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1. Introduction

The study of random simplicial complexes and even more generally, simplicial com-

plexes, continues to be an interesting and active area of research because of its impor-

tant applications. The study of random 1-simplicial complexes (random graphs) was

first introduced by Erdös, Rényi and Gilbert [ER59] [Gil61], and since then, it has been

an intensively studied object of discrete mathematics and stochastic. The Erdös-Rényi

graph consists of a fixed vertex set with a fixed number of equally likely edges. It is a

purely combinatorial object. But with the Gilbert graph being geometric in nature, it

has found more applications in the real world, for example, in the study of communica-

tion networks. This is because the relative position of points in space plays an important

role in its construction. This type of random graph model is based on point processes

and has been generalised in various ways, for example in [Pen03], where an extensive

study on it can be found.

The idea in this thesis is to investigate a random structure, precisely a random simplicial

complex, which is constructed on a stationary Poisson point process. A Poisson point

process, η, is such that for any Borel set A, in the space in consideration (a subset of

Rd), the number of points in A, η(A), is a random variable with a Poisson distribution.

That is, P(η(A) = 0) = exp(−µ(A)), where µ is known as the intensity measure of the

process. The Poisson point process ηt is said to be stationary, if the intensity measure

is given by µ = tλ, where t is the intensity and λ is the usual Lebesque measure in Rd.

The Poisson point process plays quite a significant role in probability theory and its

applications, and in several problems in stochastic geometry.

A simple example of such random simplicial complex is the Gilbert graph [Gil61] on the

Poisson point process, in which the vertices are points in the process and two points

are connected by an edge if and only if they are close together enough according to a

prescribed distance parameter.

We will consider random variables depending on the Poisson point process described

above, generally known as Poisson functionals. One such functional on the Gilbert

graph is the length-power functional described in [RST17], which is related to the edge

lengths of the graph.
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Introduction 2

In this thesis, we took it a step further, by considering more general simplicial complexes

in which a k-simplex exists when its k+1 vertices are ‘well connected’. Examples of such

simplices are the Vietoris-Rips complex R(ηt, δt) and Čech complex C(ηt, δt), where δt

is the prescribed distance parameter. We then considered the volume-power functional

which is the sum of the α-power of the volume of these simplices. We also examined the

asymptotic expectation and asymptotic covariance of these types of Poisson functionals

and established both univariate and multivariate central limit theorems. We will see

that the univariate limit theorem exists only if the expectation tends to infinity.

We did observe these asymptotics in the following different regimes as introduced by

Penrose [Pen03].

• The sparse or subcritical regime, where lim
t→∞

tδdt = 0.

• The thermodynamic or critical regime, where lim
t→∞

tδdt = c ∈ (0,∞).

• The dense or supercritical regime, where lim
t→∞

tδdt =∞.

In the special case where α = 0, we have the Poisson functional only counting the

number of simplices. This gives the components of the f -vector. We went on to get a

Poisson limit theorem while restricting the expectation to tend to a constant. In this

case, we discovered there is no Poisson multivariate limit theorem as the expectation of

k-simplices tending to a constant implies that for i > k and j < k, the expectations of

the i- and j-simplices tend to 0 and ∞ respectively.

This thesis is based on the following paper and therefore coincides with it to a very large

extent.

[AR20] G. Akinwande and M. Reitzner, Multivariate central limit theorems for random

simplicial complexes. Advances in Applied Mathematics, 121(102076), 2020.

1.1. Outline

We organise the work as follows:

In Chapter 2, we provide the relevant materials useful in this thesis. First, we give

some basic notations in Section 2.1, and then recall facts from stochastic geometry in

Section 2.2. Section 2.3 provides an overview on random simplicial complexes, and the

cardinality of some special class of partitions is discussed in Section 2.4.

Chapters 3 to 6 explore the first and second moments, central limit theorem and Poisson

limit theorem respectively, of the so-called volume-power functionals in consideration.

In Chapter 3, we discuss the expectation for functionals based on random graphs and
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then more generally for functionals based on random simplicial complexes in different

regimes. We are able to see that the asymptotic expectation does not necessarily have

to behave according to its current regime.

In Chapter 4, we investigate the covariance structure of the volume-power functional.

We are able to analyse the rank of the covariance matrix for the normalised version of

the volume-power functional in the different regimes. We see that the covariance matrix

is of full rank in the sparse regime, and in the thermodynamic regime except for finitely

many values, and it is singular in the dense regime.

We discuss the central limit theorem in Chapter 5, first the univariate case and then the

multivariate case. Special fourth moment integrals involving partitions are used. We are

able to see that the central limit theorem holds in any case once the expectation goes

to infinity. Finally, we see in Chapter 6, the Poisson limit theorem for the components

of the f -vector. This is most applicable in the sparse regime.



2. Preliminaries

In this chapter, notions needed throughout this thesis are introduced. First, we give

some basic notations in the first section, and then recall facts from stochastic geometry

in the second section. The third section will provide an overview on random simplicial

complexes, and the cardinality of some partition will be discussed in Section 2.4.

2.1. Basic notations

We take N to be the set of natural numbers, 0 /∈ N, and N0 = N∪{0}. Z, Z+ and R are

the set of integers, strictly positive integers and real numbers respectively. For d ≥ 1,

Rd is the d-dimensional Euclidean space equipped with scalar product 〈·, ·〉, Euclidean

norm ‖ · ‖ and Lebesgue measure λ = λd. For r > 0,

Bd(x, r) = {y ∈ Rd : ‖x− y‖ ≤ r}

is a d-dimensional (closed) ball with center x ∈ Rd and radius r. We denote by

κj =
π
j
2

Γ
(
j
2 + 1

)
the volume of the j-dimensional unit ball Bj = Bj(0, 1). In the following we fix a convex

compact set W ⊂ Rd of unit volume.

Let µ be a σ-finite measure on a measurable space (W,W). For n ∈ N, we denote by µn

the product measure of µ on Wn defined as usual. We write the integral of a measurable

function f : Wn → R with respect to µn as∫
Wn

fdµn =

∫
Wn

f(x1, . . . , xn) dµ(x1, . . . , xn).

If µ = λ, we use the standard notation
∫
Wn f(x1, . . . , xn) dx1, . . . ,dxn.

4
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We denote by Lp(µn), the set of all measurable functions f : Wn → R such that∫
Wn

|f |pdµn <∞.

We also let Lps(µn) be the subspace of all symmetric functions in Lp(µn), that is, those

functions that are invariant under permutations of their arguments.

For random variables X and Y , EX and VX are the expectation and variance of X

respectively, while Cov(X,Y ) is the covariance of X and Y .

Since we will be insterested in the asymptotic behaviour of functions, we will use the

Bachmann-Landau big-O and little-O notations. Let g and h be two non-negative func-

tions, then we have the following.

(i) g(x) = O(h(x)) ⇐⇒ ∃ x0, n > 0 such that for x > x0, g(x) ≤ n · h(x).

This means g is asymptotically bounded above by h, up to a constant factor.

(ii) g(x) = Ω(h(x)) ⇐⇒ ∃ x0, n > 0 such that for x > x0, g(x) ≥ n · h(x).

This means g is asymptotically bounded below by h, up to a constant factor.

(iii) g(x) = Θ(h(n)) ⇐⇒ g(x) = O(h(x)) and g(x) = Ω(h(x)).

This means g is asymptotically bounded above and below by h, up to constant

factors.

(iv) g(x) = o(h(n)) ⇐⇒ ∀ ε > 0, ∃ x0 such that for x > x0, g(x) ≤ ε · h(x).

This means g is asymptotically dominated by h.

(v) g(x) = ω(h(n)) ⇐⇒ ∀ n > 0, ∃ x0 such that for x > x0, g(x) ≤ n · h(x).

This means g asymptotically dominates h.

A partition σ of a set X is a set of non-empty subsets of X such that X is a disjoint

union of those subsets, that is, each element in X is in exactly one of those subsets. The

elements of σ are called the blocks of σ.

For example, for X = {1, 2, 3, 4}, σ1 = {{1, 2}, {3}, {4}} and σ2 = {{1, 2}, {3, 4}} are

both partitions of X with 3 blocks and 2 blocks respectively.

Let P(A) stand for the set of partitions of an arbitrary set A. Then |σ| represents the

number of blocks in a partition, σ ∈ P(A). A partial order is defined on P(A) such that

σ ≤ τ if each block of σ is contained in a block of τ , for σ, τ ∈ P(A). The minimal

partition 0̂ is the partition whose blocks are singletons, and the maximal partition 1̂ is

the partition with a single block. For two partitions σ, τ ∈ P(A), σ ∧ τ is the maximal

partition in P(A) such that σ ∧ τ ≤ σ and σ ∧ τ ≤ τ , and σ ∨ τ is the minimal partition

in P(A) such that σ ≤ σ ∨ τ and τ ≤ σ ∨ τ .
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2.2. Background on stochastic geometry

2.2.1. Poisson point processes

Let N(X) be the set of all σ-finite integer-valued measures on a measurable space (X,X ).

Let N (X) be the σ-algebra generated by N(X) such that the map, gA : N(X)→ R̄, η 7→
η(A) is measurable for A ∈ X . Given the underlying probability space (Ω,F , P ), a

measurable map η : (Ω,F)→ (N(X),N (X)) is called an integer-valued random measure.

An integer-valued σ-finite random measure, η, is called a Poisson point process with

intensity measure µ, if

- η(A) is Poisson distributed with parameter µ(A) for each A ∈ X .

- η(A1), . . . , η(An) are independent for disjoint sets A1, . . . , An ∈ X and n ∈ N.

A stationary Poisson point process is one whose intensity measure is a constant multi-

plied by the Lebesgue measure, λ. In this thesis, we consider a stationary Poisson point

process since the intensity measure is given by µ = tλ, where t > 0 is the intensity of

the Poisson point process, ηt. A random variable depending on a Poisson point process

is called a Poisson functional.

We represent by Lp(Pη) the set of all measurable funcions F : N(X)→ R̄ with E|F |p <
∞, where Pη = P ◦ η is the image measure.

For a Poisson point process, η with intensity measure µ, the expected value of a Poisson

functional, F = F (η), is denoted by EF (η) and it’s behaviour depends on µ. Also, we

can consider η as a set since we can give distinct multiple points a number as a mark.

So for k ∈ N, ηkt, 6= is the set of all k-tuples of distinct points in the Poisson point process.

An important tool that will be needed is the multivariate Mecke formula for Poisson

point processes given as follows.

E
∑

(x1,...,xk)∈ηkt, 6=

f(η, x1, . . . , xk) =

∫
Wk

Ef(η +
k∑
i=1

δxi , x1, . . . , xk) dµ(x1, . . . , xk) ,

where k ≥ 1 is a fixed integer, and f : W k ×N(W ) → R is a non-negative measurable

function, cf. [SW08, Corollary 3.2.3].

Since the Poisson functionals we will be considering in this thesis do not depend on

the Poisson process and we have a stationary Poisson point process, we only need the
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following special case. We note that the expectation inside the integral can be removed

in this case.

E
∑

(x1,...,xk)∈ηkt,6=

f(x1, . . . , xk) = tk
∫
Wk

f(x1, . . . , xk) dx1 . . . dxk , (2.1)

where f ∈ L1(µk).

2.2.2. Malliavin operators

We will need the multiple Wiener-Itô integrals which play a role in the sequel. The def-

inition was first given for integrable functions and can be extended to square integrable

functions via limit on simple functions. We refer to [LP11, Chapter 3] for more on this.

Definition 2.1. Let n ∈ N and f ∈ L1
s(µ

n). The n-th multiple Wiener-Itô integral,

In(f), of f is given by

In(f) =
n∑
i=0

(−1)n−i
(
n

i

) ∑
(x1,...,xi)∈ηi6=

∫
Xn−i

f(x1, . . . , xi, y1, . . . , yn−i)dµ(y1, . . . , yn−i).

The following isometry relation holds for multiple Wiener-Itô integrals with square in-

tegrable integrands.

Lemma 2.2. Let f ∈ L2
s(µ

n) and g ∈ L2
s(µ

m), m,n ≥ 1, then

(i) EIn(f) = 0

(ii) EIn(f)Im(g) = 1{n=m}n!〈f, g〉.

For a Poisson functional F and z ∈W , the difference operator or add-one-cost operator,

DzF , is given by

DzF = F (η + δz)− F (η),

where δz represents the Dirac measure concentrated at the point z ∈ W . Higher order

differential operators are defined recursively.

Dn
z1,...,znF = Dz1D

n−1
z2,...,znF.

It is well known that every square integrable Poisson functional can be written as a sum

of multiple Wiener-Itô integrals, that is, they admit a chaos expansion. We have the

following from [LP11].
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Theorem 2.3. Let F ∈ L2(Pη) be a Poisson functional. Then fi ∈ L2
s(µ

n) for i ∈ N
and

F = EF +
∞∑
i=1

Ii(fi). (2.2)

Here, the fi’s are called the kernels of the chaos expansion and are defined by

fi(x1, . . . , xi) =

∫
Xn−i

f(x1, . . . , xi, y1, . . . , yn−i)dµ(y1, . . . , yn−i), (2.3)

and also given by

fi(x1, . . . , xi) =
1

i!
EDn

x1,...,xnF.

Furthermore,

VF =
∞∑
i=1

i!‖fi‖2. (2.4)

Since our proof for Poisson limit theorem is based on results on the Poisson approxi-

mation of Poisson functionals from [LP11] which make use of operators from Malliavian

calculus, we give a short overview of two of the operators.

Definition 2.4. Let dom D be the set of all Poisson functionals, F ∈ L2(Pη) such that

∞∑
i=1

ii!‖fi‖2 <∞.

Then for F ∈ dom D,

DzF =

∞∑
i=1

iIi−1(fi(z, .)).

We note the above definition coincides with the previously stated defintion for F ∈ dom

D.

Definition 2.5. Let dom L be the set of all Poisson functionals, F ∈ L2(P) such that

∞∑
i=1

i2i!‖fi‖2 <∞.

Then for F ∈ dom L, the Ornstein-Uhlenbeck generator, LF , is given by

LF = −
∞∑
i=1

iIi(fi).

It has a (pseudo) inverse operator given by

L−1F = −
∞∑
i=1

1

i
Ii(fi),
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which is defined for all F ∈ L2(Pη), although the identity LL−1 only holds if EF = 0.

In probability theory, it has always been of interest to decide if a family of random

variables converge in distribution to a random variable with a known target distribution.

Although the Stein’s method was first developed in [Ste72] for the approximation of sums

of dependent random variables by the Gaussian distribution, it has been applied to other

target distributions like the Poisson, Gamma and Binomial distributions. In this thesis,

the target distribution will usually be the Gaussian or the Poisson distributions.

A class H of real-valued functions h : Rd → R is called separating if the following holds:

If F and G are two random elements such that E|h(F )| < ∞ and E|h(G)| < ∞ for

all h ∈ H, then Eh(F ) = Eh(F ) for all h ∈ H implies that F and G has the same

distribution. Such h ∈ H are known as test functions.

Definition 2.6. Let H be a class of separating real-valued functions on Rd, then the

distance between the laws of two random elements F and G, such that E|h(F )| < ∞
and E|h(G)| <∞ for all h ∈ H, is given by

dH(F,G) = sup
h∈H
{|E[h(F )]− E[h(G)]|}. (2.5)

We note that dH(·, ·) satisfies the usual axioms of a metric on probability distributions.

The choice of the class of test functions present various distances in probability. We

present the ones needed in this thesis.

Given two random variables X and Y , if we take H to be the set of indicator functions

of intervals (−∞, t], t ∈ R, we get the Kolmogorov distance given by

dK(X,Y ) = sup
t∈R
{|P(X ≤ t)− P(Y ≤ t)|}.

Alternatively, for two random variables X and Y , let Lip(1) be the set of all functions

h : R→ R with a Lipschitz constant less than or equal to one. Taking H = Lip(1), we

obtain the Wasserstein distance

dW (X,Y ) = sup
h∈Lip(1)

{|E[h(X)]− E[h(Y )]|}.

The Wasserstein distance given above is defined for random variables which will be useful

for the univariate central limit theorem, it is also defined for the m-dimensional random

vectors by considering the functions h : Rm → R with a Lipschitz constant less than

or equal to one. But this distance will be too strong for the multivariate case, so we

consider another class of test functions instead.

Let X and Y be two m-dimensional random vectors such that E[‖X‖]2,E[‖Y ‖]2 < ∞,

and let Hm be the set of all thrice continuously differentiable functions g : Rm → R
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such that the second and third partial derivatives are bounded by one, that is,

max
1≤i1≤i2≤m

sup
x∈Rm

∣∣∣∣ ∂2g

∂xi1∂xi2
(x)

∣∣∣∣ ≤ 1 and max
1≤i1≤i2≤i3≤m

sup
x∈Rm

∣∣∣∣ ∂3g

∂xi1∂xi2∂xi3
(x)

∣∣∣∣ ≤ 1,

then the d3-distance is given by

d3(X,Y ) = sup
h∈Hm

{|E[h(X)]− E[h(Y )]|}.

Let X,Y be two N-valued random variables. The total variation distance between the

laws of X and Y , written as dTV , is given by

dTV := sup
B⊆N

|P(X ∈ B)− P(Y ∈ B)|.

We note that that the topologies induced by these distances as with other distances

in the literature (see [Pe16, Chapter 6]) are strictly stronger than the one induced by

convergence in distribution, so that convergence in these distances implies convergence

in distribution.

2.3. Random structures

2.3.1. The Gilbert graph

Let ηt represent a Poisson process with intensity t. We choose some parameter δt > 0

which may depend on t. The Gilbert graph, G(ηt, δt), is defined as the random graph

with vertex set ηt, and an edge, e = (x, y), exist between two points {x, y} ⊂ ηt if

‖x − y‖ ≤ δt. Gilbert [Gil61] has studied the planar case of these graphs as applicable

to communication networks and disease control. One can examine the behaviour of

these graphs by counting the number of edges or subgraphs or components [Pen03] or

the length of the edges as we see in [RST17]. Here the length-power functional was

considered. It is given as follows. Let E(G(ηt, δt)) be the edge set of the Gilbert graph.

V(α) :=
1

2

∑
e=(x,y)∈E(G(ηt,δt))

‖x− y‖α

=
1

2

∑
(x,y)∈η2

t,6=

1(‖x− y‖ ≤ δt)‖x− y‖α. (2.6)



Preliminaries 11

η2
t,6= represents the set of all pairs of distinct points of ηt and α ∈ R. For α = 0, the

functional counts the number of edges and for α = 1, it counts the total edge length of

the graph.

Next we observe that the degree deg(x) of a typical vertex x in the graph is given by

κdtδ
d
t . We have by using the concept of Palm distributions and the Mecke formula 2.1

that

Edeg(x) =
1

t
E
∑
x∈ηt

1(x ∈W )

=
1

t
E
∑
x∈ηt

ηt(B(x, δt)− 1)

=

∫
W
ηt(B(x, δt)) dx

= tδdt κd.

The quantity, tδdt , is essential to studying the behaviour of functionals and it naturally

leads to three different asymptotic regimes as introduced by Penrose [Pen03].

• The sparse or subcritical regime, where lim
t→∞

tδdt = 0.

• The thermodynamic or critical regime, where lim
t→∞

tδdt = c ∈ (0,∞).

• The dense or supercritical regime, where lim
t→∞

tδdt =∞.

In this thesis in fact, we shall consider the thermodynamic regime in two parts, namely,

for c < 1 and c > 1, as this is important for our results as we shall see later.

2.3.2. Random simplicial complexes

Let ∆ be a collection of subsets of a set V . Then ∆ is called an abstract simplicial

complex if for every set X ∈ ∆ and every non-empty Y ⊆ X, Y ∈ ∆. The elements of

∆ and V are called faces (or simplices) and vertices of the complex respectively. It is

assumed that {v} ∈ ∆ for every v ∈ V . If Y ⊆ X, then Y is said to belong to face X.

To define a geometric simplicial complex, we start from the building blocks of the com-

plex, that is, the simplices. Let k ≥ 0 and let u0, u1, . . . uk be points in some Euclidean

space Rn. The point x =
k∑
i=0

ciui is an affine combination of the ui’s if
k∑
i=1

ci = 1, for

non-negative ci ∈ R. The k + 1 points are said to be affinely independent points in Rn

if for any two affine combinations x =
k∑
i=1

ciui and y =
k∑
i=1

c′iui, x and y are the same if
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and only if ci = c′i for all i. In other words, the k + 1 points are affinely independent if

and only if the vectors ui − u0, 1 ≤ i ≤ k, are linearly independent.

Definition 2.7. A k-simplex, S in Rn is defined to be the convex hull of the k + 1

affinely independent points, that is, a set of the form

S =
{ k∑
i=0

tiui
∣∣ ti ≥ 0, 0 ≤ i ≤ n,

n∑
i=0

ti = 1
}
.

The dimension of a k-simplex, S is k.

Definition 2.8. A simplicial complex, ∆, is a finite set of simplices in Rn such that

• every face of a simplex belonging to ∆ is also in ∆, that is, S ∈ ∆ and T ⊆ S

implies T ∈ ∆,

• the intersection of two simplices is either empty or a common face of both simplices.

The dimension of ∆ is given by dim ∆ = max {dimS : S ∈ ∆}. A 1-dimensional

simplicial complex is simply called a graph.

The collection of i-dimensional faces of ∆ is denoted by Fi(∆), and fi(∆) = |Fi(∆)|.
The f -vector of ∆ is given by

f(∆) = (f−1(∆), f0(∆), f1(∆), . . . , fdim(∆)(∆)).

Here, f−1(∆) counts the empty set and it is usually 1.

The notion of randomness in simplicial complexes can be observed in various ways. The

Erdös-Rényi graph for example has a deterministic vertex set and random edges. The

approach in this thesis will be the Gilbert model where the vertex set is a random set.

A random simplicial complex is in fact a generalized version of the Gilbert graph. We

shall consider two different simplicial complexes which both have the Gilbert graph as

their 1-skeleton.

The Vietoris-Rips complex is a random simplicial complex whose k-dimensional faces are

the abstract simplices {x0, . . . , xk} ⊂ ηt iff ‖xi−xj‖ ≤ δt. I.e. the Vietoris-Rips complex

is the clique complex of the Gilbert graph. The Gilbert graph is in fact the one-skeleton

of the Vietoris-Rips complex. We denote the Vietoris-Rips complex by R(ηt, δt) and its

set of k faces by Fk(R(ηt, δt)). For k ≤ d the faces have a geometric realization which

is just the convex hull [x0, . . . , xk] ⊂W of x0, . . . , xk.

We denote by ∆s[x0, . . . xk] the k-dimensional volume of the convex hull of the points

x0, . . . , xk if all edges have length at most s, and set ∆s[x0, . . . , xk] = 0 otherwise.

For k > d there is no k-dimensional realization and thus in this case we just define
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∆s[x0, . . . xk]
0 = 1 if and only if all pairwise distances are bounded by s. Thus for all

k ≥ 0,

F ∈ Fk(R(ηt, δt))⇔ ∆δt(F )0 = 1.

Note that for k ≤ d we identify the abstract simplex F = {x0, . . . , xk} ∈ Fk(V(ηt, δt))

with its geometric realization [x0, . . . , xk].

The notation ∆s here should not be confused with previous notation ∆ of a simplicial

complex.

Closely connected to the Vietoris-Rips complex is the Čech complex C(ηt, δt). This is

the random simplicial complex where an abstract k-simplex {x0, . . . , xk} is in C(ηt, δt) if

∩ki=0B(xi, δt/2) 6= ∅. All results on the Vietoris-Rips complex in this thesis can verbatim

be formulated for the Čech complex C(ηt, δt) instead of the Vietoris-Rips complex. This

just changes some of the constants, see Chapter 5.

The quantity we are mostly interested in this thesis is the volume-power functional of

the Vietoris-Rips complex, defined as follows.

V(α)
k :=

1

(k + 1)!

∑
F∈Fk(R(ηt,δt))

λk(F )α

=
1

(k + 1)!

∑
(x0,...,xk)∈ηkt,6=

∆δt [x0, . . . , xk]
α. (2.7)

If k ≤ d, this functional is in L1(P) for α > −d + k − 1, as will be observed later, and

for k > d we just consider the case α = 0. We note that when α = 0, V(α)
k counts the

number of k-simplices in the simplicial complex, and thus, V(0)
k = fk, a component of

the f -vector of the simplicial complex.

2.4. Counting partitions

It will interest us to know the number of partitions a set has, and the recurring function

below gives this number for a typical partition. The Bell number, Bn is the total number

of patitions of a set with n elements. It is given by

Bn =

n−1∑
i=0

(
n− 1

i

)
Bi.

In the sequel, we consider special types of partitions.

Let f (l)(x
(l)
1 , . . . , x

(l)
kl

) ∈ L2(µkl) with kl ∈ N, for l = 1, . . . ,m. The set of variables of

f (l) : W kl → R̄ = R ∪ {±∞}, l = 1, . . . ,m, will be used to create a partition as done in

[Sch13].
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The tensor product, ⊗ml=1f
(l) : W

∑m
l=1 kl → R̄, of the functions f (l) is given by

⊗ml=1f
(l)(x

(1)
1 , . . . , x

(m)
km

) =
m∏
l=1

f (l)(x
(l)
1 , . . . , x

(l)
kl

).

Let V (k1, . . . , km) =
{
x

(1)
1 , . . . , x

(1)
k1
, x

(2)
1 , . . . , x

(m−1)
km−1

, x
(m)
1 , . . . , x

(m)
km

}
. Let π̄ ∈ P(V (k1, . . . , km))

be the partition whose blocks are {x(l)
1 , . . . , x

(l)
kl
}, l = 1, . . . ,m. Define

Π(k1, . . . , km) =
{
σ ∈ P(V (k1, . . . , km)) : σ ∧ π̄ = 0̂

}
Π̃(k1, . . . , km) =

{
σ ∈ P(V (k1, . . . , km)) : σ ∧ π̄ = 0̂, σ ∨ π̄ = 1̂

}
Π≥2(k1, . . . , km) =

{
σ ∈ P(V (k1, . . . , km)) : σ ∧ π̄ = 0̂, |B| ≥ 2∀B ∈ σ

}
Clearly, both Π̃(k1, . . . , km) and Π≥2(k1, . . . , km) are contained in Π(k1, . . . , km).

For a partition, σ ∈ Π(k1, . . . , km), we note from the definition that the number of blocks

in the partition is bounded thus:

max
1≤i≤m

ki ≤ |α| ≤
m∑
i=1

ki, (2.8)

the upper bound is the case where all blocks are singletons and the lower bound is so

because no block contains elements with the same index.

Also, we construct a new function, (⊗ml=1f
(l))σ : W |σ| → R̄, by replacing all variables

that belong to the same block of σ by a new common variable. We refer to Section 5.1

for an example. We shall be interested in finding the cardinality of Π(k1, . . . , km) for

m ≥ 2.

In the literature [PT11], we found the MeetSolve function used in the Mathematica

software, and it proves useful to get |Π(k1, . . . , km)| numerically, but in this thesis, we

present an analytical approach.

Let m = 2. Then V (k1, k2) =
{
x

(1)
1 , . . . , x

(1)
k1
, x

(2)
1 , . . . , x

(2)
k2

}
. By definition, each par-

tition in Π(k1, k2) are such that no block contains identical upper indices. Thus, the

blocks in a partition can be viewed as coincidences between the elements with upper

index 1 and the elements with upper index 2. Let h1 be the number of such coincidences

for a partition σ{h1} ∈ Π(k1, k2). Then h1 = 0, 1, . . . , hmax1 , where hmax1 = min{k1, k2}
and the number of blocks in σ{h1} is given by |σ{h1}| = k1 + k2 − h1.

We need to know how many of such σ{h1} exists in Π(k1, k2) for a particular h1. Taking

the k1 elements as the underlying set, it is a case of choosing h1 out of k1 elements and

arranging k2 elements h1 at a time, that is,
(
k1

h1

)
· k2P h1 . The number of such σ{h1} is
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thus given by

αh1 = h1!

(
k1

h1

)(
k2

h1

)
,

and ∣∣∣Π(k1, k2)
∣∣∣ =

hmax1∑
h1=0

αh1 .

We now take it a step further. Letm = 3. Then V (k1, k2, k3) = V (k1, k2)∪
{
x

(3)
1 , . . . , x

(3)
k3

}
.

We take the partitions, σ{h1}, h1 = 0, 1, . . . , hmax1 , in Π(k1, k2) as the underlying set, and

let h2 be the number of coincidences between the underlying set and
{
x

(3)
1 , . . . , x

(3)
k3

}
then h2 = 0, 1, . . . , hmax2 , where hmax2 = min{k1 + k2 − h1, k3}. Let the resulting par-

titions be given by σ{h1+h2} ∈ Π(k1, k2, k3), then the number of blocks in σ{h1+h2} is

given by |σ{h1+h2}| = k1 + k2 + k3− (h1 + h2). We need to choose h2 out of k1 + k2− h1

elements and arrange k3 elements h2 at a time. Again, the number of such σ{h1+h2} is

given by α{h1+h2} = αh1 · αh2 where

αh2 = h2!

(
k1 + k2 − h1

h2

)(
k3

h2

)
,

and ∣∣∣Π(k1, k2, k3)
∣∣∣ =

hmax1 +hmax2∑
h1+h2=0

αh1 · αh2 .

We note that the above sum includes all possible values of of h1 and h2 for the sum

h1 + h2.

In general for 2 ≤ l ≤ m, we have the following. First, we define

Kj =

j∑
i=1

ki and Hj =

j∑
i=0

hi with h0 = 0.

We have V (k1, k2, . . . , kl+1) = V (k1, . . . , kl)∪
{
x

(l+1)
1 , . . . , x

(l+1)
kl+1

}
. We take the partitions

σ{Hl−1} ∈ Π(k1, . . . , kl) as the underlying set and hl as the number of coincidences, with

hl = 0, 1, . . . , hmaxl , where hmaxl = min{Kl −Hl−1, kl+1}. The number of blocks of the

resulting partitions σ{Hl} ∈ Π(k1, . . . , kl+1) is given by |σ{Hl}| = Kl+1−Hl. The number

of such σ{Hl} is given by α{Hl} =
∏l
j=1 αhj with

αhj = hj !

(
Kj −Hj−1

hj

)(
kj+1

hj

)
,

and ∣∣∣Π(k1, . . . , kl+1)
∣∣∣ =

Hmax
l∑

Hl=0

α{Hl}

where Hmax
l =

∑l
i=1 h

max
i .
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The above can be summarized in the following theorem.

Theorem 2.9. Let m ≥ 2. For i = 1, . . . ,m, let ki ∈ N and hi = 0, . . . , hmaxi , where

hmaxi = min{Ki −Hi−1, ki+1}.
Define

Kj =

j∑
i=1

ki and Hj =

j∑
i=0

hi with h0 = 0.

Furthermore, define

αhj = hj !

(
Kj −Hj−1

hj

)(
kj+1

hj

)
.

Then for z = Hm−1, there exists σ{z} ∈ Π(k1, . . . , km) such that |σ{z}| = Km − z and

∣∣∣Π(k1, . . . , km)
∣∣∣ =

Hmax
m−1∑
z=0

α{z},

where α{z} =
m−1∏
j=1

αhj and Hmax
m−1 =

m−1∑
i=1

hmaxi .

Remark 2.10.

(i) Let k1 ≤ · · · ≤ km. Then Hmax
m−1 =

m−1∑
i=1

hmaxi = Km−1, since hmaxi = ki for each i.

(ii) Let k1 = · · · = km = k. Then hmaxi = k ∀ i and

αhj = hj !

(
jk −Hj−1

hj

)(
k

hj

)
.

Also, Ki = ik, Hmax
i = ik ∀ i and with Π(k, . . . , k︸ ︷︷ ︸

m times

) = Π({k}m),

∣∣∣Π({k}m)
∣∣∣ =

k(m−1)∑
z=0

α{z}.

(iii) For k1 = · · · = km = k, we will be interested in finding α{z} for which |σ{z}| = k.

That is, |σ{k(m−1)}| = mk−k(m−1) = k. The only possibility to have z = k(m−1)

is when hi = k for i = 1, . . . ,m − 1. This gives αhj=k = k! for j = 1, . . . ,m − 1,

and so, α{z} =
m−1∏
j=1

αhj=k = k!(m−1).

(iv) Furthermore, still for k1 = · · · = km = k, to find α{z} for which |σ{z}| = k + 1, it

has to be that z = k(m − 1) − 1. We observe that this is possible when only one

of the hi’s is k − 1 and all others are k. Going through all these possibilities gives

α{z} = kk!m−1
∑m−2

i=0 (k + 1)i.



3. Expectation

Moments are used in describing the behaviour of random variables. The p-th moment

of a random varaible, X is given by EXp. In this chapter, we consider the first moment

of Poisson functionals which is precisely the expectation in three asymptotic regimes as

mentioned earlier.

Definition 3.1. A Poisson U-statistic, F , of order k, is a Poisson functional of the form

F =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

where k ∈ N and f ∈ L1
s(µ

k).

The expectation of a Poisson U-statistic is given by

EF =

∫
Wk

f(x1, . . . , xk) dx1, . . . ,dxk.

This is obtainable by applying the Mecke formula (2.1), f being integrable.

By the above definition, we observe that the length-power functional, V(α), and the

volume-power functional, V(α)
k , are Poisson U-statistics of orders 2 and k+1 respectively.

We take note of the following.

Remark 3.2.

(i) The Gamma function is given by

Γ(z) =

∫ ∞
0

xz−1e−x dx.

Furthermore, by simply applying integration by parts in the above, we have the

following recurring formula.

Γ(z + 1) = zΓ(z).

17
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(ii) In terms of the Gamma function, the volumes of the unit d-ball, Bd, and its

boundary, the unit (d− 1)-sphere, Sd−1, are respectively given by

κd =
π
d
2

Γ
(
d
2 + 1

) and ωd = Vol(Sd−1) =
2π

d
2

Γ
(
d
2

) = dκd

(iii) Let W−δt = {w : Bd(w, δt) ⊂W}, be the inner parallel set of W . Then for a point

x ∈W−δt , we have∫
W
1(‖x− y‖ ≤ δt)‖x− y‖α dy =

∫
W−x

1(‖y‖ ≤ δt)‖y‖α dy

= δα+d
t

∫
δ−1
t (W−x)

1(‖y‖ ≤ 1)‖y‖α dy

= δα+d
t

∫
δ−1
t (W−x)∩Bd

‖y‖α dy

= δα+d
t

∫
Bd
‖y‖α dy

= δα+d
t

∫ 1

0
rα+d−1

∫
Sd−1

dudr

= δα+d
t

ωd
α+ d

=
dκd
α+ d

δα+d
t .

In the above, we translated by x and scaled by δt, and used the fact that δ−1
t (W −

x) ∩Bd = Bd since the ball around the point x ∈W−δt is completely contained in

W . We also transformed to sperical coordinates where du stands for the infinites-

imal element of the spherical Lebesgue measure.

In the same vein, for x ∈W\W−δt , we have that∫
W
1(‖x− y‖ ≤ δt)‖x− y‖α dy ≤ dκd

α+ d
δα+d
t .

3.1. Functionals of random graphs

A fundamental quantity in random graphs is counting the number of edges. Penrose in

[Pen03] considered it in a more general context by counting the number of subgraphs iso-

morphic to a given and fixed connected graph, and also component counts. In [RST17],

the number of edges of the Gilbert graph was not only considered, but more generally

the sum of real powers of the edge lengths. That is,
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V(α) :=
1

2

∑
e=(x,y)∈E(G(ηt,δt))

‖x− y‖α

=
1

2

∑
(x,y)∈η2

t,6=

1(‖x− y‖ ≤ δt)‖x− y‖α. (3.1)

The expectation is given by the theorem below.

Theorem 3.3. Let α > −d, and cα,d =
dκd

2(α+ d)
. Then

EV(α) = cα,d t
2δα+d
t (1 +O(δt)) (3.2)

where cα,d is a constant that depends on the space dimension d, and α ∈ R.

Proof. Applying the Mecke formula to (3.1) gives

EV(α) =
t2

2

∫
W 2

1(‖x− y‖ ≤ δt)‖x− y‖α dx dy

=
t2

2

∫
W

∫
W
1(‖x− y‖ ≤ δt)‖x− y‖α dx dy

≤ cα,d t
2δα+d
t (by Remark 3.2, since W is of unit volume).

Also,

EV(α) ≥ cα,d t2δα+d
t V (W−δt)

which together with the above and the fact that

V (W−δt) ≥ 1− S(W )δt

gives (3.2).

Remark 3.4. We observe the asymptotic expectation by considering the term t(tδdt )δαt

in (3.2) for the different regimes. We note that the fact that tδdt tends to 0, a constant

c ∈ (0,∞) or∞ as t→∞, in the sparse, thermodynamic and dense regimes respectively,

does not imply that the expectation will behave accordingly, and that, because of δαt .

The value of α can change a lot of things as δt → 0.

For example, in the dense regime, for α > d, if we take δt = t−
1
d f(t), where f(t) → ∞

slowly, say f(t) = ln t, then δt → 0 and tδdt →∞ slowly. Also, tδαt = t1−
α
d f(t)α → 0 since

the first factor goes to 0 faster than the second goes to infinity. Thus, the expectation

tends to 0 in this case.
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3.2. Functionals of random simplicial com-

plexes

In this section, we count the simplices in the Vietoris-Rips complex, which could be seen

as complete subgraph counts, and more generally the sum of real powers of the volumes

of these simplices.

It was important to know the values of α in the computation of the expectation of

the length-power functional, for which the constant cα,d is finite, which obtains in the

condition of the Theorem 3.3. In the sequel, we will consider the values of α for which

the constant we will encounter in the expectation of the volume-power functional, EVαk ,

will be finite.

3.2.1. Moments of random simplices

Let X1, . . . , Xk be k independently and uniformly distributed points in the unit ball.

To shorten our notation, we write {xl}kl=j for the point set {xj , . . . , xk}. The random

points {Xl}kl=1 and the origin form a random k-simplex. For k ≤ d we denote by µ
(α)
k

the moment of order α of its volume if all edges are bounded by one.

µ
(α)
k =

∫
(Bd)k

∆1[0, {xl}kl=1]α dx1 · · · dxk (3.3)

with µ
(α)
0 = 1. In the case k > d the definition only applies to α = 0 which then just tests

whether all pairwise distances are bounded by 1. It is a key quantity in the expectation

of EVαk , and the essential question is for which α ∈ R this quantity is finite.

To derive moments of random simplices obtained by the convex hull of uniform points

in the unit ball is a classical question in geometric probabilities. There is an elegant way

of computing arbitrary moments of the volume of the convex hull ∆[0, {xl}kl=1]α which

is shorthand for ∆∞[0, {xl}kl=1]α = λd([0, {xl}kl=1])α,

ν
(α)
k =

∫
(Bd)k

(∆[0, {xl}kl=1])αdx1 . . . dxk.

We follow the computations in Schneider and Weil [SW08, Section 8.2.2]. We note that

the mentioned reference is interested only in the cases α ∈ N where the result can be

rewritten as a product of certain κj using its defintion and the representation of the

Beta function by Gamma functions.
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Assume L is an arbitrary q-dimensional subspace in Rd. Denote by d(x, L) the distance

of a point x to L. We apply the proof of [SW08, Theorem 8.2.2] for (q− 1)-dimensional

L where Fubini’s theorem was applied. In our case, L is of q-dimension. We take α ∈ R,

and using the definitions in Remark 3.2(ii), we have

∫
Bd

d(x, L)αdx = κd+α
ωd−q
ωd+α−q

=
π
d+α

2

Γ
(
d+α

2 + 1
) · 2π

d−q
2

Γ
(
d−q

2

) · Γ
(
d+α−q

2

)
2π

d+α−q
2

=
π
d
2 Γ(d+α−q

2 )

Γ(d−q2 )Γ(d+α
2 + 1)

(3.4)

= β(α)
q .

Note that the Gamma function, Γ(x), is finite for x > 0. Thus, β
(α)
q is finite for d+α−q >

0. Since the volume of the simplex [0, x1, . . . , xk] is given by

∆[0, {xl}kl=1] =
1

k
∆[0, x1, . . . , xk−1]d(xk, L) (3.5)

where L is the linear hull of x1, . . . , xk, having dimension k−1, then we have by applying

(3.5) that

ν
(α)
k =

∫
(Bd)

∫
(Bd)k−1

1

kα
(∆[0, {xl}k−1

l=1 ])α d(xk, L)αdx1 . . . dxk =
1

kα
β

(α)
k−1ν

(α)
k−1 (3.6)

so that we obtain as in [SW08] the recursion

ν
(α)
k =

1

kα
β

(α)
k−1ν

(α)
k−1 =

1

kα(k − 1)α
β

(α)
k−1β

(α)
k−2ν

(α)
k−2 = · · · = 1

(k!)α

k−1∏
j=0

β
(α)
j (3.7)

(where ν
(α)
0 = 1). This implies that ν

(α)
k < ∞ if β

(α)
j < ∞ for j = 0, . . . , k − 1, that is,

when d+α− (k− 1) > 0 implying α > −d+ k− 1. Because ∆1[·]α = ∆[·]α except if ∆1

vanishes, we obtain

µ
(α)
k ≤ ν(α)

k

and thus we see that µ
(α)
k exists as long as α > −d + k − 1. On the other hand, for

xi ∈ 1
2B

d, all distances are trivially bounded by 1, which shows

µ
(α)
k ≥

∫
( 1

2
Bd)k

∆[0, x1, . . . , xk])
αdx1 . . . dxk =

(
1

2

)k(α+d)

ν
(α)
k .

The above proves the following lemma.
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Lemma 3.5. µ
(α)
k exists if and only if α > −d+ k − 1.

3.2.2. First moment for the volume-power func-

tional

Having obtained the threshold for α, we consider the volume-power functional. Recall

from (2.7) that

V(α)
k :=

1

(k + 1)!

∑
(x0,...,xk)∈ηkt, 6=

∆δt [x0, . . . , xk]
α. (3.8)

Theorem 3.6. Assume α > −d+ k − 1 for k ≤ d and α = 0 for k > d. Then we have

EV(α)
k =

µ
(α)
k

(k + 1)!
tk+1δ

k(α+d)
t (1 +O(δt))

where the implicit constant in O(δt) only depends on W .

Proof. We apply the multivariate Mecke formula (2.1) to (3.8), and substitute δt(xi−xk)
for xi, i 6= k, to get

EV(α)
k =

tk+1

(k + 1)!

∫
Wk+1

∆δt [{xl}kl=0]α dx0 · · · dxk

=
δ
k(α+d)
t tk+1

(k + 1)!

∫
W

∫
(δ−1
t (W−xk)∩Bd)k

∆1[0, {xl}k−1
l=0 ]α dx0 · · · dxk

where the condition ‖xi‖ ≤ 1 has been taken into account in the range of integration

xi ∈ Bd. As an upper bound we have

EV(α)
k ≤ δ

k(α+d)
t tk+1

(k + 1)!

∫
W

∫
(Bd)k

∆1[0, {xl}k−1
l=0 ]α dx0 · · · dxk.

This proves that the expectation is finite for α > −d. For an estimate from below we

consider the inner parallel set of W , W−δt = {x : Bd(x, δt) ⊂ W}. Observe that for

xk ∈W−δt we have δ−1
t (W − xk) ∩Bd = Bd.

EV(α)
k ≥ δ

k(α+d)
t tk+1

(k + 1)!

∫
W−δt

∫
(Bd)k

∆1[0, {xl}k−1
l=0 ]αdx0 · · · dxk

=
δ
k(α+d)
t tk+1

(k + 1)!
µ

(α)
k V (W−δt)
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We thus obtain

δ
k(α+d)
t tk+1

(k + 1)!
µ

(α)
k V (W−δt) ≤ EV

(α)
k ≤ δ

k(α+d)
t tk+1

(k + 1)!
µ

(α)
k .

The well known inequality

V (W−δt) ≥ 1− S(W )δt (3.9)

for convex sets of volume one gives the desired result .

Remark 3.7. Once again, we observe the expectation in the various asymptotic regimes

as in remark 3.4. We consider the term t(tδdt )kδαkt .

Consider the sparse regime, if we take δt = t−
1
d f(t)

1
dk , where f(t)→ 0 slowly, say f(t) =

e−t, then δt → 0 and tδdt → 0 slowly and (tδdt )k = f(t). Also, tδαkt = t1−
αk
d f(t)

α
d → 0

for α < d
k , since the first factor goes to infinity faster than the second goes to zero.

Thus, once again, the fact that tδdt tends to 0, a constant c ∈ (0,∞) or ∞ as t →
∞, in the sparse, thermodynamic and dense regimes respectively, does not imply that

the expectation will behave accordingly, and that, because of δαkt in this case. So the

asymptotic expectation depends on the value of α and how fast δt → 0.



4. Variance

In this chapter, we consider the covariance structure, in particular, the second moment

of the volume-power functional. Recall that the covariance of two random variables X

and Y is given by

Cov(X,Y ) = E[XY ]− EXEY.

Once again, we take a look at the moments of random simplices similar to the one

discussed in Secction 3.2.

4.1. Mixed moments of random simplices

In investigating the covariance structure of the volume-power functionals, the mixed

moments of the volume of two random simplices in Bd with edge lengths bounded by

one occurs. For this, we put one vertex in the origin, choose in Bd for a k1-dimensional

simplex first k1 independent vertices {X1, . . . , Xk1}. For 1 ≤ m ≤ min{k1, k2}+1, we use

the last m−1 vertices also for a second simplex and in addition independent random ver-

tices {Xk1+1 . . . Xk1+k2−m+1} to define a k2-dimensional simplex ∆1[0, {Xl}k1+k2−m+1
l=k1−m+2 ].

And so we have the following as the mixed moment of the volume of the simplices.

µ
(α1,α2)
k1,k2:m =

∫
(Bd)k1+k2+1−m

∆1[0, {xl}k1
l=1]α1∆1[0, {xl}k1+k2−m+1

l=k1−m+2 ]α2 (4.1)

dx1 · · · dxk1+k2−m+1

It can be seen that for m = 1,

µ
(α1,α2)
k1,k2:1 = µ

(α1)
k1

µ
(α2)
k2

. (4.2)

And for k1 = 0 we have µ
(α1,α2)
0,k2:m = µ

(α2)
k2

, also for k1 = k2 = k at m = k + 1, we have

µ
(α1,α2)
k,k:k+1 = µ

(α1+α2)
k . (4.3)

24
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This is the instance where all points in the identical simplices coincide. For ki > d we

only allow αi = 0. Again, we need to determine for which αi this moment exists. We let

k1 ≤ k2 without loss of generality, and we follow the strategy outlined in the previous

chapter. We set

ν
(α1,α2)
k1,k2:m =

∫
(Bd)k1+k2+1−m

∆[0, {xl}k1
l=1]α1∆[0, {xl}k1+k2−m+1

l=k1−m+2 ]α2dx1 · · · dxk1+k2−m+1

where ∆[0, {xl}kl=1]α represents ∆∞[0, {xl}kl=1]α = λd([0, {xl}kl=1])α.

We relabel to let the first m−1 vertices of the first simplex coincide with the first m−1

vertices of the second simplex. That is, in the first simplex each xi becomes xki−i+1 and

in the second simplex, each xi becomes x̂i−(ki−m+1), while xi = x̂i for i = 1, . . . ,m− 1.

So we obtain

ν
(α1,α2)
k1,k2:m =

∫
(Bd)k1+k2+1−m

∆[0, {xl}k1
l=1]α1∆[0, {x̂l}k2

l=1]α2dx1 · · · dxm−1dxm · · · dxk1dx̂m · · · dx̂k2

We recall from (3.5) that

∆[0, {xl}kil=1] =
1

ki
∆[0, {xl}ki−1

l=1 ] d(xki , Li), i = 1, 2

where Li of dimension ki − 1, so that using (3.4) in the above gives

ν
(α1,α2)
k1,k2:m =

∫
Bd

1

kα1
1

∫
Bd

1

kα2
2

∫
(Bd)k1+k2−m−1

∆[0, {xl}k1−1
l=1 ]α1∆[0, {xl}k2−1

l=1 ]α2d(xk1 , L1)α1

d(xk2 , L2)α2 dx1 · · · dxm−1dxm · · · dxk1−1dxm · · · dxk2−1

=
1

kα1
1

1

kα2
2

β
(α1)
k1−1β

(α2)
k2−1ν

(α1,α2)
k1−1,k2−1:m

=
1

kα1
1 (k1 − 1)α1

1

kα2
2 (k2 − 1)α2

β
(α1)
k1−1β

(α1)
k1−2β

(α2)
k2−1β

(α2)
k2−2ν

(α1,α2)
k1−2,k2−2:m

=
1

kα1
1 (k1 − 1)α1 · · ·mα1

1

kα2
2 (k2 − 1)α2 · · ·mα2

k1−1∏
j=m−1

β
(α1)
i

k2−1∏
j=m−1

β
(α2)
i ν

(α1,α2)
m−1,m−1:m

=
((m− 1)!)α1

(k1!)α1

((m− 1)!)α2

(k2!)α2

k1−1∏
j=m−1

β
(α1)
j

k2−1∏
j=m−1

β
(α2)
j ν

(α1,α2)
m−1,m−1:m

=
((m− 1)!)α1+α2

(k1!)α1(k2!)α2

k1−1∏
j=m−1

β
(α1)
j

k2−1∏
j=m−1

β
(α2)
j ν

(α1+α2)
m−1 (by (4.3))

=
1

(k1!)α1(k2!)α2

k1−1∏
j=m−1

β
(α1)
j

k2−1∏
j=m−1

β
(α2)
j

m−2∏
j=0

β
(α1+α2)
j
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where in the last expression we used (3.7).

We note that ν
(α1,α2)
k1,k2:m is finite if all the βj ’s are finite, that is,

d+ α1 − (k1 − 1) > 0, d+ α2 − (k2 − 1) > 0, d+ α1 + α2 − (m− 2) > 0. (4.4)

Since ∆1[·]α = ∆[·]α except if ∆1 vanishes, we have

µ
(α1,α2)
k1,k2:m ≤ ν

(α1,α2)
k1,k2:m,

so that µ
(α1,α2)
k1,k2:m <∞ once (4.4) is satisfied.

To estimate µ
(α1,α2)
k1,k2:m from below, we consider xi ∈ 1

2B
d, and observe that all distances

are trivially bounded by 1, so that

µ
(α1,α2)
k1,k2:m ≥

∫
( 1

2
Bd)k1+k2+1−m

∆[0, {xl}k1
l=1]α1∆[0, {xl}k1+k2−m+1

l=k1−m+2 ]α2 dx1 · · · dxk1+k2−m+1

=

(
1

2

)d(k1+k2−m+1)+α1k1+α2k2

ν
(α1,α2)
k1,k2:m.

This proves the following lemma.

Lemma 4.1. µ
(α1,α2)
k1,k2:m exists if and only if αi > −d+ ki − 1 for i = 1, 2, and α1 + α2 >

−d+m− 2.

4.2. Moment matrices

To be able to discuss the features of the covariance matrix in the covariance structure

of V(α)
k , we give a brief overview of moment matrices.

Let X be a random variable, and let c = (c1, . . . , cn) ∈ Rn be chosen such that mci+cj =

EXci+cj exists for i, j = 1, . . . , n. Denote by MX(c) the generalized moment matrix

MX(c) = (mci+cj )i,j=1,...,n.

The following theorem gives a criterion whether the generalized moment matrix is of full

rank.

Theorem 4.2. The generalized moment matrix MX(c) is positive semidefinite. More-

over MX(c) p = 0 for some p ∈ Rn implies

X ∈
{
x ∈ R :

n∑
i=1

pix
ci = 0

}
a.s.
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If, in particular, ci 6= cj for all i 6= j, and supp(X) contains an interval, then MX(c) is

of full rank.

Proof. The proof is a modification of similar results on moment matrices, see for example

[Lau09]. For p ∈ Rn we have

pTMX(c)p =
∑
ij

pimci+cjpj = E
∑
ij

piX
ciXcjpj = E(

∑
i

piX
ci)2 ≥ 0

and thus MX(c) is positive semidefinite. Further, if MX(c)p = 0, then also

pTMX(c)p = E(
∑
i

piX
ci)2 = 0.

Hence with probability one, X takes values in the root of the function
∑
pix

ci . If

supp(X) contains an interval I then
∑
pix

ci = 0 for all x ∈ I. This is only possible if

pi = 0 for i = 1, . . . n, because the functions xc1 , . . . , xcn are independent for ci 6= cj .

4.3. The Covariance Structure of V (α)
k

The next step is to investigate the variances and covariances of the volume-power func-

tionals. In the following, we shall see that 1 ≤ m ≤ min ki + 1. From Lemma 4.1,

α1 + α2 > −d + m − 2 holds true for all values of m once it holds for m = min ki + 1.

And so the assumptions of the following theorem implies that the occuring moments

exist.

Theorem 4.3. Let αi > −d+ ki − 1 for i = 1, 2, and α1 + α2 > −d+ min ki − 1. The

covariance is given by

Cov
(
V(α1)
k1

,V(α2)
k2

)
=

min ki+1∑
m=1

µ
(α1,α2)
k1,k2:m

m!
∏

(ki −m+ 1)!
t
∑
ki−m+2δ

∑
(d+αi)ki−d(m−1)

t

(1 + o(1)).

In particular, for α > 1
2(−d+ k − 1) we have

VV(α)
k =

k+1∑
m=1

µ
(α,α)
k,k:m

m!((k −m+ 1)!)2
t2k−m+2δ

2(d+α)k−d(m−1)
t (1 + o(1)).

Proof. Without loss of generality, we assume k1 ≤ k2. By definition,

V(α1)
k1
V(α2)
k2

=
1∏

i=1,2
(ki + 1)!

∑
(x0,...,xk1

)∈ηk1+1
t, 6=

(x′0,...,x
′
k2

)∈ηk2+1
t, 6=

∆δt [{xl}
k1
l=0]α1∆δt [{x′l}

k2
l=0]α2
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Here, m points of the k1-tuple and k2-tuple coincide, m = 0, . . . k1 + 1. We assume

that xk1−m+1 = x′k1−m+1, . . . , xk1 = x′k1
, multiply by

(
k1+1
m

) (k2+1)!
(k2−m+1)! , and rename the

variables (x′0, . . . , x
′
k1−m) by (xk2+1, . . . , xk1+k2−m+1). We note here that

(
k1+1
m

) (k2+1)!
(k2−m+1)!

represents the number of copies of a particular m-coincidence. This yields

V(α1)
k1
V(α2)
k2

=

k1+1∑
m=0

1

m!
∏
i=1,2

(ki −m+ 1)!∑
(x0,...,xk1+k2−m+1)∈ηk1+k2−m+2

t,6=

∆δt [{xl}
k1
l=0]α1∆δt [{xl}

k1+k2−m+1
l=k1−m+1 ]α2

and applying the Mecke formula gives

EV(α1)
k1
V(α2)
k2

=

k1+1∑
m=0

tk1+k2−m+2

m!
∏
i=1,2

(ki −m+ 1)!∫
Wk1+k2−m+2

∆δt [{xl}
k1
l=0]α1∆δt [{xl}

k1+k2−m+1
l=k1−m+1 ]α2

dx0 · · · dxk1+k2−m+1.

The first term of this sum with m = 0 is

tk1+k2+2

(k1 + 1)!(k1 + 1)!

∫
Wk1+k2+2

∆δt [{xl}
k1
l=0]α1∆δt [{xl}

k1+k2+1
l=k1+1 ]α2dx0 · · · dxk1+k2+1

and it is precisely equal to EV(α)
k1
EV(α)

k2
, and thus the covariance is given by the summands

from m = 1 to m = k1 + 1. To obtain the asymptotic behavior of the covariance we

follow the same approach as in the proof of Theorem 3.6. We substitute xi = δtx̃i + xk1

for xi, i 6= k1 to get

Cov
(
V(α1)
k1

,V(α2)
k2

)
=

k1+1∑
m=1

tk1+k2−m+2δ
d(k1+k2−m+1)+α1k1+α2k2

t

m!
∏
i=1,2

(ki −m+ 1)!∫
W

∫
(δ−1
t (W−xk1

)∩Bd)k1+k2+1−m

∆1[0, {x̃l}k1−1
l=0 ]α1∆1[0, {x̃l}k1+k2−m+1

l=k1−m+1
l 6=k1

]α2

dx̃0 · · · dx̃k1−1 dx̃k1+1 · · · dx̃k1+k2−m+1 dxk1 .

For an upper bound we obtain

Cov
(
V(α1)
k1

,V(α2)
k2

)
≤
k1+1∑
m=1

tk1+k2−m+2δ
d(k1+k2−m+1)+α1k1+α2k2

t

m!
∏
i=1,2

(ki −m+ 1)!
µ

(α1,α2)
k1,k2:m.
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Once again, for the lower bound we consider xk1 ∈W−δt and use Bd ⊂ δ−1
t (W − xk−1),

which yields

Cov
(
V(α1)
k1

,V(α2)
k2

)
≥
k1+1∑
m=1

tk1+k2−m+2δ
d(k1+k2−m+1)+α1k1+α2k2

t

m!
∏
i=1,2

(ki −m+ 1)!
V (W−δt)µ

(α1,α2)
k1,k2:m

and using the estimate

V (W−δt) ≥ 1− S(W )δt

proves Theorem 4.3.

The variance is implied with k1 = k2 = k and α1 = α2 = α.

4.4. The Normalised V (α)
k

To be able to distinguish the behavior of the covariance in the different asymptotic

regimes already introduced, we consider the normalised volume-power functional.

Define

Qi = t
1
2 δαikit max

1≤m≤ki+1
{(tδdt )ki−

m−1
2 }. (4.5)

We note that

{(tδdt )ki−
m−1

2 }1≤m≤ki+1 = {(tδdt )
2ki
2 , (tδdt )

2ki−1

2 , . . . , (tδdt )
ki
2 }

and thus the maximum is always attained either for the first or last term, that is, for

m = 1 or for m = ki + 1. So that we can write

Qi = t
1
2 δαikit max{(tδdt )ki , (tδdt )

1
2
ki}. (4.6)

Also, once tδdt > 1, the maximum is (tδdt )ki . In the same vein, once tδdt < 1, the

maximum is (tδdt )
1
2
ki .

The product Q1×Q2 as seen in Theorem 4.3 indeed determines the asymptotic behavior

of the covariance functionals.

Definition 4.4. For i ∈ N, let αi ∈ R and ki ∈ N. The normalized volume-power

functionals are given by

V̂(αi)
ki

=
V(αi)
ki

Qi
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Remark 4.5. We give the expectation of the normalized volume-power functional and

discuss asymptotics in the various regimes.

EV̂(αi)
ki

=
EV(αi)

ki

Qi

(i) In the sparse regime, lim
t→∞

tδdt = 0 and Qi = t
1
2 δαikit (tδdt )

1
2
ki , so applying Theorem

3.6, we have

EV̂(αi)
ki

=

µ
(αi)

ki
(ki+1)! t

ki+1δ
ki(αi+d)
t (1 +O(δt))

t
1
2 δαikit (tδdt )

1
2
ki

=
µ

(αi)
ki

(ki + 1)!

[
t(tδdt )ki

] 1
2

(1 +O(δt)).

The asymptotic expectation here depends on the value of δt. For example, if

δt = t−
1
d e
− t
dki , then (tδdt )ki = e−t → 0 slower than t→∞.

(ii) In the dense regime, lim
t→∞

tδdt =∞ and Qi = t
1
2 δαikit (tδdt )ki , so we obtain

EV̂(αi)
ki

=

µ
(αi)

ki
(ki+1)! t

ki+1δ
ki(αi+d)
t (1 +O(δt))

t
1
2 δαikit (tδdt )ki

=
µ

(αi)
ki

(ki + 1)!
t

1
2 (1 +O(δt)).

So in this case,

EV̂(αi)
ki
→∞

in the limit.

Theorem 4.6. Let αi > −d+ ki − 1 for i = 1, 2, and α1 + α2 > −d+ min ki − 1.

(i) In the sparse regime, where lim
t→∞

tδdt = 0, we have limt→∞Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
= 0

for k1 < k2, and for k1 = k2 = k

lim
t→∞

Cov
(
V̂(α1)
k , V̂(α2)

k

)
=

µ
(α1+α2)
k

(k + 1)!
.

(ii) In the dense regime, where lim
t→∞

tδdt =∞, we have

lim
t→∞

Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
=

µ
(α1)
k1

k1!

µ
(α2)
k2

k2!
. (4.7)

(iii) In the thermodynamic regime, where lim
t→∞

tδdt = c ∈ (0,∞), we have for k1 ≤ k2

lim
t→∞

Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
=


k1∑
m=0

µ
(α1,α2)
k1,k2:k1−m+1

(k1−m+1)!m!(k2−k1+m)!c
k2−k1

2
+m, c ≤ 1

k1∑
m=0

µ
(α1,α2)
k1,k2:m+1

(m+1)!(k1−m)!(k2−m)!c
−m, c ≥ 1.
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Proof. Recall that k1 ≤ k2. Because

Qi = t
1
2 δαikit max{(tδdt )ki , (tδdt )

1
2
ki} (4.8)

the behavior in the sparse and dense regimes are immediate.

In the sparse regime tδdt → 0, and hence as soon as tδdt < 1, the maximum is attained

for m = k1 + 1, resp. m = k2 + 1. Thus

Q1Q2 = t δα1k1+α2k2
t (tδdt )

k1+k2
2

and

Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
=

1

Q1Q2
Cov

(
V(α1)
k1

,V(α2)
k2

)
=

∑k1+1
m=1

tk1+k2−m+2δ
d(k1+k2−m+1)+α1k1+α2k2
t

m!(k1−m+1)!(k2−m+1)! µ
(α1,α2)
k1,k2:m

t δα1k1+α2k2
t (tδdt )

k1+k2
2

(1 +O(δt))

=

k1+1∑
m=1

µ
(α1,α2)
k1,k2:m

m!(k1 −m+ 1)!(k2 −m+ 1)!
(tδdt )

k1+k2
2
−m+1(1 +O(δt)) (4.9)

=
µ

(α1,α2)
k1,k2:k1+1

(k1 + 1)!(k2 − (k1 + 1) + 1)!
(tδdt )

k1+k2
2
−(k1+1)+1(1 +O(tδdt ))(1 +O(δt))

=
µ

(α1,α2)
k1,k2:k1+1

(k1 + 1)!(k2 − k1)!
(tδdt )

k2−k1
2 (1 +O(δt) +O(tδdt )).

Hence for k1 < k2, asymptotically the covariance vanishes, so that

Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
= O((tδdt )

1
2 ). (4.10)

In the case k1 = k2 = k, the covariance equals asymptotically a moment of the volume.

Using (4.3), we obtain

Cov
(
V̂(α1)
k , V̂(α2)

k

)
=

µ
(α1+α2)
k

(k + 1)!
(1 +O(δt + tδdt ))

= EV̂(α1+α2)
k

(
t(tδdt )k

)− 1
2

(1 +O(δt + tδdt )). (4.11)

= EV̂(α1+α2)
k (1 +O(δt + tδdt )). (4.12)

In the dense regime tδdt → ∞ and hence (4.8) shows that the maximum is attained for

m = 1 as soon as tδdt > 1. Thus Q1Q2 = t δα1k1+α2k2
t (tδdt )k1+k2 and

Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
=

1

Q1Q2
Cov

(
V(α1)
k1

,V(α2)
k2

)
=

∑k1+1
m=1

tk1+k2−m+2δ
d(k1+k2−m+1)+α1k1+α2k2
t

m!(k1−m+1)!(k2−m+1)! µ
(α1,α2)
k1,k2:m

t δα1k1+α2k2
t (tδdt )k1+k2

(1 +O(δt))
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=

k1+1∑
m=1

µ
(α1,α2)
k1,k2:m(tδdt )−m+1

m!(k1 −m+ 1)!(k2 −m+ 1)!
(1 +O(δt)) (4.13)

=
µ

(α1,α2)
k1,k2:1

k1!k2!
(tδdt )−(1)+1(1 +O((tδdt )−1))(1 +O(δt))

=
µ

(α1,α2)
k1,k2:1

k1!k2!
(1 +O(δt + (tδdt )−1))

=
µ

(α1)
k1

µ
(α2)
k2

k1!k2!
(1 +O(δt + (tδdt )−1)).

Note that in this case the limiting covariance is the product of the suitable normalized

expectations,

Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
= (k1 + 1)(k2 + 1)t−1EV̂(α1)

k1
EV̂(α2)

k2
(1 + o(1)).

In the thermodynamic regime, tδdt tends to a constant c ∈ R, hence all terms in the sum

occurring in the covariance contribute in the same way. We differentiate between when

c < 1 and when c > 1. Accordingly to the sparse regime we obtain for c < 1

Q1Q2 = t δ
∑
αiki

t (tδdt )
∑ ki

2

for t sufficiently large, and by (4.9)

Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
=

k1+1∑
m=1

µ
(α1,α2)
k1,k2:m

m!(k1 −m+ 1)!(k2 −m+ 1)!
c
k1+k2

2
−m+1(1 + o(1)).

And rewriting m as k1 −m+ 1 gives the statement in the theorem.

Analogously, for c ≥ 1 we obtain by (4.13)

Cov
(
V̂(α1)
k1

, V̂(α2)
k2

)
=

k1+1∑
m=1

µ
(α1,α2)
k1,k2:m

m!(k1 −m+ 1)!(k2 −m+ 1)!
c−m+1(1 + o(1)).

And rewriting m as m+ 1 gives the statement in the theorem.

In both cases we see that the error term o(1) is given by

O(δt) +O(c− tδdt ). (4.14)

Putting things together we obtain the limiting covariance matrix of the random vector

(V̂(α1)
k1

, . . . , V̂(αn)
kn

). For this we call (k1, α1), . . . , (kn, αn) an admissible sequence if

(i) 0 ≤ k1 ≤ · · · ≤ kn,

(ii) the pairs (k1, α1), . . . , (kn, αn) are distinct,
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(iii) αi > −d+ ki − 1 and αi + αj > −d+ min
ij

kl − 1 for all i, j ∈ {1, . . . , n},

(iv) αi = 0 if ki > d.

First we rewrite the sum occurring in Theorem 4.6 in the case c < 1. The reason for

this is to leave the power of c without any ki’s. So we rewrite m as m−k2+k1
2 such that

m−k2+k1
2 ∈ {0, 1, 2, . . . , k1} or in other words m− k2 + k1 ∈ {0, 2, 4, . . . , 2k1}. We obtain

the following.

k1∑
m=0

µ
(α1,α2)
k1,k2:k1−m+1

(k1 −m+ 1)!m!(k2 − k1 +m)!
c
k2−k1

2
+m

=

∞∑
m=0

µ
(α1,α2)

k1,k2:
(k2+k1−m+2)

2

1(m− (k2 − k1) ∈ {0, 2, 4, . . . , 2k1})
(k2+k1−m+2

2 )!(m−k2+k1
2 )!(m+k2−k1

2 )!
c
m
2 .

We define for m = 0, . . . , 2kn the (n× n)-matrices

A<1
m =

(
µ

(α1,α2)

kl,kj :
(kl+kj−m+2)

2

1(m− |kl − kj | ∈ {0, 2, 4, . . . , 2 min ki})
(
kl+kj−m+2

2 )!(
m−kl+kj

2 )!(
m+kl−kj

2 )!

)
l,j=1,...,n

(4.15)

with min ki short for mini∈{j,l} ki, and for m = 0, . . . , kn

A>1
m =

(
µ

(αl,αj)
kl,kj :m+1

1(m ≤ min ki)

(m+ 1)!(kl −m)!(kj −m)!

)
l,j=1,...,n

. (4.16)

Note that for large m these matrices contain a large number of zeros. E.g., for kn−1 <

m ≤ kn the matrix A>1
m contains only one nonzero entry,

(A>1
m )nn =

µ
(αn,αn)
kn,kn:m+1

(m+ 1)!((kn −m)!)2
.

Recall the normalized volume-power functionals V̂(αi)
ki

= V(αi)
ki

/Qi defined in 4.4.

Theorem 4.7. Assume that (k1, α1), . . . , (kn, αn) is an admissible sequence. The

random vector (V̂(α1)
k1

, . . . , V̂(αn)
kn

) has the asymptotic covariance matrix

Σ =:



A<1
0 : lim

t→∞
tδdt = 0

2kn∑
m=0

A<1
m c

m
2 : lim

t→∞
tδdt = c ∈ (0, 1]

kn∑
m=0

A>1
m c−m : lim

t→∞
tδdt = c ∈ [1,∞)

A>1
0 : lim

t→∞
tδdt =∞

(4.17)

Clearly, in the case c = 1 the identity
∑
A<1
m =

∑
A>1
m is satisfied which follows from

the definitions (4.15) and (4.16).
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By Theorem 4.6, (4.7), the matrix A>1
0 takes the form of a tensor product.

A>1
0 =


...

µ
(αi)

ki
ki!
...

⊗


...

µ
(αi)

ki
ki!
...


Hence, in the dense case the covariance matrix Σ is of rank 1, and thus is singular in

this regime.

Also, the covariance matrix A<1
0 takes a particular nice form. Using (4.11) we see that

A<1
0 =

(
µ

(αl+αj)
kj

1(kl = kj)

(kj + 1)!

)
l,j=1,...,n

is a diagonal block matrix. A block is of size i if km = · · · = km+i−1, and then is a

constant times the matrix (
E∆

(αl+αj)
1

)
l,j=m,...,m+i−1

with ∆1 = ∆1[0, {Xl}kml=1]. Thus each block is a generalized moment matrix, and we

know by Theorem 4.2 that this is of full rank if αl 6= αj for l 6= j. Since all αi are

distinct, A<1
0 is of full rank.

Further, on c ∈ [0, 1] the determinant |Σ| of the covariance matrix Σ is a polynomial in c

with limc→0 |Σ| → |A<1
0 | > 0 and thus this polynomial is not trivial. Hence it has at most

finitely many zeros. Analogously, for c ∈ [1,∞) the determinant of Σ is a polynomial in

c. Because V̂(αi)
ki

on c ≥ 1 is just a renormalized version of V̂(αi)
ki

on c ≤ 1 the polynomial

is not trivial. (In the limit the renormalizations are just multiplications by c
ki
2 .) Hence

there are again only finitely many zeros of this polynomial. We summarize our findings.

Corollary 4.8. Assume that (k1, α1), . . . , (kn, αn) is an admissible sequence. Then the

rank of Σ equals n in the sparse regime. In the thermodynamic regime Σ is of rank n

except for finitely many values of c. In the dense regime Σ is of rank one.



5. Central Limit Theorems

In this chapter, the rate of convergence of the volume-power functionals to a Guassian

random variable and a Guassian random vector in the univariate and the multivariate

cases respectively is presented, with respect to the Vietoris-Rips complex. The existence

of the central limit theorem is also investigated for the different asymptotic regimes.

Finally, the Cech complex counter parts of previous results is stated.

A Poisson U-statistic is absolutely convergent if F =
∑

ηkt, 6=
|f(x1, . . . , xk)| is in L2(P).

Note that V(α)
k is an absolutely convergent U-statistic since all occurring functions are

bounded and vanish outside the compact convex set W .

Let F (1), . . . , F (n) be absolutely convergent Poisson U-statistics of order k1, . . . , kn re-

spectively,

F (l) =
∑

(x
(l)
1 ,...,x

(l)
kl

)∈ηklt, 6=

f (l)(x
(l)
1 , . . . , x

(l)
kl

)

for l = 1, . . . , n. It will be essential to define suitable partitions on the set of variables

{x(l)
1 , . . . , x

(l)
kl
}, l = 1, . . . , n, of f (l) : W kl → R̄.

5.1. The Fourth Moment Integrals

We recall from Section 2.4 the set of variables,

V (k1, . . . , kn) =
{
x

(1)
1 , . . . , x

(1)
k1
, x

(2)
1 , . . . , x

(n−1)
kn−1

, x
(n)
1 , . . . , x

(n)
kn

}
,

and

Π̃(k1, . . . , kn) =
{
σ ∈ P(V (k1, . . . , kn)) : σ ∧ π̄ = 0̂, σ ∨ π̄ = 1̂

}
,

where P(V (k1, . . . , kn)) the set of partitions of V (k1, . . . , kn). Clearly, each block of

σ ∈ Π̃(k1, . . . , kn) has at most n variables with different upper index l. In this section,

we shall be restricted to the case n = 4. So we have

V (k1, . . . , k4) =
{
x

(1)
1 , . . . , x

(1)
k1
, x

(2)
1 , . . . , x

(2)
k2
, x

(3)
1 , . . . , x

(3)
k3
, x

(4)
1 , . . . , x

(4)
k4

}
,

35
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which consists of four sets of variables, and with π̄ ∈ P(V (k1, . . . , k4)), the partition

whose blocks are the fundamental building blocks {x(l)
1 , . . . , x

(l)
kl
}, l = 1, . . . , 4, we have

Π̃(k1, . . . , k4) =
{
σ ∈ P(V (k1, . . . , k4)) : σ ∧ π̄ = 0̂, σ ∨ π̄ = 1̂

}
as the set of all partitions such that each block contains at most one element from

each of the building blocks {x(l)
1 , . . . , x

(l)
kl
}, l = 1, . . . , 4, and all four fundamental blocks

are connected. Clearly, for σ ∈ Π̃(k1, . . . , k4) it may happen that some variables are

singletons, and we define s(σ) = (s1, . . . , s4) to be the vector consisting of the number

of singletons in each of the building blocks.

As defined previously, we will need the notion of a 4-fold tensor product, ⊗4
l=1f

(l) :

W
∑4
l=1 kl → R, of functions f (l), given by

(
⊗4
l=1f

(l)
)

(x
(1)
1 , . . . , x

(4)
k4

) =

4∏
l=1

f (l)(x
(l)
1 , . . . , x

(l)
kl

).

For a partition, σ ∈ Π(k1, . . . , k4), we construct a new function, (⊗4
l=1f

(l))σ : W |σ| → R̄,

by replacing all variables that belong to the same block of σ by a new common variable.

We give an example below.

Let k1 = k2 = k3 = k4 = 2. Let F (l) =
∑

(x
(l)
1 ,x

(l)
2 )∈η2

t, 6=
f (l)(x

(l)
1 , x

(l)
2 ) for l = 1, 2, 3, 4.

Then

V (2, 2, 2, 2) = {x(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 , x

(3)
1 , x

(3)
2 , x

(4)
1 , x

(4)
2 }.

Let σ =
{
{x(1)

1 , x
(2)
1 , x

(3)
1 , x

(4)
1 }, {x

(1)
2 , x

(3)
2 }, {x

(2)
2 , x

(4)
2 }
}
∈ Π(k1, . . . , k4). Since there are

no singletons in any of the variables, s(σ) = (0, 0, 0, 0). Also, |σ| = 3 and (⊗4
l=1f

(l))σ :

W 3 → R̄ is given by

(⊗4
l=1f

(l))σ(y1, y2, y3) = f (1)(y1, y2)f (2)(y1, y3)f (3)(y1, y2)f (4)(y1, y3).

Finally we are able to introduce the functions Mij defined in [RS13] for the univariate

case and in [Sch13] for the multivariate case. The functions are given by

Mij(f
(l), f (m)) =

∑
σ∈Π̃(kl,kl,km,km)

s(σ)=(kl−i,kl−i,km−j,km−j)

∫
W |σ|

|(f (l) ⊗ f (l) ⊗ f (m) ⊗ f (m))σ| dµ|σ|

where in our case dµ is the intensity measure tdx. Apart from the precise definition

given above, the main point is that the functions Mij is something like a mixed fourth

moment of f (l) and f (m) where all functions are linked via the common use of some of

the variables. These functions Mij are the main ingredients in the central limit theorems

considered in the next sections.
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Remark 5.1. By Fubinis theorem one can integrate first the functions f (l) over the kl− i
free variables, i.e. singletons, which produces reduced functions f

(l)
i , and analogously

the functions f (m) over the km− j free variables producing f
(m)
j . In this form the result

was stated in [Sch13].

5.2. Univariate Central Limit Theorem

The Wasserstein distance, dW between a Poisson functional and a standard Guassian

random variable was given in [PSTU10] using Stein’s method and Malliavin calculus.

The following theorem states the result.

Theorem 5.2. Let F ∈ domD such that EF = 0, and let N be a standard Guassian

random variable. Then

dW (F,N) ≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+
∫
W
E
[
|DzF |2|DzL

−1F |
]

dµ(z)

≤
√
E(1− 〈DF,−DL−1F 〉L2(µ))

2 +

∫
W
E
[
|DzF |2|DzL

−1F |
]

dµ(z)

This together with Wiener-Itô chaos expansion of these Malliavin operators was used

in [RS13] to approximate this distance in terms of the fourth moment integrals Mij

discussed in the previous section.

Theorem 5.3. Let F = F (ηt) ∈ L2(P) be an absolutely convergent U-statistic of order

k with VF > 0, and N be a standard Gaussian random variable. Then

dW

(
F − EF√
VF

,N

)
≤ 2k

7
2

∑
1≤i≤j≤k

√
Mij(f, f)

VF
.

The univariate central limit theorem also uses the Kolmogorov distance dK of random

variables. Theorem 5.3 was extended to the Kolmogorov distance in [Sch16, Theorem

4.2].

Theorem 5.4. Let F = F (ηt) ∈ L2(P) be an absolutely convergent U-statistic of order

k with VF > 0, and N be a standard Gaussian random variable. Then

dK

(
F − EF√
VF

,N

)
≤ 19k5

k∑
i,j=1

√
Mij(f, f)

VF
.

To get a central limit theorem in these distances, we only need to show that the fourth

moment integrals, Mij tend to 0. We now apply the above to V(α)
k as an absolutely

convergent U-statistic.
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In the following theorem we assume that 4α > −d+ k − 1 for 0 ≤ k ≤ d and α = 0 for

k > d.

Theorem 5.5. Let N be a standard Gaussian random variable. Then for d? = dW or

d? = dK there is a constant ck,α such that

d?

(
Vαk − EVαk√

VVαk
, N

)
≤ ck,αt−

1
2 max{(tδdt )−

k
2 , 1}. (5.1)

Remark 5.6. Note that it was to be expected that a central limit theorem only holds

if Efk → ∞ which happens if t(tδdt )k → ∞. It turns out that this is precisely the

requirement in Theorem 5.5.

In the case α = 0, Theorem 5.5 just gives a univariate central limit theorem for the

number of facets. For the Kolmogorov distance this is already well known due to work

by Penrose [Pen03] although the central limit theorems there come without error term.

In a recent paper by Lachiéze-Rey, Schulte and Yukich [LRSY19] the error terms for the

thermodynamic regime and the dense regime have been obtained as a consequence of a

much more general theorem for stabilizing functionals. For the Wasserstein distance a

central limit theorem with error bounds is due to Decreusefond et al. [DFRV14].

Proof of Theorem 5.5. We apply Theorem 5.3. V(α)
k is an absolutely convergent Poisson

U-statistic of order k + 1 with

f(x0, . . . , xk) =
1

(k + 1)!
∆δt [{xl}kl=0]α.

We have to show that the functionals Mij tend to zero. We take a closer look at the

summands in Mij in this case, that is,∫
W |σ|

|(f ⊗ f ⊗ f ⊗ f)σ| dµ|σ|

They are of the form

t|σ|

(k + 1)!4

∫
W |σ|

(∆δt [·]α ⊗∆δt [·]α ⊗∆δt [·]α ⊗∆δt [·]α)σ dx0 . . . dx|σ|−1

where the functionals are positive and depend on simplices of dimension k. The essential

feature in the definition of σ is that all four functionals ∆δt [·] are linked by common

variables, and each of these functionals depends on k+1 variables. First, for the number

|σ| of variables, by using (2.8) this implies

k + 1 ≤ |σ| ≤ 4k + 1, (5.2)
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where 4k + 1 = 4(k + 1) − 3 is using the fact that if all are connected by at least one

variable, then we have 3 possible blocks less.

Second, assuming without loss of generality, that x0 occurs in the first functional, e.g.

∆δt [·] = ∆δt [{·}k0], all other variables in this first function are at most at distance δt, in

the functional directly linked to the first one by at most 2δt, etc. Thus

max ‖xi − x0‖ ≤ 4δt

if the integrand is not vanishing, and we write this in the form ∆4δt [{xl}
|σ|−1
l=0 ]0. We use

this and apply Hölder’s inequality, which gives the bound∫
W |σ|

(∆δt [·]α ⊗∆δt [·]α ⊗∆δt [·]α ⊗∆δt [·]α)σ dx0 . . . dx|σ|−1

≤
∫

W |σ|

∆δt [{xl}kl=0]4α∆4δt [{xl}
|σ|−1
l=0 ]0 dx0 . . . dx|σ|−1

Now substituting xi = δtx̃i + x0 for i ≥ 1, changing the order of integration and inte-

grating over x0 while noting that Vol(W ) = 1 gives∫
W |σ|

(∆δt [·]α ⊗∆δt [·]α ⊗∆δt [·]α ⊗∆δt [·]α)σ dx0 . . . dx|σ|−1

≤ δ4kα+d(|σ|−1)
t

∫
W

∫
(δ−1
t (W−x0)∩4Bd)|σ|−1

∆1[0, {x̃l}kl=1]4α dx̃1 . . . dx̃|σ|−1 dx0

≤ δ4kα+d(|σ|−1)
t

∫
(4Bd)|σ|−1

∆1[0, {x̃l}kl=1]4α dx̃1 . . . dx̃|σ|−1

= δ
4kα+d(|σ|−1)
t

∫
(4Bd)|σ|−k−1

∫
(4Bd)k

∆1[0, {x̃l}kl=1]4α dx̃1 . . . dx̃|σ|−1

= δ
4kα+d(|σ|−1)
t (4κd)

|σ|−k−1µ
(4α)
k .

By Lemma 3.5, this is finite for 4α > −d + k − 1. By (5.2) and the definition of Mij ,

this implies

Mij(∆δt [·]α,∆δt [·]α) =
∑
σ

t|σ|

(k + 1)!4
δ

4kα+d(|σ|−1)
t (4κd)

|σ|−k−1µ
(4α)
k

=
∑
σ

t(tδdt )|σ|−1

(k + 1)!4
δ4kα
t (4κd)

|σ|−k−1µ
(4α)
k

≤ c2t δ
4kα
t max{(tδdt )k, (tδdt )4k}
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with some c2 > 0 depending on α and k. Next we use the variance asymptotics from

Theorem 4.3. Recall that

VV(α)
k =

k+1∑
m=1

µ
(α,α)
k,k:m

m!((k −m+ 1)!)2
t2k−m+2δ

d(2k−m+1)
t δ2αk

t (1 + o(1)).

Since the maximum term is always attained either at m = 1 or m = k + 1, they imply

VV(α)
k ≥ c3tδ

2αk
t max{(tδdt )k, (tδdt )2k}

with some c3 > 0 for δt sufficiently small. This shows√
Mij(∆δt [·]α,∆δt [·]α)

VV(α)
k

≤
√
c2t

1
2 δ2kα

t max{(tδdt )
k
2 , (tδdt )2k}

c3tδ2αk
t max{(tδdt )k, (tδdt )2k}

= c4t
− 1

2 max{(tδdt )−
k
2 , 1}

where c4 depends on k and α. Summing over all Mij in both distances dW and dK gives

the desired result.

Remark 5.7. Next, we explore in which regimes we have a central limit theorem. This

is obtained when the RHS of (5.1) goes to 0 in the limit. Clearly, this happens when

tδdt ∈ (1,∞].

In the dense regime, since tδdt
t→∞−−−→ ∞, the RHS of (5.1) gives ck,αt

− 1
2 which goes to 0

in the limit. In this case, the central limit theorem holds with rate of convergence t−
1
2 .

In the thermodynamic regime, tδdt
t→∞−−−→ c ∈ (0,∞), we have to differentiate between

two cases. For c ∈ [1,∞), we have the same results as in the dense regime. But for

c ∈ (0, 1), the RHS of (5.1) gives ck,α(t(tδdt )k)−
1
2 and the central limit theorem does not

hold if c is close to 0 enough.

In the sparse regime, it’s clear that the central limit theorem does not hold except

t(tδdt )k = Efk → ∞, in the case for example where δt = t−
1
d e−

t
dk , which makes (tδdt )k)

go to 0 slower than δt goes to ∞.

5.3. Multivariate Central Limit Theorem

In this section, for a random vector of volume-power functionals, we seek a multivariate

central limit theorem. The multivariate central limit theorem makes use of the d3-

distance, already introduced earlier, which is obtained by taking C3
1 to be the set of

functions g : Rn → R that are three times differentiable and all partial derivatives of

order 2 and 3 are bounded by 1.
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It was first proven in [PZ10, Theorem 4.2] for a vector of Poisson functionals, by making

use of the Malliavin calculus and an interpolation technique. It was then proven for a

vector of absolutely convergent Poisson U-statistics in [Sch16, Theorem 6.3]. The later

result is presented below.

Theorem 5.8. Let F = (F (1), . . . , F (n)) be a vector of absolutely convergent Poisson

U -statistics of orders k1, . . . , kn,

F (l) =
∑

(x1,...,xkl )∈η
kl
t,6=

f (l)(x1, . . . , xkl).

And let N(Σ) be an n-dimensional centered Gaussian random vector with a positive

semidefinite covariance matrix Σ. Then

d3

(
F − EF ,N(Σ)

)
≤ 1

2

n∑
l,m=1

|σlm − Cov(F (l), F (m))|

+
n

2

( n∑
l=1

√
VF (l) + 1

) n∑
l,m=1

kl∑
i=1

km∑
j=1

k
7
2
l

√
Mij(f (l), f (m)).

We shall seek to bound the terms on the right hand side.

Recall the definition of the normalized volume-power functionals V̂(αi)
ki

= V(αi)
ki

/Qi with

Qi defined in (4.5).

Theorem 5.9. Assume that (k1, α1), . . . , (kn, αn) is an admissible sequence with 4αi >

−d + ki − 1 for all i ∈ {1, . . . , n}. Let V
(α)
k = (V̂(α1)

k1
, . . . , V̂(αn)

kn
), and let N(Σt) be the

centered n-dimensional Gaussian random vector with covariance matrix

Σt = (σlm)l,m with σlm = Cov(V̂(αl)
kl

, V̂(αm)
km

).

Then there is a constant ck,α such that

d3

(
V

(α)
k − EV (α)

k ,N(Σt)

)
≤ ck,αt

− 1
2 max{1, (tδdt )−

1
2
kn}.

Thus in the dense and thermodynamic regime a central limit theorem holds with rate of

convergence t−
1
2 which most probably is optimal. In the sparse regime, where tδdt → 0,

the rate of convergence is

t−
1
2 (tδdt )−

1
2
kn = Θ((Efkn(R(ηt, δt)))

− 1
2 ),

and thus there is a multivariate central limit theorem as long as the expectation Efk tend

to infinity for all k ∈ k. To the best of our knowledge, Theorem 5.9 is new even in the

case αi = 0 where we obtain a central limit theorem for the f -vector of the Vietoris-Rips

complex, and similar for the Čech complex in the next section.
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In the view of the first term on the RHS in Theorem 5.8, it is of interest to state the

difference between Σt and the limiting covariance matrix Σ given in (4.17). By equations

(4.10), (4.11), (4.13), and (4.14) we see that in the sparse case

1

2

n∑
l,m=1

|σlm − Cov(V̂(αl)
kl

, V̂(αm)
km

)| ≤ O(δt + tδdt ),

that in the thermodynamic regime, where lim
t→∞

tδdt = c ∈ (0,∞), this error term is of

order

O(δt + (c− tδdt )),

and in the dense regime of order

O(δt + (tδdt )−1).

Thus the d3-distance d3(V
(α)
k − EV (α)

k ,N(Σ)) would have this additional error terms.

Proof of Theorem 5.9. We apply Theorem 5.8 to V
(α)
k = (V̂(α1)

k1
, . . . , V̂(αn)

kn
), a vector of

absolutely convergent Poisson U -statistics of orders k1 + 1, . . . , kn + 1.

By definition the first term on the RHS in Theorem 5.8 vanishes. And by Theorem 4.6

the variance VV̂(αl)
kl

tends to a constant. Hence we just have to show that the functionals

Mij tend to zero. In our case the summands in Mij take the form

t|σ|

(kl + 1)!2(km + 1)!2

∫
W |σ|

(∆δt [·]αl ⊗∆δt [·]αl ⊗∆δt [·]αm ⊗∆δt [·]αm)σ
Q2
lQ

2
m

dx0 . . . dx|σ|−1

where the first two functionals depend on simplices of volume kl and the other two on

simplices of dimension km. Assume from now on that kl ≤ km. The essential feature

in the definition of σ is that all four functionals ∆δt [·] are linked by common variables,

and each of these functionals depends on kl + 1, resp. km + 1 variables. First, for the

number |σ| of variables this implies

max{kl, km}+ 1 = km + 1 ≤ |σ| ≤ 2(kl + km) + 1 (5.3)

since kl ≤ km. Second, assuming w.l.o.g. that x0 occurs in the first functional, ∆δt [·] =

∆δt [{·}
kl
0 ], all other variables are at most at distance 4δt, and we write this again in the

form ∆4δt [{xj}
|σ|−1
j=0 ]0. We use this and apply Hölder’s inequality, which gives the bound∫

W |σ|

(∆δt [·]αl ⊗∆δt [·]αl ⊗∆δt [·]αm ⊗∆δt [·]αm)σ
Q2
lQ

2
m

dx0 . . . dx|σ|−1
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≤
∏

i∈{l,m}

 ∫
W |σ|

∆δt [·]4αi
Q4
i

∆4δt [{xj}
|σ|−1
j=0 ]0 dx0 . . . dx|σ|−1


1
2

Now substituting xj = δtx̃j + x0 for j ≥ 1, changing the order of integration and

integrating over x0 gives∫
W |σ|

(∆δt [·]αl ⊗∆δt [·]αl ⊗∆δt [·]αm ⊗∆δt [·]αm)σ
Q2
lQ

2
m

dx0 . . . dx|σ|−1

≤
∏

i∈{l,m}

δ
2kiαi+

1
2
d(|σ|−1)

t

 ∫
W

∫
(δ−1
t (W−x0)∩4Bd)|σ|−1

∆1[0, {x̃j}kij=1]4αi

Q4
i

dx̃1 . . . dx̃|σ|−1 dx0


1
2

≤
∏

i∈{l,m}

δ
2kiαi+

1
2
d(|σ|−1)

t

 ∫
(4Bd)|σ|−1

∆1[0, {x̃j}kij=1]4αi

Q4
i

dx̃1 . . . dx̃|σ|−1


1
2

=
δ

2(klαl+kmαm)+d(|σ|−1)
t

Q2
lQ

2
m

∏
i∈{l,m}

(
(4κd)|σ|−1−kiµ

(4αi)
ki

) 1
2
.

By Lemma 4.1, this is finite for 4αi > −d + ki − 1 for i ∈ {l,m}. By (5.3) and the

definition of Mij , this implies

Mij

(
∆δt [·]αl
Ql

,
∆δt [·]αm
Qm

)
=

∑
α

t|σ|δ
2(klαl+kmαm)+d(|σ|−1)
t

(kl + 1)!2(km + 1)!2Q2
lQ

2
m

∏
i∈{l,m}

(
(4κd)|σ|−1−kiµ

(4αi)
ki

) 1
2

≤ c2t
δ

2(klαl+kmαm)
t

Q2
lQ

2
m

max{(tδdt )km , (tδdt )2(kl+km)}

with c2 depending on k,α. Plugging the definition (4.5) of Qi into this shows

Mij

(
∆δt [·]αl
Ql

,
∆δt [·]αm
Qm

)
≤ c2t

δ
2(klαl+kmαm)
t max{(tδdt )km , (tδdt )2(kl+km)}

tδ2αlkl
t max{(tδdt )2kl , (tδdt )kl}tδ2αmkm

t max{(tδdt )2km , (tδdt )km}

= c2t
−1 max{(tδdt )km , (tδdt )2(kl+km)}

max{(tδdt )kl+km , (tδdt )2(kl+km)}
= c2t

−1 max{1, (tδdt )−kl}.

The sum over all Mij yields

n∑
l,m=1

kl+1∑
i=1

km+1∑
j=1

(kl + 1)
7
2

√
Mij(f (l), f (m)) =

n∑
l,m=1

kl+1∑
i=1

km+1∑
j=1

(kl + 1)
7
2
√
c2 t
− 1

2 max{1, (tδdt )−
1
2
kl}

≤
n∑

l,m=1

c3t
− 1

2 max{1, (tδdt )−
1
2
kl}
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≤ c4t
− 1

2 max{1, (tδdt )−
1
2
kn}

with constants depending on k and α.

5.4. The Čech complex

It follows from the definition of the Vietoris-Rips complex and the Čech complex that

C(ηt, δt) ⊂ R(ηt, δt) ⊂ C(ηt, ( 2d
d+1)

1
2 δt).

That the optimal factor in the second inclusion is ( 2d
d+1)

1
2 was shown by de Silva and

Ghrist [dSG07, Theorem 2.5]. Hence all bounds obtained for the Vietoris-Rips complex

hold true for the Čech complex with constants changed by a factor of ( 2d
d+1)

1
2 . The

constants in the expectation and covariance change in the following way. Denote by

∆c
s[x0, . . . xk] the k-dimensional volume of the convex hull of the points x0, . . . , xk if the

intersection
⋂k

1 B
d(xi,

s
2) is not empty, and set ∆c

s[x0, . . . , xk] = 0 otherwise. In the case

k > d we only define ∆c
s[x0, . . . xk]

0 = 1 if the intersection property holds. Thus for all

k ≥ 0,

F ∈ Ck(R(ηt, δt))⇔ ∆c
δt(F )0 = 1.

We define

ζ
(α)
k =

∫
(Bd)k

∆c
1[0, {xl}kl=1]α dx1 · · · dxk

with ζ
(α)
0 = 1. In the case k > d the definition only applies to α = 0. Again α > −d+k−1

ensures that ζ
(α)
k <∞. The volume-power functional of the Čech complex is given by

U (α)
k =

1

(k + 1)!

∑
(x0,...,xk)∈ηkt, 6=

∆c
δt [{xl}

k
l=0]α.

Then the Čech complex version of Theorem 3.6 holds for U (α)
k with µ

(α)
k replaced by

ζ
(α)
k . Analogously, define

ζ
(α1,α2)
k1,k2:m =

∫
(Bd)k1+k2+1−m

∆c
1[0, {xl}k1

l=1]α1∆c
1[0, {xl}k1+k2−m+1

l=k1−m+2 ]α2

dx1 · · · dxk1+k2−m+1.

Then Theorem 4.3, Theorem 4.6 and Theorem 4.7 hold for U (αi)
ki

with a covariance

matrix Σc with µ
(α1,α2)
k1,k2:m replaced by ζ

(α1,α2)
k1,k2:m. Finally, the proofs of the central limit

theorems only depend on the local behavior of the random simplicial complexes and
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thus the identical proof holds for the Čech complex. Define the normalized volume-

power functionals by

Û (αi)
ki

=
1

Qi
U (αi)
ki

with Qi defined in (4.5), and let U
(α)
k = (Û (α)

k1
, . . . , Û (α)

kn
). Assume that (k1, α1), . . . ,

(kn, αn) is an admissible sequence with 4αi > −d+ ki − 1 for all i ∈ {1, . . . , n}.

Theorem 5.10. For d? = dW or d? = dK there is a constant ck such that

d?

(
Uαk − EUαk√

VUαk
, N

)
≤ ckt−

1
2 max{(tδdt )−

k
2 , 1}.

And there is a constant ck,α such that

d3

(
U

(α)
k − EU (α)

k ,N(Σc
t)

)
≤ ck,αt

− 1
2 max{1, (tδdt )−

1
2
kn}

where Σc
t is the covariance matrix Σc

t = (Cov(Û (αl)
kl

, Û (αm)
km

))lm.



6. Poisson Limit Theorem

6.1. The f-vector

Recall that the f -vector of a simplicial complex, ∆, is given by

(f0(∆), f1(∆), f2(∆) . . .)

where fi(∆) is the number of i-dimensional simplices in the simplicial complex.

We are interested in the Poisson functional which counts the k-simplices in the Vietoris-

Rips complex, that is, fk = fk(R(ηt, δt)). So we consider the entries of the f -vector

(fk)k≥0 = (fk(R(ηt, δt)))k≥0 of the Vietoris-Rips complex. Once again we consider the

Poisson point process, ηt, with intensity t > 0, and intensity measure µ, on a state space,

W .

We denote by Fs[x0, . . . xk] the indicator function asking if, in the convex hull of the

points x0, . . . , xk ∈W , all edges have length at most s. That is,

Fs[x0, . . . xk] =
k∏

i,j=0

1(‖xi − xj‖ ≤ s).

We write Fs[{xl}kl=0] = Fs[x0, . . . xk] for a short notation. We note that Fs[{xl}kl=0] =

∆s[{xl}kl=0]0 where ∆s[{xl}kl=0] has been defined earlier to be the k-dimensional volume

of the convex hull of the points x0, . . . , xk if all edges have length at most s, and 0

otherwise.

Relating these to the Poisson functional V(α)
k discussed in previous chapters, we observe

that

fk = V(0)
k =

1

(k + 1)!

∑
(x0,...,xk)∈ηk+1

t,6=

Fδt [x0, . . . , xk]. (6.1)

It is clear that this functional is N-valued.

46
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By Theorem 3.6 and Theorem 4.3, the expectation and variance of fk is given by

Efk =
µk

(k + 1)!
t(tδdt )k(1 +O(δt)) (6.2)

and

V fk =

k+1∑
m=1

µk,k:m

m!((k −m+ 1)!)2
t(tδt)

2k−m+1(1 +O(δt)) (6.3)

respectively, where

µk = µ
(0)
k =

∫
(Bd)k

F1[0, {xl}kl=1] dx1 · · · dxk (6.4)

and

µk,k:m = µ
(0,0)
k,k:m =

∫
(Bd)2k−m+1

F1[0, {xl}kl=1]F1[0, {xl}2k−m+1
l=k−m+2] dx1 · · · dx2k−m+1

as defined in (3.3) and (4.1).

We note by (4.3) that for m = k + 1,

µk,k:k+1 = µk. (6.5)

The next Lemma shows the connection between the expectation and variance of fk in

the sparse regime.

Lemma 6.1. In the sparse regime,

V fk = Efk

[
1 +O(tδdt )

]
.

Proof. By (6.2) and (6.3) together with (6.5), we observe that the summand at m = k+1

in V fk is precisely Efk, so that we have

V fk = Efk +

[ k∑
m=1

µk,k:m

m!((k −m+ 1)!)2
t(tδdt )2k+1−m

]
[1 +O(δt)]

= Efk + t(tδdt )k
[ k∑
m=1

µk,k:m

m!((k −m+ 1)!)2
(tδdt )k+1−m

]
[1 +O(δt)]

= Efk +
(k + 1)!

µk
Efk

[ k∑
m=1

µk,k:m

m!((k −m+ 1)!)2
(tδdt )k+1−m

]
= Efk [1 +O(tδdt )].

Remark 6.2.
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(i) Lemma 6.1 implies that if Efk → c in the sparse regime, that is, lim
t→∞

tδdt = 0, then

V fk → c in the limit. In this case, we hope to get a Poisson limit theorem for fk.

(ii) We observe from (6.2) that for i, j ∈ N, i ≤ k,

Efk−i = (tδdt )−iEfk and Efk+j = (tδdt )jEfk.

Thus, in the sparse regime, once Efk tends to a constant, c, then Efk−i →∞ and

Efk+j → 0 immediately. This makes it impossible to get a multivariate Poisson

limit theorem for the f -vector.

6.2. Moments of First and Second Order

Difference Operators

We recall the difference operator, DzF , defined by

DzF = F (η + δz)− F (η),

for a Poisson functional F and z ∈W . This definition applied to a Poisson U-statistic

F =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

of order k yields

DzF = k
∑

(x1,...,xk−1)∈ηk−1
6=

f(z, x1, . . . , xk−1)

by the symmetry of f , and more generally, for n ≤ k, we have

Dz1,...,znF =
k!

(k − n)!

∑
(x1,...,xk−n)∈ηk−n6=

f(z1, . . . , zn, x1, . . . , xk−n).

We note by (6.1) that fk is a Poisson U-statistic of order k + 1, so that we have by

applying the difference operator

Dyfk =
1

k!

∑
(x0,...,xk−1)∈η(k)

t, 6=

Fδt [y, {xl}k−1
l=0 ]

and

Dy1,y2fk =
1

(k − 1)!

∑
(x0,...,xk−2)∈η(k−1)

t,6=

Fδt [y1, y2, {xl}k−2
l=0 ]
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for y, y1, y2 ∈W .

The following formula was given in [Sch13, Theorem 3.4] for the moments of Poisson

U-statistics using the notion of partitions discussed earlier.

Theorem 6.3. Let F (1), . . . , F (n), n ≥ 2, be Poisson U-statistics given by

F (l) =
∑

(x1,...,xkl )∈η
kl
t, 6=

f (l)(x1, . . . , xkl)

with f (l) ∈ L1
s(µ

kl), kl ∈ N for l = 1, . . . , n with the assumption that∫
W |σ|

∣∣∣(⊗nl=1f
(l)
)
σ

∣∣∣ dµ|σ| <∞

for all σ ∈ Π(k1, . . . , kn). Then

E

n∏
l=1

F (l) =
∑

α∈Π(k1,...,kn)

∫
W |σ|

(⊗nl=1f(l))α dµ|σ|.

We seek to evaluate moments of Dyfk and Dy1,y2fk for y, y1, y2 ∈ W . We use the

following notations for p ≥ 2.

F⊗p := F ⊗ · · · ⊗ F, p copies, and {k}p := {k, . . . , k}, p elements.

For k independently and uniformly distributed points in the unit ball, {Xl}k−1
l=0 , which

form a random k-simplex with the origin, we denote by µ|σ|,p its p-tensor product par-

titioned by σ ∈ Π({k}p), if all edges are bounded by one.

µ|σ|,p =

∫
(Bd)|σ|

(
F1[0, {xl}k−1

l=0 ]⊗p
)
σ

dx1 . . . dx|σ|.

Next, we evaluate µ|σ|,p for |σ| = k which we would need in the sequel.

For |σ| = k, each block in σ ∈ Π({k}p) contains p variables, one from each functional.

Thus, we have in this case that(
F1[0, {xl}k−1

l=0 ]⊗p
)
σ

=
(
F1[0, {xl}k−1

l=0 ]
)p

= F1[0, {xl}k−1
l=0 ]

since F1[0, {xl}k−1
l=0 ] is a product of indicator functions. Thus, µk,p = µk for all p, where

µk is given by (6.4).

Lemma 6.4. Let y ∈W and p ≥ 2, there is a constant ck,p depending only on k and p

such that

E [(Dyfk)
p] = (tδdt )k

[µk
k!

+ ck,p(tδ
d
t ) +O((tδdt )2)

]
(1 +O(δt))
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Proof. The functionals Fδt [y, ·] are indeed a product of indicator functions and depend

on k-simplices, where the vertex y connects all vertices of a (k−1)-simplex. We note that(
Fδt [y, {xl}k−1

l=0 ]⊗p
)
σ

is a p-product of these functionals with variables determined by the

partition σ. Also, since σ ∈ Π({k}p), these p functionals are not necessarily connected in

these variables, they only need be connected in y. Below, we will substitute xi = δtx̃i+y

in the integral and recall that δ−1
t (W − y) ∩Bd = Bd for y ∈W−δt . Thus we have

E [(Dyfk)
p] =

1

k!p

∑
σ∈Π({k}p)

∫
W |σ|

(
Fδt [y, {xl}k−1

l=0 ]⊗p
)
σ

dµ|σ|

=
1

k!p

∑
σ∈Π({k}p)

t|σ|δ
d|σ|
t

∫
(δ−1
t (W−y)∩Bd)|σ|

(
F1[0, {x̃l}k−1

l=0 ]⊗p
)
σ

dx̃1 . . . dx̃|σ|

=
1

k!p

∑
σ∈Π({k}p)

µ|σ|,p(tδ
d
t )|σ|(1 +O(δt))

Now, by (2.8), we have k ≤ |σ| ≤ pk. Since the sparse regime is under consideration,

the maximum summand is the one for which |σ| is least, that is |σ| = k. By Theorem

2.9 and Remark 2.10 (iii), the total number of such partitions σ ∈ Π({k}p) such that

|σ| = k, is k!(p−1).

We now move a step further. For σ ∈ Π({k}p) such that |σ| = k + 1, again by Remark

2.10 (iv), the total number of such partitions is given by

kk!p−1
p−2∑
i=0

(k + 1)i.

We note that for p = 2, this number is kk!.

We thus have

E [(Dyfk)
p] =

1

k!p

∑
σ∈Π({k}p)

µ|σ|,p(tδ
d
t )|σ|(1 +O(δt))

= k!(p−1)µk,p(tδ
d
t )k

k!p
+ kk!(p−1)

p−2∑
i=0

(k + 1)i
µk+1,p(tδ

d
t )k+1

k!p
+ · · · (1 +O(δt))

= (tδdt )k
[µk
k!

+ ck,p(tδ
d
t ) +O((tδdt )2)

]
(1 +O(δt))

where ck,p =
µk+1,p

∑p−2
i=0 (k + 1)i

(k − 1)!
.

Remark 6.5.
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(i) We were particular about getting an equality in the above lemma and not an upper

bound. This will be useful in the Poisson approximation which we will encounter

later.

(ii) For any value of p we have the following upper bound since tδdt → 0.

E
[
(Dyfk)

p
]
≤ c′k,p

µk(tδ
d
t )k

k!
.

Lemma 6.6. For y, y1, y2 ∈W ,

E
[
(D2

y1,y2
fk)

4
]
≤ ck(tδdt )k−1

Proof. For
(
Fδt [y1, y2, {xl}k−2

l=0 ]⊗4
)
σ
, σ ∈ Π({k−1}4), we observe that all functionals are

linked by y1 and y2 but not necessarily by other variables, so that k−1 ≤ |σ| ≤ 4(k−1).

Also max ‖xi − y1‖ ≤ 4δt for all the variables, and although this holds for y2, it is

enough since y1 and y2 are connected. We evaluate as follows.

E
[
(D2

y1,y2
fk)

4
]

=
1

(k − 1)!4

∑
σ∈Π({k−1}4)

∫
W |σ|

(
Fδt [y1, y2, {xl}k−2

l=0 ]⊗4
)
σ

dµ|σ|

≤ 1

(k − 1)!4

∑
σ∈Π({k−1}4)

t|σ|
∫
W |σ|

1(∀i : ‖xi − y1‖ ≤ 4δt, ‖y1 − y2‖ ≤ δt)

dx0 . . . dx|σ|−1

≤ 1

(k − 1)!4

∑
σ∈Π({k−1}4)

t|σ|(4δt)
d|σ| 1(y1 ∈ B(y2, δt))

≤ ck max{(tδdt )k−1, (tδdt )4(k−1)} 1(y1 ∈ B(y2, δt))

= ck(tδ
d
t )k−1 1(y1 ∈ B(y2, δt)),

being in the sparse regime, where ck is a constant depending only on k and d.

6.3. Poisson limit theorem for Poisson

Functionals

The Stein’s method together with Malliavin calculus have been effective in get a normal

approximation for a Poisson functional. Its analogue known as the Chen-Stein method

is used in Poisson approximations, that is, how close a random variable is to a Poisson

distribution. The total variation distance has been effective for these kind of approxi-

mations. It is essential that the random variables considered in this case are Z+-valued

with positive expectations.

The Chen-Stein method was used in [BP16] to get a Poisson approximation for Poisson

functionals as given below.
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Theorem 6.7. Let Z ∼ Po(c), c > 0 and assume that F ∈ L2(P) is an element of

dom D such that EF = c and F takes values in Z+. Then

dTV (F,Z) ≤ 1− e−c

c
E|c− 〈DF,−DL−1F 〉L2(µ)|

+
1− e−c

c2
E

[ ∫
W
|DzF (DzF − 1)DzL

−1F | dµ(z)

]

≤ 1− e−c

c

√[
E
(
c− 〈DF,−DL−1F 〉L2(µ)

)2]
+

1− e−c

c2
E

[ ∫
W
|DzF (DzF − 1)DzL

−1F | dµ(z)

]
.

We compare the above theorem with the normal approximation given in Theorem 5.2.

The expectations in the first term have similar evaluations since the value of the variance

is 1 in the normal approximation, being a normalised random variable and the variance

in the Poisson approximation is c. This informs the similarity in the first two summands

of [LPS16, Theorem 1.1] and [Gry19, Theorem 1.2]. The later is given below.

First, we define

γ1(F ) :=

∫
W 3

(
E
[
(D2

x1,x3
F )4

]
E
[
(D2

x2,x3
F )4

]
E
[
(Dx1F )4

]
E
[
(Dx2F )4

]) 1
4

dµ3(x1, x2, x3)

γ2(F ) :=

∫
W 3

(
E
[
(D2

x1,x3
F )4

]
E
[
(D2

x2,x3
F )4

]) 1
2

dµ3(x1, x2, x3)

γ3(F ) :=

∫
W

(
E|DxF (DxF − 1)|2

) 1
2
(
E|DxF |2

) 1
2

dµ(x) (6.6)

Theorem 6.8. Let F be a N-valued Poisson functional satisfing F ∈ domD, and let

Z ∼ P(c), that is, a Poisson distributed random variable with parameter c > 0. Then

dTV (F,Z) ≤ 1− e−c

c

(
2
√
γ1(F ) +

√
γ2(F ) +

γ3(F )

c
+ |EF − c| + |VF − c|

)
.

We now present the main theorem in this section, that is the Poisson approximation for

fk, the k-th component of the f -vector. First, we have the following.

Lemma 6.9. There are contants C1, C2 and C3 depending on k such that

(i) γ1(fk) ≤ C1t(tδ
d
t )k+ 3

2 ,

(ii) γ2(fk) ≤ C2t(tδ
d
t )k+1,

(iii) γ3(fk) ≤ C3t(tδ
d
t )k+ 1

2 ,

Proof. We apply 6.6, Remark 6.5 and Lemmas 6.4 and 6.6 to get the following.



Poisson limit theorem 53

(i)

γ1(fk) ≤ t3
∫
W 3

(
ck(tδ

d
t )k−1 1(x1 ∈ B(x3, δt))ck(tδ

d
t )k−1 1(x2 ∈ B(x3, δt))

c′k,4
µk(tδ

d
t )k

k!
c′k,4

µk(tδ
d
t )k

k!

) 1
4

dx1dx2dx3

≤ t3
∫
W 3

c′k

(
(tδdt )2(k−1)(tδdt )2k

) 1
4
1(x1, x2 ∈ B(x3, δt)) dx1dx2dx3

≤ C1t(tδ
d
t )2(tδdt )k−

1
2

= C1t(tδ
d
t )k+ 3

2 .

(ii)

γ2(fk) ≤ t3
∫
W 3

(
ck(tδ

d
t )k−1 1(x1 ∈ B(yx3, δt))ck(tδ

d
t )k−1 1(x2 ∈ B(x3, δt))

) 1
2

dx1dx2dx3

≤ t3
∫
W 3

ck

(
(tδdt )2(k−1)

) 1
2
1(x1, x2 ∈ B(x3, δt)) dx1dx2dx3

≤ C1t(tδ
d
t )2(tδdt )k−1

= C1t(tδ
d
t )k+1.

(iii) Here the first terms in the expectations cancel out which is the reason why we

needed an equality in Lemma 6.4.

γ3(fk) = t

∫
W

(
E(Dxfk)

4 − 2E(Dxfk)
3 + E(Dxfk)

2
) 1

2
(
E(Dxfk)

2
) 1

2
dx

= t

∫
W

(
(tδdt )k

[µk
k!

+ ck,4(tδdt )− 2
(µk
k!

+ ck,3(tδdt )
)

+
µk
k!

+ ck,2(tδdt ) +O((tδdt )2)
]) 1

2

(
(tδdt )k

[µk
k!

+ ck,2(tδdt ) +O((tδdt )2)
]) 1

2
(1 +O(δt)) dx

≤ t(tδdt )k
∫
W
ck(tδ

d
t )

1
2 (1 +O(δt) +O(tδdt )) dx

≤ C3t(tδ
d
t )k+ 1

2 .

In the sparse regime, we consider the case where Efk tends to a constant in (0,∞). This

happens when t(tδdt )k tends to a constant in the limit.

We have the following error term for the Poisson approximation.

Theorem 6.10.
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(i) Let Efk = ct, ct > 0 and Zt ∼ P(ct). Then in the sparse regime, for some constant

ck,t depeding only on k and t, we have

dTV (fk, Zt) ≤ ck,tt−
1
2k

in the limit.

(ii) From (i), let ct
t→∞−−−→ c in the sparse regime, and Z ∼ P(c), c > 0. Then for some

constant ck depeding only on k, we have

dTV (fk, Z) ≤ ckt−
1
2k + |Efk − c|

in the limit.

Proof.

(i) We note by the hypothesis of the theorem that t(tδdt )k is a constant, which implies

that tδdt = t−
1
k up to a constant. By Theorem 6.8 and Lemma 6.1, we have,

dTV (fk, Zt) ≤
1− e−ct

ct

(
2(C1t(tδ

d
t )k+ 3

2 )
1
2 + (C2t(tδ

d
t )k+1)

1
2 +

C3

ct
t(tδdt )k+ 1

2 + |Vfk − ct|
)

≤ 1− e−ct
ct

ck,t

(
t−

3
4k + t−

1
2k + t−

1
2k + O(t−

1
k )

)
≤ 1− e−ct

ct
ck,tt

− 1
2k

(
t−

1
4k + 2 + O(t−

1
2k )

)
≤ ck,tt

− 1
2k O(t−

1
4k ).

(ii) We apply the triangle inequality and evaluate as before to get

dTV (fk, Z) ≤ 1− e−c

c

(
2(C1t(tδ

d
t )k+ 3

2 )
1
2 + (C2t(tδ

d
t )k+1)

1
2 +

C3

c
t(tδdt )k+ 1

2

+ |Efk − c| + |V fk − Efk| + |Efk − c|
)

≤ 1− e−c

c
ckt
− 1

2k

(
t−

1
4k + 2 + O(t−

1
2k )
)

+ 2|Efk − c|

≤ ckt
− 1

2k O(t−
1
4k ) + 2|Efk − c|.

Remark: This shows that the Poisson limit theorem holds for fk in the sparse regime,

since t→∞.
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