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General Projective Approach to Transport Coefficients of Condensed Matter Systems
and Application to an Atomic Wire

Dissertation (Cumulative)

Christian Bartsch® *
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(Dated: January 29, 2010)

We present a novel approach to the investigation of transport coefficients in condensed matter
systems, which is based on a pertinent time-convolutionless (TCL) projection operator technique.
In this context we analyze in advance the convergence of the corresponding perturbation expansion
and the influence of the occurring inhomogeneity. The TCL method is used to establish a formalism
for a consistent derivation of a Boltzmann equation from the underlying quantum dynamics, which
is meant to apply to non-ideal quantum gases. We obtain a linear(ized) collision term that results as
a finite non-singular rate matrix and is thus adequate for further considerations, e.g., the calculation
of transport coefficients. In the work at hand we apply the provided scheme to numerically compute
the diffusion coefficient of an atomic wire and especially analyze its dependence on certain model

properties, in particular on the width of the wire.
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I. INTRODUCTION

The investigation of transport phenomena is a long-
established research field in physics, especially because
many transport effects are present in everyday life, e.g.,
electrical conduction and heat conduction [6]. Both these
phenomena are usually described (phenomenologically)
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by Fourier’s law [7] in most ordinary macroscopic situa-
tions. Whenever this law is valid, one speaks of normal,
regular or diffusive transport. However, when it comes
to smaller systems the characterization of the transport
becomes more difficult, i.e., when the size of the regarded
systems reaches the nanoscale. This especially concerns
the foregoing downsizing of technical devices, e.g., com-
puter processors. In this case quantum effects may be-
come important and non-regular transport may occur,
i.e., the validity of Fourier’s law is not self-evident. One
important representative of such (low-dimensional) sys-
tems is a so-called atomic wire, which is, e.g., assumed to
consist of an array of a certain sort of atoms linearly and
regularly arranged on some crystal surface. There are
experimental approaches to construct such atomic wires,
e.g., by self-assembly [8]. Moreover, atomic wires may
become relevant for technical applications as conductor
on the nanoscale in the future.

The main intention of the work at hand is to provide
a novel approach which allows for the investigation of
transport behavior of closed quantum systems in general,
bottom-up from first principles, i.e., from the Schrodinger
equation. In detail, we concretely aim at determining
transport properties like diffusion coefficients and con-
ductivities for concrete systems. In the work at hand we
especially address the determination of a diffusion coef-
ficient of a 1-d atomic wire. This system is of particular
interest, since it has surely quantum mechanical charac-
ter and because a stringent derivation of a diffusion coef-
ficient or a conductivity of an atomic wire is not existent
so far.

There are several approaches to transport in quan-
tum systems, one of them is provided by the Kubo for-
mula which arises in the context of linear response theory
[9, 10]. However, one generally needs to know the corre-
sponding current-current-correlation function in detail to
obtain a conductivity from the Kubo formula. To find the



current-current-correlation function one normally has to
diagonalize the system, since the time dependence occur-
ring therein refers to the Heisenberg picture. The systems
we consider in the work at hand are many-particle sys-
tems and therefore very high dimensional, so that a com-
plete diagonalization is normally not accessible. Hence,
the Kubo formula may not be directly evaluated without
further efforts.

Instead of that we suggest here an access to the trans-
port properties via a Boltzmann equation. However,
there is a priori no Boltzmann equation available in quan-
tum systems, there is only a description of the micro-
scopic dynamics given by the Schrodinger equation. So
to nevertheless follow this approach we have to some-
how generate us a pertinent Boltzmann equation from
the underlying quantum dynamics. There are some ideas
pointing out how such a mapping of the quantum dy-
namics onto a Boltzmann equation may be performed,
e.g., [11-13]. However, they often feature some concep-
tual difficulties, e.g., infinitely many dynamical variables,
singular scattering rates in the collision term, non-linear
collision terms. Thus, it seems to be challenging to apply
them to concrete models in order to obtain quantitative
results, e.g., calculate transport coefficients. Moreover,
they partly involve rather ill-controlled assumptions such
as, e.g., full factorizability of occupation number opera-
tors at all times.

So, instead of following one of these ideas, we introduce
in the work at hand an alternative, novel approach to the
mapping of quantum dynamics onto a Boltzmann equa-
tion. This approach is based on a time-convolutionless
(TCL) projection operator method [14-16]. It allows for
a consistent systematic derivation of a collision term of
a Boltzmann equation on the basis of the Schrédinger
equation without uncontrolled assumptions. So far, the
application of projection operators methods within the
framework of transport theoretical investigations is quite
an unusual approach. (Projection operator methods have
barely been used in transport theory.) Therefore, our ap-
proach represents a truly novel access to transport. Si-
multaneously, transport theory, especially in the context
of closed systems, is a new field of application for pro-
jection operator techniques, which are commonly used in
the context of open systems. In particular, this means
that problems, which may possibly arise when using such
methods, have to be reviewed again. Concretely this aims
at the convergence of the corresponding perturbation ex-
pansion, which the TCL method is based on, i.e., the
influence of higher orders beyond the leading, to which
the expansion is typically truncated, and the influence
of the inhomogeneity, which depends on the initial state.
Both features are explicitly analyzed in the work at hand.

Eventually, we obtain a formalism which yields a col-
lision term of a Boltzmann equation, that essentially
avoids the previously mentioned shortcomings. IL.e., the
number of dynamical occupation numbers is finite and
in principle directly controllable, the collision term is a
priori linear and contains only finite rates. Or in other

words, the resulting equations of motion are (numeri-
cally) manageable and therefore a good starting point
for further investigations, e.g., for calculating transport
coeflicients.

Thus, in the final step of our main approach we uti-
lize the obtained linear Boltzmann equation to compute
diffusion coefficients via a pertinent method.

We especially present an important application of the
provided scheme, namely we quantitatively determine the
diffusion coefficient for an atomic wire. In particular,
we analyze the dependence of the diffusion coefficient on
certain model properties, especially on the width of the
atomic wire.

Apart from this application, the established formalism
for determining transport coefficients may in principle
be applied to any system which can be expressed as a
non-ideal quantum gas with pertinent scattering mech-
anisms (impurity-scattering, electron-phonon-scattering,
electron-electron-scattering). This may potentially ad-
dress a large amount of various condensed matter sys-
tems.

The work at hand is organized as follows. In the re-
mainder of Sec. I we shortly introduce two common ap-
proaches in transport theory, namely the Kubo formula
(Sec. TA) and the Boltzmann equation (Sec. IB). Sec. II
serves as a guideline to the appended article components
[1-5], i.e., it summarizes their main contents and shows
their relation to the main approach. In Sec. IT A we give
a short overview to the TCL projection operator tech-
nique and investigate two problems which may become
relevant in the context of this method, i.e., in Sec. ITA 1
we discuss the convergence of the corresponding pertur-
bation expansion and in Sec. IT A 2 we analyze the influ-
ence of occurring inhomogeneity. In Sec. II B we present
our main approach, i.e., we establish a formalism based
on the TCL method that allows for a consistent map-
ping of quantum dynamics onto Boltzmann equations for
non-ideal quantum gases. By means of that scheme we
exemplary compute the diffusion coefficient for a 3-d An-
derson model in Sec. ITC. In Sec. IID we then present
the main application, where we numerically determine
the diffusion coefficient of an atomic wire and analyze its
dependence on certain model properties, especially on the
wire width. Finally, Sec. III closes with a short summary
and conclusion.

A. Linear Response Theory: Kubo Formula

One important approach to transport in quantum sys-
tems is provided by the Kubo formula (KF) which arises
in the context of linear response theory [9, 10]. In general,
linear response theory analyzes the response of a system
to an external perturbation. The response is supposed to
scale linearly with the perturbation, i.e., the correspond-
ing perturbation series is truncated to the linear order,
that is, the perturbation has to be weak. Furthermore,
the perturbation must appear as an additional term in



the Hamiltonian. An application of linear response the-
ory to electrical conductance leads to the Kubo formula.
Here a current is caused as response to an external elec-
tric field which manifests itself in a potential term addi-
tional to the unperturbed Hamiltonian. The respective
response coefficient corresponds to the (frequency depen-
dent) electrical conductivity and is given by the Kubo
formula [9, 10]

oo B
Lw) =5 / dt o~ / a8 Te{po3(0) 3t + 08} (1

where w is the frequency of the external field; V refers
to the volume of the system; [ is the inverse tempera-
ture; and pg denotes the Gibbsian equilibrium state. The
KF provides a relation between the conductivity and the
current-current correlation function. However, the eval-
uation of the latter is generally difficult, since it requires
the diagonalization of the system, which is often impos-
sible. This also applies for the atomic wire which is in-
vestigated in the work at hand.

Moreover, for transport which exclusively arises from
an internal density gradient of some quantity, e.g., heat
conduction, the cause of the current cannot be incor-
porated as an additional energy term in the Hamilto-
nian. Hence, the above derivation of a Kubo formula
from linear response theory may not be accomplished
analogously. Therefore, the validity of a Kubo-type for-
mula for density gradient driven transport is in principle
questionable.

B. Boltzmann Equation

Originally the Boltzmann equation (BE) has been in-
troduced in the context of classical mechanics (kinetic
gas theory) [17, 18]. It describes the time evolution of
some particle distribution function p(r, v,t) in the classi-
cal phase space of configurations r and velocities v. The
classical BE is typically applied for dilute gases. Without
external forces the BE reads

Op(r,v,t)
ot

Op(r,v,t)

+v-Vep(r,v,t) = T o’

(2)

with some drift term v - Vy p(r,v,t) and some colli-
sion term on the r.h.s.. The latter describes the change
of the probability distribution due to two-particle col-
lisions. For the collision term one usually implements
the so-called ”Stosszahlansatz”, which essentially means
that colliding particles are not correlated before the col-
lision. The collision generates correlation between the
colliding particles, but it is assumed that there are many
intermediate collisions with other particles until the same
particles collide again, so that the correlations are effec-
tively wiped out. The Stosszahlansatz is also known as
the assumption of molecular chaos.

In general the collision term is non-linear. However, it
may potentially be linearized for distributions p(r,v,t)
close to the equilibrium distribution.

Within the frame of quantum mechanics there are
many suggestions which address the mapping of the dy-
namics of non-ideal quantum gases onto Boltzmann equa-
tions. Routinely these BE are of the form 7y + Tt =
T where T4t Tl are the drift and the collision term
respectively, the n’s correspond to mean occupation num-
bers and k denotes the (quasi-) momenta. One impor-
tant approach by Peierls [11] includes classical transition
rates between two occupation number eigenstates, which
are obtained by means of Fermi’s Golden Rule, in the
derivation of the collision term. The rates are weighted
by the squared interaction matrix elements connecting
those two eigenstates. This already implies some kind of
random phase approximation which in some sense corre-
sponds to the Stosszahlansatz for the classical BE. (For
similar approaches see [19, 20].) There are also other ap-
proaches based on Green’s function methods [12, 21, 22]
and again others relying on full factorizability of occupa-
tion number operators [13, 23, 24]. For a more detailed
overview see [4].

Generally, these approaches often feature some con-
ceptual difficulties, i.e., they often yield rather formal
expressions for the collision term involving, e.g., singular
scattering rates and infinitely many dynamical variables.
Moreover, the resulting collision terms are non-linear and
thus have to be linearized for many practical purposes in
the context of linear non-equilibrium physics, e.g., the
calculation of transport coefficients.

II. PROJECTIVE APPROACH TO DIFFUSION
COEFFICIENTS

This main part of this cumulative dissertation essen-
tially serves as a guideline and overview to the appended
article components [1-5]. It describes the interconnec-
tions between them, and shows in how far they are related
to the main global approach. We also briefly summarize
their main contents and results.

The main approach of the work at hand basically con-
sists of two steps. We firstly establish a formalism,
based on the so-called TCL projection operator tech-
nique, which allows for a consistent mapping of quantum
dynamics onto a collision term of a Boltzmann equation.
The latter is done by projecting onto certain occupation
numbers. This derivation constitutes the primary part
of the scheme presented in the work at hand and takes
considerably more space than the afterwards following
determination of a diffusion coefficient from the obtained
collision term. Eventually, we use the established scheme
mainly to calculate a diffusion coefficient for a (quasi-)
1-d atomic wire.

In the first step, and only there, we need to apply the
TCL projection operator method. To this end a short
introduction to this approach including its characteristic



resulting equations of motion is presented in the following
Sec. ITA.

A. TCL Projection Operator Method

The method which is used here to construct a lin-
ear(ized) collision term from the quantum dynamics
is the time-convolutionless (TCL) projection operator
method [14-16], which is shortly introduced in this para-
graph. In the work at hand the TCL method is fol-
lowed as detailed in [15]. This perturbative technique
, as the well-known Nakajima-Zwanzig (NZ) projection
operator method [25, 26], is generally applied in order to
describe reduced dynamics of quantum systems with a
Hamiltonian of the type H = Hy + AV where AV has to
be small in some sense. It produces autonomous equa-
tions of motion for the variables of interest (“relevant
information”). Projection operator techniques are com-
monly used approaches in the context of open systems.
However, their following application to transport inves-
tigations in closed quantum systems is a novel concept.
Generally, the full dynamics of the quantum system are
given by the Liouville-von Neumann equation,

Do) = L WV @.p0)] = LW ). (3)

Now and in the following all equations are denoted in
the interaction picture. In order to apply this method
one firstly has to construct a suitable projection (su-
per) operator P which projects any density matrix p(¢)
onto its relevant part. “Relevant part” here implies that
Pp(t), in spite of being significantly less complex than
p(t), should still contain all variables of interest. Note
that these relevant variables for all following applications
presented in the work at hand refer to time-dependent
expectation values of pertinently defined operators, de-
scribing, e.g., occupation numbers. Furthermore, P has
to satisfy the characteristic trait of a projection opera-
tor P2 p(t) = Pp(t). The TCL scheme yields a closed
time-local differential equation for the dynamics of Pp,

Sl =K P olt) + () (1 - P)pl0) ,  (4)

and consequently avoids the often troublesome time-
convolution which appears, e.g., in the context of the
Nakajima-Zwanzig technique. The TCL generator K(t)
is given by a systematic perturbative expansion in orders
of the interaction strength A

() = NKilt), (5)

which is in principle formally exact.

From Eq. (4) one may identify two major problems
that can arise for the practical applicability of the TCL
method. Especially, since the investigations in the work

at hand are of novel nature, these difficulties deserve fur-
ther consideration. The first problem is common to many
perturbative methods and concerns the convergence of
the expansion (5). One typically aims at a truncation to
leading order of the perturbative expansion (5) for con-
crete applications, which is typically, and certainly for all
models considered in the work at hand, the second or-
der, since the odd cumulants of the expansion (5) vanish.
Therefore, one has to determine C3(¢). In the literature
[15] one finds

Ko (t) = /O “d P L)L) P (6)

However, a leading order approximation can only be ex-
pected to yield reliable results if the higher orders are
negligible, compared to the leading, on the relevant dy-
namical time scales. This question of the convergence of
the TCL expansion is especially addressed in [2].

The second main difficulty is the influence of the inho-
mogeneity Z(t) (1 —P) p(0) occurring in Eq. (4), which is
typically neglected in order to obtain manageable equa-
tions of motion. This inhomogeneity depends on the ini-
tial state p(0). Formally the inhomogeneity only van-
ishes for certain initial states, namely those featuring
P p(0) = p(0). Nevertheless, there are indications that
the influence of the inhomogeneity may also become neg-
ligible for other initial states. The validity of Eq. (4)
without inhomogeneity for other initial states not obey-
ing the above mentioned relation is particularly discussed
in [3].

1. Conwvergence of the TCL Expansion

The legitimacy of a leading order approximation of the
TCL method of course crucially depends on the influence
of the neglected higher orders. Since the TCL expansion
is exact, deviations from a leading order result must be
incorporated in the higher orders. Detailed considera-
tions on this point are presented in Ref. [2].

The problem of the convergence always arises whenever
a perturbative method is applied in terms of some trun-
cation, not only in the context of the TCL method (see
also [1]). Both Refs. [1, 2] investigate the occurrence of
statistical dynamics of certain time dependent expecta-
tion values in some abstract quantum systems with sim-
ilar results. Ref. [1] applies a perturbative method based
on the so-called Hilbert space average method (HAM),
which relies on a pertinent truncation of the Dyson se-
ries [27]. In that context the validity of the truncation
is analyzed by (numerically) evaluating the next higher
order of the Dyson series, which is unfortunately numer-
ically very extensive.

Now, Ref. [2] analyzes the influence of higher orders of
the TCL expansion in the context of a leading order TCL
approach to the dynamics of certain expectation values
a(t) = Tr{p(t)A} of some observables A. Numerical cal-
culations obtained from an exact diagonalization of the



Schrodinger equation show that the second order TCL
prediction becomes wrong for certain ”structured” inter-
actions, even if a clear separation of time scales, i.e., a
Markov approximation, exists. The failure of the second
order TCL prediction may occur at very small times of
the order of the correlation time, but also at later times
of the order of the relaxation time. The latter may refer
to localization effects which appear, e.g., in the context
of the 3-d Anderson in the chaotic regime. These re-
sults clearly indicate that an analysis of higher orders is
necessary.

To repeat, since the TCL expansion as a whole is exact,
the deviations from the correct result have to be incor-
porated in the higher orders. The strategy to check the
convergence of the TCL expansion, which is particularly
pursued here in [2], is to find an estimation of the next
higher, i.e., the fourth order in comparison to the sec-
ond. The fourth order turns out to be already a quite
complicated object. In the literature [15] K4(t) is given

as
t1 t2
Ka(t) = / dh / dts / dts

L(t) L(t1) L(t2) L(t3) P
— PL(E)L(t1)P E(tg L(t3)P
— PL(E)L(t2)P L(t1) L(t3) P
— PL(t) L(ts) P L(t1) L(t2) P (7)
An exact evaluation of the fourth order, which of

course would be desirable, turns out to be almost impos-
sible, analytically and numerically, already for the rela-
tively abstract and simple models considered in Refs. [1,
2]. Instead there are two feasible estimations of KCy(t)
established on the basis of pertinent approximations.

One of them, which refers to the so-called Van Hove-
structure, estimates the fourth order compared to the
second for very small times of the order of the correla-
tion time. However, numerics indicate that for certain
interactions the fourth order may become non-negligible
at larger times, even if it is negligible at small times.

For the detection of such a behavior there is another
estimation of K4(¢) suggested in Ref. [2], which again
incorporates the time dependence of the fourth order.
These two estimations are able to successfully explain the
deviations from the second order prediction indicated by
the numerics concerning the simple models analyzed in
[2].

However, both of them rely on more or less rough ap-
proximations, so that neither of them can be viewed as
a sufficient criterion for a valid leading order prediction.
E.g., the Van Hove-structure rather represents a crite-
rion for exclusion in the sense that a leading order result
cannot be reliable if the interaction does not have Van
Hove-structure.

Moreover, although these estimations may be much
easier obtained than the exact fourth order, it becomes
difficult to evaluate them for more realistic systems, like
those we address with our main approach (Sec. IIB).

This, in particular, also refers to the atomic wire, which
represents the main application in the work at hand.
Typically the corresponding Hilbert spaces are very high
dimensional and the occurring interactions are very com-
plicated in these cases. Therefore, we do not aim at a
direct application of these criteria in our main approach.

However, despite all insufficiencies the investigations
in [2] provide a systematic analysis of higher orders of
the TCL expansion and are able to demonstrate that
there are systems where a leading order truncation is
not good enough. It is simultaneously shown that the
corresponding deviations are caused by the next higher,
i.e., the fourth order.

At the end of this section we give some further gen-
eral comments concerning the validity of a leading order
truncation of the TCL method.

The criteria established in [2] can also be only of nec-
essary nature, since they only take the fourth, i.e., the
next higher order into account and do not provide any
information about the influence of higher orders. In prin-
ciple, higher orders beyond the fourth may dominate the
leading order as well, when the fourth order does not,
though that will probably occur only in a few cases.

The influence of higher orders of the TCL expansion
may decrease if there are additional dynamical variables
incorporated in the projection. By this means one would
obtain a more detailed picture of dynamics, but at the
same time the second order result becomes more complex.
In our main approach (Sec. IIB) this would correspond
to a finer graining in momentum space, the latter being
introduced below.

Although the analyses in [2] show examples where the
second order truncation of TCL gives wrong results even
if a clear separation of time scales is fulfilled, this Markov
approximation is nevertheless commonly a good indica-
tor for the validity of a second order approximation, if
no analyzations of higher orders are available. That is, a
”reasonable” leading order result may indicate the legit-
imacy of leading order truncation.

In our main approach we do not explicitly evaluate the
estimations of the fourth order explained in this Sec., we
rather perform a leading order TCL truncation without
further analyzations of higher orders. We briefly com-
ment on the justification of this proceeding at the begin-
ning of Sec. II B.

2. Influence of the Inhomogeneity

The inhomogeneity appearing in the equation of mo-
tion for the relevant part of the density matrix (Eq. (4))
depends on the initial state p(0). It only vanishes exactly
for certain specific initial states, namely those featuring
Pp(0) = p(0). However, in Ref. [3] there are investi-
gations concerning the dynamical typicality of quantum
mechanical expectation values, which show that apply-
ing Eq. (4) without inhomogeneity also yields reasonable
results for the vast majority of possible initial states if



the Hilbert space of the regarded system is high dimen-
sional, i.e., that the inhomogeneity becomes negligible for
the vast majority of possible initial states.

The approach followed in [3] is based on the Hilbert
space average method (HAM) [28, 29]. We obtain the
following very general main result which applies when
the dimension of the Hilbert space n is large.

It is shown that, for large enough systems the vast
majority of all pure states featuring a common expecta-
tion value of the observable A at a given time will yield
very similar expectation values of the same observable
at any later time. As a consequence dynamics of ex-
pectation values of individual initial states are then typ-
ically well described by the dynamics of the ensemble
average. That is, there is a typical time evolution for
the expectation values. Particularly, this typicality is in-
dependent of the concrete form of the dynamics, which
may be a standard exponential decay into equilibrium or
something completely different.

This result has important consequences on the appli-
cability of projection operator theories in general and
particularly for the TCL method, too. Note that the
above mentioned ensemble average may be expressed as
a mixed state. Now, if the projection operator is con-
structed to project onto an expectation value a(t) as dy-
namical variable, the density matrix of the ensemble av-
erage is at least approximately of the form of the ini-
tial state, which leads to a vanishing inhomogeneity in
Eq. (4), i.e.,, Pp(0) = p(0). Thus, a TCL calculation
based on Eq. (4) without inhomogeneity describes the
dynamics of a(t) for the ensemble average as initial state.
The dynamical curves of the vast majority of possible ini-
tial states are very close to the dynamical curve of the
ensemble average at any time ¢. Hence Eq. (4) yields
also a reasonable description for the most initial states
and consequently, the inhomogeneity has to be negligible
not only for specific initial states, but for the most initial
states at least for large enough Hilbert spaces. There of
course are states for which the inhomogeneity is not neg-
ligible, but their statistical weight is low, i.e., they are
few compared to the number of states for which the in-
homogeneity is negligible. This result of course provides
an immense extension for the validity of corresponding
TCL calculations without inhomogeneity.

Note that the typicality arguments presented here are
valid for almost any quantum system as long as the cor-
responding Hilbert space is large enough, which is surely
the case for more realistic systems, and particularly for
those addressed in our main approach in Sec. IIB. The
quality of the arguments even improves with growing di-
mension.

B. Derivation of Master Equations for Coarse
Grained Occupation Numbers in Non-Ideal
Quantum Gases

After having now extensively discussed the two main
problems concerning the applicability of the TCL pro-
jection operator method, that is, the convergence of the
TCL expansion, i.e., the influence of higher orders be-
yond the leading, and the relevance of the inhomogene-
ity, the TCL method is exclusively used in leading order
approximation and with neglected inhomogeneity in the
following. Proceeding this way seems reasonable, because
there is a similar approach concerning the determination
of lifetimes of electrons in metals [30], which yields results
that are in good accordance with pertinent experiments.
That is, K2(t) has to be evaluated.

In this Sec. and Ref. [4] we introduce our main
approach based on the TCL projection operator tech-
nique which addresses the mapping of quantum dynam-
ics onto master equations for some coarse grained occu-
pation numbers. The corresponding rate matrix may be
interpreted as a linear(ized) collision term of a Boltz-
mann equation. This collision term may afterwards
(Secs. (ITC,IID)) be used to determine a diffusion co-
efficient. We especially apply this scheme to find a diffu-
sion coefficient for an atomic wire. But there are also
many other thinkable applications to various kinds of
condensed matter systems.

The systems we discuss here may in general be all sorts
of quantum gases, which are routinely used to describe
condensed matter systems,

H = Z Ekalak +V (8)
k

—_——
Ho

al,ak are electronic creation/annihilation operators in
some momentum eigenmodes and ex denotes the cor-
responding dispersion relation. The latter depends
on the underlying model which is assumed to de-
scribe the non-interacting electrons. V' refers to differ-
ent pertinent interaction types, i.e., electron-impurity-
scattering, electron-phonon-interaction and electron-
electron-interaction. All of them are treated as small
perturbations (in the sense of the TCL method).

A crucial feature of the approach is an adequate coarse
graining in momentum space defined by partitioning
the complete momentum space into grains labelled by
a Greek index k. The remaining variables d"(¢) are es-
sentially the joined occupation numbers of the grains,
which can be written as expectation values of suitable
operators, so that all considerations from the previous
paragraphs apply here. The coarse graining is incorpo-
rated in the projection and is eventually responsible for
the finite rates in the collision term.

The concrete form of the graining has a decisive in-
fluence on the form of the resulting rate matrix. A finer
graining, i.e., a higher number of retained dynamical vari-



ables, will produce a more detailed picture of the dynam-
ics, but will also give rise to a higher dimensional rate
matrix. Moreover, the concrete choice of the graining
may have a crucial influence on the complexity of the re-
sulting rate matrix, which we demonstrate by a simple
example in the following Sec. II C.

Performing the TCL formalism in leading order ap-
proximation finally yields a master equation for the dy-
namics of the joined occupation numbers d*(t)

(0) = 3 R (1) = 3 Rug(0)(2) . (9)

K#N K#N

This equation yields a linear(ized) collision term, i.e., a
rate matrix of finite dimension with finite, non-singular
rates R,.. That is, we obtain numerically manageable
equations of motion which are adequate for, e.g., the com-
putation of a diffusion coefficient. The master equation
property, i.e.,

Rnn(t) - = Z Rnn(t) (10)

KFN)

stems from the conservation of the total particle number.

The concrete form of the rates R, (t) of course de-
pends on the interaction mechanism V' and may be found
in Ref. [4] respectively. The interpretability of the result-
ing rate matrix as a collision term of a Boltzmann equa-
tion is supported by the fact that individual terms ap-
pearing in the expressions for the rates R, (t) may be un-
derstood as certain collision processes. Here we demon-
strate this point for the case of the electron-electron-
interaction. There are four terms occurring in the cor-
responding rates which may be viewed as contributing
to a, say, "scattering rate” from a state i in domain &
into a state k in domain 7. This rate has to be un-
derstood in the sense that it describes how an occupa-
tion of state i over equilibrium changes the occupation of
state k. Since the electron-electron-interaction describes
two-particle collisions under conservation of the complete
electronic momentum, there are four thinkable collision
processes in which the states i and k participate. Each
of them is represented by one of the four terms occurring
in the rates. These are

L: A = fick) (1 = fi)
IT: fifickn1(1 = fr)
I —fi(1 = firk—1)(L = fr)
IV: —fifirk—1(1 = f;) - (11)

The corresponding collision processes are illustrated in
Figs. 1-4.

E.g., process I leads to an increase of the occupation
of state k, when i is occupied over equilibrium, i.e., the
corresponding rate term is positive. This process may
occur, when state 1 is occupied and the states i —k +1
and k are unoccupied. Process II is the reverse process
to I and therefore in principle leads to a decrease of the

k i—k+l
| 1
I | k

FIG. 1: Sketch of scat-
tering process |

i—k+l

FIG. 2: Sketch of scat-
tering process 11

I i+k—I i k
[l AV

[ k I i+k—l

FIG. 3: Sketch of scat-
tering process 111

FIG. 4: Sketch of scat-
tering process IV

occupation of state k. The corresponding rate term is
nevertheless positive, because an occupation of state i
over equilibrium in some sense blocks this process and
thus ”lessens the decrease” of the occupation of state k.
The term belonging to process III is negative, since this
process reduces the occupation of state k, and IV is the
reverse process to III, analogously.

C. Diffusion Coefficient of a 3-d Anderson Model

We particularly demonstrate the influence of the choice
of the graining by a simple application of the previously
introduced method. This application addresses the calcu-
lation of the diffusion coefficient of a 3-d Anderson model
with weak uncorrelated on-site disorder, see Ref. [4]. We
assume that this model is suitably described by a Hamil-
tonian of quantum gas-type with electron-impurity scat-
tering. The Hamiltonian reads

W(a)
H = Zgnailan —1—2 70 aLJrqak . (12)
n k,q

—_———
Ho,e1 \%

Here W(q) simply denotes the corresponding spatial
Fourier component of the random impurity potential and
Q corresponds to the total number of discrete (quasi-
)momenta, i.e.,  scales with the volume of the crystal.
In this case the resulting expression for the rates reads

L2 Wk — 1)
R,.(t) = /Od7'h2N'€ Z q o

i€Er,
ken

sl (61— 27

(13)



where N,. denotes the number of individual states within
the grain «.

In order to concretely evaluate the rates (15) we im-
plement a specific coarse graining, which is in detail ex-
plained in [4]. Now for this graining and due to the dis-
order being uncorrelated one obtains a very simple rate
matrix, that is, all non-diagonal elements of the rate ma-
trix are equal, the rate matrix is symmetric and therefore
yields symmetric detailed balance. As a consequence, for
this graining the so-called relaxation time approximation
[31] is exactly fulfilled. This simple structure of course
strongly facilitates the computation of a diffusion coeffi-
cient, as shown in [4].

D. Main Application: Derivation of Diffusion
Coefficients of an Atomic Wire

In this Sec. we present the main application of the
projective approach introduced in Sec. IIB and Ref. [4].
This application is in more detail investigated in Ref. [5].
We intend to find a description of electronic diffusion in
(quasi-) 1-d atomic wires formed on some crystal sur-
face or embedded within some crystal bulk. The diffu-
sion is induced by coupling to ”external” surface or bulk
phonons. We accordingly compute a linear(ized) collision
term by exploiting the scheme provided in Sec. ITB and
determine the corresponding diffusion coefficient by us-
ing a pertinent formula (see [5]). We especially analyze
the dependence of the diffusion coefficient on the width of
the atomic wire and on some below defined cross hopping
perpendicular to the wire.

Generally, low dimensional systems are often candi-
dates for non-regular transport behavior and it is not a
priori clear how diffusive transport is induced in those
systems. Diffusive transport implies that a total elec-
tronic current has to decay with time due to some scat-
tering processes. This may arise, e.g., by electron-
electron-scattering, but only due to Umklapp processes
(, e.g., [31]), since normal scattering processes leave
the total electronic momentum unchanged. It is com-
monly believed that electronic diffusion mainly arises due
to electron-phonon-scattering, at least for high enough
temperatures, so we concentrate here on this scattering
mechanism in our application.

We describe the atomic wire on the basis of a (quasi-)
1-d tight-binding-model of length L, which consists of B
parallel rows. Besides the hopping along the wire, given
by the hopping strength T}, we allow hopping between
neighboring rows perpendicular to the wire with the lat-
eral hopping strength T, .

The Hamiltonian of this model corresponds to a quan-
tum gas model with electron-phonon-scattering. That is,
the method introduced in Sec. IIB and Ref. [4] especially

applies to this case. It reads

B
H = ZZsz,Ta;’Taj,r—i—zwibIbi
j r=1 i

——
Hoy,el Ho pn
B
Wes(q)
+0° N %o af 4 qrOk,sbg+h.c),  (14)
k,q r,s=1
14

with Q@ = BL.
ation/annihilation operators in some pertinent momen-
tum modes and e€j, is the corresponding electronic

T . ;
The aj,/ajr are electronic cre-

dispersion relation. b;f /b; are (bosonic) phononic cre-
ation/annihilation operators in some phonon eigenmodes
and wj is the phononic dispersion relation. V' denotes the
electron-phonon-coupling with some coupling elements
Wis(q):

In this case the resulting rates are given by

Rfm(t) =
t9 |W,s(k — 1)]?
dr—— —(1 —i i—
/OTH2NniSz€; q (14 9x—i+9i—x)
lé,r€7;

1
. cos[%(shs —Ek,r)T],

(15)

where gq is the thermal equilibrium distribution on the
phonon mode q, that is, the Bose distribution.

To determine the diffusion coefficient, we use a for-
mula, which is essentially similar to a formula suggested
in [32] and references therein. By that means we are able
to numerically obtain quantitative values for diffusion co-
efficients, which are essentially converged over the grain
size, i.e., the corresponding values do not change much,
when the graining is made finer and finer. The results
are displayed in Figs. 5.6.

We observe a significant dependency of the diffusion
coefficient on the width of the wire. For a sufficiently
large lateral coupling the resulting ”curve” of diffusion
coefficients over the wire width shows large jumps on
top of that. This also implies that the diffusion becomes
nearly O for certain wire widths. These features may
clearly be classified as effects of the finite wire width,
which lies on the nanoscale. They evidently demonstrate
the quantum character of the model considered here, be-
cause a diffusion coefficient of a macroscopic system, e.g.,
a macroscopic wire cannot be dependent on the wire
width.
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FIG. 5: Plot of the diffusion coefficient D against the number
of rows, i.e., the width for T, = 2T) (black dots) and T\ = T
(white triangles). The plot is normalized to the D obtained
for 1 row, denoted by D;. Other parameters: Ep = 3eV,
T = 0.75eV, T' = 300K, half filling.
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FIG. 6: Plot of the diffusion coefficient D against the lateral
coupling T, for different widths, i.e., different numbers of
rows, according to the legend. The plot is normalized to the
D obtained for 1 row, denoted by D;. Other parameters:
Ep = 3eV, T = 0.75eV, T = 300K, half filling.

III. SUMMARY AND OUTLOOK

The work at hand provides a novel access to the in-
vestigation of transport coefficients in condensed matter
systems, which is based on the TCL projection operator
method. As preliminary analysis we explicitly discussed
the convergence of the perturbative TCL expansion and
demonstrated that deviations from a leading order trun-
cation may occur due to the influence of the next higher
order for certain abstract quantum systems. Further-
more, it is shown that the inhomogeneity occurring in
connection with the TCL method typically becomes ir-
relevant for the vast majority of possible initial states in

the case of high dimensional Hilbert spaces.

As main approach, we used a leading order TCL trun-
cation to obtain a formalism, which allows for a con-
sistent mapping of quantum dynamics onto a Boltzmann
equation. A projection onto certain sets of coarse grained
occupation numbers in momentum space leads to a lin-
ear(ized) collision term which results as a rate matrix
of finite dimension that contains only non-singular finite
rates. These features render the obtained Boltzmann
equation numerically manageable and adequate for fur-
ther applications. In the work at hand we especially ex-
ploited that Boltzmann equation to compute diffusion
coeflicients.

An exemplary application to a 3-d Anderson model
demonstrated the crucial influence of the coarse graining
on the form of the resulting collision term. In this case a
specific graining led to a very simple rate matrix which
strictly obeys the relaxation time approximation. Even-
tually, we applied the provided scheme to determine the
diffusion coefficient of an atomic wire numerically. In par-
ticular, we showed that there is a significant dependency
of the diffusion coefficient on the width of the atomic
wire, if the lateral coupling is large enough. This may be
clearly classified as a finite size effect.

To obtain more realistic values for the diffusion coef-
ficient of the atomic wire, which could possibly be com-
pared with experiments, one would probably concretize
some model properties, e.g., one could choose more realis-
tic electron-phonon coupling elements. Furthermore, we
considered the electrons themselves to be non-interacting
with each other. It is not definitely clear if this assump-
tion is completely legitimate, since the electron-electron-
interaction may have a substantial influence, especially
for 1-d systems. The calculated diffusion coeflicients may
be converted into conductivities via a pertinent general-
ized Einstein relation [33]. The atomic wire analyzed in
the work at hand is of course an important application,
but the established formalism is by no means restricted
to it. There are many systems in the context of con-
densed matter physics which may be expressed as a non-
ideal quantum gas and therefore be addressed by this
approach. One may think of, e.g., electronic diffusion in
bulk metals, primarily due to phonon-coupling. Or one
may think of regular heat conduction in bulk metals aris-
ing from Umklapp processes occurring in phonon-phonon
scattering processes.
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Abstract. We analyze the dynamics of occupation probabilities for a certain type
of design models by the use of two different methods. On the one hand we present
some numerical calculations for two concrete interactions which point out that the
occurrence of statistical dynamics depends on the interaction structure. Further-
more we show an analytical derivation for an infinite system that yields statistical
behaviour for the average over the whole ensemble of interactions in the Van
Hove-limit.

Original publication Eur. Phys. J. Special Topics 151, 29 (2007)
available at http://www.epjst-journal.org/

1 Introduction

The emergence of statistical behaviour from microscopic dynamics is of special interest for two
reasons. Its existence is evident from countless experiments, nevertheless its explanation seems
subtle. And if statistical dynamics are established, their description is much simpler than the
description of microscopic dynamics. From first principles the dynamics of quantum systems
are controlled by the Schrédinger equation. Nevertheless, it has been observed that statistical
relaxation may appear in such systems for certain quantities under certain conditions. The
dynamics of the quantities P, are called statistical if they are given by a master equation of
the form

%pn =S R(m —n)Py — 3" R(n — m)P, . (1)

This is a set of coupled rate equations whose solutions decay exponentially in time.

In this contribution the dynamics for a certain type of modular design model are approached
from two different sides. On the one hand, we show numerical calculations of the time evolution
of occupation probabilities for a finite size version of the model with two concrete types of
interactions. Furthermore we will present an analytical derivation that analyzes the dynamics
of these variables for an average over all possible interactions in the Van Hove-limit and in the
limit of an infinitely large system size, in the sense that the number of energy levels in the
bands of the modules N goes to oo, whereas the number of modules M is always 2, i.e., M is
still finite.

The numerics are consistent with the analytical results for an interaction which is kept very
general and represents the majority of all interactions. Nevertheless, there can be completely
exceptional interactions that yield substantially different dynamics.

# e-mail: cbartsch@uos.de

P e-mail: pedro@itpl.uni-stuttgart.de
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2 Numerical calculations
2.1 Design model

The model we investigate for the occurrence of statistical dynamics is a simple design model
depicted in Fig. 1 (see also [1-4]).

e N

AE

v \ v

u=1 pu=2 u=M

Fig. 1. Sketch of the design model

It consists of M one-dimensionally arranged identical modules that are coupled to the two
neighbouring modules via the interaction V. Each subunit consists of a single ground state and
an energy band. These are separated by the band gap AFE. The model can be characterized by
some rough system parameters; N is the number of levels in each band, de denotes the band
width (de < AFE) and X gives the average interaction strength. The Hamiltonian can be split
into a local part Hy and an interaction V'

H = Hy+ \V . (2)

The interaction is chosen to be weak such that one can assume local energy conservation and
restrict to the subspace of the states where one system is in the excited state and all other
systems are in the ground state. In this contribution only chains with two modules (M = 2)
are regarded. V shall have an off-diagonal block form in the eigenbasis representation of Hy in
the relevant subspace, thus the Hamiltonian is given by

AFE + <+ de¢ 14

N-1

vt AE + w15 6¢

0

The relevant space is divided into two subspaces each containing the states where the p-th
subsystem is in the excited state (1 = 1,2). V is normalized by

Tr{V?}
———=1. 4
2N2 ( )
One can now define the occupation probability in the p-th subsystem P,. According to the
predictions of the Hilbert Space Average Method (HAM) in second order (see contribution
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Breuer/Gemmer) the time evolution of the P, is controlled by coupled rate equations which
means that the dynamics are statistical

dP,
— = RP, — RP,
dt 2 1,
dPs
—— = RP, — RP. 5
dt 1 2, ( )
N
with R =2m)\g and 9= - (6)
€

The rate is completely determined by the system parameters and is the same rate that appears
in the context of Fermi’s Golden Rule. In fact, HAM uses some kind of stepwise iteration of
Fermi’s Golden Rule. One also obtains some necessary conditions for the system parameters,

N
K=XN—=«1 7
1 562<< R ()

N
Ko=2\—>1. 8
2 oe — (8)

A more detailed derivation can be found in [1-4].
In particular, these results do not depend on the concrete realization of V. So, in principle,
they should be valid for any possible interaction structure.

2.2 Numerical calculations for two concrete interactions

In this paragraph we are going to compare the dynamics of the P, obtained from the rate equa-
tions (5) with the numerical solution of the Schrédinger equation for two specific interactions.
The system parameters are adjusted in a way that the criteria (7) and (8) are well fulfilled.

For the first interaction the matrix elements of V' in the eigenbasis representation of H are
chosen as random Gaussian distributed complex numbers. For the second interaction all matrix
elements of V' are set to be equal, say, V;; = 1. The random interaction possesses no structure
at all, whereas the opposite holds true for the constant interaction.

Figure 2 and Fig. 3 show the time evolution of P;(¢) for both interactions. The initial state
is selected to have P;(0) = 1.

‘SGL . T T T T T éGL
HAM s

€ o5 g os
o o
0 ‘ ‘ : ‘ : ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 0 2000 4000 6000 8000 1000012000 14000 16000
t t

Fig. 2. Dynamics of P;(t) for a completely ran- Fig. 3. Dynamics of Pi(¢) for a constant in-
dom interaction, parameters: N = 500, de = 0.5, teraction with Vi;; = 1, parameters: N = 500,
A = 0.0005. de = 0.5, A = 0.0005.

One finds a very good agreement between both curves for the random interaction. Therefore
the rate equations predicted by HAM are valid and the dynamics are statistical. For the constant
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interaction there is no correspondence at all, so one finds no statistical relaxation in this case,
although the system parameters, which are the same for both interactions, fulfill the criteria
(7) and (8). Referring to Sec. 3 the random interaction represents the average over all possible
interactions very well, whereas the constant interaction demonstrates that there can be complete
exceptions from the average. It becomes obvious that the concrete structure of the interaction
can be indeed significant for the occurrence of statistical relaxation.

The HAM calculation, as well as Fermi’s Golden Rule, relies on second order perturba-
tion theory, i.e., the time evolution operator is expressed by the Dyson series in second order
truncation

L Ua(r) + ) [w(0)) 9)

(7)) = (1 - FULT) — o5

with the first and second order terms

Ui(r) = /OT dr'v(r') , (10)

Us(T) = /OT dr’ /OTI dr"v (" V(") . (11)

If this expansion is justified, all higher orders, including Us(7), must be small compared to Uy ()
in the relevant time regime. We use Tr{UUT} to measure the size of the respective contributions.
HAM produces a "best guess” for the time evolution of the P, for a short time step (P, (t+ 7))
on the basis of P,(t) by using the appropriate truncation of the Dyson series,

Pu(t +7) = Pu(t) = f(7)(Pu-1(t) + P (t) = 2P,(1)) (12)

where f(7) corresponds to a double time integral over the autocorrelation function of V' (see
also [2]). One usually expects that this autocorrelation function has decayed completely after
some decay time 7.. After 7. f(r) grows linearly with 7 and equation (12) can be iterated
which eventually results in the corresponding rate equations (5). Figure 4 and Fig. 5 show a
comparative calculation of Uj(7) and Us(7) for both analyzed interactions. Whereas Uy (7) is
equal for both interactions, Us(7) will depend on the structure.

U, m 300 U, =
100 f U, e 1 U, e
" 250 | o®
80 " J °®
- 200 o*
= . 2 o
£ 60 L ] i .
= [] = °
40 + b 1 100 f o’
" o.. .l"...
20 el 1 50 | o .__..--"'
[ ] [ ]
0 5!;:ee------.....0!.'..‘.....‘.. 0 =-ll‘.....‘. . . . .
0 10 20 30 40 50 60 70 0 10 20 30 40 5 60 70
t t
Fig. 4. Dyson terms for a completely random Fig. 5. Dyson terms for a constant interaction
interaction, parameters: N = 500, e = 0.5, A = with Vi; = 1, parameters: N = 500, de = 0.5,
0.0005. A = 0.0005.

Ui(7) and Us(7) must be compared in the time regime where equation (12) is iterated, i.e.,
in the region after 7. (here 7. ~ 25). This turns out to be equivalent to the beginning of the
linear regime of Uy (7). For the completely random interaction one finds that Uy (1) > Us(7) at
time 7., so the second order truncation seems to be suggestive in this case. There is no reason
why higher orders beyond the second should have a decisive influence, since the second order
already leads to a very good approximation. This corresponds to the numerical calculations that
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showed statistical relaxation. For the constant interaction Us(7) is already larger than Uj(7)
at time 7.. So the truncation is not justified which conforms to the numerically calculated non-
statistical dynamics. It should be remarked that this breakdown of the exponential behaviour is
actually a problem of the structure of the interaction. It cannot be solved by simply decreasing
the average interaction strength A. This is demonstrated in Fig. 6. A is chosen too small to

SGL -+

0.5

P, ()

0 5000 10000 15000 20000 25000 30000
t

Fig. 6. Dynamics of P;(t) for a constant interaction with V;; = 1, parameters: N = 500, de = 0.5,
A = 0.00005.

fulfill criteria (8). One again finds no complete decay into equilibrium here. However, one can
see that Fermi’s Golden Rule is fulfilled because of the good agreement at the very beginning.
The deviation at some certain time nearly coincides with the Heisenberg time that is equivalent
to the recurrence time of the autocorrelation function of V' in our model with equidistant local
energies (7 ~ 6200). At this time the assumption of a completely decayed autocorrelation
function necessarily becomes wrong and therefore the rate can no longer be considered as
constant. Since the relaxation time of Pj(t) is increased by a smaller A, while the Heisenberg
time is not, this finite size effect becomes important.

Generally, the full evaluation of the second order Dyson term or even higher orders is nu-
merically and analytically very extensive. Instead of that one can introduce a specific structural
requirement for the interaction to estimate those contributions. In [5] Van Hove used a similar
interaction structure to derive the possible occurrence of statistical relaxation. Basically, this
would mean that V features this so called Van Hove-structure, if V2 is dominated by its diagonal
elements in some sense. If the interaction does not have Van Hove-structure, then statistical
relaxation cannot emerge. If the interaction possesses Van Hove-structure, the dynamics are
possibly but not inevitably statistical. So it can be regarded as a necessary criteria. One finds
that the random interaction fulfills the Van Hove-structure, whereas the constant interaction
does not. In this sense the resulting dynamics for both examples are explained correctly. In prin-
ciple, the Van Hove-structure gives an estimation for the proper convergence of the respectively
used perturbation expansion. It indicates that the higher orders should be small compared to
the leading one, at least for times in the order of the relaxation time.

3 Analytic derivation of the solution of the rate equation

This Section is devoted to the derivation of the solution of the probability for the excitation
to be on the left P;(t) or right hand side P5(t) for the case where the interaction is modeled
by complex Gaussian entries in V. We will not show the total derivation as some intermediary
results are too long but rather try to explain the main steps. This is why some results are
just stated. What we mean by solution is the following. If we keep the interaction V as a
random matrix with its probability distribution instead of fixing it, then the time evolution
operator, e~ “‘HotAV)t hecomes a random evolution operator. Thus Py (t) also contains this
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random character. We can then calculate its average, E[Py(t)] = [ p(V)dV Pi(t), where p(V) is
the probability distribution over the random interaction. p(V) is the product of the probability
distribution of the complex Gaussian elements which can be written in a more compact form

as p(V) = %e’%Tr{VZ}, where Z is the partition function. We will calculate this average in the
limit where the number of energy levels per subunit (there are 2 subunits in the present case) N
tends to co and in the Van Hove limit. The Van Hove limit is given by limy_g lim;_.c A2t = T.
We call T the macroscopic time. This limit represents some long time-weak coupling limit. We
will actually not calculate E[P; (t)] directly. We will calculate E[Py(t) — P»(t)]. Since we know
that P;(t) + P»(t) = 1 always holds (may it be averaged or not), we can obtain E[P;(¢)] from
it.

The main idea of the proof and the below presented expansion is that, in the limits con-
sidered, the interference effects vanish. For this graphs are introduced which represent pairs of
histories of the state of the system. The vanishing of interference effects means that for two
different pairs of histories the contribution is much smaller than for equal or similar pairs. In
some sense the quantum feature of interference becomes negligible when the limits are taken,
thus making it more classical. It is basically this fact that allows for an autonomous equation
to exist. For a pair of histories, or a graph, it is the random interaction, after averaging, that
will decide on the weight given to it. It will also decide which class of pairs of histories, or
graphs, are preponderant, thus contributing the most. These will be called simple graphs. We
start by writing down the observable we wish to consider and inserting the expansion of the
time evolution operator.

Py(t) = (ole’™ Y [1,0)(1, e ]wo) (13)
=1
Pi(t) = (tole™*[1,0)(1, l|e™ """ |o) (14)

Every index [ represents the dependency on F; and |u,l) is a basis ket for the state being in
unit g on energy level Ej.

Loosely speaking the idea is to expand the time evolution operator in powers of the interaction.
We have then powers of the random matrix over which we can average. Some parts won’t
contribute in the limit N — oo and others won’t contribute in the Van Hove limit. In the limit
N — oo we will keep our local spectrum bounded and so the energy level variables, Ej, will
turn into continuous variables, E. P}(t) will become then P;(E,t). We expand the evolution
operator as

eT =N (=i T (t) (15)

¢ ¢ n
t) = / e / dsg . ..dspe” Hosoy Ve iHosng [ ¢ Z si | . (16)
0 0

=0
We thus have

Pi(t) = D (A ™ (=) (ol L (D11, ) (L, U T () o) (17)

n,m

N
=> > Z U6 (P U )0 (P L )i (=) " N (i L | DRI D (L U TPy L)

n,m 1! =1 pp,p), =1

(18)

We notice that if n+m is odd, (p!,, 1., | |1, 1){1, 1| |pn, 1n) is proportional to an odd number
of random variables with average zero. The average of an odd number of random variables
centered around zero is zero and so all terms with odd n + m don’t contribute to the average.
For n 4+ m to be even we need both to be even or both to be odd. The variables p/, and p,
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here stand for the unit 1 or 2. Since the interaction matrix makes an excitation hop from unit
1 to unit 2 and vice versa, we notice that if n is even, then the product (1,1, |pn, ) is zero if
Prn is equal to 2. Thus p, has to be equal to 1. For n odd we will only have a contribution for
prn = 2. We make this explicit in formula (19).

N
Pi(t) =D NN (L L )0 (L o )i (=) (L, Ly [T, |1, 1) (1, 1 T |1, Do)

lZnal =1

2m

N

+§:ﬁW“”“ Yo U2 0(2, o) (=)

lang1,lh,, =1
<2 l2m+1|Fm+1|1 l><1 Z|F2n+1|2 12n+1> (19)
= F{(t) + F3(t) (20)

Notice that the first contribution is related to the initial state of unit 1 and the second to the
unit 2. Of course, we have a similar expression for Pi(t),

Py(t) = Gy(t) + Gi(t) - (21)

When subtracting P} from P} we can group terms with the same initial data dependence that
is [} with G} , and F! with GL. We then have

E[P{(t) - P5(1)] = E[F{(t) - G1(t)] + E[F3(t) — G5(#)] - (22)

We will thus compute one of these, the other being analogue. Inserting (16) in (1,1 |pn, In)
and identities after each interaction term we have

(_Z)n<1, lanlpn, n / / dSQ 7fELSOe—iELls1 . e—iElnsn(S t— Z Iy (23)
7=0

X (=)™ (1, UV p1, 1) {p1, 1|V p2,l2) - . (Pr—1,ln—1|V [Pn, ) -

For a shorter notation we define

n
K" (t,{E,) / /J% 1 (I
j=0

L"({l;}Api}) = (LUVIpr, L) (p1, bl Vp2, b2) - {pn—1, bna|V|pn, L) - (25)

All of the randomness is encoded in L™({l;},{p;}) and we know the {p;} variables are
determined if n is odd or even. With this notation we have for the first term in Eq. (19)

N
Z 1/}8(1a lém)wo(lv l2n)i2m(7i>2n<1a l/2m|F2Tm|17 l><17 l|F2n|1a lQn>
Lo, =1
= > e (L)t (L, lon) KM (8 AEL DK™ (8 A E DL ({15} Aps HEP™ ({15} {9} 1) (26)
{la,05}
To average we must average over L™L™. This term is a product of Gaussian complex variables.
It only contributes if these variables correlate. This will introduce relations between the different

indices {l;,1’ el }. According to Wigner’s theorem we have the following formula to calculate the
average over a product of Gaussian random variables.

E[X]... Xo,] = Z I1 EXix; (27)

Cr (i,j)€Cx
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I i | !—‘—\ I

APV [AgIVIE) [Q5IvVIty) [(4IVIg) [(5IVIE) [(151VIG) [7IvVID Qv [(lVIie) (21VIig) [(131VIig) (lalVils)

Fig. 7. Example of graph representation for a pairing with n = 5 and m = 7. This graph represents
the following contribution:

B[]V 116) WV 1I5)] x BLU IV I4) (VI x .. BV IV]I2)] x BV |is) (@l V]ia)].

All p; indices are omitted for lighter notation.

Here Cr is a permutation of the set of indices {1, ...2n}. In the present case each X; corresponds
to matrix elements of the type (p1,11|V|p2,l2). The pairings induce a graph structure on L™ L™.
Pictorially an example is given in Fig. 1. The average of one pairing is given in Eq. (28).
o
E[{LLIVI2, L 1)(2, GIVIL L] = S0u0

) (28)

g+1 %105
Notice that the averaging enforces identities amongst {l;, li+1,/;, 111} and hence amongst the
energies {Ey,, Ey,,,, Ey;, Ey;,, } in Eq. (26). The question is then how much graphs weight and
what kinds of graphs are important. We focus on the weight they have.

Over many pairings the delta functions are responsible for the graph structure. However,
we notice the weight of every pair will always be the same. Thus we conclude the weight of a
graph on L#"[2™ in (26) is given by (%)ner. E[L2"({1;}, {p; ) L*™({l;},{p}})] is represented
by a graph and enforces identities amongst the energies { £, Ey, }. We can then rewrite (26) as

n+m _
> S (5) U)ol e K2t A B, B DRE" (1, (B, B })

graphs Cr(2n,2m) indcpn{li,l‘/’j}

(29)
Here K2"(t, {El“El/i})I_(?rm(t, {EliaEl;}) stands for the function K2"K?™ from Eq.(26) but
with the identities amongst the energy variables imposed. It can be shown that for C(2n,2m)
graphs the maximum of independent {l;,1}} is n + m and that we only have this for a certain
class of graphs, which we will call simple graphs (S. graphs). For this class of graphs holds
that the identity ls, = I}, is fulfilled. The fact that this identity is fulfilled implies that
U5 (L, by )th0 (1, 12) = PP (t = 0) .

We would then have

n+m

; 3 (%)"mﬂowm ]1;[1 /dEj :o"+m/dE. (30)

Wn+m

The w; here represent the independent I; and f dFE is a short notation for the multiple integrals.
The sums over independent variables turn into integrals over, what has become, continuous
energy variables E;. The limit as N — oo of the average of Eq.(26) then becomes

E[F (o, 1) = Jim B[F{(1)] (31)

S0 Y o ([ B = ORZG BN 0 D)

S graphs Cr (2n,2m)

Ej is the now continuous variable F;. We now explain what type of graphs contribute in the
way previously described. Among all graphs the ones of the type shown in Fig. 8 are simple
graphs. Figure 8 represents graphs where 7 random variables from the left hand side are paired
with one on the right hand side, and in between each pair of this left-right type of pairs we
have a certain amount of pairings with their nearest neighboring random variables. That is,
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GG+ 1)th contraction (j)th contraction
. / . / . . . .
Er Ej,kgja Eia Er Er Eja Er Ey,ijJ
\ A 2 N 7/
k9~+1 k; n.n contraction kj n.n contraction kjt1

Fig. 8. Sketch of simple graphs

in between the j** pairing from left to right and the (j + 1)** pairing from left to right we
have k’ pairings on the left and k; pairings on the right. It is very important to notice that
the mformamon of the graph is now coded in the set of number {n, k},k;} which determine
uniquely the graph. For such graphs the exponentials of the K™ K™ factors in Eq. (26) and Eq.
(31) in between the j'* and (j + 1) contraction have the form

ki N
Cj = (- )k i+ =i, Zk1+l J H —ie—Fia55a (i )k +1,0E; Z ]“Tf H Z.eiE;,q,rjq/ (32)
q=1 q’'=1
Cj depends on many variables ( C; = C;(Ej, Ej g, E} ./, Sjq, Tjq'» 51, 7] ) ) which we didn’t write
explicitly. In order to calculate the contrlbutlon of a graph we need to integrate the product of
all C; functions over all of these variables respecting the delta functions of Eq. (24). It can be
shown that in the Van Hove limit each integral over the functions depending on E; 4, s;q, E':

and 7j, can be replaced by a given constant. We have then J.a
C (E Sl’Tl) ( Z’)kj-‘rl —iE; E’w+l J ( )k 11 ZEJZ kil ] _k’ (33)

and
Gt tho ki) B8 = (/ AEPy (Ezyt = 0)KZ" (0 A B} KZ" (1 {Ej}>) (34)

kj+1 Ej+1

ﬁ/dEPl (E#,0) H/Oood H/ dleé thsg t—ZTl Sl,Tl)
j=1 =1

For the integration over the time variables we have the identity (35).

ﬁﬁ/ dslo [t H/ ds;o [t=) s, kf[l/ d555< Zs{>(35)

l

We have the same identity for the 7 variables. We see that with this identity we can make the
integrations over the s] variables and 7] variables easily because the exponential in C; depends

ki1 ki+1l g
ony ,’ s and > 7, 7.

i+l oo _ k +1
C’j(Ej,Sj,T],kj,kJ) = H / ds?é( s{) H / dT{é (Tj Z )C (Ej, Sl,Tl)
1=1 70 1

; K,
_ (_i)kj+1(l-)k;+1e—u;jsj (s5)" OFi piBiTi (72;) O (36)
7



20 Will be inserted by the editor

We then have by Eq. (34), (35) and (36)
Q(Cr(n, {ki, Kj}), Eo, t)
:H/dEiH/dsj/deéj(Ejasjvijkjak_])a t*ZSj 0 t*ZTj . (37)
i=1 =0 J J

FL(t) has become F}(FEy,t) due to E; — Fy. Since our graphs are determined by the variables
{n kj, J} and we have to sum over all possible graphs, this sum over all graphs becomes a sum

over all possible values of {7, k;, k. }.

R 7
E[F(Eo. )= Y. (@X)" > (@X) R Q(Cr(m, {ki, K} }), Eo,t) (38)
all even 7 {ki7kj/,}

The fact that 7 is restricted to even numbers comes from Eq. (20). That means, Fy (Eo,t) is
the contribution when we have an even number of interaction matrices on the left and on the
right. This is guaranteed when 7 is even. G1(Ey, t) turns out to be the sum over all odd 7. By
grouping together all terms which are to the power of k; and k:; we can now sum over these.

> (@R Q(Cr (R, {ki, K} }), Bo, t) = (39)

kj K
e it0A*(0-0) ﬁ/dEiPl(En; 0) ﬁ /OO ds;dr;é (t - Z Sj) o (t - ZTJ‘) e~ Eilsi=ms)
i=1 =070

In the first exponent © — O is thus the imaginary part of @. We have not derived this constant
but it turns out to have the following imaginary part.

0—-6=—i2r (40)

Thus -
lim e—itaz\z(@—@) — e—27rUT ) (41)

Van Hove
We now turn to the first part of Eq. (22). By Eq. (38) and Eq. (39) we have an expression
for E[Fy(E,t)]. A similar one can be obtained for E[G}(E,t)]. We group these together in the

following equations.

E[F(E.t)—Gi(E D] = Y (@X)" > (X)) RQ(Cr(n, {ki, k) }), B, ) (42)
all even 7 {ki K}
= 0 @) Y (eXETRQ(CH (R, {ki, K }), B, 1)
all odd 7 {ki, k’,}
=Y e —itoX* (6~ @>H/dE Pi(Ex,0) [ [ (43)
all 7 7=0

(—U)\Q)ﬁ/o ds;jdrjd (t ) t— )e*iEj(Sj*Tj)

To calculate the integral part we introduce a change of variables, Eq. (44), in the last line of
Eq. (43).
Sj+7'j b — Sj*Tj
2 2
+aj 7

n T n e R
—o)" / dod (TZ%) / dbio [ S by | e it (45)
=070 0 2

J 22 Jj=0

2
o = A

(44)
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In the Van Hove limit Eq. (45) turns into

7 -1

(—a)ﬁ% H 216 (Ej — Ey) . (46)

Inserting Eq. (46) in Eq. (43) we obtain

lim [ dE (E[F\(E,t) — G1(E,1)])

Van Hove

n 7 n—1
_Tn
_ —2moT . _ _ A\ R
—Ze H/dEJPl(En,O)( )" — HQmS(EJ Ey)
all j=1 7=0
—207T)"
- Ze’QWUT/dEPl(E,O)i( il )
p n.
all
= e 4T / dEP(E,0) . (47)

In the same manner we can calculate [ dE (E[Fy(E,t) — G2(E,t)]) in the Van Hove limit which
will have the same form as Eq.(47) but will depend on P(F, 0) instead of P;(FE,0). Using these
last results in Eq. (22) we finally have

lim lim (E[Pi(t) — Py(t)]) = e=47T (P, (0) — P5(0)) . (48)

Van Hove N —00

These give us the solutions to the rate equations with a rate of 47o.

4 Conclusion

The analytical derivation has shown that the dynamics of the occupation probabilities of single
subunits are statistical for the average over the whole ensemble of possible interactions for
N — oo and in the Van Hove-limit. This means that if "most” members of the ensemble (a
dense subset of the ensemble) give the same type of relaxation, then there is statistical relaxation
which is then a typical feature for members of the ensemble. The numerical calculations for a
finite size version of the system demonstrate that the occurrence of statistical relaxation actually
depends on the structure of a concrete realization of the interaction. A random interaction
reproduces the results for the average. Nevertheless, the example of the constant interaction
indicates that there are exceptions as the dynamics are not statistical at all in this case. The
fact that a fixed randomly chosen interaction reproduces the same type of relaxation as the
average strongly supports that the statistical relaxation is a typical feature because it represents
the majority of all possible interactions very well.
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We investigate the occurrence of exponential relaxation in a certain class of closed, finite systems
on the basis of a time-convolutionless (TCL) projection operator expansion for a specific class of
initial states with vanishing inhomogeneity. It turns out that exponential behavior is to be expected
only if the leading order predicts the standard separation of timescales and if, furthermore, all higher
orders remain negligible for the full relaxation time. The latter, however, is shown to depend not only
on the perturbation (interaction) strength, but also crucially on the structure of the perturbation
matrix. It is shown that perturbations yielding exponential relaxation have to fulfill certain criteria,

one of which relates to the so-called “Van Hove structure”.

All our results are verified by the

numerical integration of the full time-dependent Schrédinger equation.

PACS numbers: 05.30.-d, 03.65.Yz, 05.70.Ln

I. INTRODUCTION

A substantial part of linear non-equilibrium thermody-
namics essentially relies on a description by means of rate
equations, often in the form of master equations [1]. The
crucial quantities, such as the probability to find the sys-
tem in some state i, j or the amount of particles, energy,
etc. at points 4,7 in some space, are routinely believed
to follow equations like

%pi:ZR(j_)i)Pj—ZR(iaj)Pi, (1)

with time-independent transition rates from i to j, R(i —
j). Pertinent examples are the decay of excitations in
atoms, nuclear decay, etc. But also diffusive transport
phenomena belong to that class, since the diffusion equa-
tion can also be formulated to take the above form (ran-
dom walk dynamics). Another implementation of that
scheme is the (linear) Boltzmann equation [1, 2] where
particle scattering is taken into account by means of tran-
sition rates, and many more could be named.

However, regardless of the incontestable success of such
descriptions, the strict derivation of rate equations from
underlaying principles often remains a problem. Typ-
ically, the descriptiveness by means of rate equations is
taken for granted. Since those rate equations yield an ex-
ponential decay towards equilibrium, the basic question
may be formulated as: How can an exponential decay of
some observable be derived from the Schrédinger equa-
tion?

*Electronic address: cbartsch@uos.de
TElectronic address: rsteinig@uos.de
TElectronic address: jgemmer@uos.de

On the basis of quantum mechanics the most popu-
lar approach to this question is probably Fermi’s Golden
Rule [3]. Despite the undisputed descriptive success of
this scheme, it is simply derived from first order pertur-
bation theory, e.g., its validity generally breaks down on
a timescale much shorter than the resulting relaxation
time. Therefore it can hardly describe a complete decay
into equilibrium. One of the few concrete, concise deriva-
tions of exponential decay is the Weisskopf-Wigner the-
ory for the relaxation of excitations in an atom due to the
coupling of the atom to a zero-temperature, broad-band
electromagnetic field [4]. However, this theory is hardly
generalizable, since it only applies if just one state is cou-
pled to a multitude of others, rather than many states
coupled to many others, as is typically the case.

A more abstract, rather fundamental approach has been
suggested by Van Hove [5, 6]. It is based on (infinite)
quantum systems having continuous state densities and
interactions which are described by smooth functions
rather than discrete matrices. However, a lot of the find-
ings for discrete systems in the paper at hand are quite
parallel to Van Hove’s, as will be pointed out below.

Other approaches are based on projection operator tech-
niques, in particular the well-known Nakajima-Zwanzig
(NZ) method. This method is commonly used in the
context of open quantum systems, i.e., systems that al-
low for a partition according to a considered system (or
simply “system”) and an environment [1, 7]. For a spe-
cific choice of the initial condition, as pointed out below,
the projection onto the system’s degrees of freedom even-
tually leads to an autonomous master equation describ-
ing the dynamics of the system, based on a systematic
perturbation expansion. But in general, due to the com-
plexity of higher orders, only the leading order is taken
into account. In the paper at hand we will demonstrate
that this truncation may produce wrong results even and
especially for the case of fast decaying correlation func-



tions and arbitrarily weak interactions.

A further approach to this topic is based on the descrip-
tion of quasi-particle dynamics in many-particle systems
by the use of Green’s functions [8]. These considerations
indicate the validity of a Boltzmann equation.

In the present paper we will employ another projection
operator technique, the so-called time-convolutionless
(TCL) method [9-14]. In the following we will follow the
TCL-method as detailed in [14]. In Sec. IT we introduce
our rather abstract Hamiltonian for a “closed quantum”
system (consisting of an unperturbed part and a pertur-
bation) and define an also rather abstract observable, the
dynamics of which we are going to investigate. In Sec. IV
we demonstrate how the TCL technique can be used
to compute the above dynamics of the variable. (This
is somewhat reminiscent of projection techniques using
“correlated projectors” [15, 16].) We tune our models
such that a leading order truncation predicts exponential
decay. For a “random interaction” this prediction turns
out to be correct, as is verified by the numerically exact
solution of the full time-dependent Schrodinger equation.
In the following Sec. V non-random (“structured”) per-
turbation matrices are discussed in more detail. While
a leading order truncation still predicts exponential re-
laxation, it is demonstrated that this prediction may fail
even for arbitrarily large models and arbitrarily small
interactions. This breakdown stems from the fact that
higher order contributions are not negligible if the in-
teraction matrix violates certain criteria. Before we will
close with a summary and conclusion in Sec. VI, these
criteria will be also related to those conditions which Van
Hove postulated in order to explain the occurrence of ex-
ponential relaxation.

II. MODELS, OBSERVABLES AND
INTERPRETATION OF DYNAMICS

In the present paper we will analyze quantum mod-
els which are much simpler than most of the examples
mentioned in the introduction. They are defined on a
very general, rather formal level and are not meant to
describe any specific, realistic quantum system in great
detail. The Hamiltonian is taken to consist of a local part
Hjy and an interaction part V such that H = Hy+ V. In
particular, V is assumed to take the special form of an
“off-diagonal block structure” in the eigenbasis of Hy,
that is, the matrix representation of H may be written

23

as

i
— 0€ v

n—1

0

or, equivalently to the above notation, H = Hy + V may
also be written as

n—1

. n—1 .
A P J g
Ho = Y ——=deli)il + Y ——de[j){jl,
=0 =0
n—1
V = Z Vij |’L><]| +H.c. |, (3)
i,j=0

where |i),|j) form the basis in which (2) is represented.
Obviously, the complete Hilbert space is divided into two
subspaces, where i runs through the states of the first
and j through the states of the second subspace, respec-
tively. Obviously, Hy may correspondingly be separated
into two parts which we only specify very roughly at
this point by two parameters: There are two identical
“bands” with width de and n equidistant energy levels
each.

The average strength of the interaction V' is measured by

n—1
1
A= o > fvisl (4)

4,5=0

In our first example in Sec. IV we take the matrix ele-
ments v;; in the off-diagonal blocks to be Gaussian, com-
plex, random numbers. For the other examples V' will be
specified below. In all cases the matrix elements of V' in
the diagonal blocks are all zero, just to keep the picture
as simple as possible.

We will investigate the (relaxation) dynamics of an ab-
stract observable a, represented by an operator A, which
is chosen in such a way that

[A, Ho] =0, Tr{A} =0, Tr{A%} =1. (5)

The first of these properties states that A is diagonal
in the eigenbasis of Hy, while the remaining two prop-
erties do not mean crucial restrictions on A. While
all of the following will be correct for any A featuring
the above properties, we mainly concentrate in our ex-
amples on “binary” operators, i.e., operators featuring
only two different eigenvalues, namely, +1/ V2n in one



subspace and —1/ V21 in the other. This means that
a = Tr{Ap} = +1/v/2n indicates that the system en-
tirely occupies one subspace and a = —1/ V2 n indicates
that it entirely occupies the other subspace. (Here, p is
the density matrix for the state of the system.) If and
only if a(t) is found to relax exponentially to zero, the
system allows for a merely statistical interpretation en-
tirely beyond quantum physics: it is then in accord with
a system featuring two distinguishable states in between
it can “hop” with a given transition rate, the latter being
equal for both directions. a then represents the difference
between the probabilities of finding it in one or the other
state, respectively.

In an abstract way the above model may represent many
physical situations. It may be viewed as a simplified
model for the exchange of an excitation between, e.g.,
two weakly coupled atoms, molecules, quantum dots, etc.
A then represents the probability to find atom 1 excited,
subtracted by the probability to find atom 2 excited, V'
represents the coupling in this scenario. Or it may model
the momentum dynamics of a particle bound to one di-
mension which possibly changes its direction (forward-
backward) due to some scattering. In a many-particle
system the current operator could be identified with A
and V may stand for a particle-particle interaction. This
way the dynamics of the current autocorrelation func-
tion could be investigated based on the framework be-
low. More detailed information about such models can
be found in [17-22].

III. TCL SCHEME AND CHOICE OF THE
PROJECTION OPERATOR

In this section we give a short overview of the time-

convolutionless (TCL) projection operator technique [13,
14]. Furthermore, we introduce the pertinent equations
which are applied to models with various interactions in
Sec. IV and Sec. V. A detailed derivation of these equa-
tions is beyond the scope of this paper and can be found
n [14, 20].
The TCL method is a projection operator technique such
as the well-known Nakajima-Zwanzig technique [23, 24].
Both are applied in order to describe the reduced dynam-
ics of a quantum system with a Hamiltonian of the type
H = Hy + V. Generally, the full dynamics of the system
are given by the Liouville-von Neumann equation,

(Now and in the following all equations are denoted in
the interaction picture.) In order to describe the reduced
dynamics of the system, one has to construct a suitable
projection operator P which projects onto the relevant
part of the density matrix p(t). P has to satisfy the
property P%p(t) = P p(t). Recall that in our case the
relevant variable is chosen as the expectation value a(t)
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of the binary operator A. For initial states p(0) with

P p(0) = p(0) (7)

the TCL method yields a closed time-local equation for
the dynamics of P p(t),

2P ott) = k)P (1) 0

with

= Z Ki(t) - 9)

The TCL technique avoids the usually troublesome time
convolution which appears, e.g., in the context of the
Nakajima-Zwanzig technique. Eq. (8) and (9) represent
a formally exact perturbative expansion.

A brief comment on initial conditions should be made
here. If (7) is not fulfilled, of course an additional inho-
mogeneity appears on the r.h.s. of (8). This may change
the solutions of (8) drastically, c.f. [25] and references
therein. However, for the model to be addressed below,
there is substantial numerical evidence that, for a large
set of initial states that do not fulfill (7), the dynamics
are nevertheless reasonably well described by (8) (with-
out inhomogeneity) [17, 20, 26-29]. Having mentioned
this issue we consider in the following exclusively initial
states in accord with (7).

For many models the odd cumulants of the expansion
(9) vanish: Kg;11(¢) = 0. This will turn out to apply to
our model as well. The lowest non-vanishing order scales
quadratically with A and reads

Koo (t) = /Ot it P L) L) P . (10)

For the fourth order term one finds

Ka(t) = / dt, / dts / dts

(t (t1) L L(ts) P
— PL(E) L(t)P ﬁ(tz) (t3) P

L(t) L(t2) P L(t1) L(t3) P

L(t) L(ts) P )P

t) L(t3) P L(t1) L(t2 (11)

Note that the TCL approach is commonly used in the
context of open quantum systems [1, 14, 23, 24]. The
TCL method is, however, also applicable to our closed
quantum system.

To those ends, we define the projection operator P by

1

Pp(t) =5~

A 1 -

1+ ATe{Ap(t)} = on 1+ Aa(t). (12)
n

As already mentioned above, P is constructed to project

onto the time-dependent expectation value a(t) of the

binary operator A, in the Schrédinger picture. But since



A commutes with Hy, this expectation value is identical
in the interaction and the Schrodinger picture. The full
dynamics [Hilbert space: dimension 2n, Liouville space
of density matrices: dimension (2n)?] is broken down to
the time evolution of the single variable a(t), all other
information is neglected. As a suitable initial condition
we can then choose p(0) = (1/2n)1+ (1/v/2n) A which
implies a(0) = 1/v/2n. Inserting Eq. (12) into Eq. (8)
yields the closed equation

oo

a(t) = Z Ki(t) a(t) (13)

with K;(t) = Tr{AK;(t) A}. Due to Eq. (12), the second
order term reads

Ks(t) = — /Ot dt' c(t'), (14)

where the two-point correlation function C(t') is given
by

o) = Tr{z[V(t), ALV (t), A]} Lt =t—t. (15)

A rather lengthy but straightforward calculation yields
for the fourth order

t t1 to
K4(t) = / dtl/ dtg/ dts Iy + Iy + I3 + Iy,
0 0 0

L= T (V(t), V() A [V(ta), [V (1), A1},
L= — C(t—t)) Cta —ts) ,

Is= — C(t —ty) C(ty —t3) |

Ii= — Ot —t3) C(ty — L) (16)

IV. SECOND ORDER TCL AND COMPLETELY
RANDOM INTERACTION

In this section we apply the equations in second order
TCL to a model with the completely random interaction
introduced in Sec. II. The function C(¢') in Eq. (15) is
identical to the autocorrelation function of the interac-
tion, since it can also be written as

) =2 Y fogl? eonfes - 1)] (17
i,5=0

with frequencies w;; = (i—j)/(n—1) de corresponding to
Hy. Here, just like in many other examples, C(t') de-
cays within the correlation time 7o which is of the order
of 7¢ = 4m/de for our model. Afterwards the integral
K5 (t) becomes approximately time-independent and as-
sumes a constant value R until the “Heisenberg time”
T = 2mn/de is reached. This behavior can be inferred
from integrating (17) and exploiting the properties of the
sinc-function. From this analysis also R may be found
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with an accuracy determined by the law of large num-
bers. Thus the second order approximation of Eq. (13)
eventually results in

4 2
a(t) = —Ra(t), R~ ”;”
€

(18)

We hence obtain a rate equation featuring the form of
Eq. (1) and thus exponential dynamics for a(t). The
solutions for a(t) decay exponentially with a relaxation
time 7r = 1/R. However, this result is only valid within
the boundaries 7¢ < 7r < T, because K(t) can only
be considered as time-independent up to the Heisenberg
time. Recall to this end that our model features equidis-
tant energies such that C(t') is strictly periodic with T'.
These two boundaries also result in two necessary criteria
for the system parameters which have to be fulfilled in
order to produce the occurrence of exponential dynamics,

1672 n A2 8m2n? A2
— K1 _— >

0€? ’ 0€? L. (19)

Remarkably, the whole derivation of the rate equation
using second order TCL does not depend on the details
of the interaction, i.e., the individual absolute values of
the single matrix elements as well as their relative phases
are not relevant. We should already mention here that
the “structure”, which we are going to introduce into the
interaction in the following section, only concerns those
details, hence the second order contribution Ko will be
the same in all our following examples.

In Fig. 1 the numerical solution of the Schrédinger equa-
tion is shown for the above repeatedly mentioned ran-
dom interaction and compared with the TCL prediction.
All parameters (the width of the Gaussian distribution
according to which the matrix elements of V' are gen-
erated, the bandwith, etc.) are adjusted such that the
criteria (19) are well satisfied. This solution is obtained
by exact diagonalization. And in fact, we find a very

good agreement with the theoretical prediction of second
order TCL.

V. FOURTH ORDER TCL AND NON-RANDOM
INTERACTIONS

In this section we will be concerned with the structure
of the interaction matrix and, especially, its influence on
the time evolution of the expectation value a(t). It will
be demonstrated that the theoretical prediction (18) of
second order TCL fails to describe the numerically exact
solution of the Schrédinger equation correctly for certain
“interaction types”, even and especially if the conditions
(19) are fulfilled, i.e., the “strength” is “adequate”. We
will outline that this failure stems from the fact that the
fourth order contribution of the TCL expansion is not
negligible on the relaxation timescale which is obtained
from second order TCL. However, the exact evaluation
of K4(t) turns out to be almost impossible, analytically
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FIG. 1: Time evolution of the expectation value a(t) for an
interaction with completely random v;;. The numerical result
(crosses) indicates exponential behavior and is in very good
agreement with the theoretical prediction (18) of second order
TCL (continuous curve). The system parameters n = 1000,
Se =0.5, A\ = 2.5 -107* fulfill the conditions (19).

and numerically. Instead we will present feasible estima-
tions of K4(t)/K2(t) based on suitable approximations of
K,(t) called S(t) (see (23, 38)). Whenever

S()
Ko (t)

qt) = <1 (20)
is violated the influence of higher order terms is not neg-
ligible. If this is the case for times ¢ of the order of or
shorter than 7, no exponential relaxation will result.

A. Uniform Interactions and Van Hove structure

Let us start with an example. Fig. 2 shows the time
evolution of the expectation value a(t) for an interac-
tion with v;; = A. This type of interaction is, of course,
highly non-random, since all matrix elements have the
same absolute value and phase. The second order ap-
proximation obviously yields a wrong description for this
interaction structure, that is, the dynamics are not ex-
ponential, although both of the conditions (19) are well
fulfilled. It should be remarked again that the observed
non-exponential behavior definitely is a structural issue.
For instance, it can not be “repaired” by simply decreas-
ing the overall interaction strength, because this decrease
would eventually lead to the violation of the criteria (19).

To analyze this model we now develop our first estimate
S(t) for K4(t) which concerns the timescale t >~ 7. We
start from from Eq. (16), where we abbreviate the triple
time integration by a single “[”. One may hence write
K4(t) = [ I + I + I3 + I,. Fig. 3 shows a sketch for the
integration volume of K4(¢t) in the 3-dimensional space
which is spanned by ¢y, t2, t3. The integration does not
run over the whole cube with the edge length ¢, but only
over the region where t3 < to <1 holds.

C(t—ty) is the autocorrelation function of the interaction
which has already been mentioned in (15). Recall that
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FIG. 2: Time evolution of the expectation value a(t) for an
interaction with v;; = A. The theoretical prediction (18) of
second order TCL (continuous curve) fails to describe the
numerical solution (crosses) correctly, although the system
parameters n = 1000, de = 0.5, A = 2.5 - 10™% still fulfill the
conditions (19). V violates the Van Hove structure.

A

(=
V.

FIG. 3: Sketch for the integration volume of Ky(t) for fixed
t. The cube with the edge length ¢ is drawn with thin lines,
the actual integration volume is marked with thick lines. The
dashed lines represent the changed integration volume which
is used in the approximations.

C(t') is only different from zero around t' = 0 in a small
interval of the width 7¢. Thus, the integrands I, I3, Iy
are only different from zero in a small volume around the
region where both of the arguments are equal for each of
the two multiplied correlation functions.

First of all let us focus on I3 as well as Iy. The integrand
I3 contributes to K4(t) for t = to and t; = t3, while the
integrand I contributes to Ky4(t) for t = t5 and t; = to,
respectively. The sketch in Fig. 3 displays that both of
these regions overlap only in the vicinity of one single
point with the integration volume of K4(t), namely, at
the point where all arguments are equal to ¢t. Especially,
this overlap does not increase with ¢t. Therefore the triple
time integration is estimated by [ I3 ~ [ I, =~ C(0)? 7.



Using the estimate R =~ C(0) 7¢, we eventually obtain
for the ratio between the contributions from I3, I4 to the
fourth order and the second order Ka(t > 7¢) for times
t> 10

I L T

%z%zC(O)TéziQ. (21)
Recall that the derivation of exponential behavior within
second order TCL has required 7¢ < Tg or, equivalently,
a < 1 such that the contributions to K4(t) which arise
from I3 and I are negligible, at least in comparison with
R.
Analogous conclusions cannot be made for the term I,
because its overlap with the integration volume is larger
and grows with t. We have to find another estimation
for the contributions of I as well as I, of course. Our
estimation is based on the fact that neither I nor Iy
can decay on a shorter timescale than 7¢ in any possible
direction of the (t1,t9,ts)-space. This fact is obviously
correct for Iy. But what about I;? Since the term I
consists of summands which have the typical form

— 21 Wapt ,—2Whe t1 ,—2Wed T2

Vab Ube Ved Vda © e e e tWials | (22)

only those frequencies and, especially, those largest fre-
quencies in I; which have already appeared in C(¢') con-
tribute significantly to I;. Consequently, I; can never
decay faster than C(t') in any possible direction of the
(t1,t2,t3)-space. In the (possibly unrealistic) “best case”
I1 + I5 decays within 7¢ around the point I 5(t,2,t,t) =
I,/2(0,0,0,0) = I;/5(0). We can therefore estimate the
value of ¢(7¢) by

Jh+1 [L(0)—C(0)*]75 _ [11(0)
R C(0) ¢ C(0)2

—1]0456.

(23)
(3 is a lower bound for the ratio between the fourth and
the second order of TCL for times t > 7¢. If § ~ 1 or
even larger, then K4(t > 7¢) dominates Ko (¢t > 7¢), that
is, exponential behavior in terms of the second order
prediction cannot occur. But # < 1, however, does not
allow for a strict conclusion, since a slower decay of I or
I, as the case may be, raises their contribution to K4(t).
Nevertheless, the condition 8 <« 1 is an additional
criterion for the occurrence of exponential decay which
involves the structure of V.

In the following we will discuss why and to what ex-
tend (3 and, especially, the ratio I;(0)/C(0)? is related to
the conditions which have been postulated by Van Hove
for the interaction V' in order to explain the onset of ex-
ponential relaxation, see [5, 6]. To this end, let us define
a hermitian operator G by

G=[V,[V,A]]. (24)
A straightforward calculation yields

I,(0) = Tr{G*} = Z 1Gi)?, C(0)=Tr{AG}, (25)
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where G;; represents the matrix elements of G in the
eigenbasis of Hy. Furthermore, let us also introduce the
superoperator D which is given by

DM = Z i) Mi; (il (26)

and projects any operator M onto its diagonal elements
in the eigenbasis of Hy. Then the expression

(A,G) = Tt{ADG} (27)

defines an inner product between the operators A and G,
because (4,G) = (G, A)*[= (G, A)] holds and (4, A) =
1,aswell as (G, G) = Y, G%, are both positive, real num-
bers. The Schwartz inequality (A4, G)? < (4, 4)? (G, G)?
can consequently be formulated. By the use of (4,G) =
C(0) we eventually obtain

C0)? <> G <> |G, =n(0),  (28)

i.e., I;(0)/C(0)% > 1. C(0)?is at most as large as the sum
of the squared diagonal elements of G, according to the
above equation. Therefore I1(0)/C(0)? ~ 1 and hence
sufficiently small 3 can only be realized if the diagonal
elements of G and thus the diagonal elements of V2 are
as large as possible in comparison with the remaining
non-diagonal elements of V2 (G). In principle, this is
essentially what Van Hove proclaimed [5, 6].

In this sense, we define the “Van Hove structure” in the
context of finite quantum systems: The interaction V is
said to feature Van Hove structure if

1,(0)
C(0)?

8 = akl, (29)
while all conditions of second order TCL are simultane-
ously kept, of course. The latter refers to the validity
of Eq. (19). The comparison with (23) shows that the
Van Hove structure implies < 1 and hence the relax-
ation may possibly be exponential, as described by the
second order. Since the evaluation of ' is much more
efficient than the complete computation of fourth order
TCL (there is no time dependence left, e.g., I1(0) only
depends on t = t; = to = t3 = 0), the Van Hove struc-
ture eventually is an assessable criterion for the possible
occurrence of exponential decay. It is a criterion in the
sense that only if (29) is satisfied, a use of the second
order approximation is justified for any time longer than
the correlation time, i.e., t > 7¢.

Let us now apply these results to the already introduced
models with random and non-random (v;; = A) interac-
tions, respectively. The only term which varies for the
different models is I;(0), since the terms C'(0)% ~ n?\*
and o &~ 1672n)\?/d€? (again with an accuracy set by the
law of large numbers for the random interaction) are the
same for random and non-random interactions. For the
random interaction a straightforward calculation leads to

I(0) =320\, B =2a<x1 (30)



such that the random interaction indeed features Van
Hove structure. This agrees with the numerical results
in Fig. 1 which yielded exponential relaxation. In the
case v;; = A, however, we finally obtain

- 1672 n2 \2

L(0)=16n*)\", g = 52 , (31)

where 3’ > 1, according to Eq. (19). The absence of the
Van Hove structure already suffices to explain the break-
down of exponential behavior in Fig. 2.

One may nevertheless be inclined to argue that the Van
Hove structure is not the crucial difference between those
two cases but simply the randomness of the matrix el-
ements (which possibly induces quantum chaos). We
therefore present a counter-example which immediately
disproves such an argument. The example is slightly dif-
ferent from the others, since the complete system is not
partitioned into equally large subspaces. ny and ng de-
fine the number of levels of the respective subspaces. One
subspace consists of only one state (n;y = 1). Thus, in
the matrix V there is only a single column with non-
zero elements and a single row, respectively. Although
these non-zero elements are chosen to be all equal (non-
random), it can be shown that this V features Van Hove
structure. Note that such a Hamiltonian occurs, e.g., in
the context of spin-boson models at zero temperature or
the scenario addressed by the Weisskopf-Wigner theory,
see [14].

a(t)/a(0)

0 4000
time ¢

FIG. 4: Time evolution of the expectation value a(t) for the
interaction of spin-boson type. The numerical result (crosses)
indicates exponential behavior and perfectly agrees with the
theoretical prediction (18) of second order TCL (continuous
curve). System parameters: n; = 1 (single level), na = 2000
(many levels), e = 0.5, A\ = 2.5-107*.

Fig. 4 shows an almost perfect correspondence between
the numerical solution of the Schrodinger equation and
the theoretical prediction (18) which is obtained by the
use of second order TCL. Here, exponential relaxation is
found, although V is not randomly chosen.
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B. Sparse Interaction and Localization

So far, we numerically found exponential decay in ac-

cord with the second order for all considered models that
showed the Van Hove structure. There is, however, non-
exponential behavior for some types of interactions which
feature the Van Hove property in the sense of (29) and
are in accord with (19). Recall that those are only nec-
essary but not sufficient conditions for the occurrence of
exponential decay.
An example for such a situation is a model with a random
but, say, “sparsely populated” interaction. This model is
almost identical to the model with the completely ran-
dom interaction. The only difference is that only 1/10 of
the matrix elements are Gaussian distributed numbers,
all others are zero. The non-zero numbers are randomly
placed. Apparently, this type of interaction fulfills the
Van Hove structure, since the completely random inter-
action already does.
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FIG. 5: Time evolution of the expectation value a(t) for an
interaction with random but “sparsely populated” wv;;. The
theoretical prediction (18) of second order TCL (continuous
curve) deviates from the numerical solution (crosses), even
though the Van Hove structure as well as the conditions (19)
are fulfilled. System parameters: n = 1000, de = 0.5, A =
2.5-107%.

Fig. 5 displays the numerical solution of the Schrédinger
equation and the theoretical prediction (18) of second
order TCL. At the beginning there is a good agreement
but then the numerical solution starts to deviate from a
purely exponential decay and finally sticks at a clearly
positive value. The latter non-zero value may be a hint
towards localization effects which also appear, e.g., in the
context of the Anderson model [30-33]. And in fact, the
sparsely populated interaction takes a form which is very
similar to the Hamiltonian of the, e.g., 3-dimensional An-
derson model in the chaotic regime.

Apparently, we have to extend the analysis of the fourth
order: There is no exponential behavior by the means of
a complete exponential decay, although V' fulfills the Van
Hove property. Recall that the Van Hove criterion has
been derived from the consideration of times ¢t <~ 7¢
and thus t = t; = t5 = t3 <~ 7¢. Hence, we have to
reconsider the full time dependence of the fourth order



to produce a feasible estimate for the timescale ¢ ~ 7g.
To this end, the integrand I; is expressed by

L =Te{G(t1,t) G(t2,t3) } , (32)
where the hermitian operator G(t1,t) is again given by
G(t,t1) = [V(1),[V(t), A]] . (33)

If ,(0) =~ C(0)2, the diagonal terms dominate at t =
t1 = ty = t3. Based on this fact, we carefully assume
that I; is dominated by these terms for other times as
well. Of course, this assumption neglects the larger part
of all terms but leads, as will be demonstrated below, to
a criterion which may be evaluated with limited compu-
tational power. (For our simple example its validity can
also be counterchecked by direct numerics.) However,
following this assumption, I; can be approximated by

I %ZGii(t*tl)Gii(t27t3) ) (34)

where Gy;(t — t1) are the diagonal matrix elements of
G(t,t1) in the eigenbasis of Hp, namely,

Gii(t—t1) = QZ(Aii_Ajj) [Vij|? cos[wij (t—t1)] . (35)

J

Furthermore, the correlation function C(t — ¢1) can, by
the use of this notation, also be written as

C(t —t1) ZZAu' Gii(t —t1) (36)

such that I3, the remaining fourth order integrand, can
be expressed as well by

I, = _ZAii Gii(t_tl)Ajj ij(tg —tg) . (37)
]

In order to estimate with reasonable computational effort
how K4(t) compares with K5 (t) another approximation is
necessary. Obviously, the expressions for 11, I5 are invari-
ant along lines described by t; = const., to = t3. Thus, as
an approximation, we shift the integration volume from
the original region, indicated with solid lines in Fig. 3, to
a new region, indicated with dashed lines in Fig. 3. Obvi-
ously, this is a rather rough estimate but it will turn out
to be good enough for our purposes. Now the coordinate
transformation x = t—t1, y = to —t3, z = t —to decouples
the integrations within the new integration volume such
that we eventually find for S(t) =~ K4(t) (if V features
Van Hove structure)

S(t) =t [Z i(1)? — Kg(t)ﬂ : (38)

with the time integral T';(t) = fot dt' G (t"). Now (20)
may eventually be checked with very low computational
power, based on S(t) from (38). This adds to (19) and
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(29) as a further manageable criterion for exponential
relaxation. Fig. 6 shows ¢(t) [based on (38)] for the fol-
lowing interaction types: the completely random interac-
tion, the interaction of spin-boson type, and the random
but sparsely populated interaction. Fig. 6 apparently
demonstrates that this approximation is able to explain
the breakdown of exponential behavior in the case of a
random, sparsely populated interaction: The fourth or-
der becomes roughly as large as the second order at a
time which agrees with the deviation between the second
order theory and the numerical results in Fig. 5. In both
other cases ¢(t) remains sufficiently small, at least until
the relaxation time is reached.
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FIG. 6: Time evolution of the value ¢(t) based on (38). ¢(t)
is numerically calculated for a completely random interaction
(crosses), the interaction of spin-boson type (squares), and
the random but sparsely populated interaction (circles). Note
that Ks(t) is a constant which is also identical for all three
interactions. The system parameters are chosen according to
Fig. 1, Fig. 4, and Fig. 5, respectively.

Obviously, regardless of the interaction type, K4(t) will
eventually dominate Ks(t) for large enough times (c.f.
[34]). This, however, does not necessarily spoil the expo-
nential decay: If a(t) has already decayed almost com-
pletely into equilibrium, even a significant change of the
rate K (t) will not change the overall picture of an expo-
nential decay (, as long as K (t) remains negative). The
influence of a large K4(¢) will only be visible if it occurs,
while a(t) is still far from equilibrium, i.e., at times of
the order of 7r. If one now computes the ratio ¢(t) for
the time t = 7R, one finds

%, Dilra)?

q(Tr) =~ 1

Rz
where one has to take (38) and Ka(7g) = R = 1/7x
into account. This form has the advantage of being com-
pletely independent of the overall interaction strength .
One can hence compute ¢(7g), taking 7r as a free vari-
able. The region in which ¢(7gr) <= 1 then represents
the range of different 75 for which exponential decay is
possible and to be expected. The different “possible”
Tr can then be implemented by tuning A appropriately.
Often ¢(7g) is found to increase monotonously, essen-
tially like in Fig. 6. Thus a good number to characterize

(39)



a class of models with different relaxation times (inter-
action strengths) would be 7,,4. as the largest time for
which ¢(Timaz) <~ 1 holds true. This then indicates the
largest timescale on which exponential relaxation can still
be expected. We should note here that we intend to use
this measure, 7,42, to investigate transport behavior in
models of the Anderson-type in a forthcoming paper.

VI. SUMMARY AND OUTLOOK

We investigated the dynamics of some expectation val-
ues for a certain class of closed, finite quantum systems
by means of the TCL projection operator method. This
technique yields a perturbation expansion for those dy-
namics. Taking only the second (leading) order into ac-
count, we find that the evolution of these expectation
values may be described by a rate equation, i.e., they
relax exponentially if certain criteria are fulfilled. Those
criteria, however, only depend on “rough” parameters
like overall interaction strength, bandwidth and density
of states but not on, e.g., the phases of the interaction
matrix elements. An adequately computed numerical
solution of the Schrddinger equation is in accord with
this leading order result for random interaction matri-
ces. However, numerics also show that this accordance
breaks down if one considers non-random interactions,
even if the above rough criteria are met. This, of course,
indicates that higher orders are not negligible, depending
on the structure, not only on the strength of the interac-
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tion. Subsequently, we established a numerically simple
estimate for the absolute value of the fourth, i.e., the
next higher order, in comparison to the second, for short
times. From this approach it can be inferred that the
fourth order remains negligible at small times if the in-
teraction features a certain structure which we define as
Van Hove structure according to [5]. However, numerics
indicate that for certain interaction structures the fourth
order may become non-negligible at larger times, thus
spoiling the exponential relaxation, even if the interac-
tion features Van Hove structure. Hence we suggest one
more criterion (based on (20, 38)) that allows for the de-
tection of such a behavior without diagonalizing the full
system.

Diffusive transport in spatially extended quantum sys-
tems may be viewed as a form of exponential relaxation.
Thus we intend to exploit the various criteria which are
suggested in this paper to investigate the occurrence of
diffusion in the Anderson model and/or other solid state
models that do not allow for a full numerical diagonal-
ization.
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We show that the vast majority of all pure states featuring a common expectation value of some
generic observable at a given time will yield very similar expectation values of the same observ-
able at any later time. This is meant to apply to Schrédinger type dynamics in high dimensional
Hilbert spaces. As a consequence individual dynamics of expectation values are then typically well
described by the ensemble average. Our approach is based on the Hilbert space average method.
We support the analytical investigations with numerics obtained by exact diagonalization of the
full time-dependent Schrodinger equation for some pertinent, abstract Hamiltonian model. Further-
more, we discuss the implications on the applicability of projection operator methods with respect
to initial states, as well as on irreversibility in general.
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In its broadest sense the term typicality may be ex-
plained as follows [, [2]: If a set of states specified by
some common feature (e.g., drawn according to the same
distribution, sharing the same energy, etc.) yields a very
narrow distribution of some other feature (e.g. some ob-
servable, etc.), then there is typicality. The concept of
typicality as key to the occurrence of standard statistical
equilibrium behavior (as opposed to ergodicity, mixing,
etc.) especially in quantum mechanics has recently been
established in various works [3-6].

One important implementation has been presented in
[3, 4]. There it is shown that a majority of pure states of
a compound system from some narrow energy shell yield
almost the same reduced density matrix for a small sub-
system. This happens to be the canonical equilibrium
state in case of weak interactions and generic environ-
ment spectra [3].

In another typicality-based investigation [§] it is
demonstrated that states drawn according to a certain
type of probability distribution in Hilbert space fea-
ture very similar quantum expectation values (QEV’s)
of generic observables. Even more detailed results exist
for the special case of a uniform distribution of normal-
ized, pure states, i.e., a distribution which is invariant
under all unitary transformations in Hilbert space [d].
Using the Hilbert space average method (HAM) [R, 9]
one finds that the “Hilbert space average” (HA), i.e., the
average of the QEV’s of an observable D w.r.t. the above
distribution, is given by

V] = TriD} _

HA[(4)| D]y c1 (1)

and the corresponding “Hilbert space variance” (HV) by
HV[(¢|D]¢)] = HA[(($|D]¢s) — HA[()|DJ1))))’]

2 v 2
L (T{f}— (TiD}) )_nil(@,_cf),@)

cf. [9]. Here n denotes the dimension of the correspond-
ing Hilbert space and ¢; := Tr{D'}/n describes the i-th
moment of the spectrum of D. Thus co—c? is the spectral
variance of D. Throughout this paper we focus on observ-
ables the low spectral moments of which do not change
(significantly) under physically reasonable “upscaling”.
Pertinent examples are, e.g., a component of a specific
spin in a system which is upscaled by adding more and
more (interacting) spins, the occupation number of some
momentum mode in an interacting many-particle system
which is upscaled to comprise more and more momen-
tum modes, or in general any local variable embedded in
a growing system. For any such observable one may con-
clude from (@) that the Hilbert space variance, i.e., the
width of the above distribution of QEV’s vanishes with
growing dimension n. In this sense bound observables in
large systems yield typical QEV’s.

In this paper we turn towards the typicality of dynam-
ics of QEV’s. In short, we demonstrate in the paper
at hand that pure states from a set {|¢)} featuring a
common QEV of some observable A at some time ¢, i.e.
(9| A(t)|¢) = a, most likely yield very similar QEV’s at
any later time, ie. (@|A(t + 7)|¢) = (¢'|A(t + 7)|¢")
(with |¢), |¢)" both being states from the above set). We
present some analytical derivations based on the HAM,
in particular on Eqs. ([ and Bl) and we additionally sup-
port the results with numerical calculations. Finally,
we discuss what consequences arise for the validity of
projection operator methods (Nakajima-Zwanzig (NZ),
etc. [LOH12]) w.r.t. initial states and the corresponding




inhomogeneities. Furthermore, we comment on the ir-
reversibility of QEV’s corresponding to individual pure
states.

We specify our considered observable A only by the
above mentioned moments, ¢;, and specialize without
substantial loss of generality to observables which are
trace-free, ¢; = 0, and normalized to ¢ = 1. Further-
more we require the ¢; with i =2, ..., 8 to be of the order
1. Next, we introduce an ensemble of pure states |¢)
which is characterized as follows: All its states must fea-
ture the same QEV of the observable A, (¢|A|¢) = a,
must be normalized ((¢|¢) = 1), and uniformly dis-
tributed otherwise. That means the ensemble has to stay
invariant under all unitary transformations in Hilbert
space that leave the expectation value of A unchanged,
i.e. those transformations that commute with A, or, con-
cretely, transformations of the form e‘®, with [B, A] = 0.
This specifies the most general ensemble consistent with
the restriction that all its states should yield a given a.

For the following calculations we further introduce
some kind of “substitute” ensemble {|w)}, which is much
easier to handle. As will be shown below, this ensemble
approximates the exact ensemble {|¢)} described above
very well for large Hilbert spaces.

The ensemble {|w)} is generated by

w) = (1/V1+d*)(1 +dA)|¢) , 3)

where [1)) are pure states drawn from a uniform distribu-
tion of normalized states without further restriction as
described above (). d is some small parameter which
describes the deviation from the “equilibrium” ensemble
{|®#)}. Since it is essentially the operator A itself that
generates {|w)} from the entirely uniform distribution,
{|w)} is invariant under the above uniform transforma-
tions that leave a invariant.

The construction (@) allows for an evaluation of mo-
ments of the distribution of (w|C|w) based on results on
moments of the distribution of (| D), or concretely

HA[(w|Clw)'] = HA[(¥|D]%)']

. 1
with D=5 (1+dA)C(1+dA) . (4)
(Of course the average on the Lh.s. corresponds to the
substitute ensemble {|w)} while the average on the r.h.s
is based on the completely uniform ensemble {|1)}). Ex-
ploiting this, average and variance of (w|C|w) may be
evaluated with the help of (IE).
To assure that the ensemble {|w)} indeed approximates
the ensemble {|#)}, in the limit of large n, we evaluate
the following four quantities

HA[(w|w)], HA[(w|A|w)] ,
HV[(w|w)], HV[(w[A()|w)] , ()

where A(t) denotes the time dependence according to the
Heisenberg picture. (For clarity: the results are given in

Egs. @), @), @) and [d).)
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The states |w) are not exactly normalized which would
render them unphysical, of course. However, one finds
from (@) and @) (by implementing C' = 1) that

HA[{w|w)] =1. (6)

By exploiting () and (@) one finds analogously for the
variance

1 4d® +4d3c3 +d*(cy — 1) )
n+1 (14 d?)2 '

HV[(w|w)] =

As defined above, the ¢; are of the order 1, i.e. the HV
of the norms scales with 1/n and becomes small for large
Hilbert spaces. Therefore, the vast majority of the states
|w) are approximately normalized for large n.

The average of the QEV’s of A w.r.t. the ensemble
{|w)} (which is meant to correspond to the above a) is
calculated by exploiting [) and @) (by implementing
C=2A4)

2d + d%c
HA[(w[Alw)] = ngg

(8)
That is, the mean QEV can be adjusted through the
choice of the parameter d. However, the replacement
ensemble is restricted on expectation values not too far
away from zero (i.e. the average expectation value of
the “equilibrium” ensemble {|¢)}) because by sweeping
through all possible d not all possible expectation values
up to the maximum eigenvalue of A are reachable.

The evaluation of HV[{(w|A(t)|w)] turns out to be some-
what more complicated, since we, in general, cannot fully
diagonalize the Hamiltonian and thus do not know A(t)
in detail. However, we are able to perform an estimation
for an upper bound. For this purpose we make use of
the Hilbert Schmidt scalar product for complex matrices
defined as (X,Y) := Tr{X1Y}. Thus, one can formulate
a Cauchy-Schwarz inequality of the form

TH{XTY} < \/TH{XI X} Tr{Y1Y} . 9)

Particularly, one obtains Tr{A(t)A} < Tr{A?}. Evaluat-
ing HV[(w]A(t)|w)] based on @) and @) (by implement-
ing C = A(t)), realizing that Tr{D}? is always positive
and repeatedly applying (@) yields the inequality

HV[(w[A(t)w)] <

“n+1 .
1+ 4dy/cs + 6d2cq + 4d3\/cq &/cacg + d*\/Cacs
GEXSE -(10)

Again, since the ¢; are of the order 1, the upper bound
deceases with 1/n. Thus, the variance () becomes
small for large Hilbert spaces, just like the variance of
the norms (). This result yields two major direct impli-
cations.



First, if one evaluates () at ¢ = 0, one finds that the
majority of the states |w) feature approximately the same
QEV of the observable A for large n. From this property
together with the result that the states |w) are nearly
normalized one concludes that the replacement ensemble
{|w)} indeed approximates the exact ensemble {|¢)} very
well for large Hilbert spaces (with a = HA[(w|A|w)] as
given in ({)).

Second, the upper bound from (@) is valid for any
time ¢. Thus, for large enough systems, the dynami-
cal curves for a,(t) := (w]A(t)|lw) of the vast majority
of pure states from the initial ensemble {|w)} are very
close to each other and thus to the evolving ensemble
average at any time t. Due to the similarity of {|w)}
and {|¢)} this should also hold true for the “exact” en-
semble {|¢)}. Thus, there is a typical evolution for the
expectation values (¢|A(t)|¢) or, to rephrase, there is
“dynamical typicality”. This statement represents the
main result of this paper. Particularly, this typicality is
independent of the concrete form of the dynamics, which
may be a standard exponential decay into equilibrium or
something completely different.

In the following we visualize these predictions for a
model quantum system described by a Hamiltonian of
the form H = Hy + V, where Hy is some unperturbed
Hamiltonian with equidistant energy eigenvalues (num-
ber of states: n = 6000, level spacing: AE = 8.33-107°, A
set to 1), and V' some possibly but not necessarily small
interaction. A is chosen as diagonal in the eigenbasis
of Hy with equally many, randomly placed elements 1
and —1. This is in accordance with the already men-
tioned conditions on the moments ¢; (¢; = 0, ¢ca = 1).
However, this specific form of the Hamiltonian and the
observable A is not crucial for the main results of this
paper concerning the typicality of expectation values. It
is just an example for the numerical illustrations. We
further calculate the dynamical curves of a, ) as gen-
erated by three concrete interactions V' that are chosen
to represent different generic types of dynamical behav-
ior. Thus, the matrix elements of V in the eigenbasis
of Hy (and A) are taken as (i.) random complex Gaus-
sian numbers with V;; = 0,|V;;|2 = 2.25 - 107% (small
perturbation), (ii.) random complex Gaussian numbers
with V;; = 0,|Vi;|2 = 6.25 - 107° (strong perturbation),
(iii.) all identical constants, i.e., V3 = 2.25-107%. We
obtain the dynamics of the a,(t) by numerically solving
the full time-dependent Schrédinger equation). These
interactions give rise to three archetypical evolutions (i.)
an exponential decay into equilibrium (Fig. [[(a)), (ii.)
non-exponential decay into equilibrium (Fig. [L(b)), (iii.)
no decay to equilibrium at all, even in the limit of many
states and weak perturbations (Fig. . The precise
reasons for the emergence of these dynamics are beyond
the scope of this text (for more details see [13]). For a
clarification of the term ”relaxation” in this context refer
to [14].
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In each of the figures the dynamics of a,(t) for three
different pure states of the ensemble {|w)} as initial states
are displayed. Furthermore, the evolution of the ensem-
ble average is shown (averaged over 100 states). To nu-
merically generate {|w)}, the real and imaginary parts of
the amplitudes of the states |¢) (cf. @) w.r.t. the eigen-
basis of Hy are drawn as independent Gaussian num-
bers, similar to the Gaussian Adjusted Projected ensem-
ble (GAP) (see [15, [16]). d is chosen as 0.1. Essen-
tially, one finds that, for all three interactions, the dy-
namical curves of the pure states are close to the average
curve for all displayed times t. Furthermore, the insets
in Figs. [[(a)[T(b)i(c)] show the numerical variance o2 (t)
of the a,(t) (calculated for 100 states), which turns out
to be always smaller than the upper bound given in ([IT).
Thus, all these numerics illustrate and back up our pre-
viously derived analytical results.

We now address further implications. The mean QEV,
i.e., essentially a, can alternatively be reformulated using
the notion of a density matrix as usually done in the
framework of projection operator formalisms

o = HAU)] = HAMT AL l)) = ToABAG) )
11

The HA[|w)(w|] takes the role of the density matrix. Fur-

ther evaluation gives (using the “substitute” ensemble

{lw)}) (see [, 4])

1+ 2dA + d?A?

HAJlw)ol] = =

(12)
For ensembles close to equilibrium, i.e., small d, which is
fulfilled in the examples presented here, one can neglect
the terms which grow quadratically in d. In this case, the
density matrix takes approximately the same form as the
initial state which is often used in projection operator
calculations which aim at determining the dynamics of
expectation values like a(t) ([13]). There, for reasons
given below, the (mixed) initial state is simply taken to
be p(0) = 1/n + cA such that ¢ = a(0). That means,
correct dynamical results from the projection operator
methods based on the above initial state describe the
dynamics of the ensemble average of {|w)}.

From this point of view some consequences on the
applicability of projection operator theories (NZ, time-
convolutionless, Mori formalism etc.), which are stan-
dard tools for the description of reduced dynamics, arise.
These methods have in common the occurrence of an in-
homogeneity in the central equations of motion that typ-
ically has to be neglected in order to solve them. Gener-
ally, the inhomogeneity depends on the true initial state,
it, however, vanishes if the true initial state indeed is of
some specific form determined by the pertinent projec-
tor [L1, [12, [1'7]). For the above mentioned case the above
p(0) is exactly of that form, which means the dynamics
of the ensemble are equal to the dynamics generated by
the pertinent projected equation of motion without the
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FIG. 1: Dynamics of some expectation values correspond-
ing to a set of initial states {|w)}, i.e., (W|A(¥)|w) = aw(t).
The set is characterized by an “common” initial expectation
value, i.e., all |w) yield (w|A(0)lw) =~ 0.2. The figures illus-
trate that the individual evolutions typically stay close to the
average over the set (solid line). The insets show evolutions
of the variances o”(t) which stay accordingly small and re-
main below some analytically predicted upper bound (solid
line), cf. (). The subfigures correspond to different Hamil-
tonians, generating different archetypical types of dynamics:
a.) exponential relaxation, b.) non-exponential relaxation,
c.) non-relaxing.

inhomogeneity. However, the evolution of the ensemble is
typical, this implies that the inhomogeneity, as generated
by most of the true initial states, should be negligible.
On the other hand, there are investigations in the field
of open quantum systems, e.g., [18] and [19], suggesting
that the true initial states may have an utterly crucial in-
fluence on the dynamics, such that, e.g., some correlated
initial states may yield projected dynamics which are en-
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tirely different from the ones obtained by corresponding
product states.

Nevertheless, to rephrase, the results of this paper indi-
cate that in the limit of large (high dimensional) systems
the inhomogeneity should become more and more irrel-
evant in the sense that the statistical weight of initial
states, which yield an inhomogeneity that substantially
changes the solution of the projected equation of motion,
should decrease to zero. Note that this does not contra-
dict the concrete results of [18] and [14].

The above results also shed some light on the rela-
tion of the apparently irreversible dynamics of QEV’s to
the, in some sense, reversible dynamics of the underlying
Schrédinger equation. If a mean QEV as generated by
some initial non-equilibrium ensemble (pertinent density
matrix) relaxes to equilibrium [14] (which can often be
reliably shown [L1]) , then for the majority of the indi-
vidual states that form the ensemble, the corresponding
individual QEV’s will relax to equilibrium in the same
way. Thus, for the relaxation of the QEV’s, the ques-
tion whether or not the initial ensemble truly exists is
largely irrelevant. Of course, there may be individual
initial states giving rise to QEV evolutions that do not
(directly) relax to equilibrium, but, to repeat, for high
dimensional systems, their statistical weight is low.
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We aim at finding a set of quantitative, numerically manageable equations of motion for the
occupation number dynamics in some non-ideal quantum gases featuring, e.g., electron-impurity
scattering, electron-phonon scattering, electron-electron scattering, etc.. To this end we suggest
the construction of a linear(ized) collision term which refers to a coarse grained set of occupation
numbers by means of a projection operator technique. This collision term results as a concrete,

non-singular, finite dimensional rate matrix.

The coarse graining may be chosen to render the

rate matrix as simple as possible, thus facilitating calculations of transport coefficients etc., as we

demonstrate by a simple example.

PACS numbers: 05.30.-d, 05.70.Ln, 72.10.-d, 05.60.Gg

I. INTRODUCTION

There are many suggestions in the literature which ad-
dress the mapping of the dynamics of non-ideal quantum
gases onto Boltzmann equations. However, they often
yield rather formal expressions for the collision terms, in-
volving singular scattering rates, infinitely many dynam-
ical occupation numbers, etc.. This makes them a chal-
lenging starting point for concrete numerical analysis.
We first very briefly (and incompletely) review these sug-
gestions, classified as three main groups of approaches: 1)
”Fermi’s Golden Rule approaches”, ii) ” Green’s-functions
approaches” and iii) ”factorization approaches”. Of
course there are many interconnections between them but
for clarity we keep to this scheme here. (Readers who are
familiar with the subject may simply skip this section.)

i): The square of the interaction matrix element that
”connects” two occupation number eigenstates is here
boldly taken as the weight of a singular, classical transi-
tion rate between those two states, which already implies
a kind of random phase approximation [1]. Furthermore,
it is assumed that the probabilities of the occupation
number eigenstates are and remain such that mean occu-
pation numbers factorize. This leads, e.g., to a scattering
term like (1) where the n’s are mean occupation numbers
(see also [1-3]).

ii): The issue is approached by setting up the hier-
archy of equations of motion for the Green’s functions.
The higher order Green’s functions are then re-expressed
by two-point-Green’s functions using diagrammatic tech-
niques and corresponding approximations. This results
in a scattering term like (1) where the n’s are related
to one-mode-two-point-Green’s functions, i.e., to some

*Electronic address: cbartsch@uos.de
TElectronic address: r.steinigeweg@tu-bs.de
TElectronic address: jgemmer@uos.de

extent interpretable as mean occupation numbers. For
details see, e.g., [4-6].

iii): The starting point are the Heisenberg equations
of motion for the occupation numbers. Iterating those
w.r.t. time and assuming full factorizability and diago-
nality of the occupation number operators at all times
yields an autonomous set of equations for the mean oc-
cupation numbers. This yields a scattering term of the
form denoted by (1). For details see, e.g., [7-9].

(Of course there are much more investigations of Boltz-
mann equations for quantum systems, some explore yet
different approaches to non-ideal quantum gases such as,
e.g.,[10-12], some treat other systems, e.g., [13-15], etc..)

Within the frame of quantum mechanics Boltzmann
equations are routinely given as ny + T;f“ft = TISOI where
Tdrift ool are the drift and the collision term, respec-
tively, and k denotes the (quasi-)momentum. All the
above approaches yield, e.g., for electron-impurity scat-
tering, a collision term of the form

TISOI =27 Z |Vk7i|25(El - Ez)(l *nl)ni(élk - 5116) ) (1)

il

where Ey, E; are the energies of the unperturbed single-
particle modes k,i and Vj_; represents the respective
Fourier-component of the perturbative potential due to
the impurities. The d-function results from considering
a long-time limit. Since the n’s are essentially mean oc-
cupation numbers of (quasi-)momentum eigenmodes the
above equations of motion in this discrete form involve a
number of dynamical variables that scales with the size
of the crystal. This is, of course, numerically impossible
to handle. Furthermore, the "rates” for the individual
collision processes become singular in the long time limit
as mentioned above. These difficulties eventually have
to be cured by some sort of ”coarse graining”, i.e., by a
change of perspective from considering individual occu-
pation numbers to considering sums of occupation num-
bers corresponding to certain sets of modes, represented



by the grains in momentum space. It is in general not
obvious in full detail how this coarse graining has to be
performed for a given, possibly rather complex model and
what additional assumptions are required. And, on top
of that, for many purposes in the context of linear non-
equilibrium physics (, e.g., the calculation of transport
coefficients, etc.), the collision term has to be linearized.

In this paper we thus suggest yet another construction
of a pertinent collision term. Our construction is based
on a time-convolutionless projection operator method. In
a sense it ”compactifies” all the above subtle steps: We
start by specifying an adequate coarse graining in mo-
mentum space, thereby specifying the number of dynam-
ical variables (which equals the number of grains). On
the basis of this graining we define a pertinent corre-
sponding projection (super-)operator. With this projec-
tor we simply perform the time-convolutionless (TCL)
projection operator formalism, which is routinely used
to find an autonomous set of equations of motion for
the variables of interest. (Here these are, up to their
equilibrium values, the joined occupation numbers of the
grains.) This yields a linear(ized) collision term, i.e., a
finite non-singular rate matrix for the joined occupation
numbers of the grains. In this mathematical procedure
no ill-controlled, additional assumptions for the dynam-
ics have to be made. However, in the paper at hand we
concentrate on a leading order truncation of the TCL-
expansion (cf. (2)). Whether or not this is good enough
is a somewhat subtle question but can in principle be
checked by explicit evaluation of higher order terms [16].
The initial graining should be chosen with care, for it may
have an influence on the validity of the truncation and it
determines the concrete form of the rate-matrix. A more
refined graining will facilitate the validity of the trun-
cation (as may be inferred, e.g., from [16]) and produce
a more detailed picture of the dynamics. On the other
hand it will give rise to a higher dimensional rate-matrix.
Thus, to put it in rough words, the graining should be
chosen as coarse as possible but as fine as necessary.

Our paper is organized as follows: First (Sec.IT) we give
a very brief introduction to the results of the TCL projec-
tion operator formalism, again, the reader who is familiar
with the subject may simply skip that. In (Sec.III) we
introduce our models for the non-ideal quantum gases
and specify our projection operator which is especially
constructed to investigate the dynamics of the above
mentioned, occupation number related variables. Then
(Sec.IV) we perform leading order calculations on these
models, namely for impurity scattering , electron-phonon
interaction and electron-electron interaction. Those re-
sult in general but concrete expressions for the transition
rates. Eventually we demonstrate (Sec.V) for the case of
impurity scattering how the graining may be chosen to
yield a collision term for which the relaxation-time ap-
proximation is actually exact. This facilitates the simple
calculation of a diffusion coefficient.
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II. TIME-CONVOLUTIONLESS PROJECTIVE
APPROACH TO RELEVANT DYNAMICS

In this paragraph we give a short introduction to the
TCL projection operator method [17-19]. In general,
the latter is a perturbative projection operator technique
which describes (the) reduced dynamics of a quantum
system with a Hamiltonian of the type H = Hy + AV,
where AV has to be small in some sense. It produces
autonomous equations of motion for the variables of in-
terest (“relevant information”). In order to apply this
method one first has to construct a suitable projection
(super) operator P which projects any density matrix
p(t) onto its relevant part. “Relevant part” here implies
that Pp(t), in spite of being significantly less complex
than p(t), should still contain all variables of interest.
Furthermore, P has to satisfy the characteristic trait of
a projection operator P2 p(t) = P p(t). For initial states
with Pp(0) = p(0) the TCL scheme yields a closed time-
local differential equation for the dynamics of Pp,

SPol) = K(OPA(D),  K() =Y NKilo),  (2)

where the perturbative expansion used in the last equa-
tions is in principle (formally) exact. In this paper we
exclusively focus on initial states which satisfy the above
relation. For a discussion of the legitimacy of this ap-
proach see [19-22].

As already mentioned in the introduction, we further-
more focus on a description to leading order of (2). which
is typically and certainly in our case the second order, i.e.,
we have to determine K(t). A widely accepted indicator
for the validity of the truncation is a clear timescale sep-
aration between the resulting relaxation dynamics and
the decay of the correlation function, the latter being
introduced below.

In the literature [19] one finds

Ka(t) = /Ot dty P L) L(t)P . 3)

where L(t)p = —4[V(t), p] corresponds to the Liouville-
(super-) operator. Here and in the following all equations
are denoted in the interaction picture. For a concrete
application we have to specify the underlying quantum
model and further a suitable projection operator.

III. STRUCTURE OF THE MODELS AND A
PERTINENT PROJECTION OPERATOR

The systems we discuss here may in general be all sorts
of quantum gases, but for clarity and brevity we focus
on the “spinless fermions”- type here. (This refers to



the particles for which the collision term is to be con-
structed.)

H=> exalax+V (4)
LI
Ho
al,ak are electronic creation/annihilation operators in
some momentum eigenmodes and ex denotes the corre-
sponding dispersion relation.

The latter depends on the underlying model which is
assumed to describe the non-interacting electrons, e.g.,
a free electron gas, a tight binding model, etc.. Or an
adequate dispersion relation may be determined from an
advanced solid state method such as density functional
theory, etc..

Here, V refers to different pertinent interaction types,
which we specify and investigate below in paragraph IV.
In detail, these are electron-impurity-scattering, electron-
phonon-interaction and electron-electron-interaction. All
of them are treated as small perturbations (in the sense
of the TCL method).

Now, in order to introduce a pertinent projection op-
erator, we firstly need to define some basic operators.
For the non-interacting many-particle system we may di-
rectly write down the wavenumber (momentum) depen-
dent “single particle equilibrium density operator” on the
mode j as:

P50 = filp, Talay + (1= fi(p, T))azal, (5)

with fj(u, T) = (exp((e(j) — w)/ksT) + 1)~" being the
Fermi distribution. Since we are interested in low tem-
perature regimes we may substitute (approximate) the
chemical potential x by the Fermi energy €. Further we
abbreviate fj(er,T) as fj.

The equilibrium density operator, again for the non-
interacting case, of the total system (, i.e., Hp), p°%, may
be written as the tensor product of the single particle
density operators, i.e.,

p* = Q) oo (6)

We should mention here for later reference that, while
p°Y is strictly speaking just the equilibrium state of
the non-interacting system, it is routinely considered to
describe the equilibrium single particle properties of the
weakly interacting system more or less correctly. Thus,
if single particle observables relax towards equilibrium
due to the interactions (scattering), we expect them to
relax towards values corresponding to p®4

Furthermore, we define an operator A; as

—fj)a}aj f.]a’Ja = af 345 — i (7)

which describes the deviation of the mode occupation

number nj = a}aj from its thermal equilibrium.

A;=(1
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In order to concretize the projector further we must
now introduce the afore mentioned coarse graining in mo-
mentum space. Eventually this means that we have to de-
fine domains in momentum space; we label those regions
by Greek indices (k,n). Different occupation numbers
corresponding to the same region will no longer be inves-
tigated separately from each other, the remaining vari-
ables will simply be the sums over occupation numbers
belonging to the various domains. The concrete choice
of the domains substantially influences the result of the
following considerations, as will become clear in the re-
mainder of this paper. However, at this point we sim-
ply mathematically define operators A* describing the
summed deviations (from equilibrium) of all occupation
numbers belonging to a common domain

F=CA; (8)

jer

Furthermore, we define operators

Dy = Q) " @ (afas — aza)) 9)

i#j

Dj corresponds to a diagonal product operator that
equals the equilibrium density operator on all modes ex-
cept j.

Moreover, we abbreviate the time dependent expecta-
tion value of A" which we are mainly interested in by
d®(t) :=Tr{A"p(t)}, where p(t) is the density operator
which describes the actual state of the system.

With these preliminary definitions we construct a suit-
able projector as follows:

Po(t) = p* + Z Z Dj)d” (t (10)

jer

(Note that a similar projector has recently been used
in the context of investigations on electronic lifetimes in
aluminum [23].)

It is straightforward to prove that this projector in-
deed features the crucial property of a projection opera-
tor, i.e., P? = P. It furthermore obviously captures the
dynamical variables of interest, namely the d".

Before we eventually concretely apply (2) we make the
following approximation for an expression that appears
in the computation of (2):

=V (1), % ~ 0 (11)

The neglected commutator term essentially describes the
dynamics of the equilibrium state of the non-interacting
system. Eventually we are interested in a single particle
observable. As already mentioned above, the equilibrium
state of the non-interacting system is believed to reason-
ably describe single particle observables in equilibrium
even for weakly interacting systems. Since an equilib-
rium state is constant, the above commutator should



not significantly contribute to the relevant dynamics,
thus we drop it. Keeping the term and performing all
following steps eventually yields an expression which can
be explicitly shown to be indeed negligible in the weak
coupling limit. For clarity and briefness we omit this
calculation here.

Now, we explicitly evaluate (2) to leading, i.e., second
order using the above projector. In order to extract from
this equation of motion for operators an equation of mo-
tion for the scalar observables of interest (which are the
d"(t)) we multiply by A" and take a trace:

S B{ATP(0) = THAYG (P} (12)

Realizing that Tr{D;A1} = &1 and [V(t),Ax] =
[V (t), nk], furthermore employing (11) and some invari-

ance properties of the trace, we find after a lengthy but
straightforward calculation:

1) =3 [t g X THDV (. V(0. ]} 1)

Chw(t,t1)

(13)
This is our first main result. Obviously (13) may be
interpreted as a rate equation for the dynamics of the
coarse grained occupation numbers. It thus corresponds
to a linear(ized) collision term. The rates, which are
typically finite and directly computable, are given by
Ry (t) := fot dt1Cyy(t,t1). They may in general be time-
dependent which does not fit in to the standard picture.
But, as they are given by integrals over correlation func-
tions, they can be expected to converge to constant val-
ues after some correlation times under some rather mild
conditions on the model and the graining. For a concrete
example for the evaluation of the rates see Sec.V.

For most routinely considered interactions (and all in-
teractions analyzed in this paper) the particle number
within the specifically addressed system (e.g., electron
system) (N = )", nk) is conserved. Thus

S-S

ken k#n ler

(14)

holds. Exploiting this feature, we may determine the
diagonal rate terms of the rate equation (13) from the
non-diagonal terms by inserting (14) into (13)

Ryp == Ry .

Eall

(15)

Thus, the rate equation (13) may here be classified as a
master equation which is consistent with its interpreta-
tion as a collision term in a Boltzmann equation.
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For the following calculations it turns out to be conve-
nient to reformulate the trace term from (13):

—Te{ D5V (t2), [V (1), nae]]} =
—(Te{V )V (t1)nkDi} + h.c.)
+(Te{V (&) V (t1)Di} + h.c.) (16)

where we have used that D; commutes with ny. Note
that the Hermitian conjugate is of identical form, respec-
tively, except exchanged time arguments.

The physical implications of (13) may become more
transparent if it is applied to concrete models and some
pertinent interactions are inserted. This is done for some
examples in the next Section.

IV. APPLICATION TO MODELS WITH
DIFFERENT INTERACTIONS

A. Electron-Impurity-Scattering

Firstly, we apply the method introduced above to a
quantum gas model with electronic impurity scattering,
i.e., in addition to a periodic crystal lattice potential the
electron is subject to a weak, random non-periodic po-
tential. The latter of course induces the scattering. (One
may think here for example of an Anderson model with
very weak on-site disorder, way down below the critical
disorder, cf. [24].) A corresponding Hamiltonian may be
given by

w
H= anaLan + Z %a};+qak . (17)
n k,q
—_——
Ho el \a

Here W(q) simply denotes the corresponding spatial
Fourier component of the random impurity potential and
Q0 corresponds to the total number of discrete (quasi-
)momenta, i.e., { scales with the volume of the crystal.
The above “interaction term V” has to be inserted into
Eq.(13) to determine the scattering rates R,.(t). We
evaluate the traces in (16) by identifying all contribut-
ing diagonal terms, i.e., terms that contain equally many
creation and annihilation operators acting on a single k-
mode. In doing so it proves to be advantageous that
both D; and ny factorize onto the single k-modes and,
furthermore, are diagonal on each k-mode. After some
straightforward calculation we arrive at

=Te{Di[V (1), [V(t), ]} =
wg‘k (1= fi) - 2eosf (51— @)t — )],
(18)

where we have used W(q) = W*(—q) (, since the inter-
action potential should be real in configuration space).



We finally obtain for the rates

b2 Wk-i)* 1
R, (t) = /0dTh2N;<; Z LI q ) cos[ﬁ(zsi — )7,
1ER,
ken
(19)
with 7 :=¢ — t;.

Note, that the resulting rates are completely indepen-
dent of any equilibrium occupation numbers, i.e, the lin-
ear dynamics do not depend on the position in momen-
tum space at which particles have been added or taken
away. Or, to rephrase, deviations from equilibrium re-
lax all in the same way regardless of whether they occur
above, below, or at the Fermi-level.

B. Electron-Phonon-Interaction

One important mechanism that is commonly be-
lieved to mainly control electronic transport in metals is
electron-phonon-scattering. To investigate this case, we
routinely assume a Hamiltonian of the following form:

w
H= Z gnaLan—i—Z wibgbi—i—(z \/%1) a;fprqakbq—i—h.c.),

k,a
—_———— ——

Ho o1 Ho pn \%

(20)
where b: ,bi are (bosonic) creation/annihilation opera-
tors corresponding to some phonon eigenmodes (labelled
by i) and w; denotes the corresponding phononic dis-
persion relation. This Hamiltonian is of the quantum
gas type we have introduced above (4), but with an ad-
ditional phononic Hamiltonian Hyn. The interaction
V may be viewed as representing processes in which an
electron is scattered under the annihilation/creation of a
phonon such that the complete momentum is conserved.
We choose here to project onto deviations from equi-
librium in the electronic system only, i.e., phononic oc-
cupation numbers are not treated as dynamical variables
but their equilibrium values rather enter as parameters.
To this end we keep the projection operator essentially
as given in (10) but multiply p®@ and Dj by p°® FI the
latter being the equilibrium state of the phononic system
(which in itself is an ideal gas). A corresponding calcula-
tion (which is essentially very similar to the previous one
for electron-defect-scattering) yields

“Te{Di[V (81), [V (£), ]} =

w( figioi+ (1= fi) (L + gi-x))
) COS[%(Ei — ek — wi—k)(t — t1)]
+w( Fie(l+ gs) + (1= fid i)

2 cos[%(ei —ex twk—i)(t —t1)] , (21)

/t 2 W (k — 1)|?
0
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where we have used Tr{p°® Phb:&bq} = gq.

In many pertinent systems, the phonon energies are
considered to be small compared to the electron energies.
Thus, neglecting the phonon energies (wx—; ~ 0) and
again exploiting W(q) = W*(—q), we may further sim-
plify (21) and obtain for the transition rates of Eq.(13)
(K #n)

an (t) =

1
N, Q (1+gx—i+gi—k) COS[FL(Ei—sk)T].

(22)

Thus, according to this approximation, the rate matrix
is essentially of the same form as in the case of impu-
rity scattering, except for the equilibrium phonon occu-
pation numbers. (For another time-convolutionless mas-
ter equation approach to the dynamics of phonon-coupled
systems see [25].)

C. Electron-Electron-Interaction

In this paragraph we apply the above method to a
system featuring electron-electron-interaction. A corre-
sponding Hamiltonian may read

1 w
H = ZanaTnan + 3 Z #aquanakal . (23)
n k.1
JLq
Hoy el \%

The evaluation of the trace term (16) is basically similar
to the previous examples. Nevertheless, identifying all
contributing terms proves in this case to be somewhat
subtle. However, simply following the scheme, we arrive
after some lengthy calculation at

‘ 2
Rnn(t) :/O dThQ—MZZ

ier, 1
ken
(Re(W (i — k)) — Re(W (k —1)))? - %

(A1 = fickr) (X = fi) + ffime1(1 = £1))
cos[%(zsi +e1— ek — Eimkt1)T)

~(Re(W(1 — 1) ~ Re(W(k ~1)))” - oy
(X = firx—1)(X = A1) + fifir— (1 = f3))

1
COS[;L(Ek + &i — Eitk—1 — €1)T) . (24)

Here we have again used that W(q) = W*(—q) and
therefore W(q) + W(—q) = 2Re(W(q)).

Collecting all terms that can be converted into each
other by permutation of creation/annihilation operators
gives rise to the emergence of anti-symmetric interaction



matrix elements. For the electron-electron interaction
the rates contain an additional sum over all states in
momentum space that does not appear in the previous
examples. This makes the computation perhaps more
extensive, but does not cause any principle problems.

V. APPLICATION: DIFFUSION COEFFICIENT
OF THE 3-DIM ANDERSON MODEL WITH
WEAK DISORDER

In this section we aim at finding the diffusion coef-
ficient for a 3-d Anderson model including very weak,
uncorrelated disorder, i.e., such that almost all states are
non-localized, cf. Sec. IV A. To this end we first deter-
mine a pertinent scattering rate matrix. Especially, we
choose a specific coarse graining that yields a rate matrix
which strictly obeys the relaxation time approximation
(cf. [26]) and therefore allows for a simple computation of
a diffusion coefficient. The underlying Hamiltonian has
the form of Eq. (17) (electron-defect-scattering). The
corresponding dispersion relation is given by

ex = —2J(cosky + cosky + cosk,) , (25)

where J is an energy determining the bandwidth
(bandwidth=12J). We focus here on random uncorre-
lated on-site disorder, i.e., the W(q)’s are assumed to
be given by independent random numbers, generated ac-
cording to some distribution. As explained below, for
this setting only the mean square of the W(q)’s eventu-
ally enters the rate matrix, thus for our purposes we do
not even need to explicitly name the type of distribution
here.

At this point, we specify the graining in detail. The
momentum space is firstly divided into domains corre-
sponding to energy shells of equal energy width AE (ac-
cording to the dispersion relation). Then we further di-
vide the energy shells (labelled by F) into gr domains,
such that each of these domains contains equally many
states N which implies equal volumes in momentum
space. Fig. 1 shows an example of this type of coarse
graining for the 2-dimensional case. We assume that the
grains are small enough that the dispersion relation may
be linearized on each grain. Further, we define

— 1
— 112
Whe= 2 WP o (26)
ken

Due to the disorder being uncorrelated we get Wgz, =

W? = const., i.e., W,?R is independent of the domains.
Exploiting this (and routinely the properties of the sinc-
function) we can approximately perform the integration
in (19), thus finding for times larger than the correlation
time the non-diagonal elements of the rate matrix (1 # k)

_27W?2 N

Rnn = TE(sE(n),E(R) ) (27)
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where 6 (), £(x) 18 1 if n and & belong to the same energy
shell and 0 otherwise. So, there are only transition rates
between domains within the same energy shell. Further-
more, due to the specific coarse graining, these rates are
equal for all transitions within one energy shell, i.e., there
is no dependence on 1 and k.

ke

FIG. 1: Sketch of our specific coarse graining in momentum
space for a 2-d Anderson model. Contour lines of equal en-
ergy define energy shells of equal energy width AFE. Within
two exemplary shells the full detailed graining is displayed:
the shell is orthogonally partitioned into gr domains of equal
area. This amounts to an equal number of states per domain.

The total number of states within some energy shell
E, which we label by Ng, is Ngg = Ng. As already
mentioned, the diagonal terms of the rate matrix may be
obtained from the master equation property (Eq.(15)).
By means of the abbreviation

271W?2 Ng
E . _
R = AL (28)
the rates may be eventually written as
RE
RE = — — 6, .R” . 29
nK JB s ( )

To repeat, the non-diagonal elements of this rate ma-
trix are all equal and thus, this specific graining yields
symmetric detailed balance. As well-known the equi-
librium state, i.e., equilibrium set of ”grain occupation
probabilities” (mathematically: the eigenvector belong-
ing to the eigenvalue 0) for this type of master equation
is the uniform distribution. The corresponding vector of
probabilities (all concentrated at the energy E) reads:

— 1
PO : PO,,Ii - — (30)
9k

Furthermore, all other states X which are orthogonal to
the equilibrium state (XFPy = 0) span the (highly de-
generate) eigenspace of the rate matrix with eigenvalue



—RF. Thus all deviations from equilibrium at energy
E relax exponentially with a rate R¥. This is precisely
what is called the relaxation time approximation [26].
Having found this rate matrix we are all set for the cal-
culation of the corresponding diffusion coefficient. There
are several approaches to the derivation of a diffusion
coefficient from a linear(ized) Boltzmann equation. Here
we follow [15] and references therein by using the formula

D = —v,R, v P, (31)

where D is the diffusion coefficient, v, v, are the veloci-
ties corresponding to the respective momenta, R;Kl is the
(pseudo-)inverted rate matrix (neglecting the null-space)
and P? denotes the equilibrium distribution. For the
velocities v,, we routinely plug in the slope of the disper-
sion relation in, say, z-direction at the respective grains
k (group velocity). These slopes are approximately con-
stant within one grain, given one employs the above men-
tioned graining. Due to the symmetry of the dispersion
relation the vector v, PO does not have any overlap with
the null-space of the rate matrix, ie., Y Plv.P! = 0.
Hence R;ﬂl from (31) may simply be replaced by —1/RE,
i.e., the inverse of the eigenvalue of the eigenspace that
is complementary to the null-space. Hence, we can eval-
uate formula (31) and eventually find for the diffusion
coefficient at energy F

1 11
Dp=— S 02— = — 17 32

Thus the (shell-specific) diffusion coefficient is completely
determined by the total decay rates RF and the averaged
squared velocity in a-direction v2. This expression (32)
may easily be evaluated using any standard computer.
The result is displayed in Fig.2.
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FIG. 2: Energy dependent diffusion coefficient for a 3-d An-
derson model with weak disorder according to formula (32)
(dotted curve). The structure is much richer than the one
obtained from a free-electron approximation (solid line).
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Obviously the spectrum of diffusion coefficients fea-
tures a non-trivial structure. A ”free-electron approxi-
mation”, i.e., replacing the true dispersion relation by a
pertinent parabolic one, makes the calculation much eas-
ier (can be done analytically), but only describes the true
diffusion coefficients at the outer edges of the peaks more
or less correctly.

VI. SUMMARY AND OUTLOOK

We computed linear(ized) master equations describing
the dynamics of some coarse grained set of occupation
numbers in non-ideal quantum gases, featuring i) im-
purity scattering, ii) electron-phonon scattering and iii)
electron-electron scattering, by means of the TCL projec-
tion operator method. The resulting rate matrices are of
finite dimension and contain only finite rates. Their con-
crete forms, including their dimensions, depend crucially
on the way the coarse graining is performed (and on the
concrete models of course). The rates are given as sums
or integrals of pertinent functions over domains in (quasi-
Jmomentum space. They may in general efficiently be
numerically evaluated using moderate computing power.
The choice of a specific graining may yield an especially
convenient form of the rate matrix, e.g., all non-diagonal
entries equal, etc.. Such simple forms may facilitate fur-
ther considerations based on those rate matrices such as,
e.g., computation of diffusion coefficients. As an instruc-
tive example we presented the calculation of the diffusion
coefficient for a 3-d Anderson model with weak, uncorre-
lated disorder. The expressions for the rate matrices may
also serve as a basis for computations of diffusion coeffi-
cients in other systems. One may think of electronic dif-
fusion in bulk metals (primarily due to phonon coupling)
but also of electronic diffusion in low dimensional systems
such as nanowires embedded in bulk insulators. Further-
more, diffusion coefficients in low dimensional systems
controlled by particle-particle interactions may be ad-
dressed (cf. [27]). The diffusion coefficients may be con-
verted to conductivities using a generalized Einstein re-
lation (cf. [28]). Thus the results presented here may be
used for certain concrete transport-theoretical investiga-
tions. The feasibility of such an approach is supported by
the fact that a similar approach has been demonstrated
to yield reasonable results for electronic lifetimes in alu-
minum [23].
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We consider models of quasi-1-d, planar atomic wires consisting of several, laterally coupled rows
of atoms, with mutually non-interacting electrons. This electronic wire system is coupled to phonons,
corresponding, e.g., to some substrate. We aim at computing diffusion coefficients in dependence on
the wire widths and the lateral coupling. To this end we firstly construct a numerically manageable
linear collision term for the dynamics of the electronic occupation numbers by following a certain
projection operator approach. By means of this collision term we set up a linear Boltzmann equation.
A formula for extracting diffusion coefficients from such Boltzmann equations is given. We find in
the regime of a few atomic rows and intermediate lateral coupling a significant and non-trivial
dependence of the diffusion coefficient on both, the width and the lateral coupling.

PACS numbers:

I. INTRODUCTION

The strong desire for an ongoing miniaturization of
electronic circuits has led to the idea of molecular elec-
tronics. Very roughly molecular electronics include all
implementations of basic electronic functional devices on
the scale of atoms or molecules. The most basic device
surely is a wire, meaning a system in which an electronic
current may flow as a response to an electric field in a
prescribed direction. Various implementations of such
atomic wires have been suggested and experimentally
explored. Some suggestions are based on the concept
of running current through chemically synthesized, me-
chanically more or less chainlike molecules [1]. Others
are essentially continuations of existing lithographic tech-
niques, imprinting extremely small structures into semi-
conductors [2]. Yet another scheme relies on the forma-
tion of chains or rows of atoms or molecules, most likely
on the surface of some substrate. The current is then
supposed to flow from molecule to molecule (and not or
only negligibly into the substrate). The formation of such
linear molecular structures is thought to be achieved by
self-assembly, possibly influenced or controlled by struc-
tures on the substrate surface [3]. Present experimental
efforts mainly concentrate on the sufficiently controlled
fabrication of the respective system that represents the
wire. Mechanical and chemical stability are still to be
considered. So far not much experimental data on the
conductivities of such wires is available, except for the
implementation of the single molecule contacted at both
ends [4, 5].

Nevertheless we address the question of transport
properties of some “ideal” atomic wire of the “self-
assembled-atoms-type” in the paper at hand. Our in-
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vestigations are based on an extremely simplified model.
We consider a periodic, infinitely long, linear structure of
atoms. The structure consists of several, parallel, mono-
atomic chains of atoms. The chains are coupled to each
other with some coupling strength. Primarily for sim-
plicity we consider the electrons on the wire as mutu-
ally non-interacting which makes the isolated wire itself
a ballistic conductor. However, there are investigations
indicating that one-dimensional structures tend towards
ballistic behavior even if the particles are interacting, due
to integrability [6-9]. In our model the ballistic electronic
system is coupled to phonons, which may be viewed as
being due to the lattice dynamics of the substrate. As ex-
pected this phonon-coupling is found to induce diffusive
transport behavior. We calculate the diffusion coefficient
in dependence on the number of parallel rows and the
coupling between the rows finding a strong dependence
on both.

This paper is organized as follows. In Sec. II we firstly
introduce the above quantum model of the wire in de-
tail. In Sec. III we formulate, based on the model, a
linear(ized) master equation for the dynamics of some
variables which correspond to (coarse grained) occupa-
tion numbers of electronic momentum modes. This is
done on the basis of an approach from [10]. In Sec. IV
we suggest an approach for calculating a diffusion coef-
ficient from a pertinent, linear Boltzmann equation. By
means of the previously formulated master equation we
set up such a linear Boltzmann equation describing the
electronic dynamics of our model. Finally, in Sec. V we
numerically evaluate the obtained formula for the diffu-
sion coefficient and analyze the dependence of the diffu-
sion coefficient on the number of neighboring rows as well
as on on the lateral coupling strength between neighbor-
ing rows. We close with summary and outlook.



II. INTRODUCTION OF THE MODEL

Routinely we open the considerations by specifying
the underlying quantum model on the basis of which we
below analyze the dynamical properties of the atomic
wires. The Hamiltonian consists of three parts: an elec-
tronic part Hpel describing the hypothetically unper-
turbed electrons on the wire, a phononic part Hy i rep-
resenting a standard set of decoupled phononic modes
and an interaction V which couples the electrons to the
phonons:

B
H = Zzsjvra},rajWJrZwibIbi
j r=1 i

———
Ho,el Ho pn
B
Wis(q) +
+ (Z Z Ut qr0k,sbgth.c.), (1)
k,q r,s=1 \/ﬁ

\%4

with 2 = BL.

A real space sketch of the electronic part is depicted
in Fig. 1. We assume a quasi-1-d, planar, cubic lattice of
atoms that forms the wire. Concretely we assume that
the electrons may occupy localized (Wannier) states at
those lattice sites, i.e., a standard tight-binding descrip-
tion. The wire now consists of a finite, possibly small
integer number B of parallel rows of atoms. The motion
of the electrons along the rows is controlled by nearest
neighbor hopping matrix elements of strength 7). The
hopping from one row to the adjacent row(s) is controlled
by matrix elements of strengths 7', . The electrons on the
wire are assumed to experience no mutual interactions,
i.e, without any further coupling their dynamics would
be simply ballistic. Since the wire is furthermore strictly
periodic along the rows, its Hamiltonian may be denoted
based on the dispersion relation ¢j . as done in (1). Here
€;,r denotes the one-particle-energy corresponding to the
lattice-momentum j and the “branch” r. Due to the B
parallel rows the dispersion relation features B branches
or “bands”. Fourier transforming the Hamiltonian de-
scribed by Fig. 1 essentially yields

gjr = —2Tcosj+T &, , (2)
—_——
€

where the concrete e, have to be determined from the
subsequent diagonalization of a BxB-Matrix. (For an
B = 2 example see Fig. 2.) Hence, the bandwidth of
each band (which we label Eg) is determined by the lon-
gitudinal coupling Ep = 47T), whereas the displacement
T e, scales linearly with the lateral coupling 7', .

The phononic dispersion relation w; may take some
standard form for acoustic or optical phonons. Below it
will turn out that the details are irrelevant within the
frame of our considerations as long as phononic energies
are much smaller than electronic energies, i.e., w; << €j,-.
The latter will be assumed.
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The interaction V is also of standard lowest order form,
it may be viewed as corresponding to an electron scat-
tering under creation or annihilation of a phonon, with
the phonon essentially compensating for the electronic
momentum change.

]
i

T Ty

T
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FIG. 1: Sketch of the quantum model we use to describe the
properties of an atomic wire. Circles denote localized elec-
tronic states on a regular (quasi-)1-d lattice in configuration
space. Lines indicate couplings with strength T} parallel and
strength T, perpendicular to the wire.

III. FORMULATION OF A MASTER
EQUATION FOR COARSE GRAINED
OCCUPATION NUMBERS

As a first step in our analysis we now aim at mapping
the quantum dynamics of some set of “coarse grained
occupation number deviations” in momentum space on
a master equation. To this end we follow directly the
scheme described in [10]. For an overview over mappings
of quantum dynamics onto Boltzmann equations also see
[10] and references therein. This scheme produces a linear
master equation for a finite number of variables. These
variables are sums of deviations of electronic occupation
numbers from their equilibrium values. To make this well
defined we have to specify which occupation number de-
viations should contribute to a certain sum. Only with
this specification the scheme from [10] may be imple-
mented. We call all modes, the occupation number de-
viations of which contribute to a certain sum, a “grain”.
Thus the number of variables as well as the concrete rates
from the above master equation depend on this graining.
Since this graining is to some extent arbitrary we must
make sure that eventually our diffusion coefficient con-
verges for a systematic refinement of the graining. This
convergence then in turn sets the scale for a “correct”
graining. In the following we first describe our choice
for the graining and then give precise definitions for the
above dynamical variables of the master equation.

Our graining is realized by primarily partitioning the
momentum space into M “energy shells” of equal energy
width AFE. We then define the grains within one shell
by means of the intersections of the electronic disper-
sion relation with the respective energy shell as depicted
exemplarily in Fig. 2. We label the entity of all grains
serially by Greek indices (, e.g., k). (This may corre-
spond to a consecutive numbering from left to right (see



Fig. 2) within one shell, which is then accordingly con-
tinued through the shells with increasing energy.) Note
that these grain indices already contain the information
to which band the respective grain belongs, that is, the
band indices r are absorbed into the grain indices. As
mentioned above the necessary refinement of the graining
is eventually determined by the convergence of the dif-
fusion coefficient. However, we generally focus on grains
that are small enough to allow for a linearization of the
dispersion relation on each grain.
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FIG. 2: Sketch of our specific coarse graining in momentum
space for a model featuring B = 2 rows, i.e., the dispersion re-
lation consists of 2 bands. Parallel dashed lines define energy
shells of equal energy width AFE. Rectangular boxes mark
the individual grains. The Fermi edge is indicated by a thick
line. Some shells contain grains from one band, some from
both bands. Other model parameters: Ep = 3eV, T1 = T,
M =10 energy shells and half filling (¢ = 2.25eV).

Now we give a mathematical definition for the above
deviations of electronic occupation numbers from their
equilibrium values which are summed over a grain to form
a dynamic variable of the above master equation. An
operator representing such a deviation is given by

3)

where fj - is the equilibrium value of the electronic occu-
pation number. Since we are interested in weak electron-
phonon coupling we may take fj, from the Fermi distri-
bution for the occupation numbers of the isolated elec-
tronic system. Since we are furthermore interested in low
temperature regimes we may routinely replace the chem-
ical potential i in the corresponding Fermi distributions
fi0(, T) = (exp((g5,» — p)/kpT) + 1)~! by the Fermi
energy €p. With the help of such “individual mode de-
viation operators” A;, the deviation operators for the
whole grains A" may simply be defined by the corre-

sponding sums
AY=D A

Jrer

= al g :
Ajr = s rQj,r — Jirs

(4)

Ef
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where the sum of course runs over all modes belonging to
some grain. The dynamical variables of the above mas-
ter equation are then defined as the expectation values of
the grain deviation operators d”(t) for the actual quan-
tum state p(t) of the full system evolving according to
the coupled Hamiltonian H, i.e., d®(t) := Tr{p(t)A"}.
Naturally, the dynamics of p(t) are not directly accessi-
ble. But, as explained above, the considerations in [10]
(which we, for brevity, do not intend to repeat or discuss
here) provide a scheme by means of which the dynamics
of the d"(t) may be mapped onto a linear master equa-
tion. The scheme is believed to be valid as long as the
electron-phonon coupling may be considered a small per-
turbation to the electronic system Hge1). Thus, simply
applying this scheme casts the dynamics into the form:

d'(t) =Y Rye(t)d*(t) = Y Ruy(t)d"(t) . (5)

KN Eall
The concrete expressions of the rates may also be read
off from the results of [10]. As mentioned above we focus
here on the case of negligible phonon energies which is
explicitly treated in [10]. Exploiting this leaves us with

Rw(t):
L2 (Wi (k — 1)
/OTWNMSXGZ q (14 9x—i+9i—x)
k,,7‘€7;

1
. COS[E(ELS —Ex,r)T],

(6)
where N, denotes the number of states within the grain
k and gq is the equilibrium occupation number of the
phonon mode q, as taken from the Bose distribution for
the isolated phononic system Hy pn. Basically, the rates
appear as integrals over some correlation functions, which
usually decay within some correlation time 7., we gener-
ally assume the latter to be short compared to the time
scale of the relaxation dynamics (weak coupling limit).
Further, we define

1
2 = — )2 . . .
an 7.; |Wrs(k 1)| (1+gk71+917k) NKNU . (7)
l;,reﬁ

Using this abbreviation and routinely exploiting the
properties of the sinc-function as well as the lineariz-
ability of the dispersion relation on each grain, we can
approximately perform the integration in (6), finding for
times larger than the correlation time for the rates

2r2 N
Run = == A OBO.BG) - (8)
The 0g(y),E(x) is meant to indicate that transitions only
occur between grains from the same energy shell, i.e.,
all other rates vanish. Note that the resulting rates are
completely independent of the electronic equilibrium oc-
cupation numbers, i.e, scattering above, below, or at
the Fermi-level is in this approximation qualitatively the
same.




IV. CALCULATION OF A DIFFUSION
COEFFICIENT FROM A LINEAR BOLTZMANN
EQUATION

Eventually we intend to calculate the diffusion coeffi-
cient from a type of linear Boltzmann equation. To this
end we are simply going to interpret the rates from (8)
as the entries of the corresponding collision term. But
even if the Boltzmann equation is fully defined we have
to tell how to calculate a diffusion coefficient from it.
There are several approaches to the derivation of diffu-
sion coeflicients from linear(ized) Boltzmann equations
[11-14]. However, since we are here confronted with a
subtlety that may not occur in other cases, namely a
non-symmetric rate matrix, we suggest an alternative
approach to the diffusion coefficient. This approach is
outlined in the following.

We start from a linear Boltzmann(-like) equation de-
scribing the dynamics of some probability distribution
pn(x,1) in a velocity discretized one-particle phase space:

pn(x,t) = —v, Vypp(x,t) + Z Rywpu(x,t) . (9)

The two addends represent the drift and the collision
term, respectively. The velocity v appears as depending
on some index 7. Eventually this index will be iden-
tified with the quantum mechanical momentum mode.
After Fourier transforming with respect to x we find
for the (Fourier transformed) probability distribution

pn = pn(a,t)

pn = Z(*qunénn + Ry )pr (10)
~—— ~~
Ry R

where the drift term R; now enters as a diagonal matrix
and the collision term R as a non-diagonal matrix with
respect to the above representation.

Eq. (10) is formally identical to a non-specific, abstract
time dependent Schrédinger equation where Ry + R cor-
responds to some Hamilton operator. However, since
Ry + R is not Hermitian, eigenvalues may (and will)
not be real. Furthermore, eigenstates represent spatial
particle-density waves with wavevectors q which decay
mono-exponentially. Such a behavior is in accord with
diffusive transport. The corresponding decay constant is
given by the imaginary part of the corresponding eigen-
value. For arbitrarily small q (long wavelengths) one
may treat the drift term R; as a small perturbation to
the collision term R. Therefore, in order to find the decay
constant, we may calculate corrections to eigenvalues of
R induced by R; via a procedure that is essentially anal-
ogous to standard time-independent perturbation theory
as given in textbooks. In doing so, the eigenvectors of
R represent the eigenstates of the unperturbed Hamilto-
nian. The eigenvector Py of R featuring the eigenvalue
zero corresponds to the total, isotropic equilibrium dis-
tribution in the above phase space. Thus, assuming that
the evolving distribution that corresponds to a diffusion
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process exhibits locally (with respect to real space) more
or less the equilibrium distribution with respect to veloc-
ities (momenta), we have to analyze the decay dynamics
of ]30 induced by R;. In other words we have to calculate
the correction to the eigenvalue of P,. Before going in
any detail we note that the second order correction scales
as o q2. Thus, in case the first order vanishes, the decay
constants for the corresponding density waves will scale
as < q2 as well. The latter dynamics represent a solution
to a diffusion equation with a diffusion coefficient given
by the prefactor of the g3-term of the decay constants.
Thus, calculating the second order correction to ﬁo may
and will turn out as being equivalent to calculating the
diffusion coefficient.

Nevertheless, as already mentioned above, we en-
counter here the difficulty that the collision term R is
in general non-symmetric and therefore the eigenvectors
of R, denoted by {P;}, are not necessarily orthonormal.
This problem may be dealt with by introducing a dual
basis {P'} such that

- . -

PjPi = 5ji . (11)

Like, e.g., in the context of relativity, the dual basis is
constructed by means of some metric tensor G;; featuring

P =GP . (12)

A straightforward calculation yields for the inverse of the
metric tensor

Gl =P P. (13)

That is, its matrix elements are simply given by the scalar
products of the eigenvectors of R. For the construction
of the dual basis G~ has still to be inverted of course.

Within this framework we are finally able to determine
the corrections to the eigenvalue zero. As already out-
lined, we hereby follow precisely the scheme of standard
time independent perturbation theory, except for replac-
ing basis “bra”-vectors by vectors from the dual basis.
For the eigenvalue correction (to the eigenvalue of 130,
i.e., zero) to first order we thus obtain

Ey = —iqP%P, , (14)

where v is a diagonal matrix in the matrix representa-
tion used in (10) with the corresponding velocities v, as
diagonal elements, i.e., it is given by Ry = —1qov. If the
system in question features full spatial mirror-symmetry
(as our atomic wire system does) the eigenvectors I3j of

R as well as their dual counterparts pi separate into two
symmetry classes, symmetric and antisymmetric. Those
two classes do not mix or overlap (in the sense of a regular
scalar product). Since ]30 and P° belong to the symmet-
ric class but ﬁﬁo belongs to the antisymmetric class, the
first order correction E; vanishes. As outlined above this
is exactly what is required for the corresponding solution



of the Boltzmann equation in order to describe diffusive
dynamics at all. Thus we may indeed extract the diffu-
sion coeflicient from the second order. A straightforward
calculation yields for the latter

Ey

D = 7

= PRy vePo s (15)

where R™! corresponds to the inverse matrix to R ne-
glecting the null-space.

Thus we eventually found a diffusion coefficient de-
scribing a diffusive class of solutions of a velocity-
discretized, linear Boltzmann equation. Or to rephrase:
given a specific linear Boltzmann equation we may calcu-
late the corresponding diffusion coefficient based on (15).
Thus, in our case we now have to specify a pertinent
Boltzmann equation, i.e., the v, and R,,. Of course we
do that on the basis of the considerations in Sec. III. We
formulate a Boltzmann equation which is discretized ac-
cording to the previously described graining. Concretely
we identify the v, with the slope of the dispersion re-
lations at the centers of the corresponding grains. This
is the standard concept of identifying particle velocities
with group velocities. The scattering rates R, are taken
from (8). With those allocations the Boltzmann equa-
tion is fully specified. However, since the rates as given
in (8) only give rise to transitions within an energy shell,
the dynamics completely decouple with respect to energy
shells. Due to this decoupling the equilibrium state ]30 is
not completely determined by the Boltzmann equation,
the latter does not fix the equilibrium particle numbers
for full shells, it only sets the distribution onto the grains
within one shell. Thus we have to pick a ﬁo in accord
with the Boltzmann equation but additionally with rea-
sonable overall particle numbers assigned to the shells.
Here we do that based on the standard idea of transport
being due to particles above the Fermi edge and due to
holes below. Thus we weigh the equilibrium distribution
within the shells by the probabilities of finding holes or
particles, respectively at the corresponding energies. Do-
ing so we find:

Py: Py, o f(E,T)N, (16)
for E > €f and

Po:Powx (1—f(E,T))Nx (17)
for E < e¢. This construction ensures that the diffusion
coefficient is dominated by processes occurring near the
Fermi energy for common temperatures which appears
physically reasonable. Since the diffusion coefficient as
given in (15) involves the dual counterpart of the equi-
librium distribution, an overall prefactor, i.e., the total
number of particles does not alter its value (, hence such a
prefactor is not specified above). This also appears phys-
ically reasonable. With this choice for the equilibrium
distribution all quantities in (15) are eventually speci-
fied.
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V. NUMERICAL COMPUTATION OF THE
DIFFUSION COEFFICIENT

In this paragraph we concretely determine a diffu-
sion coefficient for the model describing the atomic wire
as introduced in Sec. IT by explicitly and straightfor-
wardly evaluating formula (15). The respective compu-
tations may be done on standard computers. The nu-
merical effort of course depends on the finesse of the
chosen/necessary graining, however most of the diffusion
coefficients presented below have been found within min-
utes of computation time.

The calculations mainly aim at describing the typi-
cal, characteristic dependence of the diffusion coefficient
on two crucial system properties, i.e., the width of the
atomic wire and the lateral coupling; we do not intend
here to determine diffusion coefficients with extreme (nu-
merical) precision or to describe concrete experimental
realizations in great detail.

Along those lines the bandwidth of the electronic dis-
persion relation is chosen as Ep = 3eV, i.e., T = 0.75eV.
Furthermore, we apply a temperature of 300K. In this
case the equilibrium distribution By is mainly concen-
trated around the Fermi energy, i.e., mainly the grains
belonging to the shells in the vicinity of the Fermi edge
contribute to the diffusion coefficient. Furthermore, we
exclusively focus here on half-filling situations. For sim-
plicity we assume that the electron-phonon coupling el-
ements W,5(q) from (1) show no strong qg-dependence
and also that there is no decisive dependence on the band
indices 7, s, i.e., we consider all momentum modes as be-
ing equally strongly coupled, no matter which grain they
belong to. Consequently, we set W,s(q)? = W? with
W = 0.03eV, thus weak coupling is implemented in the
sense of electron-phonon coupling being much smaller
than the electronic bandwidth. Additionally, also for
simplicity, we set the phononic dispersion to a constant
with w; = 0.03eV. This satisfies the above mentioned
requirement of phonon energies being much smaller than
electronic energies.

As outlined above, we expect the diffusion coefficient to
converge towards some value for finer and finer grainings.
We clearly observe this feature in the calculations. So,
all plotted diffusion coefficients refer to in this sense con-
verged values, i.e., are taken from sufficiently fine grain-
ings which here means about 100 shells per bandwidth
Ep. This amounts to a total number of grains g ~ 200B5.

Fig. 3 shows the resulting diffusion coefficients for dif-
ferent widths of the molecular wire, i.e., different number
of parallel rows B, for two lateral couplings 7', = 27T and
T, =Ty.

One finds that the corresponding diffusion coefficients
for T| = 2T, come out rather discontinuous and show
large jumps for increasing width. In fact, the diffusion co-
efficient becomes very small (almost 0) for certain widths,
e.g., T\ = 2T}, 2 rows). This especially occurs when the
slopes of the dispersion relations near the Fermi edge are
very small, i.e., almost 0, in one or more bands. In such



a case the velocities v, become small and the rates R,
become large thus giving rise to a small diffusion coeffi-
cient.

For T’y =) one finds a relatively smooth, continuous
curve without such distinctive jumps as for 7, = 27.
However, in both cases we observe a dependency of the
diffusion coefficient on the width of the atomic wire,
which has to be classified as a finite size effect. Of course
this effect should vanish in the limit of infinitely large
widths B — o0, i.e., the diffusion coefficient is expected
to become constant, since the model then passes into a
regular 2-d lattice. The plots in Fig. 3 suggest such a
convergence at a width of approximately 50 rows and
are therefore in accord with the above educated guess.
Although a numerical verification was possible we omit
such a calculation here for it would be numerically rather
costly.

From the plots in Fig. 3 one may infer that the ”dis-
continuity” of the diffusion coefficient with regard to the
width of the molecular wire seems to crucially change
with varying lateral coupling 77, .

This feature is further analyzed in Fig. 4 which shows
the dependence of the diffusion coeflicient on the lateral
coupling T’ for several numbers of rows (2 to 6).

According to these graphs the diffusion coefficient
drops for a all analyzed widths when 7’| is increased from
0, slightly faster for larger widths. As already observed
in Fig. 3 the diffusion coefficients here decrease partly to
very small values, but then jump up at certain lateral
coupling strengths to values which vary significantly for
different widths. Recall that T} determines the displace-
ment of the different energy bands. The jumps occur
whenever a band edge is driven through the Fermi edge,
since the slope of the dispersion relation is 0 at the band
edges. Especially note that these jumps cause a signifi-
cant spreading of the curves above T'| &~ 1.3T], i.e., when
the lateral coupling becomes stronger than the longitudi-
nal (which is in accord with the discontinuous curve for
the in this sense large enough lateral coupling 7', = 27T,
displayed in Fig. 3).

VI. SUMMARY AND OUTLOOK

We investigated diffusive transport behavior of elec-
trons in atomic wires, described on the basis of some
pertinent quantum model. The rather simplified model
is meant to schematically describe planar atomic wires
with a width of a few atoms, formed, e.g., on a crystal sur-
face (or embedded in some crystal bulk). The electrons
within the wire are taken to be mutually non-interacting,
diffusive behavior is solely induced by coupling to the
crystal phonons. To this end we firstly computed a lin-
ear master equation describing the dynamics for some,
with respect to momentum space, coarse grained occupa-
tion numbers, hereby closely following an approach from
[10]. The resulting rate matrix is then interpreted as the
collision term of a pertinent linear Boltzmann equation.
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FIG. 3: Plot of the diffusion coefficient D against the number
of rows, i.e., the width for T, = 27) (black dots) and T = T,
(white triangles). The plot is normalized to the D obtained
for 1 row, denoted by Di;. Other parameters: Ep = 3eV,
T = 0.75eV, T' = 300K, half filling.
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FIG. 4: Plot of the diffusion coefficient D against the lateral
coupling 7', for different widths, i.e., different numbers of
rows, according to the legend. The plot is normalized to the
D obtained for 1 row, denoted by D;. Other parameters:
Ep = 3eV, T = 0.75eV, T = 300K, half filling.

Furthermore, we analyzed solutions of linear Boltzmann
equations which can be characterized as representing dif-
fusive transport dynamics. An explicit expression con-
necting the diffusion coefficient to the parameters of the
Boltzmann equation is given. Based on this formula we
numerically computed diffusion coefficients for wires of
different types. In particular, we investigated the de-
pendency of the diffusion coefficient on the width of the



atomic wire as well as the dependency on the lateral cou-
pling strength between neighboring rows. We found that
the resulting diffusion coefficient varies significantly and
non-regularly with the width. If the lateral exceeds the
longitudinal atomic coupling within the wire, the diffu-
sion coefficient exhibits large jumps with respect to vary-
ing widths. This feature may be clearly classified as a
finite size effect. Concretely the diffusion coefficient may
become very small and even nearly vanish for certain
combinations of widths and lateral couplings. There is
also a rather strong dependence on the lateral coupling
for fixed widths showing jumps for strong lateral cou-
pling. The corresponding curves differ significantly sub-
ject to the width. Thus, to summarize this results: the
diffusion coefficient depends strongly and in a non-trivial
way on both, the wire width and the lateral coupling.
By using a generalized Einstein relation [15] the dif-
fusion coefficients may be converted into conductivities,
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which would probably be better accessible by experi-
ments. Therefore, the approach introduced here may
serve as a basis for concrete transport-theoretical ana-
lyzations to be performed in the near future.

To obtain more realistic quantitative results, the model
parameters used in this approach may be better ad-
justed to some concrete (experimental) realizations, e.g.,
a more realistic electron-phonon coupling, possibly in-
cluding electron-electron interactions, etc..
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