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Preface

The study of graded ideals in a polynomial ring is an important area in Com-
mutative Algebra. It relates to the study of coordinate rings of algebraic varieties,
Stanley-Reisner rings and many other topics in Algebra, Geometry, Combinatorics
and Topology; see, e.g., the book by Bruns and Herzog [12] and Eisenbud [21].
As a tool, one usually uses graded ideals by the fact that every finitely generated
graded algebra over a field is isomorphic to a quotient ring of a polynomial ring by
a graded ideal. Since the work of Hilbert, many useful tools have been developed to
study graded ideals over a polynomial ring. Many of these methods can be used in a
similar way for graded ideals over a exterior algebra with some suitable adjustments.
But there are still many notions and properties over the polynomial ring for which
not much is known about their counterparts over the exterior algebra, e.g., regular
elements (of degree greater than 1) or the Gorenstein property.

This thesis is concerned with structures and properties of graded ideals over the
exterior algebra. We study minimal graded resolutions, Gröbner fans of graded ideals
and variations of the Koszul property of standard graded algebras defined by graded
ideals. We apply our results to Orlik-Solomon ideals of hyperplane arrangements and
show in which way the exterior algebra is useful in the study of related combinatorial
objects. For further applications of exterior algebra methods; see, e.g., [1, 38, 45].

Let K be a fixed field. The exterior algebra E = K〈e1, . . . , en〉 in n variables
over K is a skew-commutative Z-graded K-algebra, with deg ei = 1. We denote by
M the category of finitely generated graded left and right E-modules M satisfying
the equations um = (−1)deg udegmmu for homogeneous elements u ∈ E, m ∈ M . A
graded ideal of E is a graded submodule of E.

This thesis is divided in six chapters. Chapter 1 introduces definitions, nota-
tions and gives a short review on those facts which are relevant to next chapters.
In particular, Section 1.2 collects necessary notions and properties related to free
resolutions of a module M ∈M. One important invariant here is the Castelnuovo-
Mumford regularity of M ∈M given by regE(M) = max{j− i : βEi,j(M) 6= 0} where

βEi,j(M) = dimK TorEi (K,M)j, for i, j ∈ Z, are the graded Betti numbers of M .
The Cartan complex, which is the minimal free resolution of the residue field of

E, is a very useful tool to investigate graded Betti numbers and the Castelnuovo-
Mumford regularity of modules over the exterior algebra; see, e.g., Aramova and
Herzog [2]. This complex has similar properties as well-known properties of the
Koszul complex over the polynomial ring. In Chapter 2, after recalling some facts
about Cartan homology and generic bases, we prove some properties for a special
kind of generic bases, namely strongly generic bases. As applications, we provide
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formulas for computing the Castelnuovo-Mumford regularity of modules over the
exterior algebra (see Theorem 2.3.2 and Corollary 2.3.3). These are similar to the
classical results over the polynomial ring; see, Conca and Herzog [15, Proposition
1.2, Corollary 1.3].

We present in Chapter 3 an overview of Gröbner fans over the exterior algebra.
Analogously to Gröbner fans over the polynomial ring defined by Mora and Robbiano
[44], we see that the construction and many properties of Gröbner fans still work for
the exterior algebra. See, e.g., [10], [41], [61] for more details on the Gröbner fan
over the polynomial ring. However, we need some modifications to find a suitable
definition for a special subfan of the Gröbner fan of a graded ideal in the exterior
algebra corresponding to tropical varieties. Note that tropical varieties are the main
objects of tropical geometry, and recently have received a lot of attention. See, e.g.,
[43] for more details. Using Definition 3.2.1, our subfan has some similar properties
to known properties of the tropical variety over the polynomial ring. In particular,
by considering the generic case, we prove in Theorem 3.3.2 and Theorem 3.3.7 the
existence of the generic Gröbner fan of a graded ideal which are similar to a result
of Römer and Schmitz [54] for the polynomial ring case.

Let M ∈ M. We say that M has a d-linear resolution if βEi,i+j(M) = 0 for all i
and all j 6= d. Following [32], M is called componentwise linear if the submodule
M〈i〉 of M generated by Mi has an i-linear resolution for all i ∈ Z. Furthermore, M
is said to have linear quotients with respect to a system of homogeneous generators
m1, . . . ,mr if (m1, . . . ,mi−1) :E mi is a linear ideal for i = 1, . . . , r. Here a linear
ideal is an ideal in E generated by linear forms. We say that M has componentwise
linear quotients if each submodule 0 6= M〈i〉 of M for i ∈ Z has linear quotients
w.r.t. some of minimal systems of homogeneous generators.

Chapter 4 is devoted to the study of the structure of minimal graded free res-
olutions of graded ideals in E. More precisely, we are interested in graded ideals
which have d-linear resolutions, linear quotients and are componentwise linear. It
is well-known that a graded ideal with linear quotients w.r.t. a minimal system of
homogeneous generators is componentwise linear (see [59, Corollary 2.4] for the
polynomial ring case and [37, Theorem 5.4.5] for the exterior algebra case). We
give an another proof for this result in Corollary 4.2.5 by using Theorem 4.2.4 which
states that if a graded ideal has linear quotients then it has componentwise linear
quotients.

Motivated by a result of Conca and Herzog in [15, Theorem 3.1] that a product
of linear ideals in the polynomial ring has a linear resolution, we study in Section
4.3 the question whether this result holds over the exterior algebra. At first, we have
a positive answer in the case that the linear ideals are generated by variables (see
Theorem 4.3.2). We continue in Section 4.4 with a discussion for the general case.
More precisely, with additional assumptions we may prove the positive answer for
the question above (see Theorem 4.4.7).

Koszul algebras are widely studied class of rings in algebra. They are standard
graded K-algebras over which every finitely generated graded module has finite
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Castelnuovo-Mumford regularity (see, e.g., [5, 6]). Let R be a standard graded K-
algebra. R is called a Koszul algebra over K if K has a linear resolution over R. To
ensure Koszulness of R, one shows for example that its defining ideal has a quadratic
Gröbner basis w.r.t. some coordinate system of E1 and some monomial order on E.
In this case, one says that the algebra R is G-quadratic. For an updated survey
on Koszul algebras, we refer the reader to Fröberg [27]. Another powerful tool to
deduce Koszulness, namely Koszul filtrations, is introduced by Conca, Trung and
Valla in [18]. Using this, one can define several variations of the Koszul property,
e.g., universally Koszul, strongly Koszul and initially Koszul properties. See, e.g.,
[9, 13, 14, 16, 17, 34] for more details.

In Chapter 5, we study several variations of the Koszul property over the exterior
algebra. LetR = E/J be a standard gradedK-algebra where J ⊂ E is a graded ideal
which does not contain linear forms. Assume that R is Koszul. Then J is generated
in degree 2. We consider in Section 5.2 the universally Koszul property of algebras
defined by edge ideals in the exterior algebra. It is shown that the classification of
universally Koszul algebras defined by monomial ideals in the polynomial ring (see
[14, Theorem 5]) still holds for the exterior algebra. For the convenience of the reader
and for the proofs in Section 6.4 we reproduce this in Theorem 5.2.11. By slightly
modifying the definition of the strongly Koszul property given in [34, Definition 1.1],
we define in Section 5.3 the unconditioned strongly Koszul property and give an
example to show that the universally Koszul and (unconditioned) strongly Koszul
properties are distinct notions (see Example 5.3.3). Note that Conca, De Negri
and Rossi also study the unconditioned strongly Koszul property in [17, Definition
3.11] using the name “strongly Koszul”. Moreover, we prove in Proposition 5.3.5
that every algebra defined by a quadratic monomial ideal is unconditioned strongly
Koszul (see [17, Theorem 3.15] for the proof in the polynomial ring case). We
also give a necessary condition for elements of degree 2 in the exterior algebra to
define unconditioned strongly Koszul algebras (see Proposition 5.3.6). In Section 5.4,
we study standard graded K-algebras with Gröbner flags, namely initially Koszul
algebras, over the exterior algebra. It is known that if a standard graded algebra
over a polynomial ring has a Gröbner flag then it is G-quadratic (see [9, Proposition
2.3] and [16, Proposition 2.5]). This still holds for standard graded algebras over
the exterior algebra (see Proposition 5.4.5).

Let E = K〈e1, . . . , en〉 be the exterior algebra over a field K with charK = 0.
For a set of indices F = {i1, . . . , it} ⊆ {1, . . . , n}, we write eF = ei1∧ei2∧· · ·∧eit and
∂ eF =

∑t
j=1(−1)j−1eF\{ij}. Let A = {H1, . . . , Hn} be an essential central hyper-

plane arrangement in Cl with the complement X (A) = Cl \
⋃
H∈AH. We say that a

subset {Hi : i ∈ F} of hyperplanes of A is dependent if their defining linear forms are
linearly dependent. One important result of hyperplane arrangement theory, proved
by Orlik and Solomon [46], is that the singular cohomology H.(X (A);K) of X (A)
with coefficients in K is isomorphic to the Orlik-Solomon algebra E/J where J is
the Orlik-Solomon ideal of A generated by all elements ∂eF such that {Hi : i ∈ F}
is dependent. See Orlik-Terao [47] and Yuzvinsky [65] for details. See also, e.g.,
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[1, 19, 22, 38, 56, 57] for the study of Orlik-Solomon algebras via exterior algebra
methods.

The motivation for Chapter 6 is to apply results in the previous chapters on
Orlik-Solomon ideals and Orlik-Solomon algebras. More precisely, in Theorem 6.2.1
and Corollary 6.2.2 we characterize essential central hyperplane arrangements of
rank ≤ 3 whose Orlik-Solomon ideals are componentwise linear. We also propose
a conjecture to characterize componentwise linearity of Orlik-Solomon ideals in the
general case (see Conjecture 6.3.1) and study exterior algebras with few number of
variables and arrangements with small ranks. In Section 6.4, we classify completely
Orlik-Solomon algebras which are universally Koszul as well as initially Koszul (see
Theorem 6.4.3 and Theorem 6.4.5). More precisely, the Orlik-Solomon algebra E/J
of an essential central hyperplane arrangement A is universally Koszul if and only if
J has a 2-linear resolution; E/J has a Gröbner flag if and only if A is supersolvable.

Note: The content of Section 6.2 and 6.3 is contained in the preprint [62] with
major changes in the presentation.



CHAPTER 1

Background

The purpose of this chapter is to introduce basic notions and methods that are
used in the thesis. We assume that the reader is familiar with fundamental notions
and results in commutative algebra. For more details of unexplained facts, we refer
to the books by Matsumura [42], Eisenbud [21], and Bruns and Herzog [12]. We
also use material of exterior algebras from the book by Herzog and Hibi [32].

1.1. Preliminaries

Let K be a field and V an n-dimensional K-vector space, where n ≥ 1, with a
fixed basis e1, . . . , en. We denote by E = K〈e1, . . . , en〉 the exterior algebra of V . It
is a standard graded K-algebra with defining relations v ∧ v = 0 for all v ∈ V and
graded components Ei = ΛiV by setting deg ei = 1. Elements of degree one in E
are called linear forms. For linear forms v, w, one has v ∧ w = −w ∧ v. For a set
of indices F = {i1, . . . , it} ⊆ [n] = {1, . . . , n} with i1 < i2 < . . . < it, we denote by
eF the monomial ei1 ∧ ei2 ∧ · · · ∧ eit and write also eF = ei1 · · · eit to simplify the
notation. We also omit ∧ in products of elements in E from now on.

An arbitrary element f in E can be written uniquely in the form f =
∑

F aF eF
which is a K-linear combination of monomials. The set supp(f) = {eF : aF 6= 0} is
called the support of f . We identify sometimes supp(f) with {F : eF ∈ supp(f)}.
We also define the support of a set G of elements in E by the union of all support-sets
of elements in G if the union is a finite set.

The category of modules M considered in this thesis is the category of finitely
generated graded left and right E-modules M satisfying the equations

um = (−1)deg u degmmu

for homogeneous elements u ∈ E, m ∈ M . For a graded E-module M ∈ M and
k ∈ Z, the set of all homogeneous elements of degree k belonging to M is denoted
by Mk. A submodule of E is called an ideal of E. If an ideal is generated by
monomials, then it is called a monomial ideal. Note that we only work with graded
ideals which are always two-sided ideals and the only maximal graded ideal in E is
m = (e1, . . . , en). For a graded ideal J ⊂ E, the graded E-module E/J admits a
natural structure of a graded K-algebra.

We consider the duality functor (−)∗ on M given by M∗ = HomE(M,E) for
M ∈ M. For a graded ideal J ⊂ E, let (0 :E J) = {f ∈ E : fJ = 0}. One can
prove that

(E/J)∗ = HomE(E/J,E) ∼= (0 :E J).

We use also the notation annE(J) for (0 :E J).

11
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Note that every module M ∈ M has only finitely many non-zero homogeneous
components. Let d(M) denote the highest degree in which a non-zero module M is
not zero, i.e., d(M) = max{i ∈ Z : Mi 6= 0}.

Since each homogeneous component of M is a finite dimensional K-vector space,
one can define the Hilbert function H(−,M) of M by H(i,M) = dimKMi for i ∈ Z.
The Hilbert series of M is HM(t) =

∑
i∈ZH(i,M)ti. Note that it has only finitely

many summands.
For a ∈ Z, let M(−a) be the module M shifted in degrees by a. More precisely,

one has M(−a)i = Mi−a. Observe that

d(M(−a)) = d(M) + a and HM(−a)(t) = taHM(t).

Let M ∈ M. Following [1], a linear form v ∈ E1 is called regular on M (or
M -regular) if the annihilator of v in M is the smallest possible submodule, i.e.,
(0 :M v) = vM . Otherwise, v is called M-singular. The set of all M -singular
elements is denoted by VE(M) and is called the rank variety of M . A sequence of
linear forms v1, . . . , vs is called an M-regular sequence if vi is M/(v1, . . . , vi−1)M -
regular for i = 1, . . . , s and M/(v1, . . . , vs)M 6= 0. It is shown in [1] that all maximal
M -regular sequences have the same length. This length is called the depth of M
over E and is denoted by depthE(M).

Lemma 1.1.1. Let J ⊂ E be a graded ideal. A linear form v ∈ E1 is E/J-
regular if and only if J :E v = J + (v).

Proof. v is E/J-regular if and only if annE/J(v) = v(E/J). The statement now
follows from the fact that annE/J(v) = (J :E v)/J and vE/J = (J + (v))/J . �

Next we sketch main features and facts of Gröbner basis theory over the exterior
algebra. This theory is almost analogous to Gröbner basis theory over the polyno-
mial ring. But it needs some suitable modifications since we have more zero divisors
in the exterior algebra. See, e.g., the book by Herzog and Hibi [32, Section 5.2] for
more details.

Definition 1.1.2. A monomial order on E is a total order < on the set Mon(E)
of all monomials of E such that:

(i) 1 < u for all 1 6= u ∈ Mon(E);
(ii) if u, v ∈ Mon(E) and u < v then uw < vw for all w ∈ Mon(E) such that

uw, vw 6= 0.

Each monomial u = eF = ei1ei2 · · · eit ∈ Mon(E) has a corresponding squarefree
monomial u∗ = xF = xi1xi2 · · ·xit in the polynomial ring S = K[x1, . . . , xn]. For
f =

∑
auu ∈ E, we also denote f ∗ =

∑
auu

∗ ∈ S. The reverse lexicographic order
on E induced by e1 > e2 > . . . > en is defined as follows:

eF <rlex eG ⇔ xF <rlex xG.

Let < be a monomial order on E, and 0 6= f ∈ E. Recall that the initial
monomial of f with respect to <, denoted by in<(f), is the largest monomial among
the monomials belonging to supp(f). Let J ⊂ E be a graded ideal. The initial ideal
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in<(J) of J is the monomial ideal in E generated by all monomials in<(f) with
0 6= f ∈ J .

Definition 1.1.3. Let 0 6= J ⊂ E be a graded ideal. A Gröbner basis of J with
respect to < is a finite set g1, . . . , gs of generators of J such that

in<(J) = (in<(g1), in<(g2), . . . , in<(gs)).

The Gröbner basis G = {g1, g2, . . . , gs} of J is called reduced if for all i the
coefficient of in<(gi) in the element gi is 1, and for all i and j with i 6= j, in<(gi)
divides none of the monomials of supp(gj). A reduced Gröbner basis of J exists and
is uniquely determined (see [32, Theorem 5.2.3]).

A finite subset of J is a universal Gröbner basis of J if it is a Gröbner basis of
J with respect to every monomial order on E.

In a similar way for the polynomial ring, there is a division algorithm for the
exterior algebra. We present here this result for the convenience of the reader.

Theorem 1.1.4 (The division algorithm, [32, Theorem 5.2.4]). Let g1, . . ., gs,
f be homogeneous non-zero elements of E and < a monomial order on E. Then there
exist homogeneous elements h1, . . . , hs, r ∈ E such that f has a standard expression

f =
s∑
i=1

higi + r,

with the property that no v ∈ supp(r) belongs to (in<(g1), . . . , in<(gs)), and whenever
higi 6= 0, then in<(hi)

∗in<(gi)
∗ ≤ in<(f)∗.

Let f ∈ E be a homogeneous non-zero element with the standard expression
f =

∑s
i=1 higi + r as above. If the remainder of f with respect to g1, . . . , gs is 0, i.e.,

r = 0, then one says that f reduces to 0 with respect to g1, . . . , gs.
Analogously to the polynomial ring case, there are also exterior algebra versions

of the Buchberger’s criterion and the Buchberger’s algorithm; see, e.g., [32, Theorem
5.2.6] for more details. Moreover, one has:

Lemma 1.1.5. Let 0 6= J ⊂ E be a graded ideal. Then:

(i) There are only finitely many distinct initial ideals of J .
(ii) There always exists a universal Gröbner basis for J .

(iii) For every monomial order < on E, the monomials of E, which do not
belong to in<(J), form a vector space basis for E/J . In particular, J and
in<(J) have the same Hilbert series.

Proof. (i), (ii): It is obvious that there are only finitely many monomials in
E. Thus there are only finitely many distinct initial ideals of J . The union of the
reduced Gröbner bases corresponding to the initial ideals of J is a universal Gröbner
basis of J .

(iii): Let G = {g1, g2, . . . , gs} be a Gröbner basis of J with respect to <, let f ∈ E
and r the remainder of f with respect to g1, . . . , gs. Then f + J = r+ J and by the
division algorithm, we also have supp(r) ∩ in<(J) = ∅. Thus E/J is generated by
the monomials u 6∈ in<(J). Suppose that there exist monomials u1, . . . , um not in
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in<(J) which are linearly dependent modulo J , i.e., there exists f =
∑m

i=1 aiui ∈ J
for some ai ∈ K. Then no term of f belongs to in<(J) but in<(f) ∈ in<(J), a
contradiction. This concludes the proof. �

Corollary 1.1.6. Let <,<′ be monomial orders on E and J, J ′ ⊂ E graded
ideals.

(i) If in<(J) ⊆ in<′(J), then in<(J) = in<′(J).
(ii) If J ⊆ J ′ and in<(J) = in<(J ′), then J = J ′.

Proof. (i) This follows from Lemma 1.1.5 (iii), because the monomials of E not
in in<(J) (in<′(J), respectively) form a basis for the same vector space E/J .

(ii) Since in<(J) = in<(J ′), by Lemma 1.1.5 (iii) we get that J and J ′ have the
same Hilbert series. Moreover, J ⊆ J ′. Therefore, J = J ′. �

1.2. Resolutions

We present in this section some homological properties of graded modules inM
related to resolutions. Let M ∈ M. As in the case of the polynomial ring, one can
construct a graded free resolution of M . It is of the form

F• : . . . −→ F2 −→ F1 −→ F0 −→M −→ 0,

where all Fi are finitely generated graded free E-modules. The complex F• is called
a graded free resolution of M . It is minimal if the chosen systems of generators are
minimal in each step of its construction. This condition is equivalent to the require-
ment that all entries in the matrices representing the differential maps are elements
in m. Moreover, it is known that two minimal resolutions of M are isomorphic as
complexes. Thus the minimal graded free resolution of M is uniquely determined
and it is an exact sequence of the form

. . . −→
⊕
j∈Z

E(−j)βE
1,j(M) −→

⊕
j∈Z

E(−j)βE
0,j(M) −→M −→ 0.

Note that βEi,j(M) = dimK TorEi (K,M)j for all i, j ∈ Z. We call the numbers βEi,j(M)
the graded Betti numbers of M . The module M is said to have a d-linear resolution
if βEi,i+j(M) = 0 for all i and j 6= d. This is equivalent to the condition that M
is generated in degree d and all non-zero entries in the matrices representing the
differential maps are of degree one.

Let t(M) be the initial degree of M , i.e., t(M) = min{i ∈ Z : Mi 6= 0}. One
has βEi,i+j(M) = 0 for all j < t(M). The numbers βEi,i+t(M)(M) describe the linear
strand of the minimal graded free resolution of M , i.e., they count the number of
linear syzygies appearing in the resolution.

To measure the growth rate of the Betti numbers of M , one use the complexity
of M defined as

cxM = inf{c ∈ N : βEi (M) ≤ αic−1 for some α ∈ R and for all i ≥ 1},
where βEi (M) =

∑
j∈Z βi,j(M) is the i-th total Betti number of M . Note that

cx(0) = cx(E) = −∞. In contrast to the polynomial ring, the projective dimension
is not a very useful invariant for a module over the exterior algebra since a (minimal)
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graded projective resolution of the module has always infinite length unless the
module is free. But one still can consider the (Castelnuovo-Mumford) regularity for
a graded module M ∈M. It is given by

regE(M) = max{j − i : βEi,j(M) 6= 0} for M 6= 0 and regE(0) = −∞.
For every 0 6= M ∈ M, one can show that t(M) ≤ regE(M) ≤ d(M) (see [37,
Section 2.1]). So regE(M) is always a finite number for every M 6= 0.

Note that for a graded ideal J 6= 0, by the above definitions one has

cxE(E/J) = cxE(J) and regE(E/J) = regE(J)− 1.

This can be seen indeed by the fact that if F• −→ J is the minimal graded free
resolution of J , then F• −→ E −→ E/J is the minimal graded free resolution of
E/J .

For a short exact sequence 0 → M → N → P → 0 of non-zero modules in
M, there are relationships among the regularities of its modules by evaluating in
Tor-modules in the long exact sequence

. . . −→ TorEi+1(P,K)i+1+j−1 −→ TorEi (M,K)i+j −→ TorEi (N,K)i+j −→
TorEi (P,K)i+j −→ TorEi−1(M,K)i−1+j+1 −→ . . .

More precisely, one has:

Lemma 1.2.1. Let 0→M → N → P → 0 be a short exact sequence of non-zero
modules in M. Then:

(i) regE(N) ≤ max{regE(M), regE(P )}.
(ii) regE(M) ≤ max{regE(N), regE(P ) + 1}.

(iii) regE(P ) ≤ max{regE(N), regE(M)− 1}.

1.3. Generic initial ideals

In this section we recall some facts about generic initial ideals in an exterior
algebra. The existence of generic initial ideals is proved by Aramova, Herzog and
Hibi in [3, Theorem 1.6] and independently by Green in Chapter 5 of [29]. Most
properties of generic initial ideals over a polynomial ring can be translated to generic
initial ideals over an exterior algebra. Some of them are even better in the sense
that they do not depend on the characteristic of the base field, e.g., the strongly
stable property of generic initial ideals.

At first, we present briefly basis notions and properties of (strongly) stable ideals.
Let u = eF ∈ E be a monomial where F ⊆ [n]. Denote by

max(u) = max{i : i ∈ F} and min(u) = min{i : i ∈ F}.

Definition 1.3.1. A monomial ideal J ⊂ E is called stable if ej
u

emax(u)
∈ J for

every monomial u ∈ J and j < max(u). The ideal J is called strongly stable if
ej

u
ei
∈ J for every monomial u = eF ∈ J , i ∈ F and j < i.

For a monomial ideal J ⊂ E, we denote by G(J) the minimal set of monomial
generators of J , and by G(J)j ⊆ G(J) the subset of generators of degree j in G(J).
Let 0 6= J ⊂ E be a stable monomial ideal. One can compute several important



16 1. BACKGROUND

invariants of J as follows (see, e.g., [1, Corollary 3.2], [3, Corollary 3.3] and [37,
Lemma 3.1.4, 3.1.5] for more details):

Lemma 1.3.2. Let 0 6= J ⊂ E be a stable monomial ideal. Then:

(i) βEi,i+j(J) =
∑

u∈G(J)j

(
max(u)+i−1

max(u)−1

)
for all i ≥ 0, j ∈ Z.

(ii) cxE/J = max{max(u) : u ∈ G(J)}.
(iii) regE(J) = max{deg u : u ∈ G(J)}.
(iv) d(E/J) = n−max{min(u) : u ∈ G(J)} if additionally J is strongly stable.

Let < be the reverse lexicographic order on E with e1 > e2 > . . . > en. The
initial ideal of a graded ideal J ⊂ E with respect to this order is denoted by in(J).
When the base field K is infinite, Aramova, Herzog and Hibi in [3, Theorem 1.6]
proved the existence of a non-empty Zariski-open subset U ⊆ GLn(K) such that
all in(g(J)) are the same monomial ideal for g ∈ U . This monomial ideal is called
the generic initial ideal of J , denoted by gin(J). The generic initial ideal of a
graded ideal is strongly stable by [3, Proposition 1.7]. This is independent of the
characteristic of the base field K in contrast to the situation in a polynomial ring.

There are some expected relationships between a graded ideal in the exterior
algebra and its (generic) initial ideal. For instance, the Hilbert functions of E/J
and E/in(J) coincide for any graded ideal J ⊂ E. The Betti numbers of E/in(J)
are not smaller than those of E/J , i.e.,

βEi,j(E/in(J)) ≥ βEi,j(E/J) for all i, j;

see [3, Proposition 1.8]. The (Castelnuovo-Mumford) regularity of J and gin(J)
coincide as follows:

Lemma 1.3.3 ([2, Theorem 5.3]). Let |K| = ∞ and 0 6= J ⊂ E be a graded
ideal. One has

regE(J) = regE(gin(J)).

In particular, J has a d-linear resolution if and only if gin(J) has a d-linear resolu-
tion.

1.4. Simplicial complexes

Since the early work of Stanley and Hochster, it turned out to be very useful
to use methods from commutative algebra to solve purely combinatorial problems
related to simplicial complexes. Recall that a simplicial complex ∆ on the ground
set [n] = {1, . . . , n} is a collection of subsets of [n] such that if G ∈ ∆ and F ⊂ G
then F ∈ ∆. Elements of ∆ are called faces. For a face F ∈ ∆, the dimension of
F is dimF = |F | − 1. The dimension of ∆, write dim ∆, is the maximum of the
dimensions of faces. The maximal faces under inclusion are called the facets of ∆.
A simplicial complex ∆ is called pure if all its facets have the same dimension. If ∆
has only one facet then ∆ is called a simplex.

Let S = K[x1, . . . , xn] be a polynomial ring. A famous algebra associated to
each simplicial complex ∆ was introduced by Stanley, namely its Stanley-Reisner
ring. It is defined as follows: let I∆ be the monomial ideal in S generated by all
squarefree monomials xF corresponding to non-faces of ∆, i.e., I∆ = (xF : F 6∈ ∆).
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The ideal I∆ is called the Stanley-Reisner ideal and the quotient ring K[∆] = S/I∆

is called the Stanley-Reisner ring of ∆.
Let E = K〈e1, . . . , en〉 be an exterior algebra. By the same way as in the case of

polynomial rings, one can associate to a simplicial complex ∆ the exterior face ring
K{∆} = E/J∆, where J∆ = (eF : F 6∈ ∆) is the exterior face ideal of ∆; see, e.g.,
[30] for an overview.

To each simplicial complex ∆, one also can associate a dual simplicial complex
called the Alexander dual of ∆. It is denoted by ∆∗ and is defined by

∆∗ = {F ⊂ [n] : [n] \ F 6∈ ∆}.
Note that the facets of ∆∗ are the complements of the minimal non-faces of ∆.

Example 1.4.1. Let ∆ = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}}. Then ∆ is a simplicial
complex on [3]. It is a pure simplicial complex with dim ∆ = 1. The Stanley-Reisner
ring and the exterior face ring of ∆ are:

K[∆] = K[x1, x2, x3]/(x2x3) and K{∆} = K〈e1, e2, e3〉/(e2e3), respectively.

The Alexander dual of ∆ is ∆∗ = {∅, {1}}.

1.5. Resonance varieties

We present in this section basic notions and properties of resonance varieties
which were defined firstly by Falk in [24] for Orlik-Solomon algebras of hyperplane
arrangements. We will see in Chapter 6 that resonance varieties are very useful to
study the ring structure of Orlik-Solomon algebras. For more details of resonance
varieties, we refer to [55, Chapter 4].

Let A = E/J be a graded algebra and u ∈ A1, where J is a graded ideal of E.
Since u2 = 0, we have a cochain complex

(A, u) : 0 −→ A0
·u−→ A1

·u−→ · · · ·u−→ Ar
·u−→ . . .

Its cohomology is denoted by H.(A, u). For p ≥ 0, the degree-p resonance variety
of A is the set

Rp(A) = {u ∈ A1 : Hp(A, u) 6= 0}.
It is known that Rp(A) is an affine variety in the affine space A1

∼= Km where
m = dimK A1.

Note that if u ∈ Rp(A) then αu ∈ Rp(A) for all α ∈ K\{0}. Thus each resonance
variety Rp(A) is homogeneous and one can consider resonance varieties as projective
varieties in the projective space Pm−1. In other words, there exists a corresponding
theory of projective resonance varieties in the projective setting. See [24], [40], [55,
Chapter 4] for more details.

In the following we always assume that a graded ideal J is non trivial and contains
no variable. The resonance varieties of A = E/J can be computed by the following
formulas:

R1(A) = {u ∈ E1 : u = 0 or ∃v ∈ E1, 0 6= uv ∈ J2},(1)

Rp(A) = {u ∈ E1 : u = 0 or ∃v ∈ Ep, v 6∈ Jp + uEp−1, 0 6= uv ∈ Jp+1}.(2)
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In the case that J is a monomial ideal, the resonance varieties of E/J are com-
pletely determined by Papadima and Suciu (see [48, Theorem 5.5], [49, Theorem
3.8]). For the convenience of the reader we present a special case where the first
resonance variety is irreducible. Concretely, by considering the resonance varieties
of graded algebras defined by stable monomial ideals, we have:

Lemma 1.5.1. Let J ⊂ E be a stable monomial ideal with J2 6= 0. Then the
first resonance variety R1(E/J) of E/J is irreducible.

Proof. Let t = max{max(u) : u ∈ G(J)2}. There exists an integer r with
1 ≤ r < t such that u = eret ∈ J2. We claim that R1(E/J) = spanK{e1, . . . , et}
which is irreducible.

Observe that eiu/et ∈ J for all i < t since J is stable. Hence

erei ∈ J2 for 1 ≤ i ≤ t and thus er

t∑
i=1

αiei ∈ J2 for every αi ∈ K.

Using formula (1) we see that spanK{e1, . . . , et} ⊆ R1(E/J). In particular, for t = n
we get that the claim holds, so assume t < n in the following.

We consider an arbitrary element 0 6= u =
∑n

i=1 αiei ∈ R1(E/J). Suppose that
there exists an integer s and 0 6= v =

∑n
j=1 βjej ∈ E1 with

t < s ≤ n such that αs 6= 0 and 0 6= uv ∈ J2.

By the choice of t we see that

esej 6∈ J2 for j ∈ {1, . . . , n} \ {s}.
Thus the monomial esej does not appear in uv. So we get

αsβj − αjβs = 0 for all j = 1, . . . , n.

If βs = 0 then βj = 0 for j = 1, . . . , n. This contradicts the fact that v 6= 0. So
βs 6= 0. This implies that αj 6= 0 if and only if βj 6= 0 and in this case

βj =
βs
αs
αj for all j = 1, . . . , n.

Thus v = ku where k = βs/αs and we see that uv = 0. This is also a contradiction
to the choice of u and v. Hence αs = 0 for every integer s with s > t. Altogether
we see that

R1(E/J) ⊆ spanK{e1, . . . , et} and then R1(E/J) = spanK{e1, . . . , et}.
This concludes the proof. �

Observe that Lemma 1.5.1 motivates the problem whether the higher resonance
varieties of algebras generated by stable monomial ideals are irreducible. For this
problem, we have only little knowledge which is presented in Lemma 1.5.3 below.
We need at first:

Lemma 1.5.2. Let J ⊂ E be a stable monomial ideal and let

tp = max{max(u) : u ∈ G(J)p} for 1 ≤ p ≤ n.

Then spanK{e1, . . . , etp} ⊆ Rp−1(E/J) for 1 ≤ p ≤ max{deg u : u ∈ G(J)}.
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Proof. Let u = ei1 · · · eip ∈ G(J)p where 1 ≤ i1 < · · · < ip = tp. Since G(J) is
the minimal set of generators of J and u ∈ G(J)p, we have u 6∈ mJp−1. Therefore,

ei1 · · · eiq−1 êiqeiq+1 · · · eip−1eip 6∈ Jp−1 for 1 ≤ q ≤ p.

It follows from formula (2) that eiq ∈ Rp−1(E/J) for q = 1, . . . , p.
Next we consider i ∈ [tp] \ {i1, . . . , ip}. Since J is stable and tp = max(u) we

have

0 6= ei(u/etp) ∈ Jp and u/etp 6∈ Jp−1.

Hence ei ∈ Rp−1(E/J). So {e1, . . . , etp} ⊆ Rp−1(E/J). Let

0 6= v =

tp∑
j=1

αjej ∈ spanK{e1, . . . , etp}

be an arbitrary element. Assume at first that v 6∈ spanK{ei1 , . . . , eip}. This implies

0 6= v(u/etp) ∈ Jp.

So v ∈ Rp−1(E/J). Next we assume that v ∈ spanK{ei1 , . . . , eip} and αiq 6= 0 for
some 1 ≤ q ≤ p. Then 0 6= v(u/eiq) = αiqu ∈ Jp. Again we see that v ∈ Rp−1(E/J).
Hence spanK{e1, . . . , etp} ⊆ Rp−1(E/J), as desired. �

Proposition 1.5.3. Let J ⊂ E be a stable monomial ideal generated in one
degree p ≥ 2. If the field K is algebraically closed, then the (p − 1)-th resonance
variety of E/J is maximal, i.e., Rp−1(E/J) = VE(E/J). In particular, Rp−1(E/J)
is irreducible.

Proof. Let t = max{max(u) : u ∈ G(J)}. With Lemma 1.5.2 we see that

spanK{e1, . . . , et} ⊆ Rp−1(E/J).

In addition, by [1, Theorem 3.1 (2)] and Lemma 1.3.2 we know

dimK VE(E/J) = cxE(E/J) = t.

Since spanK{e1, . . . , et} ⊆ Rp−1(E/J) ⊆ VE(E/J) and dimK VE(E/J) = t, we get
that Rp−1(E/J) = VE(E/J). �

Remark 1.5.4. The results of this section have an interpretation in algebraic
combinatorics. Recall that a simplicial complex ∆ on the vertex set {1, . . . , n} is
called a shifted complex if for every face F ∈ ∆, i ∈ F and j > i it holds that
(F \ {i})∪{j} ∈ ∆. This combinatorial property corresponds to the strongly stable
property of monomial ideals, i.e., the face ideal J∆ = (eF : F 6∈ ∆) of ∆ is strongly
stable if and only if ∆ is a shifted complex.

As shown above, we get from Lemma 1.5.1 that the first resonance variety of the
exterior face ring E/J∆ of a shifted complex ∆ is irreducible.
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1.6. Fans in Rn

In this section we collect some facts about fans in Rn which are used in Chapter 3.
One can find more details, e.g., in the books of Bruns and Gubeladze [11], Schrijver
[58, Section 5.3] and Sturmfels [61, Chapter 2].

We consider Rn with fixed coordinates (where n > 0). For two vectors u,w ∈ Rn

we write u · w = 〈u,w〉 =
∑n

i=1 uiwi for the canonical scalar product. A closed half
space of Rn is a set of the form {w ∈ Rn : a · w ≤ λ} where a ∈ Rn and λ ∈ R. If
λ = 0 then the half space is said to be linear.

A subset P ⊂ Rn is called a polyhedron if it is the intersection of finitely many
closed half spaces, i.e., there exist a1, . . . am ∈ Rn and λ1, . . . , λm ∈ R such that

P = {w ∈ Rn : ai · w ≤ λi for i = 1, . . . ,m}.
In the case that all λi = 0, we call P a polyhedral cone. Thus P is a polyhedral cone
if it is a finite intersection of linear closed half spaces. Note that every polyhedral
cone contains the origin 0.

A bounded polyhedron is called a polytope. The dimension of a polyhedron P
is the dimension of the smallest affine subspace containing P . A face of P is either
the empty set or a non-empty subset of P which is the following set of maximizers
of a linear form over P :

faceu(P ) = {v ∈ P : u · v = max{u · w : w ∈ P}}
where u ∈ Rn. A facet of P is a face whose dimension is one smaller than the
dimension of P .

Definition 1.6.1. A collection C of polyhedra in Rn is said to be a polyhedral
complex if:

(i) all non-empty faces of a polyhedron P ∈ C are in C;
(ii) the intersection of any A,B ∈ C is a common face of A and B.

The support of C is the union of its elements. A polyhedral complex is a fan if it
consists only of polyhedral cones. A fan is pure if all its maximal cones have the
same dimension.

Example 1.6.2. The set

P = {w ∈ R3 : w1, w2, w3 ≤ 0}
is a polyhedral cone in R3. It is the intersection of three closed half spaces. More
precisely, P = P1 ∩ P2 ∩ P3 where Pi = {w ∈ R3 : wi ≤ 0} for i = 1, 2, 3. Let
u = (1, 2, 0) ∈ R3. Then

faceu(P ) = {w ∈ R3 : w1, w2, w3 ≤ 0 and u · w = w1 + 2w2 is maximal}
= {w ∈ R3 : w1 = w2 = 0, w3 ≤ 0}

is a face of P .



CHAPTER 2

Cartan homology and applications

The goal of this chapter is to study generic bases and Cartan homology. At
first, we prove some properties for special generic bases, namely strongly generic
bases. After that, as applications we provide formulas for computing the regularity
of modules over the exterior algebra. We also consider some special cases to get
similar results to known ones for modules over a polynomial ring.

2.1. Cartan homology

We recall in this section notions and properties of generic bases and the Cartan
complex following the exposition of Aramova and Herzog in [2, Section 4] where
they use the Cartan complex to investigate graded Betti numbers and Castelnuovo-
Mumford regularity of modules over an exterior algebra.

We always assume that E = K〈e1, . . . , en〉 is the exterior algebra over an in-
finite field K with deg ei = 1 for i = 1, . . . , n. Recall that M is the category
of finitely generated graded left and right E-modules M satisfying the equations
um = (−1)deg udegmmu for homogeneous elements u ∈ E, m ∈M .

The Cartan complex over E has similar properties to known properties of the
Koszul complex over the polynomial ring. It is defined as follows:

Let v = v1, . . . , vm be a sequence of linear forms in E1. We denote by C.(v;E) the
free divided power algebra E〈x1, . . . , xm〉. So C.(v;E) is generated by the divided

powers x
(j)
i for i = 1, . . . ,m and j ≥ 0 which satisfy the relations

x
(j)
i x

(k)
i =

(
j + k

j

)
x

(j+k)
i .

We see that Ci(v;E) is a free E-module with basis x(a) = x
(a1)
1 · · ·x(am)

m , a ∈ Nm,
|a| = i. Moreover, there exists a complex structure on C.(v;E) = C.(v1, . . . , vm;E)
given by the E-linear differential:

∂i : Ci(v;E) −→ Ci−1(v;E), x(a) 7→
∑

j with aj>0

vjx
(a1)
1 · · ·x(aj−1)

j · · ·x(am)
m .

Here one easily checks that ∂ ◦ ∂ = 0.
Let M ∈ M. Following [2], the Cartan complex of v with values in M is the

complexes C.(v;M) = C.(v;E) ⊗E M . Its homology Hi(v;M) = Hi(C.(v;M)) is
called the Cartan homology of v with values in M .

For each j = 1, . . . ,m− 1, there exists an exact sequence of complexes

0 −→ C.(v1, . . . , vj;M)
ι−→ C.(v1, . . . , vj+1;M)

τ−→ C.−1(v1, . . . , vj+1;M)(−1) −→ 0,

21
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where ι is the natural inclusion map and τ is given by

τ(g0 + g1xj+1 + . . .+ gkx
(k)
j+1) = g1 + g2xj+1 + . . .+ gkx

(k−1)
j+1 ,

where gi ∈ Ck−i(v1, . . . , vj;M).
Then following [2, Propositions 4.1], there exists a long exact sequence of ho-

mology modules:

. . . −→ Hi(v1, . . . , vj;M)
αi−→ Hi(v1, . . . , vj+1;M)

βi−→ Hi−1(v1, . . . , vj+1;M)(−1)

δi−1−→ Hi−1(v1, . . . , vj;M) −→ Hi−1(v1, . . . , vj+1;M) −→ . . .

for all j = 1, . . . ,m− 1. Here αi is induced by ι, βi by τ and δi−1 is the connecting

homomorphism, which is defined as follows: if z = g0 + g1xj+1 + . . .+ gi−1x
(i−1)
j+1 is a

cycle in Ci−1(v1, . . . , vj+1;M), then δi−1([z]) = [g0vj+1].
Note that there exists a grading on the complex and its homologies which is

induced by setting deg xi = 1 for i = 1, . . . ,m. Following [1, Remark 3.4(3)] or
the proof of [3, Theorem 2.2], the Cartan complex C.(v1, . . . , vm;E) with values in
E is exact if v1, . . . , vm are K-linearly independent. Hence it is a minimal graded
free resolution of H0(v1, . . . , vm;E) = E/(v1, . . . , vm) over E. Using this fact, one
can compute TorEi (E/(v1, . . . , vm),−). More precisely, there exist isomorphisms of
graded E-modules: TorEi (E/(v1, . . . , vm),M) ∼= Hi(v;M) for all i ≥ 0 and M ∈ M
(see [3, Theorem 2.2]).

Given a linear form v ∈ E1, we have a co-chain complex

(3) (M, v) : . . . −→Mj−1
·v−→Mj

·v−→Mj+1 −→ . . . .

For j ∈ Z let Hj(M, v) be the j-th cohomology module of (M, v). Then v is M -
regular if and only if Hj(M, v) = 0 for all j ∈ Z. Let H(M, v) = ⊕iH i(M, v). We
see that

H(M, v) =
0 :M v

vM
∈M.

2.2. Generic bases and strongly generic elements

We study in this section (strongly) generic bases and strongly generic elements
for a module M ∈M as considered firstly in [2].

Definition 2.2.1 ([2, Definition 4.7]). Let 1 ≤ t ≤ n. A sequence v = v1, . . . , vt
in E1 is called a generic sequence for M if the natural maps

βi : Hi(v1, . . . , vj+1;M) −→ Hi−1(v1, . . . , vj+1;M)(−1)

are surjective for j = 0, . . . , t− 1 and all i� 0.
An element v ∈ E1 is called a generic element if the sequence of one element v

is generic. If a generic sequence v for M is a basis of E1 then v is called a generic
basis of E1 for the E-module M .

In [2], Aramova and Herzog proved the existence of a generic basis by using a
suitable extension of the base field. More precisely, one has:
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Proposition 2.2.2 ([2, Proposition 4.5, Corollary 4.6]). Let v1, . . . , vn be a basis
of E1 and L/K a field extension containing algebraically independent elements aij
over K, i, j = 1, . . . , n. Then w1, . . . , wn with wj =

∑n
i=1 aijvi for j = 1, . . . , n is

a generic basis of E ′1 for any E ′-module M ′ = L ⊗K M where E ′ = L ⊗K E and
M ∈M.

Using this result, we have:

Lemma 2.2.3. Let M ∈ M. After a suitable field extension, there exists a
generic basis w1, . . . , wn for M as an E-module such that [w2], . . . , [wn] is a generic
basis for M/w1M as an E/(w1)-module where [wi] = wi + (w1) ∈ E/(w1).

Proof. Let v1, . . . , vn be a basis of E1 and L1/K a field extension containing
algebraically independent elements bij over K, i, j = 1, . . . , n. Let E ′ = L1 ⊗K E
and uj =

∑n
i=1 bijvi ∈ E ′1. Proposition 2.2.2 implies that u1, . . . , un is a generic basis

for the E ′-module M ′ = L1 ⊗K M .
Next we note that the elements [u2], . . . , [un] are a K-basis of (E ′/(u1))1. Con-

sider a field extension L/L1 containing the algebraically independent elements cij
over L1 where i, j = 2, . . . , n. Let wj =

∑n
i=2 cijui for j = 2, . . . , n and w1 = u1.

By using Proposition 2.2.2 again we get that [w2], . . . , [wn] is a generic basis for
(M ′/w1M

′)⊗L1 L as an ((E ′/w1E
′)⊗L1 L)-module.

Let M ′′ = M ′ ⊗L1 L and E ′′ = E ′ ⊗L1 L. Since (M ′/u1M
′)⊗L1 L

∼= M ′′/w1M
′′

and (E ′/u1E
′) ⊗L1 L

∼= E ′′/(w1), we get that w1, . . . , wn is a desired basis for the
E ′′-module M ′′. This concludes the proof. �

Proposition 2.2.4. Let M ∈ M and let v1, . . . , vn be a generic basis of E1 for
the E-module M such that [v2], . . . , [vn] ∈ E/(v1) is a generic basis of (E/(v1))1 for
the E/(v1)-module M/v1M . Then the permutation v2, . . . , vn, v1 is also a generic
basis of E1 for the E-module M/v1M .

Proof. Let E ′ = E/(v1) and M ′ = M/v1M . Since [v2], . . . , [vn] ∈ E ′ is a generic
basis of E ′1 for the E ′-module M ′, the natural maps

HE′

i ([v2], . . . , [vj+1];M ′)
β′i−→ HE′

i−1([v2], . . . , [vj+1];M ′)(−1)

are surjective for j = 1, . . . , n− 1 and all i� 0. Note that we have an isomorphism
of Cartan complexes

CE
• (v2, . . . , vj;M

′) ∼= CE′

• ([v2], . . . , [vj];M
′) for 2 ≤ j ≤ n.

Therefore, the homology modules are isomorphic and the maps

HE
i (v2, . . . , vj+1;M ′)

βi−→ HE
i−1(v2, . . . , vj+1;M ′)(−1)

are also surjective for j = 1, . . . , n− 1 and all i� 0. So we only need to prove that
the maps

HE
i (v2, . . . , vn, v1;M ′)

βi−→ HE
i−1(v2, . . . , vn, v1;M ′)(−1)

are surjective for all i� 0. By [2, Propositions 4.1], we have a long exact sequence
of graded E-modules:

. . .−→HE
i (v2, . . . , vn, v1;M ′)

βi−→ HE
i−1(v2, . . . , vn, v1;M ′)(−1)
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δi−1−→ HE
i−1(v2, . . . , vn;M ′) −→ . . . ,

where δi−1 is the connecting homomorphism given by: if z = g0+g1x1+. . .+gi−1x
(i−1)
1

is a cycle in CE
i−1(v2, . . . , vn, v1;M ′), then δi−1([z]) = [g0v1]. Since g0v1 = 0 in M ′, we

have that δi−1 is the zero morphism. Hence the map βi is surjective. This concludes
the proof. �

Definition 2.2.5. A generic basis v = v1, . . . , vn of E1 for the E-module M is
called strongly generic if [v2], . . . , [vn] is a generic basis of (E/(v1))1 for the E/(v1)-
module M/v1M and v2, . . . , vn, v1 is a generic basis of E1 for the E-module M/v1M .
The first element v1 of a strongly generic basis v is called a strongly generic element.

Remark 2.2.6. There always exists a strongly generic basis after a suitable field
extension by Lemma 2.2.3 and Proposition 2.2.4. More precisely, let L1/K be a field
extension containing algebraically independent elements bij over K, i, j = 1, . . . , n
and L/L1 a field extension containing the algebraically independent elements cij over
L1, i = 1, . . . , n and j = 2, . . . , n then w1 =

∑n
i=1 bi1vi, wj =

∑n
i=1 cij

∑n
k=1 bkivk

for j = 2, . . . , n is a strongly generic basis of E ′1 for any E ′-module M ′ = L ⊗K M
where E ′ = L⊗K E and M ∈M.

2.3. Applications

Let M be an E-module in M and let v = v1, . . . , vn be a sequence in E1. For
j = 1, . . . , n we denote by M〈j−1〉 = M/(v1, . . . , vj−1)M , Hi(j) = Hi(v1, . . . , vj;M)
for i > 0 and H0(j) = H(M〈j − 1〉, vj). For an E-module N , put s(N) = max{i :
Ni 6= 0} if N 6= 0 and s(0) = −∞. Set

rEj (M) = max{s(Hi(j))− i : i ≥ 1} and sEj (M) = s(H0(j)) for j = 1, . . . , n.

Given an E-module M ∈M, we sometimes write rj, sj instead of rEj (M) and sEj (M)
(respectively) for short. Note that by [2, Page 705], we have: If v is a basis of E1

and M ∈M, then regE(M) = max{rEn , s(M/mM)}.

Proposition 2.3.1. Let v ∈ E1 be a strongly generic element for M . Then

regE(M/vM) = regE/(v)(M/vM).

Proof. Set E ′ = E/(v) and M ′ = M/vM . By Definition 2.2.5 there exists a
strongly generic basis v = (v, v2 . . . , vn) for M such that [v2], . . . , [vn] ∈ E ′ is a
generic basis for the E ′-module M ′ and v2, . . . , vn, v is a generic basis for the E-
module M ′. By [2, Theorem 4.8] we have

regE(M ′) = max{sE1 (M ′), . . . , sEn−1(M ′), sEn (M ′), s(M ′/mM ′)}
and

regE′(M
′) = max{sE′1 (M ′), . . . , sE

′

n−1(M ′), s(M ′/m′M ′)},
where m′ = m/(v) ⊂ E ′ is the maximal graded ideal of E ′.

For j = 1, . . . , n− 1 we have sEj (M ′) = sE
′

j (M ′) because of the fact that

0 :M ′〈j−1〉 vj+1

vj+1M ′〈j − 1〉
∼=

0 :M ′〈j−1〉 [vj+1]

[vj+1]M ′〈j − 1〉
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where M ′〈j−1〉 = M ′/(v2, . . . , vj)M
′. Moreover, M ′/mM ′ ∼= M ′/m′M ′. So we only

need to consider sEn (M ′). We have

H(M ′/(v2, . . . , vn)M ′, v) = H(M/mM, v) = M/mM.

Hence sEn (M ′) = s(M/mM) = s(M ′/mM ′) = s(M ′/m′M ′). This concludes the
proof. �

Next we prove the main result of this section which is similar to [15, Proposition
1.2] for modules and almost regular elements over the polynomial ring.

Theorem 2.3.2. Let v ∈ E1 be a strongly generic element for M . Then

regE(M) = max{regE(M/vM), s(
0 :M v

vM
)}.

Proof. Let E ′ = E/(v) and M ′ = M/vM . By Definition 2.2.5 there exists
a strongly generic basis v = (v, v2 . . . , vn) for M such that u1, . . . , un−1 ∈ E ′ is
a generic basis for the E ′-module M ′ with ui = [vi+1] for i = 1, . . . , n − 1 and
v2, . . . , vn, v is a generic basis for the E-module M ′.

By [2, Theorem 4.8] we have

regE(M) = max{rn, s(M/mM)} = max{s1, s2, . . . , sn, s(M/mM)}.
Since u1, . . . , un−1 is a generic basis for the E ′-module M ′, we also have

regE′(M
′) = max{s′1, . . . , s′n−1, s(M

′/m′M ′)} = max{s′1, . . . , s′n−1, s(M/mM)},
where s′j = s(H(M ′/(u1, . . . , uj−1)M ′, uj)) for j = 1, . . . , n − 1 and M ′/m′M ′ ∼=
M/mM .

Note that s′j = sj+1 for j = 2, . . . , n since

H(M ′/(u1, . . . , uj−1)M ′, uj) ∼= H(M/(v1, v2, . . . , vj)M, vj+1).

Combining the two equalities from above and the fact that H0(1) = H(M, v) = 0:Mv
vM

,
we get

regE(M) = max{regE′(M
′), s(

0 :M v

vM
)}.

Proposition 2.3.1 implies that regE(M) = max{regE(M/vM), s(0:Mv
vM

)}. �

From Theorem 2.3.2, we have following consequences.

Corollary 2.3.3. Let 0 6= J ⊂ E be a graded ideal and v a strongly generic
element for E/J . Then

regE(J) = max{regE(J + (v)), s(
J :E v

J + (v)
) + 1}.

Proof. The statement follows by applying Theorem 2.3.2 for E/J and the fact
that regE(J) = regE(E/J) + 1. �

A sequence v1, . . . , vr in E1 is called a strongly generic sequence for a graded
module M ∈M if vi is a strongly generic element for the module M/(v1, . . . , vi−1)M
for i = 1, . . . , r. Analogously to the result [13, Theorem 2.2] for modules over the
polynomial ring, we can prove a similar one for modules over the exterior algebra.
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Corollary 2.3.4. Let J ⊂ E be a graded ideal generated by a strongly generic
sequence v1, . . . , vr for an E-module M ∈M. Then regE(JM) ≤ regE(M) + 1.

Proof. By Theorem 2.3.2, we have:

regE(M/(v1, . . . , vi−1)M) ≥ regE(M/(v1, . . . , vi)M) for i = 1, . . . , r.

Therefore, regE(M/JM) ≤ regE(M). Now by the short exact sequence

0 −→ JM −→M −→M/JM −→ 0

and Lemma 1.2.1 we get that

regE(JM) ≤ max{regE(M/JM) + 1, regE(M)}.
Combining all inequalities together we conclude that regE(JM) ≤ regE(M)+1. �

Remark 2.3.5. Without the hypothesis that v1, . . . , vr is a strongly generic
sequence for M , Corollary 2.3.4 may not hold. For example, let

J = (e123, e134, e125, e256) ⊂ E = K〈e1, . . . , e6〉.
By using Macaulay2 [28] we can check that regE(J) = 3 but the ideal P =
(e1, e2)J = (e1234, e1256) has regE(P ) = 5 > 4.



CHAPTER 3

Gröbner fans

The purpose of this chapter is to study Gröbner fans over the exterior algebra.
At first, analogously to the polynomial ring case, we consider the Gröbner fan of a
graded ideal over the exterior algebra. After that, we study this fan in the normal
case as well as in the generic case. We also introduce one of possibilities of defining
an analogue to tropical varieties over the exterior algebra as a subfan of the Gröbner
fan and study how this subfan is stable in the generic case.

3.1. Gröbner fans

In [44], Mora and Robbiano defined the Gröbner fan for a graded ideal in a
polynomial ring. This fan has been studied deeply with interesting applications in
computational algebra and discrete geometry; see, e.g., [10], [41], [61]. Specially, its
subfans, the tropical varieties, the main objects of tropical geometry, have recently
received a lot of attention from mathematicians. The main goal of this section is
to define the Gröbner fan of a graded ideal over the exterior algebra analogously to
the one over the polynomial ring.

Definition 3.1.1. For f =
∑

F⊆[n] aF eF ∈ E and w ∈ Rn, the w-degree of a

non-zero term aF eF is w · F =
∑

i∈F wi. The w-degree of a non-zero element f is
the maximum of all w-degrees of non-zero terms occurring in f . Let inw(f) denote
the initial part of f which consists of all non-zero terms aF eF of f such that w · F
is maximal. The element f is called w-homogeneous if inw(f) = f . The initial ideal
of a graded ideal J ⊂ E with respect to w is defined by

inw(J) = (inw(f) : f ∈ J).

If J = inw(J) then we say that J is w-homogeneous. One can show that a graded
ideal J is w-homogeneous if and only if J is generated by w-homogeneous elements.

Let < be a monomial order on E and w ∈ Rn. One has a new monomial order
<w defined by: eF <w eT if w ·F < w · T or if w · T = w ·F and eF < eT . Note that
in<(J) is a monomial ideal while inw(J) might not be. Let m be a monomial, < a
monomial order and f ∈ E. One has:

if m ∧ in<(f) 6= 0 then m ∧ in<(f) = in<(m ∧ f).

For a graded ideal J ⊂ E, a monomial order < on E and w ∈ Rn, we define:

C<(J) = {u ∈ Rn : inu(J) = in<(J)},
Cw(J) = {u ∈ Rn : inu(J) = inw(J)}.

27
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Remark 3.1.2. (i) By Lemma 1.1.5, we note that for a graded ideal J ⊂ E,
there are only finitely many sets C<(J).

(ii) Every initial ideal in<(J) is of the form inw(J) for some w ∈ Rn; see Propo-
sition 3.1.6. Consequently, every C<(J) is of the form Cw(J).

In the following, we present sketches of results and their proofs which can be
shown analogously to the polynomial ring case. One can see, e.g., [41] and [61] for
more details.

Lemma 3.1.3. Let < be a monomial order on E, w ∈ Rn and J ⊂ E be a
graded ideal. Then in<w(J) = in<(inw(J)). In particular, if G is a Gröbner basis of
J w.r.t. <w, then {inw(g) : g ∈ G} is a Gröbner basis of inw(J) w.r.t. <.

Proof. By the definition of <w, we have in<(inw(f)) = in<w(f) for every f ∈ J .
Therefore, in<w(J) ⊆ in<(inw(J)).

Now let a = in<(g), where g ∈ inw(J), be a minimal monomial generator of
in<(inw(J)). Since inw(inw(J)) = inw(J), we note that inw(J) is w-homogeneous.
So we may assume that g is w-homogeneous and g =

∑
imi∧ inw(gi), where mi ∈ E

are monomials and gi ∈ J are homogeneous elements. It is clear thatmi∧inw(gi) 6= 0.
Therefore,

mi ∧ inw(gi) = inw(mi ∧ gi) and g =
∑
i

inw(mi ∧ gi).

Since the elements inw(mi ∧ gi) are w-homogeneous of the same w-degree, we have

g =
∑
i

inw(mi ∧ gi) = inw(
∑
i

mi ∧ gi).

Let f =
∑

imi ∧ gi ∈ J . Then

a = in<(g) = in<(inw(f)) = in<w(f) ∈ in<w(J).

Thus in<w(J) ⊇ in<(inw(J)). Hence in<w(J) = in<(inw(J)).
In particular, if G is a Gröbner basis of J with respect to <w, then we have

in<w(J) = in<(inw(J)). Therefore,

(in<(inw(g)) : g ∈ G) = (in<w(g) : g ∈ G) = in<w(J) = in<(inw(J)).

This concludes the proof. �

Corollary 3.1.4. Let J ⊂ E be a graded ideal and w ∈ Rn. Then J and inw(J)
have the same Hilbert series.

Proof. Let < be a monomial order on E. By Lemma 1.1.5, we have the following
equalities of Hilbert series:

HJ(t) = Hin<w (J)(t) and Hinw(J)(t) = Hin<(inw(J))(t).

By Lemma 3.1.3, in<w(J) = in<(inw(J)). Thus J and inw(J) have the same Hilbert
series. �
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Example 3.1.5. Let E = K〈e1, . . . , e6〉. For w = (1, 2, 3, 2, 1, 0) ∈ R6, we have
inw(e245 − e134) = e134. Let J = (e12 − e34 + e25, e13 − e15, e245 − e134) ⊂ E. Then

inw(J) = (e13, e34, e245, e125 − e145),

Let < be the reverse lexicographic order on E with e1 > e2 > . . . > e6. We have

in<w(J) = in<(inw(J)) = (e13, e34, e125, e245).

Lemma 3.1.6 ([41, Proposition 2.4.4]). Let J ⊂ E be a graded ideal. For any
monomial order < on E, there exists a weight vector w ∈ Rn such that

inw(J) = in<(J).

Proof. Let G = {g1, . . . , gr} be the reduced Gröbner basis of J with respect to
<. Write gi =

∑
j aijeFij

, where in<(gi) = ai1eFi1
. Let C< be the set of all vectors

w ∈ Rn such that inw(gi) = ai1eFi1
, i.e.,

C< = {w ∈ Rn : w · Fi1 > w · Fij for i = 1, . . . , r and all j 6= 1}.
By using the same proof as in the case of polynomial rings, see [61, Proposition 1.11],
we get that C< 6= ∅. Now for any weight vector w ∈ C<, we have in<(J) ⊆ in<w(J).
By Corollary 1.1.6, we conclude that in<(J) = inw(J). �

Proposition 3.1.7. Let < be a monomial order on E and J ⊂ E be a graded
ideal. Let w ∈ Rn and G be the reduced Gröbner basis of J with respect to <w. Then
for w′ ∈ Rn, inw′(J) = inw(J) if and only if inw′(g) = inw(g) for all g ∈ G.

Proof. (⇐): Assume that inw′(g) = inw(g) for all g ∈ G. Since {inw(g) ∈ G} is a
Gröbner basis of inw(J) with respect to <, it is also a system of generators of inw(J).
This implies that inw(J) ⊆ inw′(J). Taking initial ideals with respect to <, we get
in<(inw(J)) ⊆ in<(inw′(J)). By Lemma 3.1.3, this implies that in<w(J) ⊆ in<w′

(J).
This inclusion cannot be proper by Corollary 1.1.6, so in<(inw(J)) = in<(inw′(J)).
Thus inw′(J) = inw(J) since the Hilbert series of all considered ideals coincide.

(⇒): Assume that inw′(J) = inw(J). By Lemma 3.1.3, inw(G) = {inw(g) ∈ G}
is also a Gröbner basis of inw′(J) with respect to <. Let g ∈ G and eF = in<w(g).
Since G is the reduced Gröbner basis of J with respect to <w, we note that eF is
the only monomial occurring in g which is divisible by a leading term with respect
to <w of an element in G. We have that in<(inw′(g)), which is also a monomial of
g, is divisible by a leading term w.r.t. <w of an element of G. The only possibility
is in<(inw′(g)) = eF . Let inw(g) = eF + h, and inw′(g) = eF + h′. Since G is the
reduced Gröbner basis, h and h′ both are sums of terms not in in<w(J). Note that
inw(g) − inw′(g) = h − h′ ∈ inw(J). So in<(h − h′) ∈ in<(inw(J)) = in<w(J). Thus
h− h′ = 0. Hence inw(g) = inw′(g) for all g ∈ G, as desired. �

Proposition 3.1.8. Let J ⊂ E be a graded ideal and w ∈ Rn. Then Cw(J) is
the relative interior of a polyhedral cone in Rn.

Proof. Let G = {g1, . . . , gr} be the reduced Gröbner basis of J with respect to
<w. For gi ∈ G, write gi =

∑
j aijeFij

+
∑

k bikeTik as the sum of non-zero terms with

inw(gi) =
∑

j aijeFij
.
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By Proposition 3.1.7, we get that

Cw(J) = {u ∈ Rn : inu(gi) =
∑
j

aijeFij
for i = 1, . . . , r}

= {u ∈ Rn : u · Fij = u · Fit > u · Tik for i = 1, . . . , r and all j, k, t}.
This is the relative interior of a polyhedral cone in Rn. �

Lemma 3.1.9. Let < be a monomial order on E and J ⊂ E be a graded ideal.
Let w ∈ Rn and G be the reduced Gröbner basis of J with respect to <w. Then for
u ∈ Cw(J), we have

inu(J) = (inu(g) : g ∈ G).

Proof. Let I = (inu(g) : g ∈ G). Since inu(g) ∈ inu(J) for all g ∈ G, it is clear
that I ⊆ inu(J).

Now using the same notations as in Proposition 3.1.8, we note that

Cw(J) = {v ∈ Rn : v · Fij = v · Fit ≥ v · Tik for i = 1, . . . , r and all j, k, t}.
This implies that

inw(g) = inw(inu(g)) for all g ∈ G.
Therefore, by Lemma 3.1.3 we have

inw(J) ⊆ inw(I) ⊆ inw(inu(J)).

By Lemma 3.1.4, we note that inw(J) and inw(inu(J)) have the same Hilbert series.
Hence

inw(J) = inw(I) = inw(inu(J)).

Taking initial ideals w.r.t. <, we get in<(inw(I)) = in<(inw(inu(J))). Then by
Lemma 3.1.3, we have in<w(I) = in<w(inu(J)). Recall that I ⊆ inu(J). Using
Corollary 1.1.6, we can conclude that I = inu(J). �

With the above properties, we also have an analogous result to the case of poly-
nomial rings, which ensures the existence of Gröbner fans. We recall the result in
the following:

Proposition 3.1.10 ([41, Proposition 2.4.9]). Let J ⊂ E be a graded ideal.

Then the set GF(J) = {Cw(J) : w ∈ Rn} forms a polyhedral fan.

Proof. We need to prove the following statements:

(i) For u ∈ Cw(J), then Cu(J) is a face of Cw(J).

(ii) The intersection of two polyhedral cones Cw(J) and Cw′(J) is a common
face of them.

For (i), let < be a monomial order on E and G be the reduced Gröbner basis of
J w.r.t. <w. By Lemma 3.1.9 and Lemma 3.1.3, we have

in<w(J) = in<w(inu(J)) = in(<w)u(J).

Thus G is also the reduced Gröbner basis of J w.r.t. (<w)u. By Proposition 3.1.7,
we get that

Cu(J) = {u′ ∈ Rn : inu′(g) = inu(g) for all g ∈ G}.



3.2. EXTERIOR ALGEBRA ANALOGUES TO TROPICAL VARIETIES 31

Now using the concrete description as a set of Cw(J) and Cu(J) in Proposition 3.1.8

and taking their closure, we see that Cu(J) is a face of Cw(J).

For (ii), assume that two polyhedral cones Cw(J) and Cw′(J) do not contain

each other. Then by (i), we get that Cw(J) ∩ Cw′(J) is the union of common faces
of these two polyhedral cones. Since this intersection is convex, it must in fact be
one face. This concludes the proof. �

Definition 3.1.11. The polyhedral fan GF(J) = {Cw(J) : w ∈ Rn} is called
the Gröbner fan of the graded ideal J .

Example 3.1.12. Let E = K〈e1, . . . , e6〉 and J = (e12− e34, e13− e15, e24− e36)
a graded ideal in E. Let w = (1, 2, 3, 2, 1, 0) ∈ R6. Then inw(J) = (e34, e13, e24, e145).
Let < be the reverse lexicographic order on E with e1 > e2 > . . . > e6. The reduced
Gröbner basis of J with respect to <w is G = {e12 − e34, e13 − e15, e24 − e36, e145}.

By Proposition 3.1.7, we get that

Cw(J) = {u ∈ R6 : u3 + u4 > u1 + u2, u3 > u5, u2 + u4 > u3 + u6}.
By replacing the strict inequalities in the above set by non-strict inequalities we
obtain the closure Cw(J). Using Macaulay2 [28], we can compute the Gröbner fan
GF(J) of J . It is a pure fan with f -vector (1, 6, 41, 27) and has 16 rays.

3.2. Exterior algebra analogues to tropical varieties

Over the polynomial ring, tropical varieties have recently received a lot of at-
tention in the context of tropical geometry; see, e.g., [43], [61] for more details.
The goal of this section is to find a suitable definition of such kind of sets over the
exterior algebra and study properties of these sets.

Definition 3.2.1. Let J ⊂ E be a graded ideal. Recall that Mon(J) is the set
of all monomials of J . We let T (J) be the set of all w ∈ Rn such that

Mon(J) = Mon(inw(J)).

Example 3.2.2. (i) Let J = (e12−e34, e13−e25) ⊂ K〈e1, . . . , e5〉. Then we have

Mon(J) = {eF : F ⊆ [5], |F | ≥ 3} \ {e145}.
Let w ∈ R5. Then w ∈ T (J) if and only if inw(e12 − e34) = e12 − e34 and inw(e13 −
e25) = e13 − e25. Therefore,

T (J) = {w ∈ R5 : w1 + w2 = w3 + w4, w1 + w3 = w2 + w5}
and it is a 3-dimensional vector subspace of R5.

(ii) Let I = (e12, e34, e13 − e25) ⊂ K〈e1, . . . , e5〉. Then

Mon(I) = {e12, e34} ∪ {eF : F ⊆ [5], |F | ≥ 3} \ {e145}.
This implies that w ∈ T (I) if and only if inw(e13 − e25) = e13 − e25. So we have
T (I) = {w ∈ R5 : w1 + w3 = w2 + w5} ⊂ R5 and it is a 4-dimensional vector space.

Note that for the polynomial ring case, if J ⊂ I then T (I) ⊂ T (J). But this is
not true for the exterior algebra case with respect to our definition. More precisely,
the above examples show that J ⊂ I but T (I) 6⊂ T (J).
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Remark 3.2.3. Observe that every graded ideal J ⊂ E contains the monomial
e1e2 . . . en. One can ask if there is another possibility of defining analogues to tropical
varieties for the exterior algebra. Indeed, we could define that

T (J) = {w ∈ Rn : Mon(inw(J)) = {e1e2 . . . en}}.

With this alternative definition the class of relevant ideals would be too small since
for example, for every f ∈ J , we have eF ∈ J where F is the set of all variables
appearing in the standard expression of f . So Definition 3.2.1 allows a richer theory.

Remark 3.2.4. Let J ⊂ E be a graded ideal. Then T (J) is always non-empty
since the vector w = (1, . . . , 1) ∈ T (J).

Proposition 3.2.5. The set T (J) of a graded ideal J ⊂ E is a subfan of the
Gröbner fan of J .

Proof. By Definition 3.2.1, we see that

T (J) =
⋃

w∈T (J)

Cw(J) as sets.

More precisely, T (J) is the union of Cw(J) such that inw(J) contains only the
monomials in Mon(J). Hence T (J) ⊂ |GF(J)|. We need to prove that if w ∈ T (J)

then Cw(J) ⊂ T (J). Let u ∈ Cw(J). By the proof of Lemma 3.1.9, we have

inw(J) = inw(inu(J)).

So a monomial of inu(J) is also a monomial of inw(J). Since w ∈ T (J) we have that
Mon(inw(J)) = Mon(J) ⊆ Mon(inu(J)). Therefore, Mon(inw(J)) = Mon(inu(J))
and then u ∈ T (J). By the same argument to Proposition 3.1.10, we get that T (J)
is also a fan. This concludes the proof. �

3.3. The generic case

The generic Gröbner fans and the generic tropical varieties over the polynomial
ring are very useful tool in characterizing algebraic properties of coordinate rings
of algebraic varieties, e.g., the Cohen-Macaulayness, the depth and the multiplicity;
see [53] for more details. In [54], Römer and Schmitz proved the existence of generic
Gröbner fans and generic tropical varieties over the polynomial ring S. In fact, they
showed that for every graded ideal I ⊂ S, there exists a non-empty Zariski-open
subset U ⊂ GLn(K) such that the Gröbner fan and the tropical variety of I are
constant under the actings of all g ∈ U . This motivates us to consider in this
section the problem whether for a graded ideal J ⊂ E, there exist fans gGF, gT and
a non-empty Zariski-open subset U ⊂ GLn(K) such that for all g ∈ U we always
have that GF(g(J)) = gGF and T (g(J)) = gT .

We always assume in this section that the base field K is infinite. At first, we
will specify the meaning of the term generic as follows:

Definition 3.3.1. Let Y = {yij : i, j = 1, . . . , n} be a set of n2 independent
variables over K and let K ′ = K(Y) be the quotient field of K[Y ]. In the following
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we denote by y the K-algebra homomorphism

y : K〈e1, . . . , en〉 −→ K ′〈e1, . . . , en〉, ei 7−→
n∑
j=1

yijej.

For each g = (gij) ∈ GLn(K), substituting yij by gij, we have a K-algebra automor-
phism on K〈e1, . . . , en〉. We identify g with the induced automorphism and use the
notation g for both of them. Note that for a graded ideal J ⊂ E, y(J) might not be
an ideal in K ′〈e1, . . . , en〉 but g(J) is always a graded ideal in K〈e1, . . . , en〉 since g
is an automorphism.

We prove next the main result of this section:

Theorem 3.3.2. Let 0 6= J ⊂ E be a graded ideal. There exists a Zariski-open
subset ∅ 6= U ⊂ GLn(K) such that all g(J) have the same support for all g ∈ U .

Proof. Choose a K-vector space basis for each Jd 6= 0, d ∈ Z and let H =
{h1, . . . , hs} be the union of all these bases. Then H is a finite set and every element
of J is a K-linear combination of finitely many elements in H.

For each Jd 6= 0, d ∈ Z, there exists a subset of H, for simplicity say {h1, . . . , hr}
with r ≤ s, which is a K-basis of Jd. For i = 1, . . . , r, write y(hi) =

∑m
j=1 cji(y)eFj

where Fj runs over all m =
(
n
d

)
subsets of d elements in [n] and cji(y) ∈ K[Y ]. We

denote by A(y) = (cji(y))m×r the matrix with the entries cji(y) and by AL(y) the
induced matrix by all rows j ∈ L of A(y) where L ⊆ [m].

Note that a support of an element in Ed is of the form {eFj
: j ∈ F} where

F ⊂ [m] and Fj ⊂ [n] with |Fj| = d. We identify this support with F and use the
notation F for both of them.

Now let F be a support of an element in Ed and assume that there exist f ∈ Jd
and g ∈ GLK(n) such that supp(g(f)) = F . Write f =

∑r
i=1 αihi with αi ∈ K for

i = 1, . . . , r. Then

y(f) =
r∑
i=1

αiy(hi) =
m∑
j=1

±eFj

r∑
i=1

cji(y)αi.

Thus supp(g(f)) depends on whether the polynomial
∑r

i=1 cji(y)αi is non-zero at g
for j = 1, . . . ,m.

Let T = [m] \ F and (αi) = (αi)r×1. Then we have{
A{j}(g)(αi) 6= 0 for all j ∈ F,
AT (g)(αi) = 0.

Therefore, {
AT∪{j}(g)(αi) 6= 0 for all j ∈ F,
AT (g)(αi) = 0.

Let V (L) be the K-vector space of the solutions of AL(g)(xi)r×1 = 0 for L ⊂ [m].
Then we have

(αi) ∈ V (T ) and (αi) 6∈ V (T ∪ {j}) for all j ∈ F.



34 3. GRÖBNER FANS

Since V (T ∪ {j}) ⊆ V (T ) for all j ∈ F , we get that

dimK V (T ) > dimK V (T ∪ {j}) for all j ∈ F.
Hence rank(AT∪{j}(g)) > rank(AT (g)) for all j ∈ F . This is equivalent to the
condition of being non-zero of finitely many determinants of size (rank(AT (g)) + 1)-
minors of the matrices AT∪{j}(g). More precisely, there is a finite set of polynomials
in K[Y ], which are determinants of size (rank(AT (g)) + 1)-minors of the matrices
AT∪{j}(y), such that the existence of (αi) depends only on being non-zero of such
polynomials at g. Therefore, the existence of (αi), i.e., f , is an open condition in
g. Let UF ⊂ GLn(K) be the Zariski-open subset such that this open condition is
fulfilled. So when F runs over the subsets of [m], if UF 6= ∅ then for each g ∈ UF
there exists f ∈ J such that supp(g(f)) = F .

Let Ud =
⋂
F UF where F runs over subsets [m] with UF 6= ∅. Note that this

intersection is finite and there are finitely many Ud. Set U =
⋂
Ud 6=∅ Ud. Then U is

a non-empty Zariski-open subset of GLn(K). We claim that

supp(g1(J)) = supp(g2(J)) for all g1, g2 ∈ U.
Let F ∈ supp(g1(J)). Then ∅ 6= U ⊂ UF and there exists f1 ∈ J such that

supp(g1(f1)) = F . Since g2 ∈ UF and by the definition of UF , there exists also
f2 ∈ J such that supp(g2(f2)) = F . Thus F ∈ supp(g2(J)) and supp(g1(J)) ⊆
supp(g2(J)). By the same argument, we get supp(g1(J)) ⊇ supp(g2(J)). Hence
supp(g1(J)) = supp(g2(J)) for all g1, g2 ∈ U . So all g(J) have the same support for
all g ∈ U . More precisely, this support is given by

supp(g(J)) = {{eFj
: j ∈ F} : UF 6= ∅}.

This concludes the proof. �

We get a direct consequence of Theorem 3.3.2 as an alternative proof of the
existence of generic initial ideals in the following (see, e.g., [3, Theorem 1.6] and
[29] for the first proof).

Corollary 3.3.3. Let 0 6= J ⊂ E be a graded ideal. Then the generic initial
ideal gin(J) exists.

Proof. Let < be the reverse lexicographic order on E. Let ∅ 6= U be the Zariski-
open subset of GLn(K) as chosen in Theorem 3.3.2. Then supp(g(J)) is constant
for all g ∈ U . This implies that in<(g(J)) is also constant for all g ∈ U , say
I = in<(g(J)). Therefore, we can use U as the non-empty Zariski-open subset of
GLn(K) to compute gin(J), i.e., gin(J) = I. This concludes the proof. �

Next we prove the existence of a generic Gröbner fan. We have:

Theorem 3.3.4. Let 0 6= J ⊂ E be a graded ideal. Then there exists a non-
empty Zariski-open subset U ⊂ GLn(K) such that every ideal g(J) has the same
Gröbner fan for every g ∈ U .

Proof. Let ∅ 6= U be the Zariski-open subset of GLn(K) as chosen in Theorem
3.3.2. Then supp(g(J)) is constant for all g ∈ U .
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Let g1, g2 ∈ U . We need to prove that for all w ∈ Rn, the equality of polyhedral
cones Cw(g1(J)) = Cw(g2(J)) holds. Let < be a monomial order on E and G1 be the
reduced Gröbner basis of g1(J) w.r.t. <w. Assume that G1 = {g1(f1), . . . , g1(fr)}
where fi ∈ J for i = 1, . . . , r. Since supp(g1(J)) = supp(g2(J)), there exist elements,
say f ′1, . . . , f

′
r ∈ J , such that

supp(g1(fi)) = supp(g2(f ′i)) for i = 1, . . . , r.

Let G2 = {g2(f ′1), . . . , g2(f ′r)}. Then we get supp(G1) = supp(G2). Since

supp(g1(J)) = supp(g2(J)),

we note that in<w(g1(J)) = in<w(g2(J)). Thus

in<w(g2(J)) = (in<w(g2(f ′i)) : i = 1, . . . , r).

Hence G2 is the reduced Gröbner basis of g2(J) w.r.t. <w. Now by Proposition 3.1.7,
Cw(g1) and Cw(g2) depend only on supp(G1) = supp(G2). Thus Cw(g1) = Cw(g2).
This concludes the proof. �

Since every non-empty Zariski-open subset is dense in GLn(K), the following
definition makes sense.

Definition 3.3.5. Let J ⊂ E be a graded ideal. The generic Gröbner fan of J ,
denote by gGF(J), is the unique polyhedral fan that equals to GF(g(J)) for all g in
a non-empty Zariski-open subset of GLn(K). Note that by Theorem 3.3.2 this fan
always exists.

As explained above the set T (J) is a subfan of the Gröbner fan of J and thus
closely related to initial ideals of J . The existence of the exterior generic Gröbner
fan leads to a question, whether there exists a generic set T (J) over the exterior
algebra analogously to the generic tropical varieties over the polynomial ring (see
[54]) and how it looks like if it does exist. Next we present an explicit answer of
this question.

Definition 3.3.6. Let J ⊂ E be a graded ideal. If the fan T (g(J)) is the same
fan for all g in a Zariski-open subset ∅ 6= U ⊂ GLn(K), then we denote this fan by
gT(J).

Theorem 3.3.7. Let 0 6= J ⊂ E be a graded ideal. Then gT(J) exists.

Proof. Let U be the non-empty Zariski-open subset of GLn(K) as chosen in
Theorem 3.3.2. Then supp(g(J)) is constant for all g ∈ U . Observe that

Mon(g(J)) = Mon(supp(g(J))) and Mon(inw(g(J))) = Mon(inw(supp(g(J))))

for w ∈ Rn. Therefore, by Definition 3.2.1 we get that T (g(J)) depends only on
supp(g(J)) for g ∈ U . So T (g(J)) is constant for all g ∈ U . Thus gT(J) exists. �

We conclude this section with some examples in which we consider gGF(J) and
gT(J) where J is generated by a homogeneous element f ∈ E. For this, we need
the following observation:
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Lemma 3.3.8. Let 0 6= f ∈ E be a homogeneous element with deg(f) = d. Then
there exists a non-empty Zariski-open set U ⊂ GLn(K) such that for all g ∈ U ,
supp(g(f)) contains all monomials eF with |F | = d.

Proof. Let f =
∑

T⊂[n] aT eT ∈ Ed with |T | = d. Then

g(f) =
∑
aT 6=0

aTg(eT ) =
∑
aT 6=0

aT
∏
i∈T

(
n∑
j=1

gijej) =
∑

F⊂[n],|F |=d

cF (g)eF .

Here
cF (g) =

∑
T

(aT
∑
σF

±
∏
i∈T

giσ(i))

where σF runs over the set of bijective maps from T to F .
Observe that cF (g) is a polynomial function in gij. We can choose U to be a

non-empty Zariski-open set of GLn(K) such that cF (g) 6= 0 for all g ∈ U . This
concludes the proof. �

Proposition 3.3.9. Let 0 6= f ∈ E be a homogeneous element with deg(f) = d
and J = (f). We have:

(i) For w ∈ Rn with

wi1 ≥ . . . ≥ wid−k−1
> wid−k

= . . . = wid+t
> wid+t+1

≥ . . . ≥ win ,

where {i1, . . . , in} = [n] and k, t ≥ 0, the relative open cone C[w] of gGF(J)
is a subset of the set

{u ∈ Rn : ui1 ≥ . . . ≥ uid−k−1
> uid−k

= . . . = uid+t
> uid+t+1

≥ . . . ≥ uin}.
(ii) gT(J) is a subset of the set

gGF(J) \
⋃

{i1,...,in}=[n]

{u ∈ Rn : ui1 ≥ . . . ≥ uid > uid+1
≥ . . . ≥ uin}.

Proof. Let w ∈ Rn. There always exists an ordering of the coordinates of w with

wi1 ≥ . . . ≥ wid−k−1
> wid−k

= . . . = wid+t
> wid+t+1

≥ . . . ≥ win ,

where {i1, . . . , in} is a permutation of [n] and k, t ≥ 0.
Let ∅ 6= U ′ ⊂ GLn(K) be the Zariski-open subset chosen as in Lemma 3.3.8

and ∅ 6= U ′′ ⊂ GLn(K) be the Zariski-open subset chosen as in Theorem 3.3.2.
Let U = U ′ ∩ U ′′. Then U 6= ∅ and we only need to consider the sets GF(g(J))
and T (g(J)) for g ∈ U . We have that g(f) contains all monomials eF of degree d
or all g ∈ U . Let h =

∑
F⊂[n],|F |=d eF , Cw(h) = {u ∈ Rn : inu(h) = inw(h)} and

T (h) = {u ∈ Rn : inu(h) is not a monomial}. Then supp(g(f)) = supp(h).
For (i), let Γ = {F ⊂ {i1, . . . , id+t} : |F | = d and F ⊃ {i1, . . . , id−k−1}}. Then

w · F is constant for all F ∈ Γ. Moreover, w · F > w · T for all T ⊂ [n], |T | = d and
T 6∈ Γ. Thus inw(h) =

∑
F∈Γ eF . Therefore,

Cw(h) = {u ∈ Rn : inu(h) = inw(h)} = {u ∈ Rn : inu(h) =
∑
F∈Γ

eF}

= {u ∈ Rn : ui1 ≥ . . . ≥ uid−k−1
> uid−k

= . . . = uid+t
> uid+t+1

≥ . . . ≥ uin}.



3.3. THE GENERIC CASE 37

Let u ∈ C[w]. Then inu(g(J)) = inw(g(J)). Thus inu(g(f)) = inw(g(f)). Since
supp(g(f)) = supp(h), we get that inw(h) = inu(h). Hence C[w] ⊆ Cw(h).

For (ii), let u ∈ Rn such that u 6∈ T (h). We may assume further that ui1 ≥ ui2 ≥
. . . ≥ uin , where {i1, . . . , in} is a permutation of [n]. Then u 6∈ T (h) if and only if
inu(h) = ei1...id . This is the case only when uid > uid+1

. So we get

T (h) = Rn \
⋃

{i1,...,in}=[n]

{u ∈ Rn : ui1 ≥ . . . ≥ uid > uid+1
≥ . . . ≥ uin}.

Since

supp(g(f)) = supp(h) and T (g(f)) ⊆ {u ∈ Rn : inu(g(f)) is not a monomial},
we get that T (g(f)) ⊆ T (h). Moreover, T (g(f)) ⊆ gGF(J). Hence

gT(J) ⊆ T (g(f)) ⊆ gGF(J) ∩ T (h).

This concludes the proof. �





CHAPTER 4

Linear resolutions and componentwise linearity

The goal of this chapter is to study graded ideals with linear resolutions and
componentwise linear ideals in the exterior algebra. We use an extension of the
notion of linear quotients to give another proof of the well-known result that an
ideal with linear quotients is componentwise linear. We also study ideals whose
product has a linear resolution.

4.1. Preliminaries

In this section, we recall some facts about componentwise linear ideals and linear
quotients over the exterior algebra. Componentwise linearity was defined for ideals
over the polynomial ring by Herzog and Hibi in [33] to characterize a class of sim-
plicial complexes, namely, sequentially Cohen-Macaulay simplicial complexes. Such
ideals have received a lot of attention in several articles; see, e.g., [4], [31], [36],
[59]. In this section we follow the presentation in the book of Herzog and Hibi (see
[32, Chapter 8]) and Kämpf’s dissertation (see [37, Section 5.3, 5.4]).

Definition 4.1.1. Let M ∈M be a finitely generated graded E-module. Recall
that M has a d-linear resolution if βEi,i+j(M) = 0 for all i and all j 6= d. Following
[32] we call M componentwise linear if the submodule M〈i〉 of M generated by Mi

have an i-linear resolution for all i ∈ Z.

Note that a componentwise linear module which is generated in one degree has
a linear resolution. A module that has a linear resolution is componentwise linear.
We illustrate these properties by an example of componentwise linear ideals: stable
monomial ideals. Indeed, if J ⊂ E is a stable ideal then each J〈i〉 is also stable.
By Lemma 1.3.2(iii), a stable ideal has a linear resolution if it is generated in one
degree. Hence stable ideals are componentwise linear.

Next we list some properties of componentwise linear ideals used in this thesis.

Lemma 4.1.2. Let 0 6= J ⊂ E be a graded ideal. Then we have:

(i) ([4, Theorem 2.1]). If |K| = ∞ then J is componentwise linear if and
only if J and gin(J) have the same graded Betti numbers (independent of
char(K)).

(ii) ([37, Theorem 5.3.7]). J is componentwise linear if and only if

reg(J≤d) ≤ d for all d ∈ Z.
(iii) ([37, Corollary 5.3.8]). If J is componentwise linear then

reg(J) = max{j : βE0j(J) 6= 0}.

39
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Lemma 4.1.3 ([37, Lemma 5.3.4]). Let 0 6= J ⊂ E be a graded ideal. If J has
a d-linear resolution, then mJ has a (d+ 1)-linear resolution.

Next we recall some facts about ideals with linear quotients over the exterior
algebra. For more details, one can see [37, Section 5.4].

Definition 4.1.4. Let J ⊂ E be a graded ideal with homogeneous generators
u1, . . . , ur. If (u1, . . . , ui−1) :E ui is generated by linear forms for i = 1, . . . , r then J
is said to have linear quotients w.r.t. u1, . . . , ur. If there exists a minimal system of
homogeneous generators such that J has linear quotients w.r.t. this system then we
say that J has linear quotients.

Remark 4.1.5. (i) For the definition of linear quotients over the exterior algebra,
we need the condition that 0 :E u1 has to be generated by linear forms, i.e., u1 is a
product of linear forms.

(ii) Definition 4.1.4 depends on the order of generators. For example, the ideal
J = (e1, e123 +e345) has linear quotients w.r.t. the given order of the generators since
0 :E e1 = (e1) and (e1) :E (e123 + e345) = (e1, e3, e4, e5). However, J does not have
linear quotients w.r.t. the reversed order on the generators since e123 + e345 is not a
product of linear forms.

(iii) Let J be a graded ideal with linear quotients w.r.t. a minimal system of
homogeneous generators u1, . . . , ur. Then

deg ui ≥ min{deg u1, . . . , deg ui−1} for 1 ≤ i ≤ r.

Indeed, assume that deg ui < min{deg u1, . . . , deg ui−1}. Then there exists a non-
zero K-linear combination of uj, where j = 1, . . . , i − 1, belonging to (ui) since
(u1, . . . , ui−1) :E ui is generated by linear forms. Hence, we can omit one uk in
{u1, . . . , ui−1} to get a smaller system of generators. This contradicts the fact that
u1, . . . , ur is a minimal system of generators of J .

The regularity of a graded ideal with linear quotients behaves like the regularity
of a stable ideal (see Lemma 1.3.2 (iii)) as we can see in the following proposition:

Proposition 4.1.6 ([37, Theorem 5.4.3]). Let J ⊂ E be a graded ideal with
linear quotients w.r.t. homogeneous generators u1, . . . , ur. Then

regE(J) = max{deg u1, . . . , deg ur}.
In particular, if J has linear quotients and J is generated in one degree, then J has
a linear resolution.

4.2. Criteria and examples

The main goal of this section is to present an alternative proof of the result that
graded ideals with linear quotients are componentwise linear; see [37, Theorem 5.4.5]
for the first proof of this fact. For this, we use a so-called notion of componentwise
linear quotients which is defined for monomial ideals over the polynomial ring by
Jahan and Zheng in [36]. We also review matroidal ideals over the exterior algebra
as important examples of monomial ideals with linear quotients.



4.2. CRITERIA AND EXAMPLES 41

Let J ⊂ E be a graded ideal with linear quotients w.r.t. homogeneous generators
u1, . . . , ur. For a permutation {i1, . . . , ir} = [r], we say that the order ui1 , . . . , uir of
u1, . . . , ur is degree increasing if deg ui1 ≤ . . . ≤ deg uir . By using exterior algebra’s
methods, we have the following lemmas which are similar to the ones for monomial
ideals over the polynomial ring in [36, Lemma 2.1, 2.5]. Note that we prove them
here for graded ideals.

Lemma 4.2.1. Let J ⊂ E be a graded ideal with linear quotients w.r.t. a minimal
system of homogeneous generators u1, . . . , ur. Then J also has linear quotients w.r.t.
a degree increasing order of this system.

Proof. We prove the statement by induction on r. The case r = 1 is trivial.
Assume r > 1. Observe that the ideal (u1, . . . , ur−1) has linear quotients w.r.t.
homogeneous generators u1, . . . , ur−1. By the induction hypothesis, we may assume
that deg u1 ≤ . . . ≤ deg ur−1.

If deg ur ≥ deg ur−1 then we are done. Assume next that deg ur < deg ur−1 and
let i be the smallest integer such that deg ui+1 > deg ur. It is clear that i + 1 6= 1
since deg u1 = min{deg u1, . . . , deg ur} by Remark 4.1.5. We now claim that J has
linear quotients w.r.t. the degree increasing order u1, . . . , ui, ur, ui+1, . . . , ur−1. For
this, we have to prove that

(u1, . . . , ui) :E ur and (u1, . . . , ui, ur, ui+1, . . . , uj−1) :E uj for j = i+ 1, . . . , r − 1

are generated by linear forms.
At first, we claim that (u1, . . . , ui) :E ur = (u1, . . . , ur−1) :E ur which is gen-

erated by linear forms since J has linear quotients w.r.t. the homogeneous ele-
ments u1, . . . , ur. The inclusion “⊆” is clear. Now let f be a linear form in
(u1, . . . , ur−1) :E ur. Then fur ∈ (u1, . . . , ur−1). Write

fur = g + h, where g ∈ (u1, . . . , ui) and h ∈ (ui+1, . . . , ur−1).

Let deg ur = d. Then deg fur = d+ 1 and deg uj ≥ d+ 1 for j = i+ 1, . . . , r− 1. If
h 6= 0, we may assume that deg g = deg h = d+ 1 since the ideals are homogeneous.
This implies that h is a linear combination of some of ui+1, . . . , ur−1 and this linear
combination is in (u1, . . . , ui, ur) since h = fur−g ∈ (u1, . . . , ui, ur). This contradicts
the fact that u1, . . . , ur is a minimal system of generators of J . Hence h = 0 and
then fur = g ∈ (u1, . . . , ui). Thus f ∈ (u1, . . . , ui) :E ur. So (u1, . . . , ui) :E ur =
(u1, . . . , ur−1) :E ur is generated by linear forms.

Next let i+ 1 ≤ j ≤ r − 1. We claim that

(u1, . . . , ui, ur, ui+1, . . . , uj−1) :E uj = (u1, . . . , ui, ui+1, . . . , uj−1) :E uj

which is generated by linear forms by the assumption. The inclusion “⊇” is clear.
Let f ∈ (u1, . . . , ui, ur, ui+1, . . . , uj−1) :E uj. We have

fuj = g + hur, where g ∈ (u1, . . . , ui, ui+1, . . . , uj−1) and h ∈ E.

Then fuj − g = hur. Therefore, hur ∈ (u1, . . . , ui, ui+1, . . . , uj−1, uj) and thus

h ∈ (u1, . . . , ui, ui+1, . . . , uj−1, uj) :E ur = (u1, . . . , ui) :E ur.
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The equality here holds since (u1, . . . , ur−1) :E ur = (u1, . . . , ui) :E ur. Hence
hur ∈ (u1, . . . , ui) and fuj ∈ (u1, . . . , ui, ui+1, . . . , uj−1). So we get that

f ∈ (u1, . . . , ui, ui+1, . . . , uj−1) :E uj.

This concludes the proof. �

Similar to Lemma 4.1.3, for ideals with linear quotients we have:

Lemma 4.2.2. Let J ⊂ E be a graded ideal. If J has linear quotients, then mJ
has linear quotients.

Proof. By Lemma 4.2.1, we may assume that J has linear quotients w.r.t. a
minimal system of homogeneous generators u1, . . . , ur and the order u1, . . . , ur is
degree increasing. We prove the assertion by induction on r.

The case r = 0 is trivial. Now let r ≥ 1, consider the ordered set

B = {u1e1, . . . , u1en, u2e1, . . . , u2en, . . . , ure1, . . . , uren}.
Then B is a system of generators of mJ . Note that B is usually not minimal.

For 1 ≤ i ≤ r, 1 ≤ j ≤ n, denote by

Ji,j = m(u1, . . . , ui−1) + (uie1, . . . , uiej−1),

Ii,j = (u1, . . . , ui−1) :E ui + (e1, . . . , ej).

Note that Ii,j is generated by linear forms since (u1, . . . , ui−1) :E ui is generated by
linear forms. By removing elements uiej in B from the left side to the right side of
B w.r.t. the given order on B if uiej ∈ Ji,j, we get a linearly independent set

B′ = {uiej ∈ B : uiej 6∈ Ji,j}.
Consider the order on B′ defined as follows: ui1ej1 comes before ui2ej2 if i1 < i2 or
i1 = i2 and j1 < j2. By the choice of the degree increasing order and the definition
of B′, we see that B′ is a minimal system of homogeneous generators of mJ . We
claim now that mJ has linear quotients w.r.t. B′.

By the induction hypothesis, we have that m(u1, . . . , ur−1) has linear quotients
w.r.t. the following system of generators

B′′ = {uiej ∈ B′ : i = 1, . . . , r − 1} ⊂ B′.

Thus Ji,j :E uiej is generated by linear forms for i < r and uiej ∈ B′. Hence we only
need to prove that Jr,j :E urej is generated by linear forms for urej ∈ B′. For this,
we claim that Jr,j :E urej = Ir,j.

Let f = g + h ∈ Ir,j, where h ∈ (e1, . . . , ej) and g ∈ (u1, . . . , ur−1) :E ur. Then
h(urej) ∈ (ure1, . . . , urej−1) ⊆ Jr,j. We see also that

g(urej) = ±ej(gur) ∈ m(u1, . . . , ur−1) ⊆ Jr,j.

So we get Ir,j ⊆ Jr,j :E urej.
Next let f ∈ Jr,j :E urej. Then f(urej) ∈ Jr,j. Hence fej ∈ Jr,j :E ur. To ensure

that f ∈ Ir,j we prove the following:

(i) Jr,j :E ur ⊆ Ir,j−1,
(ii) Ir,j−1 :E ej = Ir,j.
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For (i), let g ∈ Jr,j :E ur. Then gur = h1+h2ur ∈ Jr,j, where h1 ∈ m(u1, . . . , ur−1)
and h2 ∈ (e1, . . . , ej−1). This implies that (g − h2)ur ∈ (u1, . . . , ur−1). Thus g −
h2 ∈ (u1, . . . , ur−1) :E ur. So we get g ∈ Ir,j−1 since h2 ∈ (e1, . . . , ej−1). Thus
Jr,j :E ur ⊆ Ir,j−1.

For (ii), we claim that ej 6∈ Ir,j−1. Indeed, if ej ∈ Ir,j−1, then

ejur ∈ (u1, . . . , ur−1) + (e1, . . . , ej−1)ur.

It follows that

ejur ∈ m(u1, . . . , ur−1) + (e1, . . . , ej−1)ur = Jr,j

since deg ejur ≥ deg ui + 1 for i = 1, . . . , r − 1. This contradicts the fact that
ejur 6∈ Jr,j because of the choice of B′. Since Ir,j−1 is generated by linear forms and
ej 6∈ Ir,j−1, we get Ir,j−1 :E ej = Ir,j. This concludes the proof. �

Remark 4.2.3. (i) The converse of the above lemma is not true. For instance,
consider the ideal J = (e12, e34) ⊂ K〈e1, e2, e3, e4〉. Then mJ = (e123, e124, e134, e234)
has linear quotients w.r.t. the given order of monomial generators. But J does not
have linear quotients since J is generated in degree 2 and J does not have a 2-linear
resolution (see Proposition 4.1.6).

(ii) We cannot replace m in the above lemma by a subset of variables. So we
see that the product of two graded ideals with linear quotients might not have
linear quotients. For example, let us recall the example from Remark 2.3.5: let
J = (e123, e134, e125, e256). We can check that J has linear quotients w.r.t. the given
order of monomial generators but P = (e1, e2)J = (e1234, e1256) does not have linear
quotients by Proposition 4.1.6 because of the fact that P is generated in one degree
and it does not have a linear resolution.

Next we prove the main result of this section. For this, we say that a graded
ideal J ⊂ E has componentwise linear quotients if all component ideals 0 6= J〈d〉
have linear quotients.

Theorem 4.2.4. Let J ⊂ E be a graded ideal. If J has linear quotients, then J
has componentwise linear quotients.

Proof. Assume that J has linear quotients w.r.t. a minimal system of homoge-
neous generators u1, . . . , um. By Lemma 4.2.1, we may assume further that the
given order on this system is degree increasing, i.e., deg(u1) ≤ . . . ≤ deg(um). Let
d = deg(u1), d+ t = deg(um) and 1 = rd−1 ≤ rd < rd+1 < . . . < rd+t = m such that
deg(uj) = d + i if rd+i−1 + 1 ≤ j ≤ rd+i for i = 0, . . . , t. Observe that for i > t,
Jd+i = mi−tJ〈d+t〉. By Lemma 4.2.2, we only need to prove that J〈d+i〉 has linear
quotients for i = 0, . . . , t. We prove this by induction on i.

It is clear that J〈d〉 = (u1, . . . , urd) and J〈d〉 has linear quotients w.r.t. the minimal
system of homogeneous generators u1, . . . , ur1 . So the case i = 0 is true.

Assume i > 0. By the induction hypothesis we have that J〈d+i−1〉 has linear
quotients. Then by Lemma 4.2.2, the ideal mJ〈d+i−1〉 has linear quotient w.r.t. a
minimal system of homogeneous generators, say w1, . . . , ws. For simplicity, write
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p = rd+i−1 and v1, . . . , vq instead of up+1, . . . , urd+i
where q = rd+i − rd+i−1. Then

J〈d+i〉 = mJ〈d+i−1〉 + (v1, . . . , vq) = (w1, . . . , ws, v1, . . . , vq).

Observe that w1, . . . , ws, v1, . . . , vq is a minimal system of homogeneous generators
of J〈d+i〉. We claim that J〈d+i〉 has linear quotients w.r.t. this system. For this, we
only need to check that (w1, . . . , ws, v1, . . . , vj−1) :E vj is generated by linear forms
for 1 ≤ j ≤ q. Indeed, we claim that

(4) (w1, . . . , ws, v1, . . . , vj−1) :E vj = (u1, . . . , up, v1, . . . , vj−1) :E vj,

which is generated by linear forms since J has linear quotients w.r.t. the homoge-
neous generators u1, . . . , um.

The inclusion “⊆” is clear. Next let f ∈ (u1, . . . , up, v1, . . . , vj−1) :E vj, then
fvj ∈ (u1, . . . , up, v1, . . . , vj−1). Write fvj = g + h, where g ∈ (u1, . . . , up) and
h ∈ (v1, . . . , vj−1). Since deg fvj ≥ d + i + 1, we have that deg g ≥ d + i + 1.
Moreover, deg uk ≤ d+ i− 1 for k = 1, . . . , p. This implies that

g ∈ (u1, . . . , up)≥d+i+1 ⊆ mJ〈d+i−1〉 = (w1, . . . , ws).

Hence

fvi ∈ (w1, . . . , ws, v1, . . . , vi−1) and thus f ∈ (w1, . . . , ws, v1, . . . , vi−1) :E vi.

This concludes the proof. �

Next by using Theorem 4.2.4, we present an alternative proof for the result of
Kämpf in [37, Theorem 5.4.5]. Note that this result is analogous to a result over
the polynomial ring of Sharifan and Varbaro in [59, Corollary 2.4].

Corollary 4.2.5. If J ⊂ E is a graded ideal with linear quotients, then J is
componentwise linear.

Proof. By Theorem 4.2.4, J has componentwise linear quotients. It follows that
every component ideal 0 6= J〈d〉 of J has linear quotients. Thus J〈d〉 has a linear
resolution by Proposition 4.1.6. This concludes the proof. �

Definition 4.2.6. Let J be a graded ideal with componentwise linear quotients.
We say that J has strongly componentwise linear quotients if at each degree d, the
component ideal 0 6= J〈d〉 has linear quotients w.r.t. a minimal system of homo-
geneous generators w1, . . . , ws, v1, . . . , vq such that w1, . . . , ws is a minimal system
of homogeneous generators of mJ〈d−1〉 and mJ〈d−1〉 has linear quotients w.r.t. this
system.

The converse of Theorem 4.2.4 is still unknown. However, we can prove the
following:

Proposition 4.2.7. Let J ⊂ E be a graded ideal with strongly componentwise
linear quotients. Then J has linear quotients.

Proof. Let d be the initial degree of J and d+t be the maximal degree of minimal
generators of J . We prove the statement by induction on t.

The case t = 0 is trivial since J〈d〉 has linear quotients and J is generated in one
degree, i.e., J = J〈d〉.
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Assume t ≥ 1. Recall that we denote by J≤k = (f ∈ J : deg f ≤ k). Since J
has componentwise linear quotients, we have that J≤d+t−1 has componentwise linear
quotients. By the induction hypothesis, we get that J≤d+t−1 has linear quotients
w.r.t. a minimal system of homogeneous generators, say u1, . . . , up. Since J has
strongly componentwise linear quotients, J〈d+t〉 has linear quotients w.r.t. a minimal
system of homogeneous generators, say w1, . . . , ws, v1, . . . , vq, such that w1, . . . , ws is
a minimal system of homogeneous generators of mJ〈d+t−1〉 and mJ〈d+t−1〉 has linear
quotients w.r.t. this system. Observe that u1, . . . , up, v1, . . . , vq is a minimal system
of homogeneous generators of J . We claim that J has linear quotients w.r.t. this
system. Indeed, we only need to prove that for j = 1, . . . , q we have

(u1, . . . , up, v1, . . . , vj−1) :E vj = (w1, . . . , ws, v1, . . . , vj−1) :E vj,

which is generated by linear forms. This follows from the same argument as in the
proof of Theorem 4.2.4. More precisely, this is exactly the equation (4). So J has
linear quotients. �

To conclude this section, we present a class of monomial ideals with linear quo-
tients, which will be used in the next section.

Example 4.2.8. A monomial ideal J ⊂ E is said to be matroidal if it is gener-
ated in one degree and if it satisfies the following exchange property:

For all u, v ∈ G(J), and all i with i ∈ supp(u) \ supp(v), there exists an integer
j with j ∈ supp(v) \ supp(u) such that (u/ei)ej ∈ G(J).

Analogously to the polynomial rings case one sees that matroidal ideals have
linear quotients. Thus a matroidal ideal is a componentwise linear ideal generated in
one degree and has a linear resolution. For the convenience of the reader we present
a proof of this property (over the exterior algebra) following the corresponding proof
in [15, Proposition 5.2] for polynomial rings.

Proof. Let J ⊂ E be a matroidal ideal. We claim that J has linear quotients
with respect to the reverse lexicographical order of the generators.

Let u ∈ G(J) and let Ju be the ideal generated by all v ∈ G(J) with v > u in
the reverse lexicographical order. Denote by gcd(u, v) the greatest common divisor
of u and v. Then we get

Ju :E u = (v/ gcd(u, v) : v ∈ Ju) + ann(u).

We need to prove that Ju :E u is generated by linear forms. Note that ann(u)
is generated by variables appearing in u. So we only need to check that for each
v ∈ G(J) and v > u, there exists a variable ej ∈ Ju :E u such that ej divides v/[v, u].

Let u = ea11 . . . eann and v = eb11 . . . ebnn , where 0 ≤ ai, bj ≤ 1 and deg u = deg v.
Since v > u, there exists an integer i such that ai > bi and ak = bk for k = i+1, . . . , n.
Moreover, J is a matroidal ideal and i ∈ supp(u) \ supp(v). Hence there exists an
integer j such that bj > aj and u′ = ej(u/ei) ∈ G(J) since j ∈ supp(v) \ supp(u).
Then uej = u′ei. Since j < i, we get u′ > u and u′ ∈ Ju. Hence ej ∈ Ju :E u.
Moreover, j ∈ supp(v) \ supp(u) = supp(v/ gcd(u, v)), so ej divides v/ gcd(u, v).
This concludes the proof. �
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4.3. Linear resolution of products of ideals

Motivated by a result of Conca and Herzog in [15] that a product of linear
ideals over the polynomial ring has a linear resolution, we study in this section the
following related problem:

Question 4.3.1. Let J1, . . . , Jd ⊆ E be linear ideals. Is it true that the product
J = J1 . . . Jd has a linear resolution?

At first, by modifying methods of Conca and Herzog in [15] for the exterior
algebra, we get a positive answer for the above question in the case that Ji is
generated by variables for i = 1, . . . , d.

Theorem 4.3.2. A product of linear ideals which are generated by variables has
a linear free resolution.

Proof. Let J1, . . . , Jd ⊆ E be linear ideals generated by variables and J =
J1 . . . Jd. If J = 0, then the statement is trivial. We prove the statement for
J 6= 0 by two ways. One uses properties of matroidal ideals and the other is a more
conceptual proof.
First proof: Recall that a monomial ideal J is matroidal if it is generated in
one degree such that for all u, v ∈ G(J), and all i with i ∈ supp(u) \ supp(v),
there exists an integer j with j ∈ supp(v) \ supp(u) such that (u/ei)ej ∈ G(J).
For the convenience of the reader, we present next the fact (following the proof
of Conca and Herzog [15] in the polynomial ring case) that a product of two ma-
troidal ideals over the exterior algebra is also a matroidal ideal. In fact, let I, J
be matroidal ideals, u, u1 ∈ G(I) and v, v1 ∈ G(J) such that uv, u1v1 6= 0 and
uv, u1v1 ∈ G(IJ). Let i ∈ supp(u1v1) \ supp(uv). We claim that there exists an
integer j ∈ supp(uv) \ supp(u1v1) such that (u1v1/ei)ej ∈ G(IJ).

Since supp(u1v1) = supp(u1) ∪ supp(v1), without loss of generality, we may
assume that i ∈ supp(u1). Then i ∈ supp(u1) \ supp(u). Since I is a matroidal
ideal, there exists j1 ∈ supp(u) \ supp(u1) such that u2 = (u1/ei)ej1 ∈ G(I). Then
there are two cases:

Case 1: If j1 6∈ supp(v1), then

j1 ∈ supp(uv) \ supp(u1v1) and 0 6= (u1v1/ei)ej1 = u2v1 ∈ G(IJ).

So we can choose j = j1.
Case 2: If j1 ∈ supp(v1), then j1 6∈ supp(v) because j1 ∈ supp(u) and uv 6= 0.

So j1 ∈ supp(v1)\supp(v). Since J is matroidal, there exists k1 ∈ supp(v)\supp(v1)
such that v2 = (v1/ej1)ek1 ∈ G(J). Note that k1 6= i since i 6∈ supp(v) but k1 ∈
supp(v).

If k1 6∈ supp(u2) \ supp(u), then k1 6∈ supp(u1) since u2 = (u1/ei)ej1 . We get

k1 ∈ supp(uv) \ supp(u1v1)

and

0 6= (u1v1/ei)ek1 = (u1/ei)ej1(v1/ej1)ek1 = u2v2 ∈ G(IJ).

So we are done because we can choose j = k1.
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Otherwise k1 ∈ supp(u2) \ supp(u). Since I is matroidal, there exists j2 such
that

j2 ∈ supp(u) \ supp(u2) with 0 6= u3 = (u2/ek1)ej2 ∈ G(I).

Observe that j2 6= i since j2 ∈ supp(u) and i 6∈ supp(u). Then we get

0 6= (u1v1/ei)ej2 = ((u1/ei)ej1/ek1)ej2(v1/ej1)ek1 = u3v2 ∈ G(IJ)

and we can choose j = j2. Hence the product of two matroidal ideals is also
matroidal.

It is obvious that Ji is a matroidal ideal for i = 1, . . . , d. Thus by induction on
d we see that J is also a matroidal ideal. So J has a linear resolution by the fact a
matroidal ideal has a linear resolution; see Example 4.2.8.
Second proof: Let Ii be the square free monomial ideals in the polynomial ring
S = K[x1, . . . , xn] corresponding to Ji. Then I = I1 . . . Id has a linear resolution by
the result of Conca and Herzog [15, Theorem 3.1]. Let I[d] be the ideal generated by
the squarefree monomials of degree d belonging to I. Then I[d] has a linear resolution
by [32, Proposition 8.2.17]. Hence, J has a linear resolution by a result of Aramova,
Avramov and Herzog ([1, Corollary 2.2]). �

Considering a product of two linear ideals, we have:

Corollary 4.3.3. Let I, J be linear ideals such that IJ 6= 0. Then IJ has a
2-linear free resolution.

Proof. Since I, J are linear ideals, we can assume that I +J = m, otherwise I, J
are in a smaller exterior algebra, in which we can modulo a regular sequence to get
I + J = m. By changing the coordinate and choosing suitable generators, we may
assume further that

I = (e1, . . . , er, . . . , es) and J = (er, . . . , es, . . . , en),

where 1 ≤ r ≤ s ≤ n and I1 ∩ J1 = spanK{er, . . . , es}. Then I, J are linear ideals
generated by variables. By Proposition 4.3.2, we get that IJ has a 2-linear free
resolution. �

Next we consider one more special case of products of ideals: powers of ideals.
In [35], Herzog, Hibi and Zheng proved that if a monomial ideal I in the polynomial
ring S has a 2-linear resolution, then every power of I has a linear resolution. We
have the same result for the exterior algebra:

Proposition 4.3.4. Let J ⊂ E be a non-zero monomial ideal in E. If J has a
2-linear resolution, then every power of J has a linear resolution.

Proof. Let I ⊂ S be the ideal in the polynomial ring S corresponding to J . Then
I is a squarefree ideal with a 2-linear resolution by [1, Corollary 2.2]. We only need
to consider the case Jm 6= 0 for an integer m. We have that Im has a linear resolution
by [35, Theorem 3.2]. By [32, Proposition 8.2.17], the squarefree monomial ideal
(Im)[2m] has also a linear resolution. Note that (Im)[2m] corresponds to Jm in E, so
using [1, Corollary 2.2] again, we conclude that Jm has a linear resolution. �
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Remark 4.3.5. Observe the following:
(i) A linear form f is E/J-regular but it might not be E/J2-regular. This is a

difference between the polynomial ring and the exterior algebra. For instance, let
J = (e12 + e34, e13, e23). Then e4 is E/J-regular since J :E e4 = J + (e4). But e4 is
not E/J2-regular since

J2 = (e1234) and J2 :E (e4) = (e123) + (e4) ) J2 + (e4).

(ii) Let J ⊂ E be a monomial ideal such that J and (E/J)∗ have linear projective
resolutions. Then J reduces to a power of the maximal ideal modulo some maximal
E/J-regular sequence of linear forms of E by [22, Theorem 3.4]. But it might not
hold for powers of J . This can be seen in Example 4.3.6.

Example 4.3.6. Let J = (e12 + e34, e12 + e35, e23, e24, e25, e45) ⊂ K〈e1, . . . , e5〉.
Then e1 is E/J-regular and J reduces to (e2, . . . , e5)2 modulo e1. By [22, Theorem
3.4], we have that J and (E/J)∗ have linear projective resolutions. However,

J2 = (e1234, e1235, e1245, e2345)

has a linear resolution while (E/J2)∗ does not have a linear resolution because it is
not generated in one degree since (E/J2)∗ ∼= ann(J2) = (e2, e34, e35, e45). Note that
we use Macaulay2 [28] here to compute ann(J2).

For the case of monomial ideals, we have:

Proposition 4.3.7. Let J ⊂ E be a monomial ideal with depth(E/J) = 0 such
that J and (E/J)∗ have linear projective resolutions. Then Jm and (E/Jm)∗ have
linear projective resolutions for every power 0 6= Jm of J .

Proof. Since J and (E/J)∗ have linear projective resolutions, J reduces to a
power of the maximal ideal modulo some maximal E/J-regular sequence of linear
forms by [22, Theorem 3.4]. Moreover, depth(E/J) = 0. Therefore, J itself must
be a power of the maximal ideal. So does every power of J . Thus Jm and (E/Jm)∗

have linear projective resolutions for every power 0 6= Jm of J by [22, Theorem
3.4]. �

4.4. Discussion for the general case

We discuss in this section some tools which could be useful to study Ques-
tion 4.3.1 in the general case. By using properties of strongly generic bases and
adding some further assumptions, we prove results on products of linear ideals in
the exterior algebra which are similar to known results of Conca and Herzog [15]
in the polynomial ring case. The base field K is considered in this section with
char(K) = 0.

Let I1, . . . , Id ⊂ E be linear ideals such that J = I1 · · · Id 6= 0. Denote by

Ji = I1 · · · Ii−1Ii+1 · · · Id for i = 1, . . . , d.

Definition 4.4.1. Let v ∈ E1 be a strongly generic element for the E-module
E/J . The element v is said to be a strongly stable generic element for E/J if

(vJ1 ∩ vJ2 ∩ · · · ∩ vJd)d ⊆ J.
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In many computations, the notions of strongly generic element and strongly
stable generic element were simultaneously satisfied. Thus, we propose the following:

Question 4.4.2. Let J be a non-zero product of linear ideals in E and v a
strongly generic element for the E-module E/J . Then v is also a strongly stable
generic element for E/J .

Remark 4.4.3. In the special case that I1, . . . , Id are principal linear ideals, we
get a positive answer for Question 4.4.2. Indeed, the following stronger statement
is true:

Let I1, . . . , Id be linear ideals and J = I1 . . . Id 6= 0. Let v be a linear form in
I1 + · · ·+ Id and f ∈ vJ1 ∩ · · · ∩ vJd with deg f = d such that

0 6= f = vu12u13 · · ·u1d = vu21u23 · · ·u2d = · · · = vud1 · · ·ud(d−1),

where uij are linear forms in Ij for i, j = 1, . . . , d and i 6= j. Then f ∈ J .
Note that this statement is stronger than the first claim above since if I1, . . . , Id

are principal linear ideals and f ∈ vJi with deg f = d then f = αvu1 . . . ûi . . . ud
where α ∈ K and ui ∈ E1 such that Ii = (ui) for i = 1, . . . , d.

Proof. At first, we claim the following:
Let {u1, . . . , ud} and {v1, . . . , vd} be sets of linearly independent elements in E1

where 1 ≤ d ≤ n. Then the following statements are equivalent:

(i) αu1 · · ·ud = v1 · · · vd, where 0 6= α ∈ K;
(ii) spanK{u1, . . . , ud} = spanK{v1, . . . , vd}.

In fact, (ii) ⇒ (i) is clear. For (i) ⇒ (ii), we assume that ui 6∈ spanK{v1, . . . , vd} for
some 1 ≤ i ≤ d. Then the set {ui, v1, . . . , vd} is linearly independent. Note that a
product of linearly independent elements in E1 is non-zero. Thus uiv1 · · · vd 6= 0. So
uiαu1 · · ·ud 6= 0. This contradicts the fact that uiu1 · · ·ud = 0.

For a linear form u =
∑n

i=1 αiei ∈ E1, we set S(u) = {i : αi 6= 0}. If C is a set
of linear forms, then we write S(C) =

⋃
u∈C S(u).

Without loss of generality, we may assume that v = e1 and u1j = ej for j =
2, . . . , d. Let T = {1, 2, . . . , d}. Then f = eT . By the equivalent statements from
above, we have uij ∈ spanK{e1, . . . , ed} and uij ∈ Ij for 1 ≤ i, j ≤ d and i 6= j.

For a set of indices F ⊆ [d], we define C(F ) =
⋃
i∈F,j 6=i supp(uji). Put F0 = {1}.

Let C1 = C(F0) and F1 = S(C1).
If 1 6∈ F1, we define C2 = C(F1 ∪ {1}) and F2 = S(C2). Continuing in this way,

whenever 1 6∈ Fi we define Ci+1 = C(Fi ∪ {1}) and Fi+1 = S(Ci+1) for i = 1, 2, . . .
until 1 ∈ Fi. Observe that

C1 ⊆ C2 ⊆ · · · and F1 ⊆ F2 ⊆ · · · .
Since Fi ⊂ T for all i = 1, 2, . . ., there exists an integer 1 ≤ k such that the process
ends at Fk, i.e., 1 ∈ Fk, or Fk = Fk+1 and in this case we also have that Ck = Ck+1.
Write F = Fk and C = Ck. Then we have C = C(F ∪ {1}) and F = S(C).

There are two possibilities for F :
Case 1: 1 ∈ F . By the definition of F , there exist jk−1 ∈ Fk−1 \ Fk−2 and

ik−1 6= jk−1 such that αk−1e1 is a non-zero term of uik−1jk−1
with 0 6= αk−1 ∈ K.
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Observe that
f = eT = α−1

k−1uik−1jk−1
eT\{1}.

Since jk−1 ∈ Fk−1 \ Fk−2, there exists jk−2 ∈ Fk−2 \ Fk−3 and ik−2 6= jk−2 such that
αk−2ejk−1

is a non-zero term of uik−2jk−2
with 0 6= αk−2 ∈ K. Then we have

f = eT = α−1
k−1α

−1
k−2uik−1jk−1

uik−2jk−2
eT\{1,jk−1}.

Continuing with this process we get that there exist 0 6= αt ∈ K and jt ∈ Ft \ Ft−1

and it 6= jt for t = 0, . . . , k such that αtejt+1 is a non-zero term of uitjt . Note that
here j0 = 1 and we set F−1 = ∅. Therefore, we have an expression of f as the
product:

f = α−1
k−1 · · ·α

−1
0 uik−1jk−1

· · ·ui1j1ui01eT\{1,jk−1,...,j1}.

Since jk−1, . . . , j1 are pairwise distinct, ei ∈ Ii and uitjt ∈ Ijt , where t = 0, . . . , k− 1
and 1 ≤ i ≤ d, we get that f ∈ J . Hence the statement holds.

Case 2: 1 6∈ F . Set G = T \ (F ∪ {1}) and l = |F |. We claim that G = ∅. In
fact, if G 6= ∅ then since F = S(C(F ∪ {1})) we get that {uij : j ∈ F ∪ {1}} is a set
of l + 1 linear forms in K〈et : t ∈ F 〉 for i ∈ G. Hence

∏
j∈F∪{1} uij = 0 for i ∈ G.

This is impossible because f 6= 0. Hence G = ∅, i.e., F = {2, . . . , d}. This means
e1 6∈ supp(uij) for all uij.

Observe that {ui1, . . . , ui(i−1), ui(i+1), . . . , uid} is a linearly independent set of (d−
1) linear forms in K〈e2, . . . , ed〉 for i = 1, . . . , d. By the equivalent statements from
the beginning of the proof, we get that

0 6= gi =
∏
j 6=i

uij = aieF with ai ∈ K \ {0} for all i = 1, . . . , d.

Since e1 = v ∈ I1 + · · · + Id, we can write e1 = v1 + · · · + vd with vi ∈ Ii for
i = 1, . . . , d. Note that eF = a−1

i gi ∈ Ji for i = 1, . . . , d. Hence f = e1eF =∑d
i=1 vieF ∈

∑d
i=1 IiJi = J . This concludes the proof. �

Next we claim that if the answer of Question 4.4.2 is positive, i.e., every strongly
generic element is strongly stable generic, then following analogously methods of
Conca and Herzog [15] in the exterior algebra settings we can prove that a non-zero
product of linear ideals in E has a linear resolution. This can seen by the following
results:

Lemma 4.4.4. Let 0 6= I1, . . . , Id ⊂ E be linear ideals such that Ik ( m for k =
1, . . . , d. Then after a suitable field extension L/K, there exists a strongly generic
element v for any E ′-module of the form M ′ = L⊗KM such that v 6∈ I ′k = L⊗K Ik
for k = 1, . . . , d, where E ′ = L⊗K E and M ∈M.

Proof. Let L1/K be a field extension containing algebraically independent ele-
ments bij over K where i, j = 1, . . . , n. Let uj =

∑n
i=1 bijei for j = 1, . . . , n. We

denote by I∗k = L1 ⊗K Ik for k = 1, . . . , d. Since Ik ( m, we note that
⋃d
k=1 Ik ( m.

Thus
⋃d
k=1 I

∗
k ( m∗ where m∗ = L1 ⊗K m. Hence there exists 1 ≤ j ≤ n such that

uj 6∈
⋃d
k=1 I

∗
k . Without loss of generality, we may assume that u1 6∈

⋃d
k=1 I

∗
k .

Next we use again the second field extension as in the proof of Lemma 2.2.3.
More precisely, let L/L1 be a field extension containing the algebraically independent
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elements cij over L1 where i, j = 2, . . . , n. Let wj =
∑n

i=2 cijui for j = 2, . . . , n and
choose v = u1. By Lemma 2.2.3 and Proposition 2.2.4, we get that v, w2, . . . , wn is
a strongly generic basis of E ′1 for any E ′-module M ′ = L⊗KM where E ′ = L⊗K E
and M ∈M. In particular, v is a strongly generic element for M ′. Moreover, since
u1 6∈

⋃d
k=1 I

∗
k , we also have v = u1 6∈ L ⊗L1 I

∗
k = L ⊗K Ik = I ′k for k = 1, . . . , d, as

desired. �

Lemma 4.4.5. Let I1, . . . , Id ⊂ E be linear ideals with J = I1 · · · Id 6= 0. Let
IA =

∑
j∈A Ij and PA =

∏
j∈A Ij where A runs over the subsets of [d]. If every

strongly generic element for the E-modules E/PA is strongly stable generic, then

J =
⋂
A

I
|A|
A .

Note that then also J = md ∩
⋂
A,IA 6=m I

|A|
A .

Recall that, for an E-module N ∈ M, we denote s(N) = max{i : Ni 6= 0}
if N 6= 0 and s(0) = −∞. Let 0 6= J ⊂ E be a graded ideal and v 6∈ J be
a strongly generic element for the E-module E/J . Note that by Lemma 4.4.4,
there always exists such the element v after a suitable field extension. We set
sat(J, v) = s( J :Ev

J+(v)
) + 1 for short. Using Lemma 4.4.5, we have:

Corollary 4.4.6. Let I1, . . . , Id ⊂ E be linear ideals with J = I1 . . . Id 6= 0
and d ∈ N. Let PA =

∏
j∈A Ij where A runs over the subsets of [d]. If every

strongly generic element for the E-modules E/PA is strongly stable generic, then
after a suitable field extension there exists a strongly generic element v ∈ E1 for the
E-modules E/PA such that sat(J, v) ≤ d.

Proof of 4.4.6. Let IA =
∑

j∈A Ij where A runs over the subsets of [d]. Consid-

ering the linear ideals IA and the E-modules E/PA applying Lemma 4.4.4 we may
assume (after a suitable field extension) that there exists a strongly generic element
v ∈ E1 for all E-modules E/PA such that v 6∈ IA if IA 6= m where A runs over
the subsets of [d]. Then for each linear ideal IA with v 6∈ IA, we note that v is
E/IkA-regular for all k > 0. Thus for these ideals we have IkA :E v = IkA + (v).

We may assume that I[d] = I1 + · · ·+ Id = m because otherwise we have v 6∈ IA.
Then v is E/J-regular. Thus J :E v = J + (v). Hence sat(J, v) < d and this proves
the statement in this case.

Let f ∈ J :E v with deg f ≥ d. We need to prove that f ∈ J + (v). By Lemma

4.4.5 we have J =
⋂
A I
|A|
A . Thus f ∈ I |A|A :E v = I

|A|
A + (v) for A ⊂ [d] such that

IA 6= m. Hence

(5) f ∈ md ∩
⋂

A,IA 6=m

(I
|A|
A + (v)).

Without loss of generality we may assume that E = K〈v, e2, . . . , en〉. Let

m̃, J̃ , ĨA, P̃A, f̃ be the images of m, J, IA, PA, f in E/(v) = Ẽ, respectively. We
use also the notion ĨA, P̃A for the extended ideal ĨAE, P̃AE in E w.r.t. the embed-

ding Ẽ ↪→ E. Observe that the image of IkA in Ẽ is ĨA
k

for k ≥ 1. So we have
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IkA + (v) = ĨA
k

+ (v) in E. Using this in (5) we get

f ∈ md ∩
⋂

A,IA 6=m

(ĨA
|A|

+ (v)).

Thus we have

f̃ ∈ m̃d ∩
⋂

A,IA 6=m

ĨA
|A| ⊆ m̃d ∩

⋂
A,ĨA 6=m̃

ĨA
|A|
.

Note that every strongly generic element for the Ẽ-modules Ẽ/P̃A is also strongly
stable generic. Applying Lemma 4.4.5 to the linear ideals Ĩi, where i = 1, . . . , d, in
the exterior algebra Ẽ, we have that

J̃ = Ĩ1 . . . Ĩd = m̃d ∩
⋂

A,ĨA 6=m̃

ĨA
|A|
.

Thus f̃ ∈ J̃ . Hence f ∈ J̃ + (v) since f ∈ (f̃ , v) in E. Note that

J̃ + (v) = Ĩ1 · · · Ĩd + (v) = (Ĩ1 + (v)) . . . (Ĩd + (v)) + (v)

= (I1 + (v)) . . . (Id + (v)) = I1 . . . Id + (v)

= J + (v).

So we get f ∈ J + (v). This concludes the proof. �

Next we prove Lemma 4.4.5:

Proof of 4.4.5. We prove the statement by induction on d and on n. Set Ji =
I1 · · · Ii−1Ii+1 · · · Id for i = 1, . . . , d. By induction on d, we only need to prove that

(6) J = J1 ∩ · · · ∩ Jd ∩ (
d∑
i=1

Ii)
d.

The case d = 1 is trivial. Assume d > 1. The inclusion “⊆” is clear. For the
inclusion “⊇”, we may assume that

∑d
i=1 Ii = m because otherwise all the ideals Ii

live in a smaller exterior algebra.
Let v ∈ E1 be a strongly generic element for E-modules E/PA as chosen in the

proof of Corollary 4.4.6 after a suitable field extension. Note that v is a also strongly
stable generic element for E/P[d] = E/J . Moreover, we also have that 6 holds in
E if and only if the extended equation holds after the field extension. Since Ji is
a product of (d − 1) linear ideals, by the induction hypothesis on d we note that
Corollary 4.4.6 holds (for d− 1). So we have sat(Ji, v) ≤ d− 1 for i = 1, . . . , d.

Now we use a second induction on n to prove (6). The case n = 1 is trivial.
Assume n > 1. Let f ∈ J1 ∩ · · · ∩ Jd with deg f ≥ d. We must show that f ∈ J .

Observe that the ideal J + (v)/(v) of E/(v) is the product of the linear ideals
Ii + (v)/(v). By the induction hypothesis on n, we get that

(J1 + (v)/(v)) ∩ · · · ∩ (Jd + (v)/(v)) ∩md/(v) = J + (v)/(v).

In other words,

J + (v) = (J1 + (v)) ∩ · · · ∩ (Jd + (v)) ∩md.
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Thus f ∈ J + (v). Let f = f ′ + vg where f ′ ∈ J and g ∈ E. Replacing f by f − f ′,
we may assume that f = vg. Then we have vg ∈ J1 ∩ · · · ∩ Jd. This implies that
vg ∈ Ji for all i. Hence g ∈ Ji :E v.

Observe that deg g ≥ d − 1 because deg f ≥ d. Since sat(Ji, v) ≤ d − 1 for
i = 1, . . . , d, i.e., s( Ji:Ev

Ji+(v)
) ≤ d−2, we get that g ∈ Ji+(v) and vg ∈ v(Ji+(v)) = vJi

for i = 1, . . . , d. If deg f ≥ d+ 1, then deg g ≥ d and

g ∈ (J1 + (v)) ∩ · · · ∩ (Jd + (v)) ∩md = J + (v).

This implies that f = vg ∈ v(J + (v)) = vJ ⊂ J . It remains to consider the case
that deg f = d. Here we have

f = vg ∈ (vJ1 ∩ · · · ∩ vJd)d ⊂ J

since v is also strongly stable generic. Thus f ∈ J . This concludes the proof. �

We prove now the main result of this section:

Theorem 4.4.7. Let I1, . . . , Id ⊂ E be linear ideals with J = I1 · · · Id 6= 0. Let
PA =

∏
j∈A Ij where A runs over the subsets of [d]. If every strongly generic element

for the E-modules E/PA is strongly stable generic, then J has a d-linear resolution.

Proof. We prove the statement by induction on n. The case n = 1 is trivial.
Assume n > 1. Let v be a strongly generic element as chosen in the proof of
Corollary 4.4.6 after a suitable field extension. Note that J has a d-linear resolution
if and only if the extended ideal after the field extension has a d-linear resolution.
By Lemma 2.3.3, we have

(7) regE(J) = max{regE(J + (v)), sat(J, v)}.
By Corollary 4.4.6, we also have that sat(J, v) ≤ d. The critical case is if J 6⊆ (v)
holds, i.e., J + (v)/(v) 6= 0. Otherwise, regE(J + (v)) = regE((v)) = 1 ≤ d. Thus
regE(J) ≤ d. Hence regE(J) = d since J is generated in degree d.

Assume now J 6⊆ (v). Observe that J+(v)/(v) is the product of the linear ideals
Ii + (v)/(v) in E/(v). By the induction hypothesis we get

regE/(v)(J + (v)/(v)) = d.

Since E/(J + (v)) ∼= (E/(v))/(J + (v)/(v)), we have

regE/(v)(E/(J + (v))) = d− 1.

Applying Proposition 2.3.1 to E/J , we get that

regE((E/J)/(vE/J)) = regE/(v)((E/J)/(vE/J)).

Observe that E/(J + (v)) ∼= (E/J)/(vE/J). Thus

regE(E/(J + (v))) = regE/(v)(E/(J + (v))) = d− 1.

So we get regE(J + (v)) = d. Recall that sat(J, v) ≤ d. Using these facts in (7) we
see that regE(J) = d. Note that J is generated in degree d. Hence J has a d-linear
resolution. �

To conclude this section, we propose the following:
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Open problem 4.4.8.
(i) Prove the results in this section without the condition that every strongly

generic element is strongly stable generic.
(ii) A product of linear ideals generated by variables always has linear quotients

since it is matroidal (see Example 4.2.8 and Theorem 4.3.2). Is it true that a product
of arbitrary linear ideals always has linear quotients?



CHAPTER 5

On the Koszul property over the exterior algebra

Let K be an infinite field, E = K〈e1, . . . , en〉 an exterior algebra over K with
the standard grading deg ei = 1 for i = 1, . . . , n and m = (e1, . . . , en) the maximal
graded ideal of E. Let R = E/J be a standard graded K-algebra where J is a
graded ideal of E. The goal of this chapter is to study several variations of the
Koszul property over the exterior algebra. More precisely, we study universally
Koszul, (unconditioned) strongly Koszul and initially Koszul properties of R. These
topics are motivated from results of Blum [9] and Conca [13], [14].

5.1. Preliminaries

We present in this section basis facts about Koszul algebras over the exterior
algebra. For more details, we refer to the survey by Fröberg [27], the paper of
Conca [13] and the book by Ene and Herzog [23, Section 6.1].

Definition 5.1.1. A standard graded K-algebra R over E is said to be Koszul
if the R-module K = R/m has a linear free resolution over R.

Example 5.1.2. (i) The exterior algebra E is Koszul since the Cartan complex
is the linear free resolution of K over E (see Section 2.1).

(ii) The K-algebra E/J defined by a quadratic monomial ideal J ⊂ E is Koszul
(see, e.g., Theorem 5.1.5).

We collect some well-known facts in the following lemma whose proof is trivial:

Lemma 5.1.3. Let R be a standard graded K-algebra over E. The following
statements are equivalent:

(i) R is a Koszul algebra;
(ii) regR(K) = 0;

(iii) TorRi (K,K)j = 0 for all i 6= j.

Remark 5.1.4. From Lemma 5.1.3, one can deduce a well-known necessary
condition for the Koszulness of the K-algebra E/J where J ⊂ E is a graded ideal:
If E/J is Koszul, then J is generated in degrees ≤ 2. From now on, we always
assume that J does not contain linear forms. In other words, we consider the
Koszul property of R = E/J only in the case that J is generated in degree 2. We
also identify ei ∈ E with [ei] ∈ R for i = 1, . . . , n.

A well-known sufficient condition is the following result (see, e.g., [27]):

Theorem 5.1.5. Let J ⊂ E be a graded ideal which has a quadratic Gröbner
basis with respect to some monomial order on E. Then E/J is a Koszul algebra.

55
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Note that, the converse of Theorem 5.1.5 is false in the polynomial ring case.
However, no counter example is known over an exterior algebra. We propose a
possible counter example in Example 5.2.2.

5.2. Universally Koszul property

In this section, we present the universally Koszul property for standard graded
K-algebras over the exterior algebra. We also study this property for the quotient
rings of edge ideals of graphs. Most of the results in this section are similar to known
facts in the polynomial ring case; see [13] for more details. At first, we recall the
notion of Koszul filtrations as follows:

Definition 5.2.1 (Conca, Trung, Valla [18]). Let R be a standard graded K-
algebra. A Koszul filtration of R is a family F of ideals of R such that:

(i) Every ideal 0 6= I ∈ F is generated by linear forms;
(ii) F contains the ideal 0 and the maximal graded ideal m of R;

(iii) For 0 6= I ∈ F , there exists J ∈ F such that J ⊂ I, I/J is cyclic and
J :R I ∈ F .

Example 5.2.2. (i) Let R = K〈e1, e2, e3〉/(e12). Then the collection

F = {0, (e1), (e1, e2), (e1, e2, e3)}

is a Koszul filtration of R since 0 :R (e1) = (e1, e2), (e1) :R (e1, e2) = (e1, e2) and
(e1, e2) :R (e1, e2, e3) = (e1, e2, e3).

(ii) Let J = (e12 − e34, e13 − e24) ⊂ E = K〈e1, . . . , e4〉 and R = E/J . At first,
we see that R has a Koszul filtration so R is Koszul by Remark 5.2.6. Indeed,
considering the following family of ideals in R:

F = {(0R), (e1 + e4), (e1 + e4, e2 + e3), (e1 + e4, e2 + e3, e3), (e1 + e4, e2 + e3, e3, e4)}.

We have that:

0 :R (e1 + e4) = (e1 + e4, e2 + e3),

(e1 + e4) :R (e1 + e4, e2 + e3) = (e1 + e4, e2 + e3),

(e1 + e4, e2 + e3) :R (e1 + e4, e2 + e3, e3) = (e1 + e4, e2 + e3, e3, e4),

(e1 + e4, e2 + e3, e3) :R (e1 + e4, e2 + e3, e3, e4) = (e1 + e4, e2 + e3, e3, e4).

Then F is a Koszul filtration of R.
Next we claim that J does not have a quadratic Gröbner basis w.r.t. the co-

ordinate e1, . . . , e4 and any monomial order on E. Indeed, assume the contrary
that J has a quadratic Gröbner basis with respect to some orders < on E. Then
in<(J) is one of the following monomial ideals: (e12, e13), (e12, e24), (e34, e13) and
(e34, e24). Observe that non of these four ideals contain all monomials of degree 3.
This contradicts to the fact that J contains all monomials of degree 3.

So J does not have a quadratic Gröbner basic w.r.t. the natural coordinate of
E, but R = E/J is Koszul.

Analogously to [18, Proposition 1.2], one can prove that:
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Proposition 5.2.3. Let F be a Koszul filtration of R. Then for every I ∈ F ,
the quotient R/I has a linear R-free resolution.

Denote by

L(R) = {I ⊂ R : I is an ideal generated by linear forms}.
Definition 5.2.4. A standard graded K-algebra R over E is called universally

Koszul if L(R) is a Koszul filtration of R.

The universally Koszul property has the following characterizations which can
be proved over an exterior algebra analogously to [13, Proposition 1.4]:

Proposition 5.2.5. Let R be a standard graded K-algebra over E. The following
statements are equivalent:

(i) R is universally Koszul;
(ii) For every ideal I ∈ L(R) the quotient R/I has a linear R-free resolution;

(iii) For every I ∈ L(R) one has TorR2 (R/I,K)j = 0 for j > 2;
(iv) For every I ∈ L(R) and x ∈ R1 \ I one has I :R (x) ∈ L(R).

Remark 5.2.6. Observe the following:
(i) Since every Koszul filtration contains the maximal graded ideal mR of R, by

Proposition 5.2.3 we observe that if R has a Koszul filtration then m has a linear R-
free resolution. Hence R is a Koszul algebra. Thus the universally Koszul property
implies the Koszul property of R.

(ii) If R is universally Koszul and J ⊂ R is a graded ideal generated by linear
forms then R/J is universally Koszul (see [13, Lemma 1.6] for the polynomial ring
case).

Example 5.2.7. (i) The exterior algebra E = K〈e1, . . . , en〉 is universally Koszul
since one can check that the condition (iv) in Proposition 5.2.5 is fulfilled. Indeed,
let I ∈ L(E) and x ∈ E1\I. By changing the coordinate, we may assume that x = es
and I = (e1, . . . , es−1) for some 1 ≤ s ≤ n. Then I :E (es) = (e1, . . . , es) ∈ L(E).

(ii) Let f ∈ E2. If f is a product of two linear forms, then R = E/(f) is
universally Koszul. Indeed, after a suitable change of coordinates, f is a quadratic
monomial. Thus we may assume that f = e12. Now let I ∈ L(R) and x ∈ R1 \ I.
Let J ∈ E be the corresponding linear ideal to I, i.e., I = (J + (e12))/(e12).

If e12 ∈ J , then (J + (e12)) :E (x) = J :E (x) is generated by linear forms. So
I :R (x) is also generated by linear forms. If e12 6∈ J , then we may assume that
J = (e3, . . . , es) for some 3 ≤ s ≤ n. If (x) ∈ (e1, . . . , es), then (J + (e12)) :E (x) =
(e1, . . . , es). Otherwise, we may assume that x = es+1. Then

(J + (e12)) :E (x) = (e12, e3, . . . , es) :E (es+1) = (e12, e3, . . . , es, es+1)

Thus I :R (x) = I + (x) is generated by linear forms. By Proposition 5.2.5, we
conclude that R is universally Koszul.

(iii) In the polynomial ring case, following [13, Proposition 3.1] we have that a
quadratic hypersurface ring defined by an irreducible quadric is universally Koszul.
But this is not true in the exterior algebra case. For example, let f = e12 + e34 in
E = K〈e1, . . . , e4〉. Then R = E/(f) is not Koszul. More precisely, using Macaulay2
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[28] we get that βR3,4(K) = 5 6= 0. Thus K does not have a linear free resolution
over R and then R is not Koszul.

By many computations, we always see that R = E/(f) is not Koszul if f is an
irreducible quadric. Thus we propose the following open question:

Question 5.2.8. Let f ∈ E2. Then E/(f) is Koszul if and only if f is reducible
(i.e., f is a product of two linear forms)?

Using the same method as in [14], we can classify all graphs such that the
algebras defined by their edge ideals are universally Koszul over the exterior algebra.
We recall first some facts. If R = K〈e1, . . . , en〉/I, we set R〈e〉 = K〈e1, . . . , en, e〉/I
and consider this with its natural grading. Let A = K〈e1, . . . , en〉/I and B =
K〈f1, . . . , fm〉/J . The fiber product of A and B is K〈e1, . . . , en, f1, . . . , fm〉/P where

P = I + J + (eifj : i = 1, . . . , n and j = 1, . . . ,m).

Analogously to [13, Lemma 1.6], one has:

Lemma 5.2.9. Let R, A and B be standard graded algebras over E. One has:

(i) The extension R〈e〉 of R is universally Koszul if and only if R is universally
Koszul.

(ii) The fiber product of A and B is universally Koszul if and only if both A
and B are universally Koszul.

Proof. (i) Let R′ = R〈e〉. We need to prove that I :R′ x ∈ L(R′) for every
I ∈ L(R′) and x ∈ R′1 \ I. We have following cases:

Case 1: The generators of I belong to R. Then I = JR′ = J + Je where
J ∈ L(R).

If x ∈ R1, we claim that I :R′ x = (J :R x)R′ ∈ L(R′) since J :R x ∈ L(R).
Indeed, it is clear that (J :R x)R′ ⊆ I :R′ x. Let f = f1 + f2e ∈ I :R′ x where
f1, f2 ∈ R. Then f1x + f2xe ∈ J + Je. Thus f1x, f2x ∈ J . Hence f ∈ (J :R x)R′.
So we have I :R′ x = (J :R x)R′ ∈ L(R′).

If x 6∈ R1, we may assume that x = z + e, where z ∈ R1. We claim that
I :R′ x = I + (x) ∈ L(R′). Indeed, it is clear that I + (x) ⊆ I :R′ x. Let
f = f1 + f2e ∈ I :R′ x where f1, f2 ∈ R. Then f = f1− f2z + f2x. Since x ∈ I :R′ x,
we may assume that f ∈ R. Then fz + fe ∈ I = J + Je. Thus f ∈ J ⊂ I. Hence
I :R′ x = I + (x) ∈ L(R′).

Case 2: Some of the generators of I do not belong to R. Then we may decompose
I as JR′ + (y + e) where J ∈ L(R) and y ∈ R1. One can check that I ∩R = J .

If x ∈ R1, we claim that I :R′ x = (J :R x)R′ + (y + e) ∈ L(R′). Indeed, it is
clear that (J :R x)R′ + (y + e) ⊆ I :R′ x. Let f ∈ I :R′ x. We may assume that
f ∈ R since (y + e) ∈ I :R′ x. Then fx ∈ I ∩R = J . Thus f ∈ (J :R x). Hence

I :R′ x = (J :R x)R′ + (y + e) ∈ L(R′).

It remains to consider x = z + e, where z ∈ R1. Since x 6∈ I, we have z − y 6∈ J .
We claim that

I :R′ x = (J :R (z − y))R′ + (x) + (y + e) ∈ L(R′).
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Indeed, one can check that (J :R (z−y))R′+(x)+(y+e) ⊆ I :R′ x. Let f ∈ I :R′ x.
Then fx ∈ I = JR′ + (y + e). We may assume that f ∈ R since (y + e) ∈ I :R′ x.
Observe that fx = fz + fe = fz − fy + f(y + e), so we get f(z − y) = fx −
f(y + z) ∈ I ∩ R = J . Since z − y 6∈ J and R is universally Koszul, we have
f ∈ J :R (z − y) ∈ L(R). This concludes the proof.

(ii) The proof is verbatim the same as in [13, Lemma 1.6]. �

We also have an exterior algebra version of [14, Lemma 4] as follow:

Lemma 5.2.10. Let J ⊂ E = K〈x, y, z, t〉 be a quadratic monomial ideal. Then
R = E/J is not universally Koszul if J is one of the following ideals:

(i) (xy, zt),
(ii) (xy, yz, zt).

Proof. For both of the two cases, we claim that 0 :R (y + z) has a minimal
generator of degree 2. Indeed, it is clear that xt ∈ 0 :R (y+ z). Since spanK{y, z} is
the vector space of all elements of degree 1 in (xy, zt) :E (y+z), (xy, yz, zt) :E (y+z),
and xt 6∈ (y, z), we get that xt is a minimal generator of 0 :R (y + z). Thus E/J is
not universally Koszul. �

Using the above lemmas, one can classify universally Koszul algebras defined by
monomial ideals over the exterior algebra. For the convenience of the reader we
reproduce here an exterior algebra version of [14, Theorem 5]:

Theorem 5.2.11. Let R = E/J where J ⊂ E is a quadratic monomial ideal.
The following statements are equivalent:

(i) R is universally Koszul;
(ii) The restriction of J to any subset of 4 variables is not one of the types in

Lemma 5.2.10.

Proof. (i) ⇒ (ii): The assertion follows directly from Remark 5.2.6 (ii) and
Lemma 5.2.10.

(ii) ⇒ (i): Let E = K〈e1, . . . , en〉. We prove the statement by induction on n.
The case n = 1 is trivial. Consider the case n > 1. Let U = {e1, . . . , en} and let
V = {v1, . . . , vr} be a maximal subset of U such that for all vi, vj ∈ V with i 6= j
one has vivj 6∈ J . Let W = U \ V and Gi = {x ∈ U : xvi ∈ J}. Then we have
W =

⋃r
i=1Gi. We claim that for 1 ≤ i < j ≤ r then either Gi ⊆ Gj or Gj ⊆ Gi.

Indeed, if there exist x ∈ Gi\Gj and y ∈ Gj\Gi then one has xvi, yvj ∈ J . Moreover,
by the definition of the sets V,Gi, Gj, we note that J does not contain vivj, xvj and
yvi. This is a contradiction since the restriction of J to {x, y, vi, vj} would be either
(xvi, yvj) or (xvi, yvj, xy) which are one of the types (i), (ii) in Lemma 5.2.10. Hence
by a suitable renumbering if needed, we may assume that G1 ⊆ G2 ⊆ · · · ⊆ Gr = W .

By the same argument as above, we also note that if x ∈ Gi and y ∈ U \Gi then
xy ∈ J for i = 1, . . . , r.

If G1 = ∅ then v1 does not appear in the minimal set of generators of J . Let
J ′ be the ideal in E ′ = E/(v1) generated by the same minimal set of generators of
J . Then by the induction hypothesis, we have R′ = E ′/J ′ is universally Koszul.
Therefore, R = R′〈v1〉 is universally Koszul by Lemma 5.2.9 (i).
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If G1 6= ∅ then for x ∈ G1 and y ∈ U \ G1 we have xy ∈ J . Let J1, J2 denote
the restriction of J to G1 and G1 = U \ G1, respectively. Set A = K〈G1〉/J1 and
B = K〈G1〉/J2. Observe that, R is the fiber product of A and B. By the induction
hypothesis, we note that A and B are universally Koszul algebras. Hence by Lemma
5.2.9 (ii), R is also a universally Koszul algebra. �

Recall that for a graph G with the vertex set V (G), the edge ideal J(G) of G is
defined by

J(G) = (eij : i, j ∈ V (G) and (i, j) is an edge of G).

As direct consequences of Theorem 5.2.11, we have:

Corollary 5.2.12. Let G be a graph with the edge ideal J(G) ⊂ E. Then the
algebra E/J(G) is universally Koszul if and only if every subgraph of 4 vertices in
G is not one of the forms in Figure 1.
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Figure 1: Subgraphs of 4 vertices

Corollary 5.2.13. Let J ⊂ E be a monomial ideal and I ⊂ K[x1, . . . , xn] = S
the corresponding squarefree monomial ideal. Then

S/I is universally Koszul⇔ E/J is universally Koszul.

Proof. The assertion follows directly from [14, Theorem 5] and Theorem 5.2.11.
�

5.3. Strongly Koszul and unconditioned strongly Koszul properties

The strongly Koszul property over the polynomial ring was introduced by Her-
zog, Hibi and Restuccia [34, Definition 1.1]. Analogously, we consider in this section
the strongly Koszul property over the exterior algebra. We also define a slightly
different property of the Koszul property, namely unconditioned strongly Koszul
property, and prove a necessary condition for elements of degree 2 to define uncon-
ditioned strongly Koszul algebras. Note that the unconditioned Koszul property is
also studied by Conca, De Negri and Rossi in [17] with the shorter name “strongly
Koszul”.

Let R be a standard graded K-algebra over E and u = {u1, . . . , un} ⊂ R1 a
minimal system of generators of the maximal graded ideal mR of R.

Definition 5.3.1.

(i) We say that R is strongly Koszul w.r.t. u if the ideal (ui1 , . . . , uij−1
) :R uij

is generated by a subset of u for every 1 ≤ i1 ≤ . . . ≤ ij ≤ n.
(ii) The algebra R is called unconditioned strongly Koszul w.r.t. u if for every

subset F ⊆ [n] and every j 6∈ F , we have (ui : i ∈ F ) :R uj is generated by
a subset of u.
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Remark 5.3.2. Observe the following:
(i) Denote by L(u) = {0, (ui1 , . . . , uij), where 1 ≤ i1 < · · · < ij ≤ n}. If R is

(unconditioned) strongly Koszul w.r.t. u, then L(u) is a Koszul filtration of R.
(ii) The unconditioned strongly Koszul property implies the strongly Koszul

property. We also note that the (unconditioned) strongly Koszul property and the
universally Koszul property are not the same. This can be seen by the example
below.

(iii) As in the case of the universally Koszul property, we also have that a strongly
Koszul algebra is a Koszul algebra. Therefore, if E/J is strongly Koszul where J ⊂ E
is a graded ideal, then J must be generated in degree 2.

Example 5.3.3. Let E = K〈e1, . . . , e4〉 and u = {e1, e2, e3, e4}.
(i) Let J = (e12, e34) ⊂ E and R = E/J . Then R is not universally Koszul

by Lemma 5.2.10. However, one can check easily that R is unconditioned strongly
Koszul w.r.t. u.

(ii) Let f = e13 +e14 +e23 ∈ E and set R = E/(f). Then R is not unconditioned
strongly Koszul w.r.t. u since (e2) :R e1 is not generated by a subset of u. Indeed,
we have e3 + e4 ∈ (e2) :R e1 since e1(e3 + e4) = −e23 in R. But e3, e4 6∈ (e2) :R e1

because e13, e14 6∈ (e2, f).

Next we claim that every algebra defined by a quadratic monomial ideal is un-
conditioned strongly Koszul. At first, we need:

Lemma 5.3.4. Let R = E/J where J ⊂ E is a quadratic monomial ideal. Then
the following statements are equivalent:

(i) R is unconditioned strongly Koszul w.r.t. e1, . . . , en;
(ii) 0 :R e1 is generated by linear forms and R/(e1) is unconditioned strongly

Koszul w.r.t. e2, . . . , en.

Proof. (i) ⇒ (ii): Suppose that R is unconditioned strongly Koszul with respect
to e1, . . . , en. Then 0 :R e1 is generated by linear forms. Let F ⊆ [n] \ {1} and
j 6∈ F ∪ {1}. We have (e1, ei : i ∈ F ) :R ej is generated by a subset of {e1, . . . , en}.
Thus the same is true for (ei : i ∈ F ) :R/(e1) ej. Hence R/(e1) is unconditioned
strongly Koszul w.r.t. e2, . . . , en.

(ii) ⇒ (i): Let F ⊆ [n] \ {1} and j 6∈ F ∪ {1}. Since R/(e1) is unconditioned
strongly Koszul w.r.t. e2, . . . , en, we have (e1, ei : i ∈ F ) :R ej = (e1) + I, where
I is a linear ideal generated by a subset of {e2, . . . , en}. Since J is a quadratic
monomial ideal, we also get that (ei : i ∈ F ) :R ej = (e1) + I if e1ej ∈ J and
(ei : i ∈ F ) :R ej = I otherwise. Therefore, to ensure the unconditioned strongly
Koszul property of R, we need to decide whether (ei : i ∈ F ) :R e1 is generated by
linear forms. Since J is a monomial ideal, we have

((ei : i ∈ F ) + J) :E e1 = (ei : i ∈ F ) + J + (ej : e1ej ∈ J).

Thus (ei : i ∈ F ) :R e1 is generated by linear forms. This concludes the proof. �

Proposition 5.3.5. Every standard graded algebra over E defined by a quadratic
monomial ideal is unconditioned strongly Koszul.
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Proof. Let R = E/J where J ⊂ E is a quadratic monomial ideal. We prove the
assertion by induction on dimK R1. The case dimK R1 = 1 is trivial.

If dimK R1 = 2, we only have one case R = K〈e1, e2〉/(e12). Then R is uncondi-
tioned strongly Koszul since

0 :R e1 = 0 :R e2 = (e1, e2) and (e1) :R e2 = (e2) :R e1 = (e1, e2).

For the case dimK R1 > 2, by the induction hypothesis and Lemma 5.3.4, we
only need to check that 0 :R e1 is generated by linear forms. Let eF ∈ E be a
monomial such that eF 6∈ J . Assume that [eF ] ∈ 0 :R e1. Then eF e1 ∈ J . This
implies that there exists i ∈ F such that e1ei ∈ J . So ei ∈ 0 :R e1 and ei divides eF .
Thus 0 :R e1 is generated by linear forms. �

To conclude this section, we present a necessary condition for quadratic elements
to define unconditioned strongly Koszul algebras in the natural coordinates. Let
f ∈ E2. We consider the graph G(f) with the vertex set

V (f) = {j : ej divides some elements in supp(f)}
and the edge set E(f) = {(j, k) : ejek ∈ supp(f)}. We have:

Proposition 5.3.6. Let f ∈ E2 and R = E/(f). If R is an unconditioned
strongly Koszul algebra w.r.t. u = {e1, . . . , en}, then G(f) is the union of its complete
subgraphs.

Proof. Assume the contrary. Then there exists a connected subgraph of G(f)
which is not complete and has at least 3 indices. Thus there exist i, j, k ∈ V (f)
such that (i, j), (i, k) ∈ E(f) and (j, k) 6∈ E(f). Hence eiej, eiek are in supp(f) but
ejek 6∈ supp(f). Let I = (el : l ∈ [n] \ {i, j, k}). Write

(8) f = ei(αej + βek) + g where g ∈ I and 0 6= α, β ∈ K.
Observe that I :R ei = I + (ei, αej + βek) is not generated by a subset of u since
ej, ek 6∈ I :R ei. Indeed, this follows from the fact that eiej, eiek 6∈ I + (f) which
can be seen by using (8). This is a contradiction since R is unconditioned strongly
Koszul. �

Note that the converse of Proposition 5.3.6 is false:

Example 5.3.7. Let f = e12 + e13 + e14 + e23 − e24 + e34 ∈ E = K〈e1, . . . , e4〉.
It is clear that G(f) is a complete graph. Let R = E/(f). Note that

f = e1(e2 + e3 + e4) + (e3 − e2)(e4 − e2).

Thus

h = (e2 + e3 + e4)(e3 − e2) ∈ 0 :R e1 since e1h = f(e3 − e2) ∈ (f).

Observe that
h = e23 + (e4 − e2)(e3 − e2) 6∈ (f) + (e1),

since otherwise e23 ∈ (f) + (e1) which is impossible. Now if R is unconditioned
strongly Koszul, then 0 :R e1 = (e1) since e2, e3, e4 6∈ 0 :R e1. Hence 0 :E e1 =
(e1) + (f). This is a contradiction since h ∈ 0 :R e1 and h 6∈ (e1) + (f). So R is not
unconditioned strongly Koszul.
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Remark 5.3.8. For the polynomial ring case, we have the same result as Propo-
sition 5.3.6 and it is not only a necessary condition but also a sufficient condition.
In other words, one can classify quadratic polynomials in the polynomial ring which
define unconditioned strongly Koszul algebras (see [63] for more details).

5.4. Initially Koszul property

We study in this section standard graded K-algebras over the exterior algebra
with the initially Koszul property. The content of this topic is an analogue to
the work of Blum in [9] and Conca, Rossi and Valla in [16] for standard graded
K-algebras over the polynomial ring.

Definition 5.4.1. Let R be a standard graded K-algebra over E and let

F : V0 = 0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn−1 ⊂ Vn = R1

be a complete flag of R1, where Vi is a subspace of dimension i for i = 1, . . . , n. We
say that F is a Gröbner flag of R if the ideals (Vi) form a Koszul filtration of R, i.e.,
for i = 1, . . . , n, there exists ji such that (Vi−1) :R (Vi) = (Vji). If R has a Gröbner
flag, following [9], R is said to be an initially Koszul algebra.

Remark 5.4.2. Note that the universally Koszul property is equivalent to the
existence of a Koszul filtration which is as large as possible, and the existence of a
Gröbner flag is equivalent to the existence of a Koszul filtration which is as small
as possible. More precisely, if R has a Gröbner flag then there exists an ordered
system of generators u1, . . . , un of R1 such that {0, (u1, . . . , uj) for 1 ≤ j ≤ n} is a
Koszul filtration of R, i.e., for every i = 1, . . . , n, we have

(u1, . . . , ui−1) :R ui = (u1, u2, . . . , uji) for some ji ≤ n.

Note that
(u1, . . . , ui−1) :R ui ⊇ (u1, u2, . . . , ui).

Thus ji ≥ i for i = 1, . . . , n. We denote by j(F ) the sequence of numbers j1, j2, . . . , jn.

Similarly to results of Conca, Rossi and Valla in [16], we present next some
properties of the standard graded algebra R = E/J with a Gröbner flag F , where
J ⊂ E is a graded ideal. At first we have:

Proposition 5.4.3. Let J ⊂ E be a graded ideal such that R = E/J is initially
Koszul with a Gröbner flag F . Then for i = 0, . . . , n, the Hilbert series of R/(Vi)
depends only on j(F ).

Proof. Let F : V0 = 0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn−1 ⊂ Vn = R1. For i = 1, . . . , n we
have short exact sequences

0 −→ R/(Vji)[−1]
ui−→ R/(Vi−1) −→ R/(Vi) −→ 0.

Thus

(9) HR/(Vi−1)(t) = HR/(Vi)(t) + tHR/(Vji )
(t) for i = 1, . . . , n.

Note that ji ≥ i for i = 1, . . . , n, and HR/(Vn)(t) = 1. Hence

jn = n and HR/(Vn−1)(t) = 1 + t.
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By induction on i using (9), we get that for every i, the Hilbert series of R/(Vi)
depends only on j(F ). This concludes the proof. �

Example 5.4.4. Let J = (e12, e13, e14, e23) ⊂ K〈e1, . . . , e5〉. Then R/J is
initially Koszul. Indeed, the flag F : V0 = 0 ⊂ V1 ⊂ . . . ⊂ V5 = R1, where
Vi = spanK{e1, . . . , ei} for i = 1, . . . , 5, is a Gröbner flag of R since 0 :R (V1) = (V4),
(V1) :R (V2) = (V3), (V2) :R (V3) = (V3), (V3) :R (V4) = (V4) and (V4) :R (V5) = (V5).
Thus j(F ) = (4, 3, 3, 4, 5). By Proposition 5.4.3 we get that

HR/(V5)(t) = HK(t) = 1,

HR/(V4)(t) = HR/(V5)(t) + tHR/(V5)(t) = 1 + t,

HR/(V3)(t) = HR/(V4)(t) + tHR/(V4)(t) = 1 + 2t+ t2,

HR/(V2)(t) = HR/(V3)(t) + tHR/(V3)(t) = 1 + 3t+ 3t2 + t3,

HR/(V1)(t) = HR/(V2)(t) + tHR/(V3)(t) = 1 + 4t+ 5t2 + 2t3,

HR/(V0)(t) = HR(t) = HR/(V1)(t) + tHR/(V4)(t) = 1 + 5t+ 6t2 + 2t3.

Recall that a graded algebra R = E/J , where J ⊂ E is a graded ideal, is G-
quadratic if J has a quadratic Gröbner basis with respect to some coordinate system
of E1 and some monomial order < on E. Conca, Rossi and Valla in [16] and Blum in
[9] obtained a characterization of the algebras which have Gröbner flags. We sketch
an exterior algebra version of [9, Proposition 2.3], [16, Proposition 2.5] as follows:

Proposition 5.4.5. Let R be a standard graded K-algebra over E. The following
statements are equivalent:

(i) R has a Gröbner flag;
(ii) there exists a presentation of R, say R ∼= E/J , such that if < is the

reverse lexicographic order induced by the total order e1 > e2 > . . . > en,
then in<(J) is a quadratic monomial ideal and if eiej ∈ in<(J) with i < j
then ekej ∈ in<(J) for all i < k < j.

In particular, if R has a Gröbner flag, then R is G-quadratic.

As direct consequences of Proposition 5.4.5, analogously to [9, Corollary 3.2] one
has:

Corollary 5.4.6. Let J ⊂ E be a stable monomial ideal generated in degree 2.
Then E/J is initially Koszul.

Let f ∈ E2. Recall that

supp(f) = {eiej : cijeiej is a term of f with 0 6= cij ∈ K}.

Consider the reverse lexicographic order < on E with e1 > e2 > . . . > en. For the
case where J = (f) is a principal ideal, we have:

Proposition 5.4.7. Let J = (f) be a principal ideal where f ∈ E2. If R = E/J
is initially Koszul, then in<(f) = eiei+1 for some i ∈ {1, . . . , n}.
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Proof. Let in<(f) = eiej for some 1 ≤ i < j ≤ n. Suppose that j > i + 1. Let
j1 < · · · < jr ∈ [n] be all indices such that eiejk ∈ supp(f) and jr = j. Then

(e1, . . . , ei−1, f) :R ei = (e1, . . . , ei−1, ei, ej1 + · · ·+ ejr , f).

Since R is initially Koszul, we get that r = 1. But then

ei+1 6∈ (e1, . . . , ei−1, ei, ej, f).

This contradicts the definition of an initially Koszul algebra. So j = i + 1, as
desired. �

Remark 5.4.8. A special class of graded algebras with Gröbner flags are the so-
called universally initially Koszul algebras defined by Blum [9] as follow: A standard
graded K-algebra R = E/J over E is called universally initially Koszul, write u-i-
Koszul for short, if every filtration

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn = R1

is a Gröbner flag, where Vi is a subspace of dimension i of R1.
Analogously to [9, Proposition 4.10] one can classify all monomial ideals J which

define u-i-Koszul algebras. More precisely, a standard graded K-algebra R = E/J ,
where 0 6= J ⊂ E be a monomial ideal, is u-i-Koszul if and only if J = m2.





CHAPTER 6

Orlik-Solomon algebras and ideals

The goal of this chapter is to study classes of essential central hyperplane arrange-
ments whose Orlik-Solomon ideals are componentwise linear or whose Orlik-Solomon
algebras satisfy variations of the Koszul property. We relate the first property to
resonance varieties of the corresponding Orlik-Solomon algebras. At first, we prove
that if J is an Orlik-Solomon ideal of an essential central hyperplane arrangement,
then its first resonance variety is irreducible if and only if the subideal of J generated
by all degree 2 elements has a 2-linear resolution. As an application we characterize
those hyperplane arrangements of rank ≤ 3 where J is componentwise linear. For
the general situation, we suggest a conjecture to characterize componentwise linear-
ity of Orlik-Solomon ideals. We also prove complete classifications of Orlik-Solomon
algebras which are universally Koszul or have Gröbner flags. Most of the content of
this chapter is contained in the preprint [62].

6.1. Hyperplane arrangements and resonance varieties

In this section we review some algebraic aspects of hyperplane arrangements
with particular attention to their Orlik-Solomon algebras and resonance varieties.
For more details, we refer to [55, Section 1.4, Chapter 4] and the book by Orlik-
Solomon [46, Chapter 3].

We always assume that A = {H1, . . . , Hn} is an essential central hyperplane
arrangement in Cl with the complement X (A) = Cl \

⋃
H∈AH. We say that a set

of hyperplanes {Hi1 , . . . , Hit} is dependent if the set of their defining linear forms is
linearly dependent. Let E = K〈e1, . . . , en〉 be the standard graded exterior algebra
over a field K with deg ei = 1, i = 1, . . . , n and charK = 0. Let ∂ : E −→ E be the
K-linear map on E defined by ∂ ei = 1 for i = 1, . . . , n and

(10) ∂ eF =
t∑

j=1

(−1)j−1ei1 . . . êij . . . eit for F = {i1, . . . , it} ⊆ [n] with t ≥ 2.

One can show that ∂ is a differential map on E satisfying the graded Leibniz formula.
Moreover, for a set of indices F = {i1, . . . , it} ⊆ [n] with 1 6∈ F one can also check
by formula (10) that

(11) ∂eF = (ei2 − ei1) . . . (eit − ei1) =
t∑

j=1

(−1)j−1 ∂ eF\{ij}∪{1}.

In the last decades, many properties of hyperplane arrangements have been stud-
ied using the so-called the Orlik-Solomon algebra of A. This algebra is the quotient

67
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ring E/J where J is the Orlik-Solomon ideal of A given by

J = (∂ eF : {Hi : i ∈ F} is dependent).

Orlik and Solomon [46] showed that the cohomology ring of X (A) is entirely deter-
mined by the intersection lattice

L(A) = {
⋂
H∈A′

H|A′ ⊆ A}

of A. More precisely, the singular cohomology H.(X (A);K) of X (A) with coef-
ficients in K is isomorphic to the Orlik-Solomon algebra of A. See Orlik-Terao
[47] and Yuzvinsky [65] for details. See also, e.g., [1, 19, 22, 38, 45, 56, 57]
for the study of Orlik-Solomon algebras via exterior algebra methods and algebraic
properties of arbitrary modules over E.

Next we collect some facts and results about the intersection lattice and reso-
nance varieties used in the next sections. Let A = {H1, . . . , Hn} be an essential
central hyperplane arrangement in Cl with the intersection lattice L(A). Let J be
the Orlik-Solomon ideal and A = E/J be the Orlik-Solomon algebra of A. We
denote by J≤i the ideal generated by all homogeneous elements of degree ≤ i of J .

Observe that L(A) is a partially ordered set whose elements are the linear sub-
spaces of Cl obtained as intersections of sets of hyperplanes from A and ordered by
reverse inclusion. The intersection lattice L(A) is a ranked poset. Indeed, rank(X)
is the codimension of X in Cl for X ∈ L(A) and rank(A) is the maximal value of
{rank(X) : X ∈ L(A)}. See [47, Section 2.1] or [55, Section 1.2] for details. Note
that if X = Hi1 ∩ · · · ∩Hit and rank(X) < t then {Hi1 , . . . , Hit} is a dependent set.
In particular, if rank(A) = r then all sets of more than r hyperplanes are dependent
sets and then J≤r = J .

Since every set of two hyperplanes is independent, we have J1 = 0. Recall that
the resonance varieties of an Orlik-Solomon algebra A can be computed by the
formulas (1) and (2) (on page 18), i.e.,

R1(A) = {u ∈ E1 : u = 0 or ∃v ∈ E1, 0 6= uv ∈ J2},
Rp(A) = {u ∈ E1 : u = 0 or ∃v ∈ Ep, v 6∈ Jp + uEp−1, 0 6= uv ∈ Jp+1}.

As shown by Falk in [24] or by Libgober-Yuzvinsky in [40] we know that R1(A)
is an algebraic variety in the affine space E1 = Kn and each component of R1(A) is
a linear subspace of Kn. Moreover, two distinct irreducible components meet only
at 0 and if u, v belong to the same irreducible component of R1(A), then uv ∈ J2

(see [24], [40] for more details). If these two properties hold for the first resonance
variety of a graded algebra A = E/J , we say that A satisfies property (∗). Falk
also proved that, for each X ∈ L2(A) which is the intersection of more than two
hyperplanes, there is a corresponding irreducible component of R1(A), called the
local component which is defined by

ΓX = {(xi) ∈ E1 = Kn : xi = 0 if X * Hi and
∑
Hi⊇X

xi = 0}.
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For higher resonance varieties Rp(A) with p > 1, Libgober and Yuzvinsky proved
in [40] that they are also the union of linear subspaces, but these subspaces can have
none-zero intersection. Moreover, the results in [55, Theorem 4.46, Corollary 4.49]
and [1, Theorem 3.1] imply that

Rp(A) ⊆ Rq(A) for p < q ≤ rank(A).

The rank variety VE(A) of A is the set of all linear forms in E which are not A-regular
elements. This implies that

Rp(A) ⊆ VE(A) for all 1 ≤ p.

Moreover, VE(A) is a linear subspace of E1 and dimK VE(A) = cxE(A). We refer to
the paper of Aramova, Avramov, and Herzog [1] for more details.

To conclude this section, let us recall the notion of matroids used in the next
sections. Given a ground set [n] = {1, . . . , n}, a matroid on [n] is a collection C of
subsets of [n], called circuits, such that:

(i) ∅ 6∈ C;
(ii) If F ∈ C then G 6∈ C for every G ( F ;

(iii) If F, T ∈ C with F 6= T and i ∈ F ∩T , then (F ∪T )\{i} contains a circuit.

A subset of [n] is called a dependent set if it contains a circuit. Otherwise, it is
called an independent set.

Let A = {H1, . . . , Hn} be an essential central hyperplane arrangement in Cl.
A circuit of A is a subset {i1, . . . , it} of [n] such that the set {Hi1 , . . . , Hit} is a
minimal dependent sets of hyperplanes. Let M(A) be the collection of all circuits
of A. One can check that M(A) satisfies the axioms of a matroid as above. We say
that M(A) is the underlying matroid of A (or the matroid of A for short).

6.2. Orlik-Solomon ideals with irreducible resonance varieties

The goal of this section is to present results related to the question in which
cases the resonance varieties of hyperplane arrangements are irreducible. At first
we consider the first resonance variety and we get the following main result of this
section:

Theorem 6.2.1. Let A be an essential central hyperplane arrangement with
Orlik-Solomon ideal J and Orlik-Solomon algebra A = E/J . The following state-
ments are equivalent:

(i) The first resonance variety R1(A) of A is irreducible;
(ii) The ideal J〈2〉 has a 2-linear resolution.

In particular, if J is componentwise linear, then R1(A) is irreducible.

Proof. (i) ⇒ (ii): Assume that R1(A) 6= {0} is irreducible. By property (∗) of
A, we get that J2 6= 0. Since elements of L2(A), which are intersections of more
than two hyperplanes, correspond to the local components of R1(A) as noted above
(see [24]), there is exactly one element X in L2(A) which is an intersection of more
than two hyperplanes. We choose a maximal integer s with 3 ≤ s ≤ n such that X
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is the intersection of s hyperplanes of the arrangement. Without loss of generality
we assume that A = {H1, . . . , Hs, Hs+1, . . . , Hn} and X = H1 ∩H2 ∩ . . . ∩Hs.

Let F = {i, j, k} ⊆ {1, . . . , s} with |F | = 3. Since

2 = rank(H1 ∩H2 ∩ . . . ∩Hs) ≥ rank(Hi ∩Hj ∩Hk) ≥ 2,

we get that Hi ∩ Hj ∩ Hk = H1 ∩ H2 ∩ . . . ∩ Hs. Thus F is a dependent set of
A. Next we assume that G = {i, j, k} ⊆ {1, . . . , n} with |G| = 3 and for example
i ≥ s + 1. If G is dependent, then Hi ∩ Hj ∩ Hk would have rank 2 which implies
by our assumption on L2(A) that Hi ∩Hj ∩Hk = X. But then it would follow that

X = H1 ∩H2 ∩ . . . ∩Hs = H1 ∩H2 ∩ . . . ∩Hs ∩Hi ∩Hj ∩Hk

which is a contradiction to the choice of s. Hence

J〈2〉 = (∂eF : F is dependent, |F | = 3)

= ((ei − ek)(ej − ek) : {i, j, k} is dependent for 1 ≤ i < j < k ≤ s)

= ((ei − e1)(ej − e1) : {1, i, j} is dependent for 2 ≤ i < j ≤ s)

= (e2 − e1, . . . , es − e1)2.

Note that we used at the third equation formula (11) from page 68. We get
that J〈2〉 is a square of a linear ideal, say I, so J〈2〉 has a 2-linear resolution. In
fact, after an appropriate change of coordinates, we may assume that I is generated
by variables, say I = (e1, . . . , es−1). Then every power of I is a stable monomial
ideal of E which is generated in one degree and has a linear resolution (see, e.g., [3,
Corollary 3.4 (a)]).

(ii) ⇒ (i): Since J〈2〉 has a 2-linear resolution, J〈2〉 and gin(J〈2〉) have the same
graded Betti numbers (see [4, Theorem 2.1]). Thus

regE(J〈2〉) = regE(gin(J〈2〉)) = 2.

Hence gin(J〈2〉) is a strongly stable monomial ideal generated in degree 2. So we
have G(gin(J〈2〉))2 = G(gin(J〈2〉)). By Lemma 1.3.2 (ii), we get that

βEi,i+2(J〈2〉) = βEi,i+2(gin(J〈2〉)) =
∑

u∈G(gin(J〈2〉))

(
max(u) + i− 1

max(u)− 1

)
.

We consider the polynomial function

P : Q→ Q, i 7→ P (i) =
∑

u∈G(gin(J〈2〉))

(
max(u) + i− 1

max(u)− 1

)
.

Observe that degP = t − 1 where t = max{max(u) : u ∈ G(gin(J〈2〉))}. It is
a consequence of [56, Theorem 4.3] that degP = dimR1(A) − 1. Recall that we
consider R1(A) as an affine variety in E1 = Kn while in [56] this space is viewed as
a projective variety. It follows dimR1(A) = t. As noted above R1(A) is the union
of linear components Γj. There exists one linear component, say Γp, of R1(A) such
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that dim Γp = t. By [56, Theorem 5.6] we have for i� 0 that

βEi,i+2(J〈2〉) ≥
∑

Γj component of R1(A)

(i+ 1)

(
dim Γj + i

i+ 2

)
≥ (i+ 1)

(
t+ i

i+ 2

)
.

Using the fact that gin(J〈2〉) and (e1, . . . , et)
2 are both strongly stable monomial

ideals generated in degree 2 and by the definition of t we get

G(gin(J〈2〉)) ⊆ G((e1, . . . , et)
2).

Then we see with Lemma 1.3.2 (ii) and a direct computation (see, e.g., [38, Propo-
sition 6.12]) that

βEi,i+2(gin(J〈2〉)) ≤ βEi,i+2((e1, . . . , et)
2) = (i+ 1)

(
t+ i

i+ 2

)
for all i ≥ 0.

Using all inequalities together we get that

βEi,i+2(J〈2〉) = βEi,i+2(gin(J〈2〉)) = (i+ 1)

(
t+ i

i+ 2

)
for i� 0.

Using again [56, Theorem 5.6] this implies that R1(A) has exactly one irreducible
component. Thus R1(A) is irreducible. �

If the rank of the arrangement is small, we get:

Corollary 6.2.2. Let A be an essential central hyperplane arrangement such
that rank(A) ≤ 3 with Orlik-Solomon ideal J and Orlik-Solomon algebra A = E/J .
The following statements are equivalent:

(i) The first resonance variety R1(A) of A is irreducible;
(ii) J is componentwise linear.

Proof. (i)⇒ (ii): Since R1(A) is irreducible, we get that J≤2 = J〈2〉 has a 2-linear
resolution. Thus reg(J≤2) = 2.

We have J = J≤3 because rank(A) ≤ 3. It follows from [38, Corollary 6.7] that

reg(J≤3) = reg(J) = reg(E/J) + 1 ≤ 3.

Moreover, reg(J≤k) ≤ 3 ≤ k for k ≥ 3. Using [37, Theorem 5.3.7] we see that J is
componentwise linear.

(ii)⇒ (i): If J is componentwise linear, then J〈2〉 has a 2-linear resolution. Hence
Theorem 6.2.1 implies that R1(A) is irreducible. �

Note that a graded ideal which has a linear resolution is also componentwise
linear. But the converse is not true even for the case the ideal is an Orlik-Solomon
ideal, i.e., there exist Orlik-Solomon ideals which are componentwise linear and do
not have linear resolutions as the following example shows.

Example 6.2.3. Let A be an essential central hyperplane arrangement in C3

defined by the equation

Q = xy(x− y)z(2x+ y − z)(x+ 3y + z).
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Let E = K〈e1, . . . , e6〉 be the exterior algebra where each ei corresponds to the i-th
factor in the polynomial. The Orlik-Solomon ideal of A is

J = (∂e123) + (∂eijkl : {i, j, k, l} ⊆ [6]).

We see that L2(A) has only one element X = H1 ∩H2 ∩H3 which is an intersection
of more than two hyperplanes. Hence R1(A) = ΓX = spanK{(e2 − e1), (e3 − e1)}
is irreducible. By Corollary 6.2.2, the ideal J is a componentwise linear ideal. We
observe that the elements ∂eijkl are not redundant for all 1 ≤ i, j, k, l ≤ 6, so
J 6= J〈2〉. This implies that J is not generated in one degree. Hence J does not have
a linear resolution.

We saw that the componentwise linear property of an Orlik-Solomon ideal can be
characterized in terms of data of the hyperplane arrangement if the rank is small. We
wonder if a similar statement can be proved for arbitrary essential central hyperplane
arrangements. Note that a characterization for Orlik-Solomon ideals to have a linear
resolution is given in [22, Corollary 3.6]; see also [38, Theorem 6.11] which is a first
step to such a result.

We ask ourself:

Question 6.2.4. Assume that the Orlik-Solomon ideal J of an essential central
hyperplane arrangement A is componentwise linear. Are then all resonance varieties
Rp(A), where 0 ≤ p ≤ rank(A), irreducible?

Recall that the simplest matroids are the uniform matroids Up,q with p ≤ q.
They are matroids over the ground set [q] whose independent sets are all subsets of
[q] of cardinality ≤ p. Supporting Question 6.2.4, we prove that if the Orlik-Solomon
ideal has a linear resolution, then resonance varieties are irreducible.

Proposition 6.2.5. Let A be an essential central hyperplane arrangement with
Orlik-Solomon ideal J and Orlik-Solomon algebra A = E/J such that J has a d-
linear resolution for 2 ≤ d ≤ n. Then Question 6.2.4 has an affirmative answer.
More precisely, we have

Rp(A) = 0 for 0 ≤ p ≤ d− 2 and Rd−1(A) = VE(A) is irreducible.

Proof. Assume that J has a d-linear free resolution. Then J0 = . . . = Jd−1 = {0}
and J = (Jd). Hence Rp(A) = 0 for 0 ≤ p ≤ d − 2. By [38, Theorem 6.11 (iii)],
the matroid M(A) of A is M(A) = Ud,n−f ⊕ Uf,f where Ud,n−f , Uf,f are uniform
matroids. Therefore,

J = J〈d〉 = (∂eF : F ∈ Ud,n−f , |F | = d+ 1)

= ((ei2 − ei1) . . . (eid+1
− ei1) : F = {i1, . . . , id+1} ⊆ [n− f ])

= ((ei2 − e1) . . . (eid+1
− e1) : F = {1, i2, . . . , id+1} ⊆ [n− f ]).

Note that we used at the third equation formula (11) (on page 68). Thus by formula
(2), we get

Rd−1(A) = spanK{ei − e1 : 2 ≤ i ≤ n− f}.
This implies already that Rd−1(A) is irreducible and dimK R

d−1(A) = n− f − 1.



6.2. ORLIK-SOLOMON IDEALS WITH IRREDUCIBLE RESONANCE VARIETIES 73

Note that Uf,f =
⊕f

i=1 U1,1. So M(A) has (f + 1) connected components fol-
lowing [38, Page 200]. By [1, Theorem 3.1, 3.2] and [38, Corollary 6.5], we get
that

dimK VE(A) = cxE(A) = n− depthE(A) = n− f − 1 = dimK R
d−1(A).

Since Rd−1(A) ⊆ VE(A), we conclude that Rd−1(A) = VE(A). �

Remark 6.2.6. We have some evidences based on computations that the con-
verse of Proposition 6.2.5 is true. So we can ask assuming that Rp(A) = 0 for
0 ≤ p ≤ d − 2 and Rd−1(A) = VE(A) is irreducible, if then J has a d-linear res-
olution. Moreover, if J ⊂ E is an arbitrary graded ideal with a d-linear resolu-
tion, one interesting problem could be whether Rd−1(E/J) is always maximal (i.e.,
Rd−1(E/J) = VE(E/J)) or at least irreducible.

Next we present another corollary of Theorem 6.2.1. For this, we recall the
following conjecture of Suciu and Schenck in [57, Conjecture B, page 2271].

Conjecture 6.2.7. Let A be an essential central hyperplane arrangement with
Orlik-Solomon ideal J ⊂ E. Then for i� 0, the graded Betti numbers of the linear
strand of E/J are given by

βEi,i+1(E/J) = i
∑
r≥1

hr

(
r + i− 1

i+ 1

)
,

where hr is the number of r-dimensional components of R1(E/J) in the space Kn.

Supporting this conjecture, we have:

Corollary 6.2.8. Let A be an essential central hyperplane arrangement with
Orlik-Solomon ideal J and Orlik-Solomon algebra A = E/J such that J〈2〉 has a
2-linear resolution. Then Conjecture 6.2.7 is true for E/J .

Proof. Let t = max{max(u) : u ∈ G(gin(J〈2〉))}. In the proof of Theorem 6.2.1
we showed that

βEi,i+2(J) = βEi,i+2(J〈2〉) = (i+ 1)

(
t+ i

i+ 2

)
for i� 0.

We know also that hr = 1 for r = dimR1(E/J) = t and hr = 0 for r 6= t since
R1(E/J) is irreducible. Combining with the fact that βEi+1,i+2(E/J) = βEi,i+2(J), we
can conclude the proof. �

As we have seen in Corollary 6.2.8, in the case of hyperplane arrangements,
the irreducibility of the first resonance ensures that Conjecture 6.2.7 is true. In
the following, we present a counter example in which the irreducibility of the first
resonance does not imply the formula for the Betti numbers as in Conjecture 6.2.7.

Example 6.2.9. Let E = K〈e1, . . . , e5〉 be the exterior algebra over a field K.
Let J = (e12, e13, e14, e15, e234) ⊂ E. We see that J is a strongly stable monomial
ideal. By Lemma 1.5.1 we get

R1(E/J) = spanK{e1, . . . , e5} and R1(E/J) is irreducible.
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Note that E/J does not have property (∗) since e2, e5 ∈ R1(E/J) but e2e5 6∈ J2.
By Lemma 1.3.2 (ii), for i ≥ 0, we have

βEi,i+2(J) =
∑

u∈G(J)2

(
max(u) + i− 1

max(u)− 1

)
=

(
i+ 1

1

)
+

(
i+ 2

2

)
+

(
i+ 3

3

)
+

(
i+ 4

4

)
.

By induction, one can proves that(
i+ 1

1

)
+

(
i+ 2

2

)
+

(
i+ 3

3

)
+

(
i+ 4

4

)
< (i+ 1)

(
i+ 5

i+ 2

)
, for i ≥ 0.

Then we get

βEi+1,i+2(E/J) = βEi,i+2(J) < (i+ 1)

(
i+ 5

i+ 2

)
= (i+ 1)

∑
r≥1

hr

(
r + i

i+ 2

)
where hr is the number of components of R1(E/J) which have dimension r in the
affine space E1 = Kn. Here hr = 0 for r 6= 5 and h5 = 1 6= 0. Thus we do not get
the same formula of graded Betti numbers as in the statement of Conjecture 6.2.7.

However, a monomial ideal could satisfy property (∗) and Conjecture 6.2.7 still
makes sense in this case. An example for this is in the following remark.

Remark 6.2.10. Let G be a graph on a finite vertex set VG and with edge set
EG. For a vertex v ∈ VG let deg v denote the number of edges incidents to v. Recall
that a graph G is a disjoint union of complete graphs if there exist complete graphs
Gi such that the vertex sets VGi

of Gi are disjoint, |VGi
| ≥ 2, the vertex set VG of

G is VG =
⋃
i VGi

and the edge set EG of G is EG =
⋃
iEGi

. Let n = |VG| and E be
the exterior algebra on n exterior variables e1, . . . , en over a field K. The edge ideal
J(G) of G is defined as J(G) = (eiej : { i, j} ∈ EG). Then we claim that E/J(G)
satisfies property (∗) and the graded Betti numbers in the linear strand of J(G) are
given by

βEi,i+2(J(G)) = (i+ 1)
n∑
r=2

hr

(
r + i

i+ 2

)
,

where hr is the number of r-dimensional components of R1(E/J) in the affine space
Kn. So Conjecture 6.2.7 is true for edge ideals of disjoint unions of complete graphs.
To prove this, we need the following lemmas.

Lemma 6.2.11. Let G be a disjoint union of complete graphs and n = |VG|.
Then R1(E/J(G)) is a union of linear subspaces and E/J(G) satisfies property (∗).

Proof. Let G be the disjoint union of complete graphs G1, . . . , Gt. Let ri = |VGi
|

and so n =
∑t

i=1 ri. Consider the edge ideals J(G) and J(Gi) in the exterior algebra

E. It is clear that J(G) =
∑t

i=1 J(Gi). The first resonance variety of E/J(G) can
be computed as

(12) R1(E/J(G)) = {u ∈ E1 : u = 0 or ∃v ∈ E1 such that 0 6= u ∧ v ∈ J(G)}.
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Let VGi
= {ij : j = 1, . . . , ri} ⊆ [n]. Because of eip ∧ eiq ∈ J(Gi) for 1 ≤ p, q ≤ ri

and Equation (12) we have

spanK{ei1 , . . . , eiri} ⊆ R1(E/J(G)).

We claim that the irreducible components of R1(E/J(G)) are exactly the vector
spaces spanK{ei1 , . . . , eiri} for 1 ≤ i ≤ t. Assume that there exists an irreducible
component which is not of this form. Then there exist linear forms u, v ∈ E1 such
that

0 6= u ∧ v ∈ J(G) and u /∈ spanK{ei1 , . . . , eiri} for all 1 ≤ i ≤ t.

Let u =
∑n

k=1 αkek and v =
∑n

k=1 βkek for αk, βk ∈ K.
Now we show that supp(u) = supp(v). For this let k1 ∈ supp(v) be arbitrary

and choose i such that k1 ∈ VGi
. Since supp(u) is not contained in VGi

there exists
k2 ∈ supp(u) with k2 6∈ VGi

. Observe that ep ∧ eq ∈ J(G) =
∑t

i=1 J(Gi) if and only
if there is 1 ≤ i ≤ t such that p, q ∈ VGj

for some j. So ek1 ∧ ek2 /∈ J(G). It follows
that αk1βk2 − αk2βk1 = 0 because u ∧ v ∈ J(G). Hence

k1 ∈ supp(u), k2 ∈ supp(v) and αk2/βk2 = αk1/βk1 .

In particular, we see that supp(v) ⊆ supp(u) and supp(v) is not contained in one of
the VGj

. With the same arguments we get that

supp(u) ⊆ supp(v) and then supp(u) = supp(v).

Moreover, we also get that for every k, k′ ∈ supp(u) = supp(v), if k and k′ do not
live in the same VGi

for some 1 ≤ i ≤ t, then αk/βk = αk′/βk′ . Since supp(u) is not
contained in one of the VGj

, we can conclude that αk/βk is the same constant for
every k ∈ supp(u) = supp(v). But then we get the contradiction that u ∧ v = 0.

So we see that all irreducible components of R1(E/J(G)) are induced by the
complete subgraphs of G. More precisely,

R1(E/J(G)) =
t⋃
i=1

spanK{ei1 , . . . , eiri}.

We also get that R1(E/J(G)) satisfies property(∗) on Page 2. �

Lemma 6.2.12. Let i, r be integers with i, r ≥ 0. Then we have
i∑

j=0

(
i

j

)(
r

j + 2

)
=

(
r + i

i+ 2

)
.

Proof. Considering the polynomial f(x) = (1+x)r+i in the polynomial ring K[x],
we get

(1 + x)r+i = (1 + x)i(1 + x)r = (
i∑

j=0

(
i

j

)
xj)(

r∑
t=0

(
r

t

)
xt).

This implies that the coefficient of xr−2 is
i∑

j=0

(
i

j

)(
r

r − 2− j

)
=

i∑
j=0

(
i

j

)(
r

j + 2

)
.



76 6. ORLIK-SOLOMON ALGEBRAS AND IDEALS

Moreover, (1 + x)r+i =
∑r+i

j=0

(
r+i
j

)
xj. Thus the coefficient of xr−2 in this equation

is
(
r+i
r−2

)
=
(
r+i
i+2

)
. Hence we conclude that

∑i
j=0

(
i
j

)(
r
j+2

)
=
(
r+i
i+2

)
. �

We are ready to prove the claim in Remark 6.2.10:

Proof. Let G be the disjoint union of complete graphs G1, . . . , Gt with the vertex
sets VGi

= {i1, . . . , iri}, i = 1, . . . , t. By Lemma 6.2.11 we see that

R1(E/J(G)) =
t⋃
i=1

spanK{ei1 , . . . , eiri}.

Let ki(G) be the number of complete subgraph on i vertices of G. Observe that
a disjoint union of complete graphs has no induced 4-cycles. It follows from [51,
Proposition 2.4] that

βSi,i+2(I(G)) =
∑
v∈VG

(
deg v

i+ 1

)
− ki+2(G) =

t∑
j=1

∑
v∈VGj

(
deg v

i+ 1

)
− ki+2(G)

=
t∑

j=1

∑
v∈VGj

(
rj − 1

i+ 1

)
−

t∑
j=1

ki+2(Gj) =
t∑

j=1

rj

(
rj − 1

i+ 1

)
−

t∑
j=1

(
rj
i+ 2

)

=
t∑

r=1

r · hr
(
r − 1

i+ 1

)
−

t∑
r=1

hr

(
r

i+ 2

)
= (i+ 1)

t∑
r=1

hr

(
r

i+ 2

)
.

Here S = K[x1, . . . , xn] is the polynomial ring over K, the ideal I(G) = (xixj :
{i, j} ∈ EG) is the edge ideal of G over S and βSi,j(I(G)) denote the graded Betti
numbers of I(G) over S. Note that I(G) is a so-called squarefree S-module in the
sense of [64, Definition 2.1]. Then it follows from [52, Corollary 1.3] that

βEi,i+2(J(G)) =
i∑

j=0

(
i+ 1

j + 1

)
βSj,j+2(I(G)) =

i∑
j=0

(
i+ 1

j + 1

)
(j + 1)

t∑
r=1

hr

(
r

j + 2

)

= (i+ 1)
i∑

j=0

(
i

j

)
hr

t∑
r=1

(
r

j + 2

)
= (i+ 1)

t∑
r=1

hr

i∑
j=0

(
i

j

)(
r

j + 2

)

= (i+ 1)
t∑

r=1

hr

(
r + i

i+ 2

)
,

where we get the last equality from Lemma 6.2.12. Since

βEi,i+2(J(G)) = βEi+1,i+2(E/J(G)),

Conjecture 6.2.7 holds for E/J(G). �

6.3. Componentwise linear Orlik-Solomon ideals

The goal of this section is to investigate cases in which Orlik-Solomon ideals
are componentwise linear. We suggest a conjecture characterizing componentwise
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linearity of Orlik-Solomon ideals and study exterior algebras with few number of
variables or arrangements with small ranks.

Let A be an essential central hyperplane arrangement with Orlik-Solomon ideal
J , Orlik-Solomon algebra A = E/J . For an element X in the intersection lattice
L(A) of A, we denote |X| = s if X can be expressed as an intersection of maximally
s hyperplanes and in this section we identify X with the sequence of indices of s
hyperplanes whose intersection equals to X, i.e., if |X| = s and X = Hi1 ∩ . . .∩His

then we write X = {i1, . . . , is} up to a permutation of indices. We always have
|X| ≥ rank(X). Recall that X is a dependent element in L(A) if |X| > rank(X)
and otherwise X is an independent element. If every subset of ≤ rank(X) elements of
X is independent, then X is said to be uniform, otherwise we call X is non-uniform.
We also denote by Li the subset of L(A) containing all dependent elements of rank
i in L(A). A set {j1, . . . , jt} ⊆ [n] is said to be a circuit of A if {Hj1 , . . . , Hjt} is a
minimal dependent set of hyperplanes.

Let X ∈ L(A) with rank(X) = r and |X| = s ≥ r+1. Observe that every subset
of r + 1 elements of X is dependent. Let JX be the ideal generated by

JX = (∂ eF : F ⊆ X, |F | = r + 1).

We suggest and study the following conjecture:

Conjecture 6.3.1. Let A be an essential central hyperplane arrangement of
rank m with Orlik-Solomon ideal J . The following statements are equivalent:

(i) J is componentwise linear;
(ii) There exist dependent elements Xi of rank i in L(A) for 2 ≤ i ≤ m such

that
X2 ⊂ X3 ⊂ · · · ⊂ Xm

and every circuit of A of rank i is a subset of Xi.

Let us illustrate the above notions and Conjecture 6.3.1 by the following example:

Example 6.3.2. Let A be a hyperplane arrangement in C4 with the defining
polynomial

Q = xy(x+ y)z(x+ z)t.

Let E be the exterior algebra of variables e1, . . . , e6 where ei responds to i-th fac-
tor in the equation of A. Then L2 = {{1, 2, 3}, {1, 4, 5}}, L3 = {{1, 2, 3, 4, 5}},
L4 = {{1, 2, 3, 4, 5, 6}}. Moreover, {1, 2, 3} and {1, 4, 5} are uniform elements,
{1, 2, 3, 4, 5} is a non-uniform element because it contains a dependent proper subset
{1, 2, 3}.

Given an element X in L(A), we can compute its associated ideal JX . For
instance for X3 = {1, 2, 3, 4, 5} ∈ L3 we have

JX3 = (∂ eF : F ⊂ [5], |F | = 4).

Now we get

J = (∂ e123, ∂ e145, ∂ eijkl) and J〈3〉 = m(∂ e123, ∂ e145) + JX3 ,

where {i, j, k, l} runs over all four-tuples of indices 1, 2, 3, 4, 5. Since L2 has two
elements, R1(A) has 2 local components. So R1(A) is not irreducible. Thus J〈2〉
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does not have a 2-linear resolution by Theorem 6.2.1. Hence J is not componentwise
linear. The condition in Conjecture 6.3.1 (ii) is also not fulfilled. So Conjecture 6.3.1
is true in this example.

Remark 6.3.3. We list some cases where Conjecture 6.3.1 is true:

(i) The number of hyperplanes of A is less than or equal to 6 as we will see
in Example 6.3.8.

(ii) rank(A) ≤ 3 by Theorem 6.2.1 and Corollary 6.2.2.
(iii) rank(A) = 4 and all dependent elements of rank 3 in L(A) are non-uniform

by Theorem 6.3.7.

We can prove the direction “(ii)⇒ (i)” of Conjecture 6.3.1.

Theorem 6.3.4. The implication “(ii) ⇒ (i)” of Conjecture 6.3.1 is true.

To prove this theorem, we need the following lemma:

Lemma 6.3.5. Let X = {i1, . . . , im} be a dependent element of rank r in L(A).
Then JX has a system of minimal generators of the form

G(JX) = {∂ eF : F ⊂ X, |F | = r + 1 and i1 ∈ F}.

Proof. At first we prove that G(JX) is a linearly independent set over K. This
follows from the fact that ei1G(JX) is a set of disjoint monomials since ei1 ∂ eF = eF
because F contains i1.

Moreover, for T ⊂ X, |T | = r + 1, i1 6∈ T , by Equation (11) we get that ∂ eT ∈
(G(JX)). Since

JX = (∂ eT : T ⊂ X, |T | = r + 1)

we have G(JX) is a set of generators. This concludes the proof. �

Now we are ready to prove Theorem 6.3.4:

Proof. Since J = (∂ eF : F is a circuit ), we have J =
∑r

i=1 JXi
. Without loss of

generality, we can assume that Xi = {1, . . . , si} for i = 2, . . . ,m+1, where si = |Xi|.
Note that s2 < s3 < . . . < sm+1. By Lemma 6.3.5, for i = 3, . . . ,m + 1, we can
choose a minimal system of generators of JXi

whose generators are of the form ∂ eF
where F ⊂ X and 1 ∈ F . Then by changing the coordinates

ϕ : E1 −→ E1, ei 7−→

{
e1 if i = 1,

ei + e1 if i ≥ 2,

and the fact that ϕ(∂ eF ) = eF\{1} for 1 ∈ F , we get that ϕ(JXi
) is a strongly stable

monomial ideal with respect to the ordering e2 > . . . > en > e1 and it is generated
in one degree for i = 2, . . . ,m + 1. Now it is clear that the sum of strongly stable
monomial ideals is a strongly stable monomial ideal. Therefore, ϕ(J) is strongly
stable monomial ideal. This implies that ϕ(J) is componentwise linear. Hence J is
componentwise linear. �

In Remark 6.3.3, we saw that Conjecture 6.3.1 is true for rank(A) ≤ 3. One of
the next interesting cases is rank(A) = 4. For this, let L3 = {X31, X32, . . . , X3s}
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be the set of all dependent elements of rank 3. We have J〈3〉 = mJ〈2〉 +
∑s

j=1 JX3j
,

where m = (e1, . . . , en). For the case all elements of L3 are non-uniform, we have
the following results:

Proposition 6.3.6. Suppose that rank(A) = 4 and all elements of L3 are non-
uniform. If there exist two elements of L3, say X31, X32 ∈ L3, such that X31, X32

contain the same element of rank 2 of L(A), say X2, and |X31|, |X32| ≥ |X2| + 2,
then J is not componentwise linear.

Proof. If L(A) has more than two dependent elements of rank 2 then R1(A) is
not irreducible. Hence by Theorem 6.2.1, we get that J〈2〉 does not have a 2-linear
resolution and then J is not componentwise linear. Since every dependent element
of rank 3 in L3 is non-uniform, L2 6= ∅. It remains to consider the case that L(A)
has exactly one dependent element of rank 2, say X2 = {1, . . . , t} where t ≥ 3. Then
X2 ⊂ X and 1 ∈ X for all X ∈ L3. By Lemma 6.3.5 applied to X2 and X ∈ L3, we
get that JX2 and JX have systems of minimal generators of the forms

{∂ eT : T ⊂ X2, 1 ∈ T, |T | = 3} and {∂ eF : F ⊂ X, 1 ∈ F, |F | = 4},

respectively. Note that for T ⊆ [n] with 1 ∈ T , we have

e1 ∂ eT = eT and (ei − e1) ∂ eT =

{
0 if i ∈ T,
∂ eT∪{i} if i 6∈ T.

Since J〈3〉 = mJX2 +
∑

X∈L3
JX and m = (e1, e2 − e1, . . . , en − e1) we get that J〈3〉

has a system of generators of the form

{∂ eF , eT : F, T are dependent and 1 ∈ F, 1 ∈ T, |F | = 4, |T | = 3}.

By changing the coordinates using ϕ as in the proof of Theorem 6.3.4, i.e., ϕ(e1) = e1

and ϕ(ei) = ei + e1 for 2 ≤ i ≤ n, and using the fact that ϕ(∂ eF ) = eF\{1} and
ϕ(eT ) = eT we get that ϕ(J〈3〉) is a monomial ideal generated in degree 3 with a
system of generators G = {g1, . . . , gr}, where gi = eF\{1} or gi = ϕ(eT ) with the
same assumptions for T, F as above.

Let {f1, . . . , fr} be the free generators of
⊕r

i=1E(−3) such that fi is mapped to
gi in the minimal graded free resolution of ϕ(J〈3〉). Then the kernel of this map,

U = {
r∑
i=1

aifi : ai ∈ E,
r∑
i=1

aigi = 0}

is the first syzygy module of ϕ(J〈3〉).
Suppose that J is componentwise linear. Then J〈3〉 has a 3-linear resolution

and so does ϕ(J〈3〉). This implies that U is minimally generated by certain hk =∑r
i=1 αkifi with αki ∈ E1.
Since X31, X32 contain two more elements outside X2, without loss of generality

we can assume that

{i1, i2} ⊆ X31 \X2 and {j1, j2} ⊆ X32 \X2.
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Observe that {i1, i2} ∩ {j1, j2} = ∅. Otherwise if i ∈ {i1, i2} ∩ {j1, j2} then X2 ∪ {i}
is a subset of both X31, X32 and has rank 3, hence X31 = X32 since⋂

j∈X31

Hj =
⋂

j∈X2∪{i}

Hj =
⋂
j∈X32

Hj,

which is a contradiction. Since {1, 2, i1, i2} ⊂ X31 and {1, 2, j1, j2} ⊂ X32 are cir-
cuits, we may assume that

g1 = ϕ(∂ e12i1i2) = e2i1i2 and g2 = ϕ(∂ e12j1j2) = e2j1j2 .

Then we have ej1j2g1 − ei1i2g2 = 0. Therefore, ej1j2f1 − ei1i2f2 ∈ U . Hence this
relation has a representation

ej1j2f1 − ei1i2f2 =
∑
k

βkhk =
∑
k

r∑
i=1

βkαkifi

where βk ∈ E1. Then ej1j2 =
∑

k βkαk1 since the fi are free generators. This
implies that there exists k such that ej1 or ej1 belong to supp(αk1). Assume that
ej1 ∈ supp(αk1).

Since αk1g1 + . . . + αkrgr = 0 and αk1g1 contains the monomial e2i1i2j1 which
cannot appear in αk2g2, the sum

∑r
i=3 αkigi contains e2i1i2j1 . Assume that α3g3

contains e2i1i2j1 . Let g3 = eF\{1} where F is a dependent set, 1 ∈ F and |F | = 4.
Then F \ {1} ⊂ {2, i1, i2, j1}. Since {1, 2, i1, i2} ⊂ X31, we have that F ∩ X31 has
an independent subset of three indices. Moreover, rank(F ) = rank(X31) = 3. This
implies that F ⊂ X31 and then F = {1, 2, i1, i2}. Hence g3 = e2i1i2 = g2, which is a
contradiction. So we can conclude that ϕ(J〈3〉) does not have a 3-linear resolution
and then so does J〈3〉. Hence J is not componentwise linear. �

Theorem 6.3.7. Suppose that rank(A) = 4 and all elements of L3 are non-
uniform. Then Conjecture 6.3.1 holds.

Proof. By Theorem 6.3.4, we only need to prove the implication “(i) ⇒ (ii)” in
Conjecture 6.3.1. Suppose that J is componentwise linear. By Theorem 6.2.1, we
get that L(A) has exactly one dependent element of rank 2, say X2. By Proposition
6.3.6, there is at most one dependent element of rank 3 in L3, say X3, such that
|X3| ≥ |X2| + 2. If there exists such X3, then one can show that every circuit of
rank 3 must contain two indices outside X2 which can only be chosen in X3 \ X2.
Moreover, for i1, i2 ∈ X2, j1, j2 ∈ X3 \ X2, the set {i1, i2, j1, j2} is a circuit. Thus
the condition (ii) of Conjecture 6.3.1 is fulfilled. Hence Conjecture 6.3.1 holds if
rank(A) = 4 and all elements of L3 are non-uniform. �

Next we present examples where Conjecture 6.3.1 is true.

Example 6.3.8. Let A = {H1, . . . , Hn} be an essential central hyperplane ar-
rangement with Orlik-Solomon ideal J .

Case 1: n=1, 2. Since every set of two hyperplane is an independent set, we
have J = (0).

Case 2: n=3. If {H1, H2, H3} is a dependent set, then J = (∂ e123) has a 2-linear
resolution. Hence it is componentwise linear.
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Case 3: n=4. If there is only one dependent set of three hyperplanes, say
{H1, H2, H3}, then we have the same situation as in case 2. Indeed J = (∂ e123) is
componentwise linear.

If there exist more than one dependent set of three hyperplanes, then all sets of
three hyperplanes are dependent. Therefore,

J = (∂ e123, ∂ e124, ∂ e134, ∂ e234) = (e2 − e1, e3 − e1, e4 − e1)2

has a 2-linear resolution.
If there is only one dependent set of hyperplanes and every set of three hyperplane

is independent, then we get that {H1, H2, H3, H4} is dependent. Therefore, J =
(∂ e1234) has a 3-linear resolution.

Case 4: n=5. We have the following cases for J up to a permutation of indices
of hyperplanes:

(i) All possibilities of case 3.
(ii) J = (∂ e12345). Then J has a 4-linear resolution.

(iii) J = (∂ eF ;F ⊂ [5], |F | = 4). Then J has a 3-linear resolution.
(iv) J = (∂ eF : F ⊂ [5], |F | = 3). Then J has a 2-linear resolution.
(v) J = (∂ e123, ∂ e145). Then J does not have a 2-linear resolution by Theorem

6.2.1.

Case 5: n=6. We have the following cases of J up to a permutation of indices
of hyperplanes:

(i) All possibilities of case 4.
(ii) J = (∂ e123456). Then J has a 5-linear resolution.

(iii) J = (∂ eF : F ⊂ [6], |F | = 5). Then J has a 4-linear resolution.
(iv) J = (∂ eF : F ⊂ [6], |F | = 4). Then J has a 3-linear resolution.
(v) J = (∂ eF : F ⊂ [6], |F | = 3). Then J has a 2-linear resolution.

(vi) J = (∂ e123, ∂ eF : F ⊂ [5], |F | = 4). Then J does not have a linear
resolution but it is still componentwise linear.

(vii) J = (∂ e123, ∂ eF : F ⊂ [6], |F | = 4). Then J does not have a linear
resolution but it is still componentwise linear.

(viii) J = (∂ eT , ∂ eF : T ⊂ [4], F ⊂ [6], |T | = 3, |F | = 4). Then J does not have
a linear resolution but it is still componentwise linear.

(ix) J = (∂ e1234, ∂ eF : F ⊂ [6], |F | = 5). Then J does not have a linear
resolution but it is still componentwise linear.

(x) J〈3〉 = (∂ e1234, ∂ e1256) or J3 = (∂ e1234, ∂ e1256, ∂ e3456). Then J〈3〉 does not
have a 3-linear resolution. Hence J is not componentwise linear.

(xi) J〈2〉 = (∂ e123, ∂ e456) or J〈2〉 = (∂ e123, ∂ e145, ∂ e256) or

J〈2〉 = (∂ e123, ∂ e145, ∂ e256, ∂ e346).

Then J〈2〉 does not have a 2-linear resolution. Hence J is not component-
wise linear.

To conclude this example, we note that Conjecture 6.3.1 holds for all above cases.
More precisely, in case 4 (v), case 5 (x), (xi), the Orlik-Solomon ideals are not
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componentwise linear since circuits of arrangements of rank 2 (or rank 3) are not
subsets of the same dependent element in the intersection lattice.

Remark 6.3.9. Let A = {H1, H2, . . . , Hn} be an essential central hyperplane
arrangement in Cl with Orlik-Solomon ideal J , matroid M(A). Let < be a monomial
order on E with e1 > e2 > . . . > en. Since βEi,j(E/in<(J)) ≥ βEi,j(E/J) (see [3,
Proposition 1.8]), the linearity of the free resolution of in<(J) implies the linearity
of the free resolution of J . More precisely, if the initial ideal in<(J) has an m-linear
resolution then so does J . The reverse direction in this situation is also true. Indeed,
if J has an m-linear resolution, then the matroid of A is M(A) = Um,n−f ⊕Uf,f (see
[38, Theorem 6.10]). By renumbering if needed, we get that

J = (∂ eF : F ⊆ [n− f ], |F | = m+ 1).

Thus

in<(J(A)) = (eT : T ⊆ {2, . . . , n− f} and |T | = m) = (e2, . . . , en−f )
m.

This implies that in<(J) has an m-linear resolution.
Such statements are not true for componentwise linearity, i.e., there exists an

arrangement with Orlik-Solomon ideal J such that in<(J) is componentwise linear
but J is not componentwise linear (see the below example).

From now to the end of this section, we always assume that < is a monomial
order on E with e1 > e2 > . . . > en. Recall that a circuit of M(A) is a minimal
dependent set of M(A) and a broken circuit w.r.t. < is the set received from a circuit
by deleting its smallest element w.r.t. <. Note that the smallest element w.r.t. <
of a circuit C ∈M(A) corresponds to the largest index in C. It is known (see, e.g.,
[50, Theorem 4.1, Proposition 4.2]) that the initial ideal in<(J) is the monomial
ideal generated by broken circuits. Therefore, corresponding to in<(J), we have a
simplicial complex, namely the broken circuit complex ∆(M(A)). It is the collection
of all subsets of [n] which do not contain a broken circuit. Then the face ideal of
∆(M(A)) is J(∆(M(A))) = in<(J).

Example 6.3.10. Let A be the arrangement in C3 defined by the following
equation:

Q(x, y, z) = x(x+ y)yz(x+ z).

Then A = {H1, . . . , H5} where the hyperplanes are ordered according to the or-
der of factors in Q(x, y, z) above. The circuits of the matroid M(A) of A are:
{1, 2, 3}, {1, 4, 5}, {2, 3, 4, 5}. Thus the Orlik-Solomon ideal of A is

J(A) = (∂ e123, ∂ e145, ∂ e2345).

The broken circuits w.r.t. < of M(A) are {1, 2}, {1, 4}, {2, 3, 4}. Thus the broken
circuit complex ∆(M(A)) has the facets {(1, 3, 5), (2, 3, 5), (2, 4, 5), (3, 4, 5)}. The
face ideal of ∆(M(A)) is J∆(M(A)) = (e12, e13, e234). We can check that J∆(M(A)) is
componentwise linear. But J is not componentwise linear since J〈2〉 does not have
a 2-linear resolution by the same argument as in Example 6.3.2.
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Motivated by the problem whether the Orlik-Solomon ideal J(A) is componen-
twise linear, we consider the question when the ideal J∆(M(A)) is componentwise
linear. We observe the following:

Remark 6.3.11. (i) The supersolvable property of A (or equivalently, A is
G-quadratic) does not ensure the componentwise linear property of J∆(M(A)). For
instance, considering the braid arrangement A3 in Example 6.4.6, we have

J∆(M(A3)) = (e23, e45, e46, e56).

Using Macaulay2 [28], one can check that β1,4(J∆(M(A3))) = 3 6= 0. Thus J∆(M(A3))

does not have a 2-linear resolution. Since J∆(M(A3)) is generated in one degree and
does not have a linear resolution, we get that J∆(M(A3)) is not componentwise linear.

(ii) The componentwise linear property of J∆(M(A)) depends on the order on
the ground set [n]. For example, considering the order <′ on E = K〈e1, . . . , e6〉
with e1, e6 < e2, . . . , e5. The face ideal of the broken circuit complex (w.r.t. <′)
corresponding to A3 is

J∆(M(A3)) = in<′(J(A3)) = (e23, e25, e34, e45) = (e2, e4)(e3, e5)

which has a 2-linear resolution by Theorem 4.3.2. Since J∆(M(A3)) is generated in one
degree and has a linear resolution, we get that J∆(M(A3)) is componentwise linear.

Example 6.3.12. There exist arrangements such that the face ideals of broken
circuits complexes corresponding to their matroids are not componentwise linear for
every order on the ground set. For example, let A be the arrangement in C3 defined
by

Q(x, y, z) = xy(x+ y)(x+ z)(y + z)(x+ y + 2z).

Then A = {H1, . . . , H6} where the hyperplanes are ordered according to the order
of factors in Q(x, y, z) above. The set of 3-circuits of the matroid M(A) of A is:
{(1, 2, 3), (4, 5, 6)}. Thus J(A)〈2〉 = (∂ e123, ∂ e456). Hence for every order on the
ground set {1, . . . , 6}, we get that (in<J(A))〈2〉 = (eij, epq), where i, j ∈ {1, 2, 3}
and p, q ∈ {4, 5, 6}. Therefore, (J∆(M))〈2〉 = (inJ(A))〈2〉 does not have an 2-linear
resolution since (eij, epq) always has a non-linear first syzygy defined by the relation
eijepq − epqeij = 0. Hence J∆(M(A)) is not componentwise linear.

Open problem 6.3.13. Let A be an essential central hyperplane arrangement
with matroid M(A) such that two arbitrary circuits of M(A) have non-empty inter-
section. Is it true that there exists a monomial order on E such that with respect to
this order J∆(M(A)) is componentwise linear?

6.4. On the Koszul property of Orlik-Solomon algebras

In this section, we study classes of Orlik-Solomon algebras satisfying variations
of the Koszul property. More precisely, we classify hyperplane arrangements whose
Orlik-Solomon algebras are universally Koszul as well as initially Koszul. Note that
the universally Koszul, initially Koszul properties imply the Koszul property. Thus
a necessary condition for an Orlik-Solomon algebra A to be universally Koszul or
initially Koszul is that A is quadratic, i.e., the corresponding Orlik-Solomon ideal is
generated by quadrics.
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We recall first some facts about arrangements and their intersection lattices. We
use here and in the following the notation of elements in an intersection lattice L(A)
which we introduced on page 77.

Lemma 6.4.1. Let A be an essential central hyperplane arrangement with in-
tersection lattice L(A) and Orlik-Solomon ideal J . Suppose that elements in L2 are
disjoint. Then there exists a change of coordinate ϕ ∈ GLn(K) such that ϕ(J〈2〉) is
a monomial ideal.

Proof. Assume that L2 = {X1, . . . , Xr} where Xi = {i1, . . . , isi} are dependent
elements of rank 2 in L(A) such that Xi∩Xj = ∅ for i, j ∈ {1, . . . , r}, i 6= j. Consider
the change of coordinate ϕ : E1 → E1 defined by: ei1 7→ ei1 and eik 7→ eik + ei1 for
k = 2, . . . , si and i = 1, . . . , r. Then

ϕ(∂ ei1ikit) = ϕ((eik − ei1)(eit − ei1)) = eikeit for k, t = 2, . . . , si and i = 1, . . . , r.

By Lemma 6.3.5 we get that ϕ(JXi
) = (eikeit : k, t = 2, . . . , si).

Since J〈2〉 = JX1 + · · ·+ JXr , we get that ϕ(J〈2〉) is a monomial ideal. �

We illustrate the above lemma by the following example:

Example 6.4.2. Let A be an arrangement in C3 defined by the equation:

Q = xy(x+ y)(x+ 3y + z)(x+ 4y + 2z)(y + z).

Let E = K〈e1, . . . , e6〉 where ei responds to i-th factor in the equation of A for
i = 1, . . . , 6. Then L2 = {{1, 2, 3}, {4, 5, 6}} and J〈2〉 = (∂ e123, ∂ e456). Consider
the change of coordinate ϕ : E1 → E1 defined by ϕ(e1) = e1, ϕ(e2) = e2 + e1,
ϕ(e3) = e3 + e1, ϕ(e4) = e4, ϕ(e5) = e5 + e4, ϕ(e6) = e6 + e4. Then we have:

ϕ(J〈2〉) = (e2e3, e4e5).

Next we classify classes of Orlik-Solomon algebras which are universally Koszul:

Theorem 6.4.3. Let A be an Orlik-Solomon algebra of an essential central hy-
perplane arrangement A. The following statements are equivalent:

(i) A is universally Koszul;
(ii) The matroid of A is M(A) = U2,n−f ⊕ Uf,f for some 0 ≤ f ≤ n;

(iii) The Orlik-Solomon ideal J has a 2-linear free resolution.

Proof. (ii) ⇔ (iii): See [38, Theorem 6.10].
(iii)⇒ (i): Suppose that J has a 2-linear free resolution. By the proof of Theorem

6.2.1, we have that J is of the form

J = (e2 − e1, . . . , es − e1)2 for some 3 ≤ s ≤ n.

Then by changing the coordinates:

ei 7→

{
ei + e1 if 2 ≤ i ≤ s,

ei, otherwise,

the ideal J becomes a monomial ideal of the form (e2, . . . , es)
2. Since E/(e2, . . . , es)

2

is universally Koszul by Theorem 5.2.11, A = E/J is also universally Koszul.
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(i)⇒ (ii): Suppose that A is universally Koszul. Note that L2 6= ∅ since 0 6= J is
generated in degree 2. We claim that the set L2 of dependent elements of rank 2 in
L(A) has only one element. Assume the contrary, i.e., |L2| ≥ 2. Then we consider
two cases as follows:

Case 1: All elements of L2 are disjoint. Let L2 = {X1, . . . , Xr} where r ≥ 2
and Xi ∩ Xj = ∅ for 1 ≤ i, j ≤ r. Then after the change of coordinate ϕ as in
Lemma 6.4.1, all ϕ(JXi

) are monomial ideals and so does ϕ(J). Moreover, since
Xi ∩ Xj = ∅ for 1 ≤ i, j ≤ r, we get that the restriction of ϕ(J) to the set of
variables {ei2 , ei3 , ej2 , ej3} is the monomial ideal (ei2ei3 , ej2ej3) for i, j ∈ {1, . . . , r},
i 6= j. Observe that, (ei2ei3 , ej2ej3) is a monomial ideal of the type as in Lemma
5.2.10 (i). By Theorem 5.2.11, E/J is not universally Koszul which is a contradiction
to our assumption (i).

Case 2: There exist X1, X2 ∈ L2 such that X1 6= X2 and X1 ∩ X2 6= ∅. Since
X1 6= X2, we see that X1 ∩ X2 is a set of one element, say X1 ∩ X2 = {1}. Note
that |X1|, |X2| ≥ 3 since they are dependent elements of L(A). Without loss of
generality, we may assume that 2, 3 ∈ X1 and 4, 5 ∈ X2. Then C1 = {1, 2, 3} and
C2 = {1, 4, 5} are two 3-circuits of A.

Observe that we have no more 3-circuit of three indices in [5] = {1, . . . , 5}.
Otherwise, let C ⊂ [5] be a 3-circuit and C 6= C1, C2. Then |C ∩ C1| = 2 or
|C ∩ C2| = 2. If, say |C ∩ C1| = 2, then |C ∩ X1| ≥ 2. Thus C ⊂ X1 and
X1 ∩X2 ⊇ (C ∪ C1) ∩ C2. This is a contradiction since (C ∪ C1) ∩ C2 has at least
two elements but |X1 ∩X2| = 1. Hence there exist only the 3-circuits C1, C2 in [5].

Write J = (∂ e123, ∂ e145, ∂ eF1 , . . . , ∂ eFr) where Fi are 3-circuits of A for 1 ≤ i ≤
r. Let u = e2 − e1 + e4 − e1 = ∂ e12 + ∂ e14. We claim that

J :E (u) = J + (u).

Since A is universally Koszul, 0 :A (u) is generated by linear forms in A. We only
need to prove that (J :E (u))1 = (J + (u))1.

For a linear form w =
∑n

i=1 αiei ∈ E1 and a set of indices F ⊂ [n], we denote
by wF =

∑
i∈F αiei. It is obvious that (J + (u))1 ⊂ (J :E (u))1 since u ∈ J :E (u).

Assume that there exists v ∈ E1 such that 0 6= uv ∈ J . Then by [25, Corollary 3.2]
(see also [55, Corollary 4.9]), we have that for every X ∈ L2, either ∂ uX = ∂ vX = 0,
or vX = αuX where α ∈ K since we have already |X| ≥ 3. Since ∂ uX1 = ∂ uX2 = −1
and e1 ∈ supp(uX1) ∩ supp(uX2), we get that

vX1 = cuX1 = ce2 − 2ce1 and vX2 = cuX2 = ce4 − 2ce1, where c ∈ K.

This implies that v = ce2 + ce4 − 2ce1 + v′ = cu + v′ where v′ ∈ E1 such that
e1, e2, e4 6∈ supp(v′). Note that supp(v′) 6= ∅ since uv 6= 0. Let k ∈ supp(v′).
Since uv ∈ J and e1ek ∈ supp(uv), there exists X ∈ L2 with |X| ≥ 3 such that
{1, k} ⊂ X. If ∂ uX 6= 0, then vX = αuX , where α ∈ K, by [25, Corollary 3.2].
This is impossible since k ∈ supp(v) \ supp(u). So ∂ uX = 0. This implies that
{1, 2, 4} ⊂ X. Thus {1, 2, 4} ⊂ [5] is a 3-circuit. This contradicts the fact that we
have only two 3-circuits C1, C2 ⊂ [5]. Hence such a v chosen as above can not exist
and this implies (J :E (u))1 = (J + (u))1. So we have J :E (u) = J + (u).



86 6. ORLIK-SOLOMON ALGEBRAS AND IDEALS

Let f = ∂ e135 = e13 − e15 + e35. By formula (11) from Page 67, one can check
that ∂ eT1 ∂ eT2 = ∂ eT1∪T2 for T1, T2 ⊂ [n] and T1 ∩ T2 = {1}. Using this equation,
we have

uf = (∂ e12 + ∂ e14) ∂ e135 = ∂ e1235 + ∂ e1345 = ∂ e15 ∂ e123 + ∂ e13 ∂ e145 ∈ J.

Thus f ∈ J :E (u) = J + (u). Hence, there is a representation

(13) ∂ e135 = g + uh = g + (∂ e12 + ∂ e14)h, where g ∈ J and h ∈ E1.

Since e35 ∈ supp(∂ e135) and e35 does not occur in (∂ e12 + ∂ e14)h for every h ∈ E1,
we get that e35 ∈ supp(g). Thus there exists Fi such that e35 occurs in ∂ eFi

.
This implies that {3, 5} ⊂ Fi. Let X ∈ L2 with Fi ⊂ X. Note that the sets
{1, 3, 5}, {2, 3, 5}, {3, 4, 5} are not circuits. Hence, 1, 2, 4 6∈ X.

Let I = (ej : j 6∈ X) and P = (ei1ei2 : i1, i2 ∈ X). Then e1, e2, e4 ∈ I, e35 ∈ P2

and JX ⊂ P . Observe that I2 ∩ (JX)2 = {0} since I2 ∩ P2 = {0}. Moreover,
J ⊂ JX + I since ∂ eFj

∈ I for every Fj 6⊂ X. Recall from equation (13) that
f = ∂ e135 = g+uh. Write g = g1 + g2 where g1 ∈ (JX)2 and g2 ∈ I2. It follows that

e13 − e15 + e35 = g1 + g2 + (∂ e12 + ∂ e14)h.

Thus

e35 − g1 = g2 − e13 + e15 + (∂ e12 + ∂ e14)h ∈ I2.

Since e35−g1 ∈ P2 and g2−e13+e15+(∂ e12+∂ e14)h ∈ I2, we get that e35 = g1 ∈ (JX)2

because I2 ∩ P2 = {0}. So e135 ∈ JX . This is only possible if {1, 3, 5} ⊂ X, i.e.,
{1, 3, 5} is a circuit. This is a contradiction since there exist only the 3-circuits
C1, C2 ⊂ [5].

Combining case 1 and case 2 we get that L2 has indeed only one element, say
L2 = {X} where X = {i1, . . . , is}. Since J is generated in degree 2, we have
J = JX . Thus every 3-circuit of M(A) is a subset of X. Since A is an essential
central hyperplane arrangement, M(A) does not have any circuit of ≤ 2 elements.
Hence we get that M(A) = U2,s ⊕ Un−s,n−s, as desired. �

LetA be an essential central hyperplane arrangement with the complement X (A)
and its fundamental group π1(X (A)). Let

Z = Z1 = π1(X (A)), Z2 = [Z1, Z], . . . , Zi+1 = [Zi, Z], . . .

be the lower central series (LCS for short) and set ϕi = rank(Zi/Zi+1). There is a
lot of attention in [26], [39], [50], [56], [57], [60] to a special formula, called LCS
formula, which states that

∞∏
j=1

(1− tj)ϕj = HA(−t).

It was proved by Shelton and Yuzvinsky in [60] that the formula holds if and only if
the algebra A is Koszul. From the classification of Orlik-Solomon algebras satisfying
the universally Koszul property, we compute the LCS formula in this as follows:
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Corollary 6.4.4. Let A be an Orlik-Solomon algebra of an essential central
hyperplane arrangement A such that A is universally Koszul. Then the matroid
M(A) of A is U2,n−f ⊕ Uf,f for some 0 ≤ f ≤ n and we have:

∞∏
j=1

(1− tj)ϕj = 1− nt+ · · ·+ (−1)k(

(
f + 1

k

)
+ (n− f − 1)

(
f + 1

k − 1

)
)tk + · · ·

Proof. By Theorem 6.4.3, we have already that M(A) = U2,n−f ⊕ Uf,f for some
0 ≤ f ≤ n. Therefore, J = (∂ eijk : 1 ≤ i, j, k ≤ n− f). Let < be the lexicographic
order on E with e1 > e2 > . . . > en. We only need to compute the Hilbert function of
A, i.e., the number of monomials of one degree in E which do not belong to in<(J).
Note that the broken circuits of M(A) generate the initial ideal of J w.r.t. < (see,
e.g., [7], [50, Theorem 4.1]). So we have in<(J) = (eij : 1 ≤ i, j ≤ n− f − 1). Thus
eF 6∈ in<(J) if and only if F ∩ {1, . . . , n− f − 1} has at most 1 element. Therefore,

H(A, k) =

(
f + 1

k

)
+ (n− f − 1)

(
f + 1

k − 1

)
for k = 1, . . . , n.

This concludes the proof. �

In the hyperplane arrangement theory, there is an important characterization
of supersolvable arrangement as follows: let A be an arrangement with its Orlik-
Solomon algebra A. Then we have

A is supersolvable ⇐⇒ A is G-quadratic.

As an application of Section 5.4, we get another characterization of supersolvable
arrangements. We have:

Theorem 6.4.5. Let A be an arrangement with Orlik-Solomon algebra A. The
following statements are equivalent:

(i) A is supersolvable;
(ii) A is G-quadratic;

(iii) A is initially Koszul.

Proof. (i)⇔ (ii) see, e.g., [50, Theorem 4.3]. (iii)⇒ (ii) follows from Proposition
5.4.5.

(i)⇒ (iii): Suppose that A is supersolvable with the Orlik-Solomon ideal J . By
[8, Theorem 2.8 (5)], there exists a partition [n] = F1 ∪ · · · ∪ Fr such that for any
two distinct indices x, y ∈ Fi, there is z ∈ Fj with j < i such that {x, y, z} is a
circuit. By a suitable change of indices, we may assume that for s < r and i ∈ Fs,
j ∈ Fr we have i > j. Moreover, let Mi = ∪j≤iFj. [8, Theorem 2.8 (5)] also implies

that 0̂ = M0 < M1 < . . . < Mr = 1̂ is a maximal chain of modular elements of the
supersolvable lattice L(A). Note that we identify Mi with the element ∩j∈Mi

Hj in
L(A).

Let < be the reverse lexicographic order on E with e1 > e2 > . . . > en. Recall
that a broken circuit w.r.t. < of M(A) is the set received from a circuit by deleting
the largest index in the circuit. We claim that if {x, z} is a broken circuit with x < z
then x, z belong to the same Fi. Let {w, x, z} be the circuit containing {x, z}, where
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x < z < w and x ∈ Fi. Note that if z ∈ Fj, then j ≤ i. If w ∈ Fk and z ∈ Fj with
k ≤ j < i, then Hz ∩Hw ⊃Mj. Since {w, x, z} is a circuit, we have Hx ⊃ Hz ∩Hw.
Thus Hx ⊃Mj. This implies that x ∈ Ft with t ≤ j. This contradicts the fact that
x ∈ Fi and x 6∈ ∪k≤jFk since i > j. Thus z ∈ Fi.

Next we claim that the condition (ii) of Proposition 5.4.5 holds for J . By [50,
Proposition 4.2, Theorem 4.1, 4.3], we have that in<(J) is quadratic. More precisely,
in<(J) is generated by squarefree monomials corresponding to broken circuits of 2
indices of M(A). Now for a set of indices {x, y, z} with x < y < z, we have that if
exez ∈ in(J) then {x, z} is a broken circuit of M(A). By the above argument, there
exists 1 ≤ i ≤ r such that {x, z} ⊂ Fi. By the assumption for Fi, we also have that
y ∈ Fi because x < y < z. Since {y, z} ∈ Fi, there exists t ∈ Fj where j < i and
t > y, z such that {t, y, z} is a circuit of A. Thus {y, z} is also a broken circuit and
eyez ∈ in<(J). Hence the condition (ii) of Proposition 5.4.5 is fulfilled. So A has a
Gröbner flag by Proposition 5.4.5, i.e., A is initially Koszul. �

We illustrate the proof of the theorem above by the following example:

Example 6.4.6. Let A3 be the rank-three braid arrangement in C4 which is
defined by the equation

Q = (x− y)(x− z)(y − z)(x− t)(y − t)(z − t).
It is well-known that A3 is a supersolvable arrangement; see, e.g., [47, Example
2.33]. From the matroid of A3 (see Figure 2), we get that the Orlik-Solomon ideal
of A3 is

J = (∂ e125, ∂ e134, ∂ e236, ∂ e456) ⊂ E = K〈e1, . . . , e6〉.
The partition of [6] satisfying the condition in [8, Theorem 2.8 (5)] is: (6|5, 4|3, 2, 1),
i.e., F1 = {6}, F2 = {5, 4}, F3 = {3, 2, 1}. The broken circuits of size 2 of A3 are
{1, 2}, {1, 3}, {2, 3}, {4, 5}. We see that two elements of every broken circuit are in
one Fi. Moreover, we can check directly that

0 ⊂ spanK{e6} ⊂ spanK{e6, e5} ⊂ . . . ⊂ spanK{e6, . . . , e1}
is a Gröbner flag of the Orlik-Solomon algebra A = E/J of A3 since

0 :A e6 = (e1), (e6) :A e5 = (e6, e5, e4), (e6, e5) :A e4 = (e6, e5, e4)

and

(e6, e5, e4) :A e3 = (e6, . . . , e3) :A e2 = (e6, . . . , e2) :A e1 = (e6, . . . , e1).

Thus A is initially Koszul.
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Figure 2: The braid arrangement and its matroid
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[27] R. Fröberg, Koszul algebras. In: Advances in commutative ring theory (Fez, 1997), 337–350.

Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
[28] D. Grayson and M. Stillman, Macaulay2: a software system for research in algebraic geometry.

Available at http://www.math.uiuc.edu/Macaulay2.
[29] M. L. Green, Generic initial ideals. In: J. Elias (ed.) et al., Six lectures on commutative

algebra. Birkhuser, Prog. Math. 166 (1998), 119–186.
[30] J. Herzog, Generic initial ideals and graded Betti numbers. In: T. Hibi (ed.), Computational

commutative algebra and combinatorics, Mathematical Society of Japan. Adv. Stud. Pure
Math. 33 (2001), 75–120.

[31] J. Herzog, V. Reiner and V. Welker, Componentwise linear ideals and Golod rings. Michigan
Math. J. 46 (1999), no. 2, 211–223.

[32] J. Herzog and T. Hibi, Monomial ideals. Graduate Texts in Mathematics 260, Springer (2010).
ISBN 978-0-85729-105-9.

[33] J. Herzog and T. Hibi, Componentwise linear ideals. Nagoya Math. J. 153 (1999), 141–153.
[34] J. Herzog, T. Hibi and G. Restuccia, Strongly Koszul algebras. Math. Scand. 86 (2000), no.

2, 161–178.
[35] J. Herzog, T. Hibi and X. Zheng, Monomial ideals whose powers have a linear resolution.

Math. Scand. 95 (2004), no. 1, 23–32.
[36] A. S. Jahan and X. Zheng, Ideals with linear quotients. J. Combin. Theory Ser. A 117 (2010),

no. 1, 104–110.
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