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Abstract: According to the information processing paradigm in the Cogni-
tive Sciences, one of the nervous system’s most important functions is to encode
information about the environment. Understanding the neural code means un-
derstanding the relationship between brain states and real events in the outer
world.

In this work, a probabilistic framework for encoding (i.e., mapping events
to neural response) and decoding (i.e., reconstruction of events from neural re-
sponses) of neural activity is presented and applied to theoretical and empirical
data. Reconstruction is based on a Bayesian filter method, allowing the propa-
gation of multi modal densities and the use of non-linear stimulus dynamics.

The model is tested against empirical data recorded from rat primary visual
cortex. Cells in this area are reported to be orientation-selective and their neural
response characteristics can be learned by presenting oriented gratings to the
rat’s eye. The learned firing model is then used to reconstruct an unknown
random walk stimulus from neural activity.
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1 Introduction

According to the information processing paradigm in the Cognitive Sciences, one
of the nervous system’s most important functions is to encode information about
the environment. It is one of the main goals of computational neuro science
to explore how brain states come to represent and are altered by information
present in the environment [35].

In this work, a probabilistic framework for neural coding and decoding of
visual stimuli is applied to and tested against experimental data recorded from
rat primary visual cortex.

1.1 The Neural Code

Understanding the neural code means understanding the relationship between
brain states and real events in the outer world. For example, how does the
brain state change when sensory signals reach the central nervous system, motor
actions are performed or changes of internal states (e.g. attention) occur? The
first problem in quantifying brain states with respect to a certain event is to
find those entities of the brain that play a significant role in encoding it.

In the discourse of research on the neural code, different opinions have given
raise to an ongoing intense discussion. Existent main stream theories claim
[5, 21, 17] that:

• a part of the neural code can be found in spike trains of neurons, that
is, lists of discrete times where the neuron has produced an action poten-
tial. Further information could be coded by complex dendritic processes
or metabolic processes in attached glia cells, both generally going along
without the production of spikes.

• different spike trains are generated for repeated presentations of the same
event. This means the neural code appears to be stochastic. Although
a complex neural system could still be deterministic in its nature, only a
conditional probability of a neural response, given a certain event, can be
measured over multiple trials, rather than a one-to-one mapping between
event and response. In section 3.1, potential sources of stochasticity are
discussed.

• information is usually encoded by neural populations (population coding)
rather than single cells.

However, it is still topic of debate [5] whether or not
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• correlations of spikes within a spike train carry any relevant information
in terms of representing an event. While the existence of refractory and
bursting behaviour of neurons shows that spikes are not generated inde-
pendently of each other, it is not clear whether or not these characteristics
carry information necessary for decoding [21, 5].

• correlations of neurons within a population carry any relevant information
in terms of representing an event. Due to synchronisation effects, neurons
of a population can be highly correlated. However, whether inter cell
correlation has a positive or negative impact on coding accuracy is case-
dependent and whether these effects are actually used by the brain, is
questionable [4, 1].

• firing rates (rate code) or exact spike times (temporal code) should be
considered. Regarding the rate code of a single neuron, precise temporal
information about the spike times is lost in favour of a firing rate that
is expressed as the number of spikes per time interval. However, the
population rate code allows a more precise temporal analysis than the rate
code of a single cell [21].

In this work, we assume a probabilistic, temporal population code with indepen-
dent spikes and independent neurons. Although action potentials can vary in
duration, amplitude and shape, they are treated as identical stereotyped events.
However, the neural model (i.e., a theoretical framework describing the relation-
ship between stimuli and neural response) as derived in chapter 3 is ready to be
extended with respect to the named assumptions of independency.

1.2 Neural Recording

Empirical results form the fundament of theoretical modelling. To collect data
about brainbrain function, electrophysiology is one of the most successful meth-
ods. Electrophysiological recordings measure electric fields induced by synaptic
currents and potentials of cell membranes. These recordings are fast enough
to cope with the temporal resolution of spiking neurons. Spatial accuracy can
be enhanced greatly when using invasive methods. Non-invasive and invasive
techniques have been used in numberless studies since the last century [35].

In this work, data have been collected from electrophysiological multi-cell
recordings in the primary visual cortex (V1) of the rat. Data have been recorded
at the Institute for Brain Research, University of Bremen by W. Freiwald and
his research team.

Neurons in the striate cortex are known to be orientation-selective [34, 3,
24, 12]. To trigger a response in V1, oriented gratings are presented using a
view space filling monitor picture. From voltage curves recorded by an array of
invasive electrodes, spike times are extracted and assigned to cells.

Two kinds of stimulus presentations are applied: First, single stimuli in a
row are presented in a controlled way over multiple trials. The neural response
characteristics elicited from these presentations are used to instantiate the theo-
retical neural model with concrete values.
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Figure 1.1: Overview of the coding and decoding process. The neural model for
coding is generated offline from a controlled set of stimulus presen-
tations. As soon as the neural model is given, decoding can be done
online for dynamic stimuli.

Second, a random walk stimulus (see section 2.2 for details) is presented once.
Recordings from this stimulus trajectory will be used to test the model as de-
scribed in the next section.

1.3 Reconstruction as Model Test

Given the response characteristics and a neural model1, the next step is to
analyse the results. To check if the recorded cells have encoded a stimulus in
a way predicted by our neural model, a straightforward approach is to try to
reconstruct an unknown stimulus from arbitrary neural activity.

Interpreting neural population activity by reconstruction has been done in
several ways; these can be divided into two classes [37]: basis function methods
(i.e. population vector coding, optimal linear estimation and template match-
ing) and Bayesian methods (with and without continuity constraint).

A basis function method uses a linear combination of fixed, but arbitrariliy
chosen template functions φi(s̃) over stimulus space with the corresponding
coefficients ci proportional to the neural response (i.e. the firing rate or the
number of spikes). The reconstructed stimulus ŝ is then chosen to be the peak
of the linear sum:

ŝ = arg max
es

∑

i

ciφi(s̃).

Although these methods are not robust, they have been applied successfully in
some cases [25, 33, 5]. Here, we will not further address this issue.

A second approach, taking into account the probabilistic nature of the neural
response, is to use Bayesian inference for reconstruction. Bayes’ rule directly
addresses the relationship between the probability of a response, given a stimulus
(which is known from experimental data) and the probability of a stimulus, given

1We refer to neural model as a mathematical framework to predict neural responses on the
basis of simple assumptions about neural spiking behaviour.
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a response:

p(stimulus|response) ∝ p(response|stimulus) · p(stimulus).

All that can be inferred about the stimulus is present in p(stimulus|response)
and ŝ can be reconstructed from this distribution by estimation. Introducing
knowledge about the stimulus dynamics (i.e. the temporal propagation of the
stimulus) can increase the performance of this approach further. In this context,
the role of the prior distribution p(stimulus)2, will be discussed further in the
theoretical chapters (section 4.2).

This so-called Bayesian Filtering has been used successfully in recent theoret-
ical and experimental research [37, 16, 2, 11] and will be used (in a generalized
version) in this work as well.

1.4 Structure and Scope of this Work

Summarizing, we will use theoretical considerations and empirical data to create
a neural model that is capable of encoding stimuli in terms of a neural response
as described. To inspect the correctness of this model, we derive an ’inverse’
function of the encoding process via Bayesian reconstruction and try to estimate
an unknown original stimulus, given an arbitrary neural activity recorded from
rat primary visual cortex. Once the response characteristics have been measured
and the neural model has been set up, decoding works online for dynamic stimuli
(see figure 1.1).

In the subsequent chapter, an overview will be given from what is known
about the rat visual cortex. Moreover the experimental setup of data-recording
will be explained. Chapters 3 and 4 form the theoretical background of this
work, deriving a probabilistic framework for neural coding and decoding. The
feasibility of this framework is shown in a simulation of reconstruction, using
artificial data. Finally, in chapter 5, the experimental data is analysed. As-
sumptions made in the theoretical chapters are checked to hold true for the
data and an attempt is made to reconstruct the presented stimulus trajectory
from recorded data.

2the unconditional probability of a certain stimulus to occur.
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2 Neural Recording from Visual

Cortex

While the visual system of larger animals like cats or monkeys has been thor-
oughly studied, only few publications considering the rat can be found. Concern-
ing the electrophysiology and response properties of the primary visual cortex
in rats, the comprehensive work of Girman et al. [12] has to be named at first
instance. The authors used single cell recordings to quantify receptive field
properties for various stimulus dimensions (orientation, temporal and spatial
frequency, contrast). In another work, multicell recordings have been used to
investigate the dynamics of the horizontal functional connectivity [31]. The most
important results that are relevant for this work are outlined in the following
section.

The sections 2.2 to 2.4 describe how data used in this work have been recorded
at the Institute for Brain Research, University of Bremen by W. Freiwald and
his research team. Among others, research objectives were to reconstruct and
quantify the coding accuracy of stimuli’s representations in rat primary visual
cortex [26, 27, 10]. In this work we will focus on the reconstruction of the angle
of oriented gratings that are presented to the rat.

2.1 Response Properties of Rat Visual Cortex

To quantify the behaviour of single neurons, Girman et al. presented moving
oriented gratings on a computer monitor (similar to the monitor pictured in fig-
ure 2.1) to the rat’s eye (or, more precisely, to the cells’ receptives fields). These
gratings were altered systematically in different dimensions (i.e. their orienta-
tion, while the direction of movement was always orthogonal to the gratings)
and the cell’s responses were recorded with electrophysiological setup. These
recordings resulted in tuning curves that relate the average spike count per time
interval (i.e. the firing rate) to a range of different stimuli1.

The primary visual cortex significantly showed adaptive responses to the mod-
ification of these visual inputs. According to Girman et al., cells found at a depth
of about 200µm to 800µm (encompassing layers II and III of neocortex), had
mainly negligable spontaneous activity, with high reaction index, orientation
index, direction index and sharpness of orientation. The latter four quantities
are defined as follows (all frequencies relate to the cell’s tuning curves):

1A picture of a tuning curve is given in figure 3.1. Further information about tuning curves
and their definition can be found in section 3.2.
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• The reaction index

RI :=
|fmaxdev

− fsa|
fmaxdev

+ fsa

,

where fmaxdev
is the response rate to a specific stimulus with maximum

deviation from fsa, the spontaneous rate. The spontaneous firing rate is
the response rate elicited by a presentation of an uniform field of averaged
luminance (compared to the gratings).

• The orientation index

OI :=
fmaxori

− forthori

fmaxori

,

where fmaxori
and forthori

are the firing rates given the optimal orientation
and the orientation orthogonal to the optimal orientation respectively.
Orientation measures the angle between the presented gratings and the
monitor horizontal (ranging from −π

2 to π
2 ).

• The direction index

DI :=
fmaxdir

− foppdir

fmaxdir

,

where fmaxdir
and foppdir

are the firing rates given the optimal direction
and opposite to the optimal orientation respectively. Direction measures
angle between the movement of the presented gratings and the monitor
horizontal (ranging from −π to π).

• The sharpness of orientation SO is defined as the tuning curve’s bandwith
at half height. In addition to the orientation index, this measure quantifies
the quality of orientation or direction tuning as well: a cell with a high
orientation index and a low sharpness of orientation carries less informa-
tion about the presented angle than the same cell with a high sharpness
of orientation.

Stimulated with black and white gratings of optimal contrast and spatial fre-
quency, 70% of these cells showed an reaction index that exceeded 0.7. 77% ori-
entation selective cells (OI ≥ 0.7) and 37% direction selective cells (DI ≥ 0.7)
were found in [12]. Few individual cells showed tetramodal tuning curves with
optimal orientations nearly orthogonal to each other. Most of the tuned cells
showed a sharpness of orientation of about 60°. Furthermore, a preference of
cells tuned to horizontal stimuli could be found in rats, as in other species, too.
Orientation columns (implying a regular change of orientation tuning across the
cortex) could not be found. These findings imply that a large part of the cells
in rat’s visual cortex are sensitive to the orientation of simple visual stimuli and
that their behaviour might carry enough information to reconstruct a presented
orientation from cell responses.

However, the proportion of oriented neurons varies greatly (30 to 80%) among
older studies (e.g. [34, 3, 24]) and is generally worse than the presented results
in [12]. In addition to different criteria for tuning significance, unsuitable anaes-
thetics or oversized craniotomies used in these older works might have led to
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Figure 2.1: Presentation of visual stimulus. On the left side, the monitor picture
as presented to the rat is drawn for s̃ = π

4 . The curves on the
right side show a cutout of the temporal stimulus dynamics, i.e.
the change of orientation over time. The upper diagram shows the
random stimulus used to calculate the response characteristics. The
lower diagram shows the random walk that shall be reconstructed.

different or suboptimal results. Furthermore, as rats are less visual animals
than cats or monkeys, data quality can generally be expected to be worse than
in these animals.

Based on the fact of sparse and partly contradictory data about the tuning
properties of the rat visual cortex, the following sections of this chapter describe
the experimental setup used by Freiwald et al.. This setup used for presenting
visual stimuli, measuring neural activity and postprocessing raw data is aiming
at a reconstruction of the original stimuli from neural responses [26, 27, 10].

2.2 Visual Stimulation

Similar to Girman et al., the visual stimuli consisted of fullscreen black and
white gratings with a fixed spatial freqency that were presented in different
orientations ranging from −π

2 to π
2 . Stimuli were generated on a CRT monitor

with a vertical frequency of 85Hz. Luminance was kept constant over different
stimuli and the distance between monitor and the animal’s eye was chosen to
cover the rat’s field of vision completely. The gratings did not move in any
direction during the presentation of one orientation.

Two different kinds of stimulus trajectories have been presented (see figure
2.1).

The first consisted of equally distributed random orientations in steps of π
12 ,

where each orientation was presented for 12 monitor frames (about 141ms).
120000 frames were shown, resulting in 10000 orientation presentations. The
neural activity elicited by these presentations was used to calculate the response
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characteristics.
Second, a stimulus trajectory was presented, where the stimulus (i.e. the

grating’s orientation) followed a random path up and down in steps of 2π
180 . In

this random walk, the difference of orientation of two consecutive presentations
is always 2π

180 :

s̃t =

((
s̃t−1 ±

2π

180

)
mod π

)
− π

2
, (2.1)

where t = 1, 2, 3, ... is the presentation count. Again, 10000 orientations were
shown in 120000 frames. This is the stimulus that will be reconstructed online
in chapter 4 (from artificial spike trains) and chapter 5 (from recorded spike
trains), using the response characteristics drawn from the first stimulus type.

2.3 Animal Preparation

All data have been recorded from mature anaesthetised rats of the Long Evans
or Brown Norway strain. To avoid stressing factors, inital anaesthesia was
induced using an Isoflurane/Laughing Gas mixture. For surgery, a Ketamine-
based anaesthetic was then injected in a body weight-dependent dose. To avoid
mucus production in the respiratory tracts and to stabilize the cardiovascular
system, intramuscular injections of Atropine were applied. Electrocardiogram
and depth of aneaesthesia have been controlled continuously during surgery.

After fixation of the rat in a stereotactic apparatus, its upper cranium surface
was excavated using a sagittal transection. The surface was cleaned from any
tissue and three small trepanations were drilled to set screws needed for further
fixation and electrophysiological setup. The visual cortex was accessed by a
left-side craniotomy of size 2x2mm rostro-lateral from lambda, which is the
intersection of the fissures between the parietal and occipital bones. The last
surgical step was to remove the dura mater, allowing the electrode shank to
enter smoothly.

Subsequently, the head was fixated with the right eye aligned to the monitor
and the left eye closed. To avoid desiccation, the left eye was protected with
a non-correcting lens and the visual cortex was moistened with a Ringer/Agar
solution. The electrode was positioned at the place of representation of the
intersection of the field of view’s horizontal and vertical meridian.

As Ketamine has an negative impact on cortical acitivity, the animal was
brought back to Isoflurane anaesthesia during stimulus presentation and record-
ing.

2.4 Data Recording and Postprocessing

Recordings were performed with two types of silicon-based multiprobes: a single-
shanked electrode with 16 channels in linear alignment and tetrodes with 4
channels on each shank. Signals were amplified (1000-5000 fold) and filtered
(0.3 to 5 kHz) using standard electrophysiological instrumentation.

For offline analysis, the analog voltage signal was digitised and transferred to
a computer at a sampling rate of 25kHz using a conventional PC analog-digital
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transducer. To extract spikes from the voltage curve, a positive and negative
bias had been chosen manually. If the signal exceeded the limits, it was treated
as a spike event and the signal shape in the temporal neighbourhood has been
saved in a matrix for spike sorting.

Spike sorting is necessary, as each channel is likely to record a composite sig-
nal of multiple cells. Sorting assigns each spike event to a cell, which is supposed
to have a characteristic spike wave form. This has been done computer-aided
by clustering two-dimensional scatterplots of different wave-form-describing pa-
rameter pairs (i.e., amplitude, bandwith, etc.).

The outcome of this procedure is a list of discrete spike times for each cell
that has been recorded.
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3 A Model for Neural Activity

In our context, measured neural activity elicited by stimulus presentation can be
described by a model that maps values from stimulus space (angles of oriented
gratings in our case) to response space (neural activity, i.e. spike trains of
recorded cells). For reasons to be discussed in the subsequent section, this model
is assumed to be of probabilistic nature. Therefore, we consider the probability
of a recorded response given a certain stimulus or, interpreted as a function of
the stimulus, the likelihood p(response|stimulus).

In this chapter, we develop a likelihood term by combining a deterministic
data-fitting model for tuning curves and an inhomogeneous Poisson spike gen-
erator. Tuning curve and the process of spike generation together provide a
complete description of a cell in our model. These findings are put together to
model a population likelihood function. Intuitively, information made available
by the likelihood will be crucial for the decoding stage described in the following
chapter.

3.1 Nomenclature and Model Assumptions

We refer to S =
[
−π

2 , π
2

)
as a one-dimensional stimulus space representing the

angles of orientation of presented gratings, where s̃ = −π
2 denotes vertical bars

and s̃ = 0 denotes horizontal bars.
As it is convenient to use discrete times on computational architectures, a time

intervall T = [0, Tmax] is divided into T subintervals of length ∆t. t = 1, ..., T de-
notes the t-th timestep within T, which is the time interval [t · ∆t, (t + 1) · ∆t).

A discrete-time dynamic stimulus s = s̃1, ..., s̃T is defined as time series of
stimuli. Without tilde, s is used to denote all possible values of sǫS to remind
that some distributions occuring in the next chapters are functions of s. I.e.,
p(st) denotes the probability distribution of each possible stimulus to occur at
time step t.

Ri is the response of cell i = 1, .., N , which is a spike train (an ordered list
of spike times with ni elements) Ri :=

{
t1i , ..., t

ni

i

}
and t1i ≤ ... ≤ t

ni

i . Although
action potentials can vary in duration, amplitude and shape, they are treated
as identical stereotyped events. Since stimuli are generally not coded by single
cells, we turn the attention to the population response R, which is represented
by a list of N recorded cell’s spike trains. With respect to the introduction,
it should be stressed again that here a further and more general assumption
is made. Namely, spike trains of specific cells are considered to represent the
neural code, i.e. are significant entities carrying information about the dynamic
stimulus.

While presenting the same stimulus, the cell and population response will
ususally vary from trial to trial. Assuming that a population carries information
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about the stimulus, potential sources of stochasticity in our setting seem to fall
into four classes: a) the population might code for other qualities or modalities
that are not part of a controlled change during the experiment; b) the physics
of a cell could be intrinsically probabilistic; c) Somatic changes of the cell’s
or population’s surrounding could affect their internal states. This includes
changes of intra- and extravasal substance concentrations as well as changes
due to other modulating cognitive processes (like arousal or attention) these
cells are connected to via nerve fibres; d) probes penetrating the area might
interact in an uncontrolled way. Naturally, these classes do not exclude each
other [21, 16, 5].

For our purpose, possible reasons of stochasticity do not need to be discussed
furthermore: the fact of probabilistic behaviour of the neural system will be
reflected in the mathematical framework that forms the model. Within this
model, assertions about stimulus/response relations are made in the presence of
stochasticity, independently from its reasons.

3.2 Tuning Curves

A neuron’s tuning curve f is a function from stimulus space into the positive
reals, mapping each stimulus presented to an experimentally measured mean
firing rate provoked by this stimulus. The mean firing rate is calculated by
averaging the number of spikes caused by a certain stimulus over an infinite
number of trials, divided by the duration of the trial. With r1(s̃), r2(s̃), ... being
the measured rates of single trials, the tuning curve is defined by

f(s̃) := 〈r(s̃)〉 . (3.1)

In practise, the experimenter is confronted with two problems. First, the
number of trials is always finite. Therefore, the mean firing rate may have to
be estimated from measurements that contain considerable jitter. Second, in
continuous stimulus space, only a finite set of all possible stimuli can be used to
measure mean firing rates. These are used as sampling points to fit (paramet-
rically or non-parametrically) shapes of continuous tuning curves. Although
comparatively simple representations as Gaussians or cosines have been used
successfully in recent research to describe tuning curves [2, 28, 5, 37], they are
only suitable to depict unimodal and symmetric shapes. For multimodal ex-
perimental data (as in our case), it is necessary to use more complex functions,
such as a van Mises function [28, 27, 6] or even non-parametric models [11].

Therefore, fitting a tuning curve generally involves three tasks: Choosing
a model (i.e. a function class), estimating the sampling points from data and
calculating the model’s parameters to fit these vectors. The latter task usually
involves an optimization process, which is in most cases faced with the problem
of avoiding local minima in parameter space.

A straightforward approach to obtain a tuning function would be to estimate
the mean rate by averaging over the given trials and filling the gaps in stimulus
space using linear interpolation. The resulting tuning curve from K datapoints
(a datapoint 〈s̃k, rk〉 is a stimulus/response pair) and L trials can be described
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Figure 3.1: A neuron’s tuning curve generated by linear interpolation of sam-
pling points. Each sampling point has been calculated by averaging
the recorded firing rate of a rat V1 neuron for each orientation over
multiple trials.

as a piecewise linear function

f(s) = rk + (s − s̃k) ·
rk+1 − rk

s̃k+1 − s̃k

s̃k ≤ s ≤ s̃k+1, (3.2)

with k = 1, ...,K − 1, l = 1, ..., L and rk = 1
L

∑L
l=1 rl

k, which is the average rate
measured for stimulus s̃k over L trials (figure 3.1 shows a typical tuning curve
recorded from rat visual cortex). The shortcoming of this method is that outliers
tend to be overestimated1, as all values have the same weight contributing to
r and that a biological tuning curve is supposed to be smooth rather than
piecewise linear.

Both problems can be solved by choosing an algorithm to fit tuning curves
using trigonometric polynomials as described in [6]. The idea is to write each
response r as

rkl = a0 +

K div 2∑

k=1

(ak cos(2kθl) + bk sin(2kθl)) + εkl, (3.3)

with

K div 2 =

{
K
2 K even

K−1
2 K odd

and to find the parameters a and b that minimise the residuals ε in a ranked-
based norm: to reduce the impact of single outliers, this norm applies a ranking
to all datapoints in a way that underweighs outliers. The optimization algorithm

1This is a problem of commonly used least-square fits as well: minimizing the squared error
between each sampling point and corresponding data points, all errors have the same
weight; even outliers that might have been sorted out by hand [6].
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Figure 3.2: Scatterplot and tuning curve of lowest well-fitting degree. The scat-
terplot shows the distribution of firing rates for different stimuli.
The bold line shows a trigonometric polynomial of degree 2 fitting
the data. The same empirical data was used to generate the linearly
interpolated tuning curve from figure 3.1.

deterministically finds the best approximation of the tuning curve. Finally, the
degree of the polynomial is reduced as long as the coefficients of the highest order
do not account significantly to fit the data. Hence, although the approximation
of maximal degrees allows to have asymmetries and several maxima, a simpler
model is chosen if possible (figure 3.2).

3.3 Spike Generation

In addition to a mean firing rate provided by tuning curves, our model for neural
activity needs to make a probabilistic prediction of exact times of spike events
as well. Point processes are useful for modeling random processes that appear at
irregularly spaced times and which may possibly occur anywhere in a continuous
time interval. Such a process can be divided into two independent parts: First,
the number of spike events in a certain time intervall is chosen on the basis of
some distribution and second, a discrete time is assigned to each event.

A simple point process for spike generation that uses a cell’s tuning curve as
intensity function is the commonly used inhomogeneous Poisson process [21, 5].
Its most important characteristic is that the generation of each spike is inde-
pendent of all other spikes. The correctness of this independent spike hypothesis
has been both supported and criticised in experimental and theoretical dis-
course [14, 5, 21], depending on the data it has been applied to. If the Poisson
assumption is a sensible choice for the data used in this work will be subject of
discussion in section 5.2.

For cell i, the probability of a single spike occurring in a small interval of length
∆t within T is given by ∆t

Tmax
. Hence, placing k spikes in T, the probability of
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Figure 3.3: Spike count distribution for a Poisson process. The stem plot shows

the probability of finding ni spikes for
∑T

t=1 fi(s̃t)∆t = 25. The
spike count distribution describes the probability of a certain number
of spikes to occur, given the cell’s tuning curve and the stimulus
trajectory on a time interval T.

finding ni of them in a time window of length ∆t is described by the binomial
formula

P (ni|∆t) =
k!

(k − ni)!ni!

(
∆t

Tmax

)ni

(1 − ∆t

Tmax

)k−ni. (3.4)

Keeping the ratio k
Tmax

constant, it can be shown for k → ∞ that

P (ni|∆t) = e
−

k
Tmax

∆t
( k

Tmax
∆t)ni

ni!
. (3.5)

This is the Poisson probability density function. Interpreting k
Tmax

as the mean
firing rate and inserting equation (3.1) yields

P (ni|∆t, fi, s̃t) = e−fi(est)∆t (fi(s̃t)∆t)ni

ni!
. (3.6)

Finally, integrating with respect to T (as the stimulus is considered to be con-
stant in each time window this amounts to summing up all mean rates for each
time window) results in the spike count distribution for an inhomogeneous Pois-
son process we have been looking for (figure 3.3):

P (ni|T, fi, s) = e−
PT

t=1 fi(est)∆t (
∑T

t=1 fi(s̃t)∆t)ni

ni!
. (3.7)

The spike count distribution describes the probability of a certain number of
spikes to occur, given the cell’s tuning curve and the stimulus trajectory on a
time interval T.

Next, the exact spike times for a spike train Ri =
[
t1i , ..., t

ni

i

]
, t

j
i ǫ{1, ..., T}

have to be calculated. As for each of ni spikes, a spike time t
j
i is chosen inde-

pendently from all other spikes and the spike sequence can be created in any
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order, the probability for a certain spike train configuration can be described
by the product of the probabilities for the selection of a single spike time which
can occur in all permutations [16]:

p(Ri|T, fi, s, ni) =

ni∏

j=1

p(tji |T, fi, s) · ni!. (3.8)

The probability density for selecting a certain time step t
j
i (i.e. a certain time

interval of length ∆t, see section 3.1) is proportional to the mean firing rate and
described by the following distribution:

p(tji |T, fi, s) =
fi(s̃t

j
i

)
∑T

t=1 fi(s̃t)
. (3.9)

As already mentioned, the two subprocesses of a poisson point process (spike
number generation and assignment to discrete spike times) are independent as
well. Thus, combining equations (3.7), (3.8) and (3.9), the conditional proba-
bility for a single cell response derived from its tuning function fi and a Poisson
process for spike generation simplifies to

p(Ri|T, fi, s) = p(Ri|T, fi, s, ni) · P (ni|T, fi, s) (3.10)

=

ni∏

j=1

fi(s̃t
j
i

) · e−
PT

t=1 fi(est)∆t. (3.11)

Interpreted as a function of s, this yields the likelihood distribution for a fixed
but arbitrary single cell response:

p(Ri|T, fi, s) = ni · fi(s) · e−
PT

t=1 fi(s)∆t. (3.12)

3.4 Population Response

The next step after deducing the likelihood term of a single cell is to model the
response of a whole population of cells to obtain the likelihood term p(R|T, f, s)
we were initially looking for. In a recurrent neural network like the cerebral
cortex, interdependencies between the activities of connected neurons may occur
and can, in principle, be measured using multicell recordings. In [1], these
intercell correlations are expressed as mutual deviation from their mean firing
rate

ri,t = fi(s̃t) + ηi, (3.13)

where the random terms ηi are generated from a Gaussian probability distribu-
tion with zero mean and covariance matrix Q2, which might depend on st or
not. According to theoretical results [7, 1, 8], for different shapes of Q, correla-
tions can generally both improve and degrade the accuracy of a population in

2For example, Qij = σ2 · (δij + c(1 − δij)) employs a simple model for variance increasing
as a function of the degree of correlation c. The base variances σ2 are identical for both
neurons i and j, with δij representing the Kronecker matrix. A value of c ranging from
0.1 to 0.2 has been found in area MT of monkey cortex [1].
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encoding a certain stimulus. Whether the influence of intercell dependencies is
positive or negative depends on the precise configuration of the neural system.
This information is not available from the experiments relevant for this work.

Furthermore, it is not clear that even if correlations among the activities of
neurons are advantageous from an information-theoretic perspective, the orga-
nism actually makes use of this advantage (i.e., if it is part of the neural code
[21]). Therefore, and for reasons of simplicity we assume ηi = 0 and employ a
population of conditionally independent neurons. In this case, the probability of
a population response, which is the joint probablity of all single cell responses,
is simply the product of single cell response probabilities from equation (3.12):

p(R|T, f, s) =
N∏

i=1

p(Ri|T, fi, s) (3.14)

=

N∏

i=1

ni · fi(s) · e−
PT

t=1 fi(s)∆t (3.15)

= e−
PT

t=1

PN
i=1 fi(s)∆t ·

N∏

i=1

ni · fi(s) (3.16)

Summarizing, equation (3.16) characterises all what we assume about neural
coding of our dynamic stimulus s: The response R is a set of spike trains
produced by a population of cells with arbitrary tuning curves, a Poisson spike
count density and mutual independency. As all of the following distributions
are conditioned on f and T, they will not be explicitly mentioned anymore (i.e.,
we write p(R|s) instead of p(R|T, f, s) from now on).

3.5 Encoding of a Dynamic Stimulus

As an example for the spike generation process, we will encode a dynamic sti-
mulus that changes linearly from −π

2 to π
2 with a population of 30 computer-

simulated neurons with Gaussian tuning curves. The tuning functions’ mean
values are equally distributed from −3π

4 to 3π
4 to cover the stimulus space com-

pletely. The maximum firing rate of these Gaussians is choosen to be 30 Hz and
their variance is set to π

8 .
As the maximum firing rate is finite, a sufficiently small interval ∆t can be

choosen to make the probability of more than one spike to occur in this interval
ignorable [14]. The absolute refractory period (the duration after an action
potential where a neuron is not excitable, usually lasting about 1ms [17]) that
could be used as a lower bound, is not modelled by the Poisson process. Hence,
∆t has to be chosen to be smaller than all occuring interspike time intervals
generated by the Poisson process. For our simulations, ∆t ≤ 0.001s has been a
sensible choice.

For small enough ∆t, equation (3.6) simplifies in approximation to

P (ni = 1|∆t, fi, s̃t) = fi(s̃t)∆t.
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Figure 3.4: Dynamic stimulus and computer-simulated neural response. The
upper plot shows the linear trajectory of the stimulus. The lower
diagram is a raster plot of 30 neurons with Gaussian tuning functions
that encode this stimulus. As the tuning functions’ mean values
are distributed linearly over stimulus space, the spiketrain pattern
resembles the stimulus trajectory.

Hence, to find out wether or not a single spike occurs in each of t = 1, .., T
intervals of length ∆t, the spiking condition for each interval can be written as

rand[t] ≤ fi(s̃t)∆t,

where rand[·] is an array of uniformely distributed random numbers in the [0, 1]
interval.

According to the previous section, spike trains can be drawn independently for
each cell. An example of a computer-simulated neural response to the described
stimulus is shown in figure 3.4.
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4 Stimulus Reconstruction

The purpose of this chapter is to establish a probabilistic framework for the
reconstruction of a dynamic stimulus. Reconstruction in our context means
approximating the true stimulus s̃ by an estimate ŝ, given the neural response
R and model assumptions made in chapter 3.

In the first section, Baye’s rule is used to deduce a posterior probability dis-
tribution p(s|R) from which ŝ is extracted. Second, non-linear filtering is used
to introduce information available from temporal propagation of the stimulus.
Finally, a simulation example will show the theoretical feasibility of this ap-
proach.

4.1 Nomenclature and Model Assumptions

As reconstruction can be performed in an online fashion (e.g., only the response
of the actual and preceding timesteps are used for estimating the stimulus),
we will consider population responses Rt at each timestep t. Responses Rt are
assumed to be mutually independent and are not conditioned on the history of
temporal stimulus dynamics:

p(Rt, ..., R1|st, ..., s1) =
t∏

t′=1

p(Rt′ |st′). (4.1)

Furthermore, stimuli are uncorrelated and no underlying model for the temporal
stimulus dynamics itself is given:

p(st, ..., s1) =

t∏

t′=1

p(st′). (4.2)

The second assumption will be subject of change in section 4.3.

4.2 Bayesian Inference

While our model of neural coding from chapter 3 describes the probability of a
reponse, given a certain stimulus, it is in the interest of reconstruction to infer
the inverse distribution that yields the probability of a stimulus, given a certain
(measured) response. The joint probability distribution p(st, Rt) can be written
as p(Rt|st) · p(st) as well as p(st|Rt) · p(Rt). From this simple equality, Bayes
rule states that

p(st|Rt) =
p(Rt|st) · p(st)

p(Rt)
, (4.3)
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where p(st|Rt) is the so-called posterior distribution, which, in our context,
shapes the probability of each stǫS given an (arbitrary but fixed) response.
Hence, it is proportional to the product of the likelihood p(Rt|st) and the prior
probability distribution p(st) (denoting the probability of an stimulus to occur,
independent of any data from the neural system):

p(st|Rt) = λt · p(Rt|st) · p(st), (4.4)

with λt ·
∫

S
p(Rt|s̃t) · p(s̃t) ds̃t = 1.

Since all information about the stimulus is contained in the posterior distribu-
tion, the final step is to collapse the posterior distribution p(st|Rt) in some way
to obtain a discrete value for ŝt. The Bayesian decision-theoretic approach is to
use a loss function L(s̃t, ŝt) to measure the loss incurred by estimating the value
of the stimulus to be ŝt when its true value is s̃t. The estimate ŝt is chosen to
minimise the expected loss, that is, optimizing the loss over all s̃t with respect
to the posterior distribution:

ŝt = arg min
s

E (L(s̃t, s)) (4.5)

= arg min
s

∫

S

L(s̃t, s) · p(s̃t|Rt)ds̃t. (4.6)

Inserting the commonly used quadratic error loss function Lsq(s̃t, ŝt) = (s̃t−ŝt)
2

in equation (4.6) results in

ŝt = arg min
s

∫

S

(s̃t − s)2 · p(s̃t|Rt)ds̃t, (4.7)

which can be solved by finding the minimum of the first derivative with respect
to s:

ŝt = args

{
2

∫

S

(s − s̃t) · p(s̃t|Rt)ds̃t = 0

}
(4.8)

= args

{∫

S

s̃t · p(s̃t|Rt)ds̃t = s

}
(4.9)

=

∫

S

s̃t · p(s̃t|Rt)ds̃t (4.10)

= E (st; p(st|Rt)) . (4.11)

Hence, quadratic error loss is minimised by taking ŝt to be the posterior mean
[22, 18, 16]1.

So far, we have not discussed the role of the prior distribution p(st), the
unconditional probability distribution of a certain stimulus to occur. If not
given by an experimental setting, this distribution is not known, and therefore
usually considered as constant:

p(s|Rt) = λt · p(Rt|s) · p(s̃), (4.12)

1Another, straightforward approach is to use the so-called MAP estimator, where the max-
imimum of the posterior distribution is chosen.
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with s̃ǫS = const. Although for a large amount of experimental data choosing
an ignorant prior does not have any negative effects for the estimate’s value,
a sensible choice for small data sets is important to obtain sharper posterior
distributions [16]. In the next section this will be done by applying assumptions
about the stimulus propagation in time.

4.3 Non-linear Filtering

At this point, equations (4.12) and (4.11) describe a complete way to estimate
the originial stimulus at each timestep. However, it is not satisfactory to use an
ignorant prior: in the physical world most states of macroscopic entities change
gradually over time. Intuitively, this means that there is a connection between
the stimuli’s values at adjacent timesteps, i.e. it is quite probable that s̃t lies in
the neighbourhood of s̃t−1.

Hence, a somewhat general assumption is that the stimulus dynamics form
a temporal Markov chain (with s̃t being the hidden variable), where a direct
dependence exists only between two temporally contiguous stimuli. This will
replace the assertion made in equation (4.2) with

p(st|s̃t−1, ..., s1) = p(st|s̃t−1). (4.13)

Assuming a dependence between two subsequent timesteps implies that the
current stimulus st depends now conditionally not only on Rt but indirectly on
the complete response history Rt−1, ..., R1 as well. This requires a reformulation
of equation (4.4), since now the posterior distribution p(st|Rt, ..., Rt) represents
all available information that can be deduced at time t. In general, trying to
estimate the state of a hidden variable of a discrete-time controlled process like
this is called filtering.

While the mean of the posterior distribution can still be used as an optimal
estimator with respect to a quadratic loss function, the posterior term itself has
to be revised: employing the Markov assumption and that of mutual response
independency from equation (4.1) we obtain

p(st|Rt, ..., R1) = λt · p(Rt|st, Rt−1, ..., R1) · p(st|Rt−1, ..., R1) (4.14)

= λt · p(Rt|st) · p(st|Rt−1, ..., R1), (4.15)

with λt ·
∫

S
p(Rt|s̃t)·p(s̃t|Rt−1, ..., R1) ds̃t = 1 and the temporal prior distribution

p(st|Rt−1, ..., R1) that can be transformed into a recursive formulation (again
using equation (4.1) for independency between st and previous responses):

p(st|Rt−1, ..., R1) =

∫
S
(p(st|s̃t−1, Rt−1, ..., R1)·

p(s̃t−1|Rt−1, ..., R1)) ds̃t−1
(4.16)

=

∫

S

p(st|s̃t−1) · p(s̃t−1|Rt−1, ..., R1)ds̃t−1. (4.17)

Combining equations (4.15) and (4.17), the process of inferring the posterior
distribution at timestep t can be interpreted as a prediction of the new state
that is corrected by the actual measurement:

p(st|Rt, ..., R1) =
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Figure 4.1: Computer-simulated filtering as density propagation. The temporal
prior is a convolution of the posterior at time t − 1 and the density
describing the stimulus dynamics. This can be seen as a prediction of
the posterior at time t, which is updated by multiplication with the
likelihood. The vertical lines in the posterior distributions indicate
their mean value, which is our estimate ŝ.

λt · p(Rt|st)︸ ︷︷ ︸ ·
∫

S

ds̃t−1 p(st|s̃t−1)︸ ︷︷ ︸
stim. dynamics

· p(s̃t−1|Rt−1, ..., R1)︸ ︷︷ ︸ .

posterior at t-1
︸ ︷︷ ︸

update prediction

The conditional density p(st|s̃t−1) is a complete description of the stimulus
dynamics. It shapes the way the stimulus is expected to change without know-
ledge of the actual measurement. A prediction of st, given the reponse history
Rt−1, ..., R1 (which is the temporal prior term at timestep t) is made by inte-
grating with respect to all possible preceding stimuli s̃t−1, that is, convolving
the stimulus dynamics and the preceding posterior distribution. From a diffe-
rent point of view this change can be seen as deterministic drift that shifts the
posterior distribution towards a new position in stimulus space, and a stochastic
diffusion, adding incertainty to the result [15]. To obtain the posterior distri-
bution at timestep t, the prediction is then updated by multiplication with the
measurement at timestep t, which is represented by the likelihood distribution.
A computer simulation of the whole process of density propagation is visualised
in figure 4.1.

So far, no restricting assumptions about the shape of p(Rt|st), p(st|s̃t−1) and
p(st−1|Rt−1, ..., R1) have been made. It is well known that unless normality of
these distributions is assumed, an explicit expression for the filtering algorithm
cannot be derived [29, 30]. Presupposing Gaussians for all involved densities
exploits a thouroughly studied engineering tool: the Kalman filter [29, 23]. The
standard Kalman filter model propagates only the first two moments (i.e. mean
and variance) of the underlying distributions, which is sufficient for Gaussian
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distributions, as they can be completely described in terms of these moments.
This removes the main computional burden of calculating the convolution of
p(st|s̃t−1) and p(st−1|Rt−1, ..., R1), as convolving two Gaussians amounts sim-
ply to adding their means and variances. Furthermore, multiplication of two
Gaussians can be expressed analytically and the propagation of the optimal
estimate with respect to a quadratic loss function is already built in.

Although the Kalman filter has been used successfully in neural reconstruction
problems [36, 2, 16], it is known to show non-robust behaviour if there is a large
discrepancy between the likelihood and the temporal prior [29]. More important,
it cannot account for non-normal and possibly multimodal distributions as they
occur in our experiment [29, 15].

Different efforts have been made to find more powerful extensions of the
Kalman filter (e.g. [32, 29, 30, 15]) and one of them, the so-called Particle
filter, has already been used for neural decoding of multicell recordings in motor
cortex [11]. Our approach is to sample the densities in high resolution as a
set of piecewise constant functions and to calculate the mean of the posterior
distribution numerically2.

Summarizing, our final filter equation works with any distribution as it may
evolve in time and no restrictions to the stimulus dynamics are made (i.e. non-
linear stimulus transitions of non-normal distributions are possible):

ŝt = E (st; p(st|Rt−1, ..., R1)) (4.18)

= E

(
st;λt · p(Rt|st) ·

∫

S

p(st|s̃t−1) · p(s̃t−1|Rt−1, ..., R1)ds̃t−1

)
(4.19)

= E

(
st; p(Rt|st) ·

∫

S

p(st|s̃t−1) · p(s̃t−1|Rt−1, ..., R1)ds̃t−1

)
. (4.20)

4.4 Random Walk Simulation

To show the filter’s functionality and the feasibility of this approach, we cre-
ate an artificial population of neurons to encode the random walk stimulus as
shown in the experiment. Then, the filter from the previous section is used to
reconstruct the stimulus trajectory.

An idealised neuron in simulation could be represented by a bimodal von
Mises function, which is suitable for shaping an orientation tuning curve in
circular data. However, using this function would be to complex to provide a
comprehensible analytic solution. While this is not a problem for the numeric
computer simulation, we want to be able to follow the reconstruction process in
a symbolic way: for didactic reasons, we again choose the representation to be a
Gaussian tuning curve3. To obtain a more realistic setting compared to section

2Calculating the convolution of arbitrary densities p(st|est−1) and p(st−1|Rt−1, ..., R1) can be
done efficiently by multiplying the fourier-transformed distributions. A faster fourier trans-
formation (FFT algorithm) can be applied if the number of nodes in numerical integration
is a power of two [20].

3Naturally, Gaussians are not suitable for circular data. To avoid connecting the boundaries
of S, they are virtually extended in numerical simulation. Hence, in simulation the tuning
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Figure 4.2: The plot shows 25 of 100 randomly computer-generated Gaussian
tuning curves. Maximum mean firing rates range uniformly dis-
tributed between 0 and 30 Hz. Means in stimulus space range from
−π to π, variances from 0.2 to 1. All curves are scaled to have the
same area as a population of 100 neurons with a peak firing rate of
20 Hz and a variance of 0.6.

3.5, maximum mean firing rates and variances are chosen randomly from some
interval and 100 of these neurons are distributed randomly over stimulus space
as suggested in figure 4.2. In analogy to the linear stimulus in section 3.5, the
population is then used to encode a part of the random walk stimulus from the
experiment as shown in figure 4.3.

According to equation (2.1), the stimulus is modeled to change randomly in
a positive or negative direction from one timestep to the next. Although we
know the absolute value of change to be constant, we discard this knowledge
and model the change over time as Gaussian noise. Then, the stimulus dynamics
can be expressed as a Gaussian with zero mean and variance vw:

p(st|s̃t−1) = κ · e−
1
2

(st−est−1)2

v2
w , (4.21)

with κ as a normalizing constant. As explained later in this section, a good
choice for vw is important for a successful reconstruction: the variance of the
Gaussian noise has to fit the step size of the presented stimulus (see equation
2.1), which is unknown to the reconstruction algorithm.

curves are not cut off at −π

2
and π

2
as suggested by figure 4.2. The main advantage of

using Gaussians is that the product and sum of two Gaussians is still a Gaussian: a simple
curve, completely describable with its mean and variance.
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Figure 4.3: Random walk stimulus and computer-simulated neural response.
The upper plot shows the trajectory of the random walk stimu-
lus. The lower diagram is a rastergram of 100 neurons with tuning
functions as described in figure 4.2. Differently from figure 3.4, no
obvious pattern is visible in the spike trains, as the cells are dis-
tributed randomly over stimulus space.

Revising the filter model and adopting equations (3.16) and (4.21) we obtain

ŝt = E(st;update · prediction) with (4.22)

update = e−
PN

i=1 fi(st)∆t ·
N∏

i=1

ni · fi(st) and (4.23)

prediction =

∫

S

κ · e−
1
2

(st−est−1)2

v2
w · p(s̃t−1|Rt−1, ..., R1)ds̃t−1. (4.24)

The process of density propagation in general has already been described in the
previous section. To gain a better understanding of the filtering process, we
consider the time sampling interval ∆t to be small enough to hold exactly one
spike or none at all.

If there is no spike, the update term simplifies to e−
PN

i=1 fi(st)∆t because ni is
zero. If we assume

∑N
i=1 fi(st)∆t to be constant (which is reasonable for larger

populations because of the tuning curve’s overlap) then the update term shapes
a uniform distribution: the probability for each stimulus from stimulus space is
the same. Hence, it doesn’t have any influence on the estimate ŝt.

The prediction term, however, is not based on measurement but on knowledge
about the old stimulus estimate and its propagation over time. As already
stated, tuning curves and stimulus dynamics are Gaussians. Since the sum
(convolution) and product of Gaussians yield Gaussians, all densities that occur
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Figure 4.4: Variance of the posterior distribution in temporal close-up. Vertical
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resolution of 1ms.

in the filter equations are Gaussians and are propagated over time. Particularly,
we can say

p(st|s̃t−1) = N(s̃t−1, vw) and (4.25)

p(st−1|Rt−1, ..., R1) = N(ŝt−1, vt−1), (4.26)

with vt−1 being the variance of the posterior distribution at timestep t − 1.
Evaluating the prediction term amounts to convolving these distributions, that
is, adding their means and variances:

prediction =

∫

S

N(st − s̃t−1; 0, vw) · N(st; ŝt−1, vt−1)ds̃t−1 (4.27)

= N(st; ŝt−1, vt−1 + vw). (4.28)

While the mean value of the prediction doesn’t change with temporal propa-
gation, the variance increases linearly with the time of missing spikes: After k

timesteps without any spike, the variance of the posterior distribution will be
vt−1 + k · vw.

Hence, the Gaussian noise of the random walk models a diffusion process
- without a new measurement, the uncertainty about the actual stimulus in-
creases. A new spike provides a meaningful update term that generally decreases
the variance of the posterior distribution by contributing the information of its
cell’s tuning curve (figure 4.4).

Increasing variance of the posterior does not change the estimate ŝt, since
the distribution’s mean stays constant4. However, by blurring the prior density
(which is the posterior density of the previous time step respectively) further

4Unless, for t → ∞, the posterior distribution will become completely flat. This means that
all knowledge about the stimulus has faded.
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Figure 4.5: Reconstruction results of computer simulation. For comparison,

orginal stimulus (thick line) and reconstructed trajectory (thin line)
are plotted on top of each other. The random walk variance vw has
been optimised over several trials to 0.1, resulting in a reconstruction
mean square error of 0.034 per timestep (1ms).

and further, the memory of the response history fades. The choice of the random
walk variance vw plays a crucial role in decoding quality, as it controls the speed
of fading memory [16]. If vw is chosen to be small, the stimulus is expected to
change slowly over time and the response history fades slowly. Spikes of prede-
cent time steps still have an impact on the actual estimate. This is desirable
if the stimulus in fact changes slowly, because a lot of spikes contribute to the
stimulus estimation. However, for a fast changing stimulus, a too small vw acts
like a momentum term, delaying the proper response for the actual time step.

Choosing a good vw is an optimization task that tries to minimise the mean
square error of the deviation of the original stimulus trajectory from the esti-
mated one. We define the reconstruction mean square error as

RMSE =

∑E
e=1

∑T
t=1(s̃

e
t − ŝe

t )
2

E · ∆t
.

The RMSE describes the averaged (over E trials) square error per timestep ∆t.

A reconstruction result for vw = 0.1 is shown in figure 4.5.
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5 Experimental Results

This chapter informs about the empirical results taken from Freiwald et al.’s
experiments as described in sections 2.2 to 2.4 and applies them to the recon-
struction framework. Assumptions about the neural system of the rat visual
cortex made in the theoretical part are tested against the empirical data. As
outlined in section 5.3, the reconstruction of the random walk stimulus failed.

5.1 Visual Pathway Latency

To analyse the correlations between a stimulus and its response, the first step
is to find out which stimuli belong to which part of the neural response. When
a visual stimulus is presented, the signal is processed along the visual pathway
(i.e., in the retina and the lateral geniculate of the thalamus) before its represen-
tation can be recorded from visual cortex. Hence, it is important to measure the
temporal delay between stimulus presentation and cortical response to properly
associate stimulus/response pairs.

A technique to do this can be derived from the well-known spike-triggered
average stimulus C(τ), which is the average stimulus τ timesteps before a spike
is fired. To calculate Ci(τ) of a cell i, the stimulus at τ timesteps before any
spike time t

j
i , j = 1, ..., ni is averaged over all spikes and trials [5]:

Ci(τ) =

〈
1

ni

ni∑

j=1

s̃
t
j
i−τ

〉
. (5.1)

Now, we consider the distribution of triggered stimulus values for a fixed τ, i.e.
the number of occurances of each stimulus. If none of the stimuli did trigger
the response (that is, τ is not the correct temporal delay), the variance of the
distribution of frequencies will be low, as all stimuli will occur about the same
number of times (as we are averaging over all spikes and trials). In opposite, if
τ has been chosen correctly, only some of the stimuli will trigger the response
(assumed the cell in question is tuned to a certain subset of stimulus space).
The stimulus count variance will increase, because the stimuli the cell is tuned
for are much more likely to trigger a response than other stimuli.

A typical result from the set of recorded cells that are used for reconstruction
is shown in figure 5.1. A temporal delay of about 85ms (the location of the
variance maximum) has been found for other tuned cells as well and has been
used for tuning curve calculation and reconstruction.
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Figure 5.1: Stimulus count variance as a function of temporal delay between
stimulus and measured neural response. For a delay around 85ms
the variance increases significantly, indicating the correct response
latency.

5.2 Review of Assumptions

Two major assumptions about the neural reponse characteristics have been made
in our neural model. First, the spike count density is assumed to be a Poisson
distribution (see equation (3.7)), and second, simultaneously recorded cells are
assumed to react independent of each other (see equation (3.16)). Both can be
tested in the light of empirical data.

An important characteristic of a Poisson distribution is that the distribution’s
mean and variance are equal. This means that the so-called Fano factor, the
ratio of mean spike count and spike count variance equals 1 for a given time
window. The left subplot of figure 5.2 shows the variance of spike counts for a
141ms counting period plotted against the mean spike count. Data are from 22
cells recorded under a variety of stimulus conditions. It can be seen that the
data points are scattered around the coordinate system’s bisection line, which
is the prediction of the Poisson model: the average Fano factor of the recorded
cells is about 1.

Another test of a presumably underlying Poisson process is to examine the
interspike intervals. In a Poisson process, the probability of a certain delay
between two events decays exponentially. In the right subplot of figure 5.2, the
theoretical curve is plotted on top of the empirical results. The curve calculated
from data of a typical cell differs in two major aspects from the presumptive
one: on the one hand, there is a frequent occurance of intervals smaller than
25ms. This means that there is an increased tendency for bursting response
(fast consecutiveness of action potentials) behaviour which is not predicted by
the model. On the other hand, a further deviation from the Poisson model is
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Figure 5.2: Examination of assumptions made by the Poisson model. The left
diagram shows the variance of spike counts for a 141ms counting
period plotted against the mean spike count. The straight line is
the prediction of the Poisson model. Data are from 22 cells recorded
under a variety of stimulus condiftions. The right plot shows the
interspike interval histogram of a cell firing at 7 Hz (thin line), over-
laying the predicted exponential curve (thick line). Bursting and
refractory behaviour of the cell are not reproduced by the model.

the decreased number of occurances of intervals smaller than 5ms. This reflects
the existence of an absolute and relative refractory period, which the Poisson
model cannot account for.

Summarizing, assumptions made by the Poisson spike generator are insuffi-
cient for modelling the response characteristics of neurons in the primary visual
cortex of rat adequately. However, it is not clear whether the physiological be-
haviour not mapped by the model is important for coding.

The second assumption to test is the mutual independency of cell responses
within a population. The response correlation coefficient ri,j of cell i and j can
be calculated using Pearson’s product-moment correlation:

ri,j =
ci,j√

ci,i · cj,j

, (5.2)

where ci,j is element of the covariance matrix C = Cov(X) and X is the matrix
containing all observations for different stimuli, for one cell per column. Corre-
lation coefficients have been pictured for N = 22 simultaneously recorded cells
in figure 5.3.

To test the significance of the Pearson product-moment correlation coeffi-
cients with respect to the hypothesis of an uncorrelated response behaviour, the
coefficients are transformed to t distribution [19]. If the true correlation within
the population described by X is ρ = 0, and if the size of the sample, N, on
which an observed value of r is based is equal to or greater than 3, then the
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Figure 5.3: Pearson product-moment correlation coefficients of 22 simultane-
ously recorded cells. No pair of two different cells shows a signif-
icantly correlated response. Critical values from [13].

quantity

ti,j =
ri,j√
1−r2

i,j

N−2

(5.3)

is distributed approximately as t with N − 2 degrees of freedom. Application of
this formula to any particular observed sample value of r will accordingly test
the null hypothesis that the observed value comes from a population in which
ρ = 0.

At a 5% level, for none of the cells the null hypothesis could be rejected,
i.e. no cell is significantly correlated to any other cell of the subpopulation.
However, as can be seen in figure 5.3, both positive and negative correlations do
occur. Although not significant with respect to the applied test, a physiological
meaning of these correlations cannot be ruled out.

5.3 A Reconstruction of Random Walk

The tuning properties of the 22 cells already mentioned in the previous sec-
tion turned out to be insufficient for reconstruction of the random walk stimu-
lus. Tuning curves have been calculated using different approaches proposed by
Dayan and Abbott [5], including different time window sizes, both overlapping
and non-overlapping. The best results emerged from the use of an overlapping
time window of 100ms (see figure 5.4). All tuning curves appear to be too flat
(compared to their base frequency) to carry significant orientation tuning. Try-
ing to fit any of these curves with a trigonometric polynomial as described in
section 3.2 results in polynomials of degree zero, that is, a flat line located near
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Figure 5.5: Reconstruction results using empirical data recorded from 22 cells.

Orginal stimulus (thick line) and reconstructed trajectory (thin line)
are plotted on top of each other. The optimal random walk variance
vw = 0.1 found in simulation has been used here as well. The re-
construction was unsuccessful and resulted in an amlost flat line at
s̃ = −0.24.

the average base frequency.
Therefore, linearly interpolated tuning curves as shown in figure 5.4 were

used for reconstruction, avoiding to level out the sparse information available.
But still, reconstruction using the measured spiketrains and tuning curves was
unsuccessful resulted in an almost flat line at an angle of s̃ ∼= −0.24 (figure 5.5).

To test wether the information content of the tuning curves could potentially
be sufficient for a reconstruction, we generated an artificial answer an the basis
of the same measured tuning curves. Similar to the simulation in section 4.4, this
will show if a reconstruction is possible, given the ’optimal’ response based on
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Figure 5.6: Linearly interpolated tuning curves with substracted minimum rate.
Most tuning curves have their peak at s̃ = −0.24. Consequently, even
a reconstruction with these modified tuning curves leads to the same
negative result seen in figure 5.5. As all cells are not or only weakly
tuned to s̃ = −0.24, this is the reconstruction result, whatever the
stimulus is.

measured tuning curves. The result was negative as well, with the reconstructed
trajectory being very similar to that already shown in figure 5.5. This implies
that the problem does not lie in the evaluation of wrong data (i.e. the use of
wrong parts of the spiketrain for reconstruction), but in the measured tuning
curves.

Analysing the tuning curves’ shapes, a low reaction index (see section 2.1)
is a first characteristic that draws trough all cells. Subtracting the minimum
rate from each tuning curve leads to a clear picture of what is the problem: in
figure 5.6, it becomes evident that most of the tuning curves have their peak
at s̃ ∼= −0.24. Consequently, even a reconstruction with these modified tuning
curves leads to the same negative result. As all cells are not or weakly tuned to
s̃ ∼= −0.24, this is the reconstruction result whatever the stimulus is.

In other publications facing similar problems [26, 11], an artificial translation
of tuning curves and responses is considered to increase the coverage of stimulus
space, which facilitates positive reconstruction results. Here, it is not necessary
to do the same, as it could only show the feasablity of the decoding approach.
This has already be done in chapter 4, especially section 4.4. The reasons for
the negative tuning results have to be discussed in the next chapter.
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6 Discussion

In this work, theoretical and empirical results have been presented. On the
theoretical side, we have developed a probabilistic framework for coding and
decoding of neural activity. The model extends approaches presented by Brown
et al. (1998) and Jaekel (2001), since the filtering process as a part of the recon-
struction algorithm is no longer based on Gaussian distributions. By contrast,
arbitrarily shaped tuning curves (e.g. multimodal) and stimulus dynamics (e.g.
nonlinear) can be propagated with the presented algorithm. A reconstruction
filter with similar generality has been used so far in one recent work by Gao et
al. (2002).

Two significant simplifications have been made: spike events are generated
in an inhomogeneous Poisson process and intercell firing correlations have been
assumed to be irrelevant for coding and decoding. Both simplifications can be
easily replaced by more complex features within the framework. The feasabilty
of the framework to reconstruct a random walk stimulus (as an example for an
arbitrary dynamic stimulus) has been shown in simulation.

On the empirical side, we have tried to reconstruct the trajectory of a dynamic
stimulus from recordings made by Freiwald et al. in the rat primary visual
cortex. As already stated in section 5.3, the reconstruction failed because of
insufficient measured tuning curves. The reason(s) for failure may lie in at
least one of the following three domains - the rat visual cortex itself, the visual
stimulation and the measuring chain:

1. Concerning the tuning properties of the rat visual cortex, it is not unlikely
that the rat is not the optimal animal for exploring a complex question
as the reconstruction of dynamic visual stimuli. It is well known from
biology that compared to cats and monkeys, visual processing in rats is
less important for their typical behaviour. Missing orientation columns
and significantly differing results from independent research teams seem
to underline this assumption. Furthermore, the use of comparatively (e.g.
to Girmal et al.) light anaesthetics might have led to generally higher
spontaneous firing rates [9].

2. It is questionable if the presented stimuli were adequate to test the ori-
entation tuning properties. While both stimuli have similar spatial char-
acteristics compared to previous research it is not clear how long a single
orientation should be presented for optimal results (which might be a
question of applied anaesthetics as well). In opposite of Girman et al.,
non-shifting gratings at a fixed spatial phase and frequency have been
used for these sets of experiments and further systematic tests might be
necessary for the given experimental setup. Moreover, hypermetropia or
myopia of the rat’s eye has been ignored.

36



3. It cannot be ruled out that the measuring chain is deficient. This includes
every possible error from electrophysiological setup to data conversion on
the computer. Besides stimulus-response synchronisation of trigger and
measurement, which is susceptible even for small errors, wrong spike sort-
ing might cause large errors: if the rat visual cortex does not have any
orientation columns, directly neighboured cells might be tuned for com-
pletely different orientations. If the spike sorting process cannot distin-
guish these cells, the tuning information for single cells will be lost. All
recorded ’cells’ would then show the average tuning of the area - which
has a preference for horizontal stimuli. This could explain the common
peak at a nearly horizontal orientation of most tuning curves shown in
section 5.3.

Summarizing, the theoretical part is left open for various extensions: the Poisson
spike generator could be replaced by a more realistic model to better fit measured
spike count and interspike interval distributions; intercell correlations could be
considered. On the filter side, the Markov structure could be substituted by a
more complex model.

For the experimental setup, next steps should be to verify the functionality of
the measurement chain with definitive tests and to systematically test different
stimulus parameters to optimise neural responses.
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