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H distance dSi(F )−H (Å), angle Ta-Si(F)-H (∠(Ta-Si-H)), and the

deviation angle from the Ta-Si line (∠deviation) for an H atom on

top of a Si[site] (for the site numbers see Figure 8.1) and on F.

When two sites are given they are the “mirror” one of the other. 61

8.2 Adsorption energy (per H2 in eV), HOMO-LUMO gap (eV), dipole
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1
Introduction

Possible technical applications of Si nanoclusters, both pure [1] and doped with

transition metal atoms [2], have originated many studies and raised interesting

questions about their electronic and structural properties.

Pure Sin clusters, as inferred from experimental measurements [3–6], are prolate

for n < 27 and become nearly spherical for n > 27, which has been corroborated

by computational studies [1, 7–16]. On the other hand, the growth behavior of

transition-metal (M) doped silicon clusters seems to follow a different pattern

than pure Si clusters. There are several calculations of MSin structures for vari-

ous cluster sizes and impurity atoms or ions. Kumar and co-workers [16, 17] have

found that open basket like structures are the most favorable for n = 8 − 12,

while for n = 13 − 16 the metal atom is completely surrounded by Si atoms.

The optimal cage for many of the metal-encapsulated silicon clusters occurs at

n = 16 [2, 18]. These predictions were later confirmed indirectly by experiments.

Experiments on photodissociation of MSin [19] clusters indicate that, for M=Cr,

encapsulation of Cr occurs at n = 15 and 16. A mass spectrometric stability

study of binary MSn clusters [20] with S=Si, Ge, Sn, Pb, and M=Cr, Mn, Cu,

Zn, reveals interesting trends. For example, Cr-doped silicon cationic clusters are

peculiarly abundant at sizes n=15 and 16, as already obtained by Beck twenty

years ago [21, 22]. Other experiments, combining mass spectrometry, a chemi-

cal probe method, and photoelectron spectroscopy [23], revealed that one metal

atom (M=Ti, Hf, Mo, W) can be encapsulated inside a Sin cage at n = 15.

In recent mass spectrometry experiments, Nakajima and co-workers [24] have
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shown the size-selective formation of Si16Sc−, Si16Ti, and Si16V
+

clusters. More

details about these experiments, combining mass spectrometry, anion photoelec-

tron spectroscopy, and adsorption reactivity towards H2O, have been published

very recently [25].

Concerning the special stability of Si16M for the type of M impurity involved

in the experiments of Nakajima and co-workers, we have found only very few

publications. Kumar and Kawazoe [18] obtained for Si16Ti a truncated tetrahe-

dral structure, called the Frank-Kasper (FK) polyhedron. In further work Kumar

and co-workers explained the special stability of that cluster in terms of a spher-

ical potential model [26–28], as a combination of geometrical and electronic shell

effects. In the work of Reveles and Khana [29], cationic, neutral, and anionic

doped clusters MSin with n = 15 − 17, were optimized. These authors obtained

that Si16M clusters with M=Sc−, Ti, V
+

, adopt the FK-polyhedron structure in

their ground state, having the highest occupied molecular orbital-lowest unoccu-

pied molecular orbital (HOMO-LUMO) gap and the atomization energy larger

than the same clusters in other charge states, which is a manifestation of sta-

bility against changes in the electronic charge. The explanation of this fact was

based on a 20 electron rule, assuming that only one electron is contributed by

a Si atom to the valence manifold when that Si atom is bonded to the metal atom.

The present work focuses on the electronic and structural properties of Ta-Si-F

aggregates. We study positively charged Ta
+

@Sin clusters, neutral Ta@Si16F

clusters, and aggregates built from Ta@Si16F units. This covers also bulk phases

and one-dimensional infinite wires. We discover that an aggregate built by ar-

ranging vertically two triangular Ta@Si16F trimers shows special stability and

contains a central cavity large enough to encapsulate small molecules. An infi-

nite wire constructed from that aggregate is also studied. The last issue of the

present work is the problem of encapsulation of small molecules like H2 and H2O

into such aggregates and wires.
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The organization of this thesis is the following:

In Chapter 2 we describe the basic theoretical aspects of our calculation

method. This text can be found in the textbook of Leach [30] and Söderlind

[31], and in the review article of Schwarz and Blaha [32].

In Chapter 3 we explain the calculation tools used in this work namely, the

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)

code basic capabilities and some of the core theoretical background of that code.

In this Chapter we also explain the most important computational details used

in our calculations, like the atomic electronic configurations, basis sets, and some

precision parameters.

In Chapters 4–8 we present our main results and discuss them. We begin

with the study of Ta
+

@Sin=14−18 cations, the next Chapters are dedicated to the

study of Ta@Si16F: cluster, aggregates, bulk, and wires.

The last results, presented in Chapter 8, are those of the adsorption of small

molecules into the Ta@Si16F superatom and the (Ta@Si16F)6 aggregate and wire.

Finally, in Chapter 9 we present a summary of the results of the present work.
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2
Density Functional Theory and

methodology

Introduction

The theoretical possibility to study complex crystalline systems containing many

atoms is to perform computer simulations. This can be performed with a variety

of methods ranging from classical to quantum mechanical (QM) approaches. The

former are force field or semi-empirical schemes, in which the forces that deter-

mine the interactions between the atoms are parameterized in order to reproduce

a series of experimental data, such as equilibrium geometries, bulk modulus or

lattice vibrational frequencies (phonons). These schemes have reached a high

level of sophistication and are often useful within a given class of materials pro-

vided good parameters are already known. If, however, such parameters are not

available, or if a system shows unusual phenomena that are not yet understood,

one must rely only on ab initio calculations. They are more demanding in terms

of computer requirements and thus allow only the treatment of much smaller

unit cells than semi-empirical calculations do. The advantage of first-principle

methods lies in the fact that they do not require any experimental knowledge to

carry out such calculations. The following presentation will be restricted to ab

initio methods whose main characteristics will be briefly sketched.

The fact that electrons are indistinguishable and are Fermions requires that

their wave functions must be antisymmetric when two electrons are permuted.
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This leads to the phenomenon of exchange and correlation. There are two types

of approaches for a full quantum mechanical treatment of many-particles sys-

tems: Hartree-Fock (HF) and Density Functional Theory (DFT). The traditional

scheme is the HF method which is based on a wave function in a form of one

single Slater determinant. Exchange is treated exactly but correlation effects are

neglected. The latter can be included (via the inclusion of several Slater determi-

nants) by more sophisticated approaches such as configuration interaction (CI),

but they progressively require much more computer time. As a consequence, it is

only feasible to study small systems which contain a few atoms. An alternative

scheme is DFT which is commonly used to calculate the electronic structure of

complex systems containing many atoms such as large molecules or solids. DFT

is based on the electron density rather than on the wave functions and treats both

exchange and correlation, but both approximately. The ideal crystal is defined

by the unit cell which may contain several atoms (up to about 100, in practical

state-of-the-art calculations) and is repeated infinitely according to the transla-

tional symmetry. Periodic boundary conditions are used to describe this infinite

crystal. The additional symmetry operations (inversion, rotation, mirror plane,

etc.) that retain the ideal crystal invariant allow to simplify the calculations,

which always correspond to the absolute zero temperature.

The details of the DFT method can be found in most general quantum physical

or chemistry textbooks. The following is a brief introduction to the elementary

concepts of the DFT method extracted from the textbook of Leach [30].

2.1 Density functional theory

Density functional theory is an approach to the electronic structure of atoms and

molecules which has enjoyed a dramatic surge of interest since the late 1980s

and 1990s [33, 34]. In DFT the wave function is constructed considering single-

electron functions, but does not calculate the full N -electron wave function. DFT

only attempt, is to calculate the total electronic energy (E) and the overall elec-

tronic density distribution (ρ(r)). The central idea underpinning DFT is that
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there is a relationship between the total electronic energy and the overall elec-

tronic density. This is not a particularly new idea; indeed an approximate model

developed in the late 1920s (the Thomas-Fermi model) contains some of the ba-

sic elements. However, the real breakthrough came with a paper by Hohenberg

and Kohn [35], who showed that the ground-state energy and other properties

of a system were uniquely defined by the electron density. This is sometimes

expressed by stating that the energy, E, is a unique functional of ρ(r). In DFT

the energy functional is written as a sum of two terms (equations are given in

atomic units, unless otherwise stated):

E[ρ(r)] =

∫
Vext(r)ρ(r)d r + F [ρ(r)] (2.1)

The first term arises from the interaction of the electrons with an external poten-

tial Vext(r) (typically due to the Coulomb interaction with the nuclei). F [ρ(r)]

is the sum of the kinetic energy of the electrons and the contribution from in-

terelectronic interactions. The minimum value in the energy corresponds to the

exact ground-state electron density, so enabling a variational approach to be used

(i.e. the “best” solution corresponds to the minimum of energy and an incorrect

density gives an energy above the true energy). There is a constraint on the

electron density as the number of electrons (N) is fixed:

N =

∫
ρ(r)d r (2.2)

In order to minimize the energy we introduce this constraint as a Lagrangian

multiplier (−µ), leading to:

δ

δρ(r)

[
E[ρ(r)]− µ

∫
ρ(r)d r

]
= 0 (2.3)

From this we can write:

(
δE[ρ(r)]

δρ(r)

)
Vext

= µ (2.4)
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Equation (2.4) is the DFT equivalent of the Schrödinger equation. The subscript

Vext indicates that this is under conditions of fixed external potential (i.e. fixed

nuclear positions). It is interesting to note that the Lagrange multiplier, µ, can

be identified with the chemical potential of an electron cloud for its nuclei.

The second landmark paper in the development of DFT was by Kohn and

Sham [36]. They derived a set of equations to solve (2.1), analogous to the

Hartree-Fock formulation, which included exchange and correlation effects and

were not much more difficult to solve. The difficulty with Equation (2.1) is that

the function F [ρ(r)] is not known. Kohn and Sham suggested that F [ρ(r)] should

be approximated as the sum of three terms:

F [ρ(r)] = Ts[ρ(r)] + EH[ρ(r)] + EXC[ρ(r)] (2.5)

where Ts[ρ(r)] is the kinetic energy of a system of non-interacting electrons in

orbitals ψi(r) with the same density ρ(r) as the real system, EH[ρ(r)] is the

classical electron-electron Coulombic energy, and EXC[ρ(r)] contains contributions

from exchange and correlation. The first term, Ts[ρ(r)], in Equation (2.5), is given

by:

Ts[ρ(r)] =
N∑
i=1

∫
ψi(r)

(
−∇

2

2

)
ψi(r)d r (2.6)

The classical electron-electron Coulombic energy, EH[ρ], is also known as the

Hartree electrostatic energy. Hartree [37] introduced this approach to solve the

Schrödindger equation, but was almost immediately dismissed because it fails

to recognize that electronic motions are correlated. In the Hartree approach

this electrostatic energy arises from the classical interaction between two charge

densities, which, when summed over all possible pairwise interactions, gives:

EH[ρ(r)] =
1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
d r1d r2 (2.7)

Combining these two and adding the electron-nuclear interaction, we can write

the full expression for the energy of an N -electron system in the external potential
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due to M nuclei (with charge ZA in positions RA). Hence, within the Kohn-Sham

scheme:

E[ρ(r)] =
N∑
i=1

∫
ψi(r)

(
−∇

2

2

)
ψi(r)d r +

1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2|
d r1d r2

+ EXC[ρ(r)]−
M∑
A=1

∫
ZA

|r−RA|
ρ(r)d r (2.8)

This equation acts to define the exchange-correlation energy functionalEXC[ρ(r)],

which thus contains not only contributions due to exchange and correlation, but

also a contribution due to the difference between T [ρ], the true kinetic energy

of the system, and Ts[ρ]. Therefore the exchange-correlation energy functional

EXC[ρ(r)] has the following expression:

EXC[ρ] = (T [ρ]− Ts[ρ]) + (Eee[ρ]− EH[ρ]) (2.9)

Here, Eee[ρ] is the true electron-electron interaction.
Kohn and Sham wrote the density ρ(r) of the system as the sum of the square

moduli of a set of one-electron orthonormal orbitals:

ρ(r) =
N∑
i=1

|ψi(r)|2 (2.10)

By introducing this expression for the electron density and applying the appropri-
ate variational condition the following one-electron Kohn-Sham equations result:{

−∇
2

2
−

(
M∑
A=1

ZA
|r−RA|

)
+

∫
ρ(r1)

|r− r1|
d r1 + VXC[ρ(r)]

}
ψi(r) = εiψi(r)

(2.11)

where εi are the orbital energies and VXC is known as the exchange-correlation
potential, related to the exhange-correlation energy by:

VXC[ρ(r)] =

(
δEXC[ρ(r)]

δρ(r)

)
(2.12)

The total electronic energy is then calculated from Equation (2.8).

To solve the Kohn-Sham equations, a self-consistent approach is taken. An

initial guess of the density is fed into Equation (2.11) from which a set of orbitals

can be derived, leading to an improved value for the density, which is then used

in the second iteration, and so on until convergence is achieved.
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2.1.1 Spin-polarized density functional theory

Local spin density functional theory (LSDFT) is an extension of “regular” DFT

developed to deal with systems containing unpaired electrons. In this theory, both

the total electron density (ρ) and the spin density (σ) are fundamental quantities

with the spin density being the difference between the density of up-spin and

down-spin electrons:

σ(r) = ρ↑(r)− ρ↓(r) (2.13)

The total electron density is just the sum of the densities for the two types of

electron densities (ρ = ρ↑ + ρ↓). The exchange-correlation functional is typically

different for the two cases, leading to a set of coupled spin-polarized Kohn-Sham

equations:

{
−∇

2

2
−

(
M∑
A=1

ZA
|r−RA|

)
+

∫
ρ(r1)

|r− r1|
d r1 + VXC[r, σ]

}
ψσi (r) = εσi ψ

σ
i (r)

σ = ↑, ↓
(2.14)

This leads to two sets of wave functions, one for each spin, similar to spin-

unrestricted Hartree-Fock (UHF) theory [38].

2.1.2 Local density approximation

The roots of DFT can be found in the works of Thomas [39] and Fermi [40] who

independently studied the uniform electron gas in the early 1920s. The tradi-

tional Thomas-Fermi model is a first approximation to DFT in which the energy

is a functional of the electronic density (of the uniform electron gas) solely. In

the original work of Thomas and Fermi exchange and correlation were neglected,

and was Dirac [41] who later introduced the exchange energy into the model (for

a review see Refs. [42–45]). This suggests that in an inhomogeneous system, it

may be possible to approximate the energy functional as an integral over a local

function of the charge density.
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After these works, it was clear that the exchange-correlation functional is the

key to the success of the density functional approach. One reason why DFT

is so appealing is that even relatively simple approximations to the exchange-

correlation functional can give favorable results. The simplest way to obtain this

contribution uses the so-called local density approximation (LDA; the acronym

LSDA is also used, for local spin density approximation), which is based upon

the model of the uniform electron gas, in which the electron density is constant

throughout all space. Accordingly, the total exchange-correlation energy, EXC,

for our system can then be obtained by integration over all space:

EXC[ρ(r)] =

∫
ρ(r)εunifXC (ρ(r))d r (2.15)

εunifXC is the exchange-correlation energy per electron as a function of the density

in the uniform electron gas. The exchange-correlation potential is obtained by

differentiation of this expression:

VXC[ρ(r)] = ρ(r)
dεunifXC (ρ(r))

dρ(r)
+ εunifXC (ρ(r)) (2.16)

Thus, in the LDA it is assumed that at each point r in the inhomogeneous elec-

tron distribution (i.e. in the system of interest), where the density is ρ(r), then

VXC[ρ(r)] and εXC(ρ(r)) have the same values as in the homogeneous electron

gas. In other words, the real electron density surrounding a volume element

at position r is replaced by a constant electron density with the same value as

at r. However, this “constant” electron density is different for each point in space.

The exchange-correlation energy per electron of the uniform electron gas is

known accurately for all densities of practical interest from various approaches

such as quantum Monte Carlo methods [46]. In order to be of practical use,

this exchange-correlation energy density is then expressed in an analytical form

that makes it amenable to computation. It is usual to express εXC(ρ(r)) as

an analytical function of the electron density and to consider the exchange and

correlation contributions separately. However, some analytical expressions for

the combined exchange and correlation energy density also do exist, such as the
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expression of Gunnarsson and Lundqvist [47]. The relatively simple expression

of Slater [48] is commonly used for the exchange-only energy under the LDA. In

general, more attention has been paid to the correlation contribution, for which

there is no such simple functional form. Perdew and Zunger [49] suggested a

parametric relationship for the correlation contribution, which applies when the

number of up spins equals the number of down spins and so is not applicable to

systems with an odd number of electrons. The correlation energy functional was

also considered by Vosko et. al. [50], whose expression has a very complex form.

2.1.3 Generalized Gradient Approximation

The most important feature of DFT is probably the way in which it directly

incorporates exchange and correlation effects; the latter in particular are only

truly considered in the more complex, post-HF approaches such as configuration

interaction (CI) or many-body perturbation theory. Despite its simplicity, the

LDA performs surprisingly well. However, the LDA has been shown to be clearly

inadequate for some problems and for this reason extensions have been devel-

oped. The most common method is to use gradient-corrections, i.e. “non-local”

functionals which depend upon the gradient of the density at each point in space

and not just on its value only. These gradient corrections are typically divided

into separate exchange and correlation contributions. A variety of gradient cor-

rections have been proposed in the literature. One of the most widely used is the

generalized gradient approximation (GGA). Several “flavors” within the GGA

have been proposed and implemented in computational codes, some of them are:

“PW86” (by Langreth and Perdew [51]), “PW91” (by Perdew and Wang [52, 53]),

and “PBE” (by Perdew, Burke and Ernzerhof [54]), the latter being used in this

work. The following is a description of the general GGA formulation, leading to

the GGA-PBE approximation [54]. First, and as a rule, the exchange-correlation

energy is separated in two terms, EXC = EX + EC, related to the densities of

exchange (εX) and correlation (εC), respectively, and functionals containing the

dependence with the gradient of the density. These contributions can in general

be written as (in SI units):
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EC[ρ↓, ρ↑] =

∫
ρ[εunifC (rs, ζ) +H(rs, ζ, t)]d r (2.17)

EX[ρ↓, ρ↑] =

∫
ρεXF (s)d r (2.18)

where rs is the local Seitz radius (ρ = 3/4πr3s = k3F/3π
2), ζ = (ρ↑ − ρ↓)/ρ is the

relative spin polarization, and t = |∇ρ|/2gksρ and s = |∇ρ|/2kFρ are dimension-

less density gradients [55, 56]. Here g(ζ) = [(1 + ζ)2/3 + (1− ζ)2/3]/2 is a spin-

scaling factor [57], ks =
√

4kF/πa0 is the Thomas-Fermi screening wave number

(a0 = ~2/me2), and kF = (3π2ρ)1/3.

Perdew and coworkers proposed that H and F , in equations (2.17) and (2.18),

should be constructed in such a way to fulfill certain “minimum” conditions to

avoid over-parametrization. They construct the gradient contribution H from

three conditions on the high- and low-density limits. Such conditions are fulfilled

by the “simple” ansatz:

H = (e2/a0)γg
3 ln

{
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
, (2.19)

where

A =
β

γ

[
exp

(
−εunifC

γπ3e2/a0
− 1

)]−1
(2.20)

where β ' 0.066725 and γ ' 0.031091. The exchange energy F is constructed

from four further conditions, which are mainly concerned with the spin. Further

information can be found in the literature [54].

2.1.4 van de Waals (vdW) functionals

Among the functionals explored for exchange and correlation, the vdW-DFT de-

serves particular attention, as it has proven to be superior as regards to electronic

properties like the dipole moment and polarizability of some clusters [58, 59].

In the following is given a brief description taken from Aguado and coworkers

[60, 61]. The vdW-DFT calculation corresponds to a first-principles approach
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based in the work of Dion and coworkers [62]. These authors demonstrated that

the vdW interaction can be expressed by a nonlocal functional depending only

on the electron density. After that work, numerous efforts have been developed

to include vdW forces within DFT [63]. Dion and coworkers proposed to divide

the exchange-correlation energy in three parts:

EXC[ρ(r)] = EGGA
X [ρ(r), |∇[ρ(r)|] + ELDA

C [ρ(r)] + Enl
C [ρ(r)] (2.21)

where EGGA
X =

∫
ρ(r)εGGAX [ρ(r), |∇[ρ(r)|]d r is the exchange energy functional

described through the semilocal generalized gradient approximation functional

of Zhang and Yang [64], ELDA
C =

∫
ρ(r)εLDAC [ρ(r)]d r is the correlation energy

described in the local density approximation of Perdew and Zunger [49], and Enl
C

is a nonlocal contribution to the correlation energy which contains the dispersion

interaction, given by

Enl
C [ρ(r)] =

1

2

∫∫
ρ(r1)φ(q1, q2, r12) ρ(r2) d r1d r2 (2.22)

where r12 = |r1 − r2|, and q1 = q(r1), q2 = q(r2) are the values of a universal

function q[ρ(r), |∇[ρ(r)|],

q[ρ,∇ρ] =

[
1 +

εLDAC

εLDAX

+
0.8491

9

(
∇ρ

2ρkF

)2
]
kF (2.23)

The kernel φ has also a precise and universal form that in fact depends only on

two variables, d1 = q1r12 and d2 = q2r12, but it can be written also as a function

of q1, q2, and r12. As a matter of fact, it is written in terms of D = 1
2
(q1 + q2)r12

and δ = 1
2
(q1 − q2)r12, and then it can be shown that: (i) Enl

C is strictly zero

for any system with constant density; and (ii) the interaction between any two

molecules has the correct r−6 dependence for large separations. Due to the high

computational cost to self-consistently evaluate the Enl
C term, applications of

this functional are still scarce. Nevertheless, Román-Pérez and Soler have per-

formed a very efficient self-consistent implementation of vdW-DFT functional in

the SIESTA code [65], which allows to simulate large systems without significant

extra cost as compared to LDA or GGA calculations.
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3.1 SIESTA method

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)

is an efficient linear scaling method to solve many electron systems based on

the first principles DFT , following he Kohn − Sham approach. It is also a

computer code implementation whose distribution is under two main types of

licenses depending in its use as academic or commercial, it also includes sev-

eral auxiliary computer codes and post-processing tools. Further consulting of

the method is found on reference [66]. Additional documentation and studies

and applications of the method can be found on the following web addresses

http://www.uam.es/siesta and http://www.icmab.es/siesta. The SIESTA method

is the main tool for the present results of this thesis work.

In the next sections a brief explanation of some characteristics of the method

are presented, mainly based on [67].

3.1.1 Basis set

The Kohn-Sham orbitals, ψν , can be represented as a linear combination of a

finite orbital base, φµ,

ψν =
∑
µ

cνµφµ(r). (3.1)
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The particular choice of the basis set functions characterizes the different nu-

merical methods, some of such sets are: delocalized functions as plane waves,

localized functions as Gaussians, a combination of both, and augmented basis.

All approaches have their pros and cons, each of them offering different possibili-

ties. Thus, the procedure is to select methodology and implementation adequate

to correctly describe physical properties of the system under study.

SIESTA is a LCAO method (Linear Combination of Atomic Orbitals) which

has a basis set composed by numerical atomic orbitals. Such orbitals correspond

to the product of an spherical harmonic, Y m
l , and a radial function, φIln,

φµ(r) = φIln(r)Y m
l (θ, ϕ) (3.2)

where I is the chemical species, l the angular moment, and n distinguishes the

different wave functions with the same angular moment. The radial part depends

only in the angular moment channel l, and the number of functions n used.

Orbitals are strictly zero after a cutoff radius, rc, this is done in soft manner to

avoid noise in the force calculations.

The multiplicity introduced by n, or multiple-ζ following the quantum chem-

istry notation, is done to complete and improve the basis, obtaining better de-

scriptions of the chemical bonding. This is done via a scheme named split valence.

Additional orbitals with angular moment larger that the highest occupied orbital

can be added, such polarization orbitals are used to better describe possible un-

balances in the charges, as in covalent bonds. The most used basis is the DZP,

or double(D)zeta(ζ)polarized(P) following standard nomenclature.

Locality of this kind of functions is important to efficiently construct the

Hamiltonian, and in particular to the linear scaling of the numerical solution.

3.1.2 Pseudopotentials

Not all electrons in an atom behave in the same fashion to form a bond, some of

them, the most inner ones, weakly (or virtually do not) take part in the bond.

Electrons in the outermost shells have a larger probability to be found at inter-

atomic distances, where their kinetic energy decreases to form the bond. Electrons

near to the nucleus feel a very strong nuclear potential, being more localized, and
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their wave function overlap with electrons from neighbor atoms is tiny. Their

main contribution is to screen the nuclear potential, thus modifying the wave

functions of valence electrons.

This is the reason behind making a distinction between external (valence)

and inner (core) electrons. Core electrons are treated as an effective potential

which should produce the same wave functions for valence electrons from a cer-

tain cutoff radius. This effective potential is known as a pseudopotential, the

basic idea was introduced by Fermi in 1934 [68]. The basic “recipe” for the dis-

tinction between core and valence electrons is whether they belong to a full or

partially full shell, respectively. However, this should be carefully addressed for

some chemical species, like transition metals and rare earths, where this approach

gives poor results. In such situations it is necessary to include some of the in-

nermost electrons as valence electrons, the so called semi-core electrons. Other

corrections, such as a relativistic treatment, can be included depending on the

chemical species under study.

There are several schemes for the construction of atomic pseudopotentials [69–

75]. SIESTA uses norm-conserving Troullier-Martins pseudopotentials [75], in its

fully non-local representation, as proposed by Kleinman and Bylander [76]. To

obtain them, the all electron Hamiltonian is solved to obtain the wave functions

of core and valence electrons. The potentials is adjusted to reproduce the valence

orbitals outside the core radius of the orbital, and the process is repeated with this

new potential. The use of pseudopotentials importantly lowers the computational

cost, when carefully generated, one can obtain highly satisfactory results.

3.1.3 The Hamiltonian

The final Kohn-Sham Hamiltonian must contain the pseudopotential of the N

atoms of the system substituting the true ionic potential

HKS =
p2

2m
+

M∑
i

[
VNL(r−Ri) + VNA(r−Ri)

]
+ V δ

H(r) + VXC(r) (3.3)

VNL is the non-local term of the pseudopotential, VNA is the potential of the neu-

tral atom that contains the local part of the pseudopotential, V δ
H is the Hartree
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potential created by a charge δρ(r) = ρ(r) − ρ0(r) (the difference between the

actual charge ρ, and the neutral atom charge ρ0), and VXC is the exchange-

correlation potential.

The overlap matrix and the largest part of the Hamiltonian matrix elements

are given by two-center integrals. Much of these elements become zero for local

bases, thus giving the possibility of linear scaling. These elements are calculated

in real or reciprocal space with Fourier techniques. The mesh distance in real

space is given by a cutoff energy,

Ecut =
1

2

π

δx
(3.4)

where δx is the minimum distance between mesh points. This distance can be

modified by a parameter called mesh cutoff. This is a precision parameter, the

quality of the results depends on its value.

3.2 Computational details

In our DFT [77] SIESTA [66] calculations we have used the generalized gradi-

ent approximation as parametrized by Perdew, Burke, and Ernzerhof [54] for the

exchange-correlation effects. We have used norm conserving scalar relativistic

pseudopotentials [75] in their fully nonlocal form [76] with atomic valence config-

urations 3s23p2 for Si (with core radii 1.9 a.u. for s and p orbitals), and 6s25d3

for Ta (with core radii 3.2, 1.5 a.u. for the s and p orbitals, and a non-linear core

correction radii of 1.0 a.u.). We have used a double-ζ polarized basis s, p for Si

and s, d for Ta, with single polarization d for Si and p for Ta. For F we used the

valence configuration 2s22p5 with core radius 1.39 a.u. for all s, p, and d valence

orbitals. For H the core radii are 1.25 a.u. for s and p orbitals. The integration

in the k-space for the bulk calculations sc, bcc, fcc and NaCl cells was performed

using a 4×4×4 Monkhorst pack grid [78]. For wires in the direction z we use a

1×1×6 Monkhorst pack grid. The basis set and pseudopotential of the Si and F

atoms were used and tested before [79, 80]. Testings on the Ta pseudopotential



3.2 Computational details 19

are presented in section 4.1.

The equilibrium geometries result from an unconstrained conjugate-gradient struc-

tural relaxation using the DFT forces. The relaxation was stopped when the force

on each atom was smaller than 0.01 eV/Å using a fineness of 250 Ry. Most of

the initial geometries were taken from previous works due to Torres et. al. [81–83].

For the test on the accuracy we have taken two approaches (with the Ta@Si16F

system as a benchmark): (i) taking into account the Eggbox Effect (numerical

noise in the integrals due to the finite mesh), (ii) by approximating the “infinite

fine grid limit” (in which no Eggbox Effect would be present) at a Meshcutoff

of 1000 Ry, and consider the system to be relaxed when the forces in the atoms

are all less than 1 meV/Å; we conclude that: (a) the absolute error in the total

energy is 0.005 eV, (b) the absolute error in the HOMO-LUMO gap is 0.002 eV,

(c) the absolute error in the electric dipole is 0.03 Debye, and (d) the absolute

error in the distances is 0.006 Å.
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4
Tantalum doped Silicon clusters

Ta
+

@Sin : n = 14− 18

4.1 Tantalum pseudopotential

Here we present the tests on the Ta pseudoptential used in this work. For testing

the Ta pseudopotential we have optimized the bulk bcc structure resulting in a

cohesive energy of 8.30 eV, a lattice constant of 3.32 Å, and a bulk modulus of

187.75 GPa, to be compared with the experimental values [84] 8.09 eV, 3.31 Å,

and 200 GPa, respectively. For the Ta3

(
Ta
−
3

)
clusters we obtained from our

spin-polarized calculations a C2v (D3h) symmetry, multiplicity 4 (5), and a first

ionization potential of 0.96 eV, in agreement with a recent combined experimen-

tal and theoretical study [85]. For the bond lengths of Ta3

(
Ta
−
3

)
we obtained

2.38 Å and 2.50 Å (2.42 Å), to be compared with 2.45 Å and 2.53 Å (2.46 Å)

obtained by Wang and coworkers [85].

We also tested some other bulk structures besides the bcc for the Ta pseu-

dopotential. Those tests confirmed our previous results: bulk bcc is the most

stable structure for Ta. For the fitting of the Murnaghan curve [86] we made

several calculations with different lattice constant in the bcc structure, then we

used the DFT energies to fit them into a Murnaghan-type curve. In Table 4.1

we present a summary of the results obtained for the Ta pseudopotential, and in

Figure 4.1 the Murnaghan fitting for the bcc structure.
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Table 4.1: Ta, Ta3, Ta
−
3 electronic properties: the second column shows the

results of the present work, the third column correspond to experimental data

(energies are given in eV, distances are given in Å).

Property This work Experimental

Ta

Electron affinity 0.08 0.32 [84]

1st ion. pot. 7.49 7.89 [84]

2nd ion. pot. 23.47 15.55 [84]

Bulk modulus 185.75 GPa 200 GPa [84]

Bulk structure bbc (a=3.32) bbc (a=3.30Å) [84]

Ta3

Electron affinity 1.00 1.35 [85]

symmetry C2v C2v [85]

distances 2.38, 2.50 2.45, 2.53 [85]

multiplicity 4 4 [85]

Ta−3

symmetry D3h D3h [85]

distance 2.42 2.46 [85]

multiplicity 5 5 [85]

4.2 Ta
+

@Sin clusters (n=14-18)

In this section we present the results of the study of Ta
+

@Sin clusters in the

range n = 14 − 18, resulting at n = 16 in a positive peak for the second energy

difference in the total energy [see equation (4.2) below], which is related directly

to the higher abundance of that cluster found in mass spectrometry experiments.

In order to explain the role of the impurity, we make a systematic study of the

relative stability of Ta
+

@Sin for n = 14 − 18. Accordingly to the experimental

work of Nakajima and coworkers [25] we expect that for n = 16, the doped clusters

will be more stable than its neighbors clusters.

Consequently for these doped clusters we will compare the binding (atomiza-

tion, cohesive) energy per atom,

Eb(SinM) =
[
E(M) + nE(Si)− E(SinM)

]
/(n+ 1), (4.1)

the second difference of the cluster energy,
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Figure 4.1: Murnaghan fit for the Ta pseudopotential used in this work in a

bcc structure. The dashed line correspond to the fitting, circles represents data

obtained by our calculations, and the square correspond to the equilibrium volume

predicted by the fitting.

∆2E(SinM) = E(Sin+1M) + E(Sin−1M)− 2E(SinM), (4.2)

and the energy difference between the eigenvalues of the lowest unoccupied (LUMO)

and the highest occupied (HOMO) molecular orbital, ∆(H − L). In the expres-

sions above E(X) is the total energy of system X. The second difference energy

∆2E(SinM) is proportional to log(In/In+1), where In is the intensity of the MSin

signal in the experimental mass spectra. Therefore ∆2E is directly related to the

abundance spectra.

The equilibrium geometries of a few low-lying energy isomers of isoelectronic

Ta
+

@Sin clusters are represented in Figures 4.2-4.7 for the sizes n = 14−18, and

in Figure 4.8 is shown the evolution of several quantities – lower energy states

only– with the cluster size n: binding energy per atom (or cohesive energy, as
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given by equation (4.1)), the second energy difference of the total cluster energy

(∆2E, as given by equation (4.2)), and the HOMO-LUMO gap.

For the most stable geometries we can see that a common structural motif

for lowest energy state structures of Ta
+

@Sin with n = 14, 17, 18, is a distorted

hexagonal prism (DHP) of Si atoms surrounding the Ta impurity, with additional

Si atoms and dimers decorating the lateral prism faces. That DHP motif resem-

bles the structure Cs ground state and C2h reported recently for Si12Ni [87]. DHP

has eight faces –2 hexagons and 6 quadrilaterals as lateral faces–, eighteen edges,

and twelve vertices;

4.2.1 Ta
+
@Si14

Figure 4.2 shows the first seven isomers of Ta
+

@Si14. The first four isomers

have the DHP motif plus: (i) ground state: two silicons (dimer) in front of

two adjacent quadrilateral faces; (ii) first excited state: two silicons in front of

opposite quadrilateral faces; (iii)second excited state: two silicons, one in front

of a hexagonal face, one on a quadrilateral; (iv)third excited state: two silicons

(dimer) on a hexagonal face. One should also note that 14-V has a structure

that much resembles that of 16-III, a fullerene like structure. Finally the last

two structures show a basket-like open structure being much less stable than the

closed ones.

4.2.2 Ta
+
@Si15

A few low-lying energy isomers of Ta
+

@Si15 are represented in Figure 4.3. Struc-

ture 15-I is made of triangular, square, and pentagonal faces, and has no DHP

motif. Structure 15-II shows a little more open structure, but the Ta atom still

remains inside the cage. Structures 15-III and 15-IV do have the DHP motif.

15-III has three silicons (triangular trimer) on a single square face of the DHP,

just like 14-I with an additional Silicon. 15-IV has three silicons (linear chain) on

a hexagonal face of the DHP. For this size these first four isomers have the same

structure as V
+

@Si15), as found by Torres et al [81].
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14−I: 0.00,  1.11 14−II: 0.34,  1.52 14−III: 0.44,  0.80 14−IV: 0.48,  0.67

14−V: 0.90,  0.34 14−VI: 1.31,  1.15 14−VII: 2.44,  0.58

Figure 4.2: Geometry of the first seven lowest energy isomers of Ta
+

@Si14 clusters.

The index I in 14-I indicates the different geometries, and corresponds to the order

of the excited state, I being the lowest energy state, the next two numbers are

the total energy difference and the HOMO-LUMO gap (both in eV).

15−I:  0.00,  1.47 15−III:  0.67,  0.86 15−IV:  0.76,  1.1715−II:  0.36,  1.11

Figure 4.3: Geometry of the first four lowest energy isomers of Ta
+

@Si15 clusters.

The index I in 15-I indicates the different geometries, and corresponds to the order

of the excited state, I being the lowest energy state, the next two numbers are

the total energy difference and the HOMO-LUMO gap (both in eV).

4.2.3 Ta
+
@Si16

The first four low-lying energy isomers of Ta
+

@Si16 are represented in Figure

4.4. The ground state 16-I is a distorted Frank-Kasper polyhedron (FK∗), this

structure is nearly spherical and has a C3v symmetry found by Kumar et al. [2].

It consists of a central Ta atom surrounded by 16 Si atoms within two closely
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spaced shells: one with 12 atoms (on the vertexes of an hexagonal antiprism with

the dopant in the center), and another shell with 4 Si atoms forming a perfect

tetrahedron. 16-II is a distortion of the ground state, in which the front triangle

has been rotated, this rotation deforms the hexagonal antiprism.

Isomer 16-III is a fullerene-like (f) structure, which is also nearly spherical

and has a D4d symmetry; it consists of a central Ta with 16 Si atoms surrounding

it, forming two square and eight pentagonal faces; each Si atom is coordinated

with another three Si atoms. 16-IV is just like 15-I plus one Silicon.

Structures 16-I and 16-III densities of states are represented in Figure 4.5.

They show the characteristic atom like shell structure, with a HOMO-LUMO

gap of 2.44 and 1.77 eV, respectively. However, the splitting induced by the

underlying geometry is different, especially for the projected density of Ta (d

states) above the Fermi level. This fact should have measurable consequences in

angle resolved x-ray spectroscopy [88].

16−IV: 1.37,  0.64  16−I: 0.00,  2.44 16−III: 0.06,  1.7616−II: 0.05,  2.51

Figure 4.4: Geometry of the first four lowest energy isomers of Ta
+

@Si16 clusters.

The index I in 16-I indicates the different geometries, and corresponds to the order

of the excited state, I being the lowest energy state, the next two numbers are

the total energy difference and the HOMO-LUMO gap (both in eV).
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Figure 4.5: Total and Ta-projected density of states of C3v (upper) and D4d

(lower) isomers of Ta
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energy. Here the notation for atomic spherical orbitals (nl) refers to the number

of nodes (n) and to the orbital moment (l : s = 0, p = 1, . . .)
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4.2.4 Ta
+
@Si17

The results for Ta
+

@Si17 in Figure 4.6 show that the lowest energy state is also a

DHP with five Si atoms on an hexagonal face of the DHP. First and second excited

states are made of the DHP plus a trimer and a dimer on its lateral (square) faces,

but the dimer is in different orientations, with an energy difference of ∼ 0.020

eV. Structures 17-IV and 17-V are semi-open structures with energies 0.322 and

0.788 eV higher than the ground state, respectively.

17−V: 0.79,  1.15

17−I: 0.00,  0.84 17−II: 0.24,  0.66 17−III: 0.26,  0.77  

17−IV: 0.32,  1.06

Figure 4.6: Geometry of the first five lowest energy isomers of Ta
+

@Si17 clusters.

The index I in 17-I indicates the different geometries, and corresponds to the

order of the excited state, I being the lowest energy state, the next two numbers

are the total energy difference and the HOMO-LUMO gap (both in eV).

4.2.5 Ta
+
@Si18

The ground state is the DHP plus one Si, one Si2, and one Si3 in different faces of

the DHP structure; while the Si goes a little bit inside the cage, the Si2 and Si3

go outside the cage. Structure 18-II is the DHP plus two Si3 at opposite sides,

the Ta is displaced from the center. Comparing with Vanadium [81] structures
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18-I and 18-II exchange places (our 18-I for Ta is the first excited isomer for V,

while our 18-II for Ta is the ground state for V). 18-III is the DHP plus three

Si2 on alternating square faces, 18-IV is the DHP plus six Si on one square face,

18-V is the DHP plus 2 Si3 linear chain on both hexagonal faces. Finally 18-VI

is an open structure.

18−III: 0.28,  0.90

18−IV: 0.63,  0.42

18−I: 0.00,  1.03

18−V: 0.67,  0.96

18−II: 0.14,  0.79

18−VI: 1.23,  0.83

Figure 4.7: Geometry of the first six lowest energy isomers of Ta
+

@Si18 clusters.

The index I in 18-I indicates the different geometries, and corresponds to the

order of the excited state, I being the lowest energy state, the next two numbers

are the total energy difference and the HOMO-LUMO gap (both in eV).

4.2.6 Trends in Ta
+
@Sin n = 14− 18

Figure 4.8 shows, for the lowest energy isomers of Ta
+

@Sin clusters, the evolu-

tion with the cluster size n of several quantities: the binding energy per atom Eb,

Equation (4.1), the second difference of the total cluster energy ∆2E, Equation

(4.2), and the energy difference between the LUMO and HOMO orbital eigenval-

ues, ∆(H − L).

For n = 16, the binding energy per atom, second energy difference of the total

energy of the cluster, and the HOMO-LUMO gap show a peak for the nearly
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degenerated C3v (Frank-Kasper polyhedron) and D4d (fullerene-like) structures,

the main difference being that the HOMO-LUMO gap of the C3v structure is

larger than the D4d one. These facts according to the standard interpretation of

the cluster mass spectra [24, 89], indicate a high abundance of Ta
+

@Si16 relative

to their neighbor clusters. This agrees with the mass spectrometry experiments

of Nakajima and co-workers [25].
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Figure 4.8: The panels from top to bottom represent, consecutively, the cohesive

energy per atom, the second energy difference, and the HOMO-LUMO gap of the

lowest energy state of Ta
+

@Sin clusters as a function of the number of silicons n;

the red square symbol at n = 16 represents the 16-III structure of Figure 4.4.
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5
Ta@Si16F: Aggregates

In order to assemble new materials containing metal-doped Ta@Si16 clusters,

we follow the suggestion of Nakajima and co-workers [25] considering neutral

Ta@Si16F as building blocks. First, we optimize the neutral Ta@Si16 cluster

geometry for both the C3v (Frank-Kasper polyhedron) and D4d (fullerene-like)

geometries, with the result that the neutral D4d has 0.23 eV lower total energy

than the C3v isomer; that is, the ordering of the neutral isomers changes with

respect to that of the positively charged ones. In a second step we optimize

Ta@Si16F by considering different bonding sites of F on neutral Ta@Si16 within

the C3v and D4d symmetries, this is discussed in detail in section 5.1. As a third

step we use the most stable Ta@Si16F moiety we have found, fullerene like moiety,

and use it to construct (Ta@Si16F)m aggregates for m = 2− 6 and 8; we study in

detail their properties in subsections 5.2–5.7. In this chapter, our calculations are

non spin polarized because that aggregates are non-magnetic, and we can save

computational time for such larger compounds containing ∼ 100 atoms.

5.1 Ta@Si16F

Taking into account the symmetry of the fullerene-like Ta@Si16 (D4d symmetry)

structure, it has: (i) 2 types of inequivalent faces (8 pentagons and 2 squares), (ii)

2 types of vertexes (those shared by two pentagons and square atoms [Si1 atoms]

and those shared by three pentagons [Si2 atoms]), and (iii) 3 types of edges (those

connecting two Si1, those connecting two Si2 atoms, and those connecting a Si1

with a Si2 atom).
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The Frank-Kasper structure (C3v symmetry) has many more different available

bonding sites for the F. From all the bonding sites the F atom prefers those in a

top position, i.e. the F prefers to bond on the vertexes of either structure. Thus

we have found six different Ta@Si16F structures (altogether for the fullerene-like

and Frank-Kasper polyhedron).

The ground state Ta@Si16F cluster has the fullerene-like structure (16-III,

Figure 4.4) plus a Fluorine atom in the line Ta-Si1 (∼ 2◦ deviated from this line),

with a 5.15 Å Ta-F distance (see Figure 5.1), a binding energy per atom and a

HOMO-LUMO gap of 4.18 eV and 1.44 eV respectively.

The next energy isomer is 0.37 eV above in total energy (1.47 eV HOMO-LUMO

gap) and has the fullerene-like structure plus a Fluorine atom in the line Ta-Si2

(∼ 2◦ deviated from this line).

The FK-Ta@Si16F most stable structure has 0.42 eV more total energy (2.03 eV

HOMO LUMO gap) than f -Ta@Si16F ground state (and only 0.040 eV more than

the first excited state). f - and FK-Ta@Si16F structures are shown in Figure 5.1.

While the HOMO LUMO gap of the most stable Ta@Si16F structure is the

smallest of the Ta@Si16F structures, we would like to point out that it is well

known that the Kohn-Sham HOMO-LUMO gap values, obtained from the cor-

responding eigenvalues of LDA-type or semilocal GGA-type functionals, severely

underestimate the real gap values, which can be obtained (for finite systems) as

the difference of the ionization potential (IP) minus the electron affinity (EA)

calculated for the exact exchange-correlation functional [90]. When the gap val-

ues are estimated from the (IP-EA)calc values calculated with approximated LDA

or GGA functionals, the mean absolute error (MAE) with respect to the exper-

imental (IP-EA)exp values is reduced by an order of magnitude compared to the

MAE resulting from (εHOMO − εLUMO) obtained with LDA or GGA Kohn-Sham

calculations for a set of first row atoms and molecules [90]. The calculated IP

and EA are 7.36 and 2.60 eV, respectively, for the D4d and 7.41 and 2.26 eV, for

the C3v isomer of Figure 5.1 leading to an estimation of the gap of 4.76 for the

D4d and 5.15 eV for the C3v. These estimations are larger than the corresponding

εHOMO − εLUMO GGA values by a factor higher than 3.2. An accurate prediction
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of the fundamental gap of semiconductors has been given by a recent hybrid func-

tional [91]. From Figs. 1–3 in that work [91] one can estimate correcting factors

to the HOMO-LUMO GGA values in the ranges 1.5–1.1, 1.2–1.1, and 1.3–1.1 for

one-, two-, and three-dimensional infinite semiconductor systems. Larger factors

can be expected for finite semiconductor systems.

1−I: 4.18,  1.44,  1.74

1−IV: 4.16,  2.03,  2.22

1−III: 4.16,  2.03,  2.21  

1−VI: 4.13,  1.61,  2.43  

1−II: 4.16,  1.46,  1.30

1−V: 4.16,  2.22,  2.04

Figure 5.1: Relaxed geometries for the Ta@Si16F clusters. Below each structure

are given: its label, binding energy per Ta@Si16F unit (eV), HOMO-LUMO gap

(eV), and dipole moment (Debye).
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5.2 (Ta@Si16F)2

From this section on, Ta@Si16F is the fullerene-like moiety (1-I) shown in Figure

5.1, and we define the binding energy per Ta@Si16F unit (Eb) of a
(
Ta@Si16

)
n

aggregate as follows:

Eb

(
[Ta@Si16]n

)
= 1/n

[
n× E(Ta@Si16)− E([Ta@Si16]n)

]
.

We systematically search the n = 2 aggregates in order to select those isomers

which can serve as unit blocks to construct larger aggregates following well de-

fined patterns. By using the results with size n = 2, we study larger aggregates

in the size range n = 3− 8, later we further study the possibility of using certain

configurations as unit cells of infinite low dimensional systems such as wires and

nanotubes.

Figure 5.2 show the different configurations ordered by decreasing binding

energy. In the lowest energy state, 2-I, three Si1 and only one Si2 participate

in the bond between the two units. 2-II has the Ta@Si16F structures joined by

two Si1-Si1 bonds, and the F atoms pointing in opposite directions, which leads

to a nearly zero total dipole. Structure 2-III is basically the same as 2-II, the

only difference being that the Ta@Si16F structures are rotated 90◦ around the

line Ta-Ta, leading to a non-zero total dipole.

Structures 2-IV, 2-V, 2-VI, and 2-VII have the same pattern, in which the

idea behind the motifs is that the units are joined by pentagonal faces (2-I and

2-III had also this motif before structural optimization). While 2-IV has four

Si1-Si2 bonds, 2-V, 2-VI, and 2-VII share another common characteristic: the

pentagonal faces involved in the bonding are “the same”, and they all have two

Si1-Si1 and one Si2-Si2 bonds with the relative position of the F atom changing

from one Si1 to another. 2-VIII is a special case in which all bonds (four in total)

are of the type Si2-Si2. 2-IX, 2-X, 2-XI, and 2-XII have only one Si2-Si2 bond,

this seems to be the least favorable bonding type. 2-X and 2-XI bond types are

observed in the bulk phase

What 2-V, 2-VI, and 2-VII in one hand and 2-IX, 2-X, 2-XI, and 2-XII on

the other show us is the sensitivity of the binding energy of the systems. Special
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2−III: 0.67,  1.17,  0.37

2−X: 0.24,  0.68,  2.86

2−VII: 0.54,  0.53,  3.04

2−IV: 0.60,  0.48,  3.78

2−I: 0.73,  1.06,  1.11

2−XI: 0.22,  0.78,  3.49

2−VIII: 0.40,  0.68,  0.03

2−V: 0.57,  0.59,  2.47

2−II: 0.69  1.17,  0.01

2−XII: 0.20,  0.77,  3.24

2−IX: 0.28,  0.61,  2.85

2−VI: 0.55,  0.41,  3.56

Figure 5.2: Same as Figure 5.1 for (Ta@Si16F)2.

attention should be paid to 2-V and 2-VII (2-X and 2-XI), because such motifs

are repeated in larger clusters with the same behavior of the binding energy with

respect to the change in the dipole.
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5.3 (Ta@Si16F)3

For the case (Ta@Si16F)3 several triangles and chains were tested, the preferred

configuration for this size is the triangle. Among the first five more stable config-

urations four are triangles, and only one a (bended) chain. The ground state 3-I

has the same triangular motif as 3-II, but 3-I Ta@Si16F units become distorted

after relaxation. The structure 3-II can be seen as the 2-III dimer of Figure 5.2

plus a Ta@Si16F unit in such a position that the three square faces see each other,

forming a hexagonal prism. That is, there are two Si1-Si1 bonds between each two

Ta@Si16F units. The 3-III isomer is nearly degenerate with the 3-II one (which

has only 10 meV larger total energy) and can be seen as one half of an hexagon.

It could be formed by breaking two Si1-Si1 bonds between two units and allowing

a Si2-Si2 bond between each two units. Despite the nearly identical total energy

of these isomers, the barrier for the 3-II to 3-III structural transition could be

very large. The hardness IP−EA (see page 34) for the structures 3-II and 3-III

is 2.51 and 2.40 eV, respectively, a factor ∼ 6.2 larger than the corresponding

HOMO-LUMO gap values. The structure 3-III is a bended chain or also can be

seen as half of the hexamer 6-III. 3-III is fairly degenerated with 3-II, despite of

the different adopted geometries of each one. Structure 3-IV differs from that of

the 3-II isomer in that one of the Ta@Si16F units has been rotated 180◦ around

a planar axis, resulting in more symmetrical relative bonding sites of the three F

atoms, and, thus, a smaller dipole moment. The 3-V isomer is formed by choos-

ing the Si1 bonding sites of F to form a triangle in a different and parallel plane

to the triangle formed by Ta atoms, which leads to a smaller binding energy per

Ta@Si16F unit (compare with 2-V and 2-VII of Figure 5.2).

Structures 3-VI and 3-VII can be seen as 2-II plus an Ta@Si16F, these struc-

tures get dimerized and do not form a (Ta@Si16F)3, thus can not be used as basis

motif for further larger aggregates. 3-VIII, 3-IX ,and 3-X share the same linear

chain motif, with one Si2-Si2 bond between Ta@Si16F units, they differ one from

the other in the orientation of the Ta@Si16F central unit. As opposed with 3-IV

and 3-V (or 2-V and 2-VII) no positive nor negative correlation can be seen be-

tween the dipole and the binding energy among these isomers, i.e. for the linear

chains, small dipole does not means lower binding energy nor the contrary.
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3−VII: 47,  1.20,  3.07

3−VIII: 0.34,  0.39,  1.57 3−IX: 0.33,  0.36,  5.59 3−X: 0.32,  0.36,  4.14

3−IV:  0.91,  0.60,  0.35
3−V:  0.77,  0.46,  2.28

3−I: 1.10,  0.50,  2.59

3−III:  0.97,  0.39,  3.40

3−II: 0.97,  0.41,  3.09

3−VI: 0.48,  1.18,  2.70

Figure 5.3: Same as Figure 5.1 for (Ta@Si16F)3.

5.4 (Ta@Si16F)4

For the size n = 4 we can finally build three dimensional aggregates. Lowest en-

ergy state 4-I is a tetrahedron, with structure 3-IV as basis and an extra Ta@Si16F

unit on top of it. Units are joined by Si1 atoms. The bond between units deforms

the square face; the fullerene like structure is still appreciable, but distorted and

the symmetry of each unit is lost.

Structure 4-II has each component unit on the corners of a rectangle with the

Ta and F in two parallel planes, leading to a total dipole in the direction of the

normal to the planes. It was constructed with two 2-VII units joined by the four

“free” Si1 atoms, thus “mirroring” the 2-VII unit. After relaxation these four

Si1 atoms deviates from their original positions, thus deforming the “bottom” of

the four Ta@Si16F units, which in turn rotate a little bit forming one new Si2-Si2

bond between the Ta@Si16F units of the 2-VII structures (i.e. two additional
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Si2-Si2 in total).

Structure 4-III has two 2-VIII units side by side and rotated 90◦ one from the

other, it can be seen as a tetrahedron with an isosceles triangle as basis. After

relaxation all Ta@Si16F units get distorted but the symmetry remains unaltered,

in the process four new Si2-Si2 bonds.

Structure 4-IV and 4-VI have each Ta@Si16F unit in the corners of a square of

side 7.30 Å (Ta-Ta distance). While 4-IV has the F and Ta in the same plane,

4-VI F atoms is in two different Si1, alternating up and down from the tantalums

plane. An hypothetical 14-IV* structure, like 4-IV in which the Ta’s and F’s are

in different parallel planes can not be obtained, such an hypothetical structure

evolves to 4-II after relaxation.

Structure 4-V is formed of a 2-III plus a 2-VIII* (an hypothetical structure

which is a modification of 2-VIII, in which one F atom would change its place, in

such a way that each Ta@Si16F molecule would be the mirror one of the other,

such structure would evolve to 2-III after relaxation).

4-VII is a modification of 4-V, in which the 2-VIII* unit is modified, in such a

way that the square faces containing the F atom face each other, thus loosing the

bonds between Si2’s of the bottom square face. Finally, 4-VIII and 4-IX are linear

chains with one Si2-Si2 and Si1-Si1 bond between Ta@Si16F units, respectively.

5.5 (Ta@Si16F)5

For structures (Ta@Si16F)5 we used the 4-II as basis motif plus another Ta@Si16F

in different positions, and directions. In the structure 5-I we have the additional

Ta@Si16F on top a square face (this is the one formed by the Si1 near the F) at the

long side of the 4-II. 5-II and 5-III are three-dimensional rectangular pyramids,

having the extra Ta@Si16F above the plane of the 4-II unit, the only difference is

a slight different orientation of the extra Ta@Si16F structures. This top Ta@Si16F

deforms the 4-II structure. 5-IV, 5-V, and 5-VI have the extra Ta@Si16F structure

in the short side of the 4-II rectangle, with the additional Ta@Si16F in different

orientations.



5.5 (Ta@Si16F)5 41

4−IX: 0.35,  0.46,  3.52

4−III: 0.92,  0.23,  0.06
4−I: 1.24,  0.33,  3.38

4−II: 1.17,  0.37,  8.50

4−VI: 0.77,  0.19,  0.00
4−IV: 0.88,  0.39,  0.06

4−V: 0.77,  0.54,  1.76

4−VII: 0.58,  0.73,  1.87

4−VIII: 0.40,  0.17,  4.02

Figure 5.4: Same as Figure 5.1 for (Ta@Si16F)4.
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5−II: 1.35, 0.17, 7.075−I: 1.39, 0.37, 9.24 5−III: 1.29, 0.21, 6.42

5−IV: 1.28, 0.16, 8.91 5−V: 1.21, 0.28, 6.62 5−VI: 1.21, 0.25, 8.46

Figure 5.5: Same as Figure 5.1 for (Ta@Si16F)5.
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5.6 (Ta@Si16F)6

The lowest-energy (Ta@Si16F)6 isomer which mantains the structure of the

Ta@Si16F units is shown in Figure 5.6 (6-I); it is formed from two 3-IV ag-

gregates in two parallel planes and rotated 60◦ to each other around the vertical

axis. Thus, the equilateral triangle formed by the three Ta atoms of the 3-IV

isomer is stacked over the other similar triangle rotated by 60◦. The structure

6-II, which is nearly degenerate with the 6-I one, can be seen as the stacking

of two 3-V (Ta@Si16F)3 isomers rotated 60◦ one with respect to the other. The

planar 6-III and 6-IV isomers in Figure 5.6 can be seen as the joining of three

2-V and 2-VII isomers, respectively, to form a ring (alternatively two 3-III units

for the 6-III). The pair of isomers 6-I and 6-II (and 6-III and 6-IV) differs one

from the other in the fluorine-bonding positions, illustrating again the sensitivity

of binding energy and dipole moment to the fluorine relative bonding positions

in the aggregates.



44 Ta@Si16F: Aggregates

6−III: 1.45, 0.35, 0.01

6−II: 1.73, 0.44, 4.17
6−I: 1.75, 0.44, 0.12

6−IV: 1.38, 0.38, 7.32

Figure 5.6: Same as Figure 5.1 for (Ta@Si16F)6.
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5.7 (Ta@Si16F)8

The 8-I isomer in Figure 5.7 is constructed by stacking two 4-IV isomers rotated

45◦ to each other around the vertical axis. The planar 8-II isomer is constructed

by joining four 2-V units forming a ring, two additional Si2-Si2 bonds between

Ta@Si16F individual units are generated. These additional bonds deform the

Ta@Si16F units, and the fact that the Si1-Si1 bonds are more or less fixed with

respect to the 2-VIII structure, “squeezes” the Ta@Si16F units. These structures

could be stacked vertically to create interesting nanotubes.

8−I: 1.67, 0.51, 0.15 8−II: 1.62, 0.21, 0.01

Figure 5.7: Same as Figure 5.1 for (Ta@Si16F)8.
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6
Ta@Si16F: Bulk phase

For possible stable bulk phases of Ta@Si16F (fullerene-like moiety) molecular

crystal we have tested the simple cubic, the face-centered cubic, and the NaCl

structure. In all the cases no stable bulk phase could be found. However, in

the case of a fcc-crystal with the Ta
+ − F

−
electric dipole oriented along the

crystallographic [110] direction a metastable phase could be identified. For the

dipole oriented along [100] or along [111] the metastable phase disappeared. The

metastable structure is shown in detail in Figure 6.1 has a cohesive energy of

∼ 0.84 eV and lattice constant ∼ 12.30 Å.

In all tested cases when the lattice constant becomes smaller than

∼ 11.75 Å the cohesive energy increases drastically, and a strong deformation

of the Ta@Si16F unit is observed. Such deformations lead to amorphous bulk

structures with silicon atoms of neighbor units bonding covalently. Panel (b) of

Figure 6.2 shows a Murnaghan-Birch fit [86] to a few points around the local

minimum, for both the energy and pressure. From that fit results a minimum at

12.273 Å with cohesive energy 0.836 eV, bulk modulus 7.55 GPa, and a phase

stability pressure under isotropic compression smaller than 0.75 GPa.

The projected Si, Ta, and F density of states of bulk Ta@Si16F, as well as the

projected density of states of the 5d-orbital of Ta, are represented in panels (c)

and (d) of Figure 6.2, respectively. We can see a small gap ∼0.20 eV between

the 5d state of Ta, which are strongly hybridized with sp states of Si. A quick

estimation of the correction factor can be obtained from our former discussion
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for Ta@Si16F molecules. Thus using a correction factor of 2, a gap of ∼0.4 eV

can be expected for the present case.

In order to study how unstable is that metastable fcc phase of Ta@Si16F,

we have performed ab− initio annealing molecular dynamics (QAMD) at 300 K

and constant volume. Panel (a) of Figure 6.3 shows the evolution of the energy

difference with the starting zero-temperature energy along 4500 steps of molecular

dynamics with 3 × 10−15s per step, which amounts to a total time of 13.5 ps.

We see that during the first 5 ps the total energy oscillates in the range ±0.4

eV around a given average value (−3363.80 eV). These oscillations reflect the

relative orientations (rotations) driven by the covalent Si-Si interactions between

neighboring cages. From 5 to 13.5 ps the total energy oscillates around an average

value −3364.80, which is 1 eV smaller than the previous one. This fact suggests

that the phase transition occurs due to changes in pressure, larger that those

allowed by the fitted Murnaghan-Birch equation of the meta-stable state. In

panel (c) of Figure 6.3 we can see that the pressure oscillates around 1.5 Mbar,

a value out of the validity range of the fcc meta-stable state. Panel (b) of Figure

6.3 shows the evolution of the percent deviation of the Ta-Sib and Sib-F bond

lengths along the 13.5 ps annealing dynamics, where Sib is the silicon atom which

connects Ta and F. That Sib is always the same as the initial one at 0 K. At 0 K

the Sib atom forms a straight line with Ta and F atoms, with bond lengths 3.04

Å and 1.72 Å for Ta-Sib and F-Sib respectively. We see in panel (b) of Figure

6.3 that the distance Sib-F remains approximately constant (within 0.2 %) along

the 13.5 annealing dynamics. On the other hand the Ta-F and Ta-Sib distances

follow a similar percent distance change evolution –compared one with the other–

showing a drastic average value change starting at 5 ps.
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Figure 6.1: Panels (a) and (b) show the [100] and [001] planes, respectively, of

the (Ta@Si16F) in the fcc metastable phase, panel (c) shows the evolution of the

cohesive energy against the first neighbor distance.
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Figure 6.2: (a) Binding energy per unit cell of the metastable fcc Ta@Si16F as

a function of the lattice constant. (b) Murnahgan-Birch fit to the total energy

and pressure of fcc Ta@Si16F. (c) Total density of states and projected density of

states of Ta and F atoms. (d) Projected DOS of Ta atom and of d states of Ta.
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Figure 6.3: Evolution along 13.5 ps in the QAMD of (a) the cohesive energy

difference of the bulk Ta@Si16F metastable fcc phase at 300 K with the starting 0

K total energy [the insets show the Ta@Si16F cluster in the unit cell before (left)

and after (right) 5 ps]; (b) the distances Sib-F (blue line), Ta-Si (red line), and

Ta-F (black line); and (c) the total pressure in the cell.
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7
(Ta@Si16F)6: Wire

We have used aggregate 6-I (see Figure 5.6) as a unit cell to construct an infinite

wire. Figure 7.1 (a) and (b) show two units and top-view of the wire, respectively.

The unit cell contains one 6-I aggregate (108 atoms) forming vertically an infinite

wire which is separated laterally a distance 4L of similar wires in order to avoid

interactions between them – where L is the distance between the first and third

layers shown in Figure 7.1 (a).

The periodic calculations have been performed in a 4L× 4L× L parallelepiped

cell. We use a k-grid cutoff of 15 Å to sample the Brillouin zone in reciprocal

space, which corresponds to 125 k points. In Figure 7.1 (c) is represented the

cohesive energy, defined as

E([Ta@Si16F]cluster6 )− E([Ta@Si16F]wire6 ),

for different values of the lattice constant. The wire equilibrium state corresponds

to L = 10.70 Å and a cohesive energy 1.87 eV.

The Mulliken population analysis [92] reveals that each (Ta@Si16F)6 unit con-

serves his nominal number of electrons (e), that is, 5(Ta) + 4 × 16(Si) + 7(F)

= 76 e. Thus, 1.76 e are donated from the Ta 6s orbital to the Ta 6p orbital

(0.46 e), to the Ta 5d orbital (0.64 e), to the 16 Si atoms (0.30 e), and to the F

atom (0.36 e). This rearrangement of electrons between Ta, Si, and F corresponds

qualitatively to their relative atomic electronegativity, and allows the formation

of hybrid spd orbital of Ta in order to establish symmetry-adapted bonds with

Si atoms.
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A more detailed analysis leads to the conclusion that the charge neutraliza-

tion occurs for each layer of atoms inside each supermolecular unit. These atomic

layers are the following: (i) the F atom and those four Si1 atoms which do not

participate in the Ta@Si16F− Ta@Si16F bonding; (ii) the eight Si2 atoms in the

equatorial zone between the two square faces having alternating excess/defect of

nominal charge, thus neutralizing each pair of consecutive Si atoms; these eight

Si2 atoms are arranged in two parallel squares (45◦ twisted to each other) and

the four atoms in a square have identical excess (or defect) of charge; (iii) the

four Si1 atoms of the square face which provide the bonding between adjacent

cages; two of them bind covalently to another two Si1 atoms of the other cage

which have the same excess (trimer in the upper plane) or defect (trimer in the

lower plane) of charge. There are also covalent Si2u–Si2l bonds between the upper

plane and the lower plane.

It is interesting to characterize the empty space inside of the (Ta@Si16F)6 unit

cell. In Figure 7.2 is depicted such a cage, which looks as a barrel delimited by 24

Si1 atoms arranged in four parallel layers, each one with 6 atoms, whose vertical

axis is the wire axis. The distance between layers is 2.17 Å , and between two

consecutive holes is 4.19 Å . Each one of the 6 atoms in a layer has the same

excess or defect of electrons. The surface density of positive/negative charge

within each layer is nearly the same (−0.014 and +0.016 number of electrons

per Å2, respectively), and the cage can be seen as identical electrical capacitors

opposed one to the other, that is, (+,−)(−,+). The smallest (largest) “diameter”

of the barrel is 4.88 Å (6.52 Å), and the height is 6.51Å ,which makes it possible

to encapsulate small molecules as H2, O2, N2, H2O, etc.
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Figure 7.1: Panel (a) and (b) show the lateral and top views of a section of the

wire containing two (Ta@Si16F)6 unit cells, indicating the lattice constant L. In

panel (c) is represented the cohesive energy of the wire as a function of the cell

distance L.
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Adsorption of small molecules on

Ta@Si16F, and (Ta@Si16F)6 clusters and

wires

In the last section we have characterized a (Ta@Si16F)6 nanowire formed by two

(Ta@Si16F)3 triangular aggregates stacked along the vertical axis and twisted 60◦

each other (Figure 7.1(a)), where the basic Ta@Si16F super-molecular unit has

D4d symmetry. The central cavity of the wire has a barrel shape formed by 24

Si atoms arranged in 4 parallel hexagons (Figure 7.2). The surface of that barrel

is formed by 6 squares and 6 hexagons plus 2 hexagons as basis. Thus, following

the notation used for clathrate hydrates, it can be denoted as a 4668 structure.

That cage is large enough to storage H2, H2O, CO2, or other small molecules

inside. Here we have undertaken the study of the adsorption of H2O and H2

inside and outside of (Ta@Si16F)6 aggregates and wires. This study is motivated

by the search of new solid materials for hydrogen storage in mobile or stationary

devices, the latter with (hopefully) near-term applications. The literature on this

subject is extensive, references [93, 94] are only some examples.

As a first step we study the adsorption of atomic and molecular hydrogen (H

and H2) on the Ta@Si16F unit in order to characterize the different adsorption

sites. The main results of our calculations are the following: The adsorption

energy of H2O inside the (Ta@Si16F)6 aggregate, (Figure 8.6 (a)), is 0.255 eV,

and 0.287 eV for the (Ta@Si16F)6 nanowire. A single H2 molecule is captured in
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the center of the aggregate (Figure 8.6 (a)) with adsorption energy 0.015 eV, bond

length 0.790 Å, and zero magnetic moment. On the other hand, the adsorption

energy of H2 inside of the periodic (Ta@Si16F)6 nanowire is 0.025 eV. Finally, the

adsorption energy per H2 molecule when n H2 molecules are adsorbed outside of

the (Ta@Si16F)6 aggregate is 0.060 eV for n = 1 and 0.054 eV for n = 6, see

Figure 8.9.

In this chapter we will explain and discuss these results in detail.

8.1 Adsorption of H and H2 on Ta@Si16F unit

In this section we investigate the favorable sites and configurations for adsorption

of atomic and molecular hydrogen on a single super-atom unit. The adsorption

energy of A (=H, H2) is defined as

Eads(A-Ta@Si16F) = E(Ta@Si16F) + E(A)− E(A-Ta@Si16F).

8.1.1 Atomic hydrogen chemisorption on Ta@Si16F unit

A single H atom prefers to bind on top of a Si atom of Ta@Si16F instead of bridge

or hollow sites, as shown in Figure 8.1. The binding energy, HOMO-LUMO gap,

electric dipole, distances Ta-Si and Si-H are given in Table 8.1 for the several

on-top sites. The binding energy ranges between a maximum of 1.98 eV on top

of a Si2 in the equatorial plane and 1.82 eV for those Si1 atoms closer to the

F atom. Thus, H atoms become chemically bonded on top of Si atoms with a

typical distance Si-H ∼ 1.53 Å. On the other hand the angle Ta-Si-H ranges from

∼ 154◦−178◦, i.e. the H atom deviates from the line Ta-Si ∼ 8◦−26◦. The Ta-Si

average distance is 2.93 Å, that is the chemisorption of a single H atom maintains

the original size of the unit.

The largest HOMO-LUMO gap (1.25 eV) occurs for H chemisorbed on the Si1

atoms in the opposite side to the F atom (Si[15] and Si[16]), and the smaller for H

on the Si2 atoms closer to F and its mirrors (about 0.60 eV). The larger dipole

moments occurs for the H atom on a Si2 atom on the opposite side to the Fluo-

rine, that is, on atom Si2[9], and for H on the Si1 atoms nearby to F. The smallest
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dipole moment occurs for H atom “on top” of the Si2 nearest to F (Si2[5]), which

is opposite to Si2[9]. This is also the most stable one, with the largest deviation of

H from the Ta-Si line.

Contrary to intuition, the H atom does not chemically bind to the F atom.

The HF molecule in gas phase has a binding energy ∼ 5.88 eV, bond distance

0.917 Å, and dipole moment 1.86 Debye. Instead the adsorption of H on the F

atom of Ta@Si16F to form Ta@Si16F-H has a binding energy ∼ 0.015 eV, 2.90 Å

for the HF distance, and only the dipole moment of the compound, 1.82 Debye,

is similar to the experimental one of the H-F molecule in gas phase. Thus, the H

atom is physisorbed on top of the F atom. The result that, in the Ta@Si16F-H,

the Si-F bond is stronger than that of the H-F bond, can be explained as fol-

lows: The experimental bond enthalpy of a SiF4 molecule is about 2388 kJ/mol,

then one can estimate the average bond strength of a single Si-F bond as ∼ 597

kJ/mol, to be compared with the experimental bond enthalpy of H-F, which is

∼ 568 kJ/mol. This stronger bond Si-F compared to that of H-F has been real-

ized in X-ray photospectroscopy on HF passivated silicon surfaces [95, 96]. We

see that the Si prefers to be passivated by the F atom, and an additional H atom

becomes only slightly physisorbed on that F atom.



60 Adsorption of small molecules

143

9

10

11

12

1316

3

10

16
4

11

7

1

6

14

13

2

9

8

15

12

5

5

Figure 8.1: Left: Equivalent sites of Ta@Si16F are numbered with the same

color. Right: Adsorption geometries of atomic hydrogen on the several sites of

Ta@Si16F which are referred to in Table 8.1.
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Table 8.1: Adsorption energy (per H atom) (eV), HOMO-LUMO gap (eV),

electric dipole (Debye), average Ta-Si distance (d avgTa−Si) (Å), Si(F)-H distance

dSi(F )−H (Å), angle Ta-Si(F)-H (∠(Ta-Si-H)), and the deviation angle from the

Ta-Si line (∠deviation) for an H atom on top of a Si[site] (for the site numbers see

Figure 8.1) and on F. When two sites are given they are the “mirror” one of the

other.
H on top of Eads gap Dipole d avgTa−Si dSi−H ∠(Ta-Si-H) ∠deviation

Si[5] 1.98 0.65 1.40 2.93 1.53 153.70◦ 26.30◦

Si[8,10] 1.97 0.72 1.69 2.93 1.53 173.33◦ 6.67◦

Si[13,14] 1.95 1.24 1.77 2.94 1.54 174.33◦ 5.67◦

Si[15,16] 1.93 1.25 1.70 2.94 1.54 173.06◦ 6.94◦

Si[9] 1.90 0.54 2.55 2.94 1.53 171.53◦ 8.47◦

Si[6,12] 1.87 0.78 1.92 2.93 1.53 174.79◦ 5.21◦

Si[7,11] 1.87 0.70 1.99 2.93 1.53 169.27◦ 10.73◦

Si[3] 1.82 1.11 1.81 2.94 1.54 177.58◦ 2.42◦

Si[2,4] 1.82 1.15 2.30 2.94 1.54 170.35◦ 9.66◦

F 0.02 1.44 1.82 2.93 2.90 177.81◦ 2.19◦
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8.1.2 Molecular H2 physisorption on Ta@Si16F unit

The H2 molecule in gas phase is a very stable system which barely interacts

with its surroundings. A single H2 molecule becomes physisorbed preferably on

bridge (Si-Si) position of the Ta@Si16F unit with phsyisorption energies between

0.029 eV and 0.042 eV, and average distance H2-(Si-Si) ∼ 3.69 Å. The Ta-Si

average distance, 2.93 Å, is not modified after physisorption of a H2 molecule,

and the dipole moment for each configurations remains similar to that of the free

Ta@Si16F unit.

In most cases the H2 molecule orients in the direction of the line joining the Ta

with the (Si-Si)edge. Another way to say this is that, if one thinks of the Ta@Si16F

unit as a sphere with the Ta as its center, the H2 molecules orient radially in the

direction of the edge with a characteristic distance, measured from the center-H2

to center distance of the edge, of 3.69 Å.

The few H2 molecules that depart from that behavior are those nearest to

the F atom (on edges 1, 4, and 5, see Figures 8.2 and 8.3 left and middle). In

those cases the H2 molecule are tilted in the direction of the F and its center a

little bit shifted, with larger distance than the average. An illustration of the

physisorption geometries is provided in Figure 8.2. In Table 8.2 are given the

energy, distance, HOMO-LUMO gap, and dipole for the different physisorption

sites. From Table 8.2 we see that the more favorable sites are those edges closer

to the F atom (Figure 8.2 (a) and (b)), and at the same time they are more apart

from the Silicon edges than the others, with an average distance H2-(Si-Si) ∼ 3.90

Å.

As we have seen, a H2 molecule prefers to be on bridge position and radially

oriented. Thus, we use this recipe to construct the compound (Ta@Si16F)-(H2)24,

made by the simultaneous physisorption of 24 H2. The geometry adopted by such

a complex is that of the truncated D4d unit (Ta@Si16F without the F atom),

but we have found that this geometry is not preserved after relaxation. The fi-

nal positions of the 24 H2 are the vertexes of a distortion of the truncated

D4d polyhedron, with an average adsorption energy per H2 molecule of 0.041 eV.
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Thus, physisorption of successive H2 molecules proceeds independently.

In order to estimate how much the adsorption energy increases using a den-

sity functional which incorporates the long range correlation effects, we have

calculated the physisorption energies on edges 1 and 10 (lower and higher en-

ergy states) using the recent self-consistent van der Waals density functional

implementation of Soler et al [65]. We obtained increases about 20% and 28%,

respectively, in the physisorption energy. These results for the increase of the

H2 adsorption energy are similar to those of the H2O on hydrogen-passivated

Si nanowires calculated recently by Hmiel and Xue [97]. These authors obtained

0.043−0.077 eV (depending on the crystallographic surface) physisorption energy

of H2O using the GGA-PBE density functional and a correction of 0.02 − 0.03

eV using an empirical van der Waals correction of Grimme [98]. The distance

H2− edge is larger for the van der Waals calculation than for the GGA-PBE one.

The H-H distance doesn’t changes appreciably with respect to that of the free H2

molecule.
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Figure 8.2: Left and Right: Different edges-sites to physisorb a H2 molecule. In

green: Si1-Si1 edges, In black: Si2-Si2edges, In blue: Si1-Si2 edges.

Figure 8.3: Different edge-sites to physisorb a H2 molecule. From left to right:

H2 on top of a: Si1-Si1 edge, Si1-Si2 edge, Si2-Si2edge.
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Table 8.2: Adsorption energy (per H2 in eV), HOMO-LUMO gap (eV), dipole

(Debye), average Ta-Si (Å) distance (d avgTa−Si in Å), edge-H2 distance (dedge−H2),

for an H2 molecule on top of a (Si-Si)[edge] (for the edge numbers see Figure 8.2).

When two edges are given they are the “mirror” one of the other.

Edge Number Eads gap Dipole d avgTa−Si dedge−H2

(Si-Si)[1,4] 0.042 1.44 1.81 2.93 3.90

(Si-Si)[5] 0.039 1.44 1.86 2.93 3.88

(Si-Si)[6,8] 0.037 1.44 1.76 2.93 3.62

(Si-Si)[17,20] 0.036 1.43 1.55 2.93 3.72

(Si-Si)[18,19] 0.036 1.44 1.54 2.93 3.72

(Si-Si)[9,16] 0.032 1.44 1.73 2.93 3.69

(Si-Si)[2,3] 0.032 1.44 1.72 2.93 3.65

(Si-Si)[7] 0.032 1.44 1.71 2.93 3.59

(Si-Si)[11,14] 0.031 1.44 1.67 2.93 3.65

(Si-Si)[23] 0.031 1.43 1.51 2.93 3.70

(Si-Si)[12,13] 0.031 1.43 1.60 2.93 3.66

(Si-Si)[22,24] 0.030 1.44 1.54 2.93 3.69

(Si-Si)[21] 0.030 1.43 1.59 2.93 3.65

(Si-Si)[10,15] 0.030 1.44 1.72 2.93 3.64

24·H2 on (Si-Si) 0.041 1.43 1.72 2.92 3.83
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8.2 Adsorption: H, H2 and H2O inside (Ta@Si16F)6

We define the adsorption energy as

Eads[(nY@X)] = E[X] + nE[Y ]− E[nY@X],

where X = (Ta@Si16F)cluster6 , (Ta@Si16F)wire6 , and n is the number of Y (= H,

H2, H2O) molecules.

In the next sections we present the results for the adsorption of H, H2, and

H2O inside the (Ta@Si16F)6 cluster and wire.

8.2.1 Adsorption: n H inside (Ta@Si16F)6 n = 1, 2

Adsorption: One H inside (Ta@Si16F)6

A single H inside the barrel (shown in Figure 7.2) binds mainly in four configu-

rations: (i) “on top” of one Si, (ii) in “hollow position” , between two Silicons

of different Ta@Si16F units, (iii) in “bridge position” position, between two Sili-

cons of the same Ta@Si16F unit, and (iv) in a “broken bond position”, breaking

a Si1-Si1 bond to create a Si1-H-Si1 one. The more stable configuration is “on

top” of a Si1 (Figure 8.4 (a)), heavily distorting the geometry of the system, with

binding energy 1.46 eV. The second more stable configuration has only 0.010 eV

higher energy. In this case the chemisorbed H atom does not distort the local ge-

ometry. This chemisorption is of hollow type. (Figure 8.4 (b)), with the H in the

middle of a hexagon, connecting two Si1 belonging to different Ta@Si16F units.

Another chemisorption configuration has the H in bridge position connecting two

Si1 atoms of the same Ta@Si16F unit (Figure 8.4 (c)), this about 0.20 eV higher

energy than the hollow configuration. Finally we have found another “broken

bond” configuration, which tends to break the Si1-Si1 bond, leading to a nearly

linear Si1-H-Si1 edge (Figure 8.4 (d), (e), and (f)).
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Figure 8.4: “Top” and “side” view of the H@(TaSi16F)6 cluster (only the barrel-

shaped structures shown to aid the view). Configurations (a), (b), and (c) are “on

top”, “hollow”, and “bridge” type, respectively. Configurations (d), (e), and (f)

are “breaking bond” type. The numbers correspond to adsorption energy (eV),

HOMO-LUMO gap (eV), and dipole (Debye).
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Adsorption: Two H atoms inside (Ta@Si16F)6

When adding a second H atom to the previous configurations, the inner structure

geometry is distorted, except for the bridge-like type ones. In Figure 8.5 are shown

the more stable equilibrium geometries. Configuration (a) is the most stable one,

with a binding energy of 3.45 eV; in this case both H are “on top” position.

Configurations (b) and (c) are degenerate, with a binding energy of 3.25 eV.

Case (b) has both H in “hollow” position (compare with 8.4 (b)), while case (c)

“on top” position. Configurations (d)–(f), have ∼ 0.70 eV smaller chemisorption

energy with with both H atoms in “broken bond” position, one of them in the

same position 8.4 (e). These configurations tends to close the HOMO-LUMO gap.

Configurations (d) and (e) have the additional H in quasi-equivalent positions as

8.4 (d). Finally, configuration (f) has both H in positions like 8.4 (e).
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Figure 8.5: “Top” and “side” view of the 2H@(TaSi16F)6 more stable configura-

tions (only the barrel-shaped structures shown to aid the view). The numbers

correspond to adsorption energy (eV), HOMO-LUMO gap (eV), and dipole (De-

bye).
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8.2.2 Adsorption: n·H2 inside (Ta@Si16F)6 (n = 1− 3)

Figure 8.6, shows the structures for one H2 molecule inside the inner barrel shaped

structure of the (Ta@Si16F)6 cluster and wire. The H2 molecule prefers to be in

the plane perpendicular to the cluster/wire axis at the center of the inner barrel,

as shown in Figure 8.6 (a) and (b). Configuration (b) corresponds to a rotation

of (a) around the cluster/wire axis. It leaves the HOMO-LUMO gap unchanged,

but increases the total energy by a tiny amount. Such difference in the relative

orientations leads to a small change in the dipole of ∼ 0.030 Debye. Finally, con-

figuration (c) corresponding to the H2 molecule oriented along the cluster/wire

axis, is not bound (the binding energy is negative).

The binding energy of one H2 inside the wire increases as compared to the

cluster, in a range between 60− 90% .

(a)

[C]: −0.008,  0.430, 0.052  

[W]: −0.014,  0.430, 0.052  

(c)

[C]: 0.013,  0.435,  0.120

[W]: 0.025,  0.435,  0.128

(b)

[C]: 0.015,  0.434,  0.089

[W]:0.024,  0.434,  0.089

Figure 8.6: “Top” and “side” view of the H2@(TaSi16F)6 clusters and wires (only

the barrel-shaped structures shown to aid the view). The numbers correspond to

adsorption energy (eV), HOMO-LUMO gap (eV), and dipole (Debye). [C] stands

for Cluster, [W] for Wire. Lower energy states in bold.
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We have found that there are no bound structures of n·H2 molecules adsorbed

inside the barrel shaped structures for n > 1, that is the adsorption energy, as

defined above, is negative. Figure 8.7 shows such structures for the cluster and

wire. Configurations (a) and (b) contains the 2 H2 in parallel planes, one above

and one below the equatorial plane, with an H2-H2 distance ∼ 2.40 Å. In case (a)

the H2 axes are perpendicular to each other, while in case (b) they are parallel.

Case (b) was also studied in the wire. In this case the binding energy is less

negative than for the cluster (that is, it cost less energy to hold together the two

H2 in the cavity) and the HOMO-LUMO gap and the dipole moment drastically

decrease with respect to the aggregate case.

Configurations (c) and (d) in Figure 8.7, correspond to 3 H2 molecules inside

the cluster and wire. Configuration (c) for the cluster has 2 H2 inside the barrel

and one H2 physisorbed H2 outside the cavity; in the case of the wire system the

outer H2 lies between two (Ta@Si16F)6 units. The binding energy of that H2 in

the wire is 0.04 eV, that is, about a factor two larger than the configuration of

H2 inside de cavity 8.6 (b).

The 3 H2 in configuration (d) form a triangle with sides (2.73, 2.04, 2.19) Å

in a plane which contains the axis of the cluster/wire. In this configuration we

need ∼ 1.06 eV (0.97 eV) to put 3 H2 inside the cluster (wire).
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(b)

[C]: −0.26,  0.45,  0.19

(a)

[W]: −0.28,  0.13,  0.06

[C]: −0.21,  0.46,  0.13

(c)

[W]: −0.97,  0.15,  0.07  

[C]: −1.06,  0.46,  0.31  

(d)

[W]: −0.18,  0.18,  0.05  

[C]: −0.26,  0.45,  0.16  

Figure 8.7: “Top” and “side” view of the 2H2@(TaSi16F)6 and 3H2@(TaSi16F)6

clusters (only the barrel-shaped structures shown to aid the view). The num-

bers correspond to adsorption energy (eV), HOMO-LUMO gap (eV), and dipole

(Debye). [C] stands for Cluster, [W] for Wire.
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8.2.3 Adsorption: H2O inside (Ta@Si16F)6

Our results show that the encapsulation of a H2O molecule into the (Ta@Si16F)6

is also possible. The encapsulation leaves the (Ta@Si16F)6 structure unaltered,

but deforms a little bit the encapsulated water molecule. The distance O-H af-

ter encapsulation increases a little bit, 0.98 Å in the free molecule compared to

0.99 Å while encapsulated. The angle H-O-H, on the other hand, decreases after

encapsulation. A summary of this is found in Table 8.3. Encapsulated struc-

tures have the O atom at the center of the barrel-shaped-inner structure of the

(Ta@Si16F)6, with slightly different relative orientations of the H atoms. The

lowest energy state has a binding energy of 0.255 eV, and is shown in Figure 8.8

(a). In this phase both H atoms are “above” the plane in the center of the barrel,

each H pointing in the direction of a Si1 from different Ta@Si16F units (in the

figure they are marked with a blue dot). Interestingly, the adsorption of H2O

inside the (Ta@Si16F)6 wire adopt the same position than in the aggregate, but

the adsorption energy increases to 0.287 eV, the HOMO-LUMO gap decreases,

and the dipole moment of the system becomes near zero, as it should be.

Structures 8.8 (b) and (c) are practically degenerated. They are rotated ∼ 30◦

around the wire axis with respect to the lowest energy state. In this case the H

atoms are also not in the plane, but as opposed to (a), one H goes “above” and one

“below” the central plane of the barrel. This “tilting” is more appreciable in (c)

than in (b) (where the H2O molecule practically lies in the plane). Nevertheless

their energy are essentially the same, with a difference ∼ 0.001 eV.

Table 8.3: Angles H-O-H (∠H−O−H) and distances O-H (dO−H) for the free and

encapsulated H2O in the different configurations, given in Figure 8.8.

Free H2O Encapsulated H2O

configuration Free (a) (b) (c)

dO−H 0.98 Å 0.99 Å 0.99 Å 0.99 Å

∠H−O−H 104.0◦ 103.8◦ 103.8◦ 102.7◦
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(c)

[C]: 0.241,  0.44,  0.87

(b)

[C]: 0.240,  0.45,  0.76

(a)

[C]: 0.255,  0.46,  0.87
[W]: 0.287,  0.13,  0.03

Figure 8.8: Different viewpoints of the H2O@(TaSi16F)6 clusters and wires (only

the barrel-shaped structures shown to aid the view). The numbers correspond to

adsorption energy (eV), HOMO-LUMO gap (eV), and dipole (Debye). [C] stands

for Cluster, [W] for Wire. Blue dots are only to take track of the viewpoint. Most

stable structure in bold.
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8.3 Adsorption: nH2 (Ta@Si16F)6 n = 1− 6

I have also studied studied the adsorption of several H2 molecules outside the

(Ta@Si16F)6 aggregate. Figure 8.9 b shows the different more favorable positions

of the nH2 molecules for n = 1− 6 physisorbed on the (Ta@Si16F)6 cluster.

In Figure 8.9 the H2 molecule in the black (red) circle is in the middle of

the Si2[11] (Si2[7]), Si2[5], and Si2[9] atoms (see Figure 8.1), at a distance of 3.69 Å,

3.92 Å, and 3.90 Å, respectively. Thus, the relative position of each H2 molecule

with respect to its three nearest Ta@Si16F neighbors is the same in all cases,

and the contribution to the total energy of consecutively adding a H2 molecule

is nearly independent of the position taken by it. In Table 8.4 the adsorption

energy, HOMO-LUMO gap, and dipole are presented for the structures n·H2 in

the range n = 1, . . . , 6; the labels a, b, . . . represent different moieties for a fixed

n. Similar information is given in Figure 8.10. In this figure are also shown

several arrangements for each fixed number of molecules. These arrangements

differ mainly in the dipole moment.

Compared to the case of H2 inside the cavity, the physisorption energy is a factor

four larger. However, the HOMO-LUMO gap and dipole moment values are

similar.

2
H  :  0.060,  0.443,  0.104 6H  :  0.054,  0.445,  0.039

2

Figure 8.9: “Top” and “side” view of the H2 on (Ta@Si16F)6 and 6H2 on

(Ta@Si16F)6 clusters. The numbers correspond to adsorption energy (eV),

HOMO-LUMO gap (eV), and dipole (Debye). Black and red circles show the

positions of the H2 molecules.
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  2 2H  −c:  0.057,  0.446,  0.025  2

4H  −a:  0.055,  0.446,  0.150  2 4H  −b:  0.054,  0.446,  0.068  2 4H  −c:  0.054,  0.446,  0.063  2 4H  −d:  0.054,  0.446,  0.030  2

3H  −a:  0.055,  0.446,  0.217  2 3H  −b:  0.055,  0.446,  0.103  2 3H  −c:  0.055,  0.446,  0.109

2H  −b:  0.056,  0.446,  0.159

3H  −d:  0.055,  0.446,  0.090  2

1H  :  0.060,  0.443,  0.104  2 2H  −a:  0.056,  0.446,  0.071  2

6H  :  0.054,  0.445,  0.039  25H  :  0.054,  0.446,  0.092  2

  2

Figure 8.10: Schematic of the positions of n·H2 adsorbed outside the (Ta@Si16F)6

structure. The numbers correspond to adsorption energy (per H2 in eV), HOMO-

LUMO gap (eV), and dipole (Debye). Filled black and red circles represent a H2

molecule in the positions of Figure 8.9.
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Table 8.4: Adsorption energy per H2 (Eads in eV), HOMO-LUMO gap (∆gap in eV),

and dipole (Debye) for the structures n·H2 (n = 1 − 6). Labels a,b, . . . are used to

differenciate among moieties with a fixed n.

Label Eads ∆gap Dipole

1·H2 0.060 0.443 0.104

2·H2-a 0.056 0.446 0.071

2·H2-b 0.056 0.446 0.159

2·H2-c 0.057 0.446 0.025

3·H2-a 0.055 0.446 0.217

3·H2-b 0.055 0.446 0.103

3·H2-c 0.055 0.446 0.109

3·H2-d 0.055 0.446 0.090

4·H2-a 0.055 0.446 0.150

4·H2-b 0.054 0.446 0.068

4·H2-c 0.054 0.446 0.063

4·H2-d 0.054 0.446 0.030

5·H2 0.054 0.446 0.092

6·H2 0.054 0.445 0.039



78 Adsorption of small molecules



9
Summary

In this thesis we have investigated and characterized the structural and electronic

properties of the following systems:

(i) Ta
+

@Si14−18 clusters, (ii) (Ta@Si16F)m=1−8 aggregates formed by Ta@Si16F

molecules, (iii) infinite wires formed by stacking triangular (Ta@Si16F)3 twisted

60◦ each other along the vertical, (iv) the cubic phases of bulk Ta@Si16F; (v)

adsorption of H, H2, and H2O in the infinite wire described in (iii).

All calculations were performed within the density functional theory by means of

the SIESTA code using the generalized gradient approximation as parametrized

by Perdew-Burke-Ernzernhof for the exchange and correlation potential.

We have found that Ta
+

@Sim clusters shows a peak at m = 16 in the binding

energy, second energy difference, and HOMO-LUMO gap, with two structures in

different symmetries separated by only 0.04 eV in the binding energy. The most

stable Ta
+

@Sim cation is a distorted Frank-Kasper polyhedron with C3v sym-

metry; the second most stable is a fullerene-like structure with D4d symmetry.

However, the molecule Ta@Si16F with D4d symmetry is 0.04 eV more stable than

that with C3v symmetry. We have optimized several (Ta@Si16F)m=1−8 aggregates

which contain the Ta@Si16F unit with D4d symmetry; among these aggregates,

(Ta@Si16F)6, is an interesting case, the most stable one formed by vertically

stacking two triangular (Ta@Si16F)3 aggregates rotated by a 60◦ angle. The in-

finite wire formed with that (Ta@Si16F)6 aggregate as unit cell has 1.87 eV of

cohesive energy. Furthermore we study the adsorption of H2, and H2O towards
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this infinite wire.

We have optimized also a metastable fcc bulk phase. From a Birch-Murnaghan

fit to that phase it results a cohesive energy of 0.84 eV at a lattice constant of

12.27 Å, with bulk modulus 7.55 GPa, a phase stability to isotropic compression

smaller than 0.75 GPa, and a band gap of 0.20 eV. Using the values of hardness

of Ta@Si16F molecules, we estimated a correction factor ∼ 3 to that small band

gap. For that meta-stable solid we performed a 13.5 ps run of first principles

molecular dynamics annealing at 300 K and constant volume, and we found that

the Ta@Si16F supermolecule in the fcc cell becomes severely distorted after 5 ps.

Results on the adsorption of small molecules are as follows. (i) Atomic

chemisorption of H atoms on a single Ta@Si16F unit occurs preferably on top

of Si atoms with binding energy ∼ 1.90 eV. (ii) Molecular physisorption of H2 on

a single Ta@Si16F unit occurs with binding energies in the range 0.030 − 0.040

eV. Long-range van der Waals effects increase the physisorption energy about

20 − 30%. The more favorable physisorption sites are in bridge positions on

the Si-Si edges. Simultaneous physisorption of 24 H2 molecules in those posi-

tions leads to a 0.040 eV per H2 binding energy. (iii) Atomic chemisorption of H

atoms inside the Ta@Si16F6 aggregate occurs preferably in the sequence: “on top”

(∼ 1.46 eV), “hollow” (∼ 1.45 eV), “bridge” (∼ 1.24 eV). Configurations with

the H breaking the Si-Si bond are found with binding energies (∼ 1.35 eV) lying

between the “hollow” and “bridge” configurations. (iv) Molecular physisorption

of H2 outside the Ta@Si16F6 is more favorable than inside (0.060 eV vs. 0.015

eV). Only one H2 can be physisorbed inside that complex, lying in the equatorial

plane of the cavity. A position along the cluster/wire axis is not bound. (v)

A single H2O molecule is physisorbed in the middle of the inner cavity of the

Ta@Si16F6 aggregate (wire) with binding energy 0.255 eV (0.287 eV).
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