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Abstract 

In recent years, natural disasters have had an increasing impact, involving immense 

economical and human losses. Remote sensing technologies are being more frequently 

used for the rapid registration and visualization of changes in the affected areas, providing 

essential information for damage elimination, as well as the planning and coordination of 

recovery activities. Numerous methods of image processing have been proposed to 

automate a detection of changes on the Earth's surface, most of which focus on the 

comparison of remotely sensed images of the same area acquired at different dates. 

However, atmospheric influences (e.g. clouds covering the objects of interest) often render 

the observations ineffective in the optical domain. In addition, the accuracy of the change 

detection analysis decreases if the images are acquired with different acquisition angles. 

These situations can be common in the case of sudden catastrophes (e.g. earthquakes, 

landslides or military actions), when there is no time to wait for the perfect conditions to 

acquire the data. This study presents a GIS-based approach for the detection of destroyed 

buildings. The methodology is based on the integrated analysis of vector data containing 

information about the original urban layout and remotely sensed image obtained after a 

catastrophic event. 

The integrated data processing enables minimizing the influence of the atmosphere and 

illumination effects, thus improving damage detection. Moreover, the object-oriented GIS 

technology makes it possible to concentrate on the investigation of specified objects, thereby 

reducing false alarms due to natural changes that occur around the investigated objects (e.g. 

seasonal changes of vegetation). Additionally, GIS based change detection analysis 

produces a tangible end product, namely damage maps. 

A new feature ‘Detected Part of Contour’ (DPC) was developed to identify a building’s 

condition. The basic idea behind the proposed feature is the assessment of building contour 

integrity. The feature defines a part of the building contour that can be detected in the 

remotely sensed image, reaching a maximum value (100%) if the investigated building is 

intact. Furthermore, several features based upon the analysis of textural information are 

analyzed. Finally, a binary classification of building state concludes the change detection 

analysis. 

The experiments performed during this research indicate that employing a GIS-based 

analysis for change detection can essentially improve the potential for remotely sensed data 

interpretation and can be considered a powerful tool for the detection of destroyed building. 

The proposed methodology has been developed solely within the Open Source software 

environment (GRASS GIS, Python, Orange), whose use implies an innovative, flexible and 

cost-effective solution for change detection analyses.  
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1. Introduction 

Humans have always been closely connected with the surrounding world. At the turn of the 

21st century, humanity is increasingly feeling the problems resulting from life in highly 

industrialized societies, whereby a dangerous human-induced interference with nature has 

become distinctly noticeable. Almost daily, mass media reports about different emergencies 

occur here and there in the world, including industrial catastrophes, natural disasters, military 

conflicts and acts of terrorism. A catastrophic impact is not restricted by any nationals 

borders; moreover, it can lead to huge loss of lives and socio-political crises (for example, 

Chernobyl disaster (1986), the Gulf of Mexico oil spill (2010), the Great East Japan 

Earthquake (2011)) (International Atomic Energy Agency, 2006; Republic of the Marshall 

Islands Maritime Administrator, 2011; Johnson, 2011). 

The number of disasters and the severity of their consequences have been constantly 

growing. Large-scale natural disasters (earthquakes, tsunamis, typhoons and floods) cause 

mass deaths of people accompanied by the destruction of transport and telecommunication 

infrastructure, as well as paralysing the management and economy of the crisis regions. This 

complicates the adequate assessment of the situation and making timely decisions. For the 

organization of an efficient emergency management, it is very important to have a system of 

a rapid evaluation of the current situation. 

Remote sensing technologies enabling the observation of large areas of the Earth without 

physical contact offer an undeniable advantage over other ways of acquiring geospatial 

information. They allow for a quick acquisition of actual information in the form of images of 

the area affected by the catastrophe. Remote sensing has found a wide application for 

information and documentary support in the emergency response for almost all major 

disasters that have occurred in the current decade, including the 2010 Haiti earthquake, the 

2010 Yushu earthquake and the 2011 Tohoku earthquake (Dong & Shan, 2013). This 

technology has become an essential tool in post-event damage mapping. Interactive maps of 

disaster-affected countries created based upon aerial photography and satellite images have 

become a crucial element for the support of disaster management. More importantly, 

numerous agencies and organizations all over the world participate in the effective 

international coordination of efforts intended for the collection and processing of satellite 

information. 

The assessment of destructions can be performed based upon the comparison of pre- and 

post- event images by means of change detection analysis. However, a reliable automatic 

change detection analysis based solely on remote sensed images is not always possible, 

with the accuracy of the analysis strongly depending on the acquisition conditions. The 

significant improvement of this situation can be reached by additional utilization of vector 
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information, which is usually available in the form of cadastral data and contains precise 

description of object geometry and location, as well as attributive information related to it. 

The combined treatment of vector and raster information can be performed by means of 

geographic informational systems (GIS), which provide a broad range of instruments for 

storage, visualization and processing of spatial information of different types. The tandem of 

GIS – Remote Sensing is a powerful platform for geographical analysis. In this respect, 

research works directed to the techniques of the analysis bridging remote sensing and GIS 

have constantly attracted growing interest (Ehlers, 1989; Blaschke, 2010; Chen et al., 2012; 

Hussain et al., 2013).  

1.1 Research Objective 

The main goal of this study is to develop a methodology for the detection of changes in urban 

areas affected by a catastrophic event through the integrated analysis of post-event remotely 

sensed data and pre-event vector data. The study was performed in the following successive 

steps: 

1. Overview of approaches to change detection analysis related to separate and 

integrated processing of raster and vector data. 

2. Choice of strategy for the implementation and assessment of developed technique 

within a GIS environment.  

3. Based on step 1, the identification of raster and vector information that is relevant for 

the detection of building states. Choice/development of methods for the extraction of 

this information for further change detection analysis. 

4. Development of change detection technique based on the results of step 3. 

5. Implementation of developed technique based upon the results of steps 2, 3 and 4. 

6. Assessment of techniques and software developed in steps 4 and 5 by means of 

application to a number of study cases. 

7. Discussion related to the advantages and disadvantages of developed techniques, as 

well as their further development.  

Based on the aforementioned objectives, the structure of this thesis is provided in the section 

below. 

1.2 Organization of the Thesis 

The content of the thesis is presented in six chapters, as follows: 

Chapter 2 provides an introduction to change detection, remote sensing and GIS 

technologies. It describes the properties and handing of the raster and vector data types. In 
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particular, attention is focused on integrated data processing and urban change detection 

analysis. 

Chapter 3 discusses the motivation for an application of Open Source Software and 

describes the construction of a testing and implementation environment for the developed 

change detection method.  

Chapter 4 deals with detailed description of the developed methodology, including the 

processing of vector data, image enhancement, extraction of valuable information and 

classification. 

In Chapter 5, the efficiency of the developed change detection method is experimentally 

demonstrated based upon data sets from several study areas. Finally, the discussion of 

advantages and disadvantages of the method developed during the research work is 

provided. 

Chapter 6 briefly summaries the findings and conclusions of this research work. In closing, 

recommendations for further improvement of the efficiency and reliability of the developed 

change detection technique are given. 
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2. Remote Sensing and GIS in Change Detection  

The recent progress in computer hardware, software development and space technology 

has enabled the creation of new highly effective methods for the gathering, analysis, 

manipulation and visualization of information on the Earth surface, with these new 

approaches drastically changing the work with cartographic data. 

2.1 Geographic Information Systems 

Methods of computer data processing have been markedly improving during the last decade, 

and are now becoming routinely applied in many areas of science and engineering. It has 

become customary to see documents, tables, diagrams and schemes on a computer’s 

display. Spatial data representation on digital maps has justifiably received widespread 

attention in various fields of engineering, knowledge management, business operations, 

commerce and everyday life. This became possible due to the development of geographic 

information systems (GIS) providing a principally new approach of geodata processing. GIS 

present a digital model of the geospatial data and enable storing, managing, updating, 

analysing and graphically presenting the spatial information. This technology combines 

traditional data base operations, such as client requests and statistical analysis, with a 

visualisation system and conventional map based spatial analysis. GIS are widely used in a 

range of applications including the analysis and prediction of natural processes, 

understanding and interpreting the major factors influencing the processes and their possible 

consequences. 

GIS present the graphic information as a collection of thematic layers with the data separated 

into different layers depending on their actual thematic content. This concept derives from the 

principles of classical cartography, where the basic map was overlaid by transparent films 

with various thematic patterns (hydrology, transportation, soils, geology, land cover etc.). 

Moreover, GIS contain attribute information concerning each object, which is stored in a 

database or table and can be returned to the user when provided with a suitably formulated 

request. Modern GIS include numerous mathematical tools and integrated programming 

languages. This renders GIS not only a powerful tool for storing and presenting large 

amounts of multi-source information, but also for spatial analysis, monitoring and 

prognostics. 

Given that a computer system only deals with digital information, paper-based maps were 

transformed into digital format at the beginning of GIS development, which was a very time 

consuming process. Digitizing was performed manually by the input of object description 

(coordinates and attributes) or semi-automatically by applying tracing software to scanned 

images or using digitizer devices to capture coordinates on the paper-based maps. 
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Nowadays, the data is inputted directly in digital form as images from remote sensing 

devices, with the objects information obtained by an automatic analysis (image segmentation 

techniques, object recognition) or manual input (coordinates, attribute and topological 

information). 

Information transformed into the digital format is represented by two general data models: 

vector data model and raster data model. 

2.2 Remote Sensing 

Remote sensing is a combination of methods for collecting information about objects, areas 

of the Earth’s surface or phenomena without physical contact with the objects. Remote 

sensing data can be used for the investigation of the object’s geometrical, physical and 

chemical properties. The natural forms of remote sensing are human sense organs – eyes, 

ears or nose. For the analysis of constructions, vegetation and areas that cover the Earth’s 

surface, remote sensing methods based on recording and interpreting measurements of the 

electromagnetic radiation reflected or emitted from objects in the Earth’s surface are applied. 

Photography is one way to capture the current pattern of electromagnetic radiation. 

 

Figure 2.1: General principle of remote sensing (adapted from Chandra & Ghosh, 2006). 

Current methods of the remote sensing are generally based on the usage of sensor systems 

located on spacecraft or aircraft. Sensors can be divided into two groups: active and passive 

devices. Active sensors (e.g. laser scanners) emit the electromagnetic radiation and detect 

the reflected part. By contrast, passive sensors (e.g. cameras) register a radiation reflected 



Remote Sensing and GIS in Change Detection 
 

 

 
6 

 

from the objects or an object’s natural radiation (in the thermal domain), and are the most 

frequently used. Figure 2.1 shows a general scheme of remote sensing. 

The detected energy is converted into digital image data consisting of a two-dimensional 

rectangular grid of numerical values representing different brightness levels. Each value 

corresponds to a fixed square area on the Earth and is equal to the average brightness level 

of detected radiation from this area. The grid is commonly called ‘raster’ and the square units 

or ‘pixels’ can be subdivided into pure and mixed pixels. The square area of a pure pixel 

includes only one object type, whereas the mixed pixel corresponds to an area with objects 

of different types. The value of the pure pixel facilitates conclusion about the object type, 

while the interpretation of mixed pixel values can be quite complex. 

A remotely sensed image is characterised by its spatial, spectral, radiometric and temporal 

resolution. The spatial resolution is a measure of the spatial detail in the image, and 

represents the area size corresponding to a single pixel.  

Spectral resolution is the ability of a remote sensing system to distinguish different ranges of 

wavelengths. The image produced by a sensor system can consist of many bands 

corresponding to different wavelength ranges. The finer the spectral resolution the narrower 

the wavelength range represented by the particular band. Many remote sensing systems use 

multi-spectral sensors to record radiation energy over several separate wavelength ranges. 

Advanced multi-spectral sensors, called hyperspectral sensors, can detect hundreds of very 

narrow spectral bands throughout the visible, near-infrared, and mid-infrared portions of the 

electromagnetic spectrum. Their very high spectral resolution facilitates a fine discrimination 

between different targets. 

In order to obtain digital brightness value, the continuous signal is subdivided into several 

levels, with the number of the detected brightness level saved as the pixel value. Radiometric 

resolution defines a number of used brightness levels, and depends on the number of 

information bits assigned to a single pixel.  

Temporal resolution represents the ability of a remote sensing system to collect imagery of 

the same area of the Earth’s surface at different periods of time. Radiation spectrum may 

change over time, and such changes can be detected by collecting and comparing multi-

temporal imagery. The analysis of multi-temporal images enables monitoring naturally 

occurring changes on the Earth’s surface (such as changes in natural vegetation cover or 

flooding) or those induced by humans (such as urban development or deforestation). 

Since the data obtained from space-based systems cover large areas of the Earth’s surface, 

they are effectively used for case studies of both a global and regional scope. Regularly 

obtained satellite images enable the monitoring of water recourses, agricultural productivity 
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and urban developments, as well as the investigation of objects and phenomena undergoing 

changes due to natural and anthropogenic factors. 

Remote sensing techniques are especially effective for data gathering from areas that are 

difficult to access, where the situation analysis is particularly important for prevention and 

recovery activities involving natural and human-caused disasters. 

Remote sensing is used in many fields, such as agriculture and forestry, geography, geology, 

archaeology, meteorology and climatology, monitoring of marine environment, water 

resources management, and change detection. Table 2.1 summarizes selected possible 

application areas of remote sensing in detail. 

Table 2.1: Application areas of remote sensing. 

Remotely sensed data must be georeferenced for comparison with each other or for 

interpretation in relation to other geodata. Moreover, remotely sensed images are usually 

processed by mathematical algorithms, which help to reduce noise influence or to enhance 

or suppress certain image features. GIS provide numerous possibilities for such processing 

Agriculture 

and forestry 
Land-use Geology 

Water-

resources 
Oceanography 

Environmental 

researches 

Identification 

of vegetation 

types 

Land-use 

classification 

Identification 

of rocks and 

minerals 

Water 

boundary 

mapping 

Investigation of 

living organisms 

Supplementary 

exploration and 

development of 

new fields 

Crop control 
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and are widely used as integrated systems for management, processing, and visualization of 

remote sensing data. 

2.3 Historical Overview of Remote Sensing and GIS Integration 

Rather than being a recent phenomenon, the spatial location of physical objects has always 

been interesting for people. Primitive people already took an interest in geography via the 

expansion of their living space in search of the most suitable areas for hunting and gathering. 

Nowadays, dependence on information about what and where things are located is rapidly 

increasing. For instance, Google Maps service is intensively used in order to find restaurants, 

hotels, and other points of interest. Moreover, modern in-car navigation systems provide the 

most efficient route and increasingly replace traditional paper-based maps. 

Information about the spatial description of objects on the Earth’s surface is termed 

‘geoinformation’. Throughout recent decades, large amounts of spatial information have been 

stored in digital form and processed on computers. Subsequently, geo-data gathering, 

storing and processing have been consolidated in a new discipline – ‘geoinformatics’, which 

covers a wide range of different derivative scientific directions and enables integration of 

conventional and digital cartographic techniques. 

The first significant step toward the integration of geo-sciences can be traced back to the 

1960s and 70s starting with the computer implementation of a powerful arsenal of 

mathematical methods and statistical techniques in cartography. It became evident, that such 

new data analyses should be included in the range of cartography’s interests as a new 

discipline of ‘solving cartographic problems’ entitled ‘Analytical Cartography’ (Tobler, 

1959).The focus on a new technique of map production by means of mathematical analysis 

marked analytical cartography as very different from the conventional definition of traditional 

hard copy cartography. New feasibilities including neighborhood analysis, map 

generalization, shape analysis, map overlay, expanded dramatically the scientific capacity of 

classic cartography. 

Another aspect of the integration is associated with the extremely rapid development of 

computer and information technologies, which has considerably promoted the extension of 

cartography’s conception. New products such as cartographic databases, digital images and 

digital terrain models were generated and by the end of the 1960s, studies addressing 

mapping and modeling of spatial digital data had become widespread. The first true 

operational ‘Geographic Information System’ (GIS) was developed in the 1960s in a project 

headed by Roger Tomlinson, known as “father of GIS”. This system improved the ‘computer 

mapping’ applications and was used to store, manipulate and analyze data collected for the 

Canada Land Inventory (CLI). However, due to the high cost of the hardware, the new 
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approaches for map production did not become advantageous in comparison to the manual 

systems until the 1980s (Tomlinson, 1985). With the continued development of smaller, faster 

and cheaper computers, various GIS software had emerged by the end of the 20th century: 

ERDAS (Earth Resource Data Analysis System), ESRI (Environmental System Research 

Institute), Intergraph etc.  

The next step towards the integration of geosciences was associated with the intensive 

development of satellite technologies with remote sensing methods of data collection from 

the Earth’s surface being commonly used in recent decades. This data gathering is 

performed by devices (or cameras) located away from the area of interest by using aircraft or 

satellites, with the information provided by sensors yielded in the form of digital images. Such 

remotely sensed images became considered as maps, which led to the development of new 

sophisticated methods of image interpretation including combination of photogrammetric and 

image processing. 

The application of remotely sensed imagery in geology (identification of rock type, mapping 

faults and geological structure), meteorology (estimation of atmospheric temperature, 

pressure and wind velocity), agriculture (monitoring of biomass of land vegetation), disaster 

warning and assessment (monitoring of floods and landslides, assessment of damaged 

zones from natural disasters), ecology (planning of ecological zones, monitoring of 

deforestation and urban land use) etc., bear testimony toits high economic efficiency. 

A rather recent step towards the integration of remote sensing and GIS technologies is due 

to the rapid development of space-based satellite positioning systems (e.g. GPS) providing 

accurate location and time information about objects on or near the Earth’s surface. The first 

satellite navigation system was developed to coordinate underwater positions for U.S. Navy 

submarines in the 1960s. Thanks to a precise and accurate detection of object location, the 

technology brought an end to major errors in navigation of sea vessels. Nowadays, GPS 

devices can be found everywhere – they are used in cars, boats and even in cellular phones. 

The integration of GIS and remote sensing was preceded by a long time period, in which 

many innovative products emerged, with the development of GIS software, cost-effective 

computers and scanner technologies, and powerful methods of image processing playing a 

decisive role in this eventual integration. The following main technological steps of the 

integration can be emphasized: 

1. Mathematization and computization of cartography. 

2. Development of remote sensing technologies. 

3. Development of geoinformatics technologies. 

4. Development of GPS. 
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The integration of cartography, geoinformatics and remote sensing has simultaneously 

affected all branches of Earth sciences, economic and socio-economic studies. 

2.4 Spatial Data Models 

There are two fundamental approaches to the digital representation of geographic 

information: the vector data model and raster data model. Accordingly, definitions, properties, 

advantages and disadvantages of raster and vector data models with regard to change 

detection analysis are discussed in this chapter. 

2.4.1 Vector Data Model 

The vector data model, or object-based model, describes geographic objects by the 

specification of their boundaries, coordinates and attribute information. It should be noted 

that the vector model represents the real world in a similar way as maps. There are three 

main elements depicting objects in the vector data model: points, lines and polygons. Points 

represent geographic objects that are very small with respect to the considered map scale, 

which can include a meeting point, traffic light, bus station, etc. The points have no extent in 

any directions and consequently refer to zero-dimensional objects. Lines are one-

dimensional objects having length, but no width; and can represent, for example, rivers and 

roads. Polygons form bounded areas referring to two-dimensional objects having length and 

width, and can represent objects such as lakes, buildings, agricultural fields. 

 

Figure 2.2: Presentation and description of objects in the vector data model. 

All vector objects are built based on a sequence of points, or vertexes, each of which has a 

set of exact coordinates (Figure 2.2). Each point is represented by a position vector 

connecting the reference origin with the point. Based on the position vectors and using the 

operations of vector algebra, different 1D and 2D object such as lines or polygons can be 

built. This data representation is called the ‘vector data model’. 
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Evidently, the objects cannot be fully described only by a set of the position vector 

coordinates. The whole mathematical description of the object geometry implies location, 

coordinate system, object topology, Euclidean metric (definition of distance between two 

points) and neighbourhood relations (topology). Topological properties describe relations 

between the distinct vector objects, such as connections and neighborhood. For example, in 

order to find the fastest route from A to B, the topological information about streets and their 

intersections is exploited. 

2.4.2 Raster Data Model 

Remote sensing systems record measurements of electromagnetic radiation in the form of 

raster image data. The raster data model is more akin to a photo than a map. If a raster 

image is viewed through a magnifier, a rectangular grid of cells (or pixels) with individual 

colour values can be seen (Figure 2.3). 

 

Figure 2.3: Raster image structure. 

A pixel is the simplest element of the raster image, and corresponds uniquely to an area on 

the Earth’s surface. In order to define the pixel’s position, a coordinate system in the raster 

space is used. The position of each pixel is determined by a unique address consisting of 

row number and column number in the rectangular raster grid (Figure 2.4). 

 

Figure 2.4: Pixel location in the rectangular raster matrix. 
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Using the upper-left or lower-left corner of the raster grid as a reference point, the raster 

image can be georeferenced to the Earth surface by specifying the corresponding coordinate 

system. In the georeferenced image, the geographic location of the image pixel areas and 

distance between them can be determined. 

Each pixel can be assigned several values indicating a brightness level of corresponding 

remote sensed data, type of pixel area, relief elevation, result of mathematical image 

processing, etc. If the pixel has several values, the image consists of several rectangular 

raster grids– bands. Each band contains only one value per pixel, which is represented in the 

image by so-called grey values.  

The maximum number of colours, or grey tones, in the case of a panchromatic image, that 

can be simultaneously represented is defined by radiometric resolution. This parameter is 

one of the most important characteristics of the raster image and is equal to a number of bits, 

which defines how much computer memory is required to store one pixel of the image. 

The computer memory required to store an image depends on the number of bands in the 

image. For example, an RGB-image has three bands corresponding to the radiation 

brightness in the red, green and blue colour spectrum. If each band contains 8-bit values, the 

pixel storage requires 8 bits × 3 = 24 bits. 

Generally, the sensors installed on the remote sensing satellites have the radiometric 

resolution of at least 8 bits per pixel (Table 2.2). There are sensors with higher radiometric 

resolution, for example, 11 bits for WorldView, IKONOS and QuickBird, and 16 bits for the 

EO-1. 

Bit Depth Number of grey levels 

6 bits 64  

8 bits 256 

11 bits 2 048 

14 bits 16 384 

16 bits 65 536 

Table 2.2: The most commonly used pixel depths and associated number of grey levels. 

2.4.3 Integrated Data Analysis 

Vector data is often considered as a passive aid to image analysis, typically for geo-

referencing, image segmentation or data conversion. Handling of vector and raster data is 

still predominantly separate with the complexities of integrated data analysis arising from 

differences in data structure and the conceptual philosophy of data processing. Vector data 
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provides an accurate geometric representation of objects (buildings, roads or agricultural 

field boundaries). In many cases, such as cadastral data processing or infrastructure 

planning, it is particularly important to precisely represent the object’s boundaries. For the 

monitoring of building states, the ability to extract and analyse a single object from vector 

data represents an essential feature. Vector graphics are easily scalable and can be 

transformed to any other cartographic projections without loss of quality due to their 

mathematically defined geometry.  

The vector data model provides the means to manipulate descriptive attribute information 

concerning each object on the map. However, it is associated with an initial complexity of the 

data base creation, as both the data base filling and building of a vector object and its 

topology can be very time-consuming. However, this information makes it possible to operate 

thematically selected objects (object-based analysis) and their relations with neighbouring 

objects. Additionally, vector data can be graphically symbolized according their attribute 

characteristics; for example, line objects, such as rivers or roads, can have different width 

and colours. 

However, vector data representation becomes disadvantageous for the modelling of diffusion 

processes, such as temperature distribution along the surface or urban air pollution. 

Furthermore, there are spatial objects with a rather high level of detail that cannot be 

represented using the vector format. Therefore, for objects with numerous essential small 

details and data that has a continuous distribution, the raster data model is considered more 

suitable. For instance, information about atmospheric pressure and cloud cover, or digital 

elevation models are difficult to represent with vector graphics. However, in contrast to the 

vector graphics, the analysis of the raster data requires a large memory capacity for data 

storage. 

Any object in the raster data model consists of a set of pixels. Therefore, line objects are built 

from a series of pixels and at a certain magnification appear as a sequence of squares, 

which is not always convenient. The pixel size does not usually conform to the size of the 

real object, and thus the representation of continuous objects by a sequence of discrete 

pixels is only possible with a certain approximation. The accuracy of real object 

representation depends on the relation between pixel and object sizes. 

Preference was given to the modelling of the raster data at the beginning of GIS 

development since the vector graphic tools and algorithms for data modelling were not yet 

sufficient to cover user’s needs. With the further developments of both the hardware and 

GIS-software, the vector data presentation of geographic objects has been generally 

prevailed over the raster data model due to the reduced requirements of computer capacities 

and compatibility with principles of engineering graphics. However, the raster data format is 
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still used in remote sensing as an essential part of this technology. The raster data 

representation and modelling are not only widely used, but have also recently achieved 

considerable progress in GIS applications. While the purported role of raster images was 

only a passive layer for decoration of an output map in the past, they are now used as an 

important source of spatial information. Modern methods of digital image collection, such as 

aerial photos or high-resolution satellite images, allow for regular data obtaining from large 

areas at frequent intervals, thereby providing actual geodata for detection of changes in the 

Earth’s surface. Consequently, this data is usually used as real-time information. The vector 

data is usually obtained by digitizing existing maps when an operator traces points, lines, and 

polygon boundaries from a map. The vector information contains detailed data related to the 

objects on the map, yet the update of this content can be tedious and time-consuming. The 

combined analysis of raster and vector data enables analysing the state of each single object 

separately by using real-time or the most actual information in raster format and 

comprehensive information in vector format for the past state. 

The comparison of vector and raster data is provided in Table 2.3. 

Table 2.3: Comparison of vector and raster data models (de Lange, 2006; Ehlers & 
Schiewe, 2012). 

 

 Advantages Disadvantages 

Vector 

model 

 High geometric accuracy 

 Detailed object description 

 Small volumes of data 

 Similar data representation with 

traditional paper maps 

 Selective data analysis 

 Flexible management of 

attribute information 

 Complex data structures 

 Time-consuming process of 

geometry and topology 

compilation 

 Complex and compute-intensive 

mathematic and logic 

operations (overlay operations) 

 Parallel description of object 

geometry and topology 

Raster 

model 

 Easy data structure 

 Simple geometry and topology 

compilation 

 Compatible with remotely 

sensed and scan data 

 Easy updatable 

 Simple implementation of 

overlay and intersection 

operations 

 Simple implementation of logical 

operations 

 Inaccurate recording objects 

form and position 

 High compute and storage 

investment 

 Accuracy of data representation 

depends on the pixel size 

 Complicated coordinate 

transformation 

http://www.dict.cc/englisch-deutsch/compilation.html
http://www.dict.cc/englisch-deutsch/compilation.html
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2.5 GIS-Based Change Detection 

Remote sensing is an excellent instrument for monitoring a current situation. However, a 

large amount of incoming data can only be efficiently used through the application of 

automatic or semi-automatic techniques for data processing. Data derived from remote 

sensing are increasingly being used as a data source in GIS. For this purpose, numerous 

methods and approaches have been adopted for the analysis of multi-temporal vector and 

raster data in recent decades. 

2.5.1 Definition and Application of Change Detection 

The term ‘change’ is usually associated with a transformation or modification of something 

over an extended period of time. As such, change detection aims at an identification of 

changes occurred in objects or phenomena by observing them at different times (Singh, 

1989). This analysis yields a quantitative assessment of the differences in the state of the 

investigated objects by interpretation of multi-temporal data. Furthermore, it is not only 

important to determine the fact that the change exist, but also the location, dynamics and 

kind of change. 

Increasing changes of the environment through long-term natural and seasonal climate 

change, ecological and geomorphologic processes, as well as human-induced changes of 

the Earth’s surface have led to a wide range of problems. The ability to detect changes is 

very important for human life, in order to correctly understand relationships between man-

made and natural events on the Earth to assist further decision-making. Change detection is 

one of the major applications of remote sensing, given its feasibility to obtain actual 

information from large areas of the Earth’s surface in relatively short periods of time and with 

an appropriate image quality (Ingram et al., 1981; Singh, 1984). Therefore, remotely sensed 

data deliver valuable information for solving social, economic and ecological problems. The 

increasing spatial dynamics of urban development have resulted in environmental 

disturbances. Mas (1999) considers the growing need for remote sensing employment in 

land use analysis and evaluation. Application of remote sensing techniques for observation, 

analysis and assessment of phenomena on the Earth’s surface presents a very wide 

spectrum of data and methods. The ability of remote sensing to capture large land areas with 

a high temporal and spatial resolution represents its unique feature, finally enabling an 

automatic classification of land cover or the detection of changes: Albertz, 2001; Briger, 

2002; Gutman, 2004; Jensen, 2007; Lu et al., 2004. Coupled with remote sensing 

technology, change detection is widely used in a large range of applications such as land use 

and land cover analysis, monitoring of urban land use, estimation of deforestation or forest 
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fires, monitoring of biomass of land vegetation, monitoring of floods and landslides, and the 

assessment of damage zones from natural or man-made disasters (Table 2.4). 

Thematic application Review 

1. Land-use and land-cover change Adams et al., 1995; Alves and Skole 

1996; Gautam and Chennaiah 1985; 

Green, Kempka and Lackey 1994; 

Dewidar 2004; Kaufmann and Seto 2001; 

Petit and Lambin 2001; D. A. Roberts, G. 

T. Batista and J. G. Pereira, et al. 1998; 

and Sommer, Hill and Megier 1998. 

1.1 Forest or vegetation change Coppin, Nackaerts, Quenn, & Brewer, 

2001; Graetz, Pech, & Davis, 1988; Köhl, 

Magnussen, & Marchetti, 2006; Sohn, 

Moran, & Gurri, 1999; Vogelmann, 1988; 

and Cihlar, Pultz, & Gray, 1992. 

1.2 Forest defoliation and damage 

assessment 

Nelson, 1983; Vogelmann, 1989; Price, 

Pyke, & Mendes, 1992; Gopal & 

Woodcock, 1996; Radeloff, Mladenoff, & 

Boyce, 1999; and Rigina, Baklanov, 

Hagner, & Olsson, 1999. 

1.3 Forest fire Jakubauskas, Kamlesh, & Mausel, 1990; 

Elvidge, Pack, Prins, Kihn, Kendall, & 

Baugh, 1998; Fuller, 2000; Cuomo, 

Lasaponara, & Tramutoli, 2001; Garcia-

Haro, Gilabert, & Melia, 2001; and 

Bourgeau-Chavez, Kasischke, Brunzell, 

Mudd, & Tukman, 2002. 

1.4 Wetland change Jensen, Cowen, Althausen, Narumalani, 

& Weatherbee, 1993; MacLeod & 

Congalton, 1998; and Michener & 

Houhoulis, 1997. 

1.5 Landscape change Zhen, Wallin, & Hao, 1997; Franklin, 

Dickson, Farr, Hansen, & Moskal, 

2000,and Taylor, Brewer, & Bird, 2000. 

2. Urban change Li & Yeh, 1998; Ward, Phinn & Murray, 

2000; Liu & Lathrop, 2002; Agouris, 

Stefanidis & Gyftakis, 2003; Gautama, 

Haeyer & Philips, 2006; Howarth & 

Wickware, 1981; Armour, Tanaka, Ohkura 

& Saito, 1998; Peters, Walter-Shea, Lei, 

Vina, Hayes & Svoboda, 2002. 
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Thematic application Review 

2.1 Catastrophic damage Kumar, Chingkhei & Dolendro, 2007; 

Lupo, Reginster & Lambin, 2001; 

Stramodo, Bignami, Chini, Pierdicca & 

Tertulliani, 2006; ; Wikantika, Sinaga, 

Hadi & Darmawan, 2007; and Tomowski, 

2011. 

3. Other applications  

3.1 Crop monitoring Manavalan, Kesavasamy, & Adiga, 1995. 

3.2 Road change Agouris, Stefanidis, & Gyftakis, 2003; and 

Gautama, Haeyer, & Philips, 2006. 

Table 2.4: Change detection applications using remote sensing technologies (Lu et al., 

2004). 

The main reason for the employment of remote sensing technologies for change detection 

can be briefly described as follows. Changes in the state of the observed object provoke 

differences in its natural radiation, which can be registered by remote sensing as changes of 

radiance values and recorded in form of satellite imagery (Ingram et al., 1981). The 

differences in natural radiance should be markedly larger than radiance changes caused by 

seasonal, weather or acquisition factors. The effectiveness of the change detection analysis 

depends on the accuracy of the geometric registration and atmospheric correction or 

normalization between the multi-temporal images being processed. To reduce such effects, 

the images for comparison should be acquired by the same sensor, at the same time of a 

season and the same time of a day. The implementation of an appropriate method is also 

one of the crucial factors in producing a good change detection result (Lu et al., 2004). 

However, it is difficult to select the most effective algorithm of change detection for all 

specific problems. The next chapter provides an overview of the frequently used change 

detection techniques and their relevant applications. 

2.5.2 Review of Change Detection Methods 

Following the emergence of remote sensing, many methods of change detection have been 

developed and examined for numerous purposes. Comparative reviews of change detection 

methods based on the analysis of multi-temporal remotely sensed data are provided in 

Briger, 2002; Coppin et al., 2004; Singh, 1989; or Lu et al., 2004. 

The selection of change detection method must be performed depending on the purposes of 

the investigation. Thus, different change detection approaches are required for detection of 

destroyed buildings and for land-use analysis. 
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Niemeyer and Nussbaum (2006) categorized the existing methods according to their 

flexibility, robustness and applicability, furthermore incorporating technical aspects within the 

categorization: automatic or visual, pixel-based or object-oriented, bi- or multi-temporal, and 

by the capability to define the art of the change. 

Mas (1999) subdivided existing methods into the following subject groups: image 

differencing, vegetation index differencing, selective principal component analysis, multi-date 

classification, post-classification analysis and image enhancement. 

In this work, the classification based on (Lu et al.,, 2004) is described, whereby the author 

groups a wide range of change detection methods into seven groups: (1) algebra, (2) 

transformation, (3) classification, (4) advanced, (5) geographic information system (GIS) 

approaches, (6) visual analysis, and (7) other change detection techniques. 

1) Algebra 

This group includes image differencing, image ratio, image regression, vegetation index 

differencing and change vector analysis. 

Image differencing 

Images taken on two different dates are subtracted pixel-by-pixel from another in this 

technique. 

 𝐷𝑥𝑖𝑗
𝑘 = 𝑥𝑖𝑗

𝑘 (𝑡2) − 𝑥𝑖𝑗
𝑘 (𝑡1) + 𝑐 (2.1) 

Where 𝑥𝑖𝑗
𝑘  is the pixel value of band 𝑘 for pixel at row 𝑖and at column 𝑗; 𝑡1and 𝑡2 denote the 

acquisition time; c is a constant to provide positive result values. 

If the pixel values in two images are close, the pixel values of the resulting image are near 

zero. By setting a value larger zero as a threshold the changed areas are selected. 

Image differencing is a very simple technique, offering a straightforward implementation and 

interpretation of the results. However, the resulted values 𝐷𝑥𝑖𝑗
𝑘  are absolute and the same 

value can be interpreted variously. Moreover, the efficiency of method can be strongly 

affected by atmospheric effects. 

Price et al. (1992) make use of image differencing for detection of shrub dieback. However, 

they found rather poor agreement with field verification. Green et al. (1994) report better 

results of image differencing of a single band in contrast to differences in a vegetation index. 

Saksa et al. (2003) apply image differencing for detecting clear cut areas in boreal forest. 

Three methods were tested using Landsat satellite imagery and aerial photographs. In the 

first method, they calculated difference image using pixel-by-pixel differencing. Then, they 
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segmented the image to delineate the clear cut areas. In the second method, pixel block-

level differencing, they included neighbouring pixels into the calculation of the difference 

image, thereby reducing negative effects of misregistration in the resulting image. In the third 

method, they first segmented the images. After that, they calculated a segment-level image 

difference and labeled clear cut areas by using an unsupervised classification. They found 

that the image differencing in pixel blocks or in the segments provides better results with a 

smaller number of misinterpreted areas. 

Image regression 

This algorithm is based on the assumption that the pixel values of the first image 𝑥𝑖𝑗
𝑘 (𝑡1) are 

linearly related to the pixel values of the second 𝑥𝑖𝑗
𝑘 (𝑡2) (Singh, 1984). The regression 

function can be expressed as: 

 �̂�𝑖𝑗
𝑘 (𝑡2) = 𝑎𝑥𝑖𝑗

𝑘 (𝑡1) + 𝑏 (2.2) 

Here, 𝑥𝑖𝑗
𝑘 (𝑡2)- the pixel values of the second image, 𝑥𝑖𝑗

𝑘 (𝑡1)- the expected pixel values of the 

first image in the absence of changes.  

The values 𝑎 and 𝑏 can be found by using the least square method. Thereby, the residual is 

defined based on difference of the first image pixel values 𝑥𝑖𝑗
𝑘 (𝑡1) and the regression 

function 𝑥𝑖𝑗
𝑘 (𝑡2). 

 min
𝑎 𝑏

∑(𝑥𝑖𝑗
𝑘 (𝑡1) − 𝑎𝑥𝑖𝑗

𝑘 (𝑡2) − 𝑏)
2

𝑖𝑗

 (2.3) 

A change image can be obtained through the subtraction of the two images after applying the 

linear regression function to the second image. 

 𝐷𝑥𝑖𝑗
𝑘 = �̂�𝑖𝑗

𝑘 (𝑡2) − 𝑥𝑖𝑗
𝑘 (𝑡1) + 𝑐 (2.4) 

The changed area can be marked out using suitable threshold value. This technique enables 

reducing the influence of atmospheric conditions on the results of change detection analysis. 

However, the selection of an appropriate regression function and thresholds between change 

and no change areas can be rather challenging and clearly influences the final result (Theau, 

2012). 

Image rationing 

In this technique, images from different times are divided on a pixel-by-pixel basis. 
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 𝑅𝑥𝑖 𝑗
𝑘 =

𝑥𝑖 𝑗
𝑘 (𝑡1)

𝑥𝑖 𝑗
𝑘 (𝑡2)

 (2.5) 

If the pixel values of two images are close, the pixel values of the resulting image reach a 

value close to 1. The pixels corresponding to the areas of changes have ratio values 

significantly greater or less than 1. Therefore, the technique requires definition of two 

threshold values for separation of values greater and less than 1. 

The method enables reducing the impact of Sun angle, shadow and topography (Lu et al., 

2004).  

Vegetation Index Differencing 

The vegetation index is calculated for each pixel based on the pixel values from different 

bands, highlighting a particular property of vegetation. The change image is a subtraction 

result of the index values of considered images. Detection of changes is performed based on 

the suitable threshold and the obtained change image. There are many approaches for 

calculations of vegetation indexes. One of the most frequently used is NDVI (normalized 

difference vegetation index). 

 𝑥𝑖𝑗
𝑁𝐷𝑉𝐼 =

𝑥𝑖𝑗
𝑁𝐼𝑅 − 𝑥𝑖𝑗

𝑅𝐸𝐷

𝑥𝑖𝑗
𝑁𝐼𝑅 + 𝑥𝑖𝑗

𝑅𝐸𝐷 (2.6) 

Here, 𝑥𝑖𝑗
𝑁𝐼𝑅- pixel value from a band corresponding to infrared spectrum, 𝑥𝑖𝑗

𝑅𝐸𝐷- pixel value 

from a band corresponding to red spectrum. 

The application of the vegetation index difference method enables reducing the influence of 

topography and illumination however it leads to an increase random or coherence noise (Lu 

et al., 2004). 

Change vector analysis 

The method based on the comparison of vectors built of pixel values from different bands. 

The vector corresponding to the pixel can be expressed as: 

 𝑉𝑖𝑗 = (𝑥𝑖𝑗
1 , 𝑥𝑖𝑗

2 , . . . , 𝑥𝑖𝑗
𝑛)

.
 (2.7) 

Performing subtraction of the vector of considered images, the spectral change vector is 

obtained as: 
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𝛥𝑉𝑖𝑗 = 𝑉𝑖𝑗(𝑡2) − 𝑉𝑖𝑗(𝑡1)

= (𝑥𝑖𝑗
1 (𝑡2) − 𝑥𝑖𝑗

1 (𝑡1), 𝑥𝑖𝑗
2 (𝑡2) − 𝑥𝑖𝑗

2 (𝑡1), . . . , 𝑥𝑖𝑗
𝑛 (𝑡2) − 𝑥𝑖𝑗

𝑛 (𝑡1)) (2.8) 

The change magnitude is calculated as the Euclidian norm of the vector 𝛥𝑉𝑖𝑗: 

||𝛥𝑉𝑖𝑗|| = √(𝑥𝑖𝑗
1 (𝑡2) − 𝑥𝑖𝑗

1 (𝑡1))
2
+ (𝑥𝑖𝑗

2 (𝑡2) − 𝑥𝑖𝑗
2 (𝑡1))

2
+. . . +(𝑥𝑖𝑗

𝑛(𝑡2) − 𝑥𝑖𝑗
𝑛 (𝑡1))

2
       (2.9) 

Naturally, the unchanged pixels have a change magnitude close to zero. In general cases, 

the threshold for the detection of change areas can be defined as the boundary of a region in 

n-dimensional vector space of the change vector. 

Based on the magnitude and direction of change vector, the approach not only enables 

detecting changes, but also to define the type of changes (Tomowski, 2011). This technique 

is commonly used for land-use or land-cover analysis. 

The algebra methods are rather simple to implement. However, it is somewhat challenging to 

select a suitable threshold to detect the change areas. The result of change detection 

particularly depends on the accurate geometric registration and radiometric normalization of 

the input data. As all of these methods are based on a pixel-by-pixel comparison, a 

misregistration leads to false results due to a mismatch between the studied pixels. 

2) Transformation 

This category includes principal component analysis (PCA), Tasseled cap (TC), Gramm-

Schmidt (GS) and Chi-square transformations. The most popular methods, namely PCA and 

TC, described here. 

Principal Component Analysis 

This technique uses a linear transformation of the band components into the principal 

components. The new components better enable highlighting uncorrelated data 

corresponding to changes, and thereby the information concerning changes is almost entirely 

presented by only a few new components. Thus, the set of considered components can be 

reduced for further change detection analysis. 

Change detection using PCA can be performed in the two following ways. 

1. The considered images are merged into one image with doubled number of bands, 

with the obtained component set transformed into principal components and the few 

minor components used for change detections. An example of such an approach is 

shown in Figure 2.5. The one band from each compared image is merged into one 

image with two bands. Thus, two components T1 and T2 from each band correspond 
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to each pixel. Applying PCA, the components T1 and T2 can be replaced by the 

principal components PC1 and PC2. Separation of objects can be performed using 

only the value of component PC2. 

2. PCA is performed separately for each considered image. The obtained images are 

subtracted from each other, and the resulted image is analysed. 

 

Figure 2.5: PCA for change detection (Tomowski, 2011). 

Mas highlighted that PCA allows for the reduction of sensor and atmospheric condition (Mas, 

1999). However, the major weakness of this technique lies in the difficulty of result 

interpretation. 

Tasseled Cap (TC) 

The ‘Kauth-Thomas –Tasseled Cap Transformation’ (Kauth & Thomas, 1976) was developed 

particularly for agricultural applications. The method is similar to the PCA and is widely used 

in studies of forest, ecology and landscape. The basic idea behind the Tasseled Cap 

transformation is a compression of multispectral Landsat data into three components: 

brightness, greenness and wetness. The new components are used for further change 

detection analysis. 

Nordberg & Evertson (2005) apply image differencing to create a change image from each 

transformed image pair. They detected changes in greenness due to vegetation removal and 

in wetness because of increased soil exposure. 

The main advantages of transformation methods include reducing data redundancy between 

bands and highlighting the different information in the derived components. However, it is 

rather difficult to interpret the information in the transformed images (Lu et al., 2004). 
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3) Classification 

The following methods belong to this group: Post-Classification comparison, spectral-

temporal combined analysis, expectation-maximization (EM) detection, unsupervised change 

detection, hybrid change detection, and artificial neural networks (ANN).  

Post-Classification Comparison 

To perform this method, multi-temporal images are initially classified independently from 

each other, with new thematic maps are generated based on the classification, and the new 

maps finally compared on a pixel-by-pixel basis. The benefits of this approach include a 

reduction of atmospheric, environmental and sensor caused differences between the multi-

temporal images. Moreover, this method enables detecting the changed area and identifying 

the type of change. However, accuracy of the change detection strongly depends on the 

accuracy of each individual classification of multi-temporal images (Stow et al., 1980). 

Spectral-Temporal Combined Analysis 

This technique is a classification of combined data sets from two or more differing points in 

time. For instance, the two images with four bands can be merged in one image with eight 

bands. The new image is then analysed by means of supervised or unsupervised 

classification techniques. This method is easier than Post-Classification comparison, 

however, the identification of change classes is rather complicated. 

Expectation-Maximum Algorithm (EM Algorithm) 

The method uses an iterative procedure to find parameters for statistical distribution model of 

cluster members in the feature space. The method yields a probability of each sample that 

falls in a certain class. For example, a difference image can be calculated from images of T1 

and T2. Then, a probability that pixels are changed or unchanged can be estimated using EM 

algorithm (Dellaert, 2002). 

The estimation of a priori class probabilities is rather challenging. Therefore, the EM method 

is not widely used in remote sensing practices (Lu et al., 2004). 

Unsupervised change detection 

The unsupervised change detection methods do not need a ground truth information (training 

data). The main idea is to select groups of objects with similar properties. There are 

numerous approaches of unsupervised change detection. One of the most popular method is 

based on the results of image differencing analysis. By this method, the “change” and “non-
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change” groups of pixels are selected by means of a threshold value applied to the difference 

image (Bruzzone & Prieto, 2000; Melgani et al., 2002).  

Hybrid change detection 

The hybrid method is based on a combined use of two or more methods for change 

detection. This methods can be categorized as: procedure –based (using different change 

detection methods), result-based (using the results obtained by different methods). The 

approach enables combination of benefits from different methods. However, it can be difficult 

to define the influence of each involved method on the result of analysis (Hussain et al., 

2013). 

Artificial Neural Networks (ANN) 

Neural networks attempt to simulate the basic mechanism of a human brain, providing 

human capacity for learning and further decision making. Thus, the neural network is an 

adapted tool that enables a computer system to find the solution to problems. After learning 

the procedure, the computer “remembers” the solution to problems from a learning set and 

thus can find an answer for similar problems. 

There are two main steps in data processing by means of a neural network: the learning 

phase and the retrieval phase. During the learning phase, the weight parameters of a net 

structure are calculated based on the training data defining the neural model and are then 

used in the next phase. In the retrieval phase, the built model recognizes and classifies real 

test patterns. 

The performance of the technique depends on the available training set and structure of the 

neural network. By applying the ANN approach, Liu and Lathrop (Liu & Lathrop, 2002) 

reported significant accuracy improvement of around 20-30% in comparison with the post 

classification comparison. 

4) Advanced methods 

This group consists of the Li-Strahler reflectance model, spectral mixture model and 

biophysical parameter method, with the former two models discussed in this subsection. 

Li-Strahler reflectance model 

This approach is based on the calculation of pixel value through the simulation of reflectance 

from the set of objects with simple geometric shapes. Some field measurements are required 

for definition of the model, representing a difficulty in application. This method can be applied 



Remote Sensing and GIS in Change Detection 
 

 

 
25 

 

for estimation of size, shape and spacing of discrete objects that are imaged at resolutions 

sufficiently coarse that they cannot be resolved individually (Li & Strahler, 1985). This method 

is particularly efficient for quantitative estimation of vegetation changes. For the monitoring of 

conifer deadliness, Macomber & Woodcock (1994) use the Li-Strahler model for estimation of 

the size and density of trees from remotely sensed images. They demonstrated advantages 

of the method as giving both the statistical results of an inventory changes in forest canopy, 

with a high level of accuracy, and also maps showing the geographic distribution of mortality 

patterns. 

Spectral mixture model 

The pixels of a satellite image represent the sensor measurements of spectral radiance, with 

the values of the pixels resulting from an integrated sum of radiance of different neighbouring 

materials within the area covered on the ground by a single pixel. As a rule, the pixels do not 

represent a homogeneous area, but rather a mixture of several spectral classes. For 

example, the pixel can include information from vegetation, ground and water. The spectral 

unmixing procedure decomposes a reflectance source spectrum into a set of components or 

endmembers and corresponding factions (abundances). The abundances indicate the 

proportional composition of each endmember in the mixed pixel (Keshava & Mustard, 2002). 

A more detailed description of the spectral mixture model can be found in Adams et 

al.(1995), Quintano et al. (2012). 

Roberts et al. (1998) describe a new method based on a multiple endmember spectral 

mixture analysis to map California chaparral. The technique enabled improved discrimination 

of vegetation classes through pixel-unique endmember selection. Lu & Weng (2004) 

examine characteristics of urban land-use and land-cover classes using spectral mixture 

analysis (SMA). The research indicated that SMA is useful to solve problem in the low 

resolution data, effectively characterizing the urban landscape patterns, and significantly 

improves classification accuracy in contrast to maximum-likelihood classifier.  

5) GIS approaches 

Significant advantages of change detection analysis are provided by GIS application due to 

its various features, such as the incorporation of different source data, support of multi-

layered structure, numerous mathematical tools and integrated programming languages. 

GIS are able to process a wide range of data with dissimilar nature, properties and origin. For 

handling different data types, GIS are equipped with interfaces for data import and export, as 

well as tools for data generation, analysis, actualization and visualisation. A GIS is well suited 

as a platform for the implementation of new tools for change detection analysis. 
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A straightforward application of GIS for change detection involves a visual analysis of multi-

source and multi-scale maps, satellite images and field observation data, whereas complex 

applications include analysis by using self-developed modules and a combination of change 

detection techniques. A map overlay and binary masking are commonly employed for the 

quantitative assessment of change dynamics. 

Many GIS applications are particularly focused on urban areas, where traditional methods 

often have poor change detection results due to complexity of landscapes (Lu et al., 2004). 

However, it should be noted that data fusion in a GIS environment can be rather complex 

due to different data standards, resolutions, data acquisition techniques, etc. (Koch & Ei-Baz, 

1998). 

6) Visual analysis 

The remote sensed data of different dates are stored in different bands of the composed 

image. The image consists of 2 or 3 bands, which correspond to red, green and blue 

colors.The analysis is performed by visual analysis of a multi-data colour composed image. 

The visual interpretation by human analyst is very flexible and can take use of the analysis of 

texture, shape, size, patterns and so on. However, the result quality depends strongly on the 

expert skills. Moreover, the analysis of large areas is very time-consuming. 

7) Other change detection techniques 

There are methods, which cannot be classified to the one of above described categories. 

These methods have not yet frequently been used and do not deserve separate own 

categories. This groups consists of the following methods: measures of spatial dependence 

(Henebry, 1993), knowledge-based vision system (Wang, 1993), area production method 

(Hussin, De Gier, & Hargyono, 1994), combination of three indicators: vegetation indices, 

land surface temperature, and spatial structure (Lambin & Strahler, 1994), change curves 

(Lawrence & Ripple, 1999), generalized linear models (Morisette et al., 1999), curve-

theorem-based approach (Yue, et al., 2002), structure-based approach (Zhang et al, 2002), 

spatial statistics-based method (Read & Lam, 2002). 

2.5.3 Change detection inside urban areas 

Urban areas are characterized by the occurrence of numerous distinct objects-buildings, with 

such changes being consequences of new building, rebuilding, building destruction or 

vegetation growth. This section focuses on the selection of building destruction caused by 

natural or man-made catastrophic events, such as an earthquake or a civil war. Naturally, it is 

desirable to obtain states of separate buildings as a result of the change detection analysis. 
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Due to an increasing worldwide number of natural disasters, emergency situations and civil 

hazards, remote sensing methods have been widely adopted for obtaining reliable and 

continuous information on the scale and effects of a disaster and the current situation in the 

affected areas. Furthermore, post-disaster remotely sensed data is especially important for 

seriously damaged or difficult-to-access areas, with the generation of image-based damage 

maps becoming an indispensable component of information support for search and rescue 

services and humanitarian communities. 

Many techniques for detection of damaged buildings have been developed based on remote 

sensed images. Such methods can be divided into two groups: ‘image-to-image’ and ‘map-

to-image’ strategies. 

The commonly used ‘image-to-image’ approach involves a comparison of pre- and post-

event images on a pixel-by-pixel or object-by-object basis. Gupta et al. applied the image 

differencing change detection technique to pre- and post-earthquake remotely sensed 

images obtained by the LISS-II sensor of the Indian Remote Sensing Satellites (Gupta et al., 

1994). The authors conclude that the applied method is a valuable tool for delineating areas 

of changes and damage assessment caused from the catastrophe. 

Collapsed buildings can be also detected based on digital elevation models (DEMs) 

generated from pre- and post-event stereo aerial photographs. Within this approach, pre- 

and post-event DEMs are analysed to obtain the difference of detected building heights. The 

building is then recognized as damaged if the difference exceeds a specified threshold level 

(Turker & Cetinkaya, 2005).This proposed method has proved to be highly accurate. 

Another frequently used application of aerial photography is the detection of buildings from 

their shadows. The central idea behind this approach is that destroyed buildings do not have 

any shadows or have very small shadows compared to their pre-event stage. Change 

detection is performed by comparison the buildings sets detected from pre- and post-event 

aerial photographs (Irvin & McKeown, 1989), (Turker & San, 2004), (Huertas & Nevatia, 

1988). 

Saraf et al. (2002) proposed a detection of damage using a pseudo-colour transformation 

(PCT) technique. The pre- and post-earthquake images from Indian Remote Sensing 

Satellites (IRS) were used to study the Bhuj earthquake-induced damage in the Bhachau 

area (India) in 2001. 

Ehlers et al., 2012 applied texture-based analysis for destruction detection of buildings and 

infrastructure in areas affected by a rapid catastrophic event (Ehlers et al, 2010), with multi-

temporal images filtered by a Fourier transform based band pass filter. The filtered images 

are then used for the calculation of textural features at each pixel, with change detection 

performed based on the obtained textural feature images. The authors analysed the usage of 
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different textural features (energy, correlation, contrast and inverse difference moment) for 

different change detection methods (difference, ratio, regression and PCA). 

Methods based on the comparison of multi-temporal images provide reliable and effective 

change detection. However, pixel-based analyses require a precise geo-referencing of all 

processed data. Moreover, to achieve successful results it is desirable to take images 

acquired by the same sensor at the same time of a season, the same time of a day, and – for 

electro-optical sensors - in cloudless conditions (Hall et al., 1991). The accuracy of the 

change detection analysis suffers from variation of acquisition angles. The situation can be 

improved by taking additional information into account, such as vector-based maps, used as 

a primary information source through the ‘map-to-image’ approach. The vector map provides 

information about the exact position and size of each building, representing a major benefit of 

this approach. A comparative analysis of two different data types (vector map and remotely 

sensed image) is generally performed by extracting spectral, textural and structural 

parameters from the image for each single building, thereby excluding the image area 

outside of building footprints from consideration. A principal strength of the ‘map-to-image’ 

strategy is its capability to adapt image processing methods to the building-by-building 

analysis and to assess the state of each building separately.  

Samadzadegan and Rastiveisi (2008) used vector map information for calculation of the 

textural features from the pre- and post-event satellite images over the building footprint 

areas. Furthermore, a classification of building conditions was performed by using a fuzzy 

logic system. The calculated overall classification accuracy indicates a high capability of the 

method in terms of the automated detection of collapsed buildings. However, the main 

difficulty of this approach is the selection of the optimum feature set. For redundancy 

minimization of the feature space, Goldberg (1989) proposed using an adapted genetic 

algorithm. 

Chesnel et al. (2008) used very high-resolution images of the crisis region and roof footprints 

as vector data, with change detection performed based on the correlation value between the 

roof footprint images within the vector contour of a building object. In order to take the 

difference between acquisition angles into account, the contour positions on the images are 

chosen with a certain shift. For the detection of building state, rather than a fixed threshold 

correlation value, the authors used a state classification based on Support Vector Machines 

(SVM) technique (Vapnik, 1995; Burges, 1998). This approach enables adapting the change 

detection method to an investigated case (damage types, building types, atmospheric 

conditions, etc.). The authors showed the efficiency of the method on six different very high-

resolution images acquired before and after the bombings of Beirut occurring between 12th 

July 2006 and 14th August 2006, with the vector map generated manually. The proposed 



Remote Sensing and GIS in Change Detection 
 

 

 
29 

 

method demonstrates high efficiency in terms of the detection of damaged buildings, 

however, difficulties exist in the limitation of false alarms due to the difference between 

acquisition angles. 

Sumer and Turker (2006) proposed a method for the detection of collapsed buildings based 

on differences in the grey-values and gradient orientations within a building footprint area. It 

was observed that the image brightness or image grey-values may vary depending of 

building state, with intact buildings having lower brightness and more regular distribution of 

gradient orientations then collapsed buildings. The proposed method was applied for the 

detection of damaged buildings caused by the Kocaeli earthquake in the northwest of Turkey, 

occurring on 17th August 1999.  

Using vector information, DEM-based method enables performing change detection on a 

building-by-building basis and excluding pixels outside the building footprint from the 

consideration (Turker & Cetinkaya, 2005). This approach was tested for a study area of the 

city Golcuk, which was strongly affected by the Kocaeli earthquake. The experiments 

performed achieved a high level of accuracy, and demonstrating the major benefit of the 

integrated analysis of remotely sensed data and vector information.  

Shi and Hao (2012) assumed that the footprint area of an intact building has a homogeneous 

structure, whereas the area corresponding to the damaged building is heterogeneous. Based 

on the vector data, the authors define a bounding rectangle around the expected building 

footprint on the post-event image. Within the rectangle area, a continuous homogeneous 

region is selected, which is compared in shape and area with the original building contour 

given by the pre-event vector data. The authors calculate Shape Similarity Index (SSI) (Ling 

& Jacobs, 2007) indicating the degree of similarity between the contour shape extracted from 

the image and the original building shape, and Area Ration Index (ARI) defining the ratio of 

pixel numbers from the extracted homogeneous area and the area corresponding to the 

original building footprint. In the SSI and ARI feature space, a k-means clustering is 

performed to select two groups of buildings (damaged and undamaged). The proposed 

method was applied to the high resolution GeoEye-1 and Quickbird test images obtained 

after the Yushu earthquake in China on 14th April 2010. The experiments performed indicated 

that the described approach is effective and particularly robust for the detection of entirely 

collapsed buildings. However, the experimental results pointed to limitations of building 

recognition when buildings are covered by trees or shadows. 

Due to its object-oriented approach, the ‘map-to-image’ strategy enables the separate 

analysis of each building state, and this appears to be a better choice for change detection 

inside urban areas. Moreover, the vector data includes additional attributive information 

(building type, building age, utility, number of stories, etc.), which can also be very useful. 
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Change detection analysis after catastrophic events requires the utilization of all available 

information, and in such cases the application of GIS techniques are indispensable. GIS 

enables the manipulation and visualization of large amounts of multi-source data, and the 

integration of remote sensing technology and geoinformatics. Therefore, it has justifiably 

received widespread attention as a tool for change detection analysis in recent years. 

In this research, the integrated approach was selected as a paradigm for change detection. 

For a general applicability of the method developed within this work, it was decided to use 

Open Source software as a basic development platform. The author believes that this 

approach yields more flexibility for innovative research studies and can be used as a basis 

for the further development of cost-effective software for practical application of the proposed 

change detection technique. 
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3. Open Source Software as Implementation Environment 

Open Source Software (OSS) is a very interesting phenomenon. The software is developed 

by hundreds of thousands of worldwide programmers voluntarily producing, sharing and 

supporting their product with no monetary compensation. OSS is becoming more and more 

popular, with the most well-known OSS including Firefox web browser, Thunderbird e-mail 

client, Eclipse software development environment, Linux operating system and OpenOffice 

software suite. 

Just one of the popular web-based source code repositories, SourceForge, supports over 

324,000 open source projects which are developed by 3,4 million developers. SourceForge 

connects over 46 million consumers with open source projects and serves more than four 

million downloads a day (www.sourceforge.net/about) . 

3.1  Historical Overview and Definition 

There are two similar movements, Free Software and Open Source Software. The definition 

of Free Software is published by the Free Software Foundation (FSF), the definition of Open 

Source Software by Open Source Initiative (OSI). Both software types basically refer to the 

same licenses with a few minor extensions; in other words, nearly all free software is open 

source and nearly all Open Source Software is free (www.gnu.org/philosophy/ 

categories.html). 

Both Free Software and Open Source Software are software products with available source 

code that is free to modify and to distribute copies of the original or modified program without 

paying any fees to the original creators of the software package. It enables the appropriation 

of the program code for own use. The license of the Open Source Software does not require 

providing the software for free. It means that a user is free to run the software, change the 

software and redistribute the software with or without charges. However, most of the Open 

Source Software are distributed free of charge. 

Open Source Software started with one man: Richard Stallman. He used the term ‘free 

software’ for the first time and carefully explained its definition. Until the end of the 1970s, the 

major part of software was developed in academic institutions. The academic community 

does not encourage hiding information. Therefore, software developed in university 

laboratories was freely distributed internally, including the source code, with a release 

typically under very easy zero-cost licenses. Commercial companies often used the software 

developed under the academic licenses and integrated it into their own products. The new 

software became proprietary with a release under paid-for commercial licenses, under which 

the source code was not accessible. The tendency to hide the source code, namely a 
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restriction on viewing and amending by other programmers, seemed to Stallman to be 

especially negative. He saw the advantages of collaborative work in creating robust and high 

quality software due to the distribution of the program codes to different experts who 

understood the program functionality in depth and could contribute to the software effectively 

in each specific part. Stallman believed that it was unfair that the commercial companies 

made financial gains from the work done by the academic developers, which they obtained 

for free. To avoid this, a licensing mechanism was needed to guarantee that, once software 

was made in an open environment, free for modification and distribution, it cannot ever be 

proprietary. 

On 27 September 1983, Stallman announced the GNU project (GNU is a recursive acronym 

that stands for “GNU’s Not Unix”). The goal of the project was the development of a free 

software environment that enables working without use of any non-free software. In a search 

for persons holding the same views, Stallman founded the non-profit organization “Free 

Software Foundation” (FSF) on 4 October 1985. After a short period of development, in 1989, 

FSF established a GNU General Public License (GPL) and started to release software under 

this license. The software under GPL may be used for any commercial and non-commercial 

purposes. The source code availability is not required for internal use, but in the case of sale 

or distribution the source code including all source changes must be made available to the 

end users. In order to emphasize the difference to the copyright licenses of proprietary 

software, the new form of licensing became the name “copyleft”. 

By the early 1990s, Stallman and FSF developed such software as EMACS text editor, GCC 

compiler, GDB debugger, and Bash command processor as a part of the GNU project.  

In 1991, Linus Torvalds, a student at the University of Helsinki (Finland), started work on a 

new operating system which was eventually named Linux. He used the FSF’s software as a 

basis for the system kernel. The development of Linux progressed rapidly due to the 

collaborative work model, which became possible with the steady progress in Internet 

technologies. Thus, thousands of programmers dispersed around the world can work on the 

different aspects in order to produce a stable, reliable, and fast running version of the new 

open source operating system. At the suggestion of Stallman, the Linux operating system 

was released under the GPL. To date, Linux has become one of the most popular operation 

systems. Numerous open source and proprietary software have been developed to run on 

Linux.  

In 1997, Eric Raymond published a collection of essays in The Cathedral and the Bazaar 

(Raymond, 1999). He described the software engineering methods used for free software 

development. The publication received significant attention and motivated Netscape 

Communications Corporation to release the Netscape Communicator Internet suite as free 

http://en.wikipedia.org/wiki/Linux_kernel
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software. The Mozilla Application suite was later developed based on this released source 

code. 

In February 1998, the Open Source Initiative (OSI) was founded by Eric Raymond and Bruce 

Perens and promoted by publishing the source code of the Netscape Communicator. The 

members of the OSI created a new term, “open source”. They emphasized the efficiency of 

the source code availability, distinguishing the term “open source” from the philosophically 

and politically focused label “free software”. Depending on the license, however, the main 

software is now free or open source but mostly the software is both free and open source, 

since many licenses are accepted by both OSI and FSF.  

Nowadays, there are many licenses approved by OSI and FSF, however, GPL still remains 

the most popular of them.  

Lately, the open source concept has increasingly attracted the attention of large commercial 

companies. The companies not only use the OSS, but also support and develop it. Thus, for 

example, Google develops Android (an open source operation system based on Linux) and 

Chromium (open source web browser), Nokia possesses the Qt project (Open Source 

Software development framework), and Autodesk releases MapGuide Open Source (web-

based platform for developing web mapping applications and geospatial web services). 

Recent years are characterized by the intensive development of geographical information 

systems with open source codes. The FreeGIS.org catalogue counts about 350 different GIS 

projects with open source codes. 

In 2006, the Open Source Geospatial Foundation (http://www.osgeo.org)  was 

established with the purpose to support and promote the development of open geospatial 

technologies, data and educational material. The following projects are supported by the 

foundation:  

1. Web Mapping (deegree, geomajas, GeoMoose, GeoServer, Mapbender, MapBuilder, 

MapFish, MapGuide Open Source, MapServer, OpenLayers, ZOO-Project). 

2. Desktop Applications (GRASS GIS, Quantum GIS, gvSIG, Opticks). 

3. Geospatial Libraries (FDO, GDAL/OGR, GEOS, GeoTools, MetaCRS, OSSIM, 

PostGIS, rasdaman). 

4. Metadata Catalog (GeoNetwork). 

5. Public Geospatial Data. 

6. Education and Curriculum. 

In Germany, OSGeo is represented by FOSSGIS e.V. (abbreviation for Freie und Open 

Source Software für Geoinformationssysteme). Originally founded in 2000 as GRASS-

Anwender-Vereinigung e.V. (GAV), it has been operating since September 2008 as 

FOSSGIS e.V. which organizes the FOSSGIS conferences, provides free geodata by the 

http://www.osgeo.org/deegree
http://www.osgeo.org/geomajas
http://www.geomoose.org/
http://geoserver.org/
http://www.osgeo.org/mapbender
http://www.osgeo.org/mapbuilder
http://www.osgeo.org/mapfish
http://www.osgeo.org/mapguide
http://www.osgeo.org/mapserver
http://www.osgeo.org/openlayers
http://www.zoo-project.org/
http://www.osgeo.org/grass
http://www.osgeo.org/qgis
http://www.osgeo.org/gvsig
http://opticks.org/
http://fdo.osgeo.org/
http://www.osgeo.org/gdal_ogr
http://geos.osgeo.org/
http://www.osgeo.org/geotools
http://metacrs.osgeo.org/
http://www.osgeo.org/ossim
http://www.postgis.org/
http://www.rasdaman.org/
http://www.osgeo.org/geonetwork
http://www.osgeo.org/geodata
http://www.osgeo.org/education
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Open Street Map project, presents free and open source GIS software at conferences and 

meetings, operates the FreeGIS.org portal and initiates round tables throughout Germany. 

3.2 Used Software 

The application of change detection techniques considered in this study requires GIS 

software for processing and visualization of raster and vector data, programming possibilities 

for implementation of algorithms as well as data mining software for classification of object 

states. In the performed study, GRASS GIS was used as the GIS software, Python as the 

programming language and Orange as the data mining software. Figure 3.1 presents the 

general scheme for the integration of GRASS, Python and Orange into a single change 

detection tool. The scripts written by using Python and Orange are included in GRASS as 

external modules. In this way, the user working with GRASS GIS can perform a change 

detection analysis by using new algorithms without leaving the GIS system; all processing 

scripts run in the background.  

 

Figure 3.1: General structure of the change detection module in GRASS GIS. 

3.2.1 GRASS GIS 

GIS GRASS (Geographic Resources Analysis Support System) is currently the most popular 

system among open source GIS (Neteler et al., 2012). Its development was initiated by the 

U.S. Army Construction Engineering Research Laboratory (CERL) in 1982 in Champaign, 

GRASS GIS

Python scripts Orange script

Raster map

Vector map

Damage map

Image filtering

Calculation of feature 

values

Classification of object 
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Illinois to support land management and environmental planning at military installations. 

From 1982 to 1995, CERL led the development of GRASS with the involvement of numerous 

universities and federal agencies. GRASS, with its complete source code, was published as 

public domain software, i.e. without ownership such as copyright or trademark. After finishing 

the GRASS 4.1 release in 1995, CERL officially stopped its active participation in the project. 

In 1997, the developer group at Baylor University took control of GRASS development from 

CERL and released GRASS 4.2. In 1998, the main development was concentrated at the 

University of Hannover. In October 1999, Version 5.0 was released under GNU General 

Public License (GPL) which is used for all later program versions. In 2001, the main GRASS 

development activity was moved to ITC-irst (Centro per la Ricerca Scientifica e 

Technologica), Trento, Italy. In 2006, the GRASS project became a founding member of the 

Open Source Geospatial Foundation (OSGeo) and, in the same year, the GRASS Project 

Steering Committee (PSC) was established, which is currently responsible for the 

management of the project. Since 2008, the GRASS website, mailing lists and bug tracker 

are hosted by OSGeo. To date, the development team has grown into a multi-national team 

of programmers at numerous locations. Presently, GRASS has a large user community that 

makes bug searches and software learning much easier. 

 

Figure 3.2: The graphical user interface of GRASS GIS with data representation. 

GRASS GIS is a multi-purpose GIS running on common operating systems: Windows, Linux, 

Mac OSX, BSD etc (Neteler & Mitasova, 2005). The software has a modern Graphical User 

Interface (GUI) (Figure 3.2) which includes an integrated location wizard, vector digitizer, 
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SQL query builder, attribute editor, model builder, 3D view mode, and georeferencing tool. 

Besides the window-oriented user interface, GRASS provides a command-line oriented tool 

for manual command entering. Visual tools in GRASS enable animation of spatial data, 

visualization of different layers, and creation of 3D-views.The GUI text and messages are 

translated into over 20 languages. 

GRASS provides a flexible tool set for work with map projections, partially due to the usage 

of PROJ.4 open source cartographic projections library (http://proj.osgeo.org). Through the 

application of the GDAL/OGR library (http://www.gdal.org), GRASS is compatible with the 

majority of common raster and vector data formats such as GeoTIFF, Erdas Imagine, SDTS, 

ECW, MrSID, JPEG2000, DTED, NITF, ESRI Shape file, ESRI ArcSDE, MapInfo, GML, KML, 

PostGIS and Oracle Spatial. GRASS supports SQL interface to database engines: 

PostgreSQL, MySQL, and SQLite.  

GRASS is a modular system which provides access to over 400 modules. Each function of 

data processing is performed with a single module, thereby clearly dividing the GIS 

components and ensuring transparency. The modules contain tools for managing vector 

data, processing multispectral data, analyzing spatial data, as well as simulating different 

events and visualizing final results. Various surface processes, such as rainfall-runoff 

modeling, flow path calculation, ground water control, and slope stability analysis are only a 

few of the many applications. GRASS can be easily connected with a printer, plotter, or 

digitizing table. 

Nowadays, GRASS GIS is widely utilized in various academic and commercial projects 

around the world. Many governmental agencies including NASA, NOAA, USDA and DLR use 

it. The functionality of the GRASS is comparable with the popular commercial GIS programs, 

for example ArcGIS (ESRI, Inc.). GRASS is distributed under GPL license and can be 

downloaded from its web page at no cost. 

In contrast to proprietary software, the GRASS GIS enables both the utilization of existing 

source codes and the implementation of own modules. A new module can be built by 

combining other GRASS modules and by implementing scripts written in different 

programming languages including Python, Bash, C, JAVA, and Perl. The GRASS parser 

allows for easy generation of GUI and documentation for the user module.  

Using the GRASS parser tool, GUI and a html documentation file with an optional description 

for a user module are generated automatically. The generated documentation can be 

extended by an additional detailed description of the module. Below, the structure of the 

GRASS module for the change detection procedure is presented. 
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# Description of GUI 

#%Module 

#% description: Detection of building state  

#%End 

#%Option 

#% key: rastermap 

#% type: string 

#% gisprompt: old,cell,raster 

#% description: Raster input map 

#% required : yes 

#%End 

#%Option 

#% key: vectormap 

#% type: string 

#% gisprompt: old,vector,vector 

#% description: Vector input map 

#% required : yes 

#%End 

#%Option 

#% key: damagemap 

#% type: string 

#% gisprompt: new,vector,vector 

#% description: Damage map 

#% required : yes 

#%End 

# Import of module for image filtering 

Import image_filtering 

# Import of module for feature generation 

Import features_generation 

# Import of module for classification 

import classification 

# Import of GRASS modules 

fromgrass.script import core as grass 

... 

# Import of standard python modules 

import sys 

... 

def main(): 

    # Image filtering, using “image_filtering” 

    # module 

   ... 

    # Extract raster area around vector objects 

    ... 

    # Calculation of features values, using 

    # “features_generation” module 

    ... 

    # Classification, using “classification” module 

    ... 
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    # Load data into damage map   

    ... 

return 0 

if __name__ == "__main__": 

    options, flags = grass.parser() 

    sys.exit(main()) 

 

At the beginning of the module code, the description of GUI is provided, which results in the 

interface shown in Figure 3.3. Then, the module code defines the import of Python modules. 

The image filtering procedure is implemented in module “image_filtering”. The 

“feature_generation” module contains the Python functions for the feature generation. The 

“classification” module includes the functions developed for classification based on the 

generated feature set. The entire processing is coded in the “main” function. Firstly, the 

image filtering is performed. The next processing step cuts out and stores the areas of the 

raster map around the selected vector objects in separated files. The generated raster files 

are then used for calculations of a feature set for each vector object. On the following step 

the object state classification is performed. The obtained object states are loaded in the new 

vector damage map. 

 

Figure 3.3: Dialog window of the change detection module. 
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3.2.2 Python 

There is a striking trend of the emergence of programming languages with open source code 

like Perl, Python and Ruby in the last decade. For scripting interfaces, Python is the most 

used of them, not only in open source, but also in proprietary software. Thus, for example, 

ERSI uses Python as the scripting language for writing scripts in ArcGIS. The main 

advantage of Python for building the change detection tool is its usage as a scripting 

language for the implementation of the interface in GRASS and Orange.  

The first implementation of Python was started by Guido van Rossum at CWI (National 

Research Institute for Mathematics and Computer Science) in the Netherlands in December 

1989. Python 1.0 was released in January 1994, Python 2.0 in October 2000, Python 3.0 in 

December 2008. On 6 March 2001 the Python Software Foundation (PSF) was founded as a 

non-profit organization devoted to the Python programming language. In 2005, the PSF won 

the prestigious Computerworld Horizon Award for cutting-edge technology.  

Interest in developments in Python is constantly increasing. Based on the measurement by 

the TIOBE index, Python was awarded a TIOBE Programming Language Award twice, for 

the years 2007 and 2010, as a language with the greatest growth in popularity over the 

course of a year. 

Python is distributed under the Python Software Foundation License (PSFL) approved by 

both FSF and OSI. Unlike GPL, the PSFL enables distributing derivative software without 

making their code open source. The source code as well as its binary code compiled for 

different operation systems can be downloaded free of charge from the Internet. Python is 

developed by a worldwide distribution team supported by PSF. Python program can be 

written in object-oriented or functional programming styles. The following key distinguishing 

features are enumerated on the Python official website (www.python.org): 

1. Very clear, readable syntax. 

2. Strong introspection capabilities. 

3. Intuitive object orientation. 

4. Natural expression of procedural code. 

5. Full modularity, supporting hierarchical packages. 

6. Exception-based error handling. 

7. Very high level dynamic data types. 

8. Extensive standard libraries and third-party modules for virtually every task. 

9. Extensions and modules easily written in C, C++ (or Java for Python, or .NET 

languages for IronPython). 

10. Embeddable within applications as a scripting interface. 
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Python programs can be executed on all major operating systems such as Windows, 

Linux/Unix, OS/2, MacOS and Amiga. Thanks to the large user community and numerous 

documentations and tutorials, Python is easy to learn and provides a powerful standard 

library which allows for rapid application development. Moreover, there are many third-party 

libraries developed within distinct open source projects due to the popularity of Python. The 

most popular libraries which are very valuable for analysis of raster and vector information 

are: 

1. Python Imaging Library (PIL). The library allows for opening, manipulating, and 

saving many different image file formats.  

2. SciPy. It is a set of algorithms and mathematical tools for optimization, linear algebra, 

integration, interpolation, Fast Fourier Transformation (FFT), signal and image 

processing, solution of ordinary differential equations (ODE) etc. 

3. NumPy. NumPy enables supporting large, multi-dimensional arrays and matrices 

providing a large number of high-level mathematical functions to operate on them. 

4. OpenCV (Open Source Computer Vision Library). The library focuses on the real-time 

image processing. 

5. matplotlib. A Python 2D plotting library. The library allows for generation of plots, 

histograms, power spectra, bar charts, error charts, scatterplots etc. 

The following compact example consists of only a few lines of Python code which perform 

the algebraic operation on two images: 

 𝐶𝑖𝑗 = (𝐴𝑖𝑗 − 𝐵𝑖𝑗 )/2 + 128 (3.1) 

where 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐶𝑖𝑗 are the pixel values at row 𝑖 and column 𝑗 of images 𝐴, 𝐵, 𝐶. 

 

from PIL import Image 

from PIL import ImageChops 

A = Image.open('A.tif') 

B = Image.open('B.tif') 

C = ImageChops.subtract(A,B,2,128)  

C.save('C.tif') 

 

The input data is read from the A.tif and B.tif files, with the resulting image saved in the C.tif 

file. The image can be treated as an image object (see the example above) or as a two-

dimensional array with elements corresponding to separate pixels. Thus, for example, the 

following script set all pixel values of the image from the A.tif file to value of 255 if the pixel 

value is larger than the threshold value of 200, otherwise to 0. The result of the 

transformation is saved back in the A.tif file. 
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from PIL import Image 

A = Image.open('A.tif') 

A_Array = A.load() 

for i in range(1, A.size[0],1): 

   for j in range(1,A.size[1],1): 

      if A_Array[i,j]>200: 

         A_Array[i,j]=255 

      else:    

         A_Array[i,j]=0 

A.save('A.tif') 

 

Development of Python scripts can be significantly simplified by using an Integrated 

Development Environment (IDE). In Python distribution the IDLE integrated development 

environment is included (Figure3.4). This IDE is coded in Python using the tkinter graphical 

user interface tool. 

 

Figure 3.4: Creating and editing a Python script in an IDLE environment. 

The more powerful IDE is PyDev. It is an open source plugin for the Eclipse multi-language 

software development environment. The PyDev enables editing, debugging, refactoring, 

quick navigation, code analysis, unit test integration etc. Another popular IDE is Spyder 

which is intended for development of scientific software. Spyder is an open-source scientific 

Python development environment providing functions for editing and debugging in the 

MATLAB-style.  

Python properties make this scripting language a flexible and powerful tool for building a data 

interchange between Orange and GRASS. Moreover, it allows for fast implementation of new 
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algorithms for feature generation and image filtering. The created Python code can be easily 

integrated into the change detection workflow. 

3.2.3 Orange Data Mining Software 

The Orange development began in 1997 by Janez Demsar and Blaz Zupan, Orange is a 

general-purpose machine learning and data mining software. Further development was 

continued by members of the Artificial Intelligence Laboratory and then the Laboratory of 

Bioinformatics at the University of Ljubljana (http://ailab.ijs.si/dunja/TuringSLAIS -

2012/), (Demsar & Zupan, 2012). 

 

Figure 3.5: Snapshot of the Orange canvas. 

At the beginning, Orange was a C++ library containing machine learning algorithms and 

related procedures, like preprocessing, sampling and other data manipulation. Mostly, 

Orange was used to assess a classification strategy for different data sets. The users utilized 

different programs developed based on the Orange library. The explicit usage of C++ 

components was seldom. In order to improve the usability of Orange, a Python scripting 

interface was developed. The functionality of the programs was transformed into Python 

objects. Thus, instead of the sequence of program calls, one Python script could be used. 

Since 1999, Orange has mostly been used as a Python module. Exporting a C++ code into 

Python enables the creation of fast and well readable program code, thereby significantly 

improving the usability of Orange and the collaboration within the developer teams. The 

majority of developers began to create new code in Python, avoiding C++ programming. One 

of the most advantageous applications of Python is the simplification of GUI creation. 
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The next significant development step was implementation of a GUI, which enables usage of 

Orange without any programming efforts. Nowadays, Orange is continuously being 

developed with distribution under the GPL license at no cost (http://orange.biolab.si) . 

Orange is a component-based data mining and machine learning system with powerful data 

visualization capabilities. The program supports numerous tools including data processing, 

modeling and evaluation: data sampling, filtering, discretization, classification and regression 

models, calibration of probability predictions of the classification, association rules and 

clustering, methods for assessment and scoring of prediction models etc. (Figure 3.5). 

The graphical user interface (Orange Canvas) provides a flexible creation of own schemes 

for assessment of various machine learning or data mining algorithms on available data sets. 

In Orange, the concept of so-called visual programming is realized, with the visual program 

built of distinct objects-widgets connected by communication channels (Figure 3.6).  

 

The widgets provide some basic functionality, for example, reading and saving data, building 

learners, creating plots, etc. There are over 100 different widgets and their number is 

constantly growing. Each widget has a set of properties which define its functionality. If the 

user changes the configuration of any widgets, the whole generated analysis schema is 

updated automatically. 

The analysis of classification techniques is enhanced by numerous widgets responsible for 

visualization, which enable the creation of scatter plots, bar charts, trees, dendrograms, 

networks, heat maps etc.  

Orange is an Open Source Software with an active user community. The user can study 

existing code and develop own widgets, scripting interface or new add-ons. The software has 

good documentation containing the tutorial, description of all widgets and scripting manual. 

Orange can run on Windows, Mac OS and Linux. 

Using a visual programming approach, the fast testing of ideas and optimization of 

Figure 3.6: Visual program for k-NN classification. 



Open Source Software as Implementation Environment 
 

 

 
44 

 

classification strategies can be performed. The obtained visual program can be transformed 

into a Python script. 

In the example in Figure 3.6, the visual program for the assessment of k-NN classification is 

presented. The “Data” widget reads input data to be classified. The “Training Set” widget 

loads data to be used as a training set for the building of a k-NN classifier with the “kNN” 

widget. The classification is performed by the “Prediction” widget. The “Result” widget is used 

to visualize the classification results (Figure 3.7). The described schema can be also 

implemented in the form of the following Python script. 

 

Figure 3.7: Visualization of classification result by using the "Data Table" widget. The “kNN” 
column contains the numbers of the obtained classes.  

 

import Orange 

data = Orange.data.Table("samples.tab") 

training_set = Orange.data.Table("training_set.tab") 

knn = Orange.classification.knn.kNNLearner(training_set,k=3) 

result = open("result.dat","w") 

for i in range(len(data)): 

   result.write(str(i)+" "+str(knn(data[i]))+"\n") 

result.close() 
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The script reads feature data from the sample.tab file and training set from the 

training_set.tab file. The results of the classification are stored in the result.dat file. The 

presented script can be easily transformed into a function and included in a Python module. 

Further, the obtained function can be called from the Python programs. In this way, the built 

classification scheme can be integrated in the GRASS module, as shown in section 3.2.1. 
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4. Integration of Remote Sensing and GIS for Building Change Detection 

4.1 Basic requirements for the new change detection method 

In section 2.5.2, various methods for change detection were introduced and discussed in 

detail. The effectiveness of the presented methods can be differentiated based upon the 

following criteria (Macleod & Congalton, 1998): 

1. The capability to define the size of the changed area. 

2. The capability to locate the changes. 

3. The capability to identify the nature of the occurred changes. 

4. The accuracy assessment. 

The method developed by this research is supposed to be predominantly used for the 

purposes of emergency management, which advances the additional requirements such as 

robustness, a high degree of automation, the utilization of full available information and the 

efficient representation of results. 

Comprehensive analysis capabilities of GIS, coupled with methods of data mining, 

techniques of spatial association, spatial clustering, spatial relation and distribution, provide a 

powerful intelligence apparatus for detection of changes. The visualisation capacities 

supported by GIS enable an effective representation of damage maps and a combination of 

results with various additional data stored in different thematic layers (road network, water 

resources, geology, relief, etc.). The use of GIS for processing remotely sensed data has 

eventually become an essential approach for change detection analysis.  

The most valuable GIS information with respect to the change detection analysis is the 

detailed geometrical description of objects within the studied area. Unfortunately, the 

geometrical and context information available in GIS is seldom used as a data source for 

explicit comparative analysis with remotely sensed images. Combined analysis of vector and 

raster data supplements the conventional techniques based solely on raster data, enabling a 

concentration of analysis in areas related to the considered objects, the selection of objects 

depending on attributive information, usage of object geometry information, etc. For urban 

areas, the usage of vector information is especially advantageous, given that it allows 

performing change detection analysis individually for each building. 

The development of methods based on the integrated analysis of vector and raster data sets 

is a point of general interest. However, most research addresses the estimation of land-use 

change dynamics (Centeno, 2000; Lo & Shipman, 1990; Li, 2010; Mattikalli, 1995; Weng, 

2002), whereas only a few deal with damage assessment. Some techniques for deriving 

urban changes from remotely sensed data and GIS are presented in section 2.5.3. 
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This thesis presents a development of a new change detection algorithm for the identification 

of destroyed buildings caused by natural or man-made catastrophic events. The innovative 

aspect of this research lies in the employment of a single post-event remotely sensed image 

and pre-event vector data as an initial data set. Thus, rather than commonly used satellite 

images obtained at different points in time, a vector map presenting information concerning 

the original urban layout is involved in the change detection analysis.  

Table 4.1 presents the basic requirements for the change detection algorithm, which this 

work aimed to fulfil. Furthermore, this chapter is concerned with achieving a detailed, 

stepwise description of the proposed method. 

Objective 
Development of change detection algorithm based on the integrated 

analysis of remotely sensed and vector data. 

Source data 

Post-event remotely sensed image with a spatial resolution equal to 

or finer than 1 meter and a vector map containing information 

concerning the pre-event urban layout. 

Result Vector damage map presenting destroyed and intact buildings. 

Implementation 
Open Source Software as implementation environment (GRASS 

GIS, Python, Orange data mining). 

4.2 General concept 

As mentioned in the previous chapters, most of the numerous change detection methods 

have been established based upon the analysis of remotely sensed images acquired at 

different times. These techniques are based on the processing of raster data and they cannot 

be applied to vector data. The raster and vector data models are completely different 

approaches concerning the representation of the real world. The raster data contains 

information about the area occupied by considered objects, whereby the data is stored in an 

array of pixels, each of which represents a small part of the area. The raster data does not 

explicitly contain any information about objects within the considered area. The vector data 

provides information describing the object, such as the accurate spatial location, boundaries, 

neighbourhood and attribute information. Thus, given that raster and vector data supplement 

each other, their combined analysis naturally allows the improvement of change detection 

results. The integrated analysis of these data types requires a new approach taking into 

account the specific structures of both data types. 

 

 Table 4.1: Requirements for a new change detection algorithm developed in this study. 
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Figure 4.1: Combined analysis of vector and raster information by human expert. 

In most cases, a human expert can easily define the state of a building through the combined 

visual interpretation of vector and raster maps. The expert makes a decision based on the 

visible features of destruction and his own experience (see Figure 4.1). In order to use a 

computer for such an analysis, the work of human experts must be modelled by a system of 

artificial intelligence (AI) (see Figure 4.2).  

  

Figure 4.2: Building system of an artificial intelligence on the human expert workflow. 

The object analysis by a human expert can be described by the following steps: 

1. Selection and localization of the object in vector and raster maps. 
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2. Search for typical destruction features such as a lack of object contours, fragments of 

destruction, etc. 

3. Making a decision about the building state based on the performed visual study and 

practical experience. 

4. Building the damage map. 

The AI system must model these steps by following the sequence of operations detailed 

below: 

1. Selection of vector objects and extraction of related raster data. 

2. Extraction of information related to the object state in the form of feature values, 

which can be characterized as quantitative measures of destruction signs. 

3. Classification of building states based on the feature values and a set of examples 

with known building states; the experience acquisition is modelled by a learning 

procedure, with the resulting building of classifier structure allowing for an accurate 

classification of the given examples. 

4. Attachment of the building states as attributive information to the building objects. 

This sequence of operations defines the structure of the methodology developed in this 

study, which includes the pre-processing of remotely sensed data (image filtering), the 

selection of vector objects, generation of a feature set, classification and visualisation of the 

final results. The main steps of the proposed change detection methodology are summarized 

in the scheme provided in Figure 4.3.  

 

Post-event 
remotely sensed 

image

Pre-event GIS 
data

Image filtering Object selection

Feature calculation
(DPC, textural features)

Result visualization

Classification

Figure 4.3: A general scheme of the proposed change detection method. 
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First, the enhancement of remotely sensed images is performed, before the vector object 

and part of the image containing its footprint are selected. Based on the selected vector and 

raster data, the information describing the building state is extracted in the form of features. 

The feature values are calculated by analysing the contour integrity and the raster image 

within the building footprint. For the description of the contour integrity, a new feature, the 

‘Detected Part of Contour’ (DPC) is developed, which describes the integrity of the building 

contours. For the area within the contour, textural characteristics of the remotely sensed 

image are calculated by means of the well-known grey-level co-occurrence matrix (Haralick 

et al. 1973). Eventually, the classification of the building conditions is performed and the 

results are imported in GIS. 

4.3 Pre-processing of raster data (image filtering) 

The objective of the image filtering is to transform the raster data into a state that is more 

suitable for further processing. In most cases, filtering is used to remove unwanted 

information, i.e. noise, from the original image. Noise can occur during image capture 

(acquisition process, acquisition conditions such as illumination levels, calibration, 

positioning, etc.), transmission in a noisy channel or preprocessing. There are three main 

types of noise (Beaurepaire et al., 1997): 

1. Additive noise, whereby the noise signal is added to the relevant signal during 

acquisition, transmission or processing. 

2. Multiplicative noise, within which the noise signal is multiplied to the relevant signal 

during acquisition, transmission or processing. 

3. Impulse noise, also called ‘salt and pepper’ noise, referring to single pixel noise, 

usually represented by randomly occurring white and black pixels. 

Among the numerous approaches of image enhancement, two groups of the most commonly 

used algorithms of data filtering can be identified: 

1. Filtering in the spatial domain with direct manipulation of image pixels. 

2. Filtering in the frequency domain with manipulation of the frequency representation of 

the image. 

Filtering in spatial domain is mainly performed to eliminate an additive noise, whereas 

filtering in frequency domain is a more universal approach. It is widely used to reduce 

different types of noise, as well as for other purposes of image processing. Moreover, filtering 

in frequency domain often serves as a basis for more complex algorithms. 

It is evident that not all existing algorithms of image filtering can be covered in detail in the 

one chapter. This chapter is concerned with the basics of the spatial filtering and the 
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methods of the frequency domain filtering employed within this research. Accordingly, the 

interested reader is referred to (Gonzalez & Woods, 2002) for more information. 

4.3.1 Filtering in spatial domain 

The basic idea to modify the pixel value based on pixel values from its neighbourhood. 

Around the considered pixel, the neighbourhood area is defined by applying a filter mask of 

the size 𝑛 ×𝑚. A certain weight is prescribed to each of the selected pixels from the area. 

The filtered pixel value is found as the sum of pixels values multiplied with their weights. An 

example of the smooth filtering with neighbourhood area 3x3 is shown in Figure 4.4. 

 

The pixel values 𝑥𝑖,𝑗 of filtered image can be calculated by: 

Figure 4.4: The procedure of spatial filtering. The picture (left) is affected by an additive 
noise. 
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𝑥𝑖,𝑗 =
1

16
𝑥𝑖−1,𝑗−1 +

2

16
𝑥𝑖,𝑗−1 +

1

16
𝑥𝑖+1,𝑗−1 +

2

16
𝑥𝑖−1,𝑗 +

4

16
𝑥𝑖,𝑗 +

2

16
𝑥𝑖+1,𝑗

+
1

16
𝑥𝑖−1,𝑗+1  +

2

16
𝑥𝑖,𝑗+1 +

1

16
𝑥𝑖+1,𝑗+1 

(4.1) 

The matrix of weights is called the convolution matrix or convolution kernel. From the above 

example, it is equal to: 

 𝑤 =

[
 
 
 
 
 
1

16

2

16

1

16
2

16

4

16

2

16
1

16

2

16

1

16]
 
 
 
 
 

 (4.2) 

The above convolution matrix is normalized through dividing by the sum of all elements of 

the kernel. The normalization is used to obtain the resulting pixel values in the magnitude 

range of the input image. Within existing literature, the convolution matrixes are often 

presented in the unnormalized form; for example, the above matrix is often expressed as: 

 𝑤 = [
1 2 1
2 4 2
1 2 1

] (4.3) 

 

In general form, the spatial filtering for the filter mask 𝑛 ×𝑚 can be expressed as: 

 𝑥𝑖,𝑗 = ∑ ∑ 𝑤𝑠,𝑡𝑥𝑖+𝑠,𝑗+𝑡

𝑏

𝑡=−𝑏

𝑎

𝑠=−𝑎

 , (4.4) 

Here, 𝑎 =
𝑛−1

2
 and 𝑏 =

𝑚−1

2
. 

Evidently, special treatment is required for the pixels close to the image boundary, given that 

the filter mask for these pixels is not fully contained in the image. The easiest remedy is to 

perform filtering with the filter part included in the image area. Other approaches to the 

solution of this problem can be found in (Gonzalez & Woods, 2002).  
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Unnormalized convolution kernel Description 

[
0 0 0
0 1 0
0 0 0

] Image remains unchanged 

[
0 −1 0
−1 5 −1
0 −1 0

] Sharpening filter 

[
1 1 1
1 1 1
1 1 1

] Smoothing filter 

[
0 1 0
1 −4 1
0 1 0

] Edge detection filter 

The properties of a spatial filter depend on the convolution kernel. Table 4.2 shows several 

spatial filter examples with a windows size of 3×3. 

In this research, the spatial filtering is employed within the Canny edge detection technique 

described in section 4.5.1.1. 

4.3.2 Filtering in frequency domain 

A panchromatic image can be considered as a 2D discrete function of the image 

brightness  𝑓(𝑥, 𝑦). Representation of the image as function 𝑓(𝑥, 𝑦) is used here for the sake 

of convenience. It is related to the matrix notation used in the previous sections as 𝑥𝑖,𝑗 =

𝑓(𝑥 = 𝑖, 𝑦 = 𝑗) = 𝑓(𝑖, 𝑗).The function 𝑓(𝑥, 𝑦) can be decomposed into a sum based upon 2D 

discrete functions 𝑏𝑚(𝑥, 𝑦) (Jayraman et al., 2011): 

 𝑓(𝑥, 𝑦) = ∑ 𝐴(𝑚)𝑏𝑚(𝑥, 𝑦)

𝑁

𝑚=1

 (4.5) 

Here, 𝐴(𝑚) are decomposition coefficients. 

The appropriate choice of basic functions allows extracting the items containing the 

information about the image distortion from the whole sum of components: 

 𝑓(𝑥, 𝑦)  = ∑𝐴(𝑚)𝑏𝑚(𝑥, 𝑦)

𝑚∈𝐼

+ ∑ 𝐴(𝑚)𝑏𝑚(𝑥, 𝑦) 

𝑚∈𝐷

 (4.6) 

Here, 𝐼 is a set of numbers of items containing a valuable information, 𝐷 is a set of numbers 

of items responsible for distortions. Composing the image only from items defined by the set 

𝐼, the image can be cleaned from undesired effects such as noise or brightness variation. 

Table 4.2: Examples of convolution kernels. 
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 𝑓(𝑥, 𝑦) = ∑ 𝐴(𝑚)𝑏𝑚(𝑥, 𝑦)

𝑚∈𝐼

 (4.7) 

In general cases, it is mostly impossible to select items that are solely responsible for 

distortion effects. Thus, as a rule, removing a part of decomposition necessarily leads to a 

loss of the valuable information. A quality of the image enhancement strongly depends on the 

choice of the basic functions. In the image processing practice, the application of Fourier 

decomposition is one of the most popular approaches. 

Using the Fourier approach, the decomposition can be expressed as: 

 𝑓(𝑥, 𝑦) = ∑ ∑𝐹(𝑢, 𝑣)𝑒
𝑖2𝜋(

𝑢𝑥
𝑁
+
𝑣𝑦
𝑀
)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 (4.8) 

The 𝐹(𝑢, 𝑣) is defined by the following expression: 

  𝐹(𝑢, 𝑣) =
1

𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦) 𝑒

−𝑖2𝜋(
𝑢𝑥
𝑁
+
𝑣𝑦
𝑀
)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 (4.9) 

Expression 4.9 defines the Fourier transform of the function 𝑓(𝑥, 𝑦) and Expression 4.8 - the 

inverse Fourier transform. 

Based on Euler’s formula, the function 𝑒
𝑖2𝜋(

𝑢𝑥

𝑁
+
𝑣𝑦

𝑀
)
 can be written as: 

 

𝑒
𝑖2𝜋(

𝑢𝑥
𝑁
+
𝑣𝑦
𝑀
)
= 𝑐𝑜𝑠 (2𝜋 (

𝑢𝑥

𝑁
+
𝑣𝑦

𝑀
))

+ 𝑖 𝑠𝑖𝑛 (2𝜋 (
𝑢𝑥

𝑁
+
𝑣𝑦

𝑀
)) 

(4.10) 

From (4.10), it follows that the 2D discrete brightness function is decomposed into a sum of 

the sine and cosine functions of various frequencies defined by values (𝑢, 𝑣). The domain 

(𝑢, 𝑣) is called the frequency domain. Each of the 𝑀 ×𝑁 terms of 𝐹(𝑢, 𝑣) is called a 

frequency component of transform.  

The 𝐹(𝑢, 𝑣) is a complex function, i.e. 𝐹(𝑢, 𝑣) = 𝐹𝑅𝑒(𝑢, 𝑣) + 𝑖𝐹𝐼𝑚(𝑢, 𝑣). The function 𝐹(𝑢, 𝑣) is 

often plotted as a 2D 𝑀 ×𝑁 image. For visualization of frequency components, the 

magnitude or spectrum of a Fourier transform is used, defined 

as  √(𝐹𝑅𝑒(𝑢, 𝑣))
2
+ (𝐹𝐼𝑚(𝑢, 𝑣))

2
. The value 𝐹(0,0) corresponds to the mean value of image 

brightness and is usually much higher than other frequency components. In order to reduce 
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the influence of the difference in the values concerning the visualization quality, a logarithm 

of the spectrum value is usually used for plotting the image spectrum.  

For the sake of convenience in practice, the centered Fourier spectrum is used for 

processing in the frequency domain. In this representation, the low frequency components 

are located in the center of the spectrum image, with the high frequency components 

arranged on the edges (Figure 4.5). In order to obtain the centered Fourier spectrum, the 

function 𝑓(𝑥, 𝑦) is multiplied by (−1)𝑥+𝑦. Thus, the centered Fourier transformation can be 

expressed by: 

 𝐹(𝑢, 𝑣) =
1

𝑀𝑁
∑ ∑(−1)𝑥+𝑦𝑓(𝑥, 𝑦)𝑒

−𝑖2𝜋(
𝑢𝑖
𝑁
+
𝑣𝑗
𝑀
)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 (4.11) 

 

Figure 4.5: Centred Fourier spectrum. 

When the centered Fourier spectrum is used, the function resulting from the inverse Fourier 

transform must be multiplied by (−1)𝑥+𝑦: 

 𝑓(𝑥, 𝑦) = (−1)𝑥+𝑦 ∑ ∑ 𝐹(𝑢, 𝑣)
𝑒
𝑖2𝜋(

𝑢𝑖
𝑁
+
𝑣𝑗
𝑀
)

𝑁𝑀

𝑀−1

𝑣=0

𝑁−1

𝑢=0

 (4.12) 

The filtering is performed by the elimination or reduction of frequency components of Fourier 

decomposition through a multiplication of 𝐹(𝑢, 𝑣) on the filter function 𝐻(𝑢, 𝑣). The filter 

function 𝐻(𝑢, 𝑣) is the real 2D discrete function, which takes values from 0 to 1. The value of 

1 corresponds to intact components, while the value of 0 relates to the eliminated 

components, and values in-between correspond to the reduced components. 

Thus, the filtered Fourier transform is calculated as: 

 𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣) (4.13) 
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The resulting brightness function can be obtained by using the inverse Fourier 

transformation; however, due to the application of the filter function, the obtained brightness 

function can be complex. The filtered image is obtained by extracting the real part of the 

resulted brightness function. From (4.12), it follows: 

 𝑓(𝑥, 𝑦) = (−1)𝑥+𝑦𝑅𝑒(∑ ∑ 𝐺(𝑢, 𝑣)
𝑒
𝑖2𝜋(

𝑢𝑖
𝑁
+
𝑣𝑗
𝑀
)

𝑁𝑀

𝑀−1

𝑣=0

𝑁−1

𝑢=0

) (4.14) 

Summarizing the above discussion, the Fourier filtering can be described by the following 

steps: 

1. Multiplication of the input image by (−1)𝑥+𝑦. 

2. Calculation of the Fourier transform 𝐹(𝑢, 𝑣). 

3. Calculation of the filtered Fourier transform 𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣). 

4. Calculation of the brightness function corresponding to 𝐺(𝑢, 𝑣) using the inverse 

Fourier transformation. 

5. Extraction of the real part of the brightness function. 

6. Multiplication of the obtained brightness function by (−1)𝑥+𝑦. 

As can be seen, the Fourier filter is defined by choice of the filter function 𝐻(𝑢, 𝑣). The 

simplest way to define 𝐻(𝑢, 𝑣) is to set a zero values for the Fourier decomposition 

components that must be removed and the value of 1 for other components. The filter 

eliminating the high frequency components can be expressed as: 

 𝐻(𝑢, 𝑣) = {
0 𝑖𝑓 𝐷(𝑢, 𝑣) ≥ 𝐷0
1 𝑖𝑓 𝐷(𝑢, 𝑣) < 𝐷0

 (4.15) 

Here, 𝐷(𝑢, 𝑣) is the distance from point  (𝑢, 𝑣) to the center of the frequency rectangle. For 

the spectrum image of size 𝑀 ×𝑁, the distance is defined as: 

 𝐷(𝑢, 𝑣) = [(𝑢 −
𝑀

2
)
2

+ (𝑣 −
𝑁

2
)
2

]

1
2

 (4.16) 

The filter function defined by Equation 4.11 passes the low frequency components and is 

called the ideal lowpass filer. The lowpass filter is often applied to remove noise from images. 

However, the application of the ideal lowpass filter leads to the appearance of artifacts on the 

filtered image. A better quality of enhancement can be achieved by using smooth filter 

functions such as the Butterworth and Gaussian lowpass filter functions. The Butterworth 

lowpass function is defined as: 
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𝐻(𝑢, 𝑣) =

1

1 + [
𝐷(𝑢, 𝑣)
𝐷0

]
2𝑛 

(4.17) 

Here, 𝑛 is the order of the Butterworth filter function. 

The Gaussian lowpass filter function is as follows: 

 
𝐻(𝑢, 𝑣) = 𝑒

−
𝐷2(𝑢,𝑣)

2𝐷0
2

 
(4.18) 

For the elimination of low frequency components, the highpass filters are used. The highpass 

filter function can be obtained from the lowpass filter function as: 

 𝐻ℎ𝑝(𝑢, 𝑣) = 1 − 𝐻𝑙𝑝(𝑢, 𝑣) (4.19) 

Thus, based on the lowpass filters discussed above, the following highpass filter functions 

can be obtained:  

 

The ideal highpass filter: 

 𝐻(𝑢, 𝑣) = {
1 𝑖𝑓 𝐷(𝑢, 𝑣) ≥ 𝐷0
0 𝑖𝑓 𝐷(𝑢, 𝑣) < 𝐷0

 (4.20) 

The Butterworth highpass filter: 

 
𝐻(𝑢, 𝑣) = 1 −

1

1 + [
𝐷(𝑢, 𝑣)
𝐷0

]
2𝑛 

(4.21) 

The Gaussian highpass filter: 

 
𝐻(𝑢, 𝑣) = 1 − 𝑒

−
𝐷2(𝑢,𝑣)

2𝐷0
2

 
(4.22) 

In practice, a combination of low and high filters is frequently used in the form of band filters 

that reduce the low and high frequency components, thereby passing the middle frequency 

components. A more detail comparative description of different filter function can be found in 

(Gonzales & Woods, 2002). 

For the assessment of the building state, information about building edges and fragments of 

destruction is very important. This information is represented by the high frequency 

components and should be retained. Consequently, for the pre-processing of raster data, 

only filtering procedures based on high pass filtering were used in this study. Figure 4.6 

illustrates examples of the image filtering with different highpass filters: the ideal filter, 

Butterworth filter and Gaussian filter. As can be observed, the ideal filter typically produces 
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the ringing artifacts in the filtered image. Visually, the artifacts are presented as a series of 

faint bands located parallel to the edges, which negatively affects the quality of the 

subsequent edge detection analysis. Therefore, the ideal filter is often inappropriate for real 

applications in the image processing. Filters with Gaussian and Butterworth profiles do not 

produce ringing artifacts and they are frequently chosen for image enhancement. The result 

of filtering strongly depends on the parameters used; thus, the value of the order 𝑛 defines 

the appearance of ringing in the case of the Butterworth filter. The higher the 𝑛 value, the 

sharper the filter function becomes, creating stronger ringing in the filtered image. In practice, 

the Butterworth function with 𝑛 values of 1 or 2 is usually used. 
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Frequency spectrumOriginal image

(@Digital Globe 2011)

Ideal highpass

filter function

(a)

Butterworth highpass

filter function (order 2)

(b)

Gaussian highpass

filter function

(c)

Figure 4.6: Examples of image filtering by means of different highpass filters: (a) ideal filter; 
(b) Butterworth filter; and (c) Gaussian filter. 
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4.3.3 Homomorphic filtering 

Remotely sensed images can have areas with non-uniform illumination, low contrast and 

diminished colour, caused by lighting variations and complex environmental settings, which 

can negatively influence the result of the further image processing, including edge detection 

and texture analysis. For example, the selection of a threshold value for the edge detection 

process is chosen depending on a number of factors related to the mean values of the entire 

image, such as brightness, contrast and the level of noise. Consequently, illumination 

variation can lead to poor results for edge detection in image areas that are either too dark or 

too bright. 

The most commonly used technique of reduction of non-uniform illumination is homomorphic 

filtering. This method is often preferred to other algorithms due to its ability to correct the 

image brightness and contrast by sharpening the image features at the same time (Gonzalez 

& Woods, 2002; Delac et al., 2006). 

In general, an image 𝑓(𝑥, 𝑦) is formed as a product of two components: illumination 𝑖(𝑥, 𝑦) 

and reflectance 𝑟(𝑥, 𝑦): 

 𝑓(𝑥, 𝑦) = 𝑖(𝑥, 𝑦)𝑟(𝑥, 𝑦) (4.23) 

The illumination describes the amount of source incident on the scene being viewed, usually 

with slow-moving variation across the image. Thus, in the frequency domain, the illumination 

function is represented by low frequency components. The reflectance is the amount of 

illumination reflected by the objects in the scene representing their details and edges, with 

the frequency components concentrated in the high frequency segment. 

If the image is literally a sum of the illumination and reflectance, it can be decomposed by 

means of the Fourier transform. Bearing in mind that the image is a multiplicative function, 

the separation of illumination and reflectance is not possible in the frequency domain, given 

that the frequency transform of the product of two components is not separable. One way of 

overcoming this problem is to take a natural logarithm of both sides, thereby converting the 

multiplication into a sum: 

 𝑙𝑛(𝑓(𝑥, 𝑦)) = 𝑙𝑛(𝑖(𝑥, 𝑦)) + 𝑙𝑛 (𝑟(𝑥, 𝑦)) (4.24) 

Applying Fourier transform to the above expression the following form can be obtained: 

 𝐹(𝑙𝑛(𝑓(𝑥, 𝑦))) = 𝐹(𝑙𝑛(𝑖(𝑥, 𝑦))) + 𝐹(𝑙𝑛(𝑟(𝑥, 𝑦))) (4.25) 

Denoting the Fourier transforms of 𝑙𝑛(𝑓(𝑥, 𝑦)), 𝑙𝑛(𝑖(𝑥, 𝑦)) and 𝑙𝑛(𝑟(𝑥, 𝑦)) as 𝑍(𝑢, 𝑣), 𝐹𝐼(𝑢, 𝑣) 

and 𝐹𝑅(𝑢, 𝑣), respectively, Equation 4.25 can be written as: 
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 𝑍(𝑢, 𝑣) = 𝐹𝐼(𝑢, 𝑣) + 𝐹𝑅(𝑢, 𝑣) (4.26) 

As mentioned above, the illumination is represented by low frequency components and the 

reflectance by high frequency components. After applying a high pass filtering to the 𝑍(𝑢, 𝑣) 

by means of a filter function 𝐻(𝑢, 𝑣) in the frequency domain, a filtered Fourier transformation 

is obtained as: 

 𝑆(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝑍(𝑢, 𝑣) (4.27) 

The subsequent inverse Fourier transformation converts the modified signal back into the 

spatial domain: 

 𝑠(𝑥, 𝑦) = 𝐹−1(𝑆(𝑢, 𝑣)) (4.28) 

Finally, the resulting enhanced image 𝑓(𝑥, 𝑦) is provided by the exponential operation: 

 𝑓(𝑥, 𝑦) = 𝑒𝑠(𝑥,𝑦) (4.29) 

The homomorphic filtering yields both the normalization of the image brightness and the 

amplification of high-frequency components, such as building edges or fragments of 

destruction. Extending the algorithm of Fourier filtering from section 4.3.1, the entire process 

can be summarized in the following steps: 

1. Taking the natural logarithm of 𝑓(𝑥, 𝑦). 

2. Multiplication of the input image by (−1)𝑥+𝑦. 

3. Calculation of the Fourier transform 𝐹(𝑢, 𝑣). 

4. Calculation of the filtered Fourier transform 𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣). 

5. Calculation of the brightness function corresponding to 𝐺(𝑢, 𝑣) using the inverse 

Fourier transformation. 

6. Extraction of the real part of the brightness function. 

7. Multiplication of the brightness function by (−1)𝑥+𝑦. 

8. Taking the exponential operation of the brightness function. 

Homomorphic filtering is used for image enhancement in this research. The algorithm 

described above was implemented in Python, which enables its easy integration in the 

change detection workflow. Figure 4.7 illustrates experimental results of homomorphic 

filtering compared to pure Fourier filtering. The tests were performed by means of the ideal, 

Butterworth and Gaussian filter functions. The enhanced images were used for the 

subsequent edge detection using the Canny method (see section 4.5.1.1). The performed 

experiments demonstrate a poor result of the edge detection when directly applied to the 

original image. The difficulties of edge detection arise in the dark areas of the image. 
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Figure 4.7: (1) Image filtering by means of Fourier transformation with different highpass 
filters and resultant edge detection with the Canny operator. 

Fourier filtering above does not drastically improve the situation, given that numerous details 

are still missing (Figure 4.7 (1)). Homomorphic filtering yields the best results, with the 

detected contours evenly distributed across the resulting image (Figure 4.7 (2)). 

 

Original image with

an irregular brightness

Canny edge detection 

applied to the original image

(1) Image Fourier filtering

Image filtered using ideal 

highpass filter function

(a)

Image filtered using Butterworth 

highpass filter function

(b)

Image filtered using Gaussian 

highpass filter function

(c)

Edge detection with the Canny operator
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4.4 Selection of vector data 

 Destruction of urban areas can be caused by different catastrophic events, including natural 

or human-induced activities. Earthquakes are the most dramatic example of such events; 

they are characterized by the large loss of human lives, difficulties in eliminating the 

consequences of the disaster and large financial losses.  

A crucial element of the rescue measures intended for the relief phase is an effective system 

of emergency management. During the first days after the event, numerous problems must 

be rapidly solved, with administration of medical aid, coordination of rescue activities, 

evacuation of injured persons, providing accommodation for the survivors, etc. Emergency 

management requires knowledge about the state of objects such as road networks, 

electricity network, bridges, buildings related to detrimental production, hospitals, police 

departments, fire stations, schools, nurseries, apartment houses, etc. Naturally, these 

building types have different significance for emergency management, which must be taken 

into account in succession and the detail of object investigations. For example, a complete 

destruction of storage facilities can be left without attention, but even a suspicion about a 

(2) Image homomorphic filtering

Image filtered using ideal 

highpass filter function

(a)

Image filtered Butterworth 

highpass filter function

(b)

Image filtered Gaussian 

highpass filter function

(c)

Edge detection with Canny operator

Figure 4.7: (2) Homomorpfic filtering with different highpass filters. 
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minor destruction of hazardous substance storage must be checked on the site. Depending 

on the object, the results of an AI system can be accepted only with a sufficient reliability of 

its classification, otherwise the analysis must be repeated by a human expert. Not only does 

the type of building play an important role, but also which, where, when and under which 

circumstances the catastrophe happens. The priority of objects can be defined depending on 

the following criteria: 

1. Potential influence on the environment. 

2. Transport connections. 

3. Extension of affected area. 

4. Number of potentially injured persons. 

5. Relation to the relief activity. 

6. Areas with enhanced risk of destruction e.g. due to geological features. 

7. Objects with enhanced risk of destruction e.g. due to some design features. 

8. Living condition of survivors. 

9. Time of day. 

10. Time of year, etc. 

The vector maps included in a GIS can provide comprehensive information concerning the 

affected area (geology, relief, water resources, etc.) and the objects (construction, age, 

location, etc.). Moreover, a GIS includes numerous tools for processing vector data and 

modelling processes that influence the rescue measures. The rational choice of vector 

objects involved in the subsequent analysis enables a significant improvement of the 

efficiency of emergency management, and thus GIS proves a very flexible tool set for various 

selection strategies. 

4.5 Feature extraction 

Independent of the classification approach, the results of the final classification strongly 

depend on the features used to depict the information about objects. The features are the 

quantitative measures of image/vector object properties. Ideally, they should refer to the 

differing information, identifying the most effective characteristics that are specific for all 

objects belonging to the same class (e.g. class of intact objects or destroyed objects).  

A human expert can infer the state of a building based on the visual analysis of texture and 

contours in the roof image. Moreover, these indicators of building state can also be used in 

an AI system. The objective of the feature extraction in this study is to depict information 

about the integrity of building contour and roof image texture. In the further development of 

the proposed technique, the feature set can be extended to the other indicators used by 

human experts. 
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4.5.1 Detected Part of Contour 

In most cases, visual interpretation of the remotely sensed images enables identification of 

building state based on the integrity of its contour. An intact building usually has markedly 

visible boundaries. In the case of damage or destruction, the contour of the building can be 

partially corrupted (or displaced) or completely lacking. Thus, a possibility to recognize the 

building’s contour in the image is one of the most representative indicators of its state. In 

order to extract this information from the available data and transform it into a form of a 

certain numerical characteristic, a new feature, entitled ‘Detected Part of Contour’ (DPC), has 

been developed (Sofina et al., 2011). This feature reaches a maximum value of 100% if the 

contour of the investigated building can be entirely identified. The calculation of DPC can be 

described briefly as follows. An edge detection algorithm is applied to the filtered remotely 

sensed image to extract building edges. The developed algorithm yields a raster map with 

pixel values corresponding to the direction of the detected edges. The pixels that do not 

belong to any edge have a ‘no data’ value. On the vector map, test points are selected along 

the respective contours. A search area is defined on the raster map around these points, 

where pixels with appropriate contour directions are counted. The DPC value is calculated as 

the ratio of the number of detected pixels and the number of pixels expected for the intact 

building. A general scheme for calculation of DPC is presented in Figure 4.8. Each step of 

the calculation method is discussed in detail in the following sections. 

 

Figure 4.8: Main steps involved into the DPC calculation. 

4.5.1.1 Edge detection 

The edges on the pictures are represented as drastic changes in the brightness 

perpendicular to the edge line. Taking derivative (e.g. by means of Roberts, Prewitt or Sobel 
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operators) of the brightness function, the edges can be detected as peaks in derivative 

magnitude. The derivative is a vector pointing to the direction of greatest rate of brightness 

change, i.e. perpendicular to the contour line. Thus, the direction of derivative can be used 

for the definition of contour direction. For further simplification of the peak search, the second 

derivative can be used, whose magnitude takes a zero-value at the middle of the peaks. 

Most edge detection methods can be grouped into two categories: detecting the local 

maxima or minima of the first derivative (e.g. Roberts, Prewitt or Sobel operator); and 

detecting the zero-crossing of the second derivative, with the most popular methods 

including the Laplacian operator and Gaussian smoothing (Gonzalez & Woods, 2002).  

In this study, the Canny edge detector (Canny, 1986) is employed. It is a widely used 

algorithm developed to suit the following requirements: 

1. The detection of all and only real edges; 

2. Minimal difference in the localization of detected and real edges; and 

3. One real edge should not be detected as more than one edge.  

The algorithm results in one pixel wide edge lines as an output, providing the perfect basis 

for a follow-up comparative analysis. The Canny method can be described by the following 

steps: 

1. Noise reduction by filtering with Gaussian filter: the kernel of Gaussian filter with 

standard deviation value of 1.4 is expressed as: 

B =
1

159

[
 
 
 
 
2   4    5   4 2
4   9 12   9 4
5 12 15 12 5
4   9 12   9 4
2   4   5   4 2 ]

 
 
 
 

 

2. Derivative of the brightness function: the derivative can be found by a convolution 

operation with a Sobel kernel for horizontal (Gx) and vertical (Gy) components of 

derivative. The corresponding Sobel kernels are expressed as: 

KGx = [
−1 0 1
−2 0 2
−1 0 1

],       KGy = [
1 2 1
0 0 0
−1 −2 −1

] 

The magnitude of the derivative can be obtained as: 

 G = √Gx
2 + Gy

2 (4.30) 

The direction of the derivative is found as: 
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 θ =  tan−1 (
Gy

Gx
) (4.31) 

Given that the edge is perpendicular to the direction of the derivative, the edge 

orientation can be found as: 

 α =  tan−1 (
Gy

Gx
) +  90 (4.32) 

3. Non-maximum suppression: it is the edge thinning procedure. At each pixel, the 

magnitude of the derivative is compared with the values at the neighbor pixels along 

the direction of the derivative. If the comparison shows that the value of the 

magnitude is not greater than those of chosen neighbors, it is set to zero. As a result, 

lines of one-pixel width mark the top of the magnitude peaks are obtained.  

4. Double thresholding: using two threshold values, the found contour pixels are split 

into three groups: non-contour pixels, weak contour pixels and strong contour pixels.  

5. Edge tracking: the strong contour pixels are interpreted as certain edge pixels and 

included in the final edge image. The weak contour pixels are only included if they are 

directly connected with the strong pixels or through the sequence of other weak 

pixels. 

The obtained angle values of α (see Equation 4.32) are within the range of [0, 180°], which is 

classified into four intervals (see Figure 4.9). 

 

Figure 4.9: Four intervals of edge directions. The colors are used to present the orientation 
intervals on the edge image. 

The Canny algorithm yields an image where pixels are marked as either an edge pixel or a 

non-edge pixel, while the pixels have values corresponding to the contour orientation 

interval. The edge image is shown in Figure 4.10, with all contours pixels colored according 

to their orientation intervals. 
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Figure 4.10: Result of the edge detection. 

4.5.1.2 Detection of matched parts of contours 

The vector map illustrating the original urban state presents the buildings as polygons, 

whereby each side of the building is split into small segments to search for contours on the 

raster map created by the edge detection. At the center of each segment, a control point and 

an angle to the horizontal axis (the contour direction) are defined: 𝛼 ∈ [0°, 180°].  Schematic 

representation of the proposed methodology is shown in Figure 4.11. 

 

The control point is used as a center of the search area (see section 4.4.1.3) in the raster 

map, where the contour part is supposed to be detected. The search area in the form of a 

P × P pixel square (see Figure 4.12) is used, where the raster contour is supposed to cross 

the center of the search window. If this does not occur, a correction of the window position is 

performed. Based on the window size and contour declination angle, the contour length 

Original image Edge detection

c

v

α
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Figure 4.11: Splitting a building contour. 
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inside the window can be calculated. Assuming that declination angle takes values in the 

range of [−90°, 90°], the following expression for contour length can be derived: 

Where 𝑙𝑃 is the contour length inside the search area; P is the size of the search area in 

pixels; R is the image resolution (pixel size); and β is the angle of the contour to the vertical 

axis with βϵ[−90°, 90°] (naturally, β = α − 90).  

 

The above-expression can be written in a more compact form as follows: 

 𝑙𝑃 =
𝑃𝑅

𝑚𝑎𝑥(𝑠𝑖𝑛|𝛽|, 𝑐𝑜𝑠 𝛽)
 (4.34) 

Where 𝑙𝑃 is the contour length inside the search area; P is the size of the search area in 

pixels; R is the image resolution; and β is the angle between the contour and the vertical axis 

(obviously, β =  α − 90). 

Using the 𝑙𝑃 value, the number of segments per building side is defined by: 

 𝑁 = 𝑖𝑛𝑡 (
𝐿

𝑙𝑃
) = 𝑖𝑛𝑡 (

𝑚𝑎𝑥(𝑠𝑖𝑛|𝛽|,  𝑐𝑜𝑠 𝛽)𝐿

𝑃𝑅
) (4.35) 

given that

 𝑙𝑃 =

{
 

 
𝑃𝑅

cos𝛽
 𝑖𝑓 |𝛽| ≤ 45 

𝑃𝑅

𝑠𝑖𝑛 |𝛽|
 𝑖𝑓 |𝛽| > 45

 (4.33) 

Figure 4.12: Part of the contour studied in the search window. 
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Here, 𝑖𝑛𝑡(𝑥) refers the floor of 𝑥, i.e. the largest integer less than or equal to 𝑥; and L is the 

side of the building contour (distance between two vertexes). 

Consequently, the length of a segment is expressed as: 

 
𝑙𝑠 = 

𝐿

𝑁
= 

𝐿

𝑖𝑛𝑡 (
𝑚𝑎𝑥(𝑠𝑖𝑛|𝛽|,  𝑐𝑜𝑠 𝛽)𝐿

𝑃𝑅
)
 

(4.36) 

It is evident that 𝑙𝑠 ≥ 𝑙𝑃, and thus a small part of the polygon is dropped from the search 

procedure. This reflects that the arbitrary contour side cannot be covered without gaps with 

non-overlapping search windows of fixed size. If the side length is smaller than the 𝑙𝑃 value 

calculated, the number of segments along the side is equal to zero (N=0) i.e. the side is not 

taken into account for the calculation of DPC. Figure 4.13 shows search areas along the 

building contour. 

 

4.5.1.3 Size of search window 

As indicated in the previous section, a search area, also called a search window, with a 𝑃 × 𝑃 

pixel size defines an area in the edge image, in which pixels belonging to the analyzed 

building contour are searched. The center of the search window is located at the position of 

the related vector control point obtained by splitting the vector contour (Figure 4.14). 

The size of the search window is an important parameter that defines the number of control 

points and affects the accuracy of the DPC calculation. The spatial size of the search window 

can be expressed as: 

 𝑊 = 𝑃𝑅 (4.37) 

where 𝑃 is the size of the search widow in pixels and 𝑅 is the resolution of the raster image. 

Figure 4.13: Placement of the search areas over the raster contour. 
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Figure 4.14: Placement of control points and search window over a raster contour. 

The following criteria must be taken into account when choosing the window size: 

1. Distance between neighboring buildings: the window must be small enough to avoid 

counting the pixels of neighboring buildings. 

2. Accuracy of georeferencing of building contours: the window must be large enough to 

catch the pixels of contour, even if the position of vector and raster contours differ. 

3. Image resolution. 

 
Figure 4.15: Effectiveness of DPC calculation depending on the size of the search area 𝑃. 
Objects with black contours (i.e. 768, 769, 770) are destroyed. Test image is overlaid with the 
vector map. Satellite image courtesy of Digital Globe (©Digital Globe 2010). 

According to the experiments performed on the DPC calculation with different windows (3x3, 

5x5, 7x7, 9x9 and 11x11 pixels), the optimal results are provided with window sizes of five 
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and seven pixels (Figure 4.15). The search window with the size of 3x3 pixels is too small, 

given that it only provides sufficient results if the center of the window is directly located on 

the investigated raster contour. If the center of the window lies outside the contour, a 3x3 

window is incapable of covering it, thus leading to a DPC underestimation. 

As expected, window sizes of 9x9 and more pixels yield a DPC overestimation, eventually 

reaching the maximum value of 100%. This is because they cover numerous pixels 

belonging to the nearby contours, thus providing unreliable results and eliminating the 

differences between intact and destroyed buildings. Therefore, window sizes of 5x5 and 7x7 

pixels were selected as the most suitable for further calculation. 

4.5.1.4 Correction of search window position 

On a remotely sensed image, the detected contour of a building often does not pass through 

the center of a search area, which can lead to a loss of the contour pixels. To remedy this 

situation, the position of the windows is corrected when the number of found pixels is less 

than P. First, the center of mass for the found pixels of the building contour is calculated as 

follows: 

 𝑋 = 
∑𝑥𝑖
𝑁

         𝑌 =  
∑𝑦𝑖
𝑁

 (4.38) 

where N – number of detected contour pixels; and x, y their coordinates, respectively. 

The center of the search area is moved to the position of a pixel that is the nearest to the 

center of mass and has the suitable direction. Thus, this ensures that the detected edge of 

the contour passes through the center of search area (see Figure 4.16). 

 

Original position

Corrected position

Figure 4.16: Correction of the search window position. 
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4.5.1.5 Calculation of DPC 

The part of the contour is assumed to be intact if the providing search area contains at least 

𝑃 pixels of the contour (see Figure 4.17). 

 

In order to reduce the influence of excess pixels on the final result, maximum number of 

𝑃 pixels per search area is taken into account. Considering the whole contour, DPC is 

defined as: 

 𝐷𝑃𝐶 = 
∑ 𝑚𝑖𝑛(𝑃|𝑁𝑖)
𝑁𝑃
𝑖

𝑁𝑃𝑃
 100%  (4.39) 

Here, 𝑁𝑖 is the number of pixels found in the i-th search area; 𝑃 is the size of search area in 

pixels, and 𝑁𝑃 is number of search areas. 

The search area can cover the pixels that do not belong to the contour of the building. In 

order to reduce the influence of such pixels, pixels with direction value close to the direction 

of the considered control points are counted. The pixel is considered suitable if it has a value 

of one of two angle segments closest to the angle of the studied contour part (see Figure 

4.18). 

P = 7 pixels

Figure 4.17: Raster contour inside the study area. 
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4.5.2 Calculation of textural features 

Various applications of pattern and object recognition use per-pixel image classification 

based on the analysis of spectral information. However, as a rule, it is difficult to obtain 

reliable results solely by means of spectral analysis. Spectral information of objects on the 

Earth’s surface is changeable and depends on different factors, such as relief, soils, climate 

and geographical position. Besides, for an object represented by a restricted image area, it is 

necessary to have parameters describing the area in its entirety. Such parameters can be 

obtained by means of texture analysis. Texture is one of the most powerful characteristics for 

understanding and interpreting pictorial data. The features obtained by texture analysis 

describe an image’s structure, based on the positional relationship of tonal variation within a 

considered area. Textural features play a crucial role in many applications of computer image 

analysis for classification and segmentation based on information concerning the spatial 

distribution of intensity variations in the images. Methods of texture analysis have been 

widely used in a variety of application fields, including remote sensing, medical image 

processing, the automatic detection of defects in images of textiles, carpet wear and 

automobile paint, etc. The major issues can be divided into the following four categories 

(Materka & Strzelecki, 1998): 

1. Feature extraction – calculation of different characteristics, providing a numerical 

description of image texture properties. 

2. Texture discrimination – image segmentation, separating the original image into 

homogeneous areas corresponding to different texture classes. 

3. Texture classification – assigning an investigated sample image to one of the 

predefined categories. 
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Figure 4.18: Definition of the suitable direction of the contour pixels. 
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4. Shape from texture – reconstruction of a 3D scene by using texture information from 

a 2D image as reference data. 

A wide variety of techniques describing image texture has been discussed in numerous 

reviews and comparative studies (Van Gool et al., 1985; Zhang & Tan, 2002; Tuceryan & 

Jain, 1998; Materka & Strzelecki, 1998; Randen & Husoy, 1999). A technique for efficiently 

distinguishing textures must be chosen based on the type of textures considered. Figure 4.19 

provides some examples of different textures. The types of texture can be defined based on 

the approaches given below: 

1. By nature: artificial – graphical patterns on a neutral background; natural – sand, 

water, grass, forest, etc. 

2. By surface structure: structural – formed by geometrically correct repeated elements; 

stochastic – formed by random tonal variation over the area. 

3. By a shape of structural elements: wavy, spotted, linear, etc. 

 

Among the known methods of textural image analysis, certain commonly used approaches 

can be emphasized: structural (geometrical), statistical, model-based and signal processing 

methods. 

 

Artificial texture

Natural texture

Structural texture

Stochastic texture

(e) Sand (f) Grass

(a) Vertical Lines (b) Checkerboad (c) Brick (d) Weave

(g) Flowers (h) Metal

Figure 4.19: Examples of different textures (Brodatz, 1966). 
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Structural methods deal with the arrangement of image primitives, attempting to describe 

these primitives and the rules defining their spatial organization. The primitive elements can 

be extracted by edge detection, adaptive region extraction or mathematical morphology. After 

the identification of the primitives, the computation of statistics is performed by analyzing the 

placement dependencies of the elements with specified properties, such as intensity (see 

Horn, 1975), area, elongation, orientation, magnitude, compactness, etc. (Baheerathan et al., 

1999).  

The advantage of the structural methods is based upon their applicability to texture analysis 

tasks and texture synthesis. Additionally, this approach yields a good symbolic description of 

the image. However, the main disadvantage of the structural methods is their inefficiency for 

image possessing of texture elements without clear geometric shapes.  

Statistical approaches represent the texture indirectly by computing non-deterministic 

properties embodying the distribution and relationships between the grey levels of an image. 

The local feature statistical methods can be classified into first-order (one pixel), second-

order (two pixels) and higher-order (three or more pixels) statistics. The first-order statistics 

evaluate texture properties based on single pixel values without taking the positional 

relationship of image pixels (average values or variance) into account. The second- and 

higher-order statistics estimate texture properties based on two or more pixel values and 

their relations. 

The most popular features in this group are based on the Grey-Level Co-occurrence 

Matrices (GLCM) suggested by Haralick (Haralick et al., 1973). Methods such as 

autocorrelation function, grey level run lengths, grey level difference method and Fourier 

power spectrum analysis are reported as relatively poor with respect to automatic texture 

classification (Conners & Harlow, 1980, Weszka et al., 1976). The detailed description of the 

algorithms mentioned above can be found in Sonka (1999) and Pratt (1991).  

The statistical methods have the advantage of being a simple calculation approach with a 

high computing rate. Methods based on the generation of a co-occurrence matrix provide 

more accurate results of image segmentation compared to other methods that belong to this 

category. 

Model-based methods including the approaches based on Gaussian Markov random fields 

(Cohen et al., 1991), Gibbs random fields (Derin & Elliot, 1987) and Wold model (Fang & 

Picard, 1996), involve the construction of an image model representing the essential 

characteristics of texture. The model can be generated as a probability model or as a set of 

basic functions, with the obtained parameter values used to characterize texture images. 

One such example of a model-based approach is the usage of a fractal decomposition in a 

method proposed by Mandelbrot (Mandelbrot, 1983). This method has become popular in 
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modeling a statistical quality of natural surface roughness and self-similarity in different 

scales. In the context of texture analysis, the fractal dimension is generally very efficient for 

decrypting the naturally occurring textures such as water surface, mountains or clouds. 

Model-based methods are the most effective in terms of noisy image processing.  

Signal processing methods focus on techniques of texture extraction using image filtering 

in the spatial or frequency domain. Examples of such methods are spatial domain filters, 

including Laws masks (Laws, 1980), local linear transforms and various masks for edge 

detection (e.g. Sobel, Roberts operators e.g.), or a set of moment-based approaches 

proposed by Tuceryan (Tuceryan, 1994). 

The most commonly known instrument for signal processing methods is Fourier 

transformation (Weszka et al., 1976), illustrating the global frequency content of the image. 

However, this provides a poor performance due to the lack of spatial localization. A classical 

way of incorporating the spatial dependency into the Fourier analysis is through the use of a 

window function (Bajcsy & Lieberman, 1976). 

The application of statistical approaches to remote sensing images has become particularly 

popular in the classification of built-up regions. Second-order statistics are the most effective 

measurements and are based on the generation of the GLCM that yields valuable 

information for the classification of urban areas. The efficiency of the GLCM features in 

respect to change detection in crisis areas has been proven in detail by Tomowski et al. 

(2011) and Klonus et al. (2012). Based on these investigations, the GLCM features were 

chosen for texture description within the change detection procedure developed in the 

framework of the performed study.  

The following section provides a more detailed description of the general procedure for 

GLCM generation. 

4.5.2.1 Grey-level co-occurrence matrix 

Originally introduced by Haralick (Haralick et al., 1973), the spatial grey level co-occurrence 

matrix (GLCM) is a well-known statistical tool for extracting second-order texture information 

from images. GLCM describes the probability of the grey levels 𝑖 and 𝑗 of two neighboring 

pixels at a certain distance and angle. The following example illustrates the calculation of a 

GLCM for a 4×4 image (Figure 4.20(a)) with four grey-tone values 0-3 (Figure 4.20(b)) for 

vertical direction (90). 
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The size of a calculated co-occurrence matrix depends on the value range of the image 

analyzed. According to the matrix containing all possible grey level combinations (Figure 

4.20(c)), a frequency of two neighboring elements 𝑖 and 𝑗 is line-by-line counted at the 

specified inter pixel distance 𝑑 and angles (in this case 90), resulting in the directionally 

dependent symmetric co-occurrence matrix (Figure 4.20(d)).The orientations used for 

calculation of the co-occurrence are presented in Figure 4.21. 

 

Figure 4.21: GLCM directions for calculating the Haralick textural features (Haralick et al., 
1973). 

However, the matrices obtained are not invariant to the size of the image, which can 

adversely affect the resulting performance. Additionally, the total number of grey level pairs 

compared is different due to the angular relationships. To overcome such problems, the 

normalization of the co-occurrence matrix is indispensable, whereby each value in the matrix 

is divided by the sum of all the values: 

 𝑝(𝑖, 𝑗) =  
𝑉𝑟,𝑐

∑ 𝑉𝑟,𝑐
𝐺−1
𝑟,𝑐=0

 (4.40) 

where 𝑉 is a value in the GLCM; 𝑟 and 𝑐 are rows and columns in the GLCM; 𝐺 is the total 

sum of the values; and 𝑝(𝑖, 𝑗) is the normalized GLCM (Table 4.3). 

0 2 1 0

3 1 0 2

1 0 2 1

3 0 2 2

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

2 2 2 1

2 0 3 2

2 3 2 0

1 2 0 0

(a) (b) (c) (d)

90 degrees
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45 degrees135 degrees

6 7 8

5 1

4 3 2

Figure 4.20: Calculation of a GLCM. (a) 4×4 input image; (b) four grey-tone values 0-3. 
General form of all grey-tone spatial-dependences for image with grey-tone values 0-3 (c). 

Calculation of a grey-tone spatial-dependence matrix for vertical direction (90) with inter-
pixel distance 1 (d). 
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Various texture measures can be directly computed from the GLCM, with the most frequently 

used set of 14 features proposed by Haralick including Angular Second Moment, Contrast, 

Correlation, and Entropy. Table 4.4 shows a representative example of some textural 

features calculated for the image from Figure 4.20(a). The commonly adopted approach for 

the employment of texture analysis for image interpretation, classification or segmentation 

does not utilize the angularly dependent features directly, but rather their average values 

(Haralick et al., 1973). 

 

Angle ASM IDM Inertia 

0 0,1146 0,3833 2,8333 

45 0,1358 0,7 1,6666 

90 0,0903 0,45 2,5 

135 0,1235 0,4444 2,4444 

Average 0,1160 0,4944 2,3610 

4.5.2.2 Object-based GLCM calculation 

The conventional approach for computing co-occurrence matrices and other texture 

measures, local variance of brightness values, as well as performing image filtering, edge 

detection and image classification exploits a fixed size rectangular sliding window. Figure 

4.22 illustrates a general routine to derive the textural features from a GLCM, where the 

window moves from left to right with a start position at the first image pixel. Thereby, the 

corresponding probabilities of grey level pair distributions are extracted from GLCM for the 

related image pixel in the defined window. As a result, a new image containing the texture 

measures for each pixel (at the center of the window) is calculated. 

0,0833 0,0833 0,0833 0,0417

0,0833 0 0,125 0,0833

0,0833 0,125 0,0833 0

0,0417 0,0833 0 0

Table 4.3: Normalized GLCM. 

Table 4.4: Textural features obtained from grey level spatial-dependence matrices. 
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Figure 4.22: General procedural steps for deriving textural features. Figure adapted from 
Lehmann et al.,1997. 

A window-based technique is a frequently used in digital image processing to define the local 

information content around a single pixel. The determination of the optimum window size 

reflects a crucial point for obtaining valuable information and texture representation within the 

window. A number of contradictory conclusions have been reported regarding the window 

size and shape properties, including minimum, maximum and optimal window size that can 

effectively provide essential information to sufficiently characterize a sub-area of interest from 

a larger image region. Hsu (Hsu, 1978) and Dutra (Dutra & Mascarenhas, 1984) argued for 

the small window size, which is more effective for extracting micro textures, noting the 

negative effects of using large windows, including that image classification can be adversely 

affected by the impact of edge pixels. Nellis and Briggs (Nellis & Briggs, 1989) proposed 

large window sizes for investigating homogeneous landscapes. It has generally been 

reported that the appropriate size for per-pixel image classification ranges from a 3×3 to a 

9×9 matrix of pixels (Irons & Petersen, 1981; Jensen J. R., 1979; Gong et al., 1992). 

Thus, the ultimate objective of the analysis should also be considered in the choice of the 

window size. Image classification and the following separation into individual homogeneous 

regions require larger windows, given that a rather small window can cause significant errors 

within the homogeneous areas due to the small primitives detected. Additionally, a rather 

small window can contain insufficient statistical information in terms of providing a reliable 

description of the objects represented in the image. On the other hand, large windows can 

lead to unreliable results because they can be significantly larger than objects of interest, i.e. 

they cover redundant information outside the studied area.  

In the case of building state detection, special interest is usually given to building roofs, given 

that they are more visible in remotely sensed images. Naturally, if the building is damaged or 

destroyed, the texture of its roof is usually changed, which makes it detectable by texture 

analysis. The roof of an intact building possesses a rather homogeneous texture and a low 

variation in the image brightness, whereas the image texture becomes more heterogeneous 

due to the fragments of destruction (see Figure 4.23). 

i j

Textured image Window

i

j

Distance Co-occurence matrix Texture features
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Figure 4.23: Image areas corresponding to (a) the roof of an intact building with a 
homogeneous texture and (b) the roof of a destroyed building with a heterogeneous image 
texture. Images are from Port-au-Prince, Haiti. Satellite image courtesy of Digital Globe 
(©Digital Globe 2010) and RIT. 

Thus, the texture analysis in such a case should focus on the characterization of a specified 

image area corresponding to the building investigated and neighborhood within this area, 

rather than a single pixel centered in a sliding window and its neighborhood. Therewith, the 

exact positioning, shape and size of each window analyzed become known through the use 

of vector data. Given that the shape and size of buildings are not fixed and differ for each 

individual construction, the utilization of the conventional rectangular sliding window can be 

considered inappropriate and inefficient. A small window does not include the whole area of 

the building (Figure 4.24(a)), thereby providing insufficient information concerning the object 

investigated. A rather large window can also produce unreliable results due to the negative 

impact of edge effects, as well as covering image areas outside the object to be investigated 

(Figure 4.24(b)). 

 

Figure 4.24: Placement of a rectangular window over the building in the image: (a) small 9×9 
window and (b) large 40×40 window. 9×9 window is too small and it does not cover the entire 
building. 40×40 window is too large and it covers redundant pixels outside the building. 

In order to investigate an image area corresponding to an individual building, an etirely 

different approach to window configuration for defining the sample size of the image is 

required. Therewith, the size and shape of the window should be initially non-fixed and able 

(a) (b)

Window 9x9 pixels

(a)
Window 40x40 pixels

(b)
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to be dynamically computed and adapted to each building, with the out-of-building 

information truncated by the window boundary. 

Dillworth et al. (1994) deviate from the conventional window transformations with a 

rectangular ‘geometric’ window and employ the ‘geographic’ window originally proposed by 

Merchant (Merchant, 1984). A geographic window is able to adapt the ‘size and shape in 

response to changes in local landscape characteristics, so that any patch within the original 

window dimensions is completely included in the dynamically changing geographic window’ 

(Dillworth et al., 1994). The experimental study was performed with the Spatial 

Measurements Package (Whistler, 1989), providing the spatial characterization of classified 

data by means of a geographic and geometric window for a test area in northeastern 

Colorado. Given that the software initially requires a classified image as its input, Merchant 

suggested a ‘region-growing’ algorithm for defining areas with similar land-cover 

characteristics, which are further used for the configuration of geographic windows. From 

their experiments, they conclude that the geographic window represents a new approach to 

extract statistical measurements and provides more complete and accurate information 

concerning the landscape structure in comparison to employing the prevailing fixed-size 

rectangular window. 

Hodgson (1991) also argued for an automatically adapted window size, with multiple 

windows of various shapes and sizes proposed to characterize the homogeneity of a 

landscape. 

A modern object-based GIS approach can considerably simplify the procedure of generating 

the window due to the accurate definition of object geometry and location. Given that an 

application of vector data containing information concerning the original urban layout is an 

initial prerequisite in this work, the extraction of the object dimensions and precise positioning 

can be relatively effectively implemented. The generation of the automatically adapted 

window for calculating the statistic texture measurements corresponding to each vector 

object can be described as follows (Figure 4.25). To analyze the image area related to a 

specific building, a small rectangular fragment equal to the size of a vector object under 

investigation is overlaid on the image. A binary mask of the building footprint is subsequently 

created by converting the related vector object in a raster format, which enables selecting the 

pixels belonging to the studied area, with the image part representing the building patch that 

falls entirely within the specified constraints. 
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Figure 4.25: Generation of automatically adapted window with a size equal to an individual 
vector object. 

Assuming that only pixels corresponding to the building area have to be used in the 

calculation of textural features, the equations for grey-tone spatial-dependence matrices 

presented by Haralick et al. (1973) can be modified as follows: 

𝑃(𝑖, 𝑗, 𝑑, 0°) = #{((𝑘, 𝑙), (𝑚, 𝑛)) ∈ (𝐵 × 𝐵) | 𝑘 − 𝑚 = 0, |𝑙 − 𝑛|  =  𝑑,

𝐼(𝑘, 𝑙) = 𝑖, 𝐼(𝑚, 𝑛) = 𝑗} (4.41) 

𝑃(𝑖, 𝑗, 𝑑, 45°) = #{((𝑘, 𝑙), (𝑚, 𝑛))

∈ (𝐵 × 𝐵) | (𝑘 − 𝑚 = 𝑑, 𝑙 − 𝑛 = −𝑑) 𝑜𝑟 (𝑘 − 𝑚 = −𝑑, 𝑙 − 𝑛

= 𝑑),   𝐼(𝑘, 𝑙) = 𝑖, 𝐼(𝑚, 𝑛) = 𝑗} 
(4.42) 

𝑃(𝑖, 𝑗, 𝑑, 90°) = #{((𝑘, 𝑙), (𝑚, 𝑛)) ∈ (𝐵 × 𝐵) | |𝑘 − 𝑚| = 𝑑, 𝑙 − 𝑛 = 0,

𝐼(𝑘, 𝑙) = 𝑖, 𝐼(𝑚, 𝑛) = 𝑗} (4.43) 

𝑃(𝑖, 𝑗, 𝑑, 135°) = #{((𝑘, 𝑙), (𝑚, 𝑛))

∈ (𝐵 × 𝐵) | (𝑘 − 𝑚 = 𝑑, 𝑙 − 𝑛 = 𝑑)  𝑜𝑟 (𝑘 −𝑚 = −𝑑, 𝑙 − 𝑛

= −𝑑), 𝐼(𝑘, 𝑙) = 𝑖, 𝐼(𝑚, 𝑛) = 𝑗} 
(4.44) 

where # denotes the number of elements in the set; and 𝐵 is the set of pixels from the 

building area selected by the mask. 

The matrix has to be normalized to remove dependency on the building size, as follows: 

Raster mask

created from vector object

Image area that is not taken into account

for the calculation
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𝑅 =∑∑𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 

𝑝(𝑖, 𝑗) =
𝑃(𝑖, 𝑗)

𝑅
 

(4.45) 

where 𝑅 is a normalization constant; and 𝑁𝑔 the number of grey levels in the input image (in 

this study 𝑁𝑔 = 256). 

Furthermore, it should be noted that the object-based procedure to generate the windows for 

the extraction of statistical measurements enables calculating a single feature value for each 

individual vector object (i.e for each individual building in the map), as opposed to an array of 

feature values being computed for every image pixel, which would be provided by a 

geometric window. 

4.5.3 Feature assessment 

A general problem for data classification is the selection of the most informative features. 

Unfortunately, there is no complete theory for an optimal synthesis of textural features that 

can produce a minimum number of classification errors. In practice, a set of features is still 

empirically selected for each specific study case. A frequently used approach to define the 

most informative features is the calculation of a large variety of statistic measurements that 

are further tested for their information content. 

In order to improve the efficiency of the final classification, it is desirable to analyze the 

information content of the features calculated and to optimize the feature set, determining 

how many and which members should be selected accordingly. Moreover, the appropriately 

selected features enable reducing data processing time and performing the successful 

classification by means of even simple classifiers. 

The calculation of all possible texture measurements can increase the amount of information, 

but in practice, a redundancy of initial knowledge does not cause a positive effect due to a 

probable data correlation and the unnecessary duplication of information. The optimization of 

the feature set can be performed by eliminating and combining of several features into one 

(Markovitch & Rosenstein, 2002). Another way to overcome this problem is the selection of 

features that originally depict the differing information. The key points in generating an 

optimum feature set are: (1) identification of the most effective characteristic that is proper to 

all objects belonging to a specified class, as well as the collection of features pointedly 

presenting this characteristic; and (2) rules or algorithms for the selection and assessment of 



Integration of Remote Sensing and GIS for Building Change Detection 
 

 

 
85 

 

the most informative features.  

As previously mentioned, an image area corresponding to a roof of an intact building is 

usually homogeneous, with a low variation of the image brightness. On the other hand, 

fragments of destructions can cause significant differences in the image grey values, thereby 

adversely affecting the image homogeneity. In order to extract information concerning the 

state of buildings from a remotely sensed image, image homogeneity is used as the basic 

indicator for developing a system of features. 

Therefore, textural features that characterize the image homogeneity are taken into account 

for the generation of a feature set in this study, with four angular grey-tone spatial-

dependency matrices computed through an inter-pixel distance of 1 (Table 4.5). 

Textural feature Equation Description 

Angular Second 

Moment (ASM) 
𝐴𝑆𝑀 = ∑∑{𝑝(𝑖, 𝑗)}2

𝑗𝑖

 
Measure of uniformity. High values 

correspond to very similar image 

texture. 

Inertia 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 =  ∑∑(𝑖 − 𝑗)2

𝑗𝑖

𝑝(𝑖, 𝑗) Characterizes availability of sharp 

borders and contours. 

Inverse Difference 

Moment (IDM) 
𝐼𝐷𝑀 = ∑∑

1

1 + (𝑖 − 𝑗)2
𝑗𝑖

𝑝(𝑖, 𝑗) 
Measure of local homogeneity. High 

values indicate a high 

homogeneous image texture. 

The roofs of intact buildings possess a rather regular texture orientation, mainly concentrated 

along the edges. Figure 4.26 shows the significant angular dependency of the IDM. On the 

other hand, there are no prevalent directions in the image texture related to destroyed 

buildings. The orientation of the texture is mainly randomly distributed due to variations in the 

image brightness, caused by fragments of destruction represented in the image. 

Table 4.5: Textural features extracted from grey-level co-occurrence matrices (where 𝑝(𝑖, 𝑗) is 

an entry in a normalized grey-tone spatial dependence matrix). 
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Figure 4.26: Example of distribution of angular IDM values for intact and destroyed buildings. 

Using the maximum of the angular features, the presence of the textural orientation can be 

exploited for the identification of the building states. Calculation of average values results in 

loss of information concerning the texture orientation, consequently providing inaccurate 

results. Besides maximum and average values, minimum of the angularly dependent textural 

features is also investigated as indicator in this study. The feature capability to separate 

objects into two classes (destroyed and intact buildings) reflects a decision criterion of the 

feature selection. 

The individual feature relevance for the separation of objects into two classes (positive and 

negative) can be estimated by the receiver operating characteristic method (ROC method). 

The ROC curve is plotted as a function of true positive rate (𝑇𝑃𝑅) versus false positive rate 

(𝐹𝑃𝑅) by changing the threshold value separating the classes (see Figure 4.27): 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹𝑃𝑅 =  𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) 

(4.46) 

Here, 𝐹𝑃 = number of false classified objects of first class; 𝑇𝑃 = number of correctly 

classified objects of first class; 𝐹𝑁 = number of false classified objects of second class; and 

𝑇𝑁 = number of correctly classified objects of second class.  
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Figure 4.27: Calculation of area under receiver operating characteristic (ROC) curve. 

The value of an area under the ROC curve (AUC) reflects its ability to separate classes 

based on a single feature. The value of the area can take values from 0.5 to 1, whereby a 

value of 0.5 corresponds to the worst possible separation and 1 to the best possible 

separation. Thus, the larger the AUC value, the better the separation that can be reached. 

In this research, the effectiveness of the features was also analyzed by frequency distribution 

histograms which visually demonstrate the capability of the features to separate the object 

into different classes. The detailed analysis of the above considered features is provided in 

Chapter 5. 

4.6 Classification 

The amount of data is constantly growing, with processing often reflecting a challenge as a 

result. The relatively new data mining techniques are intended for extracting useful 

information from a large amount of data. Data mining gained its name from a pair of 

concepts: retrieving information from databases (data) and the extraction of different 

geological materials from the earth (mining). The term ‘mining’ reflects sifting a huge amount 

of raw material for the extraction of valuable information. 

The term ‘data mining’ appears increasingly commonly on book covers and in scientific 

papers concerning data analysis. Due to their methods of artificial intelligence for multi-

dimensional data analysis, data mining techniques support one- and two-dimensional 

statistics, which are widely used for data analysis. A comprehensive description of data 

mining techniques can be found in Fayyad et al. (1996). 

The majority of analytical methods applied in data mining are based on long-known 

mathematical algorithms. They involve visual data analysis, demanding the participation of a 
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human expert, as well as automated analysis. In the practice of data analysis, the 

combination of visual and analytical data mining approaches is often most efficient. 

Especially for the processing of geoinformation, a visual data analysis is commonly 

indispensable for the post processing of data mining results.  

Data mining implies data receiving, knowledge extraction, intelligent data analysis, pattern 

and relationship discovering. Accordingly, it is a multidisciplinary approach (Figure 4.28) that 

came into existence based upon different branches, including statistics, pattern recognition, 

artificial intelligence and database systems (Sumathi & Sivanandam, 2006). 

 

It is generally supposed that data mining tools are easy-to-use and it can be sufficient to start 

such a tool for a large terabyte database in order to instantly extract useful knowledge from 

the input data. In fact, there are, however, no universal methods of data mining. The 

development of a data processing procedure requires a good understanding of the input 

data, data acquisition techniques and the entire process of data analysis. However, even the 

best technologies of artificial intelligence cannot replace an expert; rather, they provide 

powerful tools and techniques to increase the efficiency of his work. Moreover, due to the 

interdisciplinary of this approach, a collaborative work of several specialists with different 

backgrounds is often necessary. 

Nowadays, numerous data mining tools have been developed and successfully applied in 

industry and research. The technique has proved very efficient for problems of different 

branches such as business, medicine, security services, or satellite imagery processing. 

A wide variety of data mining methods and algorithms (neural networks, decision trees, rule 

induction, k-nearest neighbor, support vector machine, regression, cluster analysis, as well 

as different techniques of data visualization) can be categorized into two groups: 

DATA MINING

Data base systems

Machine learning

Artifitial intelligence

Pattern recognition

Statistics

Graphical data 

visualization

Algorithmization

Other disciplines

Figure 4.28: Data mining as a multidisciplinary approach (Sumathi & Sivanandam, 2006). 
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unsupervised learning and supervised learning methods. The detailed discussion of these 

methods is provided in the following sections. 

4.6.1 Unsupervised classification 

Even without any information about the data structure, it can be possible to identify groups of 

similar objects within a given data set. The objects can be characterized by the properties 

typical for the members of its group. The identification of groups with similar objects within a 

data set is called unsupervised learning or clustering. Figure 4.29 shows a scatter plot of a 

data set containing objects described by two features. In the presented example, the objects 

have been combined into three groups.  

 

Figure 4.29: Example of unsupervised learning for a data set of objects described by two 
features. 

Clustering provides an analysis of a data structure without any conclusion concerning the 

cluster properties. The result of clustering requires further interpretation based upon the 

properties of the considered objects, in order to describe the generated clusters. Assessment 

of clustering quality can be manually performed by setting control points or comparing the 

clusters provided by different methods. Depending on the data set, different clustering 

techniques can lead to differing results. A correspondence of similar clusters by means of 

different approaches indicates a high reliability of the achieved results.  

As a rule, each method of clustering possesses a set of parameters that can be configured 

for a considered individual problem. The appropriate choice of parameters can significantly 

improve the performance of the methods. One of the most important parameters is a 

distance measure for any pair of objects, which defines a difference between the objects and 

can be represented by any scalar function 𝑑(𝑥, 𝑦) ≥ 0 satisfying the following four axioms: 
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1. 𝑑(𝑥, 𝑦) ≥ 0 (non-negativity). 

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry). 

3. 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧) (triangle inequality). 

4. 𝑖𝑓 𝑑(𝑥, 𝑦) = 0, 𝑡ℎ𝑒𝑛 𝑥 = 𝑦 (identity of indiscernibles). 

Scientific publications relating to the cluster analysis of different data types provide numerous 

methods for the calculation of a distance parameter (Deza & Deza, 2009), with those most 

frequently used presented in Table 4.6. 

Distance metric Equation 

Euclidean 𝑑(𝑥, 𝑦) = (∑(𝑥𝑖 − 𝑦𝑖)
2

𝑚

𝑖=1

)

1
2

 

Manhattan 𝑑(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|

𝑚

𝑖=1

)  

Chebychev 𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥𝑖=1
𝑚 |𝑥𝑖 − 𝑦𝑖| 

Minkowsky 𝑑(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑟

𝑚

𝑖=1

)

1
𝑟

 

Canberra 𝑑(𝑥, 𝑦) = (∑
|𝑥𝑖 − 𝑦𝑖|

|𝑥𝑖 + 𝑦𝑖|

𝑚

𝑖=1

)  

where  𝑑(𝑥, 𝑦) - the distance between 𝑥 and 𝑦 objects; 

1. 𝑥𝑖 – the value of 𝑖-th feature of 𝑥 object. 

2. 𝑦𝑖 – the value of 𝑖-th feature of 𝑦 object. 

3. 𝑚– the total number of features describing the objects in the set. 

All features in the data set should be presented ‘’at the same scale”, i.e. normalized. 

Otherwise, a feature with the largest numerical values will dominate the metric calculation 

and all other features will have much less influence on the classification results.  

Nowadays, numerous clustering algorithms have been developed, including connectivity-

based clustering, also known as hierarchical clustering, centroid-based clustering or k-means 

clustering if the number of clusters is fixed to k, distribution-based clustering, density-based 

clustering, etc. (Hartigan, 1975; Clarke et al., 2009). In this research, the k-means clustering 

Table 4.6: The commonly used approaches to define the distance between instances (x 
and y). 
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was employed for the classification of building states. Accordingly, this method is described in 

further detail below. 

The k-means algorithm is a popular clustering method. The k-parameter in the name of the 

approach stands for the number of expected clusters given as an input parameter. The main 

idea is to group the sample based on the distance to the predefined cluster’s center. The 

algorithm can be summarized in the following steps: 

1) k initial cluster centers are chosen; 

2) assign to the each sample the cluster corresponding to the closest cluster center; 

3) recalculate the cluster centers as the average of positions of samples belonging to 

the cluster; and 

4) if at least one cluster position is changed, proceed to the step 2. 

The result of a k-means algorithm is nondeterministic, i.e. different results can be obtained by 

specifying different initial positions of cluster’s centers. For this reason, it is desirable to 

repeat the k-means algorithm several times and compare the results. In order to improve the 

convergence and result quality, the algorithm is often used with various extensions, such as 

different approaches for initialization of cluster center, different convergence criteria, etc. 

In comparison with other clustering techniques, the k-means algorithm is fast, relatively 

robust and surprisingly modest in its resource consumption. Due to its simplicity, it is easy to 

be augmented, implemented and extended. However, the results of clustering can depend on 

the input order of the data, as well as the initial choice of center positions.  

Cluster analysis methods are easy to use and do not require a training sample set, as it is 

necessary for algorithms of the supervised learning. The latter advantage is particularly 

important for the processing of remotely sensed data, given that the parameters and quality 

of the images significantly differ depending on the acquisition conditions. Indeed, it is often 

difficult to find a universal training data set optimal for all study cases. Figure 4.30 shows 

remotely sensed images presenting different types of built-up areas. Naturally, such a robust, 

fast and unsupervised method is very promising for a change detection technique and 

especially in terms of initial damage assessment. 
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4.6.2 Supervised classification 

Supervised learning or classification is a process that assigns one of the prespecified classes 

to the object in accordance with the object features. Construction of classification rules is 

based on the training set of objects for which the true classes are known. A general process 

of data classification can be divided into two steps (see Figure 4.31): 

1. Model construction (learning) – construction of classification rules based on the 

training data set. 

2. Accuracy assessment and model usage: the performance of classifiers is tested by 

using the test data set with the known classes. If the model yields an acceptable 

accuracy, it is used for the further classification of new objects with unknown classes. 

As already noted, the supervised learning requires a set of samples with known classes. This 

set is randomly split into training and test data sets in a prescribed ratio. The former is used 

for model construction, and the latter for the assessment of the model accuracy. 

(a) (b) (c)

(f)(e)(d)

Figure 4.30: Examples of remotely sensed images corresponding to various types of build-up 
areas. Images courtesy Google Earth™ mapping service. 
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Figure 4.31: A two-step classification process. (a) the first step in the data classification 
process (construction of classification model); (b) the second step of data classification 
(accuracy assessment and further usage of the model in prediction). 

A large number of techniques for supervised learning has been established, including logic-

based algorithms (decision trees, learning set of rules), perceptron-based techniques (single 

layered perceptrons, multilayered perceptrons, radial basis networks), statistical learning 

algorithms (Naïve Bayer classifiers, Bayesian networks), instance-based learning (nearest 

neighbor algorithm), and support vector machines. (Olson & Delen, 2008; Tso & Mather, 

2009). The description provided below only focuses on the techniques used in this research, 

including the k-Nearest Neighbor algorithm (k-NN) and Support Vector Machines (SVM). 

The Nearest Neighbors method is one of the simplest machine learning algorithms, based on 

an assumption that an object must have the same class as majority of objects from its 

neighborhood. In order to define the neighborhood of the object, the distance measure must 

be chosen. Usually, the Euclidean measure is used to measure the distance between 

objects, while the other possible distance measures are described in section 4.5.1.  

The decision about the class of a considered object is taken based on the classes of 𝑘 

nearest objects from the training set. The object class is defined by a majority vote of its 

neighbors. The learning phase is very simple, and is only devoted to the acquisition of a 

training set. The methods with such a simple learning phase are called lazy learners. 

Naturally, the learning approach allows for an easy improvement of the classification results 

by extension or modification of the training set. On the other hand, the classification 

procedure of k-NN method is resource consuming and can be extremely slow. For instance, 

it requires storing all training samples and many calculations for each classified object. 

Figure 4.32 shows an example of k-NN classification with 𝑘=5. The training samples for class 

1 are marked with pluses, and the objects of the class 2 with minuses. The considered object 
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is assigned to the second class, given that three of the five nearest neighbors belong to the 

second class.  

 

Figure 4.32: Example of k-NN classification. The considered sample is represented by filled 
black circle, the objects with first class by pluses and the objects with second class by 
minuses. The red circle around the sample shows the neighborhood with five nearest 
neighbors. 

The best choice of the 𝑘 value depends upon the considered data. If 𝑘=1, the classification 

accuracy is very sensitive to the noise in the training data set. With increasing 𝑘 value, the 

classification reliability is improved; however, the boundaries between the classes become 

less distinct. In the practical applications, a suitable 𝑘 value can be found experimentally, as 

values corresponding to the best classification accuracy (Hand & Vinciotti, 2002; Ghosh, 

2006; Batista & Silva, 2009). In case of a binary classification, an odd integer number of 

neighbors is usually used to avoid ambiguity, i.e. when an equal number of the nearest 

neighbors belongs to different classes. The ambiguity can be resolved by a more general 

strategy suitable for a multiclass classification, by counting the neighbor votes with the 

certain weights. The most commonly used method of weight definition is to apply the 

distances between the found neighbors and the considered object.  

The k-NN method possesses the methodological and conceptual simplicity, although it also 

reveals two significant disadvantages: a high memory consumption for storage of the entire 

training data set and the high time consumption for the search of the nearest neighbors in the 

training data set.  

Originally proposed by Vapnik & Chervonenkis (1974) and Vapnik (1995), Support Vector 

Machines (SVM) construct a separating hyperplane that is equidistant to the convex hulls of 

classes. The hyperplane is defined as the most distant plane surface from the nearest 

instances of the training data set (Figure 4.33). 
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Figure 4.33: Separating hyperplanes with large margin (a) and small margin (b). The 
hyperplane with larger margin provides the optimal separation capability. 

The main principles of SVM can be best explained in terms of a two-class problem. In this 

case, each 𝑖-th object of training data set corresponds to the feature vector 𝑥𝑖⃗⃗  ⃗ ∈ 𝑅
𝑁 and the 

scalar value 𝑦𝑖 equal to 1 or -1 indicating the object class. The SVM learner looks for a 

hyperplane separating the areas of the different classes. The hyperplane can be described 

by the following equation: 

 �⃗⃗� ∙ 𝑥 = 𝑏 (4.47) 

where �⃗⃗�  is a weight vector and 𝑏 is a scalar, often referred to as bias. The vector �⃗⃗�  and 

scalar 𝑏 must be chosen in order that: 

 𝑦𝑖 = {
+1, 𝑖𝑓 �⃗⃗� ∙ 𝑥 𝑖 ≥ 𝑏

−1, 𝑖𝑓 �⃗⃗� ∙ 𝑥 𝑖  < 𝑏
 (4.48) 

Clearly, there are infinitely many appropriate values of �⃗⃗�  and 𝑏 in a general case (Figure 

4.33). In order to compare the different hyperplanes, a margin is used, which is defined as 

the distance between two parallel hyperplanes fulfilling the condition and plotted as close as 

possible to the samples of the first and second classes. The separating hyperplane used for 

classification is chosen between these two hyperplanes, whereby the hyperplane with the 

larger margin enables a better classification accuracy. The SVM method searches for the 

hyperplane with the largest margin for the surface yielding the best separation. Assuming 

that the hyperplane is defined by the unit weight vector �⃗⃗̃�  and scalar value �̃� with the margin 

size ε, the expression can be rewritten as: 

(a) (b)
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 𝑦𝑖 =

{
 
 

 
 +1, 𝑖𝑓 �⃗⃗̃� ∙ 𝑥 𝑖 ≥ �̃� +

ε

2

−1, 𝑖𝑓 �⃗⃗̃� ∙ 𝑥 𝑖 ≤ �̃� −
ε

2

 (4.49) 

Multiplying both parts of inequalities by 
2

ε
 and substituting �⃗⃗� =

2

ε
�⃗⃗̃�  and 𝑏 =

2

ε
�̃�, one obtains: 

 𝑦𝑖 = {

+1, 𝑖𝑓 �⃗⃗� ∙ 𝑥 𝑖 ≥ 𝑏 + 1

−1, 𝑖𝑓 �⃗⃗� ∙ 𝑥 𝑖 ≤ 𝑏 − 1
 (4.50) 

The hyperplanes �⃗⃗� ∙ 𝑥 = 𝑏 + 1 and �⃗⃗� ∙ 𝑥 = 𝑏 − 1 define a buffer area between classes. The 

hyperplanes pass through one or several points from the training set, called support vectors. 

The search of support vectors and hyperplane parameters can be formulated as a quadratic 

constrained optimization problem. The vector �⃗⃗�  is obtained as a superposition of the support 

vectors: 

 �⃗⃗� =∑𝑦𝑖𝑎𝑖𝑠 𝑖

𝑙

𝑖=1

 (4.51) 

Here, {𝑠1⃗⃗  ⃗ … 𝑠𝑙⃗⃗  } ∈ {𝑥1⃗⃗⃗⃗ … 𝑥𝑛⃗⃗⃗⃗ } are support vectors, 𝑦𝑖 is the class value corresponding to support 

vectors, 𝑎𝑖 and 𝑏 are numerical parameters defined by solution of optimization problem.  

The hyperplane is defined by: 

 ∑𝑦𝑖𝑎𝑖𝑠 𝑖 ∙ 𝑥 = 𝑏

𝑙

𝑖=1

 (4.52) 

As a result, the following expression for the classification of a sample with 𝑧  feature vector is 

obtained: 

 𝑦(𝑧 ) = 𝑠𝑖𝑔𝑛(∑𝑦𝑖𝑎𝑖𝑠 𝑖 ∙ 𝑧 −

𝑙

𝑖=1

𝑏) (4.53) 

Unfortunately, the majority of real-world problems involve linearly non-separable data for 

which no hyperplane can be created. One solution to the inseparability problem is to 

transform the initial data into a higher-dimensioned data space and construct the hyperplane 

there. Referring to Figure 4.34, a data set is not linearly separable in a two-dimensional 

space (left), but it can be separated in a non-linear “bent” space (right), through a data 

transformation into a three-dimensional space. 
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Figure 4.34: Linearly non-separable data transformed into a higher-dimension space (Lande 
et al, 2009). 

Mapping the data to some other dimensional space 𝑥 → 𝜙(𝑥 ) enables separating any 

consistent training set. Substituting the mapping function into the expression yields the scalar 

product of input variables  𝑘(𝑥 , 𝑧 ) = 𝜙(𝑥 ) ∙ 𝜙(𝑧 ). By calculation, the product is not calculated 

explicitly; instead, a function 𝑘(𝑥 , 𝑧 ), called the kernel function, is used. Genton (2001) 

described several classes of kernel functions, with the most commonly used ones 

summarized in Table 4.7. 

Type of kernel Kernel function 

Linear kernel 𝑘(𝑥 , 𝑧 ) = 𝑥 ∙ 𝑧 + 𝑐 

Polynomial kernel of degree 𝑑 𝑘(𝑥 , 𝑧 ) = (𝛼𝑥 ∙ 𝑧 + 𝑐)𝑑 

Gaussian kernel 

(radial basis function) 
𝑘(𝑥 , 𝑧 ) = 𝑒𝑥𝑝 (−

‖𝑥 − 𝑧 ‖2

2𝜎2
) 

Exponential (radial) kernel 𝑘(𝑥 , 𝑧 ) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑧 ‖

2𝜎2
) 

Sigmoid Kernel 𝑘(𝑥 , 𝑧 ) = 𝑡𝑎𝑛ℎ(𝛼𝑥 ∙ 𝑧 + 𝑐) 

There is no general rule for the choice of the kernel function. Indeed, the choice of the kernel 

function best suited to the specified problem is very difficult.  

The SVM is commonly used as a binary algorithm, although some work has been dedicated 

to its extension to multiclass classification (Duan & Keerthi, 2005). Learning SVM provides a 

unique solution for classification rules. This is an advantage compared to Neural Networks, 

which have multiple solutions for the same set of training data. The SVM are highly accurate, 

due to their ability to build complex nonlinear decision boundaries.  

Table 4.7: Commonly used kernel functions for SVM classifiers. 
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However, due to the application of kernel functions, it is difficult to understand the obtained 

classification rules. Moreover, the learning of SVM becomes very time consuming, especially 

for large data sets. 

4.6.3 Assessment of the classification accuracy 

As a rule in practice, a 100% accurate building classification is not possible, because of a 

number of different factors, including both an imperfection of the generated feature set and 

an insufficiency of the applied mathematical methods. Thus, a certain amount of 

misclassification is often inevitable. 

The accuracy estimation requires a set of samples with known classes. In case of a 

supervised classification, the samples with known classes are also required to build 

classification rules. There are several strategies for using the samples for both learning and 

accuracy estimation. 

The simplest method is to randomly split the set of the samples into training and testing sets. 

The training set is used for the building of classifiers, and the testing set for the accuracy 

estimation. This approach is called a holdout method. For improved accuracy, the holdout 

method can be repeated 𝑘 times, with the accuracy calculated as an average value of 𝑘 

accuracy calculations. This approach is called random subsampling. 

A more sophisticated method is cross validation, in which the set of samples is randomly 

divided into 𝑘 parts with equal number of samples. Subsequently, 𝑘 iterations are performed, 

whereby each part is successively used as a test set and the remaining samples as training 

set. The resulting accuracy is computed based on the total numbers of correctly and 

incorrectly performed classifications for 𝑘 iterations. The final classification model is built by 

using the entire set of samples as the training set. 

Classification performance refers to the classifier’s ability to correctly predict a class for a 

new instance, namely the probability of correct classification. The quantitative performance 

estimation can be done by a predictive accuracy. The predictive accuracy of a classification 

is defined as the percentage of correctly classified samples. However, such a measure of 

accuracy is not always suitable. For example, two buildings of hundred are destroyed due to 

an earthquake and have to be detected by change detection analysis. By using the classifier 

that always predicts intact building states, very high accuracy of 98% can be obtained; 

however, the classifier is unable to find any destroyed building of interest. Naturally, a 

comprehensive assessment of classification results requires additional accuracy 

measurements. 

The detailed results of classification can be represented in the form of a confusion matrix 

(Stehman, 1997; Congalton & Green, 2009). The confusion matrix or error matrix represents 
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actual and predicted class values for each class, whereby columns contain information 

concerning the predicted classes and rows represent the correct ones. A general form of the 

confusion matrix for the case of classification into two classes (e.g. intact and destroyed 

buildings) is given in Table 4.8. For the sake of generality, the classes are denoted as 

positive and negative.  

 Predicted classes 

A
c

tu
a

l 

c
la

s
s

e
s

   Positive Negative 

Positive True Positives (TP) False Negatives (FN) 

Negative False Positives (FP) True Negatives (TN) 

True Positive (TP) – number of correctly classified positive objects. 

True Negative (TN) – number of correctly classified negative objects. 

False Positive (FP) – number of incorrectly classified negative objects. 

False Negative (FN) – number of incorrectly classified positive objects. 

Based on the confusion matrix, the different accuracy measurements given in Table 4.9 can 

be derived. 

In practice, the combined analysis of two accuracy measures TPR and FPR (see Table 4.9) 

is preferable to an estimation based solely on predictive accuracy. The following example 

shows the advantages of TPR and FPR measures. In the considered objects set, two 

buildings of ten are destroyed. A classifier identified one intact and one destroyed buildings 

as being destroyed, with the results of the classification shown in the following confusion 

matrix: 

 Predicted classes 

A
c

tu
a

l 

c
la

s
s

e
s

   Intact Destroyed 

Intact 9 1 

Destroyed 1 1 

The accuracy measures are: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  10 12⁄ = 0.833 

𝑇𝑃𝑅 =  1 10⁄  =  0.1 

Table 4.8: Confusion matrix of results of building states classification. 
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𝐹𝑃𝑅 =  1 2⁄ =  0.5 

Measure Calculation Description 

Overall accuracy 
𝑇𝑃 + 𝑇𝑁

𝑁
 

The portion of objects that are correctly 

classified. 

Error rate 
𝐹𝑃 + 𝐹𝑁

𝑁
 

The portion of objects that are incorrectly 

classified. 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The portion of objects classified as positive 

that are correctly classified. 

Sensitivity or True 

Positive Rate (TPR)  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The portion of positive objects that are 

correctly classified (𝑇𝑃𝑅 = 1 − 𝐹𝑁𝑅). 

False Positive Rate 

(FPR)  

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

The portion of negative objects that are 

incorrectly classified (𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅). 

Specificity or True 

Negative Rate (TNR) 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The portion of negative objects that are 

correctly classified (𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅). 

False Negative Rate 

(FNR) 

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

The portion of positive objects that are 

incorrectly classified (𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅). 

Extending the analysis to the addition area with 20 intact buildings, it is possible that 10% of 

the intact buildings will be classified incorrectly, as for the first set. Thus, a new updated 

confusion matrix is: 

   Predicted classes 

A
c

tu
a

l 

c
la

s
s

e
s

   Intact Destroyed 

Intact 27 3 

Destroyed 1 1 

The new accuracy measures are as follows: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  28 32⁄ = 0.875 

𝑇𝑃𝑅 =  0.1 

𝐹𝑃𝑅 =  0.5 

Thus, values of TPR and FPR remained the same for the same classifier, whereas the 

predictive accuracy increased. Moreover, as was shown in the example at the beginning of 

this section, the predictive accuracy can be completely useless if the classes are strongly 

Table 4.9: The commonly used classification accuracy measures. Here, 𝑁 is the total number 
of samples (Bramer, 2013). 
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unbalanced. The following section provides a description of a comparative analysis of 

classifiers based on the measures TPR and FPR.  

4.6.4 Selection of classifiers 

A more sophisticated classification strategy does not necessarily lead to better classification 

results, as one might assume. By increasing the complexity of classification rules, it is 

possible to reach an error-free classification for the samples of the training set; however, this 

generally leads to an insufficient performance for the samples from the testing set. This 

phenomenon is known as overfitting. On the other hand, extremely simple classification rules 

provide poor results for both the training and testing set, which is known as underfitting.  

 

Figure 4.35: Dependency of error rate on the complexity of classification model (Janert, 
2010). 

Figure 4.35 shows the dependency of classification accuracy on the complexity of the 

classification model. In order to avoid the influence of overfitting on the calculation of 

classification accuracy, the testing set used for accuracy calculation should not include the 

samples from training set. On the plot, it can be seen that there is an optimum complexity, 

which corresponds to the minimum of the generalization error rate. 

The figure below shows an example of underfitting and overfitting phenomena in a space of 

two features 𝑥1 and 𝑥2. The complexity of chosen classification model is reflected in the form 

of the boundary separating the classes (Figure 4.36).  
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Figure 4.36: Comparison of classifier complexity based on the 2D scatter plot of two features 

𝑥1 and 𝑥2. The filled and empty figures correspond to the training and testing sets, 
respectively. The circles and squares denote the positive and negative objects respectively. 
(a) Underfitting: a simple decision rule provides a low classification accuracy even for a 
training set; (b) Overfitting: an abundance of complexity leads to a poor classification 
accuracy for testing set; and (c) Optimal complexity choice. 

A simple linear boundary form cannot provide sufficient accuracy, even for the training set. A 

complicated boundary yields a very accurate classification of samples from the training set, 

yet poorly suits the classification of samples from the testing set. A boundary in a form of 

circle cannot separate the error-free samples of training set, but yields sufficient results for 

the testing set. Thus, the classifier yielding the circle separation boundary is the most 

suitable of the considered examples. 

A comparison of classifiers can be also performed based on the ROC graph, applying TPR 

and FPR accuracy measurements (see Figure 4.37).  

 

Figure 4.37: Comparison of classification performance based on ROC graph. Comparison of 
two classifiers A and B. 

The points (1,1), (0,0), (1,0) and (0,1) correspond to the four respective special cases: a 

perfect classifier, the worst possible classifier, an ultra-liberal classifier and an ultra-

conservative classifier. The perfect classifier provides the correct classification for each 

sample. Denoting the number of positive samples as 𝑃 and the number of negative samples 

as 𝑁, the accuracy measures are calculated as follows: 

(a) (b) (c)
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 Predicted classes 

A
c

tu
a

l 

c
la

s
s

e
s

   Positive Negative 

Positive P 0 

Negative 0 N 

𝑇𝑃𝑅 =  1, 𝐹𝑃𝑅 = 0 

The worst possible classifier provides an incorrect prediction for all samples. 

 

 Predicted classes 

A
c

tu
a

l 

c
la

s
s

e
s

   Positive Negative 

Positive 0 P 

Negative N 0 

𝑇𝑃𝑅 =  0, 𝐹𝑃𝑅 =  1 

The ultra-liberal classifier labels all samples as positive. 

 

 Predicted classes 

A
c

tu
a

l 

c
la

s
s

e
s

   Positive Negative 

Positive P 0 

Negative N 0 

𝑇𝑃𝑅 =  1, 𝐹𝑃𝑅 =  1 

The ultra-conservative classifier labels all samples as negative. 

 

 Predicted classes 

A
c

tu
a

l 

c
la

s
s

e
s

   Positive Negative 

Positive 0 P 

Negative 0 N 

𝑇𝑃𝑅 =  0, 𝐹𝑃𝑅 =  0 

The points lying on the line (0,0) - (1,1) correspond to the random classification. For 

example, a classifier randomly results in a positive class with a probability of 0.8, i.e. 

correctly classifies 80% positive and 20% negative samples. The corresponding confusion 

matrix comes to the following modification: 
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 Predicted classes 

A
c

tu
a

l 

c
la

s
s

e
s

   Positive Negative 

Positive 0.8*P 0.2*P 

Negative 0.8*N 0.2*N 

𝑇𝑃𝑅 =  0.8, 𝐹𝑃𝑅 =  0.8 

The closer the point of the classifier to (1,0), the better its performance. Naturally, the 

classifier corresponding to point A yields a better performance than the classifier 

corresponding to the point B (see Figure 4.37). The points of the classifiers, which are better 

than random guessing, have to be in the upper left-hand triangle. A classifier with prediction 

performance worse than random guessing can be converted into one with a prediction better 

than random guessing by reversing its predictions.  

The classifiers can be compared based on the Euclidian distance to the point (1,0): 

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √𝐹𝑃𝑅2 + (1 − 𝑇𝑃𝑅)2 (4.54) 

To take into account the different importance of the FPR and TPR values, the weighted 

Euclidian distance with the weight 𝑤 ∈ [0,1] is used: 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(1 − 𝑤)𝐹𝑃𝑅2 +𝑤(1 − 𝑇𝑃𝑅)2 (4.55) 

To choose the best suitable classifier, additional properties have to be taken into account; for 

example, the required computation resources and the possibility of training set extension.
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5. Experiments and Result Discussion 

In this chapter, an empirical evaluation of the proposed approach to detect building changes 

is performed using data from the following test areas: Kamaishi, Japan (2011 Tohoku 

earthquake), Yushu, China (2010 Yushu earthquake) and the city of Osnabrueck, Germany. 

The goal of this chapter is to demonstrate how this framework can be used for buildings that 

have undergone changes caused by catastrophic events, as well as discussing the particular 

advantages and weakness of the technique. Based upon the example city of Osnabrueck 

(Germany), it will be additionally shown that this method can be applied not only for the 

detection of destroyed buildings but also for reconstructed buildings. 

5.1 First study case: Kamaishi, Japan (the 2011 Tohoku earthquake) 

On 11 March 2011, a massive earthquake with a magnitude over 9,0 𝑀𝑤 occurred in the 

north-western Pacific Ocean, with the epicenter located approximately 130 km from Sendai 

and 373 km from Tokyo. The hypocenter of the most devastating quake was registered at an 

underwater depth of approximately 30 km. The earthquake triggered enormous tsunami 

waves, causing extensive destruction along the coast of the northern islands of Japan. The 

tsunami spread through the Pacific coastline, including North and South America from Alaska 

to Chile, which were under a flood warning with evacuation activities. However, the real effect 

was insignificant in these areas. 

The height of the tsunami waves in Japan varied, with the maximum observed at the coast of 

Miyagi Prefecture up to 10 meters. The huge waves flooded Sendai Airport, sweeping away 

anything and everything in their path, including planes, cars, constructions, etc.  

The earthquake and resulting tsunami caused an accident at the Fukushima nuclear power 

plant, leading to a radioactive leak. Several reactors were corrupted at different levels, 

causing subsequent large explosions and problems with storing the spent nuclear fuel. 

People in the local neighborhood were evacuated due to the risk of radioactive 

contamination. Some workers of the nuclear power plants were injured and irradiated to 

different degrees of severity. A high radiation level was registered in Tokyo’s water supply, 

vegetables and milk in the area nearby Fukushima. 

The nuclear crisis and deficit of electricity had a large negative impact on the economic 

situation in the country, prompting enormous economic and human losses. The National 

Police Agency of Japan reported about 28 000 people being dead or missing across the 

affected prefectures (Mimura et al., 2011; Takeuchi & Chavoshian, 2011). The earthquake 

and tsunami caused extensive infrastructural damage of roads, bridges, railways and dikes, 

as well as over 300 000 buildings being entirely, half or partially collapsed and burned. The 

total economic losses estimated by the World Bank were US$235 billion, excluding five years 
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prognosticated costs for the required postdisaster reconstruction (The World Bank, 2011). 

To perform the experiments, a scene of the small city of Kamaishi, located on the Sanriky 

rias coast of Iwate (Japan), was selected. The city was considerably damaged with about 

1,250 people dead or missing due to the catastrophic incident, notwithstanding the Kamaishi 

Tsunami Protection Breakwater built in 2009, which was easily surmounted by 4.3 m high 

waves. 

For the first study case, an area of 686×1722 pixels was selected from the post-disaster 

image dated 1 April 2011. Figure 5.1 shows a part of the study area overlaid with vector data 

presenting the building footprints corresponding with the pre-disaster layout. The vector 

information was obtained from OpenStreetMap (http://www.geofabrik.de) and contains 

696 vector objects for the selected study image. In order to verify the final result of the 

change detection procedure, the information containing the post-event states of buildings 

was prepared in advance as a reference for each vector object through a visual comparison 

of the source data. 

 

Figure 5.1: The first study case: post-event image of Kamaishi, Japan overlaid with vector 
data containing building footprints. The satellite image is courtesy of Digital Globe (©Digital 
Globe 2013); vector data are provided by OpenStreetMap (© OpenStreetMap contributors). 

5.1.1 Calculation of DPC 

The calculation of the DPC feature was performed according to the algorithm described in 

detail in section 4.5.1. Figure 5.2 depicts the separate steps of the calculation procedure for 
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intact and destroyed buildings. The intact building was selected in the center-to-top part of 

the test image and the destroyed building is located in the center part (see Figure 5.1). First, 

image enhancement is performed by means of homomorphic filtering with a Gaussian 

highpass filter (Figure 5.2 (b,f)). 

 

The filtered images are further used to calculate textural features, as well as edge detection 

by using the Canny algorithm. Figure 5.2 (c,g) shows the resulting contours detected, colored 

according to their orientations (the colors of pixels are explained in Figure 4.9). Around each 

control point extracted from the vector contour (see section 4.5.1.2), the pixels with an 

appropriate direction of the contour are sought in the area with a size of 5x5 pixels. Figure 

5.2 (d,h) shows the search windows: in the windows depicted in green color, at least 5 pixels 

of contour were found without correction of window position; the position of the pink windows 

were corrected to improve the accuracy of calculation; at the blue windows, no contour points 

Legend

Windows with original position Windows with corrected position Windows where pixels with

needed direction are not found

(a) Original image

of intact building
(b) Homomorphic filtering (c) Edge detection (d) Search windows

over the contours

(e) Original image

of destroyed building

with vector contour

(f) Homomorphic filtering (g) Edge detection (h) Search windows

over the contours

Figure 5.2: Calculation of DPC. (a) Original image of the intact building; (b) image of the 
intact building enhanced using homomorphic filtering; (c) image of the intact building after 
edge detection with colors of contours corresponding with their orientations; (d) image of the 
intact building after edge detection with the search windows, where pixels with a needed 
direction of contour are counted; (e) original image of the destroyed building; (f) image of the 
destroyed building after homomorphic filtering; (g) image of the destroyed building after edge 
detection; (h) image of the destroyed building after edge detection with the search windows, 
where pixels with a needed direction of contour are counted. 
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were detected at all. Due to the window width and position correction procedure, the cases in 

which the raster and vector contours do not exactly coincide can be treated correctly. Of 

course, the algorithm fails if the difference in contour positions is larger than half of the 

search window size. 

The histogram in Figure 5.3 demonstrates how many pixels of contour were detected in the 

search windows. The green graphic corresponds to the intact building and the red to the 

destroyed one. In the case of the intact building, it can be seen that the maximal number of 

contour pixels was found in most search windows (the number of counted pixels per window 

is restricted by 5). The maximal numbers of contour pixels were found in 34 out of 41 search 

windows, four pixels were found in four windows and the pixels with the appropriate contour 

directions were not detected in only three windows. For the destroyed building, the opposite 

situation can be seen, where most of windows do not contain any contour pixels, whereas 

the maximal number of pixels was only found in one window. 

 

Figure 5.3: Number of contour pixels found in the search windows. Green boxes correspond 
to intact building and red to destroyed one respectively. 

The procedure for evaluating the contour integrity produces a DPC value of 91% for the 

intact building, indicating that 91% the building contour was detected, and a DPC value of 

13% for the destroyed building. 

5.1.2 Calculation of textural features 

Besides the DPC feature, texture measures describing the homogeneity of the image part 

corresponded to the building were calculated. A general approach to object-oriented 

calculation of textural features is presented in detail in section 4.5.2.2 and schematically 

demonstrated in Figure 4.25. The textural features were calculated based on the enhanced 

image produced by the homomorphic filtering. The considered feature set included Angular 
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Second Moment (ASM), Inertia, Inverse Difference Moment (IDM) as well as mean, maximal 

and minimal values of their angular dependent measures. 

As previously mentioned in Chapter 4, employing a large number of different features makes 

the classification more complex and may negatively affect the final result. Generating an 

optimal feature set is a key point of the data analysis. The information content of the features 

can be evaluated by the ROC analysis, using AUC values that evaluate the separability of 

objects based on their feature values (see section 4.5.3). AUC takes values from 0.5 to 1.0, 

whereby the larger values correspond to a better performance of the feature.  

Table 5.1 shows the values achieved for each textural feature. Of course, only mean, 

maximal and minimal values are rotationally invariant and can be used for classification, 

while the angular dependent measures (IDM_0, ASM_90 etc.) are only presented here for 

comparison sake. The IDM features show much better results than ASM and Inertia features. 

ROC analysis of DPC feature yields an AUC value of 0.89. Thus, the IDM_max with an AUC 

value of 0.90 and DPC with an AUC value of 0.89 are the two best features.  

 

 

AUC=0,89 AUC=0,90

ASM_0 ASM_45 ASM_90 ASM_135 ASM_min ASM_max ASM_mean 

0,50 0,51 0,51 0,51 0,51 0,51 0,51 

Inertia_0 Inertia_45 Inertia_90 Inertia_135 Inertia_min Inertia_max Inertia_mean 

0,52 0,53 0,54 0,53 0,53 0,54 0,53 

IDM_0 IDM_45 IDM_90 IDM_135 IDM_min IDM_max IDM_mean 

0,90 0,70 0,69 0,68 0,66 0,90 0,78 

Table 5.1: AUC values for GLCM features (study case Kamaishi, Japan (the 2011 Tohoku 
earthquake)). 

Figure 5.4: Frequency distribution histograms of selected features (DPC and IDM_max). Red 
rectangles correspond to destroyed buildings, green to intact buildings (study case Kamaishi, 
Japan (the 2011 Tohoku earthquake)). 
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A more vivid way of demonstrating a capability of features to separate test objects into the 

known number of classes is through the construction of frequency distribution histograms. 

The visual interpretation of the histograms (see Appendix 5.1) indicates that DPC and 

IDM_max provide the best separation of the objects. Figure 5.4 demonstrates the frequency 

distribution histograms for the two best selected features. 

In the scatter plot below (Figure 5.5), it can be seen that vector information expressed by 

DPC feature and raster information expressed by IDM_max feature supplement each other, 

allowing the separation of objects that have different states but similar DPC or IDM_max 

values. 

 

Figure 5.5: Scatter plot demonstrating the two-class separation of objects (study case 
Kamaishi, Japan (the 2011 Tohoku earthquake)). 

In the following sections, classification of the buildings under investigation will be performed 

using the DPC and IDM_max features. 

5.1.3 Classification and results 

This section deals with analysis of the building states classification by means of an 

unsupervised classification (k-means) and two supervised classification techniques (k-NN 

and SVM) using DPC and IDM_max features. The tests include the study of different 

parameter values used for the configuration of classification rules.  

5.1.3.1 Unsupervised classification 

Unsupervised classification does not require a training data set, splitting objects into 

groups/clusters, whose state is defined based on the feature values corresponding to cluster 

centers. An unsupervised classification warrants proper attention due to its capability to 

Intact Destroyed
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cluster without a learning phase, and thus the training set is not required for the classification 

procedure.  

The k-means clustering algorithm is a rather easy yet efficient method of unsupervised 

classification (see section 4.6.1). For this test, the number of clusters is essentially set to 2: 

intact and destroyed buildings. For initialization, the deterministic method similar to KKZ 

algorithm (Katsavounidis et al., 1994) is applied. First, the centre of mass is calculated for all 

objects, whereby the object most distant from the centre of mass is taken as the first cluster 

centre. The centre of second cluster is chosen at the position of the object most distant from 

the first cluster centre. 

The choice of the distance function was performed based upon the analysis of overall 

accuracies computed for the following distance metrics: Euclidean, Manhattan and 

Chebychev. Referring to Table 5.2, it can be seen that the accuracy values do not 

significantly vary depending on the distance metrics; however, the classification using 

Euclidean metric provides a more accurate result. Accordingly, for this reason the Euclidean 

distance measure was chosen for the further data classification. 

 Euclidean Manhattan Chebychev 

Overall Accuracy 0,7730 0,7691 0,7707 

In Figure 5.6, the analysis of classification results based on the confusion matrix is shown, 

highlighting that good results with the overall accuracy of 77% can be reached, even for 

unsupervised classification. The scatter plot shows linear separation typical for k-means 

classification with the Euclidian metric. The quality of the individual class detection is 

assessed by means of user and producer accuracies. Producer’s accuracy indicates how 

well the objects of the given class are classified and is a rate of correctly classified objects 

regarding all objects of the class. For the destroyed buildings, the producer’s accuracy shows 

that 93% of destroyed objects are detected as being destroyed and only 7% (12 objects) are 

mistakenly classified as intact. User’s accuracy is an indication of the probability that an 

object classified into a certain class truly represents this class, thus reflecting the rate of 

correctly classified objects regarding all objects classified as this class. The value of 55% for 

destroyed buildings means that only 55% of buildings classfied as destroyed are really 

destroyed. Thus, for this study case, the unsupervised classification identified almost all 

destroyed buildings correctly, although 45% of objects marked as destroyed were actually 

intact.  

Table 5.2: Testing classification efficiency by means of k-means clustering depending on 
different distance measures for the study case Kamaishi, Japan (the 2011 Tohoku 
earthquake). 
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Figure 5.6: Classification result calculated for the study case Kamaishi, Japan (the 2011 
Tohoku earthquake) using the k-means clustering algorithm: confusion matrix (left) for 
accuracy assessment and scatter plot (right) illustrating the separation of objects. 

5.1.3.2 Supervised classification 

Supervised classification was described in detail in section 4.6.2. Its application includes two 

steps: learning and classification. During the learning phase, the inner structure and 

parameters of the classification rules are defined based on a training set of objects with 

known states. The obtained classification rules are used during the classification phase to 

define the state of new objects. For the assessment of classification efficiency for both the 

learning and classification phase, the object set with known condition was used. The 

classification accuracy was estimated by comparison of known state values with values from 

classification. The study of classification efficiency involved the following steps: 

1. Splitting the whole data set into training and testing data sets. For the training set, a 

near equal number of destroyed and intact objects were randomly selected. The 

remainder data was used in the testing set. 

2. Learning phase and the choice of optimal classification parameters based on training 

set data. The selection of optimal classification parameters was performed using a 

grid-search method that includes calculations on the grid of different parameter 

combinations and the choice of settings yielding the best accuracy (Hsu et al, 2003). 

The classification accuracy is therewith evaluated by means of n-folds cross 

validation (see Chapter 4). 

3. Classification and accuracy assessment based on testing data set.  
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The first experiment was performed with k-Nearest Neighbours classifier, whose theoretical 

description is provided in section 4.6.2. In this study, the k-NN classifier is used with a 

distance-based weigting of neighbour’s votes. The classification rule has one parameter 𝑘 

defining the number of neighbours voting for the the class of the considered object. The 𝑘-

value was determined with values of 𝑘 from 5 to 30 and different sizes of a training set equal 

5%, 10%, 15% and 30% objects (Figure 5.7). The classification accuracy was therewith 

estimated by 5-folds cross validation on the training set. Figure 5.7 below shows the 

classification accuracy presented by three measures: overall accuracy, sensitivity and 

specificity (see Table 4.9). It can be seen that the accuracy does not significantly vary with 

the variation of the 𝑘-value and the number of objects in the training set.  

 

Figure 5.7: Accuracy of k-NN classification depending on different number of k-neighbours 
and training samples calculated for the study case Kamaishi, Japan (the 2011 Tohoku 
earthquake). 

As it follows from the results obtained, the best accuracy measures were reached using the 

10%-training set containing 70 objects from the original data set and the 𝑘-value of 25. 

Therefore, this combination was selected for a more detailed analysis. Figure 5.7 illustrates 

the classification results obtained for the first study case, using a k-NN classifier with the 

chosen parameters. The relationship between the actual and predicted classes is 

summarized in the confusion matrix (Figure 5.8 (left)). The accuracy of classification was 
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estimated based on the overall accuracy, the user’s and producer’s accuracies for intact and 

damaged buildings. The overall accuracy reached a value of 84%. The classification 

provided a wrong state for 22 out of 163 destroyed buildings, corresponding to a producer’s 

accuracy of 86%. The set of objects detected as destroyed contained 215 objects, 74 of 

which were classified erroneously, yielding a user’s accuracy of 66%. The possible reasons 

for classification mistakes are discussed in section 5.4. 

The scatter plot (Figure 5.8 (right)) demonstrates that a separation of the test objects is 

possible. It can be seen that the k-NN method allows generating of a quite complex rule to 

separate areas of intact and destroyed objects in the IDM_max/DPC feature space. 

 

Figure 5.8: Classification result calculated for the study case Kamaishi, Japan (the 2011 
Tohoku earthquake) using the k-NN algorithm: confusion matrix (left) for accuracy 
assessment and scatter plot (right) illustrating the separation of objects. 

The next experiment was performed with the Support Vector Machine (SVM) classification, 

described in detail in section 4.6.2. SVM has often been shown to have great potential, 

especially for the classification of remotely sensed images involving high-dimensional data 

with small training sets (Lizarazo, 2008; Melgani & Bruzzone, 2004). However, this powerful 

classification approach has a significant drawback, namely that the learning phase becomes 

computationally very expensive with increasing training set size. In contrast to pixel-based 

approaches, the object-oriented classification requires a small set of training samples, which 

is why the application of SVM is very efficient (Tzotsos & Argialas, 2008).  

The SVM classification can be used with different kernels that have several configuration 

parameters. In the study, three kernel types were tested: linear, polynomial and RBF. This 

experiment was performed with four training sets constituting 5%, 10%, 15% and 30% of 

objects from the total number of considered objects. For each training set, the parameters of 
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the SVM kernel function were defined by the grid-search algorithm. The classification 

accuracy for the grid-search algorithm were estimated by 5-folds cross validation. The results 

are provided in Figure 5.9, illustrating a dependence of the classification performance on 

different sizes of training sets and kernel functions. As can be observed, high overall 

accuracies were obtained for all kernel functions. However, the portion of destroyed objects 

that a correctly classified (Specificity) is rather low for training sets containing 5% and 15% of 

the test data. The training set containing 10% of the objects (=70) and RBF kernel function 

provided more accurate result. Therefore, this parameter configuration was chosen for further 

detailed analysis. 

 

Figure 5.9: Selection of optimal classification parameters for SVM depending on different 
kernel function and different number of training samples calculated for the study case 
Kamaishi, Japan (the 2011 Tohoku earthquake). 

The results of classification in the form of the confusion matrix and computed accuracy 

measures are presented in Figure 5.10. The scatter plot (Figure 5.10 (right)) illustrates the 

obtained separation of the objects. The classification was performed for the testing set 

containing 626 objects, 163 of which were destroyed. 9 destroyed objects were wrongly 

classified, corresponding to a producer’s accuracy of 94%. The user’s accuracy of 68% 

signifies that 32% of buildings classified as destroyed (73 objects) are actually intact. The 

reasons for the classification errors are discussed further in section 5.4. 
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Figure 5.10: Classification results calculated for the study case Kamaishi, Japan (the 2011 
Tohoku earthquake) using the SVM algorithm: confusion matrix (left) for accuracy 
assessment and scatter plot (right) illustrating the separation of objects. 

Figure 5.11 graphically summarizes the accuracy measures for the classification techniques 

described above, which are compared based upon three accuracy measures: overall 

accuracy, kappa and error rate. Assessment based on the kappa measurement developed by 

Cohen (Cohen, 1960) is often preferred for the comparison of different classification 

techniques. Kappa can be characterized as a measure of the agreement between prediction 

and reality (Congalton R., 1991). 

 

Figure 5.11: Comparison of classification results obtained using different classifiers for the 
study case Kamaishi, Japan (the 2011 Tohoku earthquake). 

The best performance was reached using the SVM classifier, which provides the lowest error 

rate and the highest values of overall accuracy and kappa. The resulting damage map shown 
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in Figure 5.12 was generated using data obtained from the SVM classification, yielding the 

most accurate results.  

 

Figure 5.12: Resulting damage map generated from the results obtained by SVM 
classification for the study case Kamaishi, Japan (the 2011 Tohoku earthquake): white 
objects represent intact buildings, red – destroyed, and green objects correspond to the 
incorrectly classified objects. 

5.1.3.3 Comparison with texture-based change detection 

In this section, the efficiency of the DPC feature in contrast to single-parameter  texture-

based change detection is experimentally demonstrated. In this context, the classification 

assessment with different combinations of textural features is performed. Four groups of 

features were considered: the first group includes all angularly dependent features; the 

second group contains mean values of the angularly dependent features; the third group 

comprises only minimum values of the angularly dependent features; and the fourth group 

includes maximum values of the angularly dependent features. For classification, the 
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parameters determined for the above experiments were used. For the k-means clustering, 

the Euclidean distance metric was used. The supervised classification was performed with 

the training set containing 70 objects from the total data set and RBF kernel function for the 

SVM classifier; and a 𝑘-value equal to 25 was defined for the k-NN classifier. Figure 5.13 

presents the experimental results with classification accuracies calculated for k-means, k-NN 

and SVM techniques. This experiment results in low specificity values, meaning that a 

significant part of the destroyed objects was incorrectly classified. The worst results were 

obtained for minimum values of the angularly dependent features, while the best overall 

accuracies were reached for the fourth group, maximum feature values. 

 

Figure 5.13: Classification performance depending on feature sets containing different 
combinations of textural features calculated for the study case Kamaishi, Japan (the 2011 
Tohoku earthquake). 

The classification performance obtained using the feature set containing mean values of the 

angularly dependent features is lower in contrast to the classification of the maximum values. 

The comparison of results obtained for different feature sets leads to the following 

conclusions:  

1. The application of redundantly large feature sets (the first group) does not lead to 

better classification results. 

2. The application of maximal values of the angularly dependent features is more 

efficient than the commonly used mean values, for reasons discussed in section 4.5.3. 
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This experiment demonstrates that the exclusion of DPC from the feature set leads to less 

accurate classification results. Accuracies increase by 15-25% with the DPC as second 

parameter. 

5.2 Second study case: Yushu, Qinghai, China (the 2010 Yushu earthquake) 

China is the most populous country in the world and has many areas of active seismicity. A 

list of historical earthquakes in China includes numerous devastating catastrophes, such as 

the 1556 Shaanxi earthquake (more than 800 000 people were killed), the 1920 Haiyuan 

earthquake (200 000 people were killed), the 1975 Haicheng earthquake (2000 people were 

killed), the 1976 Tangshan earthquake (over 240 000 people were killed), the 2008 Sichuan 

earthquake (over 80 000 people were killed), the 2010 Yushu earthquake (2 200 people were 

killed) and a series of earthquakes in 2011 (source: see http://earthquake.usgs.gov/ 

earthquakes/world/world_ deaths.php). 

The second study case presents a part of the Yushu City, the autonomous prefecture of 

south-western Qinghai province located in the northwest of the People’s Republic of China. 

On 14 April 2010, a strong 7.1-magnitude earthquake occurred in Qinghai Province, with the 

epicentre registered about 31.5 kilometres northwest of the town of Gyegu. In the heart of 

both Yushu Tibetan Autonomous Prefecture and Yushu City, the worst-affected area in the 

region, most buildings were entirely demolished, leaving thousands of people homeless. This 

natural disaster left 2,700 people dead, 270 missing and 12,135 injured (UNICEF, 2011). 

The test study site was selected from a QuickBird satellite image dated 15 April 2010. From 

the available data set, an 843 x 467 pixel subset was selected as the study area. In the 

absence of initial cadastral vector data, a vector map containing building footprints was 

manually created from a pre-event image corresponding to the scenario dated November 6, 

2004. The test area containing 610 vector objects overlaying the raster map is presented in 

Figure 5.14. The reference information containing the post-event state of buildings was 

obtained for each vector object by a visual comparison of pre- and post-event data. 

 



Experiments and Result Discussion 
 

 

 
120 

 

 

Figure 5.14: Second study case: post-event image of city Yushu, China overlaid with vector 
map corresponded to the pre-event layout. Satellite image courtesy of Digital Globe (©Digital 
Globe 2010). 

5.2.1 Unsupervised classification 

For this study case, analogously to the previous study case, the k-means clustering with 

Euclidean metric was used for unsupervised classification. The resulting confusion matrix is 

presented in Figure 5.15. The classification allows for recognition of the destroyed objects 

with quite high values of producer’s and user’s accuracies of 85% and 87%, respectively. 

These values reflect that 58 of 395 destroyed buildings were wrongly classified and 49 intact 

buildings were erroneously included in the set of 386 destroyed objects. The obtained overall 

accuracy of 82% also confirms the high potential of the unsupervised classification approach. 
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Figure 5.15: Classification results produced for the study case Yushu, Qinghai, China (the 
2010 Yushu earthquake) using the k-means clustering algorithm: confusion matrix (left) for 
accuracy assessment and scatter plot (right) illustrating the separation of objects. 

5.2.2 Supervised classification 

As in the first study case, the supervised classification was performed using k-NN and SVM 

classification techniques. Based on the experiments performed for the first study case, 92 

objects, constituting 15% of the total number objects, were extracted as training set for 

classifier learning.  

 

Figure 5.16: Classification results produced for the study case Yushu, Qinghai, China (the 
2010 Yushu earthquake) using the k-NN algorithm: confusion matrix (left) for accuracy 
assessment and scatter plot (right) illustrating the separation of objects. 

For the k-NN classification, the value of 𝑘 was also defined as equal to 25. The result of this 

classification is provided in Figure 5.16. The obtained producer’s accuracy for the destroyed 

buildings was better than for k-means classification and reached 92%, meaning that only 28 
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of the 356 destroyed buildings were incorrectly classified. However, the user’s accuracy of 

85% was worse than for k-means classification, showing that 59 objects of 387 were 

mistakenly classified as destroyed. The overall accuracy reached 84%. 

The results of SVM classification are shown in Figure 5.17. The SVM classification was 

performed using the same training set as for the k-NN classification, with the classification 

rules built based on the RBF kernel function. The kernel parameters were determined using 

the grid-search method, with the classification accuracy evaluated by the 5-fold cross 

validation. As can be seen, 19 objects out of 356 destroyed reference building were 

incorrectly classified, reflecting a producer’s accuracy of 95%. The obtained user’s accuracy 

of 85% for destroyed building shows that the object set classified as destroyed contains 15% 

intact objects. Accordingly, the classification approach yields an overall accuracy of 86%. 

 

Figure 5.17: Classification results produced for study case Yushu, Qinghai, China (the 2010 
Yushu earthquake) using the SVM algorithm: confusion matrix (left) for accuracy assessment 
and scatter plot (right) illustrating the separation of objects. 

A comparative table with classification accuracies expressed by overall accuracy, kappa 

coefficient and error rate is shown in Figure 5.18. While all three approaches provide similar 

classification accuracy, the SVM classification leads to the best results. 
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Figure 5.18: Comparison of classification results obtained using different classifiers for the 
study case Yushu, Qinghai, China (the 2010 Yushu earthquake). 

The resulting damage map was generated from the data obtained from the SVM 

classification, providing the more accurate results. Figure 5.19 illustrates the final map, with 

the intact buildings pictured by white polygons, destroyed buildings by red polygons and 

mistakenly classified buildings by green polygons. 
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Figure 5.19: Resulting damage map generated from the results obtained by SVM 
classification for the study case Yushu, Qinghai, China (the 2010 Yushu earthquake): white 
objects represent intact buildings, red – destroyed; and green objects correspond to the 
incorrectly classified buildings. 

5.3 Third study case: Osnabrueck (Germany) 

Finally, the proposed method was tested on a data set from the city of Osnabrueck, 

Germany. This experiment was intended to demonstrate the possibility to adapt the proposed 

method to non-catastrophic applications, for detecting and documenting urban changes such 

as building demolishing or reconstruction. Figure 5.20 illustrates this study case, showing a 
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scene from Eversburg, in the north-west district of the city of Osnabrueck. The data set 

contains 319 vector objects extracted from a cadastral GIS database (Automated Land 

Registration Map (ALK), Osnabrueck, Germany) and a 649 × 417 pixel image area from an 

aerial photograph. The reference information containing the original building state was 

collected by the visual image interpretation, with the objects divided into two classes, namely 

changed and unchanged objects. 

 

Figure 5.21 demonstrates a scatter plot where the separation of the objects can be clearly 

observed. 

Figure 5.20: Third study case: a part of aerial photograph of the city Osnabrueck, Germany 
(1994), overlaid with the related vector data (data courtesy University of Osnabrueck and 
Automated Land Registration Map (ALK), City of Osnabrueck). 
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The studied area does not contain any destroyed buildings; the roof images possess a rather 

homogeneous texture for all changed and unchanged objects. Due to change of object 

location or geometry, the image corresponding to the original vector contour of changed 

objects contains fragments of vegetation and constructions surrounding objects. This image 

tends to have a heterogeneous structure, as well as the images corresponding to destroyed 

objects. Thus, for this case, the textural features describing the homogeneity of an area also 

allow detecting changed objects. However, it is obvious that the explicit measure of the 

contour integrity provided by the DPC feature must be a more reliable parameter for the 

identification of building demolition or reconstruction. 

Due to the architectural design, the study area includes buildings consisting of a series of 

adjacent vector objects joined by a common wall (Figure 5.22). Such joined objects were 

united by dissolving boundaries between objects sharing common attributes. Through the 

merging procedure, the vector data set was reduced to 157 objects. 

 

 

 

Figure 5.21: Scatter plot demonstrating the good separation of the changed and unchanged 
object sets generated for the study case Osnabrueck (Germany). 
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Figure 5.22: Representation of buildings in the data set Osnabrueck (Germany): (a) 
buildings in the original image; (b) original image overlaid with the cadaster data, where the 
buildings really consist in the series of single buildings joined by the common wall; (c) 
buildings with the dissolved boundaries. 

The object set contains only few changed objects, thus making it difficult to apply the 

classification strategies described above. However, it can be seen from the scatter plot 

presented in Figure 5.23 that the two groups - changed and unchanged buildings - can be 

well separated. 

 

Figure 5.23: Classification of building for the study case Osnabrueck (Germany). 

The classification rule can be easily derived based on the separating line 80 𝐼𝐷𝑀𝑚𝑎𝑥 +

0.3 𝐷𝑃𝐶 − 24 = 0 shown on the figure: 

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒 =  {
𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝑖𝑓 80 𝐼𝐷𝑀𝑚𝑎𝑥 + 0.3 𝐷𝑃𝐶 − 24 ≥ 0,
𝐶ℎ𝑎𝑛𝑔𝑒𝑑, 𝑖𝑓 80 𝐼𝐷𝑀𝑚𝑎𝑥 + 0.3 𝐷𝑃𝐶 − 24 < 0.

 

(a) (b) (c)

Unchanged Changed
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Figure 5.25: Resulting damage map generated for the study case Osnabrueck (Germany): 
white objects represent intact buildings, red – destroyed; and green objects correspond to 
the incorrectly classified buildings. 
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Figure 5.24: Classification result produced for the study case Osnabrueck (Germany): 
confusion matrix (left) for accuracy assessment and scatter plot (right) illustrating the 
separation of objects. 
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5.4 Discussion 

For the aforementioned study cases, the method proposed in this thesis yields reliable 

classification results (see Table 5.3).  

Study case 
Total number 

of objects 

Number of 

destroyed/ 

changed 

objects 

Overall 

accuracy 
Error rate 

Japan 696 192 86,74% 0,13 

China 610 395 85,61% 0,14 

Osnabrueck 157 9 96,81% 0,03 

However, the method fails to identify the state of some objects. Accordingly, the possible 

reasons for such failures are discussed below. 

Table 5.3: Classification summary table. 

 

1) Building is occluded with trees. Building occlusions by trees 

cause inhomogeneous appearance on a roof image. Moreover, the 

contour of a building also cannot be fully detected by the DPC. 

 

2) Deviation between the vector and raster contours. It should 

be noted that the application of this change detection method implies 

an accurate georeferencing of used maps, i.e. a precise matching of 

the vector and raster contours of the objects. In fact, it is rather difficult 

to achieve such a high accuracy. In practice, there are always objects 

with the mismatching contours on vector and raster maps, which can 

be caused by different acquisition angles of the remotely sensed 

images, poor georeferencing, roof design etc. While the large contour 

mismatching can lead to wrong DPC values, for most objects with 

mismatched contours the DPC feature is calculated correctly due to 

the certain width of search windows and the procedure of correction of 

search window positions. 
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To overcome such problems, the following approaches can be considered, with the new 

information being added in the form of additional features: 

1. Taking into account additional spectral information (Tomowski, 2011; Awrangjeb et 

al., 2012; Dong & Shan, 2013). 

2. Using approaches of 3D building change detection (Turker & Cetinkaya, 2005; Tong, 

et al., 2012). 

3. Inclusion of an algorithm for shadow elimination in an image enhancement step (Das 

& Aery, 2013; Shahtahmassebi et al., 2013). 

Despite the drawbacks listed above, the integrated analysis of the raster- and vector-based 

information applied in this work benefits the extraction of valuable data from the image due to 

the precise information concerning the geometry and location of each studied object. It 

enables filtering out meaningless information such as seasonal changes and movable 

objects (cars or peoples in the image), thus focusing the analysis solely on the objects of 

interest, collecting meaningful information in the form of features for further analysis through 

different data mining techniques. The easy integration of GIS information significantly 

simplifies the process of data interpretation with the powerful processing tools provided by 

GIS.

 

3) Objects on building roofs. The texture measures are 

sensitive to an appearance of heterogeneity caused by objects located 

on building roofs (pipes, air vents, antennas, etc.). However, in most 

cases, the DPC  successfully recognized the contour of the building. 

 

4) Building is entirely or partially covered by shadow. 

Shadows from the neighbouring objects can significantly worsen the 

results of the edge detection and the texture analysis. 
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6. Conclusion and Further Research 

The main goal of the thesis is a change detection technique for urban areas, based upon the 

combined analysis of vector and raster information. The study includes an overview of 

current change detection methods, the choice of OSS as implementation environment, 

development of a new methodology of change detection, application of a new technique for 

several study cases and assessment of its advantages and disadvantages. 

The technique is supposed to be applied for a rapid assessment of destruction in urban 

areas affected by a catastrophic event. The developed technique can be applied as an 

independent change detection tool or in addition to the conventional methods. The field of 

application advances the special demands such as robustness, a high degree of automation, 

the utilization of full available information and efficient presentation of results, which are 

taken into account during the development. Moreover, the extensibility of the technique is 

also addressed. The structure of the developed change detection technique and its Open 

Source Software based implementation allow for easy extension of the technique. The 

development involves a combination of different techniques in the field of data mining, image 

enhancement, image processing, GIS, and visualization. For the treatment of vector 

information, a new feature, the DPC, is developed and the conventional approach to 

calculate GLCM textural features is adapted for object-based analysis. 

Three independent study cases show the high potential of the presented technique, for both 

rapid mapping of building damage and new developments. However, some drawbacks were 

also recognized, including the strong influence of surrounding vegetation and shadows, 

deviation between raster and vector contours of a building and the appearance of some add-

ons on the building roofs. 

6.1 Considered problems 

The study starts by providing an overview and analysis of conventional change detection 

techniques, vector and raster data structures, GIS application and the combined analysis of 

vector and raster data. Vector data is shown as effective supplement to raster data and their 

combination allows for improved change detection analysis, especially in urban areas. The 

GIS is chosen as the essential implementation platform for integrated analysis of vector and 

raster data. 

The technique of change detection is implemented based on several Open Source packages 

(GRASS GIS, Python (programming language) and Orange (data mining software). Through 

the use of Python programming language, it becomes possible to integrate all parts of the 

algorithm into a single system, which enables easily automating the developed method. 
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The use of Open Source Software as implementation platform allows the fast inclusion and 

validation of new ideas and algorithms. The study of Open Source Software feasibilities 

proves that Open Source Software provides almost the same functionality as commercial 

software. Moreover, due to the flexible licences and no costs, the obtained implementation of 

the method can be easily distributed and customized. 

A methodological concept for a change detection procedure based upon integrated 

information extracted from a vector and raster data is developed and described in detail. In 

the proposed change detection technique, several main steps can be realized: raster data 

enhancement, extraction of features describing objects and classification of object state. For 

each step, appropriate methods are selected. It is suggested to perform the image 

enhancement by means of the homomorphic filtering. The features are split into two groups, 

extracted from vector and raster data. As a feature representing vector data, the new feature 

Detected Part of Contour (DPC) is developed and used, which represents a detectable part 

of a building contour. The features corresponding to raster data are obtained based on 

Haralick’s texture measures characterizing image homogeneity: Angular Second Moment 

(ASM), Inverse Difference Moment (IDM) and Inertia. The calculation of textural features is 

adapted for object-oriented analysis. It is found that the application of maximal values of the 

angularly dependent features is more efficient than the commonly used mean values. For the 

classification of building states, both the supervised and unsupervised approaches are 

studied, with methods proposed: k-means (unsupervised classification), k-NN and SVM 

(supervised classification).  

The experimental part of this thesis demonstrates the effectiveness of the developed change 

detection algorithm based upon three study cases. The first study case illustrates destruction 

after the devastating tsunami caused by the 2011 Tohoku earthquake in Japan, the second 

data set was obtained after the 2010 Yushu earthquake in China and the aim of the third 

experiment was to demonstrate a possibility to adapt the suggested method to a non-

catastrophic scenario involving reconstructed or demolished buildings.  

From the feature set, the features DPC and IDM_max are selected as being most informative 

and are used for the classification. The experiments produce an overall accuracy of over 

80% for all study cases. The analysis proves the efficiency of the integrated analysis of 

vector and raster data. Despite the high performance of the developed algorithm, the studies 

considered reveales several drawbacks, which are described in section 5.4. 

6.2 Recommendations and further research 

Based on the findings and aforementioned limitations, the study concluded with the following 

recommendations for further investigation: 
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1) While the technique of change detection is developed for the classification of buildings 

into destroyed and intact, in certain cases, buildings are only partially destroyed. In such 

a case, the algorithm can be adapted to evaluate the integrity of a building’s individual 

segments/walls. In turn, this requires the application of classification approaches to solve 

multi-class problems given the various damage grades of buildings.  

2) The usage of features extracted from spectral information and data of stereo 

photogrammetry. The new features can help to overcome the drawback of the algorithm 

related to the objects covered by crowns of trees or shadows.  

3) The individual steps of the developed method can be improved depending on the 

particular situation. For example, new approaches to image enhancement, edge 

detection or classification techniques can be evaluated and implemented.  

4) The efficiency of the change detection analysis can be studied for different catastrophic 

scenarios, such as floods, landslides, hurricanes, or fires. 
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Appendix 5.1

Figure 1: Frequency distribution histograms

of selected features. Angular Second

Moment (ASM). Red rectangles correspond

to destroyed buildings, green to intact

buildings. Study case Kamaishi, Japan (the

2011 Tohoku earthquake.
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Appendix 5.1

Figure 2: Frequency distribution histograms

of selected features. Inertia. Red rectangles

correspond to destroyed buildings, green to

intact buildings. Study case Kamaishi,

Japan (the 2011 Tohoku earthquake.
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Appendix 5.1

Figure 3: Frequency distribution histograms of selected features. Inverse Difference

Moment (IDM) and Detected Part of Contour (DPC). Red rectangles correspond to

destroyed buildings, green to intact buildings. Study case Kamaishi, Japan (the 2011

Tohoku earthquake.
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