’s context vectors only in the size of the co-occurrence window and how
the random signal vectors are generated. The dimensionality of RI’s memory vectors
is therefore identical to the dimensionality of the underlying signal vectors, and the
resulting semantic representations proved robust at a dimensionality lower than that of
state-of-the-art bag-of-word models (Sahlgren, 2005).

Initially developed as a method for reducing the dimensionality of the co-occurrence
matrix, RI has also been further extended to encode word order information in distribu-
tional vectors. Sahlgren et al. (2008) introduce a Random Permutation Model (hence-
forth, RPM), based on random permutations (i.e., functions which take vectors as
their input and produce a randomly shuffled version of them as an output). Random
permutations have the same convenient properties of circular convolution (they are not
commutative, allow the retrieval of a noisy approximation of their input, keep vector
dimensionality), and are computationally less expensive. Sahlgren et al. (2008) report

54Since convolution/deconvolution operations are also at the bases of light holography (Plate, 2003),
Jones & Mewhort (2007) refer to BEAGLE as a holographic lexicon.
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that, in a number of standard tasks, RPM achieved comparable performances to BEA-
GLE on a subset of the Wikipedia corpus; differently from BEAGLE, RPM could also
be trained the full Wikipedia corpus, with significant improvements in all tasks.

Besides the differences in implementation details (i.e., representation of signal vec-
tors, mathematical operations employed to encode word order) BEAGLE and RI share
the incrementality of their training procedure, which allows to test the quality of the
semantic representations at intermediate stages of training. Incrementality in the acqui-
sition of semantic representations is considered to be a necessary feature of a cognitively
plausible model. Lack of incrementality is thus considered a limitation of bag-of-words
models employing feature weighting or dimensionality reduction techniques, which ap-
ply to co-occurrence frequencies extracted from the entire corpus. In the next section
we will discuss a different type of DSM which is based on signal vectors and shares with
BEAGLE and RI the incrementality of the training procedure, but adopts a different
training approach to learn memory vectors from co-occurrence data.

2.4.2 Predict DSMs based on signal vectors

In the previous section two DSMs were discussed, which implement count update as
accumulation of signal vectors: such models can be considered the signal-vector coun-
terpart of bag-of-words DSMs. In this section we focus on a different class of signal-based
DSMs, which learn low-dimensional distributional representations by training a neural
network in a supervised task: the prediction of co-occurrence data (given a target word,
predict its context; given the words in the context, predict the target word).

In this work, we refer to signal-vector DSMs based on neural architectures as predict
DSMs (Baroni, Dinu, & Kruszewski, 2014): we consider this label the most appropriate
because it refers to the learning procedure (i.e., training a neural network in the task of
predicting co-occurrence). In the NLP literature, predict DSMs are commonly defined
as instances of deep learning. Here, we do not adopt this label because it is at odds
with the actual architecture of the involved DSMs: in machine learning, the defining
feature of a deep neural network is the presence of multiple hidden layers between the
input and the output,55 while predict DSMs like the one devised by Mikolov, Chen, et
al. (2013) and widely employed in the NLP community have only one hidden layer.

In the NLP literature, the most prominent predict DSMs is word2vec (Mikolov,
Chen, et al., 2013; Mikolov, Wen-tau, & Zweig, 2013; Mikolov, Sutskever, et al., 2013),
a three-layer neural network trained in two complementary versions of a co-occurrence
prediction task (figure 2.12). In the first version of the task, which corresponds to the
continuous bag-of-words model (cbow), the network is presented with the sum of the
vectors of the words occurring in the context window (e.g., two words to the right and to
the left of the target) and it has to predict (i.e., activate in the output layer) the vector
representation of the target; in the second version of the task, corresponding to the skip-
gram model, the network is presented with the representation of the target word and it
predicts the vectors of the context words occurring in the given window. The pattern
of activation of input and output layers is a highly sparse one-hot signal vector (only

55Multiple hidden layers are used to model information at increasing levels of abstraction: for example,
in an image processing task, a first hidden layer can be used to identify edges based on the information
contained in the input layer (e.g., a vector containing intensity values for each pixel in an image); a
second hidden layer is employed to identify shapes on the basis of the edge information encoded in the
first hidden layer, and so on.
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one vector position is set to one, and all the others are left to zero); as a consequence,
word2vec’s signal vectors are orthogonal and have a very high dimensionality, equal to
the size of the vocabulary.
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R × 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)−vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.
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Figure 2.12: Continuous bag-of-words vs. skip-gram model (Mikolov, Chen, et al., 2013,
p. 5)
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Figure 1: A simple CBOW model with only one word in the context

layers are fully connected. The input is a one-hot encoded vector, which means for a given
input context word, only one out of V units, {x1, · · · , xV }, will be 1, and all other units
are 0.

The weights between the input layer and the output layer can be represented by a
V × N matrix W. Each row of W is the N -dimension vector representation vw of the
associated word of the input layer. Given a context (a word), assuming xk = 1 and xk� = 0
for k� �= k, then

h = xTW = W(k,·) := vwI , (1)

which is essentially copying the k-th row of W to h. vwI is the vector representation of the
input word wI . This implies that the link (activation) function of the hidden layer units is
simply linear (i.e., directly passing its weighted sum of inputs to the next layer).

From the hidden layer to the output layer, there is a different weight matrix W� = {w�
ij},

which is a N × V matrix. Using these weights, we can compute a score uj for each word
in the vocabulary,

uj = v�
wj

T · h, (2)

where v�
wj

is the j-th column of the matrix W�. Then we can use softmax, a log-linear
classification model, to obtain the posterior distribution of words, which is a multinomial
distribution.

p(wj |wI) = yj =
exp(uj)�V

j�=1 exp(uj�)
, (3)

where yj is the output of the j-the unit in the output layer. Substituting (1) and (2) into
(3), we obtain

p(wj |wI) =
exp

�
v�

wO

TvwI

�

�V
j�=1 exp

�
v�

w�
j

TvwI

� (4)
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Figure 2.13: Continuous bag-of-words model: bigram version (Rong, 2014, p. 2)
.

For reasons of clarity and space, we follow Rong (2014) and illustrate here a bigram
implementation of the continuous bag-of-words version of word2vec. In this implemen-
tation of the cbow model, the network is presented with the vector representation of a
word w (the context) and activates in the output layer the vector representation of the
upcoming word (the target). Figure 2.13 illustrates the architecture of the network: V
is the vocabulary size, N is the dimensionality of the hidden layer, set to a value sig-
nificantly smaller than V . Every neuron in the input layer {x1...xV } is connected with
every neuron in the hidden layer {h1...hN}. In turn, every neuron in the hidden layer is
connected to every neuron in the output layer {y1...yV }. The weights of the connections
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are initialized randomly (in the word2vec implementation with values ranging from -0.5
to 0.5) and the corresponding vectors are unique. The weighted connections between
neurons in different layers form two matrices: W , which connects input and hidden
layer and has shape V ×N ; W ′, which connects hidden and output layer and has shape
N × V . When the network is presented with the context word w, whose one-hot signal
vector contains a 1 at the kth position, the activation propagates from xk to hx to yj .
The one-hot signal vector containing a 1 at the j th position is the network’s prediction
for the word following w.

Scanning the corpus with a sliding window of the desired size, the network is trained,
adjusting the weights in W and W ′. The weights in the matrices are estimated in
supervised fashion: they are set to maximize the probability of predicting the output
(the target word, in cbow ; the corpus-observed context for skip-gram56) given the input.
Once the network has been trained with either of the methods (skip-gram or cbow), dense
and low dimensional memory vectors are drawn from the matrix of weights W and
can be used to quantify similarity. The dimensionality of the weight matrix (and as a
consequence, of the memory vectors) can be set as a model parameter to values that are
clearly lower than the vocabulary size. Because of the condensed semantic representation
they encode, word2vec’s memory vectors are also referred to as embeddings.57

Mikolov, Chen, et al. (2013) show that the memory vectors produced by word2vec

are suitable to model different types of relationships between words, addressing the issue
of a better characterization of semantic similarity in DSMs discussed in section 2.1.3.2.
The semantic relation holding between two words (e.g., king and man) can be charac-
terized in terms of a shift vector by subtracting the vector of the second word from the
vector of the first one (~vking − ~vmen). The shift vector can then be added another word
(e.g., woman) to solve analogical relations: king : men = x : woman is implemented
as ~vking − ~vmen + ~vwoman ≈ ~vqueen. In comparative evaluation studies on semantic
similarity and analogy tasks, word2vec achieved better performances than term-term
(Baroni, Bernardi, & Zamparelli, 2014) or term-document (Mikolov, Sutskever, et al.,
2013) DSMs. Such evaluation studies, however, targeted a very specific implementation
of LSA (Mikolov, Sutskever, et al., 2013) and a relatively restricted number of param-
eter configurations for the involved bag-of-words models (Baroni, Dinu, & Kruszewski,
2014). An additional contribution to the comparison between bag-of-words DSMs and
word2vec comes from Levy & Goldberg (2014b), who demonstrated that the skip-gram
model is implicitly factorizing a term-term matrix whose cells contain PPMI scores
shifted by a global constant (see discussion of shifted PPMI in section 2.3.3.1).

56In the skip-gram implementation, the network is trained relying on both positive and negative
evidence. The weights are adjusted to maximize the similarity between predicted and observed output
(positive sample), and to minimize the similarity between the predicted output and a number of context
words that did not co-occur with the target (negative sample). Negative sampling involves a set of
training parameters (size of the negative sample, frequency criteria for selecting candidates of the
sample) that are not discussed here for reasons of space and and because this work is not concerned
with word2vec.

57The label “embedding” is to be shared with the output of any dimensionality reduction method
which projects a sparse, high dimensional representation into a dense, reduced representation (e.g.,
SVD, NMF).
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2.4.3 Signal-vectors vs. co-occurrence based DSMs

In the previous sections, three DSM implementations (BEAGLE, RI, and word2vec)
were described, which learn low-dimensional semantic representations (memory vectors)
on the basis of randomly generated vectors employed as word signatures (signal vectors).
In this section, we elaborate on the comparison between those models and bag-of-words
DSMs and motivate the choice of keeping the focus of this thesis on the latter.

Let us start from the status of signal-vector based DSMs as dimensionality reduction
methods. Differently from bag-of-words DSMs and, to a lesser extent, SVD or NMF
(see 2.3.3.2) the dimensions of RI and word2vec58 are opaque and not interpretable. A
possible strategy for the characterization of the semantic representations encoded in the
embeddings is the extraction of the nearest neighbors for a set of target words; word
neighborhoods can be qualitatively analyzed to infer the meaning components domi-
nating the semantic representations. Within the word2vec framework, an alternative
based on a skip-gram model trained on parsed data is proposed by Levy & Goldberg
(2014a). In this case, the input of the network is the one-hot representation of the target
(e.g., dog) and the output layer encodes dependency-typed contexts (e.g., subject-bark,
coordination-cat). Levy & Goldberg (2014a) identify the most salient dimensions for a
target word by presenting the network with the target’s one-hot vector, and letting the
activation spread to the output layer: the most activated dimensions in the output layer
are considered the most salient meaning components associated to the target. Albeit
interesting, especially for the introduction of dependency-based contexts, this solution
rests on the qualitative difference between the input and the output but it does not
address the issue of interpreting the dimensions of the embeddings.

We now turn to the comparison of bag-of-words DSMs with BEAGLE and RI with
respect to incrementality and word order encoding. Neither of those features are at
odds with a bag-of-words implementation. As a matter of fact, bag-of-words DSMs
are extracted in a completely incremental fashion: a co-occurrence matrix containing
raw frequency counts is a full-fledged DSM, and the collection procedure is incremental
(and equivalent to a RI model with one-hot vectors as signal vectors), and testable at
intermediate stages of training.59 The crucial difference between bag-of-words and RI in
their approach to the collection of co-occurrences rests in their memory consumption:
updating a co-occurrence matrix containing many thousands of dimensions (bag-of-
words DSM) is computationally way more costly than summing vectors with hundreds,
or at most few thousands, dimensions (RI). As far as word order encoding is concerned,
in section 2.3.2.1 we described the different ways in which the position of a feature word
relative to the target can be encoded in a bag-of-words DSM. Even if a co-occurrence
matrix containing fine-grained positional features (position and distance of the context
relative to the target, e.g., two words to the right) is not equivalent to the complex
n-gram representation encoded in BEAGLE or RPM, it can be employed to estimate
both semantic similarity and word transitions.

Despite the popularity of word2vec, bag-of-words models are still widely employed
if we consider the whole Computational Linguistics field and not only the NLP com-
munity; this is only partially due to the fact that bag-of-words DSM can be built easily

58The arguments put forward for RI can also be extended to BEAGLE. We do not list BEAGLE here
because it is a specific DSM implementation and not a dimensionality reduction method.

59Moreover, the incrementality of signal-vector models employing stopword lists based on frequency
counts is questionable.
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from co-occurrence data, without resorting to off-the-shelf packages like word2vec. An
additional reason is the lack of interpretable dimensions, a crucial limitation when deal-
ing with tasks or applications which rely on interpretable distributional features (e.g.,
the computation of inclusion measures for hypernym/hyponym identification described
in 2.1.3.2). An additional advantageous feature of the (count) bag-of-words approach to
co-occurrence is that, after one pass on the entire corpus, frequency information from
a bag-of-words matrix can be further manipulated, for example aggregating counts by
applying basis mapping (e.g., converting fine grained positional information into a sym-
metric context window).60

To conclude, a very pragmatic reason determined our choice of keeping the evaluation
focus on bag-of-words DSMs: when word2vec became popular, the project described
in this thesis had already been defined and experiments were running. Large-scale
evaluation work has to face concrete limitations (it is simply not possible to evaluate
everything) and count DSMs already provide a fairly good overview/understanding of
a sensible space of meta-parameters; the same does not hold for for neural embeddings,
where new architectures (often as slight variations on previous models) keep on being
devised, making the identification of a clear-cut parameter space particularly difficult.

60In its standard implementation as a dimensionality reduction technique, RI applies to the co-
occurrence information collected in a bag-of-words DSM.
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Evaluation of DSMs

The previous chapter characterized Distributional Semantic Models in terms of their
cognitive and linguistic motivations, as well as their formal properties and implementa-
tion details; the potential limitations of DSMs as full-fledged models of semantics have
also been pointed out: as discussed in section 2.1.3.2, distributional representations may
be considered unsatisfactory because the type of similarity they encode is too broad.
This issue is aptly described by Sahlgren (2008, p. 37): “The distributional hypothesis,
as motivated by the works of Zellig Harris, is a strong methodological claim with a weak
semantic foundation. It states that differences of meaning correlate with differences of
distribution, but it neither specifies what kind of distributional information we should
look for, nor what kind of meaning differences it mediates.” This chapter addresses the
evaluation of DSMs, which brings together the two sides of the methodological issue
raised by Sahlgren: what kind of meaning differences distributional information can
capture and what kind of distributional information is necessary for that. Instead of
operating on the level of general similarity that is supposed to be mirrored by some
general distribution, DSM evaluation narrows down the broadness of the distributional
hypothesis by comparing the performance of specific distributional information (in the
form of specific DSM configurations) against the manifestation of specific types of sim-
ilarity (encoded in the form of various similarity tasks). An evaluation task can be
interpreted as the formulation of a hypothesis on the nature of the DSM representations
in terms of a specific experimental setting: for example, the hypothesis that simi-
larity between word distributional representations is akin to synonymy can be tested in
a multiple choice task based on datasets like TOEFL (Landauer & Dumais, 1997) or
ESL (Turney, 2001). The definition of an evaluation task also includes the appropriate
performance measure(s), for example accuracy in a multiple choice task or correlation
in the task of modeling similarity judgments. Note that while tasks are defined for
specific datasets, the definition of an evaluation task is in principle independent of the
employed dataset; it is the dataset which contributes the “type of similarity” tested in
specific experiments (i.e., synonymy, antonymy, topical relatedness, etc.).

The aim of this chapter is to provide a taxonomy of the tasks employed for the
evaluation of a DSM, as well as an overview of the state of the art for the tasks in the
focus of this dissertation. There are a number of classification dimensions according
to which a taxonomy of DSM evaluation tasks can be structured; in section 3.1 we
discuss these classification dimensions and motivate the criteria according to which the
reminder of the chapter will be structured. Section 3.2 will discuss semantic similarity
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tasks and section 3.3 will summarize the literature on DSM evaluation on cognitive
modeling tasks. Finally, section 3.4 will describe an evaluation task devised for the
purpose of this dissertation, namely multiple choice on semantic priming datasets, and
will provide more details on the corresponding datasets.

3.1 Classification criteria

Let us start with the distinction between intrinsic and extrinsic evaluation, which
modulates the immediacy between the distributional representation and the quantifi-
cation of DSM performance. A task is intrinsic when the semantic representations
produced by the evaluated DSM are directly tested on their capability of capturing
the type of similarity (e.g, synonymy, antonymy, etc.) encoded in the selected dataset;
there are no intermediate steps between the computation of the DSM representations
and their evaluation, therefore the variation in performance is exclusively determined
by the manipulation of the DSM parameters. On the other hand, extrinsic evaluation of
DSMs targets the impact of different vector representations on the performance of NLP
systems of which DSM is only a pipeline component, e.g., a machine translation sys-
tem; performance is measured according to the criteria of the task at issue (e.g., BLEU
score e.g., (Papineni et al., 2002) for translation quality), and variation in performance
cannot be ascribed to the DSM parameters only, as it is likely to be determined by
the interaction between specific DSM features and features of other components of the
pipeline. Note that the majority of the DSM applications described in section 2.1.3
(e.g., word-sense disambiguation, modeling of semantic compositionality) are still to be
classified under the label of intrinsic evaluation: despite the more complex operations
performed on DSM vectors, the output of such operations is still employed for a direct
quantification of similarity. Given that the goal of this thesis is to achieve a thorough
understanding of the effects of different DSM parameters on the performance of the
models, we will focus on intrinsic tasks and turn to extrinsic evaluation only in the end
of chapter 8.

A further criterion for the classification of DSM evaluation tasks concerns the de-
sign of the evaluation setting, and it contrasts tasks targeting similarity between single
words from tasks targeting similarity between word pairs. Similarity between single
words (e.g., dog and wolf ) is quantified as the degree of correspondence between the
properties of the target items. Standard semantic similarity tasks such as the multiple
choice synonymy test or prediction or similarity judgments are examples of this type of
task. Similarity between word pairs (e.g., mason:stone and carpenter:wood) is quanti-
fied as the degree of correspondence between the relations holding between the members
of one pair and the relations holding between the members of the other pair. Examples
of this type of task are modeling of analogies (Turney, 2008; Mikolov, Chen, et al., 2013;
Mikolov, Wen-tau, & Zweig, 2013; Mikolov, Sutskever, et al., 2013) as well as supervised
classification of semantic relations. Note that the distinction between attributional and
relational similarity introduced by Turney (2006) conflates task design (single words vs.
word pairs) with the nature of the modeled relations. It is, however, desirable to keep
the two classification criteria separate and let specific evaluation datasets determine
which of the many “similarities” is targeted in a specific modeling experiment. Eval-
uation tasks of either design can target any type of semantic relation: paradigmatic
(synonymy, antonymy, hypernymy, etc.) or syntagmatic (typical actions, patients, in-
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struments, etc.). This thesis focuses on similarity between single words, mainly because
of practical reasons: a thorough understanding of the parameter space governing word
similarity is a necessary first step before moving on to similarity between word pairs; the
extension of the evaluation methodology proposed in this thesis to analogy or supervised
classification of semantic relations is left for future work.

A third criterion for the classification for DSM evaluation concerns the type of
the modeled data, and distinguishes tasks based on semantic similarity tests from
cognitive modeling tasks based on behavioral data. All evaluation tasks which are
usually referred to as “standard” fall into the first category: multiple choice, word
similarity, or analogy datasets are lists of word pairs which stand to each other in a
specific “type of similarity”; DSMs are evaluated in their capacity of solving the test in
the same way a human subject would. By contrast, cognitive modeling tasks evaluate
DSMs in their capacity of predicting speakers’ behavior in psycholinguistic experiments
(which have in turn been designed to test specific types of similarity). In practice, the
starting point of this type of evaluation is identical to that of the standard tasks: a list
of words or word pairs selected according to certain criteria; crucially, what is tested in
this case is not whether specific DSM representations can account for the criteria which
led to the collection of the experimental items (i.e., the experimenter’s hypothesis), but
whether they account for the actual experimental result (i.e., human behavior).

3.2 Semantic similarity tests

In this section, we provide an overview to semantic similarity tests for DSMs, which are
considered standard in DSM evaluation. Note that this list is not an exhaustive one:
in fact, we keep our focus on tasks and datasets which are relevant for this thesis, with
some exceptions. We therefore leave aside tasks based on attributional similarity (e.g.,
analogy prediction), as well as tasks targeting sentence-level similarity. Classification
of semantic relations as well as more linguistically informed tasks such as modeling of
entailment, reference, and compositionality have been summarized in section 2.1.3.

3.2.1 Multiple-choice (synonymy) test

In a multiple-choice task, the DSM is presented with a target word (e.g., levied) and
a set of candidates for a specific semantic relation, usually synonymy (e.g., imposed,
believed, requested, correlated). The task for the DSM is to choose the best candidate
(in our running example, imposed). Performance is quantified in terms of accuracy.

Datasets The most employed datasets for multiple-choice evaluation are TOEFL,
acronym of Test Of English as a Foreign Language, introduced by Landauer & Dumais
(1997) and ESL, acronym of English as a Second Language, introduced Turney (2001).
TOEFL contains 80 synonym questions composed by a target word and four candidates.
ESL contains 50 synonym questions with 4 choices per question and a sentence context
in which the correct answer needs to fit.

State of the Art The state of the art performance for TOEFL, 100%, is by Bullinaria
& Levy (2012); it was achieved by employing a window-based DSM trained on UkWaC,
reduced with PCA and with manipulation of Caron p (cf. section 2.3.3.2). As for ESL,
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the state of the art of corpus-based systems, 82%, is by Terra & Clarke (2003), who in
turn implement the PMI-IR algorithm by Turney (2001).

3.2.2 Prediction of similarity ratings

The prediction of human similarity ratings is implemented in terms of a mathematical
comparison between word similarity (or relatedness) as predicted by a DSM and the
similarity (or relatedness) judgments produced by human annotators. In this task, DSM
performance is quantified in terms of Spearman or Pearson correlation. Note that we
decided to list the modeling of similarity judgments among the standard tasks: such
choice (which can be questioned) is determined by the consideration that while experi-
mental subjects of priming, reading, EEG, or free association norms are not instructed
to focus on a specific “type of similarity”, this is the case for the subjects involved in
the collection of similarity/relatedness judgments.

Datasets The classic dataset for correlation to human ratings is the Rubenstein &
Goodenough (RG65) dataset, which contains 65 items rated for similarity on a scale
between 0 and 4 (Rubenstein & Goodenough, 1965). Next, comes the WordSim-353
dataset (WS353), which contains 353 noun pairs rated on a scale between 0 and 10
(Finkelstein et al., 2002). WordSim-353 comprises two subsets and it contains ratings
for both similarity and relatedness. A more recent dataset is MEN, introduced by Bruni
et al. (2013): it contains 3000 word pairs annotated on a 50 point scale as a result of a
crowdsourcing experiment.

State of the Art The state of the art on RG65 is 0.86 rho, achieved by Hassan &
Mihalcea (2011) by using a hybrid approach (word sense disambiguation and knowledge-
base linking). State of the art on WS353 is 0.81 rho, held by the hybrid model by Halawi
et al. (2012) who augmented a neural model with WordNet information. Finally, state
of the art on MEN, 0.80 rho, has been achieved by the word2vec embeddings in the
comparative evaluation by Baroni, Dinu, & Kruszewski (2014).

3.2.3 Clustering

Distributional relatedness between words is used to assign them to certain pre-defined
semantic classes. From a lexical semantic point of view, the targeted relation is co-
hyponymy. Performance in this task is quantified in terms of purity and entropy.

Datasets The clustering datasets evaluated in Baroni & Lenci (2010) represent the
reference for DSM evaluation in this task. Their selection includes the Almuhareb-
Poesio set (henceforth, AP), containing 402 nouns grouped into 21 classes (Almuhareb,
2006); the Battig set (henceforth, BATTIG), containing 83 concrete nouns grouped into
10 classes (Van Overschelde et al., 2004); the ESSLLI 2008 set (henceforth, ESSLLI),
containing 44 concrete nouns grouped into 6 classes;1 and the Mitchell set (henceforth,
MITCHELL), containing 60 nouns grouped into 12 classes (T. Mitchell et al., 2008).

1http://wordspace.collocations.de/doku.php/data:esslli2008:concrete nouns

categorization

http://wordspace.collocations.de/doku.php/data:esslli2008:concrete_nouns_categorization
http://wordspace.collocations.de/doku.php/data:esslli2008:concrete_nouns_categorization
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State of the Art The state of the art for AP corresponds to a purity of 0.79, achieved
by the syntax-based model by Rothenhäusler & Schütze (2009). As for BATTIG, best
performance is held by the neural embeddings in Baroni, Dinu, & Kruszewski (2014).
State of the art for ESSLLI is held by the approach of Katrenko & Adriaans (2008),
which consists in the application of manually defined patterns to a large web corpus.
Finally, the SVD-tuned window-based DSM by Bullinaria & Levy (2012) holds the state
of the art for the MITCHELL dataset, with a purity of 0.94.

3.3 Cognitive modeling

Cognitive modeling evaluation is challenging from many points of view. First, the mod-
eled data are typically continuous (reaction times, EEG signal) or, when categorical
(free association norms), much less constrained compared to the data used in standard
tasks. Second, behavioral data may just not have confirmed the experimenter’s hypoth-
esis, but a DSM could still find an effect. In this case, interpretation of DSM modeling
results becomes particularly tricky: is it that the DSM is wrong and is overpredicting
effects, or is it indeed capturing an additional real effect which was not targeted in the
experimental setting? Third, speaker’s behavior is the result of the interplay of many
factors which, in the case of continuous data, get accounted for by applying regression
analysis settings. Such settings employ a rich set of predictors (e.g., random effects for
subject or items, frequency effects, etc.), which already account for a lot of variance in
the data. Therefore, it is not straightforward that the DSM can provide an additional
interpretation level, because it is possible that a part of its potential contribution is
already accounted for by some other predictors. To sum up, while quantifying perfor-
mance of DSMs is straightforward in standard tasks, it is less so in the case of cognitive
modeling tasks.

In the following sections, we will elaborate on two cognitive tasks which will be
in the experimental focus of this dissertation: the modeling of free association norms
and of that of priming datasets. Once again, this is not an exhaustive selection: the
modeling of brain data, for example, falls out of the scope of this dissertation. For an
overview, we refer the reader to Bullinaria & Levy (2013) and references therein.

3.3.1 Prediction of free association norms

A free association for a stimulus word is “the first word that comes to your mind when
you hear...”. Free associations are considered as a cue into the organization of the
mental lexicon. There has always been debate, however, concerning the nature of the
cognitive processes regulating free associations: while earlier theories considered free
associations as the result of learning by contiguity (James, 1890), later theories have
accounted for them in terms of symbolic processes and complex semantic structures
(H. Clark, 1970); empirical annotation contributed to the characterization of free as-
sociates as a mixture of syntagmatic relations, which hold between contiguous word,
and paradigmatic relations, which hold between semantically related words (Brown &
Berko, 1960; Fitzpatrick, 2007).

Free association datasets represent an excellent starting point for DSM modeling,
as they are cognitively motivated (hence semantically plausible) and usually large, and
thus allow for robust evaluation and for a better selection of the distractors.



Chapter 3. Evaluation of DSMs 70

Based on a free association dataset, is it possible to set up two types of evaluation
tasks: in a regular free association task, the corpus-based model needs to generate the
response for a specific stimulus (cat→? significant→?); in the reverse free association
task, the model is shown a number of response words and needs to guess the correspond-
ing stimulus ( ? → away, minded, gone, present, ill). A problem with such evaluation
setups is the presence of an unrestricted set of possible responses in combination with a
discrete association task, which requires the algorithm to pick exactly the right answer
out of tens of thousands of possible responses. This feature makes this task much more
difficult than the multiple-choice tasks often used to evaluate distributional semantic
models. Additionally, free association datasets have also been employed in a classifica-
tion setting, in which given a stimulus word and a series of candidate responses, the
corpus-based model needs to identify the most frequent response to the stimulus (i.e.,
the word that was produced by the highest number of subjects as a response).

Datasets The largest free-association datasets are the Edinburgh Associative The-
saurus (EAT, 8210 stimuli, 100 subjects) by Kiss et al. (1973) and the University of
South Florida Free Association Norms (USF, 5019 stimuli, 6000 subjects) by Nelson et
al. (2004).

State of the art A task derived from the EAT norms was used in the ESSLLI 2008
shared task.2 Results from first-order co-occurrence data (collocations) turned out to
be much better than those from second-order DSMs (vector similarity), in line with
previous findings by Rapp (2002) and Wettler et al. (2005).

A similar picture emerges from studies on the (reverse) multiword association task.
Models based on first-order co-occurrence outperform models based on vector similarity.
This superiority, however, has not been validated via a direct comparison: results were
obtained by studies with different features and goals (see Rapp (2014) for a review;
see Griffiths et al. (2007) for an evaluation of models based on Latent Semantic Anal-
ysis). A specific feature of successful studies on the multiword association task is that
they introduce an element of directionality (Rapp, 2013, 2014), which allows a correct
implementation of the directionality of the modeled effects (from stimulus to response).

The CogALex shared task 2014 (Rapp & Zock, 2014) has proposed a reverse mul-
tiword association task based on a set of 2000 stimuli from EAT. The task was very
challenging: the winning system, which used first-order statistics to re-rank the output
of a “standard” DSM, only achieved 35% accuracy (Ghosh et al., 2014). In chapter 8
we will discuss our contribution to the CogALex shared task (Lapesa & Evert, 2014b).

3.3.2 Priming: modeling of reaction times

Priming datasets contain collections of word triples: a target word (e.g., dog); a consis-
tent prime, i.e., a word standing in a specific semantic relation to the target (e.g., cat
for the cohyponymy relation); and an inconsistent prime, i.e., a word that is unrelated
to the target (e.g., stone). For each pair of target and prime, priming datasets also
list the average RTs or, in the fortunate cases, the full set of measurements (with data
per subject). Note that experimental items from priming experiments can be used in

2http://wordspace.collocations.de/doku.php/data:esslli2008:correlation with free

association norms



Chapter 3. Evaluation of DSMs 71

a categorical setting (e.g., multiple choice task presented in chapter 8), more akin to
standard tasks than to “proper” cognitive modeling: in this case, DSM evaluation can
be seen as a corpus-based test of the quality of the experimental items.

Overall, the approaches to the corpus-based evaluation of priming fall into three
categories:

• Pattern replication: given a set of experimental items, the similarities from the
corpus-based model are expected to reproduce the pattern of experimental re-
sults. This approach is usually implemented in form of a statistical test to check
for significant differences between congruent and incongruent conditions (Padó &
Lapata, 2007; Hare et al., 2009).

• Correlation between DSM similarities and RTs, as in Lapesa & Evert (2013a).

• Item-based prediction of RTs or priming effect (difference between the congruent
and the incongruent condition) based on DSM as well as other covariates. An
example of such approach is the study by Hutchison et al. (2008) described below
and the experiments by Lapesa & Evert (2013c) summarized in section 9.1.

Datasets & State of the Art In general, priming datasets have not been sys-
tematically employed in DSM evaluation. The only exception is the Hodgson dataset
(Hodgson, 1991), whose priming effects have been modeled in terms of a comparison
between prime-target pairs, in a pattern replication task (McDonald & Brew, 2004;
Padó & Lapata, 2007; Herdağdelen et al., 2009). This dataset is, however, fairly small
(143 items covering 6 relations). It is not considered in the present work because, given
the number of parameters we planned to evaluate, it would have been difficult to build
robust generalizations from the evaluation results.

Hutchison et al. (2008) present the result of item-based prediction of RTs on 300
target-prime pairs from the English Lexicon Project.3 Among the employed set of
predictors, distributional models are represented by LSA similarity, which turns out to
be not significant. Needless to say, DSM similarity is not just LSA (and the aim of this
dissertation is precisely do show how “different” DSM similarities can be): big datasets
such as the Semantic Priming Project4 or the English Lexicon Project lend themselves
perfectly to large scale evaluations of DSMs on the item-based prediction of RTs.

3.4 Multiple choice on priming datasets

In this dissertation, we employ the experimental items from a number of semantic
priming studies to evaluate our DSMs in a multiple choice setting.

Word triples from priming datasets represent perfect candidates for a multiple-choice
task, as we can expect that distributional relatedness between the target and the consis-
tent prime is higher than the one between the target and the inconsistent prime. Besides
that, priming studies often provide large amounts of reliable experimental items, which
ensures a good quality of the distractors (the inconsistent primes). The task is easier
here compared to TOEFL because the choice of the best candidate is made between 2
candidates instead of 5, but the size of the datasets compensates for that. Finally, a

3http://elexicon.wustl.edu/
4http://spp.montana.edu/
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note of caution is to be made concerning the interpretation of the results, which should
not be taken to reflect the capability of DSMs in the modeling of the actual priming
effects, but as a test of the semantic information encoded in the experimental items.

We gathered datasets from a number of priming experiments which test different
types of semantic relations. We present evaluation results on six datasets:

• The first five datasets are derived from the Semantic Priming Project (SPP,
Hutchison et al., 2013). To the best of our knowledge, our study represents the
first large-scale DSM evaluation on items from this dataset. The original dataset
consists of 1661 word triples collected within a large-scale project aiming at char-
acterizing English words in terms of a set of lexical and associative/semantic
characteristics, along with behavioral data from visual lexical decision and nam-
ing studies.We manually discarded all triples containing proper names, adverbs or
inflected words. We then selected five subsets involving different semantic rela-
tions, namely:

– synonyms (SYN): 436 items (e.g., frigid–cold as consistent prime and target);

– antonyms (ANT): 135 items (e.g., hot–cold);

– cohyponyms (COH): 159 items (e.g., table–chair);

– forward phrasal associates (FPA): 144 items (e.g., help–wanted);

– backward phrasal associates (BPA): 89 items (e.g., wanted–help).

• The sixth dataset is the Generalized Event Knowledge dataset (GEK). It
contains a collection of 404 triples (target, consistent prime, inconsistent prime)
from three priming studies conducted to demonstrate that event knowledge is
responsible for facilitation of the processing of words that denote events and their
participants (Ferretti et al., 2001; McRae, Hare, et al., 2005; Hare et al., 2009).5

In more detail, the dataset contains items which test:

– Verb-Noun priming (Ferretti et al., 2001): 118 items with 5 thematic rela-
tions, namely agent (e.g., pay–customer), patient (e.g., invite–guest), feature
of the patient (e.g., comfort–upset), instrument (e.g., cut–rag), location (e.g.,
confess–court).

– Noun-Verb priming (McRae, Hare, et al., 2005): 116 items with 4 thematic re-
lations, namely agent (e.g., reporter–interview), patient (e.g., bottle–recycle),
instrument (e.g., chainsaw–cut), location (e.g., beach–tan).

– Noun-Noun priming (Hare et al., 2009): 170 items with 7 thematic rela-
tions, namely event-people (e.g., trial–judge), event-thing (e.g., war–gun),
location-living (e.g., gym–athlete), location-thing (e.g., garage–car), people-
instrument (e.g., hiker–compass), instrument-people (e.g., razor–barber), instrument-
thing (e.g., scissors–hair).

5The GEK dataset has already been evaluated in Lapesa & Evert (2013a,b,c). These studies should
be considered as psycholinguistically oriented pilots with respect to the work presented in this thesis.
They adopted a different (more restricted) set of DSM parameters and evaluation tasks (multiple choice
classification on experimental items, correlation between distributional relatedness and reaction times,
item-based prediction of reaction times based on distributional information), and take a finer-grained
perspective on the GEK dataset (which is analyzed per subset and per thematic relation). For a
summary of the findings of these studies, refer to section 9.1.
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Experimental setting

When it comes to DSM evaluation, there are always more parameters and tasks to ex-
plore. Evaluation studies, however, do face practical issues and the choice of parameters
(e.g., window size) and parameter values (e.g., one, ten, twenty words) is determined
by the interplay of many factors, for example: practical considerations concerning what
is computationally feasible; the state of the art in the field and the designer’s feeling
of what is yet to be explored or deserves a more thorough exploration; the nature of
the datasets to be modeled. The computational demands of the selected evaluation
methodology also determine the shape of the parameter space; we will elaborate more
on the property of different evaluation methods in chapter 5, but we anticipate here
that they do differ significantly in their computational costs depending on whether they
require a fully factorial design (i.e, carrying out experiments with all parameter value
combinations) or approach evaluation incrementally (i.e., given a set of parameters {a,
b, c} find the best value for a, set it, proceed to b, and then to c).

The aim of this chapter is to spell out the experimental setting of the evaluation
studies presented in chapter 6 (term-term DSMs) and 7 (dependency-based DSMs),
and further explored in chapter 8. The structure of the chapter is as follows. Sec-
tions 4.1-4.4 describe the design choices concerning parameters and parameter values
involved in the DSM extraction, manipulation, and quantification of similarity.
The structure of sections 4.1-4.4 mirrors that of section 2.3, in which DSMs parame-
ters are characterized both theoretically and in terms of their most explored values in
comparable large-scale studies. Section 4.6 focusses on the implementation details con-
cerning the extraction and evaluation of the DSMs, and it describes the computational
tools employed for the experiments. Building on the introduction to evaluation tasks
and datasets presented in chapter 3, section 4.5 outlines the selection of tasks and
datasets, the choice of the measure for DSM performance, as well as the task-specific
tools employed. Section 4.7 concludes the chapter.

4.1 Corpus selection and pre-processing

In the experiments reported in this thesis, DSMs were built from the following selection
of corpora (refer to section 2.3.1 for a detailed description of the corpora):

1. Source corpus: British National Corpus1, WaCkypedia EN (2009 dump) and

1http://www.natcorp.ox.ac.uk/
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ukWaC;2

Window-based models were built relying on the part-of-speech and lemma annota-
tion available with the original distribution of the corpora. For the dependency-based
experiments, pre-processing involved the manipulation of two further parameters:

1. Annotation pipeline (part-of-speech tagging and dependency parsing): Tree-
Tagger (Schmid, 1995) and MALT parser (Nivre, 2003)3; Stanford CoreNLP (ver-
sion 3.5.1), bidirectional part-of-speech tagger and Neural Network parser (Chen
& Manning, 2014);

2. Format of the (Stanford) dependency relations: Basic vs. collapsed with
propagation of conjuncts (De Marneffe et al., 2006; De Marneffe & Manning, 2008).

In what follows, we provide more details concerning these parameters and discuss
the choices made with respect to their values.

Format of the Dependency Relations Dependency relations and their labels
represent the building blocks of dependency paths, which are in turn the context-defining
criterion in the extraction of co-occurrences for dependency-based DSMs. We selected
the Stanford typed dependencies (De Marneffe et al., 2006; De Marneffe & Manning,
2008) for reasons of replicability and comparability (they are widely used in NLP ap-
plications) and because of the richness of dependency styles available.4 Stanford typed
dependencies represent grammatical relationships in a sentence as triples of relations
between pairs of words (e.g., “dog” is the subject of “eat”), and they map directly into
a directed graph representation in which words are nodes and dependency relations are
labelled edges.

Stanford typed dependencies allow the user to choose among different styles for the
representation of the dependencies, ranging from more surface-oriented representations
to more lexicalized semantically interpreted ones.

The most surface-oriented style of Stanford dependencies is the basic representa-
tion, in which each token corresponds to a node in the dependency graph. An example
of a dependency graph labelled with Stanford basic dependencies is shown in figure 4.1:5

2Both ukWaC and WaCkypedia EN are available from http://wacky.sslmit.unibo.it/doku.php

?id=corpora.
3The original distributions of Wackypedia EN and UkWaC are already annotated with Tree-Tagger

and MALT parser (version 1.8.1). Since annotation with those tools is not publicly available for the
BNC and we wanted to rely on the very same annotation pipeline (same versions of tagger and parser,
same models), we decided to repeat the tagging and parsing process also for the other two corpora.

4Starting from version 3.5.2 (end of April, 2014), Stanford CoreNLP switched to Universal De-
pendencies (http://universaldependencies.org/) as a default representation for the output of parser
(Stanford Dependencies are still available). Universal Dependencies (UDs) aim at providing a language-
independent inventory of grammatical categories which to facilitate cross-lingual comparison. Since
then, further work on the Stanford parsers has focussed on UDs; in particular, two further versions of
UDs have been developed (enhanced and enhanced++), which extend the basic UD format in a way
(roughly) equivalent way to the way collapsed and CCProcessed extend the standard dependencies,
which are adopted in this thesis. For more details on the enhanced/enhanced++ UDs and a comparison
to the collapsed/CCprocessed format, refer to Schuster & Manning (2016).

5For a detailed description of the dependency relations, refer to the Stanford Typed Dependencies
manual (De Marneffe & Manning, 2008).

http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://wacky.sslmit.unibo.it/doku.php?id=corpora


Chapter 4. Experimental setting 75

Bills

on

prep

ports

pobj

and

cc

immigration

conj

were

submitted

nsubjpass auxpass

by

prep

Brownback

pobj

Senator

nn

Republican

appos

of

prep

Kansas

pobj

Figure 1: An example of a typed dependency parse for the
sentence “Bills on ports and immigration were submitted
by Senator Brownback, Republican of Kansas.”

of Kansas” in Figure 1 illustrates the appos relation be-
tween “Brownback” and “Republican” and the nn relation
between “Brownback” and “Senator”. The num relation
qualifies a number that serves to modify the meaning of a
NP: num(sheep, 3) in “Sam ate 3 sheep”, whereas the num-
ber relation captures the internal structure of multi-word
numbers like number(5, million) in “I lost 5 million dol-
lars”. The abbrev relation indicates that MIT is the abbre-
viation for “Massachusetts Institute of Technology” in the
following sentence: “The Massachusetts Institute of Tech-
nology (MIT) is located in Boston”. Such information can
be useful in the context of a textual inference application,
as explained below.

3. Extraction method
Our technique for producing typed dependencies is essen-
tially based on rules – or patterns – applied on phrase struc-
ture trees. The method is general, but requires appropriate
rules for each language and treebank representation. Here
we present details only for Penn Treebank English, but we
have also developed a similar process for Penn Treebank
Chinese. The method for generating typed dependencies
has two phases: dependency extraction and dependency
typing. The dependency extraction phase is quite simple.
First, a sentence is parsed with a phrase structure gram-
mar parser. Any Penn Treebank parser could be used for
the process described here, but in practice we are using
the Stanford parser (Klein and Manning, 2003), a high-
accuracy statistical phrase structure parser trained on the
Penn Wall Street Journal Treebank. The head of each con-
stituent of the sentence is then identified, using rules akin to
the Collins head rules, but modified to retrieve the seman-
tic head of the constituent rather than the syntactic head.
While heads chosen for phrase structure parsing do not re-
ally matter, retrieving sensible heads is crucial for extract-
ing semantically appropriate dependencies. For example,
in relative clauses, the Collins rule will choose as head the

dep - dependent
aux - auxiliary

auxpass - passive auxiliary
cop - copula

conj - conjunct
cc - coordination
arg - argument

subj - subject
nsubj - nominal subject

nsubjpass - passive nominal subject
csubj - clausal subject

comp - complement
obj - object

dobj - direct object
iobj - indirect object
pobj - object of preposition

attr - attributive
ccomp - clausal complement with internal subject
xcomp - clausal complement with external subject
compl - complementizer
mark - marker (word introducing an advcl)
rel - relative (word introducing a rcmod)
acomp - adjectival complement

agent - agent
ref - referent
expl - expletive (expletive there)
mod - modifier

advcl - adverbial clause modifier
purpcl - purpose clause modifier
tmod - temporal modifier
rcmod - relative clause modifier
amod - adjectival modifier
infmod - infinitival modifier
partmod - participial modifier
num - numeric modifier
number - element of compound number
appos - appositional modifier
nn - noun compound modifier
abbrev - abbreviation modifier
advmod - adverbial modifier

neg - negation modifier
poss - possession modifier
possessive - possessive modifier (’s)
prt - phrasal verb particle
det - determiner
prep - prepositional modifier

sdep - semantic dependent
xsubj - controlling subject

Figure 2: The grammatical relation hierarchy.

pronoun introducing the relative clause. As all the other
words in the relative clause will depend on the head, it
makes more sense to choose the verb as head when deter-
mining dependencies. In general, we prefer content words
as heads, and have auxiliaries, complementizers, etc. be de-
pendents of them. Another example concerns NPs with
ambiguous structure or multiple heads which are annotated

Figure 4.1: Stanford typed dependencies - Basic representation - Dependency graph for
the sentence: “Bills on ports and immigration were submitted by Senator Brownback,
Republican of Kansas” (De Marneffe et al., 2006, p. 2)

As an alternative to the basic variant, Stanford type dependencies provide a collapsed
format, a more semantically interpreted representation aimed at simplifying the patterns
for relation extraction. In the collapsed representation:

• Dependencies involving prepositions and conjunctions are collapsed to direct de-
pendencies between content words;

• Multi-word constructions functioning as prepositions (e.g., “because of”, “on be-
half of”) are collapsed as a single dependency link.

Figure 4.2 shows the collapsed dependency graph for the sentence in figure 4.1.
A comparison between the two dependency graphs shows how preposition collapsing
turned the two-step dependency (prep, preposition, and pobj, prepositional object)
connecting “Bills”, “on”, and “ports” into a one-step dependency, explicitly encoding
the preposition in the dependency label: prep on. The same collapsing procedure also
affected “submitted by Brownback” (prep by) and “Republican of Kansas” (prep of).
Figure 4.2 also shows how the conjunction relation (conj) between “ports” and “immi-
gration” gets updated to a lexicalized conjunction relation (conj and).

Another difference between the basic and collapsed representation is the treatment
of relative clauses. The comparison between figure 4.3 and 4.4 shows how the informa-
tion concerning the referent of a relative clause is exploited to introduce a direct relation
between the verb of the relative clause and the noun heading the relative clause, intro-
ducing a subject (nsubj) relation between “man” and “love”.

Stanford typed dependencies also offer the possibility of propagating dependencies
involving conjuncts: this representation builds upon the collapsed one, and is referred
to as CCprocessed. Figure 4.5 shows the collapsed and propagated dependency graph
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with a flat structure in the Penn Treebank:

(NP the new phone book and tour guide)

Using the Collins rule, the head for this example is the word
“guide”, and all the words in the NP depend on it. In or-
der to find semantically relevant dependencies, we need to
identify two heads, “book” and “guide”. We will then get
the right dependencies (the noun “book” still has primacy
as a governing verb will link to it, but this seems reason-
able):

nn(book, phone)
nn(guide, tour)
CC and(book, guide)
amod(book, new)
det(book, the)

It is essential in such cases to determine heads that will en-
able us to find the correct dependencies.
In the second phase, we label each of the dependencies ex-
tracted with a grammatical relation which is as specific as
possible. For each grammatical relation, we define one or
more patterns over the phrase structure parse tree (using the
tree-expression syntax defined by tregex (Levy and An-
drew, 2006)). Conceptually, each pattern is matched against
every tree node, and the matching pattern with the most spe-
cific grammatical relation is taken as the type of the depen-
dency (in practice, some optimizations are used to prune
the search).
Up until this point, if one assumes an extra “root” for the
sentence, then each word token is the dependent of one
thing, and the number of typed dependencies in the rep-
resentation is the same as the number of words in the sen-
tence. The dependency graph is a tree (a singly rooted di-
rected acyclic graph with no re-entrancies). However, for
some applications, it can be useful to regard some words,
such as prepositions and conjunctions, as themselves ex-
pressing a grammatical relation. This is achieved by col-
lapsing a pair of typed dependencies into a single typed
dependency, which is then labeled with a name based on
the word between the two dependencies (the word itself be-
ing excised from the dependency graph). This facility is
provided by our system, primarily targeted at prepositions,
conjunctions, and possessive clitics. As already mentioned,
Figure 1 shows the typed dependency parse obtained for
the sentence “Bills on ports and immigration were submit-
ted by Senator Brownback, Republican of Kansas.” Figure
5 gives the typed dependency parse for the same sentence
after the “collapsing” process, where the dependencies re-
lated to the prepositions “on” and “of” have been collapsed,
as well as the conjunct dependencies for “ports and immi-
gration”. Our system optionally provides another layer of
processing of conjunct dependencies which aims to pro-
duce a representation closer to the semantics of the sen-
tence. In our example, this processing will add a PREP on
dependency between “Bills” and “immigration” as shown
in Figure 6. An additional example of dependency struc-
ture modification is in a relative clause such as “I saw the
man who loves you”, the dependencies ref (man, who) and
nsubj(loves, who) will be extracted, as shown in Figure 3.
However it might be more useful to get nsubj(loves, man)

I

saw

nsubj

man

dobj

the

det

who

ref loves

rcmod

rel nsubj

you

dobj

Figure 3: An example of a typed dependency parse for the
sentence “I saw the man who loves you”.
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Figure 4: An example of a typed dependency parse for the
sentence “I saw the man who loves you”, with “collapsing”
turned on.

where the relative pronoun is replaced by its actual refer-
ent. In such case the output will be the one in Figure 4.
Note that as a result of this structure modification, a de-
pendency graph may actually become cyclic, as shown in
Figure 4. The usefulness of such structures depends on
downstream software being able to correctly handle cyclic
directed graphs.

4. Comparison
Direct comparison between our system and other depen-
dency parsers like Minipar and the Link Parser is compli-
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appos
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Figure 5: A dependency parse for the sentence “Bills on
ports and immigration were submitted by Senator Brown-
back, Republican of Kansas”, with “collapsing” turned on.

Figure 4.2: Stanford typed dependencies - Collapsed representation - Dependency graph
for the sentence: “Bills on ports and immigration were submitted by Senator Brownback,
Republican of Kansas” (De Marneffe et al., 2006, p. 3)

with a flat structure in the Penn Treebank:

(NP the new phone book and tour guide)

Using the Collins rule, the head for this example is the word
“guide”, and all the words in the NP depend on it. In or-
der to find semantically relevant dependencies, we need to
identify two heads, “book” and “guide”. We will then get
the right dependencies (the noun “book” still has primacy
as a governing verb will link to it, but this seems reason-
able):

nn(book, phone)
nn(guide, tour)
CC and(book, guide)
amod(book, new)
det(book, the)

It is essential in such cases to determine heads that will en-
able us to find the correct dependencies.
In the second phase, we label each of the dependencies ex-
tracted with a grammatical relation which is as specific as
possible. For each grammatical relation, we define one or
more patterns over the phrase structure parse tree (using the
tree-expression syntax defined by tregex (Levy and An-
drew, 2006)). Conceptually, each pattern is matched against
every tree node, and the matching pattern with the most spe-
cific grammatical relation is taken as the type of the depen-
dency (in practice, some optimizations are used to prune
the search).
Up until this point, if one assumes an extra “root” for the
sentence, then each word token is the dependent of one
thing, and the number of typed dependencies in the rep-
resentation is the same as the number of words in the sen-
tence. The dependency graph is a tree (a singly rooted di-
rected acyclic graph with no re-entrancies). However, for
some applications, it can be useful to regard some words,
such as prepositions and conjunctions, as themselves ex-
pressing a grammatical relation. This is achieved by col-
lapsing a pair of typed dependencies into a single typed
dependency, which is then labeled with a name based on
the word between the two dependencies (the word itself be-
ing excised from the dependency graph). This facility is
provided by our system, primarily targeted at prepositions,
conjunctions, and possessive clitics. As already mentioned,
Figure 1 shows the typed dependency parse obtained for
the sentence “Bills on ports and immigration were submit-
ted by Senator Brownback, Republican of Kansas.” Figure
5 gives the typed dependency parse for the same sentence
after the “collapsing” process, where the dependencies re-
lated to the prepositions “on” and “of” have been collapsed,
as well as the conjunct dependencies for “ports and immi-
gration”. Our system optionally provides another layer of
processing of conjunct dependencies which aims to pro-
duce a representation closer to the semantics of the sen-
tence. In our example, this processing will add a PREP on
dependency between “Bills” and “immigration” as shown
in Figure 6. An additional example of dependency struc-
ture modification is in a relative clause such as “I saw the
man who loves you”, the dependencies ref (man, who) and
nsubj(loves, who) will be extracted, as shown in Figure 3.
However it might be more useful to get nsubj(loves, man)
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Figure 3: An example of a typed dependency parse for the
sentence “I saw the man who loves you”.

I

saw

nsubj

man

dobj

the

det

loves

rcmod

who

nsubj

rel

you

dobj

Figure 4: An example of a typed dependency parse for the
sentence “I saw the man who loves you”, with “collapsing”
turned on.

where the relative pronoun is replaced by its actual refer-
ent. In such case the output will be the one in Figure 4.
Note that as a result of this structure modification, a de-
pendency graph may actually become cyclic, as shown in
Figure 4. The usefulness of such structures depends on
downstream software being able to correctly handle cyclic
directed graphs.

4. Comparison
Direct comparison between our system and other depen-
dency parsers like Minipar and the Link Parser is compli-
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Figure 5: A dependency parse for the sentence “Bills on
ports and immigration were submitted by Senator Brown-
back, Republican of Kansas”, with “collapsing” turned on.

Figure 4.3: Stanford typed dependencies - Basic representation - Dependency graph for
the sentence: “I saw the man who loves you” (De Marneffe et al., 2006, p. 3)

for the sentence in figure 4.2. The conjunction relation between “ports” and “immi-
gration” was exploited to introduce a prepositional relation (prep on) between “Bills”
and “immigration” (in addition to the original one between “Bills” and “ports”). In
addition, the prep by relation between “submitted” and “Brownback” received further
semantic interpretation thanks to the identification of a passive construction, and it was
turned into agent.

The brief survey of Stanford typed dependencies conducted in this section should
make it clear why we considered them as the best choice in terms of dependency rela-
tion schema for the extraction of syntax-based DSMs. We already discussed in section
2.3.2.3 how the degree of lexicalization and semantic interpretation of the dependency
graph represents a key point in the definition of context paths for dependency-based
DSMs: the availability of different Stanford dependency formats provided us with a ro-
bust, well-established and fully replicable strategy. For our experiments, we extracted
dependency-based co-occurrences based on the basic (surface-oriented, one node per
token in the dependency graph) and CCprocessed (collapsed, lexicalised dependency
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with a flat structure in the Penn Treebank:

(NP the new phone book and tour guide)

Using the Collins rule, the head for this example is the word
“guide”, and all the words in the NP depend on it. In or-
der to find semantically relevant dependencies, we need to
identify two heads, “book” and “guide”. We will then get
the right dependencies (the noun “book” still has primacy
as a governing verb will link to it, but this seems reason-
able):

nn(book, phone)
nn(guide, tour)
CC and(book, guide)
amod(book, new)
det(book, the)

It is essential in such cases to determine heads that will en-
able us to find the correct dependencies.
In the second phase, we label each of the dependencies ex-
tracted with a grammatical relation which is as specific as
possible. For each grammatical relation, we define one or
more patterns over the phrase structure parse tree (using the
tree-expression syntax defined by tregex (Levy and An-
drew, 2006)). Conceptually, each pattern is matched against
every tree node, and the matching pattern with the most spe-
cific grammatical relation is taken as the type of the depen-
dency (in practice, some optimizations are used to prune
the search).
Up until this point, if one assumes an extra “root” for the
sentence, then each word token is the dependent of one
thing, and the number of typed dependencies in the rep-
resentation is the same as the number of words in the sen-
tence. The dependency graph is a tree (a singly rooted di-
rected acyclic graph with no re-entrancies). However, for
some applications, it can be useful to regard some words,
such as prepositions and conjunctions, as themselves ex-
pressing a grammatical relation. This is achieved by col-
lapsing a pair of typed dependencies into a single typed
dependency, which is then labeled with a name based on
the word between the two dependencies (the word itself be-
ing excised from the dependency graph). This facility is
provided by our system, primarily targeted at prepositions,
conjunctions, and possessive clitics. As already mentioned,
Figure 1 shows the typed dependency parse obtained for
the sentence “Bills on ports and immigration were submit-
ted by Senator Brownback, Republican of Kansas.” Figure
5 gives the typed dependency parse for the same sentence
after the “collapsing” process, where the dependencies re-
lated to the prepositions “on” and “of” have been collapsed,
as well as the conjunct dependencies for “ports and immi-
gration”. Our system optionally provides another layer of
processing of conjunct dependencies which aims to pro-
duce a representation closer to the semantics of the sen-
tence. In our example, this processing will add a PREP on
dependency between “Bills” and “immigration” as shown
in Figure 6. An additional example of dependency struc-
ture modification is in a relative clause such as “I saw the
man who loves you”, the dependencies ref (man, who) and
nsubj(loves, who) will be extracted, as shown in Figure 3.
However it might be more useful to get nsubj(loves, man)

I

saw

nsubj

man

dobj

the

det

who

ref loves

rcmod

rel nsubj

you

dobj

Figure 3: An example of a typed dependency parse for the
sentence “I saw the man who loves you”.
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Figure 4: An example of a typed dependency parse for the
sentence “I saw the man who loves you”, with “collapsing”
turned on.

where the relative pronoun is replaced by its actual refer-
ent. In such case the output will be the one in Figure 4.
Note that as a result of this structure modification, a de-
pendency graph may actually become cyclic, as shown in
Figure 4. The usefulness of such structures depends on
downstream software being able to correctly handle cyclic
directed graphs.

4. Comparison
Direct comparison between our system and other depen-
dency parsers like Minipar and the Link Parser is compli-
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Figure 5: A dependency parse for the sentence “Bills on
ports and immigration were submitted by Senator Brown-
back, Republican of Kansas”, with “collapsing” turned on.

Figure 4.4: Stanford typed dependencies - Collapsed representation - Dependency graph
for the sentence: “I saw the man who loves you” (De Marneffe et al., 2006, p. 3)
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Figure 6: A dependency parse for the sentence “Bills on
ports and immigration were submitted by Senator Brown-
back, Republican of Kansas”, with “collapsing” turned on
and processing of the conjunct dependencies.

cated by differences between the annotation schemes tar-
geted by each system, presumably reflecting variation in
theoretical and practical motivations. The differences fall
into two main categories: dependency structure (which
pairs of words are in a dependency relation) and depen-
dency typing (what the grammatical relation for a particular
dependency is).
First, the systems do not always agree about which words
should be counted as the dependents of a particular gover-
nor. For example, the Link Parser has a dependency type C
which is described as follows: “C links conjunctions to sub-
jects of subordinate clauses (“He left WHEN HE saw me”).
It also links certain verbs to subjects of embedded clauses
(“He SAID HE was sorry”).”1 This leads the Link Parser to
link “that” with “irregularities” and “said” with “investiga-
tion” in sentence 1 of table 2. In contrast, our system links
subordinating conjunctions with the verb of the clause and
main verbs to the verb of an embedded clause: in sentence
1, “that” is linked with “took place” (compl(took place,
that)) and “said” with “produced” (ccomp(said, produced)).
Another example regards the word “below” in sentence 6:
the Link parser connects it with “he”, whereas our system
links it with “see” (advmod(see, Below)).
Moreover, there are differences among the systems with re-
gard to the “collapsing” of prepositions and coordination;
as discussed above in section 3, we have tried to handle
these in a way that facilitates semantic analysis.
Even where the systems agree about whether two words are
in a dependency relation, they may diverge about the type
of the dependency. Each system assigns dependency types
from a different set of grammatical relations, and it is not
straightforward to establish mappings between these sets.
Of course, the names used for relations vary considerably,
and the distinctions between different relations may vary as
well. But the most salient difference between the schemes
is the level of granularity. As indicated in table 1, the
set of relations defined by Carroll is comparatively coarse-
grained. Carroll’s scheme makes a distinction between verb

1A complete summary of the grammatical re-
lations used by the Link parser can be found at
http://bobo.link.cs.cmu.edu/link/dict/summarize-links.html.

or noun arguments, but doesn’t further distinguish among
these. A mapping of our grammatical relations into Car-
roll’s scheme in order to evaluate our system using Carroll’s
Greval test suite2 would not reflect the finer distinctions we
make. But often these finer distinctions drive success in ap-
plications. For example, our PASCAL Recognizing Textual
Entailment (see Section 5) derives considerable value from
relations such as appos and abbrev.
In contrast, the Link Parser uses a very fine-grained set
of relations, which often makes distinctions of a structural
rather than a semantic nature, as for example the MX re-
lation which “connects modifying phrases with commas
to preceding nouns (“The DOG, a POODLE, was black”;
“JOHN, IN a black suit, looked great”).” The Link Parser
has specific relations for idiomatic expressions. It also has
three different relations for an adverb modifying another
adverb, or an adjective, or a comparative adjective. The
Link Parser uses a different set of dependency types for de-
pendencies appearing in questions and relative clauses. We
suggest that many of these distinctions are too fine to be
of practical value, and in our system we have aimed for an
intermediate level of granularity, motivated by the needs of
practical applications.
Such differences make it difficult to directly compare the
quality of the three systems. Lin (Lin, 1998) proposes
two ways to evaluate the correctness of a dependency parse
against a gold standard. In the first method, one simply
examines whether each output dependency also occurs in
the gold standard, while ignoring the grammatical type of
the dependency; this method is therefore sensitive only to
the structure of the dependency tree. The second method
also considers whether the type of each output dependency
matches the gold standard. But because the correctness of
a dependency parser must be evaluated according to the an-
notation scheme it targets, and because each parser targets
a different scheme, quantitative comparison is difficult.
However, a qualitative comparison may be of value. Fig-
ures 6, 7, and 8, show a comparison of the outputs of
the Stanford parser, MiniPar and the Link Parser respec-
tively on the sentence “Bills on ports and immigration were
submitted by Senator Brownback, Republican of Kansas”.
We chose this sentence as an illustrative example be-
cause it is short but shows typical structures like preposi-
tional phrases, coordination, and noun componding. The
graph representing Minipar output collapses directed paths
through preposition nodes. It also adds antecedent links
to ‘clone’ nodes between brackets. The graph for the
Link Parser presents the same collapsing of directed paths
through preposition nodes.
To provide a qualitative comparison, we parsed, with the
three parsers, ten sentences randomly chosen from the
Brown Corpus. The sentences we examined are given in
table 2. Globally, the Stanford parser and the Link parser
lead to more accurate structure trees than Minipar. How-
ever all parsers are misled by sentence 10 where “ride” is
analyzed as a noun.
The Stanford parser trained on the Penn Wall Street Journal

2Carroll’s evaluation software is available at
http://www.informatics.susx.ac.uk/research/nlp/carroll/greval.html

Figure 4.5: Stanford typed dependencies - CCprocessed representation - Dependency
graph for the sentence: “Bills on ports and immigration were submitted by Senator
Brownback, Republican of Kansas” (De Marneffe et al., 2006, p. 4)

labels with propagation of conjuncts) format. We considered the collapsed format too
similar to the CCprocessed one to be worth introducing an additional parameter in our
experimental setting.

Annotation Pipeline: Part-of-speech Tagger and Dependency Parser To
the best of our knowledge, no study has been yet conducted to evaluate the impact
of the use of different annotation pipelines on the performance of DSMs. Comparable
large scale studies rely only on one parser: Minipar6 in (Padó & Lapata, 2007) De-
pendency Vectors, or a pipeline composed by Tree-Tagger (Schmid, 1995) and MALT
parser (Nivre, 2003) in (Baroni & Lenci, 2010) Distributional Memory.

Besides the fact that we were interested in using Stanford Dependencies for all the
reasons described in the previous section, our choice with respect to the annotation
pipeline was also supported by the state-of-the art in dependency parsing and by the
popularity of the involved annotation tools. Luckily, our desiderata over annotation

6https://webdocs.cs.ualberta.ca/ lindek/minipar/
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pipelines (producing Stanford dependencies, be state-of-the-art - or near state-of-the-
art - in dependency parsing, and be widely used in NLP) converged.

Based on the state-of-the-art, we selected the Stanford CoreNLP pipeline (version
3.5.1). Within the available Stanford CoreNLP options for part-of-speech tagging and
dependency parsing, we relied on a comparative evaluation of different models on the
MASC corpus.7 Table 4.1 displays (multicore) processing speed (speed), labelled attach-
ment score (LAS ) and unlabelled attachment score (UAS ) for the different combinations
POS-tagging and parsing models (when a POS model is not specified, the default option
was used) available with Stanford CoreNLP 3.5.1. The evaluation was conducted for
CCprocessed dependencies and separately for the spoken and written data. As we were
interested in robust accuracy across written and spoken data, we only report aggregated
results. Results in table 4.1 identify the combination of the bidirectional tagger with the
neural network dependency parser (Chen & Manning, 2014) as the most robust option.
Even if a quicker option (namely, neural network parser with default POS tagger) was
available, the availability of a high-performance cluster made the increased parsing time
affordable.

model speed LAS UAS

pcfg 508s 0.738 0.784
factored 2999s 0.744 0.794
rnn 1515s 0.752 0.800
nndep 22s 0.758 0.776
nndep+bidirectional 87s 0.761 0.806
sr 59s 0.743 0.787
srbeam 102s 0.747 0.794
sr+bidirectional 118s 0.745 0.788
srbeam+bidirectional 175s 0.748 0.794

Table 4.1: Evaluation of Stanford parsing models - MASC corpus (spoken and written)

In our experiments, we compare the performance of Stanford CoreNLP-based DSMs
with the performance of DSMs extracted from the same corpora pre-processed with Tree-
Tagger (Schmid, 1995) and MALT parser (version 1.8.1) (Nivre, 2003). We consider
this comparison interesting because of the widespread use of Tree-Tagger and MALT
parser in NLP tasks and because they ensure good performances at a low processing load
and with quick processing speed.8 MALT parser produces Stanford basic dependencies
in a CONLL format, one token per line. In order to keep our experimental design fully
factorial, we used the Stanford CoreNLP to convert the basic dependencies produced

7The MASC corpus is a manually annotated and balanced subset of 500k words of written texts and
transcribed speech sub-section of the Open American Corpus. More detailed information about corpus
composition and annotation can be found at http://www.anc.org/masc. The comparative evaluation
whose results are reported in table 4.1 has been conducted by Thomas Proisl (FAU Erlangen-Nürnberg).

8For comparison and to support the interpretation of our experimental results, we evaluated the
Tree-Tagger+MALT parser pipeline used for our experiments on the MASC corpus. Even if our results
are not really comparable with those in table 4.1 (as the current version of MALT does not support
multicore processing, and it produces basic Stanford dependencies), they are in line with predictions,
as MALT parser is quicker than Stanford parser and less accurate, but not dramatically so: LAS: 72.8;
UAS: 78.6; Processing time: 16 seconds.
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by MALT to the CCprocessed format.9

For better replicability and since this thesis does not have its primary focus on
annotation tools, we did not attempt any task-specific parameter optimization: all
tools were used with the most recent off-the-shelf models available with the respective
standard distributions.

All sentences longer than 150 tokens were discarded. A quantitative analysis of the
distribution of sentence lengths over the three corpora showed that the proportion of
sentences longer than 150 tokens was negligible.10 A closer look at sentences from the
Web corpora that are longer than 150 tokens also revealed that they often contain lists
of names or web links: from this point of view, the information they contain is not worth
the risk of the annotation tools taking very long time or even running out of memory.

4.2 Extraction: from a corpus to a matrix

As discussed in section 2.3.2, the choice of the target vocabulary for the extraction of
co-occurrence information is the fundamental preliminary step for the construction of
a DSM. We adopted the list of target words from Distributional Memory (Baroni &
Lenci, 2010) as the basis of our vocabulary, and we extended it with the experimental
items from our experimental datasets described in section 4.5, if not already covered.

Since the extraction of co-occurrence information represents a significant bottleneck
in DSM modeling, we extended our vocabulary list with the items from a number
of further datasets on which we have not yet conducted experiments, but of general
relevance for the DSM and psycholinguistic community. Such datasets are:

• the BLESS dataset (Baroni & Lenci, 2011);

• the SemRel ratings dataset for English (Lapesa, Schulte im Walde, & Evert, 2014);

• the word-pair similarity rating dataset by J. Mitchell & Lapata (2010).

The target vocabulary for all experiments presented in this thesis contains 31132
pos-disambiguated lemmas (20678 nouns, 5080 verbs, 5371 adjectives, 3 adverbs), for a
total of 27522 lemmas (without pos-disambiguation).

4.2.1 Context selection function

As discussed in section 2.3.2, we follow Padó & Lapata (2007) in defining contexts as
anchored paths (a path anchored at the word t starts at t). Surface and dependency
paths are extracted from the unparsed and parsed sentence graphs, as a result of the
concatenation of the labels of the edges. The context selection function operates
over the set of the paths anchored at the target t and identifies a subset of paths that
are considered potentially informative for the representation of the meaning of t.

In both surface-based and dependency-based models, context selection is based on
the following general criteria:

9Stanford CoreNLP class EnglishGrammaticalStructure.
10BNC: 0.03% (average sentence length: 18.6; 75% of the sentences up to 26 tokens); WaCkypedia:

0.05% (average sentence length: 22.6 tokens; 75% of the sentences up to 30 tokens); UkWaC: 0.4%
(average sentence length: 25.6 tokens; 75% of the sentences up to 32 tokens).
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• Path labels are selected according to the part-of-speech of the connected nodes:
only paths linking items from the target vocabulary to content words are consid-
ered;

• Following Baroni & Lenci (2010) and, to a certain extent, Padó & Lapata (2007),11

we consider both direct and inverse dependency relations. In the process of ex-
traction of dependency paths, both directions are considered for each edge (e.g, a
direct dependency relation between a verb and its subject noun, nsubj, and the
corresponding inverse dependency relation, nsubj-1 between the noun and the
verb).

• Given two candidate content words a and b in the surface or dependency graph
assigned to a sentence, we take into account only the shortest path between a and
b; this procedure automatically discards all paths containing cycles.

In this work, only paths connecting content words have been considered. Closed-class
words are discarded as potential basis terms, but taken into account in when determining
the length of the path in the surface-based model (i.e., they count as intervening word
between a target and a potential context word). Similarly, in the dependency-based
models, paths are allowed to go through nodes representing words from closed class
(e.g., pronouns). Those cases are very limited already, because most of the dependency
labels involving function words, as well as punctuation and sentence roots are discarded,
as will be discussed in section 4.2.1.2.12 We do not maintain that these relations bear
no semantic content: some of them produce semantic splits that are of clear interest
for modeling similarity. Let us consider, for example, negation (neg). A negation-
sensitive approach in the collection of co-occurrences may lead to improvements in the
quality of the co-occurrence vectors (cf., e.g., “Dogs bark” vs. “Dogs don’t meow”).
However, there are two (interconnected) reasons to discard this type of information at
this stage. The first reason is a practical one, it relates to the proliferation of target and
context items in the co-occurrence matrix. Since in our approach to the extraction of
dependency paths we consider function words only if they work as a connector between
content words, the only option would be to collect separate co-occurrences for negated
and not negated words (e.g., “meow” vs. “NOT meow”). The result would be very
sparse. Second, even if negated and non-negated collocates contribute in a different
way to the semantics of their head node, the real linguistic contexts in which negation
occurs do not always justify a lexical split between negated and non-negated words (e.g.,
“Surprisingly, the neighbors’ dog did not bark last night”; “Dogs don’t bark when they
feel safe”).

11In principle, Padó & Lapata (2007) resort to undirected paths. However, since the path labels used
in their study contain ordered information concerning the part of speech of the nodes connected by the
edge (e.g., V:subj:N, vs. N:subj:V) they are specified with respect to their directionality for almost all
dependencies (an exception being, for example, nominal modification).

12List of discarded dependency labels: det, neg, aux, auxpass, cc, cop, expl, preconj, predet, punct,
quantmod, root, discourse, goeswith, mark, mwe, possessive. For a more detailed description of those
dependencies, see the Stanford type dependencies manual (De Marneffe & Manning, 2008). The prt

relation, which links adverbial particles to the lemma of their head verbs (e.g., “off” to “take” for
the verb “take off”) was not considered in the construction of dependency paths, but it was exploited
to update the lemma of the head verbs. This allows collect co-occurrence information separately for
phrasal verbs and their base verbs.
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4.2.1.1 Surface-based co-occurrences

As discussed in section 2.2, the notion of window size, commonly employed to charac-
terize the co-occurrence extraction process for bag-of-words DSMs, can be modeled as
the length of the path connecting target and basis elements in a precedence graph of
the type shown in figure 2.3.

In the surface-based experiments conducted in this thesis, the context selection
function takes path length within such precedence graph as its parameter, without
any further context selection constraint over the label of the edges (left vs. right).
In traditional terms, we adopt a symmetric context window: candidate collocates for
the target nodes are searched for in a span of equal length to the left and to the right
of the target word. To keep results comparable to those of dependency-based models,
we keep co-occurrence extraction within sentence boundaries.

In the surface-based experiments discussed in chapter 6, DSMs are built by incre-
mentally including paths from 1 to 16 edges long. This amounts to say that we consider
collocates co-occurring with the target within a maximum span of:

• one word to the left and to the right of the target (‖π‖ = 1);

• two words to the left and to the right of the target (‖π‖ ≤ 2);

• four words to the left and to the right of the target (‖π‖ ≤ 4);

• eight words to the left and to the right of the target (‖π‖ ≤ 8);

• sixteen words to the left and to the right of the target (‖π‖ ≤ 16).

4.2.1.2 Dependency-based co-occurrences

When extracting dependency-based co-occurrences, the selection criteria of the context
selection function correspond to the following parameters:

1. Path length: only dependency paths up to a certain number of edges selected
when constructing the models.

2. Type of the dependency relations composing the paths: the syntac-
tic/semantic nature of the dependency relations in each path is exploited as a
criterion to build paths deemed to be more closely related to the meaning of the
target t (core dependencies, main actants of the sentence), or related to it in a
mediated way (external dependencies, inter-clausal relations and conjuncts).

In the following subsections, we provide some details and motivation for the choice
of the values for these two parameters. The end of this section also contains a discussion
of the distribution of relation types over path lengths, as well as a comparison of our
experimental setup with that of previous work.

Path Length Given a target t, the context selection function operates on the
number of dependency edges in each path anchored at the target t For example in the
graph displayed in figure 2.4 the dependency path dobj amod anchored the node barks
and pointing at cute (adjectival modifier of its direct object) has length ‖π‖ = 2. In the
dependency-based experiments discussed in chapter 7, DSMs are built by incrementally
including paths from 1 to 5 edges long:
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• all paths of length 1 (‖π‖ = 1);

• all paths of length 1 and 2 (‖π‖ ≤ 2);

• all paths of length 1, 2, and 3 (‖π‖ ≤ 3);

• all paths of length 1, 2, 3, 4, and 5 (‖π‖ ≤ 5).

Our choices concerning the path-length parameter are based on the state of the
art in the evaluation of syntax-based DSMs, which is here covered and further ex-
tended. Earlier work on syntax-based DSMs (G. Grefenstette, 1994; D. Lin, 1998;
D. Lin & Pantel, 2001) but also Kiela & Clark (2014) relied on one-step dependencies
(‖π‖ = 1). More recent reference studies resort to longer dependency paths: Padó &
Lapata (2007) experiment with ‖π‖ ≤ 4; Baroni & Lenci (2010) do not manipulate
path length but employ paths roughly corresponding to ‖π‖ ≤ 3. For example, the
verb relation in Baroni & Lenci’s (2010) DepDM, which labels an underspecified link
between the subject of a verb and its complement (e.g., 〈soldier, verb, sergeant〉 for
both “the soldier shot the sergeant” and “the soldier talked with the sergeant”), corre-
sponds to nsubj-1+dobj (e.g., 〈soldier, nsubj-1+dobj, sergeant〉 for “the soldier shot
the sergeant”) or to nsubj-1+prep+pobj (basic) and nsubj-1+prep * (ccprocessed):
e.g., 〈soldier, nsubj-1+prep+pobj or nsubj-1+prep to, sergeant〉 for “the soldier talked
to the sergeant”.

Dependency Type According to syntactic-semantic nature of the relations en-
coded, we classified the dependencies between content words into two groups.

The first group contains dependencies which link to direct arguments or adjuncts of
the main predicate of the sentence, as well as their non-clausal modifiers. The encoded
relations are fully syntagmatic, and they establish connections among the main actants
of the sentence. In this work, dependencies from the first group are labelled as core:13

• Subjects: active (nsubj) and passive (nsubjpass); only in the CCprocessed de-
pendencies: agents (agent), i.e., complements of passive verbs introduced by the
preposition by ;

• Objects: direct (dobj), indirect (iobj), and prepositional (pobj);

• Adjectival complements of verbs (acomp);

• Predicative complements of verbs and adjectives (pred);

• Prepositions with noun phrase complements (prep); only in the CCprocessed de-
pendencies: lexicalized prepositions and multiword prepositions with noun phrase
complements (e.g., prep on, prep with, prep from behind);

• Modifiers: adjectival (amod), adverbial (advmod), temporal (tmod); noun phrases
functioning as modifiers (npadvmod); nominal compound modifiers (nn);

• Numerals (num) and numeric modifiers (number);

13For more details on the specific relations, as well as for examples of use, see the Stanford Typed
Dependencies manual (De Marneffe & Manning, 2008).
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• Possessors (poss).

A second group of dependencies interclausal relations and conjunctions/appositions.
The encoded relations are not directly at the linguistic core of the sentence, and they
have both a syntagmatic and paradigmatic nature. In this work, dependencies from the
second group are labelled as extra:

• Clausal subjects: active (csubj) and passive (csubjpass);

• Clausal complements of a verb or an adjective with their own subjects (ccomp)
and without their own subjects (xcomp); only in the CCprocessed dependencies:
controlling subjects of clausal complements without subjects (xsubj);

• Relative clause modifiers of a noun phrase (rcmod);

• Relations between the main verb of a relative clause and the head of a Wh-phrase
(rel); this relation occurs only with relative words which are neither the subject
nor the object of the relative word, as those cases are analysed as nsubj and dobj,
respectively;

• Reduced non-finite verbal modifiers that are neither core arguments of a verb nor
full finite relative clauses (vmod);

• Prepositions with clausal complements (pcomp); only in the CCprocessed depen-
dencies: lexicalized prepositions with clausal complements (e.g., prepc without);

• Adverbial clause modifiers of a verb phrase or sentence (advcl);

• Conjunction relations between two elements (conj); only in the CCprocessed de-
pendencies: lexicalized conjunction relations between two elements (e.g., conj and,
conj or);

• Appositional modifiers, parenthesized examples, and defining abbreviations (appos);

• Parataxis relations between the main verbs of a clause and other sentential ele-
ments without any explicit coordination or subordination (parataxis).

In our experiments, paths are labelled as core if they contain only core dependen-
cies, and as extra if they contain at least one extra dependency. In our experiments,
we compare the performance of dependency-based DSMs built from core dependencies
to that of DSMs built from core and extra dependencies (core+extra, abbreviated as
extra).

The (dependency-based) context selection function in practice Let us
take the sentence graph in figure 4.5 as an example to illustrate the process of path
extraction and selection. Table 4.2 lists the paths anchored at the target immigration,
selected and classified according to the context selection criteria described in this section
(Length stands for path length, Type stands for dependency type).

As described at the beginning of this section, we always select the shortest paths
between two nodes. In the example sentence, two paths are available between the target
immigration and the node Bills (lemmatized as bill): the one-step path 〈immigration,
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Length Path Type

1
〈immigration, prep on-1, bill〉 core

〈immigration, conj and-1, port〉 core

2 〈immigration, prep on-1+nsubjpass-1, submit〉 core

3 〈immigration, prep on-1+nsubjpass-1+agent, Brownback〉 core

4
〈immigration, prep on-1+nsubjpass-1+agent+nn, senator〉 core

〈immigration, prep on-1+nsubjpass-1+agent+appos, republican〉 extra

5 〈immigration, prep on-1+nsubjpass-1+agent+appos+prep of, Kansas〉 extra

Table 4.2: Context selection, dependency graph from figure 4.5: paths anchored at the
node immigration

prep on-1, bill〉 and the two-step path 〈immigration, conj and-1+prep on-1, bill〉.
Only the shortest of the two paths was selected, namely 〈immigration, prep on-1, bill〉.

Comparison between the dependency graph in figure 4.5 and the selected paths
shows also that the auxpass link was excluded from the computation of paths. Only
two paths belong to the extra dependency type (for the presence of the appos relation).

Tables 4.3, 4.4, and 4.5 display the distribution of dependency groups (columns) over
path lengths (rows) for each corpus, parser, and dependency type. The data for paths of
length 1 correspond to the overall distribution of dependency types in our models. For
example, table 4.3 reports that for the BNC parsed with the MALT parser in the basic
format, the core dependencies represent the 68.19% of the dependencies, while they are
proportionally more significant for the same path length in the CCprocessed format
(76.63%). This trend, constant across corpora and parsers, is not surprising because
dependency collapsing introduces direct and lexicalized links (e.g., prep in) between
heads and prepositional complements which correspond to two-step paths in the basic
representation, and propagation of conjuncts introduces new edges to the original graph.
We also report the number of dependencies (column Dep) that the parser identified but
was unable to classify (dep relation label). Although experiments on underspecified
paths could be interesting (as those paths contain lower quality information which can
be considered as “noise” in the parsed data), we had to keep our parameter space
manageable and therefore discarded them.

For paths longer than one-step, the Core columns report the percentage of paths of
length n that are composed only of core dependencies, while the Extra columns contain
the percentage of paths that are composed of both core and extra dependencies, and the
Dep columns report the percentage of paths containing an underspecified relation. The
proportion data show how the ratio between core and extra paths is heavily affected
by path length: a not surprising effect given that paths containing extra dependencies
necessarily build on subpaths containing the core ones.

One final observation can be made, which concerns the distribution of extra de-
pendencies over corpora. While sentences in WaCkypedia and UkWaC are longer than
sentences in BNC, BNC still contains proportionally more extra dependencies than the
other two corpora.
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MALT parser Stanford parser
Len Basic CCprocessed Basic CCprocessed

Core Extra Dep Core Extra Dep Core Extra Dep Core Extra Dep

1 68.19 27.38 4.41 76.63 19.58 3.78 68.07 28.05 3.86 75.39 21.12 3.48
2 46.85 43.13 10.00 51.22 39.45 9.31 47.51 44.62 7.85 51.38 40.04 8.57
3 31.70 53.85 14.43 29.41 55.18 15.40 32.52 56.15 11.31 30.49 55.54 13.95
4 21.76 59.67 18.55 16.05 62.49 21.44 22.46 62.93 14.59 17.42 63.53 19.03
5 14.93 62.57 22.48 7.42 64.58 27.98 15.46 66.80 17.73 8.95 66.68 24.36

Table 4.3: BNC: distribution of path groups over path lengths (MALT vs. Stanford
parser; Basic vs. CCprocessed dependencies)

MALT parser Stanford parser
Len Basic CCprocessed Basic CCprocessed

Core Extra Dep Core Extra Dep Core Extra Dep Core Extra Dep

1 72.50 23.29 4.19 80.51 16.09 3.39 72.29 23.97 3.73 79.19 17.46 3.33
2 51.48 39.11 9.39 56.19 35.30 8.49 51.63 40.53 7.82 57.09 34.35 8.54
3 35.61 50.25 14.13 33.14 51.99 14.86 36.05 52.07 11.86 35.43 49.73 14.83
4 25.30 56.23 18.45 18.43 60.06 21.50 25.64 58.63 15.72 20.74 58.03 21.22
5 17.65 59.53 22.81 8.23 62.64 29.11 17.88 62.64 19.47 10.24 61.54 28.21

Table 4.4: WaCkypedia: distribution of path groups over path lengths (MALT vs.
Stanford parser; Basic vs. CCprocessed dependencies)

MALT parser Stanford parser
Len Basic CCprocessed Basic CCprocessed

Core Extra Dep Core Extra Dep Core Extra Dep Core Extra Dep

1 68.28 25.79 5.91 76.42 18.60 4.96 68.00 26.54 5.45 74.82 20.23 4.93
2 47.28 39.29 13.41 51.88 35.65 12.45 47.58 40.50 11.91 52.16 35.29 12.53
3 28.70 50.25 21.04 27.73 50.21 22.05 29.16 51.87 18.96 29.08 48.74 22.17
4 19.72 53.59 26.68 15.16 54.37 30.45 20.02 55.62 24.34 16.49 52.89 30.61
5 12.93 54.80 32.25 .77 53.98 39.24 13.11 57.23 29.64 8.04 52.63 39.32

Table 4.5: UkWaC: distribution of path groups over path lengths (MALT vs. Stanford
parser; Basic vs. CCprocessed dependencies)

4.2.2 Path value, basis mapping, and co-occurrence quantification

In the experiments reported in this thesis, the path value function is not parametrized:
both in window-based and dependency-based DSMs, all paths anchored at the target t
contribute to the same extent to its distributional profile.

As far as basis mapping is concerned, the corresponding function maps targets into
lemmatized version of the basis terms, in both surface-based and syntax-based DSMs.
For both classes of models, we compare word-based mapping to structured mapping.
Within window-based models, the use of an undirected context window is an instance
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of word-based mapping, with target words being mapped to basis context words (e.g.,
cute, bone, eat for the target dog in the sentence the cute dog ate the bone). Directed
context windows represent an instance of structured mapping, because target words are
mapped into context dimensions which contain a direction label defining the portion of
the context relative to the target in which the collocate was found (e.g., left+cute,
right+eat, right+bone for the target dog). Within syntax-based models, we com-
pare dependency-filtered models (word-based mapping) to dependency-structured mod-
els (structured mapping). In the first case, context dimensions correspond to words
(e.g., bone and eat for the target dog if the context selection function only allows
subjects and objects), and path properties are only exploited as criteria for the context-
selection function. In the second case, the path label is concatenated to the word at
which the path ends, producing more linguistically informed context dimensions (e.g.,
subj-1+obj+bone and subj-1+eat for the target dog).

4.3 Manipulation of the co-occurrence matrix

In this section, we discuss the parameters related to the manipulation of the co-occurrence
matrix to improve the quality of the vector representations, and motivate our choices
concerning the parameter values. We refer the reader to section 2.3.3 for a detailed
description of the these parameters.

Score for feature weighting We compare plain co-occurrence frequency to tf.idf
and to the following association measures: Dice coefficient ; simple log-likelihood ; Mu-
tual Information; t-score; z-score. We selected these measures because they have widely
been used in previous work on DSMs (tf.idf, MI and log-likelihood) or are popular
choices for the identification of multiword expressions. Based on statistical hypothesis
tests, log-likelihood, t-score and z-score measure the significance of association between
a target and feature term; MI shows how much more frequently they co-occur than
expected by chance; and Dice captures the mutual predictability of target and feature
term. Note that we compute sparse versions of the association measures with negative
values clamped to zero in order to preserve the sparseness of the co-occurrence ma-
trix. For example, our MI measure corresponds to Positive MI in the other evaluation
studies. See Evert (2008) for a thorough description of the association measures and
details on their calculation (Fig. 58.4 on p. 1225 and Fig. 58.9 on p. 1235). When
calculating association measures for dependency-typed models, marginal frequencies for
feature terms are calculated at the level of basis terms. In practice, this means that in
the experiments involving structured basis mapping, namely directed window for bag-
of-words and dependency typed for syntax-based, marginal frequency for the context
is calculated for each feature label (i.e., right+dog, subj+dog); refer to section 2.3.3
for a discussion of alternative approaches to the calculation of expected frequencies in
dependency-structured models.

Feature transformation To reduce the skewness of feature scores, it is possible
to apply a transformation function. We evaluate square root, sigmoid (tanh) and loga-
rithmic transformation vs. no transformation. Note that transformation functions are
applied additionally to frequency or association measures, independently of the appli-
cation of a transformation in the calculation of the association score (i.e., to MI, which
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is the result of a logarithmic transformation of the ratio between observed and expected
co-occurrence frequency).

4.3.1 Dimensionality reduction

In this section, we define the parameter space related to the dimensionality reduction
strategies evaluated in our experiments. As discussed in section 2.3.4, dimensionality
reduction can be performed by means of feature selection (i.e., retaining only a subset
of the matrix columns) or feature extraction (i.e., low-rank matrix factorization with
PCA, SVD or NMF), or by applying feature extraction on a subset of the features of
the original matrix.

Dimensionality reduction: feature selection In our experiments, we perform
feature selection based on marginal frequency. For both window-based and dependency-
based experiments, we rank the matrix columns according to the marginal frequency of
the basis terms, and we select the top 5k, 10k, 20k, 50k, 100k dimensions. Note that,
while this step is usually performed before feature scoring/transformation for efficiency
reasons, it belongs, conceptually, to the dimensionality reduction step in the pipeline.
The experiments on window-based DSMs involved an additional feature selection pa-
rameter, namely the feature selection criterion: we compared marginal frequency to
number of nonzero co-occurrence counts as a ranking criterion for feature selection. The
number of non-zero co-occurrence counts for a basis term b corresponds to the number
of unique targets with b as a feature.14 As it will be shown in chapter 6, we found no sig-
nificant difference between the two parameter values (ranking of dimensions according
to frequency vs. number of non-zero counts). To keep the parameter space manageable,
we decided to exclude this parameter from the evaluation of dependency-based DSMs.

Dimensionality reduction: feature extraction Section 2.3.3.2 and 2.4 re-
viewed the dimensionality reduction strategies commonly adopted in DSM. We focus on
SVD because among the available methods, it is the only one which produces ordered
dimensions.15 This has clear advantages: from a practical point of view, it allows to
experiment with different reduced dimensionalities without rerunning the reduction al-
gorithm; from a theoretical point of view, the rank of the SVD dimensions is a criterion
for the experimental manipulation of the SVD parameters; indeed, the effect of selecting
dimensions based on their rank (e.g., keeping vs. discarding the first dimensions) has
already been explored in the literature (Bullinaria & Levy, 2012), opening interesting
research directions that the experiments presented in this aims at pursuing by framing
SVD into a larger-scope parameter set.

14Feature selection according to non-zero counts can be applied before or after the calculation of
(sparse) association measures. The general need to keep the parameter space manageable requires
limiting the number of experiments. In this particular case, calculating the number of non-zero counts
based on marginal frequency is the basic option: it is the natural counterpart of feature selection based
on frequency, which is what is commonly done in distributional semantics, while we are not aware of
studies in which matrix columns are selected based on their global mass of association scores.

15A further advantage of SVD with respect to RI and BEAGLE is the connection between the co-
occurrence information in the input and the reduced representation. This adds the results in Lapesa
& Evert (2013a) as a further reason to prefer SVD to RI: the latter was found to clearly underperform
the former (albeit in a more restricted experimental setting than the one presented in this thesis). As
for BEAGLE, it just does not scale to larger corpora (Sahlgren et al., 2008).



Chapter 4. Experimental setting 88

With the output of feature selection described in the previous section as a starting
point, we optionally apply Singular Value Decomposition to 1000 dimensions, imple-
mented with randomized SVD (Halko et al., 2011) for performance reasons, as some of
the involved matrices are very large.16

In our experiments, we evaluate two parameters which regulate the use of the di-
mensionality reduced matrix for the computation of similarity.

• Number of latent dimensions: out of the 1000 SVD dimensions, we select
the first 100, 300, 500, 700, 900 dimensions (i.e. those with the largest singular
values);

• Number of skipped dimensions: when selecting the reduced dimensions, we
discard the first 50 or 100 dimensions and we compare the performance of achieved
by discarding the first dimensions to that of the full reduced matrix (parameter
value: 0). This parameter has already been evaluated by Bullinaria & Levy (2012),
who achieved best performance by discarding the initial components of the reduced
matrix, i.e., those with the highest variance.

4.4 Projecting meaning in space

Distance Measures In the experiments reported in this thesis, the range of evalu-
ated metrics is restricted to cosine distance (i.e., angle between vectors) and Manhattan
distance (Minkowski metric with p = 1, also known as L1 distance). We adopt such
restricted range for a number of reasons:

• Both conceptually and practically in the DSM evaluation pipeline, the compu-
tation of similarity/distance comes as the last step; in the need of keeping the
parameter space manageable, we decided to adopt a restricted set of distance
metrics, and conduct a more thorough evaluation of the previous steps; further
work can then build on robust tendencies for best/worse parameters identified up
to this point;

• Cosine is considered a standard choice in DSM modeling and is adopted by most
evaluation studies (Bullinaria & Levy, 2007, 2012; Polajnar & Clark, 2014);

• For our normalized vectors, Euclidean distance is fully equivalent to cosine;

16Randomized SVD (rSVD) exploits randomization methods to make SVD computation more effi-
cient, especially for large matrices. Given a matrix A with shape m × n, to be reduced to a desired
dimensionality k, rSVD decomposition is achieved as follows. A subspace of intermediate dimensionality,
B, is produced, which captures most of the action in A, i.e., the vectors in B live in the image space of
the vectors in A. In practice, this is achieved by producing a random matrix O with shape m× (k× o),
which is multiplied with A producing an orthogonal projection in a space of intermediate dimensional-
ity; the oversampling factor, o, regulates the number of dimensions of the intermediate subspace B: as
soon as the oversampling factor enlarges, the resulting reduced matrix approximates the full SVD. The
algorithm allows to further update B to further pulling the vectors towards the image space of A; this
operation can be repeated multiple times (number of power iterations). SVD is performed on B, which
is now dense and low-dimensional (k × o).

The training parameters for rSVD are k, o, and n. In the experiments presented in this thesis k is
set to 1000. Following the recommendation of Halko et al. (2011) and the default in the wordspace

package, and after some preliminary experiments which confirmed the stability of the results, both o
and n were set to 2.
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• Preliminary experiments with the Maximum distance measure (Minkowski metric
with p→∞, also known as Canberra distance) resulted in very low performance.

Relatedness in the semantic space Given two words a and b represented in a
DSM, we consider two alternative ways of quantifying the degree of relatedness between
a and b. The first option (and standard in DSM modeling) is to compute the distance
(cosine or Manhattan, as described in the previous paragraph) between the vectors of
a and b. The alternative choice, evaluated in our experiments is based on neighbor
rank. As already discussed in section 2.3.4.2, neighbor rank has not yet been evalu-
ated systematically neither with respect to the tasks, nor with respect to its potential
interaction with other parameters. For the multiple choice tasks, we compute rank as
the position of the target word among the nearest neighbors of each word holding the
potential relation of interest (e.g., for TOEFL, we calculate the rank of target among
the neighbors of the candidate synonym). Note that using the positions of the candi-
date word among the neighbors of the target would have been equivalent to direct use
of the distance measure, since the transformation from distance to rank is monotonic
in this case. For the correlation and clustering tasks, we compute a symmetric rank
measure as the average of log rank(a, b) and log rank(b, a). An exploration of the effects
of directionality on the prediction of similarity ratings and its use in clustering tasks
(i.e., experiments involving rank(a, b) and rank(b, a) as indexes of relatedness) is left for
future work.

4.5 Selection of word similarity tasks

Chapter 3 already provided an overview of the tasks employed for the evaluation of
DSMs in general. In this section, we now describe specifically the evaluation tasks and
datasets that are used in the experiments presented in this thesis. In particular, the
experiments of this thesis have been conducted on the following three types of evaluation
tasks.

Multiple choice classification task Distributional relatedness between a target
word and two or more other words is used to select the best, that is, the most simi-
lar, candidate. Performance in this task is quantified in terms of decision accuracy.
Evaluation is conducted on a number of datasets that encode different types of semantic
relations. The first dataset, from the well-known TOEFL multiple-choice synonym test
(80 items; Landauer & Dumais, 1997), encodes synonymy. It is also included in most
of the reference DSM evaluation studies (e.g., Bullinaria & Levy, 2007; Padó & Lapata,
2007; Baroni & Lenci, 2010; Bullinaria & Levy, 2012; Kiela & Clark, 2014). The other
datasets are the semantic priming datasets introduced in section 3.4: the GEK dataset
(404 items), which encodes event-based relatedness and has already been employed in
Lapesa & Evert (2013a,b,c), and the Semantic Priming Project datasets (963 items
in total), which encode different types of relations (synonymy, antonymy, co-hyponymy,
backward and forward phrasal association) and are evaluated in this thesis for the first
time.

Correlation task Distributional relatedness between the representations of target
words is compared to native speaker judgments of semantic similarity or relatedness.
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Following previous studies (Baroni & Lenci, 2010; Padó & Lapata, 2007), performance
in this task is quantified in terms of Pearson correlation.17 Evaluated datasets are
the Rubenstein and Goodenough dataset (RG65) of 65 noun pairs (Rubenstein &
Goodenough, 1965), also evaluated by Padó & Lapata (2007); Baroni & Lenci (2010);
Kiela & Clark (2014), and the WordSim-353 dataset (WS353) of 353 noun pairs
(Finkelstein et al., 2002), included in the study of Polajnar & Clark (2014).

Clustering task We employ distributional relatedness to assign words to a pre-
defined set of semantic classes and quantify DSM performance in terms of purity.
We evaluated the same clustering datasets as Baroni & Lenci (2010): the Almuhareb-
Poesio set, the Battig set (Van Overschelde et al., 2004), the ESSLLI 2008 set, and
the Mitchell set (T. Mitchell et al., 2008). Clustering is performed with an algorithm
based on partitioning around medoids (Kaufman & Rousseeuw, 1990, ch. 2), using the
R function pam with standard settings. Other clustering studies have often been carried
out using the CLUTO toolkit (Karypis, 2003) with standard settings, which corresponds
to spectral clustering of the distributional vectors. Unlike pam, which operates on a
pre-computed dissimilarity matrix, CLUTO cannot be used to test different distance
measures or neighbor rank. Comparative clustering experiments showed no substantial
differences for cosine similarity; in the rank-based setting, pam consistently outperformed
CLUTO clustering. See Appendix A for more details.

4.6 Computational tools

In this section, we list the computational tools employed to carry out the experiments
reported in this thesis. The brief outline provided here follows the steps for the extrac-
tion/evaluation of DSMs which has been established in chapter 2 and followed again in
sections 4.1-4.4.

• Pre-processing: see section 4.1 for a detailed description of the pre-processing
tools used in the experiments.

• Extraction of co-occurrence information: surface-based co-occurrences for window-
based DSMs have been extracted with the IMS Corpus WorkBench18 and the UCS
toolkit;19 dependency-based co-occurrences have been extracted from the parsed
corpora with the networkx package20 for Python.

• Manipulation of co-occurrence matrices, similarity computation, as well as eval-
uation experiments have been implemented in R using the wordspace package

17The presentation of the evaluation results focusses primarily on Pearson correlation; some other
evaluation studies, as discussed out in chapter 3, adopt Spearman’s rank correlation ρ, which is more
appropriate if there is a non-linear relation between distributional relatedness and human judgements.
We computed both coefficients in our experiments and decided to report Pearson’s r for two reasons: (i)
Baroni & Lenci (2010) already list r scores for a wide range of DSMs in this task, and their evaluation was
the reference by the time the research project presented in this thesis has started; (ii) linear regression
analyses for ρ and r showed comparable trends and patterns for all DSM parameters.

18http://cwb.sourceforge.net/index.php
19http://www.collocations.de/software.html
20https://networkx.github.io/.

http://cwb.sourceforge.net/index.php
http://www.collocations.de/software.html
https://networkx.github.io/
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(Evert, 2014). The experiments have been run on the High Performance Com-
puting cluster at the University of Erlangen-Nürnberg21 and on the servers of the
IMS Stuttgart.

4.7 Summing up

This chapter discussed the experimental setup of the evaluation experiments presented
in this thesis. For each dataset, we tested all parameter combinations. This resulted in:

• Window-based DSMs: 537600 model runs (generated and evaluated within ap-
proximately 5 weeks on a high performance cluster);

• For syntax-based DSMs: 806400 model runs for each dependency-filtered and
dependency structured (generated and evaluated within approximately 6 weeks
on a high performance cluster).

21https://www.rrze.fau.de/serverdienste/hpc/
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5

Interpreting DSM performance

This chapter addresses a very important issue often disregarded in the DSM literature:
the methodology used for the interpretation of the results of the evaluation experiments.
Note that evaluation methodologies are completely independent of the experimental
setups, which have been the topic of the previous chapters. In fact, it is often possible
to apply different interpretation strategies to the same set of experimental results.

As has been discussed in Chapter 4, the magnitude of the parameter set tested in
this thesis together with the full factorial design adopted in the evaluation (involving
all combinations of parameter values) resulted in a very large amount of experimental
runs. Such a large number of experiments makes a robust statistical methodology for
the interpretation of the results particularly necessary. A typical way of conducting
DSM evaluation is to look at the best DSM configurations: in other words, the criterion
for model selection is to pick the experimental run with the highest performance. This
strategy is clearly not applicable in the context of this thesis, as it is at high risk of
overtraining, given the large number of experiments: a certain parameter configuration
may be the best fit for a certain dataset, but this may be due to chance and not to
specific properties of the selected parameters. An additional drawback of this proce-
dure is that it is likely to fail in the identification of robust trends characterizing the
interactions between DSM parameters. The evaluation methodology proposed in this
thesis successfully overcomes both of these issues.

We employ linear regression as a statistical tool to understand the impact of different
parameters on model performance. DSM parameters and their interactions are consid-
ered predictors of model performance. In this way, we achieve a solid understanding
of the impact of specific parameters and parameter interactions on DSM performance,
which can inform the selection of DSM settings that are robust to overfitting, as it is pos-
sible that the best run in terms of absolute performance will turn out to be overtrained
and therefore disregarded because it is not generalizable enough.

This chapter is structured as follows. Section 5.1 reviews the evaluation approaches
adopted in the DSM literature, focussing on large-scale reference studies, compares them
in terms of their impact on the scope of the evaluation, interpretability of the results, and
points out the main points of strength and weakness. Section 5.2 introduces the linear
regression methodology employed in this thesis and spells out the key statistical concepts
which will be employed throughout the thesis. Section 5.3 complements the theoretical
introduction with a toy example, illustrating the R implementation and providing the
guidelines for understanding the evaluation plots in the subsequent chapters.

93
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5.1 Standard approaches

In this section, we review different approaches adopted in the literature for the inter-
pretation of results of DSM evaluation experiments. A systematic review of various
evaluation studies reveals the following three major approaches.

One model many tasks This approach is used for testing a single new model
with fixed parameters or a small number of new models. The evaluated model is tested
on a range of tasks and is compared to competing models, applying little or no parameter
tuning.

Examples of this approach are the studies of Padó & Lapata (2007) (Dependency
Vectors) and Baroni & Lenci (2010) (Distributional Memory). Both studies have been
conducted to assess the potential of dependency structured DSMs, at a point in time
when little previous work on the topic existed. Padó & Lapata (2007) employ the
Rubenstein and Goodenough dataset as a development set to tune a number of pa-
rameters (e.g., feature weighting, distance metric, path-value function) and pick the
best performing model as a fixed setting for their main experiments, which involve a
number of evaluation tasks as well as a comparison to the state of the art. Baroni &
Lenci (2010) test different degrees of lexicalization in the construction of dependency-
structured DSMs and, additionally, they introduce a novel strategy for the quantification
of co-occurrences (type-based co-occurrence counting defined in section 2.3.2.4). In to-
tal, they evaluate three versions of Distributional Memory on a large selection of tasks
and compare them to the state of the art.

Incremental tuning An alternative approach to evaluation is adopted in studies
which aim at testing a large number of DSM parameters, but typically do not introduce
new ways of constructing a DSM. While the studies described in the previous paragraph
have as their main goal that of showing that a certain novel DSM performs better than
its state-of-the-art competitors, the studies discussed in this section address the question
of which parameter combination ensures the best DSM performance. The need for the
identification of a best model brings in a crucial methodological issue: model selection.
The set of evaluated parameters and their values defines a search space which needs
to be explored to find the best combination of parameter values. A possible way of
exploring this search space is by means of incremental tuning: parameters are tested
sequentially to identify their best performing values. Incremental tuning proceeds in
steps of one parameter (i.e., once parameter a is tuned, proceed to tune parameter b)
or in pairs of parameters (e.g., once parameter a is tuned, proceed to set b and c).
Optionally, the best setup across tasks is identified by averaging DSM performance over
all tasks.

The incremental tuning approach characterizes the studies by Bullinaria & Levy
(2007, 2012); Polajnar & Clark (2014); Kiela & Clark (2014). Bullinaria & Levy (2007)
report a systematic study of the impact of a number of parameters (shape and size of the
co-occurrence window, distance metric, association score for co-occurrence counts) on
a number of tasks (including the TOEFL synonym task, which is also evaluated in this
thesis). Their evaluated models are built from the British National Corpus. Bullinaria
& Levy (2012) extend the evaluation reported in Bullinaria & Levy (2007): starting
from the optimal configuration identified in their first study, they switch to ukWaC as a
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source corpus and test the impact of three further parameters (application of stop-word
lists, stemming, and dimensionality reduction using Singular Value Decomposition) on
a number of tasks (including TOEFL and clustering on the dataset from T. Mitchell
et al. (2008), also evaluated in this thesis). Polajnar & Clark (2014) evaluate the
impact of context selection (for each target, only the most relevant context words are
selected and the remaining vector entries are set to zero) and vector normalization
(used to vary model sparsity and the range of values of the DSM vectors) in standard
tasks related to word and phrase similarity. Kiela & Clark (2014) evaluate window-
based and dependency-based DSMs on a variety of tasks related to word and phrase
similarity; a wide range of parameters are involved in this study: source corpus, window
size, number of context dimensions, use of stemming, lemmatization and stop-words,
similarity metric, score for feature weighting.

The main drawback of this approach is that it is not fair to all involved parameters,
as there is no guarantee that a parameter value which is discarded at earlier stages of
the incremental model selection would not turn out to be stronger in combination with
other parameters which ought to be tested only later. Moreover, even when incremental
evaluation proceeds in pairs of parameters, it can only reveal a limited amount of pa-
rameter interactions. In other words, an evaluation conducted by means of incremental
tuning is heavily dependent on the order in which parameters are tested, which is estab-
lished by the experimenter and which brings in a number of assumptions and potential
biasing factors.

Testing all parameter combinations An alternative to the incremental tuning
approach is to explore all parameter combinations with a full factorial design and
to pick the best setup per task. Given the same set of parameters and values, the
incremental tuning approach described in the previous paragraph requires less runs than
the full factorial one: e.g., for two parameters a and b with 2 and 4 values respectively,
incremental tuning requires 6 model runs (2 to set a, plus 4 to set b based on the best
value of a), while testing all combinations requires 8 runs. This often has practical
consequences on the scope of the evaluation: incremental tuning studies can afford
to explore a larger parameter space than the full factorial ones. This should not be
considered an advantage though, because incremental tuning explores the parameter
space only partially, as discussed in the previous paragraph.

The full factorial approach is adopted in recent evaluation studies targeting the com-
parison between count and predict DSMs, namely in the studies by Baroni, Dinu, &
Kruszewski (2014) and Levy et al. (2015). Baroni, Dinu, & Kruszewski (2014) experi-
ment with 36 count DSMs (manipulating size of the context window, score for feature
weighting, dimensionality reduction) and 48 cbow predict DSMs (manipulating size of
the context window, number of reduced dimensions, and other word2vec-specific param-
eters). The comparison also involves count-vectors from Distributional Memory, predict
vectors from Collobert et al. (2011), as well as state of the art vectors for the respec-
tive tasks. The evaluation covers standard semantic similarity datasets, which are also
evaluated in this thesis, and analogy datasets. Levy et al. (2015) compare PPMI-based
count models (72) to embeddings generated with SVD (432), skipgram word2vec (144),
and GloVe (24). In total, 672 models are evaluated on the prediction of word similarity
ratings and analogies. Evaluated parameters regulate context window, computation of
association metrics, and post-processing of the embeddings (e.g., eigenvalue weighting,
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normalization). Best setups are compared to the results achieved in a vanilla scenario
(all parameters set to default) and with the recommended configuration of word2vec.
From a methodological perspective, the evaluation by Levy et al. (2015) can be consid-
ered the most interesting among the existing ones, and that for two reasons. The first
reason is the scope of the evaluation: the authors define a core of parameters which can
be aligned across methods due to theoretical and practical considerations (e.g., number
of negative samples in skipgram and the shifting parameter in a PPMI DSM; context
distribution smoothing in skipgram and smoothed PPMI). As a result, 72 parameter
configurations are shared across methods (if we exclude GloVe, whose parameter space
is quite limited anyhow). The second reason is the model selection strategy, as the
authors compare the best evaluation run per task to the result of parameter tuning by
two-fold cross-validation (parameters are tuned on a half of each dataset, tested on the
other half, and final evaluation scores are calculated by averaging the two runs for each
data point). Their results show that, often, two-fold cross-validation correctly identifies
the optimal configuration, in particular for larger datasets.

While potentially fair to all evaluated parameters, the studies adopting a full factorial
design and targeting the best setup per task lack in interpretability and face the risk
of overfitting, as discussed in the introduction of this chapter. As far as parameter
interactions are concerned, the full factorial design in principle allows to capture them,
but the fact that the above studies focus on the best parameter combinations leaves
this issue unaddressed. Finally, identifying the best setup across tasks by averaging the
performance of different DSMs has the drawback that the interpretation may be highly
biased by the (possibly overtrained) performance on a specific task.

5.2 Interpreting performance with linear regression

In the previous sections we identified the two requirements that a suitable DSM evalua-
tion methodology needs to meet: be robust to overtraining and be capable of capturing
interactions between parameters. The evaluation methodology proposed in this thesis
successfully addresses both issues.

As already pointed out earlier, our study adopts a full factorial design: we tested
all parameter combinations for the window-based and dependency-based DSMs, respec-
tively. Differently from the studies listed in section 5.1, however, we do not look for
the best parameter combinations but employ linear regression to interpret the impact
of different parameters on DSM performance. The goal of this section is to define the
theoretical building blocks of the proposed methodology; refer to Harrell (2015) for a
more detailed introduction to regression modeling techniques and an overview of their
application to different data analysis cases.

We use linear regression to analyze the influence of individual parameters on DSM
performance using general linear models with performance as a dependent variable (Y )
and model parameters as independent variables (p1, p2):

Y = β0 + β1 · p1 + β2 · p2 + ...+ βn · pn + ε

The weights (coefficients, β1, β2) learnt by the linear model represent the impact of
the predictors on the predicted variable: a positive impact will be encoded in positive
weights (predicted performance is higher than mean performance, encoded in the in-
tercept β0) or negative ones (predicted value lower than β0). ε is an error term, which
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represents the discrepancy between the actual value and the value predicted by the
linear model; model training seeks to find the combination of weights which minimizes
ε.

Turning to a more concrete example, the following equation quantifies the effect of
the manipulation of source corpus and window size on the performance in the TOEFL
multiple-choice task:

accuracy = β0 + βcorpus + βwindow + ε

When categorical predictors are involved in the regression, the linear model learns
a weight for each distinct value of the predictor (in statistical terms, for each level of
a factor). For each predictor, one value is considered as reference, and the weights
of the others are calculated in relation to it. In our example, βcorpus is a set of three
weights: with BNC as a reference value, βbnc=0; βwacky and βukwac quantify the expected
gain/loss in predicted performance with respect to models built from the BNC. Because
of the dummy coding β0 corresponds to the DSM accuracy when all predictors are set
at their reference level, and it does not correspond to the grand mean of the accuracy
(as in the case of continuous predictors).

We code all predictors as categorical: parameters with numerical values (e.g., size
of the context window, number of dimensions) are considered as discrete factors. This
choice is motivated by the need of minimizing the number of assumptions, as we expect
the relation between performance and predictors to be neither linear nor monotonic: for
example, we have no reason to assume the difference in performance at window 2 and
16 to be eight times bigger than the difference between 2 and 4. Indeed, our analysis
show that the shape of the effects is often complex (e.g., performances reaches a peak
for an intermediate value of a parameter and degrades for larger values). To account
for such complex non-linear shapes we would need to fit polynomial models with a large
number of parameters (potentially, as many parameters as the values of the predictors),
increasing the risk to overfit the data.

Specific combinations of parameter values can affect DSM performance to a different
degree: in our example, WaCkypedia could be the best corpus overall, but perform
poorly with the smallest context window. In order to identify combinations of parameter
values which positively affect DSM performance, we introduce in our regression model
all two-way interactions among parameters:

accuracy = β0 + βcorpus + βwindow + βcorpus:window + ε

There is no theoretical reason to restrict the analysis to two-way interactions; in
fact, it is mainly for practical reasons that in the analyses presented in the subsequent
chapters we focus on interactions between pairs of parameters, and leave higher-order
interactions for future work.

5.3 In practice

The application of linear regression to the evaluation data allows us to address two
main questions: a) What are the parameters that affect DSM performance the most?
b) What are the best parameter values, i.e., those with robust effects across model runs?
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In this section, we illustrate our evaluation methodology by spelling out the steps
of the analysis on a small subset of the evaluation data which will be analyzed in the
subsequent chapters. While the purpose of this section is mostly didactic, we also
provide the details for the implementation of the analysis in R, as well as the criteria
for the interpretation of tables and plots that we will use in the subsequent chapters.

Dataset As a case study for this toy example, we selected the evaluation on the
TOEFL task, on window-based models, without dimensionality reduction. We will con-
duct the analysis on a subset of the full parameter space; we selected 75 runs resulting
from the manipulation of 3 parameters, namely source corpus, size of the context win-
dow, and number of context dimensions. The other parameters have been set to default
values.1 Accuracy ranges from 42.50 to 70.00, with a mean of 57.28.2 In what follows,
we assume that the subset is stored in a table (a dataframe, in R): we refer to it as
toefl.

Fitting and evaluating the linear model In this example, we test the explana-
tory power of source corpus and window size in our dataset, and train two linear models:
one without interactions (m1) and one with interactions (m2):

m1 <- lm(accuracy ~ corpus + window, data=toefl)

m2 <- lm(accuracy ~ corpus + window + corpus:window, data=toefl)

A preliminary question is whether our linear models are doing a good job at pre-
dicting DSM performance: only in case of a positive answer we can build reliable gen-
eralizations from them. A commonly employed diagnostic for linear model fit is R2. It
compares the actual values of the dependent variable with the prediction of the model
and provides an estimation of whether the model has learnt a good approximation of
the data on which it has been trained. R2 is calculated as the ratio between the variance
captured by the regression and the total amount of variance in the data, and therefore
ranges between 0 and 1 (perfect fit).3

It has been pointed out that R2 tends to overestimate model fit when the sample
size is small and a large number of parameters are involved (more parameters always
explain more variance). It is therefore recommended to rely on the adjusted version
of R2, which takes into account sample size and number of predictors in the model.
Adjusted R2 is always smaller than R2, can have negative values and does not have a
fixed range.4 The difference between R2 and Adjusted R2 tends to be large for small
sample sizes and neglectable for large sample sizes.5

1Default values: window direction: undirected; criterion for the selection of context dimensions:
frequency; score for feature weighting: frequency; transformation: log; distance metric: cosine; index of
distributional relatedness: distance.

2The distribution of accuracy in this subset of the data is not representative of the one of the full
dataset (where, for example, maximum accuracy is 87.5).

3Unadjusted R2 is also referred to as squared correlation because (under a number of assumptions
which are all met in our case) it is equal to the square of the correlation between the actual and predicted
values.

4Adjusted R2 is calculated as follows: Adj.R2 = R2−(1−R2)·(p/(N−p−1)), with N equal to sample
size and p as the number of parameters of the model. For a thorough discussion of the mathematical
motivation behind the calculation of Adjusted R2 see Harrell (2015).

5In our case, sample size corresponds to the number of different parameter combinations (e.g.,
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In R the fit of a linear model can be explored with the summary() function. We
display a selection of its output (omissions are marked as [...]). We do not report nor
discuss all details, for which we refer the reader to an introduction to statistical analysis
with R, e.g., Baayen (2008).

summary(m1)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.6333 0.8511 75.938 < 2e-16 ***

corpuswacky 1.9500 0.7880 2.475 0.0158 *

corpusukwac 1.9000 0.7880 2.411 0.0186 *

window2 -1.8333 1.0173 -1.802 0.0760 .

window4 -8.0833 1.0173 -7.946 2.75e-11 ***

window8 -15.1667 1.0173 -14.909 < 2e-16 ***

window16 -18.0833 1.0173 -17.776 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

[...]

Multiple R-squared: 0.8797, Adjusted R-squared: 0.869

[...]

Of clear relevance for the purpose of this section are the R2 (Multiple R-squared)
and Adjusted R2 values, as well as the estimates for intercept (β0 in the equations
in section 5.2) and all levels of the predictors (e.g, corpuswacky and corpusukwac

correspond to βwacky and βukwac in section 5.2, respectively).
As discussed before, the coefficients are employed to construct the predictions of the

model. For example, to calculate the predicted accuracy for corpus = ukwac and window
= 4, we add up (Intercept), corpusukwac and window4: 64.6333+1.9000+(-8.0833)
= 58.45.

Table 5.1 displays a subset of the toefl dataframe, updated with the predictions of
the model both without interactions (column pred m1 ) and with interactions (column
pred m2 ). For each datapoint we also show the squared deviation of the accuracy from
the overall mean (column s data), and the squared deviation of the predicted accuracy
from the actual accuracy (columns s m1 and s m2 for m1 and m2, respectively). The sum
row reports the sum of the squared deviations in s data, s m1, and s m2, respectively),
for the entire dataset.

The ratio between the sum of the squared deviations of the predicted values (s m1

and s m2) and the variance in the actual data (s data) quantifies the amount of variance
that the model did not manage to account for, corresponding to the R2 of the ε term
in the regression equation. (Unadjusted) R2 of the regression model can therefore be
calculated as 1−R2

ε . Let us spell out the calculations for our toy dataset:

m1: R2 = 1− (527.79/4385.5) = 0.8797
m2: R2 = 1− (229.37/4385.5) = 0.9477

N=33600 in an unreduced setting). A linear model trained on the all TOEFL experimental runs in
an unreduced setting, with all parameters as predictors as well as all two-way interactions achieves an
R2 of 0.874 and an Adjusted R2 of 0.873.
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corpus window cont.dim accuracy pred m1 pred m2 s data s m1 s m2
ukwac 4 5000 61.25 58.45 57.75 15.73 7.84 12.25
ukwac 4 10000 58.75 58.45 57.75 2.15 0.09 1.00
ukwac 4 20000 57.50 58.45 57.75 0.05 0.90 0.06
ukwac 4 50000 55.00 58.45 57.75 5.21 11.90 7.56
ukwac 4 100000 56.25 58.45 57.75 1.07 4.84 2.25
bnc 16 5000 42.50 46.55 44.25 218.55 16.40 3.06
bnc 16 10000 42.50 46.55 44.25 218.55 16.40 3.06
bnc 16 20000 43.75 46.55 44.25 183.15 7.84 0.25
bnc 16 50000 46.25 46.55 44.25 121.73 0.09 4.00
bnc 16 100000 46.25 46.55 44.25 121.73 0.09 4.00
... ... ... ... ... ... ... ... ...
SUM 4385.5 527.79 229.37

Table 5.1: Toy example: actual vs. predicted accuracy

As expected, m2 has a better fit to the data than m1. Adjusted R2 values con-
firm that the models are not overfitting our dataset (without interactions: 0.869; with
interactions: 0.935).

Feature ablation To quantify the importance of each parameter or interaction
we adopt a feature ablation setting: for each parameter, we measure its impact on DSM
performance in terms of the amount of explained variance for which it is directly respon-
sible (both as a simple effect, and because of the interactions in which it participates).

The feature ablation value for a specific parameter represents the drop in R2 that we
would observe if we were to remove the parameter from the regression model, keeping
in mind that dropping a parameter means to drop also all the interactions in which the
parameter is involved (e.g., dropping the parameter a automatically discards the inter-
action a : b). Feature ablation is calculated for interactions, as well: if the model only
contains two-way interactions, the feature ablation value of an interaction corresponds
to its R2; in case of high order interactions the feature ablation value of an interaction
includes the R2 of its higher-order terms (e.g., dropping the two-way interaction a : b
automatically drops the three-way interaction a : b : c).

We implement feature ablation by conducting analysis of variance, which is straight-
forward for our factorial design as it decomposes the R2 of the full model into the partial
R2 for each term. We employ the anova() function from the rms package. anova.rms()
is a convenient choice because the sum of squares for each predictor is already calcu-
lated jointly for the predictor and all the interactions in which it participates. In what
follows, we focus on the linear model with interactions and show a subset of the output
of anova.rms():

library(rms)

# Fit linear models with ols(), as required by rms()

ol_2 <- ols(accuracy ~ corpus + window+corpus:window, data=toefl)

# Run anova

anova(ol_2)
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Analysis of Variance Response: accuracy

Factor d.f. Partial SS [...]

corpus (Factor+Higher Order Factors) 10 360.2083

All Interactions 8 298.4167

window (Factor+Higher Order Factors) 12 4094.3750

All Interactions 8 298.4167

corpus * window (Factor+Higher Order Factors) 8 298.4167

REGRESSION 14 4156.1667

ERROR 60 229.3750

The Partial SS values show that window accounts for a very large amount of the
variance explained by the regression model (REGRESSION) (cf. the calculations in table
5.1); corpus, on the other hand, accounts for a small (yet highly significant, according
to the values produced by the anova function and not shown here for reasons of space)
amount of the variance. Furthermore, a very large portion of variance explained by
corpus is actually due to its interaction with window (298.4167 out of 360.2083 Partial
SS, corresponding to 0.07 and 0.08 R2, respectively).

The plot(anova.rms()) function automatically transforms Partial SS values into
R2 and it can be used to produce feature ablation plots which show parameters on
the y-axis and partial R2 on the x-axis.6 The plot in figure 5.1 is the default for
plot(anova.rms()): it will be employed throughout the thesis to display feature abla-
tion for main effects, with minor cosmetic changes.7

plot(anova(ol_2), what="partial R2", sort=c("ascending"), margin=c())

Partial R2 can also be displayed in a tabular format, as shown in the code below.
Note that the values do not sum up to the R2 of the full model, because corpus *

window contributes to the partial R2 of both window and corpus.

df_ols <- as.data.frame(plot(anova(ol_2), what="partial R2"))

names(df_ols) <- "partial R2"

df_ols

partial R2

window 0.93360759

corpus 0.08213543

corpus * window 0.06804557

6A note of caution is necessary with feature ablation experiments based on plot(anova.rms()) on
small datasets, as the implementation is based on R2 instead of Adjusted R2 and therefore potentially
biased towards parameters with a larger number of factors. However, our sample sizes are very large
and, as discussed before, there is a very small difference between R2 and Adj. R2. We conducted a
sanity check on the full TOEFL dataset and compared ablation scores based on R2 and Adj. R2, for the
parameters with the highest number of values: window size, number of context dimensions, and score.
As we expected, the difference between the two values is always well below 0.01: window, R2 = 0.2144;
Adj. R2 = 0.2152; score, R2 = 0.3945; Adj. R2 = 0.3957; number of context dimensions, R2 = 0.0178;
Adj. R2 = 0.0176.

7The method also displays a number of other diagnostics for the contribution of each predictor (e.g..
chi-square, p-value, etc. ): they have been suppressed here with the command margin=c().
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Figure 5.1: Toy example: feature ablation plot

In the subsequent chapters, we will employ the dot plots to visualize feature ablation
of specific parameters, and will display the most powerful interaction per task in a
tabular format.

Before moving on to the choice of best parameter values, let us clarify the nature
of our feature ablation experiments. Feature ablation is commonly employed in Data
Analysis for stepwise model selection: starting point is a large set of candidate predictors
for the dependent variable, and the goal is to identify a subset of predictors which does
the best job at modeling the dependent variable. Feature ablation is a widely employed
technique in Machine Learning, as well: in this case, starting point are a set of features
and a task, and the goal is to identify the features which ensure the best performance
on the task. Our approach is different, in that our main interest does not target best
parameters (best predictors, best features), but best parameter values; moreover, given
our full factorial design, a stepwise selection would not be motivated, as the dropping
of a predictor would not change the picture of the relative performance of the other
parameters. Feature ablation informs our choice of best parameters: if a parameter
turns out to have little or no effect on DSM performance (low feature ablation), it can be
set to a default value, usually the one which is less computationally expensive (a smaller
corpus, for example); if the parameter has a big impact on model performance (high
feature ablation value), we proceed to explore its best parameter values as discussed
in the following section. It should be kept in mind that a comparable feature ablation
value for a certain DSM parameter in two different tasks (e.g., window in TOEFL vs.
WS353) only indicates that the parameter affects DSM performance to the same extent,
but it does not necessarily imply that the same parameter values need to be selected to
ensure the best performance.

Finding best parameter values To identify the best DSM parameter values,
we exploit the predictive power of linear regression and manipulate the values of the
DSM parameters to quantify the expected gain/loss in performance associated to their
values. Under the assumption that a linear model with a good fit to the data can be
considered a sort of “smoothing” algorithm which is capable of extracting robust trends
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by filtering away random noise, we build our interpretation based on the predictions of
the model (e.g., predicted accuracy).

We identify robust optimal parameter settings with the help of effect displays (Fox,
2003) as implemented in the effects library. Effect plots are particularly convenient
especially for models involving interactions because, unlike coefficient estimates, they
allow an intuitive interpretation of the effect sizes of categorical variables irrespective
of the dummy coding scheme used.

Effect displays show the partial effect of one or two parameters by marginalizing
over all other parameters (e.g., by taking the average of the predictions for parameters
that are not shown). When displaying interactions (corpus:window), the main effects
marginal to each interaction (corpus and window) are incorporated when producing
the effect plot; this allows the predictions of the interaction to range over the values
of the main effects, providing a more accurate estimation of the overall effect of the
manipulation of the two parameters.

The code below produces plots displaying the effect of corpus and window on pre-
dicted accuracy (displayed on y-axis). First, we produce the the simple effect plots for
corpus (figure 5.2) and window (figure 5.3). Then we plot their combined effect for the
model without the interaction (figure 5.4) and for the one with interactions (figure 5.5);
parameter values are displayed on the x-axis for the simple effects, and in combination
with the different line styles for the model containing the interaction.

library(effects)

# Corpus (simple effect)

plot(Effect(c("corpus"), m1), ci.style="none")

# Window (simple effect)

plot(Effect(c("window"), m1), ci.style="none")

Simple effect: corpus

corpus

ac
cu

ra
cy

56.0

56.5

57.0

57.5

bnc wacky ukwac

●

● ●

Figure 5.2: Simple effect: corpus

Simple effect: window

window

ac
cu

ra
cy

50

55

60

65

1 2 4 8 16

●

●

●

●

●

Figure 5.3: Simple effect: window

# No interactions: corpus and windows as simple effects

plot(Effect(c("corpus", "window"), m1), multiline=TRUE)

# With interactions: joint effect of corpus and windows

plot(Effect(c("corpus", "window"), m2), multiline=TRUE)



Chapter 5. Interpreting DSM performance 104

No interaction: corpus+window

window

ac
cu

ra
cy

50

55

60

65

1 2 4 8 16

●

●

●

●

●

corpus
bnc wacky ukwac●

Figure 5.4: Combination of simple effects

Interaction: corpus:window

window

ac
cu

ra
cy

45

50

55

60

65

1 2 4 8 16

●

●

●

●

●

corpus
bnc wacky ukwac●

Figure 5.5: Interaction

The comparison between figure 5.2 and 5.3 illustrates the different explanatory power
of the two predictors: the range of the displayed predicted accuracy in 5.2 is very
restricted, compared to the one of 5.3. This means that the manipulation of corpus

does not result in variation in the performance of a DSM. The comparison between
figure 5.4 and 5.5 aptly illustrates the contribution of corpus:window to the model fit.
Manipulation of window size affects predicted performance differently for each corpus;
the interaction is particularly salient for the WaCkypedia corpus: the performance
pattern is quite different from the one captured by the model without interactions
(figure 5.4). If we were to choose best parameter values based on the effect plot in
figure 5.4, we would go for WaCkypedia as a source corpus, and a context window of
size 1. The interaction plot in 5.5, however, reveals that window size 1 would be an
unfortunate choice for WaCkypedia, and that the misleading main effect is due to the
averaging behind the construction of the main effects.

Note that, given that corpus and window are the only predictors in our models
and simple effects are absorbed into interactions, figure 5.4 and 5.5 fully represent m1

and m2, respectively. For this reason, plotted values correspond to the predicted values
generated with the predict() method, as shown above.

The range of the predicted accuracy varies across the plots, as an outcome of the
different explanatory power of the different predictors: compare the partial R2 values for
corpus and window (0.93 vs. 0.08) with the range of the y-axis in the respective effect
plots (2 vs. 17 points). When interpreting effect plots, we recommend the reader to
focus on the differences between parameter values, and not to their predicted accuracy.

The effect plots shown in the subsequent chapters of this thesis will differ from
default settings of the effects library only for cosmetic details, and can therefore be
interpreted according to the guidelines discussed above.

5.4 Summing up

In this chapter, we illustrated a novel methodology for the interpretation of DSM per-
formance. It is based on linear regression with performance as dependent variable and
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DSM parameters as independent variables. We argued that, differently from other
evaluation approaches adopted in the DSM literature, our methodology can capture
interactions between parameters and serve as a basis for robust generalizations con-
cerning best parameter settings, avoiding overfitting. The theoretical discussion of the
statistical properties of our methodology has been complemented with a toy example
on a small dataset, based on real evaluation data. The aim of such toy example is
twofold: first, it can be used as a reference for the interpretation of the plots employed
in the subsequent chapters of this thesis; second, as all crucial steps are spelled out and
accompanied by the corresponding R code, it constitutes a documentation for users who
want to apply the analysis to their own evaluation data.
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6

Evaluation of window-based DSMs: Word simi-

larity tasks

In this chapter we discuss the results of the evaluation of window-based DSMs on word
similarity tasks. Part of the material presented here has been published in Lapesa &
Evert (2014a): at the level of the scope of the evaluation, this chapter integrates the
publication with the evaluation of the DSMs without dimensionality reduction; at the
level of interpretation, we provide here more extensive discussions and comparisons.

Given the large number of runs, maximum or mean performances are not very
informative: our discussion will therefore not involve the distribution of performances,
but we refer the reader to the histograms displayed in appendix C.

Unsurprisingly, our results show that, besides the practical advantages in memory
usage and computation speed, SVD improves DSM performance (or, at least, does not
have a detrimental effect). There are, however, several reasons that make an in-depth
analysis of unreduced runs interesting. First, from the practical point of view, there
are applications which require non-negative (possibly interpretable) dimensions (e.g.,
measures of distributional inclusion; information-theoretic measures) which will benefit
from a better understanding of the window-based parameters. Second, from a theoret-
ical point of view, we show that a comparison of the impact of different parameters in
an unreduced vs. reduced setting reveals interesting properties of the SVD reduction,
and that it should not be taken for granted that the best unreduced space is also the
best input for SVD. Last but not least, the vectors of an unreduced DSM are a collec-
tion of co-occurrences, and the interaction between specific parameters can inform the
discussion on the properties of association measures (e.g., robustness to low-frequency
effect), independently on their application to DSM purposes: from this point of view,
DSM modeling can be seen as an extrinsic evaluation of underlying corpus linguistic
methods.

In the following sections we guide the reader through the interpretation of the eval-
uation results. The discussion is structured per evaluation setting: we start from the
multiple-choice task (TOEFL, section 6.1), proceed to discuss the prediction of simi-
larity ratings jointly for two datasets (RG65 and WS353, section 6.2), and conclude
with the clustering experiments (AP, BATTIG, ESSLLI, MITCHELL, section 6.3). In
each section, we compare reduced and unreduced runs. We first discuss feature ablation
results and then proceed to select best parameter values by interpreting the effect plots
for the relevant parameters. Given that a systematic evaluation of the index of distri-

107
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butional relatedness is one of the main contributions of this thesis, we explore its effect
in a dedicated section, where we compare this effect across the different datasets, for
reduced and unreduced runs (section 6.4). While discussing best parameter values, we
will always be reasoning in terms of higher or lower predicted performance: as discussed
in chapter 5, we assume that if the fit of the model is good, predicted performances can
to be considered as a good generalization of the actual ones. In section 6.5 we bridge
the gap between predicted and actual performance, and check the actual performance
of the best settings which we identify based on the effect plots. A summary of the
main findings of this study, in form of recommended settings for the different tasks, is
provided in section 6.6.

6.1 TOEFL

The distribution of performance of our DSMs in the TOEFL task is displayed in the
histograms in figure 6.1 (unreduced runs) and 6.2 (reduced runs): more specifically,
the histograms visualize on the y-axis the number of models (i.e., distinct parameter
settings) which reached a the accuracy values displayed on the x-axis. The histogram
also report the minimum, maximum, mean performance, as well as standard deviation.
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Figure 6.1: TOEFL, unreduced runs
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Figure 6.2: TOEFL, reduced runs

The histograms show that, in both cases, we observe a large number of relatively
good models, in particular in the SVD-reduced experiments: this is, however, not very
informative. The distributions display a high variability and, given the large number
of runs, we are not really interested in which DSMs we find at its extremes. However,
we are interested in the factors that determine the performance of our DSMs across
the whole distribution: as discussed in chapter 5, we believe that our linear regression
methodology will allow us to identify robust trends across our parameter space, avoiding
to pick just one model just because it happens to be the best one. For this reason, from
now on in the thesis we will not display distribution of performance anymore: the
interested reader will find all the histograms in appendix C.

Let us now turn to the feature ablation analysis of the relative impact of the DSM
parameters, which we already outlined in chapter 5. Tested in the task of predicting
DSM accuracy on the TOEFL dataset, the linear models achieve an adjusted R2 of
87% (unreduced runs) and 89% (reduced runs), respectively. The plots in figure 6.3
display the ranking of the evaluated parameters according to their importance in the
feature ablation setting, for the unreduced (left) and reduced (right) runs. Parameters
with a high feature ablation value are those whose parameter values make a difference
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Figure 6.3: TOEFL: Feature ablation. Left: unreduced; Right: reduced.

Interaction df R2

score:transformation 18 7.38
transformation:metric 3 1.70
win.size:transformation 12 1.31
win.size:score 24 1.01
score:metric 6 0.96
corpus:score 12 0.88
score:context.dim 24 0.86
corpus:win.size 8 0.61

Interaction df R2

score:transformation 18 7.42
metric:dim.skip 2 4.44
score:metric 6 1.77
metric:context.dim 4 0.98
win.size:transformation 12 0.91
corpus:score 12 0.84
score:context.dim 24 0.64
metric:red.dim 4 0.63

Table 6.1: TOEFL: interactions, R2. Left: unreduced; Right: reduced.

in the predicted performance: in other words, those for which it is particularly crucial
to pick the right value (or combination of values, in case of interactions). As already
discussed in chapter 5, the R2 values in the plots refer to the proportion of variance
explained by the respective parameter together with all its interactions, corresponding
to the reduction in R2 if this parameter is left out. The feature ablation values of all
interactions above 0.5 R2 is displayed in the tables in 6.1.

On the basis of their influence in determining model performance, we identify three
parameters that are crucial for the TOEFL task, both in a reduced and in an unreduced
setting: feature score, feature transformation, and distance metric. The tables in 6.1
show that these parameters are involved in a high number of interactions, among which
the strongest is the one between score and transformation. Throughout the thesis, we
will show that these parameters affect the distributional space independently of tasks
and datasets. Their interactions are better understood by looking at the effect plots:
we will elaborate more on it while discussing best parameter values, and we will show
that it is possible to identify a set of score/transformation combinations with robust
performance across all tasks.

The two SVD-related parameters are also powerful, in particular the number of
skipped dimensions: this is not unexpected and confirms the findings by Bullinaria &
Levy (2012), who achieved state-of-the-art in TOEFL discarding the first SVD dimen-
sions.

Two parameters exhibit a drop in their feature ablation value (relative to other
parameters), from an unreduced to an reduced setting: window size and, more dramat-
ically, relatedness index (which drops to R2 < 0.5). SVD makes the manipulation of
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these parameters less influential: for window size, we will show that the drop is due to
the fact that detrimental values (i.e., large windows) are rescued by the SVD projec-
tion; in the case of relatedness index, the fact that SVD reduces the difference between
distance and rank is to be interpreted as a reduction in the overall asymmetry of the
space: as this is a tendency which affects all tasks, we will discuss it more extensively
in section 6.5. Interestingly, relatedness index is not involved in any strong interaction,
showing that its contribution is constant across the different values of other parameters.

The impact of corpus and number of context dimensions is intermediate in both
settings, but it is ranked slightly higher in the SVD setting. As our corpora differ in
size, we can take the difference in the relative ranking as an indication of the fact that
SVD is sensitive to the amount of input data: when discussing best parameter values,
we will come back to this point, as well.

Exclusion criterion and, to a lesser extent, direction of the context window have a
weak explanatory power (R2 < 0.5), showing that their manipulation does not heavily
affect DSM performance.

6.1.1 Best parameter values

Unreduced setting While the main goal of this section is to identify best parameter
values for TOEFL in the unreduced setting, it is also meant to serve as an illustration
of the interpretation of DSM performance based on effect plots. We talk the reader
through all the interactions listed in table 6.1, allowing some redundancy to give a
full picture, and discuss extensively the criteria for the selection of the best parameter
values. Starting from the following sections, we will present just a selection of partial
effect plots and refer the reader to the supplementary material for a full picture. Keep
in mind that effect plots display the relative effect of a parameter on the predicted
performance: what we will be discussing from now on, throughout the entire thesis,
will be differences in predicted performance (according to the weights learnt by our
linear models), calculated by manipulating the parameter (or the pair of parameters)
of interest, and averaging across the parameters that are not shown.

Let us start with the interaction between feature score and feature transformation,
displayed in figure 6.6. It is particularly instructive to compare the interaction plot with
the plots of the corresponding simple effects (figure 6.4 and 6.5). These plots show how
main effects result from averaging across the entire parameter space but fail to capture
the fact that best values vary a lot in combination with other parameter values. In our
example, while no transformation is much better than log and root as a main effect,
it is overperformed by log and root when it comes to simple-ll. If we were to set the
best values based on main effects, we would go for simple-ll and no transformation.
The interaction shows us that the best choice is z-score with no transformation, and
if simple-ll needs to be selected (for example for a task-unspecific best setting) then it
should combine with log or root.

The best results are achieved by association measures based on significance tests
(simple-ll, t-score, z-score), followed by MI. This result is in line with previous studies
(Bullinaria & Levy, 2012; Kiela & Clark, 2014), which found PMI or PPMI to be the best
feature scores, and consistent with the predictions from the literature on the statistical
properties of association measures:

• Association measures identify the best collocates for the target words, and there-
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Figure 6.7: TOEFL, unred: score / con-
text.dim

fore they do a better job than frequency at highlighting their most salient features.
It is no wonder that this improves the semantic representation encoded in a DSM.

• The association measures involved in our experiments quantify both attraction
and repulsion between target and the features, resulting in negative scores that
are then cut of at zero. This increases the sparseness of the resulting space: Pola-
jnar & Clark (2014) labelled the increase of the sparseness of the DSM vector as
“thinning” (refer to the discussion in section 2.3.3.1 for the relation between thin-
ning and positivization). They do not differ in terms of the degree of introduced
sparseness. Differently from the measures discussed so far, Dice and tf.idf cannot
increase the sparseness of the of the distributional space.

• Association measures are known to differ in terms of their robustness to low-
frequency data. In particular, MI and, to a lesser extent, z-score are known to
overestimate node/collocate pairs containing low-frequency items, while simple-ll
and t-score are more robust to low frequency effects. This tendency is partially
confirmed in the figure 6.7, which displays the interaction between feature score
and number of context dimensions. A smaller number of context dimensions corre-
sponds to a more aggressive filtering of low-frequency features: MI is the measure
for which this effect is more marked, simple-ll the one which is more robust to its
manipulation.

• Of the involved association measures, simple-ll is the one which produces the most
skewed scores (extremely high values compared to other association measures).
In our experiments on TOEFL, it is the only measure for which a root or log
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Figure 6.11: TOEFL, unred: win.size /
score

transformation is recommended, while other the other measures do not require a
particular transformation.

• Of all involved transformations, sigmoid is the one which displays a consistently
detrimental effect. The poor performance may be due to the fact that a sigmoid
transformation is, in fact, a soft binarization which translates the high variability
of the feature scores into a scale from 0 to 1, resulting in information loss. The
only score for which sigmoid is not detrimental is Dice, which is already on a 0 to
1 scale.

Summing up, the partial effects plots inspected so far suggest that best performances
are achieved with z-score, no transformation, and 5k or 10k context dimensions. A valid
alternative is simple-ll, with root transformation, with 5k or 10k context dimensions.

Let us now turn to the distance metric, whose effect is displayed in interaction with
feature transformation in figure 6.8 and feature score in figure 6.9. The interaction with
feature transformation suggests that, while cosine is the most robust choice across trans-
formations, manhattan is equivalent to it when no vector transformation is involved; the
interaction with feature score, however, shows that cosine is the recommended choice
in all cases. The best distance metric is therefore cosine distance: this is one of the
consistent findings of the evaluation presented in this thesis and it is in accordance with
Bullinaria & Levy (2007) and, to a lesser extent, Kiela & Clark (2014).1

1In Kiela & Clark (2014), cosine is reported to be the best similarity metric, together with the
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Figure 6.13: TOEFL, unred: corpus /
score

Next, we explore the window size parameter, based on its interactions with feature
transformation (figure 6.10) and feature score (figure 6.11). Choosing a small window
(size 1 or 2) improves DSM performance, larger windows have a detrimental effect: the
overlap of the most immediate context is relevant for the modeling of synonymy, while
context features occurring farther in the sentence only introduce noise. Joint inspection
of the interaction plots in figures 6.10 and 6.11 identifies in a window of size 2, without
any transformation, the best option. Among the association measures, z-score which we
already identified as the best choice in the interaction with transformation, predicts its
best performances at a window size of 2. Simple-ll exhibits a higher degree of robustness
to the manipulation of the context window: the detrimental effect of a window of size
4 is only minimal, as compared to the other involved measures. This is an interesting
property to keep in mind in the perspective of the individuation of a best setting across
tasks, and it illustrates one of the main strengths of the methodology proposed in this
thesis, as the inspection of partial effect plots makes it possible to find reliably robust
“second best” choices.

Figures 6.12 and 6.13 display the interaction between source corpus and window
size and feature score, respectively: the larger corpus, UkWaC, is clearly the best choice
across the possible combinations.
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Figure 6.14: TOEFL, rel.index

Association measures based on statis-
tical tests (simple-ll, z-score, t-score) and
MI appear to be the right choice to ex-
ploit the co-occurrence information com-
ing from larger corpora, with increasingly
good predicted performances as compared
to frequency or tf.idf which are robust
to corpus choice, but perform comparably
poorly.

We now turn to index of distributional
relatedness: the absence of strong interac-
tions with other parameters allows to reli-
ably inspect the main effect (figure 6.14).
It shows that neighbor rank is the best choice in the unreduced setting and anticipates

correlation similarity metric (a mean-adjusted version of cosine similarity). The latter, however, turned
out to be more robust across different corpora and weighting schemes.
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Figure 6.16: TOEFL, unred: window /
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that the same holds for the reduced setting, too, albeit to a weaker extent (recall the
low R2 value, below our threshold of 0.5). We refer the reader to section 6.4 for a more
extended discussion of the dynamics of the effects involving relatedness index, as well
as for comparisons across tasks.

Let us conclude by showing two additional interactions which did not enter the
interaction tables because of their low R2: the interaction between window size and
relatedness index (figure 6.16, 0.39 R2) and that between window direction and score
(figure 6.15, 0.08 R2). Indeed, performance patterns display little variation across the
different parameter combinations, in particular for the most robust choices we identified
through the inspection of the other, more explanatory, effects. As far as relatedness
index is concerned, we already know that neighbor rank is the best choice, and from the
interactions of window size with other parameters (transformation, score, and source
corpus) we already know that the smaller windows ensure best performance. As for
window direction, our intuition that parameters with a low explanatory power can be
set to a default value (undirected, in this case) is confirmed in figure 6.15: as a matter
of fact, there is little variation in the performance pattern of the different association
measures, which is due to the manipulation of window direction. For the same reason,
we set criterion for context selection to the more intuitive, easily interpretable and
widely employed frequency.
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Figure 6.17: TOEFL, red: score / transfor-
mation

Reduced setting Let us now turn to
the discussion of the best parameter set-
tings for the SVD-reduced runs.

The list of interactions in table 6.1
confirms the strong joint impact of score
and transformation on model perfor-
mance. The interaction is displayed in
figure 6.17: the set of most robust val-
ues overlap with that of the unreduced
runs: best results are achieved by associ-
ation measures based on significance tests
(simple-ll, t-score, z-score). SVD has,
however, reshaped this interaction.

While in the unreduced setting the
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best choice was no transformation for all measures but simple-ll, which in turn bene-
fited from a root transformation, the picture has now shifted following a comparably
systematic pattern: simple-ll, which exhibits the strongest variation in performance
across different transformations, requires a more aggressive de-skewing (log); z-score
and t-score require at least soft transformation (root); MI, for which log and root were
detrimental in a reduced setting, is now robust to transformations. Overall, the gen-
eral tendency seems to indicate that vector transformation in form of soft or aggressive
deskewing is crucial to SVD performance. This tendency holds also for the weak values,
as raw co-occurrence frequency, tf.idf and Dice only perform well in combination with a
square root transformation, while in the unreduced setting feature transformation was
not necessary.

The interaction between feature score and distance metric, displayed in figure 6.18. It
shows that cosine is the best choice for all involved scores. While simple-ll is predicted,
here, to be weaker than the other measures, we stick to it as our recommended score
because the feature score + transformation interaction is a much stronger one in the
feature ablation setting. The fact that t-score is predicted here as the strongest score
suggests that it is a promising alternative to simple-ll.

The best window size, as shown in figure 6.19, is a 2-word window for all evaluated
transformations. Even if the best window size is the same with respect to the unreduced
runs, SVD reduction has reshaped this interaction, with respect to the picture sketched
in figure 6.10: first, the detrimental effect of larger context windows is less marked
(resulting in a lower position of the parameter in the feature ablation ranking); second,
while no transformation was the most robust choice in the unreduced runs, SVD requires
at least the soft de-skewing effect of a root transformation. As far as transformation is
concerned, root and log are the best choices: this tendency is compatible with our picks
for best scores (simple-ll and t-score).

The comparison between the score/transformation interaction (figure 6.17) and the
window/transformation interaction (figure 6.19) aptly illustrates the dynamics of our
linear modeling approach, and the potential shortcoming of our interpretation strat-
egy: score/transformation prescribes simple-ll and log, while window/transformation
indicates in root the most robust transformation across sizes. The latter finding is not
surprising, and perfectly motivated based on interaction plot in figure 6.17: indeed, root
transformation is the most robust across all scores, and this exactly the property which
is captured in figure 6.19. A three-way modeling of such parameter clusters for which
we observe strong, reciprocal interactions is the necessary next step.

Plot 6.20 displays the interaction between feature score and source corpus: more
markedly than in the unreduced setting (cf. figure 6.13), association measures benefit
from larger corpora: UkWaC is now the best choice for all scores but Dice. The choice of
number of context dimensions, whose interaction with feature score is displayed in figure
6.21, is the same as for the unreduced runs: 5k dimensions are sufficient. Differently
than in the unreduced setting, however, a larger number of dimensions is detrimental for
the strongest scores, with the exception of simple-ll which is still comparably robust also
at 10k dimensions.Frequency and tf-idf are the most robust scores overall, exhibiting
little variation in performance even up to 100k dimensions. A possible interpretative
key for this interaction is the interplay between context dimensions and feature score
in determining the sparsity of the space which SVD takes as an input. On the one
hand, sparsity increases with a higher number of dimensions. On the other hand, the
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frequency space is the densest in our experimental design, and we know that tf.idf and
Dice do not increase sparsity with respect to frequency, while the other measures we
employ do. The potential take-home message of this interaction could be that SVD
dislikes extremely sparse spaces: a note of caution on this interpretation has to be
made, however, as Dice exhibits a drop in performance. As far as score is concerned,
its interactions with corpus and number of context dimensions confirm that t-score is a
very strong alternative to simple-ll.

We conclude with a discussion of the dimensionality reduction parameters. The SVD
parameters (number of latent dimensions and number of skipped dimensions) play a
significant role in determining model performance. They show a tendency to participate
in interactions with other parameters, but do not interact among themselves. We display
the interaction between metric and number of latent dimensions in figure 6.22: the steep
performance increase for both metrics shows that the widely-used choice of 300 latent
dimensions Landauer & Dumais (1997) is suboptimal for the TOEFL task. The best
value in our experiment is 900 latent dimensions, and additional dimensions would
probably lead to a further improvement.The interaction between metric and number of
skipped dimensions is displayed in figure 6.23. While manhattan performs poorly no
matter how many dimensions are skipped, cosine is positively affected by skipping 100
and (to a lesser extent) 50 dimensions. The latter trend has already been discussed by
Bullinaria & Levy (2012).2

2The poor performance of manhattan distance in the SVD runs may be due to the fact that the
vectors, normalized after SVD, have not been re-normalized with L1 norm after selecting the dimen-
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Given the minimal explanatory power of the direction of the context window and the
criterion for context selection they are also set to their “unmarked” option: undirected
and frequency. As discussed in the feature ablation section, the index of distributional
relatedness has a very low explanatory power in this setting. Neighbor rank is the
best choice, as anticipated in figure 6.14. However, consistently with the approach we
adopted for the unreduced runs, given the small explanatory power of the parameter
(i.e., the small difference between rank and distance), we recommend to employ distance.

Best settings In this section, we bridge the gap between DSM performance as pre-
dicted by our linear regression analysis, and actual performance. For unreduced and
reduced runs, we report the performance of the best parameter settings set as discussed
above, as well as the performance of three further DSM configurations which are picked
based on different constraints (e.g., cognitive plausibility; comparison with the litera-
ture): the possibility of finding a robust DSM configuration by taking such constraints
into account is a strong advantage of the methodology proposed in this thesis. Besides
putting the evaluation results into a wider perspective, the discussion of the multiple
best settings also provides a summarizing of the observations from the experiments.
The state-of-the-art for TOEFL is already 100% accuracy by Bullinaria & Levy (2012).
The performance of the best run is 87.5% for the unreduced experiments and 98.75%
in the reduced experiments (see appendix B for the specific settings).

Tables 6.2 (unreduced runs) and 6.3 (reduced runs) display the following parameter
settings, as well as their performance:

• Best setting : the best configuration based on the analysis of the effect plots;

• Best cognitive: a combination of parameter settings which is the best candidate
as a “cognitive plausible” DSM representation. Such setting has BNC as a source
corpus, because, compared to the larger corpora, it contains a more representative
sample of language. Furthermore, it employs frequency and log transformation (a
well-established corpus-based measure when it comes to psycholinguistic model-
ing) and rank as a relatedness index (because it allows for asymmetry). In the

sions. The lack of renormalization cannot affect cosine. Literature on DSM lacks a clear experimental
account of the effect of (re)normalization, but the fact that cosine neatly outperforms manhattan in the
unreduced runs indicate that our findings are reliable. Besides that, comparative experiments (man-
hattan renormalized after SVD vs. manhattan normalized before SVD) confirmed that renormalization
improves manhattan performance, but this does not affect the overall behavior of other parameters.
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reduced setting, the SVD parameters are set to a default value to make as few
assumptions as possible concerning the cognitive interpretation of SVD and of the
effects of its parameters:3 the number of reduced dimensions is set to its maximum,
900 (given that almost uniformly across all our evaluation, more dimensions are
never detrimental) and the number of skipped dimensions to zero (given its non
homogeneous behavior across tasks, it is unlikely to be part of a mental represen-
tation). Remaining parameters (e.g., window size, number of context dimensions,
distance metric) are set by inspecting the effect plots.

• Best PPMI setting : the closest parameter combination to the settings widely
employed in the literature. Window size is set to 2: we considered this value to
be the best approximation, within our experimental setup, of choices commonly
made in the literature: while a window of size 1 is employed in some cases (e.g.,
by Bullinaria & Levy (2007) and Kiela & Clark (2014)), it is not clear whether
the computation of window involves closed class words (but it is reasonable to
assume it doesn’t: in this case, this parameter would correspond to a window of
size 2 in our setting); Baroni, Dinu, & Kruszewski (2014) employ a window of size
2. Furthermore, we have MI and no transformation (corresponding to PPMI),
the largest corpus (UkWaC ) and the largest set of contexts 100k (large scale
studies usually employ even larger corpora and context sets, so this is the best
approximation in our parameter set), cosine and distance (as rank is evaluated
for the first time in this thesis). Following on the recommendations of Bullinaria
& Levy (2012), we set the number of latent and skipped dimensions to their
maximum (900 and 100, respectively). Window size is a task-specific parameter,
and thus set by inspecting the effect plots.

• Best PPMI+ setting : we identify a DSM setting which is based on MI and no
transformation, but set the remaining parameters with our evaluation methodol-
ogy The goal here is to check whether, thanks to our large-scale experiments and
to the full picture of parameter interactions gathered with our regression analysis,
we can find improvements to the widely employed PPMI setting. Note that the
other parameters might be substantially different from the “best PPMI” setting.

setting corpus win direction c.dim exc score transf metric rel.ind accuracy
Best setting ukwac 2 undir 10000 f z-score none cosine rank 81.25
Best cognitive bnc 1 undir 100000 f frequency log cosine rank 75.00
Best PPMI ukwac 2 undir 100000 f MI none cosine dist 76.25
Best PPMI+ ukwac 2 undir 5000 f MI none cosine rank 82.50

Table 6.2: TOEFL, unreduced – best settings

Based on the performance of the DSM settings in table 6.2 and 6.3, we can draw
the following conclusions:

• SVD improves performance on the TOEFL task, as the best robust setting for
the reduced runs has a better performance than the best robust setting in the
unreduced runs.

3Besides the claims made in Landauer & Dumais (1997), there is no evidence for a cognitive plausi-
bility of SVD, nor for the 300 dimensions employed in that foundational SVD paper to be the optimal
value for such parameter.
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setting corpus win direction c.dim exc score transf n.dim dim.skip metric rel.ind accuracy
Best setting ukwac 2 undir 5000 f simple-ll log 900 100 cosine dist 93.75
Best cognitive bnc 1 undir 100000 f frequency log 900 0 cosine rank 70.00
Best PPMI ukwac 2 undir 100000 f MI none 900 100 cosine dist 88.75
Best PPMI+ ukwac 8 undir 5000 f MI none 900 100 cosine dist 91.25

Table 6.3: TOEFL, reduced – best settings

• This trend is reversed in the cognitively inspired setting: we abstain from “cog-
nitive” interpretations on this fact, and prefer to go for a mathematical one as-
suming that the information gathered from BNC at 100k dimensions is just too
sparse (and, possibly, looking at the effect plot in figure 6.21 just not sufficient
given the minimal improvement with respect to smaller number of contexts), and
log transformation too aggressive, to ensure a good dimensionality reduction. As
a matter of fact, our evaluation would predict a root transformation to be the
best choice. Moreover, the lack of improvement with SVD may be due to the
fact that, given the lack of reasonable cognitive assumptions concerning the SVD
parameters, we adopt here an untuned SVD.

• Our methodology, combined with the thorough exploration of the parameter space
we conducted, allows us to further improve PPMI with respect to the settings
which are commonly employed in the literature (Best PPMI+ better than Best
PPMI, in both settings). This is not only because we experiment with rank, which
improves performance in the unreduced setting. Contrary to what is commonly
done in the literature, we found that in both reduced and unreduced setting PPMI,
at least on the TOEFL task, benefits from a smaller set of contexts; moreover,
in the reduced setting, it benefits from a window which is larger than commonly
assumed. Note that TOEFL is a fairly small dataset, so in the next sections we
will check whether such observations concerning the interaction of PPMI with
other parameters generalize also to the other datasets.

6.2 Similarity ratings

Tested in the task of predicting the unsigned Pearson correlation between DSM similar-
ities and human similarity ratings, the linear models achieve the following adjusted R2

values: for RG65, 91% (unreduced) and 86% (reduced); for WS353, 94% (unreduced)
and 90% (reduced). The model fit is higher for WS353 than it is for RG65, showing that
the linear models have been able to build a more robust generalization for the former:
this is not surprising, given that WS353 has a much larger number of items (353 vs.
65, cf. TOEFL, 88 items: 87% unreduced, 89% reduced) and performance on smaller
datasets is more likely to fluctuate due to noise.

The plots in 6.24 display the ranking of the evaluated parameters according to their
importance in the feature ablation setting, for the unreduced (left) and reduced (right)
runs. The tables in 6.4 display the interactions which account for more than 0.5% of
explained variance, in the unreduced (left) and reduced (right) setting, respectively.

Similarly to what we already observed for TOEFL, feature score and feature trans-
formation appear to play a crucial role in determining DSM performance, both in the
reduced and in the unreduced setting. The tables in 6.4 show that their interaction is
the strongest for both tasks, in the reduced and unreduced setting.



Chapter 6. Evaluation of window-based DSMs: Word similarity tasks 120

●

●

●

●

●

●

●

●

●criterion

win.direction

context.dim

win.size

metric

corpus

transformation

rel.index

score

0 10 20 30 40
Partial R2

●

RG65

WS353

●

●

●

●

●

●

●

●

●

●

●criterion

win.direction

context.dim

dim.skip

win.size

red.dim

rel.index

metric

transformation

corpus

score

0 10 20 30 40
Partial R2

●

RG65

WS353

Figure 6.24: Similarity Ratings: Feature ablation. Left: unreduced; Right: reduced.

Interaction df RG65 WS353

score:transf 18 8.40 4.39
score:rel.index 6 2.37 3.24
corpus:score 12 0.80 1.75
transf:metric 3 1.66 0.55
win.size:score 24 0.76 1.02
win.size:transf 12 1.08 0.57
score:metric 6 0.85 —
win.size:rel.index 4 0.69 —

Interaction df RG65 WS353

score:transf 18 10.28 8.66
metric:red.dim 4 2.18 1.42
score:metric 6 1.91 0.59
win.size:transf 12 1.43 1.01
corpus:metric 2 1.83 0.51
metric:context.dim 4 1.08 0.62
corpus:score 12 0.77 0.82
score:dim.skip 12 0.58 0.85
win.size:score 24 0.77 0.69
win.size:metric 4 — 0.65
transf:dim.skip 6 — 0.54
metric:dim.skip 2 — 0.82
score:context.dim 24 0.56 —

Table 6.4: Ratings: interactions, partial R2. Unreduced (left) vs. Reduced (right)

Index of distributional relatedness plays a major role in the unreduced runs, and,
comparably to TOEFL, loses explanatory power in a reduced setting. Yet, there are two
main differences in the behavior of this parameter with respect to the multiple choice
task. First, the parameter is much stronger in the unreduced setting, where it also
participates in a strong interaction with feature score. Second, while with TOEFL SVD
almost completely neutralized the difference between distance and rank, their difference
is here still strong, both for RG65 and WS353.

The loss in explanatory power of relatedness index in the reduced setting is accom-
panied by a raise in feature ablation by corpus and metric. The interaction tables show
that such gain is only partially due to interactions, which mainly affect metric and are
quite weak anyway. This indicates that the best parameter values of such parameters
are robust across the possible combinations with the values of other parameters.

Feature ablation proves size of the context window to be a rather weak parameter,
both in the reduced and unreduced setting: interestingly, while the parameter affects
performance on RG65 more than it does on WS353 in the unreduced runs, it turns out
to be more crucial to WS353 in the reduced runs. In our exploration of best parameter
values we will elaborate more on the interpretation of this effect.

The two SVD-related parameters are less powerful in this task than they were in
TOEFL: in particular number of skipped dimensions, among the top-ranked in the
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multiple-choice synonymy task, has here a rather weak explanatory power.

Number of context dimensions has a very weak explanatory power, and it interacts
with other parameters only in a reduced setting. Similarly for what we observed for
TOEFL, exclusion criterion and direction of the context window have a neglectable
impact on DSM performance, and they do not participate in any interaction.

6.2.1 Best parameter values

Unreduced setting In what follows, we discuss the best parameters for the RG65
and WS353 in the unreduced experiments. We follow the ranking of interactions in
table 6.4, and display the effect plots for the two datasets side by side. Note that, given
the different range of performance (RG65 is much easier than WS353), producing plots
on the same scale would have been unfortunate at the level of visualization. As already
discussed for TOEFL, what matters for the purpose of this discussion are differences
in predicted performance due to manipulation of our parameters, and the differences on
the y-axis of the displayed plots are equivalent.

We start from the top of the interaction table, where we find, once again, the interac-
tion between feature score and feature transformation displayed in figure 6.25 and 6.26.
The pattern is quite similar for the two tasks, and strikingly similar to what we already
saw for TOEFL: simple-ll, t-score and z-score are the best performing measures, and no
transformation is the best choice for all involved scores, with the exception of simple-ll,
which requires the soft de-skewing of a root transformation. More specifically, the best
choices for both datasets are z-score without transformation, or, alternatively, simple-ll
with root transformation, with a preference for the latter in WS353. The interaction
between feature score and relatedness index, in figures 6.27 and 6.28 indicates unam-
biguously that the best relatedness index is rank, and confirms simple-ll and z-score as
the strongest scores.

The joint inspection of the interactions between window and feature score (figures
6.29 and 6.30) and feature transformation (figures 6.31 and 6.32) uncovers the only
substantial difference between the two tasks, namely the best parameter value for win-
dow size. As a general pattern, WS353 needs larger context windows than RG65 does:
one possible explanation for this observation is the different composition of the WS353
dataset, which includes examples of semantic relatedness beyond attributional similar-
ity. In more detail, we observe that if simple-ll and root are kept as the main choices
for transformation, a 2-word window is sufficient for RG65 while an 8-word is necessary
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Figure 6.30: WS353, unred, window /
score

for WS353. If, as an alternative, we would go for the z-score and no transformation
combination, slightly larger context windows (4 for RG65 and 8/16 for WS353) would
be necessary, with a 4-word window as a reasonable compromise if in need to establish
a shared best setting for both datasets.

The interaction between score and source corpus allows us to set a shared best
parameter for both datasets: WaCkypedia, suggesting that this task benefits from a
trade-off between quality and quantity (WaCkypedia being smaller and cleaner than
ukWaC, but less balanced than the BNC); we can already anticipate that this pattern
will characterize the reduced runs, as well. Note that, due to the presence of neighbor
rank in our experimental setup, and given that, differently from distance, rank operates
over the distributional representations of the whole vocabulary (vs. distance, for which
only the vectors of the items in the dataset are needed), it would be simplistic (and
probably wrong) to interpret this result as due to the fact that the items in the ratings
datasets are better represented by the WaCkypedia contexts. From this perspective,
neighbor rank represents a less task-dependent oriented measure of DSM performance.

The interaction between feature transformation and distance metric, not displayed
here for reasons of space (plots are available in the supplementary material) follows a
clear pattern for both datasets: for all evalutated transformations, cosine is the best
choice, with a large advantage over manhattan in all cases but no transformation (cf.
TOEFL, where we observed the very same pattern).

The two RG65-specific interactions (window size and relatedness index; score and
metric), are not discussed here for reason of space and because they do not affect the
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Figure 6.31: RG65, unred, window /
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Figure 6.32: WS353, unred, window /
transformation
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Figure 6.33: RG65, unred, corpus /
score
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Figure 6.34: WS353, unred, corpus /
score

choice of best parameters values we already made, based on the stronger interactions.

For number of context dimensions, which has a very weak explanatory power, we
resort to the main effect (see supplementary material) and pick a matrix of 20k di-
mensions. Consistently with the approach adopted for TOEFL, we set the remaining
parameters (R2 < 0.5) to a default value: exclusion criterion to frequency and direction
to undirected.

Summing up, the best model configuration in an unreduced setting is WaCkypedia
as a source corpus, 20k context dimensions based on frequency, an undirected window
of size 2 for RG65 and 8 for WS353, simple-ll and root transformation, cosine distance
and neighbor rank.

Reduced setting In what follows, we discuss the best parameter settings for the
runs involving dimensionality reduction, taking a comparative approach to what we
already discussed for the unreduced runs, as well as the trends identified for TOEFL.
Our starting point is, as in the previous section, the ranking of interactions listed in
table 6.4.

The interaction between score and transformation is confirmed as the strongest in
terms of explanatory power. With respect to the unreduced setting, the interaction has
undergone a shift similar to what we already identified for TOEFL: while before SVD
a soft transformation (root) was necessary only for simple-ll, while the other measures
achieved their best performances without any transformation, root has become the
best choice for nearly all scores (with the only exception of MI, which reaches its best
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Figure 6.35: RG65, red, score / trans-
formation

●

●

●

●

●
●

●

0.3

0.4

0.5

frequency tf.idf MI Dice simple−ll t−score z−score

transformation

●

none

log

root

sigmoid

Score * Transformation

Figure 6.36: WS353, red, score / trans-
formation
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Figure 6.37: RG65, red, window /
transformation
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Figure 6.38: WS353, red, window /
transformation

predicted performance without any transformation) and simple-ll requires a strongest
de-skewing, log. The inspection of the plots displaying the interaction between score
and metric confirms that cosine is the best measure and does not affect the choice of
best values for score, hence we do not discuss them here and we refer the reader to the
supplementary material.

The choice of the optimal window size depends on transformation, as shown in
figures 6.37 and 6.38 for RG65 and WS353, respectively. Once again, the way SVD re-
shapes the interaction is comparable to what we observed for TOEFL, as larger windows
improve performance, or at least are not detrimental as they used to be in a reduced
setting. On the RG65 dataset, figure 6.37 shows that for a logarithmic transformation –
which we already identified as the best transformation in combination with significance
association measures – the highest performance is achieved with a 4 word window. Root
transformation, which is the best for the other measures, displays the same pattern. No
transformation which, before SVD, exhibited a drop after the intermediate values, keeps
on improving up to a 16 word window. The corresponding effect display for WS353 (fig-
ure 6.38), which before SVD was exhibiting a preference for windows larger than RG65,
has followed the same pattern: now all transformations increase (or are at least unaf-
fected) up to 16, while simple-ll stabilizes at an 8 word window. A 4-word window is
confirmed as a robust choice for both datasets. The interaction between window size
and score, not displayed here for space constraints, confirms the tendencies discussed so
far.

To identify the best corpus, we jointly inspect its interaction with metric, in figures
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Figure 6.39: RG65, red, corpus / met-
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Figure 6.40: WS353, red, corpus / met-
ric
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Figure 6.41: RG65, red, metric / con-
text dim
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Figure 6.42: WS353, red, metric / con-
text dim

6.39 and 6.40. WaCkypedia is confirmed as the best source corpus for both datasets, at
the same level of UkWaC for WS353. The interaction between corpus and score, not
shown here, confirms this tendency. Needless to say, cosine is the best distance.

The interaction between metric and number of context dimensions (figure 6.41 and
6.42) confirms cosine as the best distance metric, and it allows us to identify in 50k
and 20k the best values for the number of context dimensions, for both datasets. It is
also a very good example of how crucial it is to take into account interactions, as we
see that the two metrics display an almost specular pattern, which would have been
averaged away in the corresponding main effect (refer to the main effect plots in the
supplementary material).

Let us now turn to the dimensionality reduction parameters. The interaction be-
tween number of latent dimensions and distance metric was the second strongest, over-
all, in the feature ablation setting. Figures 6.42 and 6.43 show that cosine outperforms
manhattan across the board, and that with cosine as a distance metric and at least 300
latent dimensions (up to 500 for WS353) are the best choice, and no further improve-
ment is to be expected at larger dimensionalities.

To learn more about the best value of number of skipped dimensions we inspect its
interaction with score (figures 6.45 and 6.46). For the best measures, the best results are
predicted with 50 skipped dimensions. For RG65, even skipping up to 100 dimensions
does not affect particularly the performance, for the strongest association measures.
For WS353, on the other hand, skipping 100 dimensions is clearly detrimental, and
to select 50 as our final we had to consult the (weaker) interactions with metric and
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Figure 6.43: RG65, metric / red.dim
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Figure 6.44: WS353, metric / red.dim
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Figure 6.45: RG65, score / skipped
dim

●

●
●●

●

●

●

●

●

●

●

●

0.3

0.4

0.5

0 50 100

score

●

●
●

●

frequency

tf.idf

MI

Dice

simple−ll

t−score

z−score

Number of Skipped Dimensions * Score

Figure 6.46: WS353, transformation /
skipped dim

transformation, not shown here for reasons of space. The preference of RG65 for 50/100
skipped dimensions compared to 0/50 of WS353 can be interpreted in light of the
different type of relations between the items in the two datasets: as already discussed,
WS353 encodes both similarity and topical relatedness. As a matter of fact, RG65
patterns with TOEFL more than WS353 does. We will come back to this point later,
in chapter 8, where a direct comparison of paradigmatic (similarity) and syntagmatic
(relatedness) will be carried out in the same parameter space.

Differently from what happened in the TOEFL task, relatedness index still plays a
strong role in the reduced setting. Best choice is, again, neighbor rank : see section 6.4
for an extended discussion of this effect. For exclusion criterion and window direction
we stick to the same default choices for best parameters.

Summing up, our investigation has identified the following best choices: WaCkypedia
as corpus, an undirected window of 4 words for RG65 and 8/16 words for WS353, 50k
context dimensions selected based on frequency, simple-ll with a log transformation,
500 reduced dimensions skipping the first 50 dimensions, cosine distance and neighbor
rank.

Best settings In what follows, we summarize our observations on the rating datasets
by displaying the performance of the best settings for the task of predicting the similarity
ratings, and compare such best settings to a cognitive plausible DSM and to two PPMI
settings, with parameters picked as described in section 6.1.1; the only difference is
that, here, we take 500 latent dimensions to be best PPMI setting (following Baroni
& Lenci (2010) and Levy et al. (2015)). Table 6.5 and 6.6 summarize the observations
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discussed in the previous sections and display both Pearson’s r and also Spearman’s
rho, for completeness and better comparison with the literature.

The state-of-the-art of corpus-based systems4 is 0.86 r (0.83 rho) for RG65 (Hassan
& Mihalcea, 2011) and 0.81 rho for WS353 (Halawi et al., 2012). For the performance
of the best runs and the specific settings, see appendix B.

The performances of the DSMs displayed in the two tables allows us to draw the
following conclusions:

• The regression methodology allowed us to identify robust best settings which are, for
RG65, better than the state-of-the-art of comparable DSMs.

• Comparably to what we observed with TOEFL, SVD improves DSM performance:
for both datasets, robust best settings in the reduced runs have better performances
than in their unreduced counterpart.

• As in TOEFL, the cognitive setting performs rather poorly and is negatively affected
by SVD reduction. This is particularly true for WS353: it is reasonable to assume
that the experimental items for this dataset just have poorer representations in the
BNC. As for the negative impact of SVD, note that, as in TOEFL, in the cognitive
setting we do not to manipulate a crucial parameter, i.e., the number of skipped
dimensions.

• For both datasets and in both reduced and unreduced runs, the best PPMI+ models
outperform the corresponding PPMI counterparts, showing that the use of neighbor
rank (which hasn’t yet been tested in the predictions of similarity ratings) and the
possibility of setting other parameters with respect to their interactions to PPMI does
improve DSM results.

setting corpus win direction c.dim exc score transf metric rel.ind r rho
RG65

Best setting wacky 2 undirected 20000 f simple-ll root cosine rank 0.82 0.83
Best cognitive bnc 1 undirected 20000 f frequency log cosine rank 0.66 0.67
Best PPMI ukwac 2 undirected 100000 f MI none cosine dist 0.67 0.72
Best PPMI+ wacky 2 undirected 20000 f MI none cosine rank 0.81 0.81

WS353
Best setting wacky 4 undirected 20000 f simple-ll root cosine rank 0.67 0.69
Best cognitive bnc 2 undirected 20000 f frequency log cosine rank 0.36 0.37
Best PPMI ukwac 2 undirected 100000 f MI none cosine dist 0.57 0.60
Best PPMI+ wacky 2 undirected 20000 f MI none cosine rank 0.63 0.65

Table 6.5: Ratings, unreduced – best settings

4Systems which are classified as knowledge-based or hybrid in the ACL state-of-the-art wiki
(https://aclweb.org/aclwiki/State of the art) are not directly comparable to the ones discussed in
this thesis. Such systems hold state-of-the-art performance for both RG65 (Pilehvar & Navigli (2015):
0.92 rho, 0.91 r) and WS353 (Speer et al. (2017), 0.83 rho).
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setting corpus win direction c.dim exc score transf n.dim dim.skip metric rel.ind r rho
RG65

Best setting wacky 4 undirected 50000 f simple-ll log 500 50 cosine rank 0.87 0.85
Best cognitive bnc 4 undirected 100000 f frequency log 900 0 cosine rank 0.60 0.59
Best PPMI ukwac 2 undirected 100000 f MI none 900 0 cosine dist 0.76 0.77
Best PPMI+ wacky 8 undirected 10000 f MI none 500 50 cosine rank 0.83 0.77

WS353
Best setting wacky 16 undirected 50000 f simple-ll log 500 50 cosine rank 0.69 0.71
Best cognitive bnc 8 undirected 50000 f frequency log 900 0 cosine rank 0.30 0.29
BestP PMI ukwac 2 undirected 100000 f MI none 900 0 cosine dist 0.57 0.60
Best PPMI+ wacky 16 undirected 50000 f MI none 500 50 cosine rank 0.69 0.71

Table 6.6: Ratings, reduced – best settings

6.3 Clustering

The feature ablation plots in figure 6.47 display the importance of the evaluated param-
eters in the clustering task (adj. R2, unreduced: AP: 86.1%; BATTIG: 79.7%; ESSLLI:
68.4%; MITCHELL: 82.9%. adj. R2, reduced: AP: 82.0%; BATTIG: 77.0%; ESSLLI:
58.1%; MITCHELL: 73.3%).5 Parameter ranking is determined by the average of the
feature ablation values over all four datasets. The tables in 6.7 reports all parame-
ter interactions that explain more than 0.5% of the total variance for each of the four
datasets.
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Figure 6.47: Clustering: Feature ablation. Left: unreduced; Right: reduced.

The feature ablation picture for the clustering datasets follows the common patterns
already observed for TOEFL, RG65 and WS353: score and transformation play the
strongest role in determining model performance, both in the unreduced and reduced
setting. Distance metric and source corpus follow in the feature ablation ranking,
the latter gaining explanatory power with SVD (a trend we already observed for the
similarity ratings), and displaying a wide variation in explanatory power across the
different datasets.

Relatedness index, rather powerful in the unreduced setting displays a feature ab-
lation loss with SVD, confirming the trend we observed for the other datasets. Yet
another familiar trend is displayed by window size: comparably to the other datasets,
this parameter sees its impact on model performance increase when SVD is applied.

5The low R2 of ESSLLI is explained by the very small size of the dataset, which contains 44 items,
compared to AP (402), BATTIG (80), and MITCHELL (60).
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Interaction AP BAT ESS MIT

score:transf 6.02 8.98 9.02 7.13
transf:metric 5.64 4.51 3.66 1.79
win.size:transf 1.81 3.38 1.03 1.30
score:metric 2.88 1.63 1.42 0.78
score:rel.index 1.88 0.55 1.99 1.71
win.size:score 1.08 0.98 1.87 0.63
score:cont.dim 0.98 0.54 1.20 0.61

corpus:metric 0.76 0.53 2.18 -
corpus:score 1.16 - 1.40 -
corpus:cont.dim - 0.59 1.00 -
corpus:transf - - 1.09 -
win.size:metric - 0.73 - -

Interaction AP BAT ESS MIT

score:transf 7.10 7.95 7.56 11.42
metric:red.dim 3.29 3.16 2.03 2.03
win.size:metric 2.22 1.26 2.97 2.72
win.size:transf 2.00 2.95 0.88 2.66
corpus:metric 1.42 2.91 2.79 1.11
metric:dim.skip 2.25 1.54 2.77 0.86
corpus:win.size 2.36 1.18 1.49 1.23
score:dim.skip 0.56 1.15 0.99 1.39
win.size:score 0.74 0.77 0.54 0.65

metric:cont.dim - 1.20 0.67 0.92
transf:dim.skip - 1.17 0.85 1.39
transf:metric - - 1.17 1.00
corpus:cont.dim - 0.70 1.25 -
corpus:transf 0.66 0.56 - -
corpus:red.dim - - 0.99 -
corpus:score - - 0.61 -
metric:rel.index - - - 0.58
score:cont.dim - - - 0.52
score:metric 0.56 - - -

Table 6.7: Clustering (AP, BAT[TIG], MIT[CHELL], ESS[LLI]): interactions, R2. Unre-
duced (left) vs. Reduced (right)

Both in the unreduced and reduced setting, the number of context dimensions is only
weakly influential in determining model performance: also this pattern is one we al-
ready observed in the previous discussions throughout this chapter; it confirms that,
if other parameters are properly set, they have the potential neutralize the impact of
computationally impactful choices like the size of the context matrix.

Dimensionality reduction parameters, number of latent dimensions and number of
reduced dimensions are both strongly influential.

The interaction tables displayed in 6.7 allow us to identify a core of interactions which
are common to all datasets: they involve score, transformation (in either reduced and
unreduced setting, score and transformation is the strongest interaction), and metric;
additionally, in the unreduced setting, the core interactions involve window size, as well;
in the reduced setting, the SVD parameters participate in the set of core interactions.

The main notable differences between reduced and unreduced setting is the inter-
action between score and relatedness index in the former; interactions of the strongest
parameters with corpus and number of context dimensions tend to involve only a sub-
set of the datasets in the unreduced setting and enter the set of core interactions only
marginally.

6.3.1 Best parameter values

Unreduced setting The interaction between score and transformation is the strongest
across all the clustering datasets, and, as shown in figures 6.48 to 6.51, displays com-
parable dynamics for the four datasets, also in line with the tendencies we identified
for TOEFL, RG65 and WS353. The best combination is simple-ll and root, and, again,
no transformation is the best choice for all the other scores, with the only exception of
ESSLLI, for which best transformations are simple-ll+log and z-score+root.

In the following discussion, we focus on the AP dataset, which is larger and thus
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Figure 6.48: AP, unred, score / trans-
formation
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Figure 6.49: BATTIG, unred, score /
transformation
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Figure 6.50: ESSLLI, unred, score /
transformation
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Figure 6.51: MITCHELL, unred, score
/ transformation

more reliable than the other three datasets. We mention remarkable differences between
the datasets in terms of best parameter values. For more detailed comparisons, we refer
the reader to the full plots displayed in the supplementary material; for a full overview
of the best parameter setting for each dataset, see table 6.8.

Let us set the best parameter value for window size. As it turns out, we once
again face the need to integrate information coming from different interactions. The
interaction between window and transformation is displayed in figure for 6.52 for AP.
For log and root transformation, a very small context window (one or two words) is the
best choice. No transformation, on the other hand, keeps on increasing its predicted
performance up to at least a 4-word window. In contrast, the interaction between
window size and score (figure 6.53) identifies in a 4-word window the best parameter
choice for simple-ll. ESSLLI and MITCHELL follow a comparable pattern: the best
window size value in combination with the best feature/score is a 2 or 4 word window.
Figures 6.54 and 6.55 illustrate the same pair of interactions for BATTIG: here, it is
straightforward to make a choice as the two effects do not contradict each other and a
4 word window appears to be the obvious choice.

Our discussion now turns to the interactions between score and transformation with
relatedness index and metric, respectively. The interaction between feature score and
relatedness index is displayed in figure 6.56. For simple-ll (our best score for AP),
neighbor rank outperform their competitors, albeit of a small margin (the interaction
between score and metric, not shown here, confirms the preference for cosine). The same
choices can straightforwardly be applied to BATTIG and MITCHELL. For ESSLLI,
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Figure 6.52: AP, unred, window /
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Figure 6.53: AP, unred, window / score
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Figure 6.54: BATTIG, unred, window
/ transformation
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Figure 6.55: BATTIG, unred, window
/ score

however, the choice of distance metric is more complicated, as effects plots reveal a
contradictory picture (in some interactions cosine is the best choice, in some others
manhattan wins). As a matter of fact, it is possible to find a best setting based on
either distance metric: here, we stick to cosine because, given the small size of this
dataset, we tend to trust more the tendency that has shown as predominant in the rest
of the experiments.

Figure 6.57 displays the interaction between feature transformation and distance
metric, for the AP dataset: cosine outperforms manhattan in combination with all trans-
formations, but is outperformed by it when no transformation is applied. All the other
clustering datasets show a comparable pattern. Interestingly, for the other tasks, we
observed comparable tendencies, with cosine outperforming manhattan with all trans-
formations, but being substantially equivalent to it without any transformations. This
result confirm how crucial it was to bring vector transformation into the picture, while
other evaluation studies, even when targeting different distance measures/metrics (or
different feature scores), did not consider its role (besides positivization or shifting by
a global costant – see discussion in section 2.3.3.1).

The exploration of the remaining interactions, whose plots are not shown here for
reasons of space, allows to make the following parameter choices: the best number of
context dimensions is 20k for AP, 50k for MITCHELL, and 100k for BATTIG and
ESSLLI. The best source corpus is WaCkypedia.

The discussion of best parameter values has highlighted some very crucial points
of our interpretation methodology: the need to integrate the information coming from
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different interactions (which shouldn’t be dealt with in a completely automatic fash-
ion, but based on qualitative considerations); the potential issues arising from very
small datasets such as ESSLLI: while selecting best parameter values, we highlighted
its somehow idiosyncratic behavior with respect to the other datasets (e.g., its weak
preference for manhattan). As already pointed out, such idiosyncratic trends need to
be taken with a note of caution because they could be an instance of a higher level of
overfitting in the performance data the linear regression is trained on (resulting in a
poor model fit).

Summing up, we have identified the following best parameter values: WaCkypedia
as a source corpus, with a matrix containing the 20k/50k most frequent contexts for AP
and MITCHELL and the top 100k contexts for BATTIG and ESSLLI. An undirected
2-4 word context window is the best choice for MITCHELL, AP and ESSLLI, while
a clear 4-word window suits BATTIG best. Cosine is the best distance metric for all
datasets and neighbor rank the best relatedness index.

Reduced setting In this section, we discuss the best parameter values for the clus-
tering datasets in the reduced setting.

We start with the known interaction between feature score and feature transforma-
tion, displayed in figure 6.58 to 6.61. The interaction plots show the behavior we are
meanwhile familiar with: significance measures (simple-ll, t-score and z-score) reach the
best performance in combination with log transformation: this combination is a robust
choice for all datasets. Globally, we observe the shift in patterns from an unreduced to
a reduced setting, with almost all measures showing the need of a stronger de-skewing
than in the unreduced setting, log substituting root, which in turn substitutes no trans-
formation. Another notable difference with the unreduced setting (and, to a lesser
extent, to the other datasets in the SVD runs) is the fact that an untransformed MI
(corresponding to the PPMI commonly adopted in the literature) is almost equivalent
to simple-ll and log.

We proceed to set the best value for window size, by inspecting its interaction with
metric (figure 6.62), transformation (figure 6.63), and score (figure 6.64 for AP and
6.65 for BATTIG). The joint inspection of these plots (and of the remaining ones, not
shown here for reasons of space) allows us to draw robust conclusions about the three
parameters.

For AP, best performance is predicted at a 2 or 4 word window in combination with
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Figure 6.59: BATTIG, red, score /
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Figure 6.61: MITCHELL, red, score /
transformation

cosine distance (figure 6.62), and at a 4 word window in combination with log or root
transformation (figure 6.63). The interaction with feature score (figure 6.64) contributes
significantly to the choice of the best parameter value, as a 4 word window turns out
to be the best value for all involved scores, in particular simple-ll (which is also robust
at higher dimensionalities). The inspection of the corresponding plots for MITCHELL
indicates the same window size. For BATTIG, the interaction with feature score (figure
6.65) indicates improvements at a larger window size, 8 words, and up to 16 without
detrimental effects.

Similarly to what we already noticed in the unreduced runs, ESSLLI has a charac-
teristic behavior with respect to the best distance metric, as manhattan turns out to
be a strong competitor to cosine, with conflicting choices as far as other parameters
are concerned (see for example the window/metric interaction in figure 6.66). Given
their substantial equivalence, the fact that ESSLLI is a very small dataset and thus
likely to overfit we choose the “cosine path”, which is supported by the general trends
we observed in our evaluation. The inspection of the remaining plots makes the choice
fall on a 4-word window. Globally, we observe (a weaker version of) the same shift in
the window size pattern which characterized the other tasks: once SVD is applied, all
datasets benefit from larger window sizes.

A joint inspection of the interactions involving corpus, namely the one with metric
and the already mentioned window size for all datasets, as well as the ones which are
dataset specific (see the interaction table in 6.7) indicates in WaCkypedia the best
corpus for all datasets, confirming to be the best compromise between size and quality.
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Figure 6.64: AP, red, window / score
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The effect plots displaying the interac-
tions involving number of context dimen-
sions indicate that in a medium-sized
co-occurrence matrix of 50k dimensions
the best robust choice across all datasets,
with some dataset-specific variations (see
best settings in table 6.9).

We now turn to the discussion con-
cerning the best settings for the dimen-
sionality reduction parameters, number of
latent dimensions and number of skipped
dimensions, which are involved in a num-
ber of interactions, the strongest being the
one with distance metric. Best perfor-
mance is predicted with cosine and 300 or 500 dimensions; at a full dimensionality,
the two distance metrics are equivalent. BATTIG and MITCHELL behave in a com-
parable way, the latter showing a slight preference for a higher number of dimensions,
namely 700. ESSLLI confirms its “special” status with respect to the best choice of met-
ric: manhattan is the best choice, with 900 dimensions; with cosine, 300 dimensions
are sufficient.

A quite clear picture concerning the number of skipped dimensions emerges from in-
spection of its interactions with metric and score across all datasets. As representative
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examples we pick the corresponding plots AP and BATTIG (figure 6.67 and 6.68): they
show that skipping dimensions is not necessary to achieve best predicted performance,
but skipping the first 50 is not detrimental for BATTIG (and MITCHELL, not shown
here). The joint inspection of the effects of the interaction of number of skipped di-
mensions with score and transformation, respectively, confirm that while for BATTIG
and MITCHELL the best choice is not skipping any dimension, skipping the first 50 is,
indeed, a viable option in case a robust setting needs to be identified.

Neighbor rank does not participate in any strong interaction, with the exception of
its interaction with metric for MITCHELL, which identifies in rank its best option. As
already observed in our discussion of feature ablation, its explanatory power is quite
low. Yet, its feature ablation value is above our 0.5 R2 threshold, and we therefore rely
on the the main effect to be sufficient to set its best value to neighbor rank. For a more
detailed discussion of this effect, see section 6.4.

Best settings In this section, we wrap up our discussion on the best parameters for
the clustering datasets by displaying the purity achieved by our best settings. Table
6.8 and 6.9 compare task-specific best settings to a cognitive plausible DSM and to the
two PPMI settings. For each dataset, we also report the purity of the best run (see
appendix B for the specific settings) as well as the state-of-the-art.6

The parameters of the alternative settings are picked as described in section 6.1.1,
with a couple of exceptions concerning number of latent dimensions, for which we have
clearer indications from the literature, at least for one dataset. Bullinaria & Levy (2012)
manipulate SVD on their experiments on the MITCHELL dataset, and while their best
result is achieved with many more latent dimensions than in our experiments, from
the plots it is comparably clear that within our parameter range, the best ”literature”
setting employs the first 700 dimensions, skipping the first 100. For all other datasets,
we employ the neutral setting of 500 latent dimensions, without skipping (Baroni &
Lenci, 2010; Levy et al., 2015).

The observations collected in the tables can be summarized as follows:

• Across reduced and unreduced setting, the evaluation methodology allows the
identification of robust settings with a reasonably good performance. Just in one
case, however, with BATTIG, such best settings come close to the state-of-the art.

6State-of-the-art: AP, Rothenhäusler & Schütze (2009); BATTIG, Baroni & Lenci (2010); ESSLLI,
Katrenko & Adriaans (2008); MITCHELL, Bullinaria & Levy (2012).
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• Differently from what we observed with TOEFL, RG65 and WS353, it is not al-
ways the case that the best setting outperforms its competitors. In 4 cases out
of 8, the best setting and the best PPMI+ setting are simply two alternative
ways to achieve the same performance. It is, however, always the case that the
PPMI+ outperforms the “literature” PPMI model, with the exception of the ESS-
LLI dataset, which has, as discussed, a problematic status given the poor fit of
the regression models.

• While SVD brought clear improvements in the other tasks, its positive effect is
less marked here: only for AP and ESSLLI the best reduced model outperforms
the best unreduced; for BATTIG and MITCHELL, the best reduced and unre-
duced settings perform at the same level. It is, in any case, recommended to
resort to SVD, given the small improvements and the lack of a detrimental ef-
fect, and the computational advantages of running the clustering algorithms on
lower-dimensional vectors.

• The gap between the best cognitive models and the other models is less marked
here than in the other tasks, supporting the impression that, for the clustering
task, it has been somewhat easier to identify robust settings alternative to the
best ones.

setting corpus win direction c.dim exc score transf metric rel.ind purity
AP: best run: 0.73; soa: 0.79

Best setting wacky 4 undirected 20000 f simple-ll root cosine rank 0.69
Best cognitive bnc 8 undirected 100000 f frequency log cosine rank 0.53
Best PPMI ukwac 2 undirected 100000 f MI none cosine dist 0.64
Best PPMI+ wacky 4 undirected 5000 f MI none cosine rank 0.66

BATTIG: best run: 0.99; soa: 0.99
Best setting wacky 4 undirected 100000 f simple-ll root cosine rank 0.94
Best cognitive bnc 1 undirected 100000 f frequency log cosine rank 0.87
Best PPMI ukwac 2 undirected 100000 f MI none cosine dist 0.93
Best PPMI+ wacky 4 undirected 100000 f MI none cosine rank 0.99

ESSLLI: best run: 0.93; soa: 0.91
Best setting wacky 4 undirected f 100000 z-score root cosine rank 0.82
Best cognitive bnc 2 undirected f 100000 frequency log cosine rank 0.75
Best PPMI ukwac 2 undirected f 100000 MI none cosine dist 0.70
Best PPMI+ wacky 4 undirected f 50000 MI none cosine rank 0.82

MITCHELL: best run: 0.97; soa: 0.94
Best setting wacky 4 undirected 50000 f simple-ll root cosine rank 0.86
Best cognitive bnc 4 undirected 50000 f frequency log cosine rank 0.75
Best PPMI ukwac 2 undirected 100000 f MI none cosine dist 0.85
Best PPMI+ wacky 4 undirected 5000 f MI none cosine rank 0.86

Table 6.8: Clustering, unreduced – Best settings
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setting corpus win direction c.dim exc score transf n.dim dim.skip metric rel.ind purity
AP: best run: 0.76; soa: 0.79

Best setting wacky 4 undirected 20000 f simple-ll log 300 0 cosine rank 0.69
Best cognitive bnc 4 undirected 20000 f frequency log 900 0 cosine rank 0.61
Best PPMI ukwac 4 undirected 100000 f MI none 900 100 cosine dist 0.59
Best PPMI+ wacky 4 undirected 20000 f MI none 500 0 cosine rank 0.70

BATTIG: best run: 0.99; soa: 0.99
Best setting wacky 8 undirected 50000 f simple-ll log 500 0 cosine rank 0.98
Best cognitive bnc 8 undirected 100000 f frequency log 900 0 cosine rank 0.84
Best PPMI ukwac 2 undirected 100000 f MI none 500 0 cosine dist 0.96
Best PPMI+ wacky 8 undirected 50000 f MI none 500 0 cosine rank 0.98

ESSLLI: best run: 0.98; soa: 0.91
Best setting wacky 4 undirected 100000 f simple-ll log 300 0 cosine rank 0.82
Best cognitive bnc 4 undirected 50000 f frequency log 900 0 cosine rank 0.80
Best PPMI ukwac 2 undirected 100000 f MI none 500 0 cosine dist 0.84
Best PPMI+ wacky 4 undirected 100000 f MI none 300 0 cosine rank 0.82

MITCHELL: best run: 0.97; soa: 0.94
Best setting wacky 4 undirected f 50000 simple-ll log 700 0 cosine rank 0.86
Best cognitive bnc 4 undirected f 50000 frequency log 900 0 cosine rank 0.66
Best PPMI ukwac 2 undirected f 100000 MI none 700 100 cosine dist 0.77
Best PPMI+ wacky 4 undirected f 50000 MI none 700 0 cosine rank 0.86

Table 6.9: Clustering, reduced – Best settings

6.4 Index of distributional relatedness

As pointed out in the introductory section, the novel contribution of our work is the sys-
tematic evaluation the index of distributional relatedness, a parameter that has received
little attention in DSM research so far, and only in studies limited to a narrow choice of
datasets (Hare et al., 2009; Lapesa & Evert, 2013a; Lapesa, Evert, & Schulte im Walde,
2014; Zeller et al., 2014). In this section, we provide a full overview of the impact of
this parameter in our experiments, comparing reduced and unreduced runs across all
datasets.

Figure 6.69 and 6.70 display the partial effect of relatedness index for each dataset,
in the unreduced and reduced setting respectively.7 To allow for a comparison between
the different measures of performance, correlation and purity values have been converted
to percentages.

As anticipated by the drop in feature ablation from the unreduced to the reduced set-
ting, in all tasks, the advantage of rank over distance is smaller when SVD is applied. A
working hypothesis is that sparse spaces are more asymmetrical, leading to a divergence
between the predictions of neighbor rank and distance. Note that the possibility of di-
rectly comparing predictions from different spaces is a n inherent advantage of neighbor
rank (as soon as rank is calculated over the same vocabulary, of course). We will come
back to it in our discussion of the impact of the relatedness index parameter in chapter
7 where the presence of dependency filtered and typed DSMs, notoriously sparser than
their window-based counterparts, will provide further support to this interpretation.

Besides the difference between unreduced and reduced runs, the picture emerging
from the two plots is quite uniform: neighbor rank is almost always the best choice, with
the exception of TOEFL where its high computational complexity is clearly not justified;
the improvement on the ESSLLI clustering dataset is also fairly small. The degree

7For the unreduced runs, we did check all the relevant interactions of relatedness index – and discussed
them in the previous sections – to make sure the main effect would not be deceiving. For the reduced
runs, the absence of strong interactions makes the inspection of the main effect trustworthy enough.
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duced

of improvement over vector distance, however, shows considerable variation between
different datasets. The rating task benefits the most from the use of neighbor rank.

While the TOEFL result seems to contradict the substantial improvement of neigh-
bor rank found by Lapesa & Evert (2013a) for a multiple-choice task based on stimuli
from priming experiments of the type we will be discussing in chapter 8, recall that in
a priming setting there are only two choices (consistent and inconsistent prime) rather
than four as in TOEFL (correct solution and three distractor). We do not rule out that
a more refined use of the rank information (for example, different strategies for rank
combinations) may produce better results on the TOEFL.

Moreover, as discussed in section 4.4, we have not yet explored the potential of
neighbor rank in modeling directionality effects in semantic similarity. Unlike Lapesa
& Evert (2013a), who adopt four different indexes of distributional relatedness (vector
distance; forward rank, i.e., rank of the target in the neighbors of the prime; backward
rank, i.e, rank of the prime in the neighbors of the target; average of backward and
forward rank), we used only a single rank-based index, to keep the number of evaluation
runs manageable, making choices which were based on the nature of the tasks at issue.

In the case of the TOEFL experiments, discussed in this chapter, we assumed the
multiple choice setting to be inherently directed, and we adopted the rank of the target
in the neighbors of the synonym candidates because, in a classification task, taking
the rank of the synonym candidates in among the neighbors of the target would have
yielded equivalent choices than distance. For the multiple choice on the semantic priming
datasets, which will be discussed in chapter 8, we employ the rank of the target among
the neighbors of the prime, which is the exact replication of the experimental setting. As
for ratings and clustering, we decided to go for average rank because it is an unmarked
choice in the former case (so we just let rank correct different density of different regions
of the semantic space), and the only possible option for the clustering task (where
a symmetric measure is expected). We consider the results of this study more than
encouraging, and expect further improvements from a full exploration of directionality
effects in the rating rating task is concerned. In this connection, we gathered a resource
in which speakers judgments have been collected both directions: word a, word b vs.
word b, word a (Lapesa, Schulte im Walde, & Evert, 2014): we consider such resource
as a very promising avenue for the exploration of directionality; for more details on this
resource we refer the reader to the future work described in section 9.2.
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6.5 Best settings

This section wraps up the chapter by addressing the question of whether good general
settings can be identified, which perform well across tasks. A side-by-side inspection
of the main effects and interaction plots for different data sets allowed us to identify
parameter settings which are potentially robust across datasets and even across tasks.
Table 6.10 (unreduced runs) and 6.11 (reduced runs) show recommended settings for
each task (independent of the particular dataset) as well as a more general setting. In
the spirit of the investigations conducted in this chapter, we also report the best PPMI
and PPMI+ setting (we remind to the reader that the PPMI+ setting is the best choice
of parameters around the MI + no transformation core). Finally, we also identify a
robust cognitive setting.

Setting Corpus Win Dir C.dim Exc Score Transf Metric Rel.ind
Best TOEFL ukwac 2 undir 10k f z-score none cosine rank
Best Ratings wacky 4 undir 20k f simple-ll root cosine rank
Best Clustering wacky 4 undir 50k f simple-ll root cosine rank
Best General wacky 4 undir 50k f simple-ll root cosine rank
Best PPMI ukwac 2 undir 100k f MI none cosine dist
Best PPMI+ wacky 4 undir 100k f MI none cosine rank
Best Cognitive bnc 2 undir 100k f frequency log cosine rank

Table 6.10: General settings - unreduced

Setting Corpus Win Dir C.dim Exc Score Transf Metric N.dim Dim.skip Rel.ind
Best TOEFL ukwac 2 undir 5000 f simple-ll log 900 100 cosine dist
Best Ratings wacky 8 undir 50k f simple-ll log 500 50 cosine rank
Best Clustering wacky 4 undir 50k f simple-ll log 500 0 cosine rank
Best General wacky 4 undir 50k f simple-ll log 500 50 cosine rank
Best PPMI ukwac 2 undir 100k f MI none 500 0 cosine dist
Best PPMI+ wacky 4 undir 100k f MI none 500 50 cosine rank
Best Cognitive bnc 4 undir 100k f frequency log 900 0 cosine rank

Table 6.11: General settings - reduced

Evaluation results for these settings on each dataset are reported in table 6.12 (unre-
duced runs) and 6.13 (reduced runs). For RG[65] and WS[353], we report both r and
rho. For a better comparison, we also report the performance of the best dataset-specific
setting (Best Setting), as well as the performance of the best run (Best Run) and the
state-of-the-art in the task (SoA).

The performance data displayed in the tables can be summarized as follows:

• In most cases, and in particular in the reduced runs, the general model is close to
the performance of the task- and dataset-specific settings. Our robust evaluation
methodology has enabled us to find a good trade-off between portability and
performance.

• It is often the case that the best PPMI+ models outperform the PPMI ones (for
all datasets but TOEFL in the unreduced runs, for TOEFL/RG[65]/WS[353] in
the reduced ones, almost always at a dataset-specific level), showing that our
methodology can be used to find valid alternative settings.
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Dataset TOEFL WSr WSrho RGr RGrho AP BAT ESS MIT
Best TOEFL 81.25 0.59 0.61 0.75 0.75 0.67 0.79 0.66 0.82
Best Ratings 81.25 0.67 0.69 0.88 0.88 0.69 0.94 0.77 0.86
Best Clust/Gen 82.50 0.67 0.69 0.87 0.88 0.67 0.96 0.80 0.86
Best PPMI 76.25 0.53 0.60 0.67 0.71 0.64 0.93 0.70 0.85
Best PPMI+ 72.50 0.64 0.65 0.83 0.83 0.69 0.98 0.80 0.88
Best Cognitive 68.75 0.36 0.37 0.69 0.68 0.56 0.79 0.75 0.75
Best Setting 81.25 0.67 0.69 0.82 0.83 0.69 0.98 0.82 0.86
Best Run 87.50 0.73 0.73 0.88 0.88 0.73 0.99 0.93 0.97
SoA 100 0.86 0.83 – 0.81 0.79 0.99 0.91 0.94

Table 6.12: General best Settings - Unreduced

Dataset TOEFL WSr WSrho RGr RGrho AP BAT ESS MIT
Best TOEFL 93.75 0.54 0.62 0.76 0.82 0.61 0.79 0.73 0.73
Best Ratings 86.25 0.69 0.71 0.85 0.83 0.63 0.89 0.75 0.76
Best Clustering 75.00 0.65 0.66 0.85 0.85 0.67 0.98 0.80 0.88
Best General 90.00 0.68 0.70 0.87 0.85 0.67 0.90 0.77 0.83
Best PPMI 75.00 0.57 0.60 0.75 0.77 0.65 0.96 0.84 0.87
Best PPMI+ 85.00 0.69 0.70 0.85 0.82 0.62 0.90 0.80 0.83
Best Cognitive 53.75 0.33 0.33 0.60 0.59 0.60 0.84 0.80 0.86
Best Setting 93.75 0.69 0.71 0.87 0.85 0.69 0.98 0.82 0.86
Best Run 98.75 0.73 0.72 0.89 0.86 0.76 0.99 0.98 0.97
SoA 100 0.86 0.83 – 0.81 0.79 0.99 0.91 0.94

Table 6.13: General best Settings - reduced

• General settings are in some cases better than the task-specific ones. This is the
case for MITCHELL both unreduced (best PPMI+) and reduced runs, and for
RG[65] in the unreduced runs.

• In some cases, however, there is still a discrepancy between the best settings (either
dataset-specific, task-specific, or general). One of the potential shortcomings of
the methodology proposed in this thesis is the joint interpretation of strong two-
way interactions involving the same cluster of parameters: these suggest that
looking at three-way interactions could be a better way to go.

• Cognitively inspired models are by far the weakest. The clustering datasets are,
however, the ones where the performance of a “general” best cognitive model
comes closer to the one of the best setting.

6.6 Summing up

In this chapter, we discussed the results of our evaluation of window-based Distribu-
tional Semantic Models, on standard word similarity datasets. Our model selection
methodology proved robust to overfitting and capable of capturing crucial parameter
interactions. It allowed us to identify parameter configurations that perform well across
different datasets within the same task, and, in the majority of the cases, even across
different tasks.

We recommend the setting labelled as Best General, for both the unreduced (fig-
ure 6.12) and reduced (figure 6.13) runs. We believe that many applications of DSMs
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(e.g. vector composition) will benefit from using parameter combinations that achieve
robust performance in a variety of semantic tasks. While SVD improves performance
(although with a gain which varies across datasets), it is worthwhile to identify a best
setting for the unreduced runs, as well, because some tasks require count dimensions
(e.g., distributional inclusion), and in general it is in many cases important to keep an
eye on the properties of models with interpretable dimensions. Moreover, an extensive
evaluation based on a robust methodology like the one presented here is the first nec-
essary step for further comparisons of bag-of-words DSMs to different techniques for
modeling word meaning, such as neural embeddings (Mikolov, Chen, et al., 2013). Let
us now summarize our main findings.

• A cluster of three parameters, namely score, transformation and distance metric,
plays a consistently crucial role in determining DSM performance. These param-
eters also show a homogeneous behavior across tasks and datasets with respect to
best parameter values: simple-ll, log transformation and cosine distance. These
tendencies confirm the results in Polajnar & Clark (2014) and Kiela & Clark
(2014). In particular, the finding that sparse association measures (with negative
values clamped to zero) achieve the best performance can be connected to the pos-
itive impact of context selection highlighted by Polajnar & Clark (2014): ongoing
work targets a more specific analysis of their “thinning” effect on distributional
vectors.

• MI + no transformation, corresponding to the PPMI widely used in distributional
semantics, is often a valid option, but not the best one. Given that everybody
focusses on frequency or MI, it is no wonder that the potential of transformation
has not been uncovered yet: this is a clear contribution of this dissertation.

• Another group of parameters (corpus, window size, dimensionality reduction pa-
rameters) is also influential in all tasks, but shows more variation with respect to
the best parameter values. Except for the TOEFL task, best results are obtained
with the WaCkypedia corpus, confirming the observation of Sridharan & Murphy
(2012) that corpus quality compensates for size to some extent. Window size and
dimensionality reduction show a more task-specific behavior, even though it is
possible to find a good compromise in a 4 word window, a reduced space of 500
dimensions and skipping of the first 50 dimensions. The latter result confirms the
findings of the clustering experiments by Bullinaria & Levy (2012).

• The number of context dimensions turned out to be less crucial. While very
high-dimensional spaces usually result in better performance, the increase beyond
20000 or 50000 dimensions is rarely sufficient to justify the increased processing
cost.

• A novel contribution of our work is the systematic evaluation of a parameter that
has been given little attention in DSM research so far: the index of distributional
relatedness. Our results show that, even if the parameter is not among the most
influential ones, neighbor rank consistently outperforms distance: the benefits of
using neighbor rank clearly outweigh the increased (but manageable) computa-
tional complexity. Without SVD dimensionality reduction, the difference is more
pronounced.
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• In the shift from unreduced to reduced, a more aggressive deskewing of the co-
occurrence values is needed: no transformation is the best for all but simple-ll
in the unreduced runs, and drops in performance when SVD is applied; simple-ll
requires root without SVD, log with SVD.

• At a very general level, our methodology allows us to identify robust settings across
tasks. It can happen, however, that a non-best, yet robust, setting (PPMI+ in
the unreduced one) still overperforms our robust best setting.
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Syntax-based DSMs: Are they worth the effort?

Whereas window-based DSMs adopt a surface-oriented perspective on co-occurrence,
dependency-based DSMs adopt a syntactic perspective: “nearness” is defined by the
presence of a syntactic relation between target and features (e.g. direct object, subject,
adjectival modifier). When syntactic relations are used to determine co-occurrence
contexts, one speaks of dependency-filtered DSMs; if the type of relation is explicitly
encoded in the context features (e.g. “subj dog”), one speaks of dependency-typed DSMs.
The fortune of syntax-based models in distributional semantics has been mixed. As
discussed in chapter 2, early work indicated that syntax-based semantic representations
are indeed superior: these studies, however, were restricted to a specific corpus (BNC
in Padó & Lapata (2007)) or task (noun clustering in Rothenhäusler & Schütze (2009)),
or based on a very specific notion of co-occurrence (Baroni & Lenci, 2010). Meanwhile,
extensive evaluation studies and parameter tuning led to significant improvements in the
performance of window-based models (Bullinaria & Levy, 2007, 2012). Among recent
comparative evaluation studies, only Kiela & Clark (2014) attempt a direct comparison
between the parameter spaces of window-based and syntax-based DSMs: window-based
models are found to perform better (with the exception of models built from the large
Google Books N-gram corpus), but the scope of this comparison is rather limited.

The evaluation presented in chapter 6 has investigated in detail the properties of the
window-based parameters, and indicated clear directions for the improvement of their
performances (e.g., neighbor rank as an index of distributional relatedness; selection of
SVD dimensions). The aim of this chapter is to establish a fair ground for the compar-
ison between window-based and syntax-based DSMs to properly address the question
of whether dependency-based models can significantly improve DSM performance if the
parameters are properly set, and even in that case, whether the degree of the improve-
ment justifies the increased complexity of the extraction process.1 In either case, a more
thorough understanding of the parameter space will be beneficial for applications that
prefer dependency-based DSMs on general grounds, e.g. because of an integration with
syntactic structure (Erk et al., 2010). While the evaluation reported in this chapter
does not encompass predict-type models, we believe that our findings also apply to the
usefulness of dependency information in neural word embeddings (Levy & Goldberg,
2014a).

We take as a reference point the large parameter set evaluated for window-based
models in chapter 6, and carry out a parallel evaluation for dependency-based DSMs

1Part of the material presented in this chapter has been published in Lapesa & Evert (2017).
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using the same tasks, datasets and parameters. In addition, we introduce some param-
eters which are specific to syntax-based models, such as the parser used and the type
of allowed dependency relations. Similarly to what we have done for the window-based
experiments, we do not discuss the distribution of performances here (the reader can
find them in appendix C) and, instead, focus on the interpretation of the output of our
linear regression methodology. The fit of the regression models, displayed in table 7.1,
is good for all datasets and displays the same trends we have already observed for the
window-based models: within evaluation task, smaller datasets have a lower fit than
the larger ones (ESSLLI, in particular, confirms the window-based tendency to be the
noisiest of the entire evaluation setting); for most cases, the fit of the reduced runs is
lower than the one of the unreduced runs, as the dimensionality reduction parameter
potentially introduces additional noise.

Dataset
Filtered Typed

Unreduced Reduced Unreduced Reduced

TOEFL 88.1 88.3 88.0 89.5

RG65 92.2 87.0 92.4 86.8
WS353 94.2 88.2 93.5 90.7

AP 87.0 82.9 87.5 88.2
BATTIG 80.2 74.2 79.4 78.8
ESSLLI 70.4 56.9 66.9 67.5
MITCHELL 84.9 74.3 82.9 77.4

Table 7.1: Dependency models: adjusted R2 across settings and datasets

Given the large number of parameters to explore and the need for a qualitative
interpretation of the results, in this chapter we adopt a different narrative with respect
to chapter 6. We keep the focus of our discussion on three datasets: TOEFL (for
comparison with the literature), WS353 (the largest ratings dataset in our experimental
set, and the one with the highest R2 values), and AP (the largest clustering dataset,
and the one with the highest R2 values).

Throughout the chapter, we discuss the main trends in the performance of our
dependency-based DSMs, highlighting the differences from window-based results, and
those among different dependency-based settings (filtered vs. typed, reduced vs. unre-
duced).

7.1 Feature ablation

Figures 7.1 and 7.2 visualize the feature ablation values of all evaluated parameters in
the dependency-filtered and dependency-typed setting, for reduced and unreduced runs.
Tables 7.2 to 7.5 display all major interactions (partial R2 > 0.5) in the four settings.
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Figure 7.1: Dependency filtered: Feature ablation. Left: unreduced; Right: reduced.
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Figure 7.2: Dependency typed: Feature ablation. Left: unreduced; Right: reduced.

Let us start by summarizing the observations concerning the feature ablation trends,
in comparison to what we observed for the window-based models:

• In all four settings, we observe a strong effect of score and transformation, which
dominate the feature ablation ranking in the unreduced runs. Interestingly, the rel-
ative position of the two parameters flips in the typed/reduced setting as compared
to the other three settings. In practice, this means that while in the unreduced
setting the regression analysis identifies a strong variation among the different
scores, such difference is neutralized in SVD. This could be interpreted either as
an effect of SVD (which improves the representation no matter which the underly-
ing score is) or as a negative effect of the high sparsity of the space which is input
to SVD (the space being too sparse for SVD to be able to boost performance).

• Score and transformation are outscored by metric in the reduced setting, due to
the strong interactions metric entertains with almost all other parameters. A gain
in ablation power for metric in the reduced setting is something we have already
observed in the window-based experiments, in particular for TOEFL: indeed, this
is the case in the dependency-based experiments as well, with TOEFL (red square
in the plots) being the dataset for which the effect of metric is the strongest.
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TOEFL WS AP

score × transf 9.5 5.8 7.3
transf × metric 1.0 0.5 5.1
score × rel.index – 4.8 1.5
score × metric 0.8 0.5 3.5
corpus × score 0.9 1.1 1.8
score × cont.dim 1.0 – 1.4
corpus × metric 0.5 – 1.1
dep.group × path.length 0.9 – –
metric × cont.dim 0.7 – –
path.length × transf – – 0.6
path.length × score 0.6 – –
corpus × rel.index 0.5 – –

Table 7.2: Filt, unred: interactions

TOEFL WS AP

score × transf 8.3 11.2 8.6
metric × dim.skip 4.0 1.1 3.4
metric × red.dim 0.6 1.4 3.6
score × metric 1.3 1.5 1.8
metric × cont.dim 1.0 1.2 0.6
corpus × metric – 0.9 1.9
transf × dim.skip 0.6 0.8 0.5
score × cont.dim 0.7 0.8 0.8
corpus × score 0.6 1.0 –
score × dim.skip – 0.8 –
path.length × transf – – 0.8
transf × metric – 0.7 –
score × rel.index – 0.6 –
path.length × metric – – 0.6
metric × rel.index – – 0.5

Table 7.3: Filt, red: interactions

TOEFL WS AP

score × transf 10.4 7.9 6.5
transf × metric 2.1 1.0 5.9
corpus × score 1.8 2.0 1.6
score × metric 0.7 0.5 3.6
metric × rel.index 1.7 – 0.8
score × rel.index – 1.5 0.6
score × cont.dim 1.2 0.6 1.0
corpus × transf 1.2 – –
metric × cont.dim 0.7 –
transf × rel.index – 0.5 –

Table 7.4: Typed, unred: interactions

TOEFL WS AP

score × transf 2.4 5.0 5.7
metric × dim.skip 4.9 2.2 1.2
metric × cont.dim 3.3 2.0 2.3
metric × red.dim – 1.3 4.7
corpus × metric – 1.0 4.6
corpus × score – 1.0 0.6
transf × metric 0.9 – –
score × metric 0.8 – –
transf × dim.skip – 0.6 –
corpus × transf – – 0.5
metric × rel.index – – 0.5
cont.dim × dim.skip – – 0.5

Table 7.5: Typed, red: interactions

• Relatedness index is the third most powerful parameter in the unreduced settings,
for both filtered and typed models – turning out to be slightly more powerful in
the (sparser) dependency setting than in the window-based one. Similarly to what
we have already observed in the window-based experiments, this parameter loses
power from the reduced to the unreduced setting.

• Source corpus is more powerful here as compared to the window-based setting.
Overall, its explanatory power follows the rank reduced-typed> reduced-filtered>
unreduced-typed/filtered. By looking at the best parameter values we will clarify
whether this an effect of corpus size (larger corpora providing better coverage in
an intrinsically sparse setting) or parsing quality (sentences from smaller corpora
being shorter hence easier to parse).

• Path length is just a middle-range predictor of model performance – for WS, it is on
the weak side of the ranking for all four settings. Overall, path length is weaker in
a dependency-typed setting than in a filtered setting (no significant improvements
in performance have to be expected going from single-step paths to multiple-step
paths): this is probably due to the fact that one-step paths (which have been
commonly employed in the literature on syntax-based DSMs) constitute a robust



Chapter 7. Syntax-based DSMs: Are they worth the effort? 147

“core” of the space. Path length loses power from an unreduced to a reduced
setting: note that the corresponding parameter in the window-based experiments
(window size) exhibited the opposite trend, gaining power for TOEFL and AP
and staying stable for WS. Overall, this can be interpreted as an effect of the fact
that the information introduced by including longer paths is too sparse and it is
neutralized as noise by dimensionality reduction.

• SVD-related parameters impact DSM performance to the same extent in filtered
and typed setting, occupying the middle range of the ablation ranking.

• As for the number of context dimensions, the feature ablation power occupies a
lower rank, just above the dependency-specific parameters.

Dependency-specific parameters (dependency style, dependency group, and parser)
have an extremely weak explanatory power. The only effect above our 0.5 R2 thresh-
old is the interaction between dependency group and path length, for TOEFL and in
the unreduced/filtered setting. The take-home message for this result is that the ma-
nipulation of dependency-specific parameters is not bound to affect DSM performance
significantly. Such parameters can be set to default values that are identified based on
computation time (Malt parser being quicker than Stanford), degree of lexicalization
(dependency style: basic dependencies being less lexicalised – and more assumption-
free – than the CCprocessed ones), and complexity of the syntactic relations involved
(dependency group: core relations being part of the immediate argument structure of
the target).

7.2 Dependency filtered models

In this section, we discuss the results of the linear regression analysis on the performance
of the dependency-filtered DSMs, for both unreduced and reduced runs, keeping the
focus on the comparison to window-based models and relying on the same interpretative
criteria as in the previous chapter.

Recall that dependency-filtered DSMs can be seen as a special case of bag-of-words
DSMs in which context selection operates on the basis of the syntactic information
encoded in the dependency graphs. Before getting deeper into the discussion of the
specific effects, let us elaborate on the interpretation of the evaluated parameters in a
dependency-filtered setting:

• The window size parameter from the window-based analysis maps (conceptually
and practically) onto path length.

• Dependency group operates as a context selection criterion on the edge label, al-
lowing into the co-occurrence matrix only nodes which are connected to the target
by a core dependency relation. It has no direct correspondent in the window-based
experiments, as there we did not conduct experiments on the edge labels to select
contexts.

• In the context of a dependency-filtered model, the difference between a basic and
collapsed/CCprocessed dependency style is in terms of path length. For example,
the prepositional objects are two steps away from their head nodes in the basic
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Figure 7.7: WS-filt/unr
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Figure 7.8: AP-filt/unr

dependency style (via the preposition node), while they are just one step away in
the collapsed/CCprocessed graph (where a direct path is established, whose edge
is labelled with the preposition).

Unreduced Runs Let us start our discussion of the effects for dependency-filtered
DSMs, following the ranking of interactions in table 7.2.

In what represents a signature result of the experiments presented in this thesis, we
find score and transformation at the top of the feature ablation ranking, for all datasets.
We display the interaction plots in figures 7.3 (TOEFL), 7.4 (WS), and 7.5 (AP). They
show that a robust parameter combination, namely simple-ll with a root transformation,
can be identified for all three datasets; as an alternative, z-score without transformation
is also a valid combination – and the best one for TOEFL. Not only does the strong
ablation value of score and transformation generalize from the window-based to the
dependency-based experiments, but also their best parameter values are the same.

The interactions involving metric, not shown here, confirm that cosine is the ro-
bust best choice for all datasets and so is neighbor rank as an index of distributional
relatedness (see section 7.4 for a detailed discussion of the effects of relatedness index).

The interaction between corpus and score, displayed in figures 7.6 (TOEFL), 7.7
(WS), and 7.8 (AP), identifies in UkWaC the best corpus in combination with the
strongest scores (simple-ll and z-score), with the exception of WS, for which WaCk-
ypedia and UkWaC are equivalent in terms of predicted performance. This is the first
difference we observe with respect to the window-based experiments: when dependen-
cies are employed to select relevant contexts, a larger corpus is needed. This is likely to
be an issue of coverage/quality of the representations: more occurrences of the target
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words are necessary to produce the best representations.

Let us now look into the interaction between score and number of context dimensions,
displayed in figure 7.6 (TOEFL) and 7.8 (AP). Similarly to what we have observed in
the window-based runs, TOEFL shows a preference for fewer contexts and, in general,
medium-sized co-occurrence matrices are sufficient for best results. Yet, with respect to
the window-based runs, the dependency filtered models show a slight preference for the
most frequent contexts (5k or 10k) or, at least, no clear advantage is predicted for the use
of larger co-occurrence matrices (which involve lower-frequency contexts). WS does not
present any strong interaction with number of context dimensions: an inspection of the
simple effect (cf. supplementary material) confirms the general tendency towards higher-
frequency contexts. To round up the interpretation of the behavior of this parameter,
we need to take into account the different dynamics that bring a context word into the
window-based vs. dependency-filtered matrix: and to do that, we need to bring path
length into the picture.

As anticipated in the feature ablation section, path length has an intermediate to
weak effect on model performance. The simple effect (cf. supplementary material) shows
that a path of length 1 is the best choice for all datasets – longer paths are detrimental
for TOEFL and AP, and irrelevant for WS (where the parameter has a minimal impact
anyway). Path length only participates in three weak interactions (below 1% R2): for
TOEFL, it interacts with dependency group (figure 7.9) and score (figure 7.10). The
interaction with dependency group indicates that, while adding the external dependen-
cies to the core ones produces a minimal improvement at the shortest path, it is clearly
detrimental at longer paths. Once more, our results point in the direction of simplicity.
The interaction between score and path length identifies in simple-ll the only measure
that is robust at longer paths – this tendency is comparable to what we have already
observed for the interaction between score and window size in the window-based models
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(figure 6.11).

For AP, the interaction between path length and feature transformation (figure 7.11)
confirms that paths of length 1 are still the best choice – however, without any transfor-
mation, paths of length 2 turn out to be equivalent to those of length 1, and, in general,
even a length of 3 is not as detrimental as it is in combination with the other transfor-
mations. The fact that the gain with log and root at path length 1 is minimal, that
there is a drop in performance at longer paths, and that performance is relatively stable
at longer paths without any transformation, has to do with the aggressive deskewing:
the take-home message is that in a very sparse space it is good to preserve the difference
between high values and (extremely) low values.

Reduced Runs Let us now turn to the discussion of the best parameter settings for
the reduced runs, following the ranking identified in the feature ablation (figure 7.1)
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and in the corresponding interaction table (figure 7.3).

The strong interaction between score and transformation, displayed in figures 7.14
to 7.16 for the three datasets indicates a preference for simple log-likelihood with log
transformation or MI without any transformation. Comparing reduced to unreduced,
we observe the pattern of shift in best parameters already observed for the window-based
models: log takes over the role of root as best transformation, and no-transformation is
not anymore as robust across parameters as it used to be in the unreduced runs.

Manhattan metric always performs much worse than cosine distance; the different
behavior of the two metrics also accounts for most of the interactions listed in table 7.3.
Its interaction with the SVD parameters are displayed in figures 7.17, 7.18, and 7.19
(number of skipped dimensions) and 7.20, 7.21, and 7.22. Once again, we observe
similar trends as in the window-based models: need for skipping 50/100 dimensions
for TOEFL, 50 for WS, none for AP, and a decreasing number of necessary reduced
dimensions, namely 900 for TOEFL, 500 for WS, 300 for AP.

A joint inspection of the interactions involving source corpus (figures 7.23 to 7.26)
shows that two bigger corpora are always a better choice, with a clear preference for
ukWaC in the case of TOEFL. Neighbor rank outperforms distance, but the increased
computational cost may only be justified for AP and WS – a more detailed discussion
of this effect is provided in section 7.4.

The interactions involving context dimensions (cf. supplementary material), indi-
cate that while the top 5k are sufficient for TOEFL, more dimensions (20k or 50k)
are necessary for the other two datasets. As far as path length is concerned, relevant
interactions only involve AP – their inspection together with the main effect (cf. sup-
plementary material), indicates that the preference for the shortest paths identified for
the unreduced runs still holds for TOEFL and AP, while the co-occurrence information
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coming from longer paths becomes beneficial for WS, as soon as SVD is involved.

7.3 Dependency typed models

In this section, we discuss best parameter settings for the experiments involving the
dependency typed DSMs. Recall that:

• Dependency-typed DSMs exploit the information contained in the dependency
edges to build finer-grained features (e.g., is subject of the verb bark): in this
perspective, dependency-typed DSMs stand to dependency-filtered DSMs in a
comparable relation to the one in which window-based DSMs enconding relative
position with respect to the target (e.g., it occurs to the left of the verb bark)
stand to the position-unaware ones (e.g., it occurs in the context of the verb bark).
Needless to say, dependency-typed features also produce much sparser spaces.

• Within the dependency-typed DSMs, the dependency-style parameter regulates
the degree of lexicalization of the links (e.g., is a prepositional object of the verb
bark vs. is a prepositional object of the verb cut, and the head preposition is with).
Once again, the more context features are lexicalized, the sparser is the space.

Unreduced Runs Let us now discuss the best parameter settings for the unreduced
runs. Recall that this set of experiments corresponds to the sparsest setting among
those presented in this dissertation.

We start from the familiar score and transformation interaction, illustrated in figure
7.27 for TOEFL, 7.28 for WS, and 7.29 for AP. While the best parameter combinations
are quite similar to those of the corresponding dependency filtered runs (for TOEFL and
AP the best combination is z-score and no transformation, for WS we observe a slight
preference for simple-ll with a root transformation), what we observe here is that per-
formances are overall lower and there is less variation across the different combinations
(in particular for AP and WS). We observe a notable drop in predicted performance
for the option MI+no transformation, in particular for TOEFL and, to a lesser extent,
WS; this is not surpising given the known tendency of MI to overestimate low-frequency
items (which are likely to result from the use of lexicalised context features) and it is a
consistent pattern also with respect to the window-based experiments.

Figures 7.30, 7.31, and 7.32 illustrate the interaction between feature score and
source corpus for the three datasets. WaCkypedia is the most robust choice across all
corpora. Note that the interaction plot for MI shows a strong preference for UkWac –
together with the performance drop of MI observed for TOEFL, this result supports our
interpretation that in this setting MI is negatively affected by low-frequency features
(hence it has better performances with the largest corpus).

The plots displaying the number of context dimensions (figures 7.33, 7.34, and 7.35)
confirm the property of simple-ll to benefit from (or at least not be negatively affected
by) the presence of low-frequency contexts: as a matter of fact, 100k dimensions is the
best parameter value for AP and not detrimental for TOEFL and WS. On the other
hand, we notice for MI the known performance drop when low frequency contexts get
into the picture.



Chapter 7. Syntax-based DSMs: Are they worth the effort? 153

●

●

●

●

●

●

●

45

50

55

60

65

70

frequency tf.idf MI Dice simple−ll t−score z−score

transformation

●

none

log

root

sigmoid

Score * Transformation

Figure 7.27: TOEFL-typ/unr
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Figure 7.28: WS-typ/unr
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Figure 7.29: AP-typ/unr
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Figure 7.30: TOEFL-typ/unr
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Figure 7.31: WS-typ/unr
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Figure 7.32: AP-typ/unr
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Figure 7.33: TOEFL-typ/unr
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Figure 7.34: WS-typ/unr
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Figure 7.35: AP-typ/unr

Other effect plots are not shown here, but are reported in the supplementary mate-
rial. Their inspection allows to set the distance metric to cosine, relatedness index to
neighbor rank, and path length to 1 for all datasets.

Reduced Runs In this section we discuss the best parameter settings of the experi-
ments involving SVD.

As shown in the feature ablation plot and in the corresponding interaction table,
metric is the strongest parameter – and it heavily interacts with many of the other
involved parameters, as we have already observed for the other experimental settings.
The inspection of the corresponding interaction plots reveals no surprises:

• cosine is the best distance metric in all involved combinations – and the difference
between the two metrics is more acute in this setting (e.g., for AP manhattan
does not ever come close to cosine, as it had happened in a handful of cases with
window- or dependency-filtered DSMs).
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Figure 7.36: TOEFL-typ/red
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Figure 7.37: WS-typ/red

● ● ●

●

●
● ●

0.5

0.6

0.7

0.8

frequency tf.idf MI Dice simple−ll t−score z−score

transformation

●

none

log

root

sigmoid

Score * Transformation

Figure 7.38: AP-typ/red
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Figure 7.39: TOEFL-typ/red
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Figure 7.40: WS-typ/red
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Figure 7.41: AP-typ/red

• The SVD parameters interact with metric, and they also show the common trends:
it is beneficial to skip the first 50/100 dimensions for TOEFL, the first 50 for
WS, while no skipping is the best choice for AS (though the differences between
the different values are less sharp in the case of the clustering dataset); as far
as reduced dimensions are concerned, 300/500 are sufficient but more are not
detrimental.

• As for the interactions of metric with corpus, we observe the known preference for
the two larger corpora, with WaCky already robust enough across datasets.

The interaction between feature score and transformation is still the strongest overall
(cf. table 7.5), but it has lost explanatory power (it is even outscored by the interaction
between metric and skipped dimensions in the case of TOEFL). This is clear from
the interaction plots, displayed in figures 7.36, 7.37, and 7.38. There is strikingly less
difference between the performances of different parameter combinations: as a matter
of fact performances are “squished” in the lower bands of the distribution – in other
words, no combination performs really well. The unreduced/reduced shift in terms of
best transformation we identified in both window-based and dependency-filtered models
(no transformation being overscored by root, which in turn would be overscored by log)
is also not so prominent here. Once again, the interpretation of this fact is related to the
high sparsity of the underlying space: the close tie between root and log in combination
with simple-ll shows that the association measure has produced less skewed values and,
despite its robustness to low-frequencies, in this case it seems to not have assigned very
high scores to salient features.

The inspection of the interactions involving number of context dimensions (figures
7.39, 7.40, and 7.41) reveals what is a clear tendency of the dependency-typed models
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Figure 7.42: TOEFL
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Figure 7.44: AP

with respect to the dependency-filtered ones: the more context dimensions, the better
the performance. The message here is that, when the features are so granular, even
the lowest frequency ones can contribute significantly to a better characterization of
the target words in the datasets – very small context matrices risk to underrepresent
certain target words.

Let us conclude with the effect of path length, which we have already observed to be
quite weak in this setting. Given the absence of (strong) interactions we can resort to
the main effect plot, and in doing so we also use the opportunity to compare the main
effect across the different settings (filtered vs. typed, reduced vs. unreduced), in the
plots shown in figures 7.42 (TOEFL), 7.43 (WS), and 7.44 (AP). The plots show that
within the general tendency of dependency-based models to reach best performances at
shortest paths, the detrimental effect of longer paths can be rescued by dimensionality
reduction only in the case of dependency-filtered models. Even for WS, which shows
a clear improvement at longer paths in the filtered/unreduced setting, the best value
for a dependency-typed model is still 1: heavy lexicalization makes features based on
longer paths just too fine-grained – even resorting to a larger corpus like UkWaC does
not help in this case.

7.4 Index of distributional relatedness

In this section, we discuss the effect of relatedness index across all the dependency-
based settings. Recall that in the feature ablation study we have already observed that
relatedness index loses power from unreduced to reduced setting – indeed, the effect plots
in figures 7.45, 7.46 and 7.47 for the four combinations of filtered vs. typed, reduced
vs. unreduced reflect the loss of predictive power in that the two parameter values,
distance and neighbor rank, get closer. This finding is in line with the interpretation
we proposed in section 6.4 for the window-based models, namely that the sparser the
space is, the more asymmetric it is.

The plots have a clear take-home message: neighbor rank is always the best per-
forming value. From the interaction tables we know that in the unreduced settings it
also participates in interactions with other parameters: for the filtered models, it inter-
acts with feature score (AP, WS); for the typed models, it interacts with score (WS)
and metric (TOEFL, AP). The corresponding plots are shown in the supplement, but
it should be sufficient to point out here that none of them contradicts the main trend:
in other words, there is no case in which in combinations with certain scores distance
outperforms rank – it is just that the extent to which rank outscores distance varies
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Figure 7.47: AP

across scores (which is slightly less marked for association measures and manhattan
distance).

7.5 Best settings

Tables 7.6 and 7.7 report the robustly optimal parameter settings for dependency-filtered
and dependency-typed models. For each dataset, we list the parameter settings identi-
fied by inspecting the effect plots and specify their performance (b.synt). For compari-
son, we also report the performance of the optimized window-based DSM from chapter
6 (b.win), and of the state of the art for the task (soa).

Dependency filtered

corpus parser d.gr d.st p.len c.dim score transf metric r.ind b.synt b.win soa

TOEFL ukwac malt core basic 1 5k z-score none cosine rank 72.5 93.7 100
WS wacky malt core basic 1 5k simple-ll root cosine rank 0.67 0.69 0.83
AP ukwac malt core basic 1 5k simple-ll root cosine rank 0.54 0.69 0.79

Dependency typed

corpus parser d.gr d.st p.len c.dim score transf metric r.ind b.synt b.win soa

TOEFL wacky malt core basic 1 100k z-score none cosine rank 80.0 93.7 100
WS wacky malt core basic 1 50k simple-ll root cosine rank 0.53 0.69 0.83
AP wacky malt core basic 1 100k z-score none cosine rank 0.68 0.69 0.79

Table 7.6: Unreduced runs - best settings

Our methodology allowed us to identify robust parameter settings for each task.
However, only in one case such best settings manage to beat the best window-based
model identified in chapter 6: in the dependency-based, reduced setting and for the
noun clustering task.

Table 7.8 reports the parameter values of general settings identified by comparing
the effect plots to find values robust across all tasks. Their performance on TOEFL,
WS, and AP as well as on the remaining datasets from the window based evaluation is
reported in table 7.8. The table also reports the performance of the reference setting
for each task (WS for RG; AP for ESSLLI, MITCHELL, BATTIG) on the remaining
datasets. Such reference setting is trained on the largest – hence more reliable – dataset
per task which can be regarded as a development set employed to tune parameters
that can then be tested on the smaller datasets. The best performance per dataset is
highlighted in bold.

The results listed in table 7.9 confirm the tendency of all clustering datasets to
achieve their best results in a dependency-typed (and SVD-reduced) setting.
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Dependency filtered

corpus parser d.gr d.st p.len c.dim score transf metric d.sk r.dim r.ind b.synt b.win soa

TOEFL ukwac malt core basic 1 5k simple-ll log cosine 100 900 rank 85.0 93.7 100
WS wacky malt core basic 4 20k simple-ll log cosine 50 500 rank 0.68 0.69 0.83
AP wacky malt core basic 1 20k simple-ll log cosine 0 300 rank 0.70 0.69 0.79

Dependency typed

corpus parser d.gr d.st p.len c.dim score transf metric d.sk r.dim r.ind b.synt b.win soa

TOEFL wacky malt core basic 1 100k t-score none cosine 100 900 rank 81.2 93.7 100
WS ukwac malt core basic 1 100k simple-ll log cosine 50 700 rank 0.56 0.69 0.83
AP wacky malt core basic 1 100k simple-ll log cosine 0 300 rank 0.72 0.69 0.79

Table 7.7: Reduced runs - best settings

Setting corpus parser d.gr d.st p.len c.dim score transf metric d.sk r.dim r.ind

Filtered, unreduced ukwac malt core basic 1 5k simple-ll root cosine – – rank
Filtered, reduced wacky malt core basic 2 10k simple-ll log cosine 50 500 rank

Typed, unreduced wacky malt core basic 1 100k z-score none cosine – – rank
Typed, reduced wacky malt core basic 1 100k simple-ll log cosine 50 700 rank

Table 7.8: General best settings (filtered and typed, reduced and unreduced)

Setting TOEFL WS RG AP BATTIG MITCHELL ESSLLI

filtered, unreduced, reference 72.5 0.69 0.76 0.67 0.89 0.73 0.75
filtered, unreduced, general 76.2 0.54 0.75 0.67 0.89 0.73 0.75
filtered, reduced, reference 85.0 0.68 0.84 0.70 0.89 0.73 0.79
filtered, reduced, general 82.5 0.63 0.83 0.64 0.88 0.70 0.79

typed, unreduced, reference 80.0 0.53 0.74 0.68 0.77 0.75 0.73
typed, unreduced, general 80.0 0.54 0.79 0.60 0.73 0.72 0.70
typed, reduced, reference 81.2 0.56 0.74 0.72 0.83 0.73 0.80
typed, reduced, general 82.5 0.62 0.82 0.70 0.91 0.80 0.77

Table 7.9: Evaluation overview: syntax-based DSMs, word similarity datasets
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7.6 Summing up

In this chapter, we have presented the results of a large-scale evaluation study of syntax-
based DSMs. We showed that, even after extensive parameter tuning, syntax-based
DSMs outperform comparable window-based models only in the noun clustering task –
and in this case, the finer-grained dependency-typed models outperform the dependency
filtered ones. The answer to the question raised in the title of this chapter is that, in
general, the performance gain achieved with syntax-based DSMs may not justify the
computational effort. However, in more complex tasks such as concept clustering (which
can be seen as a form of mediated similarity, via the shared hypernym), syntax-based
contexts do boost DSM performance. Interestingly, in this case, performance gain is
higher when the syntactic information encoded in the parse trees is used in its “full
power” – that is, by encoding the syntactic relation in the feature label.

We have identified many commonalities between dependency filtered and window-
based DSMs. A significant core of the parameter space (metric, score, transformation,
relatedness index) is common to both types of models, in terms of the impact on perfor-
mance as well as best parameter values. In a dependency filtered setting, path length
trades off between paradigmatic similarity and non-attributional relatedness in the same
way window size does (WS requires longer syntactic paths and larger window sizes). The
pattern of the number of latent dimensions to be discarded is also comparable to that
of window-based models: synonymy is better modeled by discarding the first 100 SVD
dimensions, the mixture of similarity and relatedness encoded in WS is better captured
discarding the first 50 dimensions, and all dimensions are necessary for noun clustering.
Interestingly, the picture becomes less sharp with dependency-typed models, for which
even for AP discarding the first 50 dimensions appears to be a valid alternative. These
results set the stage for a semantic interpretation of the ordering of the SVD-reduced
dimensions – we will come back to this point in the next chapter, with more evidence
coming from the direct comparison of syntagmatic and paradigmatic relations.

It is left for future work to establish to what extent our conclusions generalize to
different languages. For example, DSM evaluation on German reveals a mixed picture:
on the one hand, Bott & Schulte im Walde (2015) found no advantage for syntax-
based models over window-based ones in a quite linguistically oriented task, namely the
prediction of particle verb compositionality; on the other, Utt & Padó (2014) did find
advantages in the use of syntactic information in the German counterparts of TOEFL
and WS, as well as in more linguistically challenging tasks such as the prediction of
thematic fit ratings.
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Modeling syntagmatic and paradigmatic relations

The studies presented in this chapter contribute to the debate concerning the nature
of the semantic representations built by DSMs, and they do so by zooming in into a
well established dychotomy in DSM research, namely that between paradigmatic and
syntagmatic relations. Paradigmatic relations hold between words that occur in similar
contexts; they are also called relations in absentia (Sahlgren, 2006) because paradigmat-
ically related words do not co-occur. Examples of paradigmatic relations are synonyms
(e.g., frigid–cold) and antonyms (e.g., cold–hot). Syntagmatic relations hold between
words that co-occur (relations in praesentia) and therefore occur in shared contexts.
Typical examples of syntagmatic relations are phrasal associates (e.g., help–wanted)
and syntactic collocations (e.g., dog–bark).

Distributional modeling has already dealt with the issue of the difference between
paradigmatic and syntagmatic relations (e.g., Sahlgren, 2006; Rapp, 2002). In this
connection, the key contributions of the study presented in this chapter are the scope
of its evaluation (in terms of semantic relations and model parameters), the focus on
cognitive datasets (priming and free-association norms) and the new perspective on
paradigmatic vs. syntagmatic models provided by our results.

As far as the scope of the evaluation is concerned, this is the first study in which the
comparison involves such a wide range of semantic relations (paradigmatic: synonyms,
antonyms and co-hyponyms; syntagmatic: syntactic collocations, backward and forward
phrasal associates). Moreover, our evaluation covers the large parameter space employed
in chapters 6 and 7, and we consider the variation in performance achieved by different
parameter settings as a cue towards characteristic aspects of specific relations (or groups
of relations).

This work also differs from previous studies in its focus on second-order models
(DSMs). We show that DSMs are able to capture both paradigmatic and syntagmatic
relations with appropriate parameter settings. In addition, this focus provides a uni-
form experimental design for the evaluation. For example, parameters like window
size and directionality apply to window-based DSMs and collocation lists, but not to
term-context models; dimensionality reduction, whose effect has not yet been explored
systematically in the context of a comparison between syntagmatic and paradigmatic
relations, is not applicable to collocation lists.

The study presented in this chapter proceeds in two steps. First, we carry out an
intrinsic evaluation of DSMs in a multiple-choice task based on the priming datasets
introduced in section 3.4. DSM performance is evaluated here by means of the same

159
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methodology and in the same parameter space as in the previous chapters – keeping
the focus of the discussion on the parameters responsible for the distinction between
syntagmatic and paradigmatic relations. Section 3.4 is based on Lapesa, Evert, &
Schulte im Walde (2014). Next, we rely on the robust settings identified in the intrinsic
evaluation to compare DSMs and collocation models in an extrinsic task: the prediction
of free-association norms, introduced in section 3.3.1; this section is based on Lapesa &
Evert (2014b). The chapter is structured accordingly: after a brief overview of previous
work on the distinction between paradigmatic and syntagmatic relations in section 8.1,
we proceed to the results of the intrinsic evaluation on priming datasets in section
8.2 and then move on to the extrinsic evaluation on free associations in section 8.3.
We conclude by summarizing the findings and defining further research directions with
respect to this topic.

8.1 Previous work

In this section we discuss previous work relevant for the distributional modeling of
paradigmatic vs. syntagmatic relations. We focus only on two studies (Rapp, 2002;
Sahlgren, 2006), in which the two classes of relations are compared at a global level, and
not on studies that are concerned with specific semantic relations, such as synonymy
(Edmonds & Hirst, 2002; Curran, 2003) or hypernymy (Weeds et al., 2004; Lenci &
Benotto, 2012), with the discrimination of paradigmatic relations (Santus et al., 2016),
or with the modeling of syntagmatic predicate preferences (McCarthy & Carroll, 2003;
Erk et al., 2010).

In the previous studies, the comparison of syntagmatic and paradigmatic relations
has been implemented in terms of an opposition between different classes of corpus-
based models: term-context models (words as targets, documents or context regions as
features) vs. window-based models (words as targets and features) in Sahlgren (2006);
collocation lists vs. window-based models in Rapp (2002). Given the high termino-
logical variation in the literature, in this thesis we adopt the labels syntagmatic and
paradigmatic to characterize different types of semantic relations, and we will use the
labels first-order and second-order to characterize corpus-based models with respect to
the kind of co-occurrence information they encode. We will refer to collocation lists as
first-order models, and to window-based DSMs as second-order models.

Rapp (2002) integrates first-order (co-occurrence lists) and second-order (window-
based DSMs) information to distinguish syntagmatic and paradigmatic relations. Un-
der the assumption that paradigmatically related words will be found among the closest
neighbors of a target word in the DSM space and that paradigmatically and syntagmat-
ically related words will be intermingled in the list of collocates of the target word, Rapp
proposes to exploit the comparison of the most salient collocates and the nearest DSM
neighbors to distinguish between the two types of relations. Sahlgren (2006) compares
term-context and bag-of-words DSMs in a number of tasks involving syntagmatic and
paradigmatic relations. His evaluation covers several tasks. The first step is a compar-
ison between the thesaurus entries for target words (containing both paradigmatically
and syntagmatically related words) and neighbors in the distributional spaces: while
term-context DSMs produce both syntagmatically and paradigmatically related words,
the nearest neighbors in a bag-of-words DSM mainly provide paradigmatic informa-
tion. Window-based DSMs also perform better than term-context models in predicting
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Relation Dataset Unreduced Reduced

Syntagmatic GEK 93.0 86.6
Syntagmatic FPA 89.6 79.2
Syntagmatic BPA 88.0 76.9

Paradigmatic SYN 92.4 84.7
Paradigmatic COH 88.5 75.1
Paradigmatic ANT 88.7 75.8

Table 8.1: Multiple choice on priming datasets: adjusted R2

association norms, in the TOEFL multiple-choice synonymy task and in the predic-
tion of antonyms (although the difference in performance is less significant here). Last,
word neighborhoods are analysed in terms of their part-of-speech distribution: Sahlgren
(2006) observes that window-based spaces contain more neighbors with the same part
of speech as the target than term-context spaces: his conclusion is that window-based
spaces priviledge paradigmatic relations, based on the assumption that paradigmati-
cally related word pairs belong to the same part of speech, while this is not necessarily
the case for syntagmatically related word pairs.

Summing up, in both Rapp (2002) and Sahlgren (2006) it is claimed that second-
order models perform poorly in predicting syntagmatic relations. However, neither of
these studies involves datasets containing exclusively syntagmatic relations, as the eval-
uation focuses either on paradigmatic relations (TOEFL multiple choice test, antonymy
test) or on resources containing both types of relations (thesauri, association norms).
The studies presented in this chapter aim at filling this gap.

8.2 Multiple choice task on priming datasets

In this section, we discuss the results of the evaluation of DSMs in the multiple-choice
task on the priming datasets described in section 3.4. This evaluation task tests the
accuracy of DSMs in telling which of the two candidate words is the consistent prime
based on the distributional representation of the two candidate primes (bark, meow)
and the target (dog). Note that in this task our use of neighbor rank mirrors the
experimental setting, as we calculate the position of the target among the neighbors of
the two candidate primes.

We selected three syntagmatic datasets: the Generalised Event Knowledge (GEK)
dataset as well as the forward and backward phrasal associates from SPP (FPA, BPA).
As for paradigmatic relations, we selected the synonyms (SYN), antonyms (ANT) and
cohyponyms (COH) from SPP. For more details and considerations on the task and
the datasets refer to section 3.4. The DSMs evaluated in chapter 6 were tested on each
priming dataset separately. Table 8.1 lists the model fit on each dataset, for the reduced
and unreduced runs. Despite some variability across relations and between unreduced
and reduced runs, the R2 values are always high showing that the linear model explains
a large part of the observed performance. We also note the familiar drop in model fit
from unreduced to reduced runs, and a lower fit for smaller datasets (FPA, BPA, COH,
ANT).

Let us now turn to the discussion of the feature ablation displayed in figures 8.1 and
8.2 for the paradigmatic relations and 8.3 and 8.4 for the syntagmatic ones. Like in the
previous chapters, the feature ablation plots are complemented by the corresponding
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Figure 8.3: Syntagmatic, unreduced
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Figure 8.4: Syntagmatic, reduced

interaction tables (tables 8.2 to 8.5).

Our observations concerning the explanatory power of different parameters can be
summarized in the following points:

• Feature score and feature transformation are consistently crucial in determining
DSM performance, both in reduced and unreduced runs, and for both paradig-
matic and syntagmatic relations. At this point in this dissertation, this is not a
surprising result and it confirms the trend we are already familiar with.

• The index of distributional relatedness plays a substantial role in determining
model performance, more so than in the standard word similarity tasks (in par-
ticular with respect to the other multiple choice task, TOEFL). The gain in ex-
planatory power is reflected in the interaction tables, where we find more cases
in which the effect of the relatedness index modulates in combination with other
parameters (its interaction with feature score being particularly strong).

• SVD parameters play a significant role, but to a lesser extent as compared to the
word similarity tasks.
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SYN ANT COH

score × transf 7.74 10.85 8.62
score × rel.index 5.62 2.75 7.25
transf × metric 1.13 2.35 1.30
window × score 0.81 1.90 1.33
score × metric 0.71 1.64 0.75
corpus × score 0.52 0.99 0.97
window × transf – 0.79 0.70
window × rel.index – – 0.87
score × cont.dim – – 0.82
transf × rel.index – – 0.65
metric × cont.dim – 0.56 –

Table 8.2: Paradigmatic, unreduced

SYN ANT COH

score × transf 15.65 16.73 9.92
window × transf 1.95 3.58 3.33
metric × red.dim 1.54 1.48 1.26
window × score 0.89 1.26 1.44
score × metric 1.45 1.19 0.70
score × dim.skip 1.09 0.71 1.08
window × dim.skip 0.58 1.00 0.97
transf × dim.skip 0.92 0.61 0.80
score × cont.dim 0.78 0.73 0.76
corpus × window – 0.68 1.38
metric × rel.index 0.65 0.93 –
corpus × score 0.66 – 0.79
score × rel.index 0.54 – 0.72
metric × cont.dim 0.97 – –
corpus × metric – – 0.69
transf × metric – – 0.58
transf × rel.index – 0.52 –

Table 8.3: Paradigmatic, reduced

GEK FPA BPA

score × rel.index 5.43 6.05 7.14
score × transf 6.69 4.35 6.13
transf × metric 0.77 1.34 1.08
window × transf 1.46 1.33 –
score × metric 0.61 0.81 –
corpus × window 0.57 – 0.85
corpus × score 0.71 – –
corpus × rel.index – – 0.70
window × score – 0.69 –
metric × cont.dim – 0.56 –
score × metric – – 0.54

Table 8.4: Syntagmatic, unreduced

GEK FPA BPA

score × transf 7.47 8.15 8.10
window × transf 2.32 3.20 1.46
corpus × window 1.15 0.75 2.30
score × dim.skip 1.20 1.30 1.04
metric × red.dim 2.02 0.77 0.94
score × metric 0.97 1.01 0.99
metric × cont.dim 1.36 0.72 0.76
corpus × metric 0.94 0.55 0.59
metric × dim.skip 0.88 0.89 –
transf × dim.skip 0.77 – 0.76
metric × rel.index – 0.58 0.76
window × score 0.51 0.79 –
corpus × transf – – 0.71
score × rel.index – – 0.53
corpus × score 0.51 – –
score × cont.dim 0.51 – –

Table 8.5: Syntagmatic, reduced

• For both syntagmatic and paradigmatic relations, source corpus gains explanatory
power in a SVD-reduced setting. The same holds for the size of the context window,
but only with respect to paradigmatic relations.

• Within paradigmatic relations, we note a significant drop in explanatory power for
the relatedness index when it comes to antonyms. Within syntagmatic relations,
the size of the context window appears to be more crucial for the GEK dataset
than it is for FPA and BPA. In the next section, the analysis of the best choices
for this parameter will provide a clue for the interpretation of these differences.

• Three parameters have little to no explanatory power: directionality of the context
window, criterion for context selection and number of context dimensions.
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Figure 8.6: Window, paradigmatic, red
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Figure 8.8: Window, syntagmatic, red

8.2.1 Best parameter values

In this section, we identify the best parameter values for our datasets, keeping the focus
of the discussion on the parameters which contribute to the comparison between syntag-
matic and paradigmatic relations. In this connection, relevant parameters are window
size, relatedness index, and dimensionality reduction parameters. We will address them
first and discuss in detail our interpretation of the semantic import of the different
parameter values, comparing reduced and unreduced runs directly (when applicable).

Window size This parameter plays a crucial role in contrasting syntagmatic and
paradigmatic relations, as well as different relations within those general groups. The
plots in figures 8.5 and 8.6 display its partial effect for paradigmatic relations in the
unreduced and reduced settings, respectively. The plots in figures 8.7 and 8.8 display
its partial effect for syntagmatic relations.

According to figure 8.5, when no dimensionality reduction is involved, a very small
context window (i.e., one word) is sufficient for all paradigmatic relations, and DSM
performance decreases as soon as we enlarge the context window. Interactions between
window size and score and transformation (cf. supplementary material) help us getting
a better characterization of this effect (because optimal score/transformation settings,
discussed below, allow for slightly larger windows): robust window sizes are 2 for SYN
and COH, and 4 for ANT. The picture changes when applying dimensionality reduction:
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a 4-word window is a robust choice for all paradigmatic relations (although ANT shows
a further increase in performance with an 8-word window), even in the SYN task that
is traditionally associated with very small windows of 1 or 2 words (Sahlgren, 2006).

A significant interaction between window size and number of skipped dimensions
(not shown here for reasons of space) sheds further light on this matter. Without
skipping SVD dimensions, the reduced models achieve optimal performance for a 2-
word window and degrade more (COH) or less (ANT) quickly for larger windows. With
50 or 100 dimensions skipped, performance improves up to a 4- or 8-word window. Our
interpretation of this fact is that the first SVD dimensions capture general domain and
topic information dominating the co-occurrence data; removing these dimensions reveals
paradigmatic semantic relations even for larger windows.

Figure 8.7 shows that for syntagmatic relations without dimensionality reduction
a larger context window of 4 words is needed for FPA and BPA; a further increase
of the window is detrimental. For the GEK dataset, performance peaks at 8 words,
and decreases only minimally for even larger windows. An inspection of the interaction
plots involving window size confirms these robust choices. As before, dimensionality
reduction improves performance for large co-occurrence windows. For FPA and BPA,
the optimum is achieved with a window of 4–8 words; performance on GEK continues
to increase up to a window of 16 words, the largest window size considered in our
experiments.

Overall, the observed patterns reflect differences in the nature of the semantic rela-
tions involved: smaller windows provide better contextual representations for paradig-
matic relations, while larger windows are needed to capture syntagmatic relations with
bag-of-words DSMs, because co-occurring words share a large portion of their context
windows. Intermediate window sizes are sufficient for phrasal collocates (which are
usually adjacent), while event-based relatedness (GEK) requires larger windows.

Returning briefly to the slight preference shown by ANT for a larger window, we
notice that ANT seems to be more similar to the syntagmatic relations than SYN
and COH. This is in line with the observations of Justeson & Katz (1992) concerning
the tendency of antonyms to co-occur (e.g., in coordinations such as short and long).
Antonyms appear to be the least canonical among the paradigmatic relations: like
synonyms, antonyms are interchangeable, but (a) they enter into syntagmatic patterns
that are uncommon for synonyms and (b) they may also introduce a topic shift (e.g.,
happy/sad).

Dimensionality reduction We now focus on the parameters related to dimension-
ality reduction, namely the number of latent dimensions (figures 8.9 and 8.10) and the
number of skipped dimensions (figures 8.11 and 8.12).

We have found no difference between syntagmatic and paradigmatic relations with
respect to the number of latent dimensions: the more, the better in both cases (900
dimensions). The number of skipped dimensions, however, shows some variability across
the different relations. The results for SYN are in agreement with our own findings (and
those of Bullinaria & Levy (2012)) on TOEFL: skipping 50 or 100 initial dimensions
improves performance. Skipping dimensions makes minimal difference for COH (best
choice is 50 dimensions), while the full range of reduced dimensions is necessary for
ANT. Within syntagmatic relations, the full range of latent dimensions ensures good
performance on phrasal associates (even if skipping 50 dimensions is not detrimental for
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Figure 8.12: Skipped dim., syntagm.

BPA). GEK shows a pattern similar to SYN, with 50 skipped dimensions leading to a
considerable improvement.

Relatedness Index As shown in figure 8.13 for the unreduced runs and in figure 8.14
for the reduced runs, neighbor rank is consistently better than distance on all datasets.
The plots display the main effect because this allows a straightforward comparison be-
tween datasets. An inspection of interactions involving relatedness index confirms that
rank is the best parameter in all cases, and the high ablation value comes from the
fact that, as we have observed in the previous chapters, its effect modulates differently
in relation to other parameter values (e.g., bigger difference with Manhattan, smaller
difference with association measures). This is not surprising because our use of neigh-
bor rank captures asymmetry and mirrors the experimental setting, in which targets
are shown after primes. A further observation may be made in relation to the degree
of asymmetry of different relations. In particular, the unreduced setting shows that
syntagmatic relations are subject to stronger asymmetry effects than the paradigmatic
ones, presumably due to the directional nature of the relations involved (phrasal asso-
ciates and syntactic collocations). Among paradigmatic relations, antonyms appear to
be the least asymmetric ones, because using neighbor rank instead of distance makes a
comparatively small difference.
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Figure 8.14: Relatedness index, reduced

Remaining parameters A very strong interaction between score and transformation
characterizes all settings; the corresponding plots are shown in figures 8.15 to 8.26.

As already observed in the previous chapters, in the unreduced runs, untransformed
vectors in combination with association measures based on significance tests (simple-ll,
t-score, z-score) are better than Dice and, to a lesser extent, MI. Overall, we observe the
familiar shift from unreduced to reduced runs: no transformation is the robust choice
in the unreduced runs, while root is the robust choice in the reduced runs; simple-ll
requires more aggressive de-skewing, as log overscores root transformation in the re-
duced runs. More specifically, in the unreduced runs, untransformed z-score is the best
choice for all datasets (on the paradigmatic ones, though, root-transformed simple-ll is
very competitive as well). In the reduced runs, simple-ll is the best choice in combina-
tion with a logarithmic transformation for the paradigmatic relations, whereas z-score
appears to be the best measure for syntagmatic relations in combination with a root
transformation, with minimal differences from untransformed MI and log-transformed
simple-ll. Log-transformed simple-ll is thus the most robust parameter for the SVD
runs.

The optimal metric is cosine distance, consistently outperforming manhattan in
both unreduced (figure 8.27) and reduced (figure 8.28) runs.

As far as source corpus is concerned (figure 8.29 and 8.30), BNC consistently yields
the worst results, while WaCkypedia and ukWaC appear to be almost equivalent in
the unreduced runs. The trade-off between quality and quantity appears to be strongly
biased towards sheer corpus size in the case of distributional models. For syntagmatic
relations and SVD-reduced models, ukWaC is clearly the best choice. This suggests that
syntagmatic relations are better captured by features from a larger lexical inventory,
combined with the abstraction performed by SVD.

The inspection of partial effect plots for minimally explanatory parameters supports
the choice of unmarked default values for directionality of the context window (undi-
rected) and criterion for context selection (frequency), as well as an intermediate number
of context dimensions (50000 dimensions).



Chapter 8. Modeling syntagmatic and paradigmatic relations 168

●
●

●

●

●

●
●

80

85

90

frequency tf.idf MI Dice simple−ll t−score z−score

transformation

●

none

log

root

sigmoid

Score * Transformation

Figure 8.15: SYN, unred
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Figure 8.16: ANT, unred
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Figure 8.17: COH, unred
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Figure 8.18: GEK, unred
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Figure 8.19: FPA, unred
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Figure 8.20: BPA, unred
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Figure 8.21: SYN, red
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Figure 8.22: ANT, red
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Figure 8.23: COH, red
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Figure 8.24: GEK, red
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Figure 8.25: FPA, red
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Figure 8.26: BPA, red
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Figure 8.27: Distance metric, unreduced
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Figure 8.28: Distance metric, reduced
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Figure 8.29: Corpus, unreduced
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Figure 8.30: Corpus, reduced

8.2.2 Best settings

We conclude by comparing the performance achieved by our robust choice of optimal pa-
rameter values identified in section 8.2.1. Tables 8.6 and 8.7 display the best parameter
settings for each dataset along with their accuracy.

As a next step, we identified parameter combinations that work well for all types
of syntagmatic (Best Syntagmatic) and paradigmatic relations (Best Paradigmatic), as
well as an even more general setting (Best Priming) that is suitable for paradigmatic
and syntagmatic relations alike. Such best settings are shown in table 8.8, while their
performance on each dataset is reported in tables 8.9 for the unreduced runs and 8.10 for
the reduced runs. For comparison, we also report the performance of the best general
settings identified in chapter 6 on the word similarity tasks.

A high-level inspection of the performance of the different settings on the different
semantic relations in our datasets allows us to make a number of observations:

• Our methodology allowed us to identify robust settings, which come close to the
performance of the best run (cf. best models in appendix C).

• Syntagmatic relations constitute a more difficult task. This is not surprising, given
that for some of the pairs in the dataset primes and targets belong to different
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parts of speech and (a) in SPP, it can happen that the inconsistent prime matches
the consistent one in part of speech, while the consistent one does not, (b) in
GEK primes belong to the same part of speech, but inconsistent primes have been
carefully sampled, which makes them challenging distractors.

• SVD does not improve performance, at least not to the same extent as we have
observed in the word similarity tasks.

• ANT confirms its special status among the paradigmatic relations. The DSMs
that achieve better performances on it are the syntagmatic ones or, among the
word similarity best settings, those that have been tuned on Ratings and Noun
Clustering (and not on TOEFL).

• On the paradigmatic relations, the settings that have been tuned on the word
similarity tasks outperform (or come very close to) the dedicated settings. On
the syntagmatic relations, on the other hand, the parameter values tuned in the
dedicated experiments outperform the word similarity settings. This is not sur-
prising, given that such datasets do not target syntagmatically related pairs (with
the exception of the relatedness subset of WS).

setting corpus win dir orig.dim crit score transf metric rel.ind acc

SYN wacky 2 undir 20000 f z-score none cosine rank 94.72
ANT wacky 4 undir 20000 f simple-ll root cosine rank 100.00
COH wacky 2 undir 20000 f z-score none cosine rank 99.34
FPA wacky 4 undir 50000 f z-score none cosine rank 94.44
BPA ukwac 4 undir 50000 f z-score none cosine rank 97.75
GEK ukwac 8 undir 50000 f z-score none cosine rank 94.31

Table 8.6: Best settings, unreduced runs: datasets, parameter values, accuracy

setting corpus win dir orig.dim crit score transf n.dim d.skip metric rel.ind acc

SYN wacky 4 undir 50000 f simple-ll log 900 50 cosine rank 96.56
ANT wacky 8 undir 50000 f simple-ll log 900 0 cosine rank 100.00
COH ukwac 4 undir 50000 f simple-ll log 900 50 cosine rank 98.68
FPA ukwac 8 undir 50000 f z-score root 900 0 cosine rank 93.06
BPA ukwac 8 undir 50000 f z-score root 900 0 cosine rank 95.51
GEK ukwac 16 undir 50000 f z-score root 900 50 cosine rank 95.30

Table 8.7: Best settings, reduced runs: datasets, parameter values, accuracy
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setting corpus win dir orig.dim crit score transf n.dim dim.skip metric rel.ind

Paradigmatic, unr wacky 2 undir 20000 f z-score none – – cosine rank
Syntagmatic, unr wacky 4 undir 50000 f z-score none – – cosine rank
General, unr ukwac 2 undir 50000 f z-score none – – cosine rank

Paradigmatic, red ukwac 4 undir 50000 f simple-ll log 900 50 cosine rank
Syntagmatic, red ukwac 8 undir 50000 f z-score root 500 0 cosine rank
General, red ukwac 4 undir 50000 f simple-ll log 900 0 cosine rank

Table 8.8: General best settings

SYN ANT COH FPA BPA GEK

Best Paradigmatic 94.72 99.26 99.34 90.28 91.01 90.35
Best Syntagmatic 96.56 100.00 98.68 97.92 97.75 94.06
Best Priming 96.79 99.26 98.68 95.14 95.51 92.57

Best TOEFL 95.41 98.52 98.01 94.44 95.51 91.09
Best Ratings 94.50 100.00 99.34 95.14 93.26 90.84
Best Clustering 94.95 100.00 99.34 95.14 93.26 90.84
Best Word Similarity 94.95 100.00 99.34 95.14 93.26 90.84
Best PPMI 93.81 99.26 98.68 90.97 91.01 89.60
Best PPMI+ 97.25 100.00 100.00 93.06 91.01 89.85
Best Cognitive 91.51 95.56 96.69 83.33 88.76 80.94

Table 8.9: General best settings, unreduced - comparison to best settings from chapter 6

SYN ANT COH FPA BPA GEK

Best Paradigmatic 96.33 99.26 98.68 90.28 97.75 94.80
Best Syntagmatic 94.50 99.26 99.34 93.06 94.38 92.08
Best Priming 96.33 99.26 98.68 91.67 95.51 91.34

Best TOEFL 94.95 95.56 97.35 81.94 87.64 86.88
Best Ratings 96.56 99.26 100.00 84.72 95.51 93.07
Best Clustering 95.18 100.00 98.68 91.67 92.13 90.84
Best Word Similarity 96.56 99.26 99.34 87.50 93.26 90.84
Best PPMI 95.18 99.26 99.34 90.28 92.13 91.58
Best PPMI+ 97.25 100.00 99.34 87.50 96.63 93.32
Best Cognitive 89.91 91.85 96.69 84.03 88.76 81.19

Table 8.10: General best settings, reduced - comparison to best settings from chapter 6
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Figure 8.31: SYN
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Figure 8.32: ANT

● ● ●
●

88

92

96

1 2 3 4

●

filtered+unreduced

filtered+reduced

typed+unreduced

typed+reduced

Path Length

Figure 8.33: COH
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Figure 8.34: FPA
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Figure 8.35: BPA
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Figure 8.36: GEK

8.2.3 Dependency-based models

In this section, we provide a quick overview of the results of the dependency-based
experiments. While we do not elaborate on details, as we have done in chapter 7 for
word similarity tasks, there are still a number of interesting observations to be made,
in particular in comparison with the window-based results presented in this chapter.

The feature ablation experiments (see the relevant plots in the supplementary mate-
rial) follow the general tendencies identified in this dissertation. Score and transforma-
tion play a strong role in determining model performance, and so does distance metric.
Best parameter values show no unexpected results: association measures are the best,
and so is cosine.

Relatedness index is more powerful here than in standard word similarity experi-
ments. This is expected, given that it is exactly in this task that the use of neighbor
rank mirrors the psycholinguistic setup. Relatedness index is more powerful in the
sparser typed and unreduced setting than it is in the dependency filtered one, and it
loses power when SVD comes into play; however, it always stays in the middle range of
the parameter ranking. Neighbor rank outperforms distance across the board.

Source corpus has also a strong impact on the performance, for syntagmatic and
paradigmatic relations alike. Larger corpora have to be preferred also in this case.

Path length, from the middle-range of the parameter ranking in the unreduced runs,
gains power with SVD where syntagmatic relations are concerned (farthest contexts be-
ing necessary), while it further loses power with paradigmatic relations (closest contexts
in the dependency graph suffice in this case). The effect plots for path length in the
four settings are displayed in figures 8.31 to 8.36. In the dependency filtered setting,
syntagmatic relations exhibit a preference for longer paths, which mirrors the preference
for larger windows discussed in the window-based experiments. Among paradigmatic
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relations, there is a consistent preference for shorter paths – even for the antonyms,
whose “special” status as a paradigmatic relation has already been discussed before.
In the dependency typed experiments a path of length 1 is the best parameter value
for all relations (and not even SVD reduction manages to make sense of co-occurrence
matrices that are built with longer dependency paths).

SVD parameters have limited impact, in particular the number of skipped dimen-
sions. Best values follow familiar trends (SYN: 50, 0 for ANT and COH, 0 or 50 for
the syntagmatic relations), though we notice a general drop in the success of the strat-
egy of skipping the first dimensions – probably indicating that SVD does not manage
to produce a sharp picture and to spread information across the different dimensions
“meaningfully”. As far as number of reduced dimensions is concerned, the more the
better, as usual.

Parsing parameters have a very limited impact on DSM performance. Specifically for
the syntagmatic datasets, however, we do observe a few interactions above 0.5 R2 which
involve parser, dependency style and dependency group. While the inspection of the
corresponding interaction plots confirms our default choices (Malt parser outperforms
Stanford; basic dependencies outperform the CCprocessed ones), it is interesting that
the manipulation of these parameters becomes more influential when we test the capa-
bility of the DSMs to estimate a sort of “collocational fit” for FPA and BPA, and what
can be straightforwardly interpreted as thematic fit for GEK. Syntagmatic relations also
consistently display an interaction between path length and dependency group (core vs.
external dependencies), which characterizes them as compared to the other datasets in
this study: in this case external dependencies have to be preferred, in combination with
middle-range paths (while in other case we relied on core dependencies).

Performance of word similarity best settings Instead of fine-tuning the depen-
dency models on our priming datasets, we have decided to employ them as a test set to
evaluate the robustness of the word similarity settings established in chapter 7. There-
fore, we wrap up this section with table 8.11, which displays the accuracy of the best
settings identified in chapter 7 (refer to tables 7.6, 7.7, and 7.8 for the specific parameter
values).

Despite the fact that none of the displayed syntax-based settings beats the cor-
responding best window-based models identified in section 8.2.2, there are still some
interesting observations to make. While for the paradigmatic relations the typed mod-
els outperform the filtered ones, the syntagmatic relations show the opposite pattern
(filtered better than typed). This clearly results from the fact that syntagmatic datasets
contain pairs of words which can belong to different parts of speech and the use of non-
part-of-speech disambiguated lemmas as targets alleviates this problem only minimally.
It is also interesting that the best GEK dependency model is the one tuned on WS
and is therefore sensitive to both relatedness and similarity. Finally, ANT and COH,
semantically more complex compared to the other paradigmatic relation (SYN) benefit
from the employment of dependency typed models. Once again, this is evidence for the
fact that the best use of dependencies when dealing with more complex semantic issues
is the most fine-grained one, encoded in the dependency labelled contexts.
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Setting SYN ANT COH FPA BPA GEK

filtered, unreduced, TOEFL 92.8 97.03 95.4 89.6 92.1 85.6
filtered, unreduced, WS 93.8 97.03 98.0 85.4 87.6 80.1
filtered, unreduced, AP 94.5 100 98.0 88.9 89.9 83.4
filtered, unreduced, general 94.5 97.03 98.0 88.9 89.9 83.4

filtered, reduced, TOEFL 94.0 96.3 98.0 81.2 88.8 81.2
filtered, reduced, WS 94.2 98.5 98.7 86.8 87.6 89.3
filtered, reduced, AP 92.7 100 98.0 88.8 88.8 79.7
filtered, reduced, general 94.9 98.5 98.7 86.8 84.2 87.3

typed, unreduced, TOEFL 94.5 100 100 81.9 85.4 78.0
typed, unreduced, WS 94.7 100 100 81.2 83.1 76.0
typed, unreduced, AP 94.0 100 100 82.6 82.0 76.0
typed, unreduced, general 94.5 100 100 81.9 85.4 78.0

typed, reduced, TOEFL 91.0 97.7 98.7 76.3 78.6 69.0
typed, reduced, WS 90.8 94.0 97.3 81.9 88.7 76.4
typed, reduced, AP 92.4 98.5 99.3 82.6 80.9 77.7
typed, reduced, general 92.4 97.0 98.0 82.6 79.8 76.4

Table 8.11: Evaluation overview: syntax-based DSMs, multiple-choice priming datasets

8.3 Reverse free association task

In this section we turn to the extrinsic evaluation of the best DSM settings identified
on the multiple-choice task for the priming datasets. We focus on window-based DSMs
because of their performance in our development tasks, and also because of the focus of
the study presented in this chapter: the comparison between collocation lists (first-order
models) and DSMs (second-order models) in the reverse free association task. In this
perspective, the introduction of syntactic information in the collection of collocations –
albeit interesting and promising – is a follow-up step once a first understanding of the
window-based dynamics at work in free association tasks has been reached.

This section introduces NaDiR (Naive Distributional Response generation), a corpus-
based system designed for the reverse association task, which participated in the Co-
gALex Shared task 2014 (Lapesa & Evert, 2014b). NaDiR is naive because it is based
on a very simple algorithm that operationalizes the multiword association task as a
ranking problem: candidate words from a large vocabulary are ranked by their aver-
age statistical association or distributional similarity to a given set of stimuli, then the
highest-ranked candidate is selected as NaDiR’s response. One advantage of this rank-
ing approach is that it provides additional insights into the experimental results: if the
model prediction is not correct, the rank of the correct answer can be used as a measure
of how “close” the model came to the human associations.

The shared task datasets are derived from the Edinburgh Associative Thesaurus1

(henceforth, EAT), which contains free associations to approximately 8000 English cue
words. For each cue (e.g., visual) EAT lists all associations collected in the survey (e.g.,
aid, eyes, aids, see, eye, seen, sight, etc.) sorted according to the number of subjects who
responded with the respective word. The CogALex shared task on multiword association
is based on the EAT dataset, and is in fact a reverse association task (Rapp, 2014).

1http://www.eat.rl.ac.uk/
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The top five responses for a target word are provided as stimuli (e.g., aid, eyes, aids,
see, eye), and the participating systems are required to generate the original cue as a
response (e.g., visual). The training and the test sets are random extracts of 2000 EAT
items each, with minimal pre-processing (only items containing multiword units and
non-alphabetical characters have been discarded).

A key problem we had to deal with while developing our system was the unrestricted
set of possible responses in combination with a discrete association task, which requires
the algorithm to pick exactly the right answer out of tens of thousands of possible
responses. This feature makes this task much more difficult than the multiple-choice
tasks often used to evaluate distributional semantic models. The problem is further
complicated by the fact that the response may be an inflected form and only a prediction
of the exact form was accepted as a correct answer. The need for a solution to these
issues motivates various aspects of the NaDiR algorithm, which we describe in appendix
D. For the purpose of this dissertation, we focus on the task of generating the correct
lemma response.

Previous work on this task showed that co-occurrence models outperform distribu-
tional semantic models, and that using rank measures improves performance because
it accounts for the directionality of the association (e.g., the association from stimulus
to response may be larger than the association from response to stimulus). Our results
corroborate both claims.

8.3.1 Experimental setup

To generate a response for a set of stimuli, we apply the following procedure:

1. For each set of stimuli, we compute association strengths or similarities between
each stimulus and each response candidate in the vocabulary, adopting one of the
measures described later in this section;

2. From the set of potential responses, we restrict the vocabulary to the words whose
POS agrees with the predictions of the classifier described in appendix D. Stimulus
words are discarded from the potential answers;

3. We compute the average association strength or similarity across all five stimuli;
if a stimulus does not appear in the model, it is simply omitted from the average;

4. The top-ranked candidate is the lemma suggested as a response by NaDiR.

Corpus and vocabulary As a source corpus for the experiments presented in this
section, we selected UkWaC, which was preferred to WaCkypedia because of the larger
vocabulary coverage and because our window-based experiments never showed a detri-
mental effect for the larger corpus (and in some cases, even mild improvements).

As discussed before, the response generation strategy implemented in our experi-
ments is based on lemmatized words. To build our lemmatized models, we relied on
the linguistic annotation available with the original version of UkWaC (pos-tagging and
lemmatization performed with Tree Tagger), hence relying on the same pre-processing
pipeline of the window-based experiments presented in the rest of the thesis.

We restricted our vocabulary to (lemmatized) open-class words and, to keep the com-
putational complexity manageable, we applied a frequency threshold. To estimate the
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coverage of the vocabulary – and also as pre-processing for further steps in the pipeline –
we performed a heuristic out-of-context lemmatization with a simple mapping strategy
based on the linguistic annotation already available in UkWaC (see appendix D for more
details). We believe that the advantages of constructing distributional models based on
lemmatized words overcome the drawbacks of this type of out-of-context lemmatization
and part-of-speech assignment. By inspecting the frequencies of stimulus and response
words in the training dataset, we established a reasonable minimum frequency thresh-
old for candidate words of 100 occurrences in UkWaC. With this threshold, only 10
response words and 16 stimulus words from the training dataset have been excluded
from the vocabulary. Given the large size of the dataset, we decided that a minimal loss
in coverage would be justified by the reduced computational complexity. The resulting
candidate vocabulary contains 155,811 words.

Co-occurrence statistics (first-order models) Collocation data for the first-order
models have been extracted from UkWaC2 based on the vocabulary described above:
both nodes (rows of the co-occurrence matrix) and collocates (columns of the co-
occurrence matrix) are chosen from this vocabulary. The collection of first-order models
involved the manipulation of three parameters, namely:

1. Window size and shape:

• symmetric window, 2 words to the left and to the right of the node;

• asymmetric window, 3 words to the left of the node;

• asymmetric window, 3 words to the right of the node.

2. Association score:

• co-occurrence frequency;

• simple log-likelihood;

• conditional probability.

3. Index of association strength, which determines alternative ways of quantifying
the degree of association between nodes and collocates. Given two words a and b
represented in a first-order model, we propose two alternative ways of quantifying
the degree of association between a and b. The first option (and standard in
corpus-based modeling) is to compute the association score between a and b. The
alternative choice is based on rank among collocates. Given two words a and b, in
our task stimulus and potential response, we consider:

• forward rank: the rank of the potential response among the collocates of the
stimulus;

• backward rank: the rank of the stimulus among the collocates of the potential
response;

• average rank: the average of forward and backward rank.

2Like the window-based second-order models, collocation models have been built with UCS toolkit
available at http://www.collocations.de/software.html and the wordspace package for R (Evert, 2014).
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Bag-of-words window-based DSMs (second-order models) We employed UkWaC
as a source corpus. The target words (rows) of the DSMs evaluated in this section are
defined by the vocabulary described above. Evaluating the entire reference parameter
set targeted in this dissertation was not feasible. Given (a) our own findings on the
semantic nuances associated with different window sizes in connection with the syntag-
matic vs. paradigmatic distinction and (b) our particular interest in further testing of
neighbor rank in the prediction of directionality effects, we decided to restrict the scope
of the evaluation to two parameters, namely window size and index of distributional
relatedness. In more detail:

• Window size: we evaluated DSMs built from symmetric windows of 2, 4 and 16
words;

• Index of distributional relatedness: in parallel to the first-order setup, we com-
pare cosine distance to the ranks among the nearest neighbors of the stimulus or
response word.

As for the other parameters, our own experiments discussed earlier and in chapter
6 helped us identifying the following robust settings:

• The context words (columns) were the 50,000 most frequent context words in the
respective co-occurrence matrices.

• We employed the robust simple-log likelihood as a feature score, in combination
with a logarithmic transformation.

• We reduced the scored co-occurrence matrix to 1000 latent dimensions using ran-
domized SVD (Halko et al., 2011). Note that this is the most neutral choice given
our previous results.

• We adopted cosine as a distance metric.

8.3.2 Results

For each class of models we evaluated the different parameter values described in section
8.3.1. Table 8.12 summarizes the evaluated parameters for first-order and second-order
models. Tables 8.13 and 8.14 display the results of our experiments on the training data,
separately for first-order (we focus on the experiments based on a symmetric window
because the asymmetric ones had a worse performance) and second-order models. Pa-
rameter configurations are reported in the Parameter column.3 The number of correct
responses in the lemmatized version is reported in the column Correct, showing how
often our system predicted the correct lemma as the first candidate. Since the task of
predicting exactly one word is particularly difficult, we further characterize the perfor-
mance of our evaluated models by reporting the number of cases in which the correct
answer from the training set was among the first 10 (< 10), 50 (< 50), or 100 (< 100)
ranked candidates.

The results reported in tables 8.13 and 8.14 allowed us to identify best parameter
configurations for the first-order (symmetric 2 words window, frequency, backward rank)

3Abbreviations used in the tables: ass = association score; dist = distance; fwd = forward rank; bwd
= backward rank; avg = average rank.
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Model Window Score Relatedness Index

first-order symmetric, 2 frequency association score
left 3, right 0 simple log-likelihood forward rank
left 0, right 3 conditional probability backward rank

average rank

second-order symmetric, 2 simple log-likelihood distance
symmetric, 4 forward rank
symmetric, 16 backward rank

average rank

Table 8.12: Evaluated parameters for first- and second-order models

and second-order models (2 words window, distance). We evaluated these configurations
on the test data (table 8.15).

Parameters Correct < 10 < 50 < 100

Freqass 2 85 372 561
Freqfwd 0 77 359 550
Freqbwd 555 973 1269 1369
Freqavg 424 677 848 934
Simple-llass 33 237 721 985
Simple-llfwd 405 760 916 947
Simple-llbwd 531 914 1141 1253
Simple-llavg 490 785 918 950
Cond.probass 18 329 746 970
Cond.probfwd 0 77 359 550
Cond.probbwd 422 856 1129 1255
Cond.probavg 343 611 860 971

Table 8.13: First-order models - symmetric window: 2 words to the left/right of the
node - training data

Parameters Correct < 10 < 50 < 100

2dist 264 686 1077 1224
2fwd 127 380 703 849
2bwd 73 275 584 720
2avg 157 436 750 911
4dist 255 665 1037 1195
4fwd 108 338 651 824
4bwd 77 254 545 694
4avg 129 397 710 862
16dist 206 546 910 1062
16fwd 63 252 512 667
16bwd 49 188 449 581
16avg 79 282 560 713

Table 8.14: Second order models – training data
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Model Correct < 10 < 50 < 100

first-order 572 (28.6%) 1010 1303 1408
second-order 304 (15.0%) 734 1119 1256

Table 8.15: Best models (first order and second-order) – performance on test data

The results of our experiments are in line with the tendencies identified in the lit-
erature. First-order models based on direct co-occurrence (high scores are assigned to
words that co-occur), outperform second-order models based on distributional similar-
ity (smaller distances between words that occur in similar contexts). For the first-order
models, the best index of association strength is the rank of the stimulus among the col-
locates of the potential response, which is fully congruent with the experimental setting.
Surprisingly, frequency outperforms simple-log likelihood, which is usually considered
to be among the best association measures for the identification of collocations. In line
with the results achieved by Rapp (2014), a symmetric window of 2 words to the left
and to the right of the target achieves best results.

For the second-order models, the smallest context window (2 words) achieves the
best performance. Considering the good results from collocation-based models, we
would have expected a better performance from larger windows, widely assumed to
be more sensitive to syntagmatic relations – as confirmed in this dissertation, as well.
An interesting difference between first-order and second-order models is the fact that
neighbor rank works less well than the distance between vectors, while collocate rank
outperforms the association scores on which it is based. This observation contrasts with
what we showed in chapters 6 and 7, and in the experiments on priming datasets in this
chapter: in all these cases, rank consistently outperformed distance. Among the word
similarity tasks in chapter 6, however, the only case in which the use of neighbor rank did
not produce significant improvements with respect to vector distance was the TOEFL
multiple-choice synonymy task (in the SVD-reduced runs). Despite clear differences,
the TOEFL task and the reverse association task share the property that they involve
multiple stimuli. The results presented in this chapter, together with those achieved on
the TOEFL task, suggest that a better strategy for the use of neighbor rank needs to
be developed when multiple stimuli are involved.

An interesting research direction would be an integration of first- and second-order
statistics in the process of response generation. The evaluation results reported here re-
vealed that a very small context window achieves the best performance for second-order
models: as widely acknowledged in the literature (Sahlgren, 2006) and established in
the research presented in this thesis, smaller context windows highlight paradigmatic
relations. First-order models, on the other hand, naturally highlight syntagmatic rela-
tions. The best second-order and first-order models from the evaluation reported in this
section are likely to focus on different types of relations between response and stimu-
lus words: this leads us to believe that an integration of the two sources may lead to
improvements in performance.

8.4 Summing up

We presented two sets of studies on window-based DSMs, an intrinsic one based on a
classification task derived from priming experiments, and an extrinsic one, in which the
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best settings individuated in the intrinsic evaluation have been tested on the (reverse)
free association test. The leading theme of this chapter is a comparison between syn-
tagmatic and paradigmatic relations in terms of the aspects of distributional similarity
that characterize them.

The results of the intrinsic evaluation show that second-order DSMs are capable
of capturing both syntagmatic and paradigmatic relations, if parameters are properly
tuned. Size of the co-occurrence window, as well as parameters connected to dimension-
ality reduction play a key role in adapting DSMs to particular relations. Even if we do
not address the more specific task of distinguishing between relations (e.g., synonyms
vs. antonyms; see Scheible et al. (2013) and references therein), we believe that such
applications may benefit from our detailed analyses on the effects of DSM parameters.

The results of the free-association experiments reported in this chapter confirm
the tendencies identified in previous studies: first-order models, based on direct co-
occurrence, outperform second-order models, based on distributional similarity. We
consider these experimental results a first exploration into the dynamics of the reverse
association task, and we believe that our systematic evaluation of first- and second-order
models represents a good starting point for future work, which targets improvements of
NaDiR at many levels.



9

Conclusion

This dissertation started off by discussing the main assumption underlying Distribu-
tional Semantic Models as a method to quantify word meaning: the Distributional
Hypothesis (Harris, 1954; Miller & Charles, 1991). The assumption that meaning of
a word is its usage and can thus be operationalized in terms of the set of contexts
with which this word co-occurs, is, however, not free of criticism. The main issue
with the Distributional Hypothesis, and one that is at the core of the motivation of
this dissertation, is its underspecification. As pointed out by Sahlgren (2008, p. 37):
“The distributional hypothesis, as motivated by the works of Zellig Harris, is a strong
methodological claim with a weak semantic foundation. It states that differences of
meaning correlate with differences of distribution, but it neither specifies what kind of
distributional information we should look for, nor what kind of meaning differences it
mediates.” Addressing this issue has been precisely the higher-level goal of this thesis
project.

On the level of what kind of distributional information we should look for, we have
presented the largest-scale evaluation of window-based and syntax-based DSMs, in
which all possible parameter combinations are tested. Additionally, we have intro-
duced a novel parameter, neighbor rank, which is cognitively motivated as it allows to
model semantic similarity/relatedness as an asymmetric phenomenon.

On the level of what kind of meaning differences are mediated by word distributions,
we have put a strong focus on cognitive tasks (along with standard word similarity
tasks) and on the interpretation of the contrasts between semantic relations.

Additionally, this dissertation raises and addresses an additional issue, which had
been out of the focus of previous work on DSM evaluation, namely the question of
how to assess if certain distributional properties are mediating specific meaning differ-
ences, thus affecting DSM performance in the corresponding tasks. We have proposed
a novel evaluation methodology, which is able to capture interactions between different
distributional properties (the parameters of a DSM) and is robust to overfitting.

The methodological and the cognitive/semantic dimensions are the main conceptual
coordinates of this work, whose contributions relate to several different domains. The
main findings of this work in each of these domains are summarized below.

Neighbor rank, a cognitively-inspired parameter which has been systematically evalu-
ated for the first time in this thesis, is a better predictor of semantic similarity/relatedness
than distance in the semantic space is. Cognitively, this result stems from its capability
to capture asymmetry. Mathematically, neighbor rank provides a scaling of the semantic

181
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space which is robust to variations in density.

More specifically, our results have shown that the impact of neighbor rank is mod-
ulated by SVD: in a reduced space, the performance gain to be expected by applying
rank as a relatedness index is less marked than in an unreduced space – in other words,
the SVD space is more homogeneously distributed (hence the scaling effect of rank with
respect to distance is less marked). The effect of rank is also modulated by the different
association measures – difference between rank and distance is less marked for simple-
log likelihood, t-score. Taken together with the reduced impact of rank with SVD, and
with the fact that rank has a stronger effect in the (much sparser) syntax-based models
with respect to the window-based ones, this result indicates in the use of neighbor rank
a viable “repair parameter” to which one should definitely resort in case of very sparse
spaces, or if for some reason the application of association measures is not viable.

A further advantage of an evaluation based on neighbor rank is that the DSM
predictions on similarity/relatedness involve the whole vocabulary – thus producing a
better estimate of the overall quality of the semantic representation – while computation
of distance only involves experimental items in the evaluated datasets.

The proposed evaluation methodology revealed that parameter interactions are
crucial in understanding DSM performance: not taking them into account would have
prevented the identification of robust parameter settings.

In particular, the interaction between feature score and feature transformation can
be considered one of the signature findings of this work, as it occurs in all experiments
and with comparable best parameters. Our experiments have also shown how the manip-
ulation of feature score and feature transformation also affects the quality of the output
of the SVD reduction: the most robust unreduced configuration does not correspond to
the input to most robust SVD configuration. This result is of particular relevance in
the perspective of a better understanding of SVD and also of neural embeddings, which
target a comparable projection of the co-occurrence facts in a lower-dimensional space.
Indeed, the co-occurrence information stored in the unreduced matrix can be considered
as a statistical profile of the co-occurrence facts which will also enter the computation
of the embeddings, thereby providing crucial interpretation cues for their performance.

At the level of the portability of our results to new models, we have opted for a
thorough exploration of the earlier stages of a DSM pipeline. Robustly negative results
(i.e., lack of significant impact) for some of these (previously unexplored) parameters are
extremely valuable in a field in which the potential complexity of the experimental design
grows exponentially; the most notable example of negative result in this thesis is the lack
of significance of parsing-specific parameters in the syntax-based experiments (parser
and format of the dependencies). On the other hand, robustly identified positive trends
in the earlier stages of the pipeline (i.e., co-occurrence extraction) can be employed
as a departure point for further exploration in later stages of the pipeline: neighbor
rank is definitely the the most promising parameter in this dissertation, along with a
finer-grained manipulation of SVD.

A high-level consideration should also be made here, with regards to the relevance
of the methodological contribution beyond the evaluation of count DSMs (and possi-
bly beyond distributional modeling all together). In the deep learning era, the pace at
which new embedding methods, or new hyperparameters for existing methods are being
proposed is incredibly fast. In this perspective, the vision of holding up to a robust
understanding of the impact of these novelties, let alone their cognitive and semantic
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interpretation, may look extremely ambitious. Indeed, this would require conducting
large-scale meta-studies targeting a common core of the parameter sets, while the com-
mon core is a moving target by itself. However, the theoretical desiderata and the
practical guidelines defined in this thesis, along with the methodological considerations
on the interpretation of the regression effects exemplified in the experimental chapters
can already serve as a tool for individual researchers to get a better understanding of
their own results, and to phrase that understanding in a statistical picture which is
simple, reliable and easier to share with the community.

Cognitive datasets in combination with the regression methodology have helped us
getting a finer-grained perspective on the parameter space. The intrinsic evaluation on
the priming datasets revealed that the results obtained on similarity tasks carry over to
the cognitive tasks to a reasonable extent; moreover, it contributed towards a definition
of the “semantic” status of the ordering of SVD dimensions. This parameter, together
with the size of the context window, is involved in the contrast between paradigmatic
and syntagmatic relations. Moreover, it allowed us to characterize antonymy as a non-
prototypical paradigmatic relation, one that is more topical (larger windows) and more
symmetric (smaller impact of neighbor rank). The extrinsic evaluation of the best DSM
settings in the reverse free association task revealed a limitation of DSMs (at least in
the basic implementation of the task presented in chapter 8), as collocation models
outperformed the distributional ones.

9.1 Further work on modeling reaction times in priming

A set of experiments targeting the modeling of the priming effects in the GEK dataset
have already been conducted within the frame of this dissertation and have not been
discussed in details in this dissertation they targeted a slightly different parameter set.
Their results have been published in Lapesa & Evert (2013a,b,c). In what follows, we
summarize them briefly.

These studies targeted the whole GEK (as in chapter 8) as well as its subsets (noun-
noun, verb-noun, noun-verb), and zoomed in into a comparison between the relations
within the datasets (agent, patient, location, etc.). Crucially, these experiments em-
ployed both directions of rank (forward and backward) as well as their average; the
three alternative implementation of neighbor rank were also compared it to distance.

At the level of tasks, these studies involved a multiple choice-task as in chapter 8;
a correlation task in Lapesa & Evert (2013a,b): we calculated Spearman’s correlation
between semantic relatedness in the distributional space and RT in the congruent con-
dition, and employed our regression methodology to interpret DSM performance; the
item-based prediction of the priming effects (difference between the congruent and in-
congruent condition) based on a number of second-order predictors (window-based and
document-based) as well as first-order predictors Lapesa & Evert (2013c).

Taken together, the results of these experiments support of the status of neighbor
rank as a cognitively plausible predictor:

• Neighbor rank outperformed distance, across the board.

• The best parameters for multiple-choice and correlation differ rather crucially. In
particular, correlations are achieved with BNC, frequency with log or root transfor-
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mation, manhattan distance, small/intermediate windows, and in the unreduced
space (cf. best settings in chapter 8).

• Item-based prediction benefits from both first-order and second order predictors
– besides, the directionality of the rank in the different subsets of GEK shows a
very interesting pattern: forward rank is best predictor for noun-verb priming,
backward rank is best predictor for noun-verb priming, average of forward and
backward rank is best predictor for noun-noun priming.

• The application of the multiple-choice task to specific subsets of relations reveals
patterns which are extremely interesting from the point of view of their theoretical
linguistic interpretation. Note that the multiple-choice on GEK can be interpreted
as a binary thematic fit task: for a specific relation, e.g., agent, high accuracy is
to be interpreted as the capability of the model to tell prototypical from non pro-
totypical agents. In this perspective we can interpret DSM performance as an
answer to the question: how close are to the target verb/nouns the prototypical
fillers of a specific relation? Our experiments on GEK have showed that prototyp-
ical patients (internal arguments) are closer to their head verb than instruments
(indirect internal arguments) or prototypical agents (external arguments), which
are in turn closer to the verb than prototypical locations (adjuncts).

9.2 Future steps

To each one of the three domains of contribution/finding listed before corresponds a set
of further (and current) research directions, which are discussed below.

Neighbor rank Future research will need to target a better understanding of the effect
of the different directions of rank (forward, backward) as well as different strategies for
computing average rank. What is still to explore is also the hypothesis the impact
on rank of target frequency, and, more in general, of the sparsity of the space. A
possible way to achieve this would be to carry out an item-level analysis of the (absolute)
difference between forward and backward rank. The larger such difference, the more
asymmetric the relation between the two words is: this is an excellent predicted value for
a regression analysis, with relevant word-level features (e.g., frequency, part-of-speech,
number of non-zero entries) as well as DSM-related features (e.g., parameters values) as
predictors. Last, the hypothesis that the density of the semantic representation reduces
its asymmetry will find its natural next test in the application of neighbor rank in neural
word embeddings.

As a preliminary step for further research on asymmetry in distributional semantics,
we have already collected a dataset in which directionality of the judgment is taken
into account as an experimental variable (Lapesa, Schulte im Walde, & Evert, 2014).
Focussing on paradigmatically related pairs, and after a careful stratified sampling of
the items, we and asked the (Amazon Mechanical Turk) subjects to rate the degree
of relatedness between two words (e.g., artist and painter) with respect to a specific
relation (e.g., synonymy), and presented the pair in both orders (e.g., artist-synonym-
painter vs. painter-synonym-artist). The question at issue is to what extent asymmetry
would affect the targeted relations (e.g., synonymy, antonymy, hyponymy) with regard
to different parts of speech (verbs vs. adjectives vs. nouns). We expect the comparison
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across parts of speech to highlight conceptual differences of the three relations across
word classes: for example, the concept of hyponymy has been widely investigated with
respect to nouns, but little attention has been devoted to its application to verbs, and
even less to adjectives

Regression analysis As already pointed out throughout the thesis, the analysis of
higher-level interactions is the necessary further step in the refinement of the proposed
regression methodology.

Given the high number of data points, we have so far focussed only two-way inter-
actions, but the clear next step towards a more powerful analysis would be to a) get rid
of weak parameters values across the board (e.g., manhattan, sigmoid) and introduce
three-way interactions; b) introduce the datasets as a predictor of DSM performance
– this would make the comparisons among datasets more straightforward; c) align the
parameters of the different model classes and train a larger regression model – note that
many of the parameters in this study are already aligned, and many of the remaining
ones can straightforwardly be aligned: window size in window-based with path length
in syntax-based; dependency-filtered are the syntax-based version of undirected win-
dow, while dependency-typed can is the syntax-based counterpart of a directed window
encoding relative position of the feature with respect to the target word.

Cognitive modeling The experiments on cognitive datasets described in chapter 8
represent the natural starting point for two research lines, which cross each other in
the strive for an integration of first-order (collocation) and second order (distributional)
models.

As far as the modeling of priming data is concerned, a more exhaustive distribu-
tional account of the experimental effects requires the actual comparison between reac-
tion times and distributional similarities. In chapter 3 we already discussed what the
problematic points of such an approach would be; in section 9.1 we have summarized
the results of further correlation and item-based modeling of reaction times in GEK;
these studies can be considered as extremely promising pilot for future work, involving
also SPP.

As far as the reverse association task is concerned, even if we have established that
first-order co-occurrence models outperform DSMs when predicting free associations,
there is still a possibility for the two classes of models to be (at least in part) comple-
mentary in their predictions. This could be the task for an oracle, or, even better, for
an ensemble model trained in the task of finding the appropriate way of combining first
order and second order information for the responses, based on a number of item-level
predictors (e.g., frequency, part of speech, or finer grained semantic features such as con-
creteness, valence, etc.). In this connection, we created a new free-association dataset
larger than the CogALex one, merging EAT and USF and carefully sampling the items
according to frequency (to avoid, or at least alleviate frequency bias). The dataset and
the results of preliminary experiments have been presented by Evert & Lapesa (2017);
further modeling experiments involving neural embeddings and the integration of differ-
ent sources of corpus-based information have been performed, setting the stage for an
exhaustive comparison of such sources in what still remains an extremely challenging
cognitive task.
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A

Clustering implementation: pam vs. CLUTO

This section summarizes the results of the comparison between the clustering perfor-
mance achieved by the pam function from the cluster R package (with standard set-
tings) and the performance achieved by the CLUTO toolkit (Karypis, 2003).

Table A.1 reports the results of this comparison, on the unreduced and reduced
experimental runs.

As CLUTO relies on cosine to perform clustering, we present the comparison between
PAM+cosine and CLUTO. We compare performance of PAM achieved with the two
indexes of distributional relatedness (distance and rank) to the performance of CLUTO,
separately for reduced and unreduced runs.

We conducted paired t-tests to check for significant differences between pam and
CLUTO in our clustering experiments: table A.1 reports, for every comparison, the
difference of means (pam minus CLUTO) and the significance value. For example,
the unreduced/distance/AP cell from table tells us that, for the unreduced runs and
the Almuhareb-Poesio dataset, pam was slightly but significantly better CLUTO. The
cases in which pam turned out to be better - or at least not worse - than CLUTO are
highlighted in bold.

Dataset
Unreduced Reduced

Distance Rank Distance Rank

dataset diff.means p diff.means p diff.means p diff.means p

AP 0.01050 *** 0.04590 *** 0.02814 *** 0.03918 ***
BATTIG -0.00010 0.05588 *** 0.02310 *** 0.03979 ***
ESSLLI 0.01050 *** 0.04590 *** -0.00740 *** 0.00066 ***
MITCHELL -0.01683 *** 0.07280 *** 0.03999 *** 0.05249 ***

Table A.1: Comparison between pam and CLUTO
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B

Best Models

B.1 Window-based models

TOEFL

corpus window direction c.dim criterion score transf metric rel.ind acc

ukwac 2 undirected 20000 nnzero MI none cosine rank 87.50
ukwac 2 undirected 5000 f simple-ll log cosine dist 87.50
ukwac 4 undirected 20000 f simple-ll none man rank 87.50
ukwac 4 undirected 20000 nnzero simple-ll none man rank 87.50

Table B.1: TOEFL, unreduced, best models – 6 runs tied for best result (4 hand-picked
examples shown)

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip acc

ukwac 2 undirected f 5000 MI none cosine rank 900 100 98.75
ukwac 4 directed f 50000 t-score log cosine rank 900 100 98.75
ukwac 4 undirected f 50000 t-score root cosine dist 900 100 98.75
ukwac 4 directed f 5000 simple-ll log cosine dist 900 100 98.75

Table B.2: TOEFL, reduced, best models – 23 models tied for best result (4 hand-picked
examples shown)

Ratings

corpus window direction c.dim criterion score transf metric rel.ind r

wacky 4 undirected 100000 f simple-ll none man rank 0.88
wacky 4 undirected 100000 nnzero simple-ll none man rank 0.88
wacky 4 undirected 100000 f simple-ll root cosine rank 0.87
wacky 4 undirected 100000 f z-score none cosine rank 0.86

Table B.3: RG65 dataset, unreduced, best models – 2 models tied for best r, 2 additional
hand-picked models with similar performance are shown
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corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip r

ukwac 16 undirected nnzero 20000 MI none cosine rank 700 100 0.89
ukwac 8 directed f 20000 MI none cosine rank 700 100 0.89
wacky 4 directed nnzero 50000 simple-ll log cosine rank 700 50 0.89
wacky 4 undirected f 100000 z-score log cosine rank 900 50 0.89

Table B.4: RG65 dataset, reduced, best models – 19 models tied for best result (4
hand-picked examples shown)

corpus window direction c.dim criterion score transf metric rel.ind r

wacky 16 undirected 100000 f z-score none cosine rank 0.73
wacky 16 undirected 100000 nnzero z-score none cosine rank 0.73
ukwac 16 undirected 100000 nnzero z-score none cosine rank 0.70
wacky 16 directed 100000 f simple-ll root cosine rank 0.71

Table B.5: WS353 dataset, unreduced, best models – 2 models tied for best r, 2 addi-
tional hand-picked models with similar performance shown

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip r

wacky 16 directed f 5000 MI none man rank 900 50 0.73
wacky 16 undirected f 5000 MI none man rank 900 50 0.72
wacky 16 undirected f 5000 z-score log man rank 900 50 0.72
wacky 16 directed f 10000 z-score root man rank 900 50 0.72

Table B.6: WS353 dataset, reduced, best model – 3 additional hand-picked models with
similar performance are shown

Clustering

corpus window direction c.dim criterion score transf metric rel.ind purity

wacky 1 directed f 50000 MI none cosine rank 0.73
wacky 1 directed f 50000 z-score log cosine rank 0.73
wacky 1 undirected f 10000 z-score log cosine rank 0.73
wacky 1 undirected f 100000 simple-ll log cosine rank 0.73

Table B.7: AP dataset, unreduced, best models – 7 models tied for best result (4 hand-
picked examples shown)

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip purity

ukwac 4 directed nnzero 10000 t-score log man rank 900 50 0.76
wacky 1 directed nnzero 10000 z-score log man rank 900 50 0.75
wacky 1 undirected f 20000 simple-ll log man rank 900 50 0.75
wacky 2 directed f 100000 z-score log cosine rank 500 0 0.75

Table B.8: AP dataset, reduced – best model (plus 3 additional hand-picked models)

corpus window direction c.dim criterion score transf metric rel.ind purity

ukwac 16 directed nnzero 5000 simple-ll none man dist 0.99
wacky 4 undirected f 100000 MI none cosine rank 0.99

Table B.9: BATTIG dataset, unreduced – best models
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corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip purity

ukwac 1 undirected f 20000 Dice root man rank 300 100 0.99
ukwac 2 undirected f 100000 freq log cosine dist 300 50 0.99
wacky 16 undirected f 50000 z-score log man dist 500 50 0.99
wacky 8 undirected f 10000 Dice root man rank 500 0 0.99

Table B.10: BATTIG dataset, reduced, best models – 1037 models tied for best result
(4 hand-picked examples shown)

corpus window direction c.dim criterion score transf metric rel.ind purity

wacky 1 undirected 50000 f z-score none man dist 0.93
wacky 1 undirected 50000 nnzero z-score none man dist 0.93
wacky 2 directed 100000 f z-score none man dist 0.93
wacky 2 directed 100000 nnzero z-score none man dist 0.93

Table B.11: ESSLLI dataset, unreduced, best models – 5 models tied for best results, 4
hand-picked examples shown

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip purity

wacky 16 directed nnzero 50000 z-score none man dist 900 0 0.98
ukwac 1 directed nnzero 100000 simple-ll log cosine dist 100 50 0.95
ukwac 2 undirected f 50000 tf.idf none man dist 700 0 0.95
wacky 8 undirected f 100000 tf.idf root man rank 500 0 0.95

Table B.12: ESSLLI dataset, reduced – best model (plus 3 additional hand-picked
models)

corpus window direction c.dim criterion score transf metric rel.ind purity

bnc 1 undirected 100000 f z-score log cosine rank 0.97
bnc 2 undirected 10000 nnzero z-score root cosine rank 0.97
bnc 4 undirected 100000 f z-score none man rank 0.97
bnc 4 undirected 50000 f z-score none man rank 0.97

Table B.13: MITCHELL dataset, unreduced, best models – 6 models tied for best
results, 4 hand-picked examples shown

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip purity

bnc 2 undirected nnzero 100000 simple-ll log cosine rank 900 0 0.97
bnc 2 undirected f 50000 simple-ll log cosine rank 700 0 0.97
bnc 2 undirected nnzero 50000 simple-ll log cosine rank 900 0 0.97

Table B.14: MITCHELL dataset, reduced, best models – 3 models tied for best result

Semantic Priming
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corpus window direction c.dim criterion score transf metric rel.ind acc

ukwac 2 directed 5000 nnzero z-score root cosine rank 98.39
ukwac 2 directed 10000 f simple-ll log cosine rank 98.17
wacky 2 directed 20000 nnzero z-score log cosine rank 98.17
wacky 2 directed 20000 nnzero z-score root cosine rank 98.17

Table B.15: SYN, unreduced, best model – (plus 3 additional hand-picked models)

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip acc

ukwac 2 directed 100000 nnzero MI root cosine rank 100 900 99.08
ukwac 8 undirected 20000 f MI root cosine dist 100 900 99.08
ukwac 8 undirected 20000 f MI root cosine rank 100 900 99.08

Table B.16: SYN, reduced, best models

corpus window direction c.dim criterion score transf metric rel.ind acc

wacky 8 directed 5000 nnzero z-score root cosine rank 100.00
ukwac 8 directed 10000 f z-score none man dist 100.00
wacky 16 undirected 5000 f simple-ll log man rank 100.00
wacky 8 directed 100000 nnzero simple-ll root cosine dist 100.00

Table B.17: ANT, unreduced, best models – 3261 runs tied for best result, 4 hand-picked
examples shown

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip acc

wacky 16 undirected 20000 f tf.idf root cosine dist 100 700 100.00
wacky 2 directed 50000 f z-score root cosine dist 0 100 100.00
ukwac 16 directed 10000 nnzero MI none man rank 50 700 100.00
ukwac 4 undirected 5000 f tf.idf root man rank 0 500 100.00

Table B.18: ANT, reduced, best models – 15345 runs tied for best result, 4 hand-picked
examples shown

corpus window direction c.dim criterion score transf metric rel.ind acc

wacky 2 undirected 100000 f t-score sigmoid cosine rank 100.00
ukwac 1 undirected 50000 f MI log cosine rank 100.00
ukwac 1 directed 20000 nnzero t-score root cosine rank 100.00
ukwac 1 undirected 10000 nnzero tf.idf root cosine rank 100.00

Table B.19: COH, unreduced, best models – 1067 runs tied for best result, 4 hand-picked
examples shown

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip acc

wacky 2 directed 50000 nnzero frequency root cosine rank 0 500 100.00
wacky 2 undirected 20000 nnzero MI none cosine rank 0 300 100.00
wacky 1 undirected 50000 nnzero MI log cosine rank 0 500 100.00
ukwac 1 undirected 50000 f Dice root man rank 100 900 100.00

Table B.20: COH, reduced, best models – 9804 runs tied for best result, 4 hand-picked
examples shown

corpus window direction c.dim criterion score transf metric rel.ind acc

ukwac 4 undirected 10000 f z-score none cosine rank 97.92
ukwac 4 directed 100000 f z-score none cosine rank 97.92
ukwac 4 directed 100000 nnzero z-score none cosine rank 97.92
ukwac 4 undirected 100000 nnzero z-score none cosine rank 97.92

Table B.21: FPA, unreduced, best models – 10 runs tied for best result, 4 hand-picked
examples shown
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corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip acc

ukwac 16 directed 20000 f z-score root cosine rank 100 900 98.61
ukwac 16 undirected 20000 nnzero z-score root cosine rank 100 900 97.92
ukwac 16 undirected 20000 nnzero z-score root cosine dist 100 900 97.92
ukwac 8 undirected 50000 nnzero z-score none cosine rank 0 500 97.92

Table B.22: FPA, reduced, best model – 3 additional hand-picked models with similar
performance are shown

corpus window direction c.dim criterion score transf metric rel.ind acc

ukwac 4 directed 10000 nnzero z-score none cosine rank 97.75
ukwac 8 undirected 100000 f z-score none cosine rank 97.75
ukwac 8 undirected 100000 f z-score none cosine dist 97.75
ukwac 8 directed 50000 f z-score none cosine rank 97.75

Table B.23: BPA, unreduced, best models – 33 runs tied for best result, 4 hand-picked
examples shown

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip acc

ukwac 16 undirected 100000 f MI none cosine dist 50 700 98.88
ukwac 4 undirected 50000 f MI root cosine rank 50 700 98.88
ukwac 4 undirected 100000 f z-score log cosine dist 50 500 98.88
ukwac 8 directed 50000 nnzero z-score log cosine rank 50 300 98.88

Table B.24: BPA, reduced, best models – 181 runs tied for best result, 4 hand-picked
examples shown

corpus window direction c.dim criterion score transf metric rel.ind acc

ukwac 16 undirected 20000 nnzero z-score none cosine rank 95.30
wacky 16 directed 100000 f z-score none cosine rank 95.30
ukwac 16 directed 100000 nnzero z-score none cosine rank 95.30
ukwac 16 undirected 20000 f z-score none cosine rank 95.30

Table B.25: GEK, unreduced, best models – 6 runs tied for best result, 4 hand-picked
examples shown

corpus window direction criterion c.dim score transf metric rel.ind red.dim dim.skip acc

ukwac 16 directed 10000 f z-score log man rank 100 900 97.03
ukwac 8 undirected 50000 f simple-ll log cosine rank 50 700 96.78
ukwac 8 undirected 10000 nnzero simple-ll log man rank 100 900 96.78
ukwac 4 undirected 20000 nnzero t-score none man rank 50 700 96.78

Table B.26: GEK, reduced, best model – 3 additional hand-picked models with similar
performance are shown
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B.2 Syntax-based models

TOEFL

corpus parser d.group d.style p.len c.dim score transf metric rel.ind acc

filtered wacky stanford core ccproc 1 50k z-score none cosine rank 85.00
typed wacky stanford core basic 2 100k z-score none cosine rank 83.75
typed wacky stanford core basic 2 50k z-score none cosine rank 83.75

Table B.2.27: TOEFL, unreduced, best models - Filtered vs. Typed

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind acc

filtered ukwac malt ext basic 2 5k t-score log 500 100 cosine rank 93.75
filtered ukwac stanford ext basic 3 5k t-score log 500 900 cosine rank 93.75
filtered wacky stanford ext basic 2 10k simple-ll log 500 900 cosine rank 93.75

typed ukwac stanford ext basic 4 50k MI none 100 700 cosine dist 91.25
typed ukwac stanford ext basic 4 50k MI none 100 900 cosine dist 91.25
typed ukwac stanford ext basic 1 100k MI root 100 900 cosine dist 91.25

Table B.2.28: TOEFL, reduced. Filtered (3 runs tied for best result) vs. Typed (3 runs
tied for best result)

Ratings

corpus parser d.group d.style p.len c.dim score transf metric rel.ind r

filtered wacky malt ext ccproc 1 50k MI none cosine rank 0.88

typed wacky malt core ccproc 1 100k z-score none man rank 0.80

Table B.2.29: RG65, unreduced, best models - Filtered vs. Typed

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind r

filtered ukwac malt core basic 4 50k MI none 50 500 cosine rank 0.88

typed wacky malt core basic 1 100k z-score log 100 900 cosine rank 0.87

Table B.2.30: RG65, reduced, best models - Filtered vs. Typed

corpus parser d.group d.style p.len c.dim score transf metric rel.ind r

filtered ukwac stanford ext ccproc 4 50k z-score none cosine rank 0.71

typed ukwac stanford ext basic 1 100k z-score root cosine rank 0.59

Table B.2.31: WS353, unreduced, best models - Filtered vs. Typed

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind r

filtered ukwac stanford core ccproc 3 100k z-score root 50 900 cosine rank 0.72

typed ukwac stanford ext basic 1 100k MI none 50 900 cosine rank 0.66

Table B.2.32: WS353, reduced, best models - Filtered vs. Typed
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Clustering

corpus parser d.group d.style p.len c.dim score transf metric rel.ind purity

filtered ukwac malt ext basic 1 100k z-score log cosine rank 0.75

typed wacky stanford ext ccproc 1 100k z-score none man rank 0.75
typed wacky malt ext ccproc 1 100k z-score root cosine rank 0.75
typed wacky stanford ext ccproc 1 100k z-score none man rank 0.75

Table B.2.33: AP, unreduced, best models - Filtered vs. Typed (3 runs tied for best
result)

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind purity

filtered wacky malt core ccproc 1 20k t-score none 0 900 man rank 0.75

typed ukwac stanford ext basic 1 100k z-score root 0 300 cosine rank 0.78

Table B.2.34: AP, reduced, best models - Filtered vs. Typed

corpus parser d.group d.style p.len c.dim score transf metric rel.ind purity

filtered bnc malt ext basic 2 100k z-score none man rank 0.98
filtered ukwac malt core basic 2 100k simple-ll log cosine rank 0.98
filtered wacky stanford ext basic 2 50k z-score none man dist 0.98

typed ukwac stanford core ccproc 1 100k Dice root cosine rank 0.95

Table B.2.35: BATTIG, unreduced, best models - Filtered (46 runs tied for best result,
3 hand-picked examples shown) vs.Typed

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind purity

filtered bnc malt core basic 4 50k z-score root 0 500 cosine rank 0.99
filtered ukwac malt core ccproc 4 100k z-score none 100 500 man rank 0.99
filtered ukwac malt ext basic 1 100k freq log 50 300 cosine dist 0.99

typed ukwac stanford core ccproc 1 100k z-score root 50 100 cosine rank 1.00

Table B.2.36: BATTIG, reduced, best models - Filtered (520 runs tied for best result,
3 hand-picked examples shown) vs. Typed



Appendix B. Best Models 196

corpus parser d.group d.style p.len c.dim score transf metric rel.ind purity

filtered bnc stanford ext basic 1 50k MI none cosine rank 0.91
filtered wacky stanford ext basic 1 100k simple-ll log man rank 0.91
filtered ukwac stanford ext basic 1 50k z-score log man rank 0.91
filtered wacky stanford ext ccproc 1 100k z-score none man dist 0.91

typed bnc malt ext basic 1 20k t-score sigmoid cosine rank 0.89
typed bnc malt ext basic 1 50k MI root cosine rank 0.89

Table B.2.37: ESSLLI, unreduced, best models - Filtered (4 runs tied for best result)
vs. Typed (2 runs tied for best result)

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind purity

filtered ukwac stanford core basic 1 100k simple-ll log 50 700 cosine dist 0.98
filtered ukwac stanford core basic 1 50k tf.idf root 50 500 cosine dist 0.98
filtered wacky malt ext basic 3 100k z-score none 0 700 man rank 0.98

typed ukwac stanford ext basic 1 100k simple-ll log 50 100 cosine rank 0.98

Table B.2.38: ESSLLI, reduced, best models - Filtered (29 runs tied for best result 3
hand-picked examples shown) vs. Typed

corpus parser d.group d.style p.len c.dim score transf metric rel.ind purity

filtered bnc ext malt basic 1 100k simple-ll log cosine rank 0.93
filtered ukwac ext malt basic 3 10k simple-ll root cosine rank 0.93
filtered bnc ext stanford basic 2 50k simple-ll root cosine rank 0.93

typed bnc ext stanford basic 1 100k z-score none man dist 0.90
typed bnc ext stanford basic 1 50k z-score none man dist 0.90
typed bnc ext stanford basic 2 100k z-score none cosine rank 0.90

Table B.2.39: MITCHELL, unreduced, best models - Filtered (33 runs tied for best
result, 3 hand-picked examples shown) vs. Typed (3 runs tied for best result).

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind purity

filtered bnc stanford ext basic 2 20k z-score root 0 700 cosine rank 0.97

typed bnc malt ext ccproc 1 100k Dice root 50 100 cosine rank 0.95
typed bnc stanford ext basic 1 100k z-score root 50 300 cosine rank 0.95

Table B.2.40: MITCHELL, reduced, best models - Filtered vs. Typed (2 runs tied for
best result)
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Semantic Priming

corpus parser d.group d.style p.len c.dim score transf metric rel.ind acc

filtered wacky stanford ext ccproc 1 100k z-score log cosine rank 97.94
filtered wacky stanford ext ccproc 1 50k simple-ll log cosine rank 97.94
filtered wacky stanford ext ccproc 1 50k z-score root cosine rank 97.94
filtered wacky stanford ext ccproc 1 5k z-score none man rank 97.94

typed wacky stanford ext ccproc 1 100k z-score none cosine rank 96.56
typed wacky stanford ext basic 2 100k z-score none cosine rank 96.56

Table B.2.41: SYN, unreduced, best models - Filtered (4 runs tied for best result) vs.
Typed (2 runs tied for best result)

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind acc

filtered ukwac stanford ext ccproc 1 50k z-score log 100 900 cosine rank 99.31

typed ukwac stanford ext basic 1 100k tf.idf log 50 900 cosine rank 97.25

Table B.2.42: SYN, reduced, best models - Filtered vs. Typed

corpus parser d.group d.style p.len c.dim score transf metric rel.ind acc

filtered bnc malt core basic 4 10k frequency none man rank 100.00
filtered ukwac stanford ext basic 3 100k z-score none cosine rank 100.00
filtered wacky stanford core basic 3 20k t-score none cosine rank 100.00

typed bnc malt core ccproc 1 50k MI none cosine rank 100.00
typed ukwac malt ext ccproc 1 10k Dice none cosine rank 100.00
typed wacky malt core basic 4 50k simple-ll log man rank 100.00

Table B.2.43: ANT, unreduced, best models - Filtered (5387 runs tied for best result, 3
hand-picked examples shown) vs. Typed (1469 runs tied for best result, 3 hand-picked
examples shown).

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind acc

filtered bnc malt core ccproc 4 50k MI none 0 700 cosine rank 100.00
filtered wacky stanford ext ccproc 2 100k MI log 0 900 cosine rank 100.00
filtered ukwac stanford ext ccproc 1 5k MI root 0 300 cosine dist 100.00

typed ukwac malt core basic 4 20k tf.idf log 100 700 cosine dist 100.00
typed wacky stanford ext ccproc 3 5k simple-ll sigmoid 50 500 man rank 100.00
typed wacky stanford ext ccproc 1 5k t-score cosine 50 900 cosine rank 100.00

Table B.2.44: ANT, reduced, best models - Filtered (23209 runs tied for best result, 3
hand-picked examples shown) vs. Typed: (805 runs tied for best result, 3 hand-picked
examples shown).
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corpus parser d.group d.style p.len c.dim score transf metric rel.ind acc

filtered wacky stanford ext ccproc 1 50k simple-ll root cosine rank 100.00
filtered ukwac stanford ext basic 1 50k Dice none cosine rank 100.00
filtered bnc stanford core basic 1 100k simple-ll log cosine rank 100.00

typed wacky stanford ext ccproc 1 10k simple-ll none man dist 100.00
typed wacky stanford ext ccproc 2 50k z-score none cosine rank 100.00
typed ukwac stanford core ccproc 1 100k MI sigmoid cosine rank 100.00

Table B.2.45: COH, unreduced, best models - Filtered (1139 runs tied for best result,
3 hand-picked examples shown) vs. Typed (721 runs tied for best result, 3 hand-picked
examples shown).

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind acc

filtered ukwac stanford ext basic 2 100k MI log 50 500 cosine rank 100.00
filtered wacky stanford ext ccproc 2 5k z-score log 50 900 cosine rank 100.00
filtered ukwac malt core basic 1 10k MI none 50 700 man rank 100.00

typed bnc stanford core ccproc 1 10k MI root 0 900 cosine rank 100.00
typed wacky stanford ext ccproc 3 50k z-score root 0 700 cosine rank 100.00
typed ukwac stanford ext ccproc 1 100k t-score sigmoid 0 700 cosine rank 100.00

Table B.2.46: COH, reduced, best models - Filtered (8237 runs tied for best result, 3
hand-picked examples shown) vs. Typed (2617 runs tied for best result, 3 hand-picked
examples shown).

corpus parser d.group d.style p.len c.dim score transf metric rel.ind acc

filtered ukwac stanford core basic 2 100k Dice none cosine rank 97.22
filtered ukwac stanford core basic 2 50k z-score none cosine rank 97.22
filtered wacky malt ext basic 4 50k z-score none cosine rank 97.22

typed wacky stanford core basic 1 50k MI none cosine rank 88.19
typed wacky stanford ext basic 1 100k MI none cosine rank 88.19
typed wacky stanford ext basic 1 50k z-score none man rank 88.19

Table B.2.47: FPA, unreduced, best models - Filtered (9 runs tied for best result, 3 hand-
picked examples shown). Typed (5 runs tied for best result, 3 hand-picked examples
shown)

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind acc

filtered wacky malt ext ccproc 3 20k z-score none 0 900 cosine dist 97.22
filtered ukwac stanford core ccproc 4 10k tf.idf none 50 50 man rank 97.22
filtered wacky stanford ext basic 3 10k z-score none 0 900 cosine rank 97.22

typed ukwac stanford ext basic 1 100k z-score root 50 900 cosine rank 90.28

Table B.2.48: FPA, reduced, best models - Filtered (15 runs tied for best result, 3
hand-picked examples shown) vs. Typed.
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corpus parser d.group d.style p.len c.dim score transf metric rel.ind acc

filtered ukwac malt core basic 3 100k z-score root cosine rank 97.75
filtered ukwac malt ext basic 2 100k Dice log cosine rank 97.75
filtered ukwac malt ext ccproc 4 20k z-score none cosine rank 97.75

typed ukwac malt ext basic 1 100k z-score root cosine rank 92.13

Table B.2.49: BPA, unreduced, best models - Filtered (43 runs tied for best result, 3
hand-picked examples shown) vs. Typed

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind acc

filtered bnc malt ext ccproc 3 100k MI none 50 700 cosine rank 98.88
filtered ukwac malt core basic 4 100k simple-ll log 50 700 cosine rank 98.88
filtered ukwac malt core ccproc 3 100k Dice root 50 500 cosine rank 98.88

typed ukwac stanford core basic 2 100k Dice root 100 900 cosine rank 95.51
typed ukwac stanford core basic 2 100k Dice root 100 900 cosine rank 95.51

Table B.2.50: BPA, reduced, best models - Filtered (365 runs tied for best result) vs.
Typed (2 models tied for best result)

corpus parser d.group d.style p.len c.dim score transf metric rel.ind acc

filtered ukwac stanford ext basic 4 50k z-score none cosine rank 95.54

typed ukwac stanford ext basic 1 100k z-score none cosine rank 87.13

Table B.2.51: GEK, unreduced, best models - Filtered vs. Typed

corpus parser d.group d.style p.len c.dim score transf d.skip n.dim metric rel.ind acc

filtered ukwac malt ext basic 4 10k MI none 50 700 man rank 95.79
filtered ukwac malt ext basic 4 50k Dice root 50 900 cosine dist 95.79
filtered ukwac malt ext basic 4 50k Dice root 50 900 cosine rank 95.79
filtered ukwac stanford ext ccproc 3 50k Dice root 50 900 cosine dist 95.79

typed ukwac malt core basic 2 100k tf.idf log 50 300 cosine dist 89.60
typed ukwac malt ext basic 2 100k frequency log 50 900 cosine dist 89.60

Table B.2.52: GEK, reduced, best models - Filtered (4 runs tied for best result). Typed
(2 runs tied for best result).
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Figure C.1.3: Dep.filtered, unreduced
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Figure C.2.8: Win.based, reduced
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Figure C.2.9: Dep.filtered, unreduced
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Figure C.2.10: Dep.filtered, reduced
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Figure C.2.11: Dep.typed, unreduced
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Figure C.2.12: Dep.typed, reduced
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Figure C.3.13: Win.based, unreduced

0

10000

20000

30000

0.00 0.25 0.50 0.75 1.00
r

nu
m

be
r 

of
 m

od
el

s

Min: 0; Max: 0.89; Mean: 0.63; Stdev :0.149

Figure C.3.14: Win.based, reduced
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Figure C.3.15: Dep.filtered, unreduced
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Figure C.3.16: Dep.filtered, reduced
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Figure C.3.18: Dep.typed, reduced
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Figure C.4.19: Win.based, unreduced
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Figure C.4.20: Win.based, reduced
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Figure C.4.21: Dep.filtered, unreduced
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Figure C.4.22: Dep.filtered, reduced
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Figure C.4.23: Dep.typed, unreduced
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Figure C.4.24: Dep.typed, reduced
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Figure C.5.25: Win.based, unreduced
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Figure C.5.26: Win.based, reduced
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Figure C.5.27: Dep.filtered, unreduced
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Figure C.5.28: Dep.filtered, reduced
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Figure C.5.29: Dep.typed, unreduced
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Figure C.6.31: Win.based, unreduced
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Figure C.6.32: Win.based, reduced
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Figure C.6.33: Dep.filtered, unreduced
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Figure C.6.34: Dep.filtered, reduced
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Figure C.6.35: Dep.typed, unreduced
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C.7 MITCHELL
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Figure C.7.37: Win.based, unreduced
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Figure C.7.38: Win.based, reduced
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Figure C.7.39: Dep.filtered, unreduced
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Figure C.7.40: Dep.filtered, reduced
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Figure C.7.41: Dep.typed, unreduced
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Figure C.7.42: Dep.typed, reduced
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C.8 SYN
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Figure C.8.43: Win.based, unreduced
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Figure C.8.44: Win.based, reduced
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Figure C.8.45: Dep.filtered, unreduced
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Figure C.8.46: Dep.filtered, reduced
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Figure C.8.47: Dep.typed, unreduced
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Figure C.8.48: Dep.typed, reduced
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C.9 ANT
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Figure C.9.49: Win.based, unreduced
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Figure C.9.50: Win.based, reduced
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Figure C.9.51: Dep.filtered, unreduced
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Figure C.9.52: Dep.filtered, reduced
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Figure C.9.53: Dep.typed, unreduced
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Figure C.9.54: Dep.typed, reduced
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C.10 COH
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Figure C.10.55: Win.based, unreduced
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Figure C.10.56: Win.based, reduced
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Figure C.10.57: Dep.filtered, unre-
duced
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Figure C.10.58: Dep.filtered, reduced
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Figure C.10.59: Dep.typed, unreduced
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Figure C.10.60: Dep.typed, reduced
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C.11 FPA
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Figure C.11.61: Win.based, unreduced
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Figure C.11.62: Win.based, reduced

0

2500

5000

7500

10000

0 25 50 75 100
accuracy

nu
m

be
r 

of
 m

od
el

s

Min: 52.08; Max: 97.22; Mean: 81.77; Stdev :9.112

Figure C.11.63: Dep.filtered, unre-
duced
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Figure C.11.64: Dep.filtered, reduced
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Figure C.11.65: Dep.typed, unreduced
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Figure C.11.66: Dep.typed, reduced
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C.12 BPA
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Figure C.12.67: Win.based, unreduced

0

30000

60000

90000

20 40 60 80 100
accuracy

nu
m

be
r 

of
 m

od
el

s

Min: 41.57; Max: 98.88; Mean: 83.92; Stdev :7.833

Figure C.12.68: Win.based, reduced
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Figure C.12.69: Dep.filtered, unre-
duced
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Figure C.12.70: Dep.filtered, reduced
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Figure C.12.71: Dep.typed, unreduced
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Figure C.12.72: Dep.typed, reduced
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C.13 GEK
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Figure C.13.73: Win.based, unreduced
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Figure C.13.74: Win.based, reduced
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Figure C.13.75: Dep.filtered, unre-
duced
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Figure C.13.76: Dep.filtered, reduced

0

2000

4000

6000

8000

0 25 50 75 100
accuracy

nu
m

be
r 

of
 m

od
el

s

Min: 50; Max: 87.13; Mean: 65.52; Stdev :5.809

Figure C.13.77: Dep.typed, unreduced
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Figure C.13.78: Dep.typed, reduced
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D

NaDiR: implementation details

NaDiR is designed for the multiword association task, and it contains additional features
related to the particular design of the CogALex shared task (Lapesa & Evert, 2014b).
NaDiR operates on lemmatized data in order to reduce sparseness. We first lemmatize
the stimuli using a heuristic method, described below; then, we use the POS-annotation
of the training set to train a classifier which indicates the POS of the predicted response;
next, we use the predicted POS to restrict the set of response stimuli; finally, we resort
to machine-learning to re-inflect the lemma thus generating a plausible word form.

Step 1: Out of context lemmatization To assign a part-of-speech tag and a lemma
to every word in the dataset without relying on external tools, we adopted the following
mapping strategy based on the linguistic annotation already available in UKWaC:

1. We extracted all attested wordform/part of speech/lemma combinations from
UKWaC, together with their frequency;

2. Every word form in the training set was assigned to the most frequent part of
speech/lemma combination attested in UKWaC.

Step 2: Prediction of the part-of-speech of the response The part-of-speech
information added to every word in the dataset by the mapping procedure was used
to train a classifier that, given the parts of speech of the stimuli, predicts the part of
speech of the response. We trained a support-vector machine, using the svm function
from the R package e10711, with standard settings. The part-of-speech classifier is
based on a coarse part-of-speech tagset with only five tags: N (noun), J (adjective), V
(verb), R (adverb), other (closed-class words). We considered each row of the dataset
as an observation, with the part of speech of the response as predicted value, and the
part of speech of the stimulus words as predictors. Every observation is represented as
a bag of tags, i.e., a vector listing for each of the five tags how often it occurs among the
stimuli. For example, if a set of stimuli contains 3 nouns, one verb and one adjective,
the corresponding bag-of-tags vector looks as follows: {N = 3; V = 1; J = 1; R = 0;
other = 0}. On the training set, the part-of-speech classifier achieves an accuracy of
72%.

1http://cran.r-project.org/web/packages/e1071/index.html
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Step 3: Re-inflection of the predicted lemma We generate a suitable word form
by inverting the heuristic lemmatization; if the full Penn tag (e.g., NNS: noun, common,
plural; NN: noun, common, singular or mass, etc.) of the response is known, this step
can be implemented as a deterministic lookup (since a word form is usually determined
uniquely by lemma and Penn tag). We therefore trained a second SVM classifier that
predicts the full Penn tag of the response based on the full tags of the stimuli. On the
training set, this part-of-speech classifier reaches an accuracy of 68%.

Evaluation Table D.0.1 compares the performance of the best first-order and the best
second-order model on the training and test datasets, both for lemmatized response
(Training-Lemma, Test-Lemma) and generation of the correct word form (Training-
Inflected, Test-Inflected).

Model Training-Lemma Training-Inflected Test-Lemma Test-Inflected

first-order 27.7% (555) 26.9% (538) 28.6% (572) 27.7% (554)
second-order 13.2% (264) 12.0% (241) 15.0% (304) 14.0% (279)

Table D.0.1: Performance (% accuracy and number of correct responses) of the best
first-order and second-order model on training vs. test dataset (lemmatized response
vs. response with restored inflection)
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Frege, G. (1892). Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophis-
che Kritik , 100 , 25–50.

Geffet, M., & Dagan, I. (2005). The Distributional Inclusion Hypotheses and Lexi-
cal Entailment. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05) (pp. 107–114). Ann Arbor, Michigan, USA.

Ghosh, U., Jain, S., & Paul, S. (2014). A Two-Stage Approach for Computing Associa-
tive Responses to a Set of Stimulus Words. In Proceedings of the 4th Workshop on
Cognitive Aspects of the Lexicon (CogALex) (pp. 15–21). Dublin, Ireland.

Glenberg, A. M., & Robertson, D. A. (2000). Symbol Grounding and Meaning: A
Comparison of High-Dimensional and Embodied Theories of Meaning. Journal of
Memory and Language, 3 (43), 379–401.



References 221

Goldberg, Y., & Orwant, J. (2013). A Dataset of Syntactic-Ngrams Over Time From a
Very Large Corpus of English Books. In Proceedings of the Second Joint Conference
on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual Similarity (pp. 241–247). Atlanta,
Georgia, USA.

Grefenstette, E., & Sadrzadeh, M. (2011). Experimental Support for a Categorical Com-
positional Distributional Model of Meaning. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing (pp. 1394–1404). Edinburgh,
UK.

Grefenstette, G. (1994). Explorations in Automatic Thesaurus Discovery.
Boston/London/Dordrecht: Kluwer Academic Publishers.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in Semantic Repre-
sentation. Psychological Review , 114 (2), 211–244.

Halawi, G., Dror, G., Gabrilovich, E., & Koren, Y. (2012). Large-Scale Learning
of Word Relatedness With Constraints. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp. 1406–1414).
Beijing, China.

Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding Structure With Random-
ness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions.
SIAM Review , 53 (2), 217–288.

Hare, M., Jones, M., Thomson, C., Kelly, S., & McRae, K. (2009). Activating Event
Knowledge. Cognition, 111 (2), 151–167.

Harrell, F. E. J. (2015). Regression Modeling Strategies: With Applications to Linear
Models, Logistic and Ordinal Regression, and Survival Analysis. Springer Series in
Statistics.

Harris, Z. (1954). Distributional Structure. Word , 10 (2–3), 146–162.

Hassan, S., & Mihalcea, R. (2011). Semantic Relatedness Using Salient Semantic Anal-
ysis. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence
(pp. 884–889). San Francisco, California, USA.

Herbelot, A. (2015). Mr Darcy and Mr Toad, Gentlemen: Distributional Names and
Their Kinds. In Proceedings of the 11th International Conference on Computational
Semantics (pp. 151–161). London, UK.

Herbelot, A., & Vecchi, E. M. (2015). Building a Shared World: Mapping From Distri-
butional to Model-Theoretic Semantic Spaces. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (pp. 22–32). Lisbon, Portugal.
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Zeller, B., Padó, S., & Šnajder, J. (2014). Towards Semantic Validation of a Derivational
Lexicon. In Proceedings of COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers (pp. 1728–1739). Dublin, Ireland.

Zhang, Y., & Clark, S. (2008). A Tale of Two Parsers: Investigating and Combining
Graph-Based and Transition-Based Dependency Parsing. In Proceedings of the 2008
Conference on Empirical Methods in Natural Language Processing (pp. 562–571).
Honolulu, Hawaii, USA.


	Abstract
	Acknowledgments
	Introduction
	Introducing Distributional Semantic Models
	Evaluation of DSMs
	Experimental setting
	Interpreting DSM performance
	Evaluation of window-based DSMs: Word similarity tasks
	Syntax-based DSMs: Are they worth the effort?
	Modeling syntagmatic and paradigmatic relations
	Conclusion
	Clustering implementation: pam vs. CLUTO
	Best Models
	Distribution of Performance
	NaDiR: implementation details

