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Abstract

This dissertation elaborates on the novel sensing approach of multi-wavelength laser line profiling
(MWLP). It is a novel sensor concept that expands on the well-known and broadly adopted laser
line profile sensing concept for triangulation-based range imaging. Thereby, the MWLP concept
does not just use one line laser but multiple line lasers at different wavelengths scanned by
a single monochrome imager. Moreover, it collects not only the 3D distance values but also
reflection intensity and backscattering of the laser lines are evaluated. The system collects
spectrally selective image-based data in an active manner. Thus, it can be geared toward
an application-specific wavelength configuration by mounting a set of lasers of the required
wavelengths. Consequently, with this system image-based 3D range data can be collected along
with reflection intensity and backscattering data at multiple, selectable wavelengths using just
a single monochrome image sensor.

Starting from a basic draft of the idea, the approach was realized in terms of hardware and
software design and implementation. The approach was shown to be feasible and the prototype
performed well as compared with other state-of-the-art sensor systems. The sensor raw data
can be visualized and accessed as overlayed distance images, point clouds or mesh. Further, for
selected example applications it was demonstrated that the sensor data gathered by the system
can serve as descriptive input for real world agricultural classification problems. The sensor data
was classified in a pixel-based manner. This allows very flexible, quick and easy adaptation of
the classification toward new field situations.
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Chapter 1

Introduction

Today, the use of sensors and computerized data analysis is mainstream throughout the agricul-
tural research community. Agriculture faces huge challenges when it comes to satisfying global
food demand. Human population is expected to reach 9 billion individuals by 2050. Increasing
incomes and lifestyle additionally drive the global food demand. Moreover, the environmental
footprint of agriculture comes more and more into focus and market forces as well as quality
requirements must be met. Thereby, application of sensors and the smart interpretation of their
information in cooperation with human interaction and data management is assumed to be a
key-enabling technology for optimizing agricultural production and overcoming barriers in terms
of increasing yield and reducing environmental impact [162].

During the last 25 years agricultural machines have been more and more equipped with sen-
sors and have become more and more computerized. However, many agricultural applications
comprise extremely challenging environmental conditions for sensor operation. Sun light ex-
posure, dust, moisture, dirt, mechanical shocks and vibrations are only a couple of possible
distortions. Additionally, ambient conditions change fast and different field situations vary a
lot more compared with industrial processes. This causes high requirements to robustness of
image processing systems and is the reason for most sensors used and interpreted online for
actions on the machines being relatively simple not image-based sensors. Despite having a huge
history of research in agricultural applications, image-based sensors - potentially outperforming
not image-based ones - are only rarely used in agricultural machines in practice. In spite of its
research history, online use of image-based data has so far only been seen for driver assistance
systems in agricultural practice [116].

This divergence between research on and practical application of image-based sensor systems
is obviously mostly due to the robustness issues. Additionally, economical aspects play a more
important role for practical than for research application. Knowing these aspects, the point
of flexibility comes into focus. In this regard, flexibility means the ability to tailor an image-
based sensor and processing chain toward the application-specific needs and the field-specific
environment, hence sensor configuration and model adaptation. Lacking these kinds of flexibility,
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2 Chapter 1. Introduction

sensor systems will either be too expensive or not robust enough for practical agricultural uses,
or both.

This dissertation focuses on the novel sensing approach Multi-wavelength laser line profile sensing
(MWLP) 1. This approach represents a very flexible concept for sensing range-data and spatial
spectral reflectance at multiple, selectable wavelengths in an image-based manner using a single
optical sensor. Though it might be of interest for other fields as well, it is particularly geared
to and of interest for agricultural applications. Hence, this dissertation mainly elaborates the
agricultural domain as an application field.

1.1 Problem statement and approach

This chapter is intended to give an overview of the approach pursued throughout this document.
First a description of the problem is given and it is described how it is thought to be solved.

Before the problem statement and approach are elaborated Digression 1.1 on the light section
or line profiling 2 method is given here. It is the basic measurement principle of the Multi-
wavelength laser line profile sensing (MWLP) system. Thus, knowledge of this method is re-
quired for understanding the MWLP approach. Readers familiar with this method may feel free
to skip reading the digression.

Digression 1.1: Excursus on laser line profile sensing

The laser line profile sensing method is a method for precise and fast distance measure-
ments. It is widely used in industrial applications [137]. With light section microscopes
known for more than 80 years laser line profiling was first used 50 years ago using the
HeNe laser invented in that time. Nowadays Line Profiling (LP) is mainly conducted using
semiconductor-based diode lasers [24]. In recent years LP has found its first applications in
the agricultural domain, such as plant phenotyping [99] [101].

LP sensors project a laser line onto the measured object. Typically, the ray-like laser beam
is expanded by a cylindrical lens to a fan-like laser beam directed to the object of interest
for projecting the laser line on the object. The laser line is then monitored using a camera-
like imaging system - comprising optics (lens+aperture) and a matrix-like image sensor
(CCD or CMOS) - that is mounted angular with respect to the laser line. Thanks to this

1The terms ‘Multi-wavelength line profiling’ and ‘Multi-wavelength laser line profile sensing’ are used synony-
mously.

2The terms ‘laser light section sensor’ [71] [104] and ‘laser line profile sensors’ [73] [56] are both synonymously
and frequently used for such sensors. Sometimes also the term ‘3D laser scanner’ in applied to point the sensor
type adding a description as ‘triangulation-based’ in order to distinguish from Time of Flight (TOF)-based laser
scanners [100] [102]. Here the terms ‘laser line profile sensing’ or short Line Profiling (LP) will be used below
whenever this method it meant.

Multi-wavelength laser line profile sensing for agricultural applications



1.1. Problem statement and approach 3

angular mounting the laser line projection appears as height profile in the camera image
[5]. Knowing the triangulation angle, it allows calculating the distance between laser and
the object surface. This is shown in 1.1.

Figure 1.1: Line Profiling (LP) principle. Adapted from [6]

Legend:
A Diode laser

B Beam shaping op-
tics

C Fan-like laser beam

D Laser line on the
object

E Object to be mea-
sured

F Camera optics

G Image sensor

H Object profile pro-
jection

I Coordinate
system:

• x: along laser
line

• y: direction
of movement

• z: object
distance

The triangulation angle is spanned by the laser bean (z-direction) and the optical axis
of the camera. Depending on the triangulation angle and the camera optics only objects
within a setup-defined Measurement Range (MR) are visible. Objects closer to the laser
than a minimum z-distance (clearance distance) are not viewable by the camera; the same
is valid for objects exceeding a maximum z-distance. The measurement range lies between
the minimum and the maximum z-distance, as can be seen in Figure 1.2. Between the
minimum and the maximum z-distances object distances can be measured. The number of
measurable distance steps depends on the resolution of the image sensor.
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Figure 1.2: LP measurement range. Adapted from [24]

Decreasing the triangulation angle for a given camera + laser system can be done in order
to increase the MR of the system. However, assuming a fixed number of pixels available on
the camera imager the distance resolution decreases with a decreased triangulation angle.
In the opposite case of an increased triangulation angle the measurement range decreases
and the distance resolution increases. I.e., for a system with given camera + laser but
variable mounting there is a trade-off between distance resolution and measurement range
[24]. This is illustrated in Figure 1.3.
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Figure 1.3: Effect of variations of the triangulation angle. Adapted from [24]

The lateral field of view of the LP system depends on the fan angle of the line laser optics
and the camera optics as well as the measurement range. A near field of view and a far
field of view can be distinguished (cf. Figure 1.4). Hereinafter - unless otherwise stated -
Field of View (FOV) of LP systems refers to the far field of view.
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Figure 1.4: LP field of view. Adapted from [72]

Another issue to be kept in mind when applying triangulation-based distance measurement
techniques is shading at sharp edges. As drafted in left-most and center part of Figure 1.5
‘before’ edges and in more-less plain surface regions of the object, the surface point which
reflects the laser is in view of the camera imager. The distance measurement is possible
here. However, ‘after’ sharp edges the view of the imager on the relevant surface point might
be blocked by the higher part of the object, see right-most part of figure 1.5. A distance
measurement is not possible here. Hence, all triangulation-based distance measurement
devices create a couple of invalid, i.e., not measurable, pixels along sharp edges of the
monitored objects. The amount of invalid pixels an edge of specific height causes hereby
again depends on the triangulation angle.
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Figure 1.5: Possible missing measurements for triangulation due to shading at sharp edges.

For industrial uses, commercially available line profile sensors usually integrate line laser,
camera and electronics for line detection in a single integrated housing (Figure 1.6). Exam-
ples for such integrated LP sensors are LMI Gocator 2300 series [73], Pepperl+Fuchs LR
300 series [104], Leuze LPS 36 [71] or MicroEpsilon ScanControl sensor [56].

Figure 1.6: Integrated line profile sensor Gocator 2300. Source: [73].

1.1.1 Drawbacks of multi-sensor systems in agricultural applications

As stated at the beginning of chapter 1, the practical adoption of image-based sensor systems
and image processing for agricultural applications is far behind both, their potentials and the
level of research conducted in these fields. Not image-based sensors are still far more common in
practical use [116]. Image-based sensors potentially outperform other systems. However, they
require robust data interpretation and under field conditions there are almost always distortions
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weakening the signal or causing the system to fail [116]. Approaches using a single standard issue
image-based industrial sensor and applying it without application-specific adjustments to an
agricultural application - i.e., only doing application-specific engineering on the image processing
chain - have not yet resulted success stories of online sensor use in practical agriculture.

Evidently, a system level engineering of both sensor system and processing chain is required.
Moreover, application-specific adjustments of the sensor and its setup are required to provide
the level of robustness required in agricultural applications. The approach of multi-sensor data
fusion [86] has been identified as promising here [118]. It allows combining multiple sensors and
interpreting their data in a combined manner [86]. Probabilistic methods are applied to deal
with different levels of reliability of the individual sensors. This approach has become popular
and is very promising for agricultural applications, such as phenotyping [18] [118] [156]. Apart
from the data processing, hereby, the sensor setup can be geared toward a specific application
by correct selection, placement and combination of sensors.

However, while being a straight forward solution for many applications, multi-sensor data fusion
still has its drawbacks. Particularly, mounting, adjustment and calibration are tedious and error-
prone tasks under varying ambient conditions and under the influence of mechanical shocks and
vibrations [137]. Moreover, it still requires a certain amount of work and this effort is not directly
targeted for solving the application problem [86]. Finally, the costs of a system do typically not
decrease but increase with the number of sensors it comprises.

Consequently, multi-sensor combinations have a high potential for providing practical solutions
for agricultural applications because they allow system level engineering of both sensor system
and processing chain. However, they still have some drawbacks. I.e., if a single sensor system
can be geared to, adjusted and configured in accordance with an application’s requirements
and thanks to those application-specific engineering delivers sufficient information to solve the
problem, this will still be desirable [137].

1.1.2 The idea of Multi-wavelength laser line profile sensing (MWLP)

This is where the approach of Multi-wavelength laser line profile sensing (MWLP) comes in. It
represents a novel sensing method for combined acquisition of range data along with spectral
information at multiple, selectable wavelengths.

The idea of MWLP initially came up during the project ‘RemoteFarming.1’ [131]. The goal
of this project was to develop a robotic weed control system for intra-row weed treatment in
carrot (Daucus carota) cultivation in organic farming. For this project an image-based sensor
system was required, capable of delivering high resolution spectral reflectance information in the
visible red and Near Infra Red (NIR) range. These wavebands are very significant for plant/soil
segmentation as basis for plant classification [155]. Additionally, the sensors had to provide high
resolution range information in order to control the working depth of the weeding tool. Partly,
the range data was further thought as additional input for improving plant classification. An
extensive search for commercially available sensors supplying all kinds of required information
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did not have results. Therefore, a multi-sensor approach was pursued, including a system of
multiple mono cameras and flashed lighting at multiple wavelengths [134]. However, during this
the concept of MWLP was born. The MWLP system is able to deliver all required information
for this application from a single sensor system.

The MWLP concept expands on the method of triangulation-based laser line profile sensing. It
does not sense just a single laser but multiple line lasers at different wavelengths. Moreover, it
does not only retrieve the position of the laser lines but also evaluates the amount of reflection
and scattering of the individual lines at the different wavelengths. The scan values of the dif-
ferent lines are assembled. This allows improving the robustness of the distance measurement
by comparing the measurements of different lasers. Scanning objects with the system results
in overlayed distance images or point clouds, in which reflectance and scattering information at
multiple, selectable wavelengths are available for each point. [137].

Figure 1.7: MWLP sensing principle mounted on conveyor with four line lasers.

The MWLP system consists of multiple Continous Wave (CW) line lasers. These are simulta-
neously captured with a single monochrome Image-Sensor (imager). A frequent use case is the
application of the system mounted on top of a conveyor for measuring objects that are moved
along the sensor. This constellation is sketched in Figure 1.7. However, the system can also
be operated mounted on a vehicle or robot for measuring still objects with a moved sensor. As
it is a line-wise scanning system, relative movement is required between measured objects and
sensor, though [137].

The camera used for the MWLP system has a wide range of sensitivity in the visible and NIR
range, e.g., from 400 nm to 1000 nm. This means that line lasers of any wavelength within
this range can be combined freely, matching the requirements regarding spectral selectivity of
the specific application. The prototype has shown to provide good results with 3 line lasers.
However, more than 3 line lasers can be used with it [137].

The mounting of the line lasers is vertically with respect to the conveyor, i.e., direction of
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movement (see figure 1.7). The advantage of this mounting is that the distance which the
conveyor has to move for a point highlighted by L1 to become highlighted by L3 does not
depend on the surface height of the sensed object at this point. I.e., the object height must not
be taken into account for the line assembly. This is only possible for vertical mounting [137]. The
scans of all wavelengths are assembled based on the monitoring of the conveyor movement by a
rotary encoder. Thereby, the data of the rotary encoder can be improved by optical tracking of
the movement which in turn improves the accurateness of the line assembly.

• Space Division Multiplexing (SDM) vs. Time Division Multiplexing (TDM) for active
spectral selectivity

For devices generating spectrally selective features from objects in an active manner, i.e., using
special light sources 3, the selectivity can be provided using SDM or TDM. Time Division Mul-
tiplexing (TDM) thereby means that the sensed object stays (almost) in the same place and is
spotted by light sources of different wavelengths at different times. For Space Division Multi-
plexing (SDM) the object is moved and is highlighted by light sources of different wavelengths
in different locations for providing different spectral views of it 4.

For the MWLP-concept TDM is also possible. In this case, the line lasers all need to be aligned
with each other highlighting the same line on the sensed object. Then, for each camera shot
only one line laser can be turned on and it must be turned off for the next shot where another
line laser is active. Consequently, the TDM manner for creating spectral selectivity with the
MWLP system requires a very good alignment and a high amount of synchronization between
camera and lasers. Moreover, the scan rate of the system for providing a scan with multiple
wavelengths is reduced. It is divided by the number of wavelengths to be monitored. However,
for line-wise scanning systems, such as the MWLP system, the scan rate is always a critical
point. Hence, the TDM-based manner was discarded early.

For SDM-based spectral selectivity with the MWLP system there are two approaches possible.
Both have in common that - unlike for TDM - the line lasers can be operated in CW mode, i.e.,
less electronic effort for controlling and synchronizing them, and both reach the maximum scan
rate, which is here only limited by the frame rate of the camera.

The first of those approaches is drafted in Figure 1.8. Here a schematic input image of the
monochrome camera scanning 3 laser lines is sketched. For this approach the line lasers are
mounted such that each of them appears in a dedicated Region of Interest (ROI). In each of
those Region of Interest (ROI)s only one line laser may appear - detection of two laser lines
in one ROI would cause a discarded pixel5. This makes distinguishing the lines caused by
different lasers in the monochrome image relatively easy - the line appearing in a dedicated ROI
is assumed to be induced by the laser the ROI is assigned to. The drawback of this approach is

3More information on this follows in chapter 2.2.
4Obviously, for SDM the same object is still spotted with the different wavelengths at different times but,

unlike for TDM, for SDM the measurements for different wavelengths can be carried out for different objects
simultaneously, i.e., at the same time.

5Same like no detectable laser line, e.g., due to shading (cf. Digression 1.1), causes an invalid pixel.
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that for each line laser only a reduced ROI is available as dynamic range. I.e., for a system with,
e.g., three line lasers in the trade-off between measurement range and distance resolution (cf.
Digression 1.1) one of those is reduced (divided by 3). Consequently, a MWLP system following
this approach cannot reach the distance resolution or measurement range of a comparable LP
sensor.

Figure 1.8: SDM approach 1: Dedicated ROI for
each laser line.

Figure 1.9: SDM approach 2: Defined distances
between the laser lines.

The second possible SDM approach is having the line lasers be mounted such that they appear
very closed to each other in the image and calibration of their (small) defined distances for
distinguishing the lines caused by different lasers in the monochrome image. This would reduce
the tension-field in the trade-off between measurement range and distance resolution as each
laser line could appear nearly anywhere in the camera image. The approach is shown in figure
1.9. However, for this approach distinguishing the lines and assigning them to the respective
lasers is very complex. Even knowing the metric distance between the lasers, the pixel distance
in the image also depends on the height of the sensed object. Moreover, for complex geometries
laser lines may be shaded or even overtake each other. Hence, a full-fledged tracking of each
pixel of all lines with context over multiple images would be unavoidable. Likely, for outdoor
use this would frequently be subject to failure. Consequently, the SDM approach 1 was chosen
for the MWLP system and applied throughout all work described in this dissertation.

1.2 Objectives and concepts

After section 1.1 has given an initial and crude overview about the MWLP system and its appli-
cation context this section will point out the targets pursued while working on this dissertation.
Further, the structure of the following chapters will be explained and the scientific contributions
of this work are itemized.

1.2.1 Goals of this work

The overall target of this work was to show the feasibly of MWLP and potentials of its use for
agricultural applications. This implies the structure of this work was sensor-centric. However,
as discussed before, for agricultural solutions a system level engineering of the combination of
sensor system and processing chain is required. Therefore, a classification of the sensor output
data from the MWLP prototype system should be performed for some example applications to
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show that the sensor data cannot just be visualized nicely but can also serve as descriptive input
for real world classification problems. Hence, the following goals were identified.

Realization of the MWLP prototype: At the very beginning the MWLP concept was
drafted. It had to be translated into a hardware design (camera, optics, lasers, process-
ing system) and the software and processing pipeline for image acquisition, calibration,
tracking, line detection and assembly had to be designed, implemented and tested.

Characterization for the MWLP prototype: After the prototype was set up it had to be
characterized in order to validate its functions and rate its performance in comparison
with other state-of-the-art sensor systems.

Classification of MWLP sensor data: As stated, it was intended to show that the outcome
of the MWLP system provides descriptive input for agricultural classification problems,
i.e., automatic decisions can safely be taken based on this data. Since ‘there is no such
thing like a free lunch’, this cannot be done in a generalized approach but only for example
applications. These applications had to be selected and the classification infrastructure
and sensor had to be linked and geared toward these applications. Further, system level
tests and validation had to be performed for different agricultural application.

1.2.2 Structure of the dissertation

Here, an overview of the contents of each chapter of this dissertation is given:

Chapter 1 gives an overview of the problem and the MWLP approach. Further, goals, structure
and contributions of this work are itemized.

Chapter 2 elaborates on the state-of-the-art for range imaging and spectrally selective imaging
techniques followed by a brief overview of scatterometry in the agricultural field. A
comparison of the MWLP concept and other possible sensing concepts for combined
acquisition of range and spectral data outlines differences, advantages and disadvantages
of the MWLP approach within the context of related work.

Chapter 3 describes in detail how the MWLP concept was realized and translated into a
prototype system with respect to hardware, software, calibration and visualization.

Chapter 4 is entitled to the validation experiments with the MWLP prototype and a quantified
comparison for its performance with other state-of-the-art sensors.

Chapter 5 shows the classification of MWLP data for different agricultural applications. The
selected example applications are classification of potatoes and stones/soil clods conveyed
with them and classification of crop and weed plants. The classification takes place in
a pixel-based manner allowing flexible adjustment of the processing chain with In-Field-
Labeling.

Chapter 6 summarizes on the previous chapters and gives an outlook on the following work.

Multi-wavelength laser line profile sensing for agricultural applications



1.2. Objectives and concepts 13

1.2.3 Scientific contributions

This section is intended to itemize the scientific contributions of the work described herein. Main
contribution is the MWLP system, others are within its uses and context.

MWLP concept and prototype: The MWLP approach was invented, drafted, designed and
realized as part of the work on this thesis. This is a novel sensing approach of combined
acquisition of image-based range and spectral reflectance data. Such a triangulation-
based, scanning system, that combines active ranging with active spectrally selective
imaging from laser lines at multiple wavelengths with a single monochrome imager, had -
to the best of my knowledge - not been covered by other researchers before. It assembles
the lines based on optical tracking and applies differential imaging before line detection.
System concept and realization were initially published at ‘SPIE Photonics Europe’ in
2014 [137].

Image-based scattering evaluation at multiple wavelengths: Besides combined image-
based range and spectral reflectance data the image-based evaluation of laser light backscat-
tering is another interesting feature of the MWLP system. As will be mentioned in section
2.3, laser light backscattering is an interesting effect for agricultural applications and there
has been work on its use applying point lasers [76] [91]. Moreover, image-based evaluation
of line laser backscattering was performed before [126]. However, the combined capturing
at multiple wavelengths and pixel-wise assembly along with 3D information in a single
sensor is also a novel aspect. This was primarily elaborated by the publication for the
workshop ‘Computerbildanalyse in der Landwirtschaft’ (CBA) in 2015 [138].

Classification of MWLP sensor data for agricultural application: As the sensing ap-
proach is novel its use for the applications mentioned in section 1.2.1 could be assumed
new, while most of the classification techniques used in this work are known and com-
monly used techniques. A special aspect hereby is the pixel-based classification approach,
which differs from the usually object-based concepts that can be found in the literature
for above mentioned applications in vast numbers. The pixel-based concept has obviously
many limitations but it provides high flexibility allowing model adaptation by In-Field-
Labeling. The In-Field-Labeling concept was published at the conference held by the
‘Gesellschaft für informatik in der Land- Forst- und Ernährungswirtschaft’ (GIL) in 2015
[139]. The pixel-based classification with In-Field-Labeling requires data storage and
management of image and label data as well as linking them at pixel level. The con-
cept for data management of such image and label data together with metadata was
published at the ‘European Conference on Precision Agriculture’ (ECPA) in 2013 [135].
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Chapter 2

State-of-the-art in 3D and spectrally
selective imaging

Systems for combined acquisition of image-based range data and spectrally selective image data
are a vast topic. This chapter will attempt to give a brief overview of techniques for range
imaging, spectral imaging and scatterometry in order to classify the MWLP concept within the
context of related scientific work. The last section will compare system concepts for combined
acquisition of range data and spectrally selective intensity data to outline the main advantages
and drawbacks of the MWLP concept. The application examples of the techniques given in this
chapter will - same as this entire dissertation - mainly focus on the agricultural branch.

2.1 Range imaging techniques

Starting from origins in geodesy using triangulation-based principles, during the last 25 years
a whole variety of techniques for acquisition of 3D information, i.e., range measurement, have
been developed. Some of those techniques still use the triangulation principle, others rely on
different physical principles [38, p. 19]. For relating the MWLP concept within the context of
principles for distance measurement a classification of those techniques has to be done. It is
given by Figure 2.1 showing a brief classification of ranging methods based on Gockel [38, p.
20].

Depending on the physical domain, ranging techniques can be grouped into radiological, optical,
acoustical and mechanical ones.

Mechanical methods are ‘not contactless’. Such devices touch/feel the object surface or mill
the object of interest layer-by-layer[38, p. 20]. These methods typically affect, harm or even
destroy the object. Hence, these are not in focus here. Radiological methods, such as Com-
puter Tomography (CT) or Magnetic Resonance Tomography (MRT), have a broad adoption
for medical imaging applications. However, they require relatively huge and expensive measure-
ment equipment. Therefore, they are barely suitable for agricultural applications, particularly
when it comes to outdoor applications. There has been first research on applying smaller mag-
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Figure 2.1: Classification of ranging techniques based on Gockel [38, p. 20].

netic resonance devices for determination of moisture on self-propelled forage choppers but these
attempts are still in research state. Moreover, these smaller devices are not image-based [65].

Acoustical methods measure the distance by emitting a sound signal - usually ultrasonic - and
capture the echo reflected by the object of interest. Knowing the traveling speed of the signal,
i.e., speed of sound, the distance of the object can be calculated from the time elapsed between
emission and reception of the signal. Variations of the speed of sound due to medium or temper-
ature might be corrected knowing these ambient parameters. The robust and small ultrasonic
sensors have found a number of applications in agriculture, such as assessment of canopy biomass
[111], height control of sprayer booms [94] or estimation of grass amount[32]. For phenotyping
multi-echo sensors are of particular interest because they allow measuring individual leaf levels
[79]. However, the so far adopted acoustical systems are not image-based and therefore not in
focus of this work.

The optical methods for distance measurement can be grouped into ‘Active’ and ‘Passive’ ones.
Active methods in this context require a special light source while passive methods can be used
with any light source providing sufficient light for the sensor. For passive systems even the
use without a dedicated light source is possible, if enough ambient light is given. Examples
for such passive optical devices are stereo vision systems or light field cameras. While having
the advantage that no special lighting is needed, the major drawback of these techniques is
that they rely on well-structured surfaces for creating dense depth information [137, p. 3]. The
correspondence problem has to be solved for image segments captured of the same object surface
region from different perspectives [151]. This is not possible if the object of interest has entire
regions on its surface without significant textures, i.e., same color, constant reflection. The
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correspondence problem can not be solved for such objects. Passive systems fail to create depth
maps of such objects [63]. In any case, passive devices cannot provide a depth map with the
native camera resolution as for each correspondence some pixels have to be grouped to describe
the corresponding points.

The active optical methods mainly consist of TOF-based systems and active triangulation sys-
tems. Interferometric methods are very rare [38, p. 23]. TOF-based system measure the time
an emitted light signal needs to travel to the object of interest and back, thereby calculating
distance using known speed of light. There are scanners having a single beam and provide image-
based information using a mirror that is rotated around one or two axes. Further, TOF cameras
use e.g. Photonic Mixing Device (PMD) sensors and can create a matrix-like depth image by
one shot projection [63]. Both kinds of devices find applications in the agricultural domain, e.g.
navigation of vehicles [152] or robots [4] as well as phenotyping [62]. Unlike active triangulation
systems with a limited Measurement Range (MR), TOF-based devices can measure quite far
distances up to e.g. 80 m. On the other hand active triangulation systems usually outperform
TOF-based devices in terms of distance resolution.

The active triangulation methods can be grouped depending whether they scan a single point, a
laser line or provide a whole area scan with one shot. Simple laser distance sensors are examples
for point projection. There are applications of such sensors in the agricultural domain, such as
for phenotyping [18]. Line-wise scanning and active laser triangulation is the basic principle of
the laser line profile sensing or light section method. This method is in focus of this work as it is
the distance measurement principle of the MWLP concept. Line profiling is a robust and widely
used technique in industrial applications for fast and precise 3D measurements [137]. Recently,
it has come into the focus of the agricultural research community as well, e.g. for phenotyping
applications [99][101][52]. For those line-wise scanning devices a relative movement between
the object and the sensor and assembly of multiple scans is required for creating image-based
information. This is not necessary for devices with areal projection of structured light. These
devices can create full range images by a single shot [38]. Commercial products with this principle
are for instance Microsoft Kinect I or David Structured Light 3D Scanner (SLS). However, areal
projection of structured light and triangulation again the resolution of a correspondence problem
is required. Due to the active illumination weakly textured object surfaces are not problematic
for these devices - unlike for stereo systems. However, it still has to be determined which part
of the recorded image belongs to a particular point in the projected pattern. Therefore, pixels
have to be grouped to describe the pattern point. Consequently, the native camera resolution
cannot be reached for the distance map by these devices. Hence, line profile sensors typically
reach a slightly higher distance resolution then structured light devices.

2.2 Spectrally selective imaging techniques

Same as the range imaging techniques in the previous section, the methods for deriving spectrally
selective reflection data from monitored objects are classified here in order to relate the MWLP
approach within the context of related work. Obviously, for measuring light reflection in different
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wavebands / for different wavelengths only optical techniques are possible. These are shown in
Figure 2.2.

Note that, spectral selectivity is hereby considered in a broader sense. Obviously, the spectral
features of a hyperspectral imaging system go far beyond the capabilities of a standard issue
color camera. However, both systems measure in the same physical domain even though their
spectral resolutions differ by magnitudes.

Figure 2.2: Classification of spectrally selective techniques.

Like techniques for optical range measurement, spectrally selective methods can also be grouped
into ‘Active’ and ‘Passive’ ones, where the active require a ‘special’ light source and the passive
ones can be used with an arbitrary light source or even ambient lighting, if sufficient. For passive
methods the spectral selectivity is created by beam-splitting optics and/or filters. The light is
spitted/filtered while traveling from the object to the imager, i.e., the selectivity is achieved on
the backward path. For active methods the spectral selectivity is provided by a special light
source that applies only light with the wavelength(s) of interest onto the monitored object, i.e.,
the selectivity is achieved on the forward path. In this case, background illumination must be
neglected, subtracted or shaded out[137].
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• Passive techniques

Unlike for optical ranging - where active and passive methods are adopted more or less in the
same order of magnitude - for acquisition of spectrally selective data passive methods are far
more common [137].

∗ Pixel-filter on imager

The most common method for acquisition of spectrally selective image data is using an image
sensor with a pixel filter applied directly on the imager. The most common filter is a Bayer-
Pattern, which is drafted in Figure 2.3.

Figure 2.3: Scheme of a Bayer-Pattern.

The concept of a Bayer-Pattern is to have each pixel of the imager subdivided into four parts.
Two of these parts have green filters passing only light in the green waveband to those parts
of the imager. The other two parts have red and blue filters passing only red and blue light,
respectively. Thereby, for each pixel of the imager the different color wavebands are sensed by
different pixel regions. Hence, for each color channel selective values are available. The over-
representation of the green waveband is intended as the human eye is also more sensitive to light
in the green waveband [7].

As said, the Bayer-Pattern is the most broadly adopted technique. However, the method of
having a pixel filter applied directly on the imager and dividing the pixel into sub regions is not
limited to this configuration. The number of regions and filters per pixel can also be increased
creating a single shot, single imager hyperspectral imaging device, such as e.g., provided by
IMEC [140][54]. The advantage in both cases is the very low cost per produced unit. However,
the main drawback for both is the low flexibility. In order to set up an application-specific

Multi-wavelength laser line profile sensing for agricultural applications



20 Chapter 2. State-of-the-art in 3D and spectrally selective imaging

wavelength configuration high initial cost for semiconductor process technology is required,
such that application-specific adaptations are only possible for very high numbers of sold units.
Another drawback of this technique is the reduced light efficiency due to the filter. E.g. for a
Bayer-Pattern only one fourth of the imager is sensitive to red light. Hence, three fourth of the
red light applied to the imager are lost.

∗ Time multiplex filtering with different or tunable filters

Another concept for passive acquisition using optical filters is picking the wavebands of interest
in a time division multiplexed manner using different filters in the optical channel at different
times. An example of a product applying this concept is the PixelTeq SpectroCam [107]. It
consists of a rotating tray with different filters that move in front of the imager at different
times. The device is shown in Figure 2.4. Another example of this concept is the setup of
a standard issue monochrome camera with a tunable filter, such as CRI VariSpec. This filter
product is a Liquid Crystal Tunable Filter (LCTF). The transmitted wavelength bands can be
quickly electronically switched. A photo of the setup is depicted in Figure 2.5.

Figure 2.4: Spectro Cam. Source: [107].

Figure 2.5: Setup of tunable filter (CRI
VariSpec [105]) with camera (Dalsa Genie
[20]).

The time multiplex filtering concept gains much flexibility as compared with the concept of
filters on the imager, particularly as the filters in the rotating tray might be exchangeable in
order to address application-specific needs. Using a tunable filter wavelengths of interest can
even be configured in software. The drawback of the approach is that for collecting data from
moving objects the time multiplex is often inappropriate as the images from different wavebands
collected at different times do not necessarily match.

∗ Hyperspectral imaging

Besides passive acquisition using optical filters also beam-splitting optics can be used to create
a passive spectrally selective sensor device. The most broadly adopted technique for this -
particularly in the agricultural domain - are typical hyperspectral imaging devices. These sensors
work as push broom scanner, i.e., scan the monitored objects line-by-line, and use a prism to
split the entering light of all wavelengths into small waveband before it reaches the imager. This
sensing principle is drafted in Figure 2.6.
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Figure 2.6: Sensing principle of hyperspectral imaging systems. Source: [147].

Hyperspectral imaging devices have found broad adoption in the agricultural research com-
munity, for instance for measuring plant moisture [147], plant biomass or other phenotyping
purposes [18]. They can deliver very high wavelengths resolutions, thereby splitting the mon-
itored wavelengths range (VIS+NIR or MIR) into very small separate wavebands (100 and
more). Their main drawbacks causing a gap between adoption in research and in practice are
the relatively low light efficiency requiring a lot of illumination and the high costs per unit.

∗ Multi-spectral camera

Another concept for passive spectrally selective capturing is the use of a beam-splitter and
multiple imagers, where each imager represents a single waveband in the created multi-spectral
image [70]. This principle is used by common multi-spectral cameras, such as Quest Condor5
with five imagers [57]. The concept of a beam-splitter is shown in Figure 2.7.

Figure 2.7: Schematic drawing of a beam-splitter with four imagers. Source: [70].

A drawback of the approach of multi-spectral cameras is that the imagers and optics must
be matched during manufacturing at sub-pixel tolerance, i.e., manufacturing tolerances during
camera assembly are very small. While this is a controllable problem during manufacturing, it
becomes even more serious for outdoor use in environments with high temperatures. Thermal
movement of the mounting of the different image sensors may cause mismatched parts in the
different images.
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It is also possible to combine a beam-splitter with one imager having a Bayer-Pattern, such that,
e.g., only two rather than four imagers are required for creating an image with RGB channels
and one NIR channel. Bispectral or multi-spectral cameras have been used in for agricultural
purposes, particularly in the field of crop/weed discrimination [45] [155].

∗ One-shot hyperspectral camera

A further passive technique one-shot hyperspectral cameras providing 100 and more wavelength
channels for a matrix-like image with a single shot and using a single imager are available,
e.g. offered by Cubert GmbH [59] [58]. For these cameras different light-splitting techniques are
available, such as Wollaston beam-splitting polarizers mapping the different wavelength channels
to different regions of the imager or micro-lens array splitting the different channels onto a set
of adjacent sensor pixels [42].

• Active techniques

As mentioned, for spectrally selective imaging passive techniques are far more common than
active ones. Despite Nathan et al. point out that many passive techniques (beam-splitters,
filters) could be used to provide defined spectrally encoded lighting [42], examples for practical
realization of active techniques are rare.

They include some point sensors, such as implemented by Engbers et al. [23] or Visualant’s
ChromaID [80] [137]. These sensors use a time division multiplex approach and sequentially
apply light of the wavelengths to be analyzed on the object using different Light Emitting Diode
(LED)s. The reflected signal is measured using a photo sensor [80] [23].

For image-based active techniques with a matrix sensor concept there are also only very few
examples. Same as the mentioned point sensor examples, these sensors capture the different
wavelengths in a time division multiplex manner. Paquit et al. use a monochromator to pick
the wavelengths of interest [96]. Bangert et al. apply flashed LED lighting in combination
with simultaneously triggered monochrome cameras for obtaining spectral selectivity [4] [134].
Another example for such approach are David SLS systems. These devices can obtain 3D
measures and RGB color information using active illumination provided by a video projector.
The video projector first applies various structured light patters on the object for 3D data
acquisition. After that it makes three shots, one with only red lighting, another with only green
and a third with blue lighting, thereby obtaining the RGB color information in an active manner.

The MWLP concept can also be found amongst the active techniques for spectrally selective
acquisition. As said, passive techniques are far more common. This is mainly because they are
cheaper for applications promising high numbers of sold units. However, they have a drawback
in terms of flexibility. The monitored wavelengths for passive systems are fixed by either the
filter-pattern applied on the imager and/or optics for splitting the light beam into different
wavelength bands. I.e., an adjustment of these systems for an application-specific wavelength
configuration is only economically feasible, if the respective application will have high numbers
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of units sold. In contrast, for active methods the wavelength configuration can be set by selecting
the light sources, which can be done even for quite small number of items sold. Hence, both
concepts legitimately coexist with focus on different applications.

2.3 Image-based scatterometry

Besides combined acquisition of range image data and spectrally selective reflection data the
MWLP concept offers the possibility of monitoring laser light backscattering at different wave-
lengths in an image-based manner. This is of particular importance for many agricultural
applications.

Laser light in the wavelength range between 600 and 1000 nm tends to scatter when being applied
to organic tissue with high water content [64]. This can cause problems when using industrial
line profiling systems for scanning plants. Such industrial sensors typically use red line lasers
around 650 nm. Laser light applied on the epidermal layer is in parts reflected, absorbed,
transmitted and scattered back beneath the plant surface. This is critical if the measured signal
is caused by light scattered back and not by the light reflected, as Paulus et al. point out [101].
However, this effect is of high relevance for several applications. For instance, in the agricultural
field Lorente et al. and Noh et al. have used the backscattering effect for determination of fruit
quality using point lasers [75] [91]. Figure 2.8 and 2.9 illustrate their approaches.

Figure 2.8: Schematic draw of scat-
tering of a point laser by an apple.
Source: [91].

Figure 2.9: Measurement device or
measuring backscattering of a point
laser by an orange. Source: [76].

Further, there are systems and research projects using line lasers to obtain image-based backscat-
tering data at a single wavelength. E.g. Sakata et al. apply evaluation of scattering for detection
of latent flaws in polished glass [126]. However, the MWLP approach here provides new features
for examination of fruits and crops because it allows monitoring and rechecking image-based
scattering data at multiple wavelengths.
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2.4 Comparison of system concepts for combined acquisition

As stated, combined capturing of range data and spectral reflectance data is a vast topic. There is
a broad variety of sensor concepts, each with specific advantages and disadvantages. This chapter
intents to give a brief overview in order to point out the specific advantages and disadvantages
of the MWLP concept in comparison with other concepts.

In Table 2.1 an incomplete list of possible or common sensor concepts is given. The concepts
itemized in Table 2.1 are:

A The MWLP concept
The MWLP concept is described in this work. It scans multiple laser lines with a single
imager and extracts intensity and scattering information. A similar setup for obtaining line
laser reflectance at multiple wavelengths was recently installed by Dupuis et al. However,
they use two industrial LP sensors scanning in two measurement passes [22]. In contrast,
the MWLP system applies only a single sensor and, thus, scans all wavelengths in a single
measurement pass.

B Stereo cameras with flashed lighting at multiple wavelengths
Sellmann et al. use flashed LED lighting at multiple wavelengths and synchronously
triggered stereo cameras to provide high contrast images of plants [131] [134].

C Color stereo cameras with Bayer-pattern
The concept of standard issue color stereo vision cameras.

D Splitted imager with one part for laser line profiling and another part for a
color line sensor
The concept of a splitted imager for ranging and color capturing is implemented by the
Sick ColorRangerE [3].

E Combination of hyperspectral imaging and a line profile sensor
Such a multi-sensor system delivers very high detail for both, high resolution range data
and high resolution spectral data. This system setup is, e.g., used for phenotyping by
Behmann et al. [8].

F Color camera + structured IR laser light scanning
This concept with a color camera and an additional ranging system consisting of a mono
camera and a structured light laser is the sensing principle of Microsoft’s Kinect I devices.

G Plenoptic cameras
Plenoptic cameras or lightfield cameras capture the light reflected from a point in different
optical paths through a microlens array and thereby can estimate the distance of objects
based on finding correspondences of the different paths. This principle is, e.g., used by
Raytrix devices [37].

H Multi-spectral camera combined with a time of flight camera
A combination of two commonly used matrix sensors for both purposes.

Multi-wavelength laser line profile sensing for agricultural applications



2.4. Comparison of system concepts for combined acquisition 25

I Structured light video projector with a mono camera and TDM color data
acquisition
This principle is used by David3D SLS-2 structured light scanners [36].

J Triangulation with a color laser and a beam-splitter
Blais et al. use triangulation with a color laser to measure the shape of artworks. Their
device also involves a beam-splitting prism to separate the different wave parts of the laser
beam on the backward path for obtaining color information [12]. The principle of their
device is given in Figure 2.10.

Figure 2.10: Schematic principle the color triangulation device by Blais et al. Source: [12] .

K Multi-wavelength LIDAR
Wei et al. have set up a TOF-based LIDAR sensor. It can operate with four different
wavelengths in order to obtain 3D spectral information when scanning plant canopy [154].

The mentioned system concepts are classified in Table 2.1 depending on the following criteria:

1. Scan principle

• Point sensing
One shot of the sensor system creates a single point measurement (image pixel).
In order to create image-based data rotating mirrors and/or a relative movement
between device and monitored object along one (with mirror) or two axes is required.
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• Line sensing
The device must be used as push-broom scanner. One shot of the sensor system cre-
ates a single line measurement (image column or row). In order to create image-based
data relative movement between device and monitored object one axis is required.

• Matrix sensing
One shot of the sensor system creates a 2D matrix measurement (image). In order
to create image-based data relative movement between device and monitored object
is not needed. If a relative movement is given, sequentially captured images need to
be stitched before processing in order to avoid overlapping image parts.

2. System design

• 1-imager systems
These systems comprise only a single image sensor collecting all the information
required. Here, main advantage is the lack of calibration of multiple imagers or sensors
with each other. Moreover, thermal movements between different image sensors are
not an issue.

• 2-imager systems
Systems are classified as 2-imager systems if they comprise two identical image sen-
sors. Obviously, some calibration of the sensors with each other is required for these.
However, the effort for this still significantly less than for calibration of different
sensor types.

• Multi-sensor systems
Multi-sensor systems consist of multiple sensors with different sensing principles that
need to be calibrated with each other.

3. Range imaging
The optical distance measurement principles are classified into active and passive ones
according to conventions described in Section 2.1.

4. Spectrally selective imaging
The spectrally selective measurement principles are classified into active and passive ones
according to conventions described in Section 2.2.

Having in mind these classifications, the sensor concepts are rated under a number of different
aspects in Table 2.1. It has to be stated that here only the general sensor concepts are rated,
not the illustrating example sensors given for some of them. Moreover, the ratings are intended
to be qualitative ones where ‘+ +’ is typically better than ‘o’ and ‘o’ is typically better than
‘- -’. However, this qualitative rating of the sensor concept does not imply that it would be
impossible for a specific sensor to outperform another sensor under an aspect in quantitative
terms, if the ratings of their concepts were contrary. The rating just states that this would be
unusual. The aspects considered for the ratings in Table 2.1 are described as follows:

• General ratings
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5. Robustness with respect to disturbances by uncontrolled ambient light
Typically, passive systems are relatively robust against distortions by uncontrolled
light, e.g., sun light exposure, whereas active triangulation systems have problems
here. Sensor-specific features may help here but generally uncontrolled light is critical
point for active triangulation. TOF-based are more robust w. r. t. this.

6. Light efficiency
Typically, active systems have higher light efficiency, as no light is lost due to filters
or beam-splitters. Moreover, only light of the wavelengths of interest is applied. This
manifests in a reduced energy effort for lighting, if required. This point might be
relevant on carrier systems with limited power supply [137].

7. Effort for calibration of multiple sensors with each other
The effort for calibration of multiple sensors is for multi-sensor systems higher than
for 2-imager systems. For 1-imager systems it is the lowest.

8. Effort for calibration of sensor and light source(s)
For passive systems a calibration of light source and sensor is not needed whereas
active systems might require some calibration here.

• Ratings for the ranging capabilities

9. Ranging objects without textures
Passive range finding techniques require well-structured object surfaces. For object
surfaces without textures they fail to create depth maps, as mentioned in Section 2.1.

10. Reduced depth map resolution due to matching correspondences
Ranging techniques relying on finding correspondences can only deliver range maps
of resolutions reduced with respect to the native camera resolution. This is the case
for passive ranging and active triangulation of structured light patterns.

11. Maximum distance resolution
Though the distance resolution, i.e., minimum quantization step of the provided
distance values, mainly depends on the implementation of the specific sensor, for some
sensing principles the achievable resolutions are generally higher than for others. In
particular, line profiling systems can measure very tiny distance steps - some even in
the micrometer scale - thereby delivering very high distance resolution.

12. Maximum measurement range
The measurement range, i.e., difference between the minimum and the maximum of
measurable distances, also very much depends on the specific sensors but there are
some constraints by the sensing principle. Typically, TOF-based systems outperform
all others under this aspect.

• Ratings for the spectral selective features

13. Maximum resolution
For systems applying a color imager the wavelength resolution is fixed to the three
RGB wavebands. The stereo system with TDM lighting (B in Table 2.1) presented

Multi-wavelength laser line profile sensing for agricultural applications



28 Chapter 2. State-of-the-art in 3D and spectrally selective imaging

by Sellmann et al. [131] provides two wavelengths. However, the approach might not
be limited to this. The MWLP system (A) was tested with up to 4 wavelengths [137],
same is valid for the multi-wavelength LIDAR (K) [154]. Multi-spectral cameras (H)
typically provide data of four or five wavebands. Again, these three approaches are
not limited to this number of wavelengths but for all these approaches increasing the
number of wavelengths beyond - say - ten wavelengths would increase the system
complexity beyond what is feasible.
The highest wavelength resolution with hundreds of wavelengths and more is reach-
able by using hyperspectral imaging systems (E).

14. Flexibility of the wavelength configuration
In case number of wavelengths/bands recorded by a sensor system is low, it will be
helpful if the configuration of wavelengths can anyhow be adjusted in order to match
some application-specific demands. However, for passive systems, on one hand, this
is not possible, as the wavelength configuration is fixed by the filter pattern or the
design of the beam-splitter. For active systems, on the other hand, the wavelength
configuration can be adjusted by exchanging the light source making them more
flexible.

Note that there are two ratings in Table 2.1 that are in contrast to the description in
the previous paragraph. One of these exceptions is the SL video projector with mono
camera (I). If for this approach a standard issue video projector is used - as done
by [36] - there is actually no flexibility for this because the video projector is limited
to RGB, same as color cameras. However, by exchanging the video projector for a
special projector or involving a monochromator (see Paquit et al. [96]) the approach
would be more flexible here. As compromise, an ‘o’ rating is chosen here.

The other exception for this aspect in Table 2.1 is the hyperspectral imaging (E).
Obviously, as a passive system with beam-splitter there is in principle no wavelength
configuration adjustment possible. However, the spectral features of this device would
be underrated if they were said to be equal to those of a color camera. Typically,
the approach when using such systems is the other way around. As usually online
processing of the entire hyperspectral data cube is not possible anyway, oftentimes,
only the most relevant wavelengths of the spectral imaging system are used. These
can then be selected in software by selecting the image sensor rows to readout. This
configuration is then even more comfortable than for the mentioned active systems,
hence the ‘+ +’ rating.
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Table 2.2 summarizes the typical boundary conditions for a successful use of the sensor concepts
itemized in Table 2.1. Further, in Table 2.2 the numbers of aspects justifying the statements
are given behind the each respective statement. These numbers refer to the aspect numbering
in Table 2.1.

Table 2.2: Typical conditions for applications of the itemized sensor concepts

# Concepts Typical boundary conditions for applications

A MWLP

• small, ideally shaded measurement space (due to aspects 5 and 12)

• energy for lighting might be critical (6)

• high requirements regarding distance resolution (11, 12)

• moderate requirements regarding spectral resolution (13)

• objects with or without textures (9, 10)

• objects with relative movement (3, 6)

B Stereo cam
+ TDM
light

• small, ideally shaded measurement space (5, 12)

• energy for lighting might be critical (6)

• moderate requirements regarding distance resolution (11, 12)

• moderate requirements regarding spectral resolution (13, 14)

• objects with textures (9, 10)

• objects with relative movement (6) or still objects (3)

C Color stereo
(Bayer)

• huge unshaded measurement space (5, 12)

• energy for lighting uncritical (6)

• moderate requirements regarding distance resolution (11, 12)

• low (only color) requirements regarding spectral resolution (13, 14)

• objects with textures (9, 10)

• ideally still objects (3, 6)

D Splitted
imager color
+ LP

• small, ideally shaded measurement space (5, 12)

• energy for lighting uncritical (6)

• high requirements regarding distance resolution (11, 12)

• low (only color) requirements regarding spectral resolution (13, 14)

• objects with or without textures (9, 10)

• objects with relative movement (3)

Continued on next page
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Table 2.2 – continued from previous page

# Concepts Typical boundary conditions for applications

E Spectral
imaging +
LP

• small, ideally shaded measurement space (5, 12)

• sufficient light for spectral imaging; low light distortion of LP

• energy for lighting might not critical (6)

• high requirements regarding distance resolution (11, 12)

• high requirements regarding spectral resolution (13)

• objects with or without textures (9, 10)

• objects with relative but ideally slow and highly controlled movement
(3, 6)

F Color
camera + SL

• medium size measurement space (5, 12)

• energy for lighting not critical (6)

• moderate requirements regarding distance resolution (11, 12)

• low (only color) requirements regarding spectral resolution (13, 14)

• objects with or without textures (9, 10)

• ideally still objects (3, 6)

G Plenoptic
camera

• huge unshaded measurement space (5, 12)

• energy for lighting not critical (6)

• moderate requirements regarding distance resolution (11, 12)

• low (only color) requirements regarding spectral resolution (13, 14)

• objects with textures (9, 10)

• still objects highly preferred (3, 6)

H MS camera
+ TOF
camera

• very huge unshaded measurement space (5, 12)

• energy for lighting not critical (6)

• low requirements regarding distance resolution (11, 12)

• moderate requirements regarding spectral resolution (13)

• objects with or without textures (9, 10)

• ideally still objects (3, 6)

Continued on next page
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Table 2.2 – continued from previous page

# Concepts Typical boundary conditions for applications

I SL projector
+ mono
camera

• medium-size, ideally shaded measurement space (5, 12)

• energy for lighting might be critical (6)

• moderate requirements regarding distance resolution (11, 12)

• moderate requirements regarding spectral resolution (13)

• objects with or without textures (9, 10)

• still objects (3)

J Color laser
+ beam-
splitter

• small, ideally shaded measurement space (due to aspects 5 and 12)

• energy for lighting might be critical (6)

• high requirements regarding distance resolution (11, 12)

• low (only color) requirements regarding spectral resolution (13, 14)

• objects with or without textures (9, 10)

• objects with controlled relative movement (2, 3, 6)

K Multi-
wavelength
LIDAR

• very huge unshaded measurement space (5, 12)

• energy for lighting might be critical (6)

• low requirements regarding distance resolution (11, 12)

• moderate requirements regarding spectral resolution (13)

• objects with or without textures (9, 10)

• objects with controlled relative movement (2, 3, 6)

As Table 2.1 shows, all mentioned sensor concepts differ from each other in their classifications
as well as the ratings of their specific advantages and disadvantages. However, as Table 2.2
states, all have certain boundary conditions of applications particularly favoring their use. Con-
sequently, all the systems coexist with each other partly - of course - competing but also partly
complementing each other. All have advantages and drawbacks. The particular advantages and
disadvantages of the MWLP concept are listed as follows.

• Advantages of the MWLP concept

⋆ The first advantage of the MWLP is that it allows combined acquisition of range and
spectral image data using a single sensor system. Hence, this single 1-imager system
can replace multiple sensor systems. As seen before, this is not a unique advantage
but still it remains being an advantage [137].

⋆ The second advantage is that it can replace high-cost passive spectral imaging sys-
tems in case for an application only a few specific wavelengths are of interest. The
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MWLP prototype was build with lower (device) costs than a commercial hyperspec-
tral imaging would cause. The prototype delivers scans of three wavelengths. The
concept does not imply that but increasing the number beyond - say - ten wavelengths
is hardly feasible, while hyperspectral imaging provides 100+ wavebands. However,
the MWLP might be an economically reasonable choice, if a specific application only
required a couple of wavelengths, these were known and the others, if obtained, would
be discarded from the spectral data cube anyway. As the monitored wavelengths of
the MWLP system can be selected by mounting a specific laser of that wavelength,
it can be tailored to provide exactly those (and only those) wavelengths, which are
of interest for the application [137].

⋆ Thirdly, the system has high light efficiency. This reduces the energy effort required
for lighting, which might favor its use on carrier systems with limited power supply
[137].

⋆ Fourth, as stated before, it allows monitoring laser light back scattering at multiple
wavelengths in an image-based manner [137]. This is of particular importance for
applications sensing objects with high water content and wavelengths in the range
between 600 and 1000 nm. In this range laser light tends to scatter when applied
to organic tissue with high water content [64]. Here, it is not only reflected on
the surface but also partly entering the tissue and scattered back beneath the surface
[101]. Hence, scattering analysis - with limitations - allows assessing object properties
manifesting beneath the surface. This is not possible with any passive optical system
[138]. Hence, this technique has a high potential.

• Disadvantages of the MWLP concept

⋆ The main drawback of the MWLP approach as pursued here is that high distance
resolution is only possible in a relatively small measurement range and that this
measurement range is even more reduced with respect to conventional LP sensors
(see section 1.1.2) [137].

⋆ Another disadvantage is that as an active/active system it is relatively sensitive to-
ward distortions by uncontrolled ambient lighting. However, this drawback of the
concept is partly diminished for the realized MWLP system by the differential imag-
ing technique. It will be described in Chapter 3.
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Chapter 3

Realization of the MWLP system

After an introduction in Chapter 1 and the classification within the context of related work
in Chapter 2 this chapter will describe the translation of the MWLP concept to a working
prototype in detail.

The prototype is able to capture 3 line lasers at its maximum resolution with a scan rate of 100
Hz. The MR in this configuration is approx. 15 cm ranging between a minimum object distance
of 55 cm and a maximum distance of 70 cm.

3.1 Hardware system design

This section describes the hardware design of the MWLP system. The sensing head comprises
sensor and lighting. The processing and control hardware are mounted into the control cabinet.

3.1.1 Sensing head

The sensing head of the MWLP prototype comprises a monochrome camera, line laser modules
at different wavelengths and LED clusters for controlled background illumination. The sensing
head is shown in Figure 3.1.

The camera is a Baumer HXG20NIR [34] (Figure 3.2). At maximum resolution of 2048x1088 pel
it provides up to 105 fps. The image sensor of the camera is of type CMOSIS CMV 200. It has an
enhanced NIR sensitivity, thereby assuring a good spectral response in a broad waveband from
400 nm to 1000 nm. Having a Complementary Metal-Oxide Semiconductor (CMOS) imager
rather than Charge Coupled Device (CCD) the cameras frame rate can be increased beyond 105
Frames per Second (fps) in partial scan modes. This can be achieved by specifying a ROI to
readout from the imager [34]. However, for use in the MWLP system the ROI mode reduces MR
or FOV of the system. This can be overcome using binning or subsampling modes supported by
imager and camera. In binning mode the frame rate of the camera can be increased to 210 fps,
in subsampling mode 420 fps are possible. These modes provide images with reduced resolution
but identical FOV of the camera, i.e., MR and/or FOV of the MWLP system are not reduced.
Explanations on the scan modes can be found in Table 3.1 and Figure 3.3. Other features

35



36 Chapter 3. Realization of the MWLP system

of the camera that are very relevant for this application are the global shutter for minimizing
motion blur and the optional overlapped readout, i.e., readout of one image from the imager
may happen while exposure for the next image is already active.

Figure 3.1: Sensing head of the MWLP prototype.

Figure 3.2: Camera of the MWLP prototype.
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Table 3.1: Description of the scan modes supported by the used camera

Scan mode Explanation
Resolution

/
Frame rate

Full frame
• Each native sensor pixel is readout and results in a respective

pixel in the image.
• See left-most drawing in Figure 3.3

2048x1088
/

105 fps

Binning
2x1

• The values of groups of each two vertically adjacent pixels are
added on the imager before readout and only the sum of both
pixel values is read out and results in a pixel in the outcome
image.

• Results in reduced resolution (higher frame rate) and higher
light usage (reduced exposure time)

• See center-left drawing in Figure 3.3

1024x1088
/

210 fps

Binning
1x2

• The values of groups of each two horizontally adjacent pixels
are added on the imager before readout and only the sum
of both pixel values is read out and results in a pixel in the
outcome image.

• Results in reduced resolution (higher frame rate) and higher
light usage (reduced exposure time)

• See center-right drawing in Figure 3.3

2048x544
/

210 fps

Subsampling
2x2

• In each group of four native camera pixels only one pixel is
read out and in a pixel in the outcome image.

• Results in reduced resolution (higher frame rate)
• See right-most drawing in Figure 3.3

1024x544
/

420 fps

Figure 3.3: Scan modes supported by the camera.

Second main component of the sensing head of the MWLP prototype are the line lasers. These
are broadly used laser modules containing semiconductor-based diode laser and the beam-
shaping optics in a compact common housing. As explained in section 1.1.2, the lasers are
mounted vertically with respect to the movement direction. A list of lasers tested for the
MWLP prototype is given in Table 3.2. A photo of one of the line laser modules is given by
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Figure 3.4. The power supply to the lasers can be switched programmatically using a transistor
array and a microcontroller. I.e., the lasers can be turned on and off automatically depending
on whether the system is scanning or not [137].

Table 3.2: Line lasers used with the MWLP prototype so far. [137]

# Product Wavelength Optical Power Laser class

1 Laser Components FP-MVnano-405-5M-45-F 405 nm 5 mW 2M

2 Picotronic LD405-10-24(20x80)-F800 405 nm 10 mW 1

3 Laser Components FP-MVnano-532-5M-45-F 532 nm 5 mW 2M

4 Picotronic LD532-10-24(20x80) 532 nm 10 mW 1

5 Laser Components FP-65/5LOF-Ö45-HOM 650 nm 5 mW 2M

6 Picotronic LH650-16-24(20x80)-F800 650 nm 16 mW 2

7 Laser Components FP-MVnano-780-45-F 780 nm 5 mW 2M

8 Picotronic LH850-30-3(16x45) 850 nm 30 mW 1M

Figure 3.4: Photo of laser line module #5 (Laser Components Laser Components FP-65/5LOF-Ö45-
HOM) with laser turned on.

Further, the sensing head is equipped with LED clusters for background illumination. The
background illumination is required for the optical movement tracking, if ambient lighting is
shaded out or insufficient. The LED clusters are of type Kingbright BL0106-15-28 [130]. A
single LED cluster of this type is shown in Figure 3.5. The central wavelength of the light
emitted by these clusters is at 940 nm, i.e., it is in the sensitive range of the camera but does
not interfere with the wavelengths of the lasers used (cf. Table 3.2). There are 24 clusters
mounted. They are connected to the power supply in groups of 8. Same as the lasers the power
supply of these groups can be turned on and off programmatically using microcontroller and
transistor array. This allows programmatically adjusting the background illumination depending
on ambient lighting, such that the background is illuminated sufficiently for tracking, but not
too much, such that it would disturb the line detection [137].
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Figure 3.5: Single LED cluster Kingbright BL0106-15-28 (Diameter approx. 26 mm). Source: [130]

3.1.2 Control cabinet

The processing and control hardware required for operating the sensing head and processing the
collected data through the image pipeline to a point cloud is mounted into a 50 cm x 40 cm x
21 cm control cabinet. The control cabinet is shown in Figure 3.6.

Figure 3.6: The control cabinet of the MWLP prototype.

The control cabinet contains a microcontroller of type Arduino Uno and a DevBoard connected
to it. The DevBoard is equipped with a transistor array of type Darlington ULN2803AN (50 V
0.5 A, Octal, PDIP 18-pin). The transistor array connected to output pins of the Arduino and is
used for switching the power supply of lasers and LED clusters. Further, there is a circuit with
transistors and resistors for controlling the camera hardware trigger by the Arduino. Finally, the
DevBoard sets up a connection between Arduino and rotary encoder. This design assures there
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is a time-deterministic connection, i.e., ‘hard real-time’, from camera trigger to rotary encoder
position and time stamp assigned to each image.

Further, the control cabinet contains a PC in MiniITX format. The camera is connected to the
PC via Dual GigE Vision interface. The microcontroller Arduino Uno is connected via USB using
rosserial [25]. The PC contains a CUDA-capable (CUDA) graphics card allowing performing
parts of the image processing on the Graphics Processing Unit (GPU) using NVIDIA’s CUDA
framework as well as a Central Processing Unit (CPU) with four cores [137].

Table 3.3: Key features of the MiniITX PC mounted in the control cabinet [137]

Component Type Remarks

CPU Intel Core i7 2600k 4 Cores @ 3.4 GHz

RAM Kingston DDR 3 16 GB @ 2133 MHz Front Side Bus

Graphics Card NVIDIA GeForce GTX 750 Ti 640 Stream Processing Units @ 1033 MHz
2048 MB GDDR5 RAM

Interfaces 2 x GigaBit Ethernet Bonded for connection to Dual GigE
camera

1 x GigaBit Ethernet General purpose communication via ROS
with client PC

USB 2.0 Connection to Arduino Uno via rosserial

USB 3.0 / WLAN General purpose communication

3.2 Software design and used tools

A variety of software tools and libraries have been used while conducting the work described
in this thesis, particularly for setting up the MWLP prototype. These tools are explained in
Section 3.2.1. A main commitment of all following developments was the use of Robot Operating
System (ROS) as communication and processing backend. This allows splitting the process and
control tasks into many small and reusable ‘nodes’ that communicate with each other while
running in different processes and optionally on different machines. The nodes that are used
for the MWLP prototype are listed in Section 3.2.2. Special issues for the use rosserial with
Arduino and CUDA with OpenCV are explained the further subsections.

3.2.1 Used tools

The following tool have been used throughout the work on this dissertation.

Robot Operating System (ROS): ROS (www.ros.org) is an open-source robotic middleware
and collection of other tools and libraries for use in robot development [108]. It was used
here as backend for communication, thereby abstracting interprocess communication and
optionally multiple machines. Further, several of its packages have been used, such as
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the build system catkin (wiki.ros.org/catkin), the tool roslaunch (wiki.ros.org/roslaunch)
and the visualization tools rviz (wiki.ros.org/rviz) and rqt (wiki.ros.org/rqt).

OpenCV: OpenCV (opencv.org) is an open-source library for image processing [15]. It was
used as backbone for image processing tasks, including its GPU module which allows
off-boarding processing tasks to a capable GPU device, if present.

NVIDIA CUDA framework: The Compute Unified Device Architecture (CUDA) framework
(developer.nvidia.com/cuda-zone) is a proprietary platform for parallel computing on
NIVIDIA GPUs. It provides a runtime API for accessing the GPU memory and scheduling
as well as launching custom implemented processing tasks - so called ‘kernels’ - on the
GPU [89]. It was used here directly with own implemented kernel methods as well as
indirectly using the GPU module of OpenCV.

Point Cloud Library (PCL): The PCL (pointclouds.org) is an open-source library for pro-
cessing and visualization of 3D point clouds [123]. It was used here for processing and
visualization of the data created by the MWLP system.

Arduino: Arduino is an open-source platform for microcontroller hardware and software [66].
Same as the Arduino Uno hardware (cf. section 3.1), the software from the project has
been used as well, in particular libraries and IDE for implementing the control code on
the device. Further, for topic-based ROS communication with the Arduino Uno device
the ROS package rosserial [25] has been applied (wiki.ros.org/rosserial).

3.2.2 Itemization of nodes

This chapter lists the nodes that are launched for the MWLP prototype to run in ‘live’ mode,
i.e., capturing and online line detection, including visualization. Unless otherwise stated, the
nodes have been implemented as part of this work.

/serial_node: The /serial_node is provided by the ROS package rosserial [25]. It sets up
the topic-based communication with the Arduino Uno over serial USB communication.

/sensor_module: The /sensor_module includes the ROS driver for the Baumer HXG20NIR
camera. Its implementation uses the Baumer GAPI [35]. It reads out the camera image
buffers and publishes them as ROS sensor_msgs/Image. Moreover, it listens to messages
published by the Arduino Uno that triggers the camera (cf. 3.1.2). Having both, image
buffers and the trigger message from Arduino, that contains time stamp and position
of the rotary encoder while triggering, it assembles the correct trigger message with
the image. Hence, nodes listening the images always have both combined, image data
together with real-time rotary encoder position and time stamp. Finally, the /sensor_-

module configures the camera trigger of Arduino and the camera in accordance with the
relevant parameters set to the ROS parameter server.

/line_detection_node: The /line_detection_node subscribes to the image and pos/time
stamp data published by the /sensor_module, performs matching, line detection and
assembly and publishes mwlp_scan data, i.e., single scan lines assembled of all mounted
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and active lasers with distance information, reflectance and backscattering data for all
monitored wavelengths. Additionally, it loads the line calibration on start up and makes
it available to all nodes that require it. It is most complex node that was implemented
for the MWLP prototype. Details on its implementation are given in Sections 3.3 and
3.4. Its calibration will be described in Section 3.6.

/lighting_controller: This node retrieves the calibration from the /line_detection_node

and configures the power supply to lasers and LEDs via Ardunio in accordance with the
calibration, e.g. turning on the used line lasers.

/scan_buffer_node: The /scan_buffer_node listens to the mwlp_scans published by the
/line_detection_node. As the processing in the /line_detection_node takes place
multi-threaded and widely asynchronously the mwlp_scans do not safely arrive in cor-
rect order. Hence, this node sorts them, in accordance with the calibration retrieved
from /line_detection_node. Further, it aggregates a configurable number of mwlp_-

scans (e.g. 200) and republishes them as mwlp_chunks. This is done in order to assure
that Graphical User Interface (GUI) updates are not issued for each and every scan of
the MWLP system, i.e., GUI updates at a lower refresh rate than the scan rate of the
system. Further, aggregation of chunks is separated from the /line_detection_node

because in this manner if line detection and visualization run on different machines the
/scan_buffer_node runs on the machine with the visualization, i.e., the scans are trans-
ferred via the network. This means (single) scans might get lost during transfer over
network but loss of (whole) chunks is unlikely. The mwlp_chunks are basis for both main
visualization sinks (image and point cloud visualization) and is (later on) basis for the
/mwlp_classification_pipeline. Finally, the /scan_buffer_node offers a ROS ser-
vice that can be used to save the scans currently in buffer as image files to the file system
for inspection purposes.

/mwlp_point_cloud_publisher: The /mwlp_point_cloud_publisher listens to the mwlp_-

chunks published by the /scan_buffer_node and transforms them into point couds, as
will be described in Section 3.5.4. The point cloud is of type XYZRGB and is colored
from the MWLP data using a configurable visualization model (cf. Section 3.5.3). Then,
the derived point cloud is published for visualization in /rviz.

/mwlp_piped_image_publisher: The /mwlp_piped_image_publisher listens to the mwlp_-

chunks published by the /scan_buffer_node and transforms them into RGB images.
The transformation from the overlayed MWLP images with distance information and
spectral features to RGB images using a configurable model, which will be topic of Section
3.5.3. The images are then published as a standard ROS message in order to show them
in the /rqt_image_view.

/rviz: The node /rviz is provided by the ROS package of same name [47]. It is used for
3D visualization of the MWLP sensor data as colored point clouds. However, mostly
for online point cloud visualization the high resolution data of the MWLP system must
be down sampled for fluid rendering in /rviz. This is also done by the /mwlp_point_-

cloud_publisher.
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/rqt_image_view: In order to provide online views of the MWLP sensor data at full resolu-
tion the (2D) image visualization of the data published by the /mwlp_piped_image_-

publisher is possible. It can be shown in any image viewer, such as the rqt plugin
/rqt_image_view with is provided by the ROS package of the same name [149].

/overlay_viz_controller: The /overlay_viz_controller is an own implemented rqt plugin
that provides a GUI for adjustment of the visualization model used by the /mwlp_-

point_cloud_publisher and /mwlp_piped_image_publisher as well as later on the
/mwlp_classification_gui.

3.2.3 PROGMEM usage on Arduino with rosserial

For setting up the graph-based topic communication on the Arduino many constant strings are
required. Each publisher or subscriber must have one string with the message type name, one
string with the md5sum of the message and one string containing the topic name to publish
to. I.e., constant strings are required per connection. Moreover, log messages passed on to the
standard log method of rosserial are also typically passed as constant strings.

Ardunio microcontrollers have very restricted resources. Particularly, the Arduino Uno has only
2048 KB of SRAM. This SRAM can be easily used up by usage of long or many constant strings
of standard C type, i.e., as constant char arrays. SRAM overflow results in undefined behavior
of the device.

Now that rosserial uses many constant strings it can easily use up SRAM, if many subscribers are
used, descriptive log messages should be posted or topic names within namespaces are intended.
To overcome this the rosserial package was modified in order to allow the usage of flash memory
for such information. The modified rosserial version then only reads out the strings from the
flash memory of the device (PROGMEM) when they are used and releases the memory as soon
as they are no longer required. I.e., the strings must not stay in SRAM the entire application
life-time, which reduces the SRAM usage significantly.

3.2.4 Distributed memory management with asynchronous CUDA streams

Using CUDA kernels in a process with a distributed, multi-threaded software architecture with
many methods calling into CUDA kernels and without centralized memory management turned
out to be an issue. In order to understand the problem that was to be solved here, some knowl-
edge of the streaming and parallelizing techniques provided by CUDA is required. Therefore, a
brief overview of CUDA streams is given in Digression 3.1. Readers familiar with CUDA streams
may feel free to continue reading at the end of the digression box.
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Digression 3.1: Brief overview of CUDA streams

The CUDA framework allows executing custom code on the GPU, thereby highly speeding
up its execution for simple repeated operations. The high number of stream processing
units, e.g., 640 for the graphics card of the PC of the MWLP prototype (cf. table 3.3),
can perform simple operations on many objects in parallel. GPUs typically have groups
combining a single Control Unit (CU) with multiple Execution Units (EUs). In contrast,
CPUs typically map one CU with one EU. Therefore, simple operations, which have to be
performed on many objects in the same manner, can be executed in parallel on GPUs using
these sets of multiple EUs sharing a single CU. This is a common task in image processing,
e.g., if - on CPU - an operation would be performed on all pixels of an image in a loop [89].
Introductory readings on the CUDA techniques are, e.g., [61] or [127].

The parallel execution in many stream processing units takes place by launching so-called
kernels on the GPU. However, using the GPU-based techniques a new bottleneck occurs.
This is copying the data from CPU memory (host memory) to the memory of the graphics
card (device memory) for processing and back for accessing the results [78]. In order to
reduce the impact of this bottleneck, there are so-called streams for asynchronously copying
and processing data. Typically, CUDA-capable graphics cards have two or more copy-
engines running parallel to GPU execution and independently from CPU. This enables
another level of parallelisms, thereby speeding up the processing performance. Informations
on the CUDA streams can, e.g., be found in [127] and [78]. For introducing into the
streaming concept - first - a sequential example of pseudo code using CUDA’s C API for
calling into a CUDA kernel is given. It can be found in Listing 3.1.

Listing 3.1: A sequential launch into a CUDA kernel.

....

// pre-condition1: host_data is a uchar* pointer pointing memory filled with

// data to be processed of size_t data_size

// pre-condition2: host_result is a uchar* pointer pointing memory pre-

// allocated for the processing result of size_t result_size

// allocate memory for data on device

uchar* device_data = NULL;

HANDLE_ERROR( cudaMalloc((void **)&device_data, data_size) );

// copy the data to the device

HANDLE_ERROR( cudaMemcpy(device_data, host_data, data_size,

cudaMemcpyHostToDevice ) );

// allocate memory for the result on device

uchar* device_result = NULL;
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HANDLE_ERROR( cudaMalloc((void **)&device_result, result_size) );

// launch into kernel

my_kernel<<<blocks, threads>>>( device_data, data_size,

device_result, result_size );

// copy the result from the device

HANDLE_ERROR( cudaMemcpy(host_result, device_result, result_size,

cudaMemcpyDeviceToHost ) );

// free device memory

HANDLE_ERROR( cudaFree(device_data) );

HANDLE_ERROR( cudaFree(device_result) );

// post-condition: the memory pointed to by host_result now contains

// the result calculated by the GPU

....

The code given in Listing 3.1 allocates memory on the device for input data and result. It
copies the input data to the device then launches the kernel. The kernel will process the
input data using a number of parallel executing stream processors (blocks, threads) and
will write the processing results to the device memory pointed by result_host. This result
data must then be copied back from the device to host memory to be accessible by the
CPU.

All calls are sequentially performed in Listing 3.1. The function calls are synchronous.
This means all function calls fall back when all required actions are fully completed. E.g.
cudaMemcpy will only fall back if the copy action is completely finished (assuming no error
occurred) [92]. The CPU thread is blocked until then. The timing diagram for Listing 3.1
is shown in Figure 3.7.

Figure 3.7: Timing diagram of the sequential calls.

In this case, the launch on stream processors is executed in parallel. This may cause a
notable speed up with respect to simple operations on many elements that are executed
in a loop on the CPU. However, copying data from and to the GPU memory is another
bottleneck in this case. Moreover, the CPU thread is blocked the entire processing and
copying time the graphics card requires, i.e., the CPU core cannot perform other tasks
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while the graphics card is busy with the calls. To overcome this, cudaStreams and the
asynchronous functions of the CUDA runtime API can be used. An example code that
performs multiple asynchronous kernel launches for chunk-wise processing of a data set is
given in Listing 3.2.

Listing 3.2: Asynchronous kernel launches, chunk-wise processing. Adopted from [127, p. 192-204] .

//// process data asychronously in N chunks

#define N (8)

////// at start up: create number of stream streams and allocate

// both device and pinned host memory

// allocate pinned memory for data on host

uchar* host_data = NULL;

HANDLE_ERROR( cudaMallocHost((void **)&host_data, data_size) );

// allocate pinned memory for result on host

uchar* host_result = NULL;

HANDLE_ERROR( cudaMallocHost((void **)&host_result, result_size) );

// allocate memory for data on device

uchar* device_data = NULL;

HANDLE_ERROR( cudaMalloc((void **)&device_data, data_size) );

// allocate memory for the result on device

uchar* device_result = NULL;

HANDLE_ERROR( cudaMalloc((void **)&device_result, result_size) );

// create cuda streams

cudaStream_t streams[ N ];

for ( int i = 0; i < N ; i++ ) HANDLE_ERROR( cudaStreamCreate( &(streams[ i ]) ) );

....

////// fill host_data

....

// condition: host_data is a uchar* pointer pointing memory filled with

// data to be processed of size_t data_size

////// trigger asychronous chunkwise processing

// assume data_size and result_size can be divided by N without rest

size_t data_chunk_size = data_size / N;

size_t result_chunk_size = result_size / N;

for ( int i = 0; i < N; i++ )

{

// copy the data to the device

HANDLE_ERROR( cudaMemcpyAsync(

device_data + (data_chunk_size*i), host_data + (data_chunk_size*i),
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data_chunk_size, cudaMemcpyHostToDevice, streams[i] ) );

// launch into kernel

my_kernel<<<blocks, threads, 0, streams[i]>>>(

device_data + (data_chunk_size*i), data_chunk_size,

device_result + (result_chunk_size*i) );

// copy the result from the device

HANDLE_ERROR( cudaMemcpyAsync(

host_result + (result_chunk_size*i), device_result + (result_chunk_size*i),

result_chunk_size, cudaMemcpyDeviceToHost, stream[i] ) );

}

....

////// the CPU thread can now do other tasks while the GPU is working on the streams

....

////// synchonize with streams before accessing result_host

for ( int i = 0; i < N; i++ )

{

HANDLE_ERROR( cudaStreamSynchronize( streams[i] ) )

// chunk i in result_host can now safely be accessed

....

}

....

////// clean up before closing

// free device memory

cudaFree(device_data);

cudaFree(device_result);

// free pinned host memory

cudaFreeHost(host_data);

cudaFreeHost(host_result);

// remove streams

for ( int i = 0; i < N ; i++ ) HANDLE_ERROR( cudaStreamDestroy( streams[ i ] ) );

The code given in Listing 3.2 first allocates pinned or page-locked host memory. This is
Random Access Memory (RAM) memory used by the CPU which is locked for paging, i.e.,
the Operating System (OS) is not allowed to move this data to swap areas on hard discs.
The asynchronous copy actions to and from the GPU memory happen using Direct Memory
Access (DMA) without interference of the CPU. This is only possible if the data is safely
placed in physical RAM rather than virtual swap RAM [127, p. 186].
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Next, in Listing 3.2 the device memory is allocated and a number of streams are created.
All this happens during start up. After this, the pinned host memory is filled with the
data to be processed. It is followed by the asynchronous copies and launches. In a loop
for each stream calls into cudaMemcpyAsync from host to device are followed by a kernel
launch with the respective stream specified and a call into cudaMemcpyAsync copying from
device to host. Note that these calls do not block the CPU until they are done but only
pop another action on the respective stream that can be executed as soon as the scheduler
of the GPU finds it appropriate. This means after the asynchronous chunk-wise processing
is triggered the CPU thread is free to perform other tasks.

In order to safely access results derived on the GPU with the CPU it is required that the
CPU thread is synchronized with the respective GPU stream before. This can further be
seen in Listing 3.2. Finally, before closing the application the allocated memory has to be
freed and the created streams have to be destroyed.

The timing diagram for Listing 3.2 could look like Figure 3.8. It can be seen that the
streams (S1 - S8) processing the different data chunks are using the different resources of
the graphics card in parallel. This results in an overall processing time reduced with respect
to the timing shown in Figure 3.7. Moreover, while the GPU is busy with processing the
data, the CPU is not blocked, i.e., can perform other tasks.

Figure 3.8: Timing diagram of the asynchronous calls.

When using the CUDA framework is important to note that a proper asynchronous timing as
shown in Figure 3.8 is only been achieved if a stream different from stream zero is assigned to
all asynchronous calls, the memory to be copied is page-locked as shown above and no implicit
synchronization happens. Implicit synchronization occurs if a synchronous CUDA runtime API
function, such as e.g. cudaMalloc, cudaFree or cudaStreamCreate, is called while streams are
active on the GPU [78]. It does not depend whether this is done from the thread that invoked
the stream action before or another thread of the application. A synchronous CUDA function
called while the GPU is processing calls cudaDeviceSynchronize, i.e., blocks until all invoked
asynchronous calls are done, before performing. This implies that for real asynchronous behavior
of an application using the CUDA framework it is necessary to preallocate all device and page-
locked memory and streams at start up, then reuse the buffered memory for all asynchronous
launches and free it only at the end before closing.

This is a serious design problem, when using the CUDA framework in a multi-threaded ap-
plication with distributed memory management and many functions invoking CUDA kernels
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for different purposes. To illustrate this at the example of a function from the gpu module of
OpenCV, the behavior of cv::gpu::add is analyzed here. Its function signature is:

void gpu::add(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask =

GpuMat(), int dtype=-1, Stream& stream=Stream::Null() )} [141]

Its parameters are:
• "a - First source matrix.
• b - Second source matrix to be added to a . Matrix should have the same size and type

as a .
•
[

...
]

• c - Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or a depth.

• mask - Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

• dtype - Optional depth of the output array.
• stream - Stream for the asynchronous version."[141]

OpenCV also features a decentralized memory management. The cv::gpu::GpuMat class, same
as its CPU counterpart cv::Mat implement reference counting [142]. It means that multiple
headers share the same data field. Copying the class instance only copies the header, i.e.,
flat-copy, rather than copying the entire data, i.e., deep copy. The copy constructor thereby
increments the reference counter, while the destructor decrements it. As the reference counter
reaches zero, i.e., the last header pointing the data field is destructed, the data field is freed.

Using reference counting in general unbinds the application programmer from the burden of
memory management. This is particularly a favor in a distributed architecture with many
classes. In particular, it frees objects immediately as soon as they are no longer accessible
[11]. However, its use by OpenCV in combination with CUDA may cause unintended implicit
synchronization because the constructors and destructors of cv::gpu::GpuMat may call into
cudaMalloc or cudaFree at points were this is not intended by the programmer and hard to
trace. For instance, let the above mentioned function cv::gpu::add be called in an application
while other CUDA streams are being processed by the graphics card asynchronously. In this case,
cv::gpu::add will only behave fully asynchronous, i.e., does not wait for its own completion nor
for completion of the other streams that have been launched anywhere else in the application,
if and only if

• the destination matrix c is a preallocated matrix with same size like a and b
⋆ and

• dtype is -1 and c has same type like a and b or dtype corresponds with the type of c
⋆ and

• stream is a proper pre-created stream, i.e., not the default value.

For not passing a stream, synchronous behavior can be assumed as intended by the programmer.
However, if the passed destination matrix c is passed as empty header or does not match the
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type and or size of the processing result cv::gpu::add creates a new matrix data field into
which the result is written and which is assigned to the header reference passed as argument c.
I.e., it allocates (and possibly frees!) data for the GPU using cudaMalloc, i.e., it causes implicit
synchronization with the streams that have been launched before. This synchronization can be
assumed to be not intended by the application programmer. Moreover, he can only avoid it if
and only if

• he assures that proper result matrices of correct size and type are passed on to all functions
of the gpu module

⋆ and
• he creates all needed GPU matrices at program start up

⋆ and
• he makes sure that at least one header for all GPU matrices stays in scope during the

entire program production time, such that the all data is freed only at the end of program
execution.

In the end, using the version 2.4 of the OpenCV gpu module’s API this means that for obtaining
fully asynchronous behavior you cannot take advantage of the distributed memory management
by the included reference counting but have to do your own resource pooling on top of it.
This was a particular problem for the development of the /line_detection_node with its
distributed architecture containing many classes that occasionally create matrices, including own
implemented kernels (matching and line detection), usage of different functions from OpenCV
gpu module’s API and different wait states and processing steps in the multi-threaded image
pipeline. A common resource pooling affecting all the modules of the architecture should be
avoided.

Therefore, a memory pool of GPU memory, page-locked memory and CUDA streams was im-
plemented. It replicates most of the CUDA runtime API in a separable namespace, thereby it
was possible to bind it beneath OpenCV. The design is shown in Figure 3.9. At start up, the
application - here the processing pipeline of the /line_detection_node - calls initialize on
the memory pool. This triggers it to allocate an amount of GPU memory as well as of page-
locked memory and create a number of CUDA streams using the synchronous CUDA methods
cudaMalloc, cudaMallocHost and cudaStreamCreate. After initialization, it replicates the
CUDA runtime API directly passing asynchronous calls, such as kernels or cudaMemcpyAsync.
However, the malloc and free methods as well as cudaStreamCreate and cudaStreamDestroy

are not passed on to the CUDA runtime API but handled by the memory pool itself, e.g.
by passing a pointer to chunk of respective size with in the preallocated memory to calls on
cudaMalloc. Consequently, OpenCV gpu module’s functions, such as cv::gpu::subtract or
cv::gpu::warpPerspective as well as the constructors and destructors of cv::gpu::GpuMat,
can now be called by the MWLP image pipeline without worrying about implicit synchroniza-
tion. Further, no memory preallocation is required for modules of the pipeline that implement
own CUDA kernels, such as the matching and the line detection. After the productive life-time
of the application, the program must call finalize on the memory pool. This causes it to free its
memory and release all pre-created resources.
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Figure 3.9: Design of the Memory Pool.

The memory pool can also be used without calling initialize (and finalize, consequently).
In this case, it just passes all calls to CUDA runtime API including cudaMalloc and so on, i.e.,
having the same synchronization behavior like the CUDA runtime API.

Consequently, the memory pool implemented here allows using distributed memory management
by reference counting on CUDA GPU memory without causing implicit, unintended synchro-
nization of the applied CUDA streams.

3.3 Image processing steps for line detection and line assembly

This section focuses on the image processing pipeline implemented for line detection and line
assembly in the /line_detection_node. This image processing pipeline processes the incoming
camera images down to assembled mwlp_scans. The images, thereby, can fall into different
processing and wait states. An overview of the image pipeline is given in Figure 3.10. The
pipeline is further explained in [137].

The processing of the images in the queue is performed by multiple worker threads executed in
parallel. Apart from the line filtering and the line assembly all processing steps are implemented
on CPU and on GPU. It can be selected using preprocessor directives whether each step may be
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performed on CPU or GPU. However, the GPU version has shown to have favorable performance
for all those steps. Further, the /line_detection_node can be built with a flag such that it saves
the image after each processing step to the file system for debugging and inspection purposes. It
this case only approx. 5 image per second (compared to 100 full frames without image logging)
can be processed, though.

The following subsections will now give in depth information on all pipeline steps seen in Figure
3.10.

3.3.1 Image acquisition

• Processing step 0: Raw image

The image acquisition is done by the ROS node /sensor_module. It reads out the camera while
the required lasers are turned on, assembles the image information with rotary encoder based
position stamp and time stamp from Arduino and publishes it to a ROS topic, as mentioned in
Section 3.2.2. The /line_detection_node then subscribes to the image topic. For improved
performance it is also possible to run the relevant classes from /sensor_module and /line_-

detection_node in ROS nodelets [30]. In this case, both modules run in the same process and
the image data is passed using shared pointers, i.e., there is no added computational cost for
copying the image data between multiple processes.

An example for an original image as it could occur when running the MWLP system is given in
Figure 3.11.

Figure 3.11: Raw image of three laser lines captured by the camera.

⋄ Wait state 0: Waiting for images to get appended
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Immediately after being pushed to the image pipeline the image gets into the first wait state
(cf. Figure 3.10). As mentioned, the image has already a (crude) position based on the rotary
encoder. For the MWLP system processing images does only make sense if the objects are in
relative movement. A single image captured by the camera is insufficient for gathering MWLP
data. Therefore, an incoming image always wait for a next image with different pose registration
before its processing starts. Further, the images are sorted based on the pose registration before
processing. I.e., if there is no relative movement between sensor and objects detected, only one
image will be pushed to the pipeline and remain in this wait state. All subsequently following
images are discarded and no processing takes place.

3.3.2 Mounting correction

• Processing step 1: Correction of angular camera mounting (conveyor skewness)

After images are pushed to the pipeline and a movement of the objects is provided, the process-
ing starts with the correction of the angular camera mounting. As required for triangulation,
the camera is mounted angular with respect to the laser lines. As the lasers for complying with
the MWLP concept (cf. 1.1.2) have to be mounted vertically, the camera mounting is slanted w.
r. t. the conveyor. This means that the projected image plane of the camera is tilted compared
to the object plane of the conveyor. This is depicted in Figure 3.12.

Figure 3.12: Scheme of tilted image plane.

This difference between the respective planes results in a FOV of the camera that is wider
at the top of the image than it is at the image bottom. Consequently, pixel sizes are unequal in
the different parts of the image. This is illustrated by Figure 3.13. There a raw camera image
of a chessboard is shown that is noticeably tilted with respect to the projection plane of the
camera. Hence, the chessboard fields at image bottom in this image appear to be smaller than
the chessboard fields at image top. In Figure 3.14 this effect is corrected. Here, the chessboard
corners are detected and the perspective of the image is transformed such that the projection
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plane now matches with the chessboard plane. Consequently, all chessboard fields in Figure 3.14
have the same size. In Figure 3.13 this effect is exaggerated, though. For the real configuration
of the MWLP system the differences cause by this correction are hardly notable from the images
(compare Figure 3.15 with Figure 3.16). However, the improvements induced by this processing
steps are measurable, as will be shown in Section 4.2.

Figure 3.13: Uncorrected view of a no-
ticeably tilted chessboard.

Figure 3.14: Corrected view for tilted
image in Fig. 3.13.

Figure 3.15: Tilted chessboard with tilt
due to slanted mounting of camera of
MWLP prototype.

Figure 3.16: Corrected view for tilted
image in Fig. 3.15

The mounting correction is performed by using the OpenCV methods cv::warpPerspective

or cv::gpu::warpPerspective if performed on CPU or GPU, respectively. The required ho-
mography is calibrated ones during the calibration procedure of the MWLP system (cf. 3.6).
It is then applied to each incoming image using the mentioned methods. Some figures on the
runtime of the mounting calibration on the PC of the MWLP system (cf. Table 3.3) are given in
Table 3.4 for both CPU and GPU. This analysis took place on the same data (processing from
rosbag) and with the same processing parameters. Clearly the GPU outperforms here.
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Table 3.4: Runtime of the mounting correction on CPU and GPU.

Number of images Average time per image Standard deviation

CPU 1170 60.0 ms 24.6 ms

GPU 1171 2.96 ms 0.98 ms

3.3.3 Image matching

After the mounting correction was performed, the image matching of sequentially captured
images is the next major task. It is needed to enhance the position registration for the images in
order to improve the line assembly as the different wavelengths components in a single MWLP
scan line originate from different camera images. The image matching is based on Sum of
Absolute Differences (SAD).

An advantage of having the image matching to run after the mounting calibration is that (in
ideal case) the conveyor movement can be modeled as shift in y-direction in the image as the
image’s projection plane is identical with the object plane of the conveyor. If the conveyor and
camera vertical are not perfectly justified (non-ideal case), an additional x-shift may also be
taken into account, but rotations and z-shifts must not be modeled in this constellation.

• Processing step 2: Crude line filtering before matching

Before the image matching can be performed, a crude line filtering takes place. This step is
needed because - in order to track movement - the matching may only take into account pixels
of the background of the images. The positions of the laser lines are (partly) caused by the laser
mounting, which is not moved w. r. t. camera. I.e., the lines must be filtered out to assure
that they do not disturb the matching. Note that a line detection is here not yet intended
nor conducted. This step is basically a very crude filtering creating a mask for filtering out
everything that could possibly be a line.

The result of line filtering is given in Figure 3.17. It is the processed version of the camera
image given in Figure 3.11 with mounting correction and line filtering performed. As the figure
shows, the lines are filtered out in Figure 3.17 and only the background remains structured.
Moreover, the (slight) effects of the mounting correction can also be noted in Figure 3.17. Tiny
black regions appear at bottom right and bottom left as the camera FOV is smaller at bottom,
i.e., the perspective transformation results in undefined regions here.

The line filtering is done by adaptive thresholding followed by a dilation operation. The OpenCV
functions cv::adaptiveThreshold and cv::dilate are used here. Unfortunately, there is no
GPU counterpart for cv::adaptiveThreshold provided by OpenCV. Fortunately, using SSE
acceleration the OpenCV implementation of cv::adaptiveThreshold is already relatively fast.
The performance for processing the above mentioned data is given in Table 3.5. The average
processing time per image with full camera resolution on the PC of the MWLP prototype is
around 12.3 ms. This appears relatively long as the 100 images are to be processed per second,
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Figure 3.17: Camera image after mounting correction with filtered laser lines. Values of pixels that are
masked by the filter derived mask are set zero, i.e., appear black.

Table 3.5: Runtime of the line filtering.

Number of images Average time per image Standard deviation

CPU 1171 12.3 ms 3.41 ms

i.e., one image can (theoretically) block the (entire) processing resources for 10 ms. However,
using hyperthreading the CPU can process eight threads in parallel meaning that only one out
of eight virtual cores is blocked for the 12.3 ms with this task. Hence, processing full resolution
images through the line filter in this constellation is still possible at up to approx. 640 Hz -
theoretically and assuming there are no other tasks to be performed on the CPU. Therefore, an
own implementation of the adaptive thresholding on the GPU was not required and for all tests
described here the CPU implementation was used for line filtering.

⋄ Wait state 1: Waiting for movement of at least two times maximum laser line
width

After line filtering, the image falls into another wait state. Here, the image has to wait for
a movement of the conveyor of at least two times the maximum laser line width (cf. Figure
3.10). This is needed due to the later following step of background subtraction when creating
the differential image. For this, the shift between the subtracted images needs to be safely more
than the laser line width. If the shift would be less than that the laser lines would be subtracted
with each other, i.e., they would cancel out in the differential image rather than being enhanced.

• Processing step 3: SAD-based image matching

As sufficient conveyor movement for matching happened and both, the image and its counterpart
to be matched with, are processed including processing step 2, the image matching is ready to
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be performed. As mentioned, the matching is based on Sum of Absolute Differences (SAD),
the Sum of Absolute Differences (SAD) of all pixels of both images are obtained and applied to
represent the matching error.

Such methods convolving templates over the entire image are typically much slower than key-
point based methods. Key-point based methods, such as SIFT [143] [77], ORB [144] [115] or
FAST [145] [114], and key-point based homography estimation have also been tested for this
step. The major favor of key-point based methods is that they can model arbitrary camera
movements, i.e., movements in six Degrees of Freedom (DOF). Further, with huge search space
they are usually much faster than convolving methods. However, they cannot be accelerated
much by restricting the search space as key-point detection and feature extraction cause the
major part of the required processing time. These steps do not depend on the search space, i.e.,
cannot be accelerated by restricting the search space. In contrast, convolution-based methods,
such as the SAD-based matching, can be accelerated much by restricting the search space [137].

In this case, the search space is restricted. As mentioned at the beginning of the Section 3.3.3,
the conveyor movements can be modeled thanks to the mounting correction by a combination
of x- and y-shift, i.e., two DOF rather than six DOF. Further, a robust estimation for the shift
is given by the rotary encoder position at the time the image was triggered. It can be used
to further speed up the matching process. The SAD-based matching takes the rotary encoder
position as initial guess. Then, using gradient method it optimizes the shifts such that the
matching error is minimized to the next local minimum. As the rotary encoder delivers a stable
and quite good estimation as input (just lacking a bit of resolution) this matching procedure
provides very good results. As it is SAD-based, the matching error to be minimized is thereby
represented as SAD of the images divided (normalized) by the sum of both images. Pixels where
an image contains a zero, i.e., likely pixel of a laser line filtered out, are not evaluated here. The
notation of this is given in Formula 3.1.

Formula 3.1: Minimizing logic of the SAD-based matching [137].

[x∗|y∗] = arg
min

[x|y]

(

∑

i,j

{

abs(I1(i, j) − I2(i + x, j + y)) , ifI1(i, j) 6= 0 ∧ I2(i + x, j + y) 6= 0

0 , otherwise

∑

i,j

{

I1(i, j) + I2(i + x, j + y) , if I1(i, j) 6= 0 ∧ I2(i + x, j + y) 6= 0

0 , otherwise

)

, where I1(i, j) and I2(i, j) are pixel values of the first and second image at position i, j

For the matching both CPU-based and GPU-based versions have been implemented as part
of this work. The CPU-based version basically convolves the images in nested loops and calls
into the OpenCV functions cv::absdiff and cv::sum with differently shifted ROIs for each
convolution step. However, it is too slow for practical use. In the performance test mentioned
for the previous processing steps, on average it took 468 milliseconds per image to run on CPU
(cf. Table 3.6).
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Table 3.6: Runtime of the SAD-based matching on CPU and GPU.

Number of images Average time per image Standard deviation

CPU 1045 468 ms 194 ms

GPU 1051 1.88 ms 1.13 ms

Figure 3.18: Overlay view of two matched images.

Now, it would be possible to just exchange cv::absdiff and cv::sum for cv::gpu::absdiff

and cv::gpu::sum to obtain a GPU based version. In this case, during summing up the images
in each convolution step, the pixels of the images would be treated in parallel. However, this
would cause again a lot of interaction between the CPU and GPU as the convolution loops
would still run on the CPU. As mentioned, the interaction between CPU and GPU is a major
bottleneck for GPU-based processing. Therefore, an own CUDA kernel was implemented for
the GPU-based matching version as part for this work. It not just treats the pixel in parallel
but (mostly) even unrolls the convolution loops, such that entire convolution steps can run in
parallel on the different stream processors of the GPU. This takes advantage of the parallel
processing on the GPU even more than just using cv::gpu::absdiff and cv::gpu::sum in the
loop, thus drastically reducing the runtime of the matching on GPU (cf. Table 3.6).

The result of the SAD-based matching is shown in Figure 3.18. The image shown in this
figure is an overlay image created from two images that have been matched using this method.
Both images are shifted with respect to each other. The applied shift was determined using the
matching method. Thereby, one image is drawn orange, the other in a light blue. This means
that everywhere, where the pixel values of the shifted images are identical, they sum up to a
gray value. Only where the pixel values differ, orange or light blue regions appear.

As Figure 3.18 depicts, the overlay of the images is gray throughout the background information.
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I.e., matching based on the background information worked out. The laser lines did not move
with the conveyor movement and are not taken into account for matching. Hence, the laser lines
appear colored.

3.3.4 Line detection

After the image matching is done, the line detection takes place. It is improved by a prior
subtraction of the matched images.

• Processing step 4: Differential image

As Figure 3.18 shows, the laser lines are the only parts in the overlayed image that appear
colored. This effect can also be used for the line detection. By subtracting two matched images
the laser lines can be highly emphasized. Further, the background subtraction also partly can-
cels out ambient lighting. This improves the robustness of the system against disturbances by
uncontrolled light, thereby reducing this critical point of the MWLP sensor concept (cf. Table
2.1 in Section 2.4). The subtraction result for the example image is depicted in Figure 3.19.

This technique for enhancing and improving the laser lines before detection is also e.g. used by
DAVID laser scanners. There a scene with fixed constellation of camera and objects is monitored
using a moved laser line. Thereby, a pre-captured image without laser is subtracted from the
following images to enhance the laser line [95, p. 28]. This technique could also be used by LP
sensors. However, for a conventional LP sensor with laser fixed w. r. t. camera, it requires
optical tracking, which is a computationally expensive operation.

In contrast to conventional LP systems, for the MWLP approach the optical tracking with
the SAD-based matching is performed anyway. It is required for the line assembly because
otherwise the line assembly would only be possible based on the rotary encoder information,
i.e., with significantly reduced resolution. However, since the matching is done anyway, the step
of creating a differential image can be performed with practically negligible computational costs.

The creation of the differential image is also implemented on both, CPU and GPU. The versions
many apply cv::subtract or cv::gpu::subtract with properly shifted ROIs of the respective
images. As stated in Table 3.7, the processing times are relatively low, particularly for the
GPU-based version.

Table 3.7: Runtime of the image subtraction on CPU and GPU.

Number of images Average time per image Standard deviation

CPU 1049 1.89 ms 7.12 ms

GPU 1051 0.757 ms 0.340 ms
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Figure 3.19: Result of subtracting two matched images

• Processing step 5: Line detection

The image subtraction result gives a very significant, highly normalized input for the line detec-
tion. The line detection under these conditions provides good results using a simple threshold.
It searches for line segments in each image column. Thereby, as mentioned, the different laser
lines are searched in different ROIs or the image. Only one detected segment is allowed for each
ROI, otherwise nothing is detected. More details on the line detection procedure and particu-
larly on the feature extraction from the laser lines, that happens along with this step, will be
given Section 3.4.

Figure 3.20 depicts the example image with the detected laser lines drawn into it. The straight
horizontal lines drawn into it are the boundaries of the ROIs in which the laser lines are searched.
The line detection is also implemented on both, CPU and GPU. Here, the CPU version is also
optimized taking advantage of the 64 wide word-width on common devices for comparing 8-Bit
pixels in 8 adjacent image columns at once using a bit-mask. However, the GPU version is still
faster even though the speed up is not so significant like for some operations mentioned before.
The respective runtimes are given in Table 3.8.

Table 3.8: Runtime of the line detection on CPU and GPU.

Number of images Average time per image Standard deviation

CPU 1049 4.46 ms 4.30 ms

GPU 1051 2.33 ms 0.80 ms

Multi-wavelength laser line profile sensing for agricultural applications



62 Chapter 3. Realization of the MWLP system

Figure 3.20: Image with multiple detected laser lines of different wavelengths.

3.3.5 Line assembly

After the line detection is done, the line assembly follows as last step before mwlp_scans can be
published out from the /line_detection_node.

⋄ Wait state 2: Waiting for movement of calibrated distance between first and
last laser line

Before the line assembly can be undertaken, the image enters the last wait state of the image
pipeline. Here, it has to wait for until the conveyor has moved the calibrated distance from the
first to the last laser line (cf. Figure 3.10). A scan of the MWLP system is only possible after
the occurring objects have been scanned by all mounted lasers. Further, all images captured
over the mentioned distance have to be processed including processing step 5, i.e., line detection
before a single image can leave this state for line assembly.

• Processing step 6: Line assembly

The line assembly works on the detected laser lines including the extracted features in multiple
images. It assembles the features extracted for lasers of different wavelengths in different images
taking into account the pre-calibrated distances between the laser lines and assuming a vertical
mounting of the line lasers as mentioned in Section 1.1.2. I.e., it assembles the scans of the same
object position which is captured at different times with the different lasers.

It is possible to perform an additional scan check on the assembled data. This check assures
that for a constellation with e.g. 3 line lasers at least 2 or all 3 lasers have been detected. If
fewer lasers have been detected, even the values of the detected laser lines are not trusted and
discarded. Further, it can be adjusted to assure that the z-values gathered from the different
lines comply with each other. In this case, scan points are rejected if any of the obtained z-values
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differs from any other more than some value, e.g. 5 mm. This improves the reliability of the
obtained 3D scan data.

The line assembly is only implemented on CPU. As it works on the detected lines, i.e., on scan
data rather than image data, it is less computationally expensive. The runtime for processing
an image, i.e., assembly of a single scan line, is given in Table 3.9. After line assembly, the
assembled scan data is published. The image objects, which passed this step, stay in the queue
until it is safe that they will not be required for line assembly of other image objects. Finally,
the respective object in the image queue is erased.

Table 3.9: Runtime of the line assembly.

Number of images Average time per image Standard deviation

CPU 775 1.73 ms 1.56 ms

3.4 Feature extraction from the detected laser lines

This section is dedicated to the line detection and feature extraction from the laser lines as it is
done during processing step 5 of the MWLP image pipeline (cf. Section 3.3.4). Understanding
the feature extraction is prerequisite for understanding visualization and analysis of the MWLP
data in the following parts. Due to this an in depth explanation of line detection and feature
extraction is given here in addition to the brief overview during the description of the image
pipeline in Section 3.3.4.

Figure 3.21: Image excerpt of camera image
scanning potato (left) and stone (right) with two
lasers including detected laser lines [138].

Figure 3.22: Differential image corresponding to
image in Figure 3.21 including the detected laser
lines [138].

The feature extraction is described at the example of the camera image excerpt shown in Figure
3.21. Here, potatoes (left-hand side), i.e., objects with high water content, and a stone, i.e.,
and optically dense object are scanned by two line lasers. The respective differential image is
given by Figure 3.22. As expected, the laser lines are emphasized in the differential image while
the background information is canceled out. Moreover, the scattering of the laser lines by the
potatoes can clearly be seen in the differential image because the scattering is also caused by the
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lasers which do not move with the matched positions. As expected, the laser lines are scattered
by the potatoes because the laser light partly enters them and is scattered back beneath the
object surface. In contrast, the stone on the right-hand side of the image does not scatter the
laser lines and only reflects a small line (cf. Figure 3.23).

3.4.1 Line detection

The line detection is performed on the differential images. The images are searched column-by-
column for laser lines in the respective ROIs. This is illustrated by the following images. Figure
3.24 shows the image data of the differential image in Figure 3.23 as heat map. A blue colored
pixel thereby represents the minimum gray value, red color the maximum value. The image
resolution is down sampled for visualization purposes [138].

Figures 3.25 and 3.26 contain the same data like Figure 3.23 and 3.24. They represent the data
as morphological 3D views from different perspectives, where the z-values correspond with the
gray values of the respective pixels. Particularly in Figure 3.26 the effects of scattering can be
noted. In the front part of Figure 3.26 (corresponds to the left-hand side of Figure 3.23 where
the lines are significantly scattered) the peaks of the lines have quite smooth endings at bottom.
In contrast, at rear (corresponding to the left-hand side of Figure 3.23 without much scattering)
the peaks caused by the laser lines have relatively sharp edges at bottom.

For the line detection the algorithm runs along the image columns (Figure 3.26). Figure 3.27
depicts two examples for profile cuts through the morphological view in Figure 3.26 along two
different image columns. The left-hand side chart in Figure 3.27 is derived by cutting through
a column in the rear part of Figure 3.26, i.e., right-hand side in Figure 3.23, i.e., low scattering.
The right-hand side chart in Figure 3.27 is obtained from a cut along a sample column in the
front of Figure 3.26, i.e., left-hand side in Figure 3.23, i.e., high scattering. In these charts the
x-axis corresponds with the image row, the y-axis represents the gray value of the pixels in the
differential image. It becomes apparent that the heights of laser caused peaks in both cases do
not differ very much. However, the differences between situations with scattering and without
scattering can still clearly be noted taking into account the behavior of the curves at the foot
of the laser peaks [138].

Profile cuts, such as shown in Figure 3.27, are the basis for the line detection. The lines are
searched within their respective ROIs. Only one line segment is allowed in each ROI1. The line
segments are searched by applying a threshold. Thanks to the high grade of normalization of
the differential image because of the background subtraction the line detection worked out very
good applying a fixed threshold. Further, Mueller et al. have shown that a segmentation applied
prior to the common Center of Gravity (COG) analysis for line detection in LP can improve the
robustness of the system, particularly in case there is a lot of scattering [88]. For the MWLP
prototype a COG analysis after the segmentation by thresholding was skipped in order to im-
prove the performance of the algorithm, i.e., reducing runtime. The center of the detected line
segment is assumed to be the line position and is used for calculation of the distance values of

1Note that both sides of Figure 3.27 each show 2 adjacent ROIs of 2 lasers.
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Figure 3.23: Differential image with difference in scattering highlighted [138].

Figure 3.24: Differential image of data from ex-
cerpt shown in Figures 3.21 and 3.22 visualized as
heat map. Resolution is down sampled for visual-
ization purposes [138].

Figure 3.25: Visualization of Figure 3.25 as 3D
view. The z-coordinate in the morphological view
corresponds with the gray value of the respective
image pixel [138].

Figure 3.26: 3D view of the data with annotations. The line detection takes place by analyzing the
line profiles along the image columns [138].
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Figure 3.27: Sample cuts of the data along image columns (Left-hand side: low scattering; right-hand
side: high scattering) [138].

the pixels by triangulation. As the profile cuts are more-less symmetric (cf. Figure 3.27) the
differences that would be induced by an additional COG evaluation after the segmentation are
negligible [138].

3.4.2 Feature extraction

In order to obtain image-based information on laser reflexion and backscattering for all attached
lasers it is necessary to extract numerical features from the profile cuts along the image columns
for each scan pixel of the MWLP data. These numerical features can then later on be scaled
and visualized in an image-based manner.

Hereby, the high extraction rate has to be taken into account. If the MWLP prototype is
operating at 100 fps camera frame rate with 3 line lasers and full camera resolution of 2048
image columns, up to 614400 of such feature extractions will have to be performed per second
(parallel to laser/camera control, image acquisition and all other image processing steps). It
was refrained from fitting a model for describing laser light backscattering, such as the Gausian-
Lorentzian Cross Product Function (GL) which is used for analyzing scattering profiles of point
lasers [76]. Due to the high extraction rate model fitting is not possible during online processing.
To allow online processing only simple, primarily summing-based features have been selected for
extraction. Moreover, only features are extracted that can be calculated by looping through the
profile cut only once. Unfortunately, this also rules out Full Width at Half Maximum (FWHM)
as it would require running along the image column twice (Once for determining the threshold
and a second time for applying the threshold). The line detection and determination of the line
width are conducted using a fixed threshold. As mentioned above, this is possible thanks to
the good normalization of the image by the background extraction, which cuts out influences of
ambient light [138].
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Figure 3.28: Descriptions of the features extracted from the laser lines [138].

The feature extraction is shown in Figure 3.28. It is performed by the system on every laser line
and each image column of all incoming images. Figure 3.28 shows profile cut for a single laser
line. It is analog to those profile cuts plotted in 3.27. The extracted features are noted.

As mentioned, during the line detection first a threshold is applied. The crossing points of the
gray value curve with the line detection threshold are the line beginning and line end. As stated,
their center is assumed to be the line position for triangulation. Now, the feature extraction
follows. The descriptions of the extracted features are given in Table 3.10. The Line-Width is
defined as difference between the line beginning and line end. Further, the laser reflexion can be
described by the Intensity-Maximum (maximum gray value of the line) and the Intensity-Sum
(sum of pixel’s gray values over the line width). For estimation of the scattering of the laser
lines the Scatter-. . . features are intended. They sum up pixels values in different distances
before line beginning and after line end rather than between them. All described features can
be obtained by a single loop run. In principle - if required - a fitting of a GL could then be done
later on only on very relevant parts of the captured and stored scan data in offline processing.
However, during online processing the computational effort for feature extraction is, hereby,
reduced.
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Table 3.10: Numerical features extracted by the MWLP system for each laser line pixel [138].

Feature Description

Line-Width Distance between the detected line beginning and line end
(Crossing points of the gray value curve along the image col-
umn with the line detection threshold)

Intensity-Maximum Maximum gray value of the laser line in the differential image

Intensity-Sum Sum of pixel’s values summed up between line beginning and
line end, i.e., over the Line-Width.

Scatter-20-Section Sum of pixel’s values summed up in the column of the differ-
ential image between the 1st to the 20th pixel before the line
beginning and the 1st to the 20th pixel after the line beginning.

Scatter-40-Section Sum analog to Scatter-20-Section with distances between 21
and 40 Pixel (pel)

Scatter-40-Sum Sum analog to Scatter-20-Section with distances between 1 and
40 pel, i.e., equals Scatter-20-Section + Scatter-40-Section

Scatter-60-Section Sum analog to Scatter-20-Section with distances between 41
and 60 pel

Scatter-60-Sum Sum analog to Scatter-20-Section with distances between 1 and
60 pel, i.e., equals Scatter-40-Sum + Scatter-60-Section

Scatter-80-Section Sum analog to Scatter-20-Section with distances between 61
and 80 pel

Scatter-80-Sum Sum analog to Scatter-20-Section with distances between 1 and
80 pel, i.e., equals Scatter-60-Sum + Scatter-80-Section

3.5 Visualization of MWLP sensor data

This section shows how the numeric sensor data obtained by the MWLP system and described
in Section 3.4 is visualized to provide the user meaningful representations of it. Thereby, at
this point a generic visualization is intended, not geared toward a specific application but only
optimized for the sensor system.

3.5.1 Value scaling

For image-based visualization of the MWLP sensor data the extracted feature values have to
be scaled. Image visualization is typically performed with 8-Bit pixel values, i.e., the allowable
dynamic range of the pixel values is from 0 to 255. However, most of the extracted features
mentioned in Table 3.10 have larger dynamic ranges. E.g., the Intensity-Sum and the Scatter-. . .
values are stored in uint16_t variables, i.e., can theoretically range from 0 to 65535. Often times
not this entire range is required for them. But still the used dynamic ranges are significantly
greater than 256. Hence, it is necessary to scale them for image-based visualization. The scaling
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is performed linearly between selectable lower and upper borders. Values situated beyond those
borders are saturated. This is denoted in Formula 3.2.

Formula 3.2: Linear value scaling to 8 Bit range with saturation.

ScaledV alue =















0 , if OriginalV alue < LowerBorder

255 , if OriginalV alue > UpperBorder
(OriginalV alue−LowerBorder

UpperBorder−LowerBorder

)

· 255 , otherwise

To provide meaningful views of the data, thereby the scaling borders have to be selected properly
depending on the real - not theoretic - dynamic range of the respective feature. This can be done
manually or automatically. The automatic version analyzes the data to be visualized. In order
to avoid the scaling borders to be specified depending on crude outliers a configurable amount
of samples is saturated on both ends. I.e., if e.g. 5 % are to be saturated the 5 % percentile
will be selected as lower border and the 95 % percentile will be selected as upper border for the
scaling.

3.5.2 Pixel colorization

For colorizing pixels using one or more features extracted by the MWLP system three modes are
possible. A single feature can be visualized as gray scale or as heat map and multiple features
can be colored together overlaying different colors assigned to them.

• Single feature channel as grayscale

For gray scale visualization of a single feature of the MWLP data, simply the ScaledValue of
the respective channel and the respective pixel is written into the all channels of the pixel of the
out coming image in Red Green Blue (RGB) color space, as Formula 3.3 states. However, the
MWLP data can contain invalid pixels, e.g. due if the laser line was shaded for triangulation.
These are represented in the data using magic values. In order to distinguish invalid pixels in
the out coming images these are drawn in color rather than gray, e.g. red pixels signal that the
line detection failed to detect a line at their position.

Formula 3.3: Gray scale colorization.
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ScaledV alue

ScaledV alue
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






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• Single feature channel as heat map

For visualization of single feature channels as heat map, the Hue Saturation Value (HSV) color
space was used. The HSV color space encodes color information of a pixel using cylindrical co-
ordinates by the three components Hue, Saturation and Value. The Hue represents the rotation
angle and specifies the color.

The conventions used here are the same like the OpenCV function cv::cvtColor specifies for 8
Bit images. It assumes the range of the S and V components is from 0 to 255. The H component
is measured in degrees, i.e., goes from 0◦ to 360◦. However, to fit into the 8 Bit range the degree
value is divided by 2. Hence, the actual H range is from 0 to 180 [146].

For visualization as heat map the minimum ScaledValue is mapped to a blue color. Blue is
represented by the hue angle of 240◦, i.e., 120 following OpenCV conventions. The maximum
ScaledValue is mapped to red color. The hue angle here is 0◦, remains 0 following OpenCV
conventions. The ScaledValue in between are mapped to the H component linearly between
this. S and V components of the HSV color space are set to 255 for heat map visualization.
This is denoted in Formula 3.4. Invalid pixels of the system are drawn white into the heat map
image to distinguish clearly from the saturated colors of the valid heat map pixels.

Formula 3.4: Heat map colorization.
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• Multiple feature channels overlayed

Apart from visualizing single channels the system also offers the possibility to colorize multiple
channels overlayed in different colors. This, e.g., allows generating natural RGB views in case
lasers at wavelengths 405 nm (i.e., blue), 532 nm (i.e., green) and 650 nm (i.e., red) are mounted
to the MWLP system.

In this case, the colorization outcomes of all selected feature channels are summed up. The
colorization outcome of a single channel is thereby determined by multiplying an optional weight
factor with the configured color of the channel and the ScaledValue. This is divided by 255 to
fit the 8 Bit range and summed up for all selected feature channels as noted by Formula 3.5.
Invalid pixels are drawn in black color for this colorization mode.
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Table 3.11: Example for colorization: Configuration that creates an RGB view.

Feature Laser WeightFactor Color

Intensity-Sum 405 nm (e.g. #2) 1.0
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Intensity-Sum 532 nm (e.g. #4) 1.0
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Intensity-Sum 650 nm (e.g. #6) 1.0
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Table 3.11 gives an example for such a configuration2. The configuration could be used to
created an RGB view of the MWLP data if the above mentioned lasers are mounted. However,
in spite of likely being the most useful configuration this is not the only configuration possible
here. Arbitrary combinations of any number of feature channels provided by the MWLP system
are possible here.

Formula 3.5: Colorization overlaying multiple features.
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, with

WeightFactori V alue to weight the selected feature i with [0.0, 1.0]

Ri, Bi, Ci Components of the color to draw feature i with [0, 255]

ScaledV aluei ScaledV alue of feature i for respective pixel [0, 255]

3.5.3 Configurable MWLP image visualization model

For visualization of image-based MWLP data a flexible visualization model was set up that
encapsulates the mentioned scaling and pixel colorization techniques. It contains scalers for
arbitrary numeric data types for scaling to eight bit range as described before. Further, it

2The numbers with the # mentioned in the Laser column of Table 3.11 refer to the numbers for the lasers
given in Table 3.2.
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allows configuring which channels should be used for the pixel colorization. The model can be
used for pixel colorization of all visualization outcomes, i.e., point clouds, overlayed images and
mesh visualization. Later on, it was also be used for visualization of intermediary results of the
classification pipeline.

To configure the visualization model the rqt_plugin /overlay_viz_controller is used. Its
GUI is shown in Figure 3.29. For each type of image with configurable visualization a tab is
opened in this GUI. In Figure 3.29 just a single tab is shown as only the visualization of image-
based MWLP data is configured. On the left-hand side a list of channels is given. Each pixel
of the data contains numeric values for all features listed there. On the right-hand side at the
top the contribution of the currently selected channel can be configured. The currently selected
channel appears in a white box on the left-hand side. A check box has to be set in order to
use this channel for visualization. All channels used for visualization appear in the colors used
for their respective visualization on the left-hand side. The color for the visualization of the
currently selected channel can be specified using the color picker under the use channel check
box. Further, its scaling borders can be set there as well as the mentioned weight factor. For
the auto scaling drop box three selections are possible:

• No: In this case, the manually (or default) specified borders are used for scaling.

• Once: The scaling borders will be specified depending on the next data chunk and then
stay untouched.

• Always: The scaling borders will be refreshed for each data chunk.

Below the configuration of the selected channel in Figure 3.29 the configuration of the entire
image can be specified. Most important here is the selection whether a single channel shall be
colorized as gray scale or heat map. However, this selection does only matter if just one channel
is used for visualization.

Finally, there are two buttons in Figure 3.29. The right button reset discards all changes
that have been made through this GUI. The left button sends the modified configuration to
all visualization models in the connected ROS nodes. Thereby, all visualization outcomes are
effected, even those created in different ROS nodes. This common configuration can be seen
in Figures 3.30, 3.31 and 3.32. A visualization of MWLP data gathered from scanning cookies
is configured in these screen shots. As the figure shows, image visualization and point cloud
representation in rviz are colorized in the same manner.
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Figure 3.29: GUI of the /overlay_viz_controller.
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Figure 3.30: Image and point cloud colorization of scanned cookies in RGB (cf. Table 3.11).

Figure 3.31: Image and point cloud colorization of scanned cookies with gray-scaled distance data.

Figure 3.32: Image and point cloud colorization of scanned cookies with heatmap-like distance data.
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3.5.4 Visualization outcomes

For actually showing the colorized, image-based data with overlayed distance information three
possibilities are available, visualization as overlayed images, visualization as point cloud or as
mesh shape. The visualization options as overlayed images and 3D point clouds have already
been shown in Figures 3.30, 3.31 and 3.32. However, both of these options have drawbacks.
Images for visualization can only show spectral features or distance features as depth map.
Combining both in a single image view is not possible in an intuitive manner. Moreover, as stated
the MWLP data may contain invalid pixels due to the triangulation principle. Representing these
pixels in image visualization is only possible by stuffing the images with pixels of special colors
showing invalid data, such as the red pixels in Figure 3.31. In contrast, for point clouds such
pixels can be skipped, i.e., they are not drawn at all. However, when zooming into a point cloud
even between neighboring points there might be an uncolored distance. I.e., by having a point
cloud visualization it can hardly be seen whether there is a point missing between two adjacent
points or the distance between them is their ‘natural distance’, due to the sensor configuration.

To overcome these drawbacks a mesh-based visualization is provided, too. The mesh-based
visualization connects neighboring pixels/points in the organized point cloud using triangle
faces. However, only those neighboring points where no points are missing in between are
connected. I.e., the length of the triangle faces projected to the x-y-plane cannot exceed the
‘natural pixel-distance’, due to the sensor configuration. Visualization in this manner allows
showing the distance information along with colorization to the user - as a point cloud view
does - and further allows him exactly identifying poses where points are missing, e.g. due to
shading.

In order to derive a mesh-based view of the captured point cloud data surface reconstruction
was necessary. For surface reconstruction the Marching Cubes [74] algorithm "is the de-facto
standard" [160]. It was considered and initially tested in the version implemented by the Las
Vegas Reconstruction Toolkit [161]. However, the algorithm does yet approximate the surface,
thereby partly interpreting the data. This interpretation of the captured sensor raw data may
suit - depending on the parameters - for one application but may not suit in a different situation.
Hence, interpretation of the raw sensor data is not intended at this point because in some
situation it may let the sensor data appear less valuable than they are. It is intended to show
the sensor data to the user as raw as possible but as descriptive as possible. This is achieved
by a mesh generator that just connects the adjacent pixels of the organized cloud data without
approximation of the surface. The reconstructor pcl::OrganizedFastMesh [49] of the surface

module of the Point Cloud Library PCL [123] was found to do so by creating triangle meshes.
Further, it is relatively fast [49] and does not require an estimation of normals for generating
the mesh.

The generated mesh data can be colorized with the same visualization model like image data and
Point Clouds before. In order to show it to the user, it can be rendered with the PCLVisualizer.
However, rviz was the main tool for visualization used throughout this work as it is deeper
integrated into ROS and supports listening to tf [28] for referencing the positions of different
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Figure 3.33: Zoom into a Point Cloud visualiza-
tion of scan data from potatoes and stones.

Figure 3.34: Visualization of the same data as in
Figure 3.33 at the same resolution as mesh shape
in rviz.

3D objects [47]. To provide a mesh view also in rviz an rviz-plugin was implemented for
showing the mesh based data. Figure 3.33 shows a zoom into point cloud visualization of data
from scanning potatoes and stones. For comparison, Figure 3.34 shows the same data rendered
with the same resolution from almost the same view point but visualized as mesh shape generated
with pcl::OrganizedFastMesh. It is clear that many textures, which can be seen in the mesh-
based representation, cannot be identified in the Point Cloud view. Moreover, in the mesh view
some missing points at the smooth surface of the potatoes can be identified. I.e., likely some
minor adjustments of the sensor parameters could still improve the result. This issue cannot be
noted when relying on the point cloud representation.

3.6 Calibration of the MWLP system

In order to use the MWLP system its image pipeline as described in Section 3.3 a number of
different calibration steps is required, previously. These steps are described in this chapter as
well as the concept for persistence and use of the created calibration set of the MWLP system
in a distributed system architecture.

3.6.1 Calibration steps

This section describes the individual calibration steps of the MWLP system. A couple of GUI
screen shots of the different calibration steps are shown in order to illustrate the different steps.
Note that the system still lacks a common calibration GUI and the GUI views are still in flow.
The screen shots show very basic implementations created using OpenCV’s highgui module.
Nevertheless, the calibration logic, data set and procedure are stable and have shown to work
well. Hence, a refactoring of the GUI and creation of a common calibration GUI would cause
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the views in the screen shots cause changing slightly. However, the underlying logic being in
focus here would stay as it is.

• Calibration step 0: Camera calibration (skipped)

When using image data from cameras for image processing purposes, it is common practice and
usually required to calibrate the camera at the beginning using a chessboard pattern and then
rectify all incoming images during operation in order to correct lens distortions using the pin-
hole camera model [43]. This is particularly indispensable when using relatively cheap USB web
cams of consumer sector. With their cheap optics and small imagers the images are otherwise
unsuitable for automated image processing. Unfortunately, this step of image rectification and
correction of lens distortion is requires quite some processing power, if the images are coming
in at high frame rates.

However, in this case, industrial grade lenses are used and the camera comprises a relatively
huge 2/3" imager. Therefore, and because the processing capacities at the high image frame rate
are a critical point for online processing with the MWLP system, it was tested which impact
the conventional camera calibration really has for this configuration.

For testing this the camera was first calibrated using package camera_calibration provided
along with ROS [84] and a chessboard pattern. The lens mounted to the camera for this test was
of type Pentax RICOH FL-CC3516-2M (Focal length 35 mm; Aperture F1,6). Same as always
used for the MWLP system during this work, the camera of type Baumer HXG20NIR (cf. 3.1)
was used for this test. The object distance was approx. 60 cm.

After the camera was calibrated, the derived calibration model was applied to correct a set of
images captured with the camera. Samples of the collected raw images are shown in Figures
3.35 and 3.38. Figure 3.35 contains a shot of a chessboard pattern in front of the camera,
Figure 3.38 shows a shot of potatoes with the slight background illumination of the MWLP
system applied for matching (lasers are turned off). Figures 3.36 and 3.39 depict the images
after rectification. There are hardly any differences notable between the image before and after
rectification. Figures 3.37 and 3.40 show the difference images obtained by subtracting raw
image and rectified image from each other using cv::absdiff. In the case of the chessboard
there are only some minor fragments visible among the edges of the chessboard field. In the more
realistic case with the potatoes (Figures 3.38, 3.39 and 3.40) and the background illumination
of the MWLP system, there is next of nothing visible in the difference image. This means in
both cases the raw image and the rectified image are practically equal.

This was further observed and quantified for a set of captured images. In order to measure the
impact of the image rectification the Sum of Absolute Differences (SAD) method was applied
again, similarly to what has been described for image matching (cf. 3.3.3). But here no pixels
where skipped for evaluation, the resulting SAD value is just Sum of Absolute Differences of
both images normalized by the sum of both images. This was applied for the comparison the
raw image with the rectified image. The average of the obtained SADs for a set of 1886 images
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Figure 3.35: Collected raw
image of chessboard.

Figure 3.36: Image of Figure
3.35 after rectification.

Figure 3.37: Difference image
of Figures 3.35 and 3.36.

Figure 3.38: Collected raw
image of potatoes with MWLP
background illumination.

Figure 3.39: Image of Figure
3.38 after rectification.

Figure 3.40: Difference image
of Figures 3.38 and 3.39.

Table 3.12: Impact of the image rectification.

Number of images Mean SAD Standard deviation Min SAD Max SAD

1886 0.0653 0.0227 0.0315 0.119

was 0.0653, as Table 3.12 shows. This means the images do not differ relevantly. To make this
value comparable it can be stated, that for the SAD-based matching as described in Section
3.3.3 minima with values less than 0.12 can typically be trusted to be good matches.

Further, the runtime of the image rectification was measured during this test. The results are
given in Table 3.13. The average runtime for the set of 1886 images was 11.8 ms per image.
This means the step is not absolutely infeasible for processing with the MWLP system. It has
similar computation cost like the processing step line filtering, which also runs on the CPU of
the MWLP system. However, as the impact of the camera calibration is very limited as shown
and the computational costs are notable, it was skipped for most tests described throughout
this dissertation (unless otherwise stated in the following chapters). The reduced computational
effort was preferred here. The design of the ROS image_pipeline would still allow to plug the
image rectification in, if this was required for in another lens configuration, though.

Table 3.13: Runtime of the image rectification.

Number of images Average time per image Standard deviation

CPU 1886 11.8 ms 1.49 ms
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• Calibration step 1: Mounting calibration

As the description of the previous calibration step was just a description of the circumstances
that led to the decision to skip it, this is the first calibration step that actually has to be done
by the user in order to calibrate the MWLP system. It is required for running the processing
step of mounting correction (cf. 3.3.2). In order to perform this calibration step, a chessboard
pattern has to be laid flat onto the conveyor, i.e., in the object plane of the conveyor as described
in Section 3.3.2.

Figure 3.41: Screen shot during mounting calibration.

For running the mounting correction the camera driver and the lighting controller have to be
started. However, the camera runs at a reduced frame rate of e.g. 10 fps. Then, the mounting
calibration process can be started. It configures the lighting controller such that the LEDs for
background illumination are turned on and the lasers are turned off. Further, it subscribes to the
camera raw image. It opens a number of windows as shown in Figure 3.41. The incoming raw
camera image can be seen in the bottom left window of Figure 3.41. As soon as the chessboard
is properly shown in this window, the user can pull the ‘Start’ trackbar to 1 and the processing
starts. First the chessboard corners are detected in the image, which leads to the image in the
top right window of Figure 3.41. Based on the detected chessboard corners the homography for
the perspective transformation from the projected image plane to the object plane (cf. Figure
3.12) can be estimated. The obtained homography is modified, such that no rotation around the
z-axis is modeled. Further, the homography is optimized, such that least scaling is applied. This
is done in order to prevent loss of data as well as avoiding unneeded processing of interpolated
data. Finally, the image is cropped (Top left window in Figure 3.41). The result of processing

Multi-wavelength laser line profile sensing for agricultural applications



80 Chapter 3. Realization of the MWLP system

the image with the derived homography is shown in the bottom right window of Figure 3.41.
In this window the real transformation is shown, as it would be conducted on the incoming
images in the processing step of mounting correction during online processing. For inspection
and clearer visualization, the chessboard corners are also drawn into this transformed image and
the stuffed pixels that cannot be mapped during the perspective transformation are colored red
(During online processing the images are stuffed with zeros, i.e., black pixels). As the user sees
the result is appropriate, he can pull the ‘Save’ trackbar to 1 and the current homography and
crop window are saved to the calibration.

• Calibration step 2: Rotary encoder calibration

The next step after the mounting calibration has been performed is the calibration of the rotary
encoder. For using the rotary encoder data as initial guess for the matching it has to be
calibrated how differences in the count of the rotary encoder typically correlate to the image
shifts as outcome of the matching.

To calibrate the rotary encoder the camera and light controller stay active. Same as for the
previous step, background illumination is turned on, while the lasers are switched off. Now the
user has to record a number of images with rotary encoder pose stamps while the conveyor is
moving - forward, backward and different speeds.

These images are used for calibration. The previously calibrated mounting correction is applied
to the images. Next, images captured sequentially are matched with each other using the same
matching procedure as described in Section 3.3.3. However, here a previous line filtering is not
necessary here as the lasers are turned off. Further, unlike in Section 3.3.3 an initial guess is
not known for the matching, i.e., the matching must happen globally rather than locally. This
means this calibration step may take a couple of minutes. But this is not as critical as during
online processing. The matched image shifts are then correlated to the ticks counter of the
rotary encoder by least-squares fitting of a linear regression. However, a difference in the ticks
counter of zeros, i.e., no movement, should during calibration safely cause an image shift of
zero. Therefore, the intercept of the linear model can be skipped, i.e., the fitted function is like
y = ax rather than y = ax + b. After all images are matched, the derived factor is saved to the
calibration.

• Calibration step 3: Line laser ROI setting

The next following calibration is the specification of the laser’s ROIs. In accordance with the
description in Section 1.1.2 (cf. Figure 1.8) a dedicated ROI must be known for each laser active
on the MWLP system. These ROI are specified here.

For setting of the ROIs camera driver and lighting controller nodes are running. Now the process
for setting the ROIs can be started. There are different versions of this executable, of which each
can be used for setting the ROIs for a different wavelength configuration, e.g. the RGB-setter
is used for setting the ROIs in a configuration of the MWLP system with lasers #2, #4 and
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Figure 3.42: Screen shot of the laser ROI setter.

#6 (cf. Table 3.2). The process of setting the ROIs configures the lighting controller, such that
the LEDs for background illumination are turned off and the respective lasers, the ROIs shall
be configured for, are turned on.

As the process is started and the view is configured the user may place a blank calibration
target beneath the MWLP system flat on the conveyor such that it fills the entire FOV of the
camera. This target must be flat and have a constant Lambertian reflection behavior throughout
its camera facing surface, ideally with same level of reflection for all monitored wavelengths.
Ideally, calibration targets such as Spectralon panels provide such characteristics [39] and would
be used here. However, if lacking a Spectralon calibration target of proper size using a blank
sheet of paper laying flat on the conveyor has also provided good results.

Figure 3.42 shows a screen shot of the ROI of the camera. In the ‘Preview’ window at top left
the subscribed camera image of the laser lines (here config with green (#2), red (#6) and NIR
(#8) lasers) on the blank calibration target (here sheet of paper) with LEDs turned off can be
seen. The Mounting correction (cf. calibration step 1) is performed before the image is shown.
Further the boundaries of the laser ROIs are drawn into the image view (colored horizontal lines
in top left window of Figure 3.42). The user can now modify the ROIs by moving the respective
trackbars on the right-hand side. The ROIs must be specified by the user such that they do not
overlap, upper and lower boundary of each ROI do differ and each of the lasers is completely
inside a single ROI. Further, no high pixel values (exceeding the line detection threshold, cf.
Section 3.4) may be found in the image parts not belonging to a ROI. If any of these conditions
is not met, the image view will be overlayed red (cf. Figure 3.43), thereby indicating that the
current ROI settings are improper.
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Figure 3.43: Screen shot of the laser ROI setter if the specified ROIs are obviously not correct.

Figure 3.42 shows an ROI selection as it should be. The line lasers are here reflected by a
blank sheet of paper that lays flat on the conveyor. Therefore, it can be assumed, that the
object distances will not grow much more, objects on the conveyor will only cause the measured
distances to decrease. This means that all laser lines during practical measurements will not
move much in the bottom direction of the image. Therefore, the bottom ROI boundaries can
be relatively close to the respective laser lines. If there are objects on the conveyor, meaning
smaller measured distances the laser lines will move closer to the top in the image. Hence, the
top ROI boundaries are relatively far away from the laser lines. Further, there are small parts
of the image at top and bottom and between the ROIs not belonging to any ROI. These can
be used for additional trust indication during online processing, as there may not appear pixels
exceeding the line detection threshold in these regions. They can be used to detect that the
system’s MR is exceeded. Distances of e.g. 10 pel between the ROIs have approved to be a good
choice here. Finally, in Figure 3.42 can be noted, that the top laser line has the hugest ROI
while bottom laser line has the smallest. This is due to the configuration. The laser inducing
the top laser line has the hugest mounting distance from the camera and, thus, the triangulation
angle of the thought optical axis centering its ROI is the hugest. I.e., an object of constant
high measured by all these lasers will cause the top laser line to differ by the more pixel than
the laser line in the center, which in turn differs more than the bottom laser line if measured
in pixels. Consequently, targeting a similar measurement range for all lasers the ROI of the
top laser line must be the hugest. In turn, the top laser has also the best distance resolution.
Therefore, during online processing, if after the lines are assembled and the scan check is passed,
the distance value of the top laser line will be preferably used as distance value of the MWLP
scan pixel. Further, the mounting order was picked due to this issue. Here, the top laser is
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the green one (@532nm). This is because, as stated before, laser light mainly in the wavebands
between 600 nm and 1000 nm is scattered much by organic tissue [64]. The scattering can cause
problems when using industrial LP systems at 650 mn for scanning plants [101]. However, the
green laser is scattered less and therefore expected to provide the best results with distance
measurement. Hence, it is mounted as top laser with the best theoretical distance resolution
and is preferably used for the distance measurement. The distance values derived by the other
lasers during online processing will be used for the scan check (cf. Section 3.3.5) and all value
will be compared with each other, but if a pixel with the green laser passes, the value of the
green laser will be used as distance value.

After the user has selected the ROIs like shown in Figure 3.42 using the respective trackbars on
the right-hand side, he can pull the ‘Save’ trackbar to 1 which causes the process to save the
current ROI setting to the calibration file and then terminate itself.

• Calibration step 4: Prepare calibration of line detection and assembly

After the laser’s ROIs are specified for calibration step 4 the user may record a small number
(e.g. 10) of images with the same setup as before during step 3, i.e., background illumination
turned off and the selected laser turned on with camera FOV facing a blank reflection target.

The recorded set of images is then partly processed. The mounting correction is applied (cf.
calibration step 1). Next, the line detection in the previously specified ROIs takes place. How-
ever, unlike during online processing it is assumed that thanks to the setup with blank target
and background illumination turned off the line detection does work without any preprocessing,
i.e., the matching and differential image parts of the online processing are skipped. Finally, the
detected lines are drawn into the images with applied mounting correction as well as the laser’s
ROIs and the resulting images are saved.

An example for a resulting image of this step for preparing the line calibration is given in
Figure 3.44. The user may now inspect these image and approve that the laser lines are de-
tected correctly. The detected laser lines are the input for calibration step 5. In principle, the
calibration steps 4 and 5 could be merged to a single step. However, the steps are separated
to allow the user inspecting and approving the detected lines in order to assure a correct cali-
bration. If he can approve the detected lines and ROIs, he may proceed with calibration step
5.
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Figure 3.44: Example for a result image of calibration step 4.

• Calibration step 5: Make calibration of line detection and assembly

This calibration step uses the lines detected in the previous step to actually modify the calibra-
tion file. The images may be derived from a flat calibration target laying flat onto the conveyor.
Therefore, it is assumed that the distance between the object and the sensing head is equal
throughout everything seen in the view of the camera. Now all lines detected in the previous
step are fitted to a linear model by least-squares regression. Unlike during calibration step 2 the
intercept is not forced to zero here, i.e., fitted model is function is like y = ax + b. Thereby, x
represents the image column and y represents the image row where a pixel of the respective laser
line approximately appears. The result of this approximation is shown in Figure 3.45. Here the
fitted linear regression function is drawn in the respective colors on top of the laser lines. Note
that - unlike in Figure 3.44 - the colored lines drawn on top of the laser lines are really straight
lines here and not drawn pixel-by-pixel for each detected pixel.

The linear regressions derived hereby are used during online processing for two different pur-
poses. First, they are used for correction of a possible imprecise laser mounting. With a flat
calibration target, i.e., distance assumed equal throughout the camera’s FOV, theoretically all
laser lines should be exactly horizontal lines in these images. However, they are not as Figure
3.45 shows. Particularly the bottom-most laser line is sloped a bit. This is due to minor inac-
curacies in the laser mounting. The lasers are rotated a bit around the z-axis, i.e., not perfectly
aligned with the camera. This is corrected during online processing by always subtracting the
values of the linear regression functions calibrated here before evaluating the object distances.
Second, the linear regression functions derived here are the main calibration input for the line
assembly. The line assembly uses the distances between the laser lines obtained from these re-
gression functions and compares them to the image shifts obtained by the SAD-based matching
in order to assemble multiple detected laser lines to an MWLP scan. After all detected lines in
all processed images are fitted the obtained regressions are saved to the calibration file and the
user may proceed with calibration step 6.
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Figure 3.45: Example for a result image of calibration step 4.

• Calibration step 6: 3D-Calibration

After calibration step 5 is finished, all parts of the image processing pipeline of the /line_

detection_node can be used in principle. Only the scan check of the line assembly (cf. Section
3.3.5) cannot be used. This is because - e.g. for a constellation with three lasers mounted - there
are three distance values available for each pixel. But it is not known, how these values correlate
with each other. Further, the values are pixel difference in the positions of the detected laser
lines and it is not known, how these values correlate to metric dimensions, i.e., visualizations as
Point Cloud or Mesh Shape are not possible.

To overcome this the 6th calibration step is the 3D calibration. Here a 3D calibration object
with different, known height steps is scanned by the system. The 3D calibration object was
designed in CAD and then sintered by a rapid prototyping system of type EOS Forminga P 110.
It is a laser sintering system and has a minimum layer size of 0.06 mm. The CAD view and a
photo of the sintered prototype are depicted in Figure 3.46.

Next, the 3D calibration object is scanned by the system. Unlike for the previous calibration step,
here the full frame rate of the camera is required and lasers as well as background illumination
are turned on, i.e., the recording setup is identical with online processing. The images are
recorded while the calibration object on the conveyor is moved along-side the sensing head. The
images recorded while scanning the test object, e.g. with three lasers, could look like the one
given in Figure 3.47.

The recorded images are then processed through the image pipeline of the MWLP system.
All steps are performed. Only the scan check of the assembled lines is skipped, as it is not yet
possible. From the processed data the depth maps are created. However, here not a single depth
map is created but one depth map is created for each mounted laser. Figures 3.48, 3.49 and 3.50
show the obtained distance maps in for the same constellation as it was used as example before
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Figure 3.46: The 3D calibration object - left-hand side: CAD; right-hand side: photo of the sintered
prototype.

Figure 3.47: Camera raw image while scanning the 3D calibration object with three line lasers.

when the ROI setting and the line calibration have been described (I.e., lasers #2, #4 and #6
are mounted.). The structure of the test object can clearly be noted in all of these images. The
differences in the size of the shaded regions are due to the differences in the mounting positions.
As mentioned, the green laser is mounted in the front position, i.e., appears at top in Figure
3.47. Hence, it has the maximum resolution. In turn, it also shows the hugest shaded regions
among sharp edges of measured objects.

For correlating the thereby obtained distance values with the metric dimensions the known
distance steps of the 3D test object are used. The 3D calibration process automatically detects
the segment with the 3D test object crops and scales it. In order to safely identify the height steps
within the test object user interaction is once more required. Figure 3.51 shows the GUI for this
calibration step. In the center the newly captured distance map is shown in the window ‘This
image’. On the right-hand side a similar distance map is drawn in the window ‘Comparison’. It
was captured during development of this calibration step. There are polygons and circles drawn
on top of both views. These polygons and circles indicate the regions where the distance values
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Figure 3.48: Gray-scaled dis-
tance map of the green laser.

Figure 3.49: Gray-scaled dis-
tance map of the red laser.

Figure 3.50: Gray-scaled dis-
tance map of the NIR laser.

Figure 3.51: User interaction for 3D calibration.

are used for calibration. They may be completely inside the region of one height step. The user
could redraw these regions for calibration each time. But as the calibration object is known,
i.e., does not change and the extracted region is scaled usually they are exactly the same for
all images. Therefore, the regions that have been marked once on the comparison image are
drawn by default into each of such newly acquired distance maps of the 3D calibration object.
However, sometimes the image has to be rotated a bit or flipped in order to let the pre-marked
polygons and circles match the height steps of the calibration object. This depends on how
the calibration object is oriented on the conveyor. This rotation or flipping can be done using
the trackbars ‘Rotation’ and ‘Flip’ on the left-hand side of Figure 3.51. As the user sees the
polygons and circles all mark the same height steps in both images in the windows ‘This image’
and ‘Comparison’ he can pull the ‘Matches’ trackbar and the 3D calibration for the respective
laser is created and saved.

Thereby, the calibration is created by correlating all valid pixels that are inside a polygon or
circle with the height steps of the 3D calibration object which are known from the CAD data.
The values are again fitted to a linear model including intercept, i.e., y = ax+b, by least-squares
regression. The resulting coefficients are saved to the calibration file for each mounted laser.
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Figure 3.52: Merged gray-scaled distance map of the 3D calibration object from all lasers after scan
check.

After the 3D calibration the all processing steps of the image pipeline of the MWLP system are
ready to be used with the calibrated laser constellation, including the scan check, Point Cloud
and mesh visualization. In order to provide an impression of the scan check, Figure 3.52 is
given. It is obtained from processing the same data like shown in Figures 3.48, 3.49 and 3.50.
However, here the data was processed after the 3D calibration has been done. The invalid pixels
in this distance map are colored with differently. A red pixel means that this pixel could not be
scanned by any laser. The light blue pixel means that there were insufficient lasers that were
able to scan this pixel. Thereby, the scan check was configured such that at least two lasers had
to provide distance data in order to let the pixel pass as valid. Deep blue pixel values indicate
that the distance values obtained by different lasers after applying the 3D calibration differed
by more than 5 mm, so the scanned values are apparently not robust. It can be noted that
merging the distance information gathered from the different laser lines and applying the scan
check allows to reduce the number invalid regions of the green laser (compare Figure 3.48) along
with reduction of noise and crude outliers. As mentioned in Section 3.3.5, the parameters of the
scan check, i.e., minimum number of different lasers providing distance values and maximum
differences between these values, can be changed any time.

• Calibration step 7: Calibration of default colorization settings

As stated in Section 3.5.3, the upper and lower borders for scaling during the visualization of
the MWLP-data can be modified manually by using the /overlay_viz_controller or it can be
selected in the /overlay_viz_controller that the borders may be retrieved from the data to
be visualized. However, retrieving the borders from the data is a quite expensive processing step,
particularly as all the data samples (pixels) that shall be taken into account must be sorted in
order to obtain the respective percentile values. Therefore, during online processing it is better
to have fixed scaling borders that - of course - nevertheless can be modified or reevaluated.

This is done by the 7th - actually optional - processing step. It retrieves the scaling borders for
the default colorization setting. Thereby, the default colorization setting is to sum up multiple
Intensity-Sum values of different lasers multiplied with different colors, such as it is shown e.g.
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Figure 3.53: Image sample with bad se-
lection of the scaling borders for coloriza-
tion.

Figure 3.54: Image sample with after
auto selection scaling borders for coloriza-
tion.

in Table 3.11. Based on the scan data collected for the 3D calibration the upper and lower
scaling borders are retrieved as described in Section 3.5.1 and saved to the calibration file as
default values. As the calibration object has huge white parts these default values are typically
a good starting point for colorization of other scenes as well. The values are retrieved from the
data and then saved to the calibration file as defaults for this laser configuration.

To give an impression of the color calibration the Figures 3.53 and 3.54 are provided. In both
the collected sample data for the 3D calibration of the laser constellation with lasers #2 (green),
#4 (red) and #6 (NIR) are shown (identical scan data like shown in Figure 3.52). Thereby, in
both cases the Intensity-Sum features are colorized, where laser #2 is colorized green and #4
is colorized in red. Laser #6 (NIR) is colorized in blue in both cases, which causes the blue
sheen. Only the scaling borders for visualization differ. Figure 3.53 shows an example for a bad
selection of the scaling borders. Many pixels are over saturated, thereby loosing a lot of detail in
the visualization. In contrast, Figure 3.54 shows the same data after auto scaling of the borders.
Clearly, a more descriptive view.

3.6.2 Calibration persistence and distribution

As the previous Section 3.6.1 describes, for calibration of the MWLP system many steps are
required. Even if the conduction of many calibration steps do not take as long as the descrip-
tion might suggest, a calibration of the system should not be done more often than necessary.
Fortunately, after the system has been calibrated the calibration must not be conducted again
as long as the mounting of lasers and camera is not modified and the lens is not exchanged nor
its configuration adjusted. So for many potential uses a calibration could be relatively seldom
required.

In order to avoid having to calibrate the system each time, the calibration file can - of course -
be saved. Extensible Markup Language (XML) is used to persist the calibration. After startup
of the processing PC of the MWLP system, a ROS parameter [148] pointing the calibration file
to be used must be specified. Then the launches of the MWLP system can be performed. This
allows to used different calibrations on the same system, e.g. for different laser constellations.
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A part from the calibrated information described, the calibration can also contain non-default,
better suiting parameter values of a couple of processing parameters, such as the exposure time,
frame rate and image format of the camera or adjustments of the parameters of matching or
scan check.

The calibration is loaded by the /line_detection_node immediately after startup. In order to
provide it to other nodes requiring the calibration file (and potentially running on other PCs)
over the ROS network, the /line_detection_node sets up a ROS service server serving the cal-
ibration file - as requested - through the network. Other nodes that require the calibration have
to wait for this service to come up before they can completely start up. This further assures a de-
fined startup behavior. The main node of the MWLP system, i.e., the /line_detection_node,
has to be up before the other nodes can become ready for processing.
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Validation experiments with the
MWLP prototype

After the previous chapter described the hardware and software design and development of the
MWLP prototype, this chapter will focus on the quality of the sensor data derived using the
MWLP system, i.e., 3D range data with matched reflectance and scattering data at multiple
wavelengths. Different experiments were conducted in order to show how the data performs
and how the results are influenced by different processing conditions and/or modifications of the
processing chain.

4.1 Sample scans

First, to give a feeling of the quality of the data this section will show a couple of sample scans
derived with different laser configurations.

Figure 4.1 shows scan data of sugar beets collected using the lasers #1, #3 and #5 (cf. Table
3.2), i.e., in an RGB configuration of the MWLP prototype. Figure 4.2 depicts scan data
of different vegetables. Top-left part of Figure 4.2 shows carrots, top-right European radishes,
bottom left daikon radishes and bottom-center/right bananas. These scans are collected applying
the lasers #2, #4 and #6, i.e., another RGB configuration. In both cases the data is visualized
as 3D point clouds wherein each point of the point cloud is colorized as described in Table 3.11.

Figure 4.3 plots scan data of an apple which was collected using the red laser #6 at 650 nm
and the NIR laser #8 operating at 850 nm. The view is showing gray-scaled data, wherein the
depth map is given on the left-hand side and the gray-scaled IntensitySum data of the lasers #8
and #6 are given in the center and on the right-hand side, respectively.
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Figure 4.1: Sugar beets scanned with lasers #1, #3 and #5 visualized as point cloud [137].

Figure 4.2: Different vegetables scanned with lasers #2, #4 and #6 visualized as point cloud.

Figure 4.3: Depth map (left) and grayscale reflections of #8 and #6 for an apple and a piece of wood.
Invalid pixels, e.g. shaded for triangulation, appear hatched [137].
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4.2 Accuracy of the line assembly of multiple laser lines

Using the MWLP system the collected scattering and reflectance data of different lasers at
different wavelengths are gathered in an SDM-manner, i.e., at a particular point of time each
laser highlights a different position of the sensed object. Consequently, the captured data of the
same object point highlighted sequentially by all the laser has to be assembled. Hence, (minor)
mismatches of the different wavelength channels of the data are inevitable. This section intents
to quantify these mismatches and monitors how they evolve with different system configurations
and measurement speeds.

4.2.1 Method for quanitifying the mismatches

In order to quantify the mismatches of the different wavelength channels a 9-by-6 corners chess-
board pattern was scanned by the MWLP prototype (Figure 4.4). Each chessboard field of
the pattern was 8 mm times 8 mm. Thereby, for checking repeatability the chessboard pattern
was scanned three times in each configuration. Afterwards in the processed sensor data the
chessboard corners were detected independently in the image representation of the Intensity-
Sum values of each wavelength channel (Figure 4.5). Next, the Euclidean distances between
the independently detected chessboard corners in the different channels were calculated. These
distances are assumed to describe the misalignments of the different channels well. Ideally, they
would be zero. However, in real world due to the mismatches some values close to zero are
expected.

Figure 4.4: Point cloud of chess board pattern scanned with #2, #6, and #4 [137].
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Figure 4.5: Detected chessboard corners in the gray-scale image of a single laser channel.

4.2.2 System configurations

The mismatches were monitored in different system configurations. Different lens optics and
different laser constellations were taken into account.

• Lens optics

Three different lens optics were used, a Pentax C3516-M lens, a Schneider XENOPLAN 1.9-35
ruggedized lens and a RICOH Fl-BC1218A-VG lens. The lens optics are itemized in Table 4.1
and shown in Figure 4.6.

Table 4.1: Specifications of the tested lens optics.

Product Focal length Min f number Min object distance

Pentax C3516-M 35 mm 1:1.6 0.4 m

Schneider XENOPLAN 1.9-35 35 mm 1:1.9 0.35 m

RICOH Fl-BC1218A-VG 12.5 mm 1:1.8 0.3 m

The difference between the Pentax and the Schneider lens is mainly that the Schneider lens is
broadband compensated in the wavelength range between 400 nm and 1000 nm. Therefore, it is
the expected to provide higher transmittance and less distortion particularly in the NIR range
than the relatively low cost Pentax lens, which does not have this feature. However, the optical
specifications of both lenses are fairly the same.

The major difference between the RICOH lens and the other optics is its lower focal length.
Therefore, the FOV of the camera and, hence, the MWLP system is wider using this optics.
While using the Schneider and Pentax optics typically only a stripe of approx. 20 cm width can
be captured, with the RICOH lens this stripe can be widened to 60 cm. This is illustrated in
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Figure 4.6: The used lens optics: Pentax C3516-M (left-hand side), Schneider XENOPLAN 1.9-35
(center) and RICOH Fl-BC1218A-VG (right-hand side).

Figure 4.7. The top-left image in this figure shows scan data of a scene with a cable collected
with the Schneider lens. The bottom-left image depicts scan data of the same scene collected
with the RICOH lens. A photo of the scene is given on the right-hand side. It can clearly be seen
that the Schneider lens provides with more detail, but the left and right parts of the scanned
cable are outside the FOV. Hence, they do not appear in the scan data. The RICOH lens, in
contrast, captures the cable completely.

However, it has to be stated that the system was during this entire work mainly developed with
focus on the FOV of 20 cm. The tests with the RICOH lens are mainly to show the feasibility
of wider FOVs. But measurements at the same level of data quality would also require other
lasers and reordering of the LEDs for background illumination. This manifests in the differences
of point density and the darker pixel colors on the scan sides notable in the bottom-left image
of Figure 4.7. This effect is caused by the inhomogeneous intensities along lines of the applied
line lasers. As Figure 4.8 shows, the reflection intensity of the laser lines is notably higher
in the center of the camera’s FOV. Hence, if the system must be operated in this mode for an
application, other line lasers with a more homogeneous intensity distribution have to be applied.
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Figure 4.7: Wider FOV with the RICOH lens.

Figure 4.8: Inhomogeneous lines of the lasers #4 (top) and #6 (bottom).
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• Laser constellations

The line assembly has been tested in a constellation with lasers #2, #4 and #6 (RGB) as well
as with the combination of #4 #6 and #8 (RG_IR) (cf. Table 3.2). However, as will be seen
in Chapter 5 the configuration with lasers #4 #6 and #8 is the most relevant for the focused
applications. Therefore, the RG_IR constellation was more comprehensively checked.

• Sampling modes

As described in Section 3.1.1, the camera of the MWLP prototype of type Baumer HXG20NIR
can be operated in different sampling modes. Thereby, the frame rate can be increased be-
yond the maximum full resolution frame rate of 100 Hz if the camera is operated in bin-
ning/subsampling modes and/or a partial scan ROI is active. For these tests the three sampling
modes full frame, binning (here referring to 2x1 binning) and subsampling (here referring to 2x2
subsampling) are tested. E.g. in subsampling mode, theoretically up to 420 Hz camera frame
rate are possible. However, as this high frame rate caused instabilities in the camera driver and
the processing pipeline the frame rate in the subsampling modes was adjusted to approx. 340
Hz - 360 Hz.

4.2.3 Statistics for different system configurations

In Table 4.2 the descriptive statistics for the evaluation of the accuracy of the line assembly
for different optics and sampling modes. All measurements were conducted with the minimum
adjustable speed of the used conveyor of 0.025 m/s. For the 9-by-6 chessboard pattern and three
wavelength channels, there were 162 corner pairs of which their distances could be calculated.
Most measurements were repeated 3 times, i.e., the total number of (misalignment) distance
samples was 486. The figured distances in pixels were multiplied with the pixel sizes obtained
during system calibration in order to derive the misalignment values in millimeters.

Regarding the pixel scale, it is to mention that for the RICOH lens the FOV of the camera is
widened, as already stated in Section 4.2.2. However, this does not only apply to the x-direction
of the camera image but also to the y-direction. While widening the FOV in x-direction provides
with useful data for widening the FOV of the MWLP system the widening of the y-direction
FOV does not provide useful data for this experiment. The y-direction FOV corresponds to
the MR of the system. But the chessboard is flat so an increased MR is not needed for this
experiment. Therefore, only an ROI of the camera image in y-direction was read out from the
camera. Hence, with RICOH lens mounted the processing pipeline was fed with a lower data rate
than it was capable to process. This allowed interpolating the data collected with the RICOH
lens in binning mode, such that theoretically it had the same pixel size like the full resolution
data collected with the RICOH lens.

As Table 4.2 states, the best result with the minimal misalignment of the different laser channels
was achieved with the Schneider lens and full resolution camera readout. The average chessboard
corner distance in this mode was 0.371 mm. In the other capturing modes the average distances
increase up to 0.699 mm at this minimal conveyor speed. The maximum corner distance found
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Table 4.2: Descriptive statistics for the matching accuracy in different configurations.

Optics Lasers
Sampling

mode

Frame
rate
[Hz]

Pixel
size

[mm/pel] Count
Min
[mm]

Max
[mm]

Mean
[mm]

StdDev
[mm]

Pentax RGB full 66.54 0.10468 162 0.050 2.065 0.699 0.367

Pentax RG_IR full 93.67 0.10461 486 0 2.039 0.644 0.365

Pentax RG_IR binning 196.58 0.15019 486 0 1.571 0.545 0.333

Pentax RG_IR subs. 344.96 0.22060 486 0 1.560 0.469 0.278

Schneider RG_IR full 99.86 0.10132 486 0 1.232 0.371 0.234

Schneider RG_IR binning 197.27 0.13557 486 0 1.749 0.476 0.350

Schneider RG_IR subs. 343.89 0.20270 486 0 1.623 0.434 0.294

RICOH RG_IR full 133.02 0.29979 486 0 1.464 0.444 0.263

RICOH RG_IR binning 264.26 0.299791 486 0 1.585 0.505 0.257

at all was 2.065 mm, in the optimal capturing mode this maximum error was 1.232 mm. The
standard deviations of the monitored values around their means fairly correlate with the mean
at roughly 60 % of the mean’s value.

Hence, it can be stated that with the suggested processing pipeline it was possible - neglecting
individual outliers - to stably achieve sub-millimeter accuracy of the line assembly in all capturing
modes.

4.2.4 Accuracy of the line assembly at different speeds

After the accuracy of the line assembly was checked for the different capturing configurations at
minimal conveyor speed it was monitored how these values evolve if the speed of the conveyor
is increased.

If the conveyor speed is increased with constant camera frame rate, the main difference for
processing chain is the increased distance moved by the conveyor between two subsequent cam-
era shots. Assuming differences in the motion blur of the images can be neglected, this allows
emulating higher conveyor speeds with prerecorded camera images. This is done for all evalua-
tions shown in this section. The motion blur of the camera images is very low due to the short
exposure times in the range of one or two milliseconds. Further, in Chapter 5.1 experiments are
described which show the system can actually be operated at the conveyor speeds mentioned
here. However, in order to allow automating the experiments described here and not having to
capture data for each configuration and each speed step the higher speeds are emulated here.
This is done in the following manner: For increasing the speed from real capturing speed of
0.025 m/s to emulated speeds of 0.05 m/s, 0.1 m/s, 0.2 m/s and so on only every 2nd, 4th, 8th

1Interpolated
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Table 4.3: Averages of the corner misalignments at different (emulated) speeds.

Optics Pentax Pentax Pentax Pentax Scheider Scheider Scheider RICOH RICOH

Laser RGB RG_IR RG_IR RG_IR RG_IR RG_IR RG_IR RG_IR RG_IR

Sampling full full binning subs. full binning subs. full binning

Speed
[m/s] Mean of corner misalignments [mm]

0.025 0.699 0.644 0.545 0.469 0.371 0.476 0.434 0.444 0.505

0.05 0.843 0.599 0.481 0.557 0.643 0.547

0.1 1.272 0.817 0.550 0.765 0.646 0.546 0.628 0.600

0.15 0.779 0.609 0.670 0.543 0.758

0.2 0.852 0.528 1.077 0.689 0.510 0.696

0.25 1.094 0.621 0.722 0.878 0.727

0.3 0.641 0.755 0.562 1.282

0.35 0.736 0.842 1.362 0.780

0.4 0.771 0.779 0.548

0.45 0.789 0.937

0.5 0.944 0.708

0.55 0.880 1.030

0.6 1.156 0.847

0.65 1.108 1.015

0.7 1.146

0.8 1.308

0.9 1.605

etc. image of the collected images is actually passed on to the processing chain. This allowed
reusing the data captured for the previous section for these experiments.

The data captured for the previous steps was used for these evaluations. The number of images
passed on to the processing chain was step by step decreased, thereby emulating increased
conveyor speeds. At each step the chessboard detection was performed on each wavelength
channel of each processing outcome image. The means of the corner misalignments for the
different capturing configurations and different speeds are given in Table 4.3. However, it was
not possible to detect the chessboard corners for all speeds tested. This can be seen in Figures
4.9 to 4.11. Figure 4.9 shows the data from the chessboard scan with the Schneider lens in
subsampling mode at 0.025 m/s. The chessboard pattern is clearly identifiable. There are only
minor mismatches notable by the colored sheen around some chessboard fields. Figure 4.10 shows
the same scan with an emulated conveyor speed of 0.6 m/s. The mismatches have increased
from 0.434 mm for Figure 4.9 to 0.847 mm for Figure 4.10. However, chessboard pattern is
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Figure 4.9: Checkerboard captured with Schneider lens in subsampling mode at
0.025 m/s. Chessboard corners clearly detectable, minor mismatches can be seen
(colored sheens around the chessboard field).

Figure 4.10: Checkerboard captured
with Schneider lens in subsampling mode
at 0.6 m/s. Increased mismatches and
some invalid pixels can be seen. Chess-
board corners are detectable, though.

Figure 4.11: Checkerboard captured
with Schneider lens in subsampling mode
at 1.2 m/s. Increased mismatches and in-
consistent sizes of the chessboard fields as
well as many invalid pixels occur. Auto-
matic detection of chessboard fails.

still detectable by human inspection as well as automatically, which allowed to quantify the
mismatch. Figure 4.11 shows the scan with emulated speed of 1.2 m/s. The mismatches appear
to have further increased. Moreover, the boundaries of the checkerboard fields are washed so
much that the automatic detection of the corners fails. Hence, it is not possible to quantify the
mismatch using this method anymore. This is the reason for all speed series of all configurations
in Table 4.3 to stop at some point. Due to the higher capturing frame rate the subsampling
and binning modes allowed higher emulated speeds without causing the chessboard detection to
fail. As the allowed higher maximum speeds also the speed step was partly chosen higher for
these modes, which is the reason for the couple of empty table cells below the maximum allowed
speed for the respective series in Table 4.3.

A chart of the values given in Table 4.3 is depicted in Figure 4.12. Clearly, in tendency the
inaccuracies increase with increased speed. Due to lower resolution the binning and subsampling
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Figure 4.12: Chessboard corner misalignments over different speeds and configurations.

modes typically have a little higher mismatch at the lowest speed. However, the values are
ascending much slower with the increasing speeds for these modes, which can be explained by
the higher frame rate.

4.2.5 Different processing modes

To validate some choices made during the design and development the accuracy of the line
assembly was further evaluated as suggested in Chapter 3 and with some thinkable modifications.
These tests were only conducted for the highest accuracy achieved, i.e., using the Schneider
lens, RG_IR lasers and full resolution capturing at minimum conveyor speed. The prerecorded
data was used, again. This means all these processing tests were conducted on the same data
processed multiple times with the mentioned modifications of the MWLP image pipeline.
The descriptive statistics of these tests are given in Table 4.4. Figure 4.13 depicts the mean
misalignments in the different modes. The tested modifications of the MWLP image pipeline
are:

• With camera calibration

As stated in Section 3.6.1 the camera calibration and image rectification prior to passing the
captured images to the processing chain was skipped. As described and measured there, the
industrial class lens optics used here in combination with the 2/3" image sensor do not cause much
distortion so the modifications this step applies to the image are hardly notable. Nevertheless,
for this test a camera calibration was performed using the camera calibrator ROS package
camera_calibration [84] and an image rectification was performed prior to passing the images
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Table 4.4: Misalignment statistics for different processing modes.

As
Suggested

With
camera
calib

With
Center

of
Gravity

Without
matching

Without
skew
calib

Without
scan
check

Count 486 486 486 486 486 486

Mean [mm] 0.367 0.463 0.369 0.445 0.647 0.385

StdDev [mm] 0.217 0.251 0.215 0.230 0.386 0.244

Min [mm] 0 0 0 0 0 0

Max [mm] 1.232 1.482 1.216 1.434 2.747 1.244

Figure 4.13: Chessboard corner misalignments for different processing modes.

to the processing pipeline. In this case, the rectification did even cause a slight increase of the
mean mismatch (cf. Figure 4.13).

• With Center of Gravity

As elaborated in Section 3.4, a commonly used technique for detecting laser lines is Center
of Gravity (COG) analysis. However, Mueller et al. have shown that a prior segmentation
before the COG analysis improves the line detection, particularly if scattering is present [88].
By default, the line detection of the MWLP prototype detects the lines by thresholding, i.e.,
segmentation, and assumes the line position is in the center of the detected segment. The COG
analysis is skipped favoring the reduced runtime.

For this test the combination of prior segmentation and following COG analysis, as suggested
by Mueller et al. [88] was tested in order to compare the result with the default setting of
the MWLP system. As Table 4.4 shows, there are next to no differences between both modes.
Apparently, the observation, that the laser line induced intensity peaks in the images are fairly
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symmetric (cf. Figure 3.27), which was the basis for the assumption that COG and center of
the segment are very similar, can be generalized - at least for all the images captured here.

• Without matching

Without conducting the image matching and having the line assembly only relying on the data
provided by the rotary encoder the mean misalignment increases in this configuration from 0.367
mm to 0.445 mm. This appears to be very few. In a prior test conducted at beginning of 2014
skipping the matching caused a more significant increase of the mismatch from 0.563 mm to
1.834 mm [137]. Likely, there was very few slip in the data of the rotary encoder during this
test. And still, the matching is indispensable for outdoor use of the system on a vehicle as slip
is always present during field tests.

• Without skew calibration

Without performing the correction of the skewness between the camera image plane and the
object plane of the conveyor (cf. Section 3.3.2), the mean misalignment in this test increased
from 0.367 mm to 0.647 mm. This correlates with the tests from 2014 where the increase was
from 0.563 to 0.929 [137]. It again shows the necessity of this processing step and the respective
calibration step.

• Without scan check

The scan check filters out pixels after the line assembly where either not enough laser lines
could be detected for a particular point or the z-distance values obtained from different laser
lines differ too much (cf. Section 3.3.5). Skipping this step does not change the so-defined
accuracy of the line significantly, there is only a minor increase of the mean misalignments from
0.367 mm to 0.385 mm. This could be expected as the scan check mainly works on the distance
data and the chessboard is flat, i.e., no significant filtering can be expected. This step does not
help for the line assembly. It only filters out wrong 3D pixels in complex structures. Hence,
skipping it should not have a major effect on the line assembly, which is shown here.

4.3 Precision and comparison of the distance measurement

After the accuracy of the line assembly was tested, the precision of the distance measurement
of the MWLP prototype was evaluated. Further, it was compared with the precision of other
contactless optical image-based range measurement devices. In order to conduct these tests
the 3D test object already mentioned in Section 3.6.1 and shown in Figure 3.46 was used. As
stated, it is a laser sintered object created using a laser sintering machine for rapid prototyping
of type EOS Forminga P 110 with a minimum layer size, i.e., tolerance, of 0.06 mm. It comprises
different flat height steps of different heights and different area dimensions.

4.3.1 Measurement procedure

In order to check the distance measurement precision of the different devices the image-based
distance data of the 3D test object was recorded with each device and with the MWLP prototype
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in different configurations. Next, the region containing the data with the 3D test object was
cropped by manual inspection from each of the collected data sets as these oftentimes contained
huge regions around the test object of interest.

• Data correction and normalization

After cropping, possible tilt of the data was corrected. This can be caused by the respective
sensor system not being in perfect nadir position of the object, i.e., not looking straight vertically
down onto the object. An example for such data is given in Figure 4.14. To recall the 3D test
object it is depicted again in Figure 4.15. In Figure 4.14 gray-scaled distance data is shown,
invalid pixels are colored red. Clearly, parts of the test object of identical height appear farther
away in the top-left part of the image than test do in the bottom-right part due to an imperfect
relative positioning of sensor and object during the measurement.

In order to correct this effect the user has to mark wide regions in the data that represent a
single height step of the test object. These marks can be seen in Figure 4.16. Thereby, it is
not necessary to outline the entire region. More importantly, the outlined regions may safely
contain only pixels of the respective height step. Hence, ideally the user marked region outlines
are smaller than the respective region actually is. Following this, a bilinear regression takes
place. I.e., all distance values of pixels situated within the user marked regions are fitted to the
plane model z = ax+by+c using least-squares regression. Applying the so obtained model a tilt
plane is estimated for the entire image dimension. The gray-scaled values of the estimated tilt
plane of the data shown in Figures 4.14 and 4.16 are given in Figure 4.17. Next, the estimated
tilt plane is subtracted from the measured distance values in order to correct the tilt caused
by imperfect relative positioning of sensor and test object. Further, the images are resized to
have the same size and are normalized to scale within the same range for all used sensors and
configurations. The tilt corrected and normalized distance data as gray-scaled depth image for
the data shown in Figures 4.14 and 4.16 are depicted in Figure 4.18. During the normalization
the height range of the less than 10 cm high object is scaled in 11 Bit range. Hence, from the
numerical point of view a distance resolution of less than 0.005 mm can be represented while
the minimum step of the test object is 0.06 mm. I.e., the numerical resolution of the normalized
data is one order of magnitude better than the minimum step.

Figure 4.14: Tilt in the distance data caused by the sensor not looking straight from top onto the
object.
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Figure 4.15: Recall CAD view and photo of the 3D test object already depicted by Figure 3.46.

Figure 4.16: Regions belonging to a single height step of the test object marked by the user.

Figure 4.17: Grayscaled estimated tilt
plane from the regions marked in Figure
4.16.

Figure 4.18: Tilt corrected and normal-
ized distance data of the data shown in
Figure 4.14.
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• Checking distance step measureablity

For checking how precise the distance measurement of the different sensors is and, thereby, not
relying on data sheets, the measureablity of the different steps was tested. Noise had to be
taken into account. To check whether the different height steps are measureable, the user had
to mark adjacent regions in the image. In the marked adjacent regions all pixels of each region
must belong to a single plane and the respective height step must lie between these planes.
The regions can be marked using circles (ideal for small area steps) or polygons (for planes
with relatively huge area). In a perfect world without noise all pixels of these regions would
theoretically have the same distance values and the distance values of different regions would
differ from each other. However, as there is noise present this is clearly not the case. Therefore, a
particular distance step was said to be measureable, if the maximum of the standard deviations
of the pixel’s values within each of the marked adjacent regions was less than the difference
of the means of the pixel’s values within each of the marked adjacent regions. Two examples
for this are given in Figures 4.19 and 4.20. In Figure 4.19 the height step between the marked
adjacent regions is measureable. In Figure 4.20 it is not measureable [137].

Figure 4.19: Two marked
adjacent height steps that are
measurable.

Figure 4.20: Two marked ad-
jacent height steps that are not
measurable.

4.3.2 Comparison of different sensors

In order to compare the distance precision of the MWLP system with other state-of-the-art dis-
tance measurement devices a measureablity test with the distance maps gathered using different
sensors was conducted. Therefore, the 3D test object (cf. Figure 4.15) was scanned with the
following TOF and structured light sensors:

• Nippon FX 8 (TOF-based laser scanner with 2-axes rotating mirror) [48]

• IFM O3D200 (TOF-based camera with PMD sensor) [53]

• Microsoft Kinect I (structured light projection)

• Microsoft Kinect II (TOF-based camera)
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Figure 4.21: Depth maps the 3D test object obtained by different sensors scaled to same size. Left
most: Nippon FX8, center-left: PMD TOF; center-right: Kinect I; right-most: Kinect II. Invalid pixels
appear hatched [137].

Figure 4.22: Depth maps the 3D test object obtained by different sensors scaled to same size. Left:
LMI Gocator 2350; right: MWLP prototype. Invalid pixels appear hatched [137].

Further, it was scanned with these laser line profiling devices:

• LMI Gocator 2350 (commercial laser line profile sensor) [73]

• MWLP system prototype (developed here)

The results of these scans are depicted in Figures 4.21 and 4.22. Figure 4.21 shows gray-scaled
depth data of the Nippon FX 8, the IFM PMD 3D camera, Kinect I and Kinect II. Figure
4.22 shows the scan result for the tested line profile sensors LMI Gocator 2350 and the MWLP
prototype.

Based on the distance measurements in Figures 4.21 and 4.22 the measurablities of the dif-
ferent steps were tested. The results are given in Table 4.5. The values for IFM PMD 3D,
Kinect I, Gocator and MWLP of this Table were published in [137], the other sensors have been
added later.
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Table 4.5: Height steps of the test object. Height steps measureable with a sensor system are marked
X [137].

Height step [mm]

0.06
0.12
0.18
0.24
0.30
0.42
0.60
0.84
1.14
1.56
2.16
3.00
4.14
5.70
7.86
10.86

Nippon FX 8 X

IFM PMD 3D X X X

Kinect I X X X X

Kinect II X X X X X

Gocator X X X X X X X X X X X X X X X

MWLP X X X X X X X X X X X X

The tests for measureablity given in Table 4.5 are relatively rough and have only been conducted
once. Nevertheless, the result is clear and one can come to the same conclusion by inspection
the sensor data depicted in the different parts of Figures 4.21 and 4.22: The only field-applicable
image-based range measurement devices capable of achieving distance resolutions in the sub-
millimeter range are line profiling systems. The test may be a bit favoring the LP devices as
the Measurement Range (MR) of all devices with results shown in Figure 4.21 is in the order of
magnitude of meters while the MR of the LP is only a couple of decimeters. However, neglecting
the MR in terms of resolution they clearly outperform the other sensors.

Further, inspecting Table 4.5 it can be seen, that the MWLP prototype does not reach the
distance precision of the commercial single laser LP sensor Gocator 2350. This can be explained
due to the reduced ROI that is only available per laser. As for a constellation with 3 lasers only
one third of the image is available per laser, the distance resolution of comparable single laser
systems cannot be achieved. This drawback has to be accepted when using the MWLP system.

4.3.3 Extended statistics for different configurations of the MWLP prototype

As stated, the tests conducted in Section 4.3.2 were relatively rough, as the differences between
the different sensors are huge. This Section intents comparing different configurations of the
MWLP prototype. Hence, the differences were assumed to become smaller. Consequently, the
test procedure was refined further.

First change made to extend the statistics was scanning the test object 3 times in each config-
uration. A further extent was made to the manual placement of the marked regions that are
taken into account for checking the measureablity of the height difference of adjacent height
plane. Their random placement in a part of the height plane with more or less local deviation
could slightly influence the outcome of measureablity - not for very significant steps or clearly
unmeasurable steps, but at the boundary of measureability for one or to steps there were diver-
gent results possible. Therefore, the manually marked regions were automatically shifted into
five different places around the original marks and the measureablities for all these sub regions
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Figure 4.23: Automatically shifted marks for automatically comparing different sub sets of each plane.

were determined. In Figure 4.23 all the shifted and compared regions (five per height plane) are
drawn for a specific height step.

Table 4.6 shows an example for the outcome of these 3D measurement evaluations for a specific
configuration and speed. Here the statistics for the Schneider lens with full camera resolution
and RG_IR laser constellation operating at minimum conveyor speed of 0.025 m/s are given as
example. In the right most column the different height steps of the 3D test object are listed.
The total number of compared image region pairs for each height step is always 15 as the ob-
ject was captured three times and each manually marked region was automatically shifted to
5 adjacent positions. The column measurable count states how many of these monitored were
measurable according to the above mentioned definition, i.e., the difference of the means of the
pixel’s values of both regions are less than the standard deviations of the pixels values. For most
of the height steps either all monitored regions pairs are measurable or not measureable. Only
for some regions in each configuration this depends on some random factors. In this case, only
the height step of 0.3 mm is not clearly defined. In the right columns the aggregated difference
of the means of the pixel values taking into account all pixels belonging to any monitored region
in any captured record of the test object in this configuration is given as well as the respective
overall standard deviation for all pixel samples. Using this as indicator, the height step of 0.42
mm was measurable while the height step of 0.3 mm was not.

Table 4.7 shows aggregated results for different capturing configurations. Thereby, for each
configuration the step with the first measureable sample is listed. This step is the lowest step,
where at least one out of the fifteen compared region pairs was measureable, i.e., 0.3 mm for the
Schneider optics with full resolution according to the sample result given in Table 4.6. Further,
the average measurable step is listed for each configuration, i.e., the minimum step, for which
the mean aggregated over all monitored pixels is less than the respective standard deviation
aggregated over all monitored pixels. In case of the sample data in Table 4.6, this step is at 0.42
mm. Finally, the lowest step measurable for all fifteen out of fifteen region pair comparisons is
given. For data in Table 4.6 this value is also 0.42 mm.
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Table 4.6: Sample 3D check statistics for Schneider lens, full resolution.

Physical
distance

[mm]

Measureable
count

Total count
Overall

difference of
means

Overall
standard
deviation

10.86 15 15 490.13 17.03

7.86 15 15 357.73 16.45

5.7 15 15 256.87 15.14

4.14 15 15 161.47 14.20

3.00 15 15 128.67 14.47

2.16 15 15 89.40 13.99

1.56 15 15 68.07 12.45

1.14 15 15 45.87 13.55

0.84 15 15 29.07 13.76

0.60 15 15 21.93 12.43

0.42 15 15 18.93 12.77

0.30 4 15 10.80 15.01

0.24 0 15 7.40 18.14

0.18 0 15 7.27 23.49

0.12 0 15 8.13 21.44

There are no drastic variations between the different configurations in the 3D precision. Average
values for precision in all configurations are between 0.3 mm and 0.6 mm. And even the ‘worst-
case’ precision values of 1.56 mm is still significantly better than the values of TOF-based or
Structured Light (SL)-based systems estimated in Section 4.3.2.
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Table 4.7: Distance precision check results for different configurations.

Optics Sampling
mode

Min
measureable

sample
[mm]

Average
measureable

[mm]

All samples
measureable

[mm]

Pentax full 0.18 0.42 0.6

Pentax binning 0.3 0.3 1.56

Pentax subsampling 0.3 0.3 0.6

Schneider full 0.3 0.42 0.42

Schneider binning 0.18 0.42 0.6

Schneider subsampling 0.18 0.6 1.56

Ricoh full 0.42 0.42 1.56

Ricoh binning 0.42 0.42 1.56

4.3.4 Influence of the conveyor speed on the distance precision of the MWLP
prototype

Appending to the results shown in Table 4.7, the influence of the movement speed on the distance
measurement was tested. Same as in Section 4.2.4 these experiments where not conducted by
physically varying the conveyor speed but by down sampling recorded image data at lowest
speed before passing it to the MWLP image pipeline. This - again - allowed reusing the data
captured for the evaluation in Section 4.3.3 and automatically running this tests on the same,
but sparsed data.

The results of these tests are listed in Table 4.8. Unlike for the line assembly, there are no signif-
icant changes of the distance measurement precision with different speeds. Even the ‘worst-case’
precision does not exceed the 1.56 mm step regardless of the emulated speed value. The av-
erage values for most configurations do not show any variations at all, as depicted in Figure
4.24. For a few configuration variations are notable. However, a tendency for correlation with
the conveyor speed cannot be seen. The average values for all configurations stay in the range
between 0.3 mm and 0.6 mm regardless of conveyor speed. This can be explained by the main
factor influencing the distance precision of line profiling system being the triangulation angle,
i.e., mounting of camera and lasers. This was not touched for these tests. Hence, the tests
showed, that the conveyor speed does not notably influence the distance precision.
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Table 4.8: Measurable speed steps for different configurations and different (emulated) speeds.

Pentax Pentax Pentax Schneider Schneider Schneider Ricoh Ricoh

full binning subs. full binning subs. full binning

Speed [m/s] Average measureable [mm] / All samples measureable [mm]

0.025 0.42/0.6 0.3/1.56 0.3/0.6 0.42/0.42 0.42/0.6 0.6/1.56 0.42/1.56 0.42/1.56

0.05 0.42/0.6 0.3/0.3 0.42/0.42 0.42/0.6 0.6/1.56 0.42/1.56 0.42/1.56

0.1 0.42/0.6 0.3/0.3 0.6/0.6 0.42/0.42 0.42/1.56

0.125 0.42/0.6

0.15 0.42/0.6 0.3/1.56 0.42/0.42 0.6/1.56 0.42/1.56 0.42/1.56

0.2 0.42/1.02 0.3/1.56 0.42/0.84 0.42/1.56

0.25 0.3/1.56 0.3/0.6 0.6/1.56 0.42/1.56 0.42/1.56

0.275 0.42/0.84

0.3 0.3/1.56

0.35 0.3/0.6 0.3/0.6 0.6/1.56 0.3/1.56

0.4 0.6/1.56

0.425 0.3/0.42

0.45 0.6/1.56

0.55 0.6/1.56 0.6/1.56

0.65 0.6/1.56

0.75 0.6/1.56

0.85 0.6/1.56

0.95 0.6/1.56

1.05 0.6/1.56

Figure 4.24: Average measurable steps over conveyor speed chart.
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4.3.5 Variations of the processing chain

After the influence of the speed on the distance precision was checked, the effects of variations
of the processing chain in terms of modifying the MWLP image pipeline (cf. Figure 3.10) was
tested. The changes tested here were the same modifications, whose influences on the line
assembly were already tested in Section 4.2.5. The results of these tests are given in Table 4.9.

Same as in Section 4.2.5 these tests were only conducted for the configuration with Schneider
lens, full camera resolution, RG_IR lasers and minimum conveyor speed of 0.025 m/s. The
tested modifications of the MWLP image pipeline are identical with those tested in Section
4.2.5:

• With camera calibration

Unlike in Section 4.2.5, where adding the camera calibration slightly weakened the final result,
here including the camera calibration and adding image rectification as well as distortion using
the pinhole camera model to the processing chain slightly improved the result. The average
measurable step and the step, where all 15 monitored sample region pairs where measureable
both improved by one step from 0.42 mm to 0.3 mm. However, having in mind the required
computational resources and the slightly weakened result for the line assembly the minor im-
provements observed here still do not justify this processing step to be standard for the MWLP
prototype.

• With Center of Gravity

Adding the COG evaluation after the segmentation for line detection - hence, line detection
according to Mueller et al. [88] - did not have any effects on the result compared with the
suggested method. Consequently, the suggested method, i.e., assuming center of the line segment
as line position during line detection, was followed favoring the reduced processing time.

• Without matching

Adding the optical matching or skipping the matching and relying only on the rotary encoder
data did also not influence the 3D measurements. This was predictable as the matching is
primarily intended to improve the line assembly - which it showed to do (cf. Section 4.2.5) - and
secondarily to allow evaluation of line intensity and backscattering. An influence here could not
be expected and, hence, lacking an improvement here does not mean the processing step is not
needed.

• Without skew calibration

Skipping the calibration and correction of the skewness between camera image plane and con-
veyor object plane does slightly improve the minimum measurable step and the average mea-
surable step from 0.3 mm and 0.42 mm to 0.24 and 0.3 mm, respectively. However, apparently
the deviations between the results are increased shown by a worsening of the step for which all
sample region pairs were measurable from 0.42 mm to 0.6 mm. Having in mind the increased
deviations here and the significantly improved result for the line assembly in Section 4.2.5 the
relevancy of this processing step is clear.
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Table 4.9: Distance precision results for different processing modes.

Processing
mode

As
suggested

With
camera

calib

With
COG

With out
matching

Without
skew
calib

Without
scan check

Results
Min measureable [mm] / Average measureable [mm] / All measureable [mm]

0.3/0.42/0.42 0.3/0.3/0.3 0.3/0.42/0.42 0.3/0.42/0.42 0.24/0.3/0.6 0.3/0.42/0.42

• Without scan check

As Table 4.9 shows, adding or skipping the scan check did neither effect the quantified result
here, nor the line assembly in Section 4.2.5. For the line assembly, this is clear because the
scan check mainly works on the 3D data. In this case, one could expect an improvement of the
step. However, the procedure used for checking the distance precision here does mainly take into
account the pixels inside the height panes. In contrast, the scan check does primarily remove
weakly defined pixels at sharp edges, as indicated by the light blue and dark blue pixels in
Figure 3.52. Inside the height planes distance values of the different lasers do typically not differ
much, i.e., the scan check just passes them. Hence, the lacking effect on the so-quantified result
can be explained. In the end if a sufficient number of pixels pass the scan check, the level of
trust in the values of these pixels is always improved because this means similar distance values
are obtained by multiple laser lines. Furthermore, the scan check is not very computationally
expensive. Consequently, it stayed part of the MWLP image pipeline.

4.4 Scattering for different wavelengths and different materials

As mentioned, a particular advantage of the MWLP system is that it allows evaluation of laser
light backscattering at multiple wavelengths in an image-based manner. This section intents
to show capturing backscattering data and its descriptiveness at different examples. This is of
particular importance for wavelengths ranging between 600 nm and 1000 nm. In this range the
laser can partly either organic tissue with high water content and is scattered back beneath the
object surface [64].

Figure 4.25 shows an excerpt of an image collected by the camera of the MWLP system while
scanning an apple and a piece of wood. The top line corresponds to laser #4 @ 532 nm, the
bottom line is induced by laser #6 @ 650 nm. As expected, the red laser line at bottom gets
scattered significantly by the orange while the green laser line is not scattered much. This is
mostly due to less scattering because light of the green wavelength cannot enter the tissue as
good as the light of the red wavelength. Partly this is due to higher absorption of the green
light by the orange colored surface and tissue of the orange. Both lasers do not get scattered
much by the piece of wood as the laser light can not enter the optically dense material.

With the MWLP system this observation can be monitored in an image-based manner. This is
shown in Figure 4.26. The left part of Figure 4.26 depicts the Scatter80Sum values of the laser
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Figure 4.25: Scattering of a laser line @ 523 nm (upper) and @ 650 nm (lower) by an orange (left) and
a piece of wood (right) [137].

Figure 4.26: Scatter80Sum values as gray scale from scanning orange and wood with lasers @ 650 nm
(left) and @ 850 nm (right). Invalid pixels, e.g. shaded for triangulation, appear hatched [137].

@ 650 nm as gray-scale image. On the right-hand side gray-scaled Scatter80Sum values of the
laser @ 532 nm are shown. Both scans are made from mentioned scene given in Figure 4.25.
Both images are normalized to the same gray-scale. Clearly, the scattering of the red laser is
much higher than for the green laser in case of the orange. For the piece of wood both lasers do
not get scattered much, as expectable after inspection of Figure 4.25.

This effect can be useful for determining fruit properties that manifest beneath the surface
or classification of optically dense objects from those with high water content. For both of these
cases a short example will be given here.

• Classification of objects of different materials – potatoes and stones

An example where the objects with high water content need to be classified from optically dense
once is the separation of potatoes from stones, soil clods or alike residuals. An example of MWLP

Multi-wavelength laser line profile sensing for agricultural applications



116 Chapter 4. Validation experiments with the MWLP prototype

Figure 4.27: Different 3D visualizations of scan data obtained from potatoes and stones. Left: RGB
visualization of IntensitySum values. Center: Heat map visualization of IntensitySum values of laser @
650 nm. Right: Heat map visualization of Scatter20Section values of laser @ 650 nm.

data gathered by sensing objects this kinds is given in Figure 4.27. The left side of this image
shows the RGB colored point cloud, colored using the IntensitySum values of the RGB lasers
as described in Table 3.11. The view in center shows another visualization of the same data.
Again, the data is visualized as 3D point cloud, but the pixels are colored in a heat-map-like
manner with the highest numerical value mapped to red and the lowest to blue. The heat map
colorization in the center shows the IntensitySum values of the laser @ 650 nm. The heat map
colorization on the right-hand side of Figure 4.27 shows the Scatter20Section values of the laser
@ 650 nm. Comparing these images clearly shows that the scattering feature is very selective
for classification between the potatoes (high water content) and the stones/soil clods (optically
dense). This will further be evaluated in Section 5.2.

• Assessing properties beneath the surface – detection of apple damages

In order to demonstrate assessing properties manifesting beneath the surface and, hence, are
invisible to passive optical sensor systems an experiment with apples was conducted. The apples
were damaged by dropping them from a height of approximately 70 cm onto a wooden plate.
Immediately after the drop these damages cannot be seen, as illustrated by the photo of the
apples given in Figure 4.28.

Next, the apples were scanned using the MWLP system immediately after the drop. The dam-
ages in the structure of the apple were revealed by the evaluation of the Scatter40Section values
of the laser @ 850 nm. These values are significantly higher for the apples at damaged positions.
Hence, the scattering of the light is influenced by the changes in the tissue structure beneath the
surface that are induced by the drop. Consequently, the effect can be monitored immediately
after the drop using the MWLP system. The observation of the damages could be approved
15 hours later with a camera. After the apples have been stored under room temperature of
approx. 20 ◦C, due to decay the damaged positions were clearly identifiable in the image of an
ordinary photo camera (Figure 4.30).

Clearly, the test with the apple is at very early stage. By now, it can only be reproduced
for only green or only red apples as the Scatter40Section_NIR feature is also influenced by the
color and geometry of the apple. Hence, to make this really usable a correction algorithm would
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Figure 4.28: RGB camera photo of the damaged apples (top-left, top-right and bottom center) and
other not damaged apples immediately after the drop.

Figure 4.29: Scatter40Section values of NIR laser @ 850 nm photo of the damaged apples (top-left,
top-right and bottom center) and other not damaged apples scanned with MWLP system immediately
after the drop.

Figure 4.30: RGB camera photo of the damaged apples (top-left, top-right and bottom center) and
other not damaged apples approx. 15 hours after the drop.
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Figure 4.31: Heat map colorized depth map of the apples acquired with MWLP system while scanning
the data visualized in Figure 4.29.

be needed for green/red sparkled apples. Such algorithm could e.g. improve the significance
of the Scatter40Section_NIR channel by normalizing it depending on the apple color, i.e., the
IntensitySum features. Further, the scattering and reflectance features extracted by the MWLP
system as described in Section 3.4 do not take influences of the inclination angle of the object
surface into account. Without further processing, i.e., as shown in Figure 4.29, the inclination
angle is neglected. However, the inclination angle does influence the reflection and scattering
(cf. Paulus et al. [101]). For leaf sensing with combination of hyperspectral imaging and LP
sensors applicable correction methods taking into account the inclination angles have recently
been proposed by Behmann et al. [8]. Likely, such correction could provide reproducible results
for this application using only the MWLP system without need of additional sensors.

Consequently, this experiment gives an idea of the potential of the image-based scattering fea-
tures derived using the MWLP system. For practical application correction algorithms for
normalizing the scattering values taking into account the apple color and the inclination angle
would be required. However, the required input for these corrections, i.e., reflection intensity
values and 3D distance values is provided by the MWLP system (cf. distance map given for
scanned apples in Figure 4.31), thus no need of an additional sensor for implementing that.

4.5 Field trials

After the system had been tested under laboratory conditions mounted on top of a conveyor,
field trials were conducted in order to show the feasibility of outdoor use of the system under
weakly defined agricultural field conditions.

In order to conduct these tests the MWLP system was mounted into the autonomous field
robot BoniRob. It has an open module frame in its center where different modules, so-called
‘BoniRob-Apps’, can be mechanically attached as well as electrically and logically connected [4].
Photo of the prototype mounted into BoniRob is given by Figure 4.32. As Figure 4.32 shows,
the space beneath the corpus of BoniRob is shaded to reduce distortions of the sensing process
by sunlight exposure.
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Figure 4.32: Photos of the MWLP prototype mounted into a field robot of type BoniRob.

4.5.1 System adjustments

A couple of system adjustments had to be made for operating the system inside the field robot
BoniRob. These will be explained in this section.

• Obtaining image positions

As stated in Section 3.3.3, position stamps for the acquired images are required to enable the
SAD-based matching within the available processing time per image. The position stamps are
used as initial guess for the matching. Given them, the matcher must only find the local opti-
mum rather than a global optimum. Hence, the required processing time is drastically reduced.
In the previously mentioned constellation with the MWLP system mounted on top of a con-
veyor the position stamps are obtained by using a rotary encoder attached to the pulley of the
conveyor belt.
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Figure 4.33: Information flow to the image pipeline if the system is operated on conveyor with rotary
encoder.

The information flow of image and position stamp / time stamp data to the MWLP image
pipeline with the system mounted on a conveyor with rotary encoder is drawn in Figure 4.33.
The rotary encoder is connected to the Input/Output (I/O) ports of the Arduino Uno micro-
controller. Consequently, the current number of rotary encoder ticks, i.e., conveyor position, is
available for the Arduino at any time. As mentioned before, the Arduino further triggers the
camera at a constant frame rate via the I/O ports. Hence, for each trigger applied to the cam-
era by the Arduino a real time position stamp and time stamp is known. These are published
to the ROS node /sensor_module which further operates as camera driver. It assembles the
received image data from the camera transmitted via Dual Gigabit Ethernet (GigE) with the
respective position stamp and time stamp. Further, it publishes grouped messages containing
all the information for a single image to the ROS node /line_detection_node. The assembly
of image data from the camera with position and time stamp from the Arduino micro-controller
is done by matching the trigger counter of the Arduino with the hardware image counter of the
camera. This assures that losing messages from the Arduino or failed image transfers from the
camera over the network result only in single image groups missing, but the following groups
are still assembled correctly. The /line_detection_node then receives the image groups. It
mainly contains the multi-threaded MWLP ImagePipeline class for processing the image data
to MWLP scans. However, due to the different transmission channels the images do not nec-
essarily arrive sorted at this point. Therefore, the /line_detection_node further contains
another class called ImageGroupBuffer. Its purpose is constantly buffering a set of images, sort-
ing them by position and pushing the images in a safely defined order to the ImagePipeline via
a class method call. Further, it assures there are no images pushed to the ImagePipeline if the
conveyor is not moving, i.e., position stamp of consecutively captured image does not change.
If the position stamp of a consecutively captured image is equal to the prior, it will just replace
the respective image group in the buffer with the newly acquired one and discards the old one.
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Figure 4.34: Information flow to the image pipeline if the system is with BoniRob.

I.e., only images at unique positions are pushed to the ImagePipeline in correct order sorted
by position stamp.

In this configuration the time stamp of the image is in principle not required for the processing.
It is passed on to the ImagePipeline and finally added unmodified as time stamp to the result-
ing MWLP scan that is published to other nodes. However, the /line_detection_node itself
would work without it.

In case the system is operated inside the field robot BoniRob the information flow of the position
and time information is different. The modified structure is depicted in Figure 4.34. The wheel
encoders are connected to the Electronic Control Unit (ECU) and controllers of the drive train
of the robot. Mounting an additional rotary encoder to one of the wheels does not appear to be
a proper solution. Consequently, the ‘tick’ I/O ports of the Arduino of the MWLP system are
not connected. Hence, the position stamps passed from the Arduino to the /sensor_module

and further to the /line_detection_node are empty. The time stamps passed with the im-
age groups representing the real time trigger time stamp are used for retrieving the position
information from the navigation nodes and ECUs of BoniRob.

The ROS package tf is used to query the position stamp [28][29]. It allows keeping track of
coordinate transformations along kinematic chains in a distributed system [27]. The naviga-
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tion ECUs and nodes can thereby be seen as black box. All of them may publish individual
transformations to the ROS topic /tf at high frequency, typically with 10 ms cycle time. Next,
if a special parameter is set true before startup of the /line_detection_node, it internally
further sets up an instance for the tf::TransformListener class. This class subscribes to /tf

topic and allows querying the coordinate transformations between different frames along the
kinematic chain or how they evolve over time [27]. In this case, the first image incoming to the
ImageGroupBuffer is defined to be at zero position. The following images get position stamps
retrieved from the tf query. Thereby, it is queried how the frame of the MWLP system evolved
over time between the (real time) time stamp of an image and its prior image with the gobal
navigation frame (/odom or /odom_combined) as observer frame. This allows filling the postion
stamps of the ImageGroups inside the /line_detection_node and passing sorted and position
stamped images to the MWLP ImagePipeline. I.e., the MWLP ImagePipeline is treated like
in the constellation with conveyor.

The information flow in Figure 4.34 is more general than in Figure 4.33. It is not specified where
the position information originates from. In addition, it would be possible to use this design also
for the constellation with conveyor. To allow this, the ticks-information of the rotary encoder
would not be assembled with the images but needed to be published to /tf topic at high constant
frequency. This would allow always using the tf::TransformListener instance inside the
/line_detection_node for gathering the position information and not relying on a parameter
for selecting the position source. However, in this case, it would not be assured that the position
information in the buffer of the tf::TransformListener does exactly match the time when the
image was triggered. The listener would, therefore, in most cases interpolate between different
position steps using Spherical Linear Interpolation (SLERP) [27]. This interpolation does usually
not cause major differences if the /tf topic is available at high frequency. However, possible
distortions can be avoided if the exact value is picked as done in the information flow depicted
in Figure 4.33. If the mounting on the conveyor was only a test and development case and the
usage inside the field robot was the only use case, it would make sense to change the design to
the one shown Figure 4.34 for both cases. But as the constellation with the system mounted on
top of a conveyor is a real use case and the design in Figure 4.33 is favorable for use this use
case, it is preferable to keep both designs and switch by situation.

• Matching vs. Driving modes

Due to the nature of physics a conveyor has only one DOF while a robot navigating in a fields
plane has three DOF. For the optical matching with use of the conveyor the assumption was taken
that only image shifts in x-direction and y-direction are allowed. This assumption was made for
reducing the search space and thereby speeding up the matching process. For the operation on
the conveyor in combination the calibration and correction of the skewness between conveyor
object plane and camera image plane this allows to fully represent the conveyor movements
even if the camera’s vertical axis is not perfectly justified with the movement direction of the
conveyor. The latter would be required if the image shifts were restricted to the y-direction.

However, due to the assumptions made there not all three DOF of planar navigation (x- and y-
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Figure 4.35: Steering modes of BoniRob so far. Source: modified from [117].

movement as well as z-rotation) can be represented without modifying the MWLP ImagePipeline.
Fortunately, when measuring with the MWLP system the movement is fairly straight as the crop
rows or ridges have to be followed. But as the crop rows cannot be assumed to be perfectly
straight some (minor) steering must be allowed for the vehicle following the rows.

The BoniRob comprises four wheels that are independently steerable. The BoniRob - at the
time these tests were conducted - provided three different steering modes. These are illustrated
in Figure 4.35 and described as follows [117]:

A Crab steering
In this mode all wheels are rotated by the same steering angle. The vehicle can be moved
and change its position in both planar translational DOFs without changing its orientation.

B Four-wheels Ackermann steering
In this mode front and rear wheels are steered together following the Ackermann condition.
It results in a car-like steering with reduced turning radius. Both position and orientation
can be changed simultaneously.

C Rotate on spot
All wheels are steered such that all of their virtual axles intersect in the vehicle center. In
this mode the vehicle can rotate on a spot, i.e., change its orientation without changing
its position.

For sake of completeness it is to mention that prospectively a fourth steering mode will be added
to the capabilities of BoniRob in 2015/16. This mode will be the generalized approach for the
above mentioned and follow the Instantaneous Center of Rotation (ICR) concept described by
Schwesinger et al., 2012 [129]. However, the above mentioned steering modes will remain part
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of the Application Programmers Interface (API) of the navigation of BoniRob as well as of the
manual driving modes.

Coming back to the problem of mapping the matching concept of the MWLP system to the
driving modes of BoniRob, steering mode A, i.e., crab steering, solves this problem. The move-
ment takes place in the 2 planar directions that can be represented by the restricted and speeded
up matching of the MWLP system. A rotation is not given, as the orientation of the vehicle
does not change. This allows following rows with the BoniRob even if they are not perfectly
straight without breaking with the assumptions made in order to restrict the search space of the
matching step of the MWLP system. Hence, the steering mode A was chosen for the field tests
conducted with the BoniRob.

4.5.2 Sample scans

This section will only show some sample scans obtained results of field trials with the MWLP
prototype mounted into BoniRob. This is intended to show the feasibility of field-based applica-
tion. Further, quantified results for these tests will be given in Section 5.3 where a plant/weed
discrimination is tested for the data obtained during these tests. All these tests where conducted
using the Pentax lens as the Schneider lens was not available due to other field tests conducted
simultaneously. The speed for the scans shown here was at 0.025 m/s with full frame sampling.
However, it was varied during tests as well which will be elaborated in Section 5.3.

Figure 4.36 shows a colored 3D point cloud of the scans gathered with RGB lasers at top-
right. Further, in the top-left corner of Figure 4.36 a web cam view from inside the corpus of
BoniRob is shown. The bottom-left corner shows the line detection, the bottom-right corner
shows the incoming raw image of the Baumer camera.

Figure 4.37 shows scan data of the system obtained with RG_IR laser configuration. The
left part shows a colored image. Here, the scaled IntensitySum values of the red and green
lasers are drawn in red and green, respectively. The scaled IntensitySum values of the IR laser
are additionally drawn in blue, hence the blue shine. The right part of Figure 4.37 depicts the
obtained distance information as heat map.
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Figure 4.36: Point cloud views of carrot plants and weeds scanned in field with MWLP prototype and
BoniRob.

Figure 4.37: Depth map and intensity colored map of RG_IR lasers scanned form carrot plants and
weeds in field with MWLP prototype and BoniRob.
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Chapter 5

Classification of MWLP sensor data
for agricultural applications

The previous Chapters 3 and 4 have shown the realization of the MWLP prototype as well as
the validation of the derived sensor data under laboratory and field conditions. However, having
in mind automated solutions scanning high-quality image-based sensor data is only a part of
the process. A system-level view also includes algorithms and knowledge-bases for analysis of
the captured sensor data such that qualified, automated decisions can be taken based on the
captured data. Hence, classification of the sensor data is needed.

The goal of this chapter is to show that using the very sophisticated and descriptive sensor
data from the MWLP-System even quite complex classification problems (such as plant classi-
fication for crop/weed discrimination) can be addressed with relatively low level (pixel-based)
classification techniques. This makes the entire processing chain of sensor and classification more
flexible and adaptable toward field situation specific changes compared with competing concepts
with less descriptive sensor, e.g. RGB cameras, and more complex (object-based) classification
algorithms.

As mentioned in Section 1.2, the usefulness of specific classification techniques cannot be shown
in a generalized manner. Consequently, after the used techniques have been described the
feasibility of classification of MWLP sensor data for agricultural application will be shown at
the example of two applications here.

5.1 The used classification techniques

This Section will inform about the used classification techniques. These are adapted and devel-
oped with focus on agricultural applications.

There are several ways to overfit a model when conducting Machine Learning (ML). Apart from
overfitting the model against the training set also using the test set for parameter tuning can
introduce optimism. In particular, for agricultural applications using data of too few test situa-
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tions during development can further lead to close-world assumptions were the model assumes
rules valid for the known situations are valid for all situations. This will be explained in the
following Digression 5.1. Readers who are familiar with this problem may continue reading after
the digression.

Digression 5.1: Optimism in machine learning of agricultural applications

Optimism in the context of machine learning is a bad thing. It means that due to dif-
ferent kinds of overfitting the prediction errors estimated while assessing the model are to
optimistic, i.e., in a real world application the model will not perform as good as expected
during development.

The first and typically known step to avoid overfitting is to separate the data samples col-
lected for development into a training set and test set. On one hand, for very simple models
the prediction error of the test sample and the training samples are typically relatively sim-
ilar but do not satisfy. This is because the assumptions of the model are to strong so it
cannot be geared toward the underlying distribution. On the other hand, if the model is
very complex, it may obtain very good results for the training data but perform weakly
with the test data. This is because the model is overfitted to the training data so it cannot
generalize. This issue is illustrated in Figure 5.1 [44].

Figure 5.1: Prediction error over model complexity. Source: [44, p. 38].

However, even having in mind the separation of test and training set an unintended overfit-
ting of the model to the test data may occur. This is a common mistake and happens if the
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model parameters are tuned in order to optimize the prediction error of the test set. For
complex models this hugely makes the predictions of the test samples dependent on their
own reference values and, thus, introduces optimism. This is even valid for cross-validation
where even the left-out values through multiple iterations and parameter tuning may influ-
ence its own prediction. This can be over come by having a third set of data samples, which
is only touched ones for final assessment (‘generalization set’), or nested cross validation
[109].

Nevertheless, even with this in mind there is still a third way to introduce optimism which
is of particular importance for agricultural applications. The field conditions in different
situations often vary a lot with respect to weather, soil, plant growth stages, breed and the
mounting situation of the sensor [17]. For instance, Figure 5.2 shows the deviations of dif-
ferent image processing parameters. The data was collected for detection of fertilizer grains.
The deviations are measured by SAD and normalized, i.e., 0.0 means the distributions are
completely equal, 1.0 means they are completely different. The compared distributions are
distributions of the image processing parameters from samples that are labeled with the
same outcome, but they are collected at different dates and/or on different fields. Clearly,
a couple of distributions do drastically differ [133]. Hence, a model obtained from data at
one day may not be useful at another day.

Figure 5.2: Sample deviations for sample distributions labeled with the same outcome but collected
at different dates [133, p. 57]

Having this in mind even a prediction error given for a real generalization set collected
at the same date and field situation like test and training set might be quite optimistic as
the prediction error estimation might be valid for the respective field situation but not in
general. In order to overcome this, a huge variety of training and assessment data from a
huge number of different field situations has to be collected and evaluated. Alternatively,
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the end user must have an option to adjust the model toward the situation he finds. In
both cases life-long machine learning will - likely - be required.

5.1.1 In-Field-Labeling concept

As stated, image-based optical sensor data collected under field conditions varies a lot between
different situations [46]. It is impossible to cover all thinkable field situations during algorithm
development. For complex problems, this obliges the necessity of having the end user to make the
final adjustments of the processing chain. This is oftentimes addressed by introducing complex
parameter sets exposed on the user interface for adjustments. However, these parameters are
oftentimes difficult to adjust [17]. Particularly, in the application area focused here the end
users are operators of agricultural machines. They can be assumed untrained with respect to
image processing systems. Hence, they are not able to parameterize complex image processing
algorithms [139].

Alternatively, there are Machine Learning (ML) techniques. These allow ‘abstracting away’ the
image processing system from the user interface. The user must only provide the algorithm with
data samples and labels for generating a statistical model in a supervised ML manner. This
kind of labeling is in general a simpler task, particularly as the user - again farmer/agricultural
machine operator - is typically trained in inspecting and assessing plant or crop objects. He or
she is usually able to mark the respective individual objects whether they belong to this or that
group and using these marks the ML system can create a model for automatically taking the
decision. Hence, ML systems can help to simplify the task for user interaction.

As described, using ML techniques the user interaction can be simpler compared with approaches
exposing the entire algorithm parameter set to the user interface. However, ML systems require
a very huge set of labeled samples in orders of thousands of samples for creating meaningful
classifiers. I.e., if e.g. plants shall be classified at object level, this means hundreds or thousands
of plants have to be labeled in the sensor data before the statistical model for automatic classifi-
cation can be obtained. This is possible for academic purposes or during algorithm development,
but is not possible for In-Field-Labeling.

In-Field-Labeling means that in order to adapt the vision system to the specific field situation
the user may collect a couple of sample scans from the specific field. Next, a quick and easy
way to mark the label data is required, such that a model for automatic classification can be
obtained. Adjustment of processing parameter sets is not possible, as it is not easy for the
machine operator. Labeling at the object level is also not possible, as labeling many - say 1000
- plants it not quick. Consequently, the In-Field-Labeling concept implies not only the process
of capturing and labeling sample data in the specific field prior to operation but also that the
classification is conducted in a pixel-based manner. If the classification is pixel-based, even
relatively small marks in high resolution images contain ten-thousands of (pixel) samples. This
means for pixel-based classification even very few - say 10 - marks provide enough data samples
for obtaining a statistical model applying ML techniques.
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Figure 5.3: Labeling of sugar beet surfaces. The user outlines significant regions for each classified
group in the respective color [139].

Figure 5.4: Runtime of the beet condition estimator. The algorithm automatically classifies all image
pixels into the user-defined groups [139].

Pixel-based classification has its drawbacks. Shape-based patterns relying on image segmenta-
tion cannot be detected. Further, the applications were pixel-based classification is applicable
on RGB camera data are very limited as only three features with 8-Bit range per sample are
available. It has shown to work for determination of sugar-beet surface condition [153]. However,
using the simple pixel-based classification and simple RGB camera image data complex problems
such as crop/weed discrimination cannot be solved. Nevertheless, if the classification pipeline is
fed with more descriptive pixel information, such as MWLP sensor data, even complex problems
might be solvable using simple pixel-based classification.

The advantage of In-Field-Labeling with pixel-based classification is the quick and easy on-site
generation of the classification model. This allows having up-to-date knowledge bases for the
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classifier as well as recalibrating classifiers more often and, thereby, increasing their robustness
against changes of ambient conditions. To illustrate the In-Field-Labeling concept further,
Figures 5.3 and 5.4 are given. These show the In-Field-Labeling concept at the example of the
RGB camera-based beet condition estimator [153]. Figure 5.3 depicts the labeling view. The
user here picked a sample shot from the camera images on the field and outlined significant
regions for each group the pixels shall be classified into. The groups for classification can be
specified at runtime. Figure 5.4 shows the system during automatic classification runtime. The
model was generated based on the labeled samples and is applied to classify the image pixels
into the respective groups.

5.1.2 Image and label data persistence and management

As basis for pixel-based labeling and classification a system for image and label data persistence
and management is required. The image data as well as the label information have to be con-
nected at pixel level and the respective pixel labels have to be linked with the group they belong
to as well as optionally additional metadata. The image map framework published in [135] was
used for this purpose.

The image map framework connects label and image data with the relational data entries by
saving ID-based data in an 8-Bit overlay matrix of same size like the original image data.
Thereby, each object in the ImageMap table contains the original image data and the overlayed
ImageMapMatrix data. Each pixel of the ImageMapMatrix encodes two information entries in
its 8 Bit. The Most Significant Bit (MSB) states whether the pixel was actively set by the user
or is assigned by an algorithm (e.g. for default values). The remaining seven bits contain the
information about the assignment of the respective pixel in the original image. The pixel can
be not assigned to anything. In this case, the pixel value of the original image is not taken
into account when creating the classifier. The pixel may be assigned to the background, i.e.,
does not belong to an object of interest but to a remaining image part, that may not influence
the classification result. Or it may be assigned to a particular object. In the latter case the
remaining seven Bits contain the ObjectID if of the respective entry in the table Object that is
linked to the ImageMap table entry the ImageMapMatrix belongs to. In this case, the pixel value
of the image will be used as training sample for the respective group during training. This is
depicted in Figure 5.5.

In this manner up to 126 objects can be labeled per image. Unlike for polygon-like drawings
tool here arbitrary segments can be marked in the ImageMap and even unconnected regions
can be assigned to an Object. These Objects can then be grouped into separate classification
groups by linking the entries of table Object with those in the table ObjectGroup. Further,
Objects and ObjectGroups can be enriched with additional metadata. Furthermore, the entries
of the ImageMap table can be grouped by linking them to entries of the Situation table in order
to represent different gathering situations on different fields and/or at different dates. The
Situation entries can also optionally be enriched with metadata (Date, Global Positioning
System (GPS) data etc.).
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Figure 5.5: Connection of label and image data with the database-like entries [135].

In this manner the image map framework links pixel-based label data and image data with
an Entity Relationship Model (ERM). This is the basis for flexible storage, persistence and
synchronization of the data. The images thereby may have an arbitrary number of channels of
arbitrary numeric data type, i.e., is not limited to RGB color images (3 channels, uint8).

Further flexibility of the ImageMap framework comes with the abstraction layers for front-end
and the back-end. The back-end for data persistence can be provided by a PostgreSQL database
[40], e.g. on servers. Alternatively, stand-alone version based on an XML back-end provides the
same functionality. Files generated using the XML-based standalone version can be synchronized
into the data base server. This opens possibilities for long term learning from data obtained in
different situations and by different users. On the front-end side there is a web-based front end
available and a native App from mobile Android devices. The most recently developed front-end
used during the tests described here is the Qt-based front end.
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Figure 5.6: Front-end and back-end abstraction of the ImageMap data framework [135].

5.1.3 Pixel-based classification

Classification techniques for supervised ML are a vast topic. There is a variety of different
classifiers such as K-Nearest Neighbors, Naive Bayes Classifier, Neuronal Networks, Support
Vector Machines, Decision trees with Boosting and more [15, p. 459 - 463]. However, as stated
at the beginning of Chapter 5 the goal of this chapter is not to check which classifier performs
best under which condition with the MWLP sensor data but just to show that the classification
of MWLP sensor data for real life agricultural problems is possible, ideally using relatively simple
and primarily adaptable classification techniques.

Consequently, a Naive Bayes [85] [81] kind of classifier was used. These classifiers usually
assume the features are statistically independent and Gaussian distributed. Notwithstanding
these assumptions are most commonly not true, the classifier works often quite well [16, p. 362].
Therefore, it is a good ‘first shot’ for many classification problems.

The Bayes classifier used here was implemented for the work published in [136]. It works on
histograms rather than fitting Gaussian distributions to the data. Hence, it does not require
the data to be Gaussian distributed. However, statistical independence of the features is still
(theoretically) required. The Bayes Classifier was implemented as described here [150, p. 26-33]
and [150, p. 86-96].

During training the classifier just sums up the histograms per feature and label (i.e., ObjectGroup

or ‘background’). Further, the histograms are normalized, such that they contain relative fre-
quencies. The second effect of normalization is that the amount of pixels labeled for each group
does not matter, i.e., the user must not take care that he or she has to label the same number of
pixels in one group and the other groups. In a binary case (i.e., only foreground / background
classification) the obtained histograms could then look like the one given in Figure 5.7. Here -
just based on this histogram - as during automatic classification a new sample comes in where
this feature has the value 170 (near blue arrow), it is likely that the respective sample belongs
to group ‘false’. In the opposite case a sample with value 230 (near red arrow) most probably
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Figure 5.7: Sample histogram for a binary case [135].

belongs to group ‘true’. For a sample with this feature’s value at around 200 (near yellow arrow)
the probability to belong to group ‘true’ just taking this feature into account will be near 0.5.

Now, the Bayes classifier does not only take one feature into account but many features and
their respective histograms obtained during training. During automatic classification, as a new
sample comes in the conditional probability of the sample to belong to a group under the con-
dition of the sample value is obtained from the histogram for each feature. These conditional
probabilities are fused using Bayes Theorem (Formula 5.1) in order to derive the overall prob-
ability of the sample to belong to each ObjectGroup. The detailed description of the fusing
process is given in Digression 5.2.

Formula 5.1: Bayes Theorem.

P (A|B) =
P (A)P (B|A)

P (B)

Digression 5.2: Fusing conditional probabilities using Bayes Theorem

This digression describes how the conditional probabilities derived from the histograms are
fused in the Bayes filter algorithm as described here [150, p. 28-33] and here [133, p. 55-56].

In order to obtain the updated probability for a statement A to be true (e.g. ‘the monitored
sample belongs to ObjectGroup with id 2’) taking into account another feature value Xj of
the sample (e.g. ‘IntensitySum for Infra Red (IR) laser equals 2000’) the following Formulas
5.2 and 5.3 can be applied using. They require the conditional probabilities of the feature
value (measurement) under the condition of the respective outcome, e.g. P (Xj |A = true).
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These can be obtained from the histograms created from the label data. Further, the prior
probability of statement A to be true taking into account the prior feature values X1...j−1

but not Xj is needed, i.e., P (A = true|X1...j−1) [150].

Formula 5.2: Updated likelihood of statement A to be true [150].

P (A = true|X1...j) = η ∗ P (A = true|X1...j−1) ∗ P (Xj |A = true)

Formula 5.3: Updated likelihood of statement A to be false.

P (A = false|X1...j) = η ∗ P (A = false|X1...j−1) ∗ P (Xj |A = false)

As mentioned above, a central assumption of the Bayes classifier is that the individual fea-
ture distributions are mutually independent. Without this assumption last term in Formula
5.2 would have to be P (Xj |A = true, X1...j−1). However, this would be far more difficult
to obtain from the training data.

η in case of Formulas 5.2 and 5.3 is a normalizer that is not known prior. However, the
equations given in Formulas 5.4 and 5.5 have to be true [150].

Formula 5.4: Prior condition.

P (A = false|X1...j−1) = 1 − P (A = true|X1...j−1)

Formula 5.5: Posterior condition.

P (A = false|X1...j) = 1 − P (A = true|X1...j)

P (A = true|X1...j−1) is known from the previous iteration of the Bayes classifier iteratively
looping over all features taken into account. At the beginning of the iteration an a-priori
known probability of the statement can be used as initial value or - if no additional infor-
mation is available - it is set to 0.5. Further, P (Xj |A = true) and P (Xj |A = false) can
be obtained from the feature distributions saved in the histograms applying the respective
feature value Xj of the sample to be classified. This leaves four unknown values in the four
above equations. Hence, the desired value P (A = true|X1...j) can be derived in the four
steps listed in Formula 5.6.
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Formula 5.6: Bayes classifier iteration steps [150].

P (A = true|X1...j)′ = P (A = true|X1...j−1) ∗ P (Xj |A = true)

P (A = false|X1...j)′ = (1 − P (A = true|X1...j−1)) ∗ P (Xj |A = false)

η =
1

P (A = true|X1...j)′ + P (A = false|X1...j)′
P (A = true|X1...j) = η ∗ P (A = true|X1...j)′

Iteratively applying these steps for all feature values of a sample returns the probability for
the sample to belong to the respective group.

The Bayes classifier is implemented such that it can process feature values of arbitrary numeric
types. For continuous wide ranged data during training the samples are first collected raw and
the histograms are filled at the end of training after estimating the data range based on the
sample. By now, the samples are filled into a fixed number of grid cells, e.g. 1000. During the
tests with In-Field-Labeling conducted so far the number of marked pixel samples was typically
in the order of magnitude between 10 kilo and 10 million samples. If there were situations in
which the number of samples would drastically increase beyond 10 million samples or decrease
below 10000 samples, a method for proper adjustment of the number of histogram cells would
become required. Such methods for approximation of the density of continuous distribution are
known as Parzen window [67] [97].

5.1.4 Feature selection techniques

Same as for classification techniques feature selection techniques are also a vast topic. However,
the Minimum Redundancy, Maximum Relevancy (mRMR) approach [103] has become quite
popular in recent years. Peng et al. proposed a method for automatic feature selection, where
the features are selected with focus on [103]:

• Minimum redundancy
The selected features should be as mutually independent from each other as possible. This
is important as many classifiers assume statistical independence in their mathematical
proof. Hence, adding many features that are very similar ‘under different names’ to the
classification does typically not improve the result.

• Maximum relevancy
As obvious figure, the relevancy of the selected features for the desired classification out-
come should be maximized.

For using their concept a method for measuring the so-called ‘mutual information’ has to be
provided. It measures how dependent or independent a pair of distributions is. The aggregated
mutual information measures for the selected feature set is minimized for the mutual information
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of the individual feature pairs. Further, the aggregated mutual information measure of the
selected feature set is maximized for the individual features and the output. For categorized
data deriving mutual information measures is relatively simple while for continuous data there
is no generalized approach [103].

In case of the histogram-based data with categorical outcome the mutual information measure
can be calculated straight forward. The SAD has been used as measure for comparing the
relevancy of the different features for the outcome. The SAD is calculated by summing the
absolute differences of the frequencies of the histograms for one outcome and the compared
other outcome over all histogram cells. Further, the so obtained SAD is normalized by the sum
of the frequencies of both histograms. Hence, the obtained value lies in the interval between 0.0
and 1.0. The case of a so defined SAD value equaling 0.0 is depicted in Figure 5.8. Obtaining
a SAD value of 0.0 means that the compared histograms are equal and, hence, there is no
mutual information between this feature and the outcome, i.e., the feature is irrelevant for the
classification. A value of 1.0 (cf. Figure 5.9) indicates that the histograms for the outcomes can
be completely separated, i.e., the outcome can be safely determined taking only this feature into
account. However, usually the values lie between the boundaries (cf. Figure 5.10 for a sample
distribution with SAD 0.5) signaling that there are parts of the histogram where the values are
equal or similar as well as parts where the histograms differ. Typically, values around 0.75 or
higher indicate that the respective feature is valuable as classification input.

As stated, selected features may have a maximum relevancy and minimum redundancy [103].
The relevancy can be measured using the so described SAD as the outcome is categorized.
However, comparing different features for obtaining their mutual information is not possible in
this trivial manner both value distributions might be continuous.

However, because as mentioned before this chapter mainly aims to show the feasibility of classi-
fication of MWLP sensor data but the focus of this dissertation this the MWLP sensor system.
Therefore, an automatic feature selection was not implemented for this first classification step.
The described SAD method was used to provide meaningful measures of the relevancy of the
features. Based on these measures the features were manually selected, having in mind the issue
of minimum redundancy. For the MWLP system the ‘character’ of each extracted feature is
known (cf. Section 3.4). This is unlike for other complex ML problems where many more-less
‘anonymous’ features are generated and tested for their relevancy. For such anonymous fea-
tures issuing for avoiding redundancy is not possible. However, for the described features of the
MWLP system with known ‘character’ it is possible to do this ‘by hand’. For instance, if for a
specific classification problem scattering of a wavelength is relevant, likely all Scatter_X_Sum
and Scatter_X_Section features of the respective laser will have some relevancy. Feeding the
classifier with all these values will lead to high redundancy, though. Consequently, in this case,
only the best of the scattering features for the relevant lasers will be manually selected to be
passed on to the classifier.
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Figure 5.8: Sample histograms for SAD 0.0. Figure 5.9: Sample histograms for SAD 1.0.

Figure 5.10: Sample histograms for SAD 0.5.

5.1.5 Classification pipeline

The implemented image classification pipeline connects the classifier and the ImageMap frame-
work to a reusable infrastructure. Same as the classifier and the ImageMap framework it allows
processing image data where the different data channels of the pixels can contain arbitrary
combinations of arbitrary numeric types. Consequently, it was applied for different purposes
and working on different input data streams. The beet condition estimator applied the image
classification pipeline for RGB camera images [153]. The classification approaches shown here
applied it for classification of MWLP sensor data.

The design of the image classification pipeline is drafted in Figures 5.11, 5.12, 5.13, 5.14 and
5.15. The boxes in light blue in these Figures is a fixed element of the pipeline. Grey input and
output streams (cf. Figures 5.11 and 5.13) depend on the computational environment the image
classification pipeline is applied in. For instance, these could be ROS topics for feeding the
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pipeline with image data of different kinds. The outcome can either be a summed statistic with
pixel ratios of the different groups for each image. This was the processing result for the beet
condition estimator [153]. Alternatively, a classified grid can be created based on which object
group primarily occupies each grid cell. This can be seen as input for actuators treating the
grid cells depending on the classification result. It was used as output stream for the approaches
with MWLP sensor data described in this work. An object classification is intentionally avoided
as it would break with the pixel-based labeling concept and would require too much effort for
In-Field-labeling.

The classification pipeline comprises two pixel classification steps. The binary classifier distin-
guishes between background (no object) and foreground (any object). Next, the object group
classifier classifies foreground pixels into the respective object groups. For many applications the
character of the background does highly distinguish from the foreground. This means that for
separating the background other preprocessing steps might be required and other features might
be relevant than for separating the different object groups. Further, the binary classification
might be faster than the multi-class object group classification such that for images with high
percentage of background the entire pipeline may run faster if the pre-separated background pix-
els are skipped for object group classification. For these reasons background and object group
classification are separated as Figure 5.11 shows.

The image classification pipeline can be extended with optional preprocessing filters using a
plug-in concept. The added filters can conduct individual image processing operations, such as
e.g. blurring the image. Further, multiple filters fulfilling the plug-in interface can be grouped to
a stacked filter that performs multiple operations and can be plugged in to each of the positions
as a hole. The filters can be added at the following positions (cf. 5.11):

• Common preprocessor
This filter performs filtering actions on the incoming original image from the input stream.
The filter will affect binary and object group classification.

• Background preprocessor
This filter performs filtering actions on the output of the common preprocessor before
it is passed on to the binary pixel classifier. Hence, the filter will only affect binary
classification.

• Foreground preprocessor
This filter performs filtering actions on the output of the common preprocessor before it
is passed on to masking and to the object group classifier. Hence, the filter can be used
to improve the object group classification but will not affect the segmentation.

• Segment filter
This filter performs filtering actions on the binary image created by the binary classifier.
It can be used to improve the segmentation by options like eroding, dilating or removal of
small segments.
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During automatic operation of the classification it is still possible for the user to inspect all
intermediate result images of the classification pipeline. The respective images are listed in
Table 5.1. The design of visualization flow of the images to the user follows the Model-View-
Controller (MVC) pattern (cf. Figure 5.12). The view showing the image to the user it not
specified by the pipeline, it could be rqt_image_view of the ROS stack rqt [149] but other front
end specific solutions are possible with the design.

As the image classification pipeline can process images with arbitrary number of channels of
arbitrary numeric data the images flowing through the chain are not necessarily in a form, that
can be visualized to the user. Hence, a visualization model that converts the image data into
RGB images is required. In the simplest case this model can just pass the image data, if the
chain is processing RGB images. If it is processing HSV images, it will just have to transform
the color space. However, for more complex image data, such as chunks of MWLP scan data,
more complex visualization models are required for scaling and overlaying the individual data
channels. For MWLP data this can be done by the MWLP image visualization model (cf.
Section 3.5.3). There is also an adaptive generic model available that can be configured by the
user. However, in this case, user interaction is required for adjusting the visualization model. A
controller for this purpose can be the overlay_viz_controller described in Section 3.5.3.

Figure 5.13 shows the information flow during labeling. The design is MVC-based, again. The
front end is not specified by the pipeline, same as for the image map framework (cf. Section
5.1.2). However, as arbitrary and, hence, not necessarily viewable image data is stored in the
ImageMap instances a visualization model is required. The default visualization model, used
for the RGB camera data just passes the image data, i.e., no controller for image visualization
required. For MWLP data the MWLP image visualization model with its respective controller
for adjustments is again required, though.

Figures 5.14 and 5.15 show the information flow in the pipeline during training of the classifiers.
The data in the image map framework is either loaded from the respective storage or might
be still in memory from the previous labeling actions. Next, for training the original image is
processed through the respective filtering preprocessors and passed on to the classifier along
with the overlay image containing the labels.
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Figure 5.14: Information flow during
training of background classifier.

Figure 5.15: Information flow during
training of foreground classifier.

5.1.6 Overlapped filtering

As stated before, the same classification pipeline was applied for the examples of MWLP classifi-
cation which had been used for the beet condition estimator based on RGB camera images [153]
[139]. The image classification pipeline is implemented multi-threaded, i.e., multiple images can
be processed in the pipeline at the same time.

Obviously, there is a (minor) overhead for calling into the filtering methods of all filtered and
piping the images through pipeline. Hence, even if the main factor for determining the com-
putational resources required for processing the data is the number of pixels processed (i.e.,
frame rate times resolution) there is some influence on the performance that depends only on
the frame rate. Further, the optional outputs of the processed and intermediate images to the
user are triggered for each image, such that the user view gets updated for each image. In order
to avoid the user’s view being updated at the frame rate of the MWLP system and reducing
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Figure 5.16: Filters can overlap the chunk boundaries.

the piping overhead, the MWLP data is not processed through the classification pipeline scan
by scan but in chunks of e.g. 20 to 100 grouped and ordered scans. The chunks size has to be
specified depending on the current frame rate of the MWLP system and the movement speed.
If it is too small the user views will cause very high CPU load and the piping overhead will
increase. However, the result of a chunk will not leave the pipeline before all containing scans
are processed. Hence, the first scan of a chunk may have a too long time between scanning and
known result if the number of scans per chunk is too high.

Another difference between processing MWLP sensor data and camera has to be mentioned for
filtering. For processing MWLP data filters can overlap the chunk boundaries. Many filtering
operations, such as erode, dilate, blur etc. or - for instance - normal estimation in distance
image data, apply a kernel for filtering the pixels and, thus, require some context pixels around
the pixel to obtain the result for. For a normal camera image - without application of image
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stitching or similar - this context cannot be provided by other images that are processed through
the pipeline parallel to the image to be filtered. Consequently, small regions at the boundaries
of each image cannot be filtered (without special treatment). In contrast, for the MWLP sensor
data all scans can be seen as part of an ‘endless MWLP image’ to which continuously new scans
are pushed at to and old ones are popped at bottom. The chunk boundaries are set arbitrarily
depending on the chunk size and do not represent a contextual break. Consequently, the chunks
pushed to the pipeline before and after the chunk to be filtered can provide context for filtering
the respective chunk. This is illustrated in Figure 5.16. Filters filtering the data of a specific
chunk can overlap the chunk borders. Hence, there might be regions of the ‘endless image’ at the
sides of the scanned area but the boundaries between subsequent chunk do not cause unfilterable
regions. Thus, the filterable regions of subsequent chunks in the middle of the scan data can be
seamlessly attached to each other.

The interface class PipedGenericOverlayedImageFilterBase provides this basic overlapped
piped filtering logic. This class implements the filter plug-in interface of the image classification
pipeline (cf. Section 5.1.5). It manages the assembly of multiple chunks that are parallel pro-
cessed through the pipeline in a thread-safe manner. Further, it extracts the filterable region
and the data required for filtering including context from its internal chunk buffer and calls a
virtual method with these arguments. Hence, the child classes only have to implement the filter-
ing operation without taking care of thread-safety and chunk-assembly as context for filtering.
Consequently, the so implemented filters can be plugged into the image classification pipeline
or stacked together as this can be done with context-free image filters.

5.1.7 Grid aggregation

• Background

The system concept that was in mind for both classification problems covered in this disserta-
tion (potato classification and plant classification) is a combination of the MWLP system with
classification and an actuator that somehow reacts according to the classification result.

In Figures 5.17 and 5.18 such systems combining the MWLP system with an actuator are drafted.
Figure 5.17 plots a sorting system for potatoes from residuals based on MWLP technology. The
MWLP system (#3 in Fig. 5.17) consisting of a camera (#2) and line lasers (#1) is combined
with an actuator line of multiple small actuators. The MWLP system scans the objects as they
are passed by on the moving conveyor and a classification system decides whether the objects can
pass the sorting step or have to be rejected. If an object must be rejected the individual small
actuator (#5) in line with the object kicks out the object from the product flow as it reaches the
end of the conveyor. This separates the product flow into separate flows of passed (‘good’) and
rejected (‘bad’) objects. Figure 5.18 depicts a similar structure applied as mechanical weeding
system. In this case, the system itself is moved over the crop ridge or crop row and scans the
plants, including crop plants (#7) and weed plants (#6). A classification system classifies the
plants and controls the actuator line such that the individual small stamp-like actuators hit the
weed plants but do not hit the crop plants.
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Figure 5.17: Draft of a sorting system based on a MWLP sensor system.

Figure 5.18: Draft of a weeding system based on a MWLP sensor system.

For sorting applications, such system structure - if not restricting the MWLP system - is very
common [13]. For weeding application, there is not yet a broad adoption of such stamp-based
systems. However, Langsenkamp et al. have recently shown the effectiveness of stamp-like ac-
tuators for mechanical weed control [69]. Further, the start-up Bosch Deepfield Robotics has
shown a mock-up for a weeding system with a pneumatic line actuator array at the Agritechnica
2015 [113]. This shows that there is a potential for such weeding system with line actuators
comprising multiple stamps.

Though, most of the classification parts are not geared toward a specific system configuration
for the evaluation of the correctness of the classification this system concept was in mind. The
system concept with line actuator implies that the individual actuator cannot be positioned
arbitrarily as it does not comprise a manipulating arm. Therefore, a proper representation of
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the system from the classification’s point of view is a grid classification. Multiple pixels of the
MWLP-data are summed up to a grid cell in this grid. The resolution of the grid is determined
by the distance of the individual actuators in the actuator line as well as by the speed of the
movement and the actuator. Hence, a grid cell size of one square centimeter appears reasonable.
For each grid cell it does not matter if it is occupied by one or two or only a part of a plant but
only if it has to be treated or not. This is determined by the classification. E.g. for weeding it
is determined whether the grid cell is mainly occupied by pixels belonging to weeds or soil or
crop plants. However, due to this constellation it is not necessary to ‘detect’ individual plants
- or objects if sorting - as no processing happens at the object level. For the validation the
automatically generated grid is then compared by a manually labeled reference grid.

• Implementation and management of uncertainty

As stated before (cf. Section 5.1.5), the primary outcome of the image classifcation pipeline is
an image containing probabilities to belong to each of the classified classes or the background
for each pixel. Consequently, in order to obtain a classified grid the different probabilities of the
different pixels of each grid cell have to be aggregated somehow. In this context, also different
uncertainties play an important role. First, the probability of an individual pixel to belong to
a specific object group as outcome of the classification pipeline must not necessarily be 0.0 or
1.0. Values in between are also valid and the most frequent case. These value further imply an
uncertainty measure. A probability of e.g. 0.9 implies a safer classification than a probability
of e.g. 0.6. Further, different pixels aggregated to the same grid cell may belong to different
groups and, thus, have different probability values for the individual object groups. Hence, the
uncertainty in the classification has to be handled when obtaining the classification result for
the different grid cells.

As the first step for the grid aggregation, the probability values of all pixels of the grid cells
are averaged for each ObjectGroup to classify. Next, these probability values are mapped to
a decision map. Finally, the grid cells are classified into treated and not treated grid cells
depending on the respective decision map value. The following paragraphs will explain this
procedure in detail.

In order to map the probability values of multiple ObjectGroups each of the ObjectGroups gets
a TreatmentValue assigned. E.g. for the application of plant classification these could be as
stated in Formula 5.7.

Formula 5.7: Default TreatmentValues for plant classification.

TreatmentV alueW eedP lant = 1

TreatmentV alueCropP lant = −1

These TreatmentValues are defaults, but they can be adjusted by the user via a GUI. The
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Treatment value of the grid cell is then calculated as follows in Formula 5.8.

Formula 5.8: Obtaining the TreatmentValue for a grid cell.

TreatmentV alueGridCellk =
N
∑

i=1

P (ObjectGroupi) ∗ TreatmentV alueObjectGroupi

, where N is the number of ObjectGroups to classify into.

For a grid cell where all pixels are absolutely safe to belong to the background the outcome prob-
abilities to belong to the ObjectGroups of the pixel-based classification will be all 0. Hence, the
TreatmentValue of the grid cell will be 0 regardless of the configuration. In other cases depend-
ing on the configuration TreatmentValues different from 0 are possible. For the configuration
given in Formula 5.7 the TreatmentValue for a grid cell where P (CropP lant) < P (WeedP lant)
will greater than 0. In the opposite case it will be less than 0 and if both probabilities are equal,
i.e., no safe classification is possible, it will remain 0.

Particularly in letter case, an assessment of the uncertainty of the grid cell classification is useful.
In order to obtain a certainty measure first the probabilities of all ObjectGroups are summed
up and the maximum value is selected (cf. Formula 5.9).

Formula 5.9: Precalculations for certainty measure.

P sum =
N
∑

i=1

P (ObjectGroupi)

P max = arg
max

[i]
P (ObjectGroupi)

, where N is the number of ObjectGroups to classify into.

Again, note that the probability of the background is not included in P sum. The background
probability is implicitly represented by 1−P sum. A certainty measure that scales between 0 and 1
can then be calculated using the steps in Formula 5.10. Ideally, all grid cells would belong to one
selection (an ObjectGroup or the background) with a probability of 1.0. However, practically this
is usually not the case. The first step in Formula 5.10 uses the probability differences between the
ideal case and the practically observed value for obtaining an uncertainty measure. Thereby,
a distinction of cases is required. If the most probable selection would be the background ,
i .e (1 − P sum) > P max, the uncertainty is defined by P sum as it represents the difference
between the probability of the selection and 1. In the opposite case probability of the selection
is the probability of the most likely ObjectGroup, hence P max has to be subtracted from 1. In
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Figure 5.19: Screen shot of the grid configuration with decision map.

order to derive a normalized certainty measure scaling between 0 and 1, the maximum possible
uncertainty is obtained. The maximum uncertainty represents the case where all ObjectGroups

have the same probabilities and these probabilities also equal to (1 − P sum), i.e., the probability
of the background. In this case, all probability values are equal to 1

N+1 , hence this value must be
subtracted by 1 in order to obtain the maximum uncertainty. The normalized certainty measure
is calculated by subtracting the normalized uncertainty from 1.

Formula 5.10: Obtaining certainty measure.

Uncertainty =

{

P sum , if (1 − P sum) > P max

1 − P max , otherwise

Uncertaintymax = 1 − 1
N + 1

Certainty = 1 − Uncertainty

Uncertaintymax

, where N is the number of ObjectGroups to classify into.

The decision map is spanned by drawing the possible treatment values on the x-axis and the
possible certainty values on the y-axis. Figure 5.19 shows a screen shot of the configuration GUI
for the grid aggregation with a plot of a decision map for the configuration given in Formula 5.7.
The colored region in the center of Figure 5.19 represents the mathematically possible values of
the so-constrained decision map. The bounding points of the decision map are in this example:

• TreatmentValue = -1; Certainty = 1 –> safely crop plant
The grid cell is absolutely safe classified to belong to the ObjectGroup CropPlant with a
probability of 1.
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• TreatmentValue = 1; Certainty = 1 –> safely weed plant
The grid cell is absolutely safe classified to belong to the ObjectGroup WeedPlant with a
probability of 1.

• TreatmentValue = 0; Certainty = 1 –> safely background (soil)
The grid cell is absolutely safe classified to belong to the background with a probability
of 1, i.e., the probabilities of both ObjectGroup WeedPlant and CropPlant are 0.

• TreatmentValue = 0; Certainty = 0 –> absolutely no clue
The probablities of both ObjectGroups WeedPlant and CropPlant are 0.33, hence the
remaining part for the background is also 0.33. Based on the outcome of the classification
pipeline the result for this grid cell is completely unknown, not even a tendency. Hence,
in Figure 5.19 the black dot represents the coordinate origin.

In order to take both values of the decision map into account when making the decision whether
a grid cell is to be treated or not, this decision is not taken based on a threshold for one value.
It is taken a based a split line. The split line divides the decision map into a treated and an
untreated region. Grid cells with probability values mapped to the decision map situated on
one side of the split line are treated. If the mapped value lies on the other side, the respective
cell is not treated.

The positioning of the split line allows the user pursue different treatment strategies. For in-
stance, for mechanical weed control a one strategy may be to safely remove all weeds - condoning
a certain amount of damaged crop plants. The opposite strategy may be to safely avoid damag-
ing crop plants during weed control - condoning a certain amount of remaining weed plants. At
the same time a treatment of the background, i.e., soil loosening, may or may not be intended
by the farmer. Figures 5.20, 5.21, 5.22 and 5.23 show how the decision map and the split line
can be configured using the GUI in order to match these different weeding strategies.

Another option that the configuration of the treatment grid aggregation offers is the setting
of different TreatmentValue for different ObjectGroups. Same as the labeling tool and the
classification pipeline the treatment grid aggregation can handle multiple object groups and
these groups can be configured at runtime. This allows classifying the data not only in two but
three or more groups. For the treatment grid, however, the intended actuator can only treat
of not treat. Hence, a binary decision has to be taken at this point. However, a multi-class
classification can be used as more sophisticated input for the treatment grid aggregation based
on experiences for likelihood or impact of misclassification. For instance. For potato classifi-
cation one could classify the residuals into different groups such as stones and soil clods. In
principle, both should be separated from the product flow, i.e., treated. However, it might be
more important to remove stones because they might cause damages to tools that follow in
the potato processing chain. On the other hand one might want to remove soil clods only if it
is very certain, that the respective object is a soil clod as misclassification with potatoes that
have soil on their surface are common and the soil clods do not cause damages in the following
steps. In such case it would be useful to configure the ObjectGroups soil clods and stones
with different TreatmentValues, a higher for stones (i.e., more likely removal) and a lower of
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Figure 5.24: Screen shot of the grid configuration with a differentiation of the treatment values between
different treated groups.

for soil clods (i.e., less likely removal). An example for this configuration is given in Figure 5.24.

The last configuration possibility that is to be discussed here is the option to create protec-
tion zones around very safely classified grid cells that may not be treated. For instance, for
plant classification the grid cells that are in the center of a plant are typically safer classified
than those at the plant boundary. This limits moving the split line toward unknown, i.e., for
uncertainly classified grid cells because at some point weed plants may not yet be fully treated
where crop plant already start being treated at their boundaries. This is where the option to
specify a protection line comes in. For grid cell values where treatment value and certainty
are mapped to the protected side of the protection line the cells are not treated and further
their adjacent cells are forbidden to be treated regardless of their own values. E.g. for plant
classification the protection line may be specified such that very safely classified crop plant grid
cells are protected, i.e., not treated including adjacent cells. This allows to move the split line
closer to unknown and treat even very uncertainly predicted weed plant grid cells as long as they
are not protected because the protection avoids damaging to many crop plants. An example for
such configuration is given in Figure 5.25.
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Figure 5.25: Screen shot of the grid configuration with a weeding strategy including protection of
certain crop plants.

5.2 Potato classification using MWLP

The first classification application that was tested was the discrimination between potatoes and
residuals conveyed with them.

5.2.1 Problem description

During the harvest process potatoes have to be separated from the soil and other objects that
surrounded them during growing. Most of these material that enters the intake of the har-
vester can be separated from the potatoes by sieving using conveyors with web belts and/or
roller/finger-based separating devices. However, most of the time some residuals remain in the
product flow which cannot be separated from the potatoes in this manner. Examples are stones,
soil clods, parts of crop canopy or even plastic foils/waste that have been disposed improperly
on the field the potatoes are grown on.

The automatic detection and discrimination between potatoes and the residuals conveyed with
them for electronically sorting them has been covered by research for many years [2] [112]. There
are electronic devices for industrial use available that perform the optoelectronic separation [2]
[14] [10] [9]. These typically consist of a conveyor that presents the objects (potatoes and
residuals) to a sensor vision system, a vision system in including sensor and data processing for
taking the decision whether an object can pass or has to be rejected and a rejection device that
separates the rejected objects from the product flow [13]. The sensors are typically matrix or
line cameras or photo-multipliers that might be combined with single lasers or LED lighting [2]
[10] [9]. Scattering data as well as color data is of interest when analyzing potatoes [2] [41].

The field-based electronic separation of potatoes and residuals is also a problem that was solved
end of the 1970s. In the former eastern part of Germany between 1976 and 1989 many machines
with capacities around 25 tons per hour have been produced and sold that realized the electronic
separation. However, the detection was based on X-ray technique and the increased skepticism
of the consumer toward the X-rayed potatoes caused the production and application to be
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discontinued [112]. Consequently, for field-based separation a manual sorting step is typically
included in the process till today.

There are also non-electronic devices for field-based final separation that reach separation results
better than conventional mechanic sieving or roller/finger-based separating devices. These use
the differences in the densities between potatoes and typical residuals (stones, clods) for sepa-
ration. The Rowadest harvester presented by the company KJK GmbH at PotatoEurope 2010
separates the potatoes in a water bath. The potatoes swim on the water surface while clods and
stones sink to the ground and can thereby be separated [90, p. 326]. However, parts of crop
canopy or plastics cannot be divided in this manner. The AirSep presented by the company
Grimme Landmaschinenfabrik GmbH & Co.KG at Agritechnica 2013 and honored there with a
gold medal [19] separates the product flow using an air flow [60]. This allows separating clods
and stones (denser than potatoes) as well as leaf-like/dry canopy parts or foil (less dense/more
flat than potatoes). However, still form and density remain the only discrimination criterion.
Hence, the separation of objects of same form and density (e.g. waste) or defect potatoes, such
as greened, damaged or diseased/decayed potatoes is still not possible. Further, the energy effort
for generation of the air flow has to be kept in mind. Thus, a field-based electronic separation
unit still could provide improvements in terms of discrimination flexibility and energy effort.

There was research conducted also on electronic separation for field-application. A hyperspectral
imaging system was used for sensing here [33, p. 15]. However, these approaches have not yet
succeeded in field-based commercial applications. Consequently, testing the novel MWLP sensor
for this task is a promising approach for giving fresh impetus on this application. Particularly,
the scattering and color data appear to be of interest here. The additionally delivered 3D data
can further be used to improve the robustness of the system with focus on field applications.

5.2.2 Feature relevance and selection

In order to select the features for classification of potatoes and residuals, a sample data of
uncleaned potatoes, stones and clods was scanned with the MWLP system. The data was passed
on to the Qt-based labeling front end of the image classification pipeline and was manually
marked with some labels in there. Figure 5.26 shows a screen shot of the labeling tool with
potatoes and residuals. The visualization is adjusted by the /overlay_viz_controller to a
colored representation of the IntensitySum values of the lasers at 532 nm and at 650 nm.

• Classification of potatoes and residuals

The image and label data shown in Figure 5.26 was saved to a file using the XML-based
back end of the image map framework. The data was processed using a script file in order to
create all normalized histograms of all contained channels and for obtaining the SAD values
of all channels. Hence, the importance of all features extracted by the MWLP system for the
classification problem, i.e., pixel belongs to potato, clod, or stone, was derived. The obtained
SAD-based relevance measures are listed in Table 5.2.

As mentioned, it was expected that the Scatter...-features are very relevant for classification of
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Figure 5.26: Screen shot of the labeling tool with MWLP sensor data of potatoes and residuals.

potatoes (high water content) and residuals like clods or stones (optically dense). This expecta-
tion was proven true during these tests. In Figure 5.27 the histograms of IntensitySum feature
of laser at 650 nm are given. The labeled pixel’s values are grouped into different histograms
depending on the respective labels (cf. Figure 5.26). Note, the pixels belonging to potatoes
can partly be separated. However, there are also overlapping regions. The normalized SAD
of 0.719 shows some relevance for the output but is not as high as desirable. In contrast, the
histograms of Scatter20Section feature of laser at 650 nm depicted in Figure 5.28 show a quite
clear separation of the potato pixels from the other groups. The SAD of 0.967 proves the high
relevance of this feature.

This effect was also shown to have good selectivity for the green laser (@ 532 nm) and the
NIR laser (@ 850 nm). The Scatter20Section feature had the highest SADs for all these lasers.
This is pointed out by Table 5.2 listing the SADs obtained for all channels during these tests.
As stated, the redundancy between features passed on to the classifier has to be minimized (cf.
Section 5.1.4). Consequently, only the Scatter20Section features of each of these lasers were
selected as selecting more scattering features per laser would mean redundancy. The blue laser
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Figure 5.27: Histograms of IntensitySum feature of laser at 650 nm.

Figure 5.28: Histograms of Scatter20Section feature of laser at 650 nm.

(@ 405 nm), however, did not have this selectivity of the Scatter20Section channel nor any other
of its features was relevant. Consequently, it was turned off during following classification tests.
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Table 5.2: SADs of all channels extracted by the MWLP system.

Channel name potato stone clod Channel name potato stone clod

DistMap 0.632 0.542 0.490 . . . continued . . .

LineWidth_Blue 0.510 0.475 0.499 LineWidth_Red 0.754 0.350 0.518

IntenMax_Blue 0.512 0.502 0.530 IntenMax_Red 0.786 0.440 0.463

IntensitySum_Blue 0.244 0.596 0.606 IntensitySum_Red 0.719 0.634 0.692

Scatter20Section_Blue 0.533 0.506 0.592 Scatter20Section_Red 0.967 0.715 0.734

Scatter40Section_Blue 0.508 0.507 0.483 Scatter40Section_Red 0.833 0.458 0.605

Scatter40Sum_Blue 0.542 0.517 0.556 Scatter40Sum_Red 0.964 0.678 0.714

Scatter60Section_Blue 0.510 0.501 0.497 Scatter60Section_Red 0.402 0.338 0.507

Scatter60Sum_Blue 0.529 0.506 0.586 Scatter60Sum_Red 0.948 0.664 0.716

Scatter80Section_Blue 0.525 0.509 0.499 Scatter80Section_Red 0.392 0.334 0.352

Scatter80Sum_Blue 0.521 0.507 0.572 Scatter80Sum_Red 0.955 0.671 0.715

LineWidth_Green 0.442 0.333 0.581 LineWidth_NIR 0.766 0.333 0.483

IntenMax_Green 0.729 0.648 0.639 IntenMax_NIR 0.694 0.463 0.446

IntensitySum_Green 0.398 0.257 0.692 IntensitySum_NIR 0.747 0.337 0.530

Scatter20Section_Green 0.870 0.620 0.635 Scatter20Section_NIR 0.963 0.669 0.641

Scatter40Section_Green 0.754 0.380 0.616 Scatter40Section_NIR 0.590 0.333 0.496

Scatter40Sum_Green 0.869 0.538 0.669 Scatter40Sum_NIR 0.954 0.514 0.526

Scatter60Section_Green 0.627 0.339 0.639 Scatter60Section_NIR 0.340 0.365 0.338

Scatter60Sum_Green 0.857 0.530 0.670 Scatter60Sum_NIR 0.952 0.524 0.542

Scatter80Section_Green 0.520 0.342 0.629 Scatter80Section_NIR 0.351 0.361 0.388

Scatter80Sum_Green 0.859 0.534 0.673 Scatter80Sum_NIR 0.955 0.520 0.537

• Foreground / background classification

As mentioned in Section 5.1.5, the image classification pipeline has different classifiers for object
group classification and for binary classification. The details given on feature selection so far
only covered the object group classification. The binary classification, i.e., classification between
foreground (any object regardless if potato or residual) and background (empty conveyor), has
not been mentioned in this section so far. However, using the MWLP system also providing
distance data it is a no-brainer as any pixels of any object will exceed the height of the conveyor.
Hence, this classification can be performed based on the distance data.

This reasoning was also proven true by the SAD-based evaluation of feature relevances for binary
classification, as Table 5.3 shows. The channel DistMap was shown to be the most relevant
with a nearly perfect SAD of 0.997. Consequently, it was selected for background/foreground
classification. Note that Table 5.3 has only one column with SADs - unlike Table 5.2. This is
because for binary classification or classification into only two groups the SAD values for both
groups are the same. I.e., foreground and background SADs would not differ if they were listed
separately.
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Table 5.3: SADs of all channels extracted by the MWLP system for binary classification.

Channel name
Background /

Foreground SAD Channel name
Background /

Foreground SAD

DistMap 0.997 . . . continued . . .

LineWidth_Blue 0.147 LineWidth_Red 0.439

IntenMax_Blue 0.124 IntenMax_Red 0.701

IntensitySum_Blue 0.325 IntensitySum_Red 0.555

Scatter20Section_Blue 0.40 Scatter20Section_Red 0.830

Scatter40Section_Blue 0.175 Scatter40Section_Red 0.760

Scatter40Sum_Blue 0.371 Scatter40Sum_Red 0.807

Scatter60Section_Blue 0.209 Scatter60Section_Red 0.379

Scatter60Sum_Blue 0.332 Scatter60Sum_Red 0.788

Scatter80Section_Blue 0.249 Scatter80Section_Red 0.409

Scatter80Sum_Blue 0.291 Scatter80Sum_Red 0.781

LineWidth_Green 0.422 LineWidth_NIR 0.631

IntenMax_Green 0.674 IntenMax_NIR 0.613

IntensitySum_Green 0.373 IntensitySum_NIR 0.647

Scatter20Section_Green 0.652 Scatter20Section_NIR 0.786

Scatter40Section_Green 0.734 Scatter40Section_NIR 0.544

Scatter40Sum_Green 0.696 Scatter40Sum_NIR 0.792

Scatter60Section_Green 0.334 Scatter60Section_NIR 0.196

Scatter60Sum_Green 0.703 Scatter60Sum_NIR 0.787

Scatter80Section_Green 0.268 Scatter80Section_NIR 0.558

Scatter80Sum_Green 0.700 Scatter80Sum_NIR 0.776

• Configuration of MWLP and classification pipeline for potato classification

Table 5.4 summarizes the configuration of the MWLP system and the image classification
pipeline which was selected for potato/residuals classification based on the here described anal-
ysis and was used for the experiments described in Section 5.2.3.
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Table 5.4: Configuration of MWLP system and classification pipeline for potato classification.

MWLP system

Lasers
• Green (#4 @532 nm)
• Red (#6 @650 nm)
• NIR (#8 @850 nm)

Image classification pipeline

Common preprocessor • none

Background preprocessor • none

Foreground preprocessor • none

Segment filter • none

Features binary classifier • DistMap

Features object group classifier
• Scatter20Section_Green
• Scatter20Section_Red
• Scatter20Section_NIR

5.2.3 Experimental results

The so-implemented potato classification was tested with the MWLP system mounted on top
of a conveyor in the lab. The potatoes used were freshly harvested potatoes which had not
been further processed or cleaned, i.e., including some soil adhesion. These potatoes were
conveyed along the MWLP system together with stones and soil clods at different speeds. The
classification worked out using the scattering features of the MWLP system at different conveyor
speeds and in subsampling mode of the camera with frame rates up to approx. 400 Hz. The
data gathered by the camera of the MWLP system can processed online down to the classified
treatment grid by 2 computers. One is the Personal Computer (PC) mounted into the control
cabinet of the MWLP system. It processes the camera images through the image pipeline of the
/line_detection_node (cf. Figure 3.10) including matching, line detection and line assembly
and publishes out MWLP scans. The scans are transferred to the second PC. The second
PC aggregates the scans to chunks (running the /scan_buffer_node, cf. Section 3.2.2) and
processes the data through the classification pipeline (cf. Figure 5.11).

• Simple functionality test

The resulting images of the data processing chain are given in Figures 5.29 to 5.33. Figure 5.29
shows the input data for the potato classification, i.e., the output data of the MWLP system.
As mentioned, the MWLP system was operated with red, green and NIR laser. However, for
the color representation shown in Figure 5.29 only the IntensitySum features of the green and
red laser are used for colorization. Figure 5.30 shows the background (conveyor) / foreground
(potatoes or residuals) classification based on the distance information of the MWLP system.

Figure 5.31 shows the probability image of the pixel classification into the different object groups.
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Figure 5.29:
Input image:
Scan data for the
MWLP system.

Figure 5.30:
Binary pixel
classification
result: Black
pixels belong
to background,
white pixels to
foreground.

Figure 5.31:
Result of pixel
classification into
object groups:
yellow pixels
are classified
to belong to a
potato, red pixels
belong to trash.
Shadings accord-
ing to pixel’s
probabilities.

Figure 5.32:
Treatment grid
with the colorized
values of the
decision map.

Figure 5.33:
Original input im-
age overlayed with
the final treatment
decision. Red
shaded grid cells
must be treated,
i.e., stamped for
separating the
contained object
from the product
flow.

In this example the classification pipeline is trained simply to classify into 2 ObjectGroups,
‘potatoes’ and a single ObjectGroup ‘trash’ for all residuals, i.e., stones and soil clods. Thereby,
each pixel is colored depending on the pixels probabilities and the colors assigned to the different
object groups (here potato: yellow; trash: red) according to Formula 5.11.

Formula 5.11: Colorization of the probability image.

ColorP ixelk =
N
∑

i=1

P (ObjectGroupi|k) ∗ ColorObjectGroupi

, where N is the number of ObjectGroups to classify into and

ColorP otato = RGB(255, 255, 0)

ColorT hrash = RGB(255, 0, 0)
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Figure 5.34: Input im-
age for the selected region.

Figure 5.35: Probability
image of the selected re-
gion.

Figure 5.36:
Gray-scaled Scat-
ter20Section_NIR values
of the selected region.

Inspecting Figure 5.31 and Figure 5.29 it is particularly notable that there are some potatoes
which - due to soil adhesion - do not look very different in the color image, but they are still
classified relatively good in the probability image. For instance the colors of the potato in the
selected region of the original image depicted in Figure 5.34 does not look very different to the
adjacent stone. Despite this, the vast majority of pixels of both objects are classified correctly
as shown in detail by Figure 5.35. There are some misclassified pixels at the boundaries of the
potato. However, these are very few in comparison to the number of correctly classified pixels of
the potato. Hence, they do not influence the grid aggregation. The correct classification despite
very similar color values is due to the feature selection for classification. Figure 5.36 shows the
gray-scaled Scatter20Section_NIR values of the selection. Note, these features do significantly
differ for both objects. As mentioned, these Scatter...-features do influence the classification
while the IntensitySum-features do not. Consequently, the classification still works despite some
potatoes having (little) soil adhesion.

Figure 5.32 shows the corresponding mapped grid for the image show in Figure 5.29. Here,
the grid cells are colored according to the decision mapped values obtained for the respective
grid cells, i.e., TreatmentValues and Certainty. Green grid cells correspond to ‘not to treat’
cells. Red cells have the highest TreatmentValues, i.e., must be treated. Blue cells represent
the background. Black cells are ‘unknown’. Shadings are included according to the respective
TreatmentValues and Certainty. The configuration of the treatment grid generation for this
experiment is given in Figure 5.37.

Figure 5.33 shows the original image (cf. Figure 5.29) overlayed with the finally generated
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Figure 5.37: Configuration of the treatment grid aggregation.

treatment grid. The red shaded grid cells indicate the cells that have to be treated, i.e., a stamp
actuator would have to hit these cells in order to separate the contained object from the product
flow. As the figures show, this experiment was successful. All residual objects have cells which
are to be treated. All potatoes stay untreated.

• Verification

After first experiments showing the functionality for potato classification had been successfully
conducted, a method for verification under different conditions was needed. Unfortunately, due
to lack of access to harvester machines field tests for this application were not possible. Only
indoor tests could be conducted. However, there were tests conducted using freshly harvested
potatoes - as mentioned before - in order to address the problem of little soil adhesion. Addi-
tionally, for verification the effects of shocks/vibrations predictable during machine operation
and different conveyor speeds for increased capacity were systematically assessed in indoor mea-
surements.

In order to assess the effects of shocks and vibrations a test bench for sensors was used. Figure
5.38 depicts the test bench. It comprises a programmable conveyor that moves the objects to
test along the used sensor. The conveyor can be moved forward and backward listening on sen-
sor feelers on both ends for repeated measurements. Further, the test bench comprises a sensor
carrier into which the sensor can be mounted. The sensor carrier can be agitated up/down
and tilted with different programmable amplitudes in order to monitor the effects of the sensor
agitation on the measurements and image processing [128].

For the previously described experiments the potatoes and residual were conveyed as loose bulk
on the conveyor. Unlike this, for experiment described here a set 6 potatoes and 6 stones/clods
were separately placed and glued to a piece of wood, as depicted in the bottom left corner of
Figure 5.38. This was done in order to allow operating the conveyor at its maximum speed
of approximately 1.1 m/s. When the conveyor hits its end sensor, it automatically reverses its
movement direction. At this point the loose potatoes do not stay in place at maximum speed.
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Figure 5.38: Configuration of the treatment grid aggregation.

Due to this in the previously described simple functionality tests with loose objects the conveyor
speed could only be increased to approx. 0.6 m/s. In contrast, here speeds up to approx. 1.1
m/s were tested.

For this experiment the speed of the conveyor was varied in five steps between 0.12 m/s and
1.09 m/s. For each speed step the amplitude of the oscillation of the sensor carrier was varied in
6 steps between 0 mm and 25 mm. At each of these conveyor-speed/oscillation-amplitude steps
the set of 6 potatoes and 6 residuals have been scanned and processed to the treatment grid at
least 3 times.

Figures 5.39 to 5.44 show some example results of these operations. Thereby, like in Figure
5.33 the original data of the MWLP system visualized as color image (here including NIR laser
in the blue image channel) is overlayed with the treatment grid generated as end result of the
classification pipeline. Red shaded grid cells are to be treated. As the figures show, for low
speeds and agitations the objects are clearly identifiable in the MWLP data and the grid cells
for treatment are placed correctly. For higher speeds and moderate amplitudes this stays the
case. Of particular interest is Figure 5.43. Here the objects are hardly manually identifiable.
However, knowing the positions of the objects to treat it can be verified that still each of the
objects to treat is overlayed by at least a couple of grid cells to treat while the potatoes stay
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untreated. Only in Figure 5.44 the second residual objects from top stays completely untreated
and would remain in the object flow.

Figure 5.39:
Result image at
speed 0.12 m/s
with agitation
amplitude 0
mm.

Figure 5.40:
Result image at
speed 1.09 m/s
with agitation
amplitude 0
mm.

Figure 5.41:
Result image at
speed 1.09 m/s
with agitation
amplitude 10
mm.

Figure 5.42:
Result image at
speed 0.39 m/s
with agitation
amplitude 15
mm.

Figure 5.43:
Result image at
speed 1.09 m/s
with agitation
amplitude 20
mm.

Figure 5.44:
Result image at
speed 1.09 m/s
with agitation
amplitude 25
mm.

Table 5.5 shows the summary of all of these experimental steps. The first two columns contain
the information on the oscillation amplitude and the conveyor speed. The following two columns
contain information on how many potatoes are scanned and how many potatoes are overlayed
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with a treated grid cell. Potatoes are counted as ‘with treating’ as soon as then are overlayed
with at least one treated grid cell. The next two columns state how many residual objects
are scanned and how many of these objects are overlayed with at least one treated grid cell.
The last column states how many grid cells are treated that belong to the background, i.e.,
the cell represents the blank conveyor without any objects. Examples for the latter kind of
misclassification can be seen at the top of Figure 5.42.

The misclassification of the background are uncritical. These, in application, would only cause
additional wear of the actuator tool but would not influence the process. The other kinds of
misclassification, i.e., if there are potatoes with treatments or residuals without treatments, are
critical and cannot be tolerated.

Summarizing the content of Table 5.5 it can be stated that the classification quality is appar-
ently not significantly influenced by increasing conveyor speed up to the maximum speed of the
used conveyor of 1.09 m/s. Agitation amplitudes of up to 15 mm cause only some background
misclassification while all relevant objects stay treated or untreated correctly. Starting with am-
plitudes of 20 mm also misclassification of potatoes and residuals occur. Consequently, for field
application an appropriate mechanical sensor mounting would be needed for avoiding oscillations
between the sensor and the conveyor of more than 15 mm. However, while this would have been
critical if this misclassification had started at 1.5 mm amplitude, for an allowed amplitude of
approx. 15 mm this seams feasible even for a field application.
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Table 5.5: Results for the potato/residuals classification at different conveyor speeds and sensor carrier
agitation amplitudes.

Oscillation
amplitude [mm]

Conveyor
speed [m/s]

Potatoes
[N objects]

Residuals
[N objects]

Background
[N grid cells]

Scanned With treating Scanned With treating Treatings

0

0.12 18 0 18 18 0

0.21 18 0 18 18 0

0.39 18 0 18 18 0

0.74 18 0 18 18 0

1.09 18 0 18 18 0

3

0.12 18 0 18 18 0

0.21 18 0 18 18 0

0.39 18 0 18 18 0

0.74 18 0 18 18 0

1.09 18 0 18 18 0

5

0.12 18 0 18 18 0

0.21 18 0 18 18 0

0.39 18 0 18 18 0

0.74 18 0 18 18 0

1.09 24 0 24 24 0

10

0.12 18 0 18 18 0

0.21 18 0 18 18 0

0.39 18 0 18 18 1

0.74 18 0 18 18 0

1.09 18 0 18 18 0

15

0.12 18 0 18 18 13

0.21 18 0 18 18 10

0.39 18 0 18 18 22

0.74 18 0 18 18 0

1.09 18 0 18 18 5

20

0.12 18 1 18 17 0

0.21 18 0 18 18 10

0.39 18 0 18 17 4

0.74 18 0 18 17 3

1.09 18 0 18 18 0

25

0.12 18 0 18 17 4

0.21 18 2 18 18 4

0.39 18 0 18 17 0

0.74 18 0 18 18 0

1.09 36 0 36 35 28
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5.3 Plant classification for crop/weed discrimination

After the conveyor-based potato classification based on the very descriptive scattering features
had been successfully shown, first approaches toward the plant classification for crop/weed dis-
crimination of the MWLP sensor data were conducted. This example complements the potato
classification in different points. First, unlike for the potato classification here the system is
mounted on a vehicle and moved itself while the objects are still during measurement. Second,
from image inspection it seemed likely that the scattering features would not have the same
relevance here. Thus, a different feature selection or even feature generation was needed. Third,
in this case, field-based data was classified, including all the connected problems (lighting / vari-
ations etc.). Hence, this application would show different aspects and prove the descriptiveness
of the MWLP sensor data from another point of view.

5.3.1 Problem description

• Description

An autonomous mechanical weed control system comprising a carrier vehicle, a contactless sensor
system for sensing weed and crop plants, a classification system making the necessary decisions
and a mechanical weeding tool for treating the identified weeds would be a very useful device.
For conventional farming the use of chemical herbicides could be reduced. For organic farming
selective weed control in dense crops is only possible by hand until today.

In particular, weed control in carrot cultivation in organic farming does require much manual
labor [26]. The carrot as plant with relatively slow early growth stage development is subject to
competing weeds and, thus, must be manually weeded to avoid major yield losses [68]. The man-
ual weeding takes place by persons lying on vehicles removing the weeds by hand, as illustrated
by Figure 5.45. This ergonomic and working conditions are harsh and the manual labor causes
high costs. Further, the results of the manual weeding are usually not perfect [26]. Hence, there
is a high demand for an automated solution.

Of the different required modules for an autonomous weeding system from navigation over
sensing and mapping to classification and precision treatment the lack of a weed detection and
classification system with practicable robustness was identified as the main limitation for devel-
opment of robotic weed control systems [132].
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Figure 5.45: Manual weed control in organic carrot cultivation.

• Related work

As it is has been identified as a key-enabling method for autonomous weed control, classification
for plant/weed discrimination is a research topic with long and vast history. This subsection can
only crudely strive through it. However, despite there being a long research history only very few
approaches have found their way to commercial applications. Crop/weed discrimination ratios
of 60 % to 95 % are frequently reported under somehow ideal conditions. However, robustness
under varying conditions is oftentimes not reached, mostly due to occlusion/overlapping plants
and poor segmentation under natural conditions [132].

Classical approaches commonly use camera systems, such as RGB cameras or Bi-/Multi-spectral
cameras. There are also approaches using sensors like Spectral Imaging [55] [87] or 3D range
sensors [159]. However, the use of cameras is far more common [46] [1] [93] [21] [155] [157] [106].
The image processing thereby is performed in 4 main steps [93] [158]:

1. Image aquisition
The RGB or Bi-/Multi-spectral image is acquired from the camera. Sometimes some kinds
of normalization may be applied.

2. Segmentation / Generation of a binary biomass image
The soil and plant pixels are separated and grouped into segmented objects. Different
algorithms can be used, such as thresholding or edge detection. For Bi-/Multi-spectral
images the Normalized Difference Vegetation Index (NDVI) is frequently calculated to
separate soil and vegetation.

3. Feature extraction
The segments in the binary image are detected. Numeric features of the segmented objects
are extracted, such as means/variances of the color/intensity values of the segment or form
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features such as compactness, density with respect to convex hull, contour moments or
others.

4. Object (segment) classification
For a set of images the contained and up to step 3 processed images are manually labeled as
ground truth. For creating a meaningful knowledge base for a classifier usually a minimum
of approx. 500 to 1000 plants should be labeled into weed and crop plants. Based on the
labeled data base a classifier (SVM, Neural Networks, Decision trees/forests, etc.) can
then be generated that can classify segments detected other images automatically into
crops and weeds.

Most of the classical camera approaches more-less follow these steps. However, these steps have
drawbacks.

The first drawback is that the binary segmentation of overlapping/occluding plants into separate
objects is practically not feasible [132]. This problem was tackled by Pastrana & Rath using
Active Shape Models [98] [110]. Their approach is reported to work up to a certain extent of
overlapping, i.e., as long as the plant organs are somehow identifiable in the binary image. For
very high overlapping, the effectiveness drops, though [98]. Haug et al. go even one step further
an present a "Plant classification system [...] without segmentation" [45]. Thereby, "without
segmentation" indicates that the objects are not separated during classification and do not have
to be separated in the biomass image. This avoids the necessity of separating objects in the
binary biomass image and, thus, makes the problem of overlapping obsolete [45].

The second problem is that the camera based approaches are sensitive to poor segmentation un-
der natural field conditions [132]. This is due to the commonly used form features (compactness
/ moments etc.) of the binary image for classification. As a consequence of using form features,
the segmentation is of particular importance and - in the end - classification is mostly influenced
by the weakly-defined pixels at the plant boundary while the pixels in the plant center do not
influence the classification much. This is a common problem for practically all camera-based
approaches. Even Haug et al. generate a binary biomass image and use form features (e.g.
perimeter, compactness) for classification [45, p. 1144].

Likely, a fully pixel-based plant classification that does not take a binarization into account is not
possible for camera data, as the pixel information generated is not descriptive enough. I.e., form
features of the segmented binary plant shape are likely indispensable for plant classification
in camera image data. However, this might be different for the MWLP system. Using the
descriptive pixel data of the MWLP system including different intensity and scattering features
along with 3D data a pixel-based plant classification might be possible. This would have a
further advantage over the camera-based approaches with classification at object level. As the
classification happens at pixel-level it is no longer required to label min. 500 - 1000 plant
for generating a classifier but only a couple of marks are required. This opens the possibility
crop/weed classification with In-Field-Labeling (cf. Section 5.1.1).
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Figure 5.46: Field-acquired MWLP data with labeling marks.

5.3.2 Feature relevance, selection and generation for background removal

Before going to deep into the foreground / background classification, note that this step is not a
classical segmentation / binarization. This is due to the following points. First, it is done on the
pixel level, meaning a pixel assigned to the background can be surrounded by foreground pixels
without issues, et vice versa. Second, it is done by classification rather than index thresholding
or edge detection, i.e., is adaptable. Third, - and this is the main point - pixels identified as
background pixels are only skipped for the classification into crop or weed pixels. However,
the classified foreground pixels can still access their entire neighborhood and do not ‘know’ for
feature generation whether their neighbors are foreground or background pixels. This means
that there are no features for crop/weed classification generated from the foreground/background
shapes. In turn, this makes the entire processing chain more robust toward poor segmentation.

The separate classification of foreground and background pixels is done to speed up the slightly
slower crop/weed classification by skipping the background pixels. Further, it is necessary
because the feature relevance for foreground/background (i.e., soil/plant) classification differs
from the feature relevance for crop/weed classification as will be shown here.

For the labeling and classification tests the field-acquired data from carrot and weed plants
scanned with the MWLP system mounted into BoniRob (cf. Section 4.5, cf. Figure 4.37) was
used. It was loaded into the labeling GUI and annotated with some marks for background (soil)
and crop/weed plants. A screen shot of the labeled marks is given in Figure 5.46.

The SAD-based measures of the relevance of the feature channels extracted by the MWLP
system for the labeled data of Figure 5.46 are given in Table 5.6. Recall that these are scaled
between 0.0 and 1.0 with 1.0 indicating the maximum relevance (cf. Section 5.1.4). Apparently,
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Table 5.6: SADs of all channels extracted by the MWLP system for binary classification of plants and
soil pixels.

Channel name
Background /

Foreground SAD Channel name
Background /

Foreground SAD

LineWidth_Green 0.372884 . . . continued . . .

IntenMax_Green 0.914066 Scatter60Section_Red 0.354747

IntensitySum_Green 0.265194 Scatter60Sum_Red 0.140995

Scatter20Section_Green 0.593229 Scatter80Section_Red 0.353578

Scatter40Section_Green 0.687041 Scatter80Sum_Red 0.114397

Scatter40Sum_Green 0.709044 LineWidth_NIR 0.810751

Scatter60Section_Green 0.614667 IntenMax_NIR 0.93219

Scatter60Sum_Green 0.74825 IntensitySum_NIR 0.700092

Scatter80Section_Green 0.418099 Scatter20Section_NIR 0.868723

Scatter80Sum_Green 0.7494 Scatter40Section_NIR 0.901565

LineWidth_Red 0.638308 Scatter40Sum_NIR 0.912924

IntenMax_Red 0.948752 Scatter60Section_NIR 0.850403

IntensitySum_Red 0.75848 Scatter60Sum_NIR 0.920386

Scatter20Section_Red 0.310547 Scatter80Section_NIR 0.654316

Scatter40Section_Red 0.352592 Scatter80Sum_NIR 0.920731

Scatter40Sum_Red 0.199827

the IntenMax features of all lasers are of particular high relevance as well as the scattering
features of the NIR laser. For the IntenMax there was no real explanation for this behavior.
Inspecting the images they all looked very similar to the one depicted for the red laser in Figure
5.47. Apparently, the IntenMax values of the soil are systematically higher than those of the
plants. Maybe the less dense leaf surface structure does not provide such a high reflection peak
like the dense soil does. However, it has to be added that the dynamic range of these features
was very small in comparison to other extracted features. Therefore, and in order to avoid
redundancies between the features it was decided to use only the IntenMax features of one laser
for the classification.

The scattering features of the NIR laser are also of high relevance. This can be explained
by the light being scattered inside the leaf tissue. In particular, the light of the NIR laser can
enter the tissue and, thus, is subject to scattering. Hence, one of scattering features of the NIR
laser should be included for the foreground / background classification, but not multiple to avoid
redundancy.
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Figure 5.47: Heat map visualization of IntenMax_Green.

• Feature generation

Despite already having some good features, feature generation was also tested. The NDVI is
known for being a good descriptor for soil and canopy discrimination. Therefore, it was also
generated based on the IntensitySum features of the red laser at 650 nm and of the NIR laser
at 850 nm. The NDVI is calculated according to Formula 5.12.

Formula 5.12: Calculation of the NDVI.

NDV I =
NIR − Red

NIR + Red

The gray-scaled IntensitySum_Red and IntensitySum_NIR values serving as input for NDVI
calculation are depicted in Figures 5.48 and 5.49, respectively. Invalid pixels of the MWLP
system, i.e., not scanable, are colored red in these images. For bi-/multi-spectral camera images
it is usual that the reflection of soil exceeds the reflection of plants for the red waveband. For
NIR the opposite case can be observed. This effect is also valid for the MWLP system. The
calculation of the NDVI then creates an image with enhanced contrast by combining both pixel
information. The resulting gray-scaled NDVI image for the field-based MWLP data is shown in
Figure 5.50.

Further, the histograms for obtaining the SAD-based feature relevance measures mentioned in
Table 5.6 are given for the channels IntensitySum_Red and IntensitySum_NIR as well as for
the newly generated NDVI channel in Figures 5.51, 5.52 and 5.53. Note, by combining both
channels with moderate relevances of 0.700 and 0.758 a new channel with very high relevance
of 0.925 can be generated.
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Figure 5.48: Gray-
scaled IntensitySum_Red.

Figure 5.49: Gray-
scaled Intensity-
Sum_NIR.

Figure 5.50: Gray-
scaled NDVI.

Figure 5.51: Foreground/Background histogram for IntensitySum_Red.

Figure 5.52: Foreground/Background histogram for IntensitySum_NIR.

Figure 5.53: Foreground/Background histogram for NDVI.
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Based on these observations, it was decided to generate the NDVI as additional feature for
foreground / background classification. Further, the Scatter60Sum_NIR feature was selected
as a relevant NIR scattering feature to be passed on to the binary classifier. Additionally, the
IntenMax_Green was selected. It represents similar relevance like IntenMax_Red and Inten-
Max_NIR. However, the red and NIR lasers already influence the classifier via NDVI. I.e., for
the green laser’s value less redundancy was expected. For the calculation of the NDVI a filter
class was implemented, such that could be plugged into the classification pipeline as background
preprocessor (cf. Section 5.1.5).

5.3.3 Feature generation for crop/weed discrimination

The SAD-based relevance measures of the spectral channels for crop/weed classification are
given in Table 5.7. Clearly, none of the spectral features provided by the MWLP system showed
significant relevance for crop/weed classification. Hence, feature generation using the 3D data
provided by the MWLP system was necessary.

Table 5.7: SADs of the MWLP system’s spectral feature channels crop/weed classification.

Channel name
Crop plant /

Weed plant SAD Channel name
Crop plant /

Weed plant SAD

LineWidth_Green 0.122 . . . continued . . .

IntenMax_Green 0.243 Scatter40Section_Red 0.504

IntensitySum_Green 0.142 Scatter60Section_Red 0.100

Scatter20Section_Green 0.182 Scatter80Section_Red 0.072

Scatter40Section_Green 0.331 LineWidth_NIR 0.343

Scatter60Section_Green 0.332 IntenMax_NIR 0.254

Scatter80Section_Green 0.060 IntensitySum_NIR 0.350

LineWidth_Red 0.127 Scatter20Section_NIR 0.124

IntenMax_Red 0.223 Scatter40Section_NIR 0.192

IntensitySum_Red 0.149 Scatter60Section_NIR 0.341

Scatter20Section_Red 0.104 Scatter80Section_NIR 0.076

• Runtime analysis of Point Cloud Library (PCL) surface descriptors

As shown, for crop/weed discrimination of carrots and weed plants the generation of features
from the 3D data of the MWLP system was required. For this task the Point Cloud Library
(PCL) offers a manifold of surface descriptors that describe objects surfaces based on the 3D
surface point and normals estimated for each point. In particular, the Point Feature Histograms
(PFH) and Fast Point Feature Histograms (FPFH) estimators are commonly used surface de-
scriptors developed by Rusu et al. [121] [120] [122] [99]. The PFH features fully interconnect
the neighborhood of a point in the 3D point cloud. The transformation from one point’s normal
to the normal of another neighborhood point is described using three angular features and a
distance feature. This is done for each point pair in the neighborhood of a point. Next, in order
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to describe the surface point itself the derived values for the point pairs in the neighborhood
are aggregated to a histogram serving as descriptor [121] [125]. The FPFH features do not fully
interconnect the neighborhood but work in 2 steps. First, the same three angular features as
for the PFH are calculated for the point itself and the points in its neighborhood. However,
here only the feature values for point pairs including the point itself are calculated. Further,
the distance feature is neglected because oftentimes it does not provide much information about
the objects as it highly depends on the sensor setup. In particular, for organized clouds the
distances of the points in a neighborhood mostly depend on the sensor resolution and, thus,
do not provide information about the sensed objects. The angular features obtained for the
points and the points in their respective neighborhoods are aggregated to histograms for each
point called Simplified Point Feature Histograms (SPFH) [120]. Second, these histograms are
combined in the neighborhood of a point by a weighted average depending on the distance the
point the SPFH was calculated for [120] [124]. The FPFH estimator is of particular interest as it
has already been used for an agricultural application using data of a line profiling sensor. Paulus
et al. have applied it for plant organ classification in phenotyping [99]. A different feature de-
scriptor further provided by the PCL is the Radius-based Surface Descriptor (RSD) developed
by Marton et al. This descriptor calculates the angles between the normals of the point and
adjacent point to describe and its neighborhood. It returns the minimum and maximum local
surface radius as describing numeric features. Using these values they can distinguish between
different geometric surface classes [83] [82].

For phenotyping applications the data processing can happen offline and only the data collection
must be performed online on the field. Therefore, the data processing algorithms for phenotyping
are not subject to serious runtime restrictions. However, having in mind automated weeding the
processing time plays an important role. The processing must happen online in order to provide
the actuator with the information to treat or not to treat a grid cell before it is reached. Of
course, during the test described here there was not yet an actuator involved. However, with the
application in mind runtime is an issue. In order to assure the possibility of online processing
it should at least be possible to process the incoming data in less time than the acquisition
took. Fulfilling this constraint, the timing of the processing chain can then be adjusted to be
ready before an actuator position is reached by determining the chunk size processed through it.
Without fulfillment of this constraint online processing for automated actuation is impossible
regardless of configuration, as internal buffers would increase over time.

With these bounding conditions in mind runtime tests of the PCL algorithms for processing
MWLP sensor data have been performed. For this, a data set of field-acquired MWLP sensor
data from scanning carrots and weed plant at 0.1 m/s with a frame rate of approx. 75 Hz
and full camera resolution scanned within 5 seconds was used. The used data set contained
370 MWLP scan lines of each 2048 points each. Prior to the processing tests the data set
was stuffed to with interpolated scans and partly padded on the sides to a size of 2074 x 4580
pixels. This stuffing with interpolated scans is always done prior to chunk-wise passing the
MWLP data through the image classification pipeline (cf. Sections 5.1.5 and 5.1.6). The image
classification pipeline may also include filtering of the data by image processing filter algorithms,
such as e.g. erosion, dilation or blur. These algorithms only provide meaningful results if the
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Table 5.8: Key features of the PC the performance tests have been conducted on

Component Type Remarks

CPU Intel(R) Xeon(R) E5645 6 cores @ 2.40 GHz

RAM DDR 3 12 GB @ 1333 MHz Front Side Bus

Graphics card NVIDIA Quadro 4000 256 Stream Processing Units @ 950 MHz
2048 MB GDDR5 RAM

positioning of the pixels in the image is correct and if the pixel sizes in x- and y-direction are
equidistant. Just pushing the MWLP scans line-by-line into images without padding and stuffing
with interpolated scans would - depending on the movement - result in improper positioning
and scaling of the image and, thereby, rule out the use of image-filters on the MWLP data.
Hence, the stuffing with interpolated scans and padding is done prior to passing the chunks
to the pipeline. Thus, use of image-filters in the pipeline is safe. For point cloud processing
algorithms, however, this would not be required but still does not cause functional problems.
The only drawback of processing the data including interpolated pixels is that more points/pixels
must be processed to the filter. This causes longer processing times. Therefore, for performance
critical processing steps downsampling is done before the data is processed through the filter.
E.g. for a downsampling grid of 5-by-5 only every fifth pixel in x-direction and every fifth pixel
in y-direction is passed on to the filter, i.e., the number of points/pixels is reduced by 25 with
respect to the interpolated data. In principle, this downsampling could also be done immediately
after the stuffing with interpolated scans. However, for several image processing such as e.g.
erosion, dilation or blur and for the pixel classifiers processing 2074 x 4580 pixels in a much
shorter time than 5 sec is possible without problems. Consequently, there is no general need to
downsample the interpolated data. Hence, the data is only downsampled for performance critical
filters. After the respective filtering operation for these performance-critical filters, their sparse
results are interpolated back to the size of the stuffed data to assure same data dimensions.

The performance tests were conducted using a workstation PC. The key features of this PC
are listed in Table 5.8. The performance test have been conducted for the different feature
estimators at different levels of downsampling of the equidistant stuffed image data. It has
been tested for the mentioned feature estimators PFH, FPFH and Radius-based Surface De-
scriptor (RSD). Further, all of these surface descriptors require the point cloud and normals
estimated for each point as input. Therefore, the default normals estimator of PCL and the
pcl:IntegralImageNormalEstimation [51] [50] were additionally included in the test. The
pcl:IntegralImageNormalEstimation only works on organized point cloud data. However,
the point clouds derived from the MWLP sensor data are organized. Hence, it can be used. For
all other tested normals and feature estimators a search method for conducting the neighborhood
search is required. It was set to pcl::search::OrganizedNeighbor. This search method is also
optimized for organized point cloud data and, therefore, faster than pcl::search::KdTree or
pcl::search::OctTree. All estimators were configured to perform a radius search. The search
radii were set to values of 10 mm for the normals estimators and 7.5 mm for the feature estima-
tors. These are reasonable values due to the observed plant sizes.
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The results of the performance tests with the PCL algorithms are listed in Table 5.9. The grid
sizes for downsampling of the stuffed interpolated data are given in the first table row. The sec-
ond row states the image/organized point cloud dimensions after downsampling. Third row indi-
cates the number of pixels effectively being processed by the respective algorithm at the specific
level of downsampling. In the fourth row mentions the (constant) number of samples originally
scanned by the MWLP system prior to stuffing/interpolation for proper scaling. The fifth row
notes the ratio of samples passed on to the estimators (after to stuffing/interpolation/scaling and
downsampling) over scanned samples (prior to stuffing/interpolation/scaling and downsampling)
at this level of downsampling.

Following these heading rows in Table 5.9, the results of the performance tests at the different
levels of downsampling and for the different feature estimators are given. Each cell states the
number of repetitions, the mean runtime in seconds and the standard deviation for the respec-
tive case. The processing was performed single threaded in all cases. Of course, all of these
algorithms can be speeded up by multi-core parallelization. However, when running in actual
application filtering in the image pipeline and other tasks, such as piping, interpolation and
classification, must be performed in parallel. Consequently, a single filter cannot use up the
entire processing power. Further, the classification pipeline itself implements multi-threading
by processing multiple data-chunks in parallel threads through the pipeline. Hence, use of the
single threaded version for the individual filters is appropriate.

The mean processing times over the number of processed samples for the different algorithms are
further drawn in Figure 5.54. Please mind the logarithmic axes scales. The blue horizontal line
represents the data acquisition time of the set (5 seconds, as mentioned). In order of allowing
online processing runtimes higher than this are not feasible. The vertical dashed orange line
corresponds to a downsampling grid of 10-by-10. At this level of downsampling the number of
samples passed on to the estimators is already been reduced by a factor of 0.125 (cf. Table 5.9).
I.e., for higher numbers of downsampling less than 10 % of the information gathered is actually
used. The use of high resolution sensors such as the MWLP system is then somehow obsolete as
only a very minor part of the gathered information is actually been interpreted. Thus, higher
numbers of downsampling should be avoided. Hence, the feasible and useful region for online
processing of the high resolution data of the MWLP system is the bottom right part of Figure
5.54 separated by the blue horizontal and orange vertical line.

As consequence of the information shown in Figure 5.54, online normal estimation based on the
organized sensor data of the MWLP system is not a problem. The pcl::IntegralImageNormal

Estimation is fast enough to estimate normals even for full-resolution data of the interpolated
and scaled data in less time than required for acquisition. The pcl::NormalEstimation with
organized neighbor search would also be feasible with some downsampling but is still much
slower. As no notable differences in the resulting normals of both methods were observed,
pcl::IntegralImageNormalEstimation was chosen for all normal estimations in the following.

For feature estimation and surface description the PFH estimation takes way to long to be
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Table 5.9: Runtime measurement statistics of PCL surface description algorithms on MWLP sensor
data with different levels of downsampling.

Downsampling
grid

50 15 12 10 8 5 3 1

Image size 41x91 138x305 172x381 207x458 259x572 414x916 691x1526 2074x4580

Processed
samples

3731 42090 65532 94806 148148 379224 1054466 9498920

Scanned samples 757760 757760 757760 757760 757760 757760 757760 757760

Ratio 4.92E-3 0.056 0.086 0.125 0.196 0.500 1.392 12.54

Runtime
statistics

N tests
Mean runtime [sec]

Standard deviation [sec]

PCL -
IntegralImage

NormalEstimation

20
3.82E-4
7.14E-6

20
1.42E-2
1.81E-4

20
2.13E-2
2.79E-4

20
3.41E-2
2.91E-4

20
4.87E-2
3.13E-3

20
0.115
6.11E-4

20
0.314
2.01E-2

20
2.829
8.03E-2

PCL -
FPFHEstimation

20
1.02E-2
2.47E-4

20
0.922
4.83E-2

20
2.670
6.13E-2

20
4.608
0.113

15
10.908

0.113

4
71.291

1.501

PCL -
PFHEstimation

20
1.12E-2
1.62E-4

15
14.345
6.29E-2

4
56.083
3.79E-2

PCL -
RSDEstimation

20
4.20E-3
5.13E-4

20
0.241
2.13E-3

20
0.584
2.87E-2

20
1.132
3.83E-2

20
2.588
5.60E-2

15
15.111
2.46E-2

2
108.268
4.55E-2

PCL -
NormalEstimation

20
2.68E-3
4.60E-4

20
0.151
1.09E-3

20
0.366
2.13E-2

20
0.659
2.84E-3

20
1.635
7.94E-3

20
9.666
2.31E-2

4
70.728
2.38E-2

taken into account. The FPFH estimation cuts the feasible region at a very small part. At a
downsampling grid of 10-by-10 it takes approx. 4.6 seconds on average, thus going below the
5 seconds of acquisition time. However, there is very few computational reserve. In case the
robot moves a bit faster the buffers would immediately start to grow. Therefore, it was also not
taken into account in the first place. The RSD estimation, in contrast, showed processing times
significantly less than the acquisition time of 5 seconds on this data set. For a downsampling
grid of 10-by-10 it was at approx. 1.1 sec, for 8-by-8 it was still at 2.6 seconds. Again, mind the
logarithmic scale in Figure 5.54. Despite the apparently small difference the RSD estimation is
actually 4-5 times faster than the FPFH estimation. Due to this good performance the PCL
RSD estimation developed by Marton et al. [83] [82] was used as starting point for 3D feature
generation.
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Figure 5.54: Runtime of PCL surface description algorithms on MWLP sensor data with different levels
of downsampling.

• Radius-based Surface Descriptor (RSD)

The RSD estimation takes point normals as input and calculates the minimum and maximum
radius that would be required for surface reconstruction at the given point. For reconstruction
purposes, this value has the advantage of being directly connected with a physical meaning [83].
I.e., for surface estimation there is no statistical classification required - in contrast to FPFH
features without physical meaning. As Figures 5.55 and 5.56 show, the returned values can
directly be mapped to surface classes [82] [83]. Further, the calculation is significantly faster
than for FPFH because only a single angular feature is calculated per point pair rather than
three.

The procedure for the calculation of the minimum and maximum radius for an individual surface
point is as follows [83]:

1. Calculate the angle α (cf. left-hand side of Figure 5.55) between the normals of a point
pair for each point pair including the point itself and any of its neighbors within the
maximum search distance dsearch.

2. Group the obtained angles values depending on the distance of the point pair into dis-
tance bins. By default, five bins are used. For each bin determine the minimum and
maximum angular value.

3. The relation between the angle α, the distance d and the radius r in the left-hand side of
Figure 5.55 is given by d =

√
2r
√

1 − cos(α) [83]. Using Taylor series decomposition
Marton et al. showed that for the relevant angle range this can be approximated by
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Figure 5.55: RSD feature meaning and
mapping. Source: [82].

Figure 5.56: Object surface classifica-
tion based on RSD. Source: [83].

d ≈ rα. Hence, the minimum and maximum radius features can be approximated
from the values in the distance bins by linear regression [83]. The estimation of the
final feature value based on linear regression is denoted in Formula 5.13.

Formula 5.13: Linear regression of radii from min/max angles of the distance bins.

rmin =
∑

αmini
di

∑

α2
mini

rmax =
∑

αmaxi
di

∑

α2
maxi

, where αmini
and αmaxi

are min/max angles of the distance bin

, and di is the center distance of the distance bin

• ExtendedRSD

Before being used for plant classification of MWLP data the concept of the descriptive RSD was
partly simplified and partly extended. Its calculation was simplified. As Formula 5.13 states,
the finally resulting feature radii depend on the respective angles and on the distances of the
distance bins. However, the distances of the bins are pre-configured values depending on the
search radius and the number of bins. Hence, the descriptiveness of the features can only derive
from the angles. The distance value inducts normalization as the angle between the normals of
e.g. a sphere with constant radius does depend on the distance of the point pair. However, if
calculated as described in Formula 5.13, the angles of the distance bin with the highest value
contribute the most to the final result as their values are multiplied with the highest distance.
This leads to the thought just to calculate the angular features for the outer distance bin.
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Figure 5.57: Angular features for extended RSD.

Further, if doing so, the angular values can directly be returned as applying a constant factor
does not add new information.

Following this thought, the extended RSD implemented as part of this work introduces a min-
imum distance. Only point pairs with distances between the point to describe and the pairing
point ranging between this minimum distance and the maximum search distance are evaluated.
Further, the angular features are returned directly. This is similar to using only the (most in-
fluential) outer bin of the RSD estimation. Moreover, the other (less relevant) angles are not
calculated at all. To avoid crude outliers the extended RSD thereby do not return the minimum
and maximum angle values but the 5 % and 95 % percentile values of the samples monitored for
a point. Just for testing purposes mean and variances of the angles calculated around a point
are additionally returned.

Further, the angular features are extended by another angle. For a pair of two points P1 and
P2 with their respective normals N1 and N2 not only the angle α between their normals is
calculated but also the angle β spanned by the normal N1 and the vector from P1 to P2. This
is depicted in Figure 5.57. The angles observed for this feature within the mentioned distance
window around the point are again described by the 5 % and 95 % percentile values as well as
mean and variance. These features can be interpreted as measure of concavity/convexity.

A class inheriting from PipedGenericOverlayedImageFilterBase (cf. Section 5.1.6) imple-
ments the calculation of the extended RSD features. Hence, it can be plugged into the image
classification pipeline as foreground preprocessor and can use context of prior and following data
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chunks while processing the data. The pcl::IntegralImageNormalsEstimation is included in
this filter before the feature estimation is conducted as normals for the points to describe are
required. The feature channels added to the MWLP data by this filter are listed in Table 5.10.
The feature estimator was implemented on CPU and GPU.

Table 5.10: Numerical features appended to the MWLP data by the extended RSD estimation.

Feature Description

MwlpCloudFeature_
Curvature

Curvature observed during normal estimation. Passed from the
pcl::IntegralImageNormalsEstimation.

MwlpCloudFeature_
AngleNormalsMax

Upper percentile value (e.g. 95 %) of the monitored angles α be-
tween the normals. If the percentile is configured 100 % this value
essentially contains the same information like the outer distance bin
angle value (i.e., most influential angle value) of the RSD estimation.

MwlpCloudFeature_
AngleNormalsMin

Lower percentile value (e.g. 5 %) of the monitored angles α between
the normals. If the percentile is configured 0 % this value essentially
contains the same information like the outer distance bin min angle
value (i.e., most influential angle value) of the RSD estimation.

MwlpCloudFeature_
AngleNormalsMean

Mean of the monitored angles α between the normals.

MwlpCloudFeature_
AngleNormalsVariance

Variance of the monitored angles α between the normals.

MwlpCloudFeature_
AngleNeighborPointMax

Upper percentile value (e.g. 95 %) of the monitored angles β between
the normal of the point to describe and the connecting vectors to it
pairing points.

MwlpCloudFeature_
AngleNeighborPointMin

Lower percentile value (e.g. 5 %) of the monitored angles β between
the normal of the point to describe and the connecting vectors to it
pairing points.

MwlpCloudFeature_
AngleNeighborPointMean

Mean of the monitored angles β between the normal of the point to
describe and the connecting vectors to it pairing points.

MwlpCloudFeature_
AngleNeighborPointVariance

Variance of the monitored angles β between the normal of the point
to describe and the connecting vectors to it pairing points.

MwlpCloudFeature_
AngleNeighborCount0

Count of valid points inside the circle-like 2-D search window around
the monitored pixel (z-coordinate is not taken into account).

MwlpCloudFeature_
AngleNeighborCount1

Count of valid point found inside the search radius in 3D (z-
coordinate is taken into account).

MwlpCloudFeature_
AngleNeighborCount2

Count of valid points that are closer than the minimum distance,
i.e., their angles are not taken into account for feature estimation as
they are to close.

MwlpCloudFeature_
AngleNeighborCount3

Count of valid points that are farer than the minimum distance but
inside the search radius. I.e., the angles α and β for the pairing of
these points with the monitored point are actually taken into account
for feature estimation.
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• Line flicker

The line flicker feature estimator was implemented due to an observation made when inspecting
the distance map for carrots and weeds shown in Figure 4.37. The fine pinnate leafs of the
carrots induce a kind of flicker in the distance image with many abrupt changes of the distance
values. In contrast, oval leafs of weed plants have smoother leaf surfaces or grass-like weed plants
only induce a single abrupt distance change. Therefore, the line flicker feature estimator was
implemented. It analyses a kernel around the point to describe in the distance image. Thereby,
not all pixels of the kernel are taken into account. It only runs along 4 axes in the kernel patch:
x-direction, y-direction, 45◦ descending diagonal, 45◦ ascending diagonal. While running along
these axes it sums up the absolute changes in the distance values (z-direction) between the
current value and the previous value.

All features appended by the line flicker estimation are described in Table 5.11. Same as for
the extended RSD estimation the line flicker estimation is also implemented on both CPU and
GPU.

Table 5.11: Numerical features appended to the MWLP data by the line flicker feature estimation.

Feature Description

FlickerFeature_MagicToValid
ChangeCountFor_DistMap

Number of changes along the line axes between adjacent
pixels with valid values and ‘magic’, i.e., non-measureable
invalid, values.

FlickerFeature_ValueRange
For_DistMap

Difference between the minimum and maximum observed
distance values.

FlickerFeature_ValueCount
For_DistMap

Number of valid, i.e., not ‘magic’, values on the analyzed
line axes.

FlickerFeature_DirectionChange
CountFor_DistMap

Number of sign changes of the distance values between
adjacent pixels while running along the line axes.

FlickerFeature_ChangeSum
For_DistMap

Summed up absolute changes of distance values of adja-
cent pixels while running the line axes.

FlickerFeature_NormalizedChange
SumFor_DistMap

Change sum divided by direction change count.

• Runtime analysis for here implemented feature estimators

The processing time statistics for the here implemented feature estimators are given in Table
5.12. The data set, computer and boundary conditions are the same as for the tests conducted
with the PCL estimators (cf. Table 5.9). The mean runtimes for the here implemented feature
estimators are depicted in Figure 5.58. Further, Figure 5.58 draws the performances of the PCL
FPFH estimation and of the PCL RSD estimation, for orientation. The horizontal line plotting
the data acquisition time and the vertical line indicating the downsampling grid of 10-by-10 are
added to Figure 5.58, same as done for Figure 5.54. Again, the region right of the vertical line
and below the horizontal line is the part useful and feasible for online processing.
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Figure 5.58: Mean runtimes of the here implemented feature estimators.

The extended RSD features are calculated on both CPU and GPU. The introduced minimum
point distance for the test was set to 3.5 mm. The search radius was set to 7.5 mm, same as for
the feature estimators tested before. The CPU version of the extended RSD is a bit slower than
the RSD estimation for the PCL also running on CPU (1.82 sec vs. 1.13 sec @ downsampling
grid of 10-by-10). This can be explained by the different changes influencing the performance.
On one hand, the estimation is speeded up by skipping the calculation of angles for point pairs
with small distances. On the other hand, it is slowed down because two angle values (α and β
in Figure 5.57) are calculated per point pair rather than just one. Further, the angle set around
one point is not only described by minimum and maximum value but by the upper and lower
percentile as well as mean and variance. This implies that some more calculations have to be
conducted while the increase in processing time is moderate. Still, the extended RSD features
still significantly outperform the FPFH estimation in terms of processing time (1.82 sec vs. 4.60
sec @ downsampling grid of 10-by-10). The GPU-based version of the extended RSD further
allows speeding up the processing time by a factor of approx. 2, thereby even outperforming
the RSD estimation for the PCL.

The distance line flicker features were tested on CPU and GPU in two different modes. The
default mode (labeled ‘DistanceLineFlicker’ and ‘DistanceLineFlicker_GPU’ in Table 5.12 and
Figure 5.58) corresponds to the evaluations conducted before with the other feature estimators.
The point cloud was downsampled completely and then passed on to the feature estimator.
Hence, the estimator does only ‘see’ the downsampled data. Evidently, the estimation of the
distance line flicker features is considerably faster than all other feature estimators tested. Even
the CPU-based implementation is approx. 10 times faster than PCL RSD estimation. The
GPU-based implementation induces another speed up by a factor of approx. 4. This is because
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Table 5.12: Runtime measurement statistics of here implemented surface description algorithms on
MWLP sensor data with different levels of downsampling for CPU and GPU.

Downsampling
grid

50 15 12 10 8 5 3 1

Processed
samples

3731 42090 65532 94806 148148 379224 1054466 9498920

Runtime
statistics

N tests
Mean runtime [sec]

Standard deviation [sec]

ExtendedRSD
20

1.28E-4
4.32E-6

20
0.409
2.65E-2

20
0.925
3.73E-2

20
1.820
6.62E-3

20
4.253
7.12E-2

15
25.635
9.70E-2

2
189.087

0.144

ExtendedRSD_
GPU

20
1.78E-4
4.89E-6

20
0.187
1.20E-3

20
0.518
1.85E-4

20
0.950
2.01E-4

20
2.204
3.83E-4

15
11.564
7.26E-4

4
80.202

0.351

DistanceLine
Flicker

20
4.26E-3
1.35E-4

20
3.59E-2
2.57E-4

20
6.65E-2
3.87E-4

20
0.112
3.65E-4

20
0.227
7.40E-4

20
0.901
1.81E-2

20
3.847
8.01E-2

2
120.320

0.326

DistanceLine
Flicker_

GPU

20
5.28E-3
1.57E-4

20
1.52E-2
6.69E-4

20
3.46E-2
2.52E-4

20
4.85E-2
3.78E-4

20
7.75E-2
9.42E-4

20
0.244
9.48E-4

20
1.129
1.69E-3

15
27.401
9.19E-3

DistanceLine
Flicker_dense

20
3.818
7.94E-2

20
8.142
0.102

15
10.048
7.98E-2

15
12.079
5.98E-2

15
14.954
4.62E-2

15
28.239

0.432

6
46.261

0.175

2
129.432

0.175

DistanceLine
Flicker_dense_

GPU

20
1.267
4.24E-2

20
2.440
4.31E-2

20
2.831
3.85E-3

20
3.297
3.78E-3

20
4.036
3.01E-3

20
6.144
3.56E-3

20
9.811
3.33E-3

15
27.395
1.31E-2

the line flicker feature estimation does not fully analyze all points/pixels of the kernel around
the point/pixel to describe but only uses the pixels that are part of the lines it analyses. Namely,
only points situated on the horizontal line centered in the kernel, the vertical line in centered
the kernel or one of the diagonals are taken into account. Consequently, the complexity of this
estimator is linear with respect to the kernel size. For the other estimators the processing time
grows with the 2nd or 3rd polynomial of the kernel size. Hence, the calculation is significantly
faster for high resolution data and reasonable kernel dimensions.

The analyzed performance statistics series in Table 5.12 and Figure 5.58 labeled ‘Distance-
LineFlicker_dense’ and ‘DistanceLineFlicker_dense_GPU’ represent a different downsampling
mode for the distance line flicker estimation. This was reasonably only possible, because the
estimator is faster than the others. Here, the data is passed on to the feature estimator without
downsampling. However, the estimator does only calculate the features for the samples that are
part of the downsampling grid. This means that the number of resulting point samples does not
increase, but these are estimated using a more qualified data base. If the downsampling grid is
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1-by-1, i.e., no downsampling is applied both, modes are essentially the same. Consequently, at
this point the runtimes do practically not differ (cf. Figure 5.58). However, if downsampling is
applied the runtimes of the ‘dense’ modes are much higher as much more points are analyzed.
But still in this mode on GPU the distance line flicker estimation is possible within 3.30 sec-
onds for a downsampling grid of 10-by-10 which is still feasible for online processing of the data
acquired in 5 seconds.

• Relevances of the generated features for crop /weed classification

Based on the runtime analyses of the different feature generators the decision was taken to use
the extended RSD and distance line flicker feature estimators both running on GPU. The down-
sampling grid for both estimators was set to 10-by-10, but the distance line flicker estimation
was running in ‘dense’ mode. In this mode the computing times of both estimators were found
as 0.95 seconds and 3.30 seconds for the above mentioned data set acquired in 5 sec. Even as-
suming both blocked the entire GPU resources over that times, there would still be some reserve.
Further, this allows off-boarding the feature estimation to GPU. I.e., the interpolation, piping,
classification and additional normal estimation using pcl::IntegralImageNormalEstimation

as input for extended RSD etc. happening on the CPU in parallel are not effected as much as
they would be if the feature estimation were also conducted on CPU.

The SAD-based relevance measures of the numeric features generated by the two estimators for
pixel-based classification of crop plants and weed plants are listed in Table 5.13. For feature
descriptions please note Tables 5.11 and 5.10. Further, the NDVI is given as it is calculated
anyway for soil/plant classification. However, same as the other spectral features listed in Table
5.7 the NDVI also has no relevance here. This again approves the necessity of feature generation
from the 3D data.

As Table 5.13 shows, there are a couple of 3D-features having moderately high relevances for
crop/weed classification, clearly outperforming the spectral features listed in Table 5.7. Very
high relevances in the range of 0.9 and higher like observed for potato/residual classification
or soil/plant separation were not found here, though. However, by combining a set of features
with moderately high relevances and low redundancies a classification with a reasonable level of
accuracy might still be possible.
Of the features generated by the distance line flicker estimation (labeled FlickerFeature_ *
For_DistMap) the features MagicToValidChangeCount, ValueRange, ValueCount, ChangeSum
and NormalizedChangeSum show relevances for the desired classification. Of these, MagicTo-
ValidChangeCount, ValueCount and ChangeSum were selected to be passed on to the classi-
fier. The ValueRange and NormalizedChangeSum have some informational connections to the
ChangeSum. Therefore, of these three only the latter was picked for classification as it showed
the highest relevancy while the other were skipped to avoid redundancies.

The curvature calculated during normal estimation by pcl::IntegralImageNormalEstimation

has a relatively low relevance measured here as 0.449 (cf. Table 5.13, labeled MwlpCloudFea-
ture_Curvature). Consequently, it was not passed on to the classifier.

Multi-wavelength laser line profile sensing for agricultural applications



190 Chapter 5. Classification of MWLP sensor data for agricultural applications

Analyzing the relevancies of the angular features provided by the extended RSD estimation
it can be stated that for both angle sets described - the angles between the normals of the
point pairs (i.e., angle α in Figure 5.57) and the angles between the normal and the con-
necting vector of the point pair (i.e., angle β in Figure 5.57) - the minimum and maximum
values are more relevant descriptors than the mean and standard deviation. Hence, the de-
cision of Marton et al. for RSD to use the min/max values rather than mean [83] can be
proven correct also for the data set analyzed here. However, for this data set the min/max
values of the neighborpoint angle β have higher relevances than those of the normals angle
α. Particularly, the MwlpCloudFeature_AngleNeighborPointMin shows a relevancy of 0.602. It
was therefore used for classification and passed on to the classifier. Its complementing value
MwlpCloudFeature_AngleNeighborPointMax was also passed on to the classified. Further, the
counters of valid neighboring pixels show some relevancies. However, only the MwlpCloudFea-
ture_ValidNeighborCount1 feature is used for classification as it is the most relevant counter
and the other counters provide somehow similar information.

For comparison and validation purposes, the SAD-based feature relevance measures were further
calculated for the PCL implementations of the RSD and FPFH estimation neglecting that these
are slower in processing than the here implemented feature estimators. The principle radii
features obtained by running the RSD estimation showed relevances of 0.432 and 0.424 for the
minimum and maximum radius, respectively. These relevance values are similar to those of the
minimum and maximum normals angles mentioned in Table 5.13, thus showing that the major
part of the descriptiveness of the RSD features derives from the angle values and the outer
bin is the most influential. The 33 elements of histograms descriptors obtained by running the
FPFH estimation of PCL on the tested data set on average showed low relevances with a mean
of 0.357. The standard deviation of the 33 relevances from the mean was 0.114. Only two of
the 33 the numeric entries of the FPFH histograms showed relevances higher than 0.6. These
were entry number 27 with a relevancy of 0.602 and entry number 28 with 0.699. This again
proves an observation made with the angle features for normals and angle points mentioned
in Table 5.13: The angle between normal and the connection vector neighbor point, i.e., angle
β in Figure 5.57, is angular feature most sensitive for crop/weed classification. The FPFH
estimation returns a joint histogram for the three angular features it monitors. Each angular
feature histogram occupies a chunk of 11 of the total 33 entries. The entries 23 to 33 thereby
represent the third angular feature. In turn, this feature is the angle between normal and the
connection vector neighbor point [31] [119], i.e., angle β in Figure 5.57. However, because only 2
of the 33 histogram entries obtained by FPFH estimation show moderate (not high) relevances
and the runtime is much longer than that of the extended RSD estimation, the decision to
exclude it was fixed.
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Table 5.13: SADs of the generated feature channels crop/weed classification.

Channel name
Crop plant /

Weed plant SAD Channel name
Crop plant /

Weed plant SAD

NormalizedDifference
VegetationIndex

0.317

FlickerFeature_
MagicToValid
ChangeCountFor_
DistMap

0.753 . . . continued . . .

FlickerFeature_
ValueRangeFor_
DistMap

0.631 MwlpCloudFeature_
AngleNormalsVariance

0.388

FlickerFeature_
ValueCountFor_
DistMap

0.681 MwlpCloudFeature_
AngleNeighborPointMax

0.486

FlickerFeature_
DirectionChange
CountFor_
DistMap

0.240 MwlpCloudFeature_
AngleNeighborPointMin

0.602

FlickerFeature_
ChangeSumFor_
DistMap

0.711 MwlpCloudFeature_
AngleNeighborPoint
Mean

0.300

FlickerFeature_
NormalizedChange
SumFor_DistMap

0.617 MwlpCloudFeature_
AngleNeighborPoint
Variance

0.258

MwlpCloudFeature_
Curvature

0.449 MwlpCloudFeature_
ValidNeighborCount0

0.598

MwlpCloudFeature_
AngleNormalsMax

0.456 MwlpCloudFeature_
ValidNeighborCount1

0.599

MwlpCloudFeature_
AngleNormalsMin

0.436 MwlpCloudFeature_
ValidNeighborCount2

0.489

MwlpCloudFeature_
AngleNormalsMean

0.218 MwlpCloudFeature_
ValidNeighborCount3

0.469
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• Summary of classifier configuration for plant classification experiments

Summarizing the observations made during the tests described in this Section 5.3.3 and the
prior Section 5.3.2 the configuration for the plant classification was fixed. Table 5.14 shows the
configuration of the plant classification for the experiments described in Sections 5.3.4 and 5.3.5.
Note that the ROS node running the plant classification also uses (initializes and finalizes) the
CUDA memory pool mentioned in Section 3.2.4 - same as the /line_detection_node of the
MWLP system. Again, this allows distributed and memory management also for the estimators
of the extended RSD and the line flicker features without causing implicit synchronization of
the CUDA streams. The used lens, the camera sampling mode and frame rate as well as the
driving speed of the carrying BoniRob are not mentioned in Table 5.14. These were varied
during / between the experiments and therefore will be stated along with the respective results
in Sections 5.3.4 and 5.3.5.

Table 5.14: Configuration of MWLP system and classification pipeline for plant classification.

MWLP system

Lasers
• Green (#4 @532 nm)
• Red (#6 @650 nm)
• NIR (#8 @850 nm)

Image classification pipeline

Common preprocessor • none

Background preprocessor • Filter for calculation of NDVI

Foreground preprocessor

Stacked filter containing
• Normal estimation using

pcl::IntegralImageNormalsEstimation

• Extended RSD estimation on GPU
• Distance line flicker estimation on GPU

Segment filter • none

Features binary classifier
• IntenMax_Green
• Scatter60Sum_NIR
• NormalizedDifferenceVegetationIndex

Features object group classifier

• FlickerFeature_MagicToValidChangeCountFor_
DistMap

• FlickerFeature_ValueCountFor_ DistMap
• FlickerFeature_ChangeSumFor_ DistMap
• MwlpCloudFeature_AngleNeighborPointMin
• MwlpCloudFeature_AngleNeighborPointMax
• MwlpCloudFeature_ValidNeighborCount1
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5.3.4 Results from classifying field data of carrots

The so-configured classification pipeline was feed with the field-acquired sensor data collected
during the field tests with the MWLP system (cf. Section 4.5). Sample results of this processing
are shown in Figures 5.59 to 5.62.

Figure 5.59 shows a color representation of a subset of the collected MWLP sensor data scanned
with the RG_IR lasers. The reflection of the NIR laser is again visualized in blue, i.e., same
color configuration like in the left side of Figure 4.37 in Section 4.5. Figure 5.60 shows the binary
image generated by the binary soil/plant classifier. White pixels indicate plants, black pixel the
remaining background, i.e., soil. As the figure shows, the image does not provide a perfect plant
/ soil segmentation. As mentioned, this was never intended, though. However, it shows a good
filter image for filtering out the vast majority of irrelevant soil pixels before plant classification
without filtering to many plant pixels.

Figure 5.61 shows the probability image as result of the object group classifier including its pre-
processors for generation of features from the 3D data. In this case the colorization of the image is
done - analog to Formula 5.11 for potato classification - according to the following Formula 5.14.

Formula 5.14: Colorization of the probability image.

ColorP ixelk =
N
∑

i=1

P (ObjectGroupi|k) ∗ ColorObjectGroupi

, where N is the number of ObjectGroups to classify into and

Colorcrop_plant = RGB(0, 255, 0)

Colorweed_plant = RGB(255, 0, 0)

Obviously, the pixel-based plant classification of the crop/weed plants illustrated in Figure 5.61
works good for the weed plants. For the crop plant it also works relatively good in most cases.
However, some plants show misclassified pixels, particularly at the leaf boundaries. To evaluate
how this would influence a weeding process the treatment grid was further generated, as seen
before for potato classification. The default configuration of the treatment grid with included
protection of certainly classified crop plant cells was used for this. The parameters used in this
case for the grid aggregation are given in Figure 5.25 in Section 5.1.7. The resulting treat-
ment grid is shown as overlay over the original image in Figure 5.62. Inspection of this image
shows that most of the grid cells containing weed plants are treated while most of the grid cells
containing crop plants (carrots) stay untreated.
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Figure 5.59: Color
visualization of the
original MWLP sen-
sor data as input for
the plant classifica-
tion.

Figure 5.60: Bi-
nary image gener-
ated by the soil /
plant classifier for fil-
tering soil pixels.

Figure 5.61: Prob-
ability image of the
pixel-based crop /
weed classification.

Figure 5.62: Over-
lay of the original in-
put image and the
grid with the fi-
nal treatment deci-
sion. Red shaded
grid cells are to be
treated.
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• Validation procedure

In order to validate the treatment grid generated based on the plant classification a reference
grid was created by manually assigning references for each grid cell by a human user. The user
referenced all grid cells while inspecting the color visualization of the MWLP system as cells of
crop plants, cells of weed plants or background cells (i.e., soil). During the manual referencing
user did not see the auto-generated grid nor any other result created by the classification pipeline
but only the color image representation of the MWLP sensor data. Hence, he/she had to ref-
erence the grid from scratch without being influenced by the automatic result. The manually
created reference grid is shown in Figure 5.65 as overlay of the original image visualization next
to Figures 5.63 and 5.64 just repeating the original data and the automatically generated grid
for orientation.

The manually referenced grid was then compared with the automatically generated treatment
grid. The comparison of both grids as overlay over the original data is given by Figure 5.66. For
the comparison there are six cases that can occur:

• Referenced as background, automatically not treated
–> dark shade in Figure 5.66

• Referenced as background, automatically treated
–> red shade in Figure 5.66

• Referenced as crop plant, automatically not treated
–> green shade in Figure 5.66

• Referenced as crop plant, automatically treated
–> yellow shade in Figure 5.66

• Referenced as weed plant, automatically not treated
–> blue shade in Figure 5.66

• Referenced as weed plant, automatically treated
–> purple shade in Figure 5.66

Hence, dark, green and purple are the preferred colored of the overlaying shade in Figure 5.66
as these indicate the correct treatment according to the references of the cells.

For the major part of the grid cells in Figure 5.66 the automatic result and the manual refer-
ence match. However, inspecting Figure 5.66 it can be seen that misclassification does occur.
There are three different kinds of misclassification with different potential impact in a practical
application. The following kinds or misclassification can occur:

• Referenced as background (soil)), automatically treated
Here the actuator tool would hit the ground at a point where there is neither a crop plant
nor a weed plant, i.e., blank soil. This kind of misclassification is uncritical as it does not
affect the yield. It might cause additional wear of the actuator tool or have other minor
effects, but these are tolerable.
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Figure 5.63: Color
visualization of the
original MWLP sen-
sor data as input for
the plant classifica-
tion.

Figure 5.64: Over-
lay of the original in-
put image and the
grid with the fi-
nal treatment deci-
sion. Red shaded
grid cells are to be
treated.

Figure 5.65: Man-
ually created refer-
ence grid.

Figure 5.66: Com-
parison of the man-
ually created refer-
ence grid with the
automatically gener-
ated treatment grid.

Multi-wavelength laser line profile sensing for agricultural applications



5.3. Plant classification for crop/weed discrimination 197

Table 5.15: Result statistics of the grid comparison shown in Figure 5.66.

Manual background Manual good Manual bad N grid cells

Auto treated 1.25 % 6.78 % 65.67 % 262

Auto not treated 98.75 % 93.22 % 23.41 %* / 10.98 %** 2618

N grid cells 2475 = 100 % 59 = 100 % 346 = 100 % 2880

• Referenced as good (crop plant), automatically treated
Here the actuator tool would hit the ground at a position covered by a crop plant. This
is critical. The crop plant must not be damaged, no matter where and how. Hence, this
is only tolerable for a low percentage of crop plants.

• Referenced as bad (weed plant), automatically not treated
Here the actuator would not treat a grid cell assigned as belonging to a weed plant. In
principle, this should be avoided. However, inspecting Figures 5.64 to 5.66 it is notable that
the user labeled the plants mostly including boundary while the automatic grid generation
- particularly for large weed plants - often skips the boundary. If such a weed plant is
treated with a stamp-like actuator all over the center and the boundaries are skipped,
it will still be severely damaged, thus allowing the crop plant to advance and overtake
the weed plant. Therefore, for this kind of misclassification a case distinction is done.
If an untreated grid cell referenced as belonging to a weed plant has an adjacent cell,
which is actually treated, it will be assumed that the plant is damaged there, thus not
absolutely requiring this cell to be treated. Hence, in this case, the misclassification can
be assumed uncritical. If an untreated grid cell referenced as belonging to a weed plant
has no adjacent treated cell, it will be assumed that the entire plant is left untreated and,
thus, the misclassification is critical.

Following these assumptions, the statistics comparing the auto generated grid with the manually
referenced grid are summed up. Table 5.15 shows an example of the used pattern with the result
for the comparison shown in Figure 5.66. In the table cell ‘Manual bad’ / ‘Auto not treated’ the
described case distinction is done. The value marked (*) indicates the percentage of cells there
with adjacent treated cells, i.e., the uncritical part. The value marked (**) indicates the per-
centage of cells there without adjacent treated cells, i.e., the critical part. The misclassification
identified as critical are marked bold in Table 5.15. These critical values should ideally be zero.

Table 5.15 only shows sample result statistics to illustrate the comparison of automatically
generated grid cells with the manually created reference grid at the example of the data shown
in Figures 5.59 to 5.66. In this case, 6.78 % of the crop plant cells are illegally damaged and
10.98 % of the weed plant cells stay unfortunately untreated.

The grid cell size was - as mentioned - configured to be approx. 1 cm by 1 cm for this and the
following evaluations. In the example data show in Figures 5.59 to 5.66 there were 24 lateral
grid cells. Hence, the 2880 grid cells mentioned in Table 5.15 represent a section of approx. 1.2
m length of the respective ridge top.
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Table 5.16: Misclassification excerpt of Table 5.15.

Data set
Misclassification [ % of N grid cells ]

Manual background Manual good Manual bad

Example set 1.25 % of 2475 6.78 % of 59 23.41 % / 10.98 % of 346

Table 5.15 just shows the results for a sample set of data. However, its pattern is used through
the following parts for describing the performance of the automatic classification within different
field situations and with different system configurations. To show it a bit more compact, only
the misclassification percentages and the number of grid cells they relate to are given in the
tables throughout the following validation parts. Table 5.16 serves as an example of these
following tables. It only lists the misclassification figures of all the numbers stated in Table 5.15.
The remaining numbers given in Table 5.15 but not mentioned in Table 5.16 can be calculated
trivially given the content of Table 5.16. Clearly, all percentage values in Table 5.16 would
ideally be zero. However, differences from zero are uncritical for the not bold numbers, while
they are critical for the bold figures.

• Validation statistics for different field situations and configurations

The first field tests with the MWLP system mounted into BoniRob for scanning carrots and
weed plants were conducted on 2014/06/15. Due to some issues with the camera driver at that
day the camera was operating at only approx. 50 Hz rather than its maximum frame rate of
approx. 100 Hz for full frame images. Further, despite that the Schneider lens outperformed
the Pentax lens in several tests in Sections 4.2 and 4.3 the Schneider lens was not available at
that day. Hence, the Pentax lens had to be used.

The measurements were conducted on 2014/06/15 at different driving speeds of BoniRob of 25
mm/s, 50 mm/s and 100 mm/s. The result statistics for the processing results of the different
data sets are shown in Table 5.17. Thereby, data subsets, which had been touched for labeling,
algorithm development and parameter tweaking, were not included in the summarizing statistics
to avoid to optimism.

As Table 5.17 shows, the critical error rates are at quite good levels of less than 10 % throughout

Table 5.17: Result statistics for data collected on 2014/06/15.

Driving speed
Misclassification [ % of N grid cells ]

Manual background Manual good Manual bad

25 mm/s 4.15 % of 8775 6.00 % of 483 31.35 % / 9.62 % of 1694

50 mm/s 2.09 % of 3534 3.70 % of 162 32.28 % / 6.60 % of 697

100 mm/s 4.27 % of 7500 8.93 % of 224 34.22 % / 6.01 % of 895
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Table 5.18: Result statistics for data collected on 2015/06/10 with full camera resolution.

Driving speed
Misclassification [ % of N grid cells ]

Manual background Manual good Manual bad

25 mm/s 2.40 % of 6649 12.44 % of 217 29.51 % / 7.10 % of 183

50 mm/s 4.65 % of 26292 10.08 % of 833 33.52 % / 17.10 % of 883

100 mm/s 1.06 % of 29252 11.73 % of 733 27.08 % / 10.97 % of 720

the tests conducted on the data of 2014/06/15. Significant dependencies on the driven speed
cannot be recognized in the tested speed range.

The classification algorithm was developed in winter 2014/15 and spring 2015 based on subsets
of the data collected on 2014/06/15. As it showed good results for the other data collected on
that day it was further tested on carrot scans of the next year 2015.

The carrot scan data of the next season was collected on 2015/06/10. It was also gathered
using BoniRob for carrying the MWLP system over the carrot ridges and providing odometry
data. Unfortunately, while conducting these field tests there were different issues with the
camera driver causing the camera frame rate for full resolution to be limited at approx. 75 Hz.
However, in meantime the subsampling mode of the camera had been implemented and was also
tested at an increased frame rate of approx. 360 Hz. Again, for these tests only the Pentax lens
was available and was used.

For the classification tests, a small part of the data was accessed for labeling, same as it would
be done by a user following the In-Field-Labeling concept (cf. Section 5.1.1). Further, another
small set of data was accessed for tweaking the parameters of the treatment grid aggregation
(cf. Section 5.1.7). These are the modification options the classification pipeline offers to the
user in order to adapt the system for a specific field situation. Hence, these are modifications
that do not break with the concept as any user could perform them. Further modification in the
parameterization or even programming were not done for adapting the system for the new field
situation. Moreover, the data subsets accessed for labeling or adjustment of the grid aggregation
parameters were excluded from the following statistics.

At full camera resolution and 75 Hz camera frame rate the scanning was conducted on 2015/06/10
at driving speeds of 25 mm/s, 50 mm/s and 100 mm/s. The resulting statistics of the classifier
performance are given in Table 5.18. In this configuration the automatic generation for the
treatment grid still worked moderately good with the critical misclassification rates in the range
of approx. 10 to 15 %. For field application, these are still acceptable rates compared both
with values of other classifiers from the literature (cf. [132] and [45]) as well as compared with
practical monitoring of manual weeding (cf. [26]). Again, a correlation between the driving
speed and the classification accuracy can not be seen in the monitored range.

Further, on 2015/06/10 scans were collected applying the subsampling mode of the camera with
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Table 5.19: Result statistics for data collected on 2015/06/10 with camera in subsampling mode.

Driving speed
Misclassification [ % of N grid cells ]

Manual background Manual good Manual bad

50 mm/s 6.96 % of 23808 15.35 % of 593 26.56 % / 18.13 % of 720

100 mm/s 2.66 % of 11411 14.61 % of 394 31.07 % / 19.82 % of 338

150 mm/s 3.17 % of 44098 14.54 % of 1417 24.24 % / 12.36 % of 1060

200 mm/s 3.83 % of 31039 33.03 % of 1562 27.61 % / 10.33 % of 1094

a higher frame rate of approx. 360 Hz. The higher frame rate of the camera seems to allow
higher speeds. Hence, the driving speed of the BoniRob was (partly) increased for these tests
with values of 50 mm/s, 100 mm/s, 150 mm/s and 200 mm/s. The result statistics for the
classification tests conducted on the data of these tests are given in Table 5.19.

As the result statistics show, for the data acquired in subsampling mode of the camera the critical
misclassification rates at all speeds do increase to a level of approx. 15 to 20 %. Particularly,
for the speed of 200 mm /s 33 % of carrot cells are illegally treated. This cannot be tolerated.
Seemingly, for the classification of carrot plants with the fine feathered, pinnate leafs the full
camera resolution is required. The higher density of scans thanks to the higher scan rate in
subsampling mode does apparently not matter as much as the reduced resolution of the incoming
camera images.

Nevertheless, on both days for full camera resolution acceptable to good results for the classi-
fication were achieved at driving speeds of up to 100 mm/s. On both days the frame rate was
reduced to 50 and 75 Hz. However, the camera is able to provide full resolution images at 100 Hz
with optimal camera setup. Consequently, the same scan density, which provided these results,
can be achieved at driving speeds of at least 133 mm/s, maybe even up to 200 mm/s. Driving
speeds higher than this are seemingly not possible for carrot classification, though, as higher
frame rates cannot be achieved without use of the subsampling mode. However, driving speeds
in the range of 100 mm/s or even little more are still a good practicable level for mechanical
weed control in carrots as the state-of-the-art manual weeding is also conducted at this level of
speed or even slower [26].

• Up-to-date label data / up-to-date classifier knowledge base

As shown, using following the In-Field-Labeling concept and generating a classifier based on
a couple of labeled marks into sensor data acquired from the same field situation some quite
good classification results could be achieved. The In-Field-Labeling concept, thus, provides a
practicable solution for keeping the knowledge base of the classifier up-to-date with the respective
field situation.

To prove the significance of the up-to-date knowledge base for correct classification experiments
using subsets of data of both days were conducted. Both used subsets had been gathered with
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Table 5.20: Comparing up-to-date classifiers with wrong classifiers trained with data of the respective
other date.

Date of label data
for classifier

Misclassification [ % of N grid cells ]

Manual background Manual good Manual bad

Processing data subset of 2014/06/15:

2014/06/15
(correct classifier)

1.40 % of 1576 4.44 of 90 35.52 % / 7.76 of 335

2015/06/10
(wrong classifier)

12.37 % of 1576 41.11 of 90 37.01 % / 13.43 of 335

Processing data subset of 2015/06/10:

2015/06/10
(correct classifier)

0.45 % of 2225 9.62 % of 52 39.13 % / 2.17 % of 46

2014/06/15
(wrong classifier)

35.19 % of 2225 59.62 % of 52 23.91 % / 8.70 % of 46

full camera resolution. The subsets were processed through the classification pipeline twice.
First, they were processed using the correct classifier, which was trained with label data of the
same day. The second processing was conducted using a wrong classifier, which was trained
with the label data of the respective other day. For all these processing tests the result statistics
were calculated.

Table 5.20 shows the resulting statistics for these tests. First, a data subset collected on
2014/06/15 was processed with the correct classifier created using sample data of that date.
Further, it was processed with a wrong classifier derived based on the carrot/weed labelings
in data gathered on 2015/06/10. The results of this test can be found at top of Table 5.20.
Further, a data subset collected on 2015/06/10 was processed with the correct classifier of that
date and with the wrong classifier of 2014/06/15. The results of these processing runs are listed
at bottom of Table 5.20.

As the data given in Table 5.20 shows, clearly, on both dates the classifiers trained based
on labeling marks in the data of the respective same date significantly outperformed the clas-
sifiers of the respective other date - in spite of both classifiers being trained for the same task,
i.e., carrot/weed discrimination. Particularly, the rate of misclassified, i.e., treated, carrot cells
drastically increases. Contrarily, the number of not treated weed plants does not decrease but
increase. This proves the importance of up-to-date classifier knowledge for pixel-based classifi-
cation of complex classification problems, such as carrot/weed discrimination.

5.3.5 Results from classifying field data of corn salad

As mentioned, the plant classification described here was developed with focus on mechanical
weed control for organic cultivation of carrots. However, in October 2015 there was the oppor-
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Figure 5.67: Impressions of field situation and tests of corn salad scans. Bottom/left: Sensing head of
the MWLP system mounted into BoniRob with lasers turned on (NIR not visible).

tunity to collect field data from scanning corn salad (Valerianella locusta) using the MWLP
system and BoniRob. Mechanical weed control in corn salad is an issue for both organic and
conventional farming. For conventional farming there are only very few herbicides available for
this culture. Oftentimes, these do not cover the entire range of weed kinds. The field trials were
finally conducted on 2015/10/19.

Figure 5.67 shows some photo impressions of the test for scanning corn salad data conducted
that day. The scans were performed again using the red, green and NIR lasers. The camera was
operated with optimal setup at its maximum frame rates of approx. 100 Hz for full resolution
and approx. 410 Hz in subsampling mode. Further, for these tests the Schneider lens was avail-
able and used. Again, different driving speeds have been tested. Figure 5.68 depicts an example
of the collected data.
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Figure 5.68: Impressions of the collected data. Top/right: line detection in original camera imaged.
Bottom/right: Color image visualization of the IntensitySum features of the red and green lasers. Left:
Meshed 3D visualization of the data.

• First classification test with corn salad

Unfortunately1, the field situation for conducting the tests showed only very few weeds. There-
fore, the data was not highly interesting for classification tests. Nevertheless, some simple tests
were conducted to give the classifier a shot for this crop it was not specifically geared toward.

Following the In-Field-Labeling concept first a couple of plant segments were annotated with
labeling marks. Figure 5.69 depicts a screen shot of the labeling.

The marks and data shown in Figure 5.69 were essentially everything the classifier ‘knew’ about
corn salad when the classifier was feed with the corn salad data in the following test. No param-
eter changes or even programming changes were performed with respect to the tests on carrot
data described in Section 5.3.4. Not even the parameters of the treatment grid aggregation
were modified via the respective GUI. The treatment grid aggregation was left at the default
configuration for plant classification with crop plant protection shown in Figure 5.25. Figure
5.70 shows the resulting image for this first shot corn salad classification. The original data
(colored like in Figure 5.68) is thereby overlayed with the treatment grid finally generated by
the classification pipeline. Grid cells to be treated are - again - shaded red.

As Figure 5.70 shows, the classifier exactly hits the two weed plants contained in the data
while there are no false-positively treated crop plant cells. Hence, in this case, the automati-
cally obtained classification result is perfect. Despite that there is no statistical significance of

1Unfortunately from the point of view of classification tests; fortunately from the point of view of the farmer.
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Figure 5.69: The provided label data for the corn salad classification.

such single test, this is still remarkable having in mind the very low effort for adaptation of the
classifier to the new crop corn salad. Again, note that the labels in Figure 5.69 represent the
entire knowledge the classifier had about corn salad.
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Figure 5.70: Result of the 1st shot of the corn salad classification.

• Classification results

Due to the remarkably good result of the first classification test it was probed, whether the
good performance of the classifier for the new crop corn salad could further be reproduced on
the entire data collected on 2015/10/19.

Tables 5.21 shows the classification results of the data sets acquired. The first two rows indicate
the results for scanning at full camera resolution with driving speeds of 50 mm/s and 100 mm/s,
respectively. Again, parts of the data that have been used for labeling are excluded from the
resulting statistics to avoid optimism. The two bottom rows list the classification results for the
data gathered in subsampling mode driving speeds of 150 mm/s and 400 mm/s, respectively.
As the subsampling modes allowed higher driving speeds a longer distance was covered in these
modes, hence the higher number of samples.

Clearly, in both modes and with driving speeds of up to 400 mm/s the classifier performs re-
markably good. Apparently, the corn salad with leafs less-fine structured than those of carrots
allows operating the camera in subsampling mode with reduced resolution. Hence, the frame
rate can be increased to 410 Hz and allowing even driving speed of 400 mm/s with quite good
classification results. Of course, the number of weed plants evaluated for these tests is relatively
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Table 5.21: Result statistics for data collected on 2015/10/19.

Driving speed
mode

Misclassification [ % of N grid cells ]

Manual background Manual good Manual bad

50 mm/s / full resolution 0.00 % of 1719 0.20 % of 500 66.67 % / 0.00 % of 3

100 mm/s / full resolution 0.00 % of 4737 0.00 % of 2643 50.00 % / 0.00 % of 12

150 mm/s / subsampling 1.64 % of 16571 0.72 % of 6385 21.21 % / 9.09 % of 66

400 mm/s / subsampling 1.90 % of 30602 1.55 % of 14281 16.07 % / 2.35 % of 85

low due to the low weed pressure on the scanned field. Thus, the statistical significance of the
result shown at top of Table 5.21 can partly be doubted. However, this data sets given, the
classifier worked very good also for the new crop corn salad, it was not specially designed for.

• The effect of the In-Field-Labeling concept

As the classification pipeline worked out even for corn salad, thus a kind of crop different from
carrots, it was tested which part of this was due to the In-Field-Labeling concept. For this
experiment a data subset collected from corn salad was processed with the correct classifier
generated from corn salad labels and with a wrong classifier generated from carrot labels. Vice
versa, a data set of carrots was processed with the correct carrot classifier and with the wrong
corn salad classifier.

Table 5.22 shows the results of these tests. At its top the results for classifying corn salad data
with the correct classifier and with the classifier generated for carrots are compared. Here, the
corn salad classifier outperforms. The carrot classifier just finds nothing safe to treat. Thus,
the weed control action would have no effect using this classifier. At bottom of Table 5.22 the
results of the carrot classification of the tested subset with the correct classifier and with the
wrong corn salad classifier are compared. Again, the use of the classifier for the wrong crop
results in a drastic increase of weed plants left untreated.

As a consequence of these evaluations, again, the importance of the In-Field-Labeling concept
particularly for complex tasks, such as crop/weed classification, is shown. However, looking at
the results of the background classification, i.e., soil/biomass discrimination, in Table 5.22 the
data also shows that for relatively simple classification problems like soil/plant an up-to-date
knowledge-base is not always required.

Based on the tests conducted here and in Section 5.3.4 it can be stated that the combination
of the descriptive spectral + 3D data of the MWLP system and the In-Field-Labeling concept
provides a powerful and very flexible approach to address the complex classification problem
of crop/weed discrimination even using a relatively simple Naive Bayes classifier. Thereby,
segmentation and detection of plant objects as well as ‘handshaking’ each plant object being
major error sources in field due to lighting changes and overlapping could completely be avoided.
Further, the In-Field-Labeling concept does not only provide flexibility but also gives the user
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Table 5.22: Comparing classifiers of correct crop with wrong classifiers trained with data of the respective
other crop.

Date/crop of label
data for classifier

Misclassification [ % of N grid cells ]

Manual background Manual good Manual bad

Processing data subset collected on 2015/10/19 from corn salad:

2015/10/19 - corn salad
(correct classifier)

0.00 % of 1794 0.00 % of 1215 40.00 % / 0.00 % of 5

2014/06/15 - carrots
(wrong classifier)

0.00 % of 1794 0.00 % of 1215 0.00 % / 100.00 % of 5

Processing data subset collected on 2014/06/15 from carrots:

2014/06/15 - carrots
(correct classifier)

1.40 % of 1576 4.44 of 90 35.52 % / 7.76 of 335

2015/10/19 - corn salad
(wrong classifier)

0.19 % of 1576 4.44 % of 90 10.75 % / 87.46 % of 335

a tool to cope with situations, in which the initial knowledge of the classifier does not provide
sufficient results.
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Chapter 6

Discussion and conclusion

Finalizing the dissertation, this chapter is intended to review and summarize the observations
made during the realization of the described concepts. Further, an outlook on further actions
and investigations to be conducted complementing the results described here is given. New
research questions brought up by this work are drafted.

• Review of the results

The seed crystal of the work conducted for this dissertation was my idea of extending the LP
concept to a system with multiple lasers at different wavelengths and a single monochrome
imager, hence the MWLP concept. As shown in Chapter 2, the MWLP concept has a unique
set of advantages and disadvantages as compared with other competing and complementing
sensor concepts. Hence, under some specific application restrictions and requirements it may
outperform other sensor concepts in certain respects. Starting from this draft of the MWLP
concept, it was intended to show the feasibility of the concept by setting up a prototype system.
Further, this prototype had to be characterized for assessing its accuracies. Finally, in order to
demonstrate the use of the sensor data outcome a classification system was set up and connected
with the sensor, thus showing the sensor data can help to solve real world classification problems.
The following explanations give an overview of the results from these parts of the dissertation
(cf. Section 1.2.1).

Realization of the MWLP prototype: Described in Chapter 3, the MWLP system was
realized as prototype as part of this work. The prototype allows capturing the camera
data of different line lasers and processing the data at 100 Hz in full resolution mode.
In subsampling mode of the camera even images at 410 Hz can be processed. Initial
thoughts of implementing image processing for line detection on a Field-programmable
Gate Array (FPGA) have not been further pursued as the GPU-based implementation -
so far - provided sufficient performance. Further, an FPGA implementation would not
contribute novel aspects from the point of view of showing the feasibility of the approach.
A limitation is the restriction of the search space for matching to x- and y-shifts. I.e.,
only linear or planar x-/y-movements between sensor and objects are modeled. However,
for a wide range of thinkable applications this is sufficient.

209



210 Chapter 6. Discussion and conclusion

Characterization for the MWLP prototype: Described in Chapter 4, the implemented
prototype was thoroughly tested. The critical accuracies of line assembly and distance
precision are safely in the sub-millimeter range through a wide scope of configurations and
operating conditions. Movement speeds of the objects of more than 1.0 m/s have shown
feasible. The predicted differences in the scattering behavior at different wavelengths and
different materials can be monitored in an image-based manner for multiple wavelengths.
Finally, field application of the sensor mounted into a field robot was demonstrated.

Classification of MWLP sensor data: As stated in Section 1.2, the goal of this thesis was
not just to implement the sensor concept to show some nicely colored images or point
clouds but also to show that the descriptive sensor data can help to solve real world clas-
sification problems. Hence, the implemented, connected and tested classification pipeline
is described in Chapter 5. For the chosen example applications of potato and plant clas-
sification this was shown to be feasible. Thereby, a pixel-based classification was used,
thus providing high flexibility for adaptation by the In-Field-Labeling concept. Treat-
ment grids that are ready to serve as input for actuator tools can be generated while
object detection and ‘hand-shaking’ each object (i.e., potato / stone, crop plant / weed
plant) are intentionally avoided as these are major error sources for field applications.
The classification results have been validated for both applications. Finally, the adapta-
tion of the plant classification from carrots to corn salad by just adding a couple of marks
in example data remarks on the flexibility of the concept.

Summarizing the results of this thesis, it can be stated that the MWLP concept is feasible and
is a promising approach for solving problems in real world agricultural applications.

• Future potentials

As the feasibility of the MWLP approach was shown in this dissertation, a series of future
potentials are unlocked. These include possible applications of the sensor in combination with
actuators or without actuators.

For applications without actuators the data of the sensor itself is seen as valuable output. For
example for quality assurance in industrial processes the indicated results of the sensor are
interpreted for process management but do not necessarily cause an immediate reaction.

Examples for applications of the sensor without automatic coupling of an actuator are - for
instance - assessment of fruit quality in food processing or plant phenotyping. For the assessment
of fruit quality first very simple tests were conducted during the work on this thesis as explained
in Section 4.4, e.g. the detection of damages in the apple tissue beneath the surface (cf. Figures
4.28 - 4.30). These showed the potential of fruit quality assessment particularly using the
obtained scattering features. However, these tests can only be seen as very simple initial tests.
For realistic application correction methods taking into account inclination angles and object
color have to be implemented to provide robust results. The input for these correction steps is
already provided by the sensor, though. Thus, no additional sensor for inclination correction is
required - in contrast to hyperspectral imaging [8].
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A further application example without actuator is plant phenotyping for crop plant breeding. In
this field no explicit tests have been conducted. However, scanning plants with high resolution
under field condition was shown feasible as part of the plant classification tests. Thus, the data
scanned from plants could further serve for other purposes. Likely, it is possible to determine
a variety of plant parameters based on the 3D data along with reflection and backscattering
data at multiple wavelengths, which can be gathered using the MWLP system. In combination
with other sensors or fused with a-priori data its usage could help to widen the phenotyping
bottleneck.

For applications with actuators there was a wide elaboration on the two classification applica-
tions potato sorting and weed control. Further, other sorting applications are possible. The
experiments of the two classification applications were validated at the level of the actuator
input, as this dissertation is focused on sensor and showing the feasibility of the classification.
The finally generated treatment grids, which could serve as input for an actuator, were vali-
dated against manually referenced grids. Despite the limited number of manually referenceable
grids, the results are promising. To provide higher trust in the system further field tests are
required, though. However, the next step toward practical adoption in these fields is to combine
the system with an actuator. Conducting more field tests without actuator would be possible,
too. However, for these tests a manual referencing of the data for validation would be required
and this is only possible up to a certain amount of scanned field data and monitored situations.
Thus, an actuator is required, that does an immediate and ‘hard’ validation of the decisions
taken by the sensor and classification pipeline. Consequently, a combination with an actuator
would allow agronomic field tests to validate the conclusions made in this dissertation for the
observed modules based on the scan data.

Concluding this dissertation, it can be stated that the introduced MWLP approach has been
shown to be feasible and to offer many potentials for applications, particularly in the agricultural
domain. The flexibility of the sensor in terms of addressing particular wavelengths, FOVs and
resolutions allows gearing the system toward the specific application. It enables system-level
engineering considering both, the sensor and the data processing chain. Hence, the MWLP
approach can provide a fresh impetus to marketable applications of image-based sensor systems
in many potential agricultural fields.
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