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Abstract

Interactive 3D Reconstruction

Applicable image-based reconstruction of three-dimensional (3D) objects offers many
interesting industrial as well as private use cases, such as augmented reality, reverse
engineering, 3D printing and simulation tasks. Unfortunately, image-based 3D recon-
struction is not yet applicable to these quite complex tasks, since the resulting 3D models
are single, monolithic objects without any division into logical or functional subparts.

This thesis aims at making image-based 3D reconstruction feasible such that cap-
tures of standard cameras can be used for creating functional 3D models. The research
presented in the following does not focus on the fine-tuning of algorithms to achieve
minor improvements, but evaluates the entire processing pipeline of image-based 3D re-
construction and tries to contribute at four critical points, where significant improvement
can be achieved by advanced human-computer interaction:

(i) As the starting point of any 3D reconstruction process, the object of interest (OOlI)
that should be reconstructed needs to be annotated. For this task, novel pixel-accurate
OOl annotation as an interactive process is presented, and an appropriate software so-
lution is released. (i) To improve the interactive annotation process, traditional inter-
face devices, like mouse and keyboard, are supplemented with human sensory data to
achieve closer user interaction. (iii) In practice, a major obstacle is the so far missing
standard for file formats for annotation, which leads to numerous proprietary solutions.
Therefore, a uniform standard file format is implemented and used for prototyping the
first gaze-improved computer vision algorithms. As a sideline of this research, analogies
between the close interaction of humans and computer vision systems and 3D percep-
tion are identified and evaluated. (iv) Finally, to reduce the processing time of the un-
derlying algorithms used for 3D reconstruction, the ability of artificial neural networks to
reconstruct 3D models of unknown OQls is investigated.

Summarizing, the gained improvements show that applicable image-based 3D re-
construction is within reach—but nowadays only feasible by supporting human-computer
interaction. Two software solutions, one for visual video analytics and one for spare part
reconstruction are implemented.

In the future, automated 3D reconstruction that produces functional 3D models can
be reached only when algorithms become capable of acquiring semantic knowledge.
Until then, the world knowledge provided to the 3D reconstruction pipeline by human
computer interaction is indispensable.
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Introduction

Estimating the three-dimensional (3D) structure of an object of interest (OOI) within a
scene is usually a trivial task for humans. Image-based 3D reconstruction is such a
trivial task for a human that even missing, i.e., occluded, elements of the OOI can
be completed correctly [47, 82]. In contrast to human vision, and despite more than
three decades of research in this field, computer vision (CV) still does not solve the
problem of getting the 3D structure, including its geometrical constraints, from two-
dimensional (2D) projections like images or video sequences, in a satisfying way. How-
ever, gaining information from a 3D scene with its 3D OOls is the prerequisite for many
modern applications, such as engineering in augmented reality (AR), as well as virtual
reality (VR), automated video surveillance, autonomous car driving, and human-robot
collaboration (HRC).

By taking images and video sequences, the real world with its 3D content is reduced
to a 2D projection. Therefore, image-based reconstruction must estimate the lost di-
mension to get back the 3D nature of the scene. In theory, infinitely many different 3D
geometries can create the same 2D projection. Thus, image-based 3D reconstruction
is a mathematically ill-posed problem [92, 36], i. e., this inverse problem does not have
a unique solution. This ill-posed nature of 3D reconstruction could be the reason why
humans are so much better at solving this problem, even based on single images. In
general, for solving ill-posed problems, additional a priori information and constraints are
needed, also referred to as semantic knowledge. Nowadays, 3D reconstruction pipelines
make use of low-level geometrical assumptions, e. g., the Manhattan-world-like charac-
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teristics of human-made objects [56, 20] for solving ambiguities. These ambiguities are
mainly caused by the 2D projection and the pixel discretization within the image acquisi-
tion hardware. Nevertheless, to accomplish industrially-relevant and applicable 3D mod-
els, this thesis investigates how interactive processes in which the humans’ semantic
knowledge about the 3D geometry is combined with the computational power of today’s
computers, can improve the ill-posed problem of image-based 3D reconstruction.

0.1 Image-Based 3D Reconstruction — in a Nutshell

Software applications for image-based 3D reconstruction, such as 3DF Zephyr [1], Ag-
isoft PhotoScan [3], ARC 3D [95], ContextCapture [9], ProFORMA [63], and Visual-
SFM [99], use a feed-forward processing pipeline composed of various functional steps
for estimating the 3D geometry of the scene. As illustrated in the uppermost row of Fig-
ure 0.2, five steps, in general, are necessary for getting from the very first step, i. e., the
image acquisition hardware, to the final step, i. e., a 3D model which can be printed, ren-
dered, and used, e. g., for computer-aided design (CAD) applications. Depending on the
intended level of detail, the 3D reconstruction pipeline can be represented with more or
less processing steps. As an introductory subject matter of 3D reconstruction, however,
the five steps in Figure 0.2 give an appropriate level of detalil.

Starting with data acquisition hardware, different sensors capture the whole scene,
an area of interest (AOI) from the scene, or the OOIs within the AOI. Commonly, three
different types of sensors can be distinguished: standard monocular cameras with red,
green, and blue (RGB) color channels, depth sensors with a depth channel only,
and active depth cameras with four channels, respectively a red, green, blue and depth
(RGB-D) channel. In this first processing step of the pipeline, only the acquisition tech-
nology and its output values, i. e., resolution, measurement accuracy, noise characteris-
tics, and data formats, are considered for this thesis.

Depending on the acquisition sensors, the next processing step takes photos, takes
video sequences, takes RGB-D images, etc., will result in different collections of data.
A collection of planned photos is, for example, taken by setting the OOI on a turntable
and capturing pictures only from specific viewpoints, while the turntable is rotating. For
illustration, consider the collection of planned images in the Middlebury multi-view stereo
data set [79]. Other options for taking input images and recording video sequences are,
among many others, image collections from the Internet (cf. Rome16k [57]), camera
walks or journeys through streets [31], object capture under quite controlled conditions
with moving cameras [53], computer-generated data sets rendered on virtual 3D mod-
els [15], and scene captures with only a few images and almost planar camera move-
ment [83].

Based on the kind of input data, different methods have been developed for the fea-



ture detection and description step. Here, unique keypoints are extracted from the input
and, by using features, are described in machine-understandable terms—most com-
monly by numerical feature vectors. For aligning images and frames of video sequences
with other images or frames in which the same keypoints with the same features occur,
feature matching is performed. To cope with the amount of input data and its associated
complexity, a variety of approaches, such as incremental, hierarchical and global feature
matching [77], have been developed. Once the decision has been made which images
or frames show the same parts of a scene, the spatial location of the acquisition hard-
ware at capturing time, with respect to the other viewpoints, is estimated by methods
of multiple view geometry (MVG). Afterwards, the 3D position of each keypoint is trian-
gulated, which leads to a 3D point cloud (PC) of keypoints representing the 3D scene,
AOI, or OOI. Note that the last three processing steps, feature detection and description,
feature matching, and multiple view geometry, of the 3D reconstruction pipeline might
vary, depending on the data acquisition sensor.

Since the points of the PC are not connected in any way, 3D point cloud clearing
and meshing must be performed as the last step, before getting a 3D model. This 3D
point cloud clearing and meshing means that 3D points that were identified as outliers
or that did not belong to the OOI, e. g., will be removed from the PC. This cleared PC will
then be meshed, i. e., points next to each other will be meaningfully connected with lines
which then form faces, so that a 3D model is created.

After considering the general pipeline of 3D reconstruction, the question arises, how-
ever, whether the created 3D models have currently any practical use. The answer to
this question is usually No, because, due to the monolithic nature of the reconstructed
3D models, they are inappropriate for simulation tasks, reverse engineering, object repli-
cation, and other demanding tasks. In monolithic 3D models, the OOl is not represented
on its own. Furthermore, scene and objects cannot be distinctively divided, because
no semantic information regarding the scene, its objects, and the subparts, also known
as subassemblies, of these objects are included in the 3D model. For the industrially-
relevant use, 3D models are required which, in addition to the required accuracy, also
contain a semantic division into logical subparts, including rigid or flexible connections
between the subparts. Only such kinds of 3D models allow the 3D printouts, in addition
to looking like the original, also to work like the original object.

In order to obtain these desirable 3D models of high industrially-relevance from im-
ages and video sequences captured by standard RGB-cameras, ways of incorporating
human semantic knowledge about the 3D characteristics of the scene and its objects
are researched in this thesis. The research objective is to improve the ill-posed problem
of image-based 3D reconstruction, by the incorporation of human knowledge using as
little human-computer interaction (HCI) during the 3D reconstruction process [48, 37] as
possible. As starting point, therefore, the entire processing pipeline of image-based re-
construction is evaluated to identify shortcomings that can be significantly improved by
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Figure 0.1: Snapshot of the designed graphical user interface for interactive 3D reconstruction
[Paper 1V, Figure 2 (a)] showing the first step of a reconstruction. The user selects the object of
interest by marker pins on one image or frame (cf. ©) which instantly leads to a first intermediate
3D model (cf. ©).

means of HCI. For developing sustainable solutions of high practical use, the investiga-
tion of shortcomings in the 3D reconstruction pipeline is explicitly performed top-down.
Top-down means here, starting from the top of every software—the graphical user inter-
face (GUI) with its user interface (Ul) metaphors—which then leads down to the different
processing steps and their algorithms. Note that the term “image-based” includes collec-
tions of images and video sequences. Both serve as 2D projections and will be consid-
ered, unless explicitly stated otherwise, as the same, since frames of a video sequence
can be seen as a collection of images and vice versa.

More precisely, the GUI, including its Uls, must equip the user with options for recog-
nizing, as well as filling in, missing information into the 3D reconstruction pipeline to get
industrially-relevant, i.e., CAD-ready, 3D models. Determining potential starting points
that substantially improve current reconstruction software, different snapshots of a GUI
for interactive image-based 3D reconstruction are designed.

As illustrated in Figure 0.1, to reconstruct one or multiple OOls, the user identifies
them using a marker pin on a single image or frame from the video sequence. Trig-
gered by this user interface metaphor, the initialization of the 3D reconstruction process
is started. Since the marker pin defined the semantic information for recognizing the ob-



jects which are needed for the reconstruction, the marker pin Ul metaphor adds knowl-
edge to the process. Considering this additional knowledge, pixel-accurate segmenta-
tion based on the 2D projections can be performed. Thereby, all pixels representing the
OOQIls will be distinguished as foreground, and all the remaining pixels will be considered
as background. Due to pixel discretization, as well as the fact that the objects are pro-
jected to the 2D image plane, the fore- and background segmentation by itself is also
ill-posed. In consequence, interactive pixel-accurate OOl annotation and the leveraging
segmentation processes are researched and the insights gained are implemented as
software.

The prototyped interactive annotation and segmentation software allows a rapid fore-
and background segmentation, but due to the use of classical Ul devices, keyboard and
mouse, it is still tedious and time-consuming. By considering, e. g., motion, gesture, and
gaze sensing input devices, more natural user interfaces (NUI) for this task could be pro-
vided. In order to realize NUIs for image segmentation, the fusion of CV algorithms with
human sensory data is of high importance. For supporting research on the integration
of sensory data in CV applications, a uniform standard file format is introduced. Based
on this format, instantaneous visualization and sonification are possible, as well as the
merge of multiple data sets into one. These merged data sets facilitate, e. g., the evalu-
ation of sensory enhanced algorithms or the training of sensory-inspired artificial neural
networks (ANNSs).

By combining the high-level knowledge gained through HCI, it can be seen that pixel-
accurate recognition of the OOI within the 3D reconstruction pipeline, and in a second
step, the recognition of its subparts on the 2D projections, significantly improves the
resulting 3D model. Thus, the objective of applicable image-based 3D reconstruction is
moved closer to its completion. Since the effect of 3D recognition on images and video
sequences seems particularly beneficial, its analogies with the human visual system are
investigated for proving or disproving its importance.

Processing time results in “waiting time” and is therefore lethal for every HCI. Within
the 3D reconstruction pipeline, the estimation of the 3D PC by MVG is the bottleneck in
terms of process time. In order to significantly shorten this time to meet the acceptable
“waiting times” for HCI [80], a feasibility analysis on the replacement of MVG by ANNs
for the 3D reconstruction of unknown objects is conducted.

To demonstrate the primary finding of this thesis, i. e., that pixel-accurate segmenta-
tion of the OOI on the input data significantly improves the usability of the resulting 3D
objects, practical software applications of industrially-relevance, which use the interac-
tive 3D reconstruction pipeline, are developed. For emerging technology of 3D printing,
the interactive replication of spare parts using only a smartphone is prototyped, demon-
strating an engineering show case. As second show case within the domain of video
surveillance, visual video analytics (VVA) improved by reconstructed 3D objects, as well
as improved by users’ sensory data, here gaze data, is implemented and evaluated.
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In summary, it can be stated that a true copy of an OOI, create by image-based 3D
reconstruction, is not only feasible in Hollywood films and TV series like “Enemy of the
State” and “CSl: Miami”. By the use of HCI, i.e., the collaboration of users with the
computer to generate semantic information, this can already be realized today. With
the increasing amount of semantic information about the OOI, like how many subparts
it consists of, or what kind of connections exist between the subparts, image-based 3D
reconstruction and related topics such as OOl annotation in video sequences, become
industrial applicable. In the future, with advancing algorithms, the interactive 3D recon-
struction, which obtained applicable 3D models, can be systematically automated. Thus,
3D reconstruction gets more industrial value.

0.2 Structure of this Thesis — in a Nutshell

The research question introduced above, i.e., how to integrate human high-level se-
mantic knowledge into the 3D reconstruction pipeline for getting industrially-relevant 3D
models, spawns the body of research in this cumulative doctoral thesis. Covering the
broad spectrum of research on this topic, most of the 19 peer-reviewed articles in both
journals and conference proceedings fall into the field of CV. A quite heterogeneous
corpus of articles at first glance, however, under the single heading “interactive 3D re-
construction”, they reflect my research on improving image-based 3D reconstruction in
the past three years in the biologically-inspired CV group at the Osnabrtick Institute of
Cognitive Science.

Highlighting those aspects, my research contributes in particular, all 19 articles are
linked to the corresponding processing steps of the 3D reconstruction pipeline. These
links lead to the overview matrix in Figure 0.2 that illustrates the general structure of my
research. While the horizontal axis represents the introduced processing steps of the
3D reconstruction pipeline, the vertical axis is defined by the six main focus areas to
which my articles contribute. Each of these foci corresponds to an individual chapter in
the remainder of this thesis. More precisely, each chapter will introduce the reader to
the particular research question, which is studied by the referred articles. These articles,
which contribute my research, are cited, in particular, as Paper | to Paper XIX and for
further reading they are reproduced in Part P of this thesis. Due to the interdisciplinarity
of bio-inspired CV, the articles are sometimes written in styles of other disciplines and
not necessarily in the presentation style of computer science. Since two articles had
been accepted for publication, but are not published at the time of this writing, they have
been marked accordingly and have also been included in Part P.

The remainder of this thesis consists of six chapters, each characterized by a single
focus area in the vertical dimension of Figure 0.2, and one addition concluding chapter.
As the first focus area in the vertical dimension, Chapter 1 discusses the existing and
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Figure 0.2: Overview matrix illustrating the aspects in which the articles of this thesis improve the
current knowledge of the 3D reconstruction pipeline (uppermost row), in the horizontal dimension.
In the vertical dimension, the articles are clustered into six focus areas, each described in more
detail in a single chapter of this thesis.
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interactive methods of 3D reconstruction. Furthermore, this chapter describes the user-
centric top-down approach based on GUIs designed for usable 3D reconstruction by HCI
which identifies starting points for the research. With regards to the question of how OOI
annotation and segmentation can be performed, Chapter 2 introduces the interactive,
polygon-based and semi-automatic method iSeg. This method combines the strengths
of users and computers, i. e., the computer actively asks for “help” if it recognizes that it
might do incorrect annotations. Having polygon-based shape annotations of, e. g., video
sequences, leads directly to the question of how to store these annotations in a meaning-
ful and generally accessible format. Chapter 3 discusses this issue of storing, visualizing,
and using sensory data, with particular focus on the holistic consideration of how to store
annotations and also other metadata that might be generated during close HCI, like gaze
trajectories or other sensory data. To achieve the full potential of HCI, the idea suggests
itself that CV boosted by sensory data drastically simplifies the interaction in object de-
tection and 3D reconstruction tasks. These two subtopics are covered by Chapter 3
on CV and gaze data. Aiming at bio-inspired 3D reconstruction, Chapter 4 discusses
the analogies between the psychophysical evidence that “humans encode 3D objects
as multiple viewpoint-specific representations that are largely 2D” [11] and image-based
3D methods. Based on the found analogies, already made and needed improvements,
for the 3D reconstruction pipelines are implemented and evaluated. With the focus on
reducing the computational complexity to ensure a smooth HCI, Chapter 5 investigates
whether the computationally intensive parts of MVG methods could be replaced with 3D
reconstruction by ANNs. This analysis aims to develop ANNs which achieve the same
results as MVG-based 3D reconstruction methods and which are, like MVG methods,
also able to perform 3D reconstruction without a priori object knowledge. Representing
the final focus area, Chapter 6 highlights the practical applications and use cases that
have been improved by or developed in the course of the research reported in this thesis.
The spectrum of improved or developed applications ranges from VVA via pixel-accurate
video annotations to image-based spare parts reconstruction. Finally, the conclusion
summarizes the main findings gained by this research and discusses open issues and
limitations to define the directions of future work for accomplishing industrially-relevant
and practical 3D models by interactive 3D reconstruction.



You don’t have to reinvent the wheel
just attach it to a new wagon.

Mark McCormack

Existing and Interactive Methods

In order not to reinvent existing and valuable methods and approaches, a careful explo-
ration of the current body of research is necessary. That is why this chapter summarizes
the literature survey performed during the research, and, furthermore, includes additional
recent findings. This analysis of the current state-of-the-art then serves as the line of ar-
gument for the design of interactive architectures which can integrate humans’ semantic
knowledge into the 3D reconstruction process. For the design of such adequate interac-
tive architectures as the framework for practical software solutions, two requirements are
relevant: (i) the process must return applicable 3D models of industrial relevance and (ii)
the Ul must be reduced to a minimum, but in case Ul is necessary, it must be intuitive.

1.1 Evaluation of Existing Methods

Data acquisition, or, more specifically image acquisition, as the first processing step is
the starting point for any 3D reconstruction pipeline (cf. uppermost row in Figure 0.2).
The spectrum of sensors for image acquisition ranges from monocular cameras over
stereo cameras, also known as dual cameras, to active depth cameras. These active
depth sensors usually return an RGB-D image or video sequences, where, in addition to
the color channels, a depth channel provides values for the distance between the camera
center and the captured scene. In particular, after the first consumer RGB-D camera, the
Kinect camera, was released in 2010 by Microsoft, the number of scientific publications
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Figure 1.1: Number of publications with the keywords 3D reconstruction or 3D modeling and
Kinect & other, RGB-D, 3D camera, depth map or neural network; calculated from Elsevier’s
Scopus webservice [26].

using these devices has increased rapidly, as shown in Figure 1.1.

RGB-D cameras, are used in different areas, for instance in scene reconstruction [35,
17], building mapping [38, 42], forensics [24, 61], robotics [25, 106], and various other
applications [7, 30]. One might ask, however, whether RGB-D cameras of depth sen-
sors should indeed be the preferred choice when it comes to the realistic reconstruction
of scenes or OOIs with the goal of returning non-monolithic 3D models, as they are
necessary in industrial uses? Therefore six, RGB-D cameras and also three depth sen-
sors below 5.000€ were benchmarked. Contrary to initial expectations, do-it-yourself
academic RGB-D cameras like [111] end up producing very high overall cost, clearly
exceeding the previously introduced limit of 5.000€. However, they seem to be a good
choice for highly specialized, but not for general use cases.

With a particular focus on the usability and measurement accuracy for 3D recon-
struction purposes, a first benchmark on depth data acquisition sensors [Paper 1] con-
firms Henry et al’s [38] claim that RGB-D cameras only provide a depth sensing range of
up to a limited scanning distance of approximately five meters. Secondly, if the working
principle of depth measurement relies on a structured light pattern, very smooth or trans-
parent objects will lead to blind spots in the depth values. These blind spots are due to
the fact that the light pattern is not reflected as expected by the measurement hardware.
Thirdly, the outdoor use of all selected depth cameras, as well as sensors, remains very
limited, because of their vulnerability to weather conditions, such as sunlight, humidity,
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rain, and snow, which further limits the maximal depth perception distance—in extreme
cases, to zero meters.

In general, both depth and RGB information can be considered for improving the
3D reconstruction pipelines. However, the motivation for research on 3D reconstruction
pipelines using "standard", monocular, RGB cameras for the data acquisition is strength-
ened by the following three shortcomings of RGB-D sensors: (i) the limited range at
which these sensors can observe depth, (ii) even within depth sensing range certain
material characteristics lead to blind spots of the depth map, and (iii) the fact that these
sensors, even nowadays, are not available in every-day products like smartphones and
laptops. Note that in line with this survey [Paper ] and for focusing the line of research,
all other special hardware devices like dual cameras [51, 55] and light detection and
ranging (LIDAR) sensors [39, 21] have deliberately been omitted. Thus, only monoc-
ular RGB photo- as well as video-cameras which return colored 2D projections of 3D
scenes and OOls will be considered as data acquisition hardware for the remainder of
this research. Going beyond these technical considerations, it should also be pointed out
that humans are capable of perceiving 3D object shapes even when using only one eye
(cf. Chapter 4). Thus, a monocular imaging sensor for data acquisition in combination
with certain semantic knowledge, like a set of underlying geometrical 3D objects [10,
43, 109], must be sufficient for almost any 3D reconstruction task. An additional reason
for the commitment to monocular cameras is the vast amount of available data sets as
well as recordings, e. g., from Internet image collections, and the almost exclusive use of
monocular cameras in current electronic devices.

Boosted by the emerging technologies of 3D printing, VR and AR in the last decade,
several reconstruction software solutions for image-based 3D reconstruction have been
released. As initial data, all of these applications use 2D projections in the form of col-
lections of images, video sequences or frames of video sequences showing either the
whole scene or showing the AOI or the OOI from slightly different viewpoints. Due to
the fact that for image-based 3D reconstruction the different viewpoints are typically cre-
ated by camera as well as object motion, this method is also known as structure from
motion (SfM) or, in older references, as stereophotogrammetry. Assessing the quality
of existing methods, the four most widely used image-based 3D reconstruction software
applications are evaluated [Paper II]. For this evaluation, Agisoft PhotoScan Standard
Edition [3] and Autodesk 123D Catch [5], as non-academic software solutions, as well
as VisualSFM [99, 100, 98] and ARC 3D [95], as academic software, have been cho-
sen. Concerning practical applicability in real-world and set-up capturing scenarios, the
benchmarks are completed on a real-world [83] and a planned [96] multi-view image
data set. Note that all benchmarked software tools perform the image-based 3D recon-
struction based on the SfM principle, which is comparable to the processing steps as
shown by the uppermost row in Figure 0.2.

In order to provide qualitative and also quantitative results, a new method for com-



12 1. Existing and Interactive Methods

paring the reconstructed model with the ground truth is defined and applied in Paper II.
This method returns the same number of measurement points for each model, which is
needed to get comparable histograms, statistics, and meaningful figures. So far, con-
ventional practice [86, 90] has been to make the comparison between the ground truth
as the reference and each reconstructed model. The newly introduced method does the
comparison the other way round. This way, the amount of measurement points depends
only on the ground truth PC. Recently, this new method has been used for computing,
e.g., empirical cumulative distribution functions and meaningful heart map visualizations
for benchmarking new approaches [62, 89]. The performed benchmark [Paper II] shows
that it is indeed possible to rank available software solutions for multi-view 3D reconstruc-
tion with respect to reconstruction quality and processing time also known as runtime.
However, due to the large number of application cases, such as the 3D reconstruction of
entire cities or small heritage artifacts, it is not feasible with our benchmark to provide a
general ranking and announce the best software, because each software has a slightly
different use case. The more general result of this benchmark is that almost all evalu-
ated software obtains monolithic 3D models sufficient in accuracy if a lot of input images
without occlusion are available and if the scenes or the OOIs do not exhibit too many
shape irregularities.

1.2 Design of Interactive Methods and User Interfaces

The state-of-the-art surveys and benchmarks [78, 62, Paper Il] show that the complete
3D reconstruction pipeline works in general, but only for specific tasks. However, would
an architect or an engineer call the resulting 3D model a CAD-like one? Is an inexperi-
enced user able to apply and use these tools? Can users create applicable 3D models
of real-world OOQls, that are manufacturable with 3D printers in order to get an authentic
and functioning replica? The answer to all these questions is a No—but why? By con-
ducting a broad-based comparison of automatic as well as interactive image-based 3D
reconstruction techniques [Paper Ill], the reason for this answer should be identified. In
doing so, all methods are analyzed with a focus on the practical usability, as well as on
the characteristics and the amount of input data.

In short, all of the eleven examined techniques [Paper Ill] require specific, planned
input images or video sequences which show the OOl ideally from all perspectives. Fur-
thermore, the handling of delicate structures, textureless surfaces, hidden boundaries,
illumination, specularity, or dynamic or moving objects, as they occur in normal cap-
tures, are not taken into account by any of these reconstruction techniques. In addition,
if only few images are available, such methods are not able to construct 3D model at
all [49]. Another major drawback is that, like the already benchmarked software solu-
tions [Paper 1], all techniques considered here also return monolithic models as PC or
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Figure 1.2: Interactive reconstruction architecture [Paper Ill, Paper IV] comprised of three parts:
(i) the input data in the form of image acquisition as well as additional data, (ii) the interactive
reconstruction process itself and (iii) the user as a domain expert of the real world.

as meshes without any declaration of subassemblies. In consequence, these kinds of
monolithic models can be used for visualization, but cannot be used in CAD applications
like simulation tasks and AR manuals.

In order to bridge this obvious gap of, for instance, missing subpart definitions or
missing geometrical shape information caused by occlusion, additional information must
be given to the 3D reconstruction process. This lack of semantic knowledge and also
the lack of shape information by the ill-posed nature of image-based reconstruction can
currently only be solved by interactive 3D reconstruction architectures, processes and
frameworks. In this context, interactive also includes semi-automatic processes. As a
consequence, HCI is the only solution for creating manufacturable 3D models of high
practical use. HCI incorporates high-level knowledge provided by users into the re-
construction pipeline [48, 37]. In the near future, this semantic knowledge cannot be
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integrated into existing algorithms explicitly, because of the sheer complexity this would
create. Nonetheless, in order to reliably reconstruct 3D models from any collection of
images and video sequences in the foreseeable future, Figure 1.2 outlines the first draft
of an interactive 3D reconstruction architecture. As illustrated, three main parts char-
acterize this architecture: (i) the input data captured by monocular cameras, as well
as additional data, such as physical interrelationships, (ii) the interactive reconstruction
process itself, and (iii) the user as a domain expert of the real world with all her/ his high-
level knowledge. In consideration of the data analysis methodologies for the pattern and
structure discovery in VVA tasks [Paper XVIII, Paper XVII, 40], where the input data will
be enhanced from a pixel-based to a high-level symbolic representation by HCI, this in-
teractive 3D reconstruction architecture uses the same conceptual clustering into three
parts. Thus, this interactive 3D reconstruction, like the VVA architecture, joins the com-
putational power of today’s computers with the semantic knowledge of users to solve is-
sues that are computationally infeasible at the moment and to a certain extent, ill-posed.
In this way, the computer remains the “workhorse” of the reconstruction process, while
machine learning algorithms, including ANN, shift the workload from the user to the com-
puter. As a consequence, 3D reconstruction from arbitrary and unplanned collections of
2D projects becomes possible, which will broaden the range of applications and use
cases (cf. Chapter 6). For example, everyone will be enabled, €. g., to reverse-engineer
needed mechanical parts including smaller subparts [Paper XIX], to summarize videos
sequences with focusing on specific AOIs or OQOls [Paper XVIII], to annotate AOIs and
OOQls with their eyes [Paper Xl, Paper VI], or to reconstruct non-rigid, i.e. deformable,
objects such as cuddly toys.

To further strengthen the interactive architecture sketched in Figure 1.2 and for devel-
oping sustainable solutions of high practical value, possible GUIs with the corresponding
interface metaphors are prototyped [Paper IV]. These so-called GUI mockups give an
indication which Ul metaphors are essential to obtain the desired 3D models of high
industrial relevance from images. More precisely, this top-down consideration of inter-
active 3D reconstruction identifies with which software functionalities the user must be
equipped for incorporating their a priori high-level knowledge about the 3D shape of the
OO, the number of subparts, the rigid or flexible connections between the subparts, etc.
for getting a CAD-like model.

The three most important snapshots of the prototyped GUI are illustrated in Fig-
ures 0.1 and 1.3. They show the three major HCIs components needed for interactive
image-based reconstruction. In Figure 0.1, which is discussed in detail in the introduc-
tion, HCl is used for identifying and segmenting the OOI on the 2D projections which are
needed to generate an intermediate, monolithic 3D model. For breaking this monolithic
model down into its subparts, the HCI of Figure 1.3(a) enables the user to define edges
on the images or frames, based on which the 3D model is then divided into parts. The
HCI of Figure 1.3(b) can be used for defining rigid, flexible, detachable or permanent
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(b) Connection view, adding detachable or permanent connections and their degree of freedom.

Figure 1.3: The designed GUI of interactive 3D reconstruction [Paper 1V, Figure 2]. Here showing
different snapshot of different operating stages and their interface metaphors.
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connections between the subparts. All these snapshots are chronologically sequenced,
and interactive OOI annotation and segmentation must thus be investigated first.
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A lot of the future of search is going to be about pictures
instead of keywords.
Computer vision technology is going to be a big deal.

Ben Silbermann

Object of Interest Annotation and
Segmentation

In visual attention tasks, humans usually outperform computers and the same is also
true for object recognition and tracking tasks (cf. Chapter 3). On these kinds of tasks,
users can easily follow an AOI or OOI over several frames even if the area or the ob-
ject is occluded partially or completely. As already mentioned in the finial section of
previous chapter, the identification and segmentation of one or multiple OOls, which
includes detection, masking, and cropping, is a major step within the interactive 3D re-
construction pipeline. The importance of OOl identification, also referred to as annota-
tion, is highlighted by the fact that about 300 hours of video sequences are uploaded to
YouTube [107] every single minute, not even considering other video platforms such as
Vimeo and Flickr. For real time annotation, 18,000 operators would be necessary just for
YouTube videos. Unfortunately, annotating video sequences and collections of images
in such way that they can be used as ground truth in, e.g., scientific tasks, cannot be
done in real time or faster, because pixel-accurate annotation is an ill-posed task whose
complexity scales up with the resolution of the input data.

Even though a large diversity of approaches for AOI and OOI tagging, annotating
as well as tracking over frames has been released in the last decades, useful software
tools are still rare. A possible reason might be the high complexity of the task, in both
the spatial and the temporal domain. The complexity of this task is so high that even
the pixel-accurate annotations created by humans differ on the same data set [110, 29].
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A further difficulty is that an enormous amount of pixel-accurate annotated video se-
quences is necessary for training, testing and validation, in particular, when ANNs are
used.

The developed interactive annotation and segmentation method (iSeg) [Paper V, Pa-
per VI] provides these pixel-accurate annotated video sequences with only little user
interaction. The iSeg tool with its novel interactive approaches for polygon-based, i.e.,
pixel-accurate, OOl annotation as well as segmentation is introduced in the following.
The chapter proceeds to highlight how the iSeg software has been used successfully in
current independent research [108, 6], elaborates on the link to bio-inspired 3D recon-
struction, and refers to further applications based on iSegs’ framework (cf. Chapter 4
and 6 for more detailed discussion).

The benchmark of several image and video annotation tools based on different crite-
ria by Dasiopoulou et al. [19], such as annotation granularity, location, and expressivity,
triggered the research of the iSeg process. This benchmark finds that only one soft-
ware provides the option of pixel-accurate AOIl and OOI annotation for video sequences.
All other evaluated tools provide only simple geometric primitives for annotations, such
as rectangles and ellipses. As has become apparent by the evaluation of video anno-
tation tools [Paper V] like the video performance evaluation resource (VIPER) [23] and
semi-automatic ground truth annotation (SAGTA) tool [101] another drawback of these
software solutions is that they do not provide useable interface metaphors for an easy
concurrent annotation of several frames. Furthermore, important semantic information
like inter-object relations, e.g., “the red car is occluded by the white one”, cannot be
added to the resulting annotations. Based on this evaluation, however and despite these
drawbacks, positive stands out the annotation export format of VIiPER. This XML based
export format is appropriately defined and specified by an Xxsb schema. This standard-
ized export format might will be the reason why VIiPER is still broadly used despite its
many shortcomings.

In contrast to these solutions, the iSeg software provides intuitive, interactive and
pixel-accurate annotation features as modular processing blocks, as schematized in
Figure 2.1. By design, the iSeg software combines both the computational power of
computers and the high-level semantic abilities of human knowledge. The architectural
framework of the interactive reconstruction [Paper Ill, Paper IV], which is based on the
architecture of VVA [Paper XVIII, Paper XVII, 40], is very well-tailored to this ill-posed
task. As a consequence, the iSeg application significantly increases the quality of the
AQOI and OOI annotations from the fact that the polygon-shaped annotations and inter-
object relations can be encoded, which contain much more information than the current
annotations with geometric primitives.

The key features of the released iSeg software are first, its workflow that is composed
of eight modular process blocks, as shown in Figure 2.1, and, second, the underlying ar-
chitecture. Only the two initial processing blocks, marked with a white headline, are
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Figure 2.1: Overview of the interactive annotation and segmentation (iSeg) process [Paper VI].
Process blocks with white headlines are obligatory when running the iSeg tool. Blocks with gray
headlines are optional and can be used in any order at any time. The block interactive annotation
fitting actively asks for user interaction in case the automatically generated annotations appear
to be incorrect. Thus, the computer remains the “workhorse” of the process, while the close
cooperation with the user allows the iSeg software to improve results in both annotation accuracy

and time.
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obligatory and must be processed first and in the specified order. The remaining blocks
can be arranged, executed and concatenated in an arbitrary order interactively by the
user until the desired annotations are reached. Due to the immediate visualization of
annotations on top of the video sequences, iSeg’s process enables the user to verify
and correct the annotations directly. For that purpose, Ul metaphors for the annotation
process, by the use of mouse and keyboard as input devices, are defined. Naming exem-
plary metaphors: By clicking and dragging the inside of an annotation shape, its entire
polygon contour can be relocated. By double-clicking, a new vertex is added, which ad-
justs the shape of the annotation. By single-clicking and dragging a vertex, its position
can be manipulated, and by pressing the SHIFT-key and clicking on a vertex, it can be
deleted. Based on the finding that interactive CV applications are greatly improved by
recording and incorporating users’ gaze trajectories during the performance of tasks [Pa-
per Xl, Paper XIl], new gaze-based interface metaphors are currently being prototyped.
These gaze-based metaphors as NUI allow hands-free annotation during playback of
video sequences, just by gaze at the OOI (cf. Chapter 7).

Facilitating the annotation of areas and objects, in an interactive manner, where the
user is put into the loop, is should by avoided that users are annoyed by long “waiting
times* [80]. These "waiting times* are normally caused by the processing time of com-
putationally expensive algorithms, like the extraction and description of keypoints on all
frames of a given video sequence. Unfortunately, the sheer number of keypoints and the
complexity of extracting these keypoints significantly increases with the resolution of the
input frames. Given the high resolution of current devices, reaching 1080p (1920 % 1080)
or 4k (4096x2160), keypoint extraction requires high-performance computer hardware
to ensure a smooth HCI without "waiting times*®. Allowing smooth HCI even on laptops,
iSegs’ interactive annotation fitting block, in contrast, only extracts keypoints in or close
to the annotation for adjusting it to the "real” AOI or OOI location. This way, it can han-
dle even high-resolution video sequences. In case the computer cannot find a sufficient
amount of keypoints for fitting the annotation, it asks the user for help. The detailed
implementation of this functionality is based on the activity diagram [Paper V, Figure 2]
which defines the algorithm’s behavior when activity asking for user interaction. It should
be mentioned that this implementation can cope with moving OOls, moving cameras
as well as moving OOls and moving cameras, i.e., if both motions happen simultane-
ously. By increasing the smoothness of the interactive annotation fitting, multithreading
is implemented since iSeg version 0.0.5.

The concept of the semantic timeline [Paper VI] further improves the annotation qual-
ity. This means that, in addition to a pixel-accurate annotation of AOIs and OOls, the
relations between them can also be specified. For encoding these inter-object relations,
every annotation has its separate semantic timeline, where manually annotated frames
are distinguished from automatically or interactively created annotations. The order of
the semantic timelines can be changed by dragging and dropping either single or multiple
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frames to represent the z-order of the annotation. Here, z-order relates to the inter-object
relation and means how close, for instance, a particular object is to the camera center.
By encoding the z-order with the semantic timeline in this way, additional information
is added to the annotation, e.g., when an object is completely or partially occluded by
another object.

The export of the annotations created with the iSeg tool can be done in XML format,
which is compatible with and valid for VIPER’s XsD scheme [23]. Furthermore, the latest
version of iSeg (1.0.0) provides the option to directly export annotations and inter-object
relations as subtitle formats, which then can be integrated into multimedia containers for
instantaneous visualization (cf. Section 3.1). As it is standard for software, the annota-
tions and their inter-object relations can be stored in iSeg’s binary project files, allowing
an easy save-and-load of an entire project.

Summing up, the lack of video annotation tools allowing pixel-accurate annotations
which can handle video sequences in standard resolutions inspired the development
of the iSeg software. Based on the fact that such tools are needed, e.g., for ground
truth generation, the iSeg prototype software is compiled for the most popular operating
systems—Windows, Ubuntu, and MacOS. Beyond that, the source code is GPLv3 li-
censed so that anyone can assemble or improve iSegs’ implementation on any platform.
For instance, recently, Balloch and Chernova [6] use the iSeg software for the dense
annotation of Kinect v2 sensor data for scene segmentation by convolutional neural net-
works (CNNs). In the same domain, Zeng et al. [108] annotate the agent as well as the
risky region in video sequences with the iSeg software for agent-centric risk assessment
by recurrent neural networks (RNNSs).
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A picture is worth a thousand words.
An interface is worth a thousand pictures.

Ben Shneiderman

Computer Vision and Gaze Data

Computer vision and human vision—both are often compared to each other, but only in
rare cases are they combined for creating interactive CV. The cooperation of the user
with the 3D reconstruction pipeline is the general concept of interactive reconstruction.
In this vein why not use the users’ visual system and NUI to boost the HCI as well as
the underlying CV algorithms? The obvious and most straightforward information which
can be measured by sensors from the human visual system are the points the eyes are
looking at, the so-called gaze points. Gaze points are usually measured on a 2D target
plain, typically a computer screen, and, over time, they result in gaze trajectories. With
every task execution, the user provides these gaze trajectories as unconscious high-
level information indicating, e.g., which areas are especially interesting. For realizing
NUIs for OOI annotation and segmentation, the fusion of CV algorithms with human
sensory data is of major importance. In order to enable efficient research on how CV
boosted by sensory data, in particular by gaze data, a uniform standard file format for
storing, visualizing, and using sensory data is mandatory and introduced in the following.
As a result, sensory data of users watching video sequences or collections of images
can be used, inter alia, for designing NUIs, improving CV methods, evaluating sensory-
enhanced algorithms and training sensory-inspired ANNs.
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3.1 Storing, Visualizing, and Using Sensory Data

Starting with the created pixel-accurate OOl and AOI annotations (cf. Chapter 2), it
should be good practice to encapsulate these annotations and the corresponding video
sequences in a standardized format [Paper VII], which is then easy to use by off-the-shelf
software. Such a practice for storing text plus metadata, such as bookmarks, hyperlinks
and comments has become standard since the introduction of the PDF container. Even
today, metadata, i. e., research data such as OOI annotations and tags, are stored as
an addition to the video in a single or multiple files. For storing these metadata such
diverse formats as plain text, XML, MATLAB format, and binary are currently used. The
plain text and the binary formats in particular are often unique data formats. Special
tools are thus necessary to access and visualize these metadata on top of the video
sequences. As a consequence, the accessibility of these data is quite hard for experts
and for non-experts, infeasible.

Like the standard PDF format, state-of-the-art multimedia containers encapsulate
video sequences, audio sequences, subtitles, chapter tags, cross-references, etc. for
home entertainment systems in a single file. These containers have become com-
mon due to the everyday use by a broad audience. The best-known and most-used
multimedia-encapsulation formats are the MP4 [44], OGG [105] and MKV [59] containers.
Besides that, there is, in all research fields, an ever-increasing amount of video data
sets which comprise additional metadata, such as annotations, tagged events, and inter-
object relations (cf. Chapter 2). Consequently, an evaluation of the capabilities of multi-
media containers has to be performed, focusing on the encapsulation of various kinds of
research-relevant annotations, such as point markers, rectangular bounding boxes, and
polygon-based bounding shapes.

As the first presented solution, AOI and OOI annotations, marked with 4 in Fig-
ure 3.1, were encapsulated in multimedia containers [Paper VII]. This way, different
existing multimedia containers formats can be evaluated, and three possible implemen-
tations were identified. Two of these implementations use the Matroska container format
(MKV) [59] with different types of subtitle formats, one being the Advanced Sub Station
Alpha (AsS)[84] and another one being the universal subtitle format (USF) [65]. The third
possible implementation is based on MPEG-7 [45] embedded into MPEG-4 [44] multi-
media container data. Since, based on literature research, hardly any of the available
standard multimedia players support MPEG-7, only the MKV-based approaches were pro-
totyped and tested.

In order to support the decision to only implement the MKV-based prototypes, all three
approaches are presented in a comparison matrix [Paper VII, Table 1]. Based on this ma-
trix, the USF encapsulated in the MKV container as well as the MPEG-7 container seem
the best suitable formats for providing instantaneous visualizations of pixel-accurate an-
notations in multimedia players. However, the prototype, where ASS is encapsulated
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Figure 3.1: The general data structure of a multimedia container is split into static and dynamic
payload, enabling streaming without transmitting the whole container beforehand. The encap-
sulation of several OOI annotations [Paper VII] is marked with &, gaze data [Paper VIlI] from
several users is marked with B, and EEG data [Paper 1X] in different sonifications is marked with
<. Methods using research data in the proposed multimedia container for data visual analytics
research [Paper X] simply visualize several subtitle tracks simultaneously or next to each other.

in the MKV container, has one significant advantage in comparison to other. It can be
visualized by any state-of-the-art multimedia player without any modification of the play-
ers. Nevertheless, the best-suited format that can describe all relevant research data is
MPEG-7, but, as mentioned before, there is a lack of MPEG-7 support in software libraries
and multimedia players. In order to adequately demonstrate the potential of annotations
stored in multimedia containers, seven video sequences of the Berkeley Video Segmen-
tation Dataset [29], where OOQOls are pixel-accurately annotated using the iSeg software
(cf. Chapter 2), are muxed into a multimedia container. The resulting data set is public
and can be downloaded by everyone. Thus, by the use of a standard multimedia player,
the broad audience can watch the created OOl annotations and researchers can easily
extract the annotations for their projects.

Advancing these first prototype implementations, eye tracking data is also integrated
into the multimedia containers [Paper VIII]. The raw eye tracking data, as well as the
video stimuli, are encapsulated into the MKV multimedia container, and for visualizing the
gaze trajectories, they are additionally converted into a subtitle track, as illustrated with
B in Figure 3.1. For promoting this approach, three well-known gaze data sets [70, 52,
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16] in which the gaze trajectories of several participants are encoded and OOI and AOI
annotations exist, are muxed into multimedia containers and released. Thus, the benefit
of this approach is highlighted, and it becomes possible to instantaneously visualize all
encoded metadata with standard video players. These converted gaze data sets show
additionally that eye-tracking data in multimedia containers will significantly boost the
accessibility and shareability for experts, researchers from other fields, and the broad
audience.

Going even further, by enabling multimodal research in multimedia containers in both
a visual and an auditive manner, metadata is sonificated using the audio tracks (cf. «
in Figure 3.1). As a consequence, it is shown that any research data can be visual-
ized and sonificated by the use of multimedia containers. The main characteristics of
such data can be summarized as follows: (i) stimuli like video sequences, images, as
well as audio sequences, (ii) metadata of the stimuli like capturing details, object tags,
subtitles, as well as labels, (i) additional object or scene data like 3D descriptions, inter-
object relations, online links, as well as scene maps and (iv) sensory data of one or
several participants like gaze trajectories, heart rate, and electroencephalography (EEG)
curves. Based on these containers, standard multimedia players can be used as tools
for exploratory multimodal analysis of this data. Focusing on the exploratory multimodal
data analysis on video and image stimuli, additional data sets are converted within the
scope of first usability studies. For instance, the data set of Agik et al. [2] which consist
of gaze trajectories of multiple participants watching a short video sequence followed by
a freeze frame of it, is converted into the proposed containers to demonstrate instanta-
neous visualization of video sequences and still images. Showing other possibilities of
the approach, further EEG data from neurophysiological recordings are sonificated and
are encapsulated into a multimedia container together with the corresponding visualized
gaze recordings as well as the stimuli video sequence. In a pilot study one expert and
one non-expert perform explorative multimodal analysis with a multimedia player on the-
ses two data sets. As a general result, both users highlighted the usefulness of research
data in multimedia containers and were able to gain first impressions of the data sets
only by the use of standard software.

Furthermore two add-ons for the VLC player are developed [Paper X] for visual ana-
lytics (VA) using standard and research data encoded in multimedia containers. Prelimi-
nary user interviews [Paper 1X] identified the need for a parallel visualization of different
items, like OOl annotation and gaze trajectories of several participants for detecting,
e.g., inter-object relations. Since no known media player is designed to visualize several
subtitle tracks in parallel, two VA add-ons, SimSub and MergeSub, are developed. Sim-
Sub visualizes every item, i. e., annotations and gaze trajectories in an additional video
window [Paper X, Figure 5(a)]. All these video output windows are synchronized with
the video controls of the main window. The user can then navigate through the video
stimulus and directly see the changes by comparing the output windows. The second
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add-on, MergeSub, merges all items into a single subtitle track, which is visualized in the
main window [Paper X, Figure 5(b)]. In this way, tiny differences between items can be
found quickly and inter-object relations can be identified easily.

A more detailed user study with nine participants has conducted [Paper X] to get
more feedback on both the approach of encapsulating research data in multimedia con-
tainers and the designed VA add-ons for the VLC player. After introducing the partici-
pants to the concept of storing research data in multimedia containers that allow direct
visualization and sonification, they were asked to its significance for different user groups
[Paper X, Figure 6]. By performing a given VA task using the designed VLC add-ons,
all participants decided to use the MergeSub add-on only. One participant argued that
SimSub cannot be used for a comparison of gaze points, because it is impossible to
concentrate on two or more video windows at the same time. Four participants recom-
mended the assignment colors to each metadata item as an improvement of MergeSub.

For encouraging more application as well as add-ons using these multimedia con-
tainers, in total six data sets comprising 319 video sequences with their correspond-
ing research data such as annotations, eye tracking data, audio tracks, EEG measure-
ments, and still frames were converted. The resulting 319 multimedia containers of data
sets [Paper VII, Paper VIII, Paper 1X] were published to facilitate multimodal research
with standard multimedia players and to further enable novel VA in combination with
the released VLC add-ons [Paper X]. One feature of this approach, however, has not
been highlighted yet: By muxing metadata into multimedia containers, the data become
streamable via the Internet, i. e. time-dependent data like video stimuli and their annota-
tions are downloaded during playback and not beforehand. Consequently, the accessi-
bility and shareability of research data will be significantly increased, so that the use of
in multimedia container encapsulated research data facilitates the development of new
applications and potentially of novel areas of research as well. One such area could be
cognitive learning, where ANNs mimic human-like sensory input. Such ANNs might be
used for testing existing theories of human sensory processing and for gaining new in-
sights into how the human brain works. Another new area of research could be assistive
technology, where gaze data might be used to highlight objects in movies for the visually
impaired. An additional potential area would be the fusion of CV algorithms with human
sensory data for creating reliable algorithms and new intuitive NUIs, as demonstrated in
the next section.

3.2 Computer Vision Boosted by Sensory Data

A particular focus of research on the fusion of CV and sensory data is the question
of how knowledge of the human visual system can be meaningfully captured and inte-
grated into algorithms. The easiest method to get sensory data from the visual system
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nowadays is the capture of users’ gaze points. Various hardware [87, 69, 76] and soft-
ware [64, 18] solutions for gaze point capturing already exist. A logical first step in the
development of an NUI for the iSeg software (cf. Chapter 2) is to investigate whether
gaze trajectories improve object detection in megapixel (mp) images, both with respect
to accuracy and processing time. Most current approaches to object detection are either
based on keypoints with their feature vectors [66, 60, 12] or based on ANNs [27, 85, 50].
Usually, these approaches are benchmarked on datasets such as ImageNet [74], SUN
Database [104] or FlickrLogos-32/47 [71], whose image resolutions are significant be-
low that of modern cameras. Current cameras have resolutions of, e. g., 2mp for 1080p,
8 mp for 4k cameras and up to 50 mp for professional digital photography equipment.

In order to evaluate the performance of gaze-improved object detection in compar-
ison to keypoint-based methods, a data set was created with a scene resolution of
5152x 3864 (19.9 mp) with nine different objects with various resolutions. The devel-
oped interactive feature growing process [Paper Xl, Figure 1], where users’ gazes boost
the detection of keypoints in order to improve detection accuracy and processing time,
is benchmarked against the four most common keypoint feature detectors and their de-
scriptors, namely SIFT [58], SURF [8], ORB [73], and KAZE [4].

Humans have a fast response time [88, 28] in visual search tasks. It is thus a rea-
sonable hypothesis that the interactive feature growing process, which is affected neither
by the image resolution nor the pixel density, should in general outperform the keypoint-
based methods. For this interactive feature growing process, the users’ gaze fixations
on certain areas of the scene during a given visual search task are mapped. Based on
these gaze maps, the AOIs the user’s gazes fixate on are processed by the CV algo-
rithms. As a consequence, users’ unconscious knowledge and expectations encoded in
their gaze trajectories reduce the use of traditional Ul devices to a minimum and improve
object detection within the scenes.

The result of the performed benchmark with ten participants [Paper XI, Figure 3] sug-
gests, that interactive feature growing has a very high object detection rate of 95%. This
detection rate is 6.3% better than the detection rate of the best keypoint-based method,
which uses KAZE feature detectors and descriptors. Regarding processing time, the
interactive feature growing is two times faster than the best keypoint-based method
and has the same processing time as SIFT-based feature detectors and descriptors
on scenes with 19.9 mp. As a general result, it is shown that users’ gazes provide ad-
ditional knowledge to the CV algorithms so that they outperform the other benchmarked
approaches in accuracy, while the processing time is similar to the compared methods.

Going even further and using sensory boost CV not only for object detection, which
can improve OOl annotation and segmentation, the benefit of users’ eye movements
in the 3D reconstruction pipeline is validated in a prototype implementation [Paper XII].
Since gaze features, such as saccades, smooth pursuit, and total time spend on a partic-
ular object, are indicators for task-relevant content, these features are used to prototype
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a content-aware 3D-reconstruction pipeline. Content-aware reconstruction means that
only the OOl itself or the most important parts of the OOI should be reconstructed, which
is contrary to all existing software solutions (cf. Section 1.1).

Building on the concept of the bio-inspired 3D reconstruction pipeline (cf. Chapter 4),
which rests on pixel-accurate OOI recognition as well as the interactive feature grow-
ing, gaze data is used for the content-aware recognition of the AOls. On the recognized
AOQls, the OOl is segmented using the GrabCut [72] segmentation algorithm. By integrat-
ing gaze features into the GrabCut algorithm, pixels of the recognized AOls are set as
possible foreground pixels that the users’ gazes fixate on are set as certain foreground,
and all other pixels are set to possible background. The prototype of the whole content-
aware 3D reconstruction pipeline [Paper Xll, Figure 1] is tested on an eye tracking data
set [52], where participants were asked to follow an OOlI, in this case a red car, in a video
stimulus.

The resulting 3D model only shows the red car almost without any artifacts of the
scene. The qualitative reconstruction accuracy is similar to the accuracy gained by the
bio-inspired 3D reconstruction architecture, but does not require OOl annotations with,
e.g., the iSeg software. By combining this architecture with the emerging hardware of
wearable eye trackers, new application areas become accessible. To name but a few
applications, content-aware 3D reconstruction can facilitates HRC where the operators’
gaze will help a robot to, e. g. understand where to grasp a particular component so that
it can be mounted by the operator. A similar field of application is assistive technology,
where content-aware 3D reconstruction could provide additional 3D shape information
so that patients can easily guide their prosthetic arms or hands with the unconscious
support of their gazes.
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Vision is the process of discovering from images what is
present in the world, and where it is.

David Courtnay Marr

Bio-Inspired 3D Reconstruction

In contrast to current CV methods for 3D reconstruction (cf. Section 1.1), perceiving
the 3D shape of OOls is a trivial task for humans [47, 82], even in challenging lighting
conditions or with object occlusion. In case the differences between the CV algorithms
and the human visual system are identified, the existing CV algorithms can be improved
accordingly. Since these improvements are gained by the consideration of a biological
system, they can be called bio-inspired approaches.

Summarizing the findings on humans’ 3D perception, Ullman [91] developed the
view-combination scheme. In this scheme, “cells along the hierarchy from V71 to V4
also show an increasing degree of tolerance for the position and size of their preferred
stimuli” [91, p. 152] which leads to multiple pictorial representations of different views
in which “an object appears to be represented in /T” [91, p. 152] cortex. Under the
consideration of the view-combination scheme, a bio-inspired 3D reconstruction pipeline
[Paper XllI, Paper XIV], which improves the existing 3D reconstruction methods, is de-
signed. This bio-inspired pipeline facilitates the 3D model reconstruction of an OOI from
several video sequences and image collections. Like humans, this pipeline should be
capable of combining semantically different input sources, in order to perceive the 3D
shape of the object.

As illustrated in Figure 4.1, the bio-inspired 3D reconstruction pipeline is comprised
of six processing blocks. The first five processing blocks have significant analogies to hu-
mans’ 3D perception. Thus they are bio-inspired. For obtaining applicable CAD-like 3D
models of industrial use, one last technically-inspired processing block is also needed for
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creating a meshed model. Due to the current psychophysical evidence that “humans en-
code 3D objects as multiple viewpoint-specific representations that are largely 2D” [11],
this last processing block has no analogies to the human visual system, and thus it is
only technically-inspired. Like the abstraction level of data in the sensemaking process
of VVA task [Paper XVIII, Figure 3], the value of the data representation increases with
every processing block, while the amount of data decrease. In this case, the abstrac-
tion level of the raw image and video data increases from unclassified pixels, via OOl
annotations to the symbolic 3D model of the OOI as result of the reconstruction process.

Starting with unclassified pixels such as input data, the first processing block con-
verted these data into a data format capable of being processed. Here, as illustrated
in the row of exemplary frames in Figure 4.1, any number of video sequences and also
any collections of images can serve as data input. Pixel-accurate OOI recognition is the
second processing step. In this essential processing block, it must be identified as to
whether the OOl is part of the scene and in case it is, whether it is occluded. It must also
be determined which pixels belong to the OOlI, i. e., the OOl must be segmented as fore-
ground. Especially for input data, showing the OOl in its real world, the extraction of the
semantic information of “what” the OOl looks like, i. e., to recognize the OOlI, is very chal-
lenging for current CV methods [Paper XI]. Building on this information, all background
pixels not belonging to the OOI are nullified and frames as well as images, which do not
contain any pixel belonging to the OOI, are also removed. By fitting the boundaries of
the frames and images to only non-nullified pixels, multiple pictorial representations of
the OOI are created. These multiple pictorial representations as 2D projections of the
real-world OOl ideally show the OOI from various perspectives and scales. As discussed
in the introduction, these different perspectives and scales are caused by taking images
and video sequences. Based on these pictorial representations MVG methods solve the
ill-posed problem and estimate the lost dimension, which lead to a 3D PC of the OOlI.
Finally, in the technically-inspired processing block mesh the PC to obtain an applicable
3D model.

During the implementation of these bio-inspired and with the focus on representation
level, a further significant analogy became apparent. The transition of the multiple pic-
torial representations to the 3D PC corresponds to Ullman’s statement, “recognition by
multiple pictorial representations and their combinations constitutes a major component
of 3D object recognition” [91, p. 154] of humans. This significant increase in the level
of data abstraction, which happens in this transition, is possible only if the OOl is recog-
nized on the 2D projections. For this recognition, semantic knowledge about “what” OOI
is looking like is more important, than “where” the OOl is located in the real world.

These “what” and “where” tasks are associated in general with the ventral and dor-
sal visual stream of the visual cortex [94, 93]. The introduced process, first identi-
fied on different inputs if the specific OOI is shown and by generating multiple pictorial
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representations the spatial information about “where” the OOl is located, is removed.
Thus, the proposed bio-inspired pipeline [Paper XlII, Paper XIV] has more similarities
to the ventral stream because only the information “what” OOl looks like is used as ad-
ditional input data. In contrast, 3D reconstruction approaches based on simultaneous
localization and mapping (SLAM) estimate the locations of the moving camera and re-
construct the scene thereby [97, 13]. Therefore, SLAM methods mainly rely on “where”
objects are located vis-a-vis the camera, i. e. these methods might have analogies to the
dorsal visual stream. Since SLAM-based 3D reconstruction approaches are not capa-
ble of taking into account different video sequence as well as collections of images and
in addition only work on a single video sequence without any cuts, these methods are
neglected in this research.

For evaluating the bio-inspired 3D reconstruction process, three different OOI, a car,
a table and a desk are reconstructed, each from two different video sequences [Pa-
per XIV]. To analyze the quantitative result, the table and the desk provide ground truth
geometry, since they are OOls from computer-generated video sequences [15, 35]. As
real-world video capture, the first two video sequences, showing a moving red car, of
Kurzhals et al. [52] gaze tracking data set is chosen. Because no ground truth 3D shape
of the car is available, the reconstruction quality of this OOl can be assessed only qualita-
tively but serves as a basis of comparison, e.g. gaze improved reconstruction pipelines
[Paper Xl]. Exemplary intermediate frames resulting from each processing block during
the bio-inspired 3D reconstruction based on the red car are illustrated in Figure 4.1.

As a result of this evaluation, all three OOls could be reconstructed as 3D PC [Pa-
per XIV, Figure 2], such that only the OOI should be represented by the resulting PCs
and not the whole scene. However, a closer consideration of the PCs obtained shows
an enormous amount of noise, so that without colorization, even humans, could not
perceive the 3D surface of the OOls. By comparing the resulting PCs created by the bio-
inspired reconstruction process to the resulting PCs of standard reconstruction software,
it can be noticed that, particularly for the red car, no 3D model could be reconstructed
[Paper XIV, Figure 3(a)]. For the computer-generated OOls, the standard software so-
lutions reconstruct the whole scene with the OOls, instead of only the OOls. By con-
sidering the quantitative result, which of course could be performed only on the virtual
OOls, no significant difference between the bio-inspired and the standard approaches
was determined [Paper XIV, Figure 4].

By ventral stream-like object recognition, the bio-inspired 3D reconstruction process,
shown in Figure 4.1, obtains 3D models of the OOI or its subparts only. Therefore,
pixel-accurate recognition of the OOl is needed, which cannot automatically be done
currently with CV algorithms. Nevertheless, for the implementation of this processing
pipeline, interactive OOl annotation and segmentation methods could be used. For the
evaluation performed, the iSeg software is used. Considering the qualitative results
only, the last technically-inspired processing block requires significant improvements to
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mesh the PC of the OOI into an applicable CAD-like model. Due to the amount of
noise within the resulting PCs, no standard meshing algorithms can be applied in a
meaningful way for getting from the PC to a meshed model. Solving this issue, top-
down approaches, i.e., from a 3D model to the PC might be an option. As technically-
inspired top-down approaches, therefore, wireframes [109] or CAD models [103] can be
fitted into the obtained PCs to create the optimal 3D geometry. For solving this problem
by a bio-inspired approach, Biederman’s idea of geons [10, 43], geometrical primitives
which can be combined/subtracted to any 3D geometry, is a promising solution. A
significant benefit of this solution is that these geons can approximate any 3D shape,
even unknown shapes, without having a huge database of CAD models for example.
Since nowadays, handcrafted process pipelines like the proposed one, are regularly
outperformed by ANN-based approaches and their ability to reconstruct unknown objects
are researched in the next chapter. Geon-based PC meshing, however, will be further
considered in the conclusion of this thesis.
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Standard multilayer feedforward networks are capable of
approximating any measurable function to any desired de-
gree of accuracy, in a very specific and satisfying sense.

Kurt Hornik, Stinchcombe Maxwell, and Halbert White

3D Reconstruction by Artificial Neural
Networks

Over the last five years, the computing power of graphics processing units (GPUs) has
improved remarkably due to the use of several thousand parallel computing cores. Thus,
GPUs allow the massive parallelization of algorithms, so that the training as well as the
execution of ANNs, even deep configurations with millions of training weights, become
feasible. Up to now, it has been shown that ANNs outperform handcrafted algorithms
in many fields of applications such as object recognition tasks [50, 32, 81]. In case
ANNSs can learn the underlying mathematical principle of MVG, then the trained ANNs
can reconstruct any unknown 3D OOI without seeing it during training. Such an image-
based reconstruction ANN implemented in interactive 3D reconstruction pipeline might,
in contrast to the MVG algorithms, guarantee a smooth HCI, even in cases where the
number and resolution of the input data make MVG infeasible.

In theory, as stated by Hornik et al. [41] “standard multilayer feedforward networks are
capable of approximating any measurable function to any desired degree of accuracy,
in a very specific and satisfying sense”. Hence, because the MVG methods usually
consist of a concatenation of several algorithms, it must be possible to approximate
its underlying mathematical principle by an ANN. For the research on this topic and in
contrast to existing data sets like ShapeNet [14] and ModelNet40 [102], a data set is
needed that does not encode any object information, i.e., does not have shape priors
of object categories. In addition, the data set must be scalable in its complexity and
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provide a large body of sample with ground truth data, ensuring the learning of even
deep network configurations.

Because such a data set does not exist, a scalable cube data set is designed [Pa-
per XV]. Preventing object categories, this data set provides random 3D objects and the
associated 2D projections from various viewpoints. Therefore, a 3D object generator is
developed, which returns the random objects in a common CAD format. This gener-
ator randomly creates, set and unset, i.e. visible and invisible, voxels in a (r x r x r)
space, where for scalability the parameter r could be varied. The resulting output OOls—
random (r x r x r) cubes—are then stored as 3D objects and in addition, the information
whether a voxel is set or not is saved. Obtaining the necessary 2D projections, show-
ing the 3D OOI from different viewpoints, an image renderer is also implemented. For
providing w different images of the objects in various perspectives, a minimal bounding
sphere around the object is defined. On this sphere, the Fibonacci lattice [33] from the
south- to the north pole is projected for evenly distributing the w camera centers. With
the camera focus on the sphere center, then w grayscale images with the resolution z x x
of the object are rendered. Due the bounding sphere design, this image renderer can
generate w images from almost all 3D objects, not only from the generated cubes.

For comparable benchmarks, static imprints of the cubes in the 3x3x3, 4x4 x4, and
8x8x8 setup with 100,000, 300,000, and 430,000 different objects are released, next to
the generators tools [Paper XV]. Theron, a systematic investigation as to if and to what
extent ANNs can learn the image-based 3D reconstruction on unknown geometries can
be performed. The result of this investigation might lead to a better understanding of
which network architecture designs are preferable for such a multi-classification task. In
this case the designed ANN need to predict r values of binary nature, i.e. whether or
not each voxel is set.

On image-based classification tasks, simple feedforward CNNs have shown high per-
formance. The MNIST handwritten digits data set [54], e.g., can be sufficiently solved
by a five-layer ANN. As a starting point, an ANN working on the MNIST data set with
five layers is adapted to the slightly different task of image-based voxel prediction. This
adapted network [Paper XV], illustrated in Figure 5.1(a), concatenates all w images into
one single input image and outputs as all benchmarked ANN architecture a voxel vec-
tor. The transition, i.e., the connection of the input image to the output voxel vector,
should be learnt by a six-layer network comprising a convolutional (conv), a max pooling
(maxp), a second conv, a second maxp, a dropout and a fully connected (fc) layer. After
four iterations of training on the first 30,000 objects of the 3x3x3, this architecture pre-
dicts 88.68% of all voxels correctly. In the 4 x4 x4, the same architecture obtains a voxel
accuracy of 70.80%. Unfortunately, even the voxel accuracy of 88.68% only leads to a
cube accuracy, i. e., all voxels in a cube are predicted correctly, of 4.84% [Paper XVI].

In order to achieve a higher cube accuracy resulting from a higher voxel accuracy,
deeper architectures, containing more trainable weights, are designed. Within 3D re-



39

construction pipelines, a global, a hierarchical, or an incremental method for feature
matching is used depending on the amount and complexity of the data [77]. Assigning
these three high-level concepts to the architecture of ANNs, the networks schematized
in Figure 5.1(b) — Figure 5.1(d), are designed [Paper XVI]. As illustrated in these Fig-
ures, these networks do not concatenate the w images, instead each image is handled
separately. For ensuring comparable benchmark results of the global, hierarchical, and
incremental network, all of them have by design the same number of trainable weights.

The best performance in these benchmarks is achieved by the global setup with a
cube accuracy of 58.60% resulting from a voxel accuracy of 98.04%. It is significant in
the design of the global setup that after the first conv layer, all neurons are merged. In
the direct comparison [Paper XVI, Table 3] the other architectures perform only slightly
worse. An additional result is that the filter size of each conv layer does not influence
the accuracy strongly, but alter the learning performance over the iteration of learning.
Whether the voxel space is scaled up is quite critical to the performance of all designed
networks: the global, hierarchical, incremental as well as the simple feedforward net-
work. Even in the 8 x8x8 voxel space, the voxel performance is only 66.74%. Thus all
designed networks do not scale. This might be due to the fact that the resolution r of the
space leads to 2" possibilities, which the network needs to predict. By further scaling
up, this leads almost to an infinite-dimensional problem. Accordingly, for voxel space
of technical use with, e.g., r=100, ANN-based approaches for 3D reconstruction of an
unknown object are not promising yet. The question whether ANNs can learn the under-
lying principle of MVG methods could not be answered in general, since the voxel-based
out need for ANNs is not directly comparable to the vertice-based output of MVG ap-
proaches. Therefore, a shift from a voxel-based to either a vertice-, edge-, or face-based
output is necessary, which also might solve the scalability issue of a voxel-based output.
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Figure 5.1: Simplified schemes of the different benchmarked ANN architectures for image-based
3D reconstruction. In architecture (a) all w images from various viewpoints are concatenated to
a single input images. Based on this single input image a simple six layer architecture is used for
the prediction of each single voxel [Paper XV]. The architectures (b)—(d) are inspired by the three
different feature matching methods: global, hierarchical, as well as incremental [Paper XVI]. All
w images from the object are used individually as input for the networks. As output all networks
have the a binary vector of > voxels—depending on the resolution of the voxel space.
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Grau, teurer Freund, ist alle Theorie

Und griin des Lebens goldner Baum.

(All theory, dear friend, is grey

but the golden tree of life springs ever green)

Johann Wolfgang Goethe

Applications and Use Cases

The findings of interactive 3D reconstruction gained in this research are made even
more valuable by developing applications that improve use cases. Bringing research
from theory-heavy CV labs to applications of real practical use, our everyday life might
indeed be positively improved. With the aim ensuring safety, the amount of video surveil-
lance constantly increases—one will be filmed,for instance, by around 300 different cam-
eras [67] during an average day in London. As a consequence, massive collections of
video sequences are recorded and have to be analyzed. For an effective as well as
efficient analysis, VVA is needed, but due to the high complexity of video data in the spa-
tial and temporal domain, it cannot be automated yet. In addition, fictitious possibilities
such as the seemingly infinite magnification of digital images, reliable face recognition
including, e.g., the removal of sunglasses, and 3D reconstruction of occluded objects,
are carried out by artificial intelligence in books and movies only. In reality, these VVA
tasks are still performed by specially trained human specialists.

For enhancing the VVA in video surveillance and other use cases, such as eye track-
ing analysis [Paper XVII], an interactive architecture is designed, which supports the
specialist during the cognitive process of sensemaking [75, 68]. In this architecture,
the analyst is still the core as she/he incorporates semantic knowledge as well as the
task definition into the sensemaking process. In general, the architecture [Paper XVIII,
Figure 2] can be split into two recurrent alternating parts: the content extraction and
representation and the content-based reasoning. In close interaction of humans and
computers, the content extraction and representation translates pixels of a given video
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sequence into meaningful content such as AOIs and OOls [46, 40]. By the support of
supervised machine learning, frames showing such content are preprocessed to the an-
alyst’s needs in order to minimize of HCI that is necessary for operating efficiently. On
a real task, content extraction and representation can mean that an analyst identifies a
specific person in a crowd, marks the person as an OOl and the machine learning al-
gorithm returns all frames that contain this OOI. Performing such a task automatically is
not yet feasible, but is clearly desired by security agencies [34]. From a purely the archi-
tectural point of view, the creation of AOls and OOQls results in the remaining data having
no relevance any more. The amount of data can, thus be reduced, and, at the same
time, the abstraction level of the data increases [Paper XVIII, Figure 3]. Based on the
identified content, the analyst performs the reasoning process step-wise by monitoring
events, understanding situations, creating hypotheses and, finally, proving or disproving
these hypotheses. In case the specialist needs more content for the reasoning process,
she/he can return to the content extraction and representation process of the architec-
ture, and vice versa, until the hypotheses are either conformed or rejected.

Considering content extraction and representation, software for, e. g., accurate con-
tent extraction from video sequences is needed. The developed iSeg software [Paper V,
Paper VI] is perfectly suitable for effectively annotating AOls and OOQls. In particular for
content representation, the use of the proposed multimedia containers (cf. Section 3.1)
for encapsulating both the extracted content as metadata and the video sequences are
extremely valuable. Since 3D models of OOls have a higher data abstraction level than
annotated 2D projections, the 3D models of OOls can be integrated into practical VVA
software applications [Paper XVIII]. As illustrated in Figure 6.1, the iSegs’ GUI is ex-
tended with a PC viewer, so that the analyst can mark analysis-relevant parts within the
interactively generated PC of the OOI. Based on the marked parts, this prototypical soft-
ware provides the analyst with an adaptive video playback and that way it improves the
overall reasoning process. With respect to VVA of eye tracking data, on the other hand,
a second software is prototyped [Paper XVIII, Figure 4 (b)], which specifically builds on
the VVA architecture. Using this software, the analyst can then formulate a proposition
on the basis of the extracted content, additional metadata, such as eye tracking or EEG
data, and logical grammar elements. For example, the analyst might create the proposi-
tion that “the gaze point of participant C intercepts the OOI“. Then all following frames,
in which the proposition is satisfied, will be highlighted on the timeline.

Considering another possible field of application, interactive 3D reconstruction can
enable survivors of natural disasters to reconstruct broken spare parts for the efficient
temporary repair of devastated vital infrastructure. Such applications are, and will be,
very relevant considering that in 2015 alone 98.6 million people were affected by 346
reported natural disasters [22]. With the interactive 3D reconstruction method, using
only equipment that can be found in everyone’s pockets or shelters, spare parts could
be reconstructed to facilitate the repair of vital infrastructure until rescue teams arrive.
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Figure 6.1: Exemplary application, for the adaptive playback of frames based on the marked
parts of the OOl [Paper XVIII, Figure 4 (a)]. After the interactive creation of a 3D model, the
analyst selects parts of interest in the PC viewer © and frames, where these parts are visible will
be highlighted on the video timeline @. @ and (¢) are unchanged Uls of the iSeg application.

Therefore, an applicable system for image-based 3D reconstruction using only a smart-
phone or tablet computer and some additional materials such as newspaper and dust is
developed and prototyped [Paper XIX]. After defining the scale dimension of the recon-
structed 3D model using a new straightforward Ul, the model must be transferred back
from the virtual world to the real world. In the unlikely case that a 3D printer is available,
the model can then easily be printed. However, since the existence of standard printers
is more likely, the proposed system is capable of generating printable stencils that can
be stacked for producing the spare part. Demonstrating this system, a gear wheel of
a water pump is experimentally reconstructed as a 3D printout and as a stacked paper
model [Paper XIX]. The functionality of the reconstructed part is tested as well, resulting
a working water pump and for proving further support for this approach.

In all use cases where interactive image-based 3D reconstruction was prototyped,
it returns applicable models with sufficient accuracy. However, especially in the spare
part reconstruction scenario, the processing time of MVG prevents a smooth interaction
between computers and humans. Solutions to this particular challenge and to others as
well, are the topic of the following discussion.
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Conclusion

In this cumulative dissertation, 19 articles on interactive 3D reconstruction have been
presented which contribute to the ultimate aim of obtaining exact copies of OOls, cre-
ated with the help of image-based 3D reconstruction. The gained insights are already
implemented in software applications (cf. Chapter 6). As demonstrated, the resulting 3D
models can be printed for the temporary replacement of spare parts [Paper XIX] and the
creation of video summaries [Paper XVIII], but unfortunately not yet for CAD-use cases.

CAD-use cases, however, are not fully covered by the presented research. In order
to obtain CAD-like 3D models by image-based 3D reconstruction, two challenges still
need to be solved. The first partially solved, challenge is the semantic division of OOls
into logical subparts. This division into subparts can already be done on 2D images
using OOI annotation and segmentation (cf. Chapter 2) with, e.g., the iSeg software.
In conjunction with the bio-inspired reconstruction architecture (cf. Chapter 4), this then
results in noisy PC of the subparts. Performing the 3D PC clearing, in consideration of
subpart identification, however, is still a completely manual task and needs to must be
researched further. Once the PC is noise-free, regular meshing algorithms can compute
a surface of the 3D model which is typically based on triangular faces. These meshed
3D models are suitable, for instance, for VR, AR, and 3D printing, but unfortunately not
for CAD-tasks, since in CAD the 3D geometrical shapes are be expressed as curves in
order to ensuring that, e. g., manufacturing machines are able to create smooth surfaces.

In order to create CAD applicable models and to address the second major challenge
that sill needs to be solved, one main focus for further research should be the fitting of
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geometrical primitives into the 3D PC. This will ensure both the noise handling within the
PC and the CAD-like representation of the 3D model which would no longer consists of a
collection of triangular faces. Such an approach is similar to the ways engineers design
3D model in CAD software and reflects the idea of geons [10, 43]. Since computational
power is now significantly larger than at the time of the first attempts of fitting geons
into 3D shapes fail. The use of geons as geometrical primitives, approximating the 3D
geometry of the OOI using GPU-implemented optimization algorithms, seems to be a
highly promising solution.

In addition to the two challenges discussed above, it should be noted that even
though image-based 3D reconstruction is feasible, the amount of user interaction is so
high and the nature of this interaction so complex that completely manual 3D modeling is
faster than the currently interactive implementation. The OOI annotation and segmenta-
tion with traditional Ul (cf. Chapter 2) is particularly time-consuming. In order to improve
on the current limitations, a gaze-based NUI for OOl annotation is currently being proto-
typed. The preliminary results, based on two video sequences, indicate that in 92% of
the cases, majority pixels belonging to the OOI can be identified correctly. Carrying out
more elaborate studies with the same principal design as this preliminary study may well
benefit current research on content-aware 3D reconstruction [Paper XII].

Finally, the yet unanswered question whether ANNs can learn the underlying prin-
ciples of MVG methods to reconstruct unknown OOls (cf. Chapter 5) lies at the center
of what will most likely be the most active research area in the context of image-based
3D reconstruction in the next decade. This trend is clearly visable in the number of arti-
cles that mention the keywords “ANN” and “3D reconstruction® shown in Figure 1.1. The
latest ANNs which are capable of reconstruct know 3D objects from 25 different object
classes in a at maximum 32x32x32 voxel space. Bas on the evaluation of 3D recon-
struction by ANNs, however, a shift from a voxel-based to either a vertice-, edge-, or
face-based output is necessary to tackle the scalability issue of the voxel space. RNNs
for 3D reconstruction seem to be particularly well-suited to this task, as with these kind
of networks the number of input as well as output can be varied during the reconstruction
process, which is similar to the number of keypoints in the classical MVG pipelines.

Summing up the research presented in this thesis, interactive 3D reconstruction can
be used to create 3D models based on almost any kind of video sequences or image
collections. Despite the considerable issues in the research area of image-based 3D
reconstruction, this thesis has significantly improved the current reconstruction pipeline
by advanced human-computer interaction. As the discussion in this shows there are still
many challenging and existing question to be answered with respect to image-based 3D
reconstruction—this research presented here is a step towards finding adequate and
satisfying solutions.
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Paper I: Taxonomy of 3D Sensors

A Survey of State-of-the-Art Consumer 3D-Reconstruction Sensors and
Their Field of Applications

Abstract:

Sensors used for 3D-reconstruction determine both the quality of the results and the na-
ture of reconstruction algorithms. The spectrum of such sensors ranges from expensive
to low cost, from highly specialized to out-of-the-shelf, and from stereo to mono sensors.
The list of available sensors has been growing steadily and is becoming difficult to man-
age, even in the consumer sector. We provide a survey of existing consumer 3D sensors
and a taxonomy for their assessment. This taxonomy provides information about recent
developments, application domains and functional criteria. The focus of this survey is on
low cost 3D sensors at an accessible price. Prototypes developed in academia are also
very interesting, but the price of such sensors can not easily be estimated. We try to
provide an unbiased basis for decision-making for specific 3D sensors.

In addition to the assessment of existing technologies, we provide a list of preferable
features for 3D reconstruction sensors. We close with a discussion of common problems
in available sensor systems and discuss common fields of application, as well as areas
which could benefit from the application of such sensors.
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Paper ll: Evaluation of Multi-view 3D Reconstruction
Software

Abstract:

A number of software solutions for reconstructing 3D models from multi-view image sets
have been released in recent years. Based on an unordered collection of photographs,
most of these solutions extract 3D models using structure-from-motion (SFM) algorithms.
In this work, we compare the resulting 3D models qualitatively and quantitatively. To
achieve these objectives, we have developed different methods of comparison for all
software solutions. We discuss the perfomance and existing drawbacks. Particular at-
tention is paid to the ability to create printable 3D models or 3D models usable for other
applications.
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Paper lll: Interactive 3D Modeling

Abstract:

3D reconstruction and modeling techniques based on computer vision show a signif-
icant improvement in recent decades. Despite the great variety, a majority of these
techniques depend on specific photographic collections or video footage. For example,
most are designed for large data collections, overlapping photos, captures from turnta-
bles or photos with lots of detectable features such as edges. If the input, however, does
not fit the particular specification, most techniques can no longer create reasonable 3D
reconstructions. We review the work in the research area of 3D reconstruction and 3D
modeling with a focus on the specific capabilities of these methods and possible draw-
backs. Within this literature review, the practical usability with the focus on the input
data—the collections of photographs or videos—and on the resulting models are dis-
cussed. Upon this basis, we introduce our position of interactive 3D reconstruction and
modeling as a possible opportunity of lifting current restrictions from these techniques,
which leads to the possibility of creating CAD-ready models in the future.
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Paper IV: Interactive 3D Reconstruction

New Opportunities for Getting CAD-ready Models

Abstract:

A multitude of image-based 3D reconstruction and modeling techniques exist, which
have achieved significant success in recent years. However, these techniques still lack
certain abilities. For example, current 3D reconstruction techniques cannot decompose
an object into its individual subparts. Thus, a printed model will consist of one single
monolithic piece, which does not allow composing or decomposing parts, does not allow
movable or flexible parts, and does not allow manufacturing the model from multiple
different materials like wood, metal, or plastic. | reviewed the work in the research area of
3D reconstruction and provide an analysis of neglected research objectives and current
drawbacks. Furthermore, | propose a mock-up of an interactive tool as a guideline for
future research which describes a possible architecture, user interfaces, and processing
pipeline, to overcome existing drawbacks of 3D reconstruction techniques.
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Paper V: Semi-automatic Ground Truth Annotation in
Videos

An Interactive Tool for Polygon-based Object Annotation and Segmenta-
tion

Abstract:

Knowledge extraction from video data is challenging due to its high complexity in both
the spatial and temporal domain. Ground truth is crucial for the evaluation and the adap-
tation of algorithms to new domains. Unfortunately, ground truth annotation is inconve-
nient and time consuming. Common annotation tools mostly rely on simple geometric
primitives such as rectangles or ellipses. Here we propose a novel, interactive and semi-
automatic process, which actively asks for user input if the result of the automatic anno-
tation appears to be incorrect. After a brief review of related tools for video annotation,
we explain our proposed semi-automatic method iSeg using a prototype implementa-
tion. iSeg has been tested on two visual stimulus datasets for eye tracking experiments
and on two surveillance datasets. The experimental results and the usability are com-
pared to existing annotation tools. Finally, we discuss the properties and opportunities
of polygon-based video annotation.
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Paper VI: Pixel-wise Ground Truth Annotation in Videos

An Semi-Automatic Approach for Pixel-wise and Semantic Object Anno-
tation

Abstract:

In the last decades, a large diversity of automatic, semi-automatic and manual ap-
proaches for video segmentation and knowledge extraction from video-data has been
proposed. Due to the high complexity in both the spatial and temporal domain, it con-
tinues to be a challenging research area. In order to develop, train, and evaluate new
algorithms, ground truth of video-data is crucial. Pixel-wise annotation of ground truth is
usually time-consuming, does not contain semantic relations between objects and uses
only simple geometric primitives. We provide a brief review of related tools for video an-
notation, and introduce our novel interactive and semi-automatic segmentation tool iSeg.
Extending an earlier implementation, we improved iSeg with a semantic time line, multi-
threading and the use of ORB features. A performance evaluation of iSeg on four data
sets is presented. Finally, we discuss possible opportunities and applications of seman-
tic polygon-shaped video annotation, such as 3D reconstruction and video inpainting.
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Paper ViI: Providing Video Annotations in Multimedia
Containers for Visualization and Research

Abstract:

There is an ever increasing amount of video data sets which comprise additional meta-
data, such as object labels, tagged events, or gaze data. Unfortunately, metadata are
usually stored in separate files in custom-made data formats, which reduces accessibil-
ity even for experts and makes the data inaccessible for non-experts. Consequently, we
still lack interfaces for many common use cases, such as visualization, streaming, data
analysis, machine learning, high-level understanding and semantic web integration. To
bridge this gap, we want to promote the use of existing multimedia container formats to
establish a standardized method of incorporating content and metadata. This will facil-
itate visualization in standard multimedia players, streaming via the Internet, and easy
use without conversion, as shown in the attached demonstration video and files. In two
prototype implementations, we embed object labels, gaze data from eye-tracking and the
corresponding video into a single multimedia container and visualize this data using a
media player. Based on this prototype, we discuss the benefit of our approach as a pos-
sible standard. Finally, we argue for the inclusion of MPEG-7 in multimedia containers
as a further improvement.
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Paper VIII: Eye Tracking Data in Multimedia Containers
for Instantaneous Visualizations

Abstract:

Nowadays, the amount of gaze data records of subjects associated with video sequences
increases daily. These eye tracking data are unfortunately stored in separate files in
custom-made data formats, which reduces accessibility even for experts and makes the
data effectively inaccessible for non-experts. Consequently, we still lack interfaces for
many common use cases, such as visualization, streaming, data analysis, high level un-
derstanding, and semantic web integration of eye tracking data. To overcome these
shortcomings, we want to promote the use of existing multimedia container formats
to establish a standardized method of incorporating content videos with eye tracking
metadata. This will facilitate instantaneous visualization in standard multimedia players,
streaming via the Internet, and easy usage without conversion. Using our prototype soft-
ware, we embed gaze data from eye tracking studies and the corresponding video into a
single multimedia container, which can be visualized by any media player. Based on this
prototype implementation, we discuss the benefit of our approach as a possible standard
for storing eye tracking metadata including the corresponding video.
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Paper IX: Exploratory Multimodal Data Analysis with
Standard Multimedia Player

Multimedia Containers: a Feasible Solution to make Multimodal Research
Data Accessible to the Broad Audience

Abstract:

The analysis of multimodal data comprised of images, videos and additional recordings,
such as gaze trajectories, EEG, emotional states, and heart rate is presently only feasi-
ble with custom applications. Even exploring such data requires compilation of specific
applications that suit a specific dataset only. This need for specific applications arises
since all corresponding data are stored in separate files in custom-made distinct data
formats. Thus accessing such datasets is cumbersome and time-consuming for experts
and virtually impossible for non-experts. To make multimodal research data easily share-
able and accessible to a broad audience, like researchers from diverse disciplines and all
other interested people, we show how multimedia containers can support the visualiza-
tion and sonification of scientific data. The use of a container format allows explorative
multimodal data analyses with any multimedia player as well as streaming the data via
the Internet. We prototyped this approach on two datasets, both with visualization of
gaze data and one with additional sonification of EEG data. In a user study, we asked
expert and non-expert users about their experience during an explorative investigation
of the data. Based on their statements, our prototype implementation, and the datasets,
we discuss the benefit of storing multimodal data, including the corresponding videos or
images, in a single multimedia container. In conclusion, we summarize what is neces-
sary for having multimedia containers as a standard for storing multimodal data and give
an outlook on how artificial networks can be trained on such standardized containers.
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Paper X: Visual Analytics of Gaze Data with Standard
Multimedia Players

Abstract:

With the increasing amount of studies, where participants eye movements are tracked
watching video stimuli, the volume of gaze data records is growing tremendously. Un-
fortunately, in most cases, such data are collected in separate files in custom-made or
proprietary data formats. These data are difficult to access even for experts and ef-
fectively inaccessible for non-experts. Normally expensive or custom-made software is
necessary for their analysis. We want to solve this problem by using existing multimedia
container formats for distributing and archiving eye tracking and gaze data bundled with
the stimuli data. We define an exchange format that can be interpreted by standard mul-
timedia players and can be streamed via the Internet. We converted several gaze data
sets into our format, demonstrating the feasibility of our approach and allowing to visu-
alize these data with standard multimedia players. We also introduce two VLC player
add-ons, allowing for further visual analytics. We discuss the benefit of gaze data in
a multimedia container and explain possible visual analytics approaches based on our
implementations, converted datasets, and first user interviews.
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Paper Xl: Interactive Feature Growing for Accurate Ob-
ject Detection in Megapixel Images

Abstract:

Automatic object detection in megapixel images is quite inaccurate and a time and mem-
ory expensive task, even with feature detectors and descriptors like SIFT, SURF, ORB,
and KAZE. In this paper we propose an interactive feature growing process, which draws
on the efficiency of the users’ visual system. The performance of the visual system in
search tasks is not affected by the pixel density, so the users’ gazes are used to boost
feature extraction for object detection.

Experimental tests of the interactive feature growing process show an increase of pro-
cessing speed by 50% for object detection in 20 megapixel scenes at an object detection
rate of 95%. Based on this method, we discuss the prospects of interactive features,
possible use cases and further developments.

Originally published as:

J. Schéning, P. Faion, and G. Heidemann. Interactive Feature Growing for Accurate Ob-
ject Detection in Megapixel Images. In: Computer Vision — ECCV Workshops. Springer
International Publishing, 2016, pp. 546—556

DOI:
10.1007/978-3-319-46604-0_39


https://doi.org/10.1007/978-3-319-46604-0_39

70

Referenced Published Articles




71

Paper Xll: Content-Aware 3D Reconstruction with Gaze
Data

Abstract:

3D reconstruction has been shown to be a successful method for creating accurate 3D
models out of video data with moving objects. Typically, videos are captured by ordinary
cameras; however, more egocentric video footage will be taken by wearable cameras. In
this work, we present a 3D reconstruction pipeline that implements content awareness
for combining a wearable camera (a scene camera of an eye tracker) with gaze informa-
tion. The aim is to identify the object of interest (OOI) within the video sequence. The
OOl is identified within each frame for boosting the results of classical Structure from
Motion (SfM) approaches, using the bio-inspired approach from an earlier study. We im-
plemented a prototype based on the concept of content-aware 3D reconstruction using
gaze data. Lastly, we gave an extensive overview of possible use case scenarios in a
broad range of fields, starting from spare part reconstruction in difficult-to-access areas
to assistive technologies, including exoskeletons and prosthetic arms/hands.
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Paper Xlll: Bio-Inspired Architecture for Deriving 3D
Models from Video Sequences

Abstract:

In an everyday context, automatic or interactive 3D reconstruction of objects from one or
several videos is not yet possible. Humans, on the contrary, are capable of recognizing
the 3D shape of objects even in complex video sequences. To enable machines for do-
ing the same, we propose a bio-inspired processing architecture, which is motivated by
the human visual system and converts video data into 3D representations. Similar to the
hierarchy of the ventral stream, our process reduces the influence of the position infor-
mation in the video sequences by object recognition and represents the object of interest
as multiple pictorial representations. These multiple pictorial representations are show-
ing 2D projections of the object of interest from different perspectives. Thus, a 3D point
cloud can be obtained by multiple view geometry algorithms. In the course of a detailed
presentation of this architecture, we additionally highlight existing analogies to the view-
combination scheme. The potency of our architecture is shown by reconstructing a car
out of two video sequences. In case the automatic processing cannot complete the task,
the user is put in the loop to solve the problem interactively. This human-machine inter-
action facilitates a prototype implementation of the architecture, which can reconstruct
3D objects out of one or several videos. In conclusion, the strengths and limitations of
our approach are discussed, followed by an outlook to future work to improve the archi-
tecture.
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Paper XIV: Ventral Stream-Inspired Process for Deriving
3D Models from Video Sequences

Abstract:

The reconstruction of complex 3D objects from video sequences captured by surveil-
lance, smartphone, and other cameras is a common technique in Hollywood block-
busters and TV series. Unfortunately, the automatic or interactive 3D object reconstruc-
tion from this kind of videos is not yet possible in the real world. Enabling computers to
recognize the actual 3D shape of objects from complex video sequences, we developed
a bio-inspired processing architecture, motivated by findings in the area of human object
recognition. By utilizing viewpoint-specific object recognition, changes in position and
size of the object of interest in video sequences can be eliminated to a great extent. The
result is a representation, comprised of multiple pictures showing 2D projections of the
object of interest (OOI) from different viewpoints. Based on this representation, a 3D
point cloud (PC) from the object can be obtained. After a detailed description of our ar-
chitecture and its similarities to the human view-combination scheme, we demonstrate its
potency by reconstructing several OOl from complex video sequences. Because some
processing modules of the architecture cannot yet be fully automatized, we introduced
interactive modules instead. Thus the prototypical implementation of our approach could
be realized. Based on the resulting PC, we evaluate our architecture and consider more
analogies between human and computer vision, which improve image-based 3D recon-
struction.
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Paper XV: Structure from Motion by Artificial Neural Net-
works

Abstract:

Retrieving the 3D shape of an object from a collection of images or a video is currently
realized with multiple view geometry algorithms, most commonly Structure from Motion
(SfM) methods. With the aim of introducing artificial neuronal networks (ANN) into the
domain of image-based 3D reconstruction of unknown object categories, we developed
a scalable voxel-based dataset in which one can choose different training and testing
subsets. We show that image-based 3D shape reconstruction by ANNs is possible, and
we evaluate the aspect of scalability by examining the correlation between the complexity
of the reconstructed object and the required amount of training samples. Along with our
dataset, we are introducing, in this paper, a first baseline achieved by an only five-layer
ANN. For capturing life’'s complexity, the ANNs trained on our dataset can be used a
as pre-trained starting point and adapted for further investigation. Finally, we conclude
with a discussion of open issues and further work empowering 3D reconstruction on real
world images or video sequences by a CAD-model based ANN training data set.
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Paper XVI: Structure from Neuronal Networks (SfN?)

Abstract:

Multiple View Geometry (MVG) with its underlying mathematical principle is mainly used
for 3D reconstruction. The most common approaches based on MVG are the Structure
from Motion (SfM) methods which create 3D point clouds from a collection of images
or video frames. The emerging use of artificial neural networks (ANNSs) in almost every
domain leads to the question if ANNs can learn the underlying mathematical geometric
mappings of SfM pipelines? To answer this question, three different ANN architectures
based on the three different key point matching strategies of SfM were benchmarked.
Since we want to learn the mathematical, geometrical mapping of SfM approaches and
not the categories or shapes of natural 3D objects, we trained and tested our ANNs on
2D projections of random 3D shapes build from small random cubes. For 3D shapes
with a grid size of 3 x 3 x 3 voxels, all architectures show a high prediction accuracy of
the reconstructed shape. When scaling up the grid size of the 3D cubes, we recognize a
significant decrease in accuracy. These initial results show that all of the different ANN
architectures we considered can learn to reconstruct unknown 3D shapes from images.
In 2 more detailed analysis of our results, we investigate how the choice of architecture
influences the prediction accuracy of the 3D shape on voxel and overall shape level and
if nonoccluded voxels are be predicted independently of scale. Finally, we discuss if a
voxel-based representation of the 3D shape can be scaled to a useful technical resolution
due to its high impact on the size of the ANN as well as the required training data.
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Paper XVII: Visual Analytics for Video Applications

Abstract:

In this article, we describe the concept of video visual analytics with a special focus
on the reasoning process in the sensemaking loop. To illustrate this concept with real
application scenarios, two visual analytics (VA) tools are discussed in detail that cover the
sensemaking process: (i) for video surveillance, and (ii) for eye-tracking data analysis.
Surveillance data (i) allow discussion of key VA topics such as browsing and playback,
situational awareness, and the deduction of reasoning. Using example (ii)) — eye tracking
data from persons watching video — we review application features such as the space-
time cube, spatio-temporal clustering, and automatic comparison of multiple participants.
We examine how they can support the VA process. Based on this, open challenges in
video VA will be discussed.
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Paper XVIII: Visual Video Analytics for Interactive Video
Content Analysis

Abstract:

Reasoning is an essential processing step for any data analysis task, yet it requires se-
mantic, contextual understanding on a high level, e.g., for the identification of entities.
Developing an architecture for visual video analytics (VVA), we integrate human knowl-
edge for highly accurate video content analysis to extract information by a tight coupling
of automatic video analysis algorithms on the one hand and visualization as well as user
interaction on the other hand. For accurate video content analysis, our semi-automatic
VVA-architecture effectively understands and identifies regular and irregular behavior in
real-world datasets. The VVA-architecture is described with both i) its interactive infor-
mation extraction and representation and ii) its information based reasoning process.
We give overview of existing techniques for information extraction and representation,
and propose two interactive applications for reasoning. One of the applications uses
3D object representations to provide adaptive playback based on selected object parts
in the 3D viewer. Another application allows the formulation of a proposition about the
video by using all extracted objects and information. In case the proposition is true, the
corresponding frames of the video are highlighted. Based on a user study, relevant open
topics for increasing the performance of video content analysis and VVA is discussed.
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Paper XIX: Image Based Spare Parts Reconstruction for
Repairing Vital Infrastructure after Disasters

Creating or Ordering Replica of Spare Parts for Overhauling Infrastructure

Abstract:

From the very first hours after disasters such as earthquakes, hurricanes, floods, land-
slides, and tsunamis, survivors and rescue teams start repairing the devastated vital
infrastructure. In doing so, spare parts are frequently needed, which cannot be deliv-
ered via destroyed roads or cannot be found in collapsed warehouses. In this work, we
present an approach of how spare parts can be reconstructed out of images, and printed
out by a normal or 3D printer. Therefore, a structure from motion algorithm is applied to
a small number of images, showing the spare part from every direction, which can be
captured by any kind of digital camera. Based upon the resulting dense 3D point clouds,
a meshed 3D model is computed. After estimating the dimension of the real parts with a
straightforward user interface, the meshed virtual model can be scaled correctly. In order
to transfer the virtual 3D model back to the real world, our approach provides a 3D model
format—for 3D printers—and a stacked paper format—for normal printers. In case no
printers are available, the created 3D model can be transmitted via any communication
network like GSM, digital radio, or internet to the next available printer or warehouse,
nearby. For demonstrating our method, we experimentally reconstruct a gear wheel of
a water pump. Finally, we discuss advantages, drawbacks and further steps—necessary
for making our approach available.
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