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Abstract

In this thesis, abstract bounds for the normal approximation of Poisson functionals
are computed by the Malliavin-Stein method and used to derive central limit theorems
for problems from stochastic geometry. As a Poisson functional we denote a random
variable depending on a Poisson point process. It is known from stochastic analysis
that every square integrable Poisson functional has a representation as a (possibly
infinite) sum of multiple Wiener-Itô integrals. This decomposition is called Wiener-Itô
chaos expansion, and the integrands are denoted as kernels of the Wiener-Itô chaos
expansion. An explicit formula for these kernels is known due to Last and Penrose.

Via their Wiener-Itô chaos expansions the so-called Malliavin operators are de-
fined. By combining Malliavin calculus and Stein’s method, a well-known technique to
derive limit theorems in probability theory, bounds for the normal approximation of
Poisson functionals in the Wasserstein distance and vectors of Poisson functionals in
a similar distance were obtained by Peccati, Solé, Taqqu, and Utzet and Peccati and
Zheng, respectively. An analogous bound for the univariate normal approximation in
Kolmogorov distance is derived.

In order to evaluate these bounds, one has to compute the expectation of products
of multiple Wiener-Itô integrals, which are complicated sums of deterministic integrals.
Therefore, the bounds for the normal approximation of Poisson functionals reduce to
sums of integrals depending on the kernels of the Wiener-Itô chaos expansion.

The strategy to derive central limit theorems for Poisson functionals is to compute
the kernels of their Wiener-Itô chaos expansions, to put the kernels in the bounds for
the normal approximation, and to show that the bounds vanish asymptotically.

By this approach, central limit theorems for some problems from stochastic geome-
try are derived. Univariate and multivariate central limit theorems for some functionals
of the intersection process of Poisson k-flats and the number of vertices and the to-
tal edge length of a Gilbert graph are shown. These Poisson functionals are so-called
Poisson U-statistics which have an easier structure since their Wiener-Itô chaos expan-
sions are finite, i.e. their Wiener-Itô chaos expansions consist of finitely many multiple
Wiener-Itô integrals. As examples for Poisson functionals with infinite Wiener-Itô
chaos expansions, central limit theorems for the volume of the Poisson-Voronoi ap-
proximation of a convex set and the intrinsic volumes of Boolean models are proven.
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chaos expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Limit theorems for Poisson U-statistics 85
6.1 Normal approximation of Poisson U-statistics . . . . . . . . . . . . . . 85
6.2 Limit theorems for geometric Poisson U-statistics . . . . . . . . . . . . 90
6.3 Local Poisson U-statistics . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Poisson U-statistics in stochastic geometry 99
7.1 Intersection process of Poisson k-flats . . . . . . . . . . . . . . . . . . . 99
7.2 Poisson hyperplane tessellations . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Gilbert graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7



8 A central limit theorem for the Poisson-Voronoi approximation 111
8.1 Introduction and results . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Proof of Theorem 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.3 Proof of Theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9 Central limit theorems for Boolean models 125
9.1 Introduction and results . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8



Chapter 1

Introduction

The underlying idea of this thesis is to apply a recently developed technique from
stochastic analysis, the Malliavin-Stein method, to derive central limit theorems for
problems from stochastic geometry.

Throughout this work, we are interested in random variables depending on a Poisson
point process, which we denote as Poisson functionals. A Poisson point process η over
a measurable space (X,X , µ) is a random collection of points in X, where η(A) stands
for the number of points of η in A ∈ X , such that

• η(A) follows a Poisson distribution with mean µ(A) for all A ∈ X ;

• η(A1), . . . , η(An) are independent for disjoint A1, . . . , An ∈ X , n ∈ N.

The measure µ is called the intensity measure of η.
The easiest example of a Poisson point process is a stationary Poisson point process

in Rd, where the intensity measure is a constant times the Lebesgue measure. This
process plays an important role in stochastic geometry since it is the natural way
to choose infinitely many random points uniformly in the whole Rd. Such a point
configuration is the starting point for many problems in stochastic geometry. Even
if only a random configuration of finitely many points is required, it can be easier to
consider a Poisson point process than a fixed number of independently and identically
distributed points since a Poisson point process has the independence property for
disjoint sets. For some problems in stochastic geometry we consider a Poisson point
process in another state space than Rd, for example the set of k-dimensional affine
subspaces or the set of all compact convex sets.

Poisson point processes also occur in other branches of probability theory such as
Lévy processes or queueing theory. Every Lévy process can be decomposed into a sum
of a deterministic linear drift, a Brownian motion, and a part driven by a Poisson
point process. Lévy processes play an important role in mathematical finance. In
queueing theory, a standard assumption is that the interarrival times are identically
and exponentially distributed. Then the arrival times form a stationary Poisson point
process on the positive real half-axis.

It is known from stochastic analysis that every square integrable Poisson functional
F has a representation

F = EF +
∞∑
n=1

In(fn) (1.1)
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with square integrable symmetric functions fn ∈ L2
s(µ

n), n ∈ N. Here, In(f) denotes
the n-th multiple Wiener-Itô integral which is defined for f ∈ L2

s(µ
n). The multiple

Wiener-Itô integrals have expectation zero and are orthogonal in the sense that

EIn(f) Im(g) =

{
n! 〈f, g〉L2(µn), n = m

0, n 6= m

for f ∈ L2
s(µ

n) and g ∈ L2
s(µ

m) with n,m ∈ N. The representation (1.1) is called
Wiener-Itô chaos expansion, and we denote the functions fn as the kernels of the
Wiener-Itô chaos expansion of F . The multiple Wiener-Itô integral and the Wiener-Itô
chaos expansion go back to classical works by Wiener and Itô (see [30, 31, 93]) and are
also known if the underlying stochastic process is a Gaussian process.

In the Poisson case, the kernels of the Wiener-Itô chaos expansion of a square
integrable Poisson functional F are given by the formula

fn(x1, . . . , xn) =
1

n!
EDx1,...,xnF (1.2)

for x1, . . . , xn ∈ X, where the difference operator DxF is defined by

DxF = F (η + δx)− F (η) (1.3)

for x ∈ X (here we think of η as a measure and δx is the Dirac measure concentrated
at the point x ∈ X), and the iterated difference operator is recursively given by

Dx1,...,xnF = Dx1Dx2,...,xnF

for x1, . . . , xn ∈ X. The formula (1.2) was proven by Last and Penrose in [41]. By the
orthogonality of the multiple Wiener-Itô integrals, we obtain the variance formula

VarF =
∞∑
n=1

n! ‖fn‖2
n. (1.4)

In the Gaussian and in the Poisson case, we can define via their Wiener-Itô chaos
expansions the difference operator (that coincides with the pathwise definition in for-
mula (1.3) in the Poisson case), the Skorohod integral, and the Ornstein-Uhlenbeck
generator, which are called Malliavin operators. Such operators were first defined for
the Gaussian case, where they have many applications (see the monographs [13, 59] by
DiNunno, Øksendal, and Proske and Nualart and the references therein). The inves-
tigation of the properties of these operators and their applications is called Malliavin
calculus.

A common problem in probability theory is to show that the distribution of a
random variable is close to the distribution of a Gaussian random variable or another
well-known distribution. The distance between two random variables Y and Z or,
more precisely, their distributions can be measured by a probability distance like the
Wasserstein distance

dW (Y, Z) = sup
h∈Lip(1)

|Eh(Y )− Eh(Z)|,
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where Lip(1) is the set of all functions h : R → R with a Lipschitz constant less than
or equal to one, or the Kolmogorov distance

dK(Y, Z) = sup
t∈R
|P(Y ≤ t)− P(Z ≤ t)|.

Convergence in these probability distances implies convergence in distribution so that
we can derive central limit theorems by showing that these distances vanish asymptot-
ically.

A powerful technique to obtain bounds for the Wasserstein or the Kolmogorov
distance is Stein’s method. From now on, we focus on the distance to a standard
Gaussian random variable, which we denote by N . By combining Stein’s method with
Malliavin calculus, one can obtain upper bounds for the probability distances that
involve Malliavin operators. Both techniques were combined first by Nourdin and
Peccati for the Gaussian case in [58]. Since the key ingredients of this approach are
Stein’s method and Malliavin calculus, it is called Malliavin-Stein method.

The main result for the Poisson case is due to Peccati, Solé, Taqqu, and Utzet (see
[65]). They proved for a square integrable Poisson functional F with expectation zero
that

dW (F,N) ≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+
∫
X

E(DzF )2 |DzL
−1F | dµ(z). (1.5)

Here, D is the difference operator and L−1 is the inverse Ornstein-Uhlenbeck generator.
The expressions on the right-hand side are given by

DzF =
∞∑
n=1

n In−1(fn(z, ·)) and DzL
−1F = −

∞∑
n=1

In−1(fn(z, ·))

for z ∈ X, where fn, n ∈ N, are the kernels of the Wiener-Itô chaos expansion of F .
For the Kolmogorov distance between F and N , a similar bound as formula (1.5)

is derived in this work. For the multivariate normal approximation of vectors of Pois-
son functionals Peccati and Zheng computed a bound close to formula (1.5) for the
d3-distance in [67]. Again, convergence in the d3-distance, that is defined by some test
functions with bounded second and third derivatives, implies convergence in distribu-
tion.

It can be a difficult task to evaluate the bounds derived by the Malliavin-Stein
method for a given Poisson functional since it requires to compute the expectation
of complicated expressions involving the Malliavin operators. These operators are
(possibly infinite) sums of multiple Wiener-Itô integrals with integrands for which we
only have formula (1.2).

For simplicity, we only describe in this introduction how the bound (1.5) can be
evaluated. For the Kolmogorov distance and the d3-distance this can be done in a
similar way. We can remove the absolute values in formula (1.5) by some elementary
inequalities. For the first term in the bound (1.5) we obtain sums of products of the
type

EIn1(f1) In2(f2) In3(f3) In4(f4),

where f1 ∈ L2
s(µ

n1), f2 ∈ L2
s(µ

n2), f3 ∈ L2
s(µ

n3), f4 ∈ L2
s(µ

n4), n1, n2, n3, n4 ∈ N, are
basically the kernels of the Wiener-Itô chaos expansion of F . Products of multiple
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Wiener-Itô integrals were considered by Peccati and Taqqu, and Surgailis in [66, 92].
The expectation is given by a sum of deterministic integrals depending on f1, . . . , f4.
We prove such a product formula that is appropriate for our slightly more general
setting than in the previous works.

As a consequence of this product formula for multiple Wiener-Itô integrals, the
bound for the normal approximation of a Poisson functional F in the Wasserstein
distance in Equation (1.5) can be simplified to

dW

(
F − EF√

VarF
,N

)
≤ 1

VarF

∞∑
i,j=1

i

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ|

+
1

VarF

√∫
X

E(DzF )4 dµ(z).

(1.6)

On the right-hand side, we have a sum of deterministic integrals depending on the
kernels of the Wiener-Itô chaos expansion of F and a special class of partitions and an
integral depending on the fourth moment of the difference operator.

In case that the considered Poisson functional has an infinite Wiener-Itô chaos ex-
pansion, i.e. it is a sum of infinitely many multiple Wiener-Itô integrals with integrands
that are not constantly zero, one has to ensure that the new bound converges. In order
to avoid this problem, we investigate Poisson functionals with a finite Wiener-Itô chaos
expansion first. In this case, the second term on the right-hand side of formula (1.6)
can be bounded by integrals as they occur in the first term. A special class of Poisson
functionals with finite Wiener-Itô chaos expansion are so called Poisson U-statistics
that have the form

S =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

with f ∈ L1(µk) and k ∈ N. Here, ηk6= stands for the set of all k-tuples of distinct points
of η. For the approximation of Poisson functionals with an infinite Wiener-Itô chaos
expansion we present two results. The first one is based on the approximation of the
Poisson functional by a Poisson functional with a finite Wiener-Itô chaos expansion,
and the second result requires that the kernels of the Wiener-Itô chaos expansion satisfy
some special integrability conditions.

Our strategy to provide a bound for the normal approximation of a given square
integrable Poisson functional F is the following.

• We compute the kernels fn, n ∈ N, of the Wiener-Itô chaos expansion of F by
formula (1.2).

• Depending on the structure of the derived formulas for the kernels, we can give an
explicit formula for the variance or only lower and upper bounds for the variance
by Equation (1.4).

• We show that the integrals depending on the kernels of the Wiener-Itô chaos
expansion and the integral of the fourth moment of the difference operator on
the right-hand side of formula (1.6) are small.
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In stochastic geometry, as in other branches of probability, it is often not possible
to determine exact distributions of random variables. In such a situation, one can
try to investigate their asymptotic behaviour. Possible asymptotic regimes are that
the intensity of the underlying point process is increased (in this case we consider a
family of Poisson point processes (ηt)t≥1 with intensity measures µt = tµ) or that the
observation window is increased. Often one is interested in random variables that are
sums of dependent random variables. Here, one expects the limiting distribution to be
Gaussian. Therefore, we denote such results as central limit theorems.

Although there are many central limit theorems in stochastic geometry that were
derived by different techniques, most of them belong to one of the following four ap-
proaches:

• Baryshnikov, Penrose, Wade, and Yukich introduced the so-called stabilization
technique and applied it to many examples in [5, 68, 70, 72, 73, 74, 75]. They
investigate random variables that are sums over all points of a Poisson point
process where every summand depends only on a point and its neighbourhood.
Using the size of this neighbourhood, described by the radius of stabilization,
and some additional assumptions, they prove abstract central limit theorems. It
is assumed that the underlying point process is Poisson but some of the results
still hold for binomial point processes.

• Central limit theorems can be also derived from mixing properties of random
fields. Examples are the works [2, 21, 24] by Baddeley, Heinrich, and Molchanov.
An advantage of this method is that it works for many different underlying point
processes.

• Stein’s method consists of several techniques that can be directly applied to
problems from stochastic geometry. For example, Avram and Bertsimas, Bárány
and Reitzner, and Schreiber use in [1, 4, 80] the dependency graph method (see
the paper [3] by Baldi and Rinott), and Goldstein and Penrose apply a coupling
approach in [18].

• A martingale central limit theorem by McLeish (see [50]) is applied by Kesten
and Lee in [33] and by Penrose in [69]. The technique developed by Kesten and
Lee is also used by Lee in [44, 45], Kesten and Zhang in [34], and Zhang in [94].
A more recent example for martingale methods are the works [81, 82, 83] by
Schreiber and Thäle.

These different methods are sometimes closely related. For example, the proofs of the
stabilization method rest upon different techniques from probability theory as Stein’s
method and the application of martingales.

In this work, we want to show that the Malliavin-Stein method is a further approach
to derive central limit theorems. We compute the Wiener-Itô chaos expansion of Pois-
son functionals occurring in stochastic geometry and apply our abstract approximation
results. In particular, we consider the following problems:

• Intersection process of Poisson k-flats: We observe a stationary Poisson
k-flat process ηt of intensity t > 0 in a compact convex observation window
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W ⊂ Rd. For ` ∈ N with d − `(d − k) ≥ 0, ` distinct k-flats of ηt intersect in a
d−`(d−k)-dimensional flat. Now we apply a functional, for example an intrinsic
volume, to the intersection of each of the intersection flats with W and sum over
all intersection flats. These Poisson functionals are Poisson U-statistics, and it
is proven that they converge after standardization in distribution to a standard
Gaussian random variable for increasing intensity. The number of intersection
flats in W or their total d − `(d − k)-dimensional volume in W are examples
for this class of Poisson functionals. We also derive multivariate limit theorems
for different observation windows or different functionals that are applied to the
intersection flats.

• Poisson hyperplane tessellation: A special case of a Poisson k-flat process
is a Poisson hyperplane process. A stationary Poisson hyperplane process ηt in-
duces a random tessellation in Rd, the Poisson hyperplane tessellation. Now one
is interested in the numbers of `-dimensional faces of a Poisson hyperplane tessel-
lation in a compact convex observation window W . Again, we derive univariate
and multivariate central limit theorems for increasing intensity of the underlying
Poisson hyperplane process.

• Gilbert graph: Let ηt be the restriction of a stationary Poisson point process
to a compact convex set with interior points. The so-called Gilbert graph is
constructed by taking the points of ηt as vertices and connecting two points by
an edge if their distance is not greater than a threshold δt. Assuming that δt → 0
as t → ∞, we prove central limit theorems for the number of vertices and the
total edge length of the Gilbert graph.

• Poisson-Voronoi approximation: For a compact convex set K with interior
points and a stationary Poisson point process ηt in Rd we can construct the fol-
lowing random approximation of K that is called Poisson-Voronoi approximation.
We construct the Voronoi tessellation induced by ηt and take the union of all cells
with nucleus in K as approximation of K. We prove that the standardization of
the volume of the Poisson-Voronoi approximation converges in distribution to a
standard Gaussian random variable as t→∞.

• Boolean model: Let η be a stationary Poisson point process on the space
of all compact convex sets in Rd. The union of all these sets is called Boolean
model. We observe the Boolean model in a sequence of increasing compact convex
observation windows (Wn)n∈N and prove univariate and multivariate central limit
theorems for the intrinsic volumes of the Boolean model within Wn as n→∞.

Closely related to this work are the papers [39, 40] by Lachièze-Rey and Peccati,
where similar bounds for the normal approximation of Poisson functionals with finite
Wiener-Itô chaos expansion are proven and applied to the Gilbert graph described
above and some of its generalizations.

In the following, we consider only the normal approximation of Poisson functionals,
but the idea of the Malliavin-Stein method, to combine Stein’s method and Malliavin
calculus, can be also used for the approximation of Poisson functionals by other dis-
tributions than a Gaussian distribution. This is done for the Poisson distribution by
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Peccati in [64] and for a vector of Gaussian and Poisson random variables by Bourguin
and Peccati in [6]. The result for the Poisson approximation was used by Schulte and
Thäle in [87] to derive non-central limit theorems and Poisson point process conver-
gence for several problems in stochastic geometry and in [88], together with results for
the normal approximation, to study the so-called proximity problem of non-intersecting
Poisson k-flats.

This work is mainly based on the following papers, partially jointly written with
Daniel Hug, Günter Last, Mathew Penrose, Matthias Reitzner, and Christoph Thäle:

• Hug, Last, and Schulte 2012 :
Second order properties and central limit theorems for Boolean models. In prepa-
ration.

• Last, Penrose, Schulte, and Thäle 2012 :
Moments and central limit theorems for some multivariate Poisson functionals.
Preprint.

• Reitzner and Schulte 2011 :
Central limit theorems for U-statistics of Poisson point processes. To appear in
Annals of Probability.

• Schulte 2012a:
A central limit theorem for the Poisson-Voronoi approximation. Published in
Advances in Applied Mathematics.

• Schulte 2012b:
Normal approximation of Poisson functionals in Kolmogorov distance. Preprint.

In order to increase the readability of the text, we only discuss at the end of every
chapter which result belongs to which paper.

This thesis is organized in the following way. In Chapter 2, we fix some basic nota-
tion, present some tools from convex and integral geometry we need for our applications
to stochastic geometry, and recall some facts from probability theory. Then, we define
Poisson U-statistics and multiple Wiener-Itô integrals and derive product formulas for
them in Chapter 3. The product formula for multiple Wiener-Itô integrals is our main
tool to evaluate abstract bounds derived by the Malliavin-Stein method. In Chapter
4, we give a brief introduction to Wiener-Itô chaos expansions and Malliavin operators
and compute both for Poisson U-statistics.

Chapter 5 starts with bounds for the normal approximation of Poisson functionals
derived by the Malliavin-Stein method by Peccati, Solé, Taqqu, and Utzet and Peccati
and Zheng, respectively. A similar bound is proven for the univariate normal approx-
imation in the Kolmogorov distance. The abstract bounds are further evaluated for
Poisson functionals satisfying some additional assumptions. These results are applied
to Poisson U-statistics in Chapter 6.

In Chapter 7, central limit theorems for some Poisson U-statistics from stochastic
geometry are proven. As examples for Poisson functionals with infinite Wiener-Itô
chaos expansions, the volume of the Poisson-Voronoi approximation of a convex body
and the intrinsic volumes of Boolean models are considered in Chapter 8 and Chapter
9, respectively.
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Chapter 2

Preliminaries

After introducing some basic notation in the first section, we recall some facts from
convex and integral geometry in the second section. The third section is devoted to
moments and cumulants, Poisson point processes, and Stein’s method.

2.1 Basic notation

Let (X,X ) be a measurable space with a σ-finite measure µ. For n ∈ N (in our notation
is 0 /∈ N) we denote by µn the product measure of µ on the space Xn equipped with
the σ-algebra generated by X n. For the integral of a measurable function f : Xn →
R := R ∪ {±∞} with respect to µn we write∫

Xn

f dµn or

∫
Xn

f(x1, . . . , xn) dµ(x1, . . . , xn).

By Lp(µn), p > 0, we denote the set of all measurable functions f : Xn → R such that∫
Xn

|f |p dµn <∞.

We call a function f : Xn → R symmetric if it is invariant under permutations of its
arguments for µ-almost all (x1, . . . , xn) ∈ Xn. Let Lps(µ

n) stand for the subspace of all
symmetric functions in Lp(µn).

The space L2(µn) equipped with the inner product

〈f, g〉L2(µn) :=

∫
Xn

f g dµn for f, g ∈ L2(µn)

and the norm ‖f‖n :=
√
〈f, f〉L2(µn) for f ∈ L2(µn) is complete, which implies that

L2(µn) is a Hilbert space. Its subspace L2
s(µ

n) is a Hilbert space as well.

A function f ∈ L2(µn) of the form

f(x) =
m∑
i=1

ci 1I(x ∈ Z(i)
1 × . . .× Z(i)

n )
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with ci ∈ R and Z
(i)
1 , . . . , Z

(i)
n ∈ X for i = 1, . . . ,m is called simple. By E(µn) and

Es(µn) we denote the sets of simple functions in L2(Xn) and L2
s(X

n), respectively. It
is important to note that E(µn) and Es(µn) are dense in L2(µn) and L2

s(µ
n).

The d-dimensional Lebesgue measure is denoted by λd, and in the one-dimensional
case we write λ. We use the standard notation where dx stands for integration with
respect to the (d-dimensional) Lebesgue measure.

For a finite set A let |A| be the number of elements of A. A partition σ of a non-
empty set A is a collection of non-empty sets B1, . . . , Bm ⊂ A such that

⋃m
`=1B` = A

and Bi ∩ Bj = ∅ for all i 6= j. We call B1, . . . , Bm blocks of σ and write B` ∈ σ for
` = 1, . . . ,m. Moreover, |σ| stands for the number of blocks of σ. By P(A) we denote
the set of all partitions of A. For m ∈ N we write [m] as an abbreviation for {1, . . . ,m}.

2.2 Background material from convex and integral

geometry

In this section, we introduce some notation and results from convex and integral ge-
ometry that are necessary for our applications to stochastic geometry in the Chapters
7, 8, and 9. For more details we refer to the monographs [78, 79] by Schneider and
Weil. Our notation is similar as in [79].

Let Cd stand for the system of all compact subsets of Rd. The system of all compact
convex sets is denoted by Kd, and we use the convention that ∅ ∈ Kd. We call a compact
convex subset of Rd with interior points a convex body and denote by Kd0 the set of
all convex bodies in Rd. A compact set in Rd is called polyconvex if it is the union of
finitely many compact convex sets. The system of all polyconvex sets in Rd forms the
convex ring, which is denoted by Rd.

We call a linear map on Rd a rotation if it preserves angles and orientation and
denote the set of all rotations on Rd by SOd. A rigid motion is a combination of a
rotation and a translation on Rd. Let Gd be the set of all rigid motions on Rd.

Let Vol(A) = λd(A) stand for the volume of a measurable set A ⊂ Rd and let Hm

be the m-dimensional Hausdorff measure.

In the following, ‖·‖ denotes the Euclidean norm in Rd. We write dist(x, y) = ‖x−y‖
for the usual Euclidean distance of two points x, y ∈ Rd. For x ∈ Rd and A ⊂ Rd we
define dist(x,A) = infy∈A dist(x, y). By Bd(x, r) we denote the closed ball in Rd with
centre x and radius r > 0, and Bd = Bd(0, 1) is the unit ball in Rd. Let κn be the
volume of the n-dimensional unit ball in Rn and let κ0 = 1. For a compact convex
set K ∈ Kd the inradius r(K) is the largest radius of a ball contained in K, and the
circumradius R(K) is the smallest radius of a ball containing K.

The Minkowski sum A+B for A,B ⊂ Rd and the dilation cA for A ⊂ Rd and c > 0
are defined by

A+B = {x+ y : x ∈ A, y ∈ B} and cA = {cx : x ∈ A}.

For K ∈ Kd and ε > 0 the Minkowski sum K + εBd is the set of all points in Rd with
a distance less than or equal to ε to K. Its volume is given by the following formula
(see [79, Equation (14.5)]):
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Proposition 2.1 There are functions Vj : Kd → R, j = 0, . . . , d, such that

Vol(K + εBd) =
d∑
j=0

κd−jVj(K) εd−j (2.1)

for all K ∈ Kd and ε > 0.

Equation (2.1) tells us that Vol(K + εBd) is in a polynomial in ε. The coefficients
Vj(K), j = 0, . . . , d, are called intrinsic volumes of K. The intrinsic volumes are
additive, meaning that

Vj(K ∪ L) = Vj(K) + Vj(L)− Vj(K ∩ L) (2.2)

for all K,L ∈ Kd with K ∪ L ∈ Kd. Moreover, they are non-negative, rigid motion
invariant, continuous with respect to the Hausdorff metric

δ(K,L) = max{max
x∈K

dist(x, L),max
y∈L

dist(y,K)} for K,L ∈ Cd,

and monotone under set inclusion, i.e. Vj(K) ≤ Vj(L) for all K,L ∈ Kd with K ⊂ L.
By using the additivity (2.2), one can extend the intrinsic volumes from the com-

pact convex sets Kd to the convex ring Rd. The extension prevents additivity and
rigid motion invariance, but we lose continuity and the intrinsic volumes can become
negative. Some of the intrinsic volumes have special geometric meanings. For example,
Vd(K) is the usual volume of K, Vd−1(K) = 1

2
S(K), where S(K) stands for the sur-

face area of K, and V0(K) is the Euler characteristic χ(K), a well-known topological
invariant.

The Steiner formula Proposition 2.1 can be generalized to arbitrary intrinsic vol-
umes (see [79, Theorem 14.2.4]):

Proposition 2.2 For 0 ≤ m ≤ d, ε > 0, and K ∈ Kd we have

Vm(K + εBd) =
m∑
j=0

κd−j
κd−m

(
d− j
d−m

)
Vj(K) εm−j.

For k ∈ {0 . . . , d} let the Grassmannian G(d, k) be the set of all k-dimensional linear
subspaces of Rd and let the affine Grassmannian A(d, k) be the set of all k-dimensional
affine subspaces of Rd. The elements of A(d, k) are also called k-flats. For a fixed
k ∈ {0, . . . , d} and W ∈ Kd we denote by [W ] the set of all k-flats hitting W .

A Haar measure on G(d, k) is a SOd invariant measure, and a Haar measure on
A(d, k) is a Gd invariant measure. The Haar measures on G(d, k) and A(d, k) are
unique up to a constant. For a detailed construction we refer to [79, Section 13.2]. By
integration with respect to the Haar measure on A(d, k) we omit the measure in our
notation and just write dE. Here, we use the Haar measure with the normalization
such that the measure of all k-flats hitting the d-dimensional unit ball Bd is one. A
useful tool for the integration over the set of all k-flats is Crofton’s formula (see [79,
Theorem 5.1.1]):
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Proposition 2.3 For K ∈ Kd, 1 ≤ k ≤ d− 1, and 0 ≤ j ≤ k we have∫
A(d,k)

Vj(K ∩ E) dE =

(
k
j

)
κk κd−k+j(
d
k−j

)
κj κd

Vd−k+j(K).

For the computation of some integrals we apply the so-called coarea formula. If
f : Rm → Rn is differentiable at x ∈ Rm, we define the Jacobian Jf(x) by

Jf(x) =
√

det (f ′(x) f ′(x)T ),

where f ′ stands for the Jacobi matrix of f . Observe that a Lipschitz function is almost
everywhere differentiable in such a way that its Jacobian is almost everywhere defined.
Using this notation, we have (see Corollary 5.2.6 in the monograph [38] by Krantz and
Parks, for example):

Proposition 2.4 If f : Rm → Rn is a Lipschitz function and m ≥ n, then∫
B

g(x) Jf(x) dλm(x) =

∫
Rn

∫
B∩f−1(y)

g(z) dHm−n(z) dλn(y)

holds for each Lebesgue measurable B ⊂ Rm and each non-negative λm-measurable
function g : B → R.

For n = 1 we have Jf(x) = ‖∇f(x)‖. Note that ‖ ·‖ stands for the usual Euclidean
norm, whereas ‖ · ‖n is the norm in L2

s(µ
n) or L2

s(λ
n
d).

2.3 Background material from probability theory

2.3.1 Moments and cumulants

Throughout this monograph, let (Ω,F ,P) always be the underlying probability space
and let EX stand for the expectation of a random variable (or random vector) X over
(Ω,F ,P). By Lp(P), p > 0, we denote the set of all random variables X such that

E|X|p =

∫
Ω

|X|p dP <∞.

In order to describe the behaviour of random variables, we use their moments
and cumulants. For a random variable X and m ∈ N we call EXm the m-th mo-
ment and E(X − EX)m the m-th centred moment. Both moments exist if and only if
X ∈ Lm(P). Analogously, there are mixed moments E

∏m
`=1 X` and mixed centred mo-

ments E
∏m

`=1(X`−EX`) for random variables X1, . . . , Xm. The characteristic function
ϕ(X1...,Xm) : Rm → C of a vector of random variables X1, . . . , Xm is defined as

ϕ(X1,...,Xm)(z1, . . . , zm) = E exp(i(z1X1 + . . .+ zmXm)),

where i stands for the imaginary unit. The joint cumulant γ(X1, . . . , Xm) ofX1, . . . , Xm

is defined by

γ(X1, . . . , Xm) = (−i)m
∂m logϕ(X1,...,Xm)

∂z1 . . . ∂zm
(z1, . . . , zm)|z1=...=zm=0.
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Note that the joint cumulant γ(X1, . . . , Xm) is multilinear in X1, . . . , Xm. The m-th
cumulant γm(X) of a random variable X is given by γm(X) = γ(X, . . . , X), where X
occurs m times. The following lemma (see Proposition 3.2.1 in the monograph [66] by
Peccati and Taqqu or Equation (40) in II §12 in the textbook [89] by Shiryaev) gives
us a relation between the cumulants and the mixed moments of a random vector:

Lemma 2.5 Let X1, . . . , Xm be random variables and define XB = (Xi1 , . . . , Xi`) for
B = {i1, . . . , i`} ⊂ [m]. Then

E
m∏
`=1

X` =
∑

π∈P([m])

∏
B∈π

γ(XB).

We say that a random variable is uniquely determined by its moments if every
random variable with the same moments has the same probability distribution. In this
case, the moments of random variables can be used to prove convergence in distribution.
The following criterion (see Section 8.12 in the textbook [7] by Breiman) is called
method of moments:

Proposition 2.6 Let (Xn)n∈N be a sequence of random variables with finite moments
and let X be a random variable with finite moments.

a) The random variable X is uniquely determined by its moments if

lim sup
m→∞

|EXm| 1m
m

<∞.

b) Let X be uniquely determined by its moments. Then (Xn)n∈N converges in dis-
tribution to X if and only if

lim
n→∞

EXm
n = EXm for all m ∈ N. (2.3)

Because of Lemma 2.5, condition (2.3) is equivalent to

lim
n→∞

γm(Xn) = γm(X) for all m ∈ N.

This formulation is useful in situations where the cumulants are easier to handle than
the moments. Then the criterion is called method of cumulants.

2.3.2 Poisson point processes

In the following, we introduce Poisson point processes as random measures and present
some of their properties. The definition of a Poisson point process follows the approach
in the textbook [32] by Kallenberg and does not require any topological assumptions
on the underlying measurable space.

Let (X,X ) be a measurable space. By N(X) we denote the set of all σ-finite integer
valued measures on (X,X ). The set N(X) is equipped with the smallest σ-algebra
N (X) such that all maps gA : N(X) → R, η 7→ η(A) with A ∈ X are measurable.
From now on, let (Ω,F ,P) always be the underlying probability space. We call a
measurable map η : (Ω,F)→ (N(X),N (X)) an integer valued random measure. Now
we can define a Poisson point process in the following way:
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Definition 2.7 Let (X,X ) be a measurable space with a σ-finite measure µ. A σ-
finite integer valued random measure η is called a Poisson point process with intensity
measure µ if

1. η(A1), . . . , η(An) are independent for disjoint sets A1, . . . , An ∈ X and n ∈ N;

2. η(A) is Poisson distributed with parameter µ(A) for each A ∈ X .

In the second condition, it can happen that µ(A) =∞. In this case, η(A) is infinite
almost surely. For a proof of the existence of a Poisson point process we refer to [32,
Theorem 12.7].

In the following, we are interested in the behaviour of a Poisson functional F which
is a random variable depending on the Poisson point process η. More precisely, F is a
measurable map from N(X) to R. As usual, we treat Poisson functionals as random
variables depending on the image measure Pη of η instead of the original probability
measure P.

The following result allows us without loss of generality to assume that all singletons
of X belong to the σ-algebra X . Since I do not know of a reference in the literature,
it is proven in the following.

Proposition 2.8 Let η1 be a Poisson point process with a σ-finite intensity measure
µ1 over a measurable space (X1,X1) and let F1 : N(X1)→ R be measurable. Then there
is a Poisson point process η2 with a σ-finite intensity measure µ2 over a measurable
space (X2,X2) satisfying {x} ∈ X2 for all x ∈ X2 and a measurable F2 : N(X2) → R
such that F1(η1) and F2(η2) have the same distribution.

Proof. Let the relation ∼ on X1 be given by x ∼ y for x, y ∈ X1 if there are no sets
A,B ∈ X1 such that x ∈ A, y /∈ A, x /∈ B, and y ∈ B and let [x] = {y ∈ X1 : x ∼ y}
for x ∈ X1. Now we define sets

M1 = {x ∈ X1 : there is a countable set Y ⊂ X1 such that [x] ∪
⋃
y∈Y

[y] ∈ X1}

and M2 = X1 \M1. Let x ∈ M1 and let Y ⊂ X1 be the countable set. Without loss
of generality we can assume that [x] ∩ Y = ∅. By the definition of ∼, there exists for
each y ∈ Y a set By ∈ X1 such that x /∈ By (and hence z /∈ By for all z ∈ [x]) and
y ∈ By (and hence [y] ⊂ By). Therefore, we have the representation

[x] =

(
[x] ∪

⋃
y∈Y

[y]

)
∩
⋂
y∈Y

BC
y ,

which means that [x] ∈ X1 for all x ∈ M1. Let X̃1 be the σ-algebra generated by

X1 ∪ {[x] : x ∈M2}. All elements A ∈ X̃1 are of the form

A = (A0 ∪ A1) \ A2,

where A0 ∈ X1 and A1 =
⋃
x∈I [x] and A2 =

⋃
x∈J [x] with countable subsets I and

J of M2. Hence, we can define a σ-finite measure µ̃1 as µ̃1(A) = µ(A0). Now there
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exists a Poisson point process over (X1, X̃1) with intensity measure µ̃1. We define F̃1:

N((X1, X̃1)) → R by restricting η̃1 to a measure on X1 and applying F1 to this new

integer valued measure. Since X1 ⊂ X̃1, the restriction of the measure and, hence, F̃1

are measurable. The restriction of the Poisson point process η̃1 to X1 has by definition
the same intensity measure as η1 so that the Poisson functionals F1(η1) and F̃1(η̃1)
have the same distributions.

Let X2 be the set of all equivalence classes [x]. Since [x] ∩ A = [x] or [x] ∩ A = ∅
for all A ∈ X̃1, X̃1 and µ̃1 induce a σ-algebra X2 and a measure µ2 on X2. Now
every realization of a Poisson point process η2 with intensity measure µ2 is equivalent
to a realization of the Poisson point process η̃1. Thus, we have a Poisson functional
F2 = F2(η2) with the same distribution as F1(η1). Since {y} ∈ X2 for all y ∈ X2, this
concludes the proof. �

From now on we assume that the measurable space (X,X ) satisfies

{x} ∈ X for all x ∈ X. (2.4)

We call a point x ∈ X an atom of a measure ν if ν({x}) > 0. A measure ν is diffuse if
it has no atoms. Under assumption (2.4) the Poisson point process η has almost surely
a representation as a sum of its atoms, namely

η =
∑
i∈I

δxi with xi ∈ X and a countable index set I, (2.5)

where δx stands for the Dirac measure concentrated at the point x ∈ X. In case that
the intensity measure µ has atoms, it can happen that there are i, j ∈ I with i 6= j
such that xi = xj, which means that η(xi) > 1 and xi is a multiple point of η. On
the other hand, if µ is diffuse, it holds almost surely that η(x) ≤ 1 for all x ∈ X and
there are no multiple points. Because of the representation (2.5), we can think of a
Poisson point process as a random collection of countable points in X. If µ is diffuse,
we can identify the point process η with its support. In the case that µ has atoms, this
is wrong since we would lose the multiplicity of points.

In order to distinct multiple points xi = xj for i 6= j, we give each of them a
number as a mark, which allows us to consider η as a set. This is the background for
the notation x ∈ η. Analogously, we define ηk6= for k ∈ N as the set of all k-tuples
of distinct points. Here, two points are distinct, if they have the same location but
different marks. This notation is used for the so-called Slivnyak-Mecke formula, which
plays an important role in the following.

Proposition 2.9 For every f ∈ L1(Pη × µk) it holds that

E
∑

(x1,...,xk)∈ηk6=

f(η, x1, . . . , xk) =

∫
Xk

Ef(η +
k∑
i=1

δxi , x1, . . . , xk) dµ(x1, . . . , xk).

Proof. The proofs in [79, Theorem 3.2.5 and Corollary 3.2.3] can be extended to our
slightly different setting. �
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We often need only a special case of the Slivnyak-Mecke formula, where the function
f only depends on the points x1, . . . , xk and not on the whole process η.

Corollary 2.10 For every f ∈ L1(µk) we have

E
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk) =

∫
Xk

f(x1, . . . , xk) dµ(x1, . . . , xk).

2.3.3 Stein’s method

A common problem in probability theory is to decide if a family of random variables (or
random vectors) (Xt)t≥0 converges in distribution to a random variable (or a random
vector) X. Since one is also interested in the question how fast this convergence takes
place, one needs a measure for the distance between two random variables (or random
vectors) Y and Z. This can be a distance dH(·, ·) given by

dH(Y, Z) = sup
h∈H
|Eh(Y )− Eh(Z)|, (2.6)

where H is a suitable set of test functions.
For two random variables Y and Z the choice H = Lip(1), where Lip(1) stands for

the set of all functions h : R→ R with a Lipschitz constant less than or equal to one,
leads to the Wasserstein distance

dW (Y, Z) = sup
h∈Lip(1)

|Eh(Y )− Eh(Z)|.

Taking for H the set of indicator functions of intervals (−∞, t], t ∈ R, we obtain the
Kolmogorov distance

dK(Y, Z) = sup
t∈R
|P(Y ≤ t)− P(Z ≤ t)|,

which is the supremum norm of the difference between the distribution functions of
Y and Z. Wasserstein distance and Kolmogorov distance are both zero if and only if
Y and Z follow the same distribution, whence they are pseudo metrics on the space
of all random variables. Now the idea is that the random variables Y and Z have
similar distributions if these distances are small. This is true since convergence in
Wasserstein distance or in Kolmogorov distance implies convergence in distribution.
The converse does not hold because there are examples of random variables converging
in distribution but not in these distances.

The Wasserstein distance and the Kolmogorov distance are also defined for m-
dimensional random vectors by taking functions h : Rm → R with a Lipschitz constant
less than or equal to one or indicator functions of cartesian products (−∞, t1]× . . .×
(−∞, tm] as test functions. But these distances are too strong for our purposes so that
we use a distance d3 instead. For two m-dimensional random vectors Y and Z the
distance d3(Y, Z) is defined by

d3(Y, Z) = sup
g∈Hm

|Eg(Y )− Eg(Z)|,
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where Hm is the set of all thrice continuously differentiable functions g : Rm → R such
that

max
1≤i1≤i2≤m

sup
x∈Rm

∣∣∣∣ ∂2g

∂xi1∂xi2
(x)

∣∣∣∣ ≤ 1 and max
1≤i1≤i2≤i3≤m

sup
x∈Rm

∣∣∣∣ ∂3g

∂xi1∂xi2∂xi3
(x)

∣∣∣∣ ≤ 1.

Again convergence in d3 implies convergence in distribution.
A method to bound such distance and, hence, to prove limit theorems is Stein’s

method which goes back to Charles Stein (see [90, 91]). Although it can be used for
many distributions, we focus on univariate normal approximation in the following. In
this context, it was originally introduced by Stein. The underlying idea of this method
is to find solutions gh of the differential equation

g′h(w)− wgh(w) = h(w)− Eh(N) (2.7)

for test functions h ∈ H, where N is a standard Gaussian random variable. The
differential equation (2.7) is called Stein’s equation. Now we can replace w by a random
variable Y , take the expectation, and put it in formula (2.6), which yields

dH(Y,N) = sup
h∈H
|E[g′h(Y )− Y gh(Y )]|.

Now there are several techniques to evaluate the right-hand side. In Chapter 5, this
will be done by Malliavin calculus. For a detailed and more general introduction into
Stein’s method we refer to the works [8, 9, 91] by Chen, Goldstein, Shao, and Stein.

Later we will apply Stein’s method for the normal approximation in Kolmogorov
distance which rests upon the the following lemma (see Chapter II in [91]):

Lemma 2.11 Let N be a standard Gaussian random variable and let t ∈ R. Then
gt : R→ R with

gt(w) = e
w2

2

∫ w

−∞

(
1I(−∞,t](s)− P(N ≤ t)

)
e−

s2

2 ds (2.8)

is a solution of the differential equation

g′t(w)− wgt(w) = 1I(−∞,t](w)− P(N ≤ t) (2.9)

and satisfies

0 < gt(w) ≤
√

2π

4
, |g′t(w)| ≤ 1, and |wgt(w)| ≤ 1 (2.10)

for any w ∈ R.

The function gt is infinitely differentiable on R \ {t}, but it is not differentiable at

t. We denote the left-sided and right-sided limits of the derivatives in t by g
(m)
t (t−)

and g
(m)
t (t+), respectively. For the first derivative, a direct computation proves

g′t(t+) = −1 + g′t(t−), (2.11)
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and we define g′t(t) := g′t(t−) so that Equation (2.9) holds for w = t. By replacing w
by a random variable Z and taking the expectation in Equation (2.9), one obtains

E[g′t(Z)− Z gt(Z)] = P(Z ≤ t)− P(N ≤ t)

and as a consequence of the definition of the Kolmogorov distance

dK(Z,N) = sup
t∈R
|E[g′t(Z)− Zgt(Z)]|. (2.12)

The identity (2.12) will be our starting point for the proof of Theorem 5.2 in Chapter
5. Note furthermore, that we obtain, by combining the inequalities (2.7) and (2.10),
the upper bound

|g′′t (w)| ≤
√

2π

4
+ |w| (2.13)

for w ∈ R \ {t}.
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Chapter 3

Poisson U-statistics, Wiener-Itô
integrals, and the product formula

In this chapter, we introduce so-called Poisson U-statistics and derive formulas for
their moments and cumulants. Then we use Poisson U-statistics to define multiple
Wiener-Itô integrals and prove formulas for their moments and cumulants by using
the formulas for Poisson U-statistics. In order to formulate our results, we need some
special classes of partitions, which are introduced in the first section.

Let us recall that (X,X ) is a measurable space such that {x} ∈ X for all x ∈ X
and µ is a σ-finite measure on X. Moreover, η is a Poisson point process with state
space X and intensity measure µ. We tacitly assume this setting from now on.

3.1 Partitions

Let A be an arbitrary non-empty finite set. Recall that P(A) stands for the set of
all partitions of A. In our terminology, a partition consists of so-called blocks and |σ|
denotes the number of blocks of a partition σ ∈ P(A).

On P(A) we define a partial order ≤ in the following way. For two partitions
σ, τ ∈ P(A) we say that σ ≤ τ if each block of σ is contained in a block of τ . It is easy
to see that the partition 1̂ which has only the single block A is the maximal partition.
On the other hand, the partition 0̂ which consists of blocks having only one element,
so-called singletons, is the minimal partition. For two partitions σ, τ ∈ P(A) let σ ∨ τ
be the minimal partition of P(A) such that σ ≤ σ ∨ τ and τ ≤ σ ∨ τ . Similarly, let
σ ∧ τ be the maximal partition of P(A) such that σ ∧ τ ≤ σ and σ ∧ τ ≤ τ . A short
proof yields that σ ∨ τ and σ ∧ τ are uniquely defined.

Before we use some partitions of variables to define functions, we need to introduce
a tensor product of functions. Let f (`) : Xn` → R with n` ∈ N for ` = 1, . . . ,m. Then
the function ⊗m`=1f

(`) : X
∑m
`=1 n` → R is given by

⊗m`=1f
(`)(x

(1)
1 , . . . , x(m)

nm ) =
m∏
`=1

f (`)(x
(`)
1 , . . . , x(`)

n`
).

Now we think of the variables of ⊗m`=1f
(`) as combinatorial objects and introduce some
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partitions of them. We define the set

V (n1, . . . , nm) = {x(1)
1 , . . . , x(1)

n1
, x

(2)
1 , . . . , x(2)

n2
, . . . , x

(m−1)
1 , . . . , x(m−1)

nm−1
, x

(m)
1 , . . . , x(m)

nm }.

For each σ ∈ P(V (n1, . . . , nm)) we can define a partition σ∗ ∈ P([m]) as the minimal
partition in P([m]) such that i, j ∈ [m] are in the same block of σ∗ whenever two

variables x
(i)
u , x

(j)
v ∈ V (n1, . . . , nm) are in the same block of σ.

Definition 3.1 For n` ∈ N, ` = 1, . . . ,m, let π ∈ P(V (n1, . . . , nm)) be given by the

blocks {x(`)
1 , . . . , x

(`)
n` }, ` = 1, . . . ,m, and put

Π(n1, . . . , nm) =
{
σ ∈ P(V (n1, . . . , nm)) : σ ∧ π = 0̂

}
Π≥2(n1, . . . , nm) =

{
σ ∈ P(V (n1, . . . , nm)) : σ ∧ π = 0̂, |B| ≥ 2 ∀B ∈ σ

}
Π̃(n1, . . . , nm) =

{
σ ∈ P(V (n1, . . . , nm)) : σ ∧ π = 0̂, σ∗ = 1̂

}
Π̃≥2(n1, . . . , nm) =

{
σ ∈ P(V (n1, . . . , nm)) : σ ∧ π = 0̂, |B| ≥ 2 ∀B ∈ σ, σ∗ = 1̂

}
.

In this definition, 0̂ is the minimal partition in P(V (n1, . . . , nm)), and 1̂ is the
maximal partition in P([m]).

It is easy to see that Π̃≥2(n1, . . . , nm) ⊂ Π̃(n1, . . . , nm) ⊂ Π(n1, . . . , nm) and that

Π̃≥2(n1, . . . , nm) ⊂ Π≥2(n1, . . . , nm) ⊂ Π(n1, . . . , nm). The condition σ ∧ π = 0̂
means that variables with the same upper index are in different blocks of σ. If
σ ∈ Π≥2(n1, . . . , nm), each block of σ has at least two elements. The condition σ∗ = 1̂
implies that it is not possible to divide the blocks B1, . . . , B|σ| of σ in two non-empty
sets σ1 and σ2 such that σ1 is a partition of the variables with upper index ` ∈ A and
σ2 is a partition of the variables with upper index ` ∈ [m] \ A.

We call a block of a partition a singleton if it has exactly one element. For a
partition σ ∈ Π(n1, . . . , nm) we denote by S(σ) the set of all singletons of σ and by
s(σ) the vector (s1, . . . , sm) where s`, ` = 1, . . . ,m, is the number of variables with
upper index ` that are included in the partition σ as singletons.

Now we are able to combine the tensor product notation and the partitions of
variables in the following way. For given functions f (`) : Xn` → R with n` ∈ N
for ` = 1, . . . ,m and a partition σ ∈ Π(n1, . . . , nm) we construct a new function(
⊗m`=1f

(`)
)
σ

: X |σ| → R by replacing all variables that belong to the same block of σ
by a new common variable. In order to uniquely define this new function, we must
order the new variables. This can be done by taking the order of occurrence of the new
variables in the tensor product.

Our notation can be extended to the case n` = 0. Then we have no variables with
upper index `, and the function f (`) is only a constant.

The classes of partitions introduced here are very similar to the partitions in the
monograph [66] by Peccati and Taqqu. A formal difference is that there sets of numbers
are partitioned, and the variables are identified with numbers. In the paper [92] by
Surgailis, the partitions Π(n1, . . . , nm) are defined as a special class of graphs where the
variables are the vertices, and two vertices are connected by an edge if both variables
belong to the same block.

We illustrate the partitions and the tensor product notation with the following
example:
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Example 3.2 We have V (2, 1, 2, 1) =
{
x

(1)
1 , x

(1)
2 , x

(2)
1 , x

(3)
1 , x

(3)
2 , x

(4)
1

}
. Now the parti-

tions

σ1 =
{
{x(1)

1 , x
(2)
1 }, {x

(1)
2 }, {x

(3)
1 , x

(4)
1 }, {x

(3)
2 }
}

σ2 =
{
{x(1)

1 , x
(3)
1 }, {x

(1)
2 , x

(3)
2 }, {x

(2)
1 , x

(4)
1 }
}

σ3 =
{
{x(1)

1 , x
(2)
1 , x

(3)
1 , x

(4)
1 }, {x

(1)
2 }, {x

(3)
2 }
}

σ4 =
{
{x(1)

1 , x
(2)
1 }, {x

(1)
2 , x

(3)
2 }, {x

(3)
1 , x

(4)
1 }
}

belong to Π(2, 1, 2, 1) since variables with the same upper index are always in different
blocks. We have |σ1| = 4 and |σ2| = |σ3| = |σ4| = 3 as well as

S(σ1) = S(σ3) =
{
{x(1)

2 }, {x
(3)
2 }
}

and S(σ2) = S(σ4) = ∅,

whence s(σ1) = s(σ3) = (1, 0, 1, 0) and s(σ2) = s(σ4) = (0, 0, 0, 0). Thus, σ2 and σ4 are
elements of Π≥2(2, 1, 2, 1) but not σ1 and σ3. Since

σ1 =
{
{x(1)

1 , x
(2)
1 }, {x

(1)
2 }
}
∪
{
{x(3)

1 , x
(4)
1 }, {x

(3)
2 }
}

and
σ2 =

{
{x(1)

1 , x
(3)
1 }, {x

(1)
2 , x

(3)
2 }
}
∪
{
{x(2)

1 , x
(4)
1 }
}
,

we have σ∗1 = {{1, 2}, {3, 4}} and σ∗2 = {{1, 3}, {2, 4}} so that σ1 and σ2 do not

belong to Π̃(2, 1, 2, 1). For σ3 there is no such decomposition since the first block
contains variables with all possible upper indices, which implies σ∗3 = {{1, 2, 3, 4}}. The
partition σ4 has blocks with variables having the upper indices {1, 2}, {1, 3}, and {3, 4}
so that σ∗4 = {{1, 2, 3, 4}}. Hence, we obtain σ3 ∈ Π̃(2, 1, 2, 1) and σ4 ∈ Π̃≥2(2, 1, 2, 1).

For f (1) : X2 → R, f (2) : X → R, f (3) : X2 → R, and f (4) : X → R we have

f (1) ⊗ f (2) ⊗ f (3) ⊗ f (4)(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(3)
1 , x

(3)
2 , x

(4)
1 )

= f (1)(x
(1)
1 , x

(1)
2 ) f (2)(x

(2)
1 ) f (3)(x

(3)
1 , x

(3)
2 ) f (4)(x

(4)
1 )

and(
f (1) ⊗ f (2) ⊗ f (3) ⊗ f (4)

)
σ1

(y1, y2, y3, y4) = f (1)(y1, y2) f (2)(y1) f (3)(y3, y4) f (4)(y3)(
f (1) ⊗ f (2) ⊗ f (3) ⊗ f (4)

)
σ2

(y1, y2, y3) = f (1)(y1, y2) f (2)(y3) f (3)(y1, y2) f (4)(y3)(
f (1) ⊗ f (2) ⊗ f (3) ⊗ f (4)

)
σ3

(y1, y2, y3) = f (1)(y1, y2) f (2)(y1) f (3)(y1, y3) f (4)(y1)(
f (1) ⊗ f (2) ⊗ f (3) ⊗ f (4)

)
σ4

(y1, y2, y3) = f (1)(y1, y2) f (2)(y1) f (3)(y3, y2) f (4)(y3).

3.2 Poisson U-statistics and their moments and

cumulants

In this section, we discuss random variables that depend on η and have the following
form:
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Definition 3.3 A Poisson functional S of the form

S =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

with k ∈ N and f ∈ L1
s(µ

k) is called a Poisson U-statistic of order k.

Recall that ηk6= stands for the set of all k-tuples of distinct points of η. Since we
sum over all permutations of a fixed k-tuple of distinct points, we can assume without
loss of generality that f is symmetric.

We call the Poisson functionals in Definition 3.3 Poisson U-statistics due to their
similarity to classical U-statistics. Let X1, . . . , Xm be a fixed number of independently
and identically distributed random variables and let ζkm, 6= be the set of all k-tuples of
distinct random variables from X1, . . . , Xm. Then a random variable

S =
∑

(x1,...,xk)∈ζkm, 6=

f(x1, . . . , xk)

is called a (classical) U-statistic. The sum is often divided by the number of summands.
But since m is fixed, this is a fixed number we can neglect. One can think of X1, . . . , Xm

as a binomial point process ζm. Then the difference between a Poisson U-statistic and a
classical U-statistic is whether the underlying point process is a Poisson point process or
a binomial point process. In the Poisson case, the number of summands is random and
can be infinite, whereas the number of summands of a classical U-statistic is fixed and
finite. For more details on classical U-statistics and their applications in statistics we
refer to the classical work [27] by Hoeffding and the monographs [37, 43] by Korolyuk
and Borovskich, and Lee.

The fact that f is integrable allows us to apply the Slivnyak-Mecke formula from
Corollary 2.10, which ensures that S ∈ L1(Pη) and yields

ES =

∫
Xk

f(x1, . . . , xk) dµ(x1, . . . , xk). (3.1)

Using the notation from Section 3.1, we can state the following formulas for the
moments and cumulants of Poisson U-statistics.

Theorem 3.4 Let the Poisson U-statistics S(1), . . . , S(m), m ≥ 2, be given by

S(`) =
∑

(x1,...,xn` )∈η
n`
6=

f (`)(x1, . . . , xn`) with f (`) ∈ L1
s(µ

n`) and n` ∈ N

for ` = 1, . . . ,m and assume that∫
X|σ|
|(⊗m`=1f

(`))σ| dµ|σ| <∞ for all σ ∈ Π(n1, . . . , nm). (3.2)

Then we have

E
m∏
`=1

S(`) =
∑

σ∈Π(n1,...,nm)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ|, (3.3)
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E
m∏
`=1

(S(`) − ES(`)) =
∑

σ∈Π(n1,...,nm),
s(σ)≤(n1−1,...,nm−1)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ|, (3.4)

and

γ(S(1), . . . , S(m)) =
∑

σ∈Π̃(n1,...,nm)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ|. (3.5)

Proof. Because of f (`) ∈ L1
s(µ

n`), each of the sums S(1), . . . , S(m) is almost surely
absolutely convergent. Since two points we sum over in two different U-statistics can
be either identical or distinct, we can rewrite the product of S(1), . . . , S(m) as

m∏
`=1

S(`) =
∑

σ∈Π(n1,...,nm)

∑
(y1,...,y|σ|)∈η

|σ|
6=

(⊗m`=1f
(`))σ(y1, . . . , y|σ|)

almost surely. Now assumption (3.2) allows us to apply the Slivnyak-Mecke formula
from Corollary 2.10, which yields formula (3.3).

The left-hand side in Equation (3.4) is the expectation of a sum of 2m products,
where the `-th factor is either S(`) or −ES(`), and each of them can be computed by
formula (3.3). Now we count for every partition σ ∈ Π(n1, . . . , nm) how often the
integral

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ| occurs. We obtain the integral related to a partition

σ ∈ Π(n1, . . . , nm) such that sj(σ) = nj for j ∈ J ⊂ [m] and sj(σ) ≤ nj − 1 for
j ∈ [m] \ J if and only if the factors j ∈ [m] \ J are S(j) and the remaining factors are
S(j) or −ES(j) for j ∈ J . For J 6= ∅ we have 2|J |−1 combinations with a plus sign and
2|J |−1 combinations with a minus sign that cancel out. For the partitions with J = ∅
we obtain the integrals on the right-hand side of formula (3.4).

We prove formula (3.5) by induction over m. The identity holds for m = 2 since
E(S(1) − ES(1))(S(2) − ES(2)) = γ(S(1), S(2)) and

{σ ∈ Π(n1, n2) : s(σ) ≤ (n1 − 1, n2 − 1)} = Π̃(n1, n2).

For m ≥ 3 we have by Lemma 2.5, formula (3.3), and the assumption of the induction

γ(S(1), . . . , S(m)) =
∑

σ∈Π(n1,...,nm)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ| −

∑
π∈P([m]),
|π|>1

∏
J∈π

γ(SJ)

=
∑

σ∈Π(n1,...,nm)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ|

−
∑

π∈P([m]),
|π|>1

∏
J∈π

∑
σJ∈Π̃(nJ )

∫
X|σJ |

(⊗`∈Jf (`))σJ dµ|σJ |

with SJ = {S(j) : j ∈ J} and nJ = {nj : j ∈ J}. Since each partition σ ∈ Π(n1, . . . , nm)

defines a partition σ∗ ∈ P([m]) and partitions σJ ∈ Π̃(nJ) for J ∈ σ∗ and vice versa,
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we can rewrite the previous equation as

γ(S(1), . . . , S(m)) =
∑

σ∈Π(n1,...,nm)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ|

−
∑

σ∈Π(n1,...,nm),|σ∗|>1

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ|.

Now only partitions σ ∈ Π(n1, . . . , nm) with |σ∗| = 1 remain on the right-hand side.

By definition of Π̃(n1, . . . , nm), these are exactly the partitions on the right-hand side
of formula (3.5). �

The previous result can be reformulated in the following way:

Corollary 3.5 Let f (`) ∈ L1
s(µ

n`) with n` ∈ N for ` = 1, . . . ,m and

S(`) =
∑

(x1,...,xn` )∈η
n`
6=

f (`)(x1, . . . , xn`)

for ` = 1, . . . ,m. We define

f̂
(`)
i (x1, . . . , xi) =

∫
Xn`−i

f (`)(x1, . . . , xi, y1, . . . , yn`−i) dµ(y1, . . . , yn`−i)

for i = 0, . . . , n` and ` = 1, . . . ,m and assume that∫
X|σ|
|(⊗m`=1f̂

(`)
i`

)σ| dµ|σ| <∞ for σ ∈ Π(i1, . . . , im) and 0 ≤ i` ≤ n`, ` = 1, . . . ,m.

(3.6)
Then we have

E
m∏
`=1

S(`) =
∑

0≤i1≤n1,...,0≤im≤nm

m∏
`=1

(
n`
i`

) ∑
σ∈Π≥2(i1,...,im)

∫
X|σ|

(⊗m`=1f̂
(`)
i`

)σ dµ|σ|, (3.7)

E
m∏
`=1

(S(`) − ES(`)) =
∑

1≤i1≤n1,...,1≤im≤nm

m∏
`=1

(
n`
i`

) ∑
σ∈Π≥2(i1,...,im)

∫
X|σ|

(⊗m`=1f̂
(`)
i`

)σ dµ|σ|,

(3.8)
and

γ(S(1), . . . , S(m)) =
∑

1≤i1≤n1,...,1≤im≤nm

m∏
`=1

(
n`
i`

) ∑
σ∈Π̃≥2(i1,...,im)

∫
X|σ|

(⊗m`=1f̂
(`)
i`

)σ dµ|σ|.

(3.9)

Proof. For a partition σ ∈ Π(n1, . . . , nm) with s(σ) = (s1, . . . , sm), we can construct a
reduced partition τ ∈ Π≥2(n1 − s1, . . . , nm − sm) by removing the singletons of σ and
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relabelling the remaining variables. Together with the definition of f̂
(`)
i and Fubini’s

theorem, we obtain the identity∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ| =

∫
X|τ |

(⊗m`=1f̂
(`)
n`−s`)τ dµ|τ |.

There are
∏m

`=1

(
n`
s`

)
partitions σ ∈ Π(n1, . . . , nm) with s(σ) = (s1, . . . , sm) that have

the same reduced partition τ ∈ Π≥2(n1− s1, . . . , nm− sm) since we have for every f (`),(
n`
s`

)
possibilities to choose the singletons. Hence, it follows that∑

σ∈Π(n1,...,nm),
s(σ)=(s1,...,sm)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ|

=
m∏
`=1

(
n`
s`

) ∑
σ∈Π≥2(n1−s1,...,nm−sm)

∫
X|σ|

(⊗m`=1f̂
(`)
n`−s`)σ dµ|σ|.

Since assumption (3.6) for i1 = n1, . . . , im = nm implies that condition (3.2) is satisfied,
the formulas (3.7), (3.8), and (3.9) are direct consequences of Theorem 3.4. �

3.3 Multiple Wiener-Itô integrals

The aim of this section is to introduce multiple Wiener-Itô integrals that play a crucial
role in the sequel. We do this in a similar way as in the work [41] by Last and
Penrose. We start by defining the multiple Wiener-Itô integral for integrable functions
and investigate its properties before we use it to define the multiple Wiener-Itô integral
for square integrable functions.

Definition 3.6 For n ∈ N the n-th multiple Wiener-Itô integral In(f) of a function
f ∈ L1

s(µ
n) is given by

In(f) =
n∑
i=0

(−1)n−i
(
n

i

) ∑
(x1,...,xi)∈ηi6=

∫
Xn−i

f(x1, . . . , xi, y1, . . . , yn−i) dµ(y1, . . . , yn−i).

This pathwise definition of a multiple Wiener-Itô integral is close to the definition
in [41], where factorial moment measures are used. But because of the assumption that
{x} ∈ X for all x ∈ X, integrals with respect to factorial moment measures reduce to
sums, and In(f) is a sum of Poisson U-statistics as considered in the previous section.
Moreover, we only require that f is integrable, whereas it must be bounded and have
a support with finite measure in [41].

Now it follows from formula (3.1) that

EIn(f) =
n∑
i=0

(−1)n−i
(
n

i

)∫
Xn

f(y1, . . . , yn) dµ(y1, . . . , yn) = 0.

Similarly, we can use the results for Poisson U-statistics to obtain a product formula
for multiple Wiener-Itô integrals:
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Theorem 3.7 Let f (`) ∈ L1
s(µ

n`) with n` ∈ N for ` = 1, . . . ,m such that∫
X|σ|
|(⊗m`=1f

(`))σ| dµ|σ| <∞ for all σ ∈ Π(n1, . . . , nm).

Then we have

E
m∏
`=1

In`(f
(`)) =

∑
σ∈Π≥2(n1,...,nm)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ| (3.10)

and

γ
(
In1(f

(1)), . . . , Inm(f (m))
)

=
∑

σ∈Π̃≥2(n1,...,nm)

∫
X|σ|

(⊗m`=1f
(`))σ dµ|σ|. (3.11)

Proof. As in the previous section, we use the abbreviations

f̂
(`)
i (x1, . . . , xi) =

∫
Xn`−i

f (`)(x1, . . . , xi, y1, . . . , yn`−i) dµ(y1, . . . , yn`−i)

for i = 0, . . . , n` and ` = 1, . . . ,m, which implies that∫
Xi−j

f̂
(`)
i (x1, . . . , xj, y1, . . . , yi−j) dµ(y1, . . . , yi−j) = f̂

(`)
j (x1, . . . , xj) (3.12)

for j ≤ i. Using this notation, we can write In`(f
(`)) as

In`(f
(`)) =

n∑̀
i=0

(−1)n`−i
(
n`
i

) ∑
(x1,...,xi)∈ηi6=

f̂
(`)
i (x1, . . . , xi),

and it follows from Corollary 3.5 and formula (3.12) that

E
m∏
`=1

In`(f
(`)) =

∑
0≤i1≤n1,...,0≤im≤nm

E
m∏
`=1

(−1)n`−i`
(
n`
i`

) ∑
(x1,...,xi` )∈η

i`
6=

f̂
(`)
i`

(x1, . . . , xi`)

=
∑

0≤j1≤i1≤n1,...,0≤jm≤im≤nm

m∏
`=1

(−1)n`−i`
(
n`
i`

)(
i`
j`

) ∑
σ∈Π≥2(j1,...,jm)

∫
X|σ|

(⊗m`=1f̂
(`)
j`

)σ dµ|σ|.

(3.13)

Now the integral belonging to a partition σ ∈ Π≥2(j1, . . . , jm) occurs

∑
j1≤i1≤n1,...,jm≤im≤nm

m∏
`=1

(−1)n`−i`
(
n`
i`

)(
i`
j`

)
times on the right-hand side. Straightforward computations yield

∑
j1≤i1≤n1,...,jm≤im≤nm

m∏
`=1

(−1)n`−i`
(
n`
i`

)(
i`
j`

)
=

m∏
`=1

n∑̀
i`=j`

(−1)n`−i`
(
n`
i`

)(
i`
j`

)
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and
n∑̀

i`=j`

(−1)n`−i`
(
n`
i`

)(
i`
j`

)
=

n`!

j`!

n∑̀
i`=j`

(−1)n`−i`

(n` − i`)! (i` − j`)!

=
n`!

j`!

n`−j`∑
j=0

(−1)n`−j`−j

(n` − j` − j)! j!
=

{
1, n` = j`

0, n` 6= j`

so that formula (3.13) simplifies to formula (3.10).
By Corollary 3.5 and the multilinearity of the joint cumulants, we obtain

γ(In1(f
(1)), . . . , Inm(f (m)))

=
∑

0≤j1≤i1≤n1,...,0≤jm≤im≤nm

m∏
`=1

(−1)n`−i`
(
n`
i`

)(
i`
j`

) ∑
σ∈Π̃≥2(j1,...,jm)

∫
X|σ|

(⊗m`=1f̂
(`)
j`

)σ dµ|σ|.

Exactly as for the expectation above, one can show that only the integrals on the
right-hand side in formula (3.11) remain. �

For the construction of the multiple Wiener-Itô integral of a function f ∈ L2
s(µ

n)
we use an approximation by simple symmetric functions (recall from Chapter 2 that
we denote the class of these functions by Es(µn)). This approach relies on the following
consequence of Theorem 3.7 (see also [41, Equation (3.5)]):

Corollary 3.8 For f ∈ Es(µn) and g ∈ Es(µm) with n,m ∈ N we have

EIn(f)2 = n! ‖f‖2
n (3.14)

and

EIn(f)Im(g) =

{
n! 〈f, g〉L2(µn), n = m

0, n 6= m
.

For n ∈ N we define I0
n = {In(f) : f ∈ Es(µn)}. As consequence of formula (3.14),

we have I0
n ⊂ L2(Pη) and an isometry relation between I0

n and Es(µn). Since Es(µn) is
dense in L2

s(µ
n), we can approximate a function f ∈ L2

s(µ
n) by a sequence (fj)j∈N such

that fj ∈ Es(µn) and
‖f − fj‖2

n → 0 as j →∞,
which means that (fj)j∈N is a Cauchy-sequence in L2

s(µ
n). Because of the isometry

(3.14) the sequence (In(fj))j∈N in I0
n is a Cauchy sequence in L2(Pη) as well. Now the

completeness of L2(Pη) implies that (In(fj))j∈N has a limit in L2(Pη). Since this limit
is independent of the choice of the approximating sequence (fj)j∈N, we can take it as
definition of In(f).

Definition 3.9 For n ∈ N and f ∈ L2
s(µ

n) let (fj)j∈N be a sequence of functions in
Es(µn) such that limj→∞ ‖f − fj‖n = 0. Then we define the n-th multiple Wiener-Itô
integral of f by

In(f) = lim
j→∞

In(fj),

where lim stands for the limit in L2(Pη).
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In the works [66, 92] by Peccati and Taqqu, and Surgailis, the n-th multiple Wiener-
Itô integral is at first defined for simple functions from Es(µn) before the definition is
extended to L2

s(µ
n) as above. The authors of both works assume that the the measure

µ is non-atomic. Since they exclude the diagonals in the integration, this assumption
cannot be easily dispensed. Our Definition 3.6 of a multiple Wiener-Itô integral is
derived as Theorem 4.1 in [92] for the setting considered there. In the paper [46] by
Liebscher, the multiple Wiener-Itô integral is defined in terms of the so-called Charlier
polynomials for some special functions, and the definition is extended to L2

s(µ
n) by the

isometry relation as above. The intensity measure is allowed to have atoms, but there
are some weak assumptions on the underlying space and the intensity measure. The
approach presented above requires less assumptions on the underlying space and the
intensity measure of the Poisson point process and is, thus, more general.

From the properties of multiple Wiener-Itô integrals with integrands in Es(µn) and
the construction of a multiple Wiener-Itô integral of a function in L2

s(µ
n), it follows

that (see [41, Chapter 3], for example):

Lemma 3.10 Let f ∈ L2
s(µ

n) and g ∈ L2
s(µ

m) with n,m ∈ N. Then

1. EIn(f) = 0,

2. EIn(f)2 = n! ‖f‖2
n,

3. EIn(f) Im(g) =

{
n! 〈f, g〉L2(µn), n = m

0, n 6= m
.

At the begin of this section, we defined the multiple Wiener-Itô integral of an
L1-integrable symmetric function as a sum of Poisson U-statistics. In the following
proposition, we show that every Poisson U-statistic can be written as a sum of multiple
Wiener-Itô integrals. Thereby, we waive the assumption that the function f we sum
over in the Poisson U-statistic is symmetric. In oder to give formulas for the integrands
fn of the multiple Wiener-Itô integrals, we need the symmetrization operator sym that
is given by

(sym g)(x1, . . . , xn) =
1

n!

∑
π∈Per(n)

g(xπ(1), . . . , xπ(n))

for g : Xn → R, where Per(n) stands for the set of all permutations of {1, . . . , n}. For
f ∈ L1(Xk) and J ⊂ [k] with |J | = k − n and 0 ≤ n ≤ k we denote by

∫
X|J|

f dµJ the

function from Xn to R we obtain by integrating over all variables xj of f with j ∈ J .
We use the convention I0(c) = c for c ∈ R in the sequel.

Proposition 3.11 For f ∈ L1(µk) with k ∈ N the equation∑
(x1,...,xk)∈ηk6=

f(x1, . . . , xk) =
k∑

n=0

In(fn)

holds almost surely with f0 =
∫
Xk f dµk and

fn(x1, . . . , xn) =
∑
J⊂[k],
|J |=k−n

(
sym

∫
X|J|

f dµJ

)
(x1, . . . , xn)
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for n = 1, . . . , k.

Proof. Note that the functions fn are symmetric and that∫
X

fn(x1, . . . , xn) dµ(xn)

=
∑
J⊂[k],
|J |=k−n

1

n!

∫
X

∑
π∈Per(n)

(∫
X|J|

f dµJ

)
(xπ(1), . . . , xπ(n)) dµ(xn)

=
∑
J⊂[k],
|J |=k−n

1

n!

∑
j∈[k]\J

∑
π∈Per(n−1)

(∫
X|J|+1

f dµJ∪{j}

)
(xπ(1), . . . , xπ(n−1))

=
∑
J⊂[k],
|J |=k−n

1

n

∑
j∈[k]\J

(
sym

∫
X|J|+1

f dµJ∪{j}

)
(x1, . . . , xn−1)

=
k − n+ 1

n

∑
J⊂[k],

|J |=k−(n−1)

(
sym

∫
X|J|

f dµJ

)
(x1, . . . , xn−1)

=
k − n+ 1

n
fn−1(x1, . . . , xn−1).

Combining this with the definition of the multiple Wiener-Itô integral for L1-functions
yields

In(fn) =
n∑
j=0

(−1)n−j
(
n

j

) ∑
(x1,...,xj)∈ηj6=

∫
Xn−j

fn(x1, . . . , xj, y1, . . . , yn−j) dµ(y1, . . . , yn−j)

=
n∑
j=0

(−1)n−j
(
n

j

) n∏
`=j+1

k − `+ 1

`

∑
(x1,...,xj)∈ηj6=

fj(x1, . . . , xj).

Together with
(
n
j

)∏n
`=j+1

k−`+1
`

=
(
n
j

)
j!
n!

(k−j)!
(k−n)!

=
(
k−j
k−n

)
, we obtain

k∑
n=0

In(fn) =
k∑
j=0

k∑
n=0

(−1)n−j
(
k − j
k − n

) ∑
(x1,...,xj)∈ηj6=

fj(x1, . . . , xj)

=
∑

(x1,...,xk)∈ηk6=

fk(x1, . . . , xk) =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk),

which proves the claim. �

The next proposition allows us to write the product of two multiple Wiener-Itô
integrals as a finite sum of multiple Wiener-Itô integrals in the L1-sense.
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Proposition 3.12 Let f ∈ L1
s(µ

n) and g ∈ L1
s(µ

m) with n,m ∈ N. We assume that
(f ⊗ g)σ ∈ L1(µ|σ|) for all σ ∈ Π(n,m) and define

h`(x1, . . . , x`) =
∑

σ∈Π(n,m)

∑
J⊂σ\S(σ),
|J |=|σ|−`

(
sym

∫
X|J|

(f ⊗ g)σ dµJ

)
(x1, . . . , x`)

for ` = |n−m|, . . . , n+m. Then

In(f) Im(g) =
n+m∑

`=|n−m|

I`(h`)

holds almost surely.

Proof. Using Definition 3.6 and the abbreviations

f̂i(x1, . . . , xi) =

∫
Xn−i

f(x1, . . . , xi, y1, . . . , yn−i) dµ(y1, . . . , yn−i)

for i = 0, . . . , n and

ĝj(x1, . . . , xj) =

∫
Xm−j

g(x1, . . . , xj, y1, . . . , ym−j) dµ(y1, . . . , ym−j)

for j = 0, . . . ,m, we obtain

In(f) Im(g)

=
n∑
i=0

m∑
j=0

(−1)n+m−(i+j)

(
n

i

)(
m

j

) ∑
(x1,...,xi)∈ηi6=

f̂i(x1, . . . , xi)
∑

(x1,...,xj)∈ηj6=

ĝj(x1, . . . , xj)

=
n∑
i=0

m∑
j=0

(−1)n+m−(i+j)

(
n

i

)(
m

j

) ∑
σ∈Π(i,j)

∑
(x1,...,x|σ|)∈η

|σ|
6=

(f̂i ⊗ ĝj)σ(x1, . . . , x|σ|).

Here, the Slivnyak-Mecke formula and the assumptions on f , g, and (f ⊗ g)σ ensure
that all sums are absolutely convergent almost surely. Since the right-hand side is a
sum of Poisson U-statistics as considered in Proposition 3.11, we see that

In(f) Im(g) =
n+m∑
`=0

I`(h̃`)

almost surely, where the functions h̃` : X` → R are given by

h̃` =
n∑
i=0

m∑
j=0

(−1)n+m−(i+j)

(
n

i

)(
m

j

) ∑
σ∈Π(i,j)

∑
J⊂σ,

|J |=|σ|−`

sym

∫
X|J|

(f̂i ⊗ ĝj)σ dµJ
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for ` = 0, . . . , n+m. Now we can include the integration steps in the definitions of f̂i
and ĝj in our partition. Together with the binomial coefficients, we obtain

h̃` =
∑

σ∈Π(n,m)

n∑
i=0

m∑
j=0

(−1)n+m−(i+j)
∑

J1⊂S1(σ),|J1|=n−i,
J2⊂S2(σ),|J2|=m−j,

J3⊂σ\(J1∪J2),|J3|=|σ|−n−m+i+j−`

sym

∫
X|σ|−`

(f⊗g)σ dµJ1∪J2∪J3 ,

where S1(σ) (resp. S2(σ)) is the set of singletons of σ belonging to f (resp. g). For a
fixed J ⊂ σ all sets J1, J2, J3 with J1 ∪ J2 ∪ J3 = J lead to the same functions on the
right-hand side. In case that J ∩ S1(σ) 6= ∅ or J ∩ S2(σ) 6= ∅, all these combinations
cancel out because of the alternating sign. Hence, we have

h̃` =
∑

σ∈Π(n,m)

∑
J⊂σ\S(σ),
|J |=|σ|−`

sym

∫
X|J|

(f ⊗ g)σ dµJ ,

which is h` for ` = |n − m|, . . . , n + m by definition of h`. Since |J | ≤ |σ \ S(σ)| =

|σ| − |S(σ)| ≤ |σ| − |n−m|, we see that h̃` ≡ 0 for ` < |n−m|. �

Proposition 3.12 allows us to write the product of two multiple Wiener-Itô integrals
of L1-functions as a sum of multiple Wiener-Itô integrals of L1-functions. In our next
result, we replace L1-functions by L2-functions.

Proposition 3.13 Let f ∈ L2
s(µ

n) and g ∈ L2
s(µ

m) with n,m ∈ N such that∫
X|J|
|(f ⊗ g)σ| dµJ ∈ L2(µ|σ|−|J |) for all J ⊂ σ \ S(σ) and σ ∈ Π(n,m) (3.15)

and define h`, ` = |n−m|, . . . , n+m, as in Proposition 3.12. Then

In(f) Im(g) =
n+m∑

`=|n−m|

I`(h`) (3.16)

holds almost surely.

Proof. Since µ is a σ-finite measure, there exists a sequence of measurable sets (Ak)k∈N
in X such that

Ak ⊂ Ak+1 for k ∈ N,
⋃
k∈N

Ak = X, and µ(Ak) <∞ for k ∈ N.

Now we define f (k) : Xn → R, k ∈ N, and g(k) : Xm → R, k ∈ N, by

f (k)(x1, . . . , xn) = 1I(x1, . . . , xn ∈ Ak) f(x1, . . . , xn)

and
g(k)(x1, . . . , xm) = 1I(x1, . . . , xm ∈ Ak) g(x1, . . . , xm).

39



The definitions of f (k) and g(k) and the assumption (3.15) imply that f (k) ∈ L1
s(µ

n) and
g(k) ∈ L1

s(µ
m) and that (f (k) ⊗ g(k))σ ∈ L1(µ|σ|) for all σ ∈ Π(n,m). Hence, it follows

from Proposition 3.12 that

In(f (k)) Im(g(k)) =
n+m∑

`=|n−m|

I`(h
(k)
` ) (3.17)

holds almost surely with

h
(k)
` (x1, . . . , x`) =

∑
σ∈Π(n,m)

∑
J⊂σ\S(σ),
|J |=|σ|−`

(
sym

∫
X|J|

(f (k) ⊗ g(k))σ dµJ

)
(x1, . . . , x`)

for ` = |n − m|, . . . , n + m. Because of the assumption (3.15), we have for fixed
σ ∈ Π(n,m) and J ⊂ σ \ S(σ) that(

sym

∫
X|J|
|(f ⊗ g)σ| dµJ

)
(x1, . . . , x`) <∞

for µ-almost all (x1, . . . , x`) ∈ X` and obtain, by the dominated convergence theorem,

lim
k→∞

(
sym

∫
X|J|

(f (k) ⊗ g(k))σ dµJ

)
(x1, . . . , x`) =

(
sym

∫
X|J|

(f ⊗ g)σ dµJ

)
(x1, . . . , x`)

for µ-almost all (x1, . . . , x`) ∈ X`. As a consequence, we have

lim
k→∞

h
(k)
` (x1, . . . , x`) = h`(x1, . . . , x`)

for µ-almost all (x1, . . . , x`) ∈ X`. Since h` ∈ L2
s(µ

`) and the definitions of f (k) and
g(k) and assumption (3.15) guarantee that

|h(k)
` | ≤

∑
σ∈Π(n,m)

∑
J⊂σ\S(σ),
|J |=|σ|−`

(
sym

∫
X|J|
|(f ⊗ g)σ| dµJ

)
∈ L2

s(µ
`),

the dominated convergence theorem implies ‖h(k)
` − h`‖2

` → 0 as k → ∞. It follows
from the definition of the multiple Wiener-Itô integral of an L2-function that

I`(h
(k)
` )→ I`(h`) as k →∞ almost surely. (3.18)

On the other hand, the Cauchy-Schwarz inequality and Lemma 3.10 yield that

E|In(f) Im(g)− In(f (k)) Im(g(k))|
≤ E|(In(f)− In(f (k)))Im(g)|+ E|In(f (k))(Im(g)− Im(g(k)))|
≤
√
n!m!

(
‖f − f (k)‖n ‖g‖m + ‖f (k)‖n ‖g − g(k)‖m

)
.

Together with f (k) → f in L2
s(µ

n) and g(k) → g in L2
s(µ

m) as k →∞, we obtain

In(f (k)) Im(g(k))→ In(f) Im(g) as k →∞ almost surely. (3.19)
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Combining the limits in formula (3.18) and formula (3.19) with identity (3.17) concludes
the proof of Equation (3.16). �

The previous proposition generalizes a result due to Surgailis (see [92, Theorem
3.1]), where it is required that the underlying measure space (X,X , µ) satisfies addi-
tional assumptions, in particular it has to be non-atomic. Peccati and Taqqu treat
product formulas for stochastic integrals with respect to completely random measures
in their book [66]. Examples are the Gaussian case, where the integration is with
respect to a Gaussian measure, and the Poisson case, that is considered here. Our
Propositions 3.12 and 3.13 for simple functions as integrands and a non-atomic Pois-
son point process are stated as Proposition 6.5.1 in [66]. The authors use this formula
to derive Corollary 7.4.1 which is our Theorem 3.7 under the restrictions mentioned
before.

In a similar way, we use our Proposition 3.13 to compute the expectation of a
product of four multiple Wiener-Itô integrals.

Corollary 3.14 Let f` ∈ L2
s(µ

n`) with n` ∈ N for ` = 1, . . . , 4 and assume that

∫
X|J|
|(f1 ⊗ f2)σ| dµJ ∈ L2(µ|σ|−|J |) for all J ⊂ σ \ S(σ) and σ ∈ Π(n1, n2)

and ∫
X|J|
|(f3 ⊗ f4)σ| dµJ ∈ L2(µ|σ|−|J |) for all J ⊂ σ \ S(σ) and σ ∈ Π(n3, n4).

Then

E
4∏
`=1

In`(f`) =
∑

σ∈Π≥2(n1,n2,n3,n4)

∫
X|σ|

(f1 ⊗ f2 ⊗ f3 ⊗ f4)σ dµ|σ|. (3.20)

Proof. Proposition 3.13 implies that In1(f1) In2(f2) and In3(f3) In4(f4) can be written as
finite sums of multiple Wiener-Itô integrals with square integrable integrands. Hence,
it follows from the orthogonality of the multiple Wiener-Itô integrals (see Lemma 3.10)
that

E
4∏
`=1

In`(f`) =
nmax∑
n=nmin

n!
∑

σ1∈Π(n1,n2),
σ2∈Π(n3,n4)

∑
J1⊂σ1\S(σ1),|J1|=|σ1|−n,
J2⊂σ2\S(σ2),|J2|=|σ2|−n∫

Xn

(
sym

∫
X|J1|

(f1 ⊗ f2)σ1 dµJ1

)(
sym

∫
X|J2|

(f3 ⊗ f4)σ2 dµJ2

)
dµn

41



with nmin = max{|n1−n2|, |n3−n4|} and nmax = min{n1+n2, n3+n4}. This expression
can be further simplified to

E
4∏
`=1

In`(f`) =
nmax∑
n=nmin

∑
σ1∈Π(n1,n2),
σ2∈Π(n3,n4)

∑
J1⊂σ1\S(σ1),|J1|=|σ1|−n,
J2⊂σ2\S(σ2),|J2|=|σ2|−n∫

Xn

(∫
X|J1|

(f1 ⊗ f2)σ1 dµJ1

)
(x1, . . . , xn)∑

π∈Per(n)

(∫
X|J2|

(f3 ⊗ f4)σ2 dµJ2

)
(xπ(1), . . . , xπ(n)) dµn.

(3.21)

Now observe that each partition σ ∈ Π≥2(n1, n2, n3, n4) has a decomposition into

• two partitions σ1 ∈ Π(n1, n2) and σ2 ∈ Π(n3, n4);

• a list that identifies blocks of σ1 and σ2 such that each block occurs at most once
and each block that is a singleton occurs exactly once.

Using this decomposition, we see that the right-hand side of formula (3.21) equals the
right-hand side of formula (3.20). �

We can derive Equation (3.20) by applying Theorem 3.7 as well. But in this case
we have to assume that∫

X|σ|
|(f1 ⊗ f2 ⊗ f3 ⊗ f4)σ| dµ|σ| <∞ for all σ ∈ Π(n1, n2, n3, n4).

For our applications in Chapter 5 the assumptions of Corollary 3.14 work better.

Notes: The definition of a Poisson U-statistic is taken from Reitzner and Schulte 2011.
Theorem 3.4, Corollary 3.5, and Theorem 3.7 are from Last, Penrose, Schulte, and
Thäle 2012. But in the present work they are presented in a reverse order since the
formulas for Poisson U-statistics are used to prove the product formula for multiple
Wiener-Itô integrals. In the mentioned paper, the product formula for multiple Wiener-
Itô integrals is proven first and used to derive the formulas for moments and cumulants
of Poisson U-statistics.
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Chapter 4

Wiener-Itô chaos expansion and
Malliavin calculus

In this chapter, we give an introduction to the Wiener-Itô chaos expansion and the
Malliavin operators that will play an important role in the sequel. The Wiener-Itô chaos
expansion is a representation of a square integrable Poisson functional as a possibly
infinite sum of multiple Wiener-Itô integrals. Via this decomposition, one can define
the so-called Malliavin operators. As an example, we compute the Wiener-Itô chaos
expansion and the Malliavin operators of a Poisson U-statistic.

4.1 Wiener-Itô chaos expansion

We start with some notation we need to introduce the Wiener-Itô chaos expansion as
in the paper [41] by Last and Penrose. For a Poisson functional F and x ∈ X the
difference operator DxF is given by

DxF = F (η + δx)− F (η), (4.1)

where δx stands for the Dirac measure concentrated at the point x ∈ X. On the left-
hand side of formula (4.1), we suppress the dependence on η as usual in our notation.
Since on the right-hand side F is evaluated for two different random measures, namely
η + δx and η, we mention them explicitly. By its definition, the difference operator
describes the behaviour of F if we add the point x to the Poisson point process. For
this reason, the difference operator is sometimes called add-one-cost operator.

For x1, . . . , xn ∈ X the n-th iterated difference operator Dx1,...,xnF is recursively
defined by

Dx1,...,xnF = Dx1Dx2,...,xnF. (4.2)

Using the definition of DxF , we obtain the explicit representation

Dx1,...,xnF =
∑
I⊂[n]

(−1)n−|I|F (η +
∑
i∈I

δxi). (4.3)

It is easy to see that the n-th iterated difference operator is symmetric in x1, . . . , xn.
Now we can introduce functions fn : Xn → R, n ∈ N, by

fn(x1, . . . , xn) =
1

n!
EDx1,...,xnF. (4.4)
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Note that the functions fn, n ∈ N, are not necessarily defined since it can happen that
the expectation does not exist. The symmetry of the iterated difference operator implies
that the functions fn, n ∈ N, are symmetric if they exist. Using these functions and
multiple Wiener-Itô integrals, we have the following representation for square integrable
Poisson functionals (see Theorem 1.3 in [41]):

Theorem 4.1 Let F ∈ L2(Pη) be a Poisson functional. Then fn ∈ L2
s(µ

n) for n ∈ N
and

F = EF +
∞∑
n=1

In(fn), (4.5)

where the right-hand side converges in L2(Pη). Moreover, the functions fn, n ∈ N, are
the µn-unique functions gn, n ∈ N, such that F = EF +

∑∞
n=1 In(gn) in L2(Pη).

The right-hand side of Equation (4.5) is called the Wiener-Itô chaos expansion of
F , and we denote the functions fn, n ∈ N, as kernels. Combining the L2-convergence
of the Wiener-Itô chaos expansion with the orthogonality of the multiple Wiener-Itô
integrals (see Lemma 3.10), we obtain the following formulas for the variance and
covariance of square integrable Poisson functionals (see Theorem 1.1 in [41]):

Theorem 4.2 Let F,G ∈ L2(Pη) be Poisson functionals with Wiener-Itô chaos expan-
sions F = EF +

∑∞
n=1 In(fn) and G = EG+

∑∞
n=1 In(gn). Then

VarF =
∞∑
n=1

n! ‖fn‖2
n

and

Cov(F,G) =
∞∑
n=1

n! 〈fn, gn〉L2(µn).

In other words, Theorem 4.1 tells us that there is an isomorphism between L2(Pη)
and the set of all sequences (fn)n∈N∪{0} with f0 ∈ R and fn ∈ L2

s(µ
n) for n ∈ N and∑∞

n=1 n! ‖fn‖2
n < ∞. The set of all these sequences is denoted as Fock space and the

isomorphism is called Fock space representation.

The representation of a square integrable random variable as a sum of multiple
stochastic integrals goes back to classical works of Wiener and Itô. Continuing earlier
work of Wiener in [93], Itô introduced the multiple Wiener-Itô integral with respect to
a Gaussian random measure in [30] and proved that every square integrable random
variable depending on a Gaussian random measure has a representation as a sum of
multiple Wiener-Itô integrals. In his paper [31], Itô extended the multiple Wiener-Itô
integral and this representation to a more general class of random measures that also
includes the Poisson case discussed above.

More recent works concerning the Wiener-Itô chaos expansion of a square integrable
Poisson functional are [28, 41, 46, 61] by Houdre and Perez-Abreu, Last and Penrose,
Liebscher, and Nualart and Vives.
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4.2 Malliavin operators

For the central limit theorems that occur in the next chapter we need the so-called
Malliavin operators and some of their properties. These operators are maps between
some sets of Poisson functionals and random functions depending on the Poisson point
process η and are defined in terms of the Wiener-Itô chaos expansion. Such operators
also exist if we have a Gaussian random measure instead of a Poisson point process. In
this context, they were first introduced by Malliavin in [47] to investigate smoothness
properties of solutions of partial differential equations. Since then the theory has
developed in several directions and can be applied to many problems in probability
theory. For an overview of the most important results and applications we refer to
the monographs [13, 59] by Di Nunno, Øksendal, and F. Proske and Nualart. One
can think of Malliavin calculus as a stochastic calculus of variations. Although the
major part of Malliavin calculus is concerned with the Gaussian case, we focus on the
Poisson case under the same assumptions as before in the sequel. For more details on
the Mallivin operators in the Poisson setting we also refer to the works [41, 61, 65] by
Last and Penrose, Nualart and Vivies, and Peccati, Solé, Taqqu, and Utzet.

In the following, let a Poisson functional F ∈ L2(Pη) have the Wiener-Itô chaos
expansion

F = EF +
∞∑
n=1

In(fn) with fn ∈ L2
s(µ

n), n ∈ N.

By a random function g : X → R we mean a collection of random variables
(g(x))x∈X . We denote by Lp(Pη×µ), p > 0, the set of all random functions g : X → R
with ∫

X

E|g(x)|p dµ(x) <∞.

If g ∈ L2(Pη × µ), we have g(x) ∈ L2(Pη) for µ-almost all x ∈ X. Hence, we have for
µ-almost all x ∈ X a Wiener-Itô chaos expansion

g(x) = g0(x) +
∞∑
n=1

In(gn(x, ·)). (4.6)

Here, g0 : X → R and gn : X ×Xn → R, n ∈ N, are deterministic functions such that
gn(x, ·) ∈ L2

s(µ
n) for n ∈ N and µ-almost all x ∈ X. Together with g ∈ L2(Pη × µ), we

obtain ∫
X

E g(x)2 dµ(x) =
∞∑
n=0

n! ‖gn‖2
n+1 <∞.

In the following, let for g ∈ L2(Pη × µ) the functions g0 and gn, n ∈ N, be given by
formula (4.6).

The difference operator defined in Equation (4.1) is a Malliavin operator and has
the following representation (see [41, Theorem 3.3] or [61, Theorem 6.2]):

Lemma 4.3 Let domD be the set of all Poisson functionals F ∈ L2(Pη) such that∑∞
n=1 nn! ‖fn‖2

n <∞. If F ∈ domD, then

DxF =
∞∑
n=1

n In−1(fn(x, ·))
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holds almost surely for µ-almost all x ∈ X.

Thus, we can regard the difference operator as a map D : domD → L2(Pη×µ) with
DF : x 7→ DxF . The second Malliavin operator is the Ornstein-Uhlenbeck generator:

Definition 4.4 Let domL be the set of all Poisson functionals F ∈ L2(Pη) such that∑∞
n=1 n

2 n! ||fn||2n < ∞. The Ornstein-Uhlenbeck generator is the map L : domL →
L2(Pη) that is given by

LF = −
∞∑
n=1

n In(fn).

For centred random variables F ∈ L2(Pη), i.e. EF = 0, the inverse Ornstein-
Uhlenbeck generator is given by

L−1F = −
∞∑
n=1

1

n
In(fn). (4.7)

The last Malliavin operator we need is the Skorohod integral:

Definition 4.5 Let dom δ be the set of all g ∈ L2(Pη × µ) such that∑∞
n=0(n+ 1)! ‖gn‖2

n+1 <∞. The Skorohod integral is the map δ : dom δ → L2(Pη) that
is defined by

δ(g) =
∞∑
n=0

In+1(g̃n),

where g̃n is the symmetrization

g̃n(x1, . . . , xn+1) =
1

(n+ 1)!

∑
π∈Per(n+1)

gn(xπ(1), . . . , xπ(n+1))

over all permutations of the n+ 1 variables.

The following lemma summarizes how the operators from Malliavin calculus are
related (see [65, Lemma 2.11] and [41, Proposition 3.4] or [61, Proposition 3.4]):

Lemma 4.6 a) For every F ∈ domL we have F ∈ domD, DF ∈ dom δ, and

δDF = −LF. (4.8)

b) Let F ∈ domD and g ∈ dom δ. Then

E〈DF, g〉L2(µ) = E[Fδ(g)]. (4.9)

Equation (4.9) is often called the integration by parts formula and is at the heart
of Malliavin calculus. Because of this identity, one can see the difference operator and
the Skorohod integral as dual operators.

In part b) of Lemma 4.6, it is required that F ∈ domD. The next lemma allows
us to drop this assumption if some other conditions are satisfied. In this case, DF is
given by formula (4.1).
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Lemma 4.7 Let F ∈ L2(Pη), t ∈ R and let g ∈ dom δ have the form

g(z) =
k∑

n=0

In(gn(z, ·))

for µ-almost all z ∈ X with a fixed k ∈ N. Moreover, assume that Dz1I(F > t) g(z) ≥ 0
a.s. for µ-almost all z ∈ X. Then

E〈D1I(F > t), g〉L2(µ) = E[1I(F > t) δ(g)].

Proof. Obviously, we have 1I(F > t) ∈ L2(Pη), whence it has the Wiener-Itô chaos
expansion

1I(F > t) =
∞∑
n=0

In(hn).

For fixed z ∈ X we have Dz1I(F > t) ∈ L2(Pη) since it is bounded. For the kernels of
the Wiener-Itô chaos expansions of 1I(F > t) and Dz1I(F > t) Theorem 4.1 yields that

1

n!
EDx1,...,xnDz1I(F > t)

=
1

n!
E

 ∑
I⊂{1,...,n}

(−1)n+|I|
(

1I(F (η + δz +
∑
i∈I

δxi) > t)− 1I(F (η +
∑
i∈I

δxi) > t)
)

= (n+ 1)hn+1(z, x1, . . . , xn).

Hence, we obtain the representation

Dz1I(F > t) =
∞∑
n=1

n In−1(hn(z, ·))

for µ-almost all z ∈ X. Now Fubini’s Theorem and Theorem 4.2 imply that

E〈D1I(F > t), g〉L2(µ)

=

∫
X

E[Dz1I(F > t) g(z)] dµ(z)

=

∫
X

E

[
∞∑
n=1

n In−1(hn(z, ·))
k∑

n=0

In(gn(z, ·))

]
dµ(z)

=

∫
X

k+1∑
n=1

n!

∫
Xn−1

hn(z, x1, . . . , xn−1) gn−1(z, x1, . . . , xn−1) dµ(x1, . . . , xn−1) dµ(z).

(4.10)

On the other hand, we have

E [1I(F > t) δ(g)] = E

[
∞∑
n=0

In(hn)
k∑

n=0

In+1(g̃n)

]

=
k+1∑
n=1

n!

∫
Xn

hn(x1, . . . , xn) g̃n−1(x1, . . . , xn) dµ(x1, . . . , xn)

=
k+1∑
n=1

n!

∫
Xn

hn(x1, . . . , xn) gn−1(x1, . . . , xn) dµ(x1, . . . , xn),

(4.11)
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where we use that hn is symmetric. Comparing the right-hand sides of formula (4.10)
and formula (4.11) concludes the proof. �

Similarly as the difference operator, the Skorohod integral also has a pathwise
representation (see [41, Theorem 3.5]).

Lemma 4.8 Let g ∈ L1(Pη × µ) ∩ dom δ. Then

δ(g) =
∑
x∈η

g(η − δx, x)−
∫
X

g(η, x) dµ(x)

holds almost surely.

For some computations in Chapter 5 and Chapter 6 we need the following inequality:

Lemma 4.9 Let f ∈ L2(µk+1), k ∈ N ∪ {0}, be symmetric in its last k arguments.
For h(x) = Ik(f(x, ·)) we have

E
[
δ(h)2

]
≤ (k + 1)E

∫
X

Ik(f(x, ·))2 dµ(x).

Proof. By the definition of δ, we obtain δ(h) = Ik+1(f̃) with the symmetrization

f̃(x1, . . . , xk+1) =
1

(k + 1)!

∑
π∈Per(k+1)

f(xπ(1), . . . , xπ(k+1))

as above. From the triangle inequality, it follows that ‖f̃‖2
k+1 ≤ ‖f‖2

k+1. Combining
this with Fubini’s theorem, we find

E
[
δ(h)2

]
= (k + 1)! ‖f̃‖2

k+1 ≤ (k + 1)! ‖f‖2
k+1 = (k + 1)E

∫
X

Ik(f(x, ·))2 dµ(x),

which completes the proof. �

4.3 Wiener-Itô chaos expansion of Poisson

U-statistics

In this section, we consider a Poisson U-statistic

S =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

with f ∈ L1
s(µ

k) and assume that S ∈ L2(Pη). This assumption ensures that the
Wiener-Itô chaos expansion of S exists. We compute its kernels, which also yields a
formula for the variance of S. Moreover, we apply the Malliavin operators to S. Recall
from Section 3.2 that

E
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk) =

∫
Xk

f(x1, . . . , xk) dµ(x1, . . . , xk).

We start with the difference operator of the Poisson U-statistic S.
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Lemma 4.10 Let S ∈ L2(Pη) be a Poisson U-statistic of order k. Then the difference
operator applied to S yields

DyS = k
∑

(x1,...,xk−1)∈ηk−1
6=

f(y, x1, . . . , xk−1)

for y ∈ X.

Proof. By the definition of the difference operator Dy and the symmetry of f , we obtain
for a Poisson U-statistic S

DyS =
∑

(x1,...,xk)∈(η∪{y})k6=

f(x1, . . . , xk)−
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

=
∑

(x1,...,xk−1)∈ηk−1
6=

(f(y, x1, . . . , xk−1) + . . .+ f(x1, . . . , xk−1, y))

= k
∑

(x1,...,xk−1)∈ηk−1
6=

f(y, x1, . . . , xk−1),

which completes the proof. �

In Proposition 3.11, a representation of a Poisson U-statistic as a finite sum of
multiple Wiener-Itô integrals is given. At the first glance, it looks like the Wiener-Itô
chaos expansion of a Poisson U-statistic. But the Wiener-Itô chaos expansion is defined
for square integrable Poisson functionals and has square integrable kernels, whereas we
only assume in Proposition 3.11 that the Poisson U-statistic is in L1(Pη) and that
the integrands of the multiple Wiener-Itô integrals are L1-functions. The following
result computes the Wiener-Itô chaos expansion as given in Theorem 4.1 for a square
integrable Poisson U-statistic and shows that it coincides with the representation in
Proposition 3.11.

Theorem 4.11 Let S be a Poisson U-statistic of order k and define fn : Xn → R,
n ∈ N, by

fn(y1, . . . , yn) =

{(
k
n

) ∫
Xk−n f(y1, . . . , yn, x1, . . . , xk−n) dµ(x1, . . . , xk−n), n ≤ k

0, n > k
.

(4.12)
Then S ∈ L2(Pη) holds if and only if fn ∈ L2

s(µ
n) for n ∈ N. In this case, the functions

fn, n ∈ N, are the kernels of the Wiener-Itô chaos expansion of S, and S has the
variance

VarS

=
k∑

n=1

n!

(
k

n

)2∫
Xn

( ∫
Xk−n

f(y1, . . . , yn, x1, . . . , xk−n) dµ(x1, . . . , xk−n)

)2

dµ(y1, . . . , yn).
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Proof. At first we assume that S ∈ L2(Pη) and use Theorem 4.1 to compute the
Wiener-Itô chaos expansion of S. In Lemma 4.10, the difference operator of a Poisson
U-statistic was computed. Proceeding by induction, we get

Dy1,...,ynS =
k!

(k − n)!

∑
(x1,...,xk−n)∈ηk−n6=

f(y1, . . . , yn, x1, . . . , xk−n)

for n ≤ k. Hence, Dy1,...,ykS = k!f(y1, . . . , yk) only depends on y1, . . . , yk and is inde-
pendent of the Poisson point process η. This yields

Dy1,...,yk+1
S = 0 and Dy1,...,ynS = 0 for n > k.

We just proved

Dy1,...,ynS =

{
k!

(k−n)!

∑
(x1,...,xk−n)∈ηk−n6=

f(y1, . . . , yn, x1, . . . , xk−n), n ≤ k

0, otherwise
.

By Corollary 2.10, we obtain

fn(y1, . . . , yn) =
1

n!
EDy1,...,ynS

=
1

n!

k!

(k − n)!
E

∑
(x1,...,xk−n)∈ηk−n6=

f(y1, . . . , yn, x1, . . . , xk−n)

=

(
k

n

)∫
Xk−n

f(y1, . . . , yn, x1, . . . , xk−n) dµ(x1, . . . , xk−n)

for n ≤ k and fn ≡ 0 for n > k. Now Theorem 4.1 implies that fn ∈ L2
s(µ

n). The
formula for the variance follows from Theorem 4.2.

On the other hand, Proposition 3.11 tells us that every Poisson U-statistic in L1(Pη)
has a representation as a finite sum of multiple Wiener-Itô integrals of L1-functions
regardless of whether it is in L2(Pη) or not. Since the function f is symmetric, the
formula for the integrands in Proposition 3.11 coincides with formula (4.12). If these
functions are square integrable, Proposition 3.11 gives us a representation of S as a
finite sum of multiple Wiener-Itô integrals in the L2-sense so that S ∈ L2(Pη). �

For the special case k = 2 the formulas for the kernels are already implicit in the
paper [56] by Molchanov and Zuyev, where ideas closely related to Malliavin calculus
are used.

Note that S ∈ L2(Pη) implies fn ∈ L2
s(µ

n) for n ∈ N, and thus that for all n =
1, . . . , k∫

Xn

(∫
Xk−n

f(y1, . . . , yn, x1, . . . , xk−n) dµ(x1, . . . , xk−n)
)2

dµ(y1, . . . , yn) <∞.

In particular, we have f ∈ L2
s(µ

k).
By Theorem 4.11, Poisson U-statistics only have a finite number of non-vanishing

kernels. The following theorem characterizes a Poisson U-statistic by this property. We
call a Wiener-Itô chaos expansion finite if only a finite number of kernels do not vanish,
and its order is the highest order of a multiple Wiener-Itô integral with a non-vanishing
integrand.
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Corollary 4.12 Assume that F ∈ L2(Pη).

a) If F is a Poisson U-statistic, then F has a finite Wiener-Itô chaos expansion of
order k with kernels fn ∈ L1

s(µ
n) ∩ L2

s(µ
n), n = 1, . . . , k.

b) If F has a finite Wiener-Itô chaos expansion of order k with kernels fn ∈ L1
s(µ

n)∩
L2
s(µ

n), n = 1, . . . , k, then F is a (finite) sum of Poisson U-statistics of the orders
1 to k and a constant.

Proof. The fact that a Poisson U-statistic F ∈ L2(Pη) has a finite Wiener-Itô chaos
expansion of order k with fn ∈ L1

s(µ
n) for n = 1, . . . , k follows from Theorem 4.11 and

f ∈ L1
s(µ

k). The L2-integrability of the kernels is a direct consequence of Theorem 4.1.
For the second part of the proof let F ∈ L2(Pη) have a finite Wiener-Itô chaos

expansion of order k, i.e.

F = EF +
k∑

n=1

In(fn)

with kernels fn ∈ L1
s(µ

n) ∩ L2
s(µ

n), n = 1, . . . , k, and k ∈ N. Hence, In(fn) is given by
Definition 3.6, which tells us that it is a finite sum of Poisson U-statistics of the orders
1 to n and a constant. Now we can write F as a sum of Poisson U-statistics of the
orders 1 to k and a constant. �

There exist random variables in L2(Pη) with finite Wiener-Itô chaos expansions
which are not sums of Poisson U-statistics. This is possible if a kernel fn is in
L2
s(µ

n)\L1
s(µ

n).

Example 4.13 Define g : R→ R as

g(x) =
1

x
1I(x > 1)

which is in L2(R)\L1(R). Now we define the random variable F = I1(g). F is in L2(Pη)
and has a finite Wiener-Itô chaos expansion. But the formal representation

I1(g) =
∑
x∈η

g(x)−
∫
R
g(x) dx

we used in the proof of Corollary 4.12 fails because the integral does not exist.

There also exist Poisson U-statistics S ∈ L1(Pη) with f ∈ L1
s(µ

k) ∩ L2
s(µ

k) which
are not in L2(Pη).

Example 4.14 We construct f ∈ L1
s(R2) ∩ L2

s(R2) with ‖f1‖1 =∞ by putting

f(x1, x2) = 1I(0 ≤ x1

√
|x2| ≤ 1) 1I(0 ≤ x2

√
|x1| ≤ 1)

and define
S =

∑
(x1,x2)∈η26=

f(x1, x2).
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In this case the first kernel

f1(y) = E[2
∑
x∈η

f(y, x)] = 2

∫
R
f(y, x) dx = 2 1I(y ≥ 0) min

{
1

y2
,

1
√
y

}

is not in L2
s(R) so that S has no Wiener-Itô chaos expansion and cannot be in L2(Pη).

By Corollary 4.12 b), a functional F ∈ L2(Pη) with a finite Wiener-Itô chaos ex-
pansion of order k and kernels fn ∈ L1

s(µ
n) ∩ L2

s(µ
n), n = 1, . . . , k, is a (finite) sum of

Poisson U-statistics and a constant. Our next example shows that neither the single
Poisson U-statistics are in L2(Pη) nor the functions we sum over are necessarily in
L2
s(µ

n).

Example 4.15 Set F = I2(f) with f as in Example 4.14. Then

F =

∫
R2

f(x, y) dx dy − 2
∑
x∈η

∫
R
f(x, y) dy +

∑
(x1,x2)∈η26=

f(x1, x2)

so that F is a sum of Poisson U-statistics. Regarding the second Poisson U-statistic

S2 =
∑
x∈η

∫
R
f(x, y) dy,

we know from the previous example that x 7→
∫
R f(x, y) dy is not in L2(R). This is in

contrast to the remark after the proof of Theorem 4.11 that for a Poisson U-statistic
S ∈ L2(Pη) of order k we always have f ∈ L2

s(µ
k), whence S2 /∈ L2(Pη).

The knowledge of the Wiener-Itô chaos expansion of a Poisson U-statistic enables us
to give pathwise representations for the Ornstein-Uhlenbeck generator and the inverse
Ornstein-Uhlenbeck generator of a Poisson U-statistic.

Lemma 4.16 Let S ∈ L2(Pη) be a Poisson U-statistic of order k. Then

LS = −kS + k

∫
X

∑
(x1,...,xk−1)∈ηk−1

6=

f(x1, . . . , xk−1, y) dµ(y)

and

−L−1(S − ES) =
k∑

m=1

1

m

∑
(x1,...,xm)∈ηm6=

∫
Xk−m
f(x1, . . . , xm, y1, . . . , yk−m) dµ(y1, . . . , yk−m)

−
k∑

m=1

1

m

∫
Xk

f(y1, . . . , yk) dµ(y1, . . . , yk) (4.13)

hold almost surely.
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Proof. Since S has a finite Wiener-Itô chaos expansion, we have S ∈ domL. The
representation of the Ornstein-Uhlenbeck generator is a consequence of Lemma 4.6 a)
and Lemma 4.8.

For the proof of the second identity we define f̂n : Xn → R by f̂n(x1, . . . , xn) =(
k
n

)−1
fn(x1, . . . , xn) for n = 1, . . . , k. Using this notation and formula (4.12) for the

kernels of a Poisson U-statistic, we obtain the Wiener-Itô chaos expansion∑
(x1,...,xm)∈ηm6=

∫
Xk−m

f(x1, . . . , xm, y1, . . . , yk−m) dµ(y1, . . . , yk−m)

=

∫
Xk

f(y1, . . . , yk) dµ(dy1 . . . , yk) +
m∑
n=1

(
m

n

)
In(f̂n)

for m = 1, . . . , k. Combining this with an identity for binomial coefficients, we see that
the right-hand side in Equation (4.13) equals

k∑
m=1

1

m

m∑
n=1

(
m

n

)
In(f̂n) =

k∑
m=1

k∑
n=1

1

m

(
m

n

)
In(f̂n) =

k∑
n=1

k∑
m=1

1

m

(
m

n

)
In(f̂n)

=
k∑

n=1

1

n

(
k

n

)
In(f̂n) =

k∑
n=1

1

n
In(fn),

which is the Wiener-Itô chaos expansion of −L−1(S − ES) by definition. �

Notes: Lemma 4.9 and the second part of Lemma 4.16 are in Schulte 2012b. Lemma
4.10, Theorem 4.11, Corollary 4.12, the Examples 4.13, 4.14, and 4.15, and the first
part of Lemma 4.16 are from Reitzner and Schulte 2011.
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Chapter 5

Normal approximation of Poisson
functionals

The aim of this chapter is to develop bounds for the normal approximation of Poisson
functionals and vectors of Poisson functionals. These bounds can be used to derive
univariate and multivariate central limit theorems. Throughout this chapter let F ∈
L2(Pη) be a square integrable Poisson functional with the Wiener-Itô chaos expansion

F = EF +
∞∑
n=1

In(fn) with fn ∈ L2
s(µ

n), n ∈ N.

Moreover, we consider a random vector F = (F (1), . . . , F (m)) of Poisson functionals
F (`) ∈ L2(Pη) having Wiener-Itô chaos expansions

F (`) = EF (`) +
∞∑
n=1

In(f (`)
n ) with f (`)

n ∈ L2
s(µ

n), n ∈ N,

for ` = 1, . . . ,m. We denote the covariance matrix of F by Σ and its elements by σuv
for u, v = 1, . . . ,m.

For the formulation of our central limit theorems we consider a family of Poisson
point processes (ηt)t≥1 with σ-finite intensity measures (µt)t≥1 and families of square

integrable Poisson functionals (Ft)t≥1 and (F
(`)
t )t≥1, ` = 1, . . . ,m, depending on the

point processes (ηt)t≥1. We put Ft = (F
(1)
t , . . . , F

(m)
t ). For Ft ∈ L2(Pηt) and F

(`)
t ∈

L2(Pηt), ` = 1. . . . ,m, we have the Wiener-Itô chaos expansions

Ft = EFt +
∞∑
n=1

In,t(fn,t)

with fn,t ∈ L2
s(µ

n
t ), n ∈ N, and

F
(`)
t = EF (`)

t +
∞∑
n=1

In,t(f
(`)
n,t)

with f
(`)
n,t ∈ L2

s(µ
n
t ), n ∈ N. Here, In,t(·) stands for the n-th multiple Wiener-Itô

integral with respect to the Poisson point process ηt. Moreover, we always assume that
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the variances of (Ft)t≥1 and the covariances of (Ft)t≥1 are uniformly bounded, i.e.

sup
t≥1

VarFt <∞ and max
1≤u,v≤m

sup
t≥1
|Cov(F

(u)
t , F

(v)
t )| <∞.

These assumptions are no restrictions since they are satisfied if we rescale each Poisson
functional by the square root of its variance, for example.

In the following, we write ‖ · ‖n,t for the norm in L2(µnt ).

5.1 Malliavin-Stein method for Poisson functionals

In this section, we present three abstract results for the normal approximation of
Poisson functionals, which can be derived by a combination of Malliavin calculus and
Stein’s method and are the base for our theorems in the next sections. We start with
a result for the normal approximation of a square integrable Poisson functional in the
Wasserstein distance due to Peccati, Solé, Taqqu, and Utzet (see [65, Theorem 3.1]):

Theorem 5.1 Let F ∈ L2(Pη) be a Poisson functional with F ∈ domD and EF = 0
and let N be a standard Gaussian random variable. Then

dW (F,N) ≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+
∫
X

E(DzF )2 |DzL
−1F | dµ(z). (5.1)

Recall that the Wasserstein distance used in the previous theorem is defined as

dW (Y, Z) = sup
h∈Lip(1)

|Eh(Y )− Eh(Z)|

for two random variables Y and Z. But in some situations one is more interested in
the Kolmogorov distance given by

dK(Y, Z) = sup
x∈R
|P(Y ≤ x)− P(Z ≤ x)|,

which is the supremum-norm of the difference between the distribution functions of
Y and Z. In the situation that one of the random variables is a standard Gaussian
random variable N , it is known (see [9, Theorem 3.1], for example) that

dK(Y,N) ≤ 2
√
dW (Y,N). (5.2)

Hence, Theorem 5.1 also gives bound for the Kolmogorov distance between a Poisson
functional and a standard Gaussian random variable. For a family of Poisson func-
tionals (Ft)t≥1 that converges in distribution to a standard Gaussian random variable
a combination of Theorem 5.1 and the inequality (5.2) yields a weaker rate of conver-
gence for the Kolmogorov distance than for the Wasserstein distance due to the square
root in formula (5.2). But in many situation (e.g. the classical central limit theorem
for i.i.d. random variables), one has the same rate of convergence for both distances.

By a similar technique as in the proof of Theorem 5.1 in [65], we obtain the following
bound for the normal approximation of Poisson functionals in Kolmogorov distance.
Later, we present examples where this theorem yields the same rate of convergence as
Theorem 5.1.
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Theorem 5.2 Let F ∈ L2(Pη) with EF = 0 and F ∈ domD and let N be a standard
Gaussian random variable. Then

dK(F,N) ≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+ 2E〈(DF )2, |DL−1F |〉L2(µ)

+ 2E〈(DF )2, |F DL−1F |〉L2(µ) + 2E〈(DF )2, |DF DL−1F |〉L2(µ)

+ sup
t∈R

E〈D1I (F > t) , DF |DL−1F |〉L2(µ)

≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+ 2c(F )
√

E〈(DF )2, (DL−1F )2〉L2(µ)

+ sup
t∈R

E〈D1I (F > t) , DF |DL−1F |〉L2(µ)

(5.3)

with

c(F ) =
√

E〈(DF )2, (DF )2〉L2(µ) +
(
E〈DF,DF 〉2L2(µ)

) 1
4
((

EF 4
) 1

4 + 1
)
.

Proof. Let gt : R → R, t ∈ R, be defined as in Equation (2.8). Now formula (2.12)
tells us that

dK(F,N) = sup
t∈R
|E[g′t(F )− Fgt(F )]|. (5.4)

Thus, we obtain a bound for the Kolmogorov distance by estimating the right-hand
side of Equation (5.4).

Using identity (4.8) and the integration by parts formula (4.9), we obtain

E[F gt(F )] = E[LL−1F gt(F )] = E[δ(−DL−1F ) gt(F )]

= E〈−DL−1F,Dgt(F )〉L2(µ).
(5.5)

In order to compute Dzgt(F ) for a fixed z ∈ X, we consider the following cases:

1. F, F +DzF ≤ t or F, F +DzF > t;

2. F ≤ t < F +DzF ;

3. F +DzF ≤ t < F .

For F, F +DzF ≤ t or F, F +DzF > t it follows by Taylor expansion that

Dzgt(F ) = gt(F +DzF )− gt(F ) = g′t(F )DzF +
1

2
g′′t (F̃ )(DzF )2

=: g′t(F )DzF + r1(F, z, t),

where F̃ is between F and F +DzF .

Note that gt is not differentiable at t ∈ R and that we defined g′t(t) as the left-sided
limit of g′t in t in Chapter 2. For F ≤ t < F + DzF , we obtain by Taylor expansion
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and Equation (2.11)

Dzgt(F ) = gt(F +DzF )− gt(F ) = gt(F +DzF )− gt(t) + gt(t)− gt(F )

= g′t(t+)(F +DzF − t) +
1

2
g′′t (F̃1)(F +DzF − t)2

+g′t(F )(t− F ) +
1

2
g′′t (F̃2)(t− F )2

= g′t(F )DzF + (g′t(t−)− 1− g′t(F ))(F +DzF − t)

+
1

2
g′′t (F̃1)(F +DzF − t)2 +

1

2
g′′t (F̃2)(t− F )2

= g′t(F )DzF − (F +DzF − t) + g′′t (F̃0)(t− F )(F +DzF − t)

+
1

2
g′′t (F̃1)(F +DzF − t)2 +

1

2
g′′t (F̃2)(t− F )2

=: g′t(F )DzF − (F +DzF − t) + r2(F, z, t)

with F̃0, F̃1, F̃2 ∈ (F, F +DzF ). For F +DzF ≤ t < F , we have analogously

Dzgt(F ) = gt(F +DzF )− gt(F ) = gt(F +DzF )− gt(t) + gt(t)− gt(F )

= g′t(t−)(F +DzF − t) +
1

2
g′′t (F̃1)(F +DzF − t)2

+g′t(F )(t− F ) +
1

2
g′′t (F̃2)(t− F )2

= g′t(F )DzF + (g′t(t+) + 1− g′t(F ))(F +DzF − t)

+
1

2
g′′t (F̃1)(F +DzF − t)2 +

1

2
g′′t (F̃2)(t− F )2

= g′t(F )DzF + (F +DzF − t) + g′′t (F̃0)(t− F )(F +DzF − t)

+
1

2
g′′t (F̃1)(F +DzF − t)2 +

1

2
g′′t (F̃2)(t− F )2

=: g′t(F )DzF + (F +DzF − t) + r2(F, z, t)

with F̃0, F̃1, F̃2 ∈ (F +DzF, F ). Thus, Dzgt(F ) has a representation

Dzgt(F ) = g′t(F )DzF +RF,t(z), (5.6)

where RF,t : X → R is given by

RF,t(z)

= (1I (F, F +DzF ≤ t) + 1I (F, F +DzF > t)) r1(F, z, t)

+ (1I (F ≤ t < F +DzF ) + 1I (F +DzF ≤ t < F )) (r2(F, z, t)− |F +DzF − t|).

Combining the Equations (5.5) and (5.6) yields

E [g′t(F )− Fgt(F )] = E
[
g′t(F )− 〈g′t(F )DF +RF,t,−DL−1F 〉L2(µ)

]
,

and the triangle inequality and |g′t(F )| ≤ 1 (see Lemma 2.11) lead to

|E [g′t(F )− Fgt(F )] | ≤ |E
[
g′t(F )

(
1− 〈DF,−DL−1F 〉L2(µ)

)]
| (5.7)

+|E〈RF,t, DL
−1F 〉L2(µ)|

≤ E|1− 〈DF,−DL−1F 〉L2(µ)|+ E〈|RF,t|, |DL−1F |〉L2(µ).
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In r2(F, z, t), we assume that t is between F and F +DzF , so that

|F +DzF − t| ≤ |DzF | and |F − t| ≤ |DzF |.

The inequality (2.13) allows us to bound all second derivatives in RF,t(z) by

|g′′t (F̃i)| ≤
√

2π

4
+ |F |+ |DzF |.

Now it is easy to see that

|RF,t(z)|

≤ (1I (F, F +DzF ≤ t) + 1I (F, F +DzF > t))
1

2

(√
2π

4
+ |F |+ |DzF |

)
(DzF )2

+ (1I (F ≤ t < F +DzF ) + 1I (F +DzF ≤ t < F )) |DzF |

+ (1I (F ≤ t < F +DzF ) + 1I (F +DzF ≤ t < F )) 2

(√
2π

4
+ |F |+ |DzF |

)
(DzF )2

≤ 2

(√
2π

4
+ |F |+ |DzF |

)
(DzF )2

+ (1I (F ≤ t < F +DzF ) + 1I (F +DzF ≤ t < F )) |DzF |,

where the last summand can be rewritten as

(1I (F ≤ t < F +DzF ) + 1I (F +DzF ≤ t < F )) |DzF | = Dz1I (F > t)DzF.

Hence, it follows directly that

E〈|RF,t|, |DL−1F |〉L2(µ) ≤ 2E〈(DF )2, |DL−1F |〉L2(µ) + 2E〈(DF )2, |F DL−1F |〉L2(µ)

+2E〈(DF )2, |DF DL−1F |〉L2(µ)

+E〈D1I (F > t)DF, |DL−1F |〉L2(µ).

Combining this with the formulas (5.7) and (5.4) concludes the proof of the first in-
equality in formula (5.3). The second bound in formula (5.3) is a direct consequence
of the Cauchy-Schwarz inequality. �

In the proof of Theorem 5.1 in [65], the right-hand side of the Equation (5.5) is
evaluated for twice differentiable functions f : R → R with supx∈R |f ′(x)| ≤ 1 and
supx∈R |f ′′(x)| ≤ 2 instead of the functions gt as defined in formula (2.8) because for
the Wasserstein distance one regards solutions of Stein’s equation (2.7) for h ∈ Lip(1),
which must have these properties. For such a function f it holds that

Dzf(F ) = f ′(F )DzF + r̃(F )

with |r̃(F )| ≤ (DzF )2. Since this representation is easier than the representation we
obtain for Dzgt(F ), the bound for the Wasserstein distance in Theorem 5.1 is shorter
and easier to evaluate than the bound for the Kolmogorov distance in Theorem 5.2.
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Since our univariate Theorems 5.1 and 5.2 are for the distance to a standard Gaus-
sian random variable, we apply it to the standardization (F−EF )/

√
VarF of a Poisson

functional F ∈ L2(Pη). But in some situations, it is more convenient to use a different
rescaling. For example, we can use an approximation of the variance if the exact vari-
ance is unknown. For such situations the following corollary allows us to use a different
rescaling:

Corollary 5.3 For a Poisson functional F ∈ L2(Pη) with F ∈ domD we have

E
∣∣∣∣1− 1

V
〈DF,−DL−1F 〉L2(µ)

∣∣∣∣
≤
∣∣∣∣1− VarF

V

∣∣∣∣+
VarF

V
E
∣∣∣∣1− 1

VarF
〈DF,−DL−1F 〉L2(µ)

∣∣∣∣
for V > 0.

Proof. A straightforward computation shows that

E
∣∣∣∣1− 1

V
〈DF,−DL−1F 〉L2(µ)

∣∣∣∣
=

VarF

V
E
∣∣∣∣ V

VarF
− 1

VarF
〈DF,−DL−1F 〉L2(µ)

∣∣∣∣
≤ VarF

V

∣∣∣∣1− V

VarF

∣∣∣∣+
VarF

V
E
∣∣∣∣1− 1

VarF
〈DF,−DL−1F 〉L2(µ)

∣∣∣∣ ,
which completes the proof. �

As a first application of Theorem 5.1 and Theorem 5.2, we bound the Wasserstein
distance and the Kolmogorov distance between a Poisson random variable and a Gaus-
sian random variable and see that we obtain the optimal rate of convergence for both
distances. In Example 3.5 in [65], the bound (5.1) in Theorem 5.1 is used to compute

the Wasserstein distance and the known optimal rate of convergence t−
1
2 is obtained.

Example 5.4 Let Y be a Poisson distributed random variable with EY = t > 0. It
has the same distribution as Ft = |ηt| =

∑
x∈ηt 1, where ηt is a Poisson point process

on [0, 1] with t times the restriction of the Lebesgue measure as intensity measure µt.
The representation

I1,t(f) =
∑
x∈ηt

f(x)−
∫
X

f(x) dµt(x)

for a Wiener-Itô integral of a function f ∈ L1(µt) ∩ L2(µt) and the fact that

Ft = t

∫ 1

0

1 dx+
∑
x∈ηt

1− t
∫ 1

0

1 dx

imply that Ft has the Wiener-Itô chaos expansion Ft = EFt + I1,t(f1,t) = t + I1,t(1).
Hence, the standardized random variable

Gt =
Ft − EFt√

VarFt
=
Ft − t√

t
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has the chaos expansion Gt = I1,t(1)/
√
t and DzGt = −DzL

−1Gt = 1/
√
t for z ∈ [0, 1].

It is easy to see that

E|1− 〈DGt,−DL−1Gt〉L2(µt)| = |1−
1

t
〈1, 1〉L2(µt)| = |1−

t

t
| = 0,

and we obtain

E〈(DGt)
2, (DL−1Gt)

2〉L2(µt) = E〈(DGt)
2, (DGt)

2〉L2(µt) =
1

t
,

E〈(DGt)
2, |DL−1Gt|〉L2(µt) = 1/

√
t, E〈DGt, DGt〉2L2(µt)

= 1, and EG4
t = 3 + 1/t by

analogous computations. Since Dz1I(Gt > s)DzGt |DzL
−1Gt| ≥ 0 for z ∈ [0, 1] and

s ∈ R and DzGt |DzL
−1Gt| = 1/t for z ∈ [0, 1], it follows from Lemma 4.7 and the

Cauchy-Schwarz inequality that

sup
s∈R

E〈D1I(Gt > s), DGt |DL−1Gt|〉L2(µ) = sup
s∈R

E
[
1I(Gt > s) δ(DGt |DL−1Gt|)

]
≤ E

[
δ(DGt |DL−1Gt|)2

] 1
2

=
1

t
E[δ(1)2]

1
2 =

1

t
E[I1,t(1)2]

1
2 =

1√
t
.

Now Theorem 5.1 and Theorem 5.2 yield

dW

(
Y − t√

t
, N

)
≤ 1√

t

and

dK

(
Y − t√

t
, N

)
≤ 2

(
1√
t

+

(
3 +

1

t

) 1
4

+ 1

)
1√
t

+
1√
t
≤ 8√

t

for t ≥ 1, which are the classical Berry-Esseen inequalities for the Wasserstein and the
Kolmogorov distance with the optimal rates of convergence (up to constants).

For the Wasserstein distance the optimality of the rate follows from taking

ht(x) = min{|x− (b
√
tx+ tc − t)/

√
t|, |x− (d

√
tx+ te − t)/

√
t|}

as test function. Since the distribution function of Y has a jump at btc of size

tbtce−t/btc!, which is greater than a constant times t−
1
2 for t → ∞, the rate for the

Kolmogorov distance cannot be better than t−
1
2 .

For the normal approximation of vectors of Poisson functionals we have the following
result due to Peccati and Zheng (see [67, Theorem 4.2]).

Theorem 5.5 Let F = (F (1), . . . , F (m)) with Poisson functionals F (`) ∈ L2(Pη) satis-
fying EF (`) = 0 and F (`) ∈ domD for ` = 1, . . . ,m and let N(Σ) be an m-dimensional
centred Gaussian random vector with a positive semidefinite covariance matrix Σ. Then

d3(F,N(Σ)) ≤1

2

m∑
u,v=1

E|σuv − 〈DF (u),−DL−1F (v)〉L2(µ)|

+
1

4

∫
X

E

(
m∑
`=1

|DzF
(`)|

)2 m∑
`=1

|DzL
−1F (`)| dµ(z).
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This result is proven by a combination of Malliavin calculus and an interpolation
technique. The authors of [67] start with the expression |Eh(F)−Eh(N(Σ))|, where h is
a thrice continuously differentiable function with bounded second and third derivatives
as in the definition of the d3-distance, and bound it by a direct computation using
the boundedness of the derivatives of h and Malliavin calculus. They also derive a
similar bound for the d2-distance that is defined via slightly different test functions. It
is shown by Malliavin calculus and multivariate Stein’s method in a similar way as in
the univariate case.

The bound for the d3-distance has the advantage that the covariance matrix needs to
be only positive semidefinite, whereas it has to be positive definite for the d2-distance.
In some of the examples from stochastic geometry in Chapter 7, the asymptotic covari-
ance matrix is singular. For this reason, we only use the d3-distance in the following.
But all our abstract bounds for the normal approximation of vectors of Poisson func-
tionals can be derived for the d2-distance as well.

It would be desirable to have bounds for the multivariate Wasserstein distance (or
even Kolmogorov distance), but the multivariate Stein’s equation involves the Hessian,
and for the interpolation method one also needs derivatives of higher order. Therefore,
the test functions must have a higher regularity than in the univariate case.

In order to evaluate the right-hand sides of the bounds in Theorem 5.1, Theorem
5.2, and Theorem 5.5, we need to compute the expectations of products of Malliavin
operators which is done in the following. We present four results that belong to different
types of Poisson functionals and are later applied to examples from stochastic geometry
in the Chapters 7, 8, and 9.

5.2 Normal approximation of asymptotic first order

Poisson functionals

The underlying idea of our first result is that the bounds in Theorem 5.1 and in The-
orem 5.5 are easier to evaluate if the Poisson functionals are first order Wiener-Itô
integrals because then DF and DL−1F are deterministic functions. Hence, we approx-
imate a Poisson functional by the first Wiener-Itô integral of its chaos expansion and
approximate this integral by a standard Gaussian random variable. For this approach
we need to control the error we obtain by ignoring the Wiener-Itô integrals of higher
order.

Theorem 5.6 a) Let F ∈ L2(Pη) and let N be a standard Gaussian random vari-
able. Then

dW

(
F − EF√

VarF
,N

)
≤ 2

√
1− ‖f1‖2

1

VarF
+

1

(VarF )3/2

∫
X

|f1(z)|3 dµ(z). (5.8)

b) Let F = (F (1), . . . , F (m)) be a vector of Poisson functionals F (`) ∈ L2(Pη) for
` = 1, . . . ,m and let N(Σ) be an m-dimensional centred Gaussian random vector
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with a positive semidefinite covariance matrix Σ. Then

d3(F− EF,N(Σ)) ≤ 1

2

m∑
u,v=1

|σuv − 〈f (u)
1 , f

(v)
1 〉L2(µ)|+

m2

4

m∑
`=1

∫
X

|f (`)
1 (z)|3 dµ(z)

+
√

2m

√√√√ m∑
`=1

VarF (`)

√√√√ m∑
`=1

∞∑
n=2

n! ‖f (`)
n ‖2

n. (5.9)

If F and F (1), . . . , F (m) are first order Wiener-Itô integrals, Theorem 5.6 coincides
with [65, Corollary 3.4] and [67, Corollary 4.3] that are direct consequences of the
results denoted as Theorem 5.1 and Theorem 5.5 in this work. An example for the
multivariate normal approximation of first order Wiener-Itô integrals is the paper [14]
by Durastanti, Marinucci, and Peccati, where wavelet coefficients, occurring for exam-
ple in astrophysics and cosmology, are investigated.

Theorem 5.6 is helpful to formulate central limit theorems for Poisson functionals
Ft and vectors Ft = (F

(1)
t , . . . , F

(m)
t ) of Poisson functionals that are asymptotically

dominated by the first Wiener-Itô integral in their chaos expansion in the sense that

lim
t→∞

VarFt − 〈f1,t, f1,t〉L2(µt) = 0

and

lim
t→∞

Cov(F
(u)
t , F

(v)
t )− 〈f (u)

1,t , f
(v)
1,t 〉L2(µt) = 0

for u, v = 1, . . . ,m. For a family of such Poisson functionals (Ft)t≥1 with lim inf
t→∞

VarFt>

0 the first expression in formula (5.8) vanishes for t→∞. Since VarFt ≥ ‖f1,t‖2
1,t, the

second summand is bounded by

1

‖f1,t‖3
1,t

∫
X

|f1,t(z)|3 dµ(z)

so that we only have to deal with an expression depending on f1,t. The assumption
lim inf
t→∞

VarFt > 0 is necessary to prevent that lim
t→∞

VarFt = 0.

In the multivariate case, the last expression on the right-hand side of formula (5.9)

vanishes for t→∞, and only expressions involving f
(1)
1,t , . . . , f

(m)
1,t remain.

We prepare for the proof of Theorem 5.6 by the following Lemma:

Lemma 5.7 a) For square integrable random variables Y, Z we have

dW (Y, Z) ≤
√

E(Y − Z)2.

b) Let Y and Z be m-dimensional random vectors with EY = EZ and Euclidean
norms ||Y || and ||Z|| satisfying E||Y ||2 <∞ and E||Z||2 <∞. Then

d3(Y, Z) ≤ m
√

E||Y ||2 + E||Z||2
√

E||Y − Z||2.
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Proof. It follows from the definition of the Wasserstein distance and the the Cauchy-
Schwarz inequality that

dW (Y, Z) = sup
h∈Lip(1)

|Eh(Y )− Eh(Z)| ≤ E|Y − Z| ≤
√

E(Y − Z)2,

which concludes the proof of part a).
Recall from Chapter 2 that Hm are the test functions for the d3-distance. For

h ∈ Hm and Y = (Y1, . . . , Ym), Z = (Z1, . . . , Zm), we obtain by the mean value theorem

|Eh(Y )− Eh(Z)| = |E[h′(W )(Y − Z)]− E[h′(0)(Y − Z)]| ,

where W = Z +U(Y −Z) for some random variable U in [0, 1] and where we use that
all components of Y − Z have expectation zero. Applying the mean value theorem
again as well as the Cauchy-Schwarz inequality yields

|Eh(Y )− Eh(Z)| =

∣∣∣∣∣E
m∑
i=1

(
∂h(W )

∂ui
− ∂h(0)

∂ui

)
(Yi − Zi)

∣∣∣∣∣
=

∣∣∣∣∣E
m∑
i=1

m∑
j=1

∂2h(W̃ (i))

∂uj∂ui
Wj(Yi − Zi)

∣∣∣∣∣
≤

√√√√E
m∑
i=1

(
m∑
j=1

∂2h(W̃ (i))

∂uj∂ui
Wj

)2√
E||Y − Z||2

with random vectors W̃ (i) = UiW and random variables Ui ∈ [0, 1], i = 1, . . . ,m.
Because of h ∈ Hm and the Cauchy-Schwarz inequality, it follows that

E
m∑
i=1

(
m∑
j=1

∂2h

∂uj∂ui
(W̃ (i))Wj

)2

≤ m2 E||W ||2 ≤ m2
(
E||Y ||2 + E||Z||2

)
,

which completes the argument. �

Proof of Theorem 5.6: By the triangle inequality for the Wasserstein distance, we
obtain

dW

(
F − EF√

VarF
,N

)
≤ dW

(
F − EF√

VarF
,
I1(f1)√
VarF

)
+ dW

(
I1(f1)√
VarF

,N

)
.

Now Lemma 5.7 a) and Theorem 4.2 imply that

dW

(
F − EF√

VarF
,
I1(f1)√
VarF

)
≤

√
E(F − EF − I1(f1))2

VarF

=

√∑∞
n=2 n! ‖fn‖2

n

VarF
=

√
1− ‖f1‖2

1

VarF
,
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and it follows from Theorem 5.1 that

dW

(
I1(f1)√
VarF

,N

)
≤
∣∣∣∣1− 〈f1, f1〉L2(µ)

VarF

∣∣∣∣+
1

(VarF )3/2

∫
X

|f1(z)|3 dµ(z).

Combining these inequalities with 1 − ‖f1‖2
1/VarF ≤ 1 concludes the proof of the

bound (5.8).
The triangle inequality for the d3-distance implies that

d3(F− EF,N(Σ)) ≤ d3(F− EF,G) + d3(G,N(Σ))

with G = (I1(f
(1)
1 ), . . . , I1(f

(m)
1 )). It follows from Lemma 5.7 b) and Theorem 4.2 that

d3(F− EF,G)

≤ m

√√√√ m∑
`=1

EI1(f
(`)
1 )2 + E(F (`) − EF (`))2

√√√√ m∑
`=1

E
(
F (`) − EF (`) − I1(f

(`)
1 )
)2

≤ m

√√√√2
m∑
`=1

VarF (`)

√√√√ m∑
`=1

∞∑
n=2

n! ‖f (`)
n ‖2

n.

We deduce from Theorem 5.5 and Jensen’s inequality that

d3(G,N(Σ)) ≤ 1

2

m∑
u,v=1

|σuv − 〈f (u)
1 , f

(v)
1 〉L2(µ)|+

1

4

∫
X

(
m∑
`=1

|f (`)
1 (z)|

)2 m∑
`=1

|f (`)
1 (z)| dµ(z)

≤ 1

2

m∑
u,v=1

|σuv − 〈f (u)
1 , f

(v)
1 〉L2(µ)|+

m2

4

m∑
`=1

∫
X

|f (`)
1 (z)|3 dµ(z).

This bound is also formulated in [67, Corollary 4.3]. Combining the inequalities above
concludes the proof of the bound (5.9). �

If we rescale in Equation (5.8) with the square root of a constant V > 0 instead of
the square root of VarF , we obtain by the same arguments

dW

(
F − EF√

V
,N

)
≤
√

VarF − ‖f1‖2
1

V
+

∣∣∣∣1− ‖f1‖2
1

V

∣∣∣∣+
1

V 3/2

∫
X

|f1(z)|3 dµ(z). (5.10)

5.3 Normal approximation of Poisson functionals

with finite Wiener-Itô chaos expansion

The aim of this section is to derive bounds for the normal approximation of Poisson
functionals and vectors of Poisson functionals that have finite Wiener-Itô chaos expan-
sions. This is done by evaluating the bounds in the Theorems 5.1, 5.2, and 5.5 and
using some elementary inequalities and the product formula for multiple Wiener-Itô
integrals. We begin with a proposition that is used in the proofs of the main results of
this and the following section.
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Proposition 5.8 a) Let F ∈ L2(Pη) be a Poisson functional with F ∈ domD and
let N be a standard Gaussian random variable. Then

dW

(
F − EF√

VarF
,N

)
≤

∞∑
i,j=1

i

√
Rij

VarF
+

1

VarF

(∫
X

E(DzF )4 dµ(z)

) 1
2

with

Rij = E
(∫

X

Ii−1(fi(z, ·)) Ij−1(fj(z, ·)) dµ(z)

)2

−
(
E
∫
X

Ii−1(fi(z, ·)) Ij−1(fj(z, ·)) dµ(z)

)2

for i, j ∈ N.

b) Let F = (F (1), . . . , F (m)) with Poisson functionals F (`) ∈ L2(Pη), ` = 1, . . . ,m,
satisfying F (`) ∈ domD and let N(Σ) be an m-dimensional centred Gaussian
random vector with a positive semidefinite covariance matrix Σ. Then

d3 (F− EF,N(Σ)) ≤ 1

2

m∑
u,v=1

|σuv − Cov(F (u), F (v))|+ 1

2

m∑
u,v=1

∞∑
i,j=1

i

√
R

(u,v)
ij

+
m

4

m∑
u,v=1

√
VarF (u)

(∫
X

E(DzF
(v))4 dµ(z)

) 1
2

with

R
(u,v)
ij = E

(∫
X

Ii−1(f
(u)
i (z, ·)) Ij−1(f

(v)
j (z, ·)) dµ(z)

)2

−
(
E
∫
X

Ii−1(f
(u)
i (z, ·)) Ij−1(f

(v)
j (z, ·)) dµ(z)

)2

for i, j ∈ N and u, v = 1, . . . ,m.

Proof. We start with the univariate case. Combining Lemma 4.3 and Equation (4.7)
with the representation VarF =

∑∞
n=1 n! ‖fn‖2

n, we obtain

E
∣∣∣∣1− 1

VarF
〈DF,−DL−1F 〉L2(µ)

∣∣∣∣
=

1

VarF
E

∣∣∣∣∣
∞∑
n=1

n! ‖fn‖2
n −

∫
X

∞∑
n=1

n In−1(fn(z, ·))
∞∑
n=1

In−1(fn(z, ·)) dµ(z)

∣∣∣∣∣
≤

∞∑
i=1

i E
∣∣∣∣∫
X

Ii−1(fi(z, ·)) Ii−1(fi(z, ·)) dµ(z)− (i− 1)! ‖fi‖2
i

∣∣∣∣
+

∞∑
i,j=1,i 6=j

i E
∣∣∣∣∫
X

Ii−1(fi(z, ·)) Ij−1(fj(z, ·)) dµ(z)

∣∣∣∣ .
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It follows from the Cauchy-Schwarz inequality that

E
∣∣∣∣∫
X

Ii−1(fi(z, ·)) Ii−1(fi(z, ·)) dµ(z)− (i− 1)! ‖fi‖2
i

∣∣∣∣ ≤√Rii

for i ∈ N and

E
∣∣∣∣∫
X

Ii−1(fi(z, ·)) Ij−1(fj(z, ·)) dµ(z)

∣∣∣∣ ≤√Rij

for i, j ∈ N with i 6= j. Here, we used the fact that

E
∫
X

Ii−1(fi(z, ·)) Ij−1(fj(z, ·)) dµ(z) =

{
(i− 1)! ‖fi‖2

i , i = j

0, i 6= j
,

which is a consequence of Fubini’s theorem and the orthogonality of the multiple
Wiener-Itô integrals (see Lemma 3.10). Combining the Cauchy-Schwarz inequality
with ∫

X

E(DzL
−1F )2 dµ(z) =

∞∑
n=1

(n− 1)! ‖fn‖2
n ≤ VarF,

we see that

1

(VarF )
3
2

∫
X

E(DzF )2 |DzL
−1F | dµ(z)

≤ 1

(VarF )
3
2

(∫
X

E(DzF )4 dµ(z)

) 1
2
(∫

X

E(DzL
−1F )2 dµ(z)

) 1
2

≤ 1

VarF

(∫
X

E(DzF )4 dµ(z)

) 1
2

.

Now part a) is a direct consequence of Theorem 5.1. In the multivariate case, we have

E
∣∣σuv − 〈DF (u),−DL−1F (v)〉L2(µ)

∣∣
≤ |σuv − Cov(F (u), F (v))|+ E

∣∣Cov(F (u), F (v))− 〈DF (u),−DL−1F (v)〉L2(µ)

∣∣ .
An analogous computation as in the univariate case yields

E
∣∣Cov(F (u), F (v))− 〈DF (u),−DL−1F (v)〉L2(µ)

∣∣ ≤ ∞∑
i,j=1

i

√
R

(u,v)
ij .

By the Cauchy-Schwarz inequality and the same arguments as in the univariate case,
we obtain ∫

X

E

(
m∑
`=1

|DzF
(`)|

)2 m∑
`=1

|DzL
−1F (`)| dµ(z)

≤ m

m∑
u,v=1

E
∫
X

|DzF
(u)|2 |DzL

−1F (v)| dµ(z)

≤ m
∑
u,v=1

√
VarF (u)

(∫
X

E(DzF
(v))4 dµ(z)

) 1
2

,
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and Theorem 5.5 concludes the proof. �

In order to further evaluate Rij and R
(u,v)
ij , we need the following classes of partitions

from Π̃≥2(i, i, j, j):

Definition 5.9 For i, j ∈ N let Π
(1)
≥2(i, i, j, j) (resp. Π̃

(1)
≥2(i, i, j, j)) be the set of all par-

titions σ ∈ Π≥2(i, i, j, j) (resp. σ ∈ Π̃≥2(i, i, j, j)) such that {x(1)
1 , x

(3)
1 } and {x(2)

1 , x
(4)
1 }

are blocks of σ.

Using this notation, we can compute the expectations in Rij and R
(u,v)
ij .

Lemma 5.10 Let i, j ∈ N and 1 ≤ u, v ≤ m.

a) If ∫
X|σ|
|(f` ⊗ f` ⊗ f` ⊗ f`)σ| dµ|σ| <∞ for all σ ∈ Π

(1)
≥2(`, `, `, `) (5.11)

for ` ∈ {i, j}, then

Rij =
∑

σ∈Π̃
(1)
≥2(i,i,j,j)

∫
X|σ|

(fi ⊗ fi ⊗ fj ⊗ fj)σ dµ|σ|.

b) We assume that∫
X|σ|
|(f (u)

i ⊗ f
(u)
i ⊗ f

(u)
i ⊗ f

(u)
i )σ| dµ|σ| <∞ for all σ ∈ Π

(1)
≥2(i, i, i, i) (5.12)

and that∫
X|σ|
|(f (v)

j ⊗ f
(v)
j ⊗ f

(v)
j ⊗ f

(v)
j )σ| dµ|σ| <∞ for all σ ∈ Π

(1)
≥2(j, j, j, j). (5.13)

Then

R
(u,v)
ij =

∑
σ∈Π̃

(1)
≥2(i,i,j,j)

∫
X|σ|

(f
(u)
i ⊗ f

(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ dµ|σ|.

Proof. It is sufficient to prove part b) since part a) is the special case m = 1. We start
with i = j and u = v and obtain, by Fubini’s theorem,

E
(∫

X

Ii−1(f
(u)
i (z, ·)) Ii−1(f

(u)
i (z, ·)) dµ(z)

)2

=

∫
X2

EIi−1(f
(u)
i (s, ·)) Ii−1(f

(u)
i (t, ·)) Ii−1(f

(u)
i (s, ·)) Ii−1(f

(u)
i (t, ·)) dµ(s, t).

(5.14)
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In the general case, it follows from the Cauchy-Schwarz inequality that

E
(∫

X

|Ii−1(f
(u)
i (z, ·)) Ij−1(f

(v)
j (z, ·))| dµ(z)

)2

≤

(
E
(∫

X

Ii−1(f
(u)
i (z, ·)) Ii−1(f

(u)
i (z, ·)) dµ(z)

)2
) 1

2

(
E
(∫

X

Ij−1(f
(v)
j (z, ·)) Ij−1(f

(v)
j (z, ·)) dµ(z)

)2
) 1

2

.

Under the assumption that the right-hand side in formula (5.14) is finite (this follows
from our computations in the following), we can apply Fubini’s theorem and obtain

E
(∫

X

Ii−1(f
(u)
i (z, ·)) Ij−1(f

(v)
j (z, ·)) dµ(z)

)2

=

∫
X2

EIi−1(f
(u)
i (s, ·)) Ii−1(f

(u)
i (t, ·)) Ij−1(f

(v)
j (s, ·)) Ij−1(f

(v)
j (t, ·)) dµ(s, t).

(5.15)

For each τ ∈ Π(i − 1, i − 1) and J ⊂ τ \ S(τ), we can construct a partition σ̃ ∈
Π≥2(i− 1, i− 1, i− 1, i− 1) by taking two copies of τ and merging all pairs of blocks
that do not belong to J . By adding the blocks for the variables s and t, we obtain a
partition σ ∈ Π

(1)
≥2(i, i, i, i). Thus, we have∫

X2

∫
X|τ |−|J|

(∫
X|J|
|(f (u)

i (s, ·)⊗ f (u)
i (t, ·))τ | dµJ

)2

dµ|τ |−|J | dµ(s, t)

=

∫
X2

∫
X|σ̃|
|(f (u)

i (s, ·)⊗ f (u)
i (t, ·)⊗ f (u)

i (s, ·)⊗ f (u)
i (t, ·))σ̃| dµ|σ̃| dµ(s, t)

=

∫
X|σ|
|(f (u)

i ⊗ f
(u)
i ⊗ f

(u)
i ⊗ f

(u)
i )σ| dµ|σ|.

(5.16)

By the assumptions (5.12) and (5.13) (respectively (5.11) in the univariate case), the
right-hand side of formula (5.16) is finite so that∫

X|J|
|(f (u)

i (s, ·)⊗ f (u)
i (t, ·))τ | dµJ ∈ L2

s(µ
|τ |−|J |)

for µ-almost all (s, t) ∈ X2, and the same holds if we replace i and u by j and v. This
allows us to apply Corollary 3.14 to the right-hand side of formula (5.15), which yields

E
(∫

X

Ii−1(f
(u)
i (z, ·)) Ij−1(f

(v)
j (z, ·)) dµ(z)

)2

=
∑

σ̃∈Π≥2(i−1,i−1,j−1,j−1)

∫
X2

∫
X|σ̃|

(f
(u)
i (s, ·)⊗ f (u)

i (t, ·)⊗ f (v)
j (s, ·)⊗ f (v)

j (t, ·))σ̃ dµ|σ̃| dµ(s, t)

=
∑

σ∈Π
(1)
≥2(i,i,j,j)

∫
X|σ|

(f
(u)
i ⊗ f

(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ dµ|σ|.
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Now we discuss the cases i = j and i 6= j separately. By the definitions of the partitions,
a partition σ is in Π

(1)
≥2(i, i, i, i) \ Π̃

(1)
≥2(i, i, i, i) if and only if every block of σ contains

either two variables belonging to the first and the third function or to the second and
fourth function of the tensor product. For each of these partitions the integral in the
sum above equals 〈f (u)

i , f
(v)
i 〉2L2(µi). Since there are ((i− 1)!)2 such partitions, the sum

over these partitions cancels out with

−
(
E
∫
X

Ii−1(f
(u)
i (z, ·)) Ii−1(f

(v)
i (z, ·)) dµ(z)

)2

= −
(

(i− 1)! 〈f (u)
i , f

(v)
i 〉L2(µi)

)2

.

For i 6= j we have Π
(1)
≥2(i, i, j, j) = Π̃

(1)
≥2(i, i, j, j) since there are no partitions where

all blocks have two elements that belong either to the first and third or to the sec-
ond and fourth function of the tensor product. Moreover, Fubini’s theorem and the
orthogonality of multiple Wiener-Itô integrals (see Lemma 3.10) imply that

(
E
∫
X

Ii−1(f
(u)
i (z, ·)) Ij−1(f

(v)
j (z, ·)) dµ(z)

)2

= 0.

Altogether, we obtain

R
(u,v)
ij =

∑
σ∈Π̃

(1)
≥2(i,i,j,j)

∫
X|σ|

(f
(u)
i ⊗ f

(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ dµ|σ|,

which completes the proof. �

As pointed out in the previous proof, Π
(1)
≥2(`, `, `, `) \ Π̃

(1)
≥2(`, `, `, `) is the set of

all partitions such that each block has size two and consists either of variables from
the first and third function or from the second and fourth function. In this case the
integral in assumption (5.11) equals ‖f`‖4

` . Hence, we can replace σ ∈ Π
(1)
≥2(`, `, `, `)

by σ ∈ Π̃
(1)
≥2(`, `, `, `) in assumption (5.11) if f` ∈ L2

s(µ
`). The same holds for the

assumptions (5.12) and (5.13).

Proposition 5.8 and Lemma 5.10 allow us to prove bounds for the normal approx-
imation of Poisson functionals that are applied in the next chapters. We begin with
the situation that the Poisson functionals have finite Wiener-Itô chaos expansions.

Theorem 5.11 a) Let F ∈ L2(Pη) be a Poisson functional with a finite Wiener-Itô
chaos expansion of order k ∈ N such that

∫
X|σ|
|(fn ⊗ fn ⊗ fn ⊗ fn)σ| dµ|σ| <∞ for all σ ∈ Π̃≥2(n, n, n, n)
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for n = 1, . . . , k and let N be a standard Gaussian random variable. Then

dW

(
F − EF√

VarF
,N

)
≤ 1

VarF

k∑
i,j=1

i

√√√√ ∑
σ∈Π̃

(1)
≥2(i,i,j,j)

∫
X|σ|

(fi ⊗ fi ⊗ fj ⊗ fj)σ dµ|σ|

+
1

VarF

√∫
X

E(DzF )4 dµ(z)

≤ 2k
7
2

VarF

∑
1≤i≤j≤k

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ|.

(5.17)

b) Let F = (F (1), . . . , F (m)) with Poisson functionals F (`) ∈ L2(Pη), ` = 1, . . . ,m,
that have finite Wiener-Itô chaos expansions of order k` ∈ N and satisfy∫

X|σ|
|(f (`)

n ⊗ f (`)
n ⊗ f (`)

n ⊗ f (`)
n )σ| dµ|σ| <∞ for all σ ∈ Π̃≥2(n, n, n, n)

for n = 1, . . . , k` and let N(Σ) be an m-dimensional centred Gaussian random
vector with a positive semidefinite covariance matrix Σ. Then

d3(F− EF,N(Σ)) ≤ 1

2

m∑
u,v=1

|σuv − Cov(F (u), F (v))|+R(F)

with

R(F) =
1

2

m∑
u,v=1

ku∑
i=1

kv∑
j=1

i

√√√√ ∑
σ∈Π̃

(1)
≥2(i,i,j,j)

∫
X|σ|

(f
(u)
i ⊗ f

(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ dµ|σ|

+
m

4

m∑
u,v=1

√
VarF (u)

(∫
X

E(DzF
(v))4 dµ(z)

) 1
2

≤ m

2

(
m∑
`=1

√
VarF (`) + 1

)
m∑

u,v=1

ku∑
i=1

kv∑
j=1

k
7
2
u

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(f (u)

i ⊗ f
(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ| dµ|σ|.

Proof. It follows from Theorem 4.2 that VarF =
∑k

n=1 n! ‖fn‖2
n < ∞. Now it is easy

to see that
k∑

n=1

nn! ‖fn‖2
n <∞

so that F ∈ domD. The same argument holds for F (`). Hence, we can apply Proposi-
tion 5.8. Combining this with Lemma 5.10 for the computation of Rij and R

(u,v)
ij yields

the first bounds in part a) and part b).
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It follows from the representation of the difference operator in Lemma 4.3 and
Jensen’s inequality that

∫
X

E(DzF )4 dµ(z) =

∫
X

E

(
k∑

n=1

n In−1(fn(z, ·))

)4

dµ(z)

≤ k3

k∑
n=1

n4

∫
X

EIn−1(fn(z, ·))4 dµ(z).

(5.18)

For fixed τ ∈ Π(n − 1, n − 1) and J ⊂ τ \ S(τ) we can construct a partition σ̃ ∈
Π≥2(n−1, n−1, n−1, n−1) by taking two copies of τ and merging all copies of blocks
that are not in J so that

∫
X|τ |−|J|

(∫
X|J|
|(fn(z, ·)⊗ fn(z, ·))τ | dµJ

)2

dµ|τ |−|J |

=

∫
X|σ̃|
|(fn(z, ·)⊗ fn(z, ·)⊗ fn(z, ·)⊗ fn(z, ·))σ̃| dµ|σ̃|.

(5.19)

If we integrate over z, we can add the variable z to σ̃ and obtain a partition σ ∈
Π̃≥2(n, n, n, n). Due to the assumptions of part a), this integral is finite so that the
right-hand side of formula (5.19) is finite for µ-almost all z ∈ X. This allows us to
apply Corollary 3.14 on the right-hand side of formula (5.18), which yields

∫
X

EIn−1(fn(z, ·))4 dµ(z)

=

∫
X

∑
σ̃∈Π≥2(n−1,n−1,n−1,n−1)

(fn(z, ·)⊗ fn(z, ·)⊗ fn(z, ·)⊗ fn(z, ·))σ̃ dµ(z).

Including the integration with respect to z into the notation, we obtain the bound

∫
X

E(DzF )4 dµ(z) ≤ k3

k∑
n=1

n4
∑

σ∈Π̃≥2(n,n,n,n)

{x(1)1 ,x
(2)
1 ,x

(3)
1 ,x

(4)
1 }∈σ

∫
X|σ|

(fn ⊗ fn ⊗ fn ⊗ fn)σ dµ|σ|

≤ k3

k∑
n=1

n4
∑

σ∈Π̃≥2(n,n,n,n)

∫
X|σ|
|(fn ⊗ fn ⊗ fn ⊗ fn)σ| dµ|σ|.

(5.20)

In the multivariate case, we can use the same upper bound. Combining the first
inequalities in part a) and part b) with the bound (5.20) leads to the second bounds
in the univariate and in the multivariate case. �
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Note that a similar bound as the second inequality in formula (5.17) even holds
without absolute values inside the integrals, i.e.

dW

(
F − EF√

VarF
,N

)
≤ k

VarF

k∑
i,j=1

√√√√ ∑
σ∈Π̃

(1)
≥2(i,i,j,j)

∫
X|σ|

(fi ⊗ fi ⊗ fj ⊗ fj)σ dµ|σ|

+
k

7
2

VarF

k∑
i=1

√√√√√√
∑

σ∈Π̃≥2(i,i,i,i)

{x(1)1 ,x
(2)
1 ,x

(3)
1 ,x

(4)
1 }∈σ

∫
X|σ|

(fi ⊗ fi ⊗ fi ⊗ fi)σ dµ|σ|.

(5.21)

This follows from the inequality (5.20). For the same reason, one has a similar bound
without absolute values for R(F ) in part b) of Theorem 5.11. For the applications that
are considered in the present work the bounds with the absolute values are sufficient.
Moreover, it can happen that only upper bounds for the absolute values of the kernels
of the Wiener-Itô chaos expansion of F are available and no exact formulas that can
be used to evaluate the integrals in formula (5.21).

Lachièze-Rey and Peccati derive a similar bound as in formula (5.17) and in formula
(5.21) in [39, Theorem 3.5]. In their formulation, the bound depends on L2-norms of
the contractions fi ?

`
r fj. The contraction fi ?

`
r fj : X i+j−r−` → R for 0 ≤ ` ≤ r and

1 ≤ r ≤ min{i, j} is defined by replacing r variables of fi and fj by new common
variables and integrating over ` of the new variables. Then we have

‖fi ?`r fj‖2
i+j−r−` =

∫
X|σ|

(fi ⊗ fi ⊗ fj ⊗ fj)σ dµ|σ|

with a partition σ ∈ Π̃≥2(i, i, j, j) if not ` = r = i = j (such contractions do not occur
in [39, Theorem 3.5]). On the other hand, the Cauchy-Schwarz inequality implies that
every integral ∫

X|σ|
(fi ⊗ fi ⊗ fj ⊗ fj)σ dµ|σ|

with a partition σ ∈ Π̃≥2(i, i, j, j) can be bounded by the product of two L2-norms of
contraction operators. This means that the bounds in formula (5.21) and in [39] are
equivalent up to constants.

In [39, Proposition 3.9], it is shown that

dW

(
F − EF√

VarF
,N

)
≤ cW,k

√
E(F − EF )4

(VarF )2
− 3 (5.22)

with a constant cW,k only depending on k if the kernels fn, n = 1, . . . , k, are non-
negative. This holds since the same integrals as in formula (5.17) also occur in the
fourth centred moment that can be computed by Corollary 3.14. In case of negative
kernels, this argument fails because some of the integrals in the centred fourth moment
could be negative and cancel out with positive integrals.

The bound (5.22) is helpful since it implies that for a family of Poisson function-
als (Ft)t≥1 with Wiener-Itô chaos expansions of order k and non-negative kernels the
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standardizations (Ft − EFt)/
√

VarFt converge in distribution to a standard Gaussian
random variable if

E(Ft − EFt)4

(VarFt)2
→ 3 as t→∞.

For a similar fourth moment criterion for multiple Wiener-Itô integrals with respect to
a Gaussian measure we refer to the work [60] by Nualart and Peccati.

Combining Corollary 5.3 with the proof of the previous theorem, we see that

dW

(
F − EF√

V
,N

)
≤
∣∣∣∣1− VarF

V

∣∣∣∣+

(
1 +

√
VarF

V

)
VarF

V
BW (5.23)

for V > 0, where BW is the right-hand side of formula (5.17). In case that V = VarF ,
the right-hand side reduces to 2BW . The constant 2 is due to an upper estimate we
used to simplify the expression.

Our next theorem is the counterpart of Theorem 5.11 a) for the Kolmogorov dis-
tance:

Theorem 5.12 Let F ∈ L2(Pη) be a Poisson functional with a finite Wiener-Itô chaos
expansion of order k such that fn ∈ L1

s(µ
n) for n = 1, . . . , k and∫

X|σ|
|(fi ⊗ fi ⊗ fi ⊗ fi)σ| dµ|σ| <∞

for all σ ∈ Π̃≥2(i, i, i, i) and i = 1, . . . , k and let N be a standard Gaussian random
variable. Then

dK

(
F − EF√

VarF
,N

)
≤ 17k5

VarF

k∑
i,j=1

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ|

+
1

VarF
sup
t∈R

E〈D1I (F > t) , DF |DL−1(F − EF )|〉L2(µ)

≤ 2k
√

2k k2 + 17k5

VarF

k∑
i,j,`=1

√√√√ ∑
σ∈Π̃(i,i,j,`)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ f`)σ| dµ|σ|.

(5.24)

Proof. Throughout this proof, we put

A =

 k∑
i,j=1

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ|


2

.

Without loss of generality we can assume that EF = 0. By the same reasoning as in
the proofs of Proposition 5.8 and Lemma 5.10, we obtain

E|1− 1

VarF
〈DF,−DL−1F 〉L2(µ)|

≤ k

VarF

k∑
i,j=1

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ| =

k
√
A

VarF
.

(5.25)
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It follows from Fubini’s theorem, Jensen’s inequality, and the product formula in Corol-
lary 3.14 that

E〈(DF )2, (DL−1F )2〉L2(µ)

=

∫
E

(
k∑
i=1

i Ii−1(fi(z, ·))

)2( k∑
j=1

Ij−1(fj(z, ·))

)2

dµ(z)

≤ k4

∫
X

E
k∑
i=1

Ii−1(fi(z, ·))2

k∑
j=1

Ij−1(fj(z, ·))2 dµ(z)

≤ k4

k∑
i,j=1

∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ| ≤ k4A,

(5.26)

E〈(DF )2, (DF )2〉L2(µ) =

∫
E

(
k∑
i=1

i Ii−1(fi(z, ·))

)2( k∑
j=1

j Ij−1(fj(z, ·))

)2

dµ(z)

≤ k6

∫
X

E
k∑
i=1

Ii−1(fi(z, ·))2

k∑
j=1

Ij−1(fj(z, ·))2 dµ(z)

≤ k6

k∑
i,j=1

∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ| ≤ k6A,

E〈DF,DF 〉2L2(µ)

= E
∫
X2

(
k∑
i=1

i Ii−1(fi(s, ·))

)2( k∑
j=1

j Ij−1(fj(t, ·))

)2

dµ(s, t)

≤ k2

∫
X2

E
k∑
i=1

i2 Ii−1(fi(s, ·))2

k∑
j=1

j2 Ij−1(fj(t, ·))2 dµ(s, t)

≤ k2

k∑
i,j=1

i2j2

∑
σ∈Π≥2(i−1,i−1,j−1,j−1)

∫
X2

∫
X|σ|
|(fi(s, ·)⊗ fi(s, ·)⊗ fj(t, ·)⊗ fj(t, ·))σ| dµ|σ| dµ(s, t)

≤ k6

k∑
i,j=1

∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ| + k4

k∑
i,j=1

i! ‖fi‖2
i j! ‖fj‖2

j

≤ k6A+ k4(VarF )2,
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and

EF 4 = E

(
k∑
i=1

Ii(fi)

)2( k∑
j=1

Ij(fj)

)2

≤ k2 E
k∑
i=1

Ii(fi)
2

k∑
j=1

Ij(fj)
2

≤ k2

k∑
i,j=1

∑
σ∈Π≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ|

≤ k2

k∑
i,j=1

∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ| + 3k2

k∑
i,j=1

i! ‖fi‖2
i j! ‖fj‖2

j

≤ k2A+ 3k2(VarF )2.

Combining the last three inequalities, we see that

2

√
E〈(DF )2, (DF )2〉L2(µ)

VarF
+ 2

(
E〈DF,DF 〉2L2(µ)

) 1
4

√
VarF

(
(EF 4)

1
4

√
VarF

+ 1

)

≤ 2
k3
√
A

VarF
+ 2

(
k

3
2A

1
4

√
VarF

+ k

)( √
kA

1
4

√
VarF

+ 3
1
4

√
k + 1

)
≤ 16k3

for
√
A/VarF ≤ 1. Together with the inequalities (5.25) and (5.26) and Theorem 5.2,

we obtain

dK

(
F − EF√

VarF
,N

)
≤ k
√
A

VarF
+ 16k3 k

2
√
A

VarF

+
1

VarF
sup
t∈R

E〈D1I
(

(F − EF )/
√

VarF > t
)
, DF |DL−1F |〉L2(µ)

≤ 17k5
√
A

VarF
+

1

VarF
sup
t∈R

E〈D1I (F > t) , DF |DL−1F |〉L2(µ)

(5.27)

for
√
A/VarF ≤ 1. Otherwise, the right-hand side is still an upper bound since the

Kolmogorov distance is by definition at most 1.
For the second inequality we evaluate the expression with the supremum in formula

(5.27). Here, we can assume that all integrals occurring in the second bound in formula
(5.24) are finite since the the inequality is obviously true otherwise. Because of the
assumption fn ∈ L1

s(µ
n) for n = 1, . . . , k, Corollary 4.12 implies that

F =
k∑
`=1

∑
(x1,...,x`)∈η`6=

g`(x1, . . . , x`)−
∫
X`

g`(y1, . . . , y`) dµ(y1, . . . , y`)

with

g`(x1, . . . , x`) =
k∑
n=`

(−1)n−`
(
n

`

)∫
Xn−`

fn(x1, . . . , x`, y1, . . . , yn−`) dµ(y1, . . . , yn−`)

76



for ` = 1, . . . , k. Defining

F+ =
k∑
`=1

∑
(x1,...,x`)∈η`6=

g+
` (x1, . . . , x`) and F− =

k∑
`=1

∑
(x1,...,x`)∈η`6=

g−` (x1, . . . , x`)

with g+
` = max{g`, 0} and g−` = max{−g`, 0} for ` = 1, . . . , k, we can rewrite F as

F = (F+ − EF+)− (F− − EF−).

and put

F = F+ + F− =
k∑
`=1

∑
(x1,...,x`)∈η`6=

|g`(x1, . . . , x`)|.

As a consequence of Lemma 4.10, we know that DzV ≥ 0 for a U-statistic V where
we sum over a non-negative function. Combining this with g+

` , g
−
` ≥ 0 for ` = 1, . . . , k

and Lemma 4.16, we see that

−DzL
−1
(
F+ − EF+

)
≥ 0 and −DzL

−1
(
F− − EF−

)
≥ 0.

Moreover, it holds that Dz1I (F > t)DzF ≥ 0. Proposition 3.13 implies that the prod-
uct DzF DzL

−1
(
F − EF

)
has a finite Wiener-Itô chaos expansion with an order less

than or equal to 2k − 2. Together with Lemma 4.7, the Cauchy-Schwarz inequality,
and Lemma 4.9, we obtain

sup
t∈R

E〈D1I (F > t) , DF |DL−1F |〉L2(µ)

= sup
t∈R

E〈D1I (F > t) , DF |DL−1
(
F+ − EF+ − F− + EF−

)
|〉L2(µ)

≤ sup
t∈R

E〈D1I (F > t) , DF
(
−DL−1(F+ − EF+)−DL−1(F− − EF−)

)
〉L2(µ)

= sup
t∈R

E[1I(F > t) δ
(
−DF DL−1(F − EF )

)
]

≤ E
[
δ
(
DF DL−1

(
F − EF

))2
] 1

2

≤
√

(2k − 1)E〈(DF )2, (DL−1
(
F − EF

)
)2〉L2(µ).

Now F − EF has the Wiener-Itô chaos expansion

F − EF =
k∑

m=1

Im(hm)

with non-negative kernels hm, m = 1, . . . , k, satisfying

hm(x1, . . . , xm)

=
k∑

`=m

(
`

m

)∫
X`−m

|g`(x1, . . . , xm, y1, . . . , y`−m)| dµ(y1, . . . , y`−m)

≤
k∑

`=m

k∑
n=`

(
`

m

)(
n

`

)∫
Xn−m

|fn(x1, . . . , xm, y1, . . . , yn−m)| dµ(y1, . . . , yn−m)

≤ 2k−m
k∑

n=m

(
n

m

)∫
Xn−m

|fn(x1, . . . , xm, y1, . . . , yn−m)| dµ(y1, . . . , yn−m).

(5.28)
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Applying Fubini‘s theorem, Jensen’s inequality, and Corollary 3.14 again yields

E〈(DF )2, (DL−1
(
F − EF

)
)2〉L2(µ)

≤
∫
X

E

(
k∑
i=1

i Ii−1(fi(z, ·))

)2( k∑
j=1

Ij−1(hj(z, ·))

)2

dµ(z)

≤ k4

∫
X

E
k∑
i=1

Ii−1(fi(z, ·))2

k∑
j=1

Ij−1(hj(z, ·))2 dµ(z)

≤ k4

k∑
i,j=1

∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ hj ⊗ hj)σ| dµ|σ|.

Together with the special structure of the upper bound (5.28), we obtain

E〈(DF )2, (DL−1
(
F − EF

)
)2〉L2(µ) ≤ k44k

k∑
i,j,`=1

∑
σ∈Π̃(i,i,j,`)

∫
X|σ|
|(fi⊗fi⊗fj⊗f`)σ| dµ|σ|,

so that

sup
t∈R

E〈D1I (F > t) , DF |DL−1F |〉L2(µ)

≤ 2k
√

2k k2

k∑
i,j,`=1

√√√√ ∑
σ∈Π̃(i,i,j,`)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ f`)σ| dµ|σ|.

(5.29)

Combining the inequalities (5.27) and (5.29) concludes the proof of Theorem 5.12. �

Similarly as in the Equations (5.10) and (5.23), we have

dK

(
F − EF√

V
,N

)
≤
∣∣∣∣1− VarF

V

∣∣∣∣+

(
VarF

V
+

(VarF )2

V 2

)
BK (5.30)

for V > 0, where BK is the right-hand side of formula (5.24). This is a direct conse-
quence of Corollary 5.3 and the proof of Theorem 5.12.

5.4 Normal approximation of Poisson functionals

with infinite Wiener-Itô chaos expansion

In this section, we turn our attention to Poisson functionals having infinite Wiener-Itô
chaos expansions. The problem of dealing with such Poisson functionals is that an
application of Proposition 5.8 leads to infinite sums as upper bounds for the Wasser-
stein distance and d3-distance, respectively. Therefore, we need to make sure that the
resulting expressions converge. This is even harder since every Rij and R

(u,v)
ij itself

is a sum of integrals. The first result of this section, Theorem 5.13, is very general,
but delivers weaker central limit theorems than the more specific Theorem 5.15 as the
applications in Chapter 8 and Chapter 9 will show.
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Since we have a bound for the normal approximation of Poisson functionals with fi-
nite Wiener-Itô chaos expansion, it is a natural approach to replace the original Poisson
functional by a Poisson functional with a finite Wiener-Itô chaos expansion which we
can approximate and to control the distance between both Poisson functionals. This
is a generalization of Theorem 5.6 where a Poisson functional is approximated by the
first order Wiener-Itô integral of its chaos expansion.

Theorem 5.13 a) Let F ∈ L2(Pη) be a Poisson functional such that∫
X|σ|
|(fn ⊗ fn ⊗ fn ⊗ fn)σ| dµ|σ| <∞ for all σ ∈ Π̃≥2(n, n, n, n) and n ∈ N

and let N be a standard Gaussian random variable. Then

dW

(
F − EF√

VarF
,N

)
≤ 2

√∑∞
n=k+1 n! ‖fn‖2

n
√

VarF

+
2k

7
2

VarF

∑
1≤i≤j≤k

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ|

for all k ∈ N.

b) Let F = (F (1), . . . , F (m)) with Poisson functionals F (`) ∈ L2(Pη), ` = 1, . . . ,m,
such that∫
X|σ|
|(f (`)

n ⊗ f (`)
n ⊗ f (`)

n ⊗ f (`)
n )σ| dµ|σ| <∞ for all σ ∈ Π̃≥2(n, n, n, n) and n ∈ N

and let N(Σ) be an m-dimensional centred Gaussian random vector with a positive
semidefinite covariance matrix Σ. Then

d3(F− EF,N(Σ))

≤ 1

2

m∑
u,v=1

|σu,v −
k∑

n=1

n! 〈f (u)
n , f (v)

n 〉L2(µn)|

+m

√√√√2
m∑
`=1

VarF (`)

√√√√ m∑
`=1

∞∑
n=k+1

n! ‖f (`)
n ‖2

n

+
m

2
k

7
2

(
m∑
`=1

√
VarF (`) + 1

)
m∑

u,v=1

k∑
i,j=1

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(f (u)

i ⊗ f
(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ| dµ|σ|

for all k ∈ N.
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Proof. We fix k ∈ N and define the truncated Poisson functional Fk =
∑k

n=1 In(fn).
The triangle inequality for the Wasserstein distance implies that

dW

(
F − EF√

VarF
,N

)
≤ dW

(
F − EF√

VarF
,

Fk√
VarF

)
+ dW

(
Fk√

VarF
,N

)
.

It follows from Lemma 5.7 a) and Theorem 4.2 that

dW

(
F − EF√

VarF
,

Fk√
VarF

)
≤
√

E(F − EF − Fk)2

√
VarF

=

√∑∞
n=k+1 n! ‖fn‖2

n
√

VarF
.

Theorem 5.1 and the triangle inequality imply that

dW

(
Fk√

VarF
,N

)
≤ E|1− 1

VarF
〈DFk,−DL−1Fk〉L2(µ)|

+
1

(VarF )
3
2

∫
X

E(DzFk)
2 |DzL

−1Fk| dµ(z)

≤ VarF − VarFk
VarF

+
1

VarF
E|VarFk − 〈DFk,−DL−1Fk〉L2(µ)|

+
1

(VarF )
3
2

∫
X

E(DzFk)
2 |DzL

−1Fk| dµ(z).

For the first summand we have the upper bound

VarF − VarFk
VarF

=

∑∞
n=k+1 n! ‖fn‖2

n

VarF
≤

√∑∞
n=k+1 n! ‖fn‖2

n
√

VarF
.

The remaining terms can be bounded in the same way as in Proposition 5.8 and
Theorem 5.11. Combining all these estimates, we obtain the bound in part a).

For the multivariate setting we define Fk = (F
(1)
k , . . . , F

(m)
k ) with F

(`)
k =

∑k
n=1In(fn)

for ` = 1, . . . ,m and obtain, by the triangle inequality for d3,

d3(F− EF,N(Σ)) ≤ d3(F− EF,Fk) + d3(Fk,N(Σ)).

For the first expression Lemma 5.7 b) and Theorem 4.2 yield the bound

d3(F− EF,Fk) ≤ m

√√√√ m∑
`=1

VarF (`) + VarF
(`)
k

√√√√ m∑
`=1

VarF (`) − VarF
(`)
k

≤ m

√√√√2
m∑
`=1

VarF (`)

√√√√ m∑
`=1

∞∑
n=k+1

n! ‖f (`)
n ‖2

n.

Combining this estimate with the bound we obtain from Theorem 5.11 for d3(Fk,N(Σ))
concludes the proof. �

Using the previous theorem, we can state the following central limit theorems:
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Corollary 5.14 a) Let Ft ∈ L2(Pηt) for t ≥ 1 and let N be a standard Gaussian
random variable. If there are constants (cn)n∈N and t0 ≥ 1 such that

n! ‖fn,t‖2
n,t

VarFt
≤ cn for t ≥ t0 and

∞∑
n=1

cn <∞ (5.31)

and if

lim
t→∞

1

(VarFt)2

∫
X|σ|
|(fi,t ⊗ fi,t ⊗ fj,t ⊗ fj,t)σ| dµ|σ|t = 0 (5.32)

for σ ∈ Π̃≥2(i, i, j, j) and i, j ∈ N, then (Ft − EFt)/
√

VarFt → N in distribution
as t→∞.

b) Let Ft = (F
(1)
t , . . . , F

(m)
t ) with F

(`)
t ∈ L2(Pηt) for ` = 1, . . . ,m and let N(Σ) be

an m-dimensional centred Gaussian random vector with a covariance matrix Σ
given by

σuv = lim
t→∞

Cov(F
(u)
t , F

(v)
t )

for u, v = 1, . . . ,m. Assume that there are constants (c
(`)
n )n∈N, ` = 1, . . . ,m, and

t0 ≥ 1 such that

n! ‖f (`)
n,t‖2

n,t

VarF
(`)
t

≤ c(`)
n for t ≥ t0 and

∞∑
n=1

c(`)
n <∞ (5.33)

for ` = 1, . . . ,m and that

lim
t→∞

∫
X|σ|
|(f (u)

i,t ⊗ f
(u)
i,t ⊗ f

(v)
j,t ⊗ f

(v)
j,t )σ| dµ|σ|t = 0 for σ ∈ Π̃≥2(i, i, j, j) (5.34)

for i, j ∈ N and u, v ∈ {1, . . . ,m}. Then Ft → N(Σ) in distribution as t→∞.

Proof. We start with part a). For an arbitrary ε > 0 the assumption (5.31) ensures
that there exists an n0 = n0(ε) with

2

√∑∞
n=n0+1 n! ‖fn,t‖2

n,t
√

VarFt
<
ε

2

for t ≥ t0. It follows from the assumption (5.32) that we can choose a constant t̃ ≥ 1
such that

2n
7
2
0

VarFt

∑
1≤i≤j≤n0

√√√√ ∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi,t ⊗ fi,t ⊗ fj,t ⊗ fj,t)σ| dµ|σ|t ≤

ε

2

for all t ≥ t̃. Together with Theorem 5.13 a), we obtain that

dW

(
Ft − EFt√

VarFt
, N

)
≤ ε
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for t ≥ max{t0, t̃}, which concludes the proof of the univariate case. The multivariate
version can be proven by combining the assumptions (5.33) and (5.34) with Theorem
5.13 b) in a similar way. �

In case that the kernels of the Wiener-Itô chaos expansion of a Poisson functional
satisfy some technical integrability conditions, we can apply the technique we used
for Poisson functionals with a finite Wiener-Itô chaos expansion directly to a Poisson
functional with an infinite Wiener-Itô chaos expansion:

Theorem 5.15 a) Let F ∈ L2(Pη) be a Poisson functional satisfying F ∈ domD
and let N be a standard Gaussian random variable. Moreover, assume that there
are constants a > 0 and b ≥ 1 such that∫

X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ| ≤

a bi+j

(i! j!)2
(5.35)

for all σ ∈ Π̃
(1)
≥2(i, i, j, j) and i, j ∈ N. Then

dW

(
F − EF√

VarF
,N

)
≤ cb

√
a

VarF
+

1

VarF

(∫
X

E(DzF )4 dµ(z)

) 1
2

with a constant cb > 0 only depending on b.

b) Let F = (F (1), . . . , F (m)) be a vector of Poisson functionals F (`) ∈ L2(Pη) with
F (`) ∈ domD for ` = 1, . . . ,m and let N(Σ) be an m-dimensional centred Gaus-
sian random vector with a positive semidefinite covariance matrix Σ. If there are
constants a > 0 and b ≥ 1 such that∫

X|σ|
|(f (u)

i ⊗ f
(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ| dµ|σ| ≤

a bi+j

(i! j!)2
(5.36)

for all σ ∈ Π̃
(1)
≥2(i, i, j, j), i, j ∈ N, and 1 ≤ u, v ≤ m, then

d3(F− EF,N(Σ)) ≤ 1

2

m∑
u,v=1

|σuv − Cov(F (u), F (v))|+ m2cb
√
a

2

+
m

4

m∑
u,v=1

(∫
E(DzF

(u))4

) 1
2 √

VarF (v)

with the same constant cb > 0 as in a).

Proof. Combing Lemma 5.10 and the assumptions (5.35) and (5.36) yields

Rij =
∑

σ∈Π̃
(1)
≥2(i,i,j,j)

∫
X|σ|

(fi ⊗ fi ⊗ fj ⊗ fj)σ dµ|σ| ≤ |Π̃(1)
≥2(i, i, j, j)| a b

i+j

(i! j!)2
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for i, j ∈ N and

R
(u,v)
ij =

∑
σ∈Π̃

(1)
≥2(i,i,j,j)

∫
X|σ|

(f
(u)
i ⊗ f

(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ dµ|σ| ≤ |Π̃(1)

≥2(i, i, j, j)| a b
i+j

(i! j!)2

for i, j ∈ N and 1 ≤ u, v ≤ m. Note that |Π̃(1)
≥2(i, i, j, j| ≤ |Π≥2(i, i, j, j)| since

Π̃
(1)
≥2(i, i, j, j) ⊂ Π≥2(i, i, j, j). For a partition σ ∈ Π≥2(i, i, j, j) we denote by kpq with

1 ≤ p < q ≤ 4 the number of blocks including only variables of the p-th and q-th func-
tion of the tensor product. Moreover, let kpqr with 1 ≤ p < q < r ≤ 4 be the number of
blocks consisting of variables of the p-th, q-th, and r-th function of the tensor product
and let k1234 be the number of blocks with four variables. For given k12, . . . , k1234 there
are at most

(i! j!)2

k12! . . . k1234!

partitions in Π≥2(i, i, j, j).
Since there are eleven different numbers of blocks k12, . . . , k1234 and each of them

must be between 0 and i or j, we have at most max{i+ 1, j + 1}11 possible choices for
k12, . . . , , k1234. The seven numbers of k12, . . . , k1234 that have an index ` ∈ {1, 2, 3, 4}
must sum up to i for ` ∈ {1, 2} and j for ` ∈ {3, 4}, respectively. This implies that
max{k12, . . . , k1234} ≥ dmax{i, j}/7e. Altogether, we obtain

|Π≥2(i, i, j, j)| ≤ max{i+ 1, j + 1}11(i! j!)2

dmax{i, j}/7e!
≤ 211 max{i, j}11(i! j!)2

dmax{i, j}/7e!

so that

Rij ≤
211 max{i, j}11 bi+j

dmax{i, j}/7e!
a and R

(u,v)
ij ≤ 211 max{i, j}11 bi+j

dmax{i, j}/7e!
a.

A short computation shows that

∞∑
i,j=1

i

√
211 max{i, j}11 bi+j

dmax{i, j}/7e!
≤ 2

11
2

∞∑
i,j=1

max{i, j}

√
max{i, j}11

dmax{i, j}/7e!
bmax{i,j}

≤ 2
13
2

∞∑
k=1

k2

√
k11

dk/7e!
bk,

which proves that the series converges. We take the sum on the right-hand side as
definition of cb. Now Theorem 5.15 is a direct consequence of Proposition 5.8. �

Notes: Theorem 5.2 and the example for the normal approximation of a Poisson
distributed random variable in Section 5.1 are taken from Schulte 2012b.

The truncation argument in the proof of Theorem 5.6 and Lemma 5.7 are from
Last, Penrose, Schulte, and Thäle 2012. But the setting of Section 5.2 is slightly
more general since we consider general Poisson functionals instead of a special class of
Poisson U-statistics.
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Bounds derived by the Malliavin-Stein method for Poisson functionals with finite
Wiener-Itô chaos expansion as in Section 5.3 are evaluated in Reitzner and Schulte
2011. The univariate part of Proposition 5.8 is very similar. Due to technical reason
we use a different version of the product formula for multiple Wiener-Itô integrals. In
Lemma 5.10, we carry out an idea that is briefly mentioned in Schulte 2012a. A special
version of Theorem 5.11 for Poisson U-statistics is given in Reitzner and Schulte 2011,
whereas the multivariate part is new. Theorem 5.12 is a generalization of a result from
Schulte 2012b, where it is assumed that the Poisson functional is a Poisson U-statistic.

The univariate part of Theorem 5.13 and Corollary 5.14 are contained in Schulte
2012a. The multivariate result can be derived in a similar way. Theorem 5.15 is derived
in Hug, Last, and Schulte 2012.
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Chapter 6

Limit theorems for Poisson
U-statistics

In this chapter, we use the results of the previous chapter to investigate the asymp-
totic behaviour of Poisson U-statistics. We derive abstract bounds for the normal
approximation of Poisson U-statistics in the first section that are applied to two spe-
cial classes of Poisson U-statistics, so-called geometric Poisson U-statistics and local
Poisson U-statistics, in the second and third section.

6.1 Normal approximation of Poisson U-statistics

In the sequel, we consider a Poisson U-statistic of the form

S =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

with f ∈ L1
s(µ

k). We assume henceforth that S is absolutely convergent.

Definition 6.1 A Poisson U-statistic S is absolutely convergent if the Poisson U-
statistic

S =
∑

(x1,...,xk)∈ηk6=

|f(x1, . . . , xk)|

is in L2(Pη).

To motivate the definition of an absolutely convergent Poisson U-statistic, we pro-
vide an example of a Poisson U-statistic that is in L2(Pη) but not absolutely convergent.

Example 6.2 Similarly as in Example 4.14, we consider a stationary Poisson point
process η on R with intensity one and set

f(x1, x2) = 1I(0 ≤ |x1|
√
|x2| ≤ 1) 1I(0 ≤ |x2|

√
|x1| ≤ 1) (2 1I(x1x2 ≥ 0)− 1)

and
S =

∑
(x1,x2)∈η26=

f(x1, x2) and S =
∑

(x1,x2)∈η26=

|f(x1, x2)|.
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Now it is easy to verify for the kernels of the Wiener-Itô chaos expansion of S that
f1(x) = 0 and f2(x1, x2) = f(x1, x2) so that S ∈ L2(Pη). But the first kernel of the
Wiener-Itô chaos expansion of S is not in L2(R) so that S /∈ L2(Pη).

Note that S absolutely convergent implies that S ∈ L2(Pη). Obviously, every
S ∈ L2(Pη) with f ≥ 0 is absolutely convergent.

In Chapter 3 and in Chapter 4, it was shown that a Poisson U-statistic S ∈ L2(Pη)
of order k has the finite Wiener-Itô chaos expansion

S = ES +
k∑

n=1

In(fn)

with

ES =

∫
Xk

f(y1, . . . , yk) dµ(y1, . . . , yk)

and

fn(x1, . . . , xn) =

(
k

n

)∫
Xk−n

f(x1, . . . , xn, y1, . . . , yk−n) dµ(y1, . . . , yk−n)

for n = 1, . . . , k and that the variance of S is given by

VarS =
k∑

n=1

n! ‖fn‖2
n

=
k∑

n=1

n!

(
k

n

)2∫
Xn

(∫
Xk−n

f(x1, . . . , xn, y1, . . . , yk−n) dµ(y1, . . . , yk−n)

)2

dµ(x1, . . . , xn).

In our multivariate results, we investigate a vector S = (S(1), . . . , S(m)) of Poisson
U-statistics S(`) ∈ L2(Pη) given by

S(`) =
∑

(x1,...,xk` )∈η
k`
6=

f (`)(x1, . . . , xk`)

with f (`) ∈ L1
s(µ

k`) and k` ∈ N for ` = 1, . . . ,m. Analogously to the univariate setting,
we have

ES(`) =

∫
Xk`

f (`)(y1, . . . , yk`) dµ(y1, . . . , yk`),

and S(`) has a finite Wiener-Itô chaos expansion of order k` with kernels

f (`)
n (x1, . . . , xn) =

(
k`
n

)∫
Xk`−n

f (`)(x1, . . . , xn, y1, . . . , yk`−n) dµ(y1, . . . , yk`−n)

for n = 1, . . . , k`. The covariance matrix of S is given by

Cov(S(u), S(v)) =

min{ku,kv}∑
n=1

n! 〈f (u)
n , f (v)

n 〉L2(µn)
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for u, v = 1, . . . ,m.
In order to neatly formulate our results, we use the following notation. For a

function h : Xk → R and 1 ≤ i, j ≤ k we define

Mij(h) =
∑

σ∈Π̃(k,k,k,k)
s(σ)=(k−i,k−i,k−j,k−j)

∫
X|σ|
|(h⊗ h⊗ h⊗ h)σ| dµ|σ|,

and for h1 : Xk1 → R and h2 : Xk2 → R and 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2 we put

Mij(h1, h2) =
∑

σ∈Π̃(k1,k1,k2,k2)
s(σ)=(k1−i,k1−i,k2−j,k2−j)

∫
X|σ|
|(h1 ⊗ h1 ⊗ h2 ⊗ h2)σ| dµ|σ|.

By Theorem 4.11, the functions fn : Xn → R given by

fn(x1, . . . , xn) =

(
k

n

)∫
Xk−n

|f(x1, . . . , xn, y1, . . . , yk−n)| dµ(y1, . . . , yk−n)

for n = 1, . . . , k are the kernels of the Wiener-Itô chaos expansion of the Poisson
U-statistic

S =
∑

(x1,...,xk)∈ηk6=

|f(x1, . . . , xk)|

we used for the definition of an absolutely convergent Poisson U-statistic. It follows
from Fubini’s theorem that

Mij(f) =
∑

σ∈Π̃≥2(i,i,j,j)

∫
X|σ|

(f i ⊗ f i ⊗ f j ⊗ f j)σ dµ|σ|.

Since |fn| ≤ fn for n = 1, . . . , k, it is easy to see that

Mij(f) ≥
∑

σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ fj ⊗ fj)σ| dµ|σ|, (6.1)

where equality holds if and only if f ≥ 0. In the multivariate case, we have

Mij(f
(u), f (v)) =

∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|

(f
(u)

i ⊗ f
(u)

i ⊗ f
(v)

j ⊗ f
(v)

j )σ dµ|σ|,

where f
(u)

i , i = 1, . . . , ku, and f
(v)

j , j = 1, . . . , kv, are the kernels of the Wiener-Itô
chaos expansions of the Poisson U-statistics

S
(u)

=
∑

(x1,...,xku )∈ηku6=

|f (u)(x1, . . . , xku)| and S
(v)

=
∑

(x1,...,xkv )∈ηkv6=

|f (v)(x1, . . . , xkv)|.

Analogously to inequality (6.1), we have

Mij(f
(u), f (v)) ≥

∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(f (u)

i ⊗ f
(u)
i ⊗ f

(v)
j ⊗ f

(v)
j )σ| dµ|σ| (6.2)

with equality if and only if f (u) ≥ 0 and f (v) ≥ 0. Combining the inequalities (6.1) and
(6.2) with Theorem 5.11 yields:

87



Theorem 6.3 a) For an absolutely convergent Poisson U-statistic S of order k and
a standard Gaussian random variable N we have

dW

(
S − ES√

VarS
,N

)
≤ 2k

7
2

∑
1≤i≤j≤k

√
Mij(f)

VarS
.

b) Let S = (S(1), . . . , S(m)) be a vector of absolutely convergent Poisson U-statistics
of the orders k1, . . . , km and let N(Σ) be an m-dimensional centred Gaussian
random vector with a positive semidefinite covariance matrix Σ. Then

d3(S− ES,N(Σ)) ≤ 1

2

m∑
u,v=1

|σuv − Cov(S(u), S(v))|

+
m

2

(
m∑
`=1

√
VarS(`) + 1

)
m∑

u,v=1

ku∑
i=1

kv∑
j=1

k
7
2
u

√
Mij(f (u), f (v)).

We can also derive a bound similar to the first part of Theorem 6.3 for the Kol-
mogorov distance:

Theorem 6.4 For an absolutely convergent Poisson U-statistic S of order k and a
standard Gaussian random variable N we have

dK

(
S − ES√

VarS
,N

)
≤ 19k5

k∑
i,j=1

√
Mij(f)

VarS
. (6.3)

Proof. Using Theorem 5.12 and the inequality (6.1), we obtain

dK

(
S − ES√

VarS
,N

)
≤17k5

k∑
i,j=1

√
Mij(f)

VarS

+
1

VarS
sup
t∈R

E〈D1I (S > t) , DS |DL−1(S − ES)|〉L2(µ).

(6.4)

Now we bound the second part in a similar way as in the proof of Theorem 5.12 but
make use of the fact that S is an absolutely convergent Poisson U-statistic. We define

S+ =
∑

(x1,...,xk)∈ηk6=

f+(x1, . . . , xk) and S− =
∑

(x1,...,xk)∈ηk6=

f−(x1, . . . , xk)

with f+ = max{f, 0} and f− = max{−f, 0} and put

S = S+ + S− =
∑

(x1,...,xk)∈ηk6=

|f(x1, . . . , xk)|.

By the same reasoning as in the proof of Theorem 5.12, we obtain

sup
t∈R

E〈D1I (S > t) , DS |DL−1(S − ES)|〉L2(µ)

≤ sup
t∈R

E〈D1I (S > t) , DS
(
−DL−1(S − ES)

)
〉L2(µ)

≤
√

(2k − 1)E〈(DS)2, (DL−1(S − ES))2〉L2(µ).

(6.5)
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Evaluating the right-hand side by Corollary 3.14 in a similar way as in formula (5.26)
yields

E〈(DS)2, (DL−1(S − ES))2〉L2(µ)

≤ k4

k∑
i,j=1

∑
σ∈Π̃≥2(i,i,j,j)

∫
X|σ|
|(fi ⊗ fi ⊗ f j ⊗ f j)σ| dµ|σ| ≤ k4

k∑
i,j=1

Mij(f).
(6.6)

Here, f j stands for the j-th kernel of the Wiener-Itô chaos expansion of S. Combining
the inequalities (6.5) and (6.6) with formula (6.4) concludes the proof of the bound
(6.3). �

In Theorem 6.3 and Theorem 6.4, we tacitly assume that the expressions on the
right-hand sides are finite. If the function f we sum over in the Poisson U-statistic S
is non-negative, we have the following fourth moment criterion (see also the discussion
next to Theorem 5.11):

Corollary 6.5 For a Poisson U-statistic

S =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

of order k with f ∈ L1
s(µ

k) and f ≥ 0 and a standard Gaussian random variable N we
have

dW

(
S − ES√

VarS
,N

)
≤ 2k

11
2

√
E(S − ES)4

(VarS)2
− 3

and

dK

(
S − ES√

VarS
,N

)
≤ 19k7

√
E(S − ES)4

(VarS)2
− 3.

Proof. Because of f ≥ 0, the equation

S4 =
∑

σ∈Π(k,k,k,k)

∑
(x1,...,x|σ|)∈η

|σ|
6=

(f ⊗ f ⊗ f ⊗ f)σ(x1, . . . , x|σ|)

holds almost surely. Now the Slivnyak-Mecke formula implies that ES4 < ∞ if and
only if ∫

X|σ|
(f ⊗ f ⊗ f ⊗ f)σ dµ|σ| <∞

for all σ ∈ Π(k, k, k, k). For ES4 =∞ the assertions are obviously true. Otherwise, it
follows from Theorem 3.4 and Lemma 2.5 that

Mij(f) =
∑

σ∈Π̃(k,k,k,k)
s(σ)=(k−i,k−i,k−j,k−j)

∫
X|σ|

(f ⊗ f ⊗ f ⊗ f)σ dµ|σ|

≤
∑

σ∈Π̃(k,k,k,k)

∫
X|σ|

(f ⊗ f ⊗ f ⊗ f)σ dµ|σ|

≤ γ4(S − ES) = E(S − ES)4 − 3(VarF )2
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so that the bounds for the Wasserstein distance and the Kolmogorov distance are direct
consequences of Theorem 6.3 and Theorem 6.4. �

6.2 Limit theorems for geometric Poisson

U-statistics

In this section, we consider a family of Poisson point processes (ηt)t≥1 with intensity
measures (µt)t≥1 that are given by µt = tµ with a fixed σ-finite measure µ and a special
class of Poisson U-statistics (St)t≥1, namely so-called geometric Poisson U-statistics.

Definition 6.6 A family of Poisson U-statistics (St)t≥1 of the form

St =
∑

(x1,...,xk)∈ηkt, 6=

ft(x1, . . . , xk)

is called geometric if ft ∈ L1
s(µ

k
t ) satisfies

ft(x1, . . . , xk) = g(t) f̃(x1, . . . , xk)

with g : R→ (0,∞) and f̃ : Xk → R not depending on t.

If g ≡ 1, we can write

St = S(ηt) =
∑

(x1,...,xk)∈ηkt, 6=

f̃(x1, . . . , xk).

Then the value of S for a given realization of ηt only depends on the geometry of the
points of ηt and not on the intensity parameter t. For this reason, we use the term
geometric. We allow an intensity related scaling factor g(t) in the definition above
since we only consider standardized random variables where the scaling factor g(t) is
cancelled out.

Theorem 6.7 Let N be a standard Gaussian random variable and let (St)t≥1 be a
family of absolutely convergent geometric Poisson U-statistics of order k with

Ṽ := k2

∫
X

(∫
Xk−1

f̃(x, y1, . . . , yk−1) dµ(y1, . . . , yk−1)

)2

dµ(x) > 0. (6.7)

a) We have

lim
t→∞

VarSt
g(t)2 t2k−1

= Ṽ . (6.8)

b) If ∫
X

∣∣∣∣∫
Xk−1

f̃(x, y1, . . . , yk−1) dµ(y1, . . . , yk−1)

∣∣∣∣3 dµ(x) <∞,

there is a constant CW,f̃ > 0 such that

dW

(
St − ESt√

VarSt
, N

)
≤ CW,f̃ t

− 1
2 (6.9)

for t ≥ 1.
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c) If Mij(f̃) <∞ for i, j = 1, . . . , k, then there is a constant CK,f̃ such that

dK

(
St − ESt√

VarSt
, N

)
≤ CK,f̃ t

− 1
2 (6.10)

for t ≥ 1.

Proof. It follows from Theorem 4.11 and the form of ft and µt that the Wiener-Itô
chaos expansion of St has the kernels

fn,t(x1, . . . , xn) =

(
k

n

)∫
Xk−n

ft(x1, . . . , xn, y1, . . . , yk−n) dµt(y1, . . . , yk−n)

= g(t) tk−n
(
k

n

)∫
Xk−n

f̃(x1, . . . , xn, y1, . . . , yk−n) dµ(y1, . . . , yk−n)︸ ︷︷ ︸
=:f̃n(x1,...,xn)

for n = 1, . . . , k. Since fn,t ∈ L2
s(µ

n
t ), we have f̃n ∈ L2

s(µ
n). As before, we denote by

‖ · ‖n and ‖ · ‖n,t the L2-norms in L2
s(µ

n) and L2
s(µ

n
t ), respectively. Now Theorem 4.2

yields

VarSt = g(t)2

k∑
n=1

n! ‖f̃n‖2
n t

2k−n.

This sum is a polynomial of degree 2k−1 in t with the leading coefficient ‖f̃1‖2
1 = Ṽ > 0,

which proves formula (6.8).
Theorem 5.6 a) implies that

dW

(
St − ESt√

VarSt
, N

)
≤ 2

√
1−
‖f1,t‖2

1,t

VarSt
+

1

(VarSt)
3
2

∫
X

|f1,t(z)|3 dµt(z).

Obviously, we have VarSt ≥ ‖f1,t‖2
1,t = g(t)2 Ṽ t2k−1. Combining this with

1−
‖f1,t‖2

1,t

VarSt
=

∑k
n=2 n! ‖fn,t‖2

n,t

VarSt
≤ g(t)2

∑k
n=2 n! ‖f̃n‖2

n t
2k−n

g(t)2 Ṽ t2k−1
≤
∑k

n=2 n! ‖f̃n‖2
n

Ṽ
t−1

for t ≥ 1 and

1

(VarSt)
3
2

∫
X

|f1,t(z)|3 dµt(z)

≤ 1

g(t)3 Ṽ
3
2 t3k−

3
2

g(t)3 t3k−2

∫
X

|f̃1(z)|3 dµ(z)

=
k3

Ṽ
3
2

∫
X

∣∣∣∣∫
Xk−1

f̃(x, y1, . . . , yk−1) dµ(y1, . . . , yk−1)

∣∣∣∣3 dµ(x) t−
1
2

for t ≥ 1 proves the bound (6.9).
We know from Theorem 6.4 that

dK

(
St − ESt√

VarSt
, N

)
≤ 19k5

k∑
i,j=1

√
Mij(ft)

VarSt
.
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Here, we integrate in Mij(·) with respect to the measure µt. In contrast, we write

M̃ij(·) if we integrate with respect to µ. Since |σ| ≤ 2i+ 2j − 3 for σ ∈ Π̃(i, i, j, j), we
obtain

Mij(ft) = g(t)4
∑

σ∈Π̃(k,k,k,k)
s(σ)=(k−i,k−i,k−j,k−j)

∫
X|σ|
|(f̃ ⊗ f̃ ⊗ f̃ ⊗ f̃)σ| dµ|σ|t t2(k−i)+2(k−j)

= g(t)4M̃ij(f̃) t2(k−i)+2(k−j)+|σ| ≤ g(t)4M̃ij(f̃) t4k−3

for t ≥ 1. Together with VarSt ≥ g(t)2 Ṽ t2k−1, this yields the bound (6.10). �

In case that µ(X) <∞ (and ft = f̃), one can also consider a binomial point process
ζm of m independently distributed points with respect to the probability measure
µ(·)/µ(X) and a classical U-statistic

Tm =
∑

(x1,...,xk)∈ζkm, 6=

f̃(x1, . . . , xk).

Recall from Section 3.2 that ζkm, 6= stands for the set of all k-tuples of distinct points
from ζm. In the classical works [17, 19, 36] by Grams and Serfling, Korolyuk and
Borovskich, and Friedrich, bounds for the normal approximation of Tm in Kolmogorov
distance were derived. Under some moment assumptions on f̃ , these bounds are of
order m−

1
2 , which is very similar to t−

1
2 in formula (6.10). For a more recent proof we

refer to the work [10] by Chen and Shao.
Classical U-statistics have a so-called Hoeffding decomposition (see the classical

references [27, 37, 43] by Hoeffding, Korolyuk and Borovskich, and Lee, for example)

Tm = ETm +
k∑

n=1

∑
(x1,...,xn)∈ζnm, 6=

(
m− n
k − n

)
hn(x1, . . . , xn)

with functions hn ∈ L1
s(µ

n), n = 1, . . . , k, such that∫
X

hn(x1, . . . , xn−1, y) dµ(y) = 0

for µ-almost all x1, . . . , xn−1 ∈ X. For explicit formulas for hn we refer to [27, 37, 43].
If µ(X) <∞, the Poisson U-statistic St equals almost surely the Poissonized classical
U-statistic Tηt(X) so that one can compute the Hoeffding decomposition of St (this was

done by Lachièze-Rey and Peccati in [40] for the case ‖f̃1‖2
1 = 0). Then the summands

in the Hoeffding decomposition are Poisson U-statistics, that can be written as sums of
Poisson U-statistics due to the definition of hn. Comparing the n-th summand of the
Hoeffding decomposition with the n-th multiple Wiener-Itô integral in the Wiener-Itô
chaos expansion of St, that is itself a sum of Poisson U-statistics, one sees that both
have a similar structure, but are distinct. Indeed, in the Hoeffding decomposition the
Poisson U-statistics are multiplied by factors depending on the given realization of the
Poisson point process, which is not the case if we write In,t(fn,t) as a sum of Poisson
U-statistics.
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In [40, Theorem 7.3], the Hoeffding decomposition and a result due to Dynkin
and Mandelbaum (see [15]) are used to prove that a geometric Poisson U-statistic
converges after a suitable rescaling to the multiple Wiener-Itô integral with respect
to a Gaussian measure with control µ of the first kernel f̃q with ‖f̃q‖2

q 6= 0 if q > 1.
For q = 1 the argument still holds, and the Wiener-Itô integral is a Gaussian random
variable so that we have convergence in distribution of the standardized Poisson U-
statistic to a standard Gaussian random variable as in Theorem 6.7. But in contrast
to the Malliavin-Stein method this approach does not deliver a rate of convergence.

The assumption (6.7) in Theorem 6.7 cannot be easily dispensed as the following
example shows:

Example 6.8 Let ηt be the restriction of a stationary Poisson point process with
intensity t > 0 on [−1, 1], i.e. the intensity measure is µt(·) = t λ(·∩ [−1, 1]). We define
a Poisson U-statistic

St =
∑

(x1,x2)∈η2t, 6=

f(x1, x2) with f(x1, x2) = sgn(x1) sgn(x2) =

{
1, x1x2 ≥ 0

−1, x1x2 < 0
,

where sgn(·) stands for the sign of a real number. Since

ESt = t2
∫ 1

−1

∫ 1

−1

f(y1, y2) dy1 dy2 = t2
∫ 1

−1

∫ 1

−1

sgn(y1) sgn(y2) dy1 dy2 = 0

and

f1,t(x) = 2t

∫ 1

−1

f(x, y) dy = 2t

∫ 1

−1

sgn(y) dy sgn(x) = 0

for all x ∈ [−1, 1], St has the Wiener-Itô chaos expansion St = I2,t(f) and the variance

VarSt = 2t2
∫ 1

−1

∫ 1

−1

f(y1, y2)2 dy1 dy2 = 2t2
∫ 1

−1

∫ 1

−1

1 dy1 dy2 = 8t2.

For the `-th cumulant γ`(St) of St we obtain, by Theorem 3.7,

γ`(St) =
∑

σ∈Π̃≥2(2,...,2)

∫
X|σ|

(⊗`j=1f)σ dµ
|σ|
t .

Because of µt = tµ and |σ| ≤ ` for σ ∈ Π̃≥2(2, . . . , 2), the `-th cumulant is a polynomial

in t, and its degree is at most `. There are 2`−1 (`−1)! partitions σ ∈ Π̃≥2(2, . . . , 2) with
|σ| = `. Indeed, we obtain a cycle by connecting two functions having two variables in
the same block of such a partition. There are (`−1)! possible cycles and for each cycle
we can switch the two variables of a function, which gives us 2`−1 possible combinations.
For such a partition σ ∈ Π̃≥2(2, . . . , 2) with |σ| = ` we have

∫
X|σ|

(⊗`j=1f)σ dλ|σ| =

∫ 1

−1

. . .

∫ 1

−1

|σ|∏
j=1

sgn(yj)
2 dy1 . . . dy|σ| = 2`
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so that

lim
t→∞

γ`(St)

t`
= 2`−1 (`− 1)! 2` = 22`−1 (`− 1)!

for ` ∈ N. As a consequence, we have

lim
t→∞

γ`(
√

2St/
√

VarSt) =
2
`
2 22`−1 (`− 1)!

8
`
2

= 2`−1 (`− 1)!

for ` ∈ N. Since these are the moments of a centred chi-square distribution with one
degree of freedom, the method of moments or cumulants (see Proposition 2.6) yields
that

√
2St/
√

VarSt converges in distribution to such a random variable as t→∞.
The limiting distribution can be also computed by applying Theorem 7.3 from [40]

that was discussed above.

Instead of a family of geometric Poisson U-statistics we can consider a family of
random vectors (St)t≥1 of geometric Poisson U-statistics. More precisely, let St =

(S
(1)
t , . . . , S

(m)
t ) be such that

S
(`)
t = g(`)(t)

∑
(x1,...,xk` )∈η

k`
t, 6=

f̃ (`)(x1, . . . , xk`)

with g(`) : R → (0,∞) and f̃ (`) ∈ L1
s(µ

k`) for ` = 1, . . . ,m. Now we are able to
formulate the multivariate counterpart of Theorem 6.7:

Theorem 6.9 Let (St)t≥1 be a family of vectors of absolutely convergent geometric

Poisson U-statistics (S
(`)
t )t≥1 of order k` such that∫

X

∣∣∣∣∫
Xk−1

f̃ (`)(x, y1, . . . , yk−1) dµ(y1, . . . , yk−1)

∣∣∣∣3 dµ(x) <∞

for ` = 1, . . . ,m and let N(Σ) be an m-dimensional Gaussian random vector with a
covariance matrix Σ given by

σuv = 〈f̃ (u)
1 , f̃

(v)
1 〉L2(µ) = kukv

∫
X

∫
Xku−1

f̃ (u)(x, y1, . . . , yku−1) dµ(y1, . . . , yku−1)∫
Xkv−1

f̃ (v)(x, y1, . . . , ykv−1) dµ(y1, . . . , ykv−1) dµ(x)

for u, v = 1, . . . ,m. Then there is a constant Cf̃ (1),...,f̃ (m) > 0 depending on f̃ (1), . . . , f̃ (m)

such that

d3

((
S

(1)
t − ES(1)

t

g(1)(t) tk1−
1
2

, . . . ,
S

(m)
t − ES(m)

t

g(m)(t) tkm−
1
2

)
,N(Σ)

)
≤ Cf̃ (1),...,f̃ (m)t−

1
2

for t ≥ 1. For m = 1 we can replace the d3-metric by the Wasserstein distance and, if
Mij(f̃

(1)) <∞ for i, j = 1, . . . , k1, by the Kolmogorov distance.
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Proof. Without loss of generality we can assume that g(`) ≡ 1 for ` = 1, . . . ,m. It
follows from Theorem 5.6 b) that

d3

((
S

(1)
t − ES(1)

t

g(1)(t) tk1−
1
2

, . . . ,
S

(m)
t − ES(m)

t

g(m)(t) tkm−
1
2

)
,N(Σ)

)

≤ 1

2

m∑
u,v=1

|〈f̃ (u)
1 , f̃

(v)
1 〉L2(µ) − t−ku−kv+1〈f (u)

1,t , f
(v)
1,t 〉L2(µt)|

+
m2

4

m∑
`=1

t−3k`+
3
2

∫
X

|f (`)
1,t (z)|3 dµt(z)

+
√

2m

√√√√ m∑
`=1

t−2k`+1 VarS
(`)
t

√√√√ m∑
`=1

t−2k`+1

k∑̀
n=2

n! ‖f (`)
n,t‖2

n,t.

Now the summands on the right-hand side simplify to

〈f̃ (u)
1 , f̃

(v)
1 〉L2(µ) − t−ku−kv+1〈f (u)

1,t , f
(v)
1,t 〉L2(µt)

= 〈f̃ (u)
1 , f̃

(v)
1 〉L2(µ) − t−ku−kv+1+ku−1+kv−1+1 〈f̃ (u)

1 , f̃
(v)
1 〉L2(µ) = 0,

t−3k`+
3
2

∫
X

|f (`)
1,t (z)|3 dµt(z) = t−3k`+

3
2

+3k`−3+1

∫
X

|f̃ (`)
1 (z)|3 dµ(z)

≤
∫
X

|f̃ (`)
1 (z)|3 dµ(z) t−

1
2 ,

t−2k`+1 VarS
(`)
t = t−2k`+1

k∑̀
n=1

n! ‖f̃n‖2
n t

2k`−n ≤
k∑̀
n=1

n! ‖f̃n‖2
n,

and

t−2k`+1

k∑̀
n=2

n! ‖f (`)
n,t‖2

n,t = t−2k`+1

k∑̀
n=2

n! ‖f̃ (`)
n ‖2

n t
n+2(k`−n) ≤

k∑̀
n=2

n! ‖f̃ (`)
n ‖2

n t
−1

for t ≥ 1, which proves the assertion. The special case for m = 1 follows from Equation
(5.10) for the Wasserstein distance and from Equation (5.30) and the proofs of the
Theorems 6.4 and 6.7 for the Kolmogorov distance. �

6.3 Local Poisson U-statistics

Throughout this section, we assume that the space X is equipped with a metric and
that X is the Borel σ-algebra generated by this metric. Let B(z, r) be a ball with centre
z and radius r > 0 in X. For points x1, . . . , xk ∈ X we denote by diam ({x1, . . . , xk})
the diameter of the points with respect to the given metric. We are interested in the
behaviour of Poisson U-statistics that only depend on k-tuples of distinct points of η
with diameter less than or equal to a given threshold.
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Definition 6.10 A Poisson U-statistic S of the form

S =
∑

(x1,...,xk)∈ηk6=

f(x1, . . . , xk)

with f ∈ L1
s(µ

k) and a constant δ > 0 such that f(x1, . . . , xk) = 0 for all x1, . . . , xk ∈ X
with diam ({x1, . . . , xk}) > δ is called local.

If we consider a vector S = (S(1), . . . , S(m)) of local Poisson U-statistics S(`) of order
k`, ` = 1, . . . ,m, we denote the functions we sum over by f (`) and the thresholds for
the diameter by δ`.

Theorem 6.11 a) Let S be an absolutely convergent local Poisson U-statistic of
order k and let N be a standard Gaussian random variable. Then there are
constants cW > 0 and cK > 0 only depending on k such that

dW

(
S − ES√

VarS
,N

)
≤ cW

(
1 +

(
sup
z∈X

µ(B(z, 4δ))
) 3k−3

2
)‖f 2‖k

VarS

and

dK

(
S − ES√

VarS
,N

)
≤ cK

(
1 +

(
sup
z∈X

µ(B(z, 4δ))
) 3k−3

2
)‖f 2‖k

VarS
.

b) Let S = (S(1), . . . , S(m)) be a vector of absolutely convergent local Poisson U-
statistics of the orders k1, . . . , km and let δ = max

`=1,...,m
δ`. By N(Σ) we denote

an m-dimensional centred Gaussian random vector with a positive semidefinite
covariance matrix Σ. Then there is a constant c̃ > 0 depending on k1, . . . , km
such that

d3 (S− ES,N(Σ))

≤ 1

2

m∑
u,v=1

|σuv − Cov(S(u), S(v))|

+ c̃

(
m∑
`=1

√
VarS(`) + 1

)
m∑

u,v=1

(
1 +

(
sup
z∈X

µ(B(z, 4δ))
) 3

4
(ku+kv)− 3

2
)

(
‖(f (u))2‖ku + ‖(f (v))2‖kv

)
.

Proof. For σ ∈ Π̃(ku, ku, kv, kv) the function (f (u) ⊗ f (u) ⊗ f (v) ⊗ f (v))σ vanishes if two
arguments have a distance larger than 4δ. Hence, we obtain by Hölder’s inequality

Mij(f
(u), f (v)) =

∑
σ∈Π̃(ku,ku,kv ,kv)

s(σ)=(ku−i,ku−i,kv−j,kv−j)

∫
X|σ|
|(f (u) ⊗ f (u) ⊗ f (v) ⊗ f (v))σ| dµ|σ|

=
∑

σ∈Π̃(ku,ku,kv ,kv)
s(σ)=(ku−i,ku−i,kv−j,kv−j)

∫
X|σ|

1I(diam({y1, . . . , y|σ|} ≤ 4δ)

|(f (u) ⊗ f (u) ⊗ f (v) ⊗ f (v))σ(y1, . . . , y|σ|)| dµ(y1, . . . , y|σ|)

≤
∑

σ∈Π̃(ku,ku,kv ,kv)
s(σ)=(ku−i,ku−i,kv−j,kv−j)

(
sup
z∈X

µ(B(z, 4δ))
)|σ|−(ku+kv)/2

‖(f (u))2‖ku‖(f (v))2‖kv .
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For σ ∈ Π̃(ku, ku, kv, kv) we have |σ| ≤ 2(ku + kv)− 3 so that

Mij(f
(u), f (v))

≤ |Π̃(ku, ku, kv, kv)|
(

1 +
(

sup
z∈X

µ(B(z, 4δ))
) 3

2
(ku+kv)−3)

‖(f (u))2‖ku‖(f (v))2‖kv

≤ 1

2
|Π̃(ku, ku, kv, kv)|

(
1 +

(
sup
z∈X

µ(B(z, 4δ))
) 3

2
(ku+kv)−3) (

‖(f (u))2‖2
ku + ‖(f (v))2‖2

kv

)
for i = 1, . . . , ku, j = 1, . . . , kv, and u, v = 1, . . . ,m. Since Mij(f) = Mij(f, f), we also
obtain

Mij(f) ≤ |Π̃(k, k, k, k)|
(

1 +
(

sup
z∈X

µ(B(z, 4δ))
)3k−3)

‖f 2‖2
k

for i, j = 1, . . . , k. Now Theorem 6.11 is a direct consequence of Theorem 6.3 and
Theorem 6.4. �

Notes: The example for a not absolutely convergent Poisson U-statistic and the uni-
variate part of Theorem 6.3 are from Reitzner and Schulte 2011. The bound for the
Kolmogorov distance in Theorem 6.4 is proven in Schulte 2012b.

Geometric Poisson U-statistics are considered in Reitzner and Schulte 2011. The
formula for the asymptotic variance of a geometric Poisson U-statistic and the coun-
terexample motivating the condition Ṽ > 0 are also taken from there. The bound for
the Wasserstein distance in Theorem 6.7 and the multivariate version, Theorem 6.9,
are due to Last, Penrose, Schulte, and Thäle 2012. The bound for the Kolmogorov
distance in Theorem 6.7 is derived in Schulte 2012b.

The definition of a local Poisson U-statistic and the bound for the Wasserstein
distance in Theorem 6.11 are from Reitzner and Schulte 2011. The bound for the
Kolmogorov distance and the multivariate result are new.
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Chapter 7

Poisson U-statistics in stochastic
geometry

The aim of this chapter is to apply the results of the previous chapter to problems
from stochastic geometry. We investigate some functionals of the intersection process
of Poisson k-flats. For k = d − 1 we have a Poisson hyperplane process that induces
a random tessellation in Rd. We are interested in the combinatorial structure of this
tessellation in an observation window. Finally, we consider the number of edges and
the total edge length of a random graph, the so-called Gilbert graph.

As a further example, one could take the number of k-simplices induced by a Poisson
point process on the d-dimensional torus. Decreusefond, Ferraz, Randriambololona,
and Vergne investigate this problem in [11], using the Malliavin-Stein method. But the
considered Poisson functionals are geometric Poisson U-statistics so that central limit
theorems follow directly from our results in Section 6.2.

7.1 Intersection process of Poisson k-flats

Throughout this section, ηt is a stationary Poisson k-flat process in Rd with k ∈
{1, . . . , d−1}. This is a Poisson point process on the space A(d, k) of all k-dimensional
affine subspaces of Rd whose distribution is invariant under translations. The intensity
measure µt of ηt is of the form

µt(·) = t

∫
G(d,k)

∫
E⊥

1I (E + x ∈ ·) dHd−k(x) dQ(E),

with t > 0 and a probability measure Q on G(d, k), the space of all k-dimensional linear
subspaces of Rd. If Q is the uniform distribution (i.e. Q is the Haar measure on G(d, k)
with the right normalization), then ηt is isotropic, which means that its distribution is
invariant under rotations. In the following, we use the convention µ = µ1.

The intersection process of order 1 ≤ m ≤ bd/(d − k)c is given as the set of all
intersections E1 ∩ . . . ∩ Em of m distinct flats E1, . . . , Em of ηt. It is assumed that
m ≤ bd/(d− k)c since, otherwise, all intersections would be empty almost surely. We
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are interested in the behaviour of Poisson functionals F
(`)
t , ` = 1, . . . , n, of the form

F
(`)
t =

1

m`!

∑
(E1,...,Em` )∈η

m`
t, 6=

ψ`(E1 ∩ . . . ∩ Em` ∩W`) (7.1)

with 1 ≤ m` ≤ bd/(d − k)c, W` ∈ Kd, and measurable functionals ψ` : Kd → R.
Additionally, we assume that ψ`(∅) = 0 and that there are constants cψ`,W`

> 0 such
that

|ψ`(E1 ∩ . . . ∩ Em` ∩W`)| ≤ cψ`,W`
(7.2)

for µ-almost all (E1, . . . , Em`) ∈ A(d, k)m` . Then the following multivariate central
limit theorem holds:

Theorem 7.1 Let Ft =
(
t−(m1−1/2)(F

(1)
t − EF (1)

t ), . . . , t−(mn−1/2)(F
(n)
t − EF (n)

t )
)

with

F
(`)
t , ` = 1, . . . , n, as in formula (7.1), suppose that condition (7.2) is satisfied, and

let N(Σ) be an n-dimensional centred Gaussian random vector with covariance matrix
Σ = (σuv)u,v=1,...,n given by

σuv =
1

(mu − 1)!(mv − 1)!

∫
[Wu]∩[Wv ]

∫
[Wu]mu−1

ψu(E1 ∩ E2 ∩ . . . ∩ Emu ∩Wu) dE2 . . . dEmu

∫
[Wv ]mv−1

ψv(E1 ∩ E ′2 ∩ . . . ∩ E ′mv ∩Wv) dE ′2 . . . dE ′mv dE1

for u, v = 1, . . . , n. Then there is a constant c > 0 depending on m1, . . . ,mn, W1, . . .,
Wn, and ψ1, . . . , ψn such that

d3(Ft,N(Σ)) ≤ c t−
1
2

for t ≥ 1. For n = 1 the d3-distance can be replaced by the Wasserstein distance or the
Kolmogorov distance.

Proof. The Poisson functionals (F
(`)
t )t≥1, ` = 1, . . . , n, are geometric Poisson U-

statistics. Because of µ([W`]) < ∞ and the assumption (7.2), all integrals involving
ψ`(E1 ∩ . . . ∩ Em` ∩ W`) are finite. Hence, the assertion is a direct consequence of
Theorem 6.9. �

In Theorem 7.1, we consider fixed observation windows and increase the intensity of
the underlying Poisson point process ηt. An alternative regime is to keep the intensity
fixed and to increase the observation windows. More precisely, we work with families
of homotetic observation windows (%W`)%≥1 with W` ∈ Kd for ` = 1, . . . , n. For this
setting we have to assume that the functionals ψ` are α`-homogeneous, i.e.

ψ`(%A) = %α`ψ`(A)

for all % > 0 and A ∈ Kd. We consider a Poisson point process ηt0 of fixed intensity
t0 > 0 and Poisson functionals

F (`)
% =

1

m`!

∑
(E1,...,Em` )∈η

m`
t0, 6=

ψ`(E1 ∩ . . . ∩ Em` ∩ %W`) (7.3)
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with 1 ≤ m` ≤ bd/(d − k)c, W` ∈ Kd, and ψ` : Kd → R satisfying condition (7.2) for
` = 1, . . . , n. Now we can keep the intensity parameter t0 > 0 fixed and formulate a
central limit theorem for increasing observation windows.

Corollary 7.2 Let

F% =
(
%−α1−(m1−1/2)(d−k)(F (1)

% − EF (1)
% ), . . . , %−αn−(mn−1/2)(d−k)(F (n)

% − EF (n)
% )
)

with F
(`)
% as in formula (7.3) and let N(Σt0) be an n-dimensional centred Gaussian

random vector with covariance matrix Σt0 = t2d−1
0 Σ, where Σ is the same matrix as in

Theorem 7.1. Then there is a constant c > 0 depending on m1, . . . ,mn, W1, . . . ,Wn,
ψ1, . . . , ψn, and t0 such that

d3(Fr,N(Σt0)) ≤ c %−
1
2

(d−k)

for % ≥ 1. For n = 1 the d3-distance can be replaced by the Wasserstein distance or
the Kolmogorov distance.

Proof. Observe that the Poisson point processes %−1ηt0 and η%d−kt0 have the same
distribution. Since

F (`)
% = %α`

1

m`!

∑
(E1,...,Em` )∈η

m`
t0,6=

ψ`(%
−1E1 ∩ . . . ∩ %−1Em` ∩W`)

= %α`
1

m`!

∑
(E1,...,Em` )∈η

m`
%d−kt0, 6=

ψ`(E1 ∩ . . . ∩ Em` ∩W`) = %α`F
(`)

%d−kt0
,

where equality means equality in distribution, the corollary is a direct consequence of
Theorem 7.1. �

We say that E1, . . . , Em ∈ A(d, k) are in general position if E1 ∩ . . . ∩ Em is a
d−m(d− k)-dimensional affine subspace of Rd. For the rest of this section, we assume
that for every 2 ≤ m ≤ bd/(d − k)c all combinations of m distinct flats of ηt are in
general position almost surely. This assumption is always satisfied if the directional
distribution Q is absolutely continuous with respect to the invariant measure on G(d, k)
(see [79, Lemma 13.2.1]).

Now Theorem 7.1 and Corollary 7.2 can be applied in the following situations, where
they give us (multivariate) central limit theorems for increasing intensity or increasing
observation windows:

Example 7.3 Let W1, . . . ,Wn ∈ Kd, ψ1 = . . . = ψn = χ, and m1 = . . . = mn = m ∈
{1, . . . , bd/(d − k)c}. Then we count the numbers of d −m(d − k)-dimensional inter-
section flats of ηt (resp. ηt0) that hit the windows W1, . . . ,Wn (resp. %W1, . . . , %Wn).

Example 7.4 Choose W1, . . . ,Wn ∈ Kd0 and m1 = . . . = mn = m ∈ {1, . . . , bd/(d −
k)c} as in the previous example and let ψ1 = . . . = ψn = Vd−m(d−k) (which is homoge-
neous of degree d−m(d− k)). For each window W` (resp. %W`) we compute the sum
of the d−m(d− k)-dimensional volumes of all d−m(d− k)-dimensional intersection
flats of ηt (resp. ηt0) in W` (resp. %W`).
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Example 7.5 Let n = bd/(d − k)c. For W1 = . . . = Wn = W ∈ Kd, ψ1 = . . . =
ψn = χ, and m` = ` for ` = 1, . . . , n we count the numbers of d− `(d− k)-dimensional
intersections flats of ηt (resp. ηt0) hitting W (resp. %W ).

Example 7.6 For n = bd/(d − k)c, W1 = . . . = Wn = W ∈ Kd0, and ψ` = Vd−`(d−k)

and m` = ` for ` = 1, . . . , n we sum over the d− `(d− k)-dimensional volumes of the
d− `(d− k)-dimensional intersection flats of ηt (resp. ηt) in W (resp. %W ). Here, ψ`
is homogeneous of degree d− `(d− k).

The Examples 7.5 and 7.6 for the special case k = d− 1 are considered by Heinrich
and Heinrich, Schmidt, and Schmidt in [23, 25]. The proofs in both works make use
of the Hoeffding decomposition of U-statistics. In [25], it is additionally assumed that
W is the unit ball. The number of intersection points of a Poisson line process within
increasing circles is investigated by Paroux in [63].

Example 7.7 Fix 1 ≤ m ≤ bd/(d − k)c and let m1 = . . . = md−m(d−k)+1 = m,
W1 = . . . = Wd−m(d−k)+1 = W ∈ Kd0, and ψ` = V`−1 for ` = 1, . . . , d −m(d − k) + 1.
Now sum over the intrinsic volumes of the d−m(d− k)-dimensional intersection flats
of ηt (resp. ηt0) in W (resp. %W ). Here, ψ` is homogeneous of degree `− 1.

Whenever the functional ψ` is the n-dimensional volume of an n-dimensional inter-
section flat, we assume that W` is full dimensional since the Poisson U-statistic is zero
almost surely, otherwise.

Due to the general structure of Theorem 7.1 and Corollary 7.2, we can also consider
more complicated situations with different observation windows W`, functionals ψ`, and
orders m`. Moreover, the functionals ψ` do not need to be additive.

7.2 Poisson hyperplane tessellations

For this section we fix k = d− 1 so that ηt is a Poisson hyperplane process. Moreover,
we assume that ηt is isotropic, which means that the probability measure Q is the
Haar measure on G(d, d−1) with the right normalization. This restriction allows us to
derive explicit formulas for the asymptotic covariances. But central limit theorems still
hold under the weaker assumption that the hyperplanes of ηt are in general position
almost surely, i.e. the intersection of 1 ≤ m ≤ d distinct hyperplanes of ηt is a (d−m)-
flat almost surely. This is always satisfied if the directional distribution Q is not
concentrated on a great subsphere (see [79, Theorem 10.3.2]).

The Poisson hyperplane process ηt decomposes Rd into a system of polytopes with
disjoint interiors. We call this system the Poisson hyperplane tessellation generated
by ηt and denote the single polytopes as cells. As the `-dimensional faces of a Poisson
hyperplane tessellation we regard the system of all `-dimensional faces of the cells. For
a window W ∈ Kd0 let N

(`)
t (W ) be the number of `-dimensional faces of the Poisson

hyperplane tessellation induced by ηt that hit W . We are interested in the behaviour
of N

(`)
t (W ) for increasing intensity t.

It is due to Miles (see [53, Theorem A]) that

N
(`)
t (W ) =

d∑
j=d−`

(
j

d− `

)
Φ

(j)
t (W ) (7.4)
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Figure 7.1: Poisson line tessellation within a circle

with Φ
(0)
t (W ) = 1 and

Φ
(j)
t (W ) =

1

j!

∑
(H1,...,Hj)∈ηjt, 6=

χ(H1 ∩ . . . ∩Hj ∩W )

for j = 1, . . . , d. Here, Φ
(j)
t (W ) is the number of (d− j)-dimensional intersection flats

of ηt hitting W . Therefore, N
(`)
t (W ) is a sum of geometric Poisson U-statistics. This

fact allows us to determine the asymptotic covariance structure of the numbers of
`-dimensional faces.

Proposition 7.8 Define

σuv =

(
d

u

)(
d

v

)
κ2
d−1

(
κd−1

d κd

)2(d−1) ∫
[W ]

Vd−1(H ∩W )2 dH (7.5)

for u, v = 0, . . . , d. There are constants cuv, u, v ∈ {0, . . . , d}, such that∣∣∣∣∣Cov(N
(u)
t (W ), N

(v)
t (W ))

t2d−1
− σuv

∣∣∣∣∣ ≤ cuv t
− 1

2

for t ≥ 1.

Proof. It follows directly from Equation (7.4) that

Cov(N
(u)
t (W ), N

(v)
t (W )) =

d∑
i=d−u

d∑
j=d−v

(
i

d− u

)(
j

d− v

)
Cov(Φ

(i)
t (W ),Φ

(j)
t (W )).

Formula (3.4) in Theorem 3.4 yields that Cov(Φ
(i)
t (W ),Φ

(j)
t (W )) is a polynomial of

degree i+ j−1 in t for i, j ≥ 1. For i = 0 or j = 0 we have Cov(Φ
(i)
t (W ),Φ

(j)
t (W )) = 0.
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Hence, Cov(N
(u)
t (W ), N

(v)
t (W )) is a polynomial of degree 2d− 1 in t. It has (up to the

binomial coefficients) the same leading coefficient as Cov(Φ
(d)
t (W ),Φ

(d)
t (W )), which is

d2

∫
[W ]

(
1

d!

∫
[W ]d−1

χ(H ∩H1 ∩ . . . ∩Hd−1 ∩W ) dH1 . . . dHd−1

)2

dH

= κ2
d−1

(
κd−1

d κd

)2(d−1) ∫
[W ]

Vd−1(H ∩W )2 dH.

In the last step, we applied (d− 1)-times Crofton’s formula (see Proposition 2.3). �

This implies that the asymptotic covariance matrix of the random vector

t−d+ 1
2 (N

(0)
t (W ), . . . , N

(d)
t (W ))

has rank 1, and a similar computation shows that

lim
t→∞

EN (`)
t

td
= κd

(
d

`

)(
κd−1

d κd

)d
Vol(W ) (7.6)

for ` = 0, . . . , d. This is caused by the fact that for every N
(`)
t (W ) the expression(

d
d−`

)
Φ

(d)
t (W ) is the asymptotically leading term. Equation (7.6), which gives us the

intensity of the `-faces, was first obtained by Mecke in [51]. For further results about
intensities of Poisson hyperplane tessellations we refer to the monograph [79] by Schnei-
der and Weil and the references therein. The knowledge of the covariance structure
allows us to formulate the following central limit theorem:

Theorem 7.9 a) Let N be a standard Gaussian random variable. For ` ∈{0, . . . , d}
there are constants c

(`)
W > 0 and c

(`)
K > 0 such that

dW

N (`)
t (W )− EN (`)

t (W )√
VarN

(`)
t (W )

, N

 ≤ c
(`)
W t−

1
2

and

dK

N (`)
t (W )− EN (`)

t (W )√
VarN

(`)
t (W )

, N

 ≤ c
(`)
K t−

1
2

for t ≥ 1.

b) Let N(Σ) be a d+ 1-dimensional centred Gaussian random vector with a covari-
ance matrix Σ = (σuv)u,v=0,...,d given by formula (7.5). Then there is a constant
c̃ > 0 such that

d3

(
t−d+ 1

2 (N
(0)
t (W )− EN (0)

t (W ), . . . , N
(d)
t (W )− EN (d)

t (W )),N(Σ)
)
≤ c̃ t−

1
2

for t ≥ 1.
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Proof. It follows from Theorem 4.11 that the n-th kernel of the Wiener-Itô chaos
expansion of Φ

(`)
t (W ) is a polynomial of degree `−n in t, if n ≤ `. Otherwise the kernel

is zero. By the linearity of the multiple Wiener-Itô integral, we obtain that N
(`)
t (W )

has a Wiener-Itô chaos expansion of order d, where the n-th kernel f
(`)
n,t , n ≤ d, is a

polynomial of degree d− n in t.
Together with |σ| ≤ 2i+ j + k − 3 for σ ∈ Π̃(i, i, j, k), we see that∫

[W ]|σ|
|(fi,t ⊗ fi,t ⊗ fj,t ⊗ fk,t)σ| dµ|σ|t

with σ ∈ Π̃(i, i, j, k) is a polynomial in t with a degree of at most

|σ|+ 2(d− i) + d− j + d− k ≤ 2i+ j + k − 3 + 2(d− i) + d− j + d− k = 4d− 3.

Since VarN
(`)
t (W ) is a polynomial of degree 2d−1 in t, the right-hand sides in Theorem

5.11 a) and in Theorem 5.12 are of order t−
1
2 or less which proves the univariate bounds.

By the same argument and Proposition 7.8, the right-hand side in Theorem 5.11 b) is

of order t−
1
2 or less, which implies the multivariate bound. �

For the same reason as in the previous section, we can also consider the regime
where we keep the intensity fixed and increase the observation window.

7.3 Gilbert graph

The aim of this section is to investigate a random graph, the so-called Gilbert graph
or random geometric graph, that is constructed in the following way. Let ηt be the
restriction of a stationary Poisson point process in Rd with intensity t > 0 to an
observation window W ∈ Kd0. We take the points of ηt as vertices and connect two
vertices by an edge if and only if their Euclidean distance is not greater than a given
threshold δ. We denote this graph by G(ηt, δ).

The monograph [69] by Penrose is an exhaustive reference for these random graphs,
and for further developments we refer to the works [12, 20, 49, 57] by Devroye, György,
Han, Lugosi, Makowski, McDiarmid, Müller, and Udina. In their recent works [6,
39, 40] concerning the Malliavin-Stein method, Bourguin, Lachiéze-Rey, and Peccati
consider the Gilbert graph as an example and derive similar results as we do in the
following.

We allow that the threshold for connecting two vertices by an edge depends on the
intensity parameter t > 0 and denote it by δt. We are interested in the behaviour of
G(ηt, δt) for t→∞. In particular, we consider the number of edges of G(ηt, δt)

St =
1

2

∑
(x1,x2)∈η2t, 6=

1I(dist(x1, x2) ≤ δt)

and the total edge length of G(ηt, δt)

Lt =
1

2

∑
(x1,x2)∈η2t,6=

1I(dist(x1, x2) ≤ δt) dist(x1, x2).
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Figure 7.2: Gilbert graph in the plane

Note that St and Lt are Poisson U-statistics. By the Slivnyak-Mecke formula, we obtain

ESt =
t2

2

∫
W

∫
W

1I(dist(y1, y2) ≤ δt) dy1 dy2

and

ELt =
t2

2

∫
W

∫
W

1I(dist(y1, y2) ≤ δt) dist(y1, y2) dy1 dy2.

For δt = δ ∈ R we have geometric Poisson U-statistics and can apply the results from
Section 6.2. Hence, we focus on the situation that δt → 0 as t → ∞ from now on.
Moreover, we assume that δt is chosen in such a way that the limit of t δdt for t → ∞
exists (or is infinite).

Proposition 7.10 a) We have

ESt =
t2

2

(
Vol(W )κd δ

d
t +O(δd+1

t )
)

and ELt =
t2

2

(
Vol(W )

d κd
d+ 1

δd+1
t +O(δd+2

t )
)

for δt → 0.

b) For S̃t = St/
√

max{t3δ2d
t , t

2δdt } and L̃t = Lt/
√

max{t3δ2d+2
t , t2δd+2

t } we have

lim
t→∞

(
Var S̃t Cov(S̃t, L̃t)

Cov(S̃t, L̃t) Var L̃t

)
=



Σ1, lim
t→∞

t δdt =∞

Σ1 + 1
c

Σ2, lim
t→∞

t δdt = c ∈ (1,∞)

cΣ1 + Σ2, lim
t→∞

t δdt = c ∈ (0, 1]

Σ2, lim
t→∞

t δdt = 0

(7.7)

with

Σ1 = Vol(W )

(
κ2
d d κ2

d/(d+ 1)
d κ2

d/(d+ 1) (d κd/(d+ 1))2

)
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and

Σ2 =
Vol(W )

2

(
κd d κd/(d+ 1)

d κd/(d+ 1) d κd/(d+ 2)

)
.

Proof. It follows from Theorem 4.11 that St = ESt + I1,t(g1,t) + I2,t(g2,t) with

g1,t(x1) = t

∫
W

1I(dist(x1, y) ≤ δt) dy and g2,t(x1, x2) =
1

2
1I(dist(x1, x2) ≤ δt)

and Lt = ELt + I1,t(h1,t) + I2,t(h2,t) with

h1,t(x1) = t

∫
W

1I(dist(x1, y) ≤ δt) dist(x1, y) dy

and

h2,t(x1, x2) =
1

2
1I(dist(x1, x2) ≤ δt) dist(x1, x2).

Let W−δt = W \ {x ∈ W : dist(x, ∂W ) ≤ δt}. A short computation with polar
coordinates proves that

g1,t(x1) = t κd δ
d
t and h1,t(x1) = t

d κd
d+ 1

δd+1
t

for x1 ∈ W−δt . On the remaining part W \W−δt , whose volume is of order δt for δt → 0,
the absolute values of g1,t and h1,t are smaller so that

ESt =
t

2

∫
W

g1(x1) dx1 =
t2

2

(
Vol(W )κd δ

d
t +O(δd+1

t )
)

ELt =
t

2

∫
W

h1(x1) dx1 =
t2

2

(
Vol(W )

d κd
d+ 1

δd+1
t +O(δd+2

t )
)

and

‖g1,t‖2
1,t = t3

(
Vol(W )κ2

d δ
2d
t +O(δ2d+1

t )
)

‖h1,t‖2
1,t = t3

(
Vol(W )

(
d κd
d+ 1

)2

δ2d+2
t +O(δ2d+3

t )
)

〈g1,t, h1,t〉L2(tλd) = t3
(

Vol(W )
d κ2

d

d+ 1
δ2d+1
t +O(δ2d+2

t )
)
.

Using the fact that the inner integral is the same for all x2 ∈ W−δt and polar coordi-
nates, we obtain

‖g2,t‖2
2,t =

t2

4

∫
W 2

1I(dist(x1, x2) ≤ δt)
2 dx1 dx2

= t2
(

Vol(W )
κd
4
δdt +O(δd+1

t )
)

‖h2,t‖2
2,t =

t2

4

∫
W 2

1I(dist(x1, x2) ≤ δt)
2 dist(x1, x2)2 dx1 dx2

= t2
(

Vol(W )
d κd

4 (d+ 2)
δd+2
t +O(δd+3

t )
)

〈g2,t, h2,t〉L2((tλd)2) =
t2

4

∫
W 2

1I(dist(x1, x2) ≤ δt)
2 dist(x1, x2) dx1 dx2

= t2
(

Vol(W )
d κd

4 (d+ 1)
δd+1
d +O(δd+2

t )
)
.
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Now Theorem 4.2 concludes the proof. �

Observe that Σ1 has rank 1, whereas Σ2 has full rank. Hence, the asymptotic
covariance matrix is regular if limt→∞ t δ

d
t <∞. Knowing the covariance structure, we

can state the following central limit theorem.

Theorem 7.11 a) Let N be a standard Gaussian random variable. Then there are
constants cS,W , cS,K , cL,W , cL,K > 0 such that

dW

(
St − ESt√

VarSt
, N

)
≤ cS,W t−

1
2 max{1, (t δdt )−

1
2}

dK

(
St − ESt√

VarSt
, N

)
≤ cS,K t

− 1
2 max{1, (t δdt )−

1
2}

dW

(
Lt − ELt√

VarLt
, N

)
≤ cL,W t−

1
2 max{1, (t δdt )−

1
2}

dK

(
Lt − ELt√

VarLt
, N

)
≤ cL,K t

− 1
2 max{1, (t δdt )−

1
2}

for t ≥ 1.

b) Let N(Σ) be a two-dimensional centred Gaussian random vector with the covari-
ance matrix Σ given by formula (7.7) and let S̃t and L̃t be as in Proposition 7.10.
Then there are constants c̃1, c̃2, c̃3 > 0 such that

d3

(
(S̃t − ES̃t, L̃t − EL̃t),N(Σ)

)
≤ c̃1 δt + c̃2 R̃t + c̃3 t

− 1
2 max{1, (t δdt )−

1
2}

for t ≥ 1 with

R̃t =


t−1δ−dt , limt→∞ t δ

d
t =∞

0, limt→∞ t δ
d
t = c ∈ (0,∞)

t δdt , limt→∞ t δ
d
t = 0

.

Proof. By the same arguments as in the proof of Proposition 7.10, we obtain

t2

16

∫
W 2

1I(dist(x1, x2) ≤ δt)
4 dx1 dx2 = t2 Vol(W )

(κd
16
δdt +O(δd+1

t )
)

and

t2

16

∫
W 2

1I(dist(x1, x2) ≤ δt)
4 dist(x1, x2)4 dx1 dx2

= t2 Vol(W )

(
d κd

16 (d+ 4)
δd+4
t +O(δd+5

t )

)
.

By applying Theorem 6.11 a) to the standardizations of St and Lt, we obtain bounds
of the orders(

1 + (t δdt )
3
2

) t δ
1
2
d

t

max{t3 δ2d
t , t

2 δdt }
=
(

1 + (t δdt )
3
2

)
t−

1
2 min{(t δdt )−

3
2 , (t δdt )

− 1
2}
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and(
1 + (t δdt )

3
2

) t δ
1
2
d+2

t

max{t3 δ2d+2
t , t2δd+2

t }
=
(

1 + (t δdt )
3
2

)
t−

1
2 min{(t δdt )−

3
2 , (t δdt )

− 1
2}.

Considering the cases t δdt < 1 and t δdt ≥ 1, one sees that both expressions behave like

t−
1
2 max{1, (t δdt )−

1
2}, which concludes the proof of part a).

From the proof of Proposition 7.10, we know that there are constants c̃1, c̃2 > 0
such that

|σ11 − Var S̃t|+ 2 |σ12 − Cov(S̃t, L̃t)|+ |σ22 − Var L̃t| ≤ c̃1 δt + c̃2 R̃t

for t ≥ 1. Now part b) is a direct consequences of Theorem 6.11 b). �

Note that Theorem 7.11 implies convergence in distribution if t2δdt →∞ as t→∞.
This means that central limit theorems for St and Lt hold if ESt → ∞ as t → ∞.
The univariate central limit theorem for St with the same rate of convergence for the
Wasserstein distance is derived in [39, Example 4.15]. It can also be deduced (without a
rate of convergence) from Theorem 3.9 in [69], where subgraphs in G(ηt, δt) are counted.
Regarding single edges as subgraphs, we can apply this result to St.

Notes: Section 7.1 is close to Section 6 in Last, Penrose, Schulte, and Thäle 2012, where
a single functional was evaluated for different windows. In our setting, we can have
different functionals for different observation windows. The bound for the Kolmogorov
distance is new.

The results in Section 7.2 are not contained in any of the underlying works.
The Gilbert graph is considered as an example in Reitzner and Schulte 2011. The

univariate results for the Wasserstein distance in Section 7.3 are a slight modification
of the setting there. The extensions to the Kolmogorov distance and the multivariate
central limit theorem are new.
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Chapter 8

A central limit theorem for the
Poisson-Voronoi approximation

In this chapter, we use the Malliavin-Stein method to derive a central limit theorem
for the volume of the Poisson-Voronoi approximation. We present the problem and the
main results in the first section. The second and the third section contain the proofs.

8.1 Introduction and results

Let K ⊂ Rd, d ≥ 2, be a compact convex set with interior points and let ηt be a Poisson
point process in Rd with intensity measure µt = tλd with t > 0 and the d-dimensional
Lebesgue measure λd. For every point x ∈ ηt we define the Voronoi cell of x by

Vx =
{
z ∈ Rd : ||x− z|| ≤ ||y − z|| for all y ∈ ηt

}
and call x the nucleus of Vx. We have int(Vx)∩ int(Vy) = ∅ for x 6= y ∈ ηt and

⋃
x∈ηt Vx =

Rd so that the collection (Vx)x∈ηt of random polytopes constitutes a random tessellation

of Rd, the so-called Poisson-Voronoi tessellation, which is one of the standard models
in stochastic geometry, and we refer to the monograph [79] by Schneider and Weil and
the references therein for further details.

For our set K we define the Poisson-Voronoi approximation At(K) as

At(K) =
⋃

x∈ηt∩K

Vx,

which is a random approximation of K. It is possible to interpret the Poisson-Voronoi
approximation in the following way. One wants to reconstruct an unknown convex
body K ∈ Kd0, but the only information available is a kind of oracle which says for
every point of a realization of the Poisson point process if it belongs to K. Now one
approximates the unknown set K by taking the union of the Voronoi cells with nuclei
in K.

In the sequel, we are interested in the volume of the Poisson-Voronoi approximation

PVt(K) = Vol(At(K)).
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Figure 8.1: Poisson-Voronoi approximation of an ellipse

A short computation yields EPVt(K) = Vol(K), which means that PVt(K) is an
unbiased estimator for the volume of K. Under weaker assumptions than convexity
on the approximated set K, it is shown by Einmahl and Khmaladze, Khmaladze and
Toronjadze, and Penrose in [16, 35, 71] that PVt(K)→ Vol(K) and Vol(At(K)∆K)→
0 as t → ∞, where At(K)∆K stands for the symmetric difference of At(K) and K.
In [26], Heveling and Reitzner derive upper bounds for the asymptotic behaviour of
Var PVt(K) and Var Vol(At(K)∆K) and large deviation inequalities for PVt(K) and
Vol(At(K)∆K) for the same setting as in the present work. In [77], Reitzner, Spodarev,
and Zaporozhets consider a more general class of approximated sets, namely sets of
finite perimeter, and compute bounds for all non-centred moments

Our main result is that PVt(K) behaves asymptotically like a Gaussian random
variable if the intensity of the Poisson point process goes to infinity.

Theorem 8.1 Let N be a standard Gaussian random variable. Then

PVt(K)− Vol(K)√
Var PVt(K)

→ N in distribution as t→∞.

As pointed out in [26], the Poisson-Voronoi approximation has applications in non-
parametric statistics, image analysis, and quantization problems. In this context, The-
orem 8.1 can be helpful since it allows treating PVt(K) as a Gaussian random variable
if the intensity of the Poisson point process is sufficiently high.

For the proof of Theorem 8.1 we compute the Wiener-Itô chaos expansion of PVt(K)
and apply Corollary 5.14. In order to check the assumption (5.31) in this corollary,
we have to prove some kind of uniform convergence for n! ‖fn,t‖2

n,t/Var PVt(K), where
fn,t is the n-th kernel of the Wiener-Itô chaos expansion of PVt(K). Combining this
property with the identity

Var PVt(K) =
∞∑
n=1

n! ‖fn,t‖2
n,t,
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we obtain as a byproduct lower and upper bounds for the variance of PVt(K). Recall
that r(K) stands for the inradius of K, Vi(K), i = 0, . . . , d, are the intrinsic volumes
of K, and κj is the volume of the unit ball in Rj.

Theorem 8.2 There are explicit constants C,C > 0 depending only on the dimension
d such that

C κ1Vd−1(K) t−1− 1
d ≤ Var PVt(K) ≤ C

d−1∑
i=0

κd−iVi(K) t−2+ i
d (8.1)

for t ≥ (2/r(K))d.

Both bounds in formula (8.1) are of order t−1− 1
d so that Var PVt(K) has order t−1− 1

d

as well. The asymptotically leading coefficients are constants times Vd−1(K), which is
proportional to the surface area S(K) of K.

The upper bound in formula (8.1) is also contained in [26], where it is proven by
a combination of the theory of valuations and the Poincaré inequality. The Poincaré
inequality is related to the Wiener-Itô chaos expansion as well (for more details we
refer to the work [41] by Last and Penrose). The lower bound is new as far as we know.

Although the construction of the Poisson-Voronoi approximation does not depend
on the convexity of K and can also be done for more general classes of sets, we formulate
our main results only for convex sets, in order to simplify the proofs. At the end of
this chapter, we give two alternative conditions for the approximated set that allow us
to weaken the convexity assumption.

8.2 Proof of Theorem 8.2

Because of Theorem 1 in [26], we know that PVt(K) ∈ L2(Pηt) so that Theorem 4.1
implies the existence of a Wiener-Itô chaos expansion. In the following, we compute
the kernels of this decomposition and use Theorem 4.2 to prove our bounds for the
variance of PVt(K) in Theorem 8.2.

By Equation (4.4), we can derive the following formula for the kernels of the Wiener-
Itô chaos expansion of PVt(K):

Lemma 8.3 Let x1, . . . , xn ∈ Rd. For y ∈ Rd we define x(y) := arg max
x=x1,...,xn

dist(y, x)

and z(y, ηt) := arg minz∈ηt dist(y, z). Then

fn,t(x1, . . . , xn)

=
(−1)n

n!

∫
Rd

1I (x(y) /∈K) P(z(y, ηt) /∈ KC ∪Bd(y, ||y − x(y)||)) dy

− (−1)n

n!

∫
Rd

1I (x(y) ∈ K) P(z(y, ηt) /∈ K ∪Bd(y, ||y − x(y)||)) dy.

(8.2)

Proof. Since z(y, ηt) is the nucleus of the Voronoi cell a point y ∈ Rd belongs to, it is
easily seen that

PVt(K) = Vol({y ∈ Rd : z(y, ηt) ∈ K}) =

∫
Rd

1I (z(y, ηt) ∈ K) dy.
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Combining this with formula (4.3), we obtain

Dx1,...,xn PVt(K) =
∑

I⊂{1,...,n}

(−1)n+|I| PVt(K)(ηt +
∑
i∈I

δxi)

=

∫
Rd

∑
I⊂{1,...,n}

(−1)n+|I|1I (z(y, ηt ∪ {xi : i ∈ I}) ∈ K) dy.

Now we consider the sum of the indicator functions on the right-hand side for a fixed
y ∈ Rd. Let imax be the index of the xi that maximizes x(y). For I ⊂ {1, . . . , n}\{imax}
with I 6= ∅, it holds that z(y, ηt ∪ {xi : i ∈ I}) = z(y, ηt ∪ {xi : i ∈ I ∪ {imax}}) and
the summands for I and I ∪ {imax} on the right-hand side cancel out because of the
different signs. Hence, we obtain

Dx1,...,xn PVt(K) =

∫
Rd

(−1)n (1I (z(y, ηt) ∈ K)− 1I (z(y, ηt ∪ {x(y)}) ∈ K)) dy.

Now it is easy to see that

1I (z(y, ηt) ∈ K)− 1I (z(y, ηt ∪ {x(y)}) ∈ K)

=


1, dist(y, x(y)) ≤ dist(y, z(y, ηt)), z(y, ηt) ∈ K, x(y) /∈ K
−1, dist(y, x(y)) ≤ dist(y, z(y, ηt)), z(y, ηt) /∈ K, x(y) ∈ K

0, otherwise

.

Combining this with the definition of the kernels in formula (4.4), we obtain

fn,t(x1, . . . , xn) =
(−1)n

n!

∫
Rd

1I (x(y) /∈ K) P(z(y, ηt) /∈ KC ∪Bd(y, ||y − x(y)||)) dy

−(−1)n

n!

∫
Rd

1I (x(y) ∈ K) P(z(y, ηt) /∈ K ∪Bd(y, ||y − x(y)||)) dy,

which completes the proof. �

For f1,t we have the representation

f1,t(x) =

{
EVol({y ∈ Rd : dist(y, x) ≤ dist(y, ηt ∩KC) ≤ dist(y, ηt ∩K)}), x ∈ K
−EVol({y ∈ Rd : dist(y, x) ≤ dist(y, ηt ∩K) ≤ dist(y, ηt ∩KC)}), x ∈ KC

,

which means that |f1,t(x)| is the expectation of the volume of the points that change
between At(K) and At(K)C if the point x is added to the Poisson point process.

Our next goal is to compute upper bounds for ||fn,t||2n,t so that we obtain by Theorem
4.2 an upper bound for the variance of PVt(K) and can check condition (5.31) in
Corollary 5.14. In formula (8.2), the distance between a point y ∈ Rd and x(y) plays
an important role. In order to handle this quantity in the following, we define functions
hn : (Rd)n → R× Rd by

hn(x1, . . . , xn) = (min
y∈Rd

max
i=1,...,n

dist(y, xi), arg min
y∈Rd

max
i=1,...,n

dist(y, xi)).

From a geometrical point of view, hn gives the radius and the centre of the smallest
ball that contains all points x1, . . . , xn.

The function hn allows us to give the following upper bound for fn,t:
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Lemma 8.4 Let x1, . . . , xn ∈ Rd and let r = h
(1)
n (x1, . . . , xn) = min

y∈Rd
max
i=1,...,n

dist(y, xi).

Then

|fn,t(x1, . . . , xn)| ≤ 1

(n− 1)! t
exp(−t κd rd).

Proof. As a consequence of Lemma 8.3, one has

|fn,t(x1, . . . , xn)| ≤ 1

n!

∫
Rd

P(z(y, ηt) /∈ Bd(y, ||y − x(y)||)) dy.

By the definition of r, we know that the sets Rd \ int(Bd(xi, r)), i = 1, . . . , n, cover Rd.
Combining this with the previous inequality and using polar coordinates, we have

|fn,t(x1, . . . , xn)| ≤ 1

n!

n∑
i=1

∫
Rd\Bd(xi,r)

P(z(y, ηt) /∈ Bd(y, ||xi − y||)) dy

=
1

n!

n∑
i=1

∫
Rd\Bd(xi,r)

exp(−tκd‖xi − y‖d) dy

=
1

n!

n∑
i=1

κdd

∫ ∞
r

exp(−tκdrd) rd−1 dr

=
1

(n− 1)! t
exp(−tκdrd),

which concludes the proof. �

By definition, fn,t(x1, . . . , xn) measures the effect on PVt(K) of inserting points.
Lemma 8.4 reflects the fact that this effect is small if the distances between the points
are large. Similarly one expects that fn,t(x1, . . . , xn) is small if all points are close
together but are far away from the boundary of K. This effect is described in the
following lemma:

Lemma 8.5 Let x1, . . . , xn ∈ Rd and (r, y) = hn(x1, . . . , xn). If δ = dist(y, ∂K) > 8r,
then

|fn,t(x1, . . . , xn)| ≤ 2

n! t
exp(−tκdδd/8d). (8.3)

Proof. Since dist(y, ∂K) > 8r, all x1, . . . , xn are either in K or KC . Let x̃ = 1
2
(y +

proj∂K(y)), where proj∂K(y) stands for the metric projection of y on the boundary of
K. If y ∈ K, it can happen that the metric projection on ∂K is not unique. In this
case, it does not matter which of the points is taken. Then, we have

δ

4
≤ dist(x̃, y) ≤ 3

4
δ ≤ dist(y, ∂K) for all y ∈ Bd(x1, δ/8)
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and, by formula (8.2), it follows that

|fn,t(x1, . . . , xn)| ≤ 1

n!

∫
Rd\Bd(x1,δ/8)

P(z(y, ηt) /∈ Bd(y, ||y − x1||)) dy

+
1

n!

∫
Bd(x1,δ/8)

P(z(y, ηt) /∈ Bd(y, dist(y, ∂K))) dy

≤ 1

n!

∫
Rd\Bd(x1,δ/8)

P(z(y, ηt) /∈ Bd(y, ||y − x1||)) dy

+
1

n!

∫
R\Bd(x̃,δ/8)

P(z(y, ηt) /∈ Bd(y, ||x̃− y||)) dy.

A straightforward computation as in Lemma 8.4 yields the inequality (8.3). �

Combining Lemma 8.4 and Lemma 8.5 leads to the bound

|fn,t(x1, . . . , xn)| ≤ fn,t(hn(x1, . . . , xn)),

where fn,t : R× Rd → R is given by

fn,t(r, y) =

{
1

(n−1)! t
exp(−tκdrd), dist(y, ∂K) ≤ 8r

2
n! t

exp(−tκd dist(y, ∂K)d/8d), dist(y, ∂K) > 8r
. (8.4)

By the coarea formula (see Proposition 2.4), we obtain for n ≥ 2

||fn,t||2n,t ≤ tn
∫

(Rd)n
fn,t(hn(x1, . . . , xn))2 dx1 . . . dxn (8.5)

= tn
∫ ∞

0

∫
Rd

∫
h−1
n (r,y)

fn,t(r, y)2Jhn(x1, . . . , xn)−1 dHnd−d−1((x1, . . . , xn)) dy dr

= tn
∫ ∞

0

∫
Rd
fn,t(r, y)2

∫
h−1
n (r,y)

Jhn(x1, . . . , xn)−1 dHnd−d−1((x1, . . . , xn)) dy dr.

It is easy to see that hn(ax1 + v, . . . , axn + v) = ahn(x1, . . . , xn) + (0, v) for all a > 0
and v ∈ Rd and a short computation shows h′n(ax1 + v, . . . , axn + v) = h′n(x1, . . . , xn),
which implies

Jhn(ax1 + v, . . . , axn + v) = Jhn(x1, . . . , xn)

for all a > 0 and v ∈ Rd and∫
h−1
n (r,y)

Jhn(x1, . . . , xn)−1 dHnd−d−1((x1, . . . , xn))

= rnd−d−1

∫
h−1
n (1,0)

Jhn(x1, . . . , xn)−1 dHnd−d−1((x1, . . . , xn)).

Hence, formula (8.5) simplifies to

||fn,t||2n,t ≤ Cnt
n

∫ ∞
0

∫
Rd
fn,t(r, y)2(κdr

d)n−1−1/d dy dr (8.6)

for n ≥ 2 with constants

Cn = κ
−n+1+1/d
d

∫
h−1
n (1,0)

Jhn(x1, . . . , xn)−1 dHnd−d−1((x1, . . . , xn)).
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Lemma 8.6 The constants Cn, n ≥ 2, are finite and there is a constant c̃d > 0 only
depending on the dimension d such that

Cn ≤ c̃d

(
n

d+ 1

)
(n− 1)

for n ≥ d+ 1.

Proof. A straightforward computation yields

Cn = κ
−n+1+1/d
d

∫
h−1
n (1,0)

Jhn(x1, . . . , xn)−1 dHnd−d−1((x1, . . . , xn))

= (n− 1)dκ
−n+1/d
d

∫ 1

0

∫
Bd(0,1)

∫
h−1
n (r,y)

Jhn(x1, . . . , xn)−1 dHnd−d−1((x1, . . . , xn)) dy dr

= (n− 1)dκ
−n+1/d
d

∫
(Rd)n

1I
(
hn(x1, . . . , xn) ∈ [0, 1]×Bd(0, 1)

)
dx1 . . . dxn <∞.

For almost all (x1, . . . , xn) ∈ (Rd)n at most d + 1 points are on the boundary of the
minimal ball that contains all points, and we assume that these are x1, . . . , xd+1. Since
the centre of the minimal ball is in Bd(0, 1) and the radius is in [0, 1], these points must
be in Bd(0, 2). The remaining points are in a ball with radius 1 around a centre given
by the first d+ 1 points. These considerations lead to the bound

Cn ≤ (n− 1)dκ
−n+1/d
d

(
n

d+ 1

)
(κd2

d)d+1κn−d−1
d = dκ

1/d
d 2d

2+d

(
n

d+ 1

)
(n− 1)

for n ≥ d+ 1. �

Our main tool for the computation of the right-hand side of formula (8.6) is the
following inequality:

Lemma 8.7 There are constants c1,d, c2,d > 0 only depending on the dimension d such
that∫

Rd
fn,t(r, y)2 dy ≤ exp(−2tκdr

d)
d−1∑
i=0

κd−iVi(K)

(
c1,d(κdr

d)1− i
d

((n− 1)!)2 t2
+
c2,d(κdr

d)−
i
d

(n!)2 t3

)

for all r > 0 and n ≥ 2.

Proof. Let (∂K)s = {y ∈ Rd : dist(y, ∂K) ≤ s}. By the definition of fn,t in formula
(8.4), we obtain∫

Rd
fn,t(r, y)2 dy =

∫
(∂K)8r

1

((n− 1)!)2 t2
exp(−2tκdr

d) dy (8.7)

+

∫
Rd\(∂K)8r

4

(n!)2 t2
exp(−2tκddist(y, ∂K)d/8d) dy.
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It follows from Vol((∂K)8r ∩ K) ≤ Vol((∂K)8r ∩ KC) and the Steiner formula (see
Proposition 2.1) that∫

(∂K)8r

1

((n− 1)!)2 t2
exp(−2tκdr

d) dy

≤ 2
1

((n− 1)!)2 t2
exp(−2tκdr

d)
d−1∑
i=0

κd−iVi(K)(8r)d−i

≤ c1,d

((n− 1)!)2 t2
exp(−2tκdr

d)
d−1∑
i=0

κd−iVi(K)(κdr
d)1− i

d

with a constant c1,d > 0. To the second expression in Equation (8.7) we apply the coarea
formula (see Proposition 2.4) with the Lipschitz function u : Rd → R, x 7→ dist(x, ∂K),
which yields∫

Rd\(∂K)8r

4

(n!)2 t2
exp(−2tκddist(y, ∂K)d/8d) dy

=

∫ ∞
8r

∫
u−1(δ)

4

(n!)2 t2
exp(−2tκdδ

d/8d)||∇u(y)||−1 dHd−1(y) dδ.

It is easy to see that |∇v(x)u(x)| = ||v(x)||, where ∇v(x)u(x) is the directional deriva-
tive in direction v(x) = x − projK(x). Hence, we have ||v(x)|| = |∇v(x)u(x)| ≤
||∇u(x)|| ||v(x)|| and ||∇u(x)|| ≥ 1. By the Steiner formula for intrinsic volumes
(see Proposition 2.2), we know that

Hd−1({z ∈ Rd : dist(z, ∂K) = δ}) ≤ 2Hd−1({z ∈ KC : dist(z, ∂K) = δ})

= 2
d−1∑
i=0

(d− i)κd−iVi(K)δd−1−i

and altogether we obtain∫
Rd\(∂K)8r

4

(n!)2 t2
exp(−2tκddist(y, ∂K)d/8d) dy

≤
∫ ∞

8r

8

(n!)2 t2
exp(−2tκdδ

d/8d)
d−1∑
i=0

(d− i)κd−iVi(K)δd−1−i dδ

≤ 8

(n!)2 t2

d−1∑
i=0

(d− i)κd−iVi(K)(8r)−i
∫ ∞

8r

exp(−2tκdδ
d/8d)δd−1 dδ

= 4
8d

κdd(n!)2 t3
exp(−2tκdr

d)
d−1∑
i=0

(d− i)κd−iVi(K)(8r)−i

≤ c2,d

(n!)2 t3
exp(−2tκdr

d)
d−1∑
i=0

κd−iVi(K)(κdr
d)−

i
d

with a constant c2,d > 0. �
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By h1(x1) = (0, x1), Lemma 8.5, and the coarea formula (see Proposition 2.4) with
the same function u as in the previous proof, it follows that

||f1,t||21,t ≤ t

∫
Rd

4

t2
exp(−2tκddist(y, ∂K)d/8d) dy (8.8)

=
4

t

∫ ∞
0

∫
u−1(r)

exp(−2tκdr
d/8d)||∇u(y)||−1 dHd−1(y) dr

≤ 8

t

∫ ∞
0

exp(−2tκdr
d/8d)

d−1∑
i=0

(d− i)κd−iVi(K)rd−1−i dr.

Combining inequality (8.6) and Lemma 8.7, we have

||fn,t||2n,t ≤ Cn

∫ ∞
0

exp(−2tκdr
d)

d−1∑
i=0

κd−iVi(K)
c1,dt

−2+ i+1
d

((n− 1)!)2
(tκdr

d)n−
i+1
d dr

+Cn

∫ ∞
0

exp(−2tκdr
d)

d−1∑
i=0

κd−iVi(K)
c2,dt

−2+ i+1
d

(n!)2
(tκdr

d)n−1− i+1
d dr.

for n ≥ 2. Comparing this with formula (8.8), we see that the first summand on
the right-hand side is an upper bound in the case n = 1 if the constant C1 is chosen
appropriately. For n ≥ 2 substitution and the definition of the Gamma function lead
to

||fn,t||2n,t ≤ Cn
c1,d

d ((n− 1)!)2

d−1∑
i=0

κd−iVi(K)
t−2+ i+1

d

2n−
i+1
d

1

(2tκd)
1
d

∫ ∞
0

exp(−y) yn−1− i
d dy

+Cn
c2,d

d(n!)2

d−1∑
i=0

κd−iVi(K)
t−2+ i+1

d

2n−1− i+1
d

1

(2tκd)
1
d

∫ ∞
0

exp(−y) yn−2− i
d dy

≤ Cn

d−1∑
i=0

κd−iVi(K)

(
c̃1,d Γ(n− i

d
)

((n− 1)!)2 2n
+
c̃2,d Γ(n− 1− i

d
)

(n!)2 2n

)
t−2+ i

d

with constants c̃1,d, c̃2,d > 0, and it is easy to see that

n!||fn,t||2n,t ≤
1

2n
Cn

(
c̃1,dn+ c̃2,d

1

n(n− 1)

) d−1∑
i=0

κd−iVi(K)t−2+ i
d . (8.9)

For n = 1 we obtain the inequality (8.9) with c̃1,d instead of the expression in brackets.
By Lemma 8.6, we know that Cn is bounded by a polynomial of order d + 2 in n and
it follows directly that the series

∞∑
n=2

1

2n
Cn

(
c̃1,dn+ c̃2,d

1

n(n− 1)

)
converges, which proves the upper bound in Theorem 8.2 and that the condition (5.31)
in Corollary 5.14 is satisfied for the volume of the Poisson-Voronoi approximation.

In order to conclude the proof of Theorem 8.2, it remains to construct a lower
bound. Because of Theorem 4.2 it is sufficient to give a lower bound for ||f1,t||21,t.
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Lemma 8.8 There is a constant C only depending on the dimension d such that

||f1,t||21,t ≥ C κ1Vd−1(K) t−1− 1
d (8.10)

for t ≥ (2/r(K))d, where r(K) is the inradius of K.

Proof. Recall that Bd(y, δ) ⊂ Rd stands for a ball with centre y and radius δ > 0. We
consider the set

Mε =

{
x ∈ KC : dist(x,K) ≤ ε,Vol((Bd(x, 2ε) \Bd(x, ε)) ∩K) ≥ κdε

d

2d

}
for ε ≤ r(K)/2. By a result due to Schütt and Werner (see [84, Lemma 4]), it is known
that

Hd−1 ({x ∈ ∂K : r̃(x) ≥ ε}) ≥
(

1− ε

r(K)

)d−1

κ1Vd−1(K),

where r̃(x) is the radius of the largest ball that is contained in K and contains x. It
is easy to see that x ∈ KC with dist(x,K) ≤ ε is in Mε if r̃(projK(x)) ≥ ε. As a
consequence, we have

Vol(Mε) ≥ Hd−1 ({x ∈ ∂K : r̃(x) ≥ ε}) ε (8.11)

≥
(

1− ε

r(K)

)d−1

κ1Vd−1(K)ε ≥ 1

2d
κ1Vd−1(K) ε.

For x ∈Mε it holds that

|f1,t(x)| ≥ κdε
d

2d
exp(−

(
4d − 2−d

)
tκdε

d)
(
1− exp(−2−d tκdε

d)
)
. (8.12)

To see the inequality (8.12), the underlying idea is that for every x ∈ Mε there is, by
definition of Mε, a set U ⊂ (Bd(x, 2ε) \Bd(x, ε)) ∩K with λd(U) = 2−dκdε

d. Then

P(ηt(B
d(x, 4ε) \ U) = 0, ηt(U) ≥ 1) = exp(−(4d − 2−d)tκdε

d)
(
1− exp(−2−d tκdε

d)
)
,

and for this event the effect of adding x to the point process is larger than κdε
d

2d
.

Combining the estimates (8.11) and (8.12), we obtain

||f1,t||21,t = t

∫
Rd
f1,t(x)2 dx ≥ t

∫
Mε

f1,t(x)2 dx

≥ t
1

2d
κ1Vd−1(K) ε

κ2
dε

2d

4d
exp(−2(4d − 2−d)tκdε

d)
(
1− exp(2−d tκdε

d)
)2
.

Now the choice ε = t−
1
d leads to

||f1,t||21,t ≥
κ2
d

8d
exp(−2(4d − 2−d)κd)

(
1− exp(−2−d κd)

)2
κ1Vd−1(K) t−1− 1

d ,

which concludes the proof. �
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An inequality as formula (8.10) cannot hold for all t > 0 as the following considera-
tion shows: We fix a convex body K ∈ Kd0 with 0 ∈ K and a compact window W ⊃ K

and set Kr = rK = {rx : x ∈ K} for r > 0. We define the random variable P̃Vt(W )
as

P̃Vt(W ) = Vol
({
y ∈ Rd : dist(y,W ) ≤ ||y − x|| ∀x ∈ ηt ∩WC

})
.

A short computation proves E P̃Vt(W )2 <∞. Then, it holds that

Var PVt(Kr) = EPVt(Kr)
2 − Vol(Kr)

2 ≤ EPVt(Kr)
2

≤ (1− exp(−tVol(Kr)))E P̃Vt(W )2.

For r → 0 the right-hand side has order rd, whereas Vd−1(Kr) is only of order rd−1.

8.3 Proof of Theorem 8.1

In this section, we use Corollary 5.14 to prove Theorem 8.1. Since it follows from
formula (8.9) that condition (5.31) is satisfied, it only remains to check condition
(5.32), which requires

lim
t→∞

t|σ|

(Var PVt(K))2

∫
(Rd)|σ|

|(fi,t ⊗ fi,t ⊗ fj,t ⊗ fj,t)σ(y1, . . . , y|σ|)| dy1 . . . dy|σ|︸ ︷︷ ︸
=:Mσ,t

= 0

(8.13)

for all σ ∈ Π̃≥2(i, i, j, j) and i, j ∈ N. In order to prove this behaviour, we compute
upper bounds for Mσ,t.

We define functions gn :
(
Rd
)n → R, n ∈ N, as

gn(x1, . . . , xn) = max

{
diam(x1, . . . , xn), max

i=1,...,n
dist(xi, ∂K)

}
,

where diam(x1, . . . , xn) stands for the diameter of x1, . . . , xn. Using this notation, we
can state the following upper bound for fn,t:

Lemma 8.9 Let x1, . . . , xn ∈ Rd and δ = gn(x1, . . . , xn). Then

|fn,t(x1, . . . , xn)| ≤ 2

n! t
exp(−tκdδd/4d) =: f̃n,t(δ).

Proof. Without loss of generality we can assume dist(x1, ∂K) = δ or dist(x1, x2) = δ.
For the first case, let x̃ = 1

2
(x1 + proj∂K(x1)), where proj∂K(x1) is the projection of x1

on the boundary of K. If the projection is not unique (this can happen for x1 ∈ K), it
does not matter which of the points is taken. Then, it holds that

δ

4
≤ dist(y, x̃) ≤ 3

4
δ ≤ dist(y, ∂K) for all y ∈ Bd(x1, δ/4).
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Hence, it follows from Lemma 8.3 and a straightforward computation as in the proof
of Lemma 8.4 that

|fn,t(x1, . . . , xn)| ≤ 1

n!

∫
Rd\Bd(x1,δ/4)

P(z(y, ηt) /∈ Bd(y, ||y − x1||)) dy

+
1

n!

∫
Bd(x1,δ/4)

P(z(y, ηt) /∈ Bd(y, dist(y, ∂K))) dy

≤ 1

n!

∫
Rd\Bd(x1,δ/4)

P(z(y, ηt) /∈ Bd(y, ||y − x1||)) dy

+
1

n!

∫
Rd\Bd(x̃,δ/4)

P(z(y, ηt) /∈ Bd(y, ||y − x̃||)) dy

=
2

n! t
exp(−tκdδd/4d).

In the case dist(x1, x2) = δ, we replace x̃ by x2 and obtain the same bound. �

We prepare the application of the coarea formula by showing the following proper-
ties of gn :

Lemma 8.10 a) gn is a Lipschitz function with ||∇gn|| ≥ 1 almost everywhere.

b) There is a constant cd > 0 only depending on the dimension d such that

Hnd−1(g−1
n (δ)) ≤ n(n− 1)

d−1∑
i=0

κd−iVi(K) δd−idκd δ
d−1(κdδ

d)n−2 (8.14)

+2n
d−1∑
i=0

(d− i)κd−iVi(K) δd−1−i(κdδ
d)n−1

≤ cdn
2

d−1∑
i=0

κd−iVi(K)(κdδ
d)n−

i+1
d

for δ ≥ 0.

Proof. gn(x1, . . . , xn) is always given by the distance of two points or by the distance
of a point to the boundary of K. If we move one of these points exactly in the opposite
direction v of the second point or the boundary of K, the directional derivative is
∇vgn(x1, . . . , xn) = ||v||. Now

|∇vgn(x1, . . . , xn)| ≤ ||∇gn(x1, . . . , xn)|| ||v||

implies ||∇gn(x1, . . . , xn)|| ≥ 1 and thus a).
For the proof of b) we consider the same situations as in the proof of a). If there are

two points xi, xj ∈ Rd such that dist(xi, xj) = δ, xi must be in (∂K)δ, xj in a sphere
around xi with radius δ and the remaining n− 2 points must be in a ball with radius
δ and centre xi. If dist(xi, ∂K) = δ, xi must be in the set {y ∈ Rd : dist(y, ∂K) = δ}
and the remaining points are in a ball with radius δ and centre xi. Combining these
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considerations with the Steiner formula (see Proposition 2.2) yields formula (8.14). �

Recall that σ ∈ Π̃≥2(i, i, j, j). For ` = 1, 2, 3, 4 let σ`(y1, . . . , y|σ|) ⊂ {y1, . . . , y|σ|} be
the new variables that occur in the `-th function of (fi,t⊗ fi,t⊗ fj,t⊗ fj,t)σ and let |σ`|
stand for the number of these variables. We set r = g|σ|(y1, . . . , y|σ|) and

δ1 = g|σ1|(σ1(y1, . . . , y|σ|)), . . . , δ4 = g|σ4|(σ4(y1, . . . , y|σ|)).

Since σ`(y1, . . . , y|σ|) ⊂ {y1, . . . , y|σ|}, it is easy to see that δ` = g|σ`|(σ`(y1, . . . , y|σ|)) ≤
g|σ|(y1, . . . , y|σ|) = r for ` = 1, 2, 3, 4. If there is a yj with dist(yj, ∂K) = r, we have at
least two `1, `2 ∈ {1, 2, 3, 4} such that yj ∈ σ`1(y1, . . . , y|σ|) and yj ∈ σ`2(y1, . . . , y|σ|),
which implies δ`1 = δ`2 = r. The other case is that there are yj1 and yj2 such that
dist(yj1 , yj2) = r. If there is an ` ∈ {1, 2, 3, 4} with y1, y2 ∈ σ`(y1, . . . , y|σ|), it fol-

lows directly δ` = r. Otherwise, σ ∈ Π̃≥2(i, i, j, j) implies that we have a yj3 and
`1, `2 ∈ {1, 2, 3, 4} with yj1 , yj3 ∈ σ`1(y1, . . . , y|σ|) and yj2 , yj3 ∈ σ`2(y1, . . . , y|σ|). By the
inequality

r = dist(yj1 , yj2) ≤ dist(yj1 , yj3) + dist(yj3 , yj2),

it follows that

max{δ`1 , δ`2} ≥ max{dist(yj1 , yj3), dist(yj3 , yj2)} ≥ r/2.

Hence, it holds that r/2 ≤ max`=1,...,4 δ` ≤ r. Together with the coarea formula (see
Proposition 2.4), Lemma 8.9, and Lemma 8.10, we obtain

Mσ,t ≤ t|σ|
∫

(Rd)|σ|
f̃i,t(δ1)f̃i,t(δ2)f̃j,t(δ3)f̃j,t(δ4) dy1 . . . dy|σ|

≤ t|σ|
∫

(Rd)|σ|
f̃i,t(δ1)f̃i,t(δ2)f̃j,t(δ3)f̃j,t(δ4) ||∇g|σ||| dy1 . . . dy|σ|

= t|σ|
∫ ∞

0

∫
g−1
|σ| (r)

f̃i,t(δ1)f̃i,t(δ2)f̃j,t(δ3)f̃j,t(δ4) H|σ|d−1(d(y1, . . . , y|σ|)) dr

≤ t|σ|−4 16

(i! j!)2

∫ ∞
0

exp(−tκdrd/8d)cd|σ|2
d−1∑
i=0

κd−iVi(K)(κdr
d)|σ|−

i+1
d dr.

By substitution and the definition of the Gamma function, we have

Mσ,t ≤
16cd|σ|2

(i! j!)2

d−1∑
i=0

κd−iVi(K)8|σ|d−i−1t
i+1
d
−4

∫ ∞
0

exp(−tκdrd/8d)(tκdrd/8d)|σ|−
i+1
d dr

=
16cd|σ|2

d(i! j!)2

d−1∑
i=0

κd−iVi(K)t
i
d
−48|σ|d−iκ

− 1
d

d

∫ ∞
0

exp(−y) y|σ|−1− i
d dy

=
16cd|σ|2

d(i! j!)2

d−1∑
i=0

κd−iVi(K)t
i
d
−48|σ|d−iκ

− 1
d

d Γ(|σ| − i/d).

Thus, each Mσ,t has order t−3− 1
d or less. Since Var PVt(K) is of order t−1− 1

d , this proves
formula (8.13). Now all assumptions of Corollary 5.14 are satisfied for the volume of
the Poisson-Voronoi approximation, and Theorem 8.1 is a direct consequence.

123



In Theorem 8.1 and Theorem 8.2, we assume that the approximated set K is con-
vex. But the convexity is not necessary for the construction of the Poisson-Voronoi
approximation so that it is a natural question if one can extend our results to more
general set classes. The convexity assumption is only needed to bound the volume and
the surface area of the parallel sets (∂K)r by the Steiner formula in the proofs of The-
orem 8.2 and Theorem 8.1 and to apply Lemma 4 from [84] in the proof of Lemma 8.8.
Hence, one can extend the results to compact sets M ⊂ Rd that satisfy the following
additional assumptions:

(S1) There are constants c
(i)
M , i = 1, . . . , d, depending on M such that

Vol((∂M)r) ≤
d∑
i=1

c
(i)
M r

i and Hd−1(∂((∂M)r)) ≤
d∑
i=1

c
(i)
M r

i−1

with (∂M)r = {x ∈ Rd : dist(x, ∂M) ≤ r} for r > 0.

(S2) There is a constant γ > 0 such that

lim inf
r→0

Vol(M̃γ,r)/r > 0

with M̃γ,r = {x ∈MC : dist(x,M) ≤ r,Vol((Bd(x, 2r) \Bd(x, r)) ∩M) ≥ γrd}.

Assumption (S1) allows us to bound the volume and the surface area of the parallel
sets (∂M)r by a kind of Steiner formula. In the upper bound in Theorem 8.2, the

intrinsic volumes must be replaced by the constants c
(i)
M , i = 1, . . . , d. Our proof of the

lower bound in Theorem 8.2 requires assumption (S2), which replaces a rolling ball
result for convex sets from [84]. Then the constant C and the lower bound for t in
formula (8.1) depend on the constant γ and the limit inferior in (S2).

Since (S1) and (S2) are obviously true for convex sets, they still hold for polyconvex
sets and, of course, for all polytopes.

Notes: The content of this chapter is published in Schulte 2012a.
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Chapter 9

Central limit theorems for Boolean
models

In this chapter, we investigate a class of random closed sets in Rd, so-called Boolean
models. We prove univariate and multivariate central limit theorems for their intrin-
sic volumes within increasing observation windows. The problem and the results are
presented in the first section. The second section contains the proofs that make use of
the Wiener-Itô chaos expansion and the Malliavin-Stein method.

9.1 Introduction and results

Let η be a stationary Poisson point process on Kd. The intensity measure Λ of η is of
the form

Λ(·) = γ

∫
Rd

∫
Kd

1I (x+K ∈ ·) dQ(K) dx

where γ > 0 and Q is a probability measure on Kd that is concentrated on the non-
empty compact convex sets whose circumcentre is the origin (see [79, Theorem 4.1.1]).
Now the Boolean model

Z =
⋃
K∈η

K

is the union of all compact convex sets that belong to η. A random compact convex
set Z0 with probability distribution Q is called typical grain.

One can also think of η as a stationary marked Poisson point process in Rd such
that every point has a random compact convex set with distribution Q as a mark.
Then the Boolean model is the union of the Minkowski sums of the points of η and
their marks.

In the following, we are interested in the intrinsic volumes of the Boolean model
Z within an observation window W ∈ Kd0, i.e. we consider the Poisson functionals
Vk(Z ∩W ) for k = 0, . . . , d. In order to investigate their asymptotic behaviour, we
take as observation windows a sequence (Wm)m∈N in Kd0 such that the inradii satisfy
lim
m→∞

r(Wm) =∞.

For first order properties of the Boolean model Z, we refer to the monograph [79] by
Schneider and Weil and the references therein, where it was shown (see [79, Theorem
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Figure 9.1: Boolean model with disks as typical grains

9.1.5]) that

lim
m→∞

EVk(Z ∩Wm)

Vd(Wm)
= vk,Z

for k = 0, . . . , d with constants vk,Z depending on the dimension d, the intensity γ,
and the distribution of the typical grain. For the volume in increasing observation
windows central limit theorems were proven by Baddeley and Mase in [2, 48]. Heinrich
obtained a rate of convergence and large deviation inequalities in [22]. The surface
area was considered by Molchanov in [54]. This result was extended by Heinrich and
Molchanov to more general functionals than the surface area, including so-called posi-
tive extensions of the intrinsic volumes (see [24]). Some formulas for the second order
moments of intrinsic volumes were derived and evaluated for special cases by Mecke in
[52]. Baryshnikov and Yukich, and Penrose proved central limit theorems for function-
als related to the volume by stabilization techniques in [5, 72]. Using a similar method,
Penrose derived central limit theorems for the numbers of occupied and vacant clusters
in [68]. For limit theorems in a statistical context we refer to the works of Molchanov
and Stoyan and Pantle, Schmidt, and Spodarev (see [55, 62]), where the asymptotic
normality of estimators related to Boolean models was shown.

In contrast to the previous works focusing on volume or surface area, we prove
univariate central limit theorems for all intrinsic volumes and a multivariate central
limit theorem for the vector of all intrinsic volumes in this chapter. For both results we
can provide rates of convergences depending on the inradius of the observation window.

Recall that r(K) andR(K) stand for the inradius and the circumradius of a compact
convex set K ∈ Kd. By B(K) we denote the smallest closed ball containing the compact
convex set K ∈ Kd.

We begin with the following result for the asymptotic covariances of the intrinsic
volumes:

Theorem 9.1 Assume that the typical grain Z0 satisfies EVd(B(Z0))3 <∞. For k, ` ∈
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{0, . . . , d} the limit

σk,` = lim
m→∞

Cov(Vk(Z ∩Wm), V`(Z ∩Wm))

Vd(Wm)

exists for a sequence of convex bodies (Wm)m∈N such that lim
m→∞

r(Wm) =∞. Moreover,

there are constants ck,` depending on the dimension d, the intensity parameter γ, and
the typical grain Z0 such that∣∣∣∣Cov(Vk(Z ∩W ), V`(Z ∩W ))

Vd(W )
− σk,`

∣∣∣∣ ≤ ck,`
r(W )

(9.1)

for W ∈ Kd0 with r(W ) ≥ 1.
If the typical grain Z0 is a convex body with positive probability, the covariance

matrix Σ = (σk,`)k,`=0,...,d is positive definite.

The knowledge of the asymptotic covariance matrix allows us to state the following
central limit theorem:

Theorem 9.2 Assume that the typical grain Z0 satisfies EVd(B(Z0))4 <∞.

a) Let N be a standard Gaussian random variable. Then there are constants ck,
k ∈ {0, . . . , d}, depending on the dimension d, the intensity parameter γ, and the
typical grain Z0 such that

dW

(
Vk(Z ∩W )− EVk(Z ∩W )√

VarVk(Z ∩W )
, N

)
≤ ck
r(W )d/2

for W ∈ Kd0 with r(W ) ≥ 1.

b) Let V(W ) = (V0(Z ∩W ), . . . , Vd(Z ∩W )) for W ∈ Kd0 and let N(Σ) be a (d+ 1)-
dimensional centred Gaussian random vector with the covariance matrix Σ defined
in Theorem 9.1. Then there is a constant c > 0 depending on the dimension d,
the intensity parameter γ, and the typical grain Z0 such that

d3

(
1√

Vd(W )
(V(W )− EV(W )),N(Σ)

)
≤ c

r(W )

for W ∈ Kd0 with r(W ) ≥ 1.

Comparing part a) and part b) of Theorem 9.2, one sees that for d ≥ 3 the rate
of convergence in the multivariate case is weaker than in the univariate case. This is
caused by the slow rate of convergence in Theorem 9.1 since we need to bound

d∑
k,`=0

∣∣∣∣σk,` − Cov(Vk(Z ∩W ), V`(Z ∩W ))

Vd(W )

∣∣∣∣ ,
in order to apply the multivariate part of Theorem 5.15. In the univariate case, we
normalize with the exact variance and do not have such a term. If we replace the
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Gaussian random vector N(Σ) with the covariance matrix Σ by a centred Gaussian
random vector N(ΣW ) having the covariance matrix ΣW of Vd(W )−1/2V(W ), the sum
above vanishes and we obtain

d3

(
1√

Vd(W )
(V(W )− EV(W )),N(ΣW )

)
≤ c

r(W )d/2
,

which is the same rate as in the univariate case. Using the triangle inequality for the
distance d3, we see that

d3(N(Σ),N(ΣW ))− d3

(
1√

Vd(W )
(V(W )− EV(W )),N(ΣW )

)

≤ d3

(
1√

Vd(W )
(V(W )− EV(W )),N(Σ)

)
.

Since d3(N(Σ),N(ΣW )) has at most the rate of

d∑
k,`=0

∣∣∣∣σk,` − Cov(Vk(Z ∩W ), V`(Z ∩W ))

Vd(W )

∣∣∣∣ ,
the rate in Theorem 9.2 cannot be better than the rate in Theorem 9.1.

If we rescale by
√
Vd(W ) in the univariate case and consider the Wasserstein dis-

tance to
√
σk,kN , we also obtain only the rate r(W )−1.

9.2 Proofs

We begin with the computation of the Wiener-Itô chaos expansions of the Poisson
functionals Vk(Z ∩W ), k ∈ {0, . . . , d}, whose kernels are denoted by f

(k)
n , n ∈ N.

Lemma 9.3 For K1, . . . , Kn ∈ Kd, n ∈ N, and k ∈ {0, . . . , d} we have

f (k)
n (K1, . . . , Kn) =

(−1)n

n!
(EVk(Z ∩K1 ∩ . . . ∩Kn ∩W )− Vk(K1 ∩ . . . ∩Kn ∩W )).

Proof. We show by induction the identity

DK1,...,KnVk(Z ∩W )

= (−1)n (Vk(Z ∩K1 ∩ . . . ∩Kn ∩W )− Vk(K1 ∩ . . . ∩Kn ∩W )) .
(9.2)

for the n-th iterated difference operator applied to Vk(Z ∩W ). For n = 1 this follows
from the pathwise definition of the difference operator in Equation (4.1) and the ad-
ditivity of the intrinsic volumes. By the definition of the iterated difference operator
in Equation (4.2), again the additivity of the intrinsic volumes, and the assumption of
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the induction, we obtain

DK1,...,Kn+1Vk(Z ∩W )

= (−1)nDKn+1 (Vk(Z ∩K1 ∩ . . . ∩Kn ∩W )− Vk(K1 ∩ . . . ∩Kn ∩W ))

= (−1)n (Vk((Z ∪Kn+1) ∩K1 ∩ . . . ∩Kn ∩W )− Vk(K1 ∩ . . . ∩Kn ∩W ))

− (−1)n (Vk(Z ∩K1 ∩ . . . ∩Kn ∩W )− Vk(K1 ∩ . . . ∩Kn ∩W ))

= (−1)n (Vk((Z ∪Kn+1) ∩K1 ∩ . . . ∩Kn ∩W )− Vk(Z ∩K1 ∩ . . . ∩Kn ∩W ))

= (−1)n (Vk(K1 ∩ . . . ∩Kn ∩Kn+1 ∩W )− Vk(Z ∩K1 ∩ . . . ∩Kn ∩Kn+1 ∩W )) .

Combining identity (9.2) with the definition of the kernels in Equation (4.4) concludes
the proof. �

We prepare for the proofs of our main results by some inequalities. Let Q1 = [0, 1]d

and let N(Q1) be the number of grains hitting Q1. By ϕQ1 we denote the generating
function of N(Q1).

Lemma 9.4 For all A ∈ Kd it holds that

|EVk(Z ∩ A)| ≤ c1(d)ϕQ1(2)Vk(Q1) (Vd(B(A)) + V0(A))

and

EVk(Z ∩ A)4 ≤ c2(d)ϕQ1(16)Vk(Q1)4

d∑
i=0

Vi(A)4

with constants c1(d), c2(d) > 0 only depending on the dimension d.

Proof. Since the inequalities are obviously true for A = ∅, we assume A 6= ∅ in the
following. We divide Rd in a grid of cubes of edge length one and denote the set of all
these cubes intersecting A by Q(A). It follows from the inclusion-exclusion formula for
intrinsic volumes that

|EVk(Z ∩ A)| ≤ E|Vk(Z ∩
⋃

Q∈Q(A)

Q ∩ A)| ≤
∑

I⊂Q(A)

E|Vk(Z ∩
⋂
Q∈I

Q ∩ A)|.

For a set D ∈ Kd, we denote the grains of the Boolean model hitting D by Z1, . . . , ZN(D)

and obtain by the properties of Vk

|Vk(Z ∩D)| = |Vk(D ∩
⋃

j=1,...,N(D)

Zj)| ≤
∑

J⊂{1,...,N(D)}

|Vk(D ∩
⋂
j∈J

Zj)| ≤ 2N(D)Vk(D).

Consequently, we have

E|Vk(Z∩
⋂
Q∈I

Q∩A)| ≤ E2N(
⋂
Q∈I Q∩A) Vk(

⋂
Q∈I

Q∩A) ≤ E2N(Q1) Vk(Q1) = ϕQ1(2)Vk(Q1).

Due to the fact that the Q ∈ Q(A) form a grid, we know that

|{I ⊂ Q(A) :
⋂
Q∈I

Q 6= ∅}| ≤ c̃(d) |Q(A)|
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with a constant c̃(d) > 0 only depending on the dimension d. Altogether, we see that

|EVk(Z ∩ A)| ≤ c̃(d)ϕQ1(2)Vk(Q1) |Q(A)|.

Combining this with the inequality

|Q(A)| ≤ Vd(A+
√
dBd) ≤ Vd(B(A) +

√
dBd)

≤ κd (R(A) +
√
d)d ≤ κd 2d−1(R(A)d + d

d
2 )

≤ 2d−1(Vd(B(A)) + d
d
2κd) ≤ 2d−1(1 + d

d
2κd) (Vd(B(A)) + V0(A))

≤ 2d d
d
2 (κd + 1) (Vd(B(A)) + V0(A)),

yields
|EVk(Z ∩ A)| ≤ c1(d)ϕQ1(2)Vk(Q1) (Vd(B(A)) + V0(A))

with c1(d) = 2dd
d
2 (κd + 1) c̃(d). The Steiner formula (see Proposition 2.1) gives us the

upper bound

|Q(A)| ≤ Vd(A+
√
dBd) =

d∑
i=0

κd−i d
(d−i)/2 Vi(A) ≤ c(d)

d∑
i=0

Vi(A)

with a constant c(d) > 0 only depending on the dimension d. Together with similar
arguments as above and Jensen’s inequality, we obtain

EVk(Z ∩ A)4 ≤ E

 ∑
I⊂Q(A),

⋂
Q∈I Q 6=∅

|Vk(
⋂
Q∈I

Q ∩ Z ∩ A)|

4

≤ c̃(d)3 |Q(A)|3 E
∑

I⊂Q(A),
⋂
Q∈I Q 6=∅

Vk(
⋂
Q∈I

Q ∩ Z ∩ A)4

≤ c̃(d)4 |Q(A)|4 E24N(Q1) Vk(Q1)4

≤ c̃(d)4 ϕQ1(16)Vk(Q1)4

(
c(d)

d∑
i=0

Vi(A)

)4

≤ (d+ 1)3 c̃(d)4 c(d)4 ϕQ1(16)Vk(Q1)4

d∑
i=0

Vi(A)4,

which concludes the proof. �

The number of grains hitting the cube Q1 follows a Poisson distribution with pa-
rameter Λ

(
{K ∈ Kd : K ∩Q1 6= ∅}

)
. The assumption EVd(B(Z0))3 <∞ ensures that

this parameter is finite. This can be also deduced from weaker assumptions on the
typical grain Z0. Hence, we can regard ϕQ1(2) and ϕQ1(16) as constants.

The previous result allows us to derive bounds for the kernels of the Wiener-Itô
chaos expansions of Vk(Z ∩ W ) and the fourth moment of the difference operator
applied to Vk(Z ∩ W ). The advantage of these bounds is that they do not involve
expectations.
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Corollary 9.5 Let W ∈ Kd0. There are constants αk, βk, k ∈ {0, . . . , d}, depending on
the dimension d, the intensity parameter γ, and the typical grain Z0 such that

|f (k)
n (K1, . . . , Kn)| ≤ αk

n!
(Vd(B(K1 ∩ . . . ∩Kn ∩W )) + V0(K1 ∩ . . . ∩Kn ∩W ))

for K1, . . . , Kn ∈ Kd and

E(DKVk(Z ∩W ))4 ≤ βk

d∑
i=0

Vi(K ∩W )4

for K ∈ Kd.

Proof. First note that for A ∈ Kd, we have

Vk(A) ≤ Vk(B(A)) ≤ Vk(B
d)R(A)k ≤ Vk(B

d) (1/κd + 1) (Vd(B(A)) + V0(A)).

Now the first estimate follows from Lemma 9.3 and Lemma 9.4. For the second in-
equality we observe that

E
[
(DKVk(Z ∩W ))4

]
= E (Vk(K ∩W )− Vk(Z ∩K ∩W ))4

≤ 8
(
Vk(K ∩W )4 + EVk(Z ∩K ∩W )4

)
≤ βk

d∑
i=0

Vi(K ∩W )4,

where Equation (9.2), Jensen’s inequality, and Lemma 9.4 were used. �

The following lemma is helpful to bound integrals with respect to the measure Λ
and is applied several times in the proofs of Theorem 9.1 and Theorem 9.2.

Lemma 9.6 Let A ∈ Kd. Then we have∫
Rd
Vd(B(A∩ (x+L))) + V0(A∩ (x+L)) dx ≤ 2d (Vd(B(L)) + 1) (Vd(B(A)) + V0(A)) ,

for every L ∈ Kd whose circumcentre is the origin, and∫
Kd
Vd(B(A ∩K)) + V0(A ∩K) dΛ(K) ≤ τ (Vd(B(A)) + V0(A))

with τ = γ 2d (EVd(B(Z0)) + 1).

Proof. We assume that A 6= ∅ since the inequalities obviously hold for A = ∅. First,
we have∫

Rd
Vd(B(A ∩ (x+ L))) dx ≤ min{Vd(B(A)), Vd(B(L))}

∫
Rd

1I(A ∩ (x+ L) 6= ∅) dx

≤ min{Vd(B(A)), Vd(B(L))}Vd(A+B(L)).
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Since

Vd(A+B(L)) ≤ Vd(B(A) +B(L)) = κd (R(A) +R(L))d

≤ 2d−1 (Vd(B(A)) + Vd(B(L))) ≤ 2d max{Vd(B(A)), Vd(B(L))},

we obtain ∫
Rd
Vd(B(A ∩ (x+ L))) dx ≤ 2d Vd(B(L))Vd(B(A)).

Moreover, we have∫
Rd
V0(A ∩ (x+ L)) dx ≤ Vd(A+B(L)) ≤ 2d−1 (Vd(B(A)) + Vd(B(L))).

Together this yields∫
Rd
Vd(B(A ∩ (x+ L))) + V0(A ∩ (x+ L)) dx

≤ 2d Vd(B(L))Vd(B(A)) + 2d−1(Vd(B(A)) + Vd(B(L)))

≤ 2d (Vd(B(L)) + 1) (Vd(B(A)) + V0(A)),

which proves the first claim. The second part follows from putting L = Z0 and taking
the expectation. �

The next lemma allows us to bound the ratio between intrinsic volumes and the
volume of a convex body in dependence on its inradius.

Lemma 9.7 Let W ∈ Kd0 have the inradius r(W ) > 0 and let k ∈ {0, . . . , d−1}. Then

Vk(W )

Vd(W )
≤ 2d − 1

κd−k
r(W )−(d−k).

Proof. A straightforward computation shows that

Vd(W +r(W )Bd)−Vd(W ) ≤ Vd(W +W )−Vd(W ) = Vd(2W )−Vd(W ) = (2d−1)Vd(W ).

Together with the Steiner formula and the fact that Vi(W ) ≥ 0 for i = 0, . . . , d− 1, we
obtain

(2d − 1)Vd(W ) ≥ Vd(W + r(W )Bd)− Vd(W ) =
d−1∑
i=0

κd−i r(W )d−i Vi(W )

≥ κd−k r(W )d−k Vk(W ),

which concludes the proof. �

The following observation about the intersection of translations of convex bodies is
the reason for the positive definiteness of the covariance matrix if the typical grain is
a convex body with positive probability.
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Lemma 9.8 For all K1, . . . , Kd+1 ∈ Kd0 there are constants c0, r0 > 0 such that

λdd
(
{(x2, . . . , xd+1) ∈ (Rd)d : R(L) ≤ c0 r(L) ≤ r for L = K1 ∩

d+1⋂
i=2

(xi +Ki)}
)
> 0

for all 0 < r ≤ r0.

Proof. Let n1, . . . , nd+1 ∈ Rd be such that they have norm one, and their convex cone
is Rd. Then we can choose points yi ∈ ∂Ki such that ni is an outer normal vector of Ki

in yi for i = 1, . . . , d+ 1. Let Si be the support cone of Ki in yi (this is the polar cone
to the cone of all normal vectors in yi). Since K1, . . . , Kd+1 have interior points, there
are translation vectors v1, . . . , vd+1 ∈ Rd such that 0 ∈ int(

⋂d+1
i=1 (vi + Ki)). We define

S =
⋂d+1
i=1 (vi + yi +Si). Obviously, we have 0 ∈ int(S). Moreover, S is bounded by the

choice of n1, . . . , nd+1 and, thus, a convex body. For t > 0 and vi,t = tvi + (t − 1)yi,

i = 1, . . . , d+ 1, we have
⋂d+1
i=1 (vi,t + yi + Si) = tS. The support cone Si approximates

Ki locally in yi for i = 1, . . . , d+ 1 so that 1
t

⋂d+1
i=1 (vi,t +Ki) converges in the Hausdorff

distance to S as t→∞.
Since inradius and circumradius are continuous with respect to the Hausdorff dis-

tance, the intersection
⋂d+1
i=1 (vi,t + Ki) has a similar ratio between inradius and cir-

cumradius as S. By the continuity of translations, we obtain a similar ratio between
inradius and circumradius if we move v1,t, . . . , vd+1,t ∈ Rd slightly. Because of transla-
tion invariance, we can put v1,t = 0. �

Now we are prepared for the proof of Theorem 9.1:

Proof of Theorem 9.1: In order to simplify our notation, we use the abbreviation

gk(A) = E[Vk(Z ∩ A)]− Vk(A)

for k ∈ {0, . . . , d} and A ∈ Kd. By substitution and translation invariance, we have

n!

∫
(Kd)n

f (k)
n (K1, . . . , Kn) f (`)

n (K1, . . . , Kn) dΛ(K1, . . . , Kn)

=
γ

n!

∫
Rd

∫
Kd

∫
(Kd)n−1

gk((x1 +K1) ∩K2 ∩ . . . ∩Kn ∩W )

g`((x1 +K1) ∩K2 ∩ . . . ∩Kn ∩W ) dΛ(K2, . . . , Kn) dQ(K1) dx1

=
γ

n!

∫
Rd

∫
Kd

∫
(Kd)n−1

gk(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y))

g`(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y)) dΛ(K2, . . . , Kn) dQ(K1) dy.

Thus, we have for

Jn,k,` =
γ

n!

∫
Kd

∫
(Kd)n−1

gk(K1 ∩ . . . ∩Kn) g`(K1 ∩ . . . ∩Kn) dΛ(K2, . . . , Kn) dQ(K1)

that ∣∣n! 〈f (k)
n , f (`)

n 〉L2
s(Λ

n) − Vd(W )Jn,k,`
∣∣ ≤ γ

n!
(R1 +R2) (9.3)
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with

R1 =
∣∣∣ ∫

Rd

∫
Kd

∫
(Kd)n−1

1I (y /∈ W ) gk(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y))

g`(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y)) dΛ(K2, . . . , Kn) dQ(K1) dy
∣∣∣

and

R2 =

∫
Rd

∫
Kd

∫
(Kd)n−1

1I (y ∈ W )

|gk(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y)) g`(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y))

−gk(K1 ∩K2 ∩ . . . ∩Kn) g`(K1 ∩K2 ∩ . . . ∩Kn)|
dΛ(K2, . . . , Kn) dQ(K1) dy.

In the following, we bound R1 and R2. Let K1, . . . , Kn ∈ Kd and y ∈ Rd be fixed, for
the moment. It follows from Lemma 9.3 and Corollary 9.5 that

|gk(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y)) g`(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y))|
≤αk α` (Vd(B(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y))) + V0(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y)))2

with the constants αk and α` from Corollary 9.5. By the monotonicity of the intrinsic
volumes and by applying Lemma 9.6 for the integration with respect to K2, . . . , Kn,
we obtain∫
Kd

∫
(Kd)n−1

(Vd(B(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y)))

+V0(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y)))2 dΛ(K2, . . . , Kn) dQ(K1)

≤
∫
Kd

(
Vd(B(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y))) + V0(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y))

)
(Vd(B(K1)) + 1) dΛ(K2, . . . , Kn) dQ(K1)

≤ τn−1

∫
Kd

(
Vd(B(K1 ∩ (W − y))) + V0(K1 ∩ (W − y))

)
(Vd(B(K1)) + 1) dQ(K1)

with the constant τ defined in Lemma 9.6. Hence, we deduce that

R1 ≤ αk α` τ
n−1

∫
Rd

∫
Kd

1I (y /∈ W ) (Vd(B(K1 ∩ (W − y))) + V0(K1 ∩ (W − y)))

(Vd(B(K1)) + 1) dQ(K1) dy

≤ αk α` τ
n−1

∫
Rd

∫
Kd

1I (y /∈ W, (y +K1) ∩W 6= ∅) (Vd(B(K1)) + 1)2 dQ(K1) dy

≤ αk α` τ
n−1

∫
Kd
Vd((W +B(K1)) \W ) (Vd(B(K1)) + 1)2 dQ(K1).

Since by the Steiner formula

Vd((W +B(K1) \W ) =
d−1∑
i=0

κd−iVi(W )R(K1)d−i
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and by our moment assumption E[Vd(B(K1))3] <∞, we finally get

R1 ≤ c αk α` τ
n−1

d−1∑
i=0

κd−iVi(W )

with c = maxi=0,...,d−1 E
[
R(Z0)d−i (Vd(B(Z0)) + 1)2

]
. By a similar argument, we have

R2 ≤ αk α`

∫
Rd

∫
Kd

∫
(Kd)n−1

1I (y ∈ W,K1 6⊂ W − y) (Vd(B(K1)) + 1)(
Vd(B(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y))) + Vd(B(K1 ∩K2 ∩ . . . ∩Kn))

+V0(K1 ∩K2 ∩ . . . ∩Kn ∩ (W − y)) + V0(K1 ∩K2 ∩ . . . ∩Kn)
)

dΛ(K2, . . . , Kn) dQ(K1) dy

≤ αk α` τ
n−1

∫
Rd

∫
Kd

1I (y ∈ W, y +K1 6⊂ W ) (Vd(B(K1)) + 1)

(Vd(B(K1 ∩ (W − y))) + Vd(B(K1)) + 2) dQ(K1) dy

≤ 2αk α` τ
n−1

∫
Rd

∫
Kd

1I
(
y ∈ W ∩ ∂WR(K1)

)
(Vd(B(K1)) + 1)2 dQ(K1) dy

≤ 2αk α` τ
n−1

∫
Kd

d−1∑
i=0

κd−iVi(W )R(K1)d−i (Vd(B(K1)) + 1)2 dQ(K1)

≤ 2 c αk α` τ
n−1

d−1∑
i=0

κd−iVi(W )

Here, we used that if y ∈ W and y+K1 6⊂ W , then y ∈ W ∩ ∂WR(K1) with ∂WR(K1) =
{z ∈ Rd : dist(z, ∂W ) ≤ R(K1)}. Now the Steiner formula (see Proposition 2.1) implies
that

Vd
(
W ∩ ∂WR(K1)

)
≤ Vd

(
WC ∩ ∂WR(K1)

)
= Vd(W +B(K1))− Vd(W ) =

d−1∑
i=0

κd−iVi(W )R(K1)d−i.

Combining the previous inequalities for R1 and R2 with formula (9.3), we see that∣∣∣ n!

Vd(W )

∫
(Kd)n

f (k)
n (K1, . . . , Kn) f (`)

n (K1, . . . , Kn) dΛ(K1, . . . , Kn)

− γ

n!

∫
Kd

∫
(Kd)n−1

gk(K1 ∩ . . . ∩Kn) g`(K1 ∩ . . . ∩Kn) dΛ(K2, . . . , Kn) dQ(K1)
∣∣∣

≤ 3 γ c αk α` τ
n−1

n!

d−1∑
i=0

κd−i
Vi(W )

Vd(W )
.

Now Lemma 9.7 and the formula

Cov(Vk(Z ∩W ), V`(Z ∩W ))

Vd(W )
=
∞∑
n=1

n!

Vd(W )
〈f (k)
n , f (`)

n 〉L2
s(Λ

n)
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prove that

σk,` = γ

∞∑
n=1

1

n!

∫
Kd

∫
(Kd)n−1

gk(K1 ∩K2 ∩ . . . ∩Kn) g`(K1 ∩K2 ∩ . . . ∩Kn)

dΛ(K2, . . . , Kn) dQ(K1)

for k, ` = 0, . . . , d and that the inequality (9.1) holds.
Next we show that the asymptotic covariance matrix Σ = (σk,`)k,`=0,...,d is positive

definite if P(Vd(Z0) > 0) > 0. For a vector a = (a0, . . . , ad) ∈ Rd+1 we have

aTΣ a

= γ
d∑

k,`=0

ak a`

∞∑
n=1

1

n!

∫
Kd

∫
(Kd)n−1

gk(K1 ∩K2 ∩ . . . ∩Kn) g`(K1 ∩K2 ∩ . . . ∩Kn)

dΛ(K2, . . . , Kn) dQ(K1)

= γ

∞∑
n=1

1

n!

d∑
k,`=0

ak a`

∫
Kd

∫
(Kd)n−1

gk(K1 ∩K2 ∩ . . . ∩Kn) g`(K1 ∩K2 ∩ . . . ∩Kn)

dΛ(K2, . . . , Kn) dQ(K1)

= γ
∞∑
n=1

1

n!

∫
Kd

∫
(Kd)n−1

(
d∑

k=0

ak gk(K1 ∩K2 ∩ . . . ∩Kn)

)2

dΛ(K2, . . . , Kn) dQ(K1).

Since each summand is non-negative, the matrix Σ is positive definite if we can prove
that one summand is greater than zero for all a ∈ Rd+1 with a 6= 0.

For L ∈ Kd we denote by N1(L) the number of grains of η that intersect L but
do not cover it and by N2(L) the number of grains of η that cover L. Both random
variables are independent and follow Poisson distributions with the parameters

s1(L) = Λ({K ∈ Kd : K ∩ L 6= ∅ and L 6⊂ K})

and
s2(L) = Λ({K ∈ Kd : L ⊂ K}).

If N2(L) 6= 0, we have

Vk(Z ∩ L)− Vk(L) = Vk(L)− Vk(L) = 0.

For N1(L) = N2(L) = 0 we obtain

Vk(Z ∩ L)− Vk(L) = 0− Vk(L) = −Vk(L).

In the case N1(L) 6= 0 and N2(L) = 0, we have the inequality

|Vk(Z ∩ L)− Vk(L)| =
∣∣∣ ∑
I⊂{1,...,N1(L)}

(−1)|I|+1 Vk(
⋂
i∈I

Zi ∩ L)− Vk(L)
∣∣∣ ≤ 2N1(L)Vk(L),

where Z1, . . . , ZN1(L) are the grains that intersect L. Altogether, we find

EVk(Z ∩ L)− Vk(L) = − exp(−s1(L)− s2(L))Vk(L) + R̃(L)
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with

|R̃(L)| ≤ exp(−s2(L))
∞∑
n=1

s1(L)n

n!
exp(−s1(L)) 2n Vk(L)

= exp(−s2(L)) (exp(s1(L))− exp(−s1(L))) Vk(L)

≤ exp(−s2(L) + s1(L)) 2s1(L)Vk(L)

so that

gk(L) = exp(−s2(L)) (− exp(−s1(L)) + exp(s1(L)) s1(L)R(L)) Vk(L)

with |R(L)| ≤ 2. By the mean value theorem, we can rewrite this as

gk(L) = − exp(−s2(L)) (1 + ck(L) s1(L))Vk(L)

with |ck(L)| ≤ 9 for s1(L) ≤ 1.
From now on, we consider the case n = d+1. Fix arbitrary K1, . . . , Kd+1 ∈ Kd with

non-empty interior and let L = K1∩(x2+K2)∩. . .∩(xd+1+Kd+1) for x2, . . . , xd+1 ∈ Rd.
Now it follows that

d∑
k=0

ak gk(L) = exp(−s2(L))
d∑

k=0

ak (1 + ck(L) s1(L))Vk(L)

if L is sufficiently small (and hence s1(L) ≤ 1). Let k0 = min{k = 0, . . . , d : ak 6= 0}
(such a k0 ∈ {0, . . . , d} exists for a 6= 0). Now we can choose x2, . . . , xd+1 ∈ Rd

according to Lemma 9.8. Then, we have

Vk(B
d) r(L)k ≤ Vk(L) ≤ ck0 Vk(B

d) r(L)k

for k = 0, . . . , d. If we choose the parameter r > 0 in Lemma 9.8 sufficiently small, the
k0-th summand, which cannot be zero, dominates the sum. This implies that∫

Kd

∫
(Kd)d

(
d∑

k=0

ak gk(K1 ∩K2 ∩ . . . ∩Kd+1)

)2

dΛ(K2, . . . , Kd+1) dQ(K1) > 0

for a 6= 0 so that the covariance matrix Σ is indeed positive definite. �

Using Theorem 5.15 and the same inequalities as in the proof of Theorem 9.1, we
can prove Theorem 9.2.

Proof of Theorem 9.2: Let i, j ≥ 1, 0 ≤ k, ` ≤ d and σ ∈ Π̃
(1)
≥2(i, i, j, j). From

Corollary 9.5, it follows that∫
(Kd)|σ|

|(f (k)
i ⊗ f

(k)
i ⊗ f

(`)
j ⊗ f

(`)
j )σ| dΛ|σ|

≤ (αk α`)
2

(i! j!)2

∫
(Kd)|σ|

4∏
m=1

Vd(B(
⋂

n∈Nm(σ)

Kn ∩W )) + V0(
⋂

n∈Nm(σ)

Kn ∩W )

dΛ(K1, . . . , K|σ|)

137



with constants αk and α` as in Corollary 9.5 and sets Nm(σ) ⊂ {1, . . . , |σ|}, m =
1, . . . , 4, depending on σ. Every 1 ≤ n ≤ |σ| is contained in at least two of these sets.
By removing the index n from the sets until it occurs only in one set, we increase the
integral and can use Lemma 9.6 to integrate over Kn. Due to the special structure
of σ, we obtain by iterating this step and using the abbreviation hW (A) = Vd(B(A ∩
W )) + V0(A ∩W )∫

(Kd)|σ|
|(f (k)

i ⊗ f
(k)
i ⊗ f

(`)
j ⊗ f

(`)
j )σ| dΛ|σ|

≤ (αk α`)
2

(i! j!)2
τ |σ|−3

∫
(Kd)3

hW (K1)hW (K2 ∩K3)hW (K1 ∩K2)hW (K3) dΛ(K1, K2, K3)

=
(αk α`)

2

(i! j!)2
τ |σ|−3

∫
Kd

(∫
Kd
hW (K1)hW (K1 ∩K2) dΛ(K1)

)2

dΛ(K2)

with the constant τ from Lemma 9.6. For a fixed K2 ∈ Kd Lemma 9.6 implies that∫
Kd
hW (K1)hW (K1 ∩K2) dΛ(K1)

≤ γ E
[
(Vd(B(Z0) + 1)

∫
Rd
Vd(B((x+ Z0) ∩K2 ∩W )) + V0((x+ Z0) ∩K2 ∩W ) dx

]
≤ γ 2d E

[
(Vd(B(Z0)) + 1)2

]
(Vd(B(K2 ∩W )) + V0(K2 ∩W )) .

Putting c1 = γ 2d E(Vd(B(Z0)) + 1)2 and applying the Steiner formula (see Proposition
2.1) and the moment assumption E[Vd(B(Z0))4] <∞ yield∫

Kd

(∫
Kd
hW (K1)hW (K1 ∩K2) dΛ(K1)

)2

dΛ(K2)

≤ c2
1

∫
Kd

(Vd(B(K2 ∩W )) + V0(K2 ∩W ))2 dΛ(K2)

≤ γ c2
1 E
[
(Vd(B(Z0)) + 1)2

∫
Rd

1I{(x+ Z0) ∩W 6= ∅} dx

]
≤ γ c2

1 E

[
(Vd(B(Z0)) + 1)2

d∑
i=0

κd−iVi(W )R(Z0)d−i

]
≤ c2

d∑
i=0

Vi(W )

with a constant c2 depending on the dimension d, the intensity parameter γ, and the
typical grain Z0. Finally, we have∫

(Kd)|σ|
|(f (k)

i ⊗ f
(k)
i ⊗ f

(`)
j ⊗ f

(`)
j )σ| dΛ|σ| ≤ c2 (αk α`)

2

(i! j!)2
τ |σ|−3

d∑
i=0

Vi(W ) ≤ a bi+j

(i! j!)2
(9.4)

with a = max
0≤k,`≤d

c2 (αk α`)
2

τ3

∑d
i=0 Vi(W ) and b = max(τ, 1). Now formula (9.4) has exactly

the form required in the conditions (5.35) and (5.36) in Theorem 5.15, and it follows
from Lemma 9.7 that there are constants c3, c4 > 0 such that

a

Vd(W )2
= max

0≤k,`≤d

c2 (αk α`)
2

τ 3

d∑
i=0

Vi(W )

Vd(W )2
≤ c3

Vd(W )
≤ c4

r(W )d
(9.5)
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for all W ∈ Kd0 satisfying r(W ) ≥ 1.

By Corollary 9.5, we obtain∫
Kd

E(DKVk(Z ∩W ))4 dΛ(K)

≤ γ βk E
∫
Rd

d∑
i=0

Vi((x+ Z0) ∩W )4 dx

≤ γ βk E
d∑
i=0

min{Vi(Z0), Vi(W )}4

∫
Rd

1I((x+ Z0) ∩W 6= ∅) dx

≤ γ βk E
d∑
i=0

min{Vi(Bd)R(Z0)i, Vi(W )}4

d∑
j=0

κd−jVj(W )R(Z0)d−j

≤ c5 E
d∑

i,j=0

R(Z0)min{3d+j,4i}Vi(W )max{4−(3d+j)/i,0}Vj(W )R(Z0)d−j

with a constant c5 > 0 depending on the dimension d, the intensity γ, the typical grain
Z0, and k. For i = 0 we put max{4− (3d+ j)/i, 0} = 0. Now the moment assumption
EVd(B(Z0))4 <∞ implies that∫

Kd
E(DKVk(Z ∩W ))4 dΛ(K) ≤ c6

d∑
i,j=0

Vi(W )max{4−(3d+j)/i,0}Vj(W )

with c6 = c5 maxi=1,...,4d ER(Z0)i. Together with Lemma 9.7, this yields

1

Vd(W )2

∫
Kd

E(DKVk(Z ∩W ))4 dΛ(K)

≤ c6

d∑
i,j=0

(
Vi(W )

Vd(W )

)max{4−(3d+j)/i,0}(
1

Vd(W )

)1−max{4−(3d+j)/i,0}
Vj(W )

Vd(W )

≤ c7

d∑
i,j=0

(
1

r(W )d−i

)max{4−(3d+j)/i,0}(
1

r(W )d

)1−max{4−(3d+j)/i,0}
1

r(W )d−j

= c7

d∑
i,j=0

r(W )−2d+j+max{4i−3d−j,0} ≤ c8

r(W )d

(9.6)

for r(W ) ≥ 1.
Combining the inequalities (9.1), (9.5), and (9.6) with Theorem 5.15 b) yields the

multivariate part of Theorem 9.2. The bound for the Wasserstein distance is a direct
consequence of Theorem 5.15 a) and the inequalities (9.5) and (9.6). �

Notes: The results and proofs of this chapter are part of Hug, Last, and Schulte 2012.
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with applications to finance, Springer, Berlin, 2009.

[14] C. Durastanti, D. Marinucci, and G. Peccati: Normal approximation for wavelet
coefficients on spherical Poisson fields, preprint, arXiv: 1207.7207, 2012.

141



[15] E. B. Dynkin and A. Mandelbaum: Symmetric statistics, Poisson point processes,
and multiple Wiener integrals, Ann. Statist. 11, 739–745, 1983.

[16] J. H. J. Einmahl and E. V. Khmaladze: The two-sample problem in Rm and
measure-valued martingales, in: State of the art in probability and statistics (Lei-
den, 1999), Inst. Math. Statist., Beachwood, 2001.

[17] K. O. Friedrich: A Berry-Esseen bound for functions of independent random vari-
ables, Ann. Statist. 17, 170–183, 1989.

[18] L. Goldstein and M. D. Penrose: Normal approximation for coverage models over
binomial point processes, Ann. Appl. Probab. 20, 696–721, 2010.

[19] W. F. Grams and R. J. Serfling: Convergence rates for U -statistics and related
statistics, Ann. Statist. 1, 153–160, 1973.

[20] G. Han and A. M. Makowski: One-dimensional geometric random graphs with
nonvanishing densities. I. A strong zero-one law for connectivity, IEEE Trans.
Inform. Theory 55, 5832–5839, 2009.

[21] L. Heinrich: Normal approximation for some mean-value estimates of absolutely
regular tessellations, Math. Methods Statist. 3, 1–24, 1994.

[22] L. Heinrich: Large deviations of the empirical volume fraction for stationary Pois-
son grain models, Ann. Appl. Probab. 15, 392–420, 2005.

[23] L. Heinrich: Central limit theorems for motion-invariant Poisson hyperplanes in
expanding convex windows, Rend. Circ. Mat. Palermo, II. Ser., Suppl. 81, 187–
212, 2009.

[24] L. Heinrich and I. S. Molchanov: Central limit theorem for a class of random
measures associated with germ-grain models, Adv. in Appl. Probab. 31, 283–314,
1999.

[25] L. Heinrich, H. Schmidt, and V. Schmidt: Central limit theorems for Poisson
hyperplane tessellations, Ann. Appl. Probab. 16, 919–950, 2006.

[26] M. Heveling and M. Reitzner: Poisson-Voronoi approximation, Ann. Appl.
Probab. 19, 719–736, 2009.

[27] W. Hoeffding: A class of statistics with asymptotically normal distribution, Ann.
Math. Statistics 19, 293–325, 1948.
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[81] T. Schreiber and C. Thäle: Second-order properties and central limit theory for
the vertex process of iteration infinitely divisible and iteration stable random tes-
sellations in the plane, Adv. in Appl. Probab. 42, 913–935, 2010.

145
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