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ABSTRACT

The analysis of the immensity of data in space and time is a challenging task.
For this thesis, the time-dependent data has been explored from various direc-
tions. The studies focused on data visualization, feature extraction, and data
classification. The data that has been used in the studies comes from various
well-recognized archives and has been the basis of numerous researches. The
data characteristics ranged from the univariate time series to multivariate time
series, from hand gestures to unconstrained views of general human move-
ments. The experiments covered more than one hundred datasets. In addition,
we also discussed the applications of visual analytics to video data. Two ap-
proaches were proposed to create a feature vector for time-dependent data
classification. One is designed especially for a bio-inspired model for human
motion recognition and the other is a subspace-based approach for arbitrary
data characteristics. The extracted feature vectors of the proposed approaches
can be easily visualized in two-dimensional space. For the classification, we
experimented with various known models and offered a simple model using
data in subspaces for light-weight computation. Furthermore, this method
allows a data analyst to inspect feature vectors and detect an anomaly from a
large collection of data simultaneously. Various classification techniques were
compared and the findings were summarized. Hence, the studies can assist a
researcher in picking an appropriate technique when setting up a corresponding
model for a given characteristic of temporal data, and offer a new perspective
for analyzing the time series data.

This thesis is comprised of two parts. The first part gives an overview
of time-dependent data and of this thesis with its focus on classification; the
second part covers the collection of seven publications.
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INTRODUCTION

Time-dependent data such as time series and trajectories are of fundamen-
tal importance to various application domains. The most commonly known
examples are, for instance, the monitoring of stock prices and of vital signs
for detecting the abnormal exceeding of a specified threshold and classifying
of signals. For the past many years, applications based on neural networks
have gained gigantic popularity, especially, to solve time series forecasting and
classification. Since these neural network based approaches, particularly for
deep network layers, yield striking results compared to the traditional methods.
Furthermore, there are extensive models available in various publicly acces-
sible frameworks. However, a remaining major problem of time-dependent
data analysis is the reasoning process, how to interpret the artifacts or feature
representation to understand the situation. While most of the current research
focuses on modifying the network models and fine-tuning millions of hyper-
parameters in order to get the best classification results; nonetheless, we still
lack an understanding of the underlying intrinsic properties of that data. For
the purpose of classification, the three common processes that are parts of a
classification pipeline depicted in Figure 1.1 are taken into account. These three
processes are i) visualization (@), to allow users to visually analyze the data. ii)
feature representation (®), to extract information from the data and represent it
as a feature vector. This process usually involves statistics such as correlation
structure and distribution. iii) classification of the data (®). The steps which
involve these three processes in the pipeline consist of i) extraction of the data
to features, ii) direct visualization of the data, iii) classification of the raw data,
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Figure 1.1: Pipeline for time-dependent data classification.

iv) visualization of the extracted features, v) classification of the data from the
extracted features, and vi) visualization of the classification results.

Because of the rapid advancement in deep learning, most recent extensive range
of research in time-dependent data domain put their focuses on the classification
step (@) especially of the raw data; hence, the challenging steps left behind
are the visualization (®) and feature extraction (®) for data understanding. A
classical visualization approach is normally to use a line graph where one axis
represents time and the other shows the value. An example of time series with
210 instances of a univariate time series with a fixed length of 144 is shown
in Figure 1.2a. This dataset can be considered as a simple case of time series
classification because each instance has only one feature and all instances in
the dataset have equal lengths. Nevertheless, we can see from this illustration
that it is still extremely difficult to differentiate each data group because of the
data clutter, and it is almost not possible to spot the outliers of each data cluster
unless a certain amount of data is loaded. Figure 1.2b-1.2d show the line plots of
30 instances of classes labeled “1”(m), “2” (M) and “5” (™) separately. Now, finding
out the anomalies from the data becomes much easier. However, a situation will
become more complex if each data sequence has a different length, particularly
with a large number of data features in a large dataset. Time series, particularly
for multivariate time series, cannot be visualized or analyzed directly. The only



traditionally known technique employed for this purpose is the unthresholded
recurrence plot (RP) [13, 19]. This technique is also known as distance plot or
similarity matrix which allows a high-dimensional phase space trajectories to be
visualized in subspaces through a two-dimensional representation. Figure 1.3
shows the distance plot of nine instances of seven classes from Figure 1.2.
Below each instance is the label which is colored according to the data class
associated with its id. We can see that the distance plot is not suitable for
comparing hundreds of data simultaneously, particularly for data of unequal
sequence length yielding matrices of different sizes. However, four images
shown in Figure 1.4 which employed the proposed technique in Tanisaro2019a
can give a better overview of the whole data cluster. These images can reveal
the relationships of the data clusters, e.g., data class labeled “1” (M) and “2”(m)
have very close relationships. Furthermore, a few outliers from Figure 1.2b and
Figure 1.2c, and four outliers from 1.2d can be easily detected.

In our studies, we performed six steps in the pipeline as illustrated in Figure 1.1.
The datasets used in the studies are categorized into four groups: i) univariate
time series. ii) multivariate time series. iii) trajectories of human motion from
the Motion Capture (MoCap), and iv) videos. The term time series may refer to
trajectories of human motions in this thesis.

1 W2 W3 W4 5 W6 W7 [T W i(outlier)) [ W 2(outlier)) 5 _W5(outlier)

(a) (b) () (d)

Figure 1.2: A univariate time series dataset called “Plane” from the UCR archive
[10]. The data sequences which are out of sync are illustrated with brown lines.

47 94 60 14 @ ® 181 160 48

Figure 1.3: The distance plot of nine instances from seven classes in the “Plane”
dataset.
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Figure 1.4: The results of 210 sequences of “Plane” in Figure 1.2a after adopting
our proposed technique in Tanisaro2019a by employing different settings.

1.1 Definitions of Time Series Data

Most statistical packages offer time series plots such as line plot which is usually
a univariate time series using a two-dimensional plot, where one axis shows
time e.g. seconds, minutes, weeks and so on (usually displayed horizontally)
while the other axis shows the data. However, in our work, we employed only
time series with a fixed number of evenly spaced time points for an arbitrary
number of feature dimensions.

Definition 1. A time series or trajectory X of any high-dimensional data of m variables
which represent the measurement of a quantity over a period of time is defined as pairs
of timet =1,2,3...T and x(t) € R™:

X = [(ty,x1), (ty x2), -y (b1, x7)] (1.1)

where X ¢ R™T.

For a classification of multiple data instances, we extend the Definition 1
accordingly.

Definition 2. For a set of time series data D, with a given number p of time series data,
for any data indexed i in p, the input matrix X from Equation 1.1 can also be written

as X', i =1,..,p. The set of individual data sequences is specified by X' e R™T: and

T, is an arbitrary length in the set of X. For any X', there is a corresponding label y' of
a class k. (k € K) where K is the number of classes.

1.2 Related Work
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1.2.1 Feature representation of time series data

Most work in time-dependent data analysis tends to plot the signals over time,
hence the applicability of these methods is restricted by the number of signals
that can be visualized concurrently. As a consequence, these methods do not
support the comparison of feature vectors nor of the signals which are required
in the analysis of a classification task. Nonetheless, an interesting technique
that adds to the analysis of feature vectors by means of visualization can be
found in [22]. This method employed the technique of the unthresholded re-
currence plot in combination with the Bag-of-Features (BoF) obtained from the
Histogram of Oriented Gradients (HOG) to create a feature representation for
view-independent classification of human motions. However, the drawback of
this approach is that the length of all human motion data must be truncated
to equal length and cannot be displayed simultaneously. Another intriguing
method which was proposed by [44] introduced an approach to encode univari-
ate time series into images by using a polar coordinate called Gramian Angular
Fields (GAF) system, generating a Gramain matrix. The classification of this
method is utilized by convolutional neural networks.

1.2.2 Data visualization

Some visualization techniques to analyze various time series and trajectories
will be briefly discussed considering from application domains such as medicine,
economy and finance, science, industries and a few others.

An example of employing visualization in economy is an interactive tool
developed by [40] which introduced a three dimensional hierarchical circular
and column plot. It took time dimension into account to interpret the database
of monthly European inflation data. Furthermore, two techniques presented in
[46] enable users to interactively analyze large time series data in stock markets.
The first technique lets users visually analyze combinations of assets, market
sectors as well as countries. The second technique allows a user to cluster a
selection of data and analyze the distribution of the assets. Traditional clinical
data visualization primarily focuses on analyzing vital signs and laboratory
results in one dimension and the abnormality detection is based on whether
the value of an individual parameter falls below or above the threshold. How-
ever, an unusual process introduced in [35] created a multivariate time series
amalgam (MTSA) of physiological data and laboratory results from univariate
time series. With this information, physicians can visually interpret various
aspects of the laboratory observations. Combining such univariate results can
provide greater insight, which will lead to a better diagnosis. In addition, [34]
recently presented a framework called m-TSNE to visualize two healthcare
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datasets: one from its study to quantify the activity levels of cancer patients
undergoing chemotherapy treatment, and the other an EEG dataset from the
UCI archive [27]. Another interesting technique which applied dimensionality
reduction for time series is found in [42]. It introduced a factor decomposition
specific for time series that builds upon Baysesian multivariate autoregressive
model (MAR) from a low-rank estimation of the autoregresssive matrices. The
algorithm was tested using neuroimaging data from EEG and ECoG.

Another application of dimensionality reduction and clustering in neu-
roscience can be found in [7]. It proposed a method to cluster the white
matter (WM) fibers in the brain by considering the position of fibers in three-
dimensional space, which helps brain researchers to understand and predict
the effect of certain neurodegenerative pathologies. It can be of great use in
neurosurgical planning to interactively guide the surgeon during the operation.

An interactive technique in the field of geology called screen-space metric
was introduced in [12]. The tool provides a metrics to quantify important
patterns which allow the data scientists to navigate through different time steps.
Not only can the geologist confirm the hypotheses about the chemical reactions
with this approach, one can also formulate new hypotheses. Moreover, some
applications in the industries include, for example, a frequent-pattern analysis
tool designed by [16] for data center cooling and oil well production. It em-
ployed motif layout, motif distortion and motif merging to provide insights into
the recurring patterns. An application for analyzing weather data from cities
in the US was demonstrated in [32]. It provided an interactive tool as a plugin
for the web to visualize multidimensional time series data using MDS. The tool
allows data analysts to adjust the weights of distance measure for each time
series as well as to choose available algorithms. An example of analyzing large
network traffic data is an interactive visualization technique called ClockMap
proposed in [14]. It combined a circular nested treemap layout with a circular
glyph with zooming and panning functionalities. Additionally, a interesting
technique called Temporal Multidimensional Scaling (TMDS) presented in [20]
could reveal two threats to network security, namely, a distributed brute-force
attack, and port scans. It computes a temporal one-dimensional MDS plot from
multivariate time dependent data. This work is pretty close to our work in the
sense that it also applies the dimensionality reduction to the high-dimensional
data but is different in that this technique keeps tracking data over time. An-
other technique which based on Multidimensional Scaling (MDS) by adding a
temporal component for visualization called “time curves” can be found in [1].
It shows the use cases in several applications such as document histories, precip-
itation patterns and fMRI data but it does not support the precise reading of an
output, the data analyst needs to be trained in order to make an interpretation
of the line curve symbols for a specific application. Furthermore, a technique
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called “visualizing time-dependent data using dynamic t-SNE” [37], albeit the
paper’s name mentioned “time-dependent data”, but in fact, it proposed a
technique for a non-time-series by just using several time steps to generate a
better view of data. The results of applying this technique were demonstrated
using the MNIST handwritten digit database and SVHN (Street View House
Number) dataset, not the time series data.

Hence, we can conclude that a general solution to visualize multivariate
time-dependent data is to combine user interaction and visualization techniques
into a visual analytics pipeline. The interactive exploration permits users to
switch between overview and detailed analysis through zooming and panning
the data. Thus, a reasoning process such as detecting the anomalies in the data
usually has to be executed by the data analyst. Such methodologies as those
aforementioned put focus on inspecting signals over time. Therefore, they are
not suitable to inspect hundreds of signals simultaneously.

1.2.3 Data classification

We looked at the classification approaches by grouping them into seven cate-
gories. In our studies, we compare outputs based on some of these methodolo-
gies. These seven categories as illustrated in Figure 1.5 are:

B Model-based. Known model-based approaches for time series classifica-
tion are, for instance, Autoregressive model (AR), Markov Model (MM)
and Hidden Markov Model (HMM). Yet, these model-based approaches
have several drawbacks which limit their applicability; therefore, they are
not favored for general time series classification tasks. An interesting re-
cent work, however, can be found in [36] that introduced a technique called
the Hidden-Unit Logistic Model (HULM) which is similar to Hidden-state
Conditional Random Field (HCRF). The difference lies in the fact of how
the hidden units are defined. The HRCF uses a single multinomial unit
much like an HMM, whereas the HULM uses a large number of binary
stochastic hidden units to represent the latent state.

B Distance-based with similarity measure. The distance-based technique is
perhaps the most commonly known solution for time series classification,
especially for univariate time series. Generally after employing a distance
function and measuring the similarity between two time series, a classifier
such as k-Nearest Neigbors (kNN) or Support Vector Machine (SVM) can
be directly applied. These well-recognized approaches are, for example,
Euclidean Distance (ED), Dynamic Time Warping (DTW) [6, 25, 26], Edit
Distance on Real Sequence (EDR) [9], Longest Common Subsequence
(LCSS) [43] and other variants. A recent method which combines raw
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and normalized data with DTW being tested for multivariate instead of
univariate time series can be found in [30].

B Reservoir RNN. This is a type of neural network where an input signal is
fed into the random dynamic system called reservoir and the training is
performed only at the readout stage. Because the training is performed
with a small amount of neurons at the readout without relying on back-
propagation of the gradient, the training is quite fast. There are two types
of reservoir computing, the Liquid-State Machine (LSM) [31] and Echo
State Network (ESN) [21].

B Gradient-based RNN. The gradients are obtained by a technique called
Back Propagation Through Time (BPTT) which is used to update weights
in RNNs. The networks of RNNs are unrolled, errors are calculated and
accumulated across each timestep, then rolled-up the network and the
weights updated. A well-known special architecture for the gradient-based
method called Long Short-term Memory (LSTM) [18] is a type of gated
recurrent unit which is well-suited for time series classification and pre-
dictions. It was designed to solve the exploding and vanishing gradient
problems which were encountered with training traditional RNNSs. It
started to get attention after a groundbreaking achievement of sequence
labeling in speech recognition in [15], which employed LSTM in combina-
tion with a Bi-Directional Recurrent Neural Networks (BRNNSs) to form a
deep Bidirectional LSTM (DB-LSTM). The accomplishments of LSTM have
been adopted in many commercial products by major tech companies,
for instance, Google translate and speech recognition in smartphone by
Google, Siri by Apple and Amazon Alexa by Amazon. The extension
architectures of LSTM, which are currently well-recognized for time se-
ries classification benchmarking, is the combination of LSTM and Fully
Convolutional Network (FCN) called LSTM-FCN introduced by [23, 24].
FCN [29, 39] originally was designed for image semantic segmentation. It
has several advantages over traditional convolutional networks i.e., it tries
to learn local image representations and can handle different input sizes.
Examples of models which are derived from LSTM-FCN are MLSTM-FCN
and MALSTM-FCN [24].

B CNN-based. Here, we separated approaches from Convolutional Neural
Network (CNN)-based from the RNN because even though these two
approaches adopted the gradient descent to compute the changing weights
during the training; their network architectures are different. The CNN-
based methods for time series classification can be found in some works,
for example, [45] adopted the pure FCN for classifying data in the UCR
archive. It outperforms the COTE [3], MLP and ResNet [17] testing on 44
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selected datasets. Furthermore, [41] proposed to combine both CNN and
DB-LSTM for action recognition in video data. An architecture-variation
of convolutional network called temporal convolutional network (TCN)
which adopted one-dimensional FCN is extensively discussed in [4]. The
results of using TCN outperformed other RNNs on most datasets.

B Feature-based. Some appealing works based on the extracted features of
the time series data are, for example, the work of [38] which proposed
to use Bag-of-Pattern (BoP) model to form a feature vector, while [5]
suggested to use a tree-base learning strategy to discover the patterns
from time series segments.

B Other techniques. By far, the best classifier other than a Neural Network
based and is completely tested for 85 datasets of the UCR archive, is an
ensemble-based technique called COTE [28, 3, 2].

1.3 Motivation and Major Contributions

The prime objective in our studies is to understand the patterns in temporal
data, specifically, time series and trajectories, used for classification. We had
proposed some techniques for feature representations and visualization. In
addition, we also performed empirical comparative studies of several state-
of-the-art approaches for time series classification, i.e., we had performed the
tasks shown in Figure 1.1, where the studies were done in seven publications
for those six processes in the pipeline. Each process was demonstrated in the
related publications listed as follows.

B Visualization of time series (ww == @®). The discussion of illustration
of trajectories from videos is shown in Tanisaro2015. The visualization
technique using distance plots as a reference can be found in Tanisaro2018,
Tanisaro2019a and Tanisaro2019b.

B Our proposed methods to extract features from the raw time series data
(v == @) are demonstrated in Tanisaro2017a, Tanisaro2017b, Tanisaro2019a
and Tanisaro2019b. Tanisaro2017a and Tanisaro2017b focus on getting feature
representation for human motion recognition, while Tanisaro2019a and
Tanisaro2019b show a general model applied on diverse types of time series
and trajectories data.

B The classification results of raw data (www == ®). We employed various
classification techniques for various datasets shown in Tanisaro2016, Tanis-
aro2017a, Tanisaro2018, and Tanisaro2019b. The big picture of classification
approaches is illustrated in Figure 1.5 and discussed in section 1.2.3.
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Feature-based

Reservoir RNN

. LSTM-FCN

FCN

MLSTM-
FCN

Figure 1.5: The classification approaches.

B Our proposed feature representations (® = @) have been clarified by
visualization in Tanisaro2017b, Tanisaro2019a, and Tanisaro2019b.

B The classification results of the extracted features (® == @) have been
provided in Tanisaro2017a, Tanisaro2017b, and Tanisaro2019b.

B The classification results (® = @) are visually explained in Tanisaro2019b.

1.3.1 Datasets

There are many well-known sets of time-dependent data publicly available.
However, in the studies we limited the data from four aspects:
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. The univariate time series from the UCR archive [10] which consists of 85
datasets. It is the largest archive for time series classification benchmark-

ing.

. The multivariate time series of 15 datasets obtained from [5]. Recently,
this archive has started to become a de facto standard for benchmarking
multivariate time series classification.

. Four Motion Capture (MoCap) datasets i.e., three human motion recog-
nition from CMU [11], HDMO05 [33], and UTD-MHAD [8], and hand
gesture recognition from MHAD [8]. In our studies, we put focus on
view-independent motion classification and separation of train versus test
subjects while most of other research does not condition on these two
issues.

. Videos. The discussion of video data is found in Tanisaro2015.
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2.1 Visual Analytics for Video Applications

Abstract: In this article, we describe the concept of video visual analytics
with a special focus on the reasoning process in the sensemaking loop. To
illustrate this concept with real application scenarios, two visual analytics tools
one for video surveillance and one for eye-tracking data analysis that cover the
sensemaking process, are discussed in detail. Various aspects of video surveil-
lance such as browsing and playback, situational awareness, and deduction of
reasoning from visual analytics are examined. On account of the visual analysis
of recorded eye tracking data from watching videos, application features such
as a space-time cube, spatio-temporal clustering, and automatic comparison
of multiple participants are reviewed of how they can support the analytical
process. Based on this knowledge, open challenges in video visual analytics are
discussed in the conclusion.

Originally published in: it-Information Technology, 57: 30-36, 2015. De
Gruyter.

DOI: nttp://dx.doi.org/10.1515/itit-2014-1072


http://dx.doi.org/10.1515/itit-2014-1072

22 2.1 e Visual Analytics for Video Applications



23

Visual Analytics for Video Applications

Pattreeya Tanisaro, Julius Schoning, Kuno Kurzhals, Gunther Heidemann, Daniel Weiskopf

Abstract: In this article, we describe the concept of video visual analytics with a
special focus on the reasoning process in the sensemaking loop. To illustrate this
concept with real application scenarios, two visual analytics tools one for video
surveillance and one for eye-tracking data analysis that cover the sensemaking process,
are discussed in detail. Various aspects of video surveillance such as browsing and
playback, situational awareness, and deduction of reasoning from visual analytics are
examined. On account of the visual analysis of recorded eye tracking data from watching
video, application features such as a space-time cube, spatio-temporal clustering, and
automatic comparison of multiple participants are reviewed of how they can support the
analytical process. Based on this knowledge, open challenges in video visual analytics are

discussed in the conclusion.
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1 Introduction

Due to the high complexity of video data in the spati-
al and temporal domain, the analysis of large amounts
of recorded video material is a challenging task. The-
re has been a lot of effort to provide computer vision
techniques to extract meaningful information, nevert-
heless, automated computer vision is not yet powerful
enough for reliably detecting anomalies, tracking objects
or higher reasoning. To bridge this gap, automatic ap-
proaches can be combined with video visualization in
visual analytics systems, to support the analyst in ob-
serving events, and in the formulation and evaluation of
hypotheses. Hence, in order to make the vast amount of
complex video data accessible, applications, tools, and
methods for analysis must be used to take some load off
the analyst. In the following, we will describe the con-
cept of video visual analytics based on Hoferlin et al.
[15, 6, 14, 4, 8, 16, 9, 12, 7, 10, 17] with the main focus
on reasoning sensemaking. With two different scenarios,
(i) video surveillance and (ii) eye tracking video analy-
sis, we discuss how the concept of video visual analytics
can be applied in such cases.

2 Concept of Video Visual Analytics

The overall purpose of visual analysis tools and tech-
niques is “to synthesize information and derive insight
from massive, dynamic, ambiguous, and often conflic-
ting data; detect the expected and discover the unex-

pected; provide timely, defensible, and understandable
assessments; and communicate assessment effectively for
action”[26]. To cope with large amounts of video data
and often vaguely defined analysis tasks, a sophisticated
concept with a robust architecture is necessary for video
visual analytics.

An overview of the architecture of video visual analytics
is shown in Figure 1. This architecture relies on the in-
tegrative view on visual analytics and sense-making pro-
cesses [17], the interactive learning of ad-hoc classifiers
for video visual analytics [8], the visual analytics pro-
cess [18] and the sensemaking process [25]. The basis of
video visual analytics is formed by the principle of sen-
semaking, which can be split into two main parts, the
extraction and representation and the reasoning.
In addition to the sensemaking process by an analyst,
i.e. a domain expert, the presentation provides the re-
sult including all interim results for the stakeholders. As
a remark, instead of the term “representation”, the mo-
re common term “visualization” is often be used. Due
to the fact that we believe, that visualization by itself
may not be the best solution to encode the data for the
analyst, we use the term representation.

2.1 Sensemaking

For sensemaking, an analyst uses her own cognition and
mind for answering a specific question based on data
supported by representation tools like visualization, and
by organizing tools. This cognitive process, - the sense-
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Figure 1: Architecture of video visual analytics. The sensemaking process by an analyst consists of extraction and representation
and reasoning. The outcomes of each reasoning step are given in the presentation.

making process [25, 24] - is the general idea behind the
architecture of video visual analysis, as shown in Figu-
re 1. The core of sensemaking is an iterative learning
loop. This loop is initiated by the human analyst, with
her domain knowledge and the task description. The
analyst sets up the analysis, by extracting and encoding
the raw data to get first insights, meaningful artifacts
like vehicles, ideas how to assess situations or scenes,
and comes up with first assumptions. The meaningful
artifacts consist of individual objects or a bundle of ob-
jects and additional information like physical properties.
With this knowledge, the analyst alters the previous
extraction and representation of the data. As a result
of each extraction and representation, nonrelevant da-
ta such as scenes without an artifact will be minimized
or completely filtered out. Based on this second extrac-
tion and representation, the analyst starts the second
reasoning process and gets further insights. This loop is
repeated until the result of the reasoning has reached a
certain threshold to fulfill the task or after exceeding a
defined time. Russell et al. [25] made two important re-
marks on the sensemaking: First, sensemaking returns a
result at any time, but the quality of the result increases
in each iteration. Second, the most time consuming part
of sensemaking is the extraction and representation of
the data.

2.1.1 Extraction and Representation

The goal of the extraction and representation part is fil-
tering out nonrelevant data, minimizing the complexity
of the data and creating meaningful representations for
the human analyst. In the architecture of Figure 1, the
extraction of the data is done semiautomatically by a
learner model [8]. The analyst with her knowledge about
the task and the domain adds learning examples and de-
fines analysis filters, like a trajectory filter [15] or a spati-
al filter [12]. The learner model sets up the data mining
algorithm and the representation.To be able to mana-

ge the amount of data, it is necessary to provide and
support the analyst with additional techniques. One of
the most important requirements for visual analytics is
information scalability [26], to enable the analyst to con-
centrate only on important parts for her reasoning. Fur-
ther important techniques are the automatic extraction
of meaningful artifacts and the automatic assessment of
situations. These mentioned techniques should be super-
vised by the analyst to ensure the quality claims on the
whole analysis. A more detailed explanation of the ex-
traction and representation of video data can be found
in Hoferlin et al. [17].

2.1.2 Reasoning

The idea of reasoning is to achieve task-specific conclusi-
ons by applying human judgment [27]. The conclusions,
as combination of evidence and assumptions, contain
the insight of the analyst when going through the sen-
semaking process. In previous papers by Hoferlin et al.
[17, 8, 15], this reasoning process is represented as a
black box. To identify potential improvements and defi-
ciencies within the reasoning process of visual analysis
tools, we integrate a detailed reasoning process into the
architecture of video visual analysis. As seen in Figu-
re 1 (a)-(e) the reasoning process can be split up into
five elements and may be considered as a stepwise pro-
cess in which the complexity of reasoning increases with
every step:

(To gain a better sense of each element of reasoning, we
will describe the entire process based on a simple exem-
plary task: The behavior analysis of one specific man,
based on the video data of one surveillance camera.)

(a) The first step in reasoning is to determine indicators
which identify meaningful artifacts. Due to the co-
operation between the learner model set up by the
analyst and the data mining, the automatic extracti-
on of meaningful artifacts will be represented to the
analyst. Under analyst’s supervision, artifacts can be



detected and annotated automatically. For uncompli-
cated scenes this step can be performed automatical-
ly. If we map this step on our exemplary task, mea-
ningful artifacts observed by the surveillance camera
would be e.g., a traffic light, a street, a pavement, a
man or a bag.

(b) Situational assessment can only be achieved by
monitoring expected and unexpected events, such as
the interaction or the movement of meaningful arti-
facts. This enables the analyst to nurture situational
awareness. The monitoring of events can also be sup-
ported by analytics tools, where the analyst defines
restrictions in terms of space and time or key trajec-
tories. As a result, the analyst will be notified by a
visual or auditive signal created by the tool [15]. In
our example task, the analyst will be alerted, if a man
with a bag crossing the street and the analyst become
aware of it.

(¢) For the steps (c)-(e), the requirements to human judg-
ment are much higher than in the previous steps. As
a consequence, opportunities for computational sup-
port are decreasing strongly. This is mainly due to
the time span, which is relatively long compared to
earlier steps, but necessary for situational under-
standing. The analyst understands the situation ba-
sed on historic and current events she draws attention
to. In our example, we become aware of two events.
In the first event, one man with an empty bag crosses
the street. In the second event, some minutes later,
the same man crosses the street from the opposite di-
rection with a filled bag. The likeliest interpretation
of this scene is that the man went shopping.

(d) In a penultimate step the analyst identifies possible
hypotheses and their probability of occurrence. Ba-
sed on these situational hypotheses the analyst
can identify and predict patterns which might be re-
levant for the task. To project onto our example, we
recognize the man who went shopping several times.
So possible hypotheses are e.g., “he went shopping
every day” or “he went shopping every Monday and
Friday”.

(e) The conclusion completes the reasoning process.
The analyst verifies the hypotheses until a certain
threshold is reached or a certain time is spent and
concludes the reasoning with a result. The result of
our example is that the man went shopping every two
days at 5pm.

2.2 Presentation

Summarizing the result including all intermediate steps
into a package of materials in the way that decision ma-
kers can relive the parts of the analysis is the goal of the
presentation. How this could be done, is not part of our
architecture and has to be considered separately.
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3 Related Work

For many years, video visual analysis has played an im-
portant role only in security and entertainment indu-
stries. Recently, a wide range of applications and chal-
lenges in the areas of medicine, sports and science have
arisen.

An example for visual analytics in medicine with a
glyph-based visualization [2] helps clinical scientists in-
terpreting and comparing sperm motility measurements
captured from video. For the application of visual analy-
tics in sports, a snooker coaching system [11] employs vi-
deo visualization by involving coaches and players in the
loop of intelligent reasoning, where the output points out
the difficulties of the automated semantic reasoning. A
real-time sport performance analysis using glyph layout
at different scales in interactive visualization for rugby
is presented by [21]. This approach helps coaching staff
and team analysts to examine actions and event, and as-
sists in the decision making during the matches. For the
surveillance system, [22] introduces an interactive explo-
ration of video surveillance data to analyze the moving
objects and their properties.

In this article, we discuss two promising video visual
analytics projects in detail. A video surveillance system
presented by Hoéferlin et al. [4, 8, 16, 9, 10] which com-
prises many important key features in surveillance. The
effectiveness of their approach for the analysis of video
surveillance data was demonstrated in the IEEE VAST
Challenge 2009. The second visual analytics approach
which will be examined is a novel tool to analyze eye
tracking data recorded from video. This approach in-
cludes methods for the spatiotemporal analysis of gaze
data in context of the video and allows users to annotate
and investigate Areas of Interest (AOIs).

4 Visual Analytics for Video Surveillance

Hoferlin et al. propose a system that engages a hu-
man analyst in several layers of processing, for instan-
ce, training classifiers by using an interactive learning
approach. The system authorizes users to directly ad-
just the complex classifier models [8]. As a consequence,
users build up the trust from the training process gene-
rated by the models. It also provides a detail-on-demand
technique for selected parts of data, as well as the fil-
ter feedback to verify the hypotheses [15]. Considering
the common models in video surveillance according to
search target intervals, they can be classified as online
and offline processing. In case of offline processing ana-
lysis, the vast amount of historic data in a time period
is diagnosed (Section 4.1). Online processing which is
capable of real-time task analysis will be discussed in
section 4.2 and analysis and reasoning in section 4.3.



Figure 2: 1SeeCube: Visual Analysis of Gaze Data for Video [19]. Left: The main component areas are (a) viewer controls (b) space-
time view (c) parameter controls. (d) video controls and key frames (e) timeline view. Top-Right: Outlier detection and individual

viewer behavior . Bottom-Right: Distribution of attention.

4.1 Video Browsing and Playback

Video navigation techniques allow users to browse the
video, increase the playback speed to reduce the time
to watch irrelevant parts of the video, and gain insight
from its content. Browsing the video, particularly the
recorded video footage of video surveillance is a crucial
task. By contrast, typical fast-forward algorithms either
present every frame for a very short duration or display
only every n'" frame and skip the rest. This process re-
quires several automated computer vision procedures to
extract and represent the meaningful artifacts. Hoferlin
et al. in [6] propose an adaptive fast forward algorithm
using temporal information of a video to gain between
an estimated noise distribution and the absolute fra-
me difference distribution by means of Rényi entropy.
Another attempt to solve an adaptive video playback
speed [9] is by using a visual attention model. The mo-
del is trained with different sets of features from different
scenes. Besides, the evaluation of various fast-forward
techniques is compared in [16]. It assesses the video vi-
sualization in term of object identification and motion
perception, as well as the performance in the context of
adaptive fast-forward.

4.2 Situational Awareness

Due to the limited capacity of human perception, situa-
tional awareness becomes indispensable when the reacti-
on of users is required within short time spans, particu-
larly for real-time analysis such as monitoring and sur-
veillance tasks. The most common perceptual deficits in
video analysis are: (i) Inattentional blindness, which
occurs when an observer’s attention is engaged in a task
which causes the observer to fail noticing other obvious
events. This occurrence is one of the major causes of

accidents and human error; (ii) Change blindness is
a phenomenon in which dramatic changes occur in a
visual scene right there but the changes are not noti-
ced by the observer; and (iii) Boredom and mental
workload. Boredom can be significant when people be-
come under-stimulated or underload as suggested in [23].
Some endeavors to solve these issues in situational awa-
reness are, e.g. [5, 4] use an auditory display to reduce
workload off control room operators based on the mul-
tiple resource theory [28]. Hoferlin et al. suggest that
sonification is one of the key factors for efficient video
surveillance [4], in correspondence to a study reported in
[3], which observes the behavior of operators in a control
room. Hence, situational awareness can benefit from so-
nification such that it allows users to listen to the events
while their gazes are off the screen.

4.3 Presentation and Reasoning

A visualization technique called “VideoPerpetuoGram”
or VPG [1] is employed in the system to snap the se-
quences of video stream for detected objects with conti-
nuous illustrations. Hoferlin et al. [13, 15] demonstrate
the use of this method in IEEE VAST Challenge 2009.
The challenge was to identify a suspicious person who
was an embassy employee and transferred secret data to
an outsider within 10 hours of surveillance footage. The
VPG yields lots of trajectories which required user to
filter the most irrelevant according to user’s hypotheses.
The trajectories belonging to cars driving on the streets
are filtered out, because the hypothesis was that a mee-
ting of people requires the split and merge of trajec-
tories. Another constraint was that the meeting would
not take place on a street. Such analysis demands a vast
amount of knowledge and is difficult for a machine to
learn. Nevertheless, computer vision and machine lear-



ning can answer the questions such as “Where are the
streets?” and “Which trajectories are likely to be the
meeting?”. To define and refine the hypotheses that lead
to the solution depends on the domain specialist [15].

5 Visual Analysis of Gaze Data

A visual analytics approach to analyze eye-tracking data
from multiple participants watching videos is presented
by Kurzhals et al. in [20, 19]. This application (see Fi-
gure 2) employs multiple coordinated views, to obtain
an understanding of general viewing behavior as well as
individual differences between viewers. It can be used,
e.g. to analyze whether attention of viewers watching
commercials is on the intended objects, or distracted by
confounding factors.

Applying a visualization technique called space-time
cube (STC), the gaze data of the the whole video can
be displayed in a static, spatiotemporal 3D visualization.
Sparse gaze points can be filtered out, to highlight time
spans of attentional synchrony. In these time spans, the
attention of all viewers was attracted by a special object
or event that should be investigated in detail. According
to the Figure 1, this approach can be classified as extrac-
tion of meaningful artifacts. Additionally, a spatiotem-
poral clustering of the gaze points provides important
information where important AOIs appear in the video.
Furthermore, heat maps and scan paths which are the
standard eye-tracking visualization techniques are also
integrated into the application. To compare scan paths
of multiple viewers, a timeline visualization can be ex-
ploited. In combination with different similarity measu-
res for a hierarchical clustering of the viewers, groups
of similar viewing behavior (Figure 2 Top-Right) and
outliers (Figure 2 Bottom-Right) can be identified as si-
tuational understanding.

With the presented visual analytics approach, the
combined analysis of video with additional data sources
such as eye tracking data has been demonstrated. Alt-
hough an extended analysis with other data sources,
such as physiological data would increase the effort for
an analysis, the concept of video visual analytics can
still be applied.

6 Challenges

Based on our proposed architecture of video visual ana-
lytics, we identify open challenges in the following do-
mains: (i) For eye tracking, the automatic identificati-
on and semantic annotation of AOIs are still challen-
ging tasks that require further research. Especially the
enrichment of AOIs with semantic information requires
visual analytics, since automatic algorithms are not ca-
pable to process this task. (ii) Higher reasoning in video
surveillance system. The application should extend me-
thods for a situational understanding from graph-based
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representation and offer possible conclusions. Besides, a
model generation to support annotation and informati-
on retrieval of the video should be provided. (iii) Ge-
nerating an auditory display for complex scenes is very
appealing to help support situational awareness in sur-
veillance. and (iv) there are still a lot of opportunities
for the new data presentation aspect for visual analytics.

7 Conclusion

We presented an overview of video visual analytics con-
cept and how it can be applied to two common scenari-
os with different requirements to the data analysis. As
a foundation for future work, we pointed out the open
challenges based on the described architecture and two
application scenarios of video visual analytics.
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2.2 Time Series Classification Using Time Warping
Invariant Echo State Networks

Abstract: For many years, neural networks have gained gigantic interest and
their popularity is likely to continue because of the success stories of deep
learning. Nonetheless, their applications are mostly limited to static and not
temporal patterns. In this paper, we apply time warping invariant Echo State
Networks (ESNs) to time-series classification tasks using datasets from various
studies in the UCR archive. We also investigate the influence of ESN archi-
tecture and spectral radius of the network in view of general characteristics
of data, such as dataset type, number of classes, and amount of training data.
We evaluate our results comparing it to other state-of-the-art methods, using
One Nearest Neighbor (1-NN) with Euclidean Distance (ED), Dynamic Time
Warping (DTW) and best warping window DTW.
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Abstract—For many years, neural networks have gained gigan-
tic interest and their popularity is likely to continue because of the
success stories of deep learning. Nonetheless, their applications
are mostly limited to static and not temporal patterns. In this
paper, we apply time warping invariant Echo State Networks
(ESNs) to time-series classification tasks using datasets from
various studies in the UCR archive. We also investigate the
influence of ESN architecture and spectral radius of the network
in view of general characteristics of data, such as dataset type,
number of classes, and amount of training data. We evaluate our
results comparing it to other state-of-the-art methods, using One
Nearest Neighbor (1-NN) with Euclidean Distance (ED), Dynamic
Time Warping (DTW) and best warping window DTW.

I. INTRODUCTION

Time series classification is a measure to assess the sim-
ilarity of signals in the time domain. Even static object
shapes can be transformed into time series [1]-[3], to which
afterwards a time series classification method can be applied.
Numerous measures have been introduced to solve time-
series classification problems and were benchmarked using
the real world problem data collected at the UCR archive
[4]. The UCR archive is the largest collection of time-series
datasets available from a variety of application domains such
as medical, biological, physics, food science, sport and sensor
information. At the time of writing, the archive consists of 85
datasets from various scientific disciplines of which the most
recent 13 datasets have only been tested in [5].

Two important ideas for successful time series classification
are (i) transforming the time series representations in order to
reduce dimensionality and to speed up the classification [6]
and (ii) extracting distinguishing features in a new data space
[7]1-[11]. Among the time series classification approaches, new
data representations using distance functions in combination
with similarity search using k-nearest neighbor classification
(k-NN) have shown their distinguishing effectiveness [7]. Two
common distance measures are Euclidean Distance (ED) and
Dynamic Time Warping (DTW) [12]-[15]. They are the most-
used techniques for benchmarking time series classification.
Several studies (i.e. [5], [7], [16]) reveal that there is no single
approach that wins on all datasets. Some similarity measures
are superior to others on certain datasets, and inferior on
different ones. The main reason for this is: in each application
domain some significant features may not be interpretable
in one approach, although changing their representation can
reveal them. Hence, there is an effort to use an ensemble
approach to account for the hypothesis that a combination

of different classifiers is substantially better than a single
classifier e.g. ensembles of elastic distance measures [17] and
the collective of transformation-based ensembles (COTE) [5],
[8].

In this paper, we will demonstrate the capability of a time
invariant warping Echo State Network (ESN) to solve time
series classification problems. ESN [18], [19] is a type of
Recurrent Neural Networks (RNNs). Its weights are randomly
initialized and left unchanged over the whole training pro-
cedure. The inputs are mapped to dynamic patterns of the
reservoir neurons which exhibit such complexity and high di-
mensionality that different patterns become linearly separable.
Time invariant warping Echo State Network [20] is an ESN
with leaky integrator neurons that is inherently invariant under
time warping of the series of data. Therefore, an ESN can be
applied to a variety of tasks that deal with temporal patterns.

This paper is structured as follows. In section II, we discuss
various interesting approaches for time series classification, es-
pecially popular similarity measures using distance functions.
In section III, we explain ESNs and time warping invariant
ESNs for classification tasks. In section IV, we discuss the
datasets, ESN configurations and the comparisons of different
ESN models versus 1-NN with ED, DTW, and best Warping
Window DTW (referred as DTW-R in this paper, where R is
the percentage of time series length described in [4]). Finally,
we summarize results, highlight our findings and discuss the
advantages of using an ESN in section V.

II. BACKGROUND AND RELATED WORK

Most work on time series classification focuses on adapta-
tion of distance measures for the 1-NN classifier, especially
for ED and DTW. ED is perhaps the simplest and most
straightforward. It is a one-to-one mapping of data points from
two sequences. Therefore, ED is very fragile if two sequences
are out of phase. DTW was first proposed in [21] to generate a
warping path of two sequences such that the distance between
the two is minimized. It allows for mapping one point of
one sequence to many points of another sequence and is
not restricted to phase shifting. Nevertheless, the warping
path still has a few restrictions and more important, the
boundary conditions that limit the search space, implying the
shortcoming when searching in a large database. Keogh et al
[15] introduce a lower bounding measure for indexing DTW.
This concept leads to the speed up of search in k-NN. For this
reason, DTW has become widely used in solving time-series
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classification problems.

As discussed in the previous section, generally work on time
series classification involves two aspects (i) data representation
methods to reduce dimensionality or to transform data into
another feature space, and (ii) time series distance measures.
Comparative studies of these two aspects appeared in [7]
gauging eight representation methods and nine different well-
known distance measures. Another comparative study of sim-
ilarity measures for time series published a year later is [16].
It compares seven techniques such as ED, Fourier coefficients,
DTW, Auto Regressive (AR) models, DTW, Edit distance on
real sequences (EDR), time-warped edit distance (TWED)
which is an extension of DTW and minimum jump costs
dissimilarity. Another interesting work on time series classifi-
cation is to use complexity-invariance distance (CID) measure
[22]. They assume that in many domains, different classes have
different complexities and even pairs of complex objects tend
to be further apart under certain distance measures. This in-
duces the incorrect assignment of a complex class to a simpler
class in simple nearest neighbor classification. By estimating
complexity using the CID approach, it produces significant
improvements in classification accuracy in many cases. It also
introduces a technique, called Texas Sharpshooter, to predict
whether the method has accuracy superior to that of other
methods ahead of time by computing the accuracy gain from
training data. A new representation domain using recurrence
plots called RPCD is proposed in [9]. The output outperforms
ED in most cases. Another time series transformation is the
improved SVM as presented by [23]. The transformed in-
stances capture the necessary intra-class variations to redefine
the decision margin using variance distributions from intra-
class warping. However, the experiment displays only results
obtained from small datasets while large training datasets are
left out. Another technique to measure the similarity between
time series is shapelet-based [24]. Shapelets are time series
primitives that are used to find common shapes in a series.
The benefits are: it can provide interpretable result and it is
more robust on some datasets with dominant local features.
The works of time series classification that are shapelet based
can be found in [3], [25]. A very interesting approach fa-
voring the interpretability of feature selection is demonstrated
in [11]. It uses numerous algorithms to extract thousands
of features from time series, then afterwards reduces those
feature vectors using a process called greedy forward feature
selection. These feature representations are acquired from a
wide range of data properties, for example, statistics distri-
butions, correlation structure, entropy, linear and non linear
model fits (e.g., Gaussian Process, goodness of fit estimates),
nonlinear time series analysis and others. Of all the studies
that have been discussed, perhaps the best solution to solve
time series classification problems by far is to use a collective
of ensembles of classifiers on different data transformations.
The Collective of Transformation-Based Ensembles (COTE)
[8] is such an approach. It includes 35 classifiers in one
ensemble as well as transforming data (including the shapelet)
into an alternative data space where the distinctive features

Fig. 1. Architecture of an ESN. The dashed lines denote the connections
which are not compulsory.

are easily detected. The very recent experimental evaluation
[5] compares 18 approaches based on the UCR archive. It
shows that COTE is most significantly better than DTW and
has high accuracy. Nonetheless, it is very complicated, time
demanding and computationally expensive. On the contrary,
ESN is easy and computational cheap. Generalized ESNs
show good performance and are comparable to those of three
start-of-the-art approaches and the network can be further
optimized. Hence, ESN can be considered as an alternative
method to solve time series classification for many problems.

III. CLASSIFICATION USING AN ESN

Original ESN was proposed by Jaeger in [18], [19]. It is a
type of RNNs of which the weights are left untrained. Only
the output weights are to be trained for the desired target
at the read out connection where no cyclic dependencies are
created. In general, the use of RNNs for practical applications
is limited, since a simple training method like gradient descent
is usually not feasible. Convergence is slow and not always
guaranteed [19]. Moreover, cyclic dependencies in the network
can lead to bifurcations when changing a parameter during
training [26], and parameter updating is computationally ex-
pensive. Yet, a RNN has a certain biological plausibility and is
applied to model complex dynamical systems, for instance, the
work of [27] presents a framework for neurodynamical models
of working memory using an ESN. The framework illustrates
ESN mechanism properties for storing, maintaining, retrieving
and removing data similar to the function of the brain. The
core of an ESN is a sparsely connected random RNN called
reservoir. When driven by input signals, each neuron of
the reservoir creates its own nonlinear transformation of the
incoming signal. There is no adaptation of the inter-connection
weights in the reservoir, only the readout weights of the ESN
are adapted to a classification task. A general ESN architecture
is shown in Figure 1.

Here, we use a modification of the original ESN, called
time warping invariant echo state network [20]. It applies the
idea of time warping invariant neural network (TWINN) [28]
showing that time warping using a fully connected recurrent
neural network can have number of operation O(N) where



N is the length of input. Time warping in neuron networks
can be considered as a variation of the speed of the process.
Furthermore, the idea of a leaky integrator neuron in ESN is
chosen from a biologically inspired model in which the neuron
will both accumulate inputs and in the mean time also leak the
accumulated excitation. Therefore, it can handle time warped
signals for pattern recognition.

Consider a continuous time neuron network with input
dimensionality N,, neurons in the reservoir /V,, and output
dimensionality N,. Let @(t) € RM, #(t) € R and
7(t) € R™v denote the vectors of input activities, internal
state and output unit activity for time ¢ respectively. Further,
let Wi, € RN*Nu W € RN=*Ne and W,,, € RVv*Ne
denote the weight matrices for input connections, internal
connections, and output connections as seen in Figure 1. In
addition, the output might be back-coupled to the reservoir
via weights W, € R™=*Nv_ The internal unit activities 7 in
Figure 1 are updated from time step t—1 to time ¢,t = 1, ..., T,
by

Z(t) = f(Wint(t) + WZ(t — 1) + Wei(2)) @)

f(-) is an activation function of the neurons, a common
choice is tanh(-) applied element-wise. A leaky integration
rate « € (0,1] is the leakage rate determining the speed of
the reservoir update dynamics [29], [20]. Then the update rule
for the internal units is extended to

(1 - )@t — 1) + ad(t). 2)

If there are also direct connections from the input @(t) to
output layer, the output can be computed according to

( ) fout ( out[u(t); f(t)]) ’ (3)

where [;-] is a matrix concatenation and f,,; is a non-
linear function. Accordingly, Wy, now becomes Wy, €
RV X (NatNu), Typically, a simple linear regression is applied
at the readout layer. Hence, equation 3 can be simplified to

?j(t) out[ (t) (t)] . (4)

The class for testing input sequence (t) is then computed

by
Z i (t) (5)

ter

fleaky(t) =

class((t)) = argmax
k

where yy,(t) is the corresponding output of class k, and 7 is
the length of input u(t).

IV. EXPERIMENTAL SETUP AND RESULTS
A. Datasets in the UCR archive

We benchmark 85 datasets from the UCR archive [4]. Each
dataset contains a separate test and training set. All data is
in one dimension and already normalized to have standard
deviation to one and zero-mean. These data sometimes are
grouped by data types or characteristics of the data. In Table II,
each small colored square shown in front of the dataset name
illustrates a different data type. Image outline data (®) from
different disciplines are i.e., Fish, OSULeaft, DistPhalanxAge,

l‘ /\})\/A\ '/ \//0\ \4 Il
X m’\\A i J '«\% ) .\‘. \\\\"w“';".%?»f
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Fig. 2. The BeetleFly training set, which was obtained from shapelet
transformations, consists of 10 samples of Beetle and Fly each. (Top left)
The values on the x-axis show time, the values on the y-axis are shifted so
that we are able to see the characteristic of each data class by different color.
The corresponding covariance matrix of each class representation is shown on
the top right. (Bottom) States (X)) from four nodes in ESNs of N, = 250.

class 4 class 3

class 2 class 1

H) 0 W 20 30 40 H 60

0 100 200 300 400 500

Fig. 3. (Left) Plot of the OliveOil training datasets of 30 samples from 4
different countries. (Right) The corresponding covariance matrices show no
significant difference from 4 classes and this task is more difficult to solve
than BeetleFly.

DistPhalanxOutline, DistPhalanxTW, WordSynonyms, Yoga,
BirdChicken, Herring, FaceAll, 50Words, and Symbols. Motion
datasets (®) are for instance, Cricket_X, Cricket_Y, Cricket_Z,
InlineSkate, Haptics, GunPoint, and MutantWorms. The other
data types are e.g., from sensor reading (), device (=), ECG
(=) and simulated data (=). Figure 2 shows the plot of training
dataset BeetleFly obtained from shapelet transformation [25]
to classify Beetle and Fly from their contours. Figure 3 shows
the plot of 30 samples of extra virgin olive oils in the OliveQil
from four different producing countries [30]. The spectra
were collected using Fourier Transform infrared spectroscopy
(FTIR) spectrometer, then the classification was conducted us-
ing FTIR in combination with several multivariate approaches.
The classification of input signals in this case is hard to
solve for most classifiers, despite the original paper reporting
96% recognition rate using simple partial least squares (PLS)
and linear discriminant analysis (LDA). This is because the
original data is modified to reduce multidimensional data to
one dimension.

B. ESN Configurations

In order to get optimal recognition rates in ESN, there
are several important parameters that should be taken into
account. In our experiment, we set up three random ESN
networks and adjust spectral radii and input weight scaling
to create new ESN models to apply to all datasets. These
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N, /Connect/ScaleW;,, /A 250/0.5/1.0/0.0

250/0.5/2.0/0.05

500/0.1/2.0/0.05 800/0.1/2.0/0.05

p(W) 0.55 0.9 2.0 \ 0.55 0.9 2.0 5.0 \ 0.55 0.9 2.0 5.0 \ 0.55 0.9 2.0 5.0

BeetleFly 0.300 0.250 0.150 | 0.150 0.100 0.100 0.100 | 0.150 0.100 0.150 0.350 | 0.150 0.100 0.200 0.25

DiatomSizeR 0.078 0.078 0.082 |0.284 0.275 0.219 0.065 |0.284 0.268 0.206 0.062 |0.271 0.255 0.206 0.098

GunPoint 0.033  0.020 0.033 | 0.100 0.033 0.020 0.033 | 0.053 0.027 0.007 0.033 | 0.047 0.020 0.027 0.020

OliveOil 0.433 0.233 0.167 | 0.600 0.600 0.600 0.233 |0.600 0.600 0.567 0.100 |0.600 0.600 0.567 0.100
TABLE I

ERROR RATES FROM FIFTEEN ESN CONFIGURATIONS IN THREE ESN ARCHITECTURES. HIGHLIGHTED COLUMNS IN GRAY ARE CHOSEN FOR
COMPARISON IN TABLE II.

important ESN parameters are: (i) The reservoir size N,.
The maximum memory capacity of reservoir is bounded by
the network size. In addition, with the idea that the bigger the
network, the easier it is to find a linear combination of the
signal. Nonetheless, there is a trade-off between the size of
the network and computational effort. To have a compromise
between performance and computational complexity as well
as to avoid overfitting, we have utilized the knowledge of a
number of training datasets to setup the ESN. In terms of
applying one network to various datasets such as in the UCR
archive, we choose a moderate network size N, = 500 as a
baseline, and adapting the network size to a smaller and larger
value with N, = 250 and 800, respectively. (ii) Sparsity of
the reservoir. ESNs are set in a way that network should be
large enough to maintain memory capacity, but have sparse
connections. In our setups, we use N, = 500 and 800 with
10% connectivity and N, = 250 with 50%. (iii) Spectral
radius p(W): is computed from the maximum of absolute
eigenvalue of weight matrix W. It is considered to be a scaling
factor of . In theory, we usually set p(IW) < 1 to ensure
the echo state property, however in practice we select p(W)
in a way that maximizes the performance where 1 serves
as a reference point. Therefore, the spectral radius should
be set bigger for tasks that require an extensive history of
input and smaller for tasks where the output depends on the
recent history of the input [26]. The errors from empirical
studies using four spectral radii, 0.55, 0.9, 2.0 and 5.0 for
selected datasets are shown in Table I. The digits in the
table fluctuate due to the influence of changing spectral radii
in different network architectures. In the table, OliveOil and
DiatomSizeR have gained much better performances when
increasing the spectral radius to a certain amount (the worst
highlighted in red and the best in blue), whereas BeetleFly
prefers a smaller spectral radius on a small network. (iv)
Leaky rate («): can be regarded as a time warping of the input
signal or the speed of the dynamics of input and output. To
simplify our experiment, we assume that there is little dynamic
happening in the reservoir, therefore a small leaky rate should
be sufficient to get good performances on most datasets. A rate
of aw = 0.1 is used for all configurations. (v) Input scaling:
should be small for the linear network (or the data that require
short term memory) in order to drive the network around the
resting state. We presume that most of the datasets in the
UCR archive are nonlinear, therefore input scaling to W, is
set to 2.0 as a baseline for our models. Yet, to demonstrate
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Fig. 4. Pairwise accuracy plots between two classifiers taken from the error
rates in Table II. Each point represents a dataset. The colors in the top-left,
top-right and bottom-left indicate the numbers of classes (nC): magenta for
number of classes less than or equal 3, green for number of classes in [4..10]
and blue for number of classes greater than 10. Different shapes indicate a
high amount of training data: diamond(#) for training data less than or equal
100, triangle(A) for training data in (100..500], and circle(®) for training data
greater than 500. (Bottom-right): The pairwise comparison between N8S2 and
DTW is shown using type of dataset indicated in different colors and square
markers (M) to signify the data type

the applicability of input scaling to capture the linear system,
we insert input scaling 1.0 to N, = 250. Apart from these
important parameters, we also apply (vi) ridge regression
by adding a small regularization coefficient A = 0.05 at the
readout to ensure a stable WW,,;. Furthermore, the networks all
have uniformly distributed weights in the range of [—0.5,0.5]
and we neglect feedback connection. A good general guideline
about the setup of ESN configurations can be found in [26].

C. Results and Discussion

We built fifteen models from three different ESN archi-
tectures, N, = 250,500 and 800 by varying spectral radii
and input weight scaling for N, = 250 as seen in Table I
The other parameters are fixed as constants. The best ESN
model from these fifteen configurations from averaging over



Dataset nC nTrain ED DTWR DTW N5S2 N8S2 N8S5 optESN
m50Words A 50 450 0.369 0.242 0.310 0.499 0.422 0.360 0.360
= Adiac A 37 390 0.389 0.391 0.396 0.586 0.540 0.419 0.419
= ArrowHead ¢ 3 36 0.200 0.200 0.297 0.297 0.314 0.337 0.274
EBeef 5 30 0.333  0.333 0.367 0.300 0.267 0.367 0.267
mBeetleFly ¢ 2 20 0.250  0.300 0.300 0.150 0.200 0.250 0.100
BBirdChicken ¢ 2 20 0.450 0.300 0.250 0.200 0.200 0.250 0.150
=CBF ¢ 3 30 0.148 0.004 0.003 0.003 0.003 0.040 0.002

Car 4 60 0.267 0.233 0.267 0.233 0.217 0.217 0.200

ChlorineCct A3 467  0.350 0.350 0.352 0.435 0.423 0.415 0.415

CinCECGts 4 40 0.103 0.070 0.349 0.433 0.388 0.540 0.388
B Coffee ¢ 2 28 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Computers A 2 250  0.424 0.380 0.300 0.332 0.316 0.344 0.304
B Cricket X A 12 390 0.423 0228 0.246 0.295 0.264 0.323 0.264
B Cricket_ Y A 12 390 0433 0.238 0.256 0277 0.262 0.318 0.262
B Cricket_Z A 12 390  0.413 0.254 0.246 0.285 0.272 0.303 0.272
®DiatomSizeR 4 16 0.065 0.065 0.033 0.206 0.206 0.098 0.062
®DistalPhlxOAG 4 3 139  0.218 0.228 0.208 0.177 0.170 0.177 0.163
EDistalPhlxOC A 2 276 0.248 0.232 0.232 0.192 0.197 0.182 0.180
EDistalPhlxTW 6 139 0.273 0.272 0.290 0.233 0.233 0.255 0.223
BECG ¢ 2 100  0.120 0.120 0.230 0.100 0.120 0.160 0.100
BECG5000 5 500 0.075 0.075 0.076 0.072 0.068 0.069 0.068
sECGFiveDays ¢ 2 23 0.203 0.203 0.232 0.238 0.220 0.267 0.144

Earthquakes A 2 139 0.326 0.258 0.258 0.180 0.183 0.193 0.174

ElectricDevic 7 8926  0.450 0.376 0.399 0.288 0.274 0.314 0.274
BFISH 7 175 0217 0.154 0.177 0.143 0.131 0.137 0.086
BFace_all @ 14 560 0.286 0.192 0.192 0.217 0.201 0.076 0.076
BFace_four 4 24 0.216 0.114 0.170 0.045 0.034 0.057 0.034
BFacesUCR A 14 200 0.231 0.088 0.095 0.160 0.136 0.143 0.136

FordA e 2 1320 0.341 0.341 0.438 0.150 0.133 0.206 0.133

FordB e 2 810 0.442 0.414 0.406 0.128 0.123 0.217 0.123
®GunPoint ¢ 2 50 0.087 0.087 0.093 0.007 0.027 0.020 0.007
BHam A2 109  0.400 0.400 0.533 0.171 0.200 0.286 0.171
BHandOutl A2 370 0.199 0.197 0.202 0.304 0.304 0.340 0.301
mHaptics 5 155  0.630 0.588 0.623 0.539 0.539 0.571 0.539
mHerring ¢ 2 64 0.484 0.469 0.469 0.391 0.406 0.453 0.375
BInlineSkate 7 100 0.658 0.613 0.616 0.724 0.689 0.645 0.645

InsectWing A 11 220 0.438 0.422 0.645 0.469 0.468 0.472 0.442

ItalyPower ¢ 2 67 0.045 0.045 0.050 0.153 0.157 0.118 0.118

LargeKitchen A 3 375 0.507 0.205 0.205 0.317 0.328 0.344 0.264

Lightning-2 ¢ 2 60 0.246 0.131 0.131 0.344 0.279 0.295 0.246

Lightning-7 7 70 0.425 0.288 0.274 0.260 0.260 0.356 0.260
SMALLAT 8 55 0.086 0.086 0.066 0.226 0.207 0.237 0.207
®Meat ¢ 3 60 0.067 0.067 0.067 0.083 0.083 0.050 0.017
mMedicallmages 10 381 0.316 0.253 0.263 0.262 0.234 0.243 0.234
®MiddlePhlxOAG 4 3 154 0.260 0.253 0.250 0.210 0.207 0.215 0.207
EMiddlePhlxOC A2 291 0.247 0.318 0.352 0.473 0.470 0.390 0.390
BMiddlePhlxTW 6 154 0.439 0419 0416 0.356 0.353 0.366 0.353

MoteStrain ¢ 2 20 0.121 0.134 0.165 0.139 0.146 0.196 0.117
@NonlnvasFetalT1 @ 42 1800 0.171 0.185 0.209 0.282 0.242 0.335 0.242
@NonlnvasFetalT2 @ 42 1800 0.120 0.129 0.135 0.211 0.189 0.288 0.189
BOSULeaf 6 200 0.479 0.388 0.409 0.306 0.252 0.347 0.252
BOliveOil 4 30 0.133 0.133 0.167 0.567 0.567 0.100 0.100
#mPhalangesOC @ 2 1800 0.239 0.239 0.272 0.334 0.328 0.266 0.266

Phoneme A 39 214 0.891 0.773 0.772 0.713 0.701 0.730 0.701

Plane 7 105  0.038 0.000 0.000 0.000 0.000 0.000 0.000
EProximalPhlxOAG 4 3 400  0.215 0.215 0.195 0.151 0.156 0.161 0.127
BProximalPhlxOC © 2 600 0.192 0.210 0.216 0.223 0.230 0.168 0.168
BProximal PhlxTW 6 205 0.292 0.263 0.263 0.203 0.203 0.200 0.195

RefrigeratnDev A 3 375 0.605 0.560 0.536 0.456 0.467 0.472 0.424

ScreenType A 3 375 0.640 0.589 0.603 0.560 0.549 0.584 0.547
mShapeletSim ¢ 2 20 0.461 0.300 0.350 0.250 0.294 0.361 0.250
mShapesAll @ 60 600  0.248 0.198 0.232 0217 0.193 0.220 0.193

SmallKitchenApp 4 3 375 0.659 0.328 0.357 0.325 0.315 0.347 0.315

Sony AIBOSurf ¢ 2 20 0.305 0.305 0.275 0.118 0.106 0.210 0.106

SonyAIBOSurfll ¢ 2 27 0.141 0.141 0.169 0.205 0.201 0.221 0.134

StarLightCurves © 3 1000 0.151 0.095 0.093 0.146 0.145 0.137 0.137
mStrawberry A 2 370  0.062 0.062 0.060 0.106 0.098 0.073 0.073
BSwedishLeaf A 15 500  0.211 0.154 0.208 0.136 0.118 0.117 0.117
mSymbols 6 25 0.100 0.062 0.050 0.057 0.056 0.133 0.052
mSyntheticCtrl 6 300 0.120 0.017 0.007 0.027 0.027 0.027 0.013
mToeSegmentl o 2 40 0.320 0.250 0.228 0.061 0.057 0.175 0.057
mToeSegment2 ¢ 2 36 0.192 0.092 0.162 0.154 0.123 0.185 0.123

Trace 4 100 0.240 0.010 0.000 0.080 0.060 0.100 0.040
#TwoLead ECG ¢ 2 23 0.253 0.132 0.096 0.038 0.025 0.040 0.025
BTwoPatterns 4 1000 0.090 0.002 0.000 0.028 0.023 0.034 0.022
BUwaveGestureAll 8 896  0.052 0.034 0.108 0.272 0.247 0.212 0.212
BuWaveGestureX 8 896  0.261 0.227 0.273 0.261 0.253 0.262 0.253
BuWaveGestureY 8 896  0.338 0.301 0.366 0.397 0.384 0.360 0.360
BuWaveGestureZ 8 896  0.350 0.322 0.342 0.329 0.321 0.326 0.321

Wafer @ 2 1000  0.005 0.005 0.020 0.011 0.009 0.010 0.009
®BWine ¢ 2 57 0.389 0.389 0.426 0.389 0.389 0.296 0.167
®WordSynonyms A 25 267 0.382 0.252 0.351 0.498 0.486 0.420 0.420
BWorms 5 7 0.635 0.586 0.536 0.459 0.448 0.492 0.448
BWormsTwoClass ¢ 2 7 0.414 0.414 0.337 0.249 0.243 0.260 0.238
mYoga A 2 300 0.170 0.155 0.164 0.298 0.287 0.257 0.257

Ranking 5.165 3.647 4.324 4.394 3.641 4.535 2.294

TABLE II

ERROR RATES FROM DIFFERENT CLASSIFIERS
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Fig. 5. Graphical representation of the Bonferroni-Dunn post-hoc test. The
red line shows the two-tailedness of the critical difference when using DTW
as a control.

85 datasets is a model with N, = 800 with connectivity 0.1,
p(W) = 2.0 (denoted as N8S2). We also want to show the
influence of varying network size and spectral radius, therefore
we pick two other models, N, = 500, connectivity=0.1,
p(W) = 2.0 (denoted as N5S2), and N8S5 which is the
same network architecture as N8S2 but p(WW) = 5.0. It is
worth to note that a model with the parameters of N, = 250,
p(W) = 0.55 and an input scaling of 2.0 performs the worst,
whereas the same model with an input scaling of 1.0 is ranked
fifth. Table II shows error rates from all datasets of three ESN
configurations. Detail information in the table are dataset name
with data type indicated with a colored square in front, number
of classes (nC), number of training sets (nTraining) and the
error rates from 1-NN combined with three distance measure
ED, DTW and DTW-R, three selected different ESN models,
(N5S2, N8S2, N8S5) and lastly the best result from those
fifteen models (OptESN). The pairwise comparisons of two
classifiers are shown in Figure 4. Obviously, ESNs outperform
DTW and DTW-R when the number of classes is less than

10, where most of magenta and green appear in the yellow
areas in Figure 4 (top left and top right). Changing to larger
spectral radii from 2.0 to 5.0 in Figure 4 (bottom left) does
not always give better performance, although this improves
accuracy in many cases. The output from OptESN testifies
that high recognition rates from ESNs can only be obtained
from fine tuning parameters in the network. Figure 4 on the
bottom right shows the accuracy of N8S2 and DTW from
different types of data. There is no obvious preference of the
data type in using ESN as a classifier.

In order to find a statistically significant difference among
these classification methods, we follow [31] using a Fried-
man test for comparative studies of multiple classifiers with
multiple datasets. The Friedman test is used to test the null-
hypothesis that the average ranks of all algorithms are the
same as the mean ranks. The computed F-distribution is
2.12 at confidence level 95%, where Friedman test gives
Fr = 20.41. Therefore, we reject the null-hypothesis and
proceed with a post-hoc test. Bonferroni-Dunn for the post-
hoc test is used to control the family-wise error rate, besides it
is suitable to compare all classifiers to a control. The graphical
representation of the Bonferroni-Dunn test is illustrated in
Figure 5 with a critical difference of 0.874. The illustration
shows no significant difference between our control classifier
DTW, which is considered a decent state-of-the-art approach
for time-series classification, and all other classifiers except for
optimal ESN (OptESN). Simply fine tuning the spectral radius
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and adjusting input scaling for N, = 250 can lead to much
better performance. With some insights to the characteristic
of the datasets, it is easier to optimize ESNs for particular
datasets. It might be also interesting to explore the impact of
other essential settings.

V. CONCLUSIONS

In this paper, we have proposed ESNs as an alternative
method to solve time-series classification problems. The re-
sults show that ESNs are comparable to other state-of-the
art approaches, ED and DTW; and can outperform these
classifiers by choosing an appropriate network size depending
on the amount of training data, and carefully selecting spectral
radii and input weight scaling. Generally, benefits of using
ESNSs over distance measurement approaches are for example,
the capability to capture linear and nonlinear effects in multi-
dimensional data without data transformation and dimension
reduction processes. Although DTW can be extended for
multi-dimensional data, it raises some issues e.g., the com-
plexity and the selection of dependent or independent warping
distance function for multivariable [32]. In addition, ESNs
can classify data with different length without effort, while
comparing sequences of different lengths by DTW requires
interpolation, which worsens the accuracy [33]. Furthermore,
ESNs offer a very simple learning mechanism and can be used
for large and complex systems by optimizing the learning
rules. Testing is fast, because the computation is performed
only at the readout. For the case of linear regression, the
complexity is similar to the least-squares.
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2.3 Quasi View-Independent Human Motion Recog{
nition in Subspaces

Abstract: We demonstrate the efficiency of a proposed feature extraction
technique for dimensionality reduction in classifying human motions using
MoCap data. We follow a technique introduced by Korner and Denzler for
designing feature vectors before and after a transformation of these features
into a subspace. This approach uses an average of a skeleton in a video in
combination with a specific normalization to form an action descriptor. The
major advantage of this approach is that it yields a very small fixed data size
regardless of video length. This leads to a very fast computation with any
classifiers.

In our experiment, we show the robustness of applying this feature extraction
technique for various dimensionality reduction approaches under two con-
ditions: i) untrained camera angles in combination with untrained subjects,
ii) data loss; by further extension of i) by subsampling the original test data.
Furthermore, we suggest an anatomically in-frame normalization which can
improve the classification performance in several scenarios.
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Quasi View-Independent Human Motion Recognition in
Subspaces
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ABSTRACT

We demonstrate the efficiency of a proposed feature extrac-
tion technique for dimensionality reduction in classifying hu-
man motions using MoCap data. We follow a technique in-
troduced by Korner and Denzler [18] for designing feature
vectors before and after a transformation of these features
into a subspace. This approach uses an average of a skeleton
in a video in combination with a specific normalization to
form an action descriptor. The major advantage of this ap-
proach is that it yields a very small fixed data size regardless
of video length. This leads to a very fast computation with
any classifiers.

In our experiment, we show the robustness of applying
this feature extraction technique for various dimensional-
ity reduction approaches under two conditions: i) untrained
camera angles in combination with untrained subjects, ii)
data loss; by further extension of i) by subsampling the
original test data. Furthermore, we suggest an anatomically
in-frame normalization which can improve the classification
performance in several scenarios.

CCS Concepts

eComputing methodologies — Activity recognition
and understanding; Motion capture; Dimensionality
reduction and manifold learning;

Keywords

Human Motion Recognition, Feature Extraction, Subspaces,
Dimensionality Reduction

1. INTRODUCTION

Human motion recognition by computer vision has a broad
field of applications, ranging, e.g., from safety applications
[13, 14, 29] to studies on human behavior in psychology and
cognitive science [21, 19, 31, 22]. Over the years, storage sys-
tems have become much cheaper, which resulted in an ever
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University of Osnabriick

Gunther Heidemann
Institute of Cognitive Science
University of Osnabriick

increasing a quality of video footage. Nevertheless, moni-
toring or anomaly detection in surveillance can still not be
automatized due to the high complexity of video data in a
spatial and temporal domain. Though it is possible to detect
and track persons in video and interpret behavior to a lim-
ited degree, such techniques have not yet sufficient reliability
for the market — there are too many false alarms. This is
because a semantic understanding of human action is a dif-
ficult task, especially when viewpoint variation is involved.
This leads to numerous human action recognition studies
based on MoCap data. Unfortunately, many of these stud-
ies perform classification using one default view (Camera is
still and no panning and tilting considered, while subjects
move in only one direction) [23, 20, 18, 11], whereas in real
life situations the subject can move from any direction to-
ward or away from the camera (view independence).

Another important factor for real-time application is speed.
As a consequence, dimensionality reduction, i.e., the encod-
ing of high dimensional data in a space of lower dimension,
has well-known benefits: reduced computational cost and
memory requirements as well as improved generalization.
Furthermore, dimensionality reduction can provide an in-
terpretation of given data by means of visualization. Nu-
merous manifold learning methods such as PCA, Kernel
PCA (K-PCA) [27], Local Linear Embedding (LLE) [26]
and Isomap [30] have been widely used for dimensionality
reduction, nonetheless, they are not designed to perform
directly on time series data. Generally, time series classi-
fication task involve two aspects [25]: i) data representation
methods to reduce dimensionality or to transform data into
another feature space and ii) time series distance measures.
A large number of approaches [16, 4, 32, 2, 25] have been
introduced to solve such time series classification problems
and were benchmarked using the UCR archive. The UCR
archive [7] is a collection of time series datasets from a va-
riety of application domains, and the entire datasets in the
archive are in one dimension. Encapsulating multidimen-
sional data to such a low-dimensional subspace has also a
disadvantage, that is the classification is much more diffi-
cult to solve [25].

Our objective is to study the efficiency and robustness of a
proposed feature extraction technique under rotational vari-
ance of subjects which is equivalent to camera panning. The
study is conducted using 3D and 2D MoCap data from the
CMU MoCap dataset [8]. The 2D data is produced by pro-
jecting the 3D onto a 2D plane and transformed to screen co-
ordinates simulating a 2D point-light video. Such 2D point-
light motion has been extensively studied in the biological
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motion perception in psychology and cognitive science [31,
21, 31, 19]. Additionally, we also present the result of clas-
sifying multidimensional data using a naive approach versus
employing a subspace projection using various classification
approaches. Several manifold learning techniques are ex-
ploited in combination with diverse classification methods
to achieve the best performance.

2. RELATED WORK

Most of the work on human motion recognition follows
a popular approach in computer vision called a single-layer
approach [1], in which the recognition is performed directly
on video data for simple and short sequential movements of
humans. We also carry out our experiment and study of
other related work in this manner.

One of the most promising methods for view-independent
recognition is suggested by [15]. It employs self-similarity
matrices [28] which are similar to the unthresholded recur-
rence plot (RP) [10]. RP is a method used to visualize high
dimensional phase space trajectories. The matrix elements
correspond to the points in times at which a state of a dy-
namical system recurs. This matrix is a measure of similar-
ity as a sum of squared differences. Therefore, it is used to
represent each action as a key feature for action descriptors.
The benefit of using this technique is that the descriptors
are stable across view changes. The recognition relies on
the Bag-of-Features (BoF) obtaining from the Histogram of
Oriented Gradient (HOG) describing their geometric prop-
erties. Nonetheless, the downside of this approach is that
the sequences of all motions in the experiment are cut to
have an equal unit length in order to get the fixed window
size for the recognition. Other works that use dimensional-
ity reduction techniques for human motion recognition are,
for instance, the approach in [5] that presents human motion
recognition from 3D motion data using PCA. The works of
[24] and [9] apply PCA to recognize human activities to 2D
videos.

Our main contributions in this work are i) we demonstrate
the robustness of the proposed feature extraction technique
in combination with various dimensionality reduction meth-
ods using untrained angles for unknown subjects. In addi-
tion, we show that this technique is also robust against data
loss. ii) we compare different dimensionality reduction tech-
niques with popular classification methods. iii) we show that
a local anatomical normalization using an in-frame reference
can lead to an improved recognition of raw data.

3. FEATURE VECTORS

In this section, we discuss two ways to obtain feature vec-
tors for classification: i) using a direct naive approach in
order to get features in space frame by frame as they are,
and ii) using the proposed method to get features in a sub-
space.

3.1 Feature Vectors as Naive Approach

For each video sequence, we compute the feature vectors
V, € RVFm x ]R(Nf‘Nd), where Ny, is a number of frames
of video m, and m is the video index in {1..M}. Let M be
the number of training videos, and N; the number of skele-
ton joints. Here, we merge the MoCap markers to obtain
fixed N; = 15 joints. Ny is the number of the dimension in
{2,3} for 2D and 3D projection, respectively. To feed data

to a classifier, all M videos have each frame stacked on top

of one another as shown in Figure 1. The classifier can pro-

cess a total number of frames Njys as Ny = E%:l Nfm.
For testing, the video with index m is used to obtain pre-

Classifier

Ny X (Nj ~Nd)

Figure 1: Feature vectors using the naive approach

dicted output g, € RY5m (where m is an arbitrary index
of video either in the training or test dataset). To choose
the motion class ¢* of the video with index m, we use the
majority voting of y,, for all frames Ny ., in that video.

Ny
¢ = max Zyi,c (1)

ce{1..C} =

3.2 Feature Vectors in Subspaces

Classifier

MX(N]‘-Nd~3)

Figure 2: Feature vectors when two basis vectors
(Nc = 2) are selected. The number of training data
is very small compared to the naive approach and is
equal to the number of training videos.

To build feature vectors using dimensionality reduction,
we follow the approach suggested by Koérner and Denzler
[18]. This technique normalizes data points in an anatomi-
cally fashion by computing a zero-mean skeleton configura-
tion at each frame. For each video m, we compute the mean
average of the joints from all frames for each dimension d of
Ly, q as:

1
Lymag=—— li 2
= 3 b ®
where £; = ((z1,41),...,(2N,,Yn;))i is a joint matrix at

frame 4 for 2D projection (Ng = 2), d € {z,y}. Thus,
for video m, we have the mean average of the joints L., €
RWiNa) | Next, we normalize the data in order to compute
the eigenvectors. The normalized vector of the video m is
defined as V, ,n € RV7m x RWi-Na) where the dimensions
are still maintained at this step. For each dimension d of
Viyms Viym,d is computed using:
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Figure 3: Tracking of each skeletal joint locations for N; = 15 on 2D projection. A subject performs jumping
forward from different angles: a) —45° at frame 150 (The subject stands still for the first 100 frames) b) —45°

at frame 250 c) 0° at frame 250 d) —90° at frame 250.

Vu,'rn,d = ‘/Wn,d - Lm,d (3)

L,, is applied frame-wise. For the number of chosen prin-
ciple components N., we obtain basis vectors Ve, from
a manifold transformation of V), . Each V., , has size of
RWiNa) x RNe. Therefore, the feature vectors of video
m can be obtained from the mean average vector and the
normalized basis vectors as [Lm; Ve,,m] with the shape of
N; - Ng-(N:+ 1) as shown in Figure 2. V), can be trans-
formed using various dimensionality reduction techniques to
get the best learning performance. The results of applying
different manifold learning methods are illustrated in sec-
tion 4.3 and 4.4.

Extracting feature vectors using the proposed dimension-
ality reduction has the benefit that the extracted features
are very small no matter how long the videos are, since the
number M of videos is much less than the number of total
frames of all videos Ny (M < Nu).

4. EXPERIMENTAL SETUP AND RESULT

4.1 Experimental Setup

We choose ten actions from the CMU MoCap dataset
which are bending (subjects bend to pick up objects either
with both hands or with one hand from the ground and
sometimes put them over their head), bozing, golf swing,

Jumping forward, marching, running, salsa dance, cross-crunch

exercise (written shortly as crunch), side-twist exercise (or
twist) and walking. The number of markers on MoCap are
reduced to 15 representing the joints of a skeleton. Each
training and test set consist of five videos. However, some
actions such as side-twist and cross-crunch are limited to
two subjects performing only a few trials for a long period
of time. Therefore, we cut these long videos in order to ob-
tain ten short videos for the training and test set. Subjects
in the training set are excluded from the test set. The ex-
ception is salsa dance that has only one subject performing
on all ten trials. For the training set, we apply five camera
angles {-90,-45,0,45,90} to each video. A sample of these
videos is shown in Figure 3. For the test set, we use twenty-
one angles in {—100, —90,...,90,100}. Therefore, we have
10 x 5 x 5 videos (M = 250, Nas = 122645) for training
data, and 10 x 5 x 21 videos (M = 1050, Ny = 570759)
for testing recognition of untrained subjects and, from un-
trained camera angles. In addition to unmodified spatial
video data, we apply local normalization with respect to an
in-frame reference point to the data. This means the spa-
tial data of each frame has each joint subtracted from the

reference. Here, we pick the joint that laid at the center of
the torso in a skeleton as a reference. It is important to note
that we do not adopt the normalization with a zero-mean
and standard deviation of one, because the assumption of
normal distribution worsens the performance of sequential
classification in our prior test.
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Figure 4: Recognition rate from 3D and 2D projec-
tion using the naive approach with five classifiers.
The recognition rates from four classifiers are im-
proved by using in-frame referenced data compared
to raw spatial data

4.2 Classifications using Naive Approach

In this section, we extract features using the naive ap-
proach discussed in section 3.1. Several classification meth-
ods with the same configurations will be referred to for the
rest of our experiment, for instance, Support Vector Ma-
chine (SVM) with polynomial kernel degree 3 (SVMpoly3),
k-Nearest Neighbor (k-NN) with k=1, Decision Tree (DT),
AdaBoost with DT and Random Forests (RF) using Gini
impurity with 50 trees. Two common approaches typically
used for human motion recognition and general time-series
classification are k-NN [18, 3, 6] and SVM [15]. Especially,
k-NN gains favors in many types of research for time-series
classification with distance measures [3] such as Euclidean
Distance (ED), Dynamic Time Warping (DTW) [17] and
Edit Distance on Real sequence (EDR) [6]. Nonetheless, our
experimental results show that apart from k-NN and SVM
polynomial (degrees 2,3,4,5 give only a few percent differ-
ence), RF is one of the best classifiers comparable to 1-NN
as shown in Figure 4. Furthermore, the recognition rates in
Figure 4 also depict the influence of using normalized data
by in-frame reference. The average of using in-frame ref-
erence is about 10% better than using raw spatial data for
most classifiers.
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Figure 5: The largest areas of distribution of motions from the basis vector with the largest eigenvalue using
PCA. a) Sphere distributions of 3D skeletons at 0° and b) at 90°.
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Figure 6: Recognition rates from 3D using dimen-
sionality reduction from spatial vs. in-frame refer-
ence data. The results are from several manifold
learning techniques using 3 principal components in
combination with two classifiers, RF and 1-NN.
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Figure 7: Recognition rates from 2D projection us-
ing dimensionality reduction from spatial data. The
results are obtained from several manifold learning
using 3 principal components in combination with
two classifiers, RF and 1-NN.

4.3 Dimensionality Reduction

For subspace analysis, we choose several manifold learning
algorithms using three principal components, for instance,
PCA, Kernel PCA (K-PCA) with third order polynomial (In
[18], order 5 and 9 are used to obtain the best performance),
LLE with 3 neighbors (LLE-3N), Isomap with 3 neighbors
(Isomap-3N) and metric Multidimensional scaling (MDS).
Figure 5 shows the largest areas of distribution of ten mo-

tions from the basis vector with the largest eigenvalue using
PCA. The rotation in 3D data after the transformation still
maintains the largest area of distribution from all actions as
depicted in Figure 5 a) and b). The first basis vector Ve, .m
is used to compute the sphere distribution. The dimensions
in Ny are preserved in the basis vector and displayed as the
axes in the figures. The radii of the spheres are calculated
from the maximum distance of |Ve, m — Ve | in all dimen-
sions, where V; , is an average of V¢, m of the corresponding
dimension. The results of 3D data from several manifold
learning methods using three basis vectors in combination
with two classifiers RF and 1-NN, are shown in Figure 6.
The in-frame reference data can improve the performance of
3D data but does not show any improvement for 2D data
which is transformed to the screen coordinates. The out-
puts from applying similar configurations to 2D data are
displayed in Figure 7. The best results from dimensionality
reduction for 2D are obtained from spatial data employing
Isomap with 3 and 5 neighbors getting 96.48%, 95.14%, and
PCA 94.67% in combination with RF, respectively. The re-
sults of using subspaces yield even better performance than
the naive approach. For testing, employing subspace has a
speed-up of 1.5 for 2D data and takes 6.7 seconds for 1050
samples using a single process on Intel i7-3770 processor. In
a case of applying 1-NN as a classifier, computing based on
subspace for test data can obtain average speed 23 times
faster than using the naive approach for both 2D and 3D
data.

4.4 Data Loss

Further, we extend our experiment to demonstrate the
stability with respect to data loss by subsampling the orig-
inal test data using subsampling factors of 2,3,4,5 and 6;
whereas the training data still remains the same. The sub-
sampling factor of 2 will take only 50% of the original data,
meaning that every 2 frames of the test data will be taken
instead of each single frame (factor of 1). Hence, using sub-
sampling factor of 6 as shown here leads to 83% data loss.
Figure 8 illustrates the stability of applying dimensionality
reduction when data is missing. The dashed and dotted
lines show the results of feature extraction excluding the
mean average of video L,, introduced in section 3.2. The
results show that without mean average L,,, the classifica-
tion is quite sensitive to data loss. In addition, our proposed
feature extraction together with RF apparently gives stable
outcome regardless of subsampling factors comparing to 1-
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Figure 8: Recognition rates from resampling 2D
data with different sub-sampling factors using 3 ba-
sis vectors. The methods with “no L,,” are the meth-
ods using feature vectors without the mean average
of the videos in equation 2.

NN. Isomap with 3 neighbors (Isomap-3N) in combination
with RF presents the best performance, LLE and MDS also
gain stable good performance. On the contrary, PCA, which
is a favored dimensionality reduction approach, is pretty sen-
sitive to data loss comparing to other dimensionality reduc-
tion methods.

4.5 Discussion

For 3D data, we get the best performance 80.6% using
K-PCA and 1-NN and we did not try to optimize further,
whereas [18] gains 94.34% for 8 actions with one view, [12]
98.29% for 3 actions with one view. Close to our experiment
setup is [15], using 13 joints for 12 actions with fixing data at
164 frames for each motion on 6 camera angles, yields 90.5%.
However, its testing angles are also similar to the training
angles. None of the these works has a constraint on the sepa-
ration of test subjects from training subjects with untrained
angles. Table 1 displays the confusion matrix from 2D data
using our default setup for 21 angles having a recognition
rate of 96.5%. The worst performance comes from salsa
dance with 80%. This action is a complex action type which
means one action is a combination of several untrained short
movements. The misclassification of salsa as boxing might
be because hands stretching out are captured during the
long movement. (Salsa in the training set has the longest
movement average about 1800 frames where the other 9 ac-
tions have an average in the range of 160-550 frames.) The
other misclassified actions are from marching which is mis-
taken as walking 3.8% and crossing-crunch 2.8%; running is
mistaken for walking 2.8%; and walking mistaken for run-
ning 3.8%. The most confusions of actions are between run-
ning, marching and walking which both legs, hands and the
body joints have quite similar trajectories. Figure 9 (a)-(d)
demonstrate two subjects performing two actions, walking
and running from camera angles 0° and —45°. The pictures
show pretty close similarities of joint’s trajectories from two
angles of two actions, especially from 0°. Hence it is not a
trivial task to classify these two actions in subspaces for the
untrained camera angles.

5. CONCLUSION
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bend box golf jump march run salsa crunch twist walk

bend 0 0 0 0 0 0
box 0 0 0 0 0 0 0
golf 0 0 0 0 0 0 0
jump 0 0 0 0 0 0 0
march 0 0 0 0 0 0 2.8 0 3.8
ran 0 0 0 0 o EEN o 0 0 38
salsa 0 20 0 0 0 0 0 0 0
crunch 0 0 0 0 0 0 0 100 0 0
twist 0 0 0 0 0 0 0 0 100 0
walk 0 2 0 0 0 2.8 0 0 0

Table 1: Confusion matrix of classifying 1050 test
samples of the 2D skeleton using Isomap-3N+RF.

We demonstrated the robustness of using the proposed
scheme of representing human motion sequences in subspaces.
Our results show that the presented algorithm is quite stable
against data loss and yields high recognition rates even with
untrained subjects and untrained angles. The normalization
with in-frame reference data can improve the recognition by
more than 10% in most cases. We also show that the Isomap
which performs MDS in the geodesic space of nonlinear data
with RF yields the best result. Using PCA for the case of
data in sequence loss is not suitable. Additionally, although
1-NN performs relative well but the testing is slower than
RF with 50 trees and it is not robust against data loss. The
proposed design features could be further extended for other
applications of time series classification. Training and test-
ing are fast. They can be used with classifiers that support
on-line learning for real-time applications and to analyze
multidimensional data for other time series data.
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2.4 Classifying Bio-Inspired Model in Point-Light
Human Motion Using Echo State Network

Abstract: We introduce a feature extraction scheme from a biologically in-
spired model using receptive fields (RFs) to point-light human motion patterns
to form an action descriptor. The Echo State Network (ESN) which also has a
biological plausibility is chosen for classification. We demonstrate the efficiency
and robustness of applying the proposed feature extraction technique with
ESN by constraining the test data based on arbitrary untrained viewpoints,
in combination with unseen subjects under the following conditions: i) lower
sub-sampling frame rates to simulate data sequence loss, ii) remove key points
to simulate occlusion, and iii) include untrained movements such as drunkard’s
walk.
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Abstract. We introduce a feature extraction scheme from a biologically
inspired model using receptive fields (RF's) to point-light human motion
patterns to form an action descriptor. The Echo State Network (ESN)
which also has a biological plausibility is chosen for classification.

We demonstrate the efficiency and robustness of applying the proposed
feature extraction technique with ESN by constraining the test data
based on arbitrary untrained viewpoints, in combination with unseen
subjects under the following conditions: i) lower sub-sampling frame rates
to simulate data sequence loss, ii) remove key points to simulate occlu-
sion, and iii) include untrained movements such as drunkard’s walk.

Keywords: Echo State Network, Motion Capture, Motion Recognition,
Biological Motion Perception, Bio-Inspired Model

1 Introduction

Human motion recognition has a large variety of applications, for example, in
safety and surveillance such as access control and congestion analysis, abnormal
behavior detection [12], and in behavioral biometrics including gesture and pos-
ture recognition for human computer interaction (HCI) [11]. These applications
employ different representations and recognition techniques; however, the rep-
resentation and recognition methods are usually mutually reliant. As suggested
in [7], the human motion representation can be categorized into two models:
humanoid body model and humanoid image model. The humanoid body model
uses structural representations from joint-positions of 2D or 3D points in space
simulating point-light display. This point-light display can be seen as the model
of a stick figure which can be used to estimate human body parts in the hu-
manoid body model. The earliest application of using such point-light displays
of motion patterns was introduced for studying biological motion recognition
on human visual perception mechanisms [5]. The experiment reveals that the
movement of 10-12 bright spots attached to human body parts is sufficient for
humans to distinguish the actions. The point-light display of human motion has
later been widely used for subsequent studies on human behavior in psychology
and cognitive science because human motion also conveys information about
emotions or mental states, personality traits and biological attributes [15], [8],
[9].
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Our objective in this study is to demonstrate the possibility of applying biolog-
ically inspired models for both feature representation and recognition of fuzzy
human motion. This study was conducted using motion capture (MoCap) from
the CMU MoCap database [1]. The 3D data was projected onto a 2D plane and
transformed to screen coordinates simulating a 2D point-light video. Afterwards,
the 2D coordinate-space of each video frame was enlarged or shrunk to fit inside
a grid. This idea was inspired by human grid cells for the formation of environ-
ment maps in the hippocampus. The receptive fields (RFs) resembling wavelets
in the retina and primary visual cortex (V1) are generated inside the grid. With
these techniques, we combined the trajectory-based approach from a kinematic
structure of 2D point-lights with a pattern-based approach. The proposed feature
extraction technique was tested under new angles of new subjects.

2 Temporal Pattern Classification using an ESN

A
. —

£

Fig. 1: Architecture of an ESN. The dashed lines denote the connections which
are not compulsory.

An ESN [4] is a type of RNNs of which the weights are left untrained. Only
the output weights are trained for the desired target at the readout connection
where no cyclic dependencies are created. The work of [10] presents an ESN as
a framework for neurodynamical models of working memory. It illustrates ESN
properties for storing, maintaining, retrieving and removing data that are simi-
lar to functions of the brain. A general ESN architecture is shown in Figure 1.

Consider a discrete time neural network with input dimensionality N,,, neu-
rons in the reservoir N,, and output dimensionality N,. Let u(t) € RN,
x(t) € R™ and y(t) € R™ denote the vectors of input activities, internal state
and output unit activity for time ¢ respectively. Further, let W, € RNe*Nu
W e RM*Ne and W,,; € RY*YN+ denote the weight matrices for input con-
nections, internal connections, and output connections as seen in Figure 1.
In addition, the output might be back-coupled to the reservoir via weights
W, € RY=*Nv. The internal unit activities = in Figure 1 are updated from
time step ¢ — 1 to time ¢, where t = 1,...,T, by

z(t) = f(Winu(t) + Wa(t — 1) + Weyy(t)) (1)

f(+) is an activation function of the neurons, a common choice is tanh(-) applied
element-wise. The leaky integration rate o € (0, 1] is the leakage rate determining



the speed of the reservoir update dynamics. The update rule for the internal units
is extended to

Treany(t) = (1 — a)x(t — 1) + az(t). (2)

If there are direct connections from the input w(t) to the output layer, the output
can be computed according to

Y(t) = four Wour[u(t); 2(1)]), 3)

where [-;-] is a matrix concatenation and f,,; is a nonlinear function. Accord-
ingly, Wou: now becomes Woy; € RNv*(NeFtNu)  Typically, a simple linear re-
gression is applied at the readout layer. Hence, equation 3) can be simplified
to

Y(t) = Wour u(t); z(t)]. (4)

The output class for testing the input sequences w(t) is then computed by
1
class(u(t)) = argmax ] Z yi(t) (5)
k T teT

where yi(t) is the corresponding output of class k, and 7 is the length of time
series of input u(t).

Fig. 2: Top: Three actions for 1.5 seconds (180 frames) at —45°. Walking, running
and marching are shown in a), b) and c), respectively. Bottom: The arbitrary
views of corresponding trajectories of figures a), b) and c) are extended in time-
scale in a three dimensional space shown in d), e) and f), accordingly.

3 Experimental Setup and Feature Representation

3.1 Dataset

Nine actions (N, = 9) from the CMU MoCap database were chosen for the
experiment. They were bending (i.e. subjects bend to pick up objects from the
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(d)

Fig.3: Point-light figures with a diameter of 15 pixels at each joint. a) The
point-light is stretched and filled in the grid of 200 x 200 pixels. b) The grid is
mapped on the RFs of size Ngr = 10 x 10 with a Marr wavelet of o = 10. ¢)
Nrr =20 x 20, 0 =10 and d) Ngrr = 10 x 10, o = 20, where there are overlap-
pings of the RFs in the setting. This setting is based on a preferred bio-inspired
model.

- i 0 e el 0
120 40 240 0 120 240 360 0

Fig. 4: The feature vectors u(t) of six videos of different classes at 0° are shown
from left to right: golfing, bending, crunching, walking, marching and running.
The x-axis indicates the varying frame numbers of the video, whereas the y-axis
has the fixed number of RFs.

ground and sometimes put them over their heads), bozing, golfing swing, jumping
forward, marching, running, standing cross-crunch ezercise (written shortly as
crunching), standing side-twist exercise (or twisting), and walking. The markers
on MoCap were reduced to 15 representing the joints of a skeleton. Each training
and test set consists of five videos of different subjects. For some actions such as
twisting and crunching, there are only a few subjects, but the videos are long;
therefore, we cut these long videos in order to obtain ten short videos. It is
important to note that subjects in the training set are excluded from the test
set. For the training set, we apply five camera angles {-90,-45,0,45,90} to each
video. Three samples of these videos are shown in Figure 2. For the test set, we
use twenty-one angles in {—100, —90, ...,90,100}. Therefore, we have 9 x 5 x 5
videos for training data, and 9 x 5 x 21 videos for testing the recognition of new
subjects and, from unseen camera angles.

3.2 Feature Representation

The 2D coordinates of each video frame were stretched to fit inside a 200 x 200
pixels grid as shown in Figure 3 a). The grid has a fixed number of RFs producing



an input feature vector u(t) € RYRFXNF  where Npp = Nrr, X Ngr, is the

total number of RFs in a rectangular grid. N is the number of frames in a
video. In our experiment, we chose Ngr = 10 x 10 and adjusted the o of Marr
wavelet in order to design the RFs in the way that the RFs overlapped one
another as shown in Figure 3 b)-d). Examples of feature vectors of six videos
representing different actions are displayed in Figure 4. The two leftmost figures
are the golfing and bending, where there is no repetition of the action pattern.
Next to them is the pattern of one and a half cycle of crunching. The last three
images are walking, marching and running showing periodic patterns for about
2-3 cycles. The first 100 frames of the golfing and bending videos reveal very
smooth patterns, indicating no significant movement of the agents in these two
videos. This is typical for some actions such as golfing, bending and jumping
forward. By contrast, actions such as running, marching and walking exhibit a
very short onset of action and can complete one cycle in a very short time. In
comparison, running is the shortest video with about 140 frames, while the other
actions have an average in the range of 160-550 frames.

3.3 ESN Configurations

We set up a moderate reservoir size of N, = 500 having sparsely connected
neurons with 10% connectivity similar to [13]. The weight matrices, W and
Win, are random values uniformly distributed in the range [—1,1]. The spectral
radius p(WW) can be considered as the scaling factor of the weight matrix W. The
desired spectral radius can be simply computed from the ratio of the desired
value and the maximum of the absolute eigenvalues of weight matrix. For a long
short-term memory network, [3] shows that the peak performance in the setup
has the spectral radius set to one. The only parameter that would be varied in
our experiment is the leaky rate («), which can be regarded as a time warping
of the input signal. All results in our experiment use the average of 4 runs of a
randomly initialized ESN networks with the same configuration.

4 Experimental Results

4.1 Data sequence loss and redundancy as variations in speed

We subsampled the original test data using subsampling factors of 1,2,4,6,8, and
10, whereas the training data still remained the same. The subsampling factor
of 2 means that every 27¢ frame of the data will be taken instead of each single
frame (factor of 1). We evaluated our result using ESN with three leaky rates a =
0.1,0.5 and 0.9 comparing with two methods, 1-Nearest Neighbor (1-NN) and
Random Forest (RdAF) which use 15 joint-positions in videos obtained directly
from MoCap without RFs. We used both a naive approach and a dimensionality
reduction method to extract feature vectors for these two classifiers. The feature
vectors for the naive approach are obtained by simply stacking all video frames
on top of each other for training the classifiers. The voting majority of the
frames in a target video is counted for the classification. For the dimensionality
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Fig. 5: Recognition rates from various classification approaches shown in y-axis.
Subsampling factors of test data shown in x-axis. Left: Training factor of 1.
Right: Training factor of 5.

reduction method, the feature vectors are acquired from PCA employing three
principal components in combination with 1-NN and RdF. Figure 5-Left shows
the results of recognition rate using test data from twenty-one untrained angles
with respect to data sequence loss by using a training factor of 1. Figure 5-Right
shows the result of recognition rate using a training factor of 5 as a testing for
data redundancy. Both figures reveal that the ESN with a = 0.9 gives the best
performance with robustness against data sequence loss and redundancy yielding
a recognition rate of 95% even with large training and test subsampling factors.
The good performance of ESN using o = 0.9 which can handle the variations in
speed might be explained by the behavior of a long short-term memory in ESN
which is demonstrated in [3]. Classifying data in space using 1-NN as the naive
approach also gains a stable outcome of about 80%. In contrast, classifying data
in subspaces using PCA is sensitive to data sequence loss and only gains good
outcomes when the frequencies of training and test data sequences are about the
same.

bend box golf jump march run crunch twist walk

bend I 0 o0 o 0 0 0 0 0
box 0 N o o 0 0 09 18
glf 0 o N o 0 0 0 0 0
jump 17.1 0 4.8 0 0 0 0 0
marcch 0 0 0 0 100 [ 0 0 0
—~t run 0 0 0 0 o B o 0 0
T crunch 0 0 0 0 0 o O 0 0
twist 0 0 0 0 0 o 19 MW o
walk 0 0 0 22 207 43 0 0

Fig. 6: Left: Two subjects perform drunkard’s walking. Right: Confusion matrix
of test samples by substituting drunkard’s walk for walk.

4.2 Removing key points and drunkard’s walks

We furthered the experiment by removing key points from the test data sim-
ulating occlusion from all frames in videos. Removing a wrist from a skeleton



does not affect the recognition rate, while removing an ankle from a skeleton
makes running, crunching and walking all mistaken as marching, which results
in a recognition rate drop to 61%. Furthermore, we extended the test by hav-
ing three new persons performing four trials simulating drunkard’s walk from
twenty-two untrained angles producing 92 test samples for walking, while the
other actions remain the same. Two samples of drunkard’s walk are shown in
Figure 6-Left. The confusion matrix in Figure 6-Right reveals that walking is
misclassified as marching for 20.7%. The closed trajectories of these two actions
can be inspected from Figure 2 ¢) and Figure 6-Left.

4.3 Discussion of Related Work

One of the earliest promising methods for view-independent recognition of 3D
MoCap was introduced by [6]. It applied a non-threshold recurrent plot by com-
puting a similarity matrix of each joint as a sum of squared differences. The ben-
efit of using this method is that the descriptors are stable across view changes.
The recognition relies on a Bag-of-Features obtaining from the Histogram of Ori-
ented Gradient. However, the disadvantage of this approach is that the sequences
of all motions in the experiment must have an equal length in order to get a fixed
window size for recognition. Another study on view-independent recognition of
Mocap is [14]. It proposed a feature extraction technique to transform either 2D
or 3D data into subspaces to form an action descriptor. The major advantage of
this approach is that it yielded a very small fixed data size regardless of video
length, as well as very fast computation. The test on projected motion in 2D
achieves a recognition rate of 96.5% from 21 untrained angles for 10 actions and
it is also very stable for the case of data sequence loss. Other interesting skeleton
based action recognition approaches for 3D MoCap are for instance, [2] and [16].
They proposed and compared several deep recurrent neural network architec-
tures with Long Short-Term Memory (LSTM) for classification. The tests were
carried out using 65 classes of HDMO05 MoCap yielding up to 96.92% and 97.25%
recognition rate respectively. Nonetheless, the tests were only performed for one
default view.

5 Conclusion

We have introduced a feature extraction scheme from a biologically inspired
model by applying the concept of receptive field to point light patterns of hu-
man motion. Our proposed scheme in combination with ESN which presents
itself as a good approximator, yields a good performance and robustness against
variations of speed even when the trajectories of motions are fuzzy. This rep-
resentation could be deployed for human motion classification based on optical
flow obtained from standard videos, where the human pose estimation is infeasi-
ble. The designed ESN is generic in the sense that it is not specialized to human
motion. It also shows a good prediction of the unseen data. Hence, application
to other domains of articulated objects in motion is possible. Furthermore, new
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technologies such as the IBM TrueNorth chip have introduced a dedicated neuro-
inspired hardware that allows modeling hundreds of thousands up to a million of
neurons with very low energy. The ESNs, which offer very simple learning mech-
anisms, can be optimized by local learning rules that scale well even with very
large systems. Therefore, ESN is a potential candidate for low energy systems
that can be an integral part of sensor technology for the future.
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2.5 An Empirical Study on Bidirectional Recurrent
Neural Networks for Human Motion Recogni-
tion

Abstract: The deep recurrent neural networks (RNNs) and their associated
gated neurons, such as Long Short-Term Memory (LSTM) have demonstrated
a continued and growing success rates with researches in various sequential
data processing applications, especially when applied to speech recognition
and language modeling. Despite this, amongst current researches there are
limited studies on the deep RNNs architectures and theirs effects being applied
to other application domains.

In this paper, we evaluated the different strategies available to construct bidi-
rectional recurrent neural networks (BRNNs) applying Gated Recurrent Units
(GRUs), as well as investigating a reservior computing RNNs, i.e., Echo state
networks (ESN) and a few other conventional machine learning techniques for
skeleton based human motion recognition. The evaluation of tasks focuses on
the generalization of different approaches by employing arbitrary untrained
viewpoints, combined together with previously unseen subjects. Moreover, we
extended the test by lowering the sub-sampling frame rates to examine the
robustness of the algorithms being employed against the varying of movement
speed.
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The deep recurrent neural networks (RNNs) and their associated gated neurons, such as Long
Short-Term Memory (LSTM) have demonstrated a continued and growing success rates with
researches in various sequential data processing applications, especially when applied to speech
recognition and language modeling. Despite this, amongst current researches there are limited
studies on the deep RNNs architectures and theirs effects being applied to other application
domains.
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rent neural networks (BRNNs) applying Gated Recurrent Units (GRUs), as well as investigating
a reservior computing RNNs, i.e., Echo state networks (ESN) and a few other conventional ma-
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the sub-sampling frame rates to examine the robustness of the algorithms being employed against
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1 Introduction

The recurrent neural networks, whose structures are similar to those of multilayer perceptrons
(MLPs) have been widely used for sequential data processing. Nonetheless, they are different
from the MLPs by allowing connections among hidden units, therefore the networks can retain
information of past inputs as a vector of activation for each time step which makes RNNs
exceedingly deep. Their depth, however, makes them difficult to train because the update of
the weight matrices with a gradient-based approach such as Backpropagation Through Time
(BPTT) leads to exploding and vanishing gradient problems [1]. Many techniques have been
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introduced in order to solve these two issues, especially for the vanishing gradient problem,
but training RNNs was still a very difficult task and the applications were limited.

Since the emergence of special architecture for gradient-based methods called LSTM
[17], training RNNs has become easier and more successful in numerous tasks such as
speech recognition [12], acoustic modeling [24], sequence labeling in speech recognition
[13], handwriting recognition [15], language modeling and machine translation [30, 31, 4],
prediction of successful shooting in basketball [28], analyzing motion patterns in autonomous
driving [11], image caption [36] and learning of video representation [29]. The LSTM is
designed to solve the vanishing gradient problem whereas truncating the gradient is harmless
to the networks because an LSTM can enforce a constant error flow within special units to
bridge time lags. Unlike the traditional recurrent unit which calculates the weighted sum of
inputs and directly applies the activation function, the LSTM unit contains a memory cell.
Furthermore, there are several studies such as [26] and [18] that reported their achievement of
an improvement of the output performance by introducing the depth to the RNNs. Typically,
any RNNs when unfolded in time might be considered deep themselves, because the input to
output in a given time span has crossed several nonlinear layers as computational paths [26].
Nonetheless, the depth of neural networks is usually defined by the number of feedforward
neural layers. Most studies in deep RNNs concentrate on sequence-to-sequence modeling,
particularly for language modeling for instance [30, 16, 18, 26, 6].

In our study, we focused on solving a classification problem using a special type of deep
RNNs, called bidirectional RNNs (BRNNs) which were first introduced by [27] in the late
1990s. Nevertheless, they started to attract attention many years later after a groundbreaking
achievement of sequence labeling in speech recognition by [13]. The BRNN is an RNN which
contains a separation of a forward and backward pass for positive and negative time direction.
Therefore, it is able to store the past and future context, whereas a conventional RNN can
only partially achieve this by delaying the output by certain time steps. Our study is set
up by employing more than 300 configurations for deep BRNNs after the preliminary tests,
of which we inspect how the classification performance is affected by changing the width
and the depth of the hidden layers. The designed networks are set up in a generic sense by
simply stacking multilayer RNNs to have the required depth. The evaluation is based on
three Motion Capture datasets for comparing BRNNs with ESNs [19, 20] and traditional
machine learning techniques. Motion Capture (MoCap) is a marker-based system which by
its high-dimensional nature, nonlinearities and long-range dependencies make it ideal for
studying the limitations of time series models [35]. Although the focus of our study is on this
particular domain, the design of BRNNs is not just solely specific for MoCap datasets. We
are convinced that the study is also applicable to other high dimensional time series data.

2 Related Work

Many studies have demonstrated a superior functionality of applying deep RNNs when
compared to shallow networks, for instance, [30] introduced a new architecture called
multiplicative RNNs by using multiplicative connections to allow the current input character
for the character-level in language modeling to determine the hidden-to-hidden weights.
However, this model was trained with Hessian-Free optimizer (HF) instead of gradient
descent. The work of [16] focused on a hierarchy of RNNs for character-level language
modeling using stochastic gradient descent. It proposed two alternative architectures which
are deep MLPs with three hidden layers stacked from one layer on top of each other with
temporal feedback loops. One architecture uses feedback loops from output but with the
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last hidden layer contributing to the output layer, while another architecture allows all the
connections from each hidden layer contributing to the output layer. Four other different
models to construct deep RNNs have been proposed by [26] for three language models. Quite
recently, a hierarchical multiscale RNN model has been presented by [6]. It shows that the
proposed network architecture can learn the latent hierarchical multiscale structure from
temporal data for character-level language modeling. A similar study to our work which
employs bidirectional RNNs for classification tasks has been discussed in [14]. It used five
hidden layers of BRNNs with LSTM to classify 61 phoneme outputs in which each layer
consists of 2 - 250 cells. A comprehensive comparative study of deep RNNs has been revealed
in [12]. It demonstrated the results of using from one to five hidden layers while fixing the
number of neurons for all hidden layers. The results from this experiment exhibited that:
i) LSTM works better than the typical tanh neuron, ii) bidirectional RNNs with LSTM
also give better output performances than typical unidirectional RNNs with LSTM units,
and iii) the depth size is more important than the width size. In addition, by fixing the
number of neurons of each hidden layer, the networks with three hidden layers work as
well as those with five layers, while the number of weights of five hidden layers is almost
twice their number for three layers. Furthermore, the evaluation in [18] also confirms that
shallow BRNNs outperform shallow unidirectional RNNs on extracting sentence-level opinion
expression. It concludes that, for a large network, three hidden layers provide the best output
performance for their tasks. In case of a small network, two, three and four hidden layers show
equally good performance for certain sizes. By adding more layers, its performance decreases.
Further, the study suggests that in conventional stacked deep learners, every hidden layer
conceptually lies in a different representation space, and establishes a more abstract and
higher-level representation of the input. By taking these findings as our guidelines, we
then hypothesized that the activities at each layer could represent some forms of the action
descriptors.

Figure 1 A deep BRNN with twg) hidden layers following [14]. The dashed-dotted lines indi(c_ate
the forward direction depicted by h; and the dashed lines indicate the backward direction A ;.

3 Classification Approaches

3.1 Deep Bidirectional RNNs

Generally, the BRNN has been applied for sequence-to-sequence learning, particularly for
Natural-Language Processing (NLP) tasks. The structure of the BRNN consists of two
RNNs, one to compute the forward hidden sequences hy and the second is to compute
backward hidden sequences hy. Figure 1 shows an architecture of the BRNN for two hidden
layers. Let @ = (x1,..,27) be an input sequence for T time steps. The final output y; is
accumulated across the T' frames at the last layer and is classified by the probability of
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human action classes using the Softmax function. We computed the output sequence at time
t of y according to [14] as:

yr = g(W- hnth' ht+b ) (1)
g(+) is an activation function, Wﬁy and Wgy are weight matrices at the output layer

and b, is an output bias. The Et can be interpreted as a summary of the past from t =T to
1, whereas h; is the summary of the future from ¢ = 1 to T. The activities in forward and
backward direction can be written by:

H?:f(Wﬁn 1hnh’n 1+Wﬁnﬁn t— 1+bn) (2)
= f(We o Byt 4 W oo By + B (3)

where h° is the input sequence.

Figure 2 Architecture of an ESN. The dashed lines denote the connections which are not
compulsory.

3.2 Echo State Networks

An ESN shown in figure 2 is a type of RNN, whose design does not depend on updating
weights by gradient computation, but, instead it creates a random dynamical reservoir RNN.
The reservoir is then driven by the training data and leaves the weights untrained. The
output weights are computed at the readout connection using a linear regression of y(t). The
internal unit activities Z in figure 2 can be updated by:

#(t) = fF(Wina(t) + WE(t — 1) + Wrpif(t)) (4)

f(-) is an activation function of the neurons, a common choice is tanh(-) applied element-
wise. By employing the time warping of the input signals, the leaky integration rate [21]
a € (0,1] is adopted to determine the speed of the reservoir update dynamics. The update
rule for the internal units is extended to:

Freaky(t) = (1 — a)F(t — 1) + a@(t). (5)

Applying a simple linear regression at the readout layer leads to output #(t):
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3.3 Traditional Machine Learning Methods

Most work on time series classification for example, the well-known UCR archive, of which
all datasets are of one dimensional feature, focuses on an adaptation of distance measures
using 1-Nearest Neighbor (1-NN) with Euclidean Distance (ED) and Dynamic Time Warping
(DTW). Both techniques have proven to perform very well on the UCR archive, especially
DTW. Nevertheless, DTW has limited its applications only on the fixed length data (that
is one must extrapolate the shorter sequence in order to have an equal length between
two sequences) and gives rise to some issues for the case of multi-dimensional data e.g.,
the computational complexity and the selection of the dependent or independent warping
distance function [32].

We adopted two transformation approaches to extract the feature vectors in our experi-
ments. They are i) a naive method by stacking each frame on top of one another, and using
majority voting to decide the best course of action, and ii) a dimensionality reduction
technique of the zero-mean skeleton configuration for feature vectors demonstrated in
[34, 23]. The two best classifiers for MoCap classification, cited in [34], k-NN and Random
Forest (RF), were chosen for both transformation approaches.

4 Configurations

4.1 BRNN architectures

The RNNs with one hidden layer (1L) represent shallow networks, while those with more
than one hidden layers represent the deep RNNs. According to [14] and [18], three hidden
layers are sufficient to achieve the best performance, while adding more hidden layers worsens
the output performance. On this account, in our experiment, we concentrated on evaluating
geometries of the networks with two and three hidden layers as illustrated in figure 3. RNNs
with three stacked hidden layers numbered from bottom to top labeled as (Lj - La - Lg) will
be referred to throughout the experiment indicating the number of units in one direction.
(We use the term cell or unit instead of neuron to emphasize the use of gated units in
RNNs.) Model 2L__A, as seen in the figure 3 is depicted for the two hidden layers in which
the number of cells of the two hidden layers is almost equal. The model 2L B is for two
hidden layers, of which the number of neurons of Ly (top) is at least double the size of L
(bottom), and vice versa for model 2L C. Note that the first hidden layer (L;) connects to
the input nodes laying at the bottom. For models with three hidden layers, we extended the
geometries to five architectures as illustrated in figure 3. Here, we combined cell numbers
in {50, 100, 150, 200, 250, 300, 350,400} to form these geometries which have a limited total
amount of cells from 2 - 200 up to 2 - 600 units.

4.2 BRNN configurations and hyperparameters

In order to verify the impact of the width and the depth on the network as well as to simplify
the experiment, several parameters in the experiment had been previously investigated. They
are: i) Cell type. In our experiment, instead of a well-known LSTM, we replaced each
cell unit at h with a gated recurrent unit called GRU [4]. GRU is a variation of a gating
mechanism and is comparable to LSTM and has been primarily used in machine translation
as encoder-decoder models. It is similar to LSTM in that the gating units modulate the
flow of information inside the unit, but without memory cells. Comparative studies of using
traditional recurrent unit tanh, LSTM and GRU, found in [7] and [22] have shown that
the gated units, both the LSTM and GRU outperform the conventional recurrent unit. To
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2L_A 2L_B 2L.C

3LA 3LB 3L.C

3LD 3LE

Figure 3 Different geometries representing eight models used in our experiment with varying
width of two and three hidden layers.

achieve certainty, we had examined these three cells in BRNNs in our preliminary tests.
The networks with GRU cells significantly outperformed the other two cells by more than
5% in all experiments. Therefore, our classification results were from applying the GRU
units to the networks. ii) Optimizer. In contrast to the optimizer benchmark for RNNs
in Penn TreeBank language modeling [8] which mentions that Adam and RMSProp do not
work well with RNNs, we found that in our case, both of them converged very quickly even
with a very small learning rate and gave good output performance. The primary test was
carried out for a shallow BRNN. The selected learning rates for each optimizer here were the
recommended values in the papers based on MNIST dataset. For the rest of the experiments,
we chose RMSProp as our default optimizer which outperformed all other optimizers. iii)
Regularization. Because of the limited amount of data, we cannot take out some data
for validation. Nonetheless, we added a regularization term L2 to the objective function
with a fixed regulation A = 0.02. It is interesting to note that increasing the regularization
parameter from 0.01 to 0.02 increases the recognition rate by about 3-5% in most models.
We applied the norm clipping with a maximum gradient norm limited to one, and no dropout
was applied.

4.3 ESN configurations

The ESN configurations in the experiments follow the guidelines suggested in [33] which
demonstrated the influence of the ESN settings on various datasets on the UCR archive.
Several key parameters are: i) Sparsity of the reservoir. In corresponding with BRNN
networks which have the networks size in 2 - {200, ..,600}, we set the reservoir size using only
half of BRNN with connectivity of 10, 30, 50 and 70% respectively. ii) Spectral radius
which is considered to be big for the tasks that require an extensive history of an input,
while one is served as a reference point. We picked 5.0 from [33]. iii) Leaky rate which can
be regarded as time warping of the input signals was fixed at 0.1 for all configurations. iv)
Input scaling: was set to 2.0 similar to [33] and v) regularization coefficient was fixed
at 0.1. Moreover, the network weight was set to have a uniform distribution in the range of
[-0.5,0.5] and no feedback connection was considered here.

4.4 Traditional machine learning configurations

For the direct naive method, we employed two popular classifiers for classification, 1-NN
and RF with 75 trees, which yielded best output performance in [34]. To prove the case
of a combined manifold learning with classification, we chose the PCA with two and three



62

components associated with RF and 1-NN.

5 Datasets and Experimental Setups

5.1 Datasets

We evaluated the proposed techniques as described in section 3 and 4 using three MoCap
datasets, MHAD-27, MHAD-10 and HDMO5.

MHAD-27 2 [2] consists of 27 different actions performed by eight subjects. Each
subject repeated the same action four times. The dataset contains a total of 861 data
sequences, where three sequences were corrupted and removed from the dataset on the official
website. The training was performed on six subjects, and two subjects were left out for the
test. The recognition rate was reported on an average of 28 combinations. This dataset was
recorded using 20 markers. Therefore, we have the feature vector which is captured in 3D
space for BRNN of size (3 -20) x 120, where 120 is the amount that is close to the maximal
sequence length of this dataset. Zeros were appended to the shorter sequences in BRNNs.
It is important to note that ESN can handle different lengths of the data sequences, so the
data is trained with the original length.

MHAD-10 [2] is a 3D MoCap dataset of six subjects performing 10 different hand
gestures tracked with 25 markers. The four additional markers comparison with MHAD-27
were put on the left and right hand and a thumb, and one additional marker was put on
a spine. Each subject repeats an action 5 times (trials). Therefore, we have a total of 300
videos with various sequence lengths. For BRNN, we chose to fix the number of sequences
to 150 which is close to the maximal length of the sequence in the dataset. This makes a
feature vector size of (3 -25) x 150. The training is performed on five subjects from all trials
and an unseen subject is left out for testing. Hence the recognition rate is an average of
six-fold cross-validation.

HDMO05 [25] was originally made up of 130 classes consisting of five subjects performing
actions with and without repeating the same cycles separately. This created a total of
2343 sequences. We followed [5, 9, 38] in grouping non-repetitive and repetitive motions
together yielding 65 actions. There were about 20 actions which have samples less than 20
i.e., throwBasketball, throwFarR and jumpDown having only 14 trials each, while actions such
as walk, elbowToKnee and runOnPlaceStart have 94, 80, 74 trials, respectively. This leads
to an unbalancing of data and causes a huge bias towards a particular action. Nonetheless,
since we focused on the action recognition of unseen subjects, therefore four subjects were
used in the training set and one subject was for the test. We reduced the original number of
markers to 19, where some nearby sensors e.g., on the spine as used in MHAD were merged.
The average sequence length is 261 with the maximum of 901. With the limitation of our
computational capacity, we set the data using the fixed length of 400 for BRNNs. Therefore,
the feature vectors of BRNNs have a size of (3-19) x 400.

3 This dataset, MHAD-27, is the first version of UTD-MHAD, where MHAD-10 uses a second generation
of Kinect camera which came out later.
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Figure 4 The recognition rates of MHAD-10 from designated network architectures using five-fold
cross validation. The setup does not condition on the separation of test subjects from the training
set.

5.2 Experimental Setups

‘We normalized each sequence with respect to its in-frame reference of that dataset, where
the reference is the joint that laid at the center of the skeletal torso. The evaluations were
composed of three experiments: i) Having some insights of deep networks strategies
by varying the width and height of the network. In this experiment, we did not
impose conditions on separation of test subjects from the training set. ii) Finding a few
good models by varying the number of cells in the networks using unknown
subjects. The experiment was set up in a way to find a few good models of each dataset by
varying the number of cells in the networks in 200-600 units (one direction in BRNN and the
total units in a reservoir for ESN), where the test subjects were excluded from the training
set. More than 300 configurations for BRNN were constructed to obtain the best output
and created some insights of construction strategies for deep networks. iii) Extending
the test using untrained viewpoints with the variations of speed. We enhanced
the experiment by extending the training set to have five camera angles {—90, 45,0, 45,90},
whereas test angles are in {—80, —70, ..., 70,80}. Moreover, we subsampled the original test
data using a subsampling factor of 1, 2, 3, 4 and 5, while the training data still remained the
same. The subsampling factor of 2 means that every 2"? frame of the data will be taken
instead of each single frame (factor of 1).
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Figure 5 The recognition rates of MHAD-10 by excluding test subjects from the training set.
Left) Changing the total number of GRU units in one direction of BRNN or the reservoir size
of ESN. Right) Extending the test on the left by changing subsampling factors of test data of
untrained viewpoints.
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Figure 6 The recognition rates of MHAD-27 by excluding test subjects from the training set.
Left) Changing the total number of GRU units in one direction of BRNN or the reservoir size
of ESN. Right) Extending the test on the left by changing subsampling factors of test data of
untrained viewpoints.
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Figure 7 The recognition rates of HDMO05 by excluding test subjects from the training set. Left)
Changing the total number of GRU units in one direction of BRNN or the reservoir size of ESN.
Right) Extending the test on the left by changing subsampling factors of test data of untrained
viewpoints.

6 Experimental Results

6.1 Discussion of results

Firstly, we investigated the effects of geometries of BRNNs following the construction
strategies depicted in Figure 3. The recognition rates of MHAD-10 performing on average
of five-fold cross-validation using shallow and deep BRNNs are shown in Figure 4. Moreover,
the recognition rates of each strategy are the average of two runs with the standard deviation
of £3%. These test results gain very high recognition rates because they are not based on the
separation of test subjects from the training set. It is obvious that the recognition rates which
are better than 98% (the yellow shaded area in Figure 4) can only be achieved when the
networks are relatively large i.e., the number of cells is greater than 2 - 400. Furthermore, the
models which have any layer containing 50 cells yield output worse than others. This might
be because the input feature of MHAD-10 has a size of 75 and any form of dimensionality
reduction at any hidden layer in RNNs by shrinking the network’s width is not suitable.
Hence, by the experimental results, we conclude that the width of a hidden layer next to the
input layer in one direction should be larger than the size of the input features.

We enhanced the experiment by excluding test subjects from the training set to
examine the generalization of the models. The recognition rates of three datasets for
two experimental setups of MHAD-10, MHAD-27 and HDMO05 can be found in Figure 5, 6
and 7 on the left and right of the figures respectively. In these figures, only a few best models
of BRNN were chosen from various configurations based on five geometries in Figure 3.
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Furthermore, the results also demonstrate the output of the shallow networks, the output of
ESNs in section 3.2 and the output of machine learning approaches from section 3.3.

The results of the first experiment displayed on the left of Figure 5, 6 and 7 show that
the shallow and deep BRNNs significantly outperform other methods in the MHAD-10 and
MHAD-27 dataset. The deep BRNNSs are slightly better than the other methods on large
networks for HDMO05. In addition, there are some considerable differences in recognition
rates among both datasets and algorithms, especially for MHAD-10. Even though MHAD-10
consists of only 10 actions, nine out of these actions are the movements of solely the right
hand. On the contrary, even though MHAD-27 consists of more actions than MHAD-10, the
actions also involve a variety of movements of hands and legs which leads to overall better
recognition rates of all methods. The dimensionality reduction techniques in combination
with RF outperform other machine learning techniques and are close to the winner of HDMO05
using deep networks, BRNN2C using the total of 2-600 cells. The confusion matrix of HDMO05
using BRNN2B model on Figure 7-left is depicted in Figure 8. Actions with one hundred
percent recognition rate (recall) from all runs (filled with dark brown in Figure 9) are for
instance, clapAboveHead, jogLeftCircle, rotate ArmsBothBackward, standUpKneelToStand and
so forth. The most common misclassified actions in all classifiers are between deposit and
grab as the trajectories of actions drawn in Figure 9. It is difficult to track the trajectories
in 3D of a stationary image by eye; hence, we projected a 3D image onto a 2D plane and
as we can see, the trajectories from these two groups cannot be distinguished. Therefore,
when we allow classification using top three correctness, the recognition rates increase by
12-15% in all methods. For HDMO05, there are no significant differences among different
classification methods. When applying subsampling factors to simulate the changes of
movement speed for the test data of MHAD-10 and MHAD-27 using untrained viewpoints,
then increasing the subsampling factor decreases the recognition rate. Interestingly, however,
this effect does not apply to HDMO05. This might be because only HDMO05 consists of
non-repetitive and repetitive sequences in one action which allows the networks to easily
capture the changes of patterns of the action as varying of movement speeds, while MHAD-10
and MHAD-27 only consist of one periodic movement in each action. Besides, by increasing
the number of viewpoints in training deep BRNNs, the recognition rates of HDMO05 have
been increasing by approximately 10% on arbitrary untrained viewpoints.

The results also reveal that deep BRNNs using two layers for the total number of cells
greater than 2 - 500 units such as BRNN2A and BRNN2B surpass all other models for all
three datatsets, including three layers of BRNNs. The shallow BRNNs work equally well
or even better than the deep BRNN for MHAD-10 and MHAD-27 but not for HDMO05.
It is important to note that models with three hidden layers do not perform better than
models with two hidden layers, while training such gradient-based approaches requires a
large amount of computation time on GPU. The computation time and cost of training and
testing BRNNs is much greater than training ESNs, which the training is only performed
for the output weights at the readout where there is no cyclic dependency. Training and
testing using dimensionality reduction methods demand the least time and computational
power. Considering the time complexity for the gradient-based learning by BPTT, it must be
analyzed in terms of space for the number of values stored and the time complexity in terms
of the number of arithmetic operations required [37]. Therefore, measuring architecture
complexity of RNNs is not a trivial task. Nonetheless, for our configurations when the
network is fully connected and all weights are adaptable, if the shallow network requires time
T to complete the task, the deep network can be expected to complete the task in about
L - T, where £ is the number of hidden layers.
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Figure 8 Confusion matrix of HDMO05 with 65 actions on average of 2-folds using best model
of BRNN2B (2 -[100 - 400]). The weighted colors are computed from the percentage of the total
number of that action. The thick pink rectangle at the left corner shows a group of actions which
significantly misclassified in all methods. The red horizontal and vertical blue lines are drawn to

highlight groups of the actions.

A Comparison. Other studies which resemble our first experiment use only one default
view and do not exclude test subjects from training data. Furthermore, some approaches
apply some prior filters before passing data to the networks, for instance, [3] proposed a
hybrid MLPs which reported the recognition rate with an accuracy of 95% on HDMO05
on 10-fold evaluation. Next, [9] introduced deep BRNN by stacking BRNNs using LSTM
units on each skeleton part yielding the best result of 96.92% for HDMO05. Followed by
[38] which use deep BRNNs with LSTM units on body parts similar to [9] but added a
so-called co-occurrence matrix and dropout to a three-LSTM layer with two feedback layers.

It accounted for the recognition rate of 97.25%.

6.2 Visualization of BRNN

Last hidden layer. For the BRNNs, only half of the output activities of the last hidden
layer contribute to the output layer as can be seen in Figure 10. This figure could explain
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Figure 9 Most common misclassified patterns are the confusion between “deposit” and “grab”.
Top) From left to right: 3D projection of depositFloor of default view, and the rotated 2D projections
of depositFloor, depositLow, depositMiddle and depositHigh, Bottom) grabFloor in 3D and 2D
projections of grabFloor, grabLowR, grabMiddle and grabHigh.
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Figure 10 The activities from the last hidden layer with 2 - 150 cells of MHAD-10 dataset. The
left side shows the activities from forward and the right side from the backward direction.

Figure 11 The Euclidean distance matrices of a subject performing elbowToKnee. From left to
right: i) input ii) the retrieved activities from the first hidden layer of combined directions, iii)
forward and iv) backward direction.

why the number of cells in one direction at the last hidden layer needs to be much greater
than the number of the output classes which are required by the Softmax function at the
output.

Visualization of input and other hidden layers. Multidimensional time-series data
cannot be directly visualized, therefore investigating its behavior is very difficult. One
common approach that is normally used in order to get some insight into high dimensional
time-series data is by examining their distance matrix. One benefit of using distance matrices,
such as Euclidean distance is that we can further analyze the matrix using recurrence plots
(RPs) [10] by applying a threshold distance and the Heaviside function. The RPs can tell



68

when the phase space trajectory of the dynamic system re-occur roughly in the same area in
the phase space. Figure 11 shows the Euclidean distance matrices of a subject in HDMO05
performing an elbowToKnee. The left-most of the figure shows the distance matrix of the
input which reveals a few harmonic oscillations that can be observed by the checkerboard
structures. The next three figures are the activities from the first hidden layer L, for the
combination of both directions, for forward and backward direction, respectively. We can
infer from the changes of one state of learning to another that the networks opt to differentiate
their output activities at each layer. At the upper layer, the scale of the differentiation is
larger. The very dark blue corresponds to distance zero and red to the maximum distance
between the features in this time span.

7 Conclusion

During the course of conducting our research, we have demonstrated the various influences
of various geometries of the deep BRNN’s upon human motion recognition. It is crucial to
have some empirical insights to amend and influence both the width and depth of the model
to suit the research requirements and objectives. The evaluations of the classifications were
performed by focusing on the generalization and the robustness of the models by testing on
unseen subjects with the variation of movement speeds. The results showed that BRNNs
outperformed ESNs and other conventional classification techniques. Correspondingly, we
discovered that any form of dimensionality reduction, caused by reducing the width of the
hidden layers to less than the number of input features or reducing the width of last hidden
layer in one direction less than the output units is unsatisfactory. The shallow networks
should be included and examined in the experiment as they may not only demonstrate good
performance for some datasets, but also provide some insights into the impact of hyper
parameters. Nonetheless, to achieve the best outcomes, based on our research, we strongly
recommend that deep RNN’s as the method of choice for researchers to employ.
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A Lists of Complete Actions

Action #Trials minLength maxLength meanLength
RHHighWave 30 55 161 85
RHCatch 30 38 75 54
RHHighThrow 30 44 78 56
RHDrawX 30 55 81 64
RHDrawTick 30 43 72 57
RHDrawCircle 30 54 89 67
RHHorizontal Wave 30 52 139 70
RHForwardPunch 30 42 71 55
RHHammer 30 51 85 65
HandClap 30 47 68 57

Table 1 Ten hand gestures in MHAD-10 from default view at 0°.

Action #Trials minLength maxLength meanLength
ArmCross 32 50 86 64
ArmCurl, 32 42 86 59
BaseballSwing 32 63 90 74
BasketballShoot 32 46 81 60
Bowling 32 64 101 76
Boxing 32 51 92 68
Catch 32 41 74 59
Clap 32 51 78 61
DrawCircleCCW 32 64 98 74
DrawCircleCW 32 66 95 75
DrawTriangle 32 61 106 7
DrawX 31 55 81 66
Jog 32 51 82 67
Knock 32 53 95 67
Lunge 32 63 103 80
PickupAndThrow 32 68 125 87
Push 32 47 80 62
SitToStand 32 47 69 54
Squat 31 50 116 82
StandToSit 32 46 71 57
SwipeLeft 32 48 76 61
SwipeRight 32 47 75 59
TennisServe 32 52 94 67
TennisSwing 32 44 87 64
Throw 32 44 70 58
Walk 31 60 104 76
Wave 32 49 81 65

Table 2 27 actions in MHAD-27 from default view at 0°.
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Action #Trials minLength maxLength meanLength
cartwheel 28 281 701 450
clap 31 32 211 109
clapAboveHead 31 59 657 248
depositFloor 32 181 641 363
depositHigh 28 129 509 245
depositLow 28 196 481 277
depositMiddle 29 178 662 270
elbowToKnee 80 93 574 243
grabFloor 16 186 401 268
grabHigh 29 170 460 258
grabLowR 29 191 544 294
grabMiddle 28 112 352 210
hitHandHead 13 141 281 226
hopBothLegs 55 56 432 151
hopLLeg 64 62 254 119
hopRLeg 65 58 246 116
jogLeftCircle 32 197 400 292
jogOnPlaceStart 70 80 241 147
jogRightCircle 33 190 441 288
jumpDown 13 177 381 288
jumpingJack 65 116 484 201
kickLFront 43 129 841 294
kickLSide 39 131 721 315
kickRFront 45 121 668 296
kickRSide 44 127 740 310
lieDownFloor 20 301 901 655
punchLFront 45 119 761 263
punchLSide 45 90 721 235
punchRFront 45 138 761 286
punchRSide 42 97 662 242
rotateArmsBothBackward 32 62 649 214
rotateArmsBothForward 32 62 739 230
rotateArmsLBackward 32 57 708 215
rotateArmsLForward 32 55 739 215
rotateArmsRBackward 32 54 649 210
rotateArmsRForward 32 54 733 213
runOnPlaceStart 74 58 182 100
shuffleStepsStart 51 161 540 319
sitDownChair 20 154 441 318
sitDownFloor 20 224 601 407
sitDownKneel TieShoes 17 425 825 645
sitDownTable 20 162 401 270
skier 40 123 459 202
sneak 63 164 751 372
squat 65 136 823 271
staircaseDown 15 139 319 222
staircaseUp 27 164 444 292
standUpKneel ToStand 17 100 301 182
standUpLieFloor 20 279 703 525
standUpSitChair 20 176 441 295
standUpSitFloor 20 167 641 403
standUpSitTable 20 121 454 250
throwBasketball 14 281 721 407
throwFarR 14 361 600 524
throwSitting 28 188 404 282
throwStanding 28 242 541 353
turnLeft 30 119 281 196
turnRight 30 135 260 196
walk 94 122 369 214
walkBackwards 30 158 433 299
walkLeft 32 277 659 411
walkLeftCircle 37 261 560 397
walkOnPlace 60 121 400 233
walkRightCircle 27 246 542 381
walkRightCrossFront 29 195 701 434

Table 3 65 actions in HDMO05 from default view at 0°.
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Figure 12 Confusion Matrices of MHAD-27 of the first testing fold from two classification
methods. Left) Subspaces employing RF with PCA. Right) Majority vote using 1-NN.
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Figure 13 Confusion Matrices of MHAD-27 of 27 folds. Left) BRNN of 2 - [300 - 300] cells

ESN with network size of 600 neurons.
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Figure 14 Confusion Matrices of MHAD-10 with the same configurations of BRNN employing
2 [50 - 150 - 250] cells, but testing on different subjects shown on the left and the right figure.
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Right) BRNN of 2 - [250 - 250] cells.
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2.6 Dimensionality Reduction for Visualization of
Time Series and Trajectories

Abstract: Visualization is essential for data analysis and it is particularly chal-
lenging for data in high-dimensional space, especially for temporal information.
Many techniques have been employed in an attempt to transform multivariate
time series data to one-dimensional data by reducing the number of features in
order to visualize their time-dependent behaviors. However, the applicability of
these approaches is restricted to a limited number of data instances that can be
visualized simultaneously.

We present a technique to visualize time series and trajectories that over-
comes these limitations by transforming these data into subspaces which allows
data analysts to easily select the instance of interest from a bunch of data. The
benefits of our proposed method are threefold: it provides i) a visual represen-
tation of time-dependent data in a massive amount simultaneously, ii) a very
concise feature representation and iii) an easy identification of anomalies. The
results are demonstrated by employing this technique to various data traits from
public archives, they are i) univariate time series data from the UCR archive,
ii) multivariate time series data from several sources, and iii) human motion
trajectories from two motion capture (MoCap) datasets.

Originally published in: The 21st Scandinavian Conference on Image
Analysis (SCIA), 2019. Springer Lecture Notes in Computer Science (LNCS)
series.
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Abstract. Visualization is essential for data analysis and it is particu-
larly challenging for data in high-dimensional space, especially for tem-
poral information. Many techniques have been employed in an attempt
to transform multivariate time series data to one-dimensional data by re-
ducing the number of features in order to visualize their time-dependent
behaviors. However, the applicability of these approaches is restricted to
a limited number of data instances that can be visualized simultaneously.

We present a technique to visualize time series and trajectories that
overcomes these limitations by transforming these data into subspaces
which allows data analysts to easily select the instance of interest from
a bunch of data. The benefits of our proposed method are threefold: it
provides i) a visual representation of time-dependent data in a massive
amount simultaneously, ii) a very concise feature representation and iii)
an easy identification of anomalies. The results are demonstrated by
employing this technique to various data traits from public archives, they
are i) univariate time series data from the UCR archive, ii) multivariate
time series data from several sources, and iii) human motion trajectories
from two motion capture (MoCap) datasets.

Keywords: Dimensionality Reduction - Visualization - Time Series

1 Introduction

Visualization techniques help us to understand data by observing its patterns.
A common approach to meet this challenge is to transform the high-dimensional
data representation into lower dimensions. High-dimensional datasets typically
have certain traits that can be captured after a transformation to a different
coordinate system, and become directly visible to the human eye when mapped
to two or three-dimensional space. Although there are numerous dimensionality
reduction techniques available; nevertheless, there are much fewer dimensionality
reduction approaches that are practical enough for the general application of
which take the temporal information into account. Some interesting techniques
for visualization of time-dependent data, for example [4,7,9] are tied to a domain-
specific application and their data are not publicly accessible; therefore, it raises
a question of whether to adopt those techniques to a new domain application
even though the data may be categorized in the same time characteristics.
Generally, a known method for visualizing time series data is by using a line
graph which is widely used in the monitoring of vital signs in order to detect the
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abnormal exceeding of a specified threshold. However, the line graph does not
work well for multivariate time series, and it is especially difficult to visualize a
large collection of signals. On top of that, for the case of a multivariate time series
where the interdependencies occur among many variables, detecting the outliers
happens to be much more difficult and cannot be solved by visualizing each data
feature on the timeline. A conventional approach to visualize high-dimensional
time series data is to examine their distance matrices. One benefit of using a
distance matrix such as Euclidean distance is that we can further analyze the
matrix using a recurrence plot (RP) by applying a threshold distance and the
Heaviside function. The RP is well-known for the visualization of time series
because it allows any high-dimensional phase space trajectories to be visualized
in subspaces through a two-dimensional representation of it recurrences.

Unlike other traditional dimensionality reduction approaches for temporal
data which allow a user to analyze signals over time, our technique allows
the user to inspect the structure of a bunch of time series data or
trajectories simultaneously and to detect the outliers. Particularly for
multivariate time series which have many practical usages in real-world appli-
cations, there is no general solution to compare a bunch of information at the
same time. We demonstrate that it is possible to apply conventional dimension-
ality reduction approaches from a non-time-series to transform high-dimensional
time series into low-dimensional subspaces by neglecting time information
in the display. Although the dimensionality reduction techniques themselves
are not new, to the best of our knowledge, such an attempt to visualize the time-
dependent data by neglecting the time axis has never been investigated before.
The advantages of our approach are threefold. They allow the data analyst: i)
to visualize the large-scale time series data clusters simultaneously, ii) to get a
very concise feature representation of the time series regardless of its length and
the number of features, and i) to detect an anomaly in the data.

2 Data Transformation To Subspaces

Let p be the total number of instances in the dataset. For any given instance i,
each individual instance is specified by {X?} where i € {1,..,p}. For any high-
dimensional data sequence X? with a fixed number of features m and arbitrary
length T, we can be interpreted X? as a real-valued matrix X with a dimension
m X T; as illustrated in Figure la. Pick the number of selected components ¢,
for any transformation F' to the matrix X¢ where n is the number of dimen-
sionality reduction technique used. For the chosen first principal components c;
at n=1, we obtain Fl(Xi) as illustrated in Figure 1b where T; > ¢;. Hence, to
apply n-times of dimensionality reduction of F to X? for ¢, components, namely
Fo(F,_1(...Fy(X?%)...)) as shown in Figure lc, requires:

T,>cy Vie{l,...,p} and (m-c1)>co... >cp (1)

Usually, the sequence length of any signal instance is much larger than the
selected number of principal components, that is T; > ¢ Vi € {1,...,p}. Before
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Fig. 1: Transformation of time-dependent data into subspaces. a) p instances of
time-dependent data of m features with arbitrary sequence lengths T;. b) Results
after the first transformation of Fy. From this point onward, the arbitrary size of
“time dimension” T; has become all equal with the selected principal components
c1. ¢) The data after an arbitrary n'" transformation giving each signal instance
of size ¢,, which can portray a small feature representation of the data.

applying the first order transformation, n = 1, we may build a feature vector by
normalizing each X}, where j € {1,...,m} and k € {1, ..., T;} as:

Xip < Xjp = X] (2)

where ij; is the average over the sequence length T; of feature j. Likewise, for the
case of the trajectories of MoCap dataset, we first normalize the stick-figure’s
joint positions which were computed by the marker positions following [12] by
subtracting the position of the center of the torso from each joint position. The
normalization by subtracting the mean is optional but is proved to enhance the
visualization in many cases. For the case of different scaling of features, the
rescaling prior to applying the dimensionality reduction transformation can be
beneficial. However, normalizing time series data by dividing it by its standard
deviation does not improve our visualization in general. Similar evidence was
reported in [11] for human motion classification. After applying the first trans-
formation of F; on each normalized X?, the data sequence X? can be newly
represented as [ (X?) € R™*¢1 as depicted in Figure 1b. The time axis now has
been replaced with the number of principal components of the first transforma-
tion. The feature vector for the second order transformation may be arranged
using a concatenation of an average vector to Fy(X?) as [X’};Fl (XH)]. After a
second order transformation, Fy(Fy(X?)), the new matrix can be shortly written
as Fy' € R which is depicted in Figure lc.

3 Datasets

The datasets in this paper were selected by considering the number of data
classes up to twelve classes which can be easily identified by different colors.
There is no restriction on the number of features nor sequence lengths.



4 Pattreeya Tanisaro and Gunther Heidemann

3.1 Univariate Time Series

The UCR archive [3] contains 85 datasets of univariate time series. It is target
for benchmarking time series classification. Each dataset consists of a separate
training and test set of a fixed sequence length which was already normalized to
have zero mean and a standard deviation of one. We picked five datasets from
this archive and merged the training and test data together because we only
focus on the visualization of data and not on classification. These datasets are
Plane, ItalyPowerDemand, Wafer, CBF and ECG5000.

3.2 Multivariate Time Series

We selected three datasets which are frequently used in benchmarking classi-
fication tasks as found in [1, 5, 6]. These three datasets were: Japanese Vowel,
NetworkFlow and Wafer (It has the same dataset name but different set from
the UCR). The JapaneseVowel dataset was a collection of nine male speakers
for a total of 640 sequences. Each utterance forms a sequence with lengths in
the range of 7-29 and consists of 12 features each. The Networkflow dataset
represents a network traffic protocol of a total of 1337 sequences with the se-
quence length of 50-997 where a series of network packets define a sequence. Each
packet consists of four attributes which are used to identify the applications that
generated the traffic flow. These attributes are a packet size, transfer direction,
payload, and the duration. The Wafer stands for silicon wafer in semiconductor
manufacture. The dataset contains 1194 sequences with the sequence length of
104-198. Each sequence consists of six measurement variables recorded during
the etch process. Each wafer is marked as normal or defective.

3.3 Motion Capture

We chose two different MoCap datasets, the UTD-MHAD [2] and the HDMO5 [8]
to demonstrate the effectiveness of our proposed technique.

The UTD-MHAD consists of 27 different actions performed by eight sub-
jects. Each action was recorded using 20 markers in 3D coordinates, resulting
in the total number of 60 features. Each subject repeated the same actions four
times (trials) for only one cycle, and each action trial has different sequence
length. Hence, we have only 32 sequences for each action in total. This small
amount of data is statistically not interesting. Based on the results of a quasi-
view independent of human movement in 3D described in [12], an eigenvector of
the largest eigenvalue still maintains its projection size even when a subject per-
forms the same action facing in a different direction. Therefore, we rotated the
actor’s default view by 10, 20 and 30 degrees in order to obtain more samples.

The HDMO5 was originally made up of 130 classes consisting of five subjects,
called “bd”, “bk”, “dg”, “mm” and “tr”, performing actions with and without re-
peating the same cycles separately. Following [10], we grouped the non-repetitive
and repetitive motions together yielding 65 actions, resulting in a various num-
ber of trials in each action. Some actions e.g., walk consists of four types of
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walk, they are walk2StepsL, walk2StepsR, walk4StepsL, and walk4StepsR. In this
dataset, each user had more freedom to perform the action, for example, the
numbers of repetitions and the directions of movement were not fixed.

LL u 7...0 ([ ]

0167 ;‘
Tos -
164.4,7 199

Fig. 2: Results of the dimensionality reduction of 210 sequences of “Plane” using
(a) PCA and (b) Kernel PCA with RBF kernel. Nine outliers listed on the left
side of each image (a) and (b) can be easily identified in the two-dimensional
views (That is only the first two principal components are drawn). The right
side of each image shows the feature representation map of the corresponding
algorithm from three principal components of a matrix size 30 x (3 - 7), where 30
signals of each data class are in the rows and three components of seven classes
are in the columns. The irregular patterns in each class found in the feature
representation map highlighted in ellipses at (a)-right can be found in the same
positions at the (b)-right. The feature vectors of the data class ® and ® as seen
in the feature maps are very similar.

(a)

4 Visualization Results

In this section, we will examine the outputs from projecting data on 2D and
3D space after applying the transformations discussed in section 2. Without
prior knowledge of the characteristics of the data, the dimensionality reduction
techniques were randomly chosen from two characteristics, linear projections i.e.,
PCA and nonlinear projections such as kernel PCA with nonlinear kernels and
t-SNE. We selected some interesting outputs to be demonstrated here.

4.1 Visualization Results of The Univariate Time Series

The results of applying two dimensionality reduction techniques to Plane in the
UCR archive are displayed in Figure 2a and Figure 2b. Not only do our outputs
exhibit to the viewer the intrinsic properties of each data cluster, but they also
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Fig. 3: Results of the dimensionality reduction of selected datasets in the UCR
archive. a) 1097 sequences of “ItalyPowerDemand” using Kernel PCA. b) 7174
sequences of “Wafer” using PCA. ¢) 930 sequences of “CBF” using PCA. d) 5000
sequences of “ECG5000” using PCA. This dataset has much of unbalancing in
the data in each class. The number of signals in each class are: (@) 2919, (e)
1767, () 96, (@) 194 and (°) 24.

®! @2 @ 9 05 06 @7 @8 9 @1 @2 @3 94 05 06 @7 @8 9
P Lo Y . :‘x
Swivieh 5 L T . o st e
ke ) y S ¢ : > fooe "'.'q ..x’r' 120
e . v ot 2 500 2o Vgl . I
. q " i Ry
iy Voost wy . £ R
£ N wEee . L. i J
i& - /J //"}nn
.
ot - 3y, A Ao
10 0 00 o~
(a) (b) (c) (d)

Fig.4: Results of the dimensionality reduction of multivariate time series. a)
“JapaneseVowel” with PCA followed by t-SNE (n = 2, the perplexity of t-
SNE 40). b) “JapaneseVowel” with PCA followed by double t-SNE (n = 3, the
perplexity of t-SNE 40 and 30, respectively). ¢) “NetworkFlow” using PCA and
t-SNE. d) “Wafer” using PCA and t-SNE.

reveal the outliers that laid afar from their groups. It is obvious that using just
three principal components as illustrated in Figure 2a and Figure 2b can make
a time series much easier to interpret. Even employing different dimensional-
ity reduction techniques, we can easily spot the same outliers from the feature
representation maps on Figure 2b-right (no highlight) at the same locations
on Figure 2a-right (highlighted with small ellipses). Furthermore, the outputs
of four other datasets in the same archive, namely, ItalyPowerDemand, Wafer,
CBF and ECG5000 were illustrated in Figure 3a-3d. As the figures show, several
thousands of time series can be displayed simultaneously in the same plane. The
unbalanced data, the data clusters, and anomalies can be easily identified.
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Fig. 5: Results of the dimensionality reduction of human movements in the UTD-
MHAD. a) Ten actions using PCA followed by Kernel PCA. b) 3D projection of
the same action set as (a) using Kernel PCA and PCA. ¢) The same action set
as (a) using Kernel PCA with two kernels, RBF and polynomial, accordingly.
The dashed line was drawn to separate another view. d) Twelve actions using
PCA and Kernel PCA.

Fig.6: Results of the dimensionality reduction of human movements in the
HDMO05. a) 446 number of actions from a default view using Kernel PCA and
PCA. Three movements of “jumpDown” (@) of user “dg” (@, ®, @) and one
movement of user “mm” (@) are laid far away from the others (in the brown
ellipse). b) Three-dimensional projection of 1784 trials from ten actions as (a)
with additional movements of rotating subjects by 10, 20 and 30 degrees. ¢)
Two-dimensional projection of (b). d) A similar effect in a different subset of
motions of four viewpoints comparing to c) depicted in different colors from (d)
— (c) as the following: “jumpDown” (@), “squat” (e — @), “jumpingJack” (e
— @), “hopLLeg” ( — @), “sitDownChair” (¢ — @) and “walk” (e — ©).

4.2 Visualization Results of The Multivariate Time Series

For multivariate time series, the result of applying PCA followed by t-SNE,
namely using n = 2 to Japanese Vowel is displayed in Figure 4a. Figure 4b is the
output of adding a second t-SNE (n = 3) with smaller perplexity to Figure 4a.
Generally, applying just two appropriate transformations should be sufficient to
capture an important structure of the data, however in this case we prefer to have
more compact clusters. Figure 4c displays two patterns of traffic data flow from
the NetworkFlow. An inset in the figure shows a two-dimensional projection. The
characteristics of the data are very different in large scale, that is the direction
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Fig. 7: Five subjects performs “JumpDown” (@) from the default view as seen
in Figure 6a. From left to right: the first three images are the 3D projection of
three subjects. The next five images are the simplified 2D projections in which
the trajectories are much easier to be observed. The subjects “dg” and “mm” face
90° opposing to the direction of “bd”, “bk”, and “tr” causing different patterns
of the trajectories and are considered as another group as seen in Figure 6a.
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jumpDown  jumpDown  jumpDown  2StepsL 4StepsL 2StepsL 4StepsR 4StepsL

Fig. 8: A comparison of eight trials in the HDMO05 between applying the unthresh-
olded RP and our proposed algorithm with six principal components lying below
each corresponding RP. The first three images on the left are from the action
“jumpDown” (@) as depicted in Figure 7. The next five images are obtained from
four types of “walking” (). Notice the time length (T;) where the repetitions
of the walking cycle occur.
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Fig. 9: Variations of transformation. a) “CBF” using MDS. b) “ECG5000” using
Kernel PCA with polynomial kernel. ¢) “TwoPatterns” in the UCR archive using
PCA. d) “TwoPatterns” using Kernel PCA with third-degree polynomial.

of the traffic is just either 1 or 0, whereas the payload sizes are about a few
thousand of units. Nevertheless, our approach allows a user to easily spot an
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outlier. An output of Wafer where the wafers were marked either defective (@)
or not defect (@) from 1194 signals has been revealed in Figure 4d.

4.3 Visualization Results of The Motion Capture

The UTD-MHAD dataset. The outputs of applying the proposed method
to the UTD-MHAD can be seen in Figure 5a-5d. Ten actions from Figure 5a
are DrawCircleCCW, StandToSit, Jog, Walk, SwipeRight, ArmCurl, SwipeLeft,
Bowling, Catch, and Clap. Four actions which involve only one arm movement,
SwipeLeft, SwipeRight, Catch, and DrawCircleCCW are drawn very close to each
other in two-dimensional space; while two-hand movements, ArmCurl and Clap
plots are also close to one another. The actions concerning moving hands and
feet such as Jog and Walk can be related to each other in the plot. The rest of
the actions, StandToSit and Bowling are obviously distinct from other actions.
When the transformation algorithms have been changed, this yields different
patterns as found in Figure 5b-5c¢. It is not easy to interpret the data by simply
inspecting Figure 5¢ without understanding the underlying patterns. There are
two viewpoints to be used to interpret this figure: i) two groups of actions are
separated by the dashed line and ii) four groups of actions which are perpendic-
ular to the dashed line. The first view divides actions into two groups, one group
involving actions with just “hands” moving lies on the left side of the dashed
line and another group on the right involves actions in which both, “hands” and
“legs” move. From the second viewpoint, the data can be seen as four clusters,
as data lies perpendicular to the dashed line which is the consequence of rotating
subjects around an axis by viewing the same action from four angles (0, 10, 20,
and 30 degrees). As a result, these four groups look quite similar to each other
but just shifted along the same axis. Moreover, the results of the transforma-
tion of twelve actions are displayed in Figure 5d. We take out three actions,
DrawCircleCCW, SwipeRight and ArmCurl and add five actions, Knock, Pick-
upAndThrow, SitToStand, BasketballShoot, and Throw to the plot. The action
StandToSit now gets closer to the new action SitToStand, whereas the actions
about one arm movement Knock, Throw, SwipeLeft and Catch lie close to each
other. Some data of Jog and Walk lay close to each other, and the rest of actions
such as BasketballShoot, Clap, Bowling, PickupAndThrow are properly clustered.

The HDMO5 dataset. The results of applying similar techniques as to the
UTD-MHAD to the HDMO5 can be found in Figure 6a-6d. Figure 6a shows
446 trials from ten actions using the default view (0°) of MoCap. The action
jumpDown (@) has the minimum number of trials because it consists of only
13 trials, of which four trials are from the subject “bd”, three trials from the
subject “dg” and another three trials from the subject “tr”, two trials from the
subject “bk” and one trial from the subject “mm”. Notice that four trials of
the jumpDown from the subject “dg” and “mm”, @ & @ and @ lay far away
from the others in the brown ellipse. When we looked closely to these particular
sequences as depicted in Figure 7, we found that the subjects “dg” and “mm”
have completely different trajectories compared to the subjects “bd”, “bk”, and
“tr”. This is because these two subjects turn completely by 90 degrees difference
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to the camera, or in perpendicular to the other three subjects “bd”, “bk”, and
“tr”. This is the reason why those four trials of jumpDown are laid afar from
the group. Next, when we slightly rotated these five subjects in all trials by 10,
20, and 30 degrees, the patterns of each action in these four viewpoints can be
observed in Figure 6b- 6d. Figure 6b shows the first three principal components
of these four views from the rotations (0°,10°,20°,30°). After exchanging four of
ten actions, while six actions are kept as depicted in Figure 6¢ and Figure 6d, the
shapes and distributions of these actions still remain the same in the
subspaces. Notice the distributions of jumpDown, squat, jumpingJack, hopL Leg,
sitDown Chair and walk in Figure 6¢ comparing to Figure 6d. Additionally, eight
images in Figure 8 show the comparison of the visualization of jumpDown and
walk between the unthresholded RPs and our feature representations. The RPs
are symmetric matrices of size T; x T; but we fit them to the same image size for
a comparison. By comparing our extracted features with six components which
are laid below each corresponding RP, we can easily spot two distinct groups
of action jumpDown and walk. The RP of action jumpDown from the subject
“dg” @ has a distinctive pattern other than the subject “mm” @, whereas
the extracted features from our method for both actions show about the same
features which are in accordance to the trajectories illustrated in Figure 7. The
action walk consists of four types of walking, “2StepsL”, “2StepsR”, “4StepsL”,
and “4StepsR”. The number “2” and “4” indicate the walking steps, while the
“L” and “R” indicate whether left or right leg starts. By comparing the RPs
of walk in Figure 8, the repetitive actions such as two steps (2Steps) or four
steps (4Steps) by our method yield similar fixed small features. The “4Steps”
walk in the RP reveals two harmonic oscillations or two complete cycles, while
“2Steps” shows one cycle of action. Furthermore, an output from the subject
“bk” have a distinct feature but quite close to “bd”, while the features of “dg”
and “mm” are about the same. These results comply with Figure 6, Figure 7
and Figure 8. The trivial changes e.g., either left leg (L) or right leg (R) starting
first have no significance considering from the involved markers on one leg versus
the markers on the whole body. The concept of principal components makes the
results robust to noise and the trivial changes.

5 Discussion

5.1 Stability and Robustness

The current trends of time series and trajectory classification are to use deep
networks by fine-tuning millions of parameters to achieve the best output per-
formance. However, it lacks an explanation of why a particular signal fails. Fur-
thermore, some outliers may lead to overfitting of the training data. Yet, our
approach can complement this deficiency by offering a concise feature represen-
tation which can give data analyst an understanding of the underlining patterns.
By projecting the extracted features onto a two- or three-dimensional space, it
provides a visual representation for a data analyst to have an overview of a
bunch of data simultaneously. The results are robust to small changes as seen in
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Figure 6¢, Figure 6d and Figure 8. Five images in Figure 8 show similar feature
representations for different types of walk (and three images of jumpDown) from
various subjects leading to the same direction. In addition, even though we em-
ployed different transformation techniques, we can still spot the same outliers in
different visual representations as the results shown from “Plane” dataset.

5.2 Limitations and Variations of Transformation

Our proposed technique has a few limitations. First and foremost, the dimension-
ality reduction methods employed in our experiment were selected from several
known techniques based on the assumption of linear subspace embedding and
nonlinear manifold learning of the data. Therefore, we are not able to tell which
technique is the best choice. For instance, the output of employing Multidimen-
sional Scaling (MDS) on CBF (previously PCA was employed) now can be seen
in Figure 9a. This new figure shows better separation of three data clusters
comparing to Figure 3c. Changing the transformation of FCG5000 from PCA
(depicted in Figure 3d) to Kernel PCA in Figure 9b gives us an interesting
alternative viewpoint. Nevertheless, we have had several cases of failure, for in-
stance, TwoPatterns in the UCR archive which composes of 5000 sequences. The
data clusters cannot be clustered in the way we had expected. The results are
shown in Figure 9c¢-9d. Another failure was also found in case of visualizing
the UTD-MHAD dataset when all the actions in a subset involved only hand
gestures. This may be because the changes in the movement due to one arm
gestures with three corresponding markers (of dimension 3 x 3) were considered
insignificant when compared with the movement of a whole body consisting of
20 markers (of dimension 20 x 3). Considering PCA which we employed Singular
Value Decomposition (SVD) for a matrix decomposition, for any given element
i, X* has an arbitrary size of m x T;. We may assume that the best rank r of
the matrix X is the number of crucial time points c;. The matrix X? is just a
product of two matrices U and V where U is an m X ¢; matrix expressing the
weighted factor, and V' is a ¢; x T; matrix. We keep the most highest weighted
factors in U and repeat the process for n times. Hence, the principal components
¢, are to be in the final results.

6 Conclusion

In this paper, we have presented a new approach for time series and trajectory
visualization by employing existing well-known non-time-series dimensionality
reduction techniques. Our proposed methodology does not seek to make an in-
terpretation of an individual signal nor to inspect the changes of data over time.
Nonetheless, we can reveal some meaningful information such as the overview of
data clusters. Moreover, outliers of each data class can be easily identified. By
integrating this technique into a visual analytic pipeline in visualization tools,
it can take the load off a data analyst in order to investigate any anomalies
presented in the large data size. The datasets applied in the experiments were
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selected from diverse sources to demonstrate and enforce the robustness of our
proposed technique. This technique is not tailored to any particular data type,
hence it can be integrated into any application domain. In addition, our approach
is very simple to implement and lightweight as well as reproducible across dif-
ferent runs. Finally, it is to be noted that good clustering depends on the inter-
relationship of the data structure and the correctly applied manifold learning
method to achieve the optimum results.
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2.7 A Very Concise Feature Representation For Time]
Series Classification Understanding

Abstract: One major problem of time series analysis, particularly of a multi-
variate time series, is to find their feature representations. Especially, with the
emerging of deep recurrent neural networks (RNNs), researchers opt to train
the networks with raw signals by using an end-to-end framework to achieve
the highest classification accuracy. Their works focus on modifying the network
models and fine-tuning millions of hyperparameters; however, they lack the
required level of understanding of the intrinsic properties of the data. In our
work, we adopted a technique for dimensionality reduction of non-time-series
to transform the time series data into small sets of feature representations. Our
proposed technique allows the analyst to easily visualize the feature represen-
tations of the data and detect an instance which has the potential to cause a
test failure. We demonstrated the robustness of our technique by subjecting the
extracted features to a conventional classification approach such as Random
Forest. The datasets used for the evaluation are from the known benchmarking
of 15 multivariate time series datasets and two Motion Caption datasets of 27
and 65 actions. The classification results were compared with the outputs from
the Echo State Networks (ESNs) and the deep Bidirectional Neural Networks
(BRNN:Ss).

Originally published in: The 16th International Conference on Machine
Vision Applications (MVA), 2019. IAPR

DOI: https://doi.org/10.23919/MVA.2019.8757981


https://doi.org/10.23919/MVA.2019.8757981

90

A very concise feature representation for time series classification
understanding

Pattreeya Tanisaro
University of Osnabriick, Germany

Abstract

One major problem of time series analysis, partic-
ularly of a multivariate time series, is to find their
feature representations. FEspecially, with the emerging
of deep recurrent neural networks (RNNs), researchers
opt to train the networks with raw signals by using an
end-to-end framework to achieve the highest classifi-
cation accuracy. Their works focus on modifying the
network models and fine-tuning millions of hyperpa-
rameters; however, they lack the required level of un-
derstanding of the intrinsic properties of the data. In
our work, we adopted a technique for dimensionality
reduction of non-time-series to transform the time se-
ries data into small sets of feature representations. Our
proposed technique allows the analyst to easily visual-
ize the feature representations of the data and detect
an instance which has the potential to cause a test fail-
ure. We demonstrated the robustness of our technique
by subjecting the extracted features to a conventional
classification approach such as Random Forest. The
datasets used for the evaluation of this task are from
the known benchmarking of 15 multivariate time series
datasets and two Motion Caption datasets of 27 and 65
actions. The classification results were compared with
the outputs from the Echo State Networks (ESNs) and
the deep Bidirectional Neural Networks (BRNNs).

1 Introduction

With the emergence of various deep neural network
frameworks, the classification of time series has be-
come more efficient than ever. However, a challenge in
time series classification is to find a data representation
which can be interpreted or explained to an audience
when the test fails. For time series analysis this is a key
issue which allows an analyst to detect the anomalies
instead of obscuring them by permitting the models
to overfit the data. A general approach to visualize
a time series is to employ a line graph. However, the
line graph does not work well for multivariate time se-
ries where inter-dependencies between many variables
exist. A much more complex situation occurs if the
data instances are not of equal length for many of the
data features in a large dataset. There is only one
known technique that lets a data analyst inspect the
feature representation of the multivariate time series,
namely the unthresholded recurrence plots (RPs) [4].
The RP or distance plot is heavily used for the visual-

Gunther Heidemann
University of Osnabriick, Germany

ization of time series because it allows any high dimen-
sional phase space trajectories to be visualized in sub-
spaces through a two-dimensional representation. It
exhibits reoccuring phase space trajectories of dynamic
systems. This technique has been employed as an ac-
tion descriptor for view-independent action recognition
in combination with the Bag-of-Features obtained from
the Histogram of Oriented Gradients (HOG) [5]. Nev-
ertheless, the downside of this approach is that the
lengths of all motion recordings in the experiment must
be truncated to an equal unit length in order to get
the fixed window size. Therefore, it is not suitable for
data with unequal lengths. In addition, RPs cannot be
viewed together in the same coordinate system and it
requires a lot of work to examine each data sequence
individually.

In our work, we demonstrate a representation of a
time-dependent data to be captured in a lower dimen-
sional space where it can be understood by a traditional
classification approach such as Random Forest (RF),
and is easily perceived by a data analyst. Although
the applied dimensionality reduction techniques them-
selves are not new, however to the best of our knowl-
edge, there was no attempt to express the temporal in-
formation in a way which allowed the time series to be
inspected simultaneously in the normal Cartesian coor-
dinate system. The classification outputs are tested on
two kinds of datasets i) general multivariate time series
of 15 datasets and ii) motion capture (MoCap) of two
datasets for action recognition used in [11]. Since the
evaluation of this tasks should focus on the general-
ization of action recognition, therefore we exclude the
test subjects from the group of training subjects. The
other existing works, for instance, |3, 14] did not condi-
tion on separation of the subjects in their experiments;
hence, we implemented two types of RNNs, a reservoir
computing RNN: the ESN, and a gradient-based RNN:
the BRNN; for the comparison.

2 Dimensionality Reduction of Time Series

Let p be the total number of data instances in the
dataset, and for any given data instance ¢, the set of
individual data sequences is specified by {X*} where
i € {1,..,p}. For any high-dimensional data sequence
X with a fixed number of features m and arbitrary
length T;, we can interpret X* as a real-valued matrix
X with a dimension m x T; as illustrated in Figure
la. Pick the number of selected components ¢, for
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Figure 1: Transformation of time-dependent data into subspaces. (a) p instances of time series of m features
with arbitrary sequence lengths 7T;. (b) Results after the first transformation of Fy. From this point onward,
the arbitrary size of “time dimension” T; has become all equal with the selected principal components ¢;. This
new feature representation of X® can be understood by the conventional classification approach. (c) The
data after an arbitrary n*" transformation giving each signal instance of size ¢,, which can portray a small feature
representation and its first two or three components can be projected onto the XY- or XYZ-plane.

any manifold learning F' to matrix X® where n is the
number of manifold learning technique used. For the
chosen first principal components ¢; at n=1, we obtain
F1(X?) as illustrated in Figure 1b where {T}} > c;.
Hence, to apply n-times of dimension reduction of F' to
X' for ¢, components, namely F,(F,_1(...F1(X?)...))
as shown in Figure lc, requires:

T, > Vie{l,...,p}and (m-c1) > ca... > ¢ (1)

Usually, the sequence length of any signal instance
is much larger than the selected number of principal
components, that is T; > ¢; Vi € {1,...,p}. Before
applying the first order transformation, n = 1, we may
build a feature vector by normalizing each X; , Where

je{l,..,m}and k € {1,...,T;} as:
X, =X, X (2)

where )_(;: is the average over the sequence length
T; of feature j. Likewise, for the case of the trajecto-
ries of MoCap dataset, we first normalize the skeleton’s
joint positions which were computed by the marker po-
sitions following [13] by subtracting from each joint po-
sition the position of the center of the torso. The nor-
malization by subtracting the mean is optional but is
proved to enhance the visualization in many cases. For
the case of different scaling of features, the rescaling
prior to applying the manifold learning can be benefi-
cial. However, normalizing time series data by dividing
it by its standard deviation does not improve our vi-
sualization in general. Similar evidence was reported
in [12] for human motion classification. After apply-
ing the first transformation of F; on each normalized
X?, the data sequence X’ can be newly represented
as F1(X') € R™*“ as depicted in Figure 1b. The
time axis now has been replaced with the number of
principal components of the first transformation. The
feature vector for the second order transformation may
be arranged using a concatenation of an average vector

to F1(X") as [X7; F1(X")]. After a second order trans-
formation, Fy(F;(X?)), the new matrix can be shortly

written as F»* € R'*2 which is depicted in Figure lc.
3 Experimental Setup
3.1 Multivariate Time Series Datasets.

For our experiment, we took fifteen datasets of the
multivariate time series collected in [1]. These datasets
were used to benchmark the classification methods in
[1, 9, 7, 6]. The characteristics of each dataset are
shown in Table 1 are i) the number of the attributes,
ii) the lengths of sequences in the dataset, iii) the num-
ber of output classes, iv) the number of training data
and v) the number of testing data. We grouped these
datasets into four categories according to the levels of
difficulty based on the classification results from DTW
[1] which is the state-of-the-art approach for time se-
ries classification. These four levels are i) very diffi-
cult to solve datasets which have an error rate greater
than 20%. These datasets are indicated with the deep
blue squares (M) in front of the dataset names. ii) diffi-
cult datasets are marked with orange circles (@), which
have an error rate in the range of (10-20]%. iii)normal
difficulty with the error rates in the range of (5-10]%.
The datasets are marked with the green triangle (4),
and iv) easy datasets indicated with pink diamond (¢).
They have the error rates not higher than 5%.

3.2 Motion Capture Datasets.

We extended our experiment by selecting two dif-
ferent MoCap datasets, the UTD-MHAD |[2] and the
HDMO5 [8] to demonstrate the effectiveness of our pro-
posed technique. The test subjects were excluded from
the training set to examine the generalization of action
recognition.

UTD-MHAD consists of 27 different actions per-
formed by eight subjects. Each subject repeated the
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same action four times. The dataset contains a total
of 861 trials or data instances, where three sequences
were corrupted and removed from the dataset on the
official website. The training was performed on six sub-
jects, and two subjects were left out for the test. The
recognition rate was reported on an average of 28 com-
binations. This dataset was recorded using 20 markers.

HDMO5 was originally made up of 130 classes con-
sisting of five subjects performing actions with and
without repeating the same cycles separately. This cre-
ated a total of 2343 instances. We followed [3, 14, 11]
in grouping non-repetitive and repetitive motions to-
gether yielding 65 actions. This dataset has been heav-
ily biased on some actions and their lengths. For ex-
ample, walk and elbowToKnee contain 94 and 80 trials,
respectively; while for about 20 actions have less than
20 trials, i.e., throwBasketball, throwFarR and jump-
Down having only 14 trials each. Nonetheless, since
we focused on the action recognition of unseen sub-
jects, four subjects were used in the training set and
one subject was used for the test. We reduced the
original number of markers to 19, where some nearby
sensors e.g., on the spine were merged.

3.3 Configurations of the Classifiers

We employed two known linear and non-linear man-
ifold learning such as PCA and Kernel PCA in order to
get the features F7(X?) in combination with RF with
50 and 100 trees for classification. Our proposed ap-
proach is abbreviated as D Re in the results. To display
all data simultaneously in two- and three-dimensional
projections, we select various manifold learning algo-
rithms F5 for the best visualization. For the setup of
RNNs, we adopted many configurations and took the
one with best output performance. The ESN config-
urations in this experiment followed the guideline in
[10]. The number of neurons was varied in the range of
200-600 neurons with 10, 30 and 50% sparsity. We also
applied the spectral radii of 1.0 and 5.0, a leaky rate of
0.1 and 0.9 and a fixed regularization coefficient of 0.1.
For BRNNs, we created more than one hundred config-
urations with various depths and widths of BRNNs and
picked the best models shown in Table 1. Following the
setup of deep BRNN geometries in [11], we varied the
size of the networks in the range of 2 x {200—600} neu-
rons. The model with one layer of BRNNs with 2 x 500
neurons is presented as BR®%?, where 500 indicates the
number of neurons in one direction. Therefore, for the
two hidden layers of BRNNs with 100 neurons in one
direction for each layer is written shortly as BR*L100
and so on. For three hidden layers of BRNNs, we sim-
ply took the best outcome from several configurations
and referred to it as BR3L. Furthermore, we experi-
mented using both GRUs and LSTMs as neurons.

4 Experimental Results and Discussion
4.1 Multivariate Time Series

Table 1 shows the error rates of 15 datasets from
ten classifiers. The results from left to right are, DTW
and LPS taken from [1] and our implementation as
the following: ESN, BRNNs with one hidden layer
(BR1L), four strategies of BRNNs with two hidden
layers (‘BR?L»IOO7 BR2L'15O, BR2L'25O, and BR2L~500)’
BRNNs with three hidden layers (BR3L), and our pro-
posed method (DRe). Next to the results of DRe
appears one of the two symbols, ® and x, to indi-
cate whether it makes sense ( @) to apply the dimen-
sionality reduction to the dataset. We prefer (@ )
the DRe when the following two conditions meet: i)
its error rate is lower than two third among DTW,
LPS and ESN, and ii) its error rate is less than 10%.
The LPS generally performs much better than DTW
and has two outstanding results which are difficult
to be solved by other classifiers; they are Libras and
UwaveMTS. The ESN also gives satisfactory results
for most datasets and becomes the winner for Char-
Trajectories and Japanese Vowels; nonetheless, it has a
problem to classify three datasets marked with ®. The
BRNN1L is the winner for most datasets. Interest-
ingly, however, all BRNNs perform worst on the Net-
workFlow. This is probably caused by the character-
istics of the attributes. The NetworkFlow represents a
network traffic protocol where a series of network pack-
ets defines a sequence. Each packet consists of four
attributes which are used to identify the applications
that generated the traffic flow. These attributes are the
packet size, transfer direction (either 0 or 1), payload
and the duration. Whereas the payload and packet size
are in the magnitude of a few thousands but the direc-
tion can be either 0 or 1. Therefore, this might cause
a problem for the gradient computation. Furthermore,
it is important to note that the BR1L performance is
better than of the deep BRNNSs for most datasets here.

For DRe, five datasets are considered unsuited (x )
to be processed by D Re method. This is due to: i) the
transformation of the matrix of m x T; to m x ¢; which
is constrained by 7T; and m;, and ii) the characteristic
of all data classes which should be captured by m x ¢;.
That is m x ¢; should be sparse to be captured by RF
or specifically “sufficiently greater” than the number of
classes. These two restrictions can be explained by the
characteristics of datasets, which are: i) restricted by
T;, i.e., ArabicDigits which has the shortest length of 4
yielding a matrix of maximum size 13 x 4 for classifying
10 classes, or ii) restricted by m if the dataset has a
small number of attributes but requires many output
classes, for instance, CharTrajectories which has 3 at-
tributes for 20 classes, FGG which has 2 attributes for
2 classes, Libras which has 2 attributes for 15 classes
and UwaveMTS which has 3 attributes for 8 classes.
Hence, we can easily notice that the pleasing results
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Dataset nAttr  Length nClass nTrain nTest |DTW LPS ESN BRIL BR?L100 pR2L-150 pR2L-250 ppR2L-500 BR3T,  DRe
ArabicDigits 13 4-93 10 6600 2200 |0.092 0.029 0.070 0.003 0.010 0.016 0.009 0.010 0.007 0.244 %
WAUSLAN 22 45-136 95 1140 1425 |0.238 0.246 0.094 0.061 0.178 0.109 0.061 0.060  0.095 0.096 @
¢ CharTrajectories 3 60-182 20 300 2558 | 0.033 0.035 0.023 0.033 0.043 0.046 0.045 0.042  0.048 0.186 %
CMUsubject16 62 127-580 2 29 29 0.069 0.000 0.000 0.000 0.172 0.379 0.034 0.483  0.000 0.000 @
DigitsShape 2 30-98 4 24 16 0.069 0.000 0.000 0.000 0.172 0.379 0.034 0.483  0.000 0.000 @
"ECG 2 39-152 2 100 100 | 0.150 0.180 0.270 0.160 0.210 0.200 0.200 0.160  0.210 0.250 x
mJapaneseVowels 12 7-29 9 270 370 | 0.351 0.049 0.011 0.016 0.024 0.032 0.041 0.027  0.022 0.043 %
¢ KickvsPunch 62 274-841 2 16 10 0.100 0.100 0.100 0.200 0.500 0.500 0.500 0.500  0.400 0.000 @
Libras 2 45 15 180 180 | 0.200 0.097 0.206 0.156 0.328 0.272 0.322 0.250  0.256 0.617 %
BNetworkFlow 4 50-997 2 803 534 | 0.288 0.032 0.034 0.779 0.779 0.779 0.779 0.779  0.779 0.028 @
PEMS 963 144 7 267 173 | 0.168 0.156 0.278 0.058 0.191 0.185 0.260 0.231 0.202 0.092 @
4 Shapes 2 52-98 3 18 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 %
UwaveMTS 3 315 8 896 3582 | 0.071 0.020 0.089 0.039 0.155 0.133 0.051 0.041 0.044 0.551 %
* Wafer 6 104-198 2 298 896 | 0.040 0.038 0.028 0.035 0.077 0.085 0.057 0.106  0.079 0.020 %
4 WalkvsRun 62 128-1918 2 28 16 0.000 0.000 0.000 0.000 0.000 0.188 0.000 0.188  0.000 0.000 @

Table 1: The characteristics of 15 datasets and their error rates in ten classifiers.

Figure 2: Feature vectors of ten instances of the DigitsShape dataset which have two attributes using PCA with two
principal components for the classification. Below each feature is the label of the corresponding instance indicated
with the number. Each labeled color matches each data class in Figure 3. The training data is presented using
circles (@) while the test data is presented using squares (Hl).
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Figure 3: The two left images show the second order

of DRe are obtained for datasets which have many at-
tributes without restriction on the sequence lengths as
we can see the outstanding results from Wafer, PEMS
and NetworkFlow. Most important, the main benefit of
this approach is that we can extract a concise feature
which is understandable by the data analyst. Figure 2
shows the feature presentations of ten instances from
the DigitsShape of 2 attributes to classify 4 classes. Fig-
ure 3 shows visualizations on the Cartesian coordinates
of DigitsShape, JapanesesVowels and PEMS. Moreover,
we further investigate the three-dimensional projection
of 1194 instances of Wafer as displayed in Figure 4.

& 00050 e
0002 a7

transformations of DigitsShape using only the first two
principal components projected on the two-dimensional plane. The first manifold learning for classification is the
PCA followed by two different second transformation approaches “for visualization in 2D projection” using PCA,
and MDS, respectively. Four labels, 8, 10, 29, 30 of class “2” (m/®) are enlarged to verify the conformity of their
feature representation as shown in Figure 2. The next two images are the projections of 640 instances (of training
and test data) of Japanese Vowels and 440 instances of PEMS (of 963 attributes for each instance).

Ten corresponding feature representations of the Wafer
dataset are depicted next to its 2D projection on the
rightmost. The Wafer refers to a silicon wafer in a
semiconductor manufacture. Each instance consists of
six variables recorded during the etching process and
is marked as normal ( ® ) or defective ( ® ).

4.2 Motion Capture

The error rates of two MoCap datasets of 27 ac-
tions of the MHAD and 65 actions of the HDMO05 using
PCA for the transformation together with RF can be
found in Table 2. The outputs from BRNNs were ob-
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Figure 4: The visualization of projecting the features
into 3D space. The image on the left shows 1194 in-
stances of Wafer. The feature representations of ten
instances of Wafer are displayed on the right. The
numbers in front of the feature representations are the
instance’s ids for tracking them in the 3D space.

Dataset ESN BRIL BR?' BR20 BRMLIM BR329  DRe
MHAD27 0167 0100 0213 008 0127 0162 0.196
HDM05 0410 0254 0254 085 0187 0207 0.308

Table 2: The error rates of 27 actions in the MHAD
and 65 actions in the HDMO05.
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Figure 5: Selected actions of MHAD for visualization.
Left image is the result of a 2D projection of ten se-
lected actions and the right image is the result of 3D
projection of twelve actions.

tained by fine-tuning hyperparameters for more than
one hundred configurations. Although our approach is
not better than the BRNNS in general, its performance
is comparable. In addition, it took about 10 minutes to
complete 28 folds of training and testing the MHAD27,
45 minutes on the ESNs with 500 neurons on Intel i7-
3770 CPU 3.40GHz with 16 GB RAM running on one
core, while it took three and a half hours on Intel Xeon
3.70GHz 64GB RAM with GeForce GTX TITAN X for
one hidden layer of BRNNs of 2 x 500 neurons. The
results of DRe are reproducible and there is no need
to worry about fine-tuning the parameters.

Figure 5 shows the projections of two small sub-
sets of the MHAD. For the image on the left, the ac-
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Figure 6: Two-dimensional projections of selected ac-
tions in the HDMO05. When the actions have changed
between the two images on the left to the right, the dis-
tributions of the same actions remain the same. These
actions are jumpDown (®), squat (® — ®), hopLLeg (
— ), walk (¢ — ), sitDownChair (® — @), and jump-
ingJack (® — @).

tions involve the movements with just an arm, such as
SwipeRight (), SwipeLeft (©), Catch (®) and DrawCir-
cleCC'W (@) are plotted close to each other. While the
actions which engage the movements of arms and legs,
for instance, Jog (®) and Walk (®) are drawn pretty
close, the action StandToSit (®) and Bowling (®) are
drawn afar from the other actions. The image on the
right shows twelve actions in the 3D space. Similar
to the left image, the actions which engage only the
movements of one arm such as Catch (®) , Knock (®)
, SwipeLeft (®), and Throw (®) are drawn very close
to each other. The actions which are sparsely dis-
tributed in the plot such as Bowling (®), Jog ( ) and
PickAndThrow (®) are the actions which have more free
movement in space. The SitToStand (®) and Stand-
ToSit (@) are located near each other.

Two images in Figure 6 show the distributions of
the same actions on two different subsets (the image
on the left vs. the right). Notice the actions which are
separated into two groups. This is because two of the
subjects “mm” and “dg” are positioned in perpendicular
direction to the opposing three subjects “bd”, “bk” and
“tr”. Figure 7 can explain why we have such behavior
in the plot. From a camera viewpoint, posing actions
to 0 and 90 degree creates different trajectories while
keeping the correlations of the joints of that movement.
The unthresholded RPs of jumpingJack and walking
can be found in Figure 8 on the left and our extracted
features are illustrated on the right. The feature repre-
sentation from our proposed algorithm show that the
repetition of the patterns still gives the same fixed con-
cise feature. Moreover, the proposed algorithm is ro-

bust against noise as displayed for action indexing %2,
while the unthresholded RPs shows its sensitivity to
this small noise.
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Figure 7: Nine trials of subjects “bd”,’bk”,*dg”, “mm” and “tr” in the HDMO5 performing jumpingJack and walk

bd®@

bleG

® EEEE O mmme
@ mEEs > §moaE
Omnmm  mEn
emnmm ccmmm

Figure 8: The unthresholded RPs of actions in Figure 7 versus our representations using six components.

5 Conclusion

We have presented an approach to represent a time
series as a small set of features. We adopted con-
ventional dimensionality reduction techniques such as
PCA and KernelPCA to capture the intrinsic proper-
ties of the signals. The robustness of our approach has
been proven by employing a traditional classifier with
these representations. The results were compared us-
ing original signals with two types of RNNs with hun-
dreds of configurations. The main benefit of our ap-
proach is that regardless of their lengths and the num-
ber of features, the time series can be represented in
a very concise manner. Furthermore, we can visualize
a large amount of time series data simultaneously in a
Cartesian coordinate system. An instance which has
a unique property would be laid afar from its group.
Although our approach has a few limitations, never-
theless its strength lies in the fact that it is very simple
to implement and lightweight because the transforma-
tion operation is just a matrix decomposition.
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These sounds that we can’t hear, this light that we can’t see, how do we even
know about these things in the first place? Well, we built tools. We built tools
that adapt these things that are outside of our senses, to our human bodies, our
human senses. We can’t hear ultrasonic sound, but you hook a microphone
up to an oscilloscope and there it is. You're seeing that sound with your plain
old monkey eyes. We can’t see cells and we can’t see galaxies, but we build
microscopes and telescopes and these tools adapt the world to our human
bodies, to our human senses. When Hamming1 says there could be unthinkable
thoughts, we have to take that as “Yes, but we build tools that adapt these
unthinkable thoughts to the way that our minds work and allow us to think
these thoughts that were previously unthinkable."

Bret Victor, Media for Thinking the Unthinkable

! Richard Hamming, a notable American mathematician
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