
Institute for Computer Science

Neuroinformatics

PhD Thesis

Self-Regulating Neurons:
A model for synaptic plasticity in artificial

recurrent neural networks

Keyan Mahmoud Ghazi-Zahedi

January 2009

First supervisor: Prof. Dr. Frank Pasemann

Second supervisor: Prof. Dr. Martin Riedmiller

To Linus and Maxim

Abstract

Robustness and adaptivity are important behavioural properties observed in biological sys-
tems, which are still widely absent in artificial intelligence applications. Such static or non-
plastic artificial systems are limited to their very specific problem domain. This work introduces
a general model for synaptic plasticity in embedded artificial recurrent neural networks, which is
related to short-term plasticity by synaptic scaling in biological systems. The model is general
in the sense that is does not require trigger mechanisms or artificial limitations and it operates
on recurrent neural networks of arbitrary structure. A Self-Regulation Neuron is defined as
a homeostatic unit which regulates its activity against external disturbances towards a target
value by modulation of its incoming and outgoing synapses. Embedded and situated in the
sensori-motor loop, a network of these neurons is permanently driven by external stimuli and
will generally not settle at its asymptotically stable state. The system’s behaviour is determined
by the local interactions of the Self-Regulating Neurons.

The neuron model is analysed as a dynamical system with respect to its attractor landscape
and its transient dynamics. The latter is conducted based on different control structures for
obstacle avoidance with increasing structural complexity derived from literature. The result is
a controller that shows first traces of adaptivity. Next, two controllers for different tasks are
evolved and their transient dynamics are fully analysed. The first is a controller solving the
standard benchmark problem of pole balancing. The second is a controller performing light-
seeking under varying ambient light conditions. In the second experiment, a light source cannot
be distinguished from ambient light in the raw sensor data. The task is solved by the homeostatic
property of the neuron model and the interaction of the robot with its environment.

The results of this work not only show that the proposed neuron model enhances the be-
havioural properties, but also points out the limitations of short-term plasticity which does not
account for learning and memory.

iii

Acknowledgements

It is my strong belief, that science and scientific achievement, although usually assigned to only
one or a few individuals, are the result of good teamwork. This is why these acknowledgements
are so important to me.

There is absolutely no doubt to whom I dedicate my first lines. Frank Pasemann, you have
not only been my thesis advisor, supervisor and department head, but throughout the entire
time, you have been to me a true Doktorvater (PhD-father) just as the German word expresses
it. I will always remember, with great joy and no less gratitude our close and intense relationship
with its ups and downs which have made it so valuable. I was very lucky to share the scientific, as
well as the more personal, discussions with you, and also lucky for the opportunity to participate
in the formation of the restructured INDY department. With your critical view on my work,
you have constantly pushed me further. Thank you very much, it was my pleasure.

Next, I thank Martin Riedmiller, my second advisor, for accepting me as his PhD student,
as well as for his patience and feedback.

For the majority of the time that I was working on this thesis, I was a research fellow at the
former Fraunhofer Institute for Autonomous Intelligent Systems in Sankt Augustin, Germany,
now the FhI for Intelligent Analysis and Informations Systems. I have to thank the leading team
of Thomas Christaller, Stefan Wrobel and Marta Kreuzová for creating the work environment
which makes the completion of this thesis so special to me.

My gratitude also belongs to Nihat Ay, of the Max-Planck Institute for Mathematics in the
Sciences in Leipzig, Germany, who offered me the great opportunity to finish my thesis at the
MPI MIS. From the MPI MIS, I also thank Jürgen Jost for inviting Frank Pasemann and myself
in 2003, during which time the first formulation of the Self-Regulating Neuron was found.

As I mentioned at the beginning, science is teamwork. During my time at the FhI AIS, I
was very lucky to be part of a great team. Martin Hülse and I were the first staff members
when Frank Pasemann led the restructuring of the INDY department. I remember, with great
pleasure, the first years during which we shared one office and wrote ISEE, a software package
initially designed for our own experiments, which turned out to be the technical basis for half
a decade of research in the INDY team. In no time, we grew from colleagues to great friends,
sharing some rough moments but even more great ones, which make such a relationship lasting
and memorable. The team of two soon grew to include Björn Mahn and Steffen Wischmann. The
four of us gave INDY the face and good reputation it was respected and envied for throughout
the institute. We worked together as friends, not just colleagues, to achieve something bigger.
It was a perfect match and a great team, both on and off the field. A team, which was soon
completed by Arndt von Twickel.

I have to thank many colleagues at the FhI AIS for creating a warm and familiar atmosphere.
Three need special mention, Ralph Breithaupt, Karl-Heinz Sylla and Thomas Wisspeintner.
Ralph and I, although in different departments, participated in many discussions on a wide
variety of topics, both personal and professional — something which helped a lot and which I
certainly miss. Karl-Heinz Sylla, Ralph and I, together worked and headed, as a team, some
very intense projects. I do not want to miss these intensive times, although I would not want
them back. To Karl-Heinz Sylla, I owe all my knowledge of software engineering. I will always
remember his kindness, even in the most stressful times. There was always time for a chat, a cup

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

iv

of tea, and a sympathetic ear. Thomas Wisspeinter and I also accompanied each other during
my entire time at the FhI AIS. Unforgettable are our many inspiring and creative breaks. I am
proud to call them my friends.

My other dearest colleagues, to whom I owe a lot, are Eva Sommer, Hedi Szameit, Peter
Schöll, Stefan Kubina, Herman Streich, Joachim Hertzberg, Erich Rome, Paul-Gerhard Plöger,
Fotios Giannakopolous, Herbert Jäger, Stefan Härtig, and many more.

This work would also not be possible without the help of people outside these institutes.
First of all my family, my parents Mahmoud and Silvie Ghazi-Zahedi, my sister Natasha, my
grandmother Edith Wills and my dear uncle Ahmad Ghazi-Zahedi. They have all been of great
support and have shown endless patience with me. I have to mention my father again, who as
an artist, gave me valuable suggestions on the first images that I created for this thesis.

I am lucky to have very close friends, who I have known for many years. Olaf, Boris and
Ilona own their share of this thesis. I now know Olaf Peisker for over two decades. You are like
a brother to me. I met Boris Diebold during my time as a student, about 10 years ago. Without
you, I would not have pushed myself this far to reach what I have reached. Ilona Wienecke, a
very close friend of more than 15 years, has been a very valuable support. Thank you very much
for your openness. This makes a true friendship.

I thank Rainer Grossmann for his support on many evenings when I started my night shifts,
as well as the many enjoyable and insightful discussions on topics outside of my scientific field.
It has helped me to maintain a larger perspective. Julius Popp earns my gratefulness. He has
been a great support since I moved to Leipzig. Not only did he give me the warmest welcome,
but also a great opportunity to work in art projects, and to use his atelier to continue writing
my thesis in the evenings.

From the MPI MIS I thank Thomas Kahle, Wolfgang Löhr, Bastian Steudel, Susanne
Schindler, and Antje Vandenberg and my other colleagues at the MPI MIS, for their support in
making it especially easy for me to feel at home here very quickly.

For revising previous versions of different chapters of this thesis, I thank Susanne Schindler,
Ralph Breithaupt, Irene Markelić, and Mario Negrello.

My special thanks go to Iman Awaad for her never-ending encouragement, many nice dis-
cussions, the pleasure of working together in the XPERO project, and last but not least, for
her endurance to read my entire thesis, and improve its readability with many very valuable
comments.

This work was partly funded by DFG grants PA 480/4, CH 74/9, and a PhD scholarship of
the independent research group ,,Information Theory of Cognitive Systems Group” of the Max
Planck Institute for Mathematics in the Sciences.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Contents

1 Introduction 1

2 Background 7
2.1 A short overview of the history of neuro-informatics 8
2.2 Cybernetics . 11

2.2.1 Terminology . 12
2.2.2 The Ultrastable System . 14
2.2.3 The Homeostat . 15

2.3 Behaviour-Based Robotics & Embodied Artificial Intelligence 19
2.4 Biological Systems . 21

2.4.1 Learning and Memory . 22
2.4.2 Biological Mechanisms . 24
2.4.3 Synaptic plasticity . 29

2.5 Summary . 31

3 Methods 33
3.1 Dynamical Systems Theory . 33

3.1.1 Terminology . 35
3.2 Artificial Recurrent Neural Network . 39

3.2.1 Biological Neurons . 40
3.2.2 Mathematical neuron model . 41

3.3 Artificial Life and Evolutionary Robotics . 45
3.3.1 Evolution of Neural Systems by Stochastic Synthesis – ENS3 46
3.3.2 The approach to artificial evolution . 51

4 Self-Regulating Neuron Model 55
4.1 Self-Regulation Neuron Model . 55
4.2 Dynamical properties . 60

4.2.1 Single neuron with excitatory synapse . 60
4.2.2 Single neuron with inhibitory synapse . 65
4.2.3 Input-output neuro-module without recurrent connection 67
4.2.4 Input-output neuro-module with recurrent connection 69

4.3 Related work . 71
4.4 Conclusions . 78

v

vi CONTENTS

5 Experiments on Plasticity Parameters 79
5.1 Experimental Design . 79

5.1.1 Morphology . 80
5.1.2 Controller . 82
5.1.3 Environment . 83

5.2 Obstacle Avoidance . 84
5.2.1 Braitenberg vehicle 3b without recurrent connections 85
5.2.2 Braitenberg vehicle 3b with self-connections 88
5.2.3 Minimal Recurrent Controller with Self-Regulating Neurons 95

5.3 Conclusions . 101

6 Artificial Evolution of SRN-Controllers 107
6.1 SRN Pole-balancer . 107

6.1.1 Experimental set-up . 108
6.1.2 Evolutionary set-up . 109
6.1.3 Results . 111

6.2 SRN Adaptive Light-Seeker with Ambient Light 123
6.2.1 Experimental Set-up . 123
6.2.2 Evolutionary Set-up . 125
6.2.3 Results . 128
6.2.4 Discussion . 136

6.3 Summary . 136

7 Discussion 137

A ISEE 141
A.1 Overview of the main tools . 142
A.2 ISEE Specification . 144

A.2.1 Design Considerations . 145
A.2.2 Architectural Strategies . 147

A.3 ISEE Tools . 148
A.3.1 Cholsey . 148
A.3.2 EvoSun . 151
A.3.3 Hinton . 152
A.3.4 Analyser: . 156
A.3.5 YARS . 158
A.3.6 Brightwell . 161
A.3.7 Reading . 173
A.3.8 Newbury . 173
A.3.9 Beaumy . 173

A.4 Examples of projects implemented with the ISEE framework 174

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

CONTENTS vii

B Howto’s 179
B.1 Overview . 179
B.2 How to write a Communication class . 182
B.3 How to write a Fitness-Function class . 185
B.4 Data-Exchange classes . 186

B.4.1 ProcessParameter . 186
B.4.2 RobotStruct . 187
B.4.3 RobotStatus . 188

B.5 How to write a Tool class . 188
B.5.1 How to to use the DrawPanel . 190

B.6 How to write a Learning Rule class . 191
B.7 RoSiML . 191

C SRN Model Stability Analysis 199

Bibliography 217

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Chapter 1

Introduction

I am only a relation among my parts that are perceived while they are in relation to each
other. But these parts are in turn divisible into other relations (and so on), therefore
every system of relations, being aware of itself, being indeed the awareness of self, is a
thinking nucleus. I think me, my blood, my nerves; but every drop of my blood thinks
itself.
Does it think itself as I think me? Surely not [. . .] Every thing thinks, but according
to its complexity.

Roberto de La Grive, main character in Umberto Eco’s book The island of the day
before (Eco, 1998)

In the quote given above, the main character thinks about himself and what makes him
conscious. His conclusion is that his consciousness is the result of the interaction of all the parts
of his body and cannot be assigned to any subset of it. The questions of what consciousness and
intelligence are and what leads to them remain unsolved and are therefore still of great interest,
in science as well as in literature. The quote taken from literature describes well, also if not
scientifically, the context in which consciousness and intelligence are understood in this work.
This context will be clarified throughout and summarised at the end of this introduction.

This work will not discuss the terminology and will not give a definition of consciousness or
intelligence. In this work they are used as abstract concepts (Brooks, 1991b). The focus is on
finding general principles of neural signal processing. This is in accordance to Förster (1993,
2003), who describes consciousness as a very basic process that transforms sensory data into
motor commands using a form of internal (non-symbolic) representation.

There are many and diverse fields of science that try to find answers to the question of how
the brain functions. A short overview of the history of sciences related to the field of neuro-
informatics is given in the second chapter of this work. The field which is most closely related to
this work is artificial intelligence, the science of modelling human intelligence or human problem-
solving strategies commonly labelled as intelligent. The field dates back to the late 1950s. At
that time, intelligence was understood as a rule-based process operating on symbols. The rules
were designed by the scientist to model specific problem-solving strategies, e.g. playing chess.
The symbols were representations of objects, their properties and their relations to each other.
The objects could be real-world objects, such as a chair, but for simplicity most often simulated

1

2 CHAPTER 1. INTRODUCTION

worlds with very limited input and output space, so called micro-worlds (A. Clark, 1996) or
block-worlds (Brooks, 1991c) were used. In the example of chess, the symbols encode the type
of the chess piece, where it is located on the chess board, and how it can move from thereon.
In current robot applications, the notion of objects and object properties in some applications
is replaced by Gibson’s concept of affordances (Gibson, 1977). Affordances are defined as all
action possibilities latent in the environment.

The most prominent solution in the field of classical artificial intelligence in the early time was
the General Problem Solver (GPS) (Newell & Simon, 1963). Early success of GPS in automated
theorem proving and in solving problems, such as the Towers of Hanoi was reason enough to
believe that human thinking has been fully understood and successfully modelled. GPS was a
heuristic search algorithm on trees spanning a specific problem-space. It was soon clear that GPS
had strong limitations. It could not handle uncertainties and ambiguities. In addition, scaling
from the micro-worlds to larger problem-domains, such as e.g. chess, showed its limitations. It
was the advances in computational power and the improvements to the unchanged algorithm in
chess competitions that led to the belief, which is still popular today, that it is only a matter
of time until artificial intelligence becomes viable as further advances in computational power
fulfil the enormous computational requirements of GOFAI:.

It was discussed early in this field, that learning was essential to improve the algorithms, but
little or no effort was put into it. In the field of artificial neural networks, learning methods were
used for automated pattern recognition and clustering of input data. The results were often
misleading as wrong clusters were found. To avoid this, a lot of preparation and very careful
selection of the training and evaluation data was required by the experimenter. Even when
trained, the solutions were not good at generalising from the training and evaluation data sets
to completely new data sets. In comparison, generalisation is performed very well by humans.
Although many impressive engineering results were achieved in this field of research, not much
contribution was made to the initial claim of understanding and modelling human intelligence.
The statements given above apply not only to the beginning of artificial intelligence, but are as
relevant to today’s GOFAI approaches, which face the same problems.

In the 1980s, a new field of research emerged which was initially called Behaviour-Based
Robotics (Brooks, 1986, 1991c, 1991b) and later reformulated as Embodied Artificial Intelligence
(Pfeifer & Scheier, 1999; Pfeifer & Bongard, 2006). This field proposed a very different approach.
Intelligence was now understood as a process which must be embodied and situated, hence it only
occurs within the sensori-motor loop (Cliff, 1990). Many impressive results were produced in
a comparably short time, e.g. the first autonomous robots acting not in artificial micro-worlds
or laboratories, but in unstructured office environments (Brooks, 1986, 1989, 1990). Other
experiments showed how an intelligent design of the body reduces the amount of required control
(Maris & Boekhorst, 1996) or even does away with the need for any control at all (McGeer, 1990;
Wisse, 2004). The first cited example by Brooks is an autonomous robot that operates in office
environments, collecting empty soda-cans and an autonomous walking machine, both only using
locally available, and hence comparably weak computational resources. The second example
by Maris and Boekhorst is a group of simple two wheeled robots, with two infra-red distance

:GOFAI is an abbreviation for Good Old Fashioned Artificial Intelligence and was first used by Haugeland
(1985)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3

sensors, operating in a bounded environment with moveable boxes. The motors are strong
enough to push a single box, but too weak to push two boxes. Depending on the arrangement
of the distance sensors, a group of such robots rearrange the cubes in heaps through the use of
a simple obstacle avoidance behaviour and a form of collision detection measuring how many
boxes are pushed. The grouping of the boxes into heaps was not encoded anywhere in the control
program, but is the result of the simple behaviour control and the morphology of the robot. The
third example by McGeer is the passive dynamic walker – a device that walks down the slope
without the need for any controller and using instead the dynamics of the body and the force of
gravity. Wisse rebuilt such passive dynamic walkers and also introduced very limited actuation
to compensate for the loss of kinetic energy that occurs during walking, which was previously
evened out by the force of gravity and the slope.

This new approach to artificial intelligence provided many insights about how embodiment
and situatedness influence behaviour and how careful design can reduce the complexity of the
behaviour control system. This was also demonstrated by Braitenberg (1984) with his Gedanken-
experiments in which he showed with various vehicles how behaviour, which appears to be com-
plex to an observer, is the result of very simple control structures. His vehicles are related to
neuro-biological findings.

Despite these early and convincing successes, solutions in these fields were mostly biologically-
inspired pre-programmed solutions. As a result, good and simple solutions for previously difficult
problems (as the control of an autonomous walking machine in an unstructured environment)
were found. Approaches, such as Brooks’ subsumption architecture (Brooks, 1986) are however
weakly related to biological nervous systems and therefore do not provide new insights about
the fundamental principles of neural signal processing.

This work starts exactly at this point. It is not just the behaviour of an embodied and
situated agent which is of interest, but, more specifically, how the behaviour results from gener-
alisable principles of neural signal processing. As Malsburg (1981) puts it, there is every reason
to believe in the existence of general principles governing the function of the brain. The assump-
tion is that findings in the structure–function relationship of artificial recurrent neural networks
controlling an autonomous robot in the sensori-motor loop will relate to biological findings and
as a next step even provide new insights, which are novel in the science of biology. How well
the results will relate to biology depends on the chosen neuron model (which is discussed be-
low). Robotics is here practised not as an engineering discipline, but as a method to find and
understand general principles of neural signal processing.

The appropriate neuron model depends on the chosen level of abstraction. For biological
nervous systems such as the brain, many different description levels are available. This begins at
the highest level of detail, modelling the bio-chemical processes involved in signal transmission
over a synapse and in changes of the morphology of a neuron. The highest level of abstraction
might be defined where brain areas are understood as interacting functional units. In this work,
basic principles are of interest, not the bio-chemical mechanisms which lead to them. This is
in correspondence to the field of cybernetics (Wiener, 1948), which is the science of describing
systems at an abstract level. Animals and machines are considered and treated equally as
systems. It is the laws that determine their behaviour that are of interest, and not how they
are related to detailed internal biological or technical mechanisms.

To determine an appropriate level of abstraction, the point of interest of the brain must be

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4 CHAPTER 1. INTRODUCTION

clarified. The brain consists of a vast number of neurons and synaptic connections between them.
Recurrent connections and the non-linearity of the input-output response of biological neurons
are the basis for the assumption that brains are well described as non-linear dynamical system.
Findings in humans justify this assumption as dynamical features such as chaos (Sarbadhikari
& Chakrabarty, 2001; Faure & Korn, 2001) and hysteresis (Eckmiller, 1974; Kleinschmidt et
al., 2002) are observed. These types of dynamics are understood as general principles of neural
signal processing, if they produce behaviours in the sensori-motor loop. Hence, a minimal model
must be chosen that is able to expose these dynamical effects. The standard additive neuron
model with a non-linear transfer-function shows the desired dynamical features already in single
neurons with a recurrent connection and small neuro-modules (Pasemann, 1993, 2002). Hence,
it is the chosen level of abstraction in this work.

To avoid the shortcomings of classical artificial intelligence, neural systems are embedded
and situated, acting in the closed sensori-motor loop. Autonomous systems of this kind operate
in uncertain or even partially unknown and dynamic environments. In this context, it is assumed
that no teacher, teaching signal or training and evaluation data sets are available during the
lifetime of an autonomous agent. Hence, it must have the ability to adapt in a self-sustaining
manner to changing properties in the external world and its own body’s properties.

Therefore, this work focusses on self-organising properties of recurrent neural networks in the
sensori-motor loop. Learning and adaptation are the result of locally interacting Self-Regulating
Neurons coupled in a (recurrent) neural network. A neuron is now a three dimensional system
with two new intrinsic properties, which are referred to as the transmitter and receptor strength.
Each neuron modulates its input and output as a result of the neuron-intrinsic properties. This
is the concept of homeostasis, first introduced by Cannon (1932) and later proposed by Ashby
(1954) as a general principle for adaptive systems, which Ashby demonstrated in his machine
called the Homeostat. Currently, the target value is of arbitrary choice, but as long as one is
interested in non-linear dynamical effects, there is a canonical choice for it.

This work follows the idea of Behaviour-Based Robotics that fully self-sustaining robots
and behaviours of lower complexity must be built and understood first, before higher levels of
complexity are taken into account (Brooks, 1991c). Thus, the most basic form of adaptivity
discussed in biology is modelled. It is short-term plasticity (STP) by synaptic scaling. STP
is defined by the duration of changes of synaptic strength as a result of sensory input. The
length of time of the STP effect after the triggering stimulus is presented is of the same order
of magnitude of time as the activating stimulus, and its duration is in the range of seconds.
Synaptic scaling refers to a biological mechanism where all incoming synapses are modulated in
their strength by the post-synaptic neuron.

The Self-Regulating Neuron (SRN) model is analysed with respect to its dynamical prop-
erties, decoupled from the sensori-motor loop. This leads to an understanding of the attractor
landscape and reveals that the SRN model exposes the desired property of homeostasis. Embed-
ded, a network is constantly driven by external stimuli. The neurons will therefore, in general,
not converge to their asymptotically stable state. Consequently, the next step is to analyse the
transient dynamics of the model while a SRN network controls a robot in an environment per-
forming a simple negative tropism task of obstacle avoidance. The result of the analysis leads to
an understanding of the relationship between the plasticity parameters of the SRN model and
the behaviour relevant transients of the systems. From the results of the analysis, an obstacle

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5

avoidance controller is constructed that performs comparably well to the best-known minimal
static neuro-controller, but requires less structural complexity. It solves the task by adaptation
of the synaptic connections to different encountered environmental conditions.

To compare the SRN model with other static structures, a solution for a standard benchmark
problem for control theory is generated by artificial evolution. The controller performs equally
well compared to static neuro-controllers for the pole-balancing task known from literature.
Next, the model is evaluated for adaptivity and robustness. In a light-seeking experiment
(positive and negative tropism), a robot has to find a light source for varying ambient light
conditions. It is only equipped with two light intensity sensors, and cannot distinguish between
a light source and an ambient light in the raw sensor data. The result of the experiment will show
a pure feed-forward structure of only one layer that solves the task, utilising the homeostatic
property of the SRN model and the environment.

This thesis is organised as follows: The following chapter (chap. 2: Background) presents a
short overview of the history of neuro-informatics and details the scientific background of this
work. This thesis is at the juncture of cybernetics, robotics, and biology, and the contribution
of each field is discussed.

The third chapter (chap. 3: Methods) introduces the methods used in the remainder of
this work. Dynamical systems theory gives the mathematical framework to describe, model
and analyse the basic principles of neural signal processing. Artificial neural networks with the
standard additive neuron model are motivated based on the behavioural properties of biological
neurons, and finally, artificial evolution is proposed as an algorithmic method to construct
recurrent neural networks of arbitrary structure.

The fourth chapter (chap. 4: Self-Regulating Neuron Model) introduces the Self-Regulating
Neuron model and presents analytical and numerical analyses of single neurons and small neuro-
modules. It concludes with a comparison of related learning mechanisms for artificial neural
networks.

The fifth chapter (chap. 5: Experiments on Plasticity Parameters) discusses the transient
dynamics of neuro-controllers in the sensori-motor loop on the basis of different obstacle avoid-
ance controllers of increasing structural complexity with respect to variations of the plasticity
parameters. The result is a controller that already shows first traces of adaptivity.

In the sixth chapter (chap. 6: Artificial Evolution of SRN-Controllers) two controllers which
have been evolved for different tasks are fully analysed with respect to their behaviour-relevant
dynamics. The result is a controller that demonstrates the adaptivity property of the SRN
model.

The experiments show that adaptivity increases the behavioural properties of robots in
uncertain environments, but that there are also limitations, determined by the chosen level
of plasticity. STP only allows adaptivity. For learning and memory, different mechanisms,
which are mainly related to structural changes, are required. These limitations and possible
next steps are discussed in the last chapter (chap. 7: Discussion).

The appendices presents the software tools which were developed during this thesis (app. A:
ISEE) and how they can be extended for other experiments (app. B: Howto’s). With the
exception of the mathematical solution of the stability analysis of the SRN model (app. C: SRN
Model Stability Analysis), all results presented in this thesis were obtained with ISEE.

To close the introduction, the quote given at the beginning is rephrased with the terminology

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6 CHAPTER 1. INTRODUCTION

of the fields of research discussed above. The quote pointed out that consciousness is the result
of the interaction of every part of the body. In the terms given in this introduction, this means
that from the sensors, which perceive an environment, the nervous system that collects and
processes the sensor signals, to the actuators which drive the body in an environment, and the
body itself (the morphology, denoting the shape of the body and the arrangement of the sensors
and actuators), everything takes part in the process, and consciousness can not be understood
if one of them is removed. Following the approach of first fully understanding lower levels of
complexity before approaching higher levels, this introduction concludes with the last sentence
of the quote, that each thing thinks, but with respect to its own complexity.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Chapter 2

Background

The question (and particularly the answer to it) of how the brain functions and how its ability
to learn and to adapt is achieved depends highly on the chosen perspective. For an impression of
the diversity, consider the following arbitrarily chosen examples taken from Malaka and Spitzer
(2006) which are not meant to be comprehensive. Developmental psychology analyses the stages
in which the brain develops certain learning abilities such as categorisation (Mills et al., 2005).
In the field of neuro-physiology, researchers are interested in how the somatosensory mapping
in the brain adapts to disturbances (Dinse & Merzenich, 2002). Neurology uses methods of
functional magnetic resonance imaging to determine the location of different kinds of knowledge
and mental processes (Wolbers & Büchel, 2005). In the field of artificial intelligence there is still
a strong belief that brain functions are well modelled with symbolic rule based systems (Steels,
2007).

This work follows an approach which is at the junction of three disciplines, namely cyber-
netics, behaviour-based robotics, and neuro-biology. This chapter discusses how these fields
contribute to this work by answering the following questions:

1. What is the main concept on which this work is based on?
(see sec. 2.2: Cybernetics)

2. Why are robots essential in this approach?
(see sec. 2.3: Behaviour-Based Robotics & Embodied Artificial Intelligence)

3. How does the proposed model of synaptic plasticity relate to biological mechanisms?
(see sec. 2.4: Biological Systems)

This chapter begins with a brief overview of the history of brain related research which will
explain how the disciplines mentioned disciplines contribute to this work. Each of the following
sections is based on one main source, as it covers most of the topic. Additional sources are used
to supplement the sections, when necessary.

For the field of cybernetics the main source of inspiration is the book “Design for a Brain”, by
William Ross Ashby (Ashby, 1954). His book presents the concept of an ultra- and multistable
system as a model for the brain and its ability to adapt. The second section discusses his
concept, its physical implementation; the Homeostat, and their implications for this work.

7

8 CHAPTER 2. BACKGROUND

The Self-Regulating Neuron model is proposed as a method for adaptation of recurrent neu-
ral networks of arbitrary structure in the sensori-motor loop. As proof of concept, different
recurrent neural networks are implemented to control an autonomous robot. This follows the
approach first described by Rodney Brooks in his publications “Intelligence without Represen-
tation” (Brooks, 1991c) and “Intelligence without Reason” (Brooks, 1991b). He claims that in
order to understand the principle of intelligence, one needs to build fully self-sufficient robots,
starting at a very low level of complexity. Once lower levels are understood, the complexity of the
system can be gradually increased until higher order intelligence, such as human intelligence, can
be understood. Brooks proposes real autonomous robots as a platform for experimentation be-
cause they are verified against our natural environment, and not against artificial mirco-worlds.
This concept will be discussed in the third section.

The Self-Regulating Neuron model presented in this work is biologically plausible as it relates
to short-term plasticity by synaptic scaling. The fourth section is based on the book “Memory:
From Mind to Molecules” by Larry R. Squire and Eric R. Kandel (Squire & Kandel, 1998) and
discusses basic biological mechanisms for synaptic plasticity and their relation to the presented
model.

2.1 A short overview of the history of neuro-informatics

This section gives a short history of neuro-informatics, with a strong focus on the disciplines
which are related to this work (see above).

The first known description of the brain is the Edwin Smith Papyrus, which dates back
to about 3000 BC. The papyrus is comparable to a medical handbook. It presents diagnosable
symptoms of head injuries, possible treatments and a prognosis of the development if a treatment
is applied. It does not discuss how the brain functions.

The first functional descriptions of the brain are found in ancient Greece. Different philoso-
phers had varying opinions on the brain’s main function. Hippocrates (460 BC) was the first
to talk about it. He believed that the brain is responsible for sensitises and intelligence. Plato
(387 BC) also believed that mental processes are located in the brain. His student, Aristoteles
(335 BC) did not agree and assumed that mental processes were located in the heart, and that
the brain’s main function was to cool the blood. Although the first functional descriptions were
available, the role of the brain was unclear and open to discussion.

The first anatomical studies are found in the book “Cerebri anatomi” written by Thomas
Willis in 1664. Thomas Willis (1621-1673) was an English physician with important contribu-
tions to the science of anatomy. His book included descriptions of brain regions and brain nerves,
and his numbering of the eleven cranial nerves holds until the present day. Examples for these
cranial nerves are the olfactory nerve, which transmits the sense of smell, and the optic nerve,
which transmits visual information to the brain. He was the first to use the term reflex action
to describe elemental actions of the nervous system, relating a stimulus to a specific response.
Because of his contributions, he is considered to be the father of neurology. Although his work
provided anatomical descriptions of the brain, there were still no functional descriptions of the
brain and its basic elements available at that time.

The modern form of neuroscience dates back to the end of the 19th century, when Santiago

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.1. A SHORT OVERVIEW OF THE HISTORY OF NEURO-INFORMATICS 9

Ranmón y Cajal formulated the neuron doctrine (1889). He discovered that the brain consists of
discrete cells, each delimited by an external membrane. These cells are the elementary signalling
units of the brain and are called nerve cells or neurons. The term synapse, describing a point-
to-point connection between neurons originates from Charles Scott Sherrington (1897). Cajal
and Sherrington are considered to be the founders of modern neuroscience. It was the first
description of the basic elements and their contribution to the abilities of the brain.

Up to this point the brain has been described at different levels, functional, modular, and
cellular level. However, it was still unclear how learning or adaptation is achieved. Donald O.
Hebb was the first to formulate a general rule for synaptic plasticity in biological systems. In
his book ”The Organization of Behavior: A Neuropsychological Theory“ (Hebb, 1949) he stated
that a synapse is strengthened if the two corresponding neurons are correlated in their activity.
Although this is a very simple rule, it is the origin and inspiration for the formulation of many
learning rules and principles for artificial systems until the present day.

It took about 30 years for Hebb’s hypothesis to be proven in an animal. It is possible,
with modern techniques, to record the activity of single neurons. This allowed not only the
verification of Hebb’s learning rule but to also showed its limitations in biological systems. Bliss
and Lømo (1973) first proved, in rats, that synaptic connections are strengthened depending
on the duration and frequency of a presented stimulus. Recent progress in the field of genetics
allows researchers to knock out specific genes and therefore investigate the role of biochemical
processes in learning and memory. Today some of the basic biological mechanisms responsible
for learning and memory are known. Two of them, namely short and long term potentiation are
described in the fourth section of this chapter.

Besides research on animals and humans, other disciplines, which do not deal with biological
systems, contributed to the research on how the ability of the brain to learn and to adapt may
be achieved. In 1943 Warren S. McCulloch and Walter Pitts showed through theoretical experi-
ments that a collection of neurons can perform logical operations. Inspired by the recordings of
an action potential by Julius Bernstein (1868) their neurons were binary. A neuron can take one
of two states, either firing or not-firing, represented by the digits 1 and 0, respectively. Their
publication “A logical calculus of the ideas immanent in nervous activity” (McCulloch & Pitts,
1943) initiated two new fields of research. One is the theory of finite-state machines as a model
of computation. The other is the field of artificial neural networks which is considered with
respect to learning in the remainder of this section.

The first learning rule for artificial neural networks was published in “The Perceptron: A
Probabilistic Model for Information Storage and Organization in the Brain” by Frank Rosenblatt
(1958). A Perceptron is a strictly layered feed-forward network consisting of two layers: which
receives a binary input vector and delivers a binary output as a response. Rosenblatt described
an algorithm to alter the weights in order to minimise the error of the output with respect to
a training set. This enabled the network to perform classification tasks in which sets of input
vectors are mapped onto a set of output vectors.

It was shown by Marvin Minsky and Seymour A. Papert in their book “Perceptrons” (Minsky
& Papert, 1969) that the Perceptron model was restricted. It could not solve a simple non-linear

:The layers are counted with respect to the number of synapse layers. A different numbering counts the
number of neuron-layers. In this case the network would be considered as a three layered network.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

10 CHAPTER 2. BACKGROUND

classification task such as the XOR-problem. This proved that the Perceptron was insufficient
to describe the brain and stopped the research in this field for about a decade.

In the 80’s artificial neural networks with non-linear neuron models and the back-propagation
algorithm were introduced. Back-propagation was initially developed by Paul J Werbos in 1974,
and independently rediscovered in the early 1980s by David Rumelhart and David Parker. This
algorithm enabled multilayer feed-forward neural networks with the ability to perform non-
linear classification operations beyond those known for Perceptrons. After this breakthrough,
a lot of research was contributed to the improvement of the back-propagation algorithm, as
well as the formulation of other learning rules for feed-forward neural networks. Biological
inspired learning algorithms for artificial systems are discussed later in this work (see sec. 4.3:
Related work). However, this research in the field of of artificial neural networks concentrated
on feed-forward structures, with only few exceptions such as the highly structured Hopfield
network (Hopfield, 1982) for pattern recognition or Elman networks (Elman, 1990), which are
an extension of Jordan networks (Jordan, 1986), to model time sequences, initially targeting
natural language processing. A different method named back-propagation through time converts
a recurrent neural network into a feed-forward network by adding layers of identical copies
mapping the recurrences as feed-forward connections between the layers (Minsky & Papert,
1969; D. E. Rumelhart, McClelland, & the PDP Research Group, 1986).

Although the brain, with its large number of neurons and synaptic connections, can be
considered as a highly recurrent structure with dynamical properties such as oscillations and
hysteresis (Pasemann, 1996), considerably little effort was contributed to the research of recur-
rent neural networks. The first full mathematical analysis was published in ”Dynamics of a
single model neuron” by Frank Pasemann (1993). He showed that even with a simple non-linear
neuron model, a single neuron with a recurrent connection can show dynamical properties such
as oscillation and hysteresis. In the following publications it was shown that even small networks
consisting of two, three neurons and ring structures have very large dynamical reservoirs (Pase-
mann, 2002, 1995) and that a single neuron with a damping term can show chaotic behaviour
(Pasemann, 1997b).

Besides the approaches in biological and artificial neural networks, the 50’s saw another
discipline approach the understanding of the brain. The field of cybernetics, as defined by
Norbert Wiener in his book “Cybernetics; or the Control and Communication in the Animal
and the Machine” (Wiener, 1948) started to describe animals and machines equally on a system
level. Important is not the full understanding of the internals, but a complete description of the
behaviour of a system. William Ross Ashby states in his book “Design for a Brain” (Ashby, 1956)
that a good model must hold an objective demonstration, preferably in a technical machine.
Inspired by Cannon’s formulation of homeostasis (1932), he built the Homeostat, a machine
that demonstrates his idea of an ultrastable system, which he proposes as a model for the brain
and its ability to adapt. The Homeostat and its implications for this work are discussed in the
second section of this chapter.

Since the early 90’s a new perspective has been contributed by the field of robotics. In the
publication “Intelligence without Representation” (Brooks, 1991c) Rodney Brooks described the
dilemma of current research in the field of artificial intelligence from his point of view. He claims
that the research is concerned with different aspects of intelligence, such as linguistics, computer
vision, knowledge representation, etc., but that the research is not concerned with the principle

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.2. CYBERNETICS 11

of intelligence. To find such a principle, small systems with considerably low complexity must
be built and fully understood first, before systems of higher complexity such as those found
in humans or other biological systems can be understood. This field of research is referred to
as Behaviour-Based Robotics. In addition to the work by Brooks, Rolf Pfeifer describes in his
books “Understanding Intelligence” and ”How the body shapes the way we think” (Pfeifer &
Scheier, 1999; Pfeifer & Bongard, 2006) that intelligence is strongly coupled to the body and
environment in which it acts, and cannot be understood or modelled separately. He shows in
experiments with robots, that a carefully designed body reduces the need of a complex controlling
unit. This corresponds to the Gedankenexperiment of Valentino Braintenberg, who showed in
his book “Vehicles; Experiments in Synthetic Psychology” (Braitenberg, 1984) that a behaviour
classified as complex by an observer, can be related to very simple internal control structures.
One of his vehicles is discussed and used for experimentation in this work (see chap. 5).

The overview presented in this section emphasised cybernetics, robotics and neuro-biology.
These are detailed in the following sections.

2.2 Cybernetics

The model for synaptic plasticity presented in this work is inspired by the book “Design for
a brain” written by the British cyberneticist and psychologist William Ross Ashby (Ashby,
1954). Ashby was interested in finding a model to describe adaptive systems such as the brain.
He formulated three questions to guide his effort in modelling the brain. First, what cerebral
changes occur during the learning process. Second, why does behaviour usually change for the
better, and third, what type of process shows the same property? To answer these questions,
he developed the concept of an ultrastable system and constructed a physical machine, the
Homeostat, as proof of concept. Both are presented and discussed here with respect to their
implications for this work.

Compared to other fields which also research the same questions, such as e.g. biology and
artificial neural networks, Ashby as a cyberneticist had a different perspective and different
terminology to describe the brain. Therefore, the perspective and the terminology are introduced
first before the concept is discussed.

Cybernetics was first defined by Wiener as

“ [. . .] the science of control and communication, in the animal and the machine.”

(Wiener, 1948)

and later described by Ashby as

“ [. . .] a ’theory of things’, but it treats, not things but ways of behaving.”

(Ashby, 1956)

Cybernetics is the science that studies the abstract principles of organisation and behaviour in
complex systems and is less concerned with their exact implementation:

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

12 CHAPTER 2. BACKGROUND

“In essence, cybernetics is concerned with those properties of system that are indepen-
dent of their concrete material or components. This allows it to describe physically
very different systems, such as electronic circuits, brains, and organisations, with the
same concepts and to look for isomorphisms between them.”

(Heylighen & Joslyn, 2001)

To clarify this aspect, consider a car as the system and its locomotion as the behaviour of
interest to the observer. To fully describe and predict the behaviour of the car at any instant,
only the current motion (velocity vector), the mass, the friction, and the current acceleration
are required. This set of parameters sufficiently describes the behaviour of interest. From the
point of cybernetics it is of no matter how they are related to the interaction of the mechanical
parts of the car’s engine, for example.

In his book, Ashby (1954) uses terminology closely related to the scientific field of dynamical
systems theory. This field was well established in the western world about twenty years later by
the work of Andronov et al. (1973). Therefore, the notions of Ashby are similar but not com-
patible with today’s understanding of dynamical systems. The discrepancies are preliminarily
discussed in the following section before the concept of the ultrastable system and its physical
implementation, the Homeostat are presented.

2.2.1 Terminology

In this section, it is assumed that the concepts of dynamical systems theory are known to the
reader. A short introduction to the field is given in the next chapter (see chap. 3.1.1).

This section discusses Ashby’s notions of a system, a field, stability and adaptivity and
rephrases them in the context of dynamical systems theory.

System

A system must obey axiomatic demands (Ashby, 1954). It must be applicable to any form
of material system which may be animate or inanimate. It must be precisely defined, and
information about it must be available only by objective observation of the system itself, and
no other source may be required. Deterministic systems are assumed.

A system is described by a set of variables which cover the aspects of interest of the system
(reconsider the car example given above) and a set of rules which describe the system’s behaviour
over time. The system’s state is given by the numerical values of the variables at a certain instant
in time, and all possible states are captured in the system’s phase-space. The evolution of a
system over time is represented by a trajectory.

Ashby requires two main concepts to formulate the ultrastable system, the field and the
step-function variable. Both are closely related and will be covered in the next section.

Field

A field is defined as a phase-space and the set of all trajectories in the phase-space. This is
similar but not equivalent to the definition of a flow in a phase-space.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.2. CYBERNETICS 13

A

B

C

C0

C1
A

A

B

B

C0

C0

C1

C1

C4
A

B

C1

C3 C2

Figure 2.1: Field. Left: System with two full-function variables A, B and a step function variable C.
If C is constant, the field is determined by the values of the variables A and B. If C changes, the resulting
field of A and B changes. The ellipsoid marks the region of critical states that lead to the chance of
the step-function variable C from C0 to C1 (bifurcation points). See the text below for a discussion and
interpretation of this figure (see sec. 2.2.2). Right: Plot of the partitioning of the phase-space by the
concept of fields and step-function variables. For a discussion, see text below.

In general, a field is a subset of the phase-space together with the related subset of trajecto-
ries. A field is labelled with respect to properties of its flow. This is elaborated on the basis of
an example of a three-dimensional system (see fig. 2.1).

The example is a system described by three variables A, B, and C. The variables A and B
are continuous, i.e. A,B P R and C is of discrete nature, e.g. C P N. The variables A and B are
called full-function or main variables, while C is called a step-function variable. The plot in the
right hand side of figure 2.1 shows a projection of the three-dimensional system onto the plane
given by the variables A and B. This plane is then divided into subsets for which the value of C
is constant. In the example, four such subsets are shown, indicated by C1 to C4. These subsets
are the fields of the system, as defined by Ashby.

In this formulation, a trajectory, which has its origin in one field, may leave it and enter
another field (see fig. 2.1 [right-hand side, red and blue trajectories]). A field is now labelled
with respect to its flow. If a trajectory enters and remains within a field, the field is said to
be a terminal. It is clear from the given example (see fig. 2.1 [right hand side]), that this is no
general field property, but a field-trajectory property, as the same field may be a terminal for
some trajectories and not a terminal for others (see fig. 2.1 Right: C1). The latter case is called
an unstable field. The set of points which separate fields are called critical points, as they lead
to a switch of the step-function variable, and hence to a new field (see fig. 2.1).

In the context of dynamical systems, this sort of behaviour is understood differently. A step-
function variable corresponds to a system’s parameter (Pasemann, 1996), but is not equivalent.

In dynamical systems, the behaviour of a system is characterised by attractors, such as a fixed
point, periodic, quasi-periodic or chaotic attractors. The system’s parameter does not directly
contribute to the system’s behaviour, but encodes regions of topologically equivalent attractors
(Arrowsmith & Place, 1990), which are also called modes (Pasemann, 1996). In the example of
the logistic map (see next chapter, figure 3.1), the output of the system varies for r P r2.4, 3r,
but it is topologically equivalent as it shows a fixed point attractor over the given interval. It
is called topologically equivalent as the structure of the attractors for different values of r are
equivalent despite the actual output of the system. In this context, a field is most closely related
and hence, redefined as the basin of topologically equivalent attractors. This is a more narrow

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

14 CHAPTER 2. BACKGROUND

definition, compared to the original definition by Ashby, in which a field can include attractors
of very different type. In this new definition, a critical point corresponds to a bifurcation point.

Next, two system properties are defined by Ashby, namely stability and adaptivity.

Stability

The importance of stability is pointed out with an example of a biological system with its
body temperature as a main variable. If the temperature drops too low or rises too high for a
period of time, the animal dies. In order to survive, the body temperature must be kept within
physiologically plausible boundaries, i.e. stable.

In terms of Ashby this relates to a terminal. Precisely, a trajectory is defined to be stable,
when it remains within a region, once it has entered it.

In terms of dynamical systems, this concept of stability lies in-between Liapunov stability and
asymptotic stability. A point x� in the phase-space is called Lyapunov stable, if all trajectories
that start sufficiently close to x� remain close, that is if for every neighbourhood of U of x� in
the phase space, there exists a smaller neighbourhood U 1 � U of x�, such that every solution
starting in U 1 will remain in U for all t ¡ 0 (Strogatz, 1994). If x� also is an attracting fixed
point, i.e. all trajectories that start near to x� approach it (limtÑ8 xptq Ñ x�), it is called an
asymptotically stable fixed point (Strogatz, 1994).

Ashby’s notion of stability is replaced with asymptotic stability, which is plausible, when
adaptivity (which follows next) is taken into account.

Adaptivity

A system can now be defined as adaptive, if it maintains its essential variables within physiolog-
ical limits (Ashby, 1954). Adaptive behaviour ensures the survival of a system against external
disturbances. A special form of adaptivity is called homeostasis (Cannon, 1932). It is the pro-
cess regulating a variable towards a target value, with the important property that it fails, if
the variable exceeds specific boundaries. Revisiting the body temperature example, this means,
that if the temperature rises too high or falls too low, the system fails, and the animal dies.

This definition is well suited with the concept of asymptotic stability, as the presented form
of adaptivity regulates towards a target value when a system is in the neighbourhood of the
target value.

2.2.2 The Ultrastable System

With the terminology given above, the ultrastable system is defined as follows. Consider a system
with variables ~x � txiu, i P N, xi P R and parameters ~p � tpju, j P N, pj P R. Without loss
of generality, it is assumed for simplicity of argumentation, that the phase-space only contains
asymptotically stable fixed points and unstable fixed points, and that at least one of each exists.

To continue, first the notion of a parameter with respect to a variable must be clarified.
Parameters in general are slow varying or static with respect to the internal dynamics. In a
neural network, controlling a robot in the sensori-motor loop, the parameters on the one hand
are the configuration parameters of the network (biases and synaptic weights) and on the other
hand capture sensory input. Both types are considered in the parameters vector. In a static

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.2. CYBERNETICS 15

network, where the biases and weights are constant, these would obviously not be taken into
account, but in a dynamic network, as proposed in this work, the varying synaptic weights do
modulate the behaviour of the system, and are therefore considered to be part of the parameter
set. For a more detailed discussion on system parameter and mode switching in neural networks,
the reader is referred to Pasemann (1996). The variable vector ~x of the system, in this example,
refers to the activations or outputs of the neurons in the network.

A system, as described above, has the following behaviour. For a given set of parameters ~p
and an initial condition ~xpt0q the behaviour system either is stable or unstable. In the latter case,
bifurcations will occur if the system has access to its parameters. Then, consecutive modulations
of a subset of the parameters ~qptq � ~pptq, will lead to bifurcations until a stabilisation of the
system occurs.

This process is the principle of ultrastability and is described by Ashby as:

“An ultrastable system acts selectively towards the fields of the main variables, rejecting
those that lead the representative point [current state] to a critical state but retaining
those that do not.”

(Ashby, 1954)

The important point here is that a feedback mechanism is required, which allows the system
to modulate its parameters. It will be argued later in this section, that it is this double feedback
loop, i.e. modulation of the system’s parameters by the system in addition to the external
(sensori-motor) feedback loop, which is required for adaptivity.

In order to account for a large variety of disturbances, the system must have a rich reservoir
of co-existing attractors. In the terminology of Ashby, this means that a system must have a
large number of fields.

Ashby states that any model must hold the concept of objective demonstration, preferable
in a physical implementation. Therefore the principle of ultrastability and its properties are
demonstrated by him in a machine which he calls the Homeostat.

2.2.3 The Homeostat

The Homeostat is an impressive demonstrator for the abstract concept of ultrastability, not only
in that it was built so early (1952), but also in its ability to clearly demonstrate that adaptive
behaviour, which seems intelligent to an observer, does not require sophisticated regulatory
mechanisms. This, and further implications will be discussed after the presentation of the
Homeostat.

The Homeostat (see fig. 2.2) consists of four identical self-regulating (homeostatic) units,
each carrying a rotatable magnet (see fig. 2.2 [left-hand side]). Each unit provides a DC current,
proportional to the deviation of the magnet from its centre orientation, which is presented as
input to the other three units and as a feedback signal to the unit it originated from. The
algebraic sum of the four currents is passed through a device called the communicator. It
determines the polarity and the strength of the input and applies the result as torque to the
coil.

The polarity and strength of the inputs are two parameters of the system, denoted by X
and P . Depending on the setting of the parameters the magnet shows a diverging or converging

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

16 CHAPTER 2. BACKGROUND

X P
S A

X P
S B

U
X P

S C
D P X

G
F O

U
TP

U
TS

M

E

H

J
IN

PU
TS

U

U

Figure 2.2: The Homeostat. By William Ross Ashby. The two figures on the left-hand side (taken
from (Ashby, 1954)) show the machine constructed by Ashby. The upper of the two figures shows the
entire system, while the figure below shows the top view on one of the four homeostatic units with its
magnet. The figure on the right-hand side shows the schematic of the Homeostat (Ashby, 1954), where
A-D are the coils through which the currents of the other homeostatic units and the self-coupling act on
the unit’s magnet M, X is the communicator which determines the polarity of the input reaching the coil,
and P is a potentiometer that determines the fraction of the input which reaches the coil. The coil G of
each uniselector is energised, by closing the relay F, when the magnet M reaches an extreme position.
For a detailed description, see text.

behaviour as a reaction to its displacement from its centre. A device called the uniselector
can automatically change the values of the parameters X and P . If triggered, the uniselector
steps through 25 randomised settings. For the Homeostat, consisting of four units, this allows
254 � 390.625 different configurations. Some might be equivalent, but this is of no matter. If
the magnet reaches an extreme position, the uniselector is triggered and steps to the next setting
of X and P .

The Homeostat can be understood as follows. A state of the system is defined by four main
variables, the deviation of the four magnets, and the eight step-function variables which are
given by the two parameters (X, P) for each unit. Every reconfiguration of the step-function
variables X and P leads to a new field, and therefore to different trajectories of the four main
variables.

The behaviour of the Homeostat can be described in the following way. If the system is
disturbed by dislocating one or more magnets, one of two possibilities occurs. First, a coordi-
nated behaviour of the four units may stabilise the magnets at their centres. Second, one or
more magnets may reach an extreme position. In this case, the uniselector is triggered. This
leads to a randomised reconfiguration of the corresponding units. The input currents that are
presented to the unit are altered, leading to a change of the position of the magnet. The new
configuration either leads to a stabilisation of the four units or to a diverging behaviour of at
least one of them. This process is repeated until the system finally stabilises.

Different experiments were performed with the Homeostat. First, the behaviour of only

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.2. CYBERNETICS 17

one unit was observed. The position of the magnet is stable, if the parameters provided by
the uniselector define a negative feedback loop. If the magnet is displaced manually, it simply
returns to the central position. But if the polarity of the input-output junction is reversed, the
unit destabilises. The magnet diverges from the central position until it reaches an extreme
position. As a result, the uniselector is triggered until a selected parameter setting stabilises
the system. In further experiments, the same behaviour was observable for any combination of
the four coupled units. Even when units were mechanically coupled, so that the magnets were
forced to move together, the system would randomly reconfigure itself until it found a stable
configuration. This demonstrates that the Homeostat is able to adapt to different situations,
even to those it was not originally designed for (mechanically coupled units).

Discussion

The Homeostat is a physical machine constructed of coupled homeostatic units, each regulating
its main variable (the rotatable magnet) towards a target value (the centre). The available
mechanisms to achieve this goal is to modulate the input it receives by the step-function variables
X and P, which alter the sign and strength of the sum of input currents. It must be noted
that only information that is locally available to the homeostatic unit is used for this process.
Explicitly, this means that only the deviation of the magnet as the result of the sum of input
currents is used to change the parameters. No external information, such as the deviation of
any of the other magnets is used directly.

An experimenter introduces a disturbance to the system by dislocating an arbitrary set of
magnets from their centre. This leads to an ongoing reconfiguration of the Homeostat until a
stable solution is found.

Although during Ashby’s time, some reviewers assumed that Design for a brain would not
be of lasting interest: (Milholland et al., 1954) there are still important implications for current
research (Di Paolo, 2003).

First, the Homeostat demonstrates, that intelligent behaviour does not necessarily depend
on intelligent mechanisms:

“The choice of random step-functions is conceptually interesting [. . .] as a proof that
dumb mechanisms can yield adaptive responses which from the point of view of an
external observer may look quite clever.”

(Di Paolo, 2003)

Braitenberg demonstrates a similar aspect in his Gedankenexperiments, in which he showed how
very simple control structures lead to behaviours which can be labelled with emotions by an
external behaviour. The description of his vehicles two and three are endowed with fear and
love (Braitenberg, 1984), although the behaviours result from very simple couplings between the
sensors and actuators (see chap. 5). However, a random process for intelligent behaviour was
not considered by Braitenberg.

Second, Ashby offers a solution to the fundamental problem that Dreyfus saw in classical
artificial intelligence research (Dreyfus, 1992). Although autonomous robots are situated and

:It must be noted that Wiener described the homeostat as ’one of the great philosophical contributes of the
present day’ (Heylighen & Joslyn, 2001; Wiener, 1954).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

18 CHAPTER 2. BACKGROUND

embodied, and therefore already account for some of Dreyfus’s criticism, they are not intentional.
Di Paolo describes intentions as habit formation (Di Paolo, 2003), a property that distinguishes
real animals as cognitive systems from autonomous robots. This was already shown in Ashby’s
work, who demonstrates that

“ [. . .] a closed sensorimotor loop is not enough for adaptation, but that at least a
double feedback structure is needed.”

(Di Paolo, 2003)
and himself states that

“ [. . .] the behaviour of a stable system may be described as ’goal-seeking’.”

(Ashby, 1954)
In the quote given above, Di Paolo refers to the interaction of the (external) sensori-motor

loop and the (internal) dynamics of the system which alters system’s parameters. How this
relates to habit formation and the Homeostat is elaborated in the following.

But first, the concept of the ultrastable system is briefly restated and extended with the
notion of a multistable system. An ultrastable system is one, that rejects unstable fields
and converges towards terminals, i.e. stabilises against external disturbances by means of self-
reconfiguration. For large systems, the search space grows exponentially with the number of
parameters. To reduce the number of reconfigurations of a complex system with a large set of
parameters, such systems are divided into loosely-coupled, ultrastable systems. Changes in a
subset of the variables ~x and parameters ~p no longer influence the entire system, which signif-
icantly reduces the required time to stabilise (Ashby, 1954). This type of system is referred
to as a multistable system. Such a system of loosely coupled ultrastable systems will initially
require many reconfiguration steps until it stabilises. If a similar disturbance is encountered, the
previously configured sub-system may already account for it. In terms of Ashby, this means that
after some time, the ultrastable systems will configure in such a way, that their reconfiguration
will influence as few other ultrastable systems as possible, in order to decrease the necessary
time to stabilise after some already encountered external event has occurred.

Returning to Di Paolo’s quote and his notion of habit formation, the configuration of the
multistable systems at first can be considered as (randomly) testing different behaviours as
possible reactions to external disturbances. After a while, behaviours which were proven to be
suitable in a situation will be chosen again, if the same or a similar situation occurs. In terms
of Di Paolo, this is habit formation, which he states was shown by Ashby to require at least a
double feedback structure. The importance of habit formation in biological systems is obvious
as the time required to react to an external disturbance can be crucial for the survival of the
system.

In addition to the arguments of Di Paolo, current research gives strong experimental evidence
that homeostasis is a general principle in neural systems. A review of homeostatic control of neu-
ral activity on different scales is given by Davis (2006). The biological relevance of homeostasis
in learning and synaptic plasticity is discussed later in this chapter (see sec. 2.4).

The remainder of this chapter discusses robots as an experimentation platform used to
understand intelligence (see sec. 2.3). Additionally, the understanding of the presented model as
a biologically plausible model for synaptic plasticity and therefore also for learning is explained
(see sec. 2.4).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.3. BEHAVIOUR-BASED ROBOTICS & EMBODIED ARTIFICIAL INTELLIGENCE 19

2.3 Behaviour-Based Robotics & Embodied Artificial Intelli-
gence

Classical artificial intelligence research focusses on replicating human intelligence by building
isolated functional units. Among others, examples for such units are visual processing, symbolic
representation, and reasoning. In a second step, these functional subunits are supposed to
produce intelligent behaviour, when combined appropriately. This approach has been discussed
and criticised early in the literature (Dreyfus, 1972). Dreyfus analysed, in detail, the most
prominent approaches in artificial intelligence: and clearly points out the differences of the
symbol-based systems to human intelligence. Probably the most debated criticisms of artificial
intelligence is the Chinese Room Experiment (Searle, 1980). In his Gedankenexperiment, Searle
argues that any symbolic and rule-based system does nothing else but meaningless symbol
processing. The analogy to a rule-based artificial intelligence system is a room, in which a person,
only capable of understanding and speaking English, receives questions in Chinese through a slot
in the wall. The person can only discriminate the symbols by their shape, and has no further
understanding of what is written. Given an English rule book with instructions how to process
the Chinese symbols, the person is now able to produce answers from the questions, which are
not distinguishable to the answers she or he would be able to give to questions asked in English.
The point made here is that in the case of English, the person does understand the questions,
whereas in the case of Chinese there is no such understating, but meaningless symbol processing.
This was later rephrased as the symbol-grounding problem (Harnad, 1991).

The Chinese Room Argument initialised a long-lasting discussion with over 100 articles
having been published on it (Pinker, 1999) and even led Hayes to the statement that

“ [. . .] cognitive science is the ongoing program of showing Searle’s Chinese Room Ar-
gument to be false.”

(Lucas & Hazes, 1982) cited from (Harand, 2001)

It is beyond the scope of this work to discuss the Chinese Room Argument and its answers in
full extent. For detailed discussions about the argument, the reader is referred to the literature
(Churchland & Churchland, 1990; Harand, 2001; Anderson & Copeland, 2002; Cole, 2004;
Harnad, 2005; Steels, 2007). However, the Gedankenexperiment demonstrates that this form
of classical artificial intelligence does not contribute to the understanding of the mechanisms
underlying intelligent behaviour.

A new approach to artificial intelligence was proposed by Brooks (1986, 1986), which Rolf
Pfeifer describes as the

“ [. . .] probably the biggest change in the history of artificial intelligence [. . .] ”

(Pfeifer, 2007)

This section is based on two of his following publications (Brooks, 1991b, 1991c) in which he
describes his approach as Behaviour-Based Robotics and argues against the sense-model-plan-
act paradigm in robotics. It was Rolf Pfeifer who later emphasised the importance of the body,

:In the third edition Dreyfus (1992) analysed the years of GOFAI research after the first and second edition
of his book in which he analysed the first two decades of GOFAI (1957–1967, 1967–1977).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

20 CHAPTER 2. BACKGROUND

and started a new research field called Embodied Artificial Intelligence (Pfeifer & Scheier, 1999;
Pfeifer & Bongard, 2006).

Behaviour-Based Artificial Intelligence is based on four key ideas::

Situatedness: The robot uses the world as its model. Instead of building an internal model of
the world, it continuously relies on its sensors. This way the world directly influences the
behaviour of the robot. Specifically, no abstract model of the world is presented to the
robot.

The world is its own best model.

Embodiment: Embodied systems have two advantages. The first advantage is that they are
situated and fully validated against the real world.

For the second advantage, first consider a totally isolated system. Such a system cannot
sense changes in the environment as a feedback to its own actions. Hence, the internal
process is reduced to the processing of symbols that are meaningless (in the sense of Searle,
see above) to the system. Placing a system in an environment grounds this process. It gives
the internal process a meaning, such as the survival of the system. The second advantage
therefore is that the real world naturally limits the amount of possible regression of the
systems internal process to pure symbol handling.

The world grounds regress.

Intelligence: The intelligence of the robot can not be assigned to the computational unit.
Intelligence appears only with respect to the environment in which it acts.

Intelligence is determined by the dynamics
of interaction with the world.

Emergence: An intelligent behaviour emerges from the interaction of the components of the
system and from the interaction of the complete system with the environment. It can not
be assigned to a single component or to the system isolated from environment.

Intelligence is in the eye of the observer.

Note that the idea of embodiment is an argument against the Chinese Room Experiment, and
that the idea of emergence is very closely related to the quote taken from Umberto Eco’s novel,
with which the introduction of the thesis began.

Behaviour-based artificial intelligence does not decompose intelligence into functional sub-
units. It is assumed that there is a principle to intelligence, and that it is strongly coupled to the
morphology and the environment of the system. Brooks proposes an incremental approach to
finding this principle. Starting from a very simple, but fully autonomous system, the complex-
ity of the system is gradually increased. On every level of complexity, the system is validated

:Statements written in italic are cited from Brooks (1991b).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.4. BIOLOGICAL SYSTEMS 21

against the natural environment. In his subsumption architecture, new behaviour modules are
added incrementally, in co-existence to the previous ones, in order to gradually increase the
overall complexity of the system. The important difference to classical artificial intelligence is
that each behaviour module has full access to all sensors and all actuators. The final behaviour
is the result of the interaction of the modules, where inputs and outputs of lower level modules
can be suppressed or inhibited by higher level layers (Brooks, 1986).

Several years after Brooks, Cliff concludes that models in computational neuroscience are
meaningless unless embodied within a sensori-motor system, which means that an external
feedback loop is closed from the motor output to the sensor input (Cliff, 1990). He is considered
as the origin of the notion of a sensori-motor loop or sensori-motor system, and calls his approach
Computational Neuroethology. The advantage is

“ [. . .] that the semantics of the network are well grounded, and thus results are gener-
ated by observation rather than interpretation.”

(Cliff, 1990)

The important statement here is that the reaction of a system to inputs are not interpreted, as
in classical rule-based artificial intelligent systems. The results are observed, while the agent
interacts with its environment. The quality of e.g. an agent’s obstacle avoidance behaviour is not
determined by presenting different symbols of various situations and interpreting the outputs as
reactions to the symbols, but rather through observations of collisions or avoidance of obstacles,
while the agent acts in the environment.

That Ashby’s understanding of the brain as a dynamical system is consonant with the concept
that (intelligent) behaviour requires the sensori-motor loop is discussed by Chiel and Beer (1997).

This work follows the Behaviour-Based and Embodied Artificial Intelligence approach. But,
in contrast to Brooks, this work does not use the subsumption architecture consisting of dis-
tinctive behaviour modules, as this type of architecture has the limitation that it requires pre-
programmed and manually designed behaviours. Instead, a single recurrent neural network
controls a robot, which is then considered and analysed as a dynamical system. This is dis-
cussed in detail in the next chapter.

To summarise the previous sections, first the concept of an ultrastable system consisting
of homeostatic units was motivated as a model for the brain and its ability to adapt. It was
then proposed to use an autonomous mobile robot as a research platform to understand the
principles of intelligence. The next section of this chapter introduces basic biological learning
and plasticity mechanisms.

2.4 Biological Systems

The importance of learning and memory is described by Squire and Kandel by the following
quote:

”[. . .] every thought we have, every word we speak, every action we engage in —
indeed, our very sense of self and our sense of connectedness to others — we owe to
our memory, to the ability of our brains to record and store our experiences.”

(Squire & Kandel, 1998)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

22 CHAPTER 2. BACKGROUND

GillSiphon

A B C

Sensor system Motor system

Siphon Gill

Inter-neuron
clusters

Figure 2.3: Aplysia. A) Picture of the marine snail Aplysia. B) Figure of the Aplysia, showing
the gill withdrawal reflex triggered by a mild stimulation of the siphon by a paint brush. C) Highly
reduced schematic drawing of the gill withdrawal reflex circuit. The gill withdrawal reflex of the Aplysia
is well-suited for experimentation on non-declarative memory as only 100 uniquely identifiable neurons,
which are identical in every animal, contribute to the reflex. The small number of neurons and their
size (� 1mm) allow easy handling and observations of structural and non-structural changes in the gill
withdrawal signalling pathway as a result of different trainings. Of this 100 neurons, seven are motor
neurons for the gill, six are motor neurons for the siphon, and two disjunct clusters each of 40 neurons
are connected monosynaptically (either inhibitory or excitatory) to the motor system (C). The sensory
system is connected to the motor system and the inter-neuron modules. In the case of habituation (see
text below), the synaptic pathway from the sensor to the motor system, and the pathway from the sensor
system to the excitatory cluster is weakened. The figures are taken from (Squire & Kandel, 1998), while
the schematics is redrawn by the author of this work.

It is this ability of our brain to record and store experiences that is understood as learning. In
order to identify a general principle of learning, which is the aim of this work, a more precise
description is required. Inspired by neuro-biology this section develops such a description. It
will be discussed that learning can be classified into two major categories, declarative and non-
declarative. These two types are distinguished by the duration of the behavioural change and
the underlying bio-chemical mechanisms.

2.4.1 Learning and Memory

What follows in this section is a means of categorising the various forms of learning an memory
as opposed to precise definitions of the forms. As the transition between the underlying processes
are smooth, different classifications are possible and also found in literature. But first recall a
part of the quote given above:

“ [. . .] to the ability of our brains to record and store our experiences.”

If we think about our experiences, the first items that might occur to us are events, facts, or
people we have met. This form of memory is called explicit, conscious, or declarative memory.

Declarative memory was first described by William James in 1890 as

”[. . .] the knowledge of a former state of mind after it has already once dropped from the
consciousness; or rather it is the knowledge of an event, or fact, of which we have not
been thinking, with the additional consciousness that we have thought or experienced it
before.”

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.4. BIOLOGICAL SYSTEMS 23

Summarising this quote, declarative memory is described by W. James as the ability to willingly
recall formerly stored experiences, such as remembering events from the childhood.

Research in the field of declarative memory focuses on how and where such experience is
encoded, stored, retrieved and also how and why it is forgotten. This approach is understood as
the cognitive perspective of memory. In the field of human research, experiments were performed
with patients suffering from lesions in specific brain regions. A well know patient is HM. In an
attempt to stop HM’s epileptic seizures, his medial temporal lobe, a certain region in the brain,
was completely removed. After this operation HM was cured from the seizures but could not
store any new experiences.

Nevertheless, he was able to fully recall experiences he had made years before the operation.
For example, HM was able to describe in detail the street he grew up in as a child, just as a
healthy person can. But the nurse, taking care of HM over decades, had to reintroduce herself
every morning, as HM was unable to recognise her. Simple memory tasks, like remembering a
certain number, were not possible unless HM would steadily repeat the number to himself. As
soon as his attention was drawn away, he could no longer remember the number, nor that he
had been asked to do so.

Although this indicated that HM had lost his ability to learn with the removal of the medial
temporal lobe, he did not lose it completely. He was able to perform comparably well in skill
learning tasks, such as mirror-drawing. In this task, a proband tries to follow a figure on a piece
of paper with a pencil. The person cannot observe his hand directly, as the visual feedback is
only available through a mirror. Thus, moving the hand to the left appears in the mirror as if the
hand is moving to the right. Initially probands can hardly follow the figure and therefore commit
errors, which are reduced through continuous training. HM was able to increase his performance
comparably well, although he could not remember doing the task before. This indicated that
there is a different form of memory, which is not concerned with storing experiences like facts,
events, and their like. This other form of memory is named non-declarative memory.

Non-declarative memory is the memory of processes and is expressed as a change in be-
haviour. In contrast to declarative memory, which is characterised by the conscious recollection
of stored experiences, non-declarative memory is unconscious. A typical example of this form
of memory is how we learn to drive a car. In the beginning of this learning process, we use
declarative memory about facts, such as how to accelerate and stop the car. We concentrate on
which foot to use, so that we are sure to break or to accelerate. By continuously driving a car,
our behaviour starts to change. Soon we do not have to recall which foot to use to accelerate,
we use the correct foot automatically. This change in behaviour is done unconsciously, and
described as non-declarative learning or memory.

One of the best known probands in this field of research is the Aplysia (see fig. 2.3). The
Aplysia is a marine snail which has approximately 20.000 neurons. A group of about 100 cells
contributes to a simple behavioural task – the gill withdrawal reflex (Squire & Kandel, 1998). A
stimulus to the siphon or the tail of the Aplysia results in a withdrawal of the gill (see fig. 2.3 B).
This reflex can be modified by learning. The cells involved in this task are distinctive, unique
and identifiable in every animal (see fig. 2.3). This allows researchers to construct a neural
wiring scheme for this special task. Another advantage is that the cells are easy to handle
as they are about 1mm in size. They can be seen with the bare eye without the need of a

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

24 CHAPTER 2. BACKGROUND

microscope. This simplified handling enables scientists to perform experiments and to identify
what a specific neuron or synaptic connection contributes to the change of the behaviour of the
Aplysia. Experiments focus on how the gill withdrawal reflex changes when different training
stimuli are presented. This allows researchers to distinguish between three different forms of
non-declarative memory; habituation, sensitisation, and conditioning.

Habituation is the ability to ignore a stimulus if the stimulus does not carry any information.
In the case of the Aplysia, a repeated mild stimulus of the siphon with a fine paintbrush results
in a decrease of the withdrawal reflex. Analysing the neuron activity of the contributing cells
leads to the conclusion that the strength of the synaptic pathway between the sensor and motor
neuron of the cells included in this task is weakened.

Sensitisation is the ability to change the behaviour if the stimulus is aversive. If the Aplysia
receives a shock at its tail, it withdrawals its gill more completely. After training the animal, the
reaction to a mild siphon stimulus is significantly increased. Analysis reveals that the strength
of the synaptic pathway between sensor and motor neuron is strengthened.

Classical Conditioning was first described by Pavlov around 1895 and is the ability to learn
to associate two stimuli or a stimulus and a response. Pavlov, who studied the digestive reflexes
of dogs, noticed, that a dog would salivate as soon as the attendant, who had fed the dog in the
past, would enter the room. The salivation was triggered by a formerly neutral stimulus – the
attendant.

The withdrawal reflex of the Aplysia can be classically conditioned in the following way: A
very weak electric shock is applied to the siphon as conditioned stimulus (CS), followed by a
stronger electric shock applied to the tail as an unconditioned stimulus (US). After a training
period, a mild stimulation of the siphon results in a strong withdrawal of the gill. The reflex
after the training is much stronger than it is when the two stimuli (CS and US) are presented
uncorrelated.

Up to this point, we have discussed two major types of learning and memory, declarative
and non-declarative. From the patient HM we have seen that declarative memory acts on brain
regions, as at least the medial temporal lobe is involved. Analysing and understanding the
function and the interplay of certain brain regions is not the focus of this work. This work is
concerned with a model for Self-Regulating Neurons and synaptic plasticity. Therefore, in the
following sections, only the basic mechanisms involved in non-declarative memory are discussed.

2.4.2 Biological Mechanisms

In the previous section, the Aplysia was presented as a well-suited proband for experiments fo-
cusing on the different forms of non-declarative memory; habituation, sensitisation and classical
conditioning. It was briefly described, that the change of behaviour results from a change of
the strength of the synaptic pathway from the sensor to the motor system. Experiments show,
that not only the type of non-declarative learning or memory can be distinguished, but also
the duration of the changes of behaviour and therefore also of the potentiation of the synaptic
pathway. If the training lasts for seconds or minutes, the change of behaviour is observable for
seconds or minutes afterwards. The time for training and the resulting synaptic potentiation
are of the same magnitude. But if the animal is trained for days, the change in behaviour is
observable for weeks after the training (Squire & Kandel, 1998). The observable changes are

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.4. BIOLOGICAL SYSTEMS 25

present at least a magnitude larger in time compared to the training. This allows researchers to
distinguish two forms of non-declarative memory; short-term potentiation (STP) and long-term
potentiation (LTP). The understanding is that STP is present on a time scale from seconds to
minutes, and LTP is present on a time scale above minutes to years.

In the following, the biological mechanisms for STP and LTP are discussed as far as required
for the remainder of this work. The interested reader will find a well-written and more detailed
description, also suitable for non-biologists, by Squire and Kandel (1998). Detailed bio-chemical
processes of plastic neurons are discussed by Smythies (2002) and the mechanisms of signal
transmission and synaptogenesis are presented by Cowan, Südhof, and Stevens (2001).

Short-Term Potentiation is the change of the strength of a synaptic connection present for a
time range from seconds to minutes. It is triggered comparably to the bio-chemical propagation
of action-potentials by the release of neuro-transmitter of the pre-synaptic terminal. The propa-
gation of an action-potential and STP differ in the kind of reaction induced in the post-synaptic
neuron by the released transmitter. Therefore, we will briefly recall how an action-potential is
transported over the synaptic cleft and then point out the similarities, as well as the differences
between both processes. A more detailed description of the properties of a biological neuron is
presented in the next chapter.

When an action potential arrives at the pre-synaptic neuron terminal, it triggers the release
of a chemical neuro-transmitter into the synaptic cleft (see fig. 2.4). The released transmitters
bind to receptors of the post-synaptic cell. These receptors are called ionotropic receptors,
and the ionic channels controlled by these receptors are called transmitter-gated ion channels.
Depending on the type of ions permitted to diffuse through the ion channel, the electric potential
in the post-synaptic neuron increases or decreases. If the potential increases, the connection
between the neurons is referred to as an excitatory synapse. If the potential decreases, it is
called inhibitory synapse. If the potential of the post-synaptic neuron rises above a threshold,
a chemical reaction leads to the generation of a new action-potential, which is propagated over
the axon to the next neuron (see sec. 3.2). The duration of the potential change of the post-
synaptic neuron, triggered by an action-potential of the pre-synaptic neuron, is in the range of
milliseconds. Short-term potentiation lasts much longer then milliseconds indicating a different
kind of process which will be explained next.

In the case of STP a second type of receptor is involved. This type of receptor is called
metabotropic receptor, as it does not control an ion channel, but influences the metabolism of
the neuron. A transmitter binding to a metabotropic receptor does not influence the neuron
potential by the diffusion of ions, but through the activation of an enzyme, which in this case
is adenosine cyclase. The activation of this enzyme changes the concentration of a intracellular
signalling molecule called second or intracellular messenger. The first known second messen-
ger is cAMP (cyclic adenosine monophosphate) which is synthesised from ATP (adenosine-tri-
phosphate) by the adenosine cyclase. Second messengers have at least three different functions:

1. They transport the extracellular signals (action-potentials) into the cell.

2. They amplify the signal.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

26 CHAPTER 2. BACKGROUND

A B C
Pr

e-
sy

na
pt

ic
ne

rv
e

te
rm

in
al

Po
st

-s
yn

ap
tic

ne
ur

on

Vesicles
Transmitter

Ca2+ Ca2+ Receptor

Receptor

Figure 2.4: Propagation of an action-potential over the synaptic cleft. This figure shows
the propagation of an action-potential over the synaptic cleft in three steps. In the first step (A) an action
potential arrives at the pre-synaptic nerve terminal. This opens the Ca2�-channels of the terminal. The
diffusing Ca2� ions (B) trigger the release of a transmitter. The transmitters are kept in vesicles, which
can release none or all of their transmitters at the same time. The transmitters diffuse over the synaptic
cleft and dock onto ionotropic receptors (C). The ionotropic receptors open their ion channel and permit
the diffusion of ions. Depending on the diffusing ions, this leads to an increase or decrease of the post-
synaptic neuron potential. The change of the potential in the neuron is the propagated signal. The image
was redrawn by the author of this work, but is taken from (Squire & Kandel, 1998).

3. They regulate a variety of cellular functions in response to the signal, resulting in a state
change of the cell.

Experiments showed that cAMP is important for the increased release of transmitters in the
pre-synaptic neuron terminal. The production of cAMP here is triggered by a serotonin binding
metabotropic receptor. The increase of cAMP leads to the closing of some ion channels (K� ion
channel) which results in a broadening of the action potential. The broadening of the action
potential increases the amount of transmitters released, when an action potential arrives at
the pre-synaptic terminal. The increased release of transmitters through the serotonin binding
receptors is the underlying mechanism for classical conditioning. Here an interneuron releases
serotonin to increase the signal propagated from the sensory system to the motor system of the
gill withdrawal reflex (see fig. 2.3 C).

The described process, triggered by the metabotropic receptors, lasts in the range of seconds
to minutes and is the biochemical mechanism for STP.

Long-Term Potentiation is the change of the strength of a synaptic pathway present for a
time range above minutes and was first described for a biological system by Bliss and Lømo
(1973). This type of memory needs a different type of cellular mechanism. As we will see, this
is due to changes of the cell anatomy.

An Aplysia trained for sensitisation that lasts over weeks shows a significant increase in
the average number of synaptic terminals of the sensor neurons involved in the reflex. The
average number is doubled from initially 1300 to 2600 per neuron (Squire & Kandel, 1998).
This doubling of terminals is present as long as the change in behaviour is observable. After
a few weeks the increased number of terminals is gradually decreased to the original number.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.4. BIOLOGICAL SYSTEMS 27

TransmitterTransmitter
binding site

closed open

Na+

K+K+

Na+ Ionotropic Receptor

Figure 2.5: Ionotropic receptor. The figures show a part of a neuron membrane. The ionotropic
receptor (blue) is initially closed (left). When a transmitter docks onto the transmitter binding site
(right), the ion channel is opened. Then K�-ions can diffuse through the opened channel from the inner
(yellow) to the outer (white) of the cell, and Na�-ions can diffuse from the outer into the inner. The
change of concentrations of the ions changes the inner neuron potential and triggers a new action-potential
if a threshold is reached. The image was redrawn by the author of this work, but is taken from (Squire
& Kandel, 1998).

With the decrease of synaptic terminals, the observable change of behaviour is finally lost.
Similar findings are also described for synapse formation in the mammalian central nervous
system during childhood (McAllister, 2007) and in adult animals (Alvarez & Sabatini, 2007).
The preservation of differences in the growth of dendrites and axons by evolution are discussed
by Ye et al. (2007).

An increase in synaptic terminals leads to an increased release of neurotransmitter from
the pre- to the post-synaptic neuron. Therefore, the effect of the sensory system on the motor
system controlling the gill withdrawal is increased by the altered number of terminals. This
explains how a mild stimulus of the siphon results in an increased withdrawal reflex weeks after
the training stimulus was last presented.

The following paragraph will discuss the biological mechanism which causes a change of the
cell anatomy in the case of LTP. It is beyond the scope of this work to present a complete
overview of the known biological mechanisms, however, it is important to show the differences
in the underlying mechanisms of STP and LTP in order to classify the synaptic plasticity model
proposed in this work. For a more detailed description, the reader is referred to Squire and
Kandel (1998) and Cowan et al. (2001). The intention here is to show that LTP and STP are
triggered similarly but are the results of different biological mechanisms.

The metabolism of a cell is controlled by its nucleus. It contains the DNA from which the
proteins are synthesised. To change the morphology of the cell, new proteins must be synthesised,
and hence to alter the process, incoming action potentials must reach into the nucleus.

This is realised by the following process. When cAMP is synthesised, smaller proteins, called
subunits are released as a result of a biochemical process. A certain group of these subunits
are called catalytic subunits. It was shown that catalytic subunits diffuse into the nucleus and
influence the synthesis of proteins (see fig. 2.6). To alter the process of generating proteins,
the concentration of diffusing subunits and therefore cAMP must be higher then the amount
released by STP. The necessary concentration is reached when the cell is stimulated with high
frequency stimulus over a long period of time. Only when the concentration of the catalytic
subunits in the nucleus is high enough to change the protein synthesis are new synaptic terminals

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

28 CHAPTER 2. BACKGROUND

Ad. Cycl.

Transmitter

ATP
cAMP

regulatory
subunits

catalytic
subunits

Ad. Cycl.
ATP

cAMP

Nucleus

Transmitter

Figure 2.6: STP & LTP. Short-term potentiation (STP, left) and long-term potentiation (LTP, right)
are triggered by a neuro-transmitter binding to a metabotropic receptor. The receptor activates an
enzyme (adenosine cyclase) which syntheses cAMP from ATP. The cAMP binds to a protein containing
catalytic and regulatory subunits. In the case of STP (left) the regulatory subunits influence the ionotropic
receptors, to broaden an incoming signal. In the case of LTP (right), the catalytic subunits diffuse into
the nucleus and alter the protein generation process. For LTP, compared to STP, a significantly higher
concentration of cAMP is needed to free enough catalytic subunits, so that the protein generation process
is altered. The image was redrawn by the author of this work, but is taken from (Squire & Kandel, 1998).

grown. The newly grown synaptic terminals are kept for a duration that is much longer than the
initiating process. The process of growing new synaptic terminals, triggered by the significant
larger concentration of cAMP, is the biological mechanism for LTP.

There is also an intermediate mechanism responsible for STP and LTP. A certain receptor,
called NMDA receptor is activated in both cases. Depending an on the post-synaptic concen-
tration of Ca2� either STP or LTP is realised (Malenka & Siegelbaum, 2001).

To conclude the section of the biological mechanisms, we can summarise, that short-term
plasticity is a sub-cellular process, in which the increased concentration of second messengers
leads to an amplification of a signal.

In contrast, long-term plasticity is the result of a structural change of the neuron due to a
significantly higher concentration of second messengers.

An overview of synaptogenesis including formation, maturation, elimination is given by Craig
and Shatz (2001). The environmental conditions of dendrite growth is discussed in (Camel et
al., 1986). Evidence is given in rat experiments that the environmental conditions determine
the amount of dendritic branching (Smythies, 2002). Rats reared in the dark show growth of
new dendrites in the visual cortex when exposed to light conditions within two days (Valverde,
1971). Other experiments show that this holds, in general, for dendritic growth when rearing
rats first in simple environments and later exposing them to complex environments (Volkmar
& Greenough, 1972; Uylings et al., 1978; Fiala et al., 1978; Juraska et al., 1980; Camel et al.,
1986; Wallace et al., 1992). That dendritic growth is a mechanism observed in adult animals as
a result of sensory input is discussed by Alvarez and Sabatini (2007). Currently, proper synapse
formation is discussed as the substrate for cognition, and improper formation as a reason for
neurodevelopmental disorders (McAllister, 2007).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.4. BIOLOGICAL SYSTEMS 29

This work is concerned with a model of synaptic plasticity and not with a model of structural
changes within a neural network. Therefore, the model is considered as STP and hence, as a
model for non-declarative learning or memory. Later in this work (see chap. 5 and chap. 6), the
transient dynamics of embedded and situated Self-Regulation Neurons are analysed while they
control a robot in an environment performing a task. It will be shown that the changes of the
synaptic weights as a response to a chaining stimulus are in the range of seconds:. Therefore in
the presented context, the proposed Self-Regulating Neuron model is understood as a model for
non-declarative, short-term potentiation or short-term memory for short.

Up to this point, it was discussed how synapses can be modified. Important questions are:
when do synaptic modifications occur, when is a synapse potentiated, and when is it depressed?
These questions are discussed in the following section.

2.4.3 Synaptic plasticity

Synaptic plasticity is the change of synaptic strength as a response to an event. This section
discusses the events which led to a potentiation or a depression of a synapse.

In 1949 Donald Hebb formulated a rule for synaptic plasticity:

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing B, is increased.”

(Hebb, 1949)

This formulation is known as the Hebb’ian Learning Rule and states that the synaptic connection
between two neurons is strengthened if their activity is correlated. It was summarised later in
the popular statement

“cells that fire together, wire together”

(Zigmond et al., 1999)

Synaptic plasticity of this type, where a synapse is modified in response to a correlated pre- and
post-synaptic neuron activity is referred to as homosynaptic plasticity (see fig. 2.7).

Yet, only potentiating synapses, as described by Hebb, would lead to a destabilisation of
synaptic strength. An increased synaptic connection leads to an increased correlation of the pre-
and post-synaptic neuron activity, which in return leads to a potentiation of synaptic strength.
The connected neurons lose their ability to differentiate as they constantly fire synchronously.
Therefore, a mechanism for bi-directional synaptic plasticity must exist.

Experiments have shown that there is a temporal component to the original Hebb’ian learn-
ing rule in which the sign of the homosynaptic change depends on the precise timing of the pre-
and post-synaptic activity (W. B. Levy & Steward, 1983; Bi, 2002). Stimulating spike pairs
with different time delays were introduced to a pre- and post-synaptic neuron. As a result, the
synapse was potentiated, if the pre-synaptic spike was introduced before the post-synaptic spike.

:Seconds refers to the simulated real-time. The simulations used in this work are faster than real-time, but
according to the update frequency of the simulation and the step size of the time used in the simulator, the
real-time can be calculated.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

30 CHAPTER 2. BACKGROUND

Incoming synapsesOutgoing synapses Pre-synaptic neuron Post-synaptic neuron

Pre-synaptic Post-synaptic Homo-synaptic Hetero-synaptic

Figure 2.7: Forms of Synaptic plasticity. Different forms of synaptic plasticity, from left to right:
Pre-Synaptic modifications affect all outgoing synapses, Post-Synaptic modification affect all incoming
synapses, Homo-Synaptic modifications affect the synapse connecting correlated neurons, and Hetero-
Synaptic modification affect neighbouring synapses of the synapse affected by correlated neurons, here
shown for the outgoing synapses of a neuron.

Similarity, the synapse was depressed, if the pre-synaptic spike was introduced after the post-
synaptic spike. The degree of potentiation and depression decreased if the time delay between the
spikes was increased. The size of the time delay window for potentiation and depression depends
on the dendritic location (Froemke et al., 2005). Synaptic plasticity depending on the temporal
relationship of pre- and post-synaptic neuron activity is called spike-timing-dependent synaptic
plasticity (STDP). It was shown that STDP is sufficient to produce competitive Hebb’ian learn-
ing in which an increase of one synapse leads to the decrease of neighbouring synapses, without
the need of any global regulation methods (Song et al., 2000). This modification of a neigh-
bouring synapse is a spatial relationship, which is referred to as heterosynaptic modification (see
fig. 2.7) and is defined as the change of a synapse without a correlated pre- and post-synaptic
activity, but as a result of a homosynaptic change in the neighbourhood (Turrigiano, 1999;
Turrigiano et al., 1998; Royer & Paré, 2003; Castellani et al., 2001).

Spatial modifications occur in two different forms, post-synaptic modifications and pre-
synaptic modification (see fig. 2.7). Post-synaptic modifications affect the incoming synapses of
a neuron, pre-synaptic modifications respectively affect the outgoing synapses. For post-synaptic
homosynaptic potentiation both heterosynaptic depression and potentiation have been observed.
Post-synaptic modification is also referred to as synaptic normalisation or competition and pre-
synaptic modification is also referred to as synaptic scaling (Turrigiano, 1999; Turrigiano et al.,
1998). Possible reasons for synaptic normalisation could be the conservation of the total synaptic
strength to prevent synapses from saturation or complete depression (Miller, 1996). Turrigiano
(1999) describes synaptic scaling as the result of post-synaptic homeostatic regulation, which is
proven to be multiplicative in the form that all incoming synapses are modified proportionally.
The reason may be that the neuron remains responsive to inputs from different synapses, and
that not one single synapse dominates. This is important during the development of the neural
circuit, when new synaptic connections may grow rapidly, as well as at the beginning or end of
the circuit formation, when the number of synaptic connections is small or large (Turrigiano et
al., 1998).

To conclude this section, there is evidence that synaptic plasticity does not only occur as
a local (temporal, homosynaptic) effect, but that local changes affect neighbouring synapses
(spatial, heterosynaptic). The spatial effect occurs on outgoing as well as incoming synapses.

The combination of both, homosynaptic and heterosynaptic plasticity have at least two novel

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

2.5. SUMMARY 31

properties compared with the isolated mechanisms (Bailey et al., 2002). First, the duration of the
modifications are enhanced in a non-additive way. Second, there is a higher selectivity of synaptic
potentiation. As an example, a homosynaptically potentiated synapse with heterosynaptically
depressed neighbouring synapses is emphasised in relation to its neighbours.

This section gave an overview of synaptic plasticity as observed in biological systems. They
are based on the biological mechanisms discussed in the previous section.

2.5 Summary

This chapter presented the background for this thesis. The concept of Ashby provides the
fundamental understanding of adaptive processes. The importance of embodiment in under-
standing cognitive processes was emphasised in the second section, and the biological relevance
was discussed in the last section. In this context, the proposed neuron model is understood as
a model for short-term plasticity as defined by Squire and Kandel (1998) with synaptic scaling
as described by Turrigiano (1999).

The following chapter presents the methods used in this work. These are related to the
presented background given in this chapter.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Chapter 3

Methods

The previous chapter introduced the scientific background of this work. It was discussed that
Ashby’s concept of ultrastability and his Homeostat are the motivation for the formalisation of
the SRN model. The requirement of the sensori-motor loop in understanding basic principles of
neural signal processing was motivated by the fields of Behaviour-Based Robotics and Embodied
Artificial Intelligence. The relationship between the type of synaptic plasticity, which is modelled
by the SRN model, and short-term plasticity by synaptic scaling was discussed in the previous
chapter.

This chapter presents the methods and approaches that are used in the remainder of this
work. These are dynamical systems theory, recurrent neural networks, including the neuron
model of choice on which the SRN model is based, and evolutionary robotics.

3.1 Dynamical Systems Theory

This section motivates dynamical systems theory as a mathematical framework used to model
and understand cognitive processes. Other frameworks are available, of which the digital com-
puter model is the most common in the field of artificial intelligence. Both approaches are
compared and arguments are given for the use of dynamical systems theory in the following
section. This approach of modelling is not new, as already Ashby used similar terminology for
his model for the brain (see previous chapter). His notion of a field is related to a phase-space
and a flow. Dynamical systems theory is motivated first by means of a comparison with the
digital computer metaphor before the terminology which is used in the remainder of this work
is defined.

Historically, the brain was compared and described in terms of common technological achieve-
ments, or as Rodney Brooks states it:

”In my own lifetime I have seen popular ’complexity’ metaphors for the brain evolve.
When I was a young child, the brain was likened to an electromagnetic telephone switch-
ing network. Then it became an electronic digital computer. Then a massively parallel
digital computer. And delightfully, in April 2002, someone in a lecture audience asked
me whether the brain could be ’just like the world wide web’.”

Rodney Brooks, foreword to (Pfeifer & Bongard, 2006)

33

34 CHAPTER 3. METHODS

This quote shows, how the current state of technology has influenced and still influences the way
the brain is understood. Common technological achievements such as digital computers define
the terminology and the understanding of the brain. The result is that the description of both
share the same main characteristics (Elman, 1998; Gelder, 1998):

1. Processing / Cognition is carried out by discrete operations executed in serial order.

2. Memory is distinct from the processor / cognition.

3. Processor operations are / Cognition is described in terms of rules (derived) from pro-
gramming languages.

Before the two approaches can be compared, the notion of a dynamical system is briefly
reviewed. A dynamical system is a set of variables, which numerically capture different system
properties. The evolution of a system over time is described by a set of equations. A definition
will follow in the next section.

It is known that within the brain, there exists a high level of recurrence on different levels.
This has been shown by Felleman and Van Essen (1991) locally between neurons and between
cortical areas for the macaque monkey. Concerning the recurrent structure in the brain and the
non-linearity of the input-output response of neurons (see sec. 3.2), dynamical effects, such as
hysteresis, oscillation, synchronisation and chaos, are very likely to occur. This is supported by
studies that have proven the existence of chaos (Skarda & Freeman, 1987) and hysteresis (Kelso,
1995) in the brain. It is, therefore, plausible to assume that dynamical systems theory is a good
method of describing cognitive processes (Pasemann, 1996).

It is Gelder (1998): who discusses and compares in detail, the two approaches of dynamical
system theory and the digital computer metaphor, and finally concludes why dynamical systems
theory is better suited to model the brain. He proposes The Dynamical Hypothesis, and discusses
four main considerations which favour it over the digital computer metaphor:

1. Natural cognition happens in real time.

2. Dynamical systems theory is the pre-eminent mathematical framework for the description
of temporal phenomena.

3. Embeddedness of cognition.

4. Emergence and stability.

These four statements must be elaborated.

Natural cognition happens in real-time: Cognition is an ongoing interactive process with
the environment. In many cases, exact timing is essential for the survival of the individual. In
predator-prey conditions this can be clearly seen. This is an objection to the discrete operations
in serial order of the digital computer paradigm. Planning followed by sequential processing of
the actions does not account for fast reactive responses to highly dynamic environments and are
not well suited for tasks that require exact timing.

:See also Port and Van Gelder (1998).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.1. DYNAMICAL SYSTEMS THEORY 35

Dynamical systems theory is the pre-eminent mathematical framework for the de-
scription of temporal phenomena: Dynamical system theory is the theory of rates of
change of systems (see above and next section). Each system is described by a set of differential
or difference equations, which determine the change of the system over time. This argument
follows the previous one. When cognition is viewed as a real-time process, and not as a sequence
of instructions, then dynamical system theory is the canonical choice to describe it.

Embeddedness of cognition: Every natural cognitive system is embedded at least three
times, first in the nervous system, second in the body, and third in the natural environment
(Brooks, 1991c; A. Clark, 1996; Cliff, 1990; Pfeifer & Bongard, 2006). Gelder (1998) states that

“Dynamical cognition sits comfortably in a dynamical world.”

(Gelder, 1998)
This means that the world is well-described in dynamical terms, since Newton first invented the
field in the mid-1600s, when he described the law of motion and gravitation (Strogatz, 1994;
R. H. Abraham et al., 1997). Describing embeddedness is a non-trivial task, which increases in
difficulty, when fundamentally different systems must be combined.

Emergence and stability: Emergence and stability are the result of self-organising systems.
Self-organisation involves the mutual dependence and interaction of a large number of com-
ponents. Again, dynamical systems theory is the dominant mathematical framework for the
description of such systems. In an example of ordinary differential equations, consider each
variable, or subset of variables, as a component. Van Gelder states that if the real world is
best modelled using dynamical systems theory, then systems embedded in the real world should
follow. This relates to Brooks and Clarks objection to micro- and block-worlds (see previous
chapter), which are designed to fit the requirements of the model of choice. Scaling from the
micro-worlds to the real world application therefore fails (Dreyfus, 1972).

Another advantage is that behaviour can now be understood geometrically, in terms of
attractors, transients, stability, bifurcations, chaos, etc.; features which are not available in the
classical computational understanding of the brain (Gelder, 1999). These terms are defined in
the next section.

Summary

In addition to the argument of the embodied artificial intelligence approach versus that of
classical artificial intelligence, this section introduced an alternative to the of latter approach
which follows from the digital computer metaphor. An argument for the plausibility of using
dynamical systems as a mathematical framework was given and the manner in which it differs
from the classical paradigm was presented. In the next section, previously used terminology is
technically defined and supplemented with the terminology used in the remainder of this work.

3.1.1 Terminology

The previous section discussed dynamical systems theory as a well suited mathematical frame-
work to understand and describe cognitive processes. This section presents the terminology used

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

36 CHAPTER 3. METHODS

in the remainder of this work. It may be omitted if the concepts of dynamical systems theory
are already known.

A dynamical system is described as a set of states, and a rule that determines its evolution
over time (Stewart, 1999; Ott, 1993; Strogatz, 1994; Thomson & Stewart, 2002; Abraham &
Shaw, 1992; Alligood et al., 1996; Champneys et al., 2007; Izhikevich, 2007; Arrowsmith &
Place, 1990), i.e. how it progresses from one state to the next. This section will give a more
precise definition of a dynamical system, including its state and deterministic rule, but first a
few basic concepts, required for the definition, are presented.

A system’s variable or variable for short, is a measurable quantity which has a definite
numerical value (Ashby, 1954). It is denoted with xi, i P N, where i is the index of the variable.
The variable itself is typically a real number (xi P R), but other domains such as e.g. binary
(xi P t0, 1u) and integer (xi P Z) are possible. For generality xi P R is assumed here. With
~x � txiui�0,1,...,n�1 we denote the set of variables, and |~x| � n is its dimension. Every variable
is a function of time, and the notation xiptq is used to emphasis this. It refers to the numerical
value of the variable xi at time t P T . In the case of T � N we speak of discrete-time systems,
and in the case of T � R of continuous-time systems. The numerical values of the system’s
variables at a certain instant in time ~xptq is called the system’s state. The set of all possible
states of a system, is its phase space.

If the system ~x is released from an initial state ~xpt0q, and its progress over time is captured,
then the evolution of the system leads to an infinite set of states depending on the initial
condition. This set is referred to as a trajectory of the system.

A vector-field in a phase-space is a function f that assigns to each point ~x in the phase-
space a tangent vector fp~xq (Bamon & Roussarie, 1996; Thomson & Stewart, 2002). How f is
described is presented later in this section. At this point, it suffices to think of it as a function in
the vector space f : Rn ÞÑ Rn, which describes the progress of the system depending on a state.

A trajectory in a phase-space is now formed by a piecewise addition of infinitesimal steps
in the direction indicated by the vector-field (Thomson & Stewart, 2002). Hence, the vectors
defined by the vector-field are the tangents of the trajectory. This leads to the important
property, that no two trajectories cross, as a crossing would mean that the function fp~xptiqq
has two solutions for the state ~xptiq. As deterministic systems are assumed here (in contrast to
e.g. stochastic systems), this is not the case.

As the vector-field determines non-crossing trajectories that cover the entire phase-space,
it is said to define a flow in phase-space (Thomson & Stewart, 2002), which is the set of all
trajectories.

A dynamical system is now defined by its phase-space and its vector-field. The phase-space
covers all possible states of the system, and the vector-field describes its dynamics.

Up to this point, the process of obtaining a vector-field has not been discussed. This process
relates to the function f which was previously introduced. Continuous-time dynamical systems
are defined by a set of first-order differential equations, and discrete-time dynamical systems are
defined by an iterated map which is given by a set of difference equations:

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.1. DYNAMICAL SYSTEMS THEORY 37

Continuous-time

9x1 � f1px1, . . . , xn, ~pq
...

9xn � fnpx1, . . . , xn, ~pq

Discrete-time

x1pt� 1q � g1px1ptq, . . . , xnptq, ~pq
...

xnpt� 1q � gnpx1ptq, . . . , xnptq, ~pq
The vector ~p is a set of parameters. Different interpretations of ~p are possible. Socolar (2006)
describes the set of parameters as externally imposed functions of position, which occur if a
system operates in an inhomogeneous environment. Pasemann (1996) describes parameters in
the case of neuro-modules. The parameters are not used directly for calculation, but determine
the mode in which a neuro-module processes incoming signals to compute an output. He demon-
strates this with the XOR-example, which can switch between OR, XOR and NAND, depending
on a system parameter p.

In this context the parameters are understood as discussed in the previous chapter. They
combine sensor input as well as system inherent properties, which in this case are the synaptic
weights.

It was noted earlier in this section, that no two trajectories cross, but two trajectories may
asymptotically approach the same point in the phase-space and one trajectory may self-intersect.
The first case refers to an attractor and will be discussed later in this section. The latter case
corresponds to a periodic motion. The minimum set of points of a trajectory that satisfies the
properties of a trajectory is called the orbit of the system (R. H. Abraham et al., 1997). When
finite, an orbit is called cyclic or periodic and the number of points is its order. A special case
of an orbit is a period-1 orbit, called a fixed point (R. H. Abraham et al., 1997). It is defined as
a point in the phase-space, that maps to itself:

~x � fp~xq.

If a fixed point attracts trajectories that start nearby, it is called an attracting fixed point. This
relates to the previously mentioned case of trajectories which asymptotically approach the same
point, but do not cross.

An asymptotically stable fixed point is called a fixed point attractor. The generalisation
of this concept is an attracting subset in the phase-space, which is called a period-n attractor,
where n corresponds to the cardinality of the subset.

The basin of an attractor is the set of all points in the phase-space, to which trajectories are
attracted by the attractor (R. H. Abraham et al., 1997).

The boundaries of basins are called separatrices or frontiers. We can now return to the
initial definition of the fixed point, and classify different types of fixed points, namely, stable
(see above), unstable, saddles and limit cycles. Stable and unstable fixed points are also called
sinks and sources, due to their geometric interpretation of flows originating and ending in them.

An unstable fixed point repels trajectories within its neighbourhood, and then moving out-
wards. A saddle has at least two separated basins. There are two types of saddles, those
which attract trajectories which start in the separatrices and repel those which start in the in
the basin:, and those which repel trajectories which start in the separatrices and attract those

:R. H. Abraham et al. (1997) define basins which points diverge as basin of infinity.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

38 CHAPTER 3. METHODS

Figure 3.1: Logistic map / Quasi-periodic attractor. Left: A simple example for a discrete
dynamical system with one control parameter. Depending on the value of the parameter, the behaviour
of the system changes qualitatively. From left to right, the system evolves from a fixed point, over a
period doubling route to chaos. For a discussion see the text below. Right: An example of a quasi-
periodic attractor. The trajectory colour varies from black to light grey. The colouring shows that the
trajectory is close to itself, but does not self-intersect. For a periodic motion with e.g. two periods, this
occurs, if the quotient of the two periods is irrational (Thomson & Stewart, 2002).

which start in the basins. A limit cycle is a periodic orbit of period larger than one, which can be
either repelling or attracting. An asymptotically stable limit cycle is called a periodic attractor.
A trajectory that leads towards an attractor is called a transient.

We have now defined fixed points and periodic attractors. There are two more types of
attractors, namely chaotic and quasi-periodic attractors.

For the chaotic attractor we first need to define chaos. Chaos is a loose generic term for
complex, seemingly irregular motions of deterministic dynamical systems, characterised by a
sensitive dependence on initial conditions (Thomson & Stewart, 2002). In other words, two
trajectories starting near one another will not be correlated any more after some short period of
time. This can be specified by the Liapunov exponent. The idea of the Liapunov exponent is as
follows: let x0 denote some initial condition and δ0 be an extremely small initial separation from
the initial condition: x0�δ0. Let δn be the separation after n iterations. If |δn| � |δ0|enλ, then λ
is called the Liapunov exponent (Strogatz, 1994). A positive exponent means that neighbouring
trajectories separate extremely fast, so that there is a time horizon beyond which predictions
break down (Strogatz, 1994). A negative exponent is evidence of a periodic attractor, a positive
one of a chaotic attractor, and an exponent equal to zero of a quasi-periodic attractor. Quasi-
periodic refers to an orbit that seems periodic, because it is asymptotically close to itself, but
does not self-intersect as described for the periodic attractors. An example is a trajectory on a
torus that does not self-intersect (see fig. 3.1 [right hand side]).

After presenting the terminology, a standard example for a one-dimensional discrete-time
dynamical system is given; the logistic map (see fig. 3.1 [left hand side]). It is defined as

xpt� 1q � rxptqp1� xptqq, x, r P R, t � 0, 1, . . .

In this example r is called the system’s parameter or control parameter. For different values
of r, the behaviour changes significantly. From a fixed point attractor, to a period-2 attractor,
and finally over a period doubling route to chaos (see fig. 3.1 left, from left (r � 2.4) to right
(r � 4)). The points, i.e. the values of r, for which the qualitative change of behaviour occurs
are called a bifurcation points. The diagram (see fig. 3.1) is, therefore, referred to as a bifurcation

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.2. ARTIFICIAL RECURRENT NEURAL NETWORK 39

diagram.
For every continuous dynamical system, a discrete dynamical system can be derived by means

of a stroboscopic imaging of the continuous dynamic, which is also known as Poincaré-mapping
(Thomson & Stewart, 2002). On the other hand, there is no single continuous solution to a
discrete dynamical system.

Only discrete dynamics are considered in the following work. This is consistent with pre-
viously made statements, as this work is concerned with the qualitative behaviour and the
understanding of the underlying principles. Therefore, choosing a discrete representation is of
no disadvantage. It is rather a canonical choice when numerical simulations are required. In
such a case, a continuous-time system must be discretised and approximated with methods such
as Euler integration or Runge-Kutta (Strogatz, 1994). The use of discrete-time systems avoids
this form of approximation.

This section presented dynamical systems theory as a well suited mathematical framework
used to model cognitive systems. The method used to construct a dynamical system, which is
embedded in the sensori-motor loop using the morphological and environmental properties by the
means of minimal cognitive systems (Beer, 1996), is not clear. Furthermore, the combination of
structurally coupled non-linear systems is mathematically difficult (Strogatz, 1994). Therefore,
this work uses artificial recurrent neural networks understood as dynamical systems, and artificial
evolution as an algorithmic construction method. The following two sections of this chapter will
present these two approaches.

3.2 Artificial Recurrent Neural Network

Artificial neural networks were first introduced by Rosenblatt (1958) with a simplified neuron
model. Motivated by the action potential of biological neurons, a neuron in a perceptron network
is a binary switch, where the value one relates to a firing of the neuron and zero to a silent neuron.
The input of each neuron is the weighted sum of the neurons of the previous layer. Each neuron
has a threshold value. If the input is larger than the bias, the neuron is activated (output of
one), otherwise it remains inactive (output of zero). A perceptron network is a strictly layered
feed-forward network of two layers and was initially used for pattern recognition. An iterative
learning method was introduced, which allowed the modification of the weights of the network
with respect to a training set. It was shown by Rosenblatt that the learning algorithm converges
in finite time.

In 1969 Minsky and Papert showed that a perceptron network is limited in possible ap-
plications, as it could only serve as a linear separator of the input space (Minsky & Papert,
1969). A perceptron network is not able to solve the XOR problem. This halted research in
the field of artificial recurrent neural networks until the early 80’s, when Rumelhart introduced
a different feed-forward neural network architecture together with a different neuron model
and the back-propagation learning algorithm (D. E. Rumelhart, Hinton, & Williams, 1986; D.
Rumelhart et al., G1986; D. E. Rumelhart, McClelland, & the PDP Research Group, 1986).
In this new structure, neurons had a non-linear but differentiable transfer-function, allowing a
gradient-descent-based training of the networks.

This section introduces the neuron model on which the Self-Regulating Neuron model is

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

40 CHAPTER 3. METHODS

based. First, an overview of the properties of biological neurons is provided.

3.2.1 Biological Neurons

It was Ramón y Cajal who first discovered that the brain was not a syncytium, a continuous
mass of fused cells sharing a common cytoplasm:, but a large network of individual, signalling
nerve cells, which connect via synapses with each other (Cajal, 1892) ; and (Cajal, 1906).
Helmholtz and DeBois-Raymond discovered that the electrical activity of the nerve cells provide
the mechanism for information transmission between neurons (Helmholtz, 1850; Bois-Reymond,
1848);.

With modern brain imaging techniques, the brain structure, at the more global scale, is
better understood. Not only is it layered, but also modularly organised in cortical areas for
specific brain functions (Kandel et al., 2000). This work is not concerned with brain models
but with a model of synaptic plasticity at the cellular level. Therefore, only a model for an
individual biological neuron is of interest, and not the modular structure within in a biological
brain, of which it is a part. The following section covers the basic properties of a single biological
neuron, and mathematical neuron models.

Properties of biological neurons

A neuron is a single cell, which can be divided into three subsections (see fig. 3.2 C), the dendrites,
the cell body (soma), and the axon (Arbib, 1995). The dendrites can be considered as input
devices of the neuron. The number of connections to a single neuron over the dendrites is neuron
cell-specific but can reach up to 100,000 (Dayan & Abbott, 2001). The neurons connected to
the dendrites are referred to as pre-synaptic neurons. The electrical signals over the dendrites
together change the membrane potential. When it is raised above a certain threshold value,
the neuron releases an electric signal over its axon to up to 180 other nerve cells (Dayan &
Abbott, 2001). Note that a single pre-synaptic neuron has several connections to a post-synaptic
neuron. The resting membrane potential is �70mV and is kept constant through ion channels,
also called receptors (see fig. 2.5), which maintain different concentrations of predominantly
sodium (Na�), potassium (K�), calcium (Ca2�) and chloride (Cl�) inside and outside of the
nerve cell. When an electric signal reaches the nerve cell body, the membrane potential is either
increased (depolarisation) or further decreased (hyperpolarisation). When the depolarisation
reaches approximately �55mV to �50mV, the neuron generates an electric signal called an
action potential, which is a 100mV spike of about 1ms duration. The action potential is carried
by an electro-chemical process over the axon to the other connected, so called post-synaptic
cells.

A few milliseconds after the release of an action potential, no new one may be released. This
time is called the refactory period (Kandel et al., 2000). When the action potential moves along
the axon, it finally reaches the synaptic cleft, the connection point between the pre- and post-
synaptic neuron, where it releases synaptic vesicles. Depending on the ions held by the vesicles,
the membrane potential of the post-synaptic neuron is either increased or decreased. In the case

:The cytoplasm, briefly stated, is the fluid filling a cell.
;Cited from Kandel, Schwartz, and Jessell (2000).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.2. ARTIFICIAL RECURRENT NEURAL NETWORK 41

of depolarisation, the synapse is referred to as an excitatory synapse; in the case of hyperpolari-
sation, as an inhibitory synapse. The amount of released vesicles and the number of connection
points (synaptic clefts) determine the strength of the depolarisation or hyperpolarisation.

This section provided an overview of the biological properties of a neuron. For a more
detailed description the reader is referred to Biological Systems (see sec. 2.4) and Kandel et al.
(2000). The following section introduces the mathematical neuron model.

3.2.2 Mathematical neuron model

There are different types of neuron models of which the most dominant are, single-compartment
versus multi-compartment and spiking versus firing-rate neuron models. The first two, single-
and multi-compartment, differ in the modelling of the membrane potential.

In the single-compartment model, only one membrane potential is taken into account for
the entire neuron. In the multi-compartment case, the neuron structure, and especially the
dendrites are considered as a sequence of discrete compartments, each with its own membrane
potential. The membrane potential is then calculated along the branches towards the cell body
as a function of neighbouring compartments (Dayan & Abbott, 2001).

Firing-rate neuron models only account for the spike frequency, which is modelled by a single
scalar value, e.g. in the leaky integrator models (Arbib, 1995). Seung (2007) draws an analogy
to light in order to understand the assumption underlying the model. Light comes quantised in
photons, equivalent to the action potentials or spikes arriving at the post-synaptic neuron. But
light intensity is well specified by the rate of photons, when the number of photons is large. It
is similar with the rate encoding of spikes. If the number of incoming spikes is assumed to be
large, the rate is a sufficient description.

For spiking neurons, both the spike frequency and the timing of the spike reaching a post-
synaptic neuron are essential to the model. It is assumed that both the frequency and the timing
are an important part of the information processing (Gerstner & Kistler, 2002b). An overview
of models and tools for spiking neurons is given by Brette et al. (2007).

For each of the four possible combinations, very different levels of detail are available. The
preferability of a model depends on the properties of the biological neuron which are of interest
(Rabinovich et al., 2006).

This works is not interested in the dynamics within a single neuron, nor with the infor-
mation encoding in spike trains, but in principles of neural signal processing. Therefore, the
simplest neuron model, incorporating the dynamical features discussed in the previous section,
is preferred. It is the standard additive neuron model, which fully satisfies the requirements and
which is discussed in the following section. It is a single-compartment standard additive neuron
model with a sigmoidal transfer-function, which can be interpreted as a rate encoding model.

Standard additive neuron model

A single neuron is considered to have inputs from other neurons, connected via incoming
synapses, an internal activation and an output which is propagated over outgoing synapses
to other neurons (see fig. 3.2 B). The input synapses are assumed to be current sources which
either exhibit (depolarise) or inhibit (hyperpolarise) the cell of interest. The internal activation

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

42 CHAPTER 3. METHODS

A B

C D
Σ Θ σ
Neuron ni

wij wki

Figure 3.2: Biological neuron and mathematical modelling. The upper half (denoted with
A and B) of this figure shows images of biological neurons. A shows an image of layers of connected
pyramidal cells of the human visual cortex created by Cajal. The image is taken from Braitenberg
(1984). The two figures on the right-hand side (B) show a purkinje neuron injected with Lucifer Yellow
and the schematics of the dendrites extracted from the image. Both images are taken from Cell Centered
Database provided by the University of California (Martone et al., 2007). The two lower figures (C and
D) show, on the left-hand side (C), schematics of the artificial neuron, and on the right-hand side (D),
colour coding of a neural network, used in the remainder of this work. Input neurons are coloured in red,
output neurons in green, and hidden neurons in blue. Inhibitory synapses are visualised in red, excitatory
in blue, respectively. If a bias is used, it is shown by a bias neuron and a grey synapse (not shown).

of the neuron is related to the membrane potential of a biological cell. It is calculated as the
weighted sum over the incoming synapses and an internal bias value, which is related to the
threshold membrane potential for the release of an action potential. The discrete time equation
for a single neuron is then given by:

aipt� 1q � Θi �
¸
j

wijojptq where

aiptq P R is the activation of the i-th neuron at time t
Θi P R is the constant bias value of the i-th neuron
wij P R is the strength of the synaptic connection from neuron j to neuron i

ojptq P R is the output of the j-th neuron at time t
i, j P N are the neuron indices

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.2. ARTIFICIAL RECURRENT NEURAL NETWORK 43

t � 0, 1, . . . is the time index

The synaptic strength reflects the number of synaptic vesicles released for every action potential,
and the output of a neuron reflects its firing-rate. It is calculated from the activation by the
transfer-function, denoted with fpxq. There are several common transfer-functions in literature,
the binary, linear and sigmoidal. Historically the first proposed function is the binary transfer-
function used in the perceptron model (McCulloch & Pitts, 1943):

oiptq � fpaiptqq

f : R ÞÑ t0, 1u, fpxq :�
#

1 x ¡ ϑ

0 x ¤ ϑ

where ϑ is the threshold value. An output of one symbolises one released action potential, and
an output of zero a silent neuron (no action potential relaesed). The limitations of this model
were discussed by Minsky and Papert (1969) and in the previous chapter (see sec. 2.1).

The second model is the bounded linear model:

f : R ÞÑ r0, 1s, fpxq :�

$'&
'%

0 x ¤ 0
1 x ¥ 1
idpxq else

This model already related to a normalised firing-rate.
The third model is a non-linear transfer-function, the standard sigmoid:

f : R ÞÑ R, fpxq :� 1
1� ex

This function has two main advantages. First, it is a non-linear function. Second, if the output
of a neuron is considered as the firing-rate of action potentials, then this transfer-function is
a biologically plausible choice. Stein (1967) describes the frequency-current curve of the mean
frequency of action potentials of neurons excited by an external current to be markedly non-
linear. More recent research shows that the relation of injected current into a cell, and the
number of spikes per second, are in fact sigmoidal. Although the publication by Wilson et al.
(2004) examines the effect of different blockades of specific ion channels, the plots of the control
neuron clearly shows a sigmoidal frequency-current curve. Biologically, the upper boundary is
the result of the refractory period, while the lower boundary is given by the spontaneous activity
which occurs when there is no input signal and the membrane potential is at its resting potential
(Tsodyks et al., 1999).

In robotics applications it is more common to use the hyperbolic tangent as a transfer-
function because it also delivers negative output values, which can be used to directly drive the
motors of a robot. It is given by the following equation:

f : R ÞÑ R, fpxq :� ex � e�x

ex � e�x

Pasemann (1993) showed that a single neuron with the hyperbolic tangent transfer-function has
the same dynamical properties as the single neuron with the standard sigmoid transfer-function.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

44 CHAPTER 3. METHODS

ii, Ii — The i-th input neuron, where i is a global index over all neurons.
oi, Oi — The i-th output neuron, where i is a global index over all neurons.
hi, Hi — The i-th hidden neuron, where i is a global index over all neurons.
ni — The i-th neuron, where i is a global index over all neurons.
I — The set of all input neuron indices of the network.
O — The set of all output neuron indices of the network.
H — The set of all hidden neuron indices of the network.
N — The set of all neuron indices: N � I YO YH.
C — Connectivity matrix C � pcijqi,jPN , cij P t�1, 0, 1u.
W — Weight matrix W � pwijqi,jPN , wij P R.
T — The ordered set of time indices: t P T � t0, 1, . . . , T � 1u, |T | � T .
τpxq — The hyperbolic tangent transfer-function: τpxq � tanhpxq, x P R.
r — A recurrent neural network of arbitrary structure, r � tni, wiju, i, j P N ,

where wij P r if and only if a connection from neuron nj to ni exists, whereas
for C and W the corresponding cell is set to zero if wij R r.

Nprq — The number of neurons in the neural network r,
Nprq � |tni|ni P ru|, i P N .

W prq — The number of synapses in the neural network r,
W prq � |twij |wij P ru, i, j P N .

W pniq — The number of synapses connected to neuron ni,
W pniq � |twij , wji|wij , wji P ru|, i, j P N .

Table 3.1: Neural Network Conventions. The conventions given in the table above are used in
the remainder of this work to describe neural networks.

For any network, there exists a homeomorphism to transfer one to a dynamical equivalent of the
other (Pasemann, 2002). Of course the pre- and post-processing must be adapted due to the
different domains of the functions. Pre-processing refers to the mapping of the sensor values to
the working domain of the transfer-function, while post-processing refers to the mapping of the
output neurons to the motor system.

A neural network is a layered structure of neurons. In this work three different types of
neurons are distinguished, input, output, and hidden neurons (see fig. 3.2 D). Input neurons
receive signals from the sensory system of a robot. They are implemented as buffers, hence their
transfer-function is the identity and only outgoing connections of the input neurons are allowed
into the network. Output neurons are motor driving neurons. Their transfer-function is the
hyperbolic tangent. Both, incoming and outgoing connections are allowed. Hidden neuron are
equivalent to output neurons, but their values are not fed into the motor system of the robot.

This section closes with conventions that describe a neural network, which are used in the
remainder of this work (see tab. 3.1). The connectivity and weight matrix C,W are given in the

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.3. ARTIFICIAL LIFE AND EVOLUTIONARY ROBOTICS 45

following form. Neurons are listed in the order input, output, and hidden neurons. Let ir, . . . , is
be the set of input neurons, then the matrices are (exemplary for W) given by:

W �

�
�����������

wir � � � wis wii � � � wij wik � � � wil
...

. . .
...

...
. . .

...
...

. . .
...

wjr � � � wjs wji � � � wjj wjk � � � wjl

wkr � � � wks wki � � � wkj wkk � � � wkl
...

. . .
...

...
. . .

...
...

. . .
...

wlr � � � wls wli � � � wlj wlk � � � wll

�
����������

The next section introduces and discusses artificial evolution in the context of evolutionary
robotics as an algorithmic method to generate recurrent neural networks of arbitrary structure
to solve a task, given the morphology of the agent and environment within which it is situated.

3.3 Artificial Life and Evolutionary Robotics

The previous section discussed dynamical systems theory as a mathematical framework to un-
derstand cognitive processes, and the standard additive neuron model as the abstraction of
choice for a biological neuron. Formulating a dynamical system, such as a recurrent neural
network, which shows a desired behaviour in the sensori-motor loop is a very difficult task, as
non-linear elements have to combined (Strogatz, 1994). Therefore, evolutionary robotics, which
is a stochastic search, is chosen as an algorithmic method to find solutions. An advantage of
artificial evolution is that it enables the discovery of new solutions and principles if the search
space is kept open.

Evolutionary robotics emerged from the field of Artificial Life. John von Neumann is con-
sidered the father for Artificial Life, or ALife for short. He believed in, and first described,
self-replicating machines (Neumann, 1966, 1951; S. Levy, 1992; J. F. Walker & Oliver, 1997).

ALife is the science devoted to understanding life, not through its biology or chemistry, but
through the fundamental dynamical principles underlying biological phenomena (Langton et
al., 1992). The goal is to recreate life in other physical media, opening them to new kinds of
experimental methods and testing. Farmer and Belin (1992) even claim that it will be possible
to create a new species within the coming 100 years. The consequences of such prognoses and
their likelihood to fail, is discussed by Dreyfus (1992) in the case of classical artificial intelligence.

ALife covers a large range of sub-disciplines. A few examples are self-replication, the search
for the origin of life, evolution, and colony dynamics. The list can easily be extended. Of interest
here is artificial evolution in the context of robotics, which is referred to as evolutionary robotics
(Nolfi & Floreano, 2000).

Artificial evolution, in general, is a population-based stochastic, search method. A generation
is given by a population of different potential solutions. An evaluation criteria, the fitness-
function, determines the quality of the solution with respect to the given problem. A rank
or fitness-based selection method determines the parents for the next generation. A variation
operator then varies the offspring, resulting in a new generation, and hence a new population of
individuals is evaluated.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

46 CHAPTER 3. METHODS

Evolutionary algorithms is dated back by Fogel (2008) to the work of Friedman (1956) on
evolutionary robots, Box (1957) on simulating evolution for industrial plant productivity, Fried-
berg (1958) on evolving computer programs, Rechenberg (1965) and Schwefel (1965) on evolving
physical devices, Kaufman (1967) on evolving mathematical systems, and Conrad (1969) on sim-
ulating ecosystems.

The most dominant approach in the field of evolutionary robotics are genetic algorithms,
which was first introduced by Holland (1974). In his approach bitstrings of fixed length encode
a set of parameters. A bitstring is referred to as a chromosome, and the subsections of the
chromosome, typically also of fixed length, relate to genes. The bit sequence of each gene is
either converted to an integer or real value number, which codes one parameter of the system that
is evolved. For neural networks, the structure is kept fixed, and the genes encode the synaptic
weights and biases. A chromosome is evaluated against a fitness-function, which determines the
quality of the solution parametrised by the genes. From a selected parent population, offspring
are created through the crossover of two parents, determined by their fitness values (Holland,
1974). Crossover is performed by identical copies of the parents, which are then modified by
exchanging bit sequences of the same length and positions among the copies. A mutation
operator switches the value of one bit. The probability of mutation is kept small. Typically, for
every individual, only one bit is mutated.

Koza (1992), a former student of Holland’s, later extended the approach to genetic program-
ming, a method which directly generates computer programs through artificial evolution. For an
overview of evolutionary algorithms, the reader is referred to Bäck (1996) and Goldberg (1989).

In this work, the goal is to generate neural networks of arbitrary structure, which enable the
full analysis of the underlying dynamics. A solution should not be (partially) predefined by a
fixed neural network structure. Therefore, a different approach is required. The ENS3 (evolu-
tion of neural systems by stochastic synthesis), introduced by Dieckmann (1995), is a method
used to simultaneously evolve the structure and parameters of a recurrent neural network. The
method is explained in detail in the following section.

3.3.1 Evolution of Neural Systems by Stochastic Synthesis – ENS3

Genetic Algorithms (see previous section) are applied to neural networks only in the parameter
space (weights and biases). The structure of the network is predefined by the experimenter and
evolution is performed in a batch process without any interaction. An inappropriately chosen
structure limits the quality of the generated solutions to the task of interest and the quality of
the solutions can only be evaluated by the experimenter after the batch process has terminated.
This leads to experiments in which recurrent neural networks with a small number of neurons are
evolved first. Typically, the neural networks are fully connected, i.e. every neuron is connected
to every other neuron and itself. If the solutions are not satisfactory, the number of neurons is
slowly increased until a good solution is found.

The evolutionary strategy ENS3, first described by Dieckmann (1995), supports the simul-
taneous variation of the structure and the parameters of arbitrary recurrent neural networks.
The method is similar to the GNARL algorithm (Angeline et al., 1994). First, a brief overview
of ENS3 is given, followed by the formal description.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.3. ARTIFICIAL LIFE AND EVOLUTIONARY ROBOTICS 47

Overview

Like other evolutionary strategies, ENS3 operates on populations of solutions which undergo a
variation-evaluation-selection loop. A population pptq is a set of (recurrent) neural networks r
of arbitrary structure

pptq � tr0ptq, r1ptq, . . . , rP�1ptqu
|p| � P

t � 0, 1, . . .

The time index t denotes the generation of the population, hence, pp0q is the initial population.
The elements of pptq are also referred to as individuals. A network is denoted by rkptq, and a
neuron of this network is denoted by ni P rkptq. The conventions set out in the previous section
(see tab. 3.1) are used here.

A variation operator V modifies the structure of a network by insertion and deletion of
neurons and synapses, and modifies the parameters of a network by changes of the bias and
weights. Insertion and deletion of neurons occurs only on the set of hidden neurons. The
number of input and output neurons is predefined in accordance with the given morphology.

An evaluation operator E assigns a single scalar to each individual of the population. The
scalar, named fitness value, reflects the quality of the solutions with respect to a given task.
Here, a fitness-function calculates the fitness value while the robot acts in an environment. This
is elaborated later in this chapter (see sec. 3.3.2) and in the appendix (see app. A).

A selection operator S determines a subset of the current population which will survive and
form the parents of the next generation.

A new generation is then given by the mapping:

pptq ÞÑ SEV pptq

Formal description

The following formalism is a summary of the publications of Dieckmann (1995), Hülse et al.
(2004), Pasemann et al. (2001), complemented by the author of this work.

Before the operators are discussed, a description of the parameters is required. The param-
eters control the operators and are open to user interaction. They are listed together with some
additional notation found in table 3.2.

Variation: The variation operator V is a selection of operators, which act on the k-th indi-
vidual of the population pptq. The operators are denoted by N�

k , N
�
k (insertion and deletion of

neurons), C�
k , C

�
k (insertion and deletion of synapses), N�

k , C
�
k (variation of biases and weights).

The variation operator is then given by:

V : pptq ÞÑ
P�1¹
k�0

C�
kC

�
k C

�
k N

�
kN

�
k N

�
k pptq

The parameter and structure variation operators N�,�,�
k and C�,�,�

k are of stochastic character.
Each operator is explained in the following.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

48 CHAPTER 3. METHODS

Used internally as part of the algorithm.

Xk Operator on the k-th individual of a population.
upxq Uniform distributed random variable, upxq P r0, xs.
gpx, σq Gaussian distributed random variable, with mean x and deviation σ.

Evolution control parameters, open to user interaction.

ppXq Probability function of the operator X, ppXq P r0, 1s.
pC Percentage of neurons connected to an inserted neuron, pC P r0, 1s.
w� Initial weight for an inserted synapses.
∆w� Maximal variance of the initial weight, wij P rw� �∆w�, w� �∆w�s.
Θ� Initial bias for an inserted neuron.
∆Θ� Maximal variance of the initial bias Θi P rΘ� �∆Θ�,Θ� �∆Θ�s.
∆w Maximal variance of existing weights wij ÞÑ wij P rwij �∆w�, wij �∆w�s.
∆Θ Maximal variance of existing biases Θi ÞÑ Θi P rΘi �∆Θ�,Θi �∆Θ�s.

Table 3.2: Evolution parameters and variables. The table shows the symbolic representation of
parameters and their explanation. The parameters are either used as part of the algorithm or open to
user interaction in order to control the evolution. The probabilities ppXq are given without the index k
for the operator X as the probabilities are equal for every neural net rkptq P pptq. The functions upxq
and gpx, σq are given with an index in the text below, where (if not otherwise noted) the index k of the
function refers to an evaluation of the function for every individual rkptq P pptq, and the index i and ij
to every neuron ni P rkptq and synapse wij P rkptq of every individual rkptq P pptq, respectively.

The neuron deletion operator N�
k : acts only on the set of hidden neurons. A uniformly

distributed random variable determines, for each hidden neuron hi P rkptq, if it is deleted. For
a deleted hidden neuron all synapses incident to and from it will be removed with the neuron.
For the i-th neuron the operator is given by:

N�
k : rptq ÞÑ rptqzthi, wji, wij |@j P N ,@i P H : uip0, 1q ppN�qu

where uipxq is value of the random variable for the i-th hidden neuron hi P nptq.

The neuron insertion operator N�
k inserts a number of hidden neurons which is pro-

portional to the number of already existing neurons. For each new neuron, a random set of
synapses is inserted. Each new synapse is initialised with a Gaussian-distributed random vari-
able around the defined initial weight value w�. Let h�i be an inserted hidden neuron, and w�

i

be an inserted synapse (either incident to or from neuron h�i), then the operator N�
k is given

by the following set of maps:

1. Nprkptqq ÞÑ Nprkptqqp1� ukpppN�qqq
2. Nphiq ÞÑ NprkptqquippCq
3. Θi ÞÑ �gipΘ�,∆Θ�q

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.3. ARTIFICIAL LIFE AND EVOLUTIONARY ROBOTICS 49

4. w�
i ÞÑ �gipw�,∆w�q

and reads as follows:

1. The number of inserted neurons is proportional to the number of existing neurons, multi-
plied by a random variable depending on the probability ppN�q.

2. Each new hidden neuron h�i is connected to a subset of all other neurons. The number of
new connections depends on the probability pC .

3. For each new hidden neuron h�i , the bias Θi is set within the interval rsΘ� �∆Θ�, sΘ� �
∆Θ�s with a Gaussian distribution, where s is the sign, s P r�1, 1s. The probability of the
sign s is equally distributed.

4. For each new hidden neuron h�i , the synaptic weights of the new connections w�
i are set

within the interval rsw� �∆w�, sw� �∆w�s with a Gaussian distribution, where s is the
sign, s P r�1, 1s. The probability of the sign s is equally distributed. The probability
of an insertion of incoming or outgoing synapses of the hidden neuron h�i is also equally
distributed.

The parameter variation operators N�
k , C

�
k are very similar. Each operator acts on

the set of existing neurons or synapses, respectively.

N�
k : Θi ÞÑ Θi � gip0,∆Θq,@i P HYO : uip0, 1q ppN�q

C�
k : wij ÞÑ wij � gijp0,∆wq,@i, j P N : uijp0, 1q ppC�q

The synapse insertion operator C�
k inserts a number of synapses, which is proportional

to the difference between the number of maximal possible synapses and the number of currently
present synapses in the network:

E :� Nprkptqq2 � |I| maximal number of possible synapses
D :� E �W prkptqq maximal number of insertable synapses
C�
k : W prkptqq ÞÑW prkptqq �DukpppC�qq

The new synapses are initialised with the same map that is used to initialise the new synapses
when a neuron is inserted (see neuron insertion operator N�

k above).

The synapse deletion operator C�
k works on the set of the existing synapses. For each

synapse, the probability of being deleted is calculated. If a hidden neuron hi is isolated after
the synapse operator was applied to a neural network, i.e. it has no synapse incident to or from
it, it is deleted as well. The operator C�

k is then given by the following set of maps:

rkptq ÞÑ rkptqztwjiu,@wij P rkptq : uijp0, 1q ppC�q
rkptq ÞÑ rkptqzthiu,@hi P rkptq : W phiq � 0

This concludes the description of the variation operator.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

50 CHAPTER 3. METHODS

Evaluation: The evaluation operator is problem-specific (Dieckmann, 1995) and is given by:

E : pptq ÞÑ ppptq, eptqq,
where pptq is the set of individuals, and eptq is the set of fitness values for each individual in
pptq.

The fitness values in eptq are scalars calculated using a fitness-function, which is a quality
measurement of the potential solution with respect to the given task. In the context of evo-
lutionary robotics, the fitness-function, together with the environment and the morphology of
the robot, determines the fitness of an individual. This is elaborated in the next section (see
sec. 3.3.2). The fitness-function F is a function of the individual and its life span Tkptq and is
described by:

ekptq � F prkptq, Tkptqq �Kprkptqq

F prkptq, Tkptqq �
Tkptq�1¸
s�0

fps, rkptqq

The function fps, rkptqq is defined by the experimenter and, in general, only uses information
which is locally available to the controller (sensor data, motor commands, network state). Func-
tions, which access global parameters, such as the position of the robot in the global coordinate
system, can also be applied.

Examples for fitness-functions are given in the chapter (see chap. 6). Due to the fact that
structurally smaller networks are open to analysis with the methods of the dynamical systems
theory, a cost function K is introduced to favour them. It is given by:

Kpnkptqq � kn|H| � ks|W|, kn, ks P R�

where kn, ks are small numbers, indicating the cost for each neuron and synapse.

Selection: The selection operator determines the survival and reproduction of the individuals
of the population in one generation, and is given by:

S : ppptq, eptqq ÞÑ
P�1¹
k�0

R
νpekptqq
k pptq,

where R is the reproduction operator. The function νpxq, ν : R ÞÑ N calculates the number of
copies of each network for the next generation, hence, νpekptqq is a stochastic integer variable.
Only individuals which produce at least one offspring are propagated to the next generation:

νpekptqq P Nzt1u � t0, 2, . . .u,
where 0 means that the individual is removed from the population, and 2 relates to a propagation
to the next generation together with one offspring. The calculation of νpekptqq is rate-based and
is computed from a Poisson distribution: (see alg. 1) with parameter λi , which is given by:

E :� maxteptqu
:The algorithm was developed by Uli Steinmetz. No publication available.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.3. ARTIFICIAL LIFE AND EVOLUTIONARY ROBOTICS 51

Algorithm 1 Poisson distributed offspring calculation.

Require: λk {see equation (3.1)}
Require: u {uniformly distributed random variable in r0, 1s, re-evaluated at every occurrence.}

1: a � e�|λk|, b � 1, c � 0
2: while b ¡ a do
3: b � bu
4: c � c� 1
5: end while
6: return c

σ2 � standard deviation of e(t)

hpxq :� e�
γ

σ2 pE�xq

λk :� z°n
j�0 hpekptqq

hpeiptqq (3.1)

γ P R� [user defined, interactive]
z P Nzt0u [user defined, interactive]

The first multiplicand of λk is for normalisation, while z can be interpreted as the average pop-
ulation size and is open to user interaction. With this parameter, the experimenter determines
the average number of individuals in a population. The parameter γ represents the selection
pressure. The higher γ, the less parents form the new generation through a higher number of
copies (elite building).

Evolution: The evolution is then given by the repeated mapping

pptq ÞÑ SEV pptq

It must be noted that only the offspring, i.e. the copies of the parents from the previous gener-
ation are open to variation. The parents are re-evaluated unchanged. This supports, but does
not guarantee, that the average fitness of the population does not decrease but monotonically
increases. The average can fluctuate, if the variance of the initial conditions of two consecutive
generations is too large.

After formalising the evolution algorithm ENS3, the process of evolution and analysis of
recurrent neural networks is discussed.

3.3.2 The approach to artificial evolution

This section discusses how the evolutionary algorithm introduced in the previous section is
embedded in the evolutionary robotics approach followed in this work.

The approach differs from other evolutionary robotics approaches (Harvey et al., 1997; Nolfi
& Floreano, 2000; Miglino et al., 1995; Bongard & Pfeifer, 2001; Pollack et al., 1999; Lipson
& Pollack, 2000; Lipson, 2005). The main difference is that the evolution is not conducted in

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

52 CHAPTER 3. METHODS

a batch process, but that all control parameters of the evolution are open to interaction. This
will be discussed at the end of this section.

In the approach discussed here, generating a solution is the first part, which is stringently
followed by complete analysis of the underlying dynamical properties of the neural network in
relation to the behaviour induced by it. The main scientific goals are:

1. Find general principles of neural signal processing.

2. Extracting those principles and generalising them to other problem domains.

The first goal relates to an understanding of the behaviour-relevant dynamical features in the
sensori-motor loop, or otherwise stated, the structure–function relationship of embodied and sit-
uated neuro-controllers. Examples are hysteresis phenomena related to co-existing fixed point
attractors for obstacle avoidance or quasi-periodic oscillators for a walking behaviour. The sec-
ond goal relates to general principles extracted from the first, which can be generalised to other
morphologies, environments and problem domains. An example is the MRC (Hülse & Pasemann,
2002), which is a minimal recurrent neural network for obstacle avoidance of a wheeled robot
(see chap. 5). Its underlying general principle was identified as the interaction of three hysteresis
phenomena. The understanding of their interaction was then used to design a sensor filter for
a reactive walking machine (Manoonpong et al., 2004). Another example is the SO(2)-network
(Pasemann, Hild, & Zahedi, 2003), a configurable two-neuron network with quasi-periodic out-
puts, which is used as a central pattern generator for walking machines (Manoonpong, 2007;
Markelić & Zahedi, 2007) and as a building block in modular robots (Klaassen et al., 2004).

Next, the approach is discussed with respect to its three phases, the design of the experiment,
the evolution, and the analysis. The approach is visualised in the figure 3.3.

Design of the experiment

Every experiment begins with the definition of a specific question. Examples for such questions
are:

• How can a minimal neural controller be achieved for a goalkeeping behaviour in the Ro-
boCup domain (Zahedi et al., 2004)?

• How can locomotion be achieved for stick insects (Twickel & Pasemann, 2006)?

• How can a reactive behaviour be achieved for walking machines with artificial whiskers
(Manoonpong, 2007)?

• How is fast locomotion achieved in a four legged robot (Markelić & Zahedi, 2007)?

• How can communication be achieved in cooperating and competing robot swarms (Wis-
chmann, 2007)?

When the question is specified, an appropriate hardware platform must either be built (Twickel
& Pasemann, 2006; Manoonpong, 2007) or chosen (Markelić & Zahedi, 2007). The hardware
platform is necessary as simulations never capture all physical properties of the morphology or

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

3.3. ARTIFICIAL LIFE AND EVOLUTIONARY ROBOTICS 53

HWHWHW

Question Hardware Simulation

Evolution

Hardware

SimulationAnalysisPrinciples

HW

Hinton

YARS

EvoSun

Brightwell

ISEE

ISEE

Evaluation

Modifcation

Verification

Modification

Result

Knowledge

Figure 3.3: The approach of evolutionary robotics. A detailed explanation is given in the text.
This image is used with the permission of Martin Hülse.

environment (for a discussion, see the appendix A.3.5). Convincing experiments can also be
executed solely in simulation (Sims, 1994), but undoubtful proof of the concepts requires a real
robot. This is in correspondence to Brooks statement that the world is its own best model (see
previous chapter). In addition to Brooks, Tani (2007) argues that proof of concept in a physical
robot platform is superior to simulation, as setting up a demonstration with a physical robot is
very time consuming, and the entire set of parameters (robot and environment) is not known
by the experimenter. Therefore only robust behaviours hold a physical demonstration.

The next step is to choose an appropriate simulation, which not only captures the main
characteristics of the morphology and environment, but also provides a good trade-off between
precision and simulation speed. A simulation is chosen for two main reasons. First, if it is
faster than real-time, the time consuming evolutionary process is sped up significantly. Second,
hardware damaging behaviours are very likely to occur in an unrestricted evolution. These
aspects are discussed in detail in the appendix (see app. A.3.5). Once these three parts, the
question, hardware, and simulator, are defined, the next step is to evolve neural networks which
answer the question of interest.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

54 CHAPTER 3. METHODS

Evolution

The evolution begins with a choice of the initial population. In general, this is the empty
network (see above, sec. 3.3.1) only consisting of input and output neurons, corresponding to
the morphology of the robot. For the evolution of a behaviour for walking machines, predefined
initial neural networks (e.g. CPG) can be chosen for the initial population, and co-evolution
of disjunct populations of neuro-modules enables the parallel evolution of functional sub-units
which are then connected to one neural network before the evaluation (Markelić & Zahedi, 2007).

The next steps within the process involve choosing and parametrising the fitness-function,
and set the initial evolution parameters (see sec. 3.3.1). As this is not a batch process, the fitness-
function and evolution parameters are not fixed but may be changed on-line by the experimenter
in accordance to the continuous observation of the behaviours generated by the artificial evolu-
tion. Intermediate solutions are tested on the physical platform and the observations are used
to modify the simulator in order to close the simulator-reality gap discussed in the literature
(Jacobi et al., 1995; J. Walker et al., 2003).

The experimenter decides when a solution is found, and when it is terminated.

Analysis

The resulting neural network is analysed in two aspects. First, it is analysed while it controls
the robot in the environment as part of the sensori-motor loop. This is the analysis of the
transient dynamics. But the network is also analysed separate from the sensori-motor loop, as
an isolated dynamical system. This is the analysis of the attractor structure. Results of both
methods lead to an understanding of the structure–function relationship of a network, which
can then be extracted and generalised to other problem domains.

In conclusion, this chapter presented the mathematical context in which a neural network is
discussed and analysed, the mathematical neuron model, on which the Self-Regulating Neuron
is based, and provided an introduction to the evolutionary robotics approach used in this work.
A detailed description of the methodology and the software tools for the methods presented in
this chapter is given in the appendix (see app. A).

In the remainder of this work, the SRN model is introduced and analysed with respect to
its dynamical properties (see chap. 4). This is followed by an analysis of its transient dynamics
in the sensori-motor loop (see chap. 5). Finally an adaptive behaviour is evolved (see chap. 6).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Chapter 4

Self-Regulating Neuron Model

The previous chapters discussed the background of, the motivation for and the methods utilised
in this work. This chapter introduces the Self-Regulating Neuron (SRN) model, and presents a
mathematical and numerical analysis of its dynamical properties.

The neuron model proposed here was first introduced in (Pasemann et al., 2004; Zahedi &
Pasemann, 2007) and is an extension of the standard additive neuron model discussed in the
previous chapter (see sec. 3.2). The standard neuron model is defined by the following equation:

aipt� 1q � Θi �
N�1̧

j�0

wijτpajptqq, (4.1)

where aiptq P R denotes the activation of the neuron i at time t � 0, 1, . . ., Θi P R the bias value,
N P N the total number of neurons in the network, wij P R the synaptic weight from neuron j
to neuron i, and τpxq, τ : R ÞÑ R is the hyperbolic tangent transfer-function.

The standard additive neuron model is extended by substituting the synaptic weight wij with
an activity-dependent term, which is the product of a pre- and post-synaptic neuron property.
These properties will be referred to as the transmitter strength and receptor strength of the pre-
and post-synaptic neuron.

The neuron model is motivated by Ashby’s Homeostat (see sec. 2.2). A neuron is understood
as a homeostatic unit coupled in a network which regulates its activation towards a target value.

The first section discusses the SRN model in detail, followed in the second section by an
analysis of its attractor landscape.

4.1 Self-Regulation Neuron Model

The Self-Regulating Neuron model extends the standard additive neuron model (see eq. 4.1)
by an activity-dependent product of a pre-synaptic and post-synaptic neuron property, which
redefines the previously static synaptic weight wij .

In analogy to biological neurons, the pre-synaptic neuron property is referred to as the
transmitter strength, of the neuron and is denoted by η. The post-synaptic neuron property is
the receptor strength of the neuron and is denoted with ξ. The synaptic strength wij is then

55

56 CHAPTER 4. SELF-REGULATING NEURON MODEL

defined as:

wijptq :� cijξiptqηjptq
@t P T : ξiptq, ηjptq P R� (4.2)

where ηjptq denotes the transmitter strength of the pre-synaptic neuron nj at time t, ξiptq the
receptor strength of the post-synaptic neuron ni at a time t, and cij the sign of the synapse. The
sign of the synapse is static and given by the corresponding entry of the connectivity matrix:

C � pcijqi,jPN
cij P t�1, 0, 1u

where cij P t�1, 0, 1u corresponds to an inhibitory synapse, no connection, or an excitatory
synapse from neuron nj to ni, respectively.

The receptor and transmitter strengths are defined to be strictly positive (see eq. 4.2), so
that the type of the synapse, i.e. excitatory or inhibitory, is only determined by cij .

The equation for the standard additive neuron model (see eq. 4.1) is now rewritten as

aipt� 1q � Θi �
N�1̧

j�0

cijξiptqηjptqlooooomooooon
wijptq

τpajptqq (4.3)

� Θi � ξiptq
N�1̧

j�0

cijηjptq τpajptqq (4.4)

The remainder of this section discusses the desired target value, the equations for the transmitter
and receptor strengths, and the synaptic weight. Equation (4.4) shows that the SRN model is
related to synaptic scaling (see sec. 2.4) as the post-synaptic receptor strength ξiptq scales all
incoming signals.

Target value a�

There are several feasible choices for the target value. The most interesting dynamical effects
arise when the neuron operates within the non-linear domain of the transfer-function. Hence,
for the SRN model the point of maximal non-linearity (τ3pxq � 0) is chosen for the target value.
The transfer-function here is the hyperbolic tangent. A variation of the Self-Regulating Neuron
model for the standard sigmoid transfer-function is discussed in (Zahedi & Pasemann, 2007).
Let the hyperbolic tangent be denoted by τ , then

τpxq :� tanhpxq
τ 1pxq � 1� τpxq2
τ2pxq � 2τpxqpτpxq2 � 1q
τ3pxq � �6τpxq4 � 8τpxq2 � 2

τ3pa�q � 0 ô �a� � �arctanh

�c
1
3

�
� �0.65848

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.1. SELF-REGULATION NEURON MODEL 57

-2

-1

 0

 1

-3 -2 -1 0 1 2 3a*-a*

!(a*)

!(-a*)

!

x

! !’ !’’ !’’’

-1

 0

 1

-2 -1 0 1 2a*-a*

!(a*)

!(-a*)

!

x

|a(t)| < |a*||a(t)| > |a*| |a(t)| > |a*|

Figure 4.1: Transfer-function, its derivatives, and receptor behaviour. Left: Hyperbolic
Tangent, its derivatives and the defined target value a�. Right: The property of the receptor equation
in relation to the target value and the transfer-function.

As the transfer-function τpxq � tanhpxq is point-symmetric around the origin (see fig. 4.1),
there are two target values, �a�, which are referred to as the upper and lower target value of
the system. For the regulated output of the neuron, it follows that for the desired target output
of the neuron:

τp�a�q � �0.57735 (4.5)

Receptor strength ξ

The receptor is designed to control the amount of input into the neuron depending on the
deviation of the current activation from the target value. If the absolute current value of the
activity is below the desired target value |aptq| |a�|, the receptor ξptq is increased. The effect
of an increased receptor ξptq results in of two cases (see fig. 4.1).

In the case of a positive input, the activity is raised towards the positive target value a�. In
case of a negative input, the current activity is further decreased towards the negative target
value �a�. Consequently, the receptor ξptq must be decreased if the current activity is above
the desired value |aptq| ¡ |a�|.

The equation for the receptor ξptq is defined by

ξipt� 1q :� ε� ξiptqp1� βgpaiptqqq, 0 β 1 (4.6)

where gpaptqq defines the activity-dependent change of the receptor, and β controls the rate of
change. Due to limited computational precision, a small technical value 0 ε ! 1 is introduced,
so that the receptor cannot decrease to zero. It is of the following order of magnitude:

ε :� 10�4. (4.7)

As such, it may be neglected in the analysis of the system as it does not contribute to its
dynamics. The function gpxq is defined as

g : R ÞÑ R, gpxq :� τpa�q2 � τpxq2 ñ

$'&
'%

gpxq ¡ 0 if |x| |a�|
gpxq 0 if |x| ¡ |a�|
gpxq � 0 if |x| � |a�|

(4.8)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

58 CHAPTER 4. SELF-REGULATING NEURON MODEL

From the equations (4.5), (4.6) and

@x P R : τpxq Ps � 1, 1r (4.9)

it follows that

@x P R : gpxq ¡ �1

which results in a strictly positive receptor strength:

@t ¡ t0 P T , ξpt0q ¡ 0 ñ ξptq ¡ 0. (4.10)

Transmitter strength η

The transmitter imparts the internal activation of the neuron to the neural network. If the
internal neuron activation is large, the excitation or inhibition of the neuron, over the synaptic
connections into the neural network, is defined to be larger compared to a smaller internal neural
activity. The transmitter level is defined by

ηipt� 1q :� ε� p1� γqηiptq � δhpaiptqq, 0 γ, δ 1 (4.11)

where p1 � γq is a decay term, δ the growth term, and ε a negligible value (see eq. 4.7). The
parameters γ and δ control the decay and growth of the transmitter, respectively. The growth
term hiptq reads as follows:

h : R ÞÑ R, hpaptqq :� 1� τpaiptqq. (4.12)

It follows from equation (4.9) and equation (4.12) that the transmitter strength is strictly posi-
tive:

@t ¡ t0 P T , ηpt0q ¡ 0 ñ ηptq ¡ 0. (4.13)

Synaptic weight

The synaptic weight wijptq can be rewritten in the following form:

wijptq � cijξiptqηjptq

� cij

��
ξipt� 1q

�
1� βg

�
aipt� 1q�	
 � �p1� γqηjpt� 1q � δh

�
ajpt� 1q�

�

� cij

��
ξipt� 1q � ξipt� 1qβg�aipt� 1q�
 � �p1� γqηjpt� 1q � δh

�
ajpt� 1q�

�

� cijξipt� 1q
�
p1� γqηjpt� 1q � δh

�
ajpt� 1q�� βp1� γqηjpt� 1qg�aipt� 1q�

�βδg�aipt� 1q�h�ajpt� 1q�
�
. (4.14)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.1. SELF-REGULATION NEURON MODEL 59

The term (4.14) of the synaptic weight is comparable to Hebb’ian Learning Rule (see sec. 4.3),
which defines the weight change as the product of the pre- and post-synaptic activity scaled by
a factor (see eq. 4.39). The term (4.14) is also found if the weight change of the SRN model is
calculated (see eq. 4.16):

∆wijptq � wijpt� 1q � wijptq (4.15)

� cij

�
ξipt� 1qηjpt� 1q � ξiptqηjptq

	
� cij

��
ξiptqp1� βgpaiptqqq

	�
p1� γqηjptq � δhpajptqq

	
� ξiptqηjptq

	
� cijξiptq

�
δh
�
ajptq

�� γηjptq � βg
�
aiptq

�
ηjptq

�βδg�aiptq�h�ajptq� (4.16)

�βγg�aiptq�ηjptq

.

The equation (4.15) is referred to as the SRN plasticity rule.

Summary

The Self-Regulation Neuron model is a discrete-time, three-dimensional dynamical system de-
fined by the following set of difference equations:

ρiptq :� paiptq, ξiptq, ηiptqq (4.17)

aipt� 1q � Θi � ξiptq
N�1̧

j�0

cijηjptqτpajptqq (4.18)

ξipt� 1q � ε� ξiptqp1� βpτpa�q2 � τpaiptqq2q (4.19)
ηipt� 1q � ε� p1� γqηiptq � δp1� τpaiptqqq (4.20)

The system’s behaviour is controlled by three parameters β, γ and δ, which are referred to as
the plasticity parameters. They are defined to be strictly positive:

0 β, γ, δ 1 (4.21)

For simplicity, they are set alike for each neuron in a network, but could also be chosen individ-
ually. As input neurons are buffers (see sec. 3.2), their transmitter strength is set constantly to
one:

ηiptq :� 1, @t P T _ @i P I (4.22)

The SRN model is fully defined by the equations (4.18) to (4.21). The next section analyses its
dynamical properties by means of single neurons and small neuro-modules. The technical term
ε is neglected in the analysis hereafter, as it does not contribute to the dynamics of the system.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

60 CHAPTER 4. SELF-REGULATING NEURON MODEL

4.2 Dynamical properties

The previous section introduced and specified the Self-Regulating Neuron model. This section
presents numerical and mathematical analyses of the dynamical properties by means of single
neurons and small neuro-modules. The bifurcation diagram (see app. A.3) is chosen to visualise
the asymptotic dynamics of the system, in which a slow-varying input is simulated by the
modulation of a bias Θ.

4.2.1 Single neuron with excitatory synapse

The following set of equations fully describes the behaviour of the excitatory single neuron:

apt� 1q � Θ� ξptqηptqτpaptqq rexcitatory : c � 1s
ξpt� 1q � ξptqp1� βgpaptqqq
ηpt� 1q � p1� γqηptq � δhpaptqq.

Figure 4.2 shows the bifurcation diagrams for the four system properties of the single neuron
with excitatory synapse depending on Θ: activation (see fig. 4.2 A), receptor (see fig. 4.2 B),
transmitter (see fig. 4.2 C), and synaptic (see fig. 4.2 D) strength (τpΘq, ξpΘq, ηpΘq, wpΘq). The
bifurcation diagram of the neuron’s output τpΘq (see fig. 4.2 A) indicates two distinguishable
regions.

For a bias within the interval Θ P r�a�, a�s, there are co-existing stable fixed point attractors,
but in contrast to the excitatory single neuron with static synapse (see fig. 4.2 E), the neuron’s
output is constant at τpa�q and �τpa�q for varying values of the bias Θ. This region is referred to
as the homeostatic region. For bias values outside of the interval Θ Rs�a�, a�r, the output of the
neuron is largely determined by the sigmoidal transfer-function. This region is referred to as the
sigmoidal region. Next, the behaviour of the neuron in both regions is analysed mathematically.

Sigmoidal region

The sigmoid behaviour follows from the equation (4.6):

∆ξptq � ξpt� 1q � ξptq
� βξptqgpaptqq

Θ Rs � a�, a�r ñ lim
tÑ8 ξptq � 0

ñ lim
tÑ8wptq � 0

ñ lim
tÑ8 aptq � Θ

ñ lim
tÑ8 optq � τpΘq.

Homeostatic region

To analyse the behaviour of the system in the homeostatic region, the fixed point equations are
required. A fixed point ρ� � pa�, ξ�, η�q of the neuron is given by

a� � Θ� ξ�η�τ pa�q (4.23)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.2. DYNAMICAL PROPERTIES 61

Bias ! -1

 0

 1

-1 0 1a*-a*

"(a*)

"(-a*)

A

!

"

homeostatic
(with hysteresis)sig

m
oi

da
l sigm

oidal

 0

 3

-1 0 1

1.5 B

!

#

-1

 0

 1

-1 0 1

E

!

"

 0

 3

-1 0 1a*-a*

$(a*)

$(-a*)

1.5 C

!

$

 0

 1

 2

-1 0 1

D

!

w

Figure 4.2: Single excitatory neuron. Bifurcation Diagram for a single neuron with excitatory
synapse. Plasticity parameterss are set to β � 0.1, γ � 0.01, δ � 0.015. The values are chosen empirically.
For each input value, 5000 convergence iterations are calculated before the attractor is plotted. The
bifurcation diagrams A-D show the attractors of the four neuron properties of the Self-Regulating Neuron
model. These are output (A), receptor (B), transmitter (C), and strength of the recurrent connection
(D). As a comparison, figure E shows the attractor for the output of the standard additive neuron model.
Diagram A depicts a homeostatic and two sigmoidal regions.

ξ� � ξ� p1� βg�q
� ξ�

η� � p1� γq η� � δh�

� δ

γ
h�

ñ w� � ξ�η�

� a� �Θ
τ pa�q (4.24)

h� � 1� τ pa�q
g� � τ pa�q2 � τ pa�q2

� 0

A non-trivial solution for the transmitter coordinate ξ� can be derived from the activation
coordinate a� (see eq. 4.23):

ξ� � a� �Θ
η�τpa�q

� a� �Θ
δ
γ p1� τpa�qqτpa�q .

If the weight w of the recurrent connection of single neuron is zero, the output of the neuron is
given by the transfer-function, i.e. the hyperbolic tangent. Consequently, a non-trivial value for

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

62 CHAPTER 4. SELF-REGULATING NEURON MODEL

the weight (w ¡ 0) must exist within the homeostatic region. The equation (4.24) defines the
consistency condition:

w� ¡ 0 ô a� �Θ
τpa�q ¡ 0. (4.25)

For the two defined target values �a�, and from equation (4.25), it follows that:

I. For upper target value�a� :
a� �Θ ¡ 0 rτpa�q ¡ 0s
ñ a� ¡ Θ (4.26)

II. For lower target value�a� :
�a� �Θ 0 r�τpa�q 0s
ñ �a� Θ (4.27)

It follows from equation (4.26) and equation (4.27) that a stable non-trivial value for the exci-
tatory synapse can only exist within the interval given by the upper and lower target value:

w� ¡ 0 ô Θ Ps � a�, a�r (4.28)

Hence, an asymptotically stable fixed point of the self regulating neuron can only exist in the
interval given above (see eq. 4.28). Assuming it exists (for proof see next section), the values
for the asymptotic synaptic weight, the transmitter and receptor strength may be calculated as
follows:

η� � δ

γ
p1� τpa�qq (4.29)

� δ

γ

�
1�

c
1
3

�
(4.30)

� δ

γ
0.42 _ δ

γ
1.58 (4.31)

ñ η� P
"
δ

γ
0.42,

δ

γ
1.58

*
(4.32)

w� � a� �Θ
τpa�q � 1.1405�

?
3Θ (4.33)

ξ� � a� �Θ
η�τpa�q P

!γ
δ
p2.716� 4.124Θq , γ

δ
p0.722� 1.096Θq

)
(4.34)

The next section proves the stability of the fixed point and presents the calculations for the
boundaries of the homeostatic region exemplarily for different sets of the plasticity parameters.

Stability analysis of the fixed point

In the previous section, the condition under which an asymptotically stable fixed point for the
system occurs was discussed. In the following section, a stability analysis is conducted to prove

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.2. DYNAMICAL PROPERTIES 63

α β γ δ lower target value �a� upper target value �a�
Set 1 �1 0.1 0.01 0.015 �0.6585 0.1958 �0.1958 0.6585

Set 2 �1 0.01 0.01 0.02 �0.6585 0.1559 �0.1559 0.6585

Set 3 �0.7 0.01 0.01 0.02 �0.2675 0.04232 �0.04232 0.2675

Table 4.1: Parameter dependence of the homeostatic region. Parameter sets and the results
for the stability calculations of discrete-time dynamical systems based on the eigenvalues of the Jacobian-
matrix of the SRN model with positive recurrent connection. For discrete-time dynamical systems, a fixed
point is asymptotically stable if the absolute values of the eigenvalues are smaller than one. The values
in the table are the outer boundaries, hence, the values which follow from the condition }λi} � 1. For the
stability analysis, three different sets are presented in order to determine the parameter subsets which
affect the various boundaries of the homeostatic region. The comparison between set 1 and set 2 shows
that the boundaries of the upper and lower target values are affected by the parameter β, γ, δ. The
comparison between set 2 and set 3 shows that both, the outer and inner boundaries are affected by the
parameter α. For a discussion of the values and their dependence on the plasticity parameters, see text
below.

that the previously extracted condition leads to an asymptotically stable fixed point. This is
done by calculating the eigenvalues of the Jacobian matrix as a function of Θ for a specific set
of the plasticity parameters β, γ, δ of the system for the fixed point ρ� � pa�, η�, ξ�q, where α is
introduced as a factor for the target value a�.

The plasticity parameter α is introduced as a scaling factor of the target value a�, which also
enables the calculation of the stability for different target values. In an application for a mobile
robot, the parameter can reflect an internal drive, increasing (the parameter α and therefore the
target value and) the internal drive to force a behaviour switch, and otherwise remain low. The
parameter α would then implement a fading mechanism between different behaviours similar to
other methods, such as in the Dual-Dynamics approach (Jäger & Christaller, 1997).

The calculation steps are given for an experimentally-determined parameter set (Set 2, see
tab. 4.1) which is taken from the following chapter. The results of the stability analysis are
discussed for three different parameter sets (see tab. 4.1).

The stability of a dynamical system at a fixed point can be determined by the linearisation
of the map near the fixed point (Strogatz, 1994). In the case of a one-dimensional map, the
linearisation is given by the derivative at the fixed point, which is replaced by the Jacobian
matrix in the case of non-linear maps of higher dimensions (Alligood et al., 1996). Let

f : R3 ÞÑ R3, f � pfa, fξ, fηq
ρ � pa, ξ, ηq
ρ� � pa�, ξ�, η�q

fa : R ÞÑ R, fapρq � Θ� ξητpaq
fξ : R ÞÑ R, fξpρq � ξp1� βpτpa�q2 � τpaq2qq
fη : R ÞÑ R, fηpρq � p1� γqη � δp1� τpaqq

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

64 CHAPTER 4. SELF-REGULATING NEURON MODEL

then the Jacobian matrix at the coordinate ρ is given by

Df pρq �

�
��
δfa
δa pρq δfa

δξ pρq δfa
δη pρq

δfξ
δa pρq

δfξ
δξ pρq

δfξ
δη pρq

δfη
δa pρq δfη

δξ pρq δfη
δη pρq

�
�

�

�
���

ξη
�

1� τ paq2
	

�2βξτ paq
�

1� τ paq2
	

δ
�

1� τ paq2
	

ητ paq 1� β
�
τ pa�q2 � τ paq2

	
0

γ
δ
a��Θ
1�τpaq 0 1� γ

�
��
.

The next steps are to first apply the values of the coordinates of the fixed point ρ�, second,
replace them by the fixed point equations (see eq. (4.33) to (4.34)) and finally, to substitute the
plasticity parameter by numerical values in order to receive a Jacobian matrix depending on
the bias Θ. The substitution of the plasticity parameters by numerical values is required as the
analytic solution is not computable. The detailed calculation is given in the appendix (see app.
C). The resulting matrix for the parameter set

a� :� α � arctanh
�

1?
3

	
α � 1 β � 0.01
γ � 0.01 δ � 0.02

is

Df pρ�q �

�
������
�2

?
3
�

Θ�arctanh
�?

3
3

		

3

2
300

�
Θ�arctanh

�?
3

3

		
?

3
3
�1

1
75

2
3

?
3
�?

3
3 � 1

	
1 0

�0.5
�

Θ�arctanh
�?

3
3

		
?

3
3
�1

0 0.99

�
�����
.

The eigenvalues are then given by::

λ1 � ��0.03543Θ2 � 0.05702Θ3 � 0.00672Θ
� 1

3 � 0.3849Θ

� 0.1481Θ2 � 0.06137Θ� 0.005364

p�0.03543Θ2 � 0.05702Θ3 � 0.00672Θq 1
3

� 0.9168

λ2 � 0.9168� p0.5� 0.866iq ��0.03543Θ2 � 0.05702Θ3 � 0.00672Θ
� 1

3

�p0.5� 0.866iq �0.1481Θ2 � 0.06137Θ� 0.005364
�

p�0.03543Θ2 � 0.05702Θ3 � 0.00672Θq 1
3

� 0.3849Θ

λ3 � 0.9168� p0.5� 0.866iq ��0.03543Θ2 � 0.05702Θ3 � 0.00672Θ
� 1

3

:For presentation, in order to increase the readability, every additive term with aΘb, a 10�4, b ¡ 3 is
neglected, because stability only occurs for |Θ| a� 1, so that they are approximated by zero. This is not
valid if the simplified eigenvalues are used for further calculations (see app. C).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.2. DYNAMICAL PROPERTIES 65

�p0.5� 0.866iq �0.1481Θ2 � 0.06137Θ� 0.005364
�

p�0.03543Θ2 � 0.05702Θ3 � 0.00672Θq 1
3

� 0.3849Θ

The fixed point ρ� is stable, if the modulus of each of the eigenvalues is smaller than and not
equal to one:

@i P t1, 2, 3u : }λi} 1. (4.35)

The solutions for }λi} � 1 (outer boundaries for the asymptotically stable fixed point) are given
and discussed for three different sets of plasticity parameters (see tab. 4.1).

Discussion

The results of the stability analysis for the three parameter sets (see tab. 4.1) show that the
outer and inner boundaries are dependent on different parameters. The outer boundary of the
homeostatic region is only dependent on the parameter α. This can be expected, as α varies the
target value, and therefore, the consistency condition for the weight (see eq. 4.25). However,
different values of α also affect the inner boundary condition (see tab. 4.1 Set 2 vs. Set 3). This
is the result of the same effect which is observed for the other plasticity parameters, discussed
next.

The parameter β, γ, δ only affect the inner boundaries of the homeostatic region, and have
no effect on the outer boundaries (see tab. 4.1 Set 1 vs. Set 2). This can be expected, as the
parameter β, γ, δ do not affect the consistency condition, but rather the asymptotic synaptic
weight, and therefore, the width of the hysteresis domain (Hülse & Pasemann, 2002). This also
holds for variations of the parameter α.

4.2.2 Single neuron with inhibitory synapse

The bifurcation diagram of the single neuron with an inhibitory recurrent connection (see fig. 4.3)
indicates that there are three distinguishable regions, a period-2 attractor for the interval Θ P
s � x�, x�r, a sigmoid region for Θ P r�a�, a�s, and regions of co-existing attractors, where the
two previous regions overlap. The behaviour of the SRN with inhibitory synapse is similar to the
static model (see fig. 4.3 E), but the co-existing attractors are a qualitative difference. For the
mathematical analysis of the system’s behaviour and the proof of the stability of the period-2
attractor, the stability of the fixed point of the second iterative must be proven:

ρpt� 2q � ρptq
ρpt� 3q � ρpt� 1q.

The equations read as follows:

apt� 2q � Θ� ξpt� 1qηpt� 1q � τpapt� 1qq
ξpt� 2q � ξpt� 1qp1� βgpt� 1qq
ηpt� 2q � p1� γqηpt� 1q � δhpt� 1q
gpt� 1q � τpa�q2 � τpapt� 1qq2

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

66 CHAPTER 4. SELF-REGULATING NEURON MODEL

Bias ! -1

 0

 1

-3 0 3a*-a* x*-x*

"(a*)

"(-a*)

A

!

"

Period-2

Co-Ex.

Co-Ex.

sig
m

oi
da

l sigm
oidal

 0

 2

 4

-3 0 3

B

!

#

-1

 0

 1

-3 0 3

E

!

"

 0

 2

 4

-3 0 3

C

!

$

-2

-1

 0

-3 0 3

D

!

w

Figure 4.3: Single inhibitory neuron. Bifurcation diagram for a single neuron with inhibitory
synapse. Plasticity parameters are set to β � 0.1, γ � 0.01, δ � 0.015. The values are chosen empirically.
For each input value, 5000 convergence iteration steps are calculated before the attractor is plotted. The
bifurcation diagrams A-D show the attractors of the four neuron properties of the Self-Regulating Neuron
model, which are output (A), receptor (B), transmitter (C), and strength of the recurrent connection (D).
The figure E shows the attractor for the output of the standard additive neuron model. The bifurcation
diagram of the output of the Self-Regulating Neuron model shows a switchable oscillator, similar to the
static neuron model. However, in contrast to the static model, the Self-Regulating Neuron model shows
a constant amplitude over a large range, and co-existing attractors where the oscillatory regions overlaps
with the sigmoidal regions.

hpt� 1q � 1� τpapt� 1qq

For this set of equations, the Jacobian matrix and the eigenvalues must be computed, in order
to verify the observations indicated by the bifurcation diagram. The characteristic polynomial
grows too large in complexity and its solution is beyond the scope of this thesis.

Summary

The previous sections discussed the asymptotic properties of the single neuron dynamics by
means of bifurcation diagrams. For the excitatory single neuron, the indications given by the
diagrams were supplemented by a mathematical and numerical analysis.

In both cases, the neuron with excitatory and inhibitory recurrent connection, a slow varying
input was simulated through a shift of the bias value. Embedded in the sensori-motor loop, a
Self-Regulating Neuron will receive input via input neurons. This is a qualitative difference to
a variation of the bias value, as the former case, the input is open to regulation by the receptor
strength.

The following sections discuss the observable behaviour of small neuro-modules, consisting
of one input and one output neuron. The attractors of the system are discussed for inhibitory
and excitatory connections between the two neurons, with and without inhibitory/excitatory
recurrent connection of the output neuron. The analysis will lead to the next chapter, in which

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.2. DYNAMICAL PROPERTIES 67

the presented neuro-modules are used to implement an obstacle avoidance behaviour in order
to analyse the transient dynamics with respect to the plasticity parameters.

There are six possible configurations for the input-output neuro-modules (see fig. 4.4) which
have been described. They are discussed separately in the following two sections.

4.2.3 Input-output neuro-module without recurrent connection

The neuron modules presented in this section consist of an input and output neuron connected
by a synapse (see fig. 4.4 A/B). The behaviour of both systems is described by

@t P T : ηIptq :� 1
ΘO :� 0

IpΘIq � idpΘIq � ΘI

aOpt� 1q � cIξOptqIpΘIq
� cIξOptqΘI

wptq � cIξOptq
ξOpt� 1q � ξOptqp1� βgptqq

gptq � τpa�q2 � τpaOptqq2

where IpΘIq is the output of the input neuron with respect to its bias and is given by the
identity, cI � t�1, 1u is the sign of the synapse, ξOptq is the receptor of the output neuron, and
the output neuron’s bias is constant and set to zero ΘO � 0. The input neuron’s transmitter is
set to one (see eq. 4.22). The equations for the fixed point of the systems are given by

a�O � cIξ
�
OΘI (4.36)

ξ�O � cI
a�O
ΘI

(4.37)

ñ w�
I � cI

a�O
ΘI

The equations (4.37) and (4.36) explain the attractor dynamics seen in the bifurcation diagram
(see fig. 4.4 A/B). For input values which are not equal to zero, the output neuron regulates
its activity towards the target value, and, therefore, shows a homeostatic behaviour (see the
previous section). If the system is started with a zero input value, the activity and therefore
the output remains zero. This is indicated by a single dot in the bifurcation diagram (see
fig. 4.4 A/B), which follows from

IpΘIpt0qq � Ipt0q � 0
ñ aOpt� 1q � cIξO0
ñ τpaOptqq � 0

When the system is started with an input value not equal to, but approaching zero it diverges
(see eq. 4.37):

Ipt0q �� 0

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

68 CHAPTER 4. SELF-REGULATING NEURON MODEL

A/B

C/D/
E/F

cI

cI

cO

cI

A
À

B
Á

cI cO

C
À À

D
À Á

E
Á À

F
Á Á

-4

-2

 0

 2

 4

-4 -2 0 2 4 A!

I

 0

 2

 4

 6

 8

 10

-4 -2 0 2 4
!I

wI

-1

 1

-4 -2 0 2 4

"(a*)

"(-a*)

!I

"O

 0

 2

 4

 6

 8

 10

-4 -2 0 2 4
!I

#O

-4

-2

 0

 2

 4

-4 -2 0 2 4 B!

I

-11

-9

-7

-5

-3

-1

-4 -2 0 2 4
!I

wI

-1

 1

-4 -2 0 2 4

"(a*)

"(-a*)

!I

"O

 0

 2

 4

 6

 8

 10

-4 -2 0 2 4
!I

#O

Figure 4.4: Numerical analysis of input-output neuro-modules. The upper half of the figure
shows the six different combinations for the input-output neuro-modules (A/B/C/D/E/F). The lower
half of the figure shows the bifurcation diagrams for the input-output neuro-modules without recurrent
connection. The left hand side (A) shows the bifurcation diagrams for the module with excitatory, the
right hand side (B) with inhibitory connection. Both plots show very similar behaviour. The synaptic
weight is inverted due to the changed value of c. Note that the synaptic weight diverges, when the input
approaches zero, and that the system remains zero, if started with an input of zero. Both effects are
discussed in the text.

ñ lim
IpΘIptqqÑ0

w� � cI8.

Discussion

The bifurcation diagram shows that the output neuron is, in both cases, able to regulate its
activation for any presented value at the input neuron. For the neuro-module B, the outputs of
the output neurons are inverted due to the inverted sign of the connecting synapse.

A diverging weight for input values close to zero can be considered as an undesired property
of the Self-Regulating Neuron model for two reasons.

First, consider the cart-pole or pole-balancer problem (Barto et al., 1983; Geva & Sitte, 1993;
Pasemann, 1998, 1997a; Pasemann & Dieckmann, 1997b, 1997a). In this standard benchmark
problem, a controller has to regulate its input and output towards zero in order to balance the
pole with minimal energy expenditure. Second, in technical applications there is a computational
limitation which results in exceptions in the software if variables diverge.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.2. DYNAMICAL PROPERTIES 69

As this work is concerned with a homeostatic neuron model within the sensori-motor loop,
this is not considered as an undesired property, but as one property of the model. The reason
is that a diverging synaptic weight due to an input approaching zero will have an effect on the
actuators, as a result of the sensori-motor loop. The amplified change of the actuator will have
an effect on the input causing the diverging behaviour of the neuron. Hence, it is very unlikely
that an input close to zero will remain long enough to lead to computational limitations of the
system. If desired, this could easily be caught technically by artificially limiting the values (see
sec. 4.3).

The next chapters present different experiments which show how this property is utilised for
producing desired behaviour when applied to a robot controller, and how an output of zero can
be achieved using two output neurons for a single actuator. This is inspired by the concept of
agonist/antagonists found in biology (Klinke & Silbernagl, 2005). The Braitenberg vehicle (see
sec. 5.2.1) uses the diverging property in order to avoid an obstacle. The pole-balancer with
four input and two output neurons is able to establish an output of zero for input values close
to zero (see sec. 6.1).

4.2.4 Input-output neuro-module with recurrent connection

This section discusses the attractor dynamics of an input-output neuro-module with a recurrent
connection of the output neuron (see fig. 4.4 C/D/E/F). The dynamics of these systems are
given by the following set of equations:

ΘO :� 0
aOpt� 1q � cOξOptqηOptqτpaOptqq � cIξOptqIpΘIq

wIptq � cIξOptq
wOptq � cOξOptqηOptq

ξOpt� 1q � ξOptqp1� βgptqq
ηOpt� 1q � p1� γqηOptq � δhptq

gptq � τpa�q2 � τpaOptqq2
hptq � 1� τpaOptqq

The equations for the fixed point of the system with positive recurrent connection is given by

a�O � cOξ
�
Oη

�
Oτpa�Oq � cIξ

�
OIpΘIq

� ξ�OpcOη�O � cIIpΘIqq
ξ�O � ξ�O

� a�O
cOη�Oτpa�Oq � cIIpΘIq

η�O � p1� γqη�O � δp1� τpa�Oqq
� δ

γ
p1� τpa�Oqq

w�
I � cIη

�
O

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

70 CHAPTER 4. SELF-REGULATING NEURON MODEL

wI

wO

C I

O

-4

-2

 0

 2

 4

-4 -2 0 2 4
!I

I

 0

 1.5

 3

-4 -2 0 2 4
!I

wI

 0

 1.5

 3

-4 -2 0 2 4
!I

"O

-1

 0

 1

-4 -2 0 2 4

#(a*)

#(-a*)

!I

#

 0

 1.5

 3

-4 -2 0 2 4
!I

wO

 0

 1.5

 3

-4 -2 0 2 4
!I

$O

I

O

wI

E

wO

-4

-2

 0

 2

 4

-4 -2 0 2 4
!I

I

-3

-1.5

 0

-4 -2 0 2 4
!I

wI

 0

 1.5

 3

-4 -2 0 2 4
!I

"O

-1

 0

 1

-4 -2 0 2 4

#(a*)

#(-a*)

!I

#

 0

 1.5

 3

-4 -2 0 2 4
!I

wO

 0

 1.5

 3

-4 -2 0 2 4
!I

$O

Figure 4.5: Input-output neuro-modules with excitatory recurrent connection. Both
neuro-modules show a comparable behaviour. For both diagrams, the bias ΘI of the input neuron was
modified to produce the plots. The bifurcation diagrams of neuro-module E are axially inverted around
the y-axis compared to those of module C, except for the synaptic weight wI which is additionally axially
inverted around the x-axis. This behaviour can be expected since inverting the synaptic connection wI

corresponds to changing the direction of the variation of ΘI . The behaviour of both modules is comparable
to the input-output neuro-modules without recurrent connections. The additional excitatory recurrent
connection supports the homeostasis of the neuro-module, which leads to the observed behaviour.

w�
O � a�O � cIη

�
OIpΘIq

cOτpa�Oq

Discussion

For neuro-modules with an excitatory self-connection (see fig. 4.5), the attractor of the output
neuron is equivalent to the observed attractor of the output neuron without recurrent connection
(see fig. 4.4 A/B). This can be expected, as the input-output neuro-module without recurrent
connection already showed the homeostatic behaviour. From the analysis of the single neuron
with excitatory recurrent connection, it is known that the excitatory connection is responsible
for the homeostatic behaviour. The homeostatic behaviour of the excitatory recurrent connec-
tion together with the homeostatic behaviour of the input-output neuron leads to the observed
behaviour. It must be noted that the recurrent connection does not establish a hysteresis effect
as in the single neuron set-up.

For the input-output module with an inhibitory recurrent connection (see fig. 4.6), the be-
haviour is different. It shows both, the homeostatic regions known for the excitatory single
neuron, as well as regions with oscillatory behaviour known for the inhibitory single neuron.
There is an offset of the oscillatory region, which is axially symmetric for the inhibitory and
excitatory connection between the input and output neuron. A detailed mathematical analysis

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.3. RELATED WORK 71

wI

D

wO

I

O

-4

-2

 0

 2

 4

-4 -2 0 2 4
!I

I

 0

 1.5

 3

-4 -2 0 2 4
!I

wI

 0

 1.5

 3

-4 -2 0 2 4
!I

"O

-1

 0

 1

-4 -2 0 2 4

#(a*)

#(-a*)

!I

#

-2

-1

 0

-4 -2 0 2 4
!I

wO

 0

 1.5

 3

-4 -2 0 2 4
!I

$O

wI

F

wO

I

O

-4

-2

 0

 2

 4

-4 -2 0 2 4
!I

I

-3

-1.5

 0

-4 -2 0 2 4
!I

wI

 0

 1.5

 3

-4 -2 0 2 4
!I

"O

-1

 0

 1

-4 -2 0 2 4

#(a*)

#(-a*)

!I

#

-2

-1

 0

-4 -2 0 2 4
!I

wO

 0

 1.5

 3

-4 -2 0 2 4
!I

$O

Figure 4.6: Input-output neuro-modules with inhibitory recurrent connection. Both
neuro-modules show a comparable behaviour. For both diagrams, the bias ΘI of the input neuron was
modified to produce the plots. The bifurcation diagrams of neuro-module F are axially inverted around
the y-axis compared to those of module D, except for the synaptic weight wI which is additionally axi-
ally inverted around the x-axis. This behaviour can be expected since inverting the synaptic connection
wI corresponds to changing the direction of the variation of ΘI . The behaviour of both modules is
a superposition of the input-output neuro-module without recurrent connection, and the single neuron
with inhibitory recurrent connection. Both plotted neuro-modules (D/F) show homeostatic regions and
regions with a period-2 attractor. In contrast to the single neuron with inhibitory recurrent connection,
there are no coexisting attractors.

of the neuro-modules is beyond the scope of this thesis.

4.3 Related work

The previous sections introduced the SRN model and analysed it with respect to its dynamical
properties. As the SRN model is a form of synaptic plasticity or weight dynamics, it is compa-
rable to other local learning rules for artificial recurrent neural networks. This section gives an
overview of related local learning mechanisms and before discussing them with respect to the
SRN model.

In the following sections, a variation of the previously defined notation (see sec. 3.2) is used.
This notation is first introduced before the methods are discussed. The firing-rate of the pre-
and post-synaptic neuron is denoted by u and v, respectively. The vector ~u consists of the
firing-rate of all pre-synaptic neurons of the neuron v, and ~w is the corresponding weight vector.
If not otherwise stated, a linear neuron model is assumed for simplicity. The firing-rate of the
post-synaptic neuron v is then given by:

v � ~w � ~u

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

72 CHAPTER 4. SELF-REGULATING NEURON MODEL

and the change of the activation is denoted by:

τt
dv

dt
� �v � ~w � ~u � �v �

Nu̧

b�1

wbub,

where Nu is the number of pre-synaptic neurons (length of the vectors ~w, ~u), and τt is a time
constant that controls the firing-rate response dynamics (Dayan & Abbott, 2001).

In the following sections, seven related methods are presented and discussed with respect to
the SRN model. The methods are the Hebb’ian Learning Rule, the BCM Rule, an approach to
evolution and learning, homeostatic learning by Di Paolo and H. Williams, homeokinese, and
finally, temporal sequence learning.

The basic Hebb’ian Learning Rule

Donald Hebb formulated this rule which states that the synaptic connection between two neurons
is strengthened if the pre- and post-synaptic activities are correlated (see sec. 2.4.3). Formally,
this reads:

τw
d~w

dt
� v ~w, (4.38)

where the time constant, τw, controls the rate at which the weights change (Dayan & Abbott,
2001).

The equivalent general discrete time formalisation reads:

∆wijptq � µfpaiptqqgpajptqq, (4.39)

which means that the synaptic weight, wij , is varied with respect to the product of a function
of the pre- and post-synaptic neuron, scaled with a learning factor µ. The most commonly used
functions for f and g are the identity function and the transfer-function. These are given by:

∆wijptq � µaiptqajptq (4.40)
∆wijptq � µoiptqojptq. (4.41)

The former states that the change of the synaptic weight is directly dependent on the pre- and
post-synaptic activity. The latter is comparable and states that the change of the synaptic
weight depends on the output of the pre- and post-synaptic neurons.

The basic Hebb’ian Learning Rule is unstable, because the synaptic strength grows un-
bounded. For a proof, the reader is referred to Dayan and Abbott (2001). To avoid the un-
bounded growth, upper and lower saturation conditions must be introduced. This, however,
leads to synapses which remain at saturation and hence, the network loses the ability to differen-
tiate the input signals (Dayan & Abbott, 2001). The Hebb’ian Learning Rule is more a principle
than an actual practical mechanism. For this reason, many adaptations and workarounds have
been introduced. For an overview, the reader is referred to (Dayan & Abbott, 2001; Arbib, 1995;
D. E. Rumelhart, McClelland, & the PDP Research Group, 1986; Gerstner & Kistler, 2002a).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.3. RELATED WORK 73

The BCM Rule – Bienenstock, Cooper, and Munro

The synaptic modification rule by Bienenstock et al. (1982) is a model for stimulus selectivity
in the primary visual cortex of primates and humans. Neurons are modelled with a linear
firing-rate, but may also have a positive-valued sigmoid-shaped function. The rule is given by

τw
d~w

dt
� v~upv �Θvq,

where Θv is a threshold on the post-synaptic neuron. The varying threshold avoids unbounded
growth. One of the functions for Θv follows

τt
dΘv

dt
� v2 �Θv.

Other than the basic Hebb’ian Learning Rule, the BCM rule introduces competition among
synapses. If some synapses are strengthened, this leads to an increase of the post-synaptic firing-
rate, and consequently to an increasing threshold, and as a result, heterosynaptic weakening
occurs.

According to the intention of the BCM rule (stimulus selectivity) applications have so far been
shown in feed-forward networks (Cooper, 1986) trained with natural images (Law & Cooper,
1994).

Evolution and Local Learning – Floreano and Mondada

To the best of the author’s knowledge, Floreano and Mondada (1996) are the first to use local
learning mechanisms in a recurrent neural network to control an autonomous robot. In their
approach, a genetic algorithm is used to evolve a set of properties for dynamic synapses in a
neural network of fixed structure. The set of properties of a synapse is:

1. Synapse is driving or modulating (synapse type).

2. Synapse is excitatory or inhibitory (synapse sign).

3. The strength of a synapse is governed by one of the following rules:

(a) Plain Hebb

(b) Post-synaptic Hebb

(c) Pre-synaptic Hebb

(d) Co-variance

4. Possible learning rates are r P t0.0, 0.3, 0.7, 1u.
Driving synapses correspond to the synapses introduced in the methods chapter (see sec. 3.2).
Their values accumulate to the activity of the post-synaptic neuron. Modulating synapses
dampen the output of the post-synaptic neuron. If no damping is present, the output follows
the sigmoidal transfer-function.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

74 CHAPTER 4. SELF-REGULATING NEURON MODEL

The robot platform is the Khepera robot (Mondada et al., 1993) which is also used in this
work (see chap. 5). In its basic form, it is equipped with eight infra-red proximity sensors, of
which two are mounted to the back and six are equally distributed around the front of the robot,
spanning approximately 180� of sensor coverage. Two wheels accelerate the robot.

The task to solve by evolution is an obstacle-avoidance behaviour. The environment is a
corridor designed as a loop. The network consists of eight input neurons (one for each infra-red
sensor), one hidden, and two output neurons (driving the two motors of the robot). Each input
sensor is connected to the hidden and both output neurons. The hidden neuron is connected to
itself and the output neurons:

C �

�
��

o8

o9

h10

�
�
�

�
��

1 1 1 1 1 1 1 1 0 0 1
1 1 1 1 1 1 1 1 0 0 1
1 1 1 1 1 1 1 1 0 0 1

�
�
.

The result of their experiment is a wall-following behaviour. The synapses are modulated by
the set of plasticity rules, determined by evolution, until a distance of approximately two cm to
the wall on the right hand side is established. This distance is then kept constant. When tested
in an open environment, the controller fails to maintain a straight trajectory.

This approach by Floreano and Mondada is the first conducted experiment in this context.
There are two aspects which may be improved upon. First, the chosen experimental set-up does
not require any adaptation. An obstacle-avoidance or wall-following behaviour is well-described
by a static neural network. Second, the chosen model is comparably complicated. A network
may have up to eight different types of synapses (four plasticity rules and two synapse types),
sixteen if the sign of the synapse is taken into account. A full understanding of the underlying
dynamics of such a system is very difficult.

Homeostatic Adaptation – Di Paolo

Another model for synaptic plasticity in recurrent neural networks, within the context of evolu-
tionary robotics, was introduced by Di Paolo (2000). His work is motivated by Ashby’s Home-
ostat (Ashby, 1954), Turrigiano’s work on synaptic plasticity in biological systems (Turrigiano,
1999), and neuro-psychological experiments on visual distortion (Welch, 1974).

As with Floreano and Mondada, Di Paolo uses a genetic algorithm to evolve a recurrent
neural network. The task is photo-taxis (light-seeking) in an open-ended, two-dimensional en-
vironment without any obstacles, and with randomly placed light sources which are activated
sequentially. A mobile, wheel-driven robot, similar to the Khepera, is equipped with two light
intensity sensors. After successful evolution of a light-seeking behaviour, the position of the two
sensors are exchanged, in analogy to the vision inversion experiments in neuro-psychology.

Di Paolo uses a genetic algorithm on a structurally fixed, fully connected eight-neuron net-
work (two input neurons, two output neurons, four hidden neurons) with a continuous-time
neuron model. For each synapse, a set of parameters is encoded in the genes. Among these pa-
rameters are the learning rate, a linear damping factor for the plasticity rules, and an encoding
for one of four possible plasticity rules:

1. R0: Hebb or Anti-Hebb’ian Learning

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.3. RELATED WORK 75

2. R1,2: potentiation (R1) or depression (R2) depending on the pre- and post-synaptic ac-
tivity with respect to a threshold

3. R3: no plasticity

For a synapse, the corresponding plasticity rule is only activated when the firing-rate (output) of
the post-synaptic neuron exceeds the boundaries of a defined interval (oiptq P r0.119, 0.881s with
standard sigmoid transfer-function). The fitness-function favours controllers which spend the
majority of the time close to a light source, but also those that required less regulation (inactive
plasticity rules) during the evaluation, i.e. neurons whose firing-rate would remain longer within
the defined boundaries.

Analyses of the evolved neural networks show that about half of the solutions are able to
adapt to the inversion of the sensory configuration. After inversion of the sensors, the controller
shows a behaviour which can be compared to Ashby’s description of the Homeostat’s reaction to
distortion. Continous changes in the behaviour occur until a stable state is found and photo-taxis
is re-established.

The approach is interesting and the results are convincing. In contrast to the previously
discussed experiment by Floreano and Mondada, Di Paolo’s set-up requires adaptivity. However,
as with Floreano and Mondada, Di Paolo requires a set of different plasticity rules for each
synapse, and a trigger mechanism as well.

Homeostatic Learning – H. Williams

The approach introduced by H. Williams (2004) is inspired by the work of Turrigiano (1999)
and Di Paolo (2000). The main critics of Williams concerning the work of Di Paolo’s approach is
that the learning rules operate only locally on one synapse, and that there is no synaptic scaling
as reported by Turrigiano. Consequently, Williams introduces a homeostatic plasticity rule for
synaptic scaling in artificial neural networks. In addition, Williams also discusses a model for
intrinsic plasticity, which is the regulation of the firing-rate of a neuron (output regulation), in
contrast to synaptic scaling, which regulates the inputs to maintain a stabilised firing-rate. Both
methods are presented and discussed in randomly-parametrised recurrent neural networks (H.
Williams, 2004).

Two sorts of experiments are presented. First, the output dynamics of fully-connected,
randomly parametrised networks are analysed for randomised inputs, followed by experiments
with the same network architecture for a photo-taxis task. In the remainder of this section, only
the latter is discussed.

The experimental set-up is comparable to the experiment presented by Di Paolo (see pre-
vious section). A two-wheeled Khepera-like robot is equipped with two light intensity sensors
and placed in a featureless, open-ended, two-dimensional environment with a randomly-placed
light source. A fully-connected recurrent neural network with six continuous-time neurons (two
input neurons, two output neurons and two hidden neurons) is randomly-parametrised and the
behaviour is observed in simulation. The random parameters are the initial weights and biases,
the plasticity facilitation ρ, and the node learning rate µ for both methods:

synaptic scaling: ∆w � ρµ|w|

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

76 CHAPTER 4. SELF-REGULATING NEURON MODEL

intrinsic plasticity: ∆Θ � ρµ

To avoid unbounded growth, all weights are artificially limited within an interval w P r�8, 8s.
The resulting photo-taxis behaviour of the system is only discussed descriptively, i.e. by

means of the observed trajectories of the robot in the simulated environment, and not the
manner in which the behaviour relates to the internal dynamics of the plastic synapses and
neurons. The task is sufficiently solved, which means that solutions find the light source. Once
found and approached, the robot withdraws and then cycles around the light source. Robots
with synaptic scaling show smooth trajectories compared to those with intrinsic plasticity.

Williams’ conclusion is that plasticity in continuous-time recurrent neural networks makes
the networks much more sensitive to input signals. An assumption is made that homeostatic
learning is a good substrate for artificial evolution, but that evolution would take much longer
because of the increased number of parameters and because plastic networks need longer trials
to enable plasticity to configure the network.

The presented approach by Williams is simpler compared to Di Paolo’s and Floreano and
Mondada’s approaches. Williams uses only a single plasticity rule (either synaptic scaling or
intrinsic plasticity) for the entire network. Randomly parametrised networks solve a photo-
taxis behaviour. Like Di Paolo, Williams also uses a trigger mechanism and artificially limited
weights.

Homeokinesis – Der and Pantzer

Another method related to the principle of homeostasis, which was introduced by Ashby as a
model for adaptivity, is the approach by Der and Pantzer (1999). In their approach, homeokinesis
is the governing principle. The idea is not to stabilise a stationary state (homeostasis) but a
definite internal kinetic regime (homeokinesis).

The method operates on the prediction error of a self-model of the system. From the current
state of a discrete-time dynamical system (a mobile robot), the self-model predicts the next state.
Compared with the actual state obtained from the sensor values, this allows the computation
of a prediction error. Briefly, a gradient descent method adapts the parameters of the self-
model. The method has thus far been applied to wheel-driven robots (Der & Pantzer, 1999)
and simulated snakes with a higher degree of motor complexity (Der et al., 2005). In any case,
only networks with a single layer of neurons are trained.

Although the motivation and inspiration by Ashby’s Homeostat governs both methods, Der
and Pantzer’s homeokinesis, and the Self-Regulating Neuron presented here, the homeokinetic
principle is not a local learning rule, due to the use of the gradient descent method, and therefore,
does not compare well to the Self-Regulating Neuron model.

Temporal sequence learning – Porr and Wörgötter

The final approach, presented as related work, is a local learning mechanism in the robotics
context. The method introduced by Porr and Wörgötter (2003) is differs greatly from the
methods discussed above. The neural network structure is closely related to the subsumption
architecture of Brooks (Brooks, 1991a). A set of bandpass-filters is fed with δ-pulses as input.
The overall output of the system is given by the weighted sum of the filter outputs (Porr, 2003).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

4.3. RELATED WORK 77

Each filter produces a damped oscillation with a different frequency as a response to a presented
δ-pulse. The different frequencies define the maximal time window in which temporal sequences
can be learned. A special pathway is hand-designed and is referred to as the reflex pathway. In
an obstacle-avoidance task, the reflex is triggered by a collision sensor and as a result induces an
avoidance behaviour. The bandpass-filters, which are also referred to as prediction pathways,
receive pulsed inputs from distance sensors. Hence, the prediction pathways receive input before
the reflex pathway, which is related to the collision sensor. With a Hebb’ian learning method,
the weights of all (predictive and reflex) pathways are modified until the temporal sequence
of the range sensors and the collision sensor is learned, such that the reflex pathway finally
does not contribute to the behaviour. This means that the controller has learned to predict
the consequences of the stimulus, present in the prediction pathways, with respect to the reflex
pathway.

Learning then continues and the pathway with the earliest signal dominates. This results
in robots which finally show a circular trajectory for which the prediction pathways have a
constant (zero) relation to each other (Porr & Wörgötter, 2003). In a more recent experiment,
the same single-neuron, feed-forward architecture is used for line-following, using reduced cam-
era information (“Chained learning architectures in a simple closed-loop behavioural context.”,
2007).

Two main concerns must be stated at this point. First, the behaviour is developed by a pre-
defined, hand-crafted reflex pathway. Second, the set of bandpass-filters is chosen artificially
by the experimenter and defines the maximal time window which can be learned. This raises
the questions of how this learning mechanism scales to other tasks which cannot be based on
only one reflex or any reflex (e.g. walking behaviour), and how critical the limitation of the
pre-defined time window is with respect to autonomous adaptive robots.

Discussion

The Hebb’ian Learning Rule is a general principle and less a working learning method. Nev-
ertheless, it is the fundamental principle which governs the other learning mechanisms which
have been presented. The SRN model also includes a Hebb’ian term, which is seen when the
transmitter and receptor of the equation for synaptic weight cijξiptqηjptq are replaced by their
definitions (see eq. 4.14 and eq. 4.16).

The BCM rule is self-regulating in the sense that unbounded growth is avoided by a sliding
threshold. Due to its motivation as a model for stimulus selectivity in the primary visual cortex,
it is used either with a linear transfer-function or a strictly positive sigmoid, and thus far, only
in feed-forward networks for image processing. There are no applications for recurrent networks
embedded in the sensori-motor loop. The SRN model is not designed to model a function of a
specific brain area but is designed as a general model for synaptic plasticity. Hence, its use is
not limited to feed-forward networks or applications detached from the sensori-motor loop.

Floreano and Mondada are the first to use evolution and learning to generate a behaviour
for an autonomous robot. Their method requires eight different types of synapses and the task
solved by this method does not require any adaptation. In the SRN model, every neuron and
every synapse is governed by the same homeostatic principle. In this sense, the SRN model is
more general and minimal in comparison to that of Floreano and Mondada.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

78 CHAPTER 4. SELF-REGULATING NEURON MODEL

Di Paolo uses four regulating methods and an activation and deactivation mechanism for
the plasticity rules. The SRN model does not require such a trigger mechanism. It is active at
every instant during the life span of an autonomous agent.

H. Williams uses only one of two plasticity methods for the entire network. The first was
designed as a model for synaptic scaling, the second as a model for intrinsic plasticity. Like Di
Paolo, he also uses a trigger mechanism and also artificially limits the synapse weight. The SRN
model, although divergent for a discussed configuration, is not limited artificially.

Both, Di Paolo and Williams only discuss a positive tropism. Other than a light source,
their environment is featureless. A light seeker with obstacle avoidance will be presented later
in this work (see chap. 6).

The homeokinesis principle by Der and Pantzer is a gradient descent method and hence a
global learning rule. The SRN method is local. Every neuron is modulated only according to
its internal activation.

The last method to be discussed is that of temporal sequence learning (also called ISO learn-
ing) by Porr and Wörgötter. Their approach is inspired by Brooks subsumption architecture.
An ISO-learning network is a one layer feed-forward network with bandpass-filtered inputs. The
synaptic weights are modulated by a Hebb’ian Learning rule until the temporal sequence of the
bandpass filtered inputs is learned. Behaviours are learned with respect to a manually designed
reflex behaviour. The SRN model is designed to work in recurrent neural networks of arbitrary
structure and does not require a reference system to adapt to.

This concludes the discussion of related work. The chapter closes with conclusions and is
followed in the next section with the transient analysis of the SRN model, while it is used to
control a mobile robot in the sensori-motor loop.

4.4 Conclusions

This chapter introduced the Self-Regulating Neuron as an extension of the standard additive
neuron model. The constant synaptic weight wij is replaced by pre- and post-synaptic neuron
properties, which are referred to as the transmitter and receptor strength of a neuron. The
transmitter reflects the internal neuron activity as a regulated firing-rate, and the receptor is
modulated in order to regulate the neuron’s activity towards the defined target value. Each
neuron is a homeostatic unit, and the overall behaviour of a recurrent neural network results
from the local interactions between the units. After the discussion of the three-dimensional
Self-Regulating Neuron model, the dynamical properties were analysed mathematically and
numerically. It was shown that the dynamics of a single SRN is comparable to the standard
additive neuron, but that it also shows novel properties such as hysteresis for positive self-
coupling, and co-existing attractors in the case of negative self-coupling. The chapter closed
with a discussion of related work with respect to the SRN model.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Chapter 5

Experiments on Plasticity
Parameters

The previous chapter introduced the SRN model and discussed its attractors for isolated neuro-
modules, i.e. neuro-modules which are neither situated nor embedded and are, therefore, isolated
dynamical systems. In this chapter the transient, i.e. behaviour-relevant dynamics of the Self-
Regulating Neuron are analysed. Neuro-modules are now considered as embedded and situated
systems, constantly driven by external stimuli in the sensori-motor loop.

Different obstacle-avoidance controllers for the Khepera robot with increasing structural
complexity of the underlying neural network are analysed with respect to the behaviour relevance
of the plasticity parameters β, γ, and δ. All experiments and analyses have been conducted in
simulation and the behaviours have been verified on the physical platform.

The chapter is divided into three sections. The first section describes the experimental
design, including the controller set-up, the simulation environment, and the physical robot
platform. The second section presents the analysis of different obstacle avoidance controllers.
The controllers are derived from two well-known controller from literature, the Braitenberg
vehicle 3b (Braitenberg, 1984), and the MRC (Hülse & Pasemann, 2002). The controllers are
chosen such that the structural complexity increases incrementally with respect to the size of the
network and the plasticity parameters affecting the transient dynamics (behaviour). For each
neural network, the parameters are varied and the corresponding transients and behaviours
are analysed. The results of the analysis will lead to initial parameter settings used for the
evolution of recurrent neural networks (chap. 6: Artificial Evolution of SRN-Controllers) and to
implications for the modification of the evolutionary algorithm ENS3, which are discussed in
the third section. The chapter closes with a discussion of the experiments and their results.

5.1 Experimental Design

The behaviour of a system depends on the morphology, the controller and the environment
(Pfeifer & Scheier, 1999; Pfeifer & Bongard, 2006; A. Clark, 1996). Thus, these three aspects
provide the basics of the set-up which is used in all experiments which are presented in this
chapter. This section covers this experimental set-up.

79

80 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

32

5

1 4

67

L R
IR Proximity &
LDR Sensor

Motor

A B C

0

Figure 5.1: Khepera robot. A) Khepera I Robot (front), B) Khepera II Robot (front), robot pictures
taken from (K-Team, 2005), C) Schematic view of the sensors and actuators, redrawn from (K-Team,
1999). Green: The two actuators (DC motors). Red: the eight proximity and light intensity sensors.
The indices of the sensors correspond the hardware specifications.

5.1.1 Morphology

The morphology of a robot includes the shape, the arrangement of the sensors and actuators,
and their characteristics. Because the experiments are conducted in simulation and with the
physical platform, both are discussed in this section.

There are two reasons to conduct the experiments and analysis in simulation. Setting up an
experiment is less time consuming and can be reproduced with higher accuracy. This second
property is relied on, when the dynamics of the controllers are analysed. Nevertheless, following
Brooks approach and Tani’s argumentation (see sec. 2.3), all behaviours are validated on a
physical platform against the natural environment. In order to minimise the cost of porting the
controller from simulation to the physical platform the simulation must be chosen appropriately,
and the differences between simulation and physical robot must be known.

The section begins with the presentation of the physical platform, followed by the chosen
simulator and concluded with a discussion of the differences between the two.

Robot Platform

The physical robot platforms used for the experiments in this chapter, are the Khepera I Robot
(Mondada et al., 1993) and its successor the Khepera II (see fig. 5.1). The Khepera is a two-
wheeled differential drive robot with a diameter of about 5.5cm (Khepera I). Its most prominent
feature is its small size. This feature dispenses with the need for a large environment, thus,
enabling experiments to be performed on a desk, for example.

The standard sensor and actuator configurations for the Khepera I and Khepera II robot are
listed in table 5.1. Of the eight distance sensors, two are attached to the rear, and six are equally
distributed around the front, spanning a sensor range of approximately 180� (see fig. 5.1 C and
fig. 5.2) and a maximal distance of 50mm for the Khepera I, and 100mm for the Khepera II (see
tab. 5.1).

Simulation Platform

The Khepera 2.0 simulator (Michel, 2005) is an open source software used to simulate the
Khepera I robot on Linux/UNIX operating systems. It includes a graphical environment editor

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.1. EXPERIMENTAL DESIGN 81

Khepera I Khepera II Khep. Simulator

Processor Motorola 68331 Motorola 68331
16 Mhz 25 MHz

Com. Std Serial Port Std Serial Port
up to 38 kbps up to 115 kbps

Update � 80 Hz � 125 Hz
Freq. via
serial port

Motion 2 DC motors with 2 DC motors with
incremental encoder incremental encoders
(approx 10 pulses (approx 12 pulses
per mm) per mm)

Speed Min: 2 cm/s Min: 0.02 m/s Max: 40 cm/s
Max: 60 cm/s Max: 1 m/s assuming Khep. I

Sensors – 8 IR proximity sens. – 8 IR proximity sens. – 8 IR proximity sens.
50 mm range 100 mm range 29 mm range

– 8 light sensors – 8 light sensors – 8 light sensors
– Power Consumption sens.

Diameter 55 mm 70 mm 50 mm
Height 30 mm 30 mm n.a. (2D Sim.)

Weight � 70 g � 80 g no inertia

Table 5.1: Khepera I/II Specifications. Khepera I/II Specifications (K-Team, 2005) and comparison
to the Khepera 2.0 Simulator. For further information see (K-Team, 2005).

(see fig. 5.3), and an API (application programming interface) enabling robot control programs,
written in C, to be executed by the robot. This API was used to include a communication
interface which connects the simulator to the ISEE framework (see app. A). Table 5.2 provides
the specifics for the simulated robot model. Differences between the simulated model and the
physical platform are listed in table 5.1.

Discussion

The simulated and physical Khepera robot are similar in size, maximal speed and sensor con-
figuration. Only the range of the proximity sensors and the lack of inertia in the simulation are
different.

The shorter range of the sensors in the simulation is of no consequence when the controller
is ported to the physical platform, because obstacles are detected earlier in the latter. Porting
problems emerge when the environments differ e.g. in corridor sizes. The differences in the sensor

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

82 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

Property Symbol Implementation

Robot Diameter dR 50 mm
Wheel Diameter dw 10 mm

Noise nv 10% wheel speed
nΘ 5% orientation

Pose calculation

Orientation ∆Θ ∆Θ � pmL �mRq{200 � nΘ

Position ∆x ∆x � �1
4pmL �mRq � nv � cospΘq

∆y ∆y � �1
4pmL �mRq � nv � sinpΘq

mL,mR P r�10, 10s angular wheel velocity

Sensor implementation

Infra-red si fixed value out of 15 positions (see fig. 5.2)
range �25 degree
max distance 29 mm

Ambient Li rd � p250� sqrtppdxq2 � pdyq2qq{250.0s10
Light Li � r500�°j cosp1.5 � αq � d � 450s50

500

range �60 degree
max distance 25 cm

Table 5.2: Khepera simulator model. Simulated Khepera in the Khepera 2.0 Simulator (Michel,
2005). The equations are derived from the source code.

implementation are shown in figure 5.2. The missing inertia of the simulator is not a drawback
because the inertia of the physical robot is negligible with respect to the weight and maximal
speed of the Khepera robot. In conclusion, this means that controllers analysed in simulation
can be expected to show similar behaviour when applied to the physical platform.

5.1.2 Controller

All control structures are implemented using the same controller set-up which is discussed in
this section. Every neural network has two input and two output neurons (see fig. 5.4), for which
the pre- and post-processing is presented below.

Pre-processing

The two input neurons I0 and I1 represent two virtual proximity sensors. Each sensor value is
calculated as the mean at three of the corresponding proximity sensors of the left and right front

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.1. EXPERIMENTAL DESIGN 83

mm

IR-Value

-15 -10 -5 0 5 10 15
 0

 5

 10

 15

 20

 25

 30

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

mm

IR-Value

-40 -20 0 20 40
 0

 10

 20

 30

 40

 50

 0

 200

 400

 600

 800

 1000

 1200

mm

IR-Value

Khepera

I0
I1

I2 I3 I4
I5

I6I7

-100 -50 0 50 100

-100

-50

 0

 50

 100

 0

 200

 400

 600

 800

 1000

 1200

mm

IR-Value

Khepera

I0
I1

I2 I3 I4
I5

I6I7

-100 -50 0 50 100

-100

-50

 0

 50

 100

 0

 200

 400

 600

 800

 1000

 1200

Figure 5.2: Comparison of real and simulated Khepera proximity sensors. From left to
right: Single sensor range, simulated and real, robot sensor configuration, simulated and real robot. The
sensor configurations are taken from the source code of the simulator and the sensor specifications of the
physical sensors (Siemens SFH900). The simulated sensors are realised by 15 coordinates, each assigned
a distance value. The maximal value of all coordinates that intersect with an obstacle is returned as
the measured distance. The real sensor emits an infra-red beam and calculates the distance using the
measured reflection angle.

side of the robot. The equation for the sensors is given by:

Ik � 2
3

�
�2�3ķ

j�3k

�
sj
smax

�
� 1 P r1,�1s, k P t0, 1u (5.1)

where j denotes the index of the j-th front sensor sj (see fig. 5.1C), and smax the maximal
possible value returned by a sensor. The resulting input is -1 if no obstacle is detected, or
1 if an obstacle is as close as possible. Measured distances in between are mapped linearly
onto the interval. The input sensor value range of I0,1 P r1,�1s is chosen because it spans the
non-saturated domain of the hyperbolic tangent transfer-function.

Post-processing

The output neurons denoted by O2 and O3, for the left and right motor respectively, deliver
values in the interval O2,3 P r�1, 1s, which have to be post-processed in order to control the
robot. The values are multiplied by a constant factor v, which is referred to as the speed factor,
and are given by:

mL,R � vO2,3,

where mL,R is the command passed to the left and right motor, respectively.

5.1.3 Environment

Two different evaluation environments are used in the experiments (see fig. 5.3 B/C). The first
is a bounded featureless environment. For a reactive behaviour, the turning angles are constant
if the system is in the same state before an obstacle is encountered. In an empty bounded
environment, the distances between obstacles is maximised, so that the SRN neuron can settle

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

84 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

A B C

Figure 5.3: Khepera simulator and evaluation environments. A) The Khepera 2.0 Simulator,
B) The empty environment, C) Standard Environment, with a sharp corner added in the upper left
corner. The colour scheme of the environments are changed for better visibility. The empty environment
is used to analyse the transient dynamics of the SRN model. It ensures maximal distance between
obstacles supporting the analysis of the effect of the plasticity parameters isolated from the history of the
system. The second environment visualises the obstacle-avoidance and exploration behaviour. Note the
sharp corner in the upper left region of the environment, and the obstacles, which have a small profile
(e.g. right hand side of the environment), when approached accordingly.

towards its asymptotically stable state. This enables the system’s response to an obstacle to be
cleared from its history, so that the effect of the plasticity parameters can be better analysed.

A second advantage is that different parameter settings lead to discriminative behaviours,
which then draw clearly distinguishable traces in the empty environment. This enables the
detection of differences, already at the behaviour level before analysing the transients.

The second environment is a bounded environment with different classes of obstacles (see
fig. 5.3). There are two significant types, the sharp corner in the upper left, in which controllers
with a poor exploration behaviour get stuck (see next section), and obstacles which show a small
profile when approached accordingly. The latter are not handled well by controllers with a poor
obstacles-avoidance behaviour.

5.2 Obstacle Avoidance

In the previous chapter, different isolated neuro-modules were analysed with respect to their
attractors. In this section, neuro-modules controlling a robot in the sensori-motor loop perform-
ing an obstacle-avoidance task are analysed with respect to their transient dynamics. For each
structure, the plasticity parameters β, γ, δ are varied and their effect on the behaviour-relevant
dynamics is determined. The controllers, which are presented here, are chosen with increasing
structural complexity of the underlying neural network and increasing influence of the plasticity
parameters β, γ, and δ.

The sections begins with a SRN implementation of the Braitenberg vehicle 3b (Braitenberg,
1984) followed by the MRC (Hülse & Pasemann, 2002).

The Braitenberg vehicle is selected as the first controller, because it is minimal with respect
to its structure and because it is constructed of two disjunct neuro-modules from the previous
chapter. Each neuro-module consists of one input and one output neuron (see fig. 5.4 B). The
dynamics of this system is only related to the plasticity parameter of the receptor β, as the input
neurons are not governed by the SRN model (see chap. 4). The controller is then extended by

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.2. OBSTACLE AVOIDANCE 85

I0 I1

O2 O3

B CA D

Figure 5.4: SRN-Braitenberg and SRN-MRC controllers. A) Schematics of the Khepera robot,
B) Original Braitenberg vehicle (without recurrent connections), C) Braitenberg vehicle with positive self
coupling of the output neurons, D) SRN-MRC. For a discussion, see text.

excitatory recurrent connections for the output neurons, which include the previously omitted
plasticity parameters γ and δ controlling only one additional synapse.

The second chosen control structure is the MRC, which is the smallest static neuro-controller
known to perform the obstacle-avoidance task with the ability to handle sharp corners. It is
also a gradual increase of complexity compared to the extended Braitenberg vehicle, because
the plasticity parameters γ, δ now control two synapses.

In the following discussion, the transient of the system, which is related to an occurrence
of an obstacle is called the echo of the system. It is defined by the interval beginning with the
system’s state when the first presence of the stimulus at the input neuron(s) is detected and
ending when the system has settled at its asymptotically stable state when the obstacle is no
longer present. Echoes may overlap.

5.2.1 Braitenberg vehicle 3b without recurrent connections

The Braitenberg vehicles 3a/b (Braitenberg, 1984) are minimal implementations of positive
and negative tropism. Depending on the coupling of the sensors and motors (ipsilateral vs.
contralateral) and the type of connection (excitatory vs. inhibitory) a sensory stimulus either
increases or decreases the corresponding motor (see fig. 5.5). This results in a turn being made,
either towards, or away from, the stimulus, i.e. positive or negative tropism.

The experiments in this section are conducted with the SRN implementation of the Brait-
enberg vehicle 3b with inhibitory connections (see fig. 5.4 B). The Braitenberg vehicle 3b has
ipsilateral connections. According to the pre-processing, inhibitory ipsilateral connections lead
to the following behaviour. A stimulus at the left sensor reduces the right motor speed, resulting
in a right turn. The reduction of the wheel speed remains as long as the stimulus is present.
The vehicle turns away from the stimulus until it is no longer sensed and then continues with
its translational movement.

The dynamics of the system is given by the following set of equations

C �
�
c2

c3

�
�
�

0 0 0 �1
0 0 �1 0

�

pi, jq P tp2, 1q, p3, 0qu
aipt� 1q � �ξiptqIj

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

86 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

C DBA

Figure 5.5: Braitenberg vehicles. The vehicle has two inputs (red) and two actuators (green).
Assume that the sensors detect light intensity and that the actuators control two motors. The first two
controllers realise the same behaviour. When a light source is detected at the left sensor, in the first case,
the ipsilateral motor is excited, in the second the contralateral motor is inhibited. Both cases result in
a negative tropism, such that the vehicles turns away from the stimulus. The third and forth structures
realise a positive tropism. When a light source is detected by one sensor, in the first case the ipsilateral
motor is inhibited, in the second the contralateral motor excited. In both cases the vehicle turns towards
the light source.

ξipt� 1q � ξiptqp1� βgiptqq
giptq � τpa�q2 � τpaiptqq2
wiptq � �ξiptq

∆ξiptq � ξipt� 1q � ξiptq
� ξiptqp1� βgiptqq � ξiptq
� βξptqgiptq. (5.2)

The transient dynamics of this system is only related to one of the three plasticity parameters:
β (see eq. 5.2). In the previous chapter, it was discussed that the parameter β has no effect on
the asymptotic receptor value ξ�. In contrast to the fixed point analysis of the previous chapter,
this chapter is concerned with the transient and therefore behaviour-relevant dynamics. As the
parameter β controls the growth and decay of the receptor, changes in the values of β effect
the transients of the system. Figure 5.6 visualises this effect. In both plots a peek stimulus
is presented to the input neuron (red). Both output neurons (green) have comparable values,
and very similar transients towards the asymptotically stable state. However, the number of
iterations (transient length) is higher for the smaller value of β. This corresponds to the results
of the analyses of the previous chapter, which showed that receptor fixed point coordinate ξ� is
independent of parameter β, but also demonstrates that the transient behaviour is affected by
β. It is this effect which is analysed with respect to an obstacle-avoidance behaviour.

Two representative controllers with different values of β are chosen for this analysis. The
corresponding Braitenberg vehicles are referred to as B1 for β � 0.1 and B2 for β � 0.01 (see
fig. 5.7). Obstacle-avoidance behaviours with other valus of β did not differ significantly from
those shown for B1 and B2.

The parameter β determines the transient behaviour of the system. This means that the
echo of a presented stimulus differs for the two presented controllers. In order to analyse the
differing behaviours of the Braitenberg vehicle for variations of the parameter β, comparable
conditions must be ensured each time an obstacle is sensed. Hence, both controllers are tested
in the empty environment. The results of the experiment for both controllers, B1 and B2 are
shown in figure 5.7.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.2. OBSTACLE AVOIDANCE 87

-1

-0.5

 0

 0.5

 1

 0 100 200 300 400 500 600 700 800

B1: ! = 0.1

t

I

O

I O(I)

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

B2: ! = 0.01

t

I

O

I O(I)

Figure 5.6: Peek plot comparison of vehicles B1 and B2. Peek plots for different values of β.
Upper: B1 with β � 0.1, Lower: B2 with β � 0.01. Both plots show a very similar transient behaviour
but the number of iterations in the lower plot is one order of magnitude larger. This is consistent with
the findings of the previous section which showed that β does not affect the transmitter coordinate of the
fixed point η�. The plot also shows how the transients of the vehicles change for different settings of β.

Discussion of the observed behaviour

The given obstacle avoidance task is sufficiently solved by both controllers (see fig. 5.7 A/B).
The resulting behaviours differ in their reaction to detected obstacles. The controller B1 shows
a reduced turning angle, compared to B2. This is the result of an overshooting of the output
neuron of B1. The transient plots (see fig. 5.7 C/D) of the controller are discussed first for B1
and then compared to B2 in the following paragraphs.

When no obstacle is present (9600 À t À 9800), all relevant controller properties (I1, O2, w12)
settle at their asymptotically stable values. As soon as an obstacle is sensed (t � 9800), the input
I1 increases, and because of the inhibitory connection w12, the activity of the output neuron O2

decreases. The output of O3 is not affected by the changes in the input neuron I1, so that the
reduction of O2 results in obstacle-avoidance behaviour of the vehicle. The turning behaviour
causes a decrease of the sensor input I2. The output O2 follows again, but because the absolute
value of w12 is increased, the output neuron overshoots (t � 9850). When it overshoots, it is
larger, compared to the value of O3 and, therefore, the vehicle now turns towards the obstacle.
As the output O2 settles, the trajectory of the vehicle stabilises to a straight movement.

In contrast, the output O2 of the vehicle B2 does not overshoot significantly. Hence, once it
turns away from the obstacle, it remains on a stable, straight trajectory. This explains why the
controller with a larger value for β � 0.1 shows a smaller turning angle compared the controller
with a value β � 0.01. This difference between the behaviours of B1 and B2 can be observed in
simulation and on the physical platform.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

88 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

A

B

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 9800 10000 10200 10400 10600 10800 11000 11200

Braitenberg Vehicle beta=0.1, Module I1,O2C

t

I1
O2
O3

w21

O3 I1 O2 w21

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 9600 9800 10000 10200 10400 10600 10800 11000 11200

Braitenberg Vehicle beta=0.01, Module I1,O2D

t

I1
O2
O3

w21

O3 I1 O2 w21

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 9800 9850 9900 9950 10000 10050 10100

Braitenberg Vehicle beta=0.1, Module I1,O2E

t

O2

O2

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 9600 9700 9800 9900 10000 10100

Braitenberg Vehicle beta=0.01, Module I1,O2F

t

O2

O2

Figure 5.7: Behaviour comparison of vehicles B1 and B2. A,C,E) Braitenberg vehicle B1,
β � 0.1. B,D,E) Braitenberg vehicle B2, β � 0.01. The trajectory of B1 (A) shows a smaller turning
angle of the vehicle as a response to an encountered obstacle comparing to B2 (B). The transient plots of
B1 (C) and B2 (D) show the cause for the difference in behaviour. The output neuron of B1 overshoots,
while the same neuron for B2 shows a comparably stable behaviour. This is pointed out in two plots, in
which the echo of the stimulus in the output neurons is zoomed into. It is shown that the echo in B1 (E)
has a higher amplitude and shorter duration compared to B2 (F).

There is a second distinguishing property of the transients which is not observable in the
behaviour. If the noise induced by the sensor is neglected, the echo of the presented stimulus in
the synaptic connection of B2 is significantly larger compared, to that of the echo in B1. There
is a notion of a memory effect, observable in B2, which will be discussed in the following section.

In summary, small values of β result in small changes but a long echo, while large values
of β result in large changes but a short echo. The resulting behaviours are oppositional to the
amplitude of the echo: B1 shows a smaller turning angle compared to B2.

5.2.2 Braitenberg vehicle 3b with self-connections

In this section the Braitenberg vehicle from the previous section is extended by excitatory recur-
rent connections on the output neurons (see fig. 5.4 C). This extension includes the previously
excluded plasticity parameters γ and δ with minimal changes in controller structure and influ-
ence of the parameters. Only one additional synapse is included, and both newly introduced
parameters only affect this single synapse.

This extended Braitenberg vehicle consists of two identical neuro-modules of type E which
was presented in the previous chapter (see fig. 4.5). As mentioned previously, the ratio δ{γ de-
termines the receptor coordinate of fixed point ξ�. The behaviour of the module depends on the

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.2. OBSTACLE AVOIDANCE 89

transients of the system, and therefore, also on the magnitude of the parameters. The dynamics
of the system are analysed with respect to varying magnitude and ratio of the parameters.

To isolate the effect of the plasticity parameters γ and δ, the parameter β is kept constant
and comparably small for all experiments. A value of β � 0.001 is chosen, for all experiments
which are presented from here one, as it is a magnitude smaller than the value presented in the
previous section, and is, therefore, neglected in the following analysis.

The dynamics of the controller are given by the following set of equations:

C �
�
c2

c3

�
�
�

0 �1 1 0
�1 0 0 1

�

pi, jq P tp2, 1q, p3, 0qu
aipt� 1q � Θi � ξiptqηiptqτpaiptqq � ξiptqIjptq
ξipt� 1q � ξiptqp1� βgiptqq
ηipt� 1q � p1� γqηiptq � δhiptq

giptq � τpa�q2 � τpaiptqq2
hiptq � 1� τpaiptqq
a�i � Θi � ξ�i η

�
i τpa�q � ξ�i I

�

η�i � δ

γ
h�i

ξ�i � a�i �Θi

η�i τpa�i q � I�j

� γ

δ

a�i �Θi

h�i τpa�i q � I�j
w�
ii � ξ�i η

�
i

w�
ij � �ξ�i .

A set of experiments are conducted with different magnitudes and ratios of γ and δ (see tab. 5.3).
The initial parameter set γ � 0.01 and δ � 0.015 was determined empirically in the previous
chapter. First, the plasticity parameter δ is varied in order to change the ratio, i.e. the trans-
mitter coordinate of the fixed point η�. Then, the experiments are repeated with varying values
for γ in order to alter the magnitude as well. The ratios δ{γ � 1.5, 0.5 and 2 are chosen as
they result in an obstacle-avoidance behaviour in the majority of the cases (see tab. 5.3). The
initial ratio of 1.5 is the empirically determined value from the numerical fixed-point analysis
of the previous chapter. The magnitude of γ was increased and decreased by one order. These
nine representative values for γ and δ were chosen for presentation here. Other parameter set-
tings were analysed but did not result in significantly different behaviour or did not show any
exploration and obstacle-avoidance behaviour at all.

Discussion of the observed behaviour

The figure 5.8 shows the trajectories for all nine parameter configurations. From the plots,
three classes of behaviours can be derived. The first class is a wall-following (parameter setting

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

90 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

γ δ γ δ γ δ

A 0.01 0.015 D 0.1 0.015 G 0.001 0.0015

B 0.01 0.005 E 0.1 0.15 H 0.001 0.0005

C 0.01 0.020 F 0.1 0.20 I 0.001 0.002

Table 5.3: Experimental set-up for γ and δ. Parameter configurations for γ and δ for the Braiten-
berg vehicle with recurrent connection. The values are chosen beginning with the empirically determined
values from the previous section pγ, δq � p0.01, 0.015q. The magnitude is increased and decreased by
one order and the ratios of 1.5, 2, and 0.5 are chosen for experimentation, whenever the result in an
obstacle-avoidance an exploration behaviour. For γ � 0.1 the ratios lead to a turning on the spot, so
that other setting are presented.

pγ, δq P tDu). The second class is defined by those parameter settings that result in a constant
turning angle: (pγ, δq � tA,B,E,F,H,Gu). The third class of behaviours is defined by the
parameter settings that result in varying turning angles and, therefore, a better exploration
of the environment, as more of the environment is covered by the trajectory of the vehicle
(pγ, δq � tC, Iu).

To understand the difference in the behaviour of the modules, the transients of one of the
neuro-modules within each controller is plotted (see fig. 5.9). The same neuro-module is depicted
in all the plots, as the plotted data was captured while the robot was turning left within the
environment. As the controller is symmetric, equivalent plots are received for the other neuro-
module of the controller, i.e. when the robot turns right within the environment. What follows
is a discussion of the three distinguishable classes of behaviors which have been identified from
the trajectory plots seen in figure 5.9.

Wall-follower pγ, δq P tDu: The transient plot for the wall-following behaviour (see fig. 5.9 D)
differs significantly from the other classes of behaviours. The mean absolute value of the strength
of the input synapse w30 is larger and constantly growing. For the first set of obstacles (t 3250),
the transients are comparable to those of the other controllers. The recurrent connection w33

is subcritical (no hysteresis) and the duration of the echo is very small. The vehicle only turns
as long as the stimulus is present. There is no overshooting of the output-neurons of the B2
controller, as discussed in the previous section. The wall-following behaviour results from the
very small turning angles of the controller’s avoidance behaviour.

There is a second effect observable in the transient plot. As soon as the absolute value of
the synapse reaches a threshold value, the transients differ significantly from the transients of
the other parameter settings. The reason for this discrepancy is that the synapse w30 amplifies
the noise of the sensor which is present at the input neuron. If the synaptic connection grows
large enough, this noise directly effects the behaviour of the system, resulting in the stochastic
behaviour which is also seen in the trajectory (see fig. 5.8 D).

Constant turning angle pγ, δq P tA,B,E,F,H,Gu: The second class of behaviours is defined
by the set of vehicles that show constant turning angles in response to an obstacle. For the

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.2. OBSTACLE AVOIDANCE 91

A: !=0.001, "=0.01, #=0.015

B: !=0.001, "=0.01, #=0.005

C: !=0.001, "=0.01, #=0.020

D: !=0.001, "=0.1, #=0.015

E: !=0.001, "=0.1, #=0.15

F: !=0.001, "=0.1, #=0.2

G: !=0.001, "=0.001, #=0.0015

H: !=0.001, "=0.001, #=0.0005

I: !=0.001, "=0.001, #=0.002

Figure 5.8: Trajectory plots for each pair γ, δ. Trajectory plots of all nine parameter settings.
All plots are captured in simulation. Three classes of behaviours can be derived from the plots: wall-
follower (D, red border), constant turning angle (A, B, E, F, G, H, black border), and varying turning
angles (C, I, blue border). A speed factor of five was chosen to produce behaviours which are easier to
distinguish.

controllers of this class of behaviours, all of the transient plots show the same properties which
can be described as:

• (approximately) constant strength of the input synapse w30

• only a short duration of the echo in the synapse w33 and in the output neuron O3.

Because of these two properties the system is in the same state each time an obstacle is detected.
Therefore, the reaction to an approaching obstacle does not differ, resulting in the observable
constant turning angles. These are larger compared to those found in the plots of controller D,
and result in a deflection of the obstacle and not in a wall-following behaviour.

Varying turning angle pγ, δq P tC, Iu: For the third class of behaviours, the exploring be-
haviour with varying turning angles, the two controllers show different properties of the tran-
sients. The controller with the parameter setting I has the same properties as the controller

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

92 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

-1

-0.5

 0

 0.5

 1

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.01, #=0.015
O3

I0

t

w33

w30

A

I0 O3 w30 w33

-1

-0.5

 0

 0.5

 1

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.01, #=0.005
O3

I0

t

w33

w30

B

I0 O3 w30 w33

-1

-0.5

 0

 0.5

 1

 13500 14000 14500 15000 15500

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.01, #=0.020
O3

I0

t

w33

w30

C

I0 O3 w30 w33

-1

-0.5

 0

 0.5

 1

 3000 3500 4000 4500

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.1, #=0.015
O3

I0

t

w33

w30

D

I0 O3 w30 w33

-1

-0.5

 0

 0.5

 1

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.1, #=0.15
O3

I0

t

w33

w30

E

I0 O3 w30 w33

-1

-0.5

 0

 0.5

 1

 1000 1500 2000 2500 3000

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.1, #=0.2
O3

I0

t

w33

w30

F

I0 O3 w30 w33

-1

-0.5

 0

 0.5

 1

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.001, #=0.0015
O3

I0

t

w33

w30

G

I0 O3 w30 w33

-1

-0.5

 0

 0.5

 1

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.001, #=0.0005
O3

I0

t

w33

w30

H

I0 O3 w30 w33

-1

-0.5

 0

 0.5

 1

 8000 8500 9000 9500 10000

-1

-0.5

 0

 0.5

 1

!=0.001, "=0.001, #=0.002
O3

I0

t

w33

w30

I

I0 O3 w30 w33

Figure 5.9: Transient plots of the vehicles A–I. Transient plots of all nine parameter configura-
tions. The border colour corresponds to the classes derived from the trajectory plots. For the discussion
of the transients, the reader is referred to the description given in this section.

which produced the second class (short echo, 9w30ptq � 0 for almost every t P T). The difference
in the behaviour-relevant dynamics is that the mean strength of the recurrent synaptic connec-
tion is constantly overcritical w33 ¡ 1. An overcritical, positive, recurrent connection results in
a hysteresis of the neuron (Pasemann, 1993). For the MRC (Hülse & Pasemann, 2002), it is the
overcritical positive recurrent connection of the output neurons which determines the turning
angle of the system.

The different turning angles in the trajectory plot result from the pre-processing (see eq. (5.1)
and fig. 5.11). As mentioned previously, the virtual sensors are given by the mean value of the
three corresponding sensors. When the vehicle approaches the wall with a large angle of incidence
(AOI), two properties lead to an echo with a high amplitude. First, the sensors return higher
values sooner, and second, more sensors are returning values unequal to zero (see fig. 5.11).
Hence, while turning, at least two sensors detect the obstacle for a longer duration compared to
the case where the approach is made with a smaller angle of incidence. The higher amplitude
of the echo results in a larger turning angle of the system. This is additionally supported by
the hysteresis, which drives the output neuron into saturation. This behaviour is shown in the

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.2. OBSTACLE AVOIDANCE 93

Br
ai

te
nb

er
g

ve
hi

cle
 C

Br
ai

te
nb

er
g

ve
hi

cle
 I

Figure 5.10: Comparison of trajectories of vehicles C and I. Differences between the trajec-
tories of the vehicles C (left) and I (right). It can be seen that vehicle C shows different turning angles,
where vehicle I has different turning angles for different regions of the environment only, here visualised
for the upper and left boundary.

-1

-0.5

 0

 0.5

 1

 8375 8400 8425 8450
t

I
O

wij

I0O3
w30w33

-1

-0.5

 0

 0.5

 1

 7325 7350 7375 7400
t

I
O

wij

I0O3
w30w33

Figure 5.11: Analysis of the behaviour of vehicle I. From left to right: Sensor activation for
different angles of incidence (AOI), transient plot for large AOI, transient plot for small AOI. The sensor
activation shown for the AOIs measured from the trajectory plot of the controller. The three bars are
equally distributed and range from no activation of any sensor to the detection of a close object from
both AOIs. The transient plots show that the input peek for the high AOI (centre) is larger compared
to that of a small AOI (right).

trajectory plot (see fig. 5.8 I) in the upper and lower boundary of the environment. The turning
angle is larger than 90� so that the angle of incidence for the upper and lower boundary of the
environment is larger compared to the angle found for the left and right boundary. In the latter
regions, the corresponding sensors reach higher values later, and fewer sensors are activated,
which results in a lower amplitude of the echo. This is equivalent to a smaller turning angle.
The value of the overcritical self-connection is close to one, so that the width of the hysteresis
domain can be neglected in this context. It still implements an output curve similar to that
produced by a binary switch so that the output neuron is either in upper or lower saturation of
the transfer-function. This is because an overcritical connection leads to two stable fixed points,
separated by an unstable fixed point (Pasemann, 1993).

The controller defined by the parameter setting C shows different transients compared to
the controller defined by the parameter setting I. The synaptic strength of recurrent connection
w33 is overcritical but varies each time an obstacle is sensed. The duration of the echo is

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

94 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

large enough so that the synaptic strength does not reach its asymptotically stable state before
the vehicles reach the next obstacle. In contrast to all the other controllers which have been
presented, the value of the overcritical synaptic weight can even be decreased below one, leading
to a breakdown of the hysteresis (Pasemann, 1993). The history of the system influences the
dynamical properties of the controller which is equivalent to the behavioural response (turning
angles) of the vehicle to encountered obstacles. This explains the good exploration behaviour
of the system. As for the Braitenberg vehicle B2 of the previous section, this effect can be
considered as a form of memory.

It must be noted, that the memory and, therefore, the parameter setting for which this
effect occurs, is highly dependent on the environment and the morphology of the system. If
the environment is larger, or the motors slower, the time between approaching obstacles would
increase, causing the effect to vanish.

Discussion

The previous sections presented transient analysis depending on two subsets of the plasticity
parameters. For each set of experiments, configurations were found which showed memory effects
for the given morphology within the environments.

Based on the findings from the initial experiments, presented above, a subsequent experi-
ment is designed to test the hypothesis of the memory effect. This is done by evaluating the
performance of the Braitenberg vehicle, with recurrent connection and the extracted parameter
setting pβ, γ, δq � p0.01, 0.01, 0.02q within the second environment (see fig. 5.12). The trajec-
tory and the transients of one of the neuro-modules are shown in figure 5.12. This Braitenberg
vehicle shows a novel behavioural property compared to those discussed previously. It is able to
escape sharp corners. The minimal neural controller known to perform equally well in the task
is the MRC (Hülse & Pasemann, 2002). It requires two more synapses forming an inhibitory
loop between the output neurons (see fig. 5.14).

The transient plot (see fig. 5.12) of the Braitenberg vehicle illustrates the cause of the ob-
servable behaviour. The plot is captured as the robot enters the upper sharp corner of the
environment. When the vehicle enters the corner, it first shows the wiggling behaviour known
from Braitenberg vehicle 3b. If it senses an obstacle to its left, it turns right. It then senses
the wall on the right side, causing it to turn left. In contrast to the standard Braitenberg ve-
hicle with static synapses, the continuous presence of a stimulus increases the absolute values
of the synaptic connections (w30, w33), until the recurrent connection (w33) is overcritical. The
parameters are small enough (longer transients), causing the hysteresis to exist long enough,
such that the vehicle is able to escape the sharp corner. After escaping, the absolute synaptic
weights decay to their asymptotically stable values.

In order to assure that this behaviour is the result of synaptic plasticity, three Braitenberg
vehicles with static synapses are evaluated. The controllers are chosen with synaptic weights
equivalent to the minimal, the mean, and the maximal values of the synaptic connection of the
SRN Braitenberg vehicle of this section. All three controllers showed poor obstacle avoidance
or exploration behaviour (see fig. 5.13).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.2. OBSTACLE AVOIDANCE 95

-1

-0.5

 0

 0.5

 1

 2000 2500

-1

-0.5

 0

 0.5

 1
O3

I0

t

w33

w30

I0 O3 w30 w33

Figure 5.12: Trajectory and transient plot for adaptive Braitenberg vehicle. Trajectory
and transient plot for the Braitenberg vehicle resulting from the experiments. The configuration of the
vehicle is β � 0.01, γ � 0.01, δ � 0.02, v � 3. The trajectory plot (right) visualises the novel behavioural
property. The vehicle is able to escape sharp corners, but still displays a good exploration behaviour.
The transient plot (right) visualises how this is achieved. The constant presence of a stimulus raises the
absolute strength of the synaptic connection w33 until it is overcritical, resulting in a hysteresis domain.
Additionally, the absolute strength of the synapse w03 is increased so that changes in the output neurons
are large enough to enable the vehicle to escapes the sharp corner. After leaving the region, the properties
of the controller settle, ensuring a good exploration behaviour.

5.2.3 Minimal Recurrent Controller with Self-Regulating Neurons

The previous chapter discussed the transient dynamics for different settings of the plasticity
parameters β, γ, and δ in a minimal control structure for obstacle-avoidance. For each neuron,
the parameter β controls two incoming synapses (wji, wii) and the parameters γ and δ control one
outgoing synapse (wii). The controller is also minimal with respect to the structural influence
of the plasticity parameters. The dynamics of only one isolated output neuron is modulated by
the different parameter settings, as there is no structural coupling, and the maximal loop length
is one.

Consequently, the next step is to introduce a minimal structure with a loop of length two.
The MRC (Hülse & Pasemann, 2002) is such a minimal obstacle-avoidance network for a two-
wheeled robot (see fig. 5.14). In this section, this structure is implemented with the SRN model
for three reasons:

1. Increase of structural complexity with respect to the Braitenberg vehicle with minimal
increment.

2. Determine how the SRN model changes the structure–function relationship for well known
minimal static structures.

3. Derive possible rules for the variation operator of the evolutionary algorithm ENS3.

The first reason was already addressed at the beginning of this chapter. The second and third
refer to alterations of the variation operator of the evolutionary algorithm ENS3 (see sec. 3.3.1)
which may be required. The SRN model differs significantly from the standard additive neuron
model for which ENS3 was originally designed. A different neuron model is very likely to

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

96 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

Figure 5.13: Behaviour comparison of static controllers derived from the adaptive
Braitenberg vehicle. Evaluation of novel behavioural property. Three static controllers were tested,
with minimal (w33, w03 � p0.741,�0.238q), maximal (w33, w03 � p1.126,�0.525q), and average values
(w33, w03 � p0.933,�0.382q) derived from the SRN Braitenberg vehicle. The classifications of minimal,
average and maximal refer to the absolute values of the weights (|w33|, |w03|). The controller with mini-
mal and average synaptic strength showed the same poor exploration behaviour (both shown in the left
trajectory plot). The reason is the missing hysteresis domain, responsible for large turning angles. The
controller with maximal synaptic weights was able to escape the sharp corner, but showed poor obstacle
avoidance behaviour. The higher velocity of the system leads to shorter reaction time. If only one sensor
detects an obstacle, the threshold to initiate a turning is reached later. This causes the controller to
collide with the obstacle with a low profile (compare figure 5.12). Both these factors cause the poor
behaviour.

demand other structures in order to operate comparably well. The analysis in this section leads
to implications for the variation operator which favour structures on which the SRN performs
well.

The section begins with the analysis of the symmetric MRC with the Self-Regulating Neuron
model (SRN-MRC), which was derived from the original asymmetric MRC by removing the
ipsilateral connections. The asymmetric SRN-MRC is considered at the end of this section
resulting in the implications for the variation operator (see sec. 3.3.1).

Symmetric SRN-MRC

The original MRC (Hülse & Pasemann, 2002) is a minimal controller for an obstacle-avoidance
behaviour of a two-wheel differential drive robot. Similarly, to the Braitenberg vehicle, it has
two input and two output neurons and requires the same pre- and post-processing. In addition
to the Braitenberg vehicle with recurrent connections, found in the previous section, the original
MRC has four additional synapses, two ipsilateral connections between the input and output
neurons, and an inhibitory even loop between the output neurons. In this section, the ipsilateral
connections are removed for two reasons. First, the absolute strength of the synapses of the
static asymmetric MRC can be neglected with respect to their contribution to the behaviour.
Second, they cause an asymmetry in the control structure. The second aspect is discussed in
the next section.

The output neurons of the static MRC have overcritical positive self-connections and an
even inhibitory loop of length two (see fig. 5.14). The overcritical connections are responsible
for a hysteresis effect which determines the turning angle of the vehicle for an encountered
obstacle (Hülse & Pasemann, 2002). The even loop realises a co-existing larger hysteresis domain

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.2. OBSTACLE AVOIDANCE 97

Figure 5.14: Different implementation of the MRC. From left to right: Structurally symmetric
MRC (Hülse & Pasemann, 2002), Symmetric SRN-MRC with static bias, SRN-MRC with regulated bias.
The SRN-MRC (centre) is generated from the static MRC by converting the connectivity matrix from
wij P R to cij � signpwijq P t�1, 0, 1u. A bias is required to achieve the desired behaviour (see text). It
can be introduced in two possible ways, conventionally and through a bias neuron which is connected by
regulated synapses. Both controllers are analysed with respect to their behaviour in this section.

which enables the vehicle to escape sharp corners with a turning angle of approximately 180�.
The larger hysteresis is necessary, because the turning behaviour must continue even when the
stimulus is not present at one of the sensors any more.

The symmetrised SRN-MRC presented here because it is the next incremental step of struc-
tural complexity compared to the Braitenberg vehicle with recurrent connection. The plasticity
parameters of the output neurons control one additional incoming and one additional outgo-
ing synapse. Further, the output neurons are structurally coupled to each other and no longer
isolated from other SRNs. The symmetric SRN-MRC is defined by the following set of equations:

C �
�
c2

c3

�
�
�

0 �1 1 �1
�1 0 �1 1

�

pi, j, kq P tt2, 1, 3u, t3, 0, 2uu
aipt� 1q � Θi � ξiptqηiptqτpaiptqq � ξiptqηkptqτpakptqq � ξiptqIjptq (5.3)
ξipt� 1q � ξiptqp1� βgiptqq
ηipt� 1q � p1� γqηiptq � δhiptq

giptq � τpa�q2 � τpaiptqq2
hiptq � 1� τpaiptqq
a�i � Θi � ξ�i I

�

η�i � δ

γ
h�i

ξ�i � �a
� �Θi

I�j
w�
ii � ξ�i η

�
i

w�
ij � �ξ�i

w�
ik � �ξ�i η�k . (5.4)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

98 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

The activation function (see eq. 5.3) illustrates the discussed incremental structural increase of
the controller. For each output neuron one additional term is added. This does not imply an in-
cremental increase of the dynamical properties of the resulting controller, as a small modification
of the structure of a neural network does not imply a small change of its dynamical properties.
A two-neuron module can already show (qualitatively) every possible type of attractor, namely
fixed point, periodic, quasi-periodic and chaotic attractors (Pasemann, 2002; Pasemann, Hild,
& Zahedi, 2003), in contrast to the single neuron, which can only show co-existing fixed points
(hysteresis phenomena) and period-2 oscillations (Pasemann, 1993). Therefore, an increment in
structural complexity does not correspond to a incremental increase of the dynamical properties.
Next, the observed behaviour of the SRN-MRC is discussed.

Observed behaviour – symmetric SRN-MRC structure: First experiments with the
SRN-MRC showed a rotation of the vehicle on the spot around its own axis without any trans-
lational movement. Two circumstances lead to this behaviour. First, the sensor values include
noise, which is passed over the input neurons to the output neurons. As a result, the output
neurons are in different initial conditions. Second, the even inhibitory loop amplifies the differ-
ence as follows: The neuron with a larger initial activation will more strongly inhibit the other
neuron, reducing its inhibitory effect which was imposed by the loop of length two. This is
a feedback loop which drives the neuron with an initially higher-activation value towards the
upper target value and the neuron with an initially lower-activation value towards the lower
target value. This explains the rotational behaviour produced by the controller.

Observed behaviour – SRN-MRC with bias: The solution is a bias value which is large
enough to compensate this effect. There are two methods may be used to introduce a bias value
to the system. One involves adding a constant value to the activation equations (Θi � 0), and
the other involves adding a bias neuron, which is connected to the output neurons over dynamic
synapses. The bias neuron is realised by an input neuron with a bias, which is not connected to
any sensor. The differences between the attractors resulting from both methods were discussed
in the previous chapter (see chap. 4) in which the bifurcations diagrams for the single neuron
and the input-output neuro-module were analysed. The behaviour of both SRN-MRC variants
is discussed next.

Fixed bias: The symmetric SRN MRC shows a good exploration behaviour in the square
environment. The exact configuration of the controller, the trajectory and the transients are
shown in figure 5.15. The trajectory plots indicate a memory effect of the controller. In the lower
right corner the vehicle draws identifiable non-parallel traces, which are an indication of different
turning angles. The transient plots support this observation. Close to time step t � 6750, two
successive stimuli increase the synaptic weights before they are able to converge towards their
asymptotically stable values. Therefore, the vehicle shows a different reaction (turning angle)
to the second obstacle which it encounters, compared to the first.

To validate the memory effect imposed by the parameter set derived from the experiments
with the Braitenberg vehicle in the previous section, other parameter settings are evaluated (see
fig. 5.16). Variations of β are chosen for presentation here, but similar results are observed

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.2. OBSTACLE AVOIDANCE 99

I0 I1 O2 O3 Θ

O2

Á À Á
0.6

O3

Á Á À
0.6

β γ δ v I.I. cycles

0.01 0.01 0.02 5 100 20.000

-1

-0.5

 0

 0.5

 1

 4000 4500 5000 5500 6000 6500 7000 7500

I0/1
O2/3

t

I0 I1 O2 O3

-1

-0.5

 0

 0.5

 1

 4000 4500 5000 5500 6000 6500 7000 7500
-0.5

-0.4

-0.3

-0.2

-0.1

 0wik
wkk

wij

t

w22w33
w32w23

w21w30

Figure 5.15: Symmetric SRN-MRC with constant bias. From left to right and top to bottom:
Controller, configuration table, trajectory plot in the empty and standard environment, transient plots
of the neuron output and synaptic weights for the empty environment. In the table of the configuration,
v refers to the speed factor, and I.I. to the number of initial iterations. The latter refers to the number of
iterations for which the sensor values are present and the neural network is processed without applying the
output to the motors. This amount of time is required for the controller to converge before a coordinated
behaviour can be observed. From the trajectory plot in the empty environment it can be seen that
the SRN-MRC with fixed bias draws non-parallel traces (see lower left corner). This implies different
values for the synaptic weight when an obstacle is sensed. The transient plots support this observation.
Around the time step of 6750, it can be seen that the synaptic strength depends on the time between
two consecutive obstacles. This difference leads to the varying turning angles. The trajectory plot in the
standard environment demonstrates the exploration and obstacle-avoidance behaviour of the controller
in a non-trivial environment.

for the other parameters. The plots (see fig. 5.16) show that the memory effect disappears
when the speed is varied (see fig. 5.16 top), and when the magnitude of β is changed (see
fig. 5.16 centre/bottom).

Regulated bias: The symmetric SRN-MRC with a regulated bias value shows a good
exploration behaviour in the square environment. The precise configuration, the trajectory and
the transients of the controller are shown in figure 5.17. The SRN-MRC with regulated bias
differs in both the trajectory and the transient plot from the SRN-MRC with fixed bias. The
trace of the vehicle in the trajectory plot shows constant turning angles similar to those discussed
for the Braitenberg vehicle I of the previous section. Variations of the parameter setting and
the speed factor did not result in significantly different traces. The cause for the behaviour is
visualised in the transient plot. The duration of the echo is too short to realise a memory effect
for the given morphology (motor speed, sensor range, etc.) and environment (size of the square
world).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

100 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

The equations of the SRN-MRC with a bias neuron connected with excitatory synapses differ
from the previous and read as follows:

C �
�
c2

c3

�
�
�

0 �1 1 �1
�1 0 �1 1

�

pi, j, kq P tt2, 1, 3u, t3, 0, 2uu
aipt� 1q � ξiptqηiptqτpaiptqq � ξiptqηkptqτpakptqq � ξiptqIjptq � ξiptqIΘ (5.5)
ξipt� 1q � ξiptqp1� βgiptqq
ηipt� 1q � p1� γqηiptq � δhiptq

giptq � τpa�q2 � τpaiptqq2
hiptq � 1� τpaiptqq
a�i � ξ�i η

�
i τpa�i q � ξ�i η

�
kτpa�kq � ξ�i I

�
j � ξ�i I

�
Θ

ξ�i � a�i �Θi

η�i τpa�i q � η�kτpa�kq � I�j � I�Θ

η�i � δ

γ
h�i

ξ�i � a�

�I�j � I�Θ
w�
ii � ξ�i η

�
i

w�
ij � �ξ�i

w�
ik � �ξ�i η�k . (5.6)

The difference of the SRN-MRC with fixed and regulated bias value is shown in the activation
function (compare equations (5.3) and (5.5)). The latter is regulated by the receptor equation,
which is the reason for the necessarily high value of IΘ � 2.5 compared to Θi � 0.6 in the first
case (see fig. 5.15 and fig. 5.17).

Asymmetric SRN-MRC

Up to this point different controllers with increasing structural complexity and minimal possible
increments, were analysed with respect to their transient dynamics. All the networks which
were presented, starting with the Braitenberg vehicle, were symmetric. Because the SRN model
differs significantly from the standard additive neuron (SAN) model, it operates differently on
comparable structures. This was already indicated in the previous section for the Braitenberg
vehicle with recurrent connections, which was able to escape sharp corners with the SRN model,
while failing to do so with the SAN.

This difference in the structure–function relationship has implications for the evolutionary
algorithm ENS3 which was initially designed for the SAN model. In this section, the originally
published asymmetric MRC (see fig. 5.18) is converted to the SRN model by using the sign
of each synapse, not considering the absolute value of the weight. Asymmetric here refers
to the resulting asymmetric connection matrix C. From the figure 5.18 it can be seen, that
the ipsilateral connections of the original MRC are small and neglectable compared to the other

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.3. CONCLUSIONS 101

synapses. For the standard MRC these synapses do not contribute significantly to the behaviour
of the system. For the asymmetric SRN-MRC the ipsilateral connections will have influence and
it is this influence which is of interest here. The control structure is chosen for analysis because it
is the next incremental step towards the symmetric MRC. An analysis of the resulting dynamics
of the SRN-MRC will lead to recommendations for modifications of the variation operator of
the evolutionary algorithm ENS3.

Observed Behaviour: Without bias the asymmetric SRN-MRC rotates around its own axis
without any translational movement. Introducing bias values results in a rudimentary obstacle-
avoidance and exploration behaviour. The behaviour and the required bias values reflect the
asymmetry of the structure. The exact configuration, the transient and the trajectory plots of
the controller are shown in figure 5.18.

The resulting behaviour and the required bias values are best understood by analysing the
rows of the connectivity matrix C. For the output neuron O3, the sum over the incident synapses
is zero, for the neuron O2 it is minus two:¸

j

c3j � 0 (5.7)

¸
j

c2j � �2. (5.8)

At this point it must be noted that for any Self-Regulating Neuron all incident synapses are
identical if the pre-synaptic neurons are in the same state. This is an effect of the receptor,
which regulates all incomming synapses (see eq. 4.6).

In the case of the asymmetric SRN-MRC and the absence of an obstacle (tI0, I1u � t�1,�1u)
this means that the input neurons have no effect on the output neuron O3 as they cancel each
other (see eq. 5.7). For the output neuron O2, there is as increased influence, compared to
the symmetric SRN-MRC, as the input is doubled (see eq. 5.8). The output neuron is driven
towards the upper target value. The even inhibitory loop between the two output neurons has
the same feedback effect, as discussed for the symmetric SRN-MRC, leading to constantly low
value for output neuron O3 and constantly high values for output neuron O2. To compensate
for this, the bias value of O3 must be chosen significantly higher. A value of Θ3 � 1.2 suffices
for the given rudimentary obstacle-avoidance and exploration behaviour, however, it is too large
to allow the activity of the neuron to be regulated towards the target value. This explains why
the asymmetric SRN-MRC can only turn left to avoid obstacles and, therefore, shows an overall
poor behaviour compared to the controllers discussed previously in this chapter.

5.3 Conclusions

The analysis of the symmetric and asymmetric SRN-MRC enable the formulation of three im-
plications for the modification of the evolutionary algorithm ENS3:

1. The absolute value of the row sums of the connectivity matrix should be either zero or
one. For the previous controller, this rule applied and led to good behaviours. For the

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

102 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

asymmetric MRC, this rule is violated, leading to a comparably bad behaviour due to
necessary high compensations in the bias.

2. The original ENS3 algorithm does not allow multiple synapses from a pre-synaptic to
a post-synaptic neuron. For the same state of all pre-synaptic neurons, all incoming
synapses on the post-synaptic neuron have the same absolute value. From experiments on
the Aplysia it is known that synaptic growth is essential for long-term plasticity. Synaptic
growth increases the number of connections of two neurons in a path of neurons (Squire &
Kandel, 1998) and is one of the basic mechanisms for conditioning (see chap. 2.4). For the
evolutionary algorithm ENS3 this means that multiple synaptic connections of the same
type (excitatory or inhibitory), should be allowed between two neurons. Mathematically
this changes the trinary synapse type cij P t�1, 0, 1u to cij P Z. Elements of cij P R are
also possible. When cij P Z,R the search space is increased.

3. To enable the neurons to regulate towards both target values, the absolute bias should
have the same order of magnitude as the target value. The assumption is that the order
of magnitude of the bias value is related to a required row sum of the connectivity matrix.
If the absolute value of the sum is larger than one, the neuron has more synaptic input
which it can use to compensate for large bias values.

These implications are open and will be discussed at the end of this work (chap. 7: Discussion).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.3. CONCLUSIONS 103

-0.5

 0

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

! = 0.6, " = 0.01, # = 0.01, $ = 0.02, v = 3
w30w21

I0I1

t

I0 I1 w30 w21

-1

-0.5

 0

 0.5

 1

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

wiiwik

O2O3

t

O2 O3 w22 w23 w33 w32

-0.5

 0

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

! = 0.5, " = 0.05, # = 0.01, $ = 0.02, v = 3
w30w21

I0I1

t

I0 I1 w30 w21

-1

-0.5

 0

 0.5

 1

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

wiiwik

O2O3

t

O2 O3 w22 w23 w33 w32

-0.5

 0

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

!=0.67, " = 0.005, # = 0.01, $= 0.02, v = 1
w30w21

I0I1

t

I0 I1 w30 w21

-1

-0.5

 0

 0.5

 1

 2000 2500 3000 3500 4000

-1

-0.5

 0

 0.5

 1

wiiwik

O2O3

t

O2 O3 w22 w23 w33 w32

Figure 5.16: Symmetric SRN-MRC. Symmetric SRN-MRC with fixed bias with different settings
of β. This figure shows the trajectory and the transient plots for different settings of β (the parameter
configuration for each plot is shown above it). All three settings show an obstacle avoidance behaviour
in the empty environment. Of particular interest, are the differences between the transient plots. The
upper configuration is discussed in detail in the text and is shown here for reference. For the second
configuration (centre, β � 0.05), the echo has a higher amplitude and a shorter duration resulting in
an overshooting behaviour of the output neurons similar to the discussed behaviour of the Braitenberg
B1 vehicle was presented in the previous section. For the third configuration (bottom, β � 0.005), the
echo is of a small amplitude and a long duration, comparable to the transients of the Braitenberg vehicle
I, also presented in the previous section. The synaptic weights of the controller can be considered as
almost constant. This figure demonstrates exemplarily for β that the set of parameters, derived from the
experiments with the Braitenberg vehicles and chosen for experimentation in this section (upper plot),
lead to the desired transients for the MRC, which show memory effects for the given setting (morphology
and environment).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

104 CHAPTER 5. EXPERIMENTS ON PLASTICITY PARAMETERS

I0 I1 O2 O3 Θ

O2

Á À Á À

O3

Á Á À À

β γ δ v I.I. cycles

0.01 0.01 0.02 5 (3) 500 20.000

-1

-0.5

 0

 0.5

 1

 4000 5000 6000 7000 8000
 0

 0.1

 0.2

 0.3

 0.4

 0.5Ij
Oi/k

t

I0I1
O2O3

w21w30

-1

-0.5

 0

 0.5

 1

 4000 5000 6000 7000 8000
-0.5

-0.4

-0.3

-0.2

-0.1

 0wik
wkk

wij

t

w22w33
w32w23

w21w30

Figure 5.17: Symmetric SRN-MRC with regulated bias. From left to right and top to bottom:
Controller, configuration table, trajectory plot in both, the empty and standard environments, transient
plots of the neuron output and synaptic weights for the empty environment. In the configuration table,
v refers to the speed factor, and I.I. to the number of initial iterations. The latter refers to the number of
iterations for which the sensor values are present and the neural network is processed without applying the
output to the motors. This time is required for the controller to converge before a coordinated behaviour
can be observed. The speed factor in brackets refers to the speed factor in the standard environment,
which is differs in order to produce the observed behaviour. In contrast to the SRN-MRC with static
bias, this controller show constant turning angles in the empty environment. The cause is visualised in
the transient plots, which shows echoes that are small in amplitude and duration. This corresponds to
an approximately static controller. The constant turning angles are also observable over a wide range
within the standard environment.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

5.3. CONCLUSIONS 105

I0 I1 O2 O3 Θ

O2

Á Á À Á
0.6

O3

Á À Á À
1.2

β γ δ v I.I. cycles

0.01 0.01 0.02 1 100 20.000

-0.5

 0

 0.5

 4000 4500 5000 5500 6000 6500 7000 7500 8000

-1

-0.5

 0

 0.5

 1wij Ij

t

I0 I1 w20 w30 w21 w31

-1

-0.5

 0

 0.5

 1

 4000 4500 5000 5500 6000 6500 7000 7500 8000

-1

-0.5

 0

 0.5

 1wii
wik

Oi/k

t

O2 O3 w22 w23 w32 w33

Figure 5.18: Asymmetric SRN-MRC with constant bias. From left to right and top to bottom:
Controller, configuration table, trajectory plot in both, the empty and standard environments, transient
plots of the neuron output and synaptic weights for the empty environment. In the table of the con-
figuration, v refers to the speed factor, and I.I. to the number of initial iterations. The latter refers to
the number of iterations for which the sensor values are present and the neural network is processed
without applying the output to the motors. This time is required for the controller to converge before a
coordinated behaviour can be observed. The asymmetric MRC was derived from the original published
MRC (Hülse & Pasemann, 2002) by converting the connectivity matrix of the synapse strength. The
asymmetric SRN-MRC requires an asymmetric distribution of the bias values. The bias of the output
neuron O3 is twice as large compared to that of O2 which results from the asymmetric connectivity matrix
(see text for detailed explanation). The asymmetric SRN-MRC can only avoid obstacles by turning left,
which explains the poor obstacle-avoidance and exploration behaviour.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Chapter 6

Artificial Evolution of
SRN-Controllers

The previous chapters presented the analysis of the attractor landscape and the transient dy-
namics for different configurations of the Self-Regulating Neuron model, decoupled and coupled
from the sensori-motor loop. In this chapter, artificial evolution is used to generate control
structures to solve a task, given the morphology of the robot and the environment. The first ex-
periment is the pole-balancer, a standard benchmarking problem for trainable controllers (Barto
et al., 1983; Geva & Sitte, 1993; Riedmiller, 1996; Pasemann, 1997a; Spong, 1998). The pole-
balancer or cart-pole experiment is chosen to demonstrate how a zero output of a controller
for an input, converging towards zero, can be realised with the SRN model. This answers the
question whether the diverging behaviour of the SRN model, a desirable property in the case of
the Braitenberg vehicle’s obstacle-avoidance behaviour (see sec. 5.2), limits the model otherwise.

The second experiment is a light-seeker that has to find a light source under varying ambient
light conditions. The controller has only two light intensity sensors and cannot distinguish
between ambient light and a light source purely through the sensor values.

Both experiments are presented separately in two sections. Each section begins with a de-
tailed description of the experimental and evolutionary set-up, followed by a discussion of the
evolved neuro-controller. The controller was generated using the evolutionary algorithm ENS3

(see chap. 3) implementation within the ISEE environment (see app. A). The controllers pre-
sented here were selected by virtue of the simplicity of their structures. Naturally, the structure
evolution algorithm also produced intermediate structure of larger scale and complexity:.

The chapter begins with the pole-balancer, followed by the light-seeker, and closes with a
discussion of both experiments.

6.1 SRN Pole-balancer

This section describes the pole-balancer or cart-pole experiment as an example of how the
diverging behaviour of the SRN model with an input close to zero can be handled. The cart-
pole experiment is optimal for this purpose, because the task is to minimise the input (cart

:Scale and complexity refer to the number of neurons and synapses in the structure.

107

108 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

track limits �2.4 m
failure angles �12� (deg)
gravity �9.91 m

s2

length of pole 1 m
mass of the cart 1.0 kg
mass of the pole 0.1 kg
magnitude of the control force (F) 10.0 N
integration time step (∆t) 0.001 s (0.02 s)

Table 6.1: Standard Cart Pole parameters. The parameters are taken from Geva and Sitte
(1993). The standard integration time step of 0.02s is adjusted to 0.001s to match the requirements of
the SRN model, which has longer transients compared to the SAN.

position and velocity, pole angle and angular velocity) together with the output (force applied
to the cart) in a minimal, non-trivial experimental setting. In what follows, the experimental
and evolutionary set-up are presented first, followed by a discussion of the evolved controller
with the best performance.

6.1.1 Experimental set-up

The cart-pole experiment is a standard benchmark for neural network learning algorithms (Geva
& Sitte, 1993) and is most often used in the form first described by Barto et al. (1983). An
inverted pendulum is mounted onto a cart, which can move along a limited track in only one
dimension. The controller fails, if either the pole deviates too far from its centre, or the cart
reaches the boundaries of the track (see tab. 6.1). The goal is to balance the pole while finding
and then remaining at the centre of the track.

The standard cart-pole parameters are taken from Barto et al. (1983) and Geva and Sitte
(1993) with a modification to the integration time step (see tab. 6.1).

The inputs for the controller are the position x of the cart, the velocity 9x applied to the
cart, the pole angle Θ, and its angular velocity 9Θ (see tab. 6.2). The controller’s output is the
force applied to the cart. As the SRN model does not allow stabilisation to occur around zero
for a zero input, a different controller concept is required. Instead of a single output neuron
determining the cart force, two output neurons are chosen. The sum of both determines the
resulting force (see tab. 6.2). Theoretically, the resulting summed force is doubled compared to
the standard benchmark problem. Analysis of the evolved controller will show that the output
neurons have opposite signs at every time step, so that this is never the case, and hence, the
controller setting remains within the definition of the benchmark problem.

The cart-pole was simulated with the PoleBalancer program, an implementation of the equa-
tions given by Geva and Sitte (1993) and Pasemann and Dieckmann (1997b), initially written
by Martin Hülse as part of the ISEE package with modifications by the author of this work to
match the requirements of the SRN model.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.1. SRN POLE-BALANCER 109

Name Symbol Input-Neuron Pre-Processing

Cart position x I0 I0 � x
2.4

Pole Angle Θ I1 I1 � 15�Θ
π

Cart velocity 9x I2 I2 � 9x
2.4

Pole angular velocity 9Θ I3 I3 � 15� 9Θ
π

Name Symbol Output-Neuron Post-Processing

Cart force, Agonist f0 O4 f0 � 10 �O4

Cart force, Antagonist f1 O5 f1 � 10 �O5

Cart force, Resulting f O� � O4 �O5 f � f0 � f1

Table 6.2: Cart-pole controller input/output. Equations are taken from Pasemann and Dieck-
mann (1997b).

6.1.2 Evolutionary set-up

The evolution was initialised with an empty network, only consisting of input and output,
but no hidden neurons and no synaptic connections. Corresponding to the sensor and actuator
configuration, the initial controller consisted of four input and two output neurons. To reduce the
search space for this experiment, the plasticity parameters β, γ, δ were not exposed to variation
and were fixed to the setting derived in the previous chapter.

The fitness-function published by Pasemann and Dieckmann (1997b) leads to solutions,
which use high oscillations of the output neuron as a control strategy. Although the task was
sufficiently solved, solutions which consume less energy, in terms of the deviation of the output
neurons, are favoured. Hence, the fitness-function was altered, and is given by

F �
Ţ

t�1

fptq (6.1)

fptq :� 1� c0|xptq|10 � c1|Θptq|10 � c2Fptq � c3|O�ptq| � c4Zptq (6.2)
f : N ÞÑ R
T P N [Life span of an individual, defined by experimenter]

and fptq and has the following characteristics:

1. Each time step of the life time of the controller is rewarded (+1).

2. The distance of the cart to the centre of the track is punished (�c0|xptq|10).

3. The deviation of the pole from its centre is punished (�c1|Θptq|10).

4. The integral of the applied force is punished at every time step (�c2Fptq).
5. The energy consumed at every time step is punished (�c3|O�ptq|).
6. The number of sign changes for each output neuron is punished (�c4Zptq).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

110 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

where the terms of fptq are given by:

ck P R�, Fitness-function coefficients, open to user interaction.
i, j P t4, 5u Indices of the output neurons.

∆t Integration time step (see tab. 6.1).

|y|10 :� |y|
max tyu , y P R

Fptq :�
ţ

s�0

O�psq∆t

Zptq :�

$''''&
''''%

0 : signpOiptqq � signpOipt� 1qq,@i
1 : signpOiptqq � signpOipt� 1qq and

signpOjptqq �� signpOjpt� 1qq,@i, j : i �� j

2 : signpOiptqq �� signpOipt� 1qq,@i

.

The ck are coefficients that are open to user interaction, so that the weighting of the fitness-
function terms can be changed during the evolution. This is one technique to avoid the bootstrap
problem, which is known as incremental evolution (Nolfi & Floreano, 2000). During the first
generations the coefficients are chosen such that the task is not too difficult, and then adapted
as soon as the performance of the population increases. In this case, at the beginning of the
evolution, only the life time was rewarded and the punishment terms were added sequentially,
when the average performance of the population increased to match the new affordances (less
oscillation, less energy consumption, etc.).

The evaluation time was set to 25,000 time steps (25 seconds), of which the first 5000 itera-
tions were not taken into account for the fitness-function, i.e. the fitness-function was calculated
only for the last 20,000 time steps. This corresponds to the initial convergence phase for the
controller, in which actions which would normally be punished (e.g. large oscillations) and would
therefore, lead to overall low fitness, are permitted. This technique, of the so called warm-up
steps or warm-up phase is another way to avoid the bootstrap problem. Consider two differ-
ent controllers during the first generations, of the evolution. Both controllers survive almost
equally long, but the first controller has zero output, so that the pole falls towards the failure
condition almost immediately. The second controller survives longer, because it oscillates and
therefore stabilises the pole for a short period of time. Obviously, the second controller should
be favoured by evolution, but because the first has zero output, it is not punished, while the
second is punished for high oscillations. Without warm-up steps, the first, undesired controller
would receive a higher fitness value. These considerations also hold for the selection of good
controllers throughout the evolution process and not only for the first generations. Without
warm-up steps, the population is likely to collapse, with respect to the fitness distribution.

To avoid specialisation and elitism, every controller was evaluated 15 times with random
initial conditions. An evaluation is referred to as a try. The conditions were the same for each
controller in one generation. The overall fitness is then given by the sum of the fitness value of
each try.

At the beginning of each evaluation time, 500 initial iterations are processed. For this initial
set of iterations, the initial condition (input values) are presented to the controller and the

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.1. SRN POLE-BALANCER 111

Figure 6.1: Cart-pole neural network and its sub-modules. A) Evolved neural network solving
the task. B) Cart positioning sub-module, C) Pole balancing sub-module. For a detailed discussion see
text.

controller is iterated, but the output is not applied to the motor of the cart. The simulation is
frozen during the initial iterations. This time is required by the SRN model in order to converge
against values which enable good performance. The initial set of iterations and the integration
time step depend on the choice of the plasticity parameters as they determine the modulation
rate of the synapses (see sec. 5.2).

In addition to the two abortion criteria defined by the standard cart-pole experiment (track
length and maximal deviation of the pole), another abortion criteria was introduced. The
evaluation is terminated if computational limitations are reached. This occurs if the computation
leads to NaN (not a number) due to a diverging receptor strength. In the chosen Java (Sun
Microsystems, 2007) implementation the hyperbolic tangent returns NaN for values larger than
approximately 710.

6.1.3 Results

This section discusses the best controller generated by artificial evolution. As the artificial evo-
lution algorithm ENS3 alters parameters and the structure of the neural networks. Controllers
with very different topology and size: were generated. The selected controller is chosen for
presentation here because of its performance and minimal structure.

This solution is the overall best-performing controller with respect to different criteria (see
fig. 6.2), namely:

1. Fitness value as defined by Pasemann and Dieckmann (1997b) (see fig. 6.2 A).

2. Time successfully balancing the pole (see fig. 6.2 B).

3. Fitness value with respect the fitness-function given above (see eq. 6.1 and fig. 6.2 C).

Observed behaviour

The presented controller is able to balance the pole and, as required, does not use oscillation
to stabilise it (see fig. 6.3 A and fig. 6.4 A). Due to the agonist and antagonist configuration of
the controller, one neuron stabilises at the upper target value, while the other stabilises at the

:Size refers to the number of synapses and hidden neurons.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

112 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

lower target value in order to stabilise the pole (see fig. 6.4 A.II). The sum of both neurons O�

is close to zero, when the pole and the cart are centred (see fig. 6.4 A.III).
The behaviour of the controller can be classified into five cases, depending on the initial

condition and the evaluation time observed (see fig. 6.2 and fig. 6.3). Each of the cases is
described in the following and related to the equations given by the neural network structure in
the following section.

1. Evolved Case: For the first case (see fig. 6.3 A), the transients of the variables of the
controller and the cart are shown for an initial condition with the highest achieved fitness value
(xp0q � �0.24,Θp0q � 0.079). The plot shows that the pole is successfully stabilised after 5,000
time steps for the remaining 20,000 time steps. According to the evolutionary set-up, this leads
to the highest possible fitness. The output neurons O4 and O5 stabilise at the lower and upper
target value, respectively, such that O� is close to zero. The evolution of the synaptic strength
over time (see fig. 6.4 A) indicates, that this case is not stable, as the synapses diverge. This
leads to the second case.

2. Switching of output neurons and period-2 oscillation: The second case occurs after
time step 50,500 of the same initial conditions as the first case (see fig. 6.3 B and fig. 6.4 B).
First, both output neurons converge to zero, followed by a period-2 oscillation with varying
amplitude and mean value (time step � 50,750 - 51,000), until the oscillation decreases and the
output neurons converge towards the target values, but in reversed order:

pO4pt Á 5000q, O5pt Á 5000qq � p�a�, a�q
pO4pt Á 52000q, O5pt Á 52000qq � pa�,�a�q.

The reason for the switching is indicated by the input values I0ptq9xptq and I1ptq9Θptq (see
fig. 6.4 B.I). The inversion of the output neurons happens when the two inputs are almost equal.
The convergence of the output neuron towards zero constantly increases the error term of the
receptor function ξptq (see eq. 4.8) which leads to the divergence of the synaptic strength. The
large absolute values of the diverging synapses cause the overshooting reaction of the controller
to small variations of the input which explains the oscillatory behaviour. This holds until the
output neurons converge to their target values �a� enabling the receptor strengths to converge
to their asymptotically stable values, and finally stabilise the entire system.

3. Quasi-periodic behaviour: The third case (see fig. 6.3 C and fig. 6.5 C) is shown for a
different initial condition (xp0q � 0.72,Θp0q � 0.026). In this case, the weights of the synapses
are small compared to those of the previous case. What follows is that small deviations of the
pole angle and small values of the pole angle velocity are followed by the output neurons. The
resulting output variation is not large enough to catch the pole immediately, but large enough
to keep it from falling towards the failure condition (see tab. 6.1). Hence, the output neurons
follow the pole angle deviation in a quasi-periodic transient, resulting from the sensori-motor
loop, until the pole is finally stabilised again.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.1. SRN POLE-BALANCER 113

4. Period-2 oscillation followed by switching of the output neurons: This case (xp0q �
0.24,Θp0q � �0.079) is similar to the second case. The difference is the order in which oscillation
and switching occurs (see fig. 6.3 D and fig. 6.5 D). In the fourth case, first the period-2 oscillation
is observed, followed by the switching of the output neurons. The reason for the switching is
the same as for the second case: the sum of the cart-pole position and the pole angle inputs
is almost zero. However, the reason for the oscillation differs. The weights of the synapses in
the fourth case have grown large over time before the inputs sum up to zero (see fig. 6.5 D).
Small disturbances of the pole angle and pole angle velocity result in large changes of the output
of the output neurons, resulting in an overshooting behaviour. This overshooting behaviour is
the reason for the period-2 oscillation. While the cart-pole is kept stable by the overshooting
behaviour, the inputs sum up to zero, as previously described, which is an indication for the
switching of the output neurons. The oscillation decreases as the output neurons reach their
target values.

5. Irregularity in phase-space plot: This phenomenon is only visible, if the phase-space
plot is created with a high resolution. An explanation of the behaviour can be found if the
transients are compared to the transients of a closely-related initial condition (see fig. 6.6 and
fig. 6.7). The plots show the transients for two different but similar initial conditions (xEp0q �
1.919,ΘEp0q � �0.0342, xF p0q � 1.9,ΘF p0q � �0.03). The only significant difference is visible
in the transients of the synaptic strengths. In the case of the initial condition for which the
controller fails (E), their absolute values are smaller compared to those of the initial condition
for which the pole is successfully balanced (F). This leads to the conclusion, that a stable
behaviour can only be achieved if the synapses have reached a threshold value, before the inputs
demand for a stabilisation behaviour. This also depends on the bias values. For changes of the
biases, both cases (E & F) lead to a stabilisation behaviour. The phenomenon also occurs for
neuro-controller with static synapses (Pasemann, personal communication, 30. July, 2007). It
is assumed that this is related to asymmetry in the control structure and the equations defining
the cart-pole experiment. To fully analyse and understand this effects, a mathematical analysis,
which includes the sensori-motor loop, is required. This means that the interaction of the
controller, the body and the environment has to modelled and taken into account as a single
system.

In the following section, the description of the observable behaviour is related to the controller
dynamics, i.e. the equations given by the neural network structure.

Explanation of the observed behaviour

The structure of the controller (see fig. 6.1 A) reveals how the stabilisation behaviour is achieved.
This is best visualised when the input neurons are clustered and considered separately. The
first cluster contains the input neurons I09x and I29 9x and the output neurons O4, O5 (see
fig. 6.1 B). The speed of the cart (I2) only modifies one output neuron (O4). Depending on
the sign of the output neurons, the resulting speed (O�) is either increased or decreased as a
result of the changed position input (I0). Which of the two cases applies depends on the input
of the current location of the cart (I0). If the cart position is positive, O4 is positive and O5

is negative. A positive speed input (I2) will increase the speed (positive O�), while a negative

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

114 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

input will decrease the current speed (negative O�). Summarising, the sub-module consisting
of I0, I2, O4, O5 will drive the cart towards the centre (zero coordinate) of the track.

The same considerations also hold for the sub-module I1, I3, O4, O5 (see fig. 6.1 C). If the
pole angular velocity (I3) is positive, O4 is positive and O5 is negative. A positive pole angle
(I1) will further increase the cart-pole force, while in the case of a negative pole angular velocity
it will decrease the cart-pole force. This sub-module realises a centring of the pole. Compared
to the cart-position sub-module, the pole angle has a doubled influence, which reflects that the
centring the pole has a higher priority than the centring of the cart. The overall behaviour of
the controller is then given by the superposition of the two sub-modules.

To understand the cases of the behaviour of the controller presented above, the underlying
equations must be taken into account. The dynamics of the controller are given by:

aipt� 1q � Θi � ξiptq
¸
jPI

cijIjptq, @j P I, t P T : ηj � 1, i P t4, 5u

ξipt� 1q � ξiptqp1� βpτpa�q2 � τpaiptqq2q (6.3)
a4pt� 1q � Θ4 � ξ4ptq

�� I0ptq � I1ptq � I3ptq � I2ptq
�

(6.4)
a5pt� 1q � Θ5 � ξ5ptq

�� I0ptq � I1ptq � I3ptq
�

(6.5)
O�ptq � O4ptq �O5ptq (6.6)

� τpa4ptqq � τpa5ptqq
� τ

�
Θ4 � ξ4ptq

�� I0ptq � I1ptq � I3ptq � I2ptq
���

τ
�
Θ5 � ξ5ptq

�� I0ptq � I1ptq � I3ptq
��

Θ4 � �0.029
Θ5 � �0.056.

The effect of the small bias values is understood if the solution for O� is analysed (see eq. 6.6).
It is rewritten in the following form:

Σ4ptq :� �I0ptq � I1ptq � I3ptq � I2ptq
Σ5ptq :� �I0ptq � I1ptq � I3ptq

ùñ O� � τ pΘ4 � ξ4ptqΣ4ptqq � τ pΘ5 � ξ5ptqΣ5ptqq . (6.7)

Two cases are compared with respect to the consequences of O�, bias values equal and unequal
to zero.

First, it is assumed that both bias values are zero Θ4 � Θ5 � 0. In this case the cart force
is zero O� � 0 if:

Θ4 � Θ5 � 0

ñ O�ptq � 0 ô
#
@i P I : Iiptq � 0
ξ4ptqΣ4ptq � �ξ5ptqΣ5ptq

. (6.8)

It follows from equation 6.8 that there are two possible solutions for O�ptq � 0 under the
assumption that the bias values are zero:

@i P I : Iiptq � 0 (6.9)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.1. SRN POLE-BALANCER 115

ξ4ptqΣ4ptq � �ξ5ptqΣ5ptq. (6.10)

The first case (see eq. 6.9), stating that all inputs are zero at the same time (see eq. 6.9), is
critical. If this case occurs, it means that the pole angle is zero (I1 � 0) and the pole angular
velocity is zero (I3 � 0), and the cart remains with with no velocity at the centre of the track
(I0 � 0, I2 � 0). This is an unstable fixed point of the system. If it is not otherwise disturbed,
the system will remain unchanged in this case, leading to diverging receptor strength, as at each
time step, the increment of the receptor is maximal (see eq. 6.3). The changes in the synaptic
strength do not influence the activation of the neuron, because the input is zero, and hence, the
increment of the activation is zero too. In a technical application this leads to numerical limits,
so that this case leads to the abortion of the evaluation (see above).

The second case (see eq. 6.10) follows from the rewritten solution for the output O� (see
eq. 6.7), and is not critical. At least one input is not equal to zero, therefore, there is sensory
input which influences the internal states of the neural network and also its output and, conse-
quently, its behaviour. Hence, this condition is not stable in the same sense as discussed for the
first case, and cannot lead to diverging receptors.

Next, the same considerations are drawn for the case in which the bias values are not zero:

Θ4,Θ5 �� 0
@i P I : Iiptq � 0 ñ O�ptq �� 0 (6.11)

O�ptq � 0 ô Θ4 � ξ4ptqΣ4ptq � �Θ5 � ξ5ptqΣ5ptq. (6.12)

The first case (see eq. 6.11) is not critical. Although all inputs are zero, the output is not (see
eq. 6.11). At least the cart position and cart velocity inputs are altered as a result and will
not remain zero. This also holds for the second case, in which an output equal to zero (see
eq. 6.12) is the result of non-zero inputs, which means that the system is externally-driven and
will, therefore, not remain in the critical state. In conclusion, the bias values are small enough
to not contribute to the overall dynamics of the system, but large enough to avoid a diverging
behaviour of the output neurons. Next, the observed cases are discussed in relation to the
equations given by the neural network.

The activation equations of the agonist and antagonist, as well as the solution for O� (see
eq. (6.4) to (6.6)) reveals when the switching behaviour occurs namely at two distinct points,
given by:

O4 : ξ4ptqΣ4ptq � Θ4

O5 : ξ5ptqΣ5ptq � Θ5.

Close to these two points, the error term gptq of the corresponding output neuron is maximal (see
eq. 6.3). Hence, the growth of the synapse is maximal, leading to the observable overshooting
behaviour (period-2 oscillation) of the controller. This holds, until the mean value of the output
neurons approach the target values, so that the synapses converge towards their asymptotically
stable values. This is the explanation of the second case described above, the switching of the
output neurons, followed by a period-2 oscillation.

In the third case, due to the different initial conditions, the synapse strength grows large
sooner, such that the oscillation occurs before the switching of the output neurons.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

116 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

Discussion

This section presented a controller for the cart-pole benchmark problem with four inputs. The
experiment is well-suited to demonstrate how the diverging behaviour of the SRN model for an
input approaching zero, which is a desirable feature in the obstacle-avoidance task (see sec. 5.2),
but undesirable in other cases, can be challenged if required. In the cart-pole experiment, the
controller has to produce a zero output for inputs close to zero, which is precisely the setting at
which divergence of the receptor occurs for the single neuron (see chap. 4). This was achieved
by implementing a neural network analogy of the agonist and antagonists configuration found
in biological systems (Klinke & Silbernagl, 2005). The evolved controller is a pure feed-forward
structure, but it shows dynamical features, such as period-2 oscillations and quasi-periodic
transients, as a result of the sensori-motor loop. The SRN neural network sufficiently solves the
task for the required evolutionary setting, i.e. it was able to balance the pole, with minimal energy
consumption after the given warm-up steps, for the maximal evaluation time. The balancing
behaviour was described by the structure and the equations given by the neural network.

The experiment also shows that the diverging behaviour of the output neuron for inputs
converging to zero cannot be compensated for completely but can be minimised with the ago-
nist/antagonists configuration. There is a period of time for which the controller oscillates when
the inputs sum up to zero. This underlines that it is not possible to achieve zero output for
zero input with the SRN model. The question posed at the beginning of this section was if this
property limits the application of the SRN model.

First, similar solutions can also be found in the literature for neuro-controller with static
synapses (Pasemann, 1997a). Second, the principle of rapid rhythmic inputs driving slow effec-
tors is found in biology (Morris & Hooper, 1998) and also used and discussed in the context of
robotics (Hülse, 2007), where high oscillatory motor signals are filtered by the low-pass filter
properties of the actuators. The task was sufficiently solved with the SRN model and showed
oscillatory behaviour only for a subset of initial parameters and, otherwise, only for a short
period of time. It is, therefore, concluded that this property does not limit the SRN model for
possible applications.

The controller was evolved with fixed plasticity parameters, which were taken from the pre-
vious chapters. The next section discusses an evolution of an adaptive controller with variation
of the plasticity parameters.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.1. SRN POLE-BALANCER 117

0
5k
10k
15k
20k
25k
30k
35k
40k
45k
50k

Avg. Pole Fitness over 100 runsA

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Initial Cart Position (m)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

In
iti

al
 P

ol
e

An
gl

e
(ra

d)

0

5k

10k

15k

20k

25k
Avg. Life time over 100 runsB

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Initial Cart Position (m)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

In
iti

al
 P

ol
e

An
gl

e
(ra

d)

0

50k

100k

150k

200k

250k
Avg. Pole Fitness over 100 runsC

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Initial Cart Position (m)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

In
iti

al
 P

ol
e

An
gl

e
(ra

d)

10k

15k

20k

25k
Avg. Life time over 100 runsD

 1.85 1.9 1.95 2 2.05 2.1 2.15
Initial Cart Position (m)

-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

In
iti

al
 P

ol
e

An
gl

e
(ra

d)

E F

Figure 6.2: Best evolved controller and comparison with a static solution. A-E) Initial
conditions plotted against A) Fitness-function defined by Pasemann and Dieckmann (1997b), B) Life
time C) Fitness-function given in the text (see eq. 6.2). The plot D is an enlargement of the irregularity
by a clipping of the plot B. Plot E shows the neural network by Pasemann and Dieckmann (1997b), plot
F the corresponding phase-space. The latter two plots are taken from Pasemann and Dieckmann (1997b).
For each of the plots A-C, the initial cart position and the initial pole angle were varied over 100 equally
distributed values over the valid intervals (for plot D over the reduced intervals). For each setting, 100
randomly initialised instances of the controller were evaluated. The given fitness value at each coordinate
is the average of 100 runs. The fitness phase-space reveals an irregularity in the fitness values for a certain
set of initial conditions (enlarged in plot D). This phenomenon is discussed in the text. Figure F shows
black for a successful balancing of the pole for more than 120 seconds while white encodes a balancing
of less than 30 seconds. The resolution of the plot is 40 by 40. Plot F is best compared with plot B,
although the resolutions differ significantly.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

118 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000 25000

A.I

t

Ii

I0 ! x I1 ! " I2 ! #x/#t I3 ! #"/#t

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 0 5000 10000 15000 20000 25000

A.II

t

Oi
O+

O4 O5 O+

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20000 40000 60000 80000 100000

B.I

t

Ii

I0 ! x I1 ! " I2 ! #x/#t I3 ! #"/#t

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 0 20000 40000 60000 80000 100000

B.II

t

Oi
O+

O4 O5 O+

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 10000 20000 30000 40000 50000

C.I

t

Ii

I0 ! x I1 ! " I2 ! #x/#t I3 ! #"/#t

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 10000 20000 30000 40000 50000

C.II

t

Oi
O+

O4 O5 O+

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20000 40000 60000 80000 100000

D.I

t

Ii

I0 ! x I1 ! " I2 ! #x/#t I3 ! #"/#t

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 0 20000 40000 60000 80000 100000

D.II

t

Oi
O+

O4 O5 O+

Figure 6.3: Cart-pole transients for different initial conditions. Four cases of different
behaviour of the same controller with varying initial conditions and evaluation time. A) Initial condition
xp0q � �0.24,Θp0q � 0.079 and evaluation time equal to the evolutionary set-up (25,000 iterations), B)
Same initial condition as A but with increased evaluation time (100,000), C) Initial condition xp0q �
0.72,Θp0q � 0.026, D) Initial condition xp0q � 0.24,Θp0q � �0.079. All plots were generated with
aip0q � oip0q � 0, ξip0q � ηip0q � ε,@i P N .

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.1. SRN POLE-BALANCER 119

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000 25000

A.I

t

O

I0 = x I1 = ! I2 = "x/"t I3 = "!/"t

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 0 5000 10000 15000 20000 25000

A.II

t

O

O4 O5

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

 0 5000 10000 15000 20000 25000

A.III

t

O

O+

-40
-30
-20
-10

 0
 10
 20
 30
 40

 0 5000 10000 15000 20000 25000

A.IV

t

wij

w43 w41 w40 w42 w51 w50 w53

-0.001

-0.0005

 0

 0.0005

 0.001

 50600 50800 51000 51200 51400

B.I

t

O

I0 = x I1 = ! I2 = "x/"t I3 = "!/"t

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 50600 50800 51000 51200 51400

B.II

t

O

O4 O5

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4

 50600 50800 51000 51200 51400

B.III

t

O

O+

-10000

-5000

 0

 5000

 10000

 50600 50800 51000 51200 51400

B.IV

t

wij

w43 w41 w40 w42 w51 w50 w53

Figure 6.4: Cart-pole transients for the conditions A and B. Detailed plot of the first two
cases A and B. A) Plot for the conditions present during evolution. The plot shows that after the warm-
up phase of 5,000 iterations, the cart is centred and the pole is balanced (A.I), the output neurons have
reached their asymptotically stable values (A.II), and that the summed output O� is close to zero (A.III).
But the plot of the synaptic strength (A.IV) clearly indicates a diverging behaviour (for discussion see
text). The result of the diverging behaviour is shown on the right-hand side (B.I and B.IV), with the
same initial conditions, but increased evaluation time, compared to the evolution setting. It is shown
that as soon as the cart position input (I0), and the pole angle input (I1) approach zero (B.I), the output
neurons converge towards zero (B.II) followed by a period-2 oscillation and finally a convergence towards
their asymptotically stable values, but in reversed order. This is the effect of the large synaptic strength
(B.IV). For a detailed discussion, see text.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

120 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

 5000 6000 7000 8000 9000 10000

C.I

t

O

I0 = x I1 = ! I2 = "x/"t I3 = "!/"t

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 5000 6000 7000 8000 9000 10000

C.II

t

O

O4 O5

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 5000 6000 7000 8000 9000 10000

C.III

t

O

O+

-8
-6
-4
-2
 0
 2
 4
 6
 8

 5000 6000 7000 8000 9000 10000

C.IV

t

wij

w43 w41 w40 w42 w51 w50 w53

-0.0012
-0.001

-0.0008
-0.0006
-0.0004
-0.0002

 0
 0.0002
 0.0004
 0.0006
 0.0008

 26060 26065 26070 26075 26080 26085 26090 26095 26100

D.I

t

O

I0 = x I1 = ! I2 = "x/"t I3 = "!/"t

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 26060 26065 26070 26075 26080 26085 26090 26095 26100

D.II

t

O

O4 O5

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 26060 26065 26070 26075 26080 26085 26090 26095 26100

D.III

t

O

O+

-800
-600
-400
-200

 0
 200
 400
 600
 800

 25000 25200 25400 25600 25800 26000

D.IV

t

wij

w43 w41 w40 w42 w51 w50 w53

Figure 6.5: Cart-pole transients for the conditions C and D. Detailed plot of the two cases
C and D. C) The output neurons, and hence, the summed output O� show a quasi-periodic behaviour
(C.II & C.III), which is the result of the comparably small synaptic strength (C.IV). D) The synaptic
strength of the controller is large compared to the other cases, such that small variations of the inputs
(D.I) lead to an overshooting behaviour of the output neurons (D.II, D.III). For a detailed discussion,
see text.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.1. SRN POLE-BALANCER 121

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 5000 10000 15000 20000 25000

E.I

t

Ii

I0 ! x
I1 ! "

I2 ! #x/#t
I3 ! #"/#t

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5000 10000 15000 20000 25000

E.II

t

Oi
O+

O4 O5 O+

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 5000 10000 15000 20000 25000

F.I

t

Ii

I0 ! x
I1 ! "

I2 ! #x/#t
I3 ! #"/#t

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5000 10000 15000 20000 25000

F.II

t

Oi
O+

O4 O5 O+

Figure 6.6: Cart-pole transients for the conditions E and F. Comparison between two initial
conditions, one within the irregularity region of the phase-space (E), the other closely-related to it (F).
The initial conditions are E: xp0q � 1.919,Θp0q � �0.0342, and F: xp0q � 1.9,Θp0q � 0.03. A detailed
plot of the two initial conditions is shown in the figure 6.7

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

122 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

-3

-2

-1

 0

 1

 5000 5500 6000 6500 7000 7500 8000

E.I

t

O

I0 = x I1 = ! I2 = "x/"t I3 = "!/"t

-1

-0.5

 0

 0.5

 1

 5000 5500 6000 6500 7000 7500 8000

E.II

t

O

O4 O5

-1

-0.5

 0

 0.5

 1

 5000 5500 6000 6500 7000 7500 8000

E.III

t

O

O+

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 5000 5500 6000 6500 7000 7500 8000

E.IV

t

wij

w43 w41 w40 w42 w51 w50 w53

-3

-2

-1

 0

 1

 5000 5500 6000 6500 7000 7500 8000

F.I

t

O

I0 = x I1 = ! I2 = "x/"t I3 = "!/"t

-1

-0.5

 0

 0.5

 1

 5000 5500 6000 6500 7000 7500 8000

F.II

t

O

O4 O5

-1

-0.5

 0

 0.5

 1

 5000 5500 6000 6500 7000 7500 8000

F.III

t

O

O+

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 5000 5500 6000 6500 7000 7500 8000

F.IV

t

wij

w43 w41 w40 w42 w51 w50 w53

Figure 6.7: Detailed cart-pole transients for the conditions E and F. Detailed plot of the
two cases E and F. Only the synaptic strength (compare E.IV and F.IV) differ. The comparison indicates
that there is a minimal required strengths which has to be fulfilled in order to balance the pole. For a
detailed discussion, see text.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.2. SRN ADAPTIVE LIGHT-SEEKER WITH AMBIENT LIGHT 123

6.2 SRN Adaptive Light-Seeker with Ambient Light

The previous section discussed an experiment in which an input of zero must be regulated
towards an output of zero. It was shown that this cannot be achieved in total, but that the
solution solves the task well in comparison to solutions with the standard additive neuron model.
In this section, a controller is evolved which shows the adaptation properties of the SRN model.

In the light-seeker experiment, first described by Grey Walter in 1950 (Walter, 1950, 1951),
an autonomous agent, equipped with light sensitive sensors, has to find a light source. The
analogy often drawn to biology is that the light source is a food reservoir and the light sensitive
sensors are sensors that enable the agent to detect this reservoir. Approaching the light is then
interpreted as finding food and recharging. Nearly all experiments within this domain have
been conducted within a static ambient light environment, often in the dark, which means that
if the agent is not heading towards the designated light source, the sensors do not sense any
light. A sensed light intensity, therefore, always relates to a light source. A systematic analysis
of the light-seeking behaviour in the context of fusion and expansion techniques in the field of
evolutionary robotics and recurrent neural networks is given by Hülse (2007).

In this experiment, ambient light is included in the environmental set-up. Ambient light
means that there is no specific light source, but that, sensors read non-zero light intensity
values, independently of the position or heading of the robot, when no light source is detected.
The robot is a variation of the Braitenberg vehicle described in the previous chapter, with
two proximity sensors for negative tropism (obstacle-avoidance) and two additional sensors for
positive tropism (light-seeking).

The experiment is divided into two parts. First, a light-seeker is evolved, then in the next
step, a varying ambient light is included in a simpler environmental set-up. Ambient light is
only varied from generation to generation, to ensure comparability of the fitness values within
a population.

This section begins with a detailed description of the environmental and experimental set-
ups, and follows with a discussion of the results.

6.2.1 Experimental Set-up

The Khepera Simulator of the previous chapter was not used in this experiment for two reasons.
First, in the Khepera Simulator, a light source is not blocked by a wall. This means, that if
there is a wall between the light source and the robot, the robot will detect it with the same
intensity as if there was no wall present. Second, and more importantly, The Khepera Simulator
does not allow randomised placement of the objects within the environment.

Therefore, based on a swarm simulation of the ASM II robot (I Support Learning, 2007),
a new simulation was written in YARS (app. A: ISEE). The initial YARS description file was
provided by Steffen Wischmann: for swarm experiments (see fig. 6.9). YARS is based on the
open-source physics engine ODE (Smith, 2005), which is likely to show unstable behaviour,
when the proportions of the simulated rigid bodies are very small. Examples of properties are
the mass and dimension of a body. To increase the stability of the simulation, but the ASM
Robot, and not the Khepera robot, was chosen for simulation.

:No reference available.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

124 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

Figure 6.8: SRN Light-Seeker Environments. A: Environment with randomised placement of
objects and light sources. B: Same environment, different random positioning. C: Environment used for
the evolution of the SRN Adaptive Light-Seeker. The circles indicate the distance to the light sources
where the measured light has 10% of its maximal intensity.

Environment

Initially a more complex and randomised environment was chosen (see fig. 6.8A), with the
following characteristics:

1. The light source is not visible from the initial position of the robot.

2. Obstacles are replaced randomly for each new generation.

3. Light sources are replaced randomly for each new generation.

The first property ensures that individuals are only rewarded when they actively search for the
light source. The second and third properties ensure that the solution strategy cannot be a
specific behavioural pattern, such as e.g. searching the environment in left or right turns with
increasing diameter. As the light source and obstacle positions vary, this sort of behaviour leads
to a low fitness.

For simple light-seeking and obstacle-avoidance tasks, this environment led to good results
in a small amount of time (about 5-6 generations), when the evolution is started with the
Braitenberg vehicle from the previous chapter as an initial structure. However, it was not well-
suited for evolution with varying ambient light, for the following reason. In order to avoid
specialisation, each individual was evaluated 15 times, and the sum of the fitness values was
used for the selection operator. In this comparably large environment, up to 5,000 cycles are
required for the robot to detect the light source without any ambient light. This number must be
increased significantly if ambient light is included in the setting. The evaluation time took too
long, thus a simpler environment (see fig. 6.8 B), capturing the main characteristics of the more
complex environment had to be designed. In this second, simpler environment, the evaluation
time required for an individual to find the light source, even when ambient light, is reduced
to approximately 500 cycles. The light source is randomly placed in a certain interval and is
not detectable from the start position of the robot. The circle in the figure indicates where the
measured light intensity of the light source is 10% of the maximal intensity (see fig. 6.8 A/B/C
and fig. 6.9, right hand side). The sensors have a Gaussian-distributed noise of 5%, so that the

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.2. SRN ADAPTIVE LIGHT-SEEKER WITH AMBIENT LIGHT 125

Figure 6.9: ASM-II Robot and YARS Simulation. Left: The ASM II robot, image taken from
official homepage (I Support Learning, 2007), Centre: The swarm robot simulation written by Steffen
Wischmann. Screen shot taken from the video available at (Relais d’information sur les science la cognitin,
2007). Right: SRN Light-Seeker with ambient light simulator.

circle indicates the maximal distance from which the light source is clearly distinguishable from
the noise.

For the light-seeking behaviour, each light source had a maximal light intensity of 1, and
the ambient light was varied between 0.5 and 1. These values were chosen to avoid evolving
the controller in the usual dark environment in which a sensed light intensity is automatically
related to a light source. The measured light intensity li for each light sensor is calculated in
YARS using the following equation:

li �
L�1̧

j�0

Lj
1� r2

j

?
αj (6.13)

αj �
#

0 |ωj | ¡ ωmax
|ωj |
ωmax

|ωj | ¤ ωmax
,

where L is the number of light sources in the environment, Lj is the maximal intensity of the
j-th light source, rj is the distance of the j-th light source to the sensor, ωj is the relative angle
between the position of the light source and the light sensor in relative coordinates of the robot,
and ωmax, the maximal relative angle for which the light sensor still detects the light.

For a description of the implementation, see table 6.3 and figure 6.8 C.

6.2.2 Evolutionary Set-up

This subsection begins with the set-up of the controller, followed by the discussion of the fitness-
function.

Controller

The robot has two proximity and two light intensity sensors, each represented by one input
neuron. Distance and light intensity are mapped such that when no obstacle is present or no
light is detected, the corresponding input value is �1. For the minimal possible distance of an
obstacle with respect to the proximity sensor, and the maximal measured light intensity with

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

126 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

Fric. coeff.
Radius Mass µx µy Torque Max. velocity

Body 10 cm 0.95 kg 0 0 – –

Differential wheels 6 cm 0.05 kg 15 0 0.5 N 10 rad/s

Supporting wheels 0.1 cm 1.0 kg 0 0 0 0

Table 6.3: Physical properties of the simulated ASM-II robot. The 1 kg value for the weight
of the supporting wheels is required by the physics engine to avoid numerical instabilities. This was
compensated for increasing the torque and the maximal velocity of the differential wheels until the
behaviour of the simulated and physical robot were comparable. The friction coefficients are given with
respect to the physics engine ODE, which is used in YARS. A description of the parameters can be found
in the ODE documentation (Smith, 2005).

respect to the sensor range of the light sensor, the corresponding values are �1. In YARS, a
measured light intensity value is the sum of the distance dependent light intensities of all light
sources in range of the sensor, added to the ambient light. Let la P r0.5, 1s denote the ambient
light value, L be the number of light sources in the environment, and li, the light value of the
i-th light source with respect to the current position and orientation of the current robot (see
eq. 6.13), then the measured light values at the sensor lj is given by

li P r0, 1s

lj � la �
L�1̧

i�0

li

Let xl, xr P R denote the value returned by the left and right distance sensor, and ll, lr P R, the
value returned by the left and right light intensity sensor, respectively, then the pre-processing
is given by:

I0,1 � 2
xl,r

maxtxl,ru � 1

ñ I0,1 P r�1, 1s,
I2,3 � 2

ll,r
maxtll,ru � 1.

The additive light intensity is not a realistic model of a physical LDR (Light Dependent Resis-
tor), which has a non-linear activation curve and reaches saturation for light intensities over a
certain (manufacturer dependent) threshold. Nevertheless, this model was chosen because of its
simplicity and its non-linear characteristic which is comparable to a logarithmic function, and
does not increase the difficulty of the problem.

The light sources were placed at large distances to each other in the more complex first
environment. This ensured that only one light source at a time could be detected by the robot.
It then follows that

la P r0.5, 1s and li P r0, 1s ñ ll,r P r0.5, 2s

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.2. SRN ADAPTIVE LIGHT-SEEKER WITH AMBIENT LIGHT 127

ñ I2,3 P r�1, 1s.

As the goal of the robot in the light-seeking task is to find the light source and stop in front of it,
the agonist/antagonist configuration of the previous experiment is chosen. The overall output
is the sum of the corresponding output neurons. In contrast to the cart pole, the maximal
speed of each wheel is limited. The summed output is mapped linearly to the wheel velocity
interval. As the maximal wheel velocity is naturally limited by the system, a summed absolute
output value, larger than one, is cut off by the physics of the motors. Let Ml and Mr denote
the motor command for the left and right motor, and O�

l , O
�
r , the output of the two left and

right motor neurons (in the following abbreviated with Ml,r and Ol,r, see also figure 6.10), then
the post-processing is given by

O�
l � O4 �O6

O�
r � O5 �O7

ñ O�
l,r P r�2, 2s

Ml,r � �
O�
l,rpmaxtMl,ru �mintMl,ruq �mintMl,ru

��maxtMl,ru
mintMl,ru

.

In contrast to the previous section, the plasticity parameters were exposed to evolution in the
following manner. One set of plasticity parameters was open for variation, and for each neuron
the parameters were set according to this set. Let αv, βv, γv denote the set of varied plasticity
parameters, then:

@i P N : tαi, βi, γiu � tαv, βv, γvu.

Fitness-Function

As described above, the environment itself punishes undesired static solution strategies, such as
circular search. Therefore, the fitness-function is kept very simple. It is the summed values of
the light sensors. For convenience, the ambient light is subtracted from the light sensor’s values
in the fitness-function (not in the pre-processing of the controller), therefore, it is not part of
the fitness. Let T denote the maximal evaluation time, then the fitness-function reads:

F :�
T�1̧

t�0

�pllptq � laptqq � plrptq � laptqq
�

(6.14)

�
T�1̧

t�0

pllptq � lrptq � 2laptqq. (6.15)

Evaluation abortion criteria

Two abortion criteria are introduced, in which the evaluation time is terminated and the next try
or individual is evaluated. The first criterion corresponds to a failure of the obstacle-avoidance
task (negative tropisms). The evaluation is aborted, if the robot collides with an obstacle. The
light sources are not considered as obstacles, i.e. the robot may pass through them.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

128 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

Pre-Processing Range

IR Proximity sensor, right I0 � 2 xr
maxtxru � 1 r�1.1s

IR Proximity sensor, left I1 � 2 xl
maxtxlu � 1 r�1.1s

Light intensity sensor, right I2 � lr
maxtlru � 1 r�1.1s

Light intensity sensor, left I3 � ll
maxtllu � 1 r�1.1s

Figure 6.10: SRN Adaptive Light-Seeker. Upper left figure: Schematics of the simulated ASM-II
robot. Note that the ordering of the sensors is reversed compared to the Khepera Simulator of the previous
chapter. The original ASM-II was modified by adding two Sharp infra-red proximity sensors (Sharp
GP2D12). Upper right figure: The evolved controller with the best performance in minimal structural
size. It is symmetric, strictly feed-forward, has only one layer, and uses only inhibitory connections.
Bottom: Table of the input neurons and their pre-processing.

The second abortion criterion results from the fact that the YARS simulation, due to the
underlying physics engine, is much slower in comparison to the Khepera 2.0 Simulator (Michel,
2005), which was used in the previous chapter. In order to decrease the evolution time, and
in response to a failure of the exploration and light-seeking behaviour (positive tropisms), the
evaluation is aborted if the robot has not moved a specific distance from its initial position after
a given number of time steps. The distance and the number of time steps are parameters which
are open to modification by the experimenter during runtime. For this evolution, a minimal
distance of one meter had to be travelled in less than 50 evaluation cycles (five seconds).

6.2.3 Results

The neuro-controller which is presented here is minimal with respect to its structure: and per-
formed best with respect to the given fitness-function (see eq. 6.15). The controller is a pure
symmetric feed-forward structure (see fig. 6.10). In the figure, the ordering of the input neurons
is changed to underline the symmetry of the neural network.

:Evolution produced intermediate solutions of higher structural complexity. One such preceding result of
evolution with comparable fitness but higher structural complexity is shown in the figure 3.2.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.2. SRN ADAPTIVE LIGHT-SEEKER WITH AMBIENT LIGHT 129

Observed Behaviour

The controller solves the task for the range of ambient light values which were present during the
evolution (la P r0.5, 1s). It also solves the task for ambient light values which are slightly higher
(e.g. 1.1, see fig. 6.15), but not for values smaller than 0.5 (especially not without ambient
light la � 0, see fig. 6.11). For values between 0.5 and approximately 1.1 the behaviour of
the controller varies (see figures 6.11 to 6.15). For smaller ambient light values, the robot’s
trajectory is straight and the velocity is higher. For higher values, the trajectory indicates a
chaotic movement and a slower overall velocity, i.e. the robot requires significantly more time
to reach the light source. In all cases, the robot approaches the light source and slows down to
almost zero velocity. When the evaluation time is significantly increased from the evaluation time
during the evolution, the robot will pass the light source, and continue with obstacle avoidance
until the light source is perceived again. The explanation for this behaviour is given in the next
section.

Analysis of the transients of the observed behaviour

A first understanding of the behaviour of the controller is derived from the transients of the
system while the agent acts in the sensori-motor loop. The transients give good indications,
which are then related to the equations of the neural network in a second step. As the transients
are very noisy (explanation follows below), and therefore, difficult to read, a smoothing method
was chosen. For each transient plot (see figures 6.11 to 6.15) the upper two figures show the raw
data for the trajectory shown of the left-hand side, while the lower two figures show the same
transients, but smoothed with Bezier spline curves (Encarnação et al., 1996) using the smooth
bezier method provided by gnuplot (T. Williams & Kelley, 2007). The method is implemented
such that a Bezier curve is approximated with connected endpoints. The degree of the Bezier
curve is given by the number of data points.

There is a high amount of noise on the output neurons in all plots where the ambient light
lies within the trained range (la ¡ 0.5). This is the result of the noise which is present at the
input neurons. For each sensor, a Gaussian-distributed noise with a standard deviation of 5%
is added to the sensor value. If the light intensity input neurons I2 and I3 are not close to
zero, the noise is amplified by the strength of the two synapses w63 and w72, whose absolute
value is larger than one. The absolute strength of the other incident synapses are smaller than
one, but they also contribute to the noisy output. If at least one of the light intensity input
neurons is close to zero, the noise is amplified by the diverging behaviour of the SRN model. The
diverging response of an input-output neuro-module, without recurrent connection to an input
crossing zero, was previously discussed (see. chapters and sections 4, 5 and 6.1). In this setting,
the output neurons and synapses do not diverge, for two reasons. First, the robot acts in the
sensori-motor loop. This was previously discussed for the Braitenberg vehicle (see sec. 5). The
oscillations are part of the behaviour of the robot, and alter the sensory input so that the input
value of zero will not remain for a long enough duration of time. In the case of an ambient light
smaller than one (la P r0.5, 1r), the case of a light sensor input close to zero occurs only when
the light source is detected. The robot is, therefore, approaching the light source and hence, the
light intensity neurons’ values I2 or I3 are further increasing. The second reason is independent
of the sensori-motor loop, and is explained for an ambient light value of one (la � 1, see fig.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

130 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

6.13). Here, a noisy input close to zero is constantly present at the sensors. This does not lead
to a divergence of the synaptic strength, because the process of incrementing and decrementing
occur equally often with, on average, the same strength. Therefore, they cancel each other (see
fig. 6.16). The strength of the synapse is anti-proportional to the size of the noise interval around
zero, as the error-dependent term of the receptor returns larger increments for smaller values of
the activation (see eq. 4.8). Hence, the synapses grow faster and larger when values closer to
zero are presented.

The transient plots (see figures 6.11 to 6.15) show that as soon as the light source is detected
by the sensors, the absolute value of the synaptic connections w63 and w72 grow, leading to a
decrease of the output of the output-neurons O6 and O7. The robot slows down. When the
measured light intensity is large enough, the output neurons O6 and O7 regulate towards the
lower target, and, as a result, the summed output O�

L and O�
R is close to zero. This explains

the slowing down and stopping of the robot when a light is detected.
As O6 and O7 are close to their target values, the synaptic connections w63 and w72 decrease

in amplitude, decreasing the influence of the light sensors. Hence, the absolute value of the
activity of the output neurons O6 and O7 is smaller than the target value, resulting in summed
outputs O�

L and O�
R which remain small but positive. This explains why the robot slowly

approaches the light source, but passes it, if no obstacle is present.
In the case of an ambient light of zero (or smaller than 0.5), the pre-processing does not

push the output neurons O6 and O7 towards the lower target value. This is discussed at the end
of the next section, which formally, describes the observations.

Analysis of observed behaviour

To understand how the behaviour described above is achieved by the controller, the transients
(see figures 6.11 to 6.15) must be analysed in relation to the structure of the neuro-controller.
The dynamics are given by the following set of equations:

i P O, j P I (6.16)

C �

�
�����
�1 0 �1 0 0 0 0 0
0 �1 0 �1 0 0 0 0
0 0 0 �1 0 0 0 0
0 0 �1 0 0 0 0 0

�
����
 (6.17)

β � 0.279 (6.18)
Θi � 0 (6.19)

aipt� 1q � �ξiptq
¸
jPI

cijIjptq (6.20)

wijptq � ξiptq (6.21)
ξipt� 1q � ξiptqp1� βpτpa�q2 � τpaiptqq2qq (6.22)
O�
L ptq � τpa4ptqq � τpa5ptqq (6.23)

� τ
�� ξ4ptqpI0ptq � I1ptqq

�� τp�ξ5ptqI1ptqq (6.24)
O�
Rptq � τpa6ptqq � τpa7ptqq (6.25)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.2. SRN ADAPTIVE LIGHT-SEEKER WITH AMBIENT LIGHT 131

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

Figure 6.11: SRN Adaptive Light-Seeker with ambient light intensity of 0.5. Left: Tra-
jectory; Right: Transients of the neuro-modules. The upper two transient plots show the raw transients
of the two neuro-modules controlling the left and right wheel speed, respectively, the lower two are the
Bezier splines for which the data points of the upper two plots are the points of the Bezier curve. This
method is also used in subsequent transient plots. The noise on the output neurons is the result of the
noise on the input neurons, amplified by the synaptic connections. The noise on the output neurons is
increased, when the light intensity input neurons I2 and I3 approach zero. The behaviour of the robot
can be described as follows: when no light is seen, it moves along an almost straight trajectory. As soon
as the light source is detected, the robot approaches it. The initial turning angle corresponds to the
random initialisation of the neural network, combined during the initial 500 iterations.

� τ
�� ξ6ptqpI2ptq � I3ptqq

�� τp�ξ7ptqI3ptqq. (6.26)

Four different cases will be described in the following paragraphs:

1. No light source detected.

2. Light source detected by the left sensor.

3. Light source detected by both sensors.

4. Maximal values detected by both sensors.

Due to the symmetry of the neural network, the two cases where the light source is detected
by a single sensor, i.e. the right sensor and the left sensor, are analogous and are not discussed
separately. To describe these cases in terms of the equations given above, a few definitions are
required:

Icj :� constant value of input neuron j

Σc
i :�

¸
j

cijI
c
j input to output neuron i

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

132 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400 450

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400 450

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400 450

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300 350 400 450

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

Figure 6.12: SRN Adaptive Light-Seeker with ambient light intensity of 0.75. Left:
Trajectory, Right: Transients of the neuro-modules. The behaviour of the controller is in this case,
comparable to the previous one (see fig. 6.11). The robot also locates and approaches the light source,
but its trajectory is not as straight compared to the previous setting. For explanation, see text.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

Figure 6.13: SRN Adaptive Light-Seeker with ambient light intensity of 1.0. Left: Trajec-
tory, Right: Transients of the neuro-modules. The controller still finds the light source, but its trajectory
resembles a chaotic or random search path. This results from the light intensity input neurons which
are close to zero when no light source is detected and hence, lead to comparably large synapses. For
explanation, see text.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.2. SRN ADAPTIVE LIGHT-SEEKER WITH AMBIENT LIGHT 133

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

Figure 6.14: SRN Adaptive Light-Seeker with ambient light intensity of 0. Left: Tra-
jectory, Right: Transients of the neuro-modules. The controller completely fails. Although it shows a
minimal approaching behaviour, it can neither stop in front of the light source, nor avoid obstacles. For
explanation, see text.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w40w42
w63O4

O6
O+

L

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

-14

-12

-10

-8

-6

-4

-2

 0I
O

 w

 t

I0 ! drI1 ! dl
I2 ! lrI3 ! ll

w51w53
w72O5

O7
O+

R

Figure 6.15: SRN Adaptive Light-Seeker with ambient light intensity of 1.1. Left: Tra-
jectory, Right: Transients of the neuro-modules. The controller still finds the light source under this
condition, but its trajectory resembles a chaotic or random search path. This results from the light input
neurons, which are close to zero, if no light source is detected and, hence, result in comparably large
and, therefore, noise-amplifying synapses. Compared to the other situations, in this condition, the robot
keeps a constant distance to the light source. For explanation, see text.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

134 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

-1

-0.5

 0

 0.5

 1

 0 5000 10000 15000 20000
 0

 20

 40

 60

 80

 100

 120

 140I
O

w

t

O I w

-1

-0.5

 0

 0.5

 1

 0 5000 10000 15000 20000
 0

 2

 4

 6

 8

 10

 12

 14

 16I
O

w

t

O I w

Figure 6.16: Input-output module with noisy input. Left: Visualisation of the input-output
neuro-module without recurrent connection. Centre: Transients of the module for a noisy input with a
maximal deviation of 0.01. Right: Transients of the module for a noisy input with maximal deviation of
0.1. The two transient plots show that the synaptic weights do not diverge although the input remains
close to zero over a long period of time. The large values of the synaptic weights, which result from the
input close to zero, lead to an amplification of the noise, which in turn leads to strong deviations of the
output of the output neuron. However, the amplification is not large enough to cause the activation of
the output neuron to reach technical limitations which would lead to an abortion of the evaluation during
evolution (see text below).

a�i � ξ�i Σc
i

ñ ξ� � a�i
Σc
i

~O :� pO�
L , O

�
Rq

~I :� pIcj q
~Σ :� pΣc

i q � p�Ic0 � Ic2,�Ic1 � Ic3,�Ic3,�Ic2q
~a :� pa�i q
~ξ :� pξ�i q.

For simplicity, the calculations are performed without ambient light, and a constant measured
light intensity of -0.5 which corresponds to a distance from the light source of approximately 1.7
meters (see eq. 6.13). The calculations for the four selected cases are as follows:

1) : ~I � p�1,�1,�1,�1q (6.27)
ñ ~Σ � p2, 2, 1, 1q (6.28)

ñ ~ξ �
�

1
2
a�,

1
2
a�, a�, a�

(6.29)

ñ ~a � pa�, a�, a�, a�q (6.30)
ñ ~O � p2τpa�q, 2τpa�qq (6.31)

2) : ~I � p�1,�1,�0.5,�1q (6.32)
ñ ~Σ � p1.5, 2, 1, 0.5q (6.33)

ñ ~ξ �
�

2
3
a�,

1
2
a�, a�, 2a�

(6.34)

ñ ~a � pa�, a�, a�, a�q (6.35)
ñ ~O � p2τpa�q, 2τpa�qq (6.36)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

6.2. SRN ADAPTIVE LIGHT-SEEKER WITH AMBIENT LIGHT 135

3) : ~I � p�1,�1,�0.5,�0.5q (6.37)
ñ ~Σ � p1.5, 1.5, 0.5, 0.5q (6.38)

ñ ~ξ �
�

2
3
a�,

2
3
a�, 2a�, 2a�

(6.39)

ñ ~a � pa�, a�, a�, a�q (6.40)
ñ ~O � p2τpa�q, 2τpa�qq (6.41)

4) : ~I � p�1,�1, 0.5, 0.5q (6.42)
ñ ~Σ � p0.5, 0.5,�0.5,�0.5q (6.43)
ñ ~ξ � p2a�, 2a�, 2a�, 2a�q (6.44)
ñ ~a � pa�, a�,�a�,�a�q (6.45)
ñ ~O � p0, 0q (6.46)

At first, the fixed point equations of the first three conditions (see eq. (6.27) to (6.41)) indicate
that no matter where a light source is detected, the resulting behaviour is a straight forward
movement of the robot (see eqs. (6.31), (6.36), (6.41)). To understand the behaviour, the
solutions for the receptors, which are equivalent to the synaptic weights (see eq. 6.21), must be
taken into account (see eqs. (6.29), (6.34), (6.39)). They must be read as follows. The third
and fourth values are the synaptic connections from the right light sensor I3 to the right motor
O6 and the left sensor I2 to the left motor O7, respectively. The four situations reveal that the
asymptotically stable values for the synaptic connections are different. If light is detected at one
side, the corresponding weight is higher, although the output neuron is regulated towards the
target value a�. This means, that in the sensori-motor loop, the sensitivity towards changes of
the light sensors is increased. Consider the second case form example (see eq. (6.32) to (6.36)). If
the robot moves and the light sensor values remain constant, the robot will continue its straight
movement. However, if the value I2 changes, it has a higher influence on the motor output,
due to the higher value of ξ7 compared to I2 and ξ6. Therefore, the robot is more sensitive to
changing light intensities at its right side. Changing light intensities within the environment only
occur, if the robot senses a light source while it is moving. For ambient light, the measured light
intensity is constant and independent of the position and orientation of the robot. Hence, the
fixed point equations show, how ambient light increases the synaptic weights, and as a result the
sensitivity of the controller to changing light intensity, but does not influence its trajectory. This
explains the adaptivity of the controller to varying ambient light settings. The third situation
clarifies why the robot slows down while it approaches the light source, but finally passes it, if
no obstacle is present. While approaching the light source, the increasing intensity repeatedly
reduces the output of the output neurons. This reduction is compensated for by the homeostatic
behaviour of the output neurons. The result is an approaching towards the light source, and
passing by it. The fourth condition (see eq. (6.42) to (6.46)) shows at which distance to the light
source (~I � p�1,�1, 0.5, 0.5q) the robot will stop (~O � p0, 0q). If no obstacle is present, then
the halting of the robot depends only on the measured light intensity values. As they are given
by the sum of the intensity of the ambient light and of the light sources, the time at which the
robot stops and the stopping distance of the robot, with respect to a light source in this set-up
(li P r0, 1s), depends on the ambient light configuration. An example of such a configuration
is shown in figure 6.15. The fourth condition also gives the maximal ambient light setting for
which the controller will function. Any ambient light value larger than 1.5 will result in a failure
of the controller (not shown).

The reason why the controller does not react to the light source for ambient light values
smaller than 0.5 is a consequence of the pre-processing. The input values remain negative and

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

136 CHAPTER 6. ARTIFICIAL EVOLUTION OF SRN-CONTROLLERS

hence, the output neurons O6 and O7 remain positive. The robot is able to slow down, but is
not able to stop, as O�

L,R are always positive.
The very high oscillations for an ambient light source value of 1 is explained by the diverging

behaviour of the SRN model for inputs close to zero. In this case, if no light source is detected,
the light intensity inputs are zero pI2, I3q � p0, 0q, and the noise on the input neurons is amplified
by the strong synaptic connection.

6.2.4 Discussion

The presented controller is a pure feed-forward structure. A comparable structure with the
standard additive neuron model, would not solve the given task. It is known from literature,
how solutions for this task generally look (Pasemann, Hülse, & Zahedi, 2003; Hülse et al., 2004;
Hülse, 2007). One solution (Pasemann, Hülse, & Zahedi, 2003) utilises a hidden neuron with
overcritical inhibitory self-connection, and a sub-structure called chaotic 2-module (Pasemann,
2002). Analysis of the controller revealed that the stopping behaviour, as a reaction to a detected
light source, is the result of the complex dynamics domain of the controller. Considering neural
networks as parametrised dynamical systems (Pasemann, 1996), the inputs drive the controller
into different dynamical domains, each of which can be understood as a different behaviour
pattern. In the case of the static light-seeker, it is driven into an oscillatory domain, enabling
the robot to remain at constant distance to the light source. The solution with an oscillatory
domain in the static case requires, in contrast to the feed-forward structure presented in this
section, at least one recurrent connection. For other solutions with static synapses, the principle
is similar. Adaptivity to varying ambient light conditions cannot be realised by a static strict
feed-forward network, as it has only one global fixed point per input value, and therefore, only
one reaction to each light intensity configuration. It is not adaptable.

6.3 Summary

This chapter presented two evolved SRN controllers for two different tasks. The first controller
solved a standard benchmark control problem, the pole-balancing, in which a cart has to balance
a pole in a bounded one-dimensional environment. This problem was chosen to demonstrate
that the diverging behaviour does not limit the SRN model’s applicability . A control structure
inspired by the agonist/antagonist configuration in biological systems solved the task. The
solution performed well compared to neuro-controllers known from literature.

The second experiment demonstrated the adaptivity of the SRN model. A robot has to
find a light source in an environment, in which it cannot distinguish between a light source
and ambient light in its sensor information. The solution takes advantage of the sensori-motor
loop, and the homeostatic property of the SRN model. For constant input, the output neurons
regulate towards their asymptotically stable values, but the synaptic connections realise a higher
sensitivity towards changing light intensities, i.e. light sources. Solutions with the standard
additive neuron model solve the task by keeping a constant distance to the light source. This is
the result of a switching mechanisms triggered by a certain threshold value of the light sensors.
Such a static solution would not perform well in the presented setting.

In what follows, the presented work is discussed and finally closed with conclusions.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Chapter 7

Discussion

Most research in the field of artificial intelligence can still be classified as GOFAI, which at its
core, implies symbolic representation and rule-based processing of the symbols. In robotics,
the sense-model-plan-act paradigm is currently the most favoured. Even if the models are
biologically motivated, the results do not provide insights about the basic mechanisms of signal
processing in biological nervous systems.

The fields of Behaviour-Based Robotics and Embodied Artificial Intelligence understand
cognitive agents as embodied and situated entities, whose morphology directly influences their
perception, and which are strongly coupled to their environment. Intelligence is the result
of the interaction between the brain, body and environment. In Behaviour-Based Robotics,
programmed solutions for behaviours, although proof of good engineering, are models which are
weakly related to biology, e.g. Brooks subsumption architecture, and are, therefore, of the same
biological relevance in understanding the brain as GOFAI approaches.

In Embodied Artificial Intelligence, which originated from Behaviour-Based Robotics, the
situation is different. Research focuses on the interaction between the body, the control system
and the environment. The control systems are also mostly pre-programmed, based on findings
in biology, and do not provide new insights on the basic principles of neural signal processing in
the sensori-motor loop.

Evolutionary Robotics, in general, uses recurrent neural networks of fixed structure, only
changing the network parameters to generate solutions for a given task. The result is that
behaviours are biologically relatable and often convincing, but again, provide no insights on the
underlying principles which lead to the observed behavioural properties of interest.

The approach followed in this work is closely-related to the fields mentioned above. Embodi-
ment and situatedness are understood as crucial elements for intelligence, and artificial evolution
is used to generate solutions for a given task. The difference is that possible solutions are not
pruned by pre-defined neural structures, as the structure itself is open to variation. This re-
sults in sparsely connected neural networks, which permit a full mathematical understanding of
the behaviour-relevant dynamics. Generalising these to other problem domains is the result of
formalising general principles of neural signal processing from the insights gained through the
analysis of the solutions.

Adaptivity and learning were deemed early on as crucial factors for intelligence in the ap-

137

138 CHAPTER 7. DISCUSSION

proaches discussed above, but taking GOFAI as an example, have only been taken into account
in applications with very narrow ranges, as in automated pattern recognition and classification
in specific domains for example.

In the field of Embodied Artificial Intelligence, biologically-inspired models of adaptivity and
learning have only recently been introduced, and even then, only for very specific tasks (only
positive or only negative tropism) and require artificial limitations, a high structural complexity,
or strong assumptions on the pre-processing of the presented data. None of the methods which
use adaptation allow the full analysis and understanding of the governing behaviour-relevant
principles of neural signal processing in artificial systems, the results of which could reflect back
onto the understanding of biological systems.

Hence, robotics is not used here as an engineering discipline, but rather as a method to
understand intelligence. From this very general aim, a more specific one was targeted, which
arose from the most prominent features of biological systems which are still widely lacking in
artificial systems, namely adaptation and learning.

Following the Behaviour-Based Robotics approach that minimal systems must be fully under-
stood first before systems of higher complexity are taken into account, a basic form of synaptic
plasticity, a biological concept, was modelled here. In the context of cybernetics, it is not the
underlying bio-chemical mechanisms that are of interest, but the principles which lead to a cer-
tain behaviour of the system. The standard additive neuron defines the level of modelling as
it already shows dynamical features known from biological nervous systems, such as co-existing
attractors (e.g. leading to the hysteresis phenomenon) and chaos. An extension of the standard
neuron was proposed in this work as a model of short-time plasticity by synaptic scaling.

The model was inspired by Ashby’s Homeostat, a machine consisting of homeostatic units,
the local interactions of which lead to an adaptive behaviour of the entire system. In the model
presented in this work, every neuron is a homeostatic unit, and the behaviour of an agent is the
result of the local interactions of these Self-Regulating Neurons.

In contrast to the approaches mentioned above, this work is concerned with the understand-
ing of general principles of neural signal processing. Consequently, the model was analysed
analytically and mathematically as a disembodied dynamical system. This provided insights
on the dynamical reservoir of a single neuron and small neuro-modules. The next step was to
analyse the behaviour-relevant transient dynamics with respect to variations of the plasticity
parameters. For experimentation, well-known structures from literature were chosen with in-
creasing structural complexity. The result of the experiments and the insights gained on the
transient dynamics of the SRN in the sensori-motor loop was an obstacle-avoidance behaviour
which performs comparably well with respect to the best minimal static solution known from
literature. With the plasticity property of the SRN model, the controller is structurally less
complex but equally good at exploration and obstacle-avoidance in environments with sharp
corners, in which static controllers of the same structural complexity fail. It solves the task by
adapting the synaptic strengths to the different environmental conditions it encounters.

The insights gained from the experiments led to the artificial evolution of two controllers,
one for the standard benchmark problem of pole-balancing, and one for a light-seeker which
adapts to different ambient light situations. Both controller show that the diverging behaviour
of the SRN model does not limit its application.

With respect to networks with the standard additive neuron model, the pole-balancer solves

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

139

the task comparably well. The ambient light-seeker demonstrates a behavioural novelty. The
pure feed-forward structure can distinguish between ambient light and a light source as a re-
sult of the homeostatic property of the Self-Regulating Neuron and the interaction with the
environment.

The result of this work is a minimal and general plasticity rule for recurrent neural networks
of arbitrary structure, which is related to findings of homeostatic plasticity in biological nervous
systems. The dynamics of a single neuron and small neuro-modules were discussed. Compared
to related plasticity rules for artificial neural networks, it is not limited to feed-forward networks,
does not require a trigger mechanism or artificial limitations, and due to its generality, allows
the full-understanding of the behaviour-relevant dynamics as minimal neural networks can be
generated by structure evolution, thus, enabling such analyses.

The model shows the limitations of pure synaptic weight dynamics. Such a form of synaptic
modulation (in all of the discussed approaches) is comparable to short-term plasticity described
for biological systems. STP is an adaptivity mechanism, as re-adaptation is necessary for a
previously encountered situation which was not present for some period of time. No matter how
large or small the plasticity parameters of any purely synaptic weight-affecting mechanism are,
after presenting a stimulus for some time, all traces of this stimulus affecting the synapses in the
system will not be found in the system after some other period of time has elapsed. The duration
of both periods is determined by the plasticity parameters. The time required to show a reaction
to a presented stimulus is in the same order of magnitude of time as required for the system to
recover from it. This is the definition of STP. Learning is classified as a form of plasticity in
which the changes in the reaction to a stimulus is present for much longer than the duration
for which training has occurred. This form of plasticity is referred to as long-term plasticity
(LTP) and is, mainly, related to structural changes in biological nervous systems. This might
be achieved by different rates for growth and decay. Only LTP, and hence, memory would be
present without the behavioural property of adaptation. Another problem would be that either
long-term potentiation or depression, but not both, would be available. Both forms of plasticity
(STP and LTP) are found in biological systems, and it is their interplay which gives rise to
complex adaptive systems. STP was modelled in this work, LTP must be modelled on top of it.
What is proposed is a method of synaptic growth and regression, or for short, synaptogenesis,
based on the signal flow along a synaptic pathway as it is found in experiments, such as those
conducted with the Aplysia.

Considering STP and LTP as two basic levels of learning, then the form of LTP described
above may be related to the third level of learning, specifically, learning over generations. So
far, artificial evolution and evolutionary robotics are stochastic, gradient-based search methods
in the parameter space (of neural networks). It does not seem biologically plausible to generate
networks using random structural changes, as is done in the artificial evolution algorithm used in
this work. The genes within the DNA of biological systems are too few to encode the connections
of the neurons in the brain. It is assumed that rules for the formalisation and elimination of
the neurons and their connections are encoded in the genes. This is supported by findings in
children, for example, who have more neurons and synapses when they are born, the numbers
of which decrease as the child grows older.

It is assumed that it is not the connections, but rather the rules of generating and reducing
neurons and synapses that are encoded in the genes. Such synaptogenesis rules should be

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

140 CHAPTER 7. DISCUSSION

formalised and used in artificial evolution. It is plausible to assume that biology has found the
best solutions, and hence, the best principles for neural signal processing in complex adaptive
systems. The current methods are not able to reproduce similar solutions without restricting
the evolutionary process. One example of differences in biological and artificial neural systems,
is the symmetry found in the sensory and motor system of biological systems, which is not taken
into account at all in artificial evolution. If the assumption that biology has found the best
solutions is wrong, better solutions could be found. In both cases, the generating evolutionary
methods should be changed, and not restricted to force narrow-ranged solutions. In current
research, the generating methods of stochastic nature are kept unchanged and restrictions, such
as the evolution of neuro-modules for specific brain functions, are used instead. This leads to the
same faults GOFAI has faced in history, as it is hoped that the highly specified sub-solutions will
produce an overall solution once proper fusion techniques are found. The new form of artificial
evolution could be the evolution of rules to assemble and disassemble neural structures during the
life-time of an artificial agent. The rules should be based on different local mechanisms, taking
local properties of neurons, their synapses and neighbours into account. They then define the
LTP mechanisms which are built upon the present STP methods.

Currently, ongoing research focuses on possible connectivity rules for plastic SRN networks,
on which such new generative methods could be based. Future work will include regulatory
terms for the plasticity parameter α and the bias value, which are presently static. The plasticity
parameter α controls the target value, and could be related to proprioceptive sensors (e.g. energy
reservoir or consumption sensor) to alter the behaviour of the agent. Similar to the sliding
threshold of the BCM rule, a regulatory bias could serve as a natural limitation factor for the
diverging behaviour of the SRN model, making it biologically more plausible.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Appendix A

ISEE

For the artificial evolution and analysis of the dynamical properties of recurrent neural networks
presented in this work, a software package, designed and mainly written by the author of this
work was used. The software package is called ISEE (integrated structure evolution environment)
and is presented in this appendix.

ISEE (Zahedi & Hülse, 2008) is a package implemented around the ENS3 algorithm (see
sec. 3.3). Another tool, providing the same algorithm called CEN: was available at the time,
but was limited by its lack of a general communication interface. This meant that a substantial
implementing effort was required for new experiments. Additionally, the tool only supported
the standard additive neuron model. Extending it in order to evolve recurrent neural networks
with other models, such as the proposed SRN model, would have required large changes within
the source code. Therefore, the software package ISEE was created. ISEE is a not a single
application, but a software package consisting of three main software tools for artificial evolution
and the analysis of dynamical features of recurrent neural networks (see fig. A.1). Additional
tools support the analysis of dynamical systems, and the handling of the logging files produced
during evolution.

The first tool is EvoSun;, which is the implementation of the ENS3 algorithm (Dieckmann,
1995; Pasemann et al., 2001). The most prominent feature is its GUI, which provides interactive
access to all evolution control parameters (see sec. 3.3) and the possibility to monitor the relevant
indicators of the evolutionary process during runtime.

The second tool is Hinton. It connects EvoSun to a simulated or a physical robot and is
the implementation of the evaluation process. Decoupled from EvoSun, Hinton is a tool used to
analyse the internal dynamics of recurrent neural networks in the sensori-motor loop while the
network controls the simulated or physical robot within its environment.

The third tool is named YARS (yet another robot simulator). It is a real-time simulator
based on the physics engine ODE (Smith, 2005). The rendering is done by OpenGL (Group,
2007). Other rendering engines, such as Ogre (Streeting et al., 2006) and drawstuff (Smith, 2005)
were also included in earlier versions of YARS. Providing an evaluation environment in YARS
only requires a single XML description file. This minimises the time and implementation effort

:CEN was written by Ulrich Steinmetz. There are no publications available.
;Author of EvoSun is Martin Hülse.

141

142 APPENDIX A. ISEE

required to set-up a new experiment. The XML-file includes the description of the environment,
and a set of robots. For each robot a separate communication port is created. Through a
handshake mechanism, YARS and Hinton exchange all the necessary information about the
sensor and motor configuration automatically. With the exception of the XML-file specifying
the experiment, no further implementation effort is required.

This section begins with a functional overview of tools included in the ISEE package. The
software tools are explained, in as much detail as necessary, to understand how the experiments
were conducted and how the analytic results were obtained. In addition to the three previously
mentioned tools, two more are then introduced for the analysis of recurrent neural networks,
namely Brightwell and Analyser.

For the sake of completeness and for the interested reader, this section is followed by a
description of the concept of ISEE as well as a more detailed description of all the ISEE tools.

The following appendix (see app. B) explains how to implement new experiments and anal-
ysis methods within the ISEE framework. This appendix closes with an overview of applications
of ISEE in different research projects (see fig. A.19ff).

A.1 Overview of the main tools

This section introduces the five main components of the ISEE software package. All of the
experiments and analyses in this work were conducted with these five tools. Hence, this section
is sufficient to understand how the results presented in this work were obtained. The five main
tools of ISEE are EvoSun, Hinton, Analyser, Brightwell, and YARS.

EvoSun is the implementation of the evolutionary algorithm ENS3 (Dieckmann, 1995). The
software tool EvoSun provides a graphical user interface (GUI) which displays all evolution
control parameters. These parameters, which can be altered during runtime, include the prob-
abilities with which neurons and synapses are added and removed, the probabilities with which
bias values and synaptic weights are altered, the costs for neurons and synapses, etc. (see
sec. 3.3). This is a significant difference to other approaches, such as genetic algorithms, in
which the evolutionary process runs as a batch process. This software tool was designed and
written by Martin Hülse:. Although the author of this work did not contribute to EvoSun, it is
presented first, as it is the starting point in running an artificial evolution (see fig. 3.3).

Hinton provides two main functionalities. First, during artificial evolution, it evaluates the be-
haviour of a recurrent neural network with respect to a fitness-function. Second, when decoupled
from the artificial evolution, Hinton provides analysis tools to determine the behaviour-relevant
dynamics and the structure–function relationship of recurrent neural networks.

The evaluation occurs during the evolution in combination with EvoSun and a simulated or
physical robot. In case of evaluation, Hinton receives recurrent neural networks from EvoSun.
Each network is evaluated with respect to a fitness-function implemented in Hinton (see app.
B.3). Once the evaluation is terminated, the generated fitness-value is returned to EvoSun and
used as a parameter for the selection operator (see sec. 3.3).

:No publication available.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.1. OVERVIEW OF THE MAIN TOOLS 143

The analysis occurs separately from the artificial evolution. In this set-up, a recurrent neu-
ral network is loaded into Hinton from the file system. Hinton provides a GUI which supports
the alteration of the structure and parameters of the recurrent neural network during runtime.
Interactively changing the network properties and its structure is referred to as lesion exper-
iments. Observing the results of the lesions in the behaviour is a method used to determine
the structure–function relationship and the individual contribution of the synapses and neurons.
To support this method, a tool that plots the transients of the internal states of the recurrent
neural network is included in Hinton. It is named Analyser and is discussed hereafter.

To evaluate or analyse a controller, Hinton can connect either to a simulated or a physical
robot. It is also possible to switch between both settings during runtime, a feature which is
necessary in order to close the gap between the simulated and physical robot. Comparing the
differences in the behaviours indicates required changes to the simulation properties. This issue
is discussed in detail in the following section (see sec. A.3.5).

An export function is included, which converts recurrent neural networks to program code
for specific robot hardware platforms or third party tools. Currently supported are Atmel AVR
Assembler (Atmel, 2008), C/C++ (Stroustrup, 2000), Java (Sun Microsystems, 2007), IConnect
(MICRO-EPSILON, 2006), GML (Himsolt, 1997), YSocNet (Ghazi-Zahedi, 2001), GermanTeam
C++ module code (GermanTeam2004 , 2004).

Analyser: The Analyser (Rosemann, 2004) provides two visualisation methods which enable
the user to analyse the structure–function relationship of recurrent neural networks. These
methods are the graph visualisation and transient plot (see fig. A.7).

The graph visualisation method displays the structure of the recurrent neural network, where
the current states of the network properties are colour-coded. For a neuron, the neuron colour
corresponds to the current activity, and for a synapse the colouring corresponds to the sign
of the synapse. The synaptic strength is indicated by the width of the line representation.
Different graph layout algorithms are implemented and can be applied to arrange the neurons
conveniently.

The transient visualisation method plots the internal states of the recurrent neural network
similarly to EEG plots. When combined with lesion experiments, they allow the behaviour-
relevant dynamics, as well as their relation to the parameters and structures of the recurrent
neural network, to be determined.

Brightwell is a tool which is used to analyse the dynamical properties of a recurrent neural
network. In contrast to the Analyser, the network is analysed independent of the sensori-motor
loop. Different methods, such as the Bifurcation-diagram, Iso-periodic plot, First-return map,
Liapunov exponent, etc., may be used in the analysis process. Adding new analysis methods
is possible with a minimal implementation effort (see app. B.5). All the plots within this
work, which visualise the dynamical properties of recurrent neural networks, are generated with
Brightwell and the Analyser.

YARS is a robot simulator. In YARS a simulation is defined by a single XML-file, which
includes the environmental description and the description of a set of robots. The description

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

144 APPENDIX A. ISEE

Sim. B
Sim. A

C.-Arch B
C.-Arch A

Evo. Alg. B
Evo. Alg. A

Variation
Selection

Processing
Fitness-Function

Evolution Execution

RNN

Simulation

Robot B
Robot A
Robot

RNN

Fitness

Evaluation

Motor
Sensor

Co-Evolution Parallel-Evolution Analysis

Figure A.1: ISEE concept. The upper part of the figure shows how the artificial evolution is realised
with the three distinctive tools. The variation and selection operators are implemented in an evolution
program. This program (left-hand side) generates RNN and sends them to an execution program (centre).
The execution program receives sensory input from a simulator or robot, processes the network, calculates
the fitness and returns motor command to the evaluation environment. The fitness value is returned to
the evolution program. During artificial evolution, a simulator (right-hand side) provides an evaluation
environment. The schematics below show different possible applications. Left: Co-evolution. Centre:
Parallel distributed evolution: Right: Transient analysis in the sensori-motor loop.

file includes the physical properties of all the objects of the environment and the robot. For the
robot, the description file also includes the specifications of the actuators and sensors.

The initial version of the XML-grammar was used as a basis for a project-wide simulation
definition language in the German Research Foundation Priority Program 1125 “Cooperating
teams of mobile robots in dynamic environments” (DFG-SPP 1125 “Kooperierende Teams mo-
biler Roboter in dynamischen Umgebungen”) (Zahedi et al., 2005).

For each robot defined in the XML-file, a communication connection between YARS and
Hinton is created, through which all information about the sensor and motor configuration of
the robots are exchanged automatically. Therefore, in addition to the XML-file, no further
implementation is required. For a detailed description of how an experiment is specified, the
reader is referred to the following appendix (see app. B.7).

A.2 ISEE Specification

The previous section presented an overview of the main software tools included in the ISEE
package. In the remainder of this appendix a more comprehensive list and a more detailed

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.2. ISEE SPECIFICATION 145

description of the tools is presented. First however, the design and architectural considerations
that led to the concrete realisation of ISEE is presented.

The requirements for a software package for the structural evolution of recurrent neural net-
works were derived from knowledge gained from previous experiments (Dieckmann & Pasemann,
1995; Hülse et al., 2001; Lara et al., 2001; Pasemann, 1998, 1997a; Pasemann & Dieckmann,
1997b, 1997a; “Evolving brain structures for robot control”, 2001; Pasemann et al., 2001; Nolfi
& Floreano, 2000).

A.2.1 Design Considerations

The design considerations consist of four different parts:

1. The desired features.

2. The estimated end user characteristics.

3. The target operating systems.

4. The target robot platforms.

Desired features

The desired features can be grouped according to the different phases of an artificial evolution
experiment. These phases are the set-up, the evolution, and the analysis of the results. A fourth
group of necessary features is added, which are general and required in the three phases.

1 Set-up phase:

1.1 Setting up an experiment should not require a priori knowledge of possible solutions.

1.2 Support for extending an existing recurrent neural network by adding new behavioural
properties. This can be done in at least two ways::

1.2.1 By fusion of two or more existing recurrent neural networks.
1.2.2 By expansion of an existing controller.

1.3 At least three different neuron models must be supported:

1.3.1 Standard additive neuron model.
1.3.2 Chaotic neuron model.
1.3.3 Self-Regulating Neuron model.

2 Experimental phase:

2.1 Support for on-line monitoring of the evolutionary process.

2.2 Interactive control of the evolutionary process by variation of the process parameters
during runtime.

:For a comprehensive overview of fusion and expansion techniques see (Hülse, 2007)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

146 APPENDIX A. ISEE

2.3 Parallel evolution of populations is required to conduct predator-prey experiments
as described by Nolfi and Floreano (1998) and in order to decrease the search space
(Markelić & Zahedi, 2007).

2.4 Evolution of arbitrary behaviours for arbitrary robotic platforms should be supported.

3 Analysis phase:

3.1 Different analysis methods are required:

3.1.1 Transient plots of the dynamics of the recurrent neural network in the sensori-
motor loop.

3.1.2 Visualisation of the dynamical properties (Bifurcation diagram, Isoperiodic plots,
etc.) of the recurrent neural network independent of the sensori-motor loop.

3.1.3 Lesion experiments and parameter variation of the recurrent neural network dur-
ing runtime to determine the behaviour relevant sub-structures.

4 General requirements:

4.1 Artificial evolution processes many individuals until a solution is generated. This
requires an efficient and fast implementation.

4.2 The system should be open with respect to the robot platform and desired behaviours.
This requires the possibility to easily add and modify:

4.2.1 Fitness-functions.
4.2.2 Simulations.
4.2.3 Neuron or network models.
4.2.4 Methods to visualise dynamical properties of recurrent neural networks.

End User Characteristics

After identifying the desired features, the next step is to analyse the user group.

1. The user group should not be limited to programming experts. This means that setting
up experiments must be possible with minimal or no special programming knowledge.
Therefore, the system has to provide very simple interfaces.

2. The ISEE package must be available for the most common operating systems. Otherwise,
users who are bound to specific operating systems are excluded from using ISEE.

Operating System / Hardware

The software package ISEE was created much earlier then YARS. At the time, different sim-
ulators were only available for specific operating systems. Even now, some simulators are still
more applicable to simulate specific robot platforms and tasks. As an example, the Khepera 2.0
Simulator (Michel, 2005) is still the fastest simulator for Khepera-like robots and the obstacle-
avoidance task (see chap. 5), but it requires an UNIX operating systems and the X11 library
(Michel, 2005).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.2. ISEE SPECIFICATION 147

In order to provide users with the flexibility to choose any simulator, ISEE should not be
restricted to either Linux/UNIX, Windows, MacOS or Solaris operating system, but support at
least these four.

A.2.2 Architectural Strategies

The architectural strategies presented in this section are derived from the design considerations
mentioned above.

• The evolutionary process is divided into distinctive software tools:

– The selection and variation operators are separated from the evaluation operator (see
fig. A.1).

∗ The separation has two advantages:
1. The evaluation tool can be used, independently of the remainder of the sys-

tem, to analyse the dynamics of the recurrent neural network in the sensori-
motor loop.

2. Several populations can be spread over several evaluation tools and evaluated
in the same simulation environment (predator-prey experiment), without any
extra implementation cost.

∗ The separation has one disadvantage:
1. Several tools have to be executed and set-up for an experiment. This dis-

advantage is resolved through the use of start-up scripts and configuration
files.

• Java was chosen as the programming language. It is supported on the most common
operating systems, specifically on Windows, Linux/UNIX, SunOS, and MacOS.

• Whenever possible, standards are used. For example, XML is chosen as the logging file for-
mat for the evolutionary process, as there exist a variety of well-documented and supported
parsing libraries for Java, C/C++, and other programming languages.

• The UDP protocol was chosen for communication between Hinton and the simulator, as
the communication is time-critical. Both software tools run locally on a single computer.
Locally transmitted UDP-packages are not lost. Therefore, there is no need for the error
correction mechanisms of the TCP/IP protocol. Even if a package is lost, for a robust
controller this should be of no consequence. A UDP package contains values representing
sensor and motor data.

• TCP/IP communication between EvoSun and Hinton. This communication requires sup-
port for the exchange of larger packages and is not time-critical as the neural networks
must be exchanged. This is well-supported by the TCP/IP protocol.

• Implementations of fitness-functions, simulator/robot communication, neuron models, and
analysis methods are loaded dynamically and automatically from specified directories (see
fig. A.2). Each implementation has to extend a superclass which provides the necessary

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

148 APPENDIX A. ISEE

brightwell/
dtd/
hinton/
learningrules/
lib/
xml/
brighwell.jar
evosun.jar
hinton.jar
Makefile.unix
Makefile.win32
newbury.jar
polebalancer.jar
reading.jar

ISEE/

ApproxKeyFrames.class
Attractor.class
Centrality.class
Feigenbaum.class
FiringRate.class
FirstReturnMap.class
IsoPlot3D.class
MagneticPendulum.class
Mandelbrot.class
NetOutput.class
Orbit.class
Peek.class
SingleNeuronAttractor.class
StandardEquations.class
Tutorial.class
Tutorial.java

OneNeuronNet.class

SimCom.dtd
SerialCom.dtd

Empty.class
Emtpy.java

Third party .jar files

ToolPriorityConfig.xml

tools/
nets/

fitnessfunctions/
robots/
simulatiosn/

config/
robot
simulator/

brightwell/
EvoSun/
Hinton/

NoSimCom.java
NoSimCom.class
Yars2OutputCom.class
YarsSimCom.class

NoRobCom.java
NoRobCom.class

NoFitness.java
NoFitness.class

Simulation
Communication
Classes

Fitness-Function
Classes

Robot
Communication
Classes

Brightwell
Tool
Classes

Figure A.2: ISEE directory structure. This figure shows how ISEE is organised in the file system.
From left to right, directories and sub-directories. Blue boxes: Implementations of functionality such as
fitness-functions, communication classes, etc. that are loaded dynamically at start-up.

basic functionality. To set up a new experiment, the user need only address the desired
additional functionality.

A.3 ISEE Tools

The previous section discussed the design considerations and architectural strategies for an
artificial evolution framework. This software specification led to the implementation of ISEE as
a collection of distinctive software tools. The complete list of tools included in ISEE is given in
table (see tab. A.1). Next, all the tools available in ISEE are presented and discussed.

A.3.1 Cholsey

The first tool to be presented is not a tool that can be executed. It is the implementation
of the recurrent neural network, named Cholsey. During the artificial evolution, a large num-
ber of recurrent neural networks are processed with a considerably large number of iterations.
The chosen implementation of the neural network is time-critical with respect to the artificial
evolution, hence, it is discussed separately.

A recurrent neural network can be considered as a directed graph or digraph (see sec. 3.3.1).
There are two possible ways to represent a graph, namely an adjacency-matrix and an adjacency-
list (Cormen et al., 1990).

A.3.1 Definition: Adjacency-Matrix, by Cormen et al. (1990)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 149

Cholsey The neural network implementation.
EvoSun Implementation of ENS3 algorithm and

visualisation of the evolutionary process.
Hinton The neural network processor and implemenation of evaluation

and analysis processes of the recurrent neural networks.
Analyser Neural network visualisation and transient plotter.
YARS Yet Another Robot Simulator.
Brightwell Visualisation of the dynamical properties of

the recurrent neural networks.
Reading GUI for the evolution log-files.
NewBury Merges a set of recurrent neural networks in one file.
Beaumy Extracts a new initial set of recurrent neural

networks from an existing evolution log-file.

Table A.1: ISEE Tools. The tool’s name, with the exception of EvoSun, Analyser and YARS, the
name are derived from castles that exist or existed in the birth district of the author, Bournemouth, and
were taken from (Britannia.com, 2006).

Let G � pV,Eq be a graph. Then the adjacency-matrix representation of the graph G consists
of a |V | � |V | matrix

A � paijq i, j � 0, 1, . . . , |V | � 1
such that

aij �
#

1 if pi, jq P E,
0 otherwise.

In the case of a neural network the matrix entries aij P t0, 1u are replaced by the synaptic
weights wij P R.

A.3.2 Definition: Adjacency-List, by Cormen et al. (1990)
Let G � pV,Eq be a graph. Then the adjacency-list representation of a graph G is an array Adj
of |V | lists, one for each vertex in u P V . For each u P V , the adjacency list Adjrus contains all
the vertices v such that there is an edge pu, vq P E.

For a neural networks this means that each neuron contains a list of all outgoing synapses.
Which representation should be chosen depends on two factors:

1. The purpose of the representation.

2. The density of the graph.

One possible criteria which may be used to determine the choice of representation is the type
of visualisation of a recurrent neural network. It will be discussed later in this appendix (see

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

150 APPENDIX A. ISEE

+process() : void
+addNeuron() : Neuron
+addSynapse() : Synapse

-inputNeurons : NeuronList
-outputNeurons : NeuronList
-hiddenNeurons : NeuronList

Net

NeuronList

+update() : void

-activity : double
-output : double
-transmitter : double
-receptor : double
-alpha : double
-beta : double
-gamma : double
-delta : double
-synapses : SynapseList

Neuron

SynapseList

+strength() : double
+getDestination() : Neuron
+gesSource() : Neuron

-strength : double
-source : Neuron
-destination : Neuron

Synapse

«uses» «uses»

+calcualte(in value : double) : double

+TANH : Transferfunction
+SIGM : Transferfunction

Transferfunction

+INPUT : NeuronType
+OUTPUT : NeuronType
+HIDDEN : NeuronType

NeuronType

LearningClassLoader

+STATIC : ProcessMode
+DYNAMIC : ProcessMode
+CONSISTENT : ProcessMode

ProcessMode

+INHIBITORY : SynapseType
+EXCITATORY : SynapseType

SynapseType

SynapseMode

«uses»
«uses»

«uses»
«uses»

«uses»

«uses»
«uses»

Figure A.3: Cholsey UML diagram. In this concept, the neuron is the central unit. All neurons are
managed in the class Net. Each neuron has access to all incoming synapses and can, therefore, calculate
its internal states autonomously. The class LearningClassLoader dynamically loads all available learning
rule implementations and provides them over a generic interface as singletons (Gamma et al., 1995). The
strength function of the class Synapse either returns the assigned constant strength value or dynamically
calculates the strength as a product of the pre- and post-synaptic neuron properties.

sec. A.3.3), that both methods, a table (adjacency matrix) and a graph view (adjacency list)
of the recurrent neural network are useful for the analysis of the dynamical properties of the
controller.

As stated at the beginning of this section, the implementation of the recurrent neural network
is a time-critical aspect of artificial evolution. Compared to the visualisation of a recurrent neural
network this has a higher priority with respect to the choice of representation.

If the computational cost is considered, the question of which representation is more suitable,
matrix or graph, depends on the expected density of the recurrent neural networks that are
generated by the evolutionary algorithm. Consider the following two examples.

A sparse graph (|E| ! |V |2) is represented by a sparse matrix. Iterating through a network
represented by a sparse matrix results in many unnecessary computations, as a large number of
weight and, therefore, entries wij in the matrix are zero and do not contribute to the activity.
In this case an adjacency list would be computationally cheaper.

A dense graph (|E| � |V |2) is represented by an array with large adjacency lists. Processing
a list is computationally more expensive then accessing an array. In the case of a dense graph
an adjacency matrix representation would be computationally cheaper.

Is is now clear, that the chosen implementation of Cholsey depends on the type of structures
that are generated by the selected evolution strategy. Using the ENS3 algorithm for structural
evolution of recurrent neural networks, the resulting networks are likely to be sparsely connected,
due to the approaches followed in this work. That is, evolved controllers are analysed with respect
to their behaviour-relevant dynamics, in order to extract generalisable principles of neural signal
processing (see sec. 3.3). Structurally small networks, i.e. sparsely connected networks can be
fully analysed and understood, and are, therefore, preferred. By setting neuron and synapse
costs, and carefully choosing the structure modification parameters of the algorithm ENS3,
sparse networks can be favoured during the artificial evolution.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 151

Algorithm 2 Implementation of Cholsey.

Require: Nptq :� tniptqui�0,...,|N |�1 {set of all neurons}
Require: niptq :� tΘi, aiptq, oiptq,Siu
Require: Si :� twijuj�0,1,... {set of all incoming synapses}

1: for all niptq P Nptq do
2: aipt� 1q � Θi �

°|Si|�1
j�0 wij � ojptq

3: end for
4: for all ni P N do
5: oipt� 1q � τpaipt� 1qq {where τpxq denotes the transfer-function}
6: end for

Algorithm 3 Implementation of Cholsey with the SRN model.

Require: Nptq :� tniptqui�0,...,|N |�1 {set of all neurons}
Require: niptq :� tΘi, aiptq, oiptq,Siptqu
Require: Siptq :� twijptquj�0,1,... {set of all incoming synapses}
Require: Ciptq :� tcijptquj�0,1,..., cij P r�1, 1s {sign of incoming synapses}
Require: wijptq :� cij � ξiptq � ηjptq

1: for all ni P N do
2: aipt� 1q � Θi �

°|Si|�1
j�0 wijptq � ojptq

3: end for
4: for all ni P N do
5: oipt� 1q � τpaipt� 1qq {where τpxq denotes the transfer-function}
6: update ξipt� 1q � fξpapt� 1qq {Transmitter strength calculation (see chap. 4)}
7: update ηipt� 1q � fηpapt� 1qq {Receptor strength calculation (see chap. 4)}
8: end for

Hence, an adjacency-list was chosen as the representation structure of the neural network. In
contrast to the definition of an adjacency-list given above (see def. A.3.1), each neuron contains
a list of all incoming synapses. This enables the calculation of the state of a neuron based on
information stored locally in each neuron (see alg. 2). A UML diagram of the structure is
shown in figure A.3, where the class Net is the root of the structure, equivalent to the array Adj
described in the definition A.3.1.

Using the SRN model (see chap. 4), the synaptic weight is the product of a pre- and post-
synaptic neuron property (ξ, η). The implementation of a network (see alg. 2) can easily be
extended to support other synapse models or local learning rules (see alg. 3).

A.3.2 EvoSun

The software tool EvoSun (see fig. A.4) was developed by Martin Hülse and is the implemen-
tation of the ENS3 algorithm (Dieckmann, 1995). It is an improvement upon the previously
used software tool CEN: which was initially written by Uli Steinmetz. The prominent feature

:No publications available.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

152 APPENDIX A. ISEE

of EvoSun is its ability to monitor and influence the evolution process during runtime. The
parameters which determine the probabilities with which neurons and synapses are added and
removed, the changes of synaptic weights and the bias values, are accessible through a GUI (see
fig. A.4).

The monitoring functionality displays the development of all relevant evolution properties.
Examples of these properties are the fitness of the best individual, the average fitness of the
population and its standard variation, the age of the oldest individual in the population, etc.
In particular, the oldest individual is of interest as it has survived several of the presented
environmental configurations, it is likely to have generalisation properties with respect to the
given problem. Although it might not have the highest fitness, it should, therefore, be considered
in the analysis.

A log-file of the evolution is written by EvoSun. In each generation a minimum of two
individuals is stored: the fittest and the oldest individual of the current population. Any other
number n ¡ 1 of individuals can be stored. In this case, the n fittest individuals plus the oldest
are stored in the log file.

A.3.3 Hinton

The Hinton tool processes the neural network. Additional functionality depends on the context.
There are two possible uses:

1. Evaluation of a recurrent neural network during the evolution process.

2. Analysis of the behaviour-relevant dynamics and the structure–function relationship of a
recurrent neural network in the sensori-motor loop.

This section will introduce the concept of Hinton before presenting the functionality provided
for both the uses mentioned above; namely evaluation and analysis of recurrent neural networks.

Concept

The graphical user interface (GUI) of Hinton is divided into three regions, left, centre, and right
(see fig. A.5). Each of the regions represents one aspect of the functionality and is labelled
accordingly:

The left region groups all functionality relating to receiving and loading a recurrent neural
network.

The central region groups all functionality relating to the execution, evaluation and analysis
of the networks.

The right region groups all functionality relating to the communication with a simulated or
physical robot.

The graphical division of the GUI also represents the architecture of Hinton (see fig. A.6). This
section does not discuss the architecture in full detail, but covers the aspects relating to setting
up an experiment.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 153

Figure A.4: EvoSun GUI. Top: EvoSun Control Panel. This panel controls the number of evaluation
steps (cycles), the number of test steps in which no evolution is performed (warmUpSteps), the number
of clients for parallel evolution, and the logging of the evolution. Right: Parameter Control Panel.
This panel provides an interface to interactively control the evolution during runtime. All evolution
parameters, such as the probability with whihc neurons and synapses are added and deleted, can be
altered here during the evolution. Left: NetRank Panel. This panel shows the selected individuals of
the previous generation and the number of offspring which were generated from each of them. Bottom:
Evolution Dynamics Panel. This panel provides the functionality to monitor of the evolution process. A
number of plots may be generated, e.g. the fitness of the best individual, age of the best individual, age
of the oldest individual, average fitness and its variation.

The entry point is the class HintonMain. It initiates the control package, which initialises
all other packages and handles the dependencies between them.

The broker package is responsible for the communication between Hinton and the evolution
software tools. Currently, CEN and EvoSun are supported. The communication includes the
current individuals generated by the evolution software, and the fitness value evaluated by
Hinton.

The ambassador package handles the communication between Hinton and the simulated
or physical robot. From the perspective of Hinton, both are handled equally (see app. B.2).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

154 APPENDIX A. ISEE

Figure A.5: Hinton GUI. This plots shows the GUI provided by Hinton. Top: Hinton Main GUI. The
GUI is divided into three parts. The left hand side provides an interface to configure the connection to an
evolution program, and to load an individual from the file system. The centre provides the functionality
for analysing and evaluating the recurrent neural network. The pull-down menu lists all available fitness-
functions. The buttons invoke the Analyser, the NetEditor and the LastNetDialogue. The left hand side
provides an interface to connect to a simulator or the physical robot. Pull-down menus list the available
interfaces. Bottom left: LastNetDialogue. The LastNetDialogue is used during evolution. It displays all
evolution parameters, the data of the best and the last individual of the current population. Bottom
right: NetEditor. This GUI is an interface to the network structure and network parameter. It provides
functionality to change the network during runtime. Neurons and synapses can be added or removed,
and bias values and synaptic weights can be changed. It is not available during evolution.

The communication consists of receiving sensor data from the robot, and sending the motor
commands that were generated by the neural network.

The executor package provides the functionality required to process, evaluate and analyse a
recurrent neural network. Sensor data is fed as input to the network, and motor commands are
generated from the network output.

The exchange of information between these three packages is controlled by two interfacing
classes, RobotStruct, ProcessParameter (see app. B.4). The first stores the motor and sensor
data, network input and output, and the relation which input/output neuron is mapped to which
sensor/motor, respectively. The latter stores all data received from the evolution software. This
data includes the current neural network and the number of evaluation cycles. For a full list of
available parameters the reader is referred to the next chapter (see app. B.4.1).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 155

+main(in argv : String[]) : void

hinton.HintonMain

hinton.control

hinton.broker hinton.executive hinton.gui hinton.ambassador

hinton.analyser

hinton.fitnessfunctions

hinton.robots

hinton.simulators

«uses»

«uses» «uses» «uses» «uses»

cholsey

«uses»«uses»

hinton.executive.ProcessParameter

hinton.executive.RobotStruct«uses»

«uses»

«uses»

«uses»

«uses»

Hidden from user

Open to user

Figure A.6: Hinton UML diagram. This diagram shows the concept of Hinton, which is divided
into several packages. The package hinton.control initialises all other packages and handles their depen-
dencies. The hinton.broker package is responsible for the communication with the evolution program.
The hinton.executive package takes care of the fitness-functions, the recurrent neural network processing
and their analysis. The hinton.ambassador package handles the communication between Hinton and the
simulated or physical robot. The hinton.analyser package is the implementation of the Analyser tool.
These packages require no user input. For the purpose of setting up a new experiment, Hinton provides
three extension points: hinton.simulators, hinton.robots, hinton.fitnessfunctions. The interface between
the extension points and Hinton is provided in form of two classes: hinton.executive.RobotStruct and
hinton.executive.ProcessParameter. These two classes provide all necessary information (see app. B.4).

In each of these three packages, the functionality of Hinton can be extended to match the
requirements of the experiment of interest. For a detailed description of how to extend Hinton,
the reader is referred to the next chapter (see app. B).

Analysis of recurrent neural network

During analysis, Hinton provides two different methods to visualise and manipulate a recurrent
neural network during its control of a robot in the sensori-motor loop, a neural network editor
(see fig. A.5) and a transient plot tool.

The neural network editor is divided into a matrix view (see fig. A.5b, left) and a tree view
(see fig. A.5b, right) of the neural network. The matrix view enables change to be made to the
structure and the parameters of the neural network. Changes of the parameter values are passed
to the network during runtime, so that the effects of the changed parameter on the behaviour of
the robot are immediately observable. This type of analysis is referred to as lesion experiment.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

156 APPENDIX A. ISEE

The editing tool also provides functionality to export recurrent neural networks. A network
can be exported to program code for specific robot hardware platforms or third party tools.
Currently supported are exporters to Atmel AVR Assembler (Atmel, 2008), C/C++ (Stroustrup,
2000), Java (Sun Microsystems, 2007), IConnect (MICRO-EPSILON, 2006), GML (Himsolt,
1997), YSocNet (Ghazi-Zahedi, 2001), GermanTeam C++ module code (GermanTeam2004 ,
2004).

The Analyser is as an independent tool, although it is incorporated into Hinton. The Anal-
yser is used to display the transients of the neural network parameters. It is discussed separately
in the next section (see sec. A.3.4).

Evaluation

During the evaluation phase, the analysis functions described above are not available. The only
additional display function is the LastNetDialogue (see fig. A.5). This GUI shows the current
set of evolution process parameters and the fitness of the last individual in comparison to the
best individual of the current population. This allows the monitoring of the effect of changes
made to the fitness-function coefficients, and the relation of the generated fitness value to the
desired behaviour of the robot.

Acknowledgements

The author wants to especially thank Björn Mahn for his contributions to Hinton. He im-
plemented early version of the network editing GUI, the network exporting, and the dynami-
cal loading of fitness-functions and communication classes, and also contributed to subsequent
refactoring of the tool, bug fixes and functionality extensions, which substantially increased the
overall quality of Hinton.

A.3.4 Analyser:

Every evolved controller is analysed with respect to behaviour-relevant dynamical properties.
The Analyser is a tool to visualise the structure and the transient dynamics of a recurrent neural
network while it controls a robot in the sensori-motor loop.

Visualisation Methods

The Analyser offers two different visualisation methods, a graphical visualisation of the network
structure and its current state, and transient plots of network properties, which are comparable
to EEG plots (see fig. A.7). Both methods are discussed in the following paragraphs.

Graph visualisation: The graph visualisation displays the structure of a recurrent neural
network. In contrast to the matrix visualisation, it is more intuitive. An important advantage is
that the network can be visually organised interactively to emphasise the relationship and role
of a particular neuron or substructure of the neural network.

When the network controls a robot, the colour coding of a neurons indicate its current
output value. Blue indicates the lower domain range and red the upper domain range. For the

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 157

Figure A.7: Analyser. This figure shows the Analyser with an example of an application. In this
case the Analyser is used together with a YARS-simulation of the Aibo platform (Markelić & Zahedi,
2007; Markelić, 2005). Left: Analyser. The Analyser plots the structure of a recurrent neural network as
a digraph. The colour coding of the neuron represents the layer and the current output. Neurons with
a red/green/blue outline are input/output/hidden neurons, respectively. Blue fill colour indicates low,
red fill colour high output. The colour coding of the synapse represents the synaptic sign: blue refers to
an inhibitory, red to an excitatory synapse. The width of the line representation indicates the synaptic
strength. Below the network structure, the transients of the central pattern generator are plotted. The
depicted network is a neural implementation of a fast quadruple weakling behaviour for the Aibo robot,
visible on the lower right-hand side of the figure. The upper right-hand side of the figure shows the YARS
simulation of the Aibo robot.

hyperbolic tangent, this is blue for -1 and red for 1. For the standard sigmoid, it is 0 and 1,
respectively. The outline of the neurons indicates its layer. The colour coding is identical to the
colour coding in the network editing tool discussed in the previous section (see fig. A.5). The
outline colour red/green/blue relates to an input/output/hidden neuron, respectively.

The colour coding of the synapses corresponds to the sign of the synaptic weight. Blue
synapses are inhibitory, red synapses excitatory. The width of the synapse corresponds to the
absolute value of the synaptic strength. Thicker synapses indicate a stronger connection. In the
case of dynamically changing synapses, the width of the synapse varies with the dynamics of
the synaptic weight.

Plot visualisation: The graph visualisation, discussed above, displays the structure of a
recurrent neural network and the states of the neurons and synapses. Changes of the neuron
and synapse state are difficult to follow over time by the graph methods. Therefore, the Analyser
provides a transient plot method, which is referred to as plot in the following section.

A plot displays the transients of any set of network properties (see fig. A.7). Displayable
network properties are the output of a neuron, and the synaptic strength of a synapse.

The plot provides indications about the dynamics generating the behaviour of the robot.
Examples for such dynamical properties are oscillations and hysteresis effects (see sec. 3.2). To-
gether with lesion experiments and dynamical systems analysis of the recurrent neural network,
the structure–function relationship can be extracted.

The current plot can be saved as a white-space-separated list for further analysis using third
party software tools.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

158 APPENDIX A. ISEE

Acknowledgements

The Analyser was written by Michael Rosemann as part of his master thesis (Rosemann, 2004).

A.3.5 YARS

The software YARS (yet another robot simulator), is a mobile robot simulator which includes
a physics engine (Zahedi et al., 2007), referred to as a physical (robot) simulator for short. It
provides an evaluation environment for evolutionary robotics.

Two different approaches are use to evaluate the individuals of a population in artificial
evolution: evaluation on the physical platform and evaluation in simulation. Both methods are
found and discussed in literature (Nolfi & Floreano, 2000; Hülse et al., 2004; Floreano, 2000;
Chaumont et al., 2007; J. F. Walker & Oliver, 1997; J. Walker et al., 2003; Jacobi et al., 1995;
Harvey et al., 1997, 2005; Jin & Branke, 2005; Miglino et al., 1995; Lipson, 2005; Pollack et
al., 1999; Pollack & Lipson, 2000; Nolfi et al., 1994). In this work, a simulator is used for the
evaluation during the artificial evolution. There are four main reasons for using a simulator:

1. During evolution, hardware-damaging behaviours are likely to occur.

2. A simulator can run faster than real-time, so that the required time to evolve a controller
is reduced.

3. The state of the simulator can be precisely set by the experimenter, so that each individual
within a generation has the same initial conditions. This increases the comparability of
the fitness values of the individuals in a population.

4. For the analysis of the behaviour-relevant dynamics, it is essential to know and control all
the parameters (morphology, environment, etc.). This is easily achieved through the use
of a simulator.

However, these advantages only hold, if the gap between simulator and reality does not lead to
significant differences of the behaviour of a controller in simulation and on the physical platform.
Closing the gap between simulation and reality stands in contrast to simulation speed, the second
advantage listed above. The faster a simulator is, the less precise it is, which increases the gap
between simulation and reality.

In contrast, for other experiments, a physical simulation is required. One example for such
an experiment is behaviour-control for walking machines (see fig. A.7). Without the experience
of falling, a system cannot learn to walk. Other examples (see fig. A.19ff) of experiments that
require a physical simulator are gravity driven systems, such as micro.adam and micro.eva (Popp,
2005; Wischmann et al., 2005) .

For this reason a new simulator based on ODE (Open Dynamics Engine) was built. ODE
is an open source physics engine, initially developed by Russell Smith (Smith, 2005). It is
fast, numerically stable and well-documented. Numerically stable in this case means, that the
simulation will not crash, if the internal physics runs into computational singularities. Typically,
these singularities result in exploding bodies or bodies that catapult from location to location.
One case in which these singularities might occur is if bodies collide at very high speed. For

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 159

evolution, this type of simulator behaviour is ideal, because it indicates hardware-damaging
behaviour. Such a behaviour is not desired, and can easily be caught in the software and
punished by the fitness-function. For the individual which follows, the running simulation is
simply reset. This is only possible, if the simulation itself does not crash, even if the internal
physics leads to uncontrollable results.

This advantage comes with a trade-off. ODE uses a first-order or Euler integrator (Strogatz,
1994), which is fast and numerically stable, but not precise in calculating the physics. For
actuators, ODE uses a linear model. The maximal available force is used to linearly increase the
velocity of the actuator until the desired velocity is reached. More realistic motor models are
not included, and need additional implementation. The only available friction model is Coulomb
friction. These properties of ODE result in a fast, but imprecise simulation. With respect to
the requirements stated earlier, this means that there is a gap between simulator and reality,
which must be considered.

In the approach followed here, this is not a drawback. The goal is to generate controllers,
which are robust with respect to the given hardware. There are two approaches to achieve this
kind of robustness, closed-loop control in the sensori-motor loop, and evolving the controller
on an abstraction of the target platform. How these two methods account for robustness is
explained in the next.

Consider a wheel driven robot with an obstacle-avoidance behaviour. If the motors of the
physical robots are slower compared to the simulated motors, the turning behaviour is slower.
Therefore, the robot will turn slower when an obstacle is detected by the sensors. Because it
turns slower, the sensor stimulus is present for a longer duration within the system. The robot
will turn for a longer period of time. The overall behaviour, obstacle-avoidance, is preserved,
although it is not equivalent to the simulated behaviour in all aspects.

This does not hold for all configurations. If the motors of the physical robot are much faster,
then the robot will turn faster. Because of possible inertia, it might turn too far, such that the
obstacle is present again. This means, that the well-performing obstacle-avoidance behaviour in
simulation, shows a rotating behaviour on the physical robot.

This example demonstrates an important aspect of closing the gap between simulator and
reality. The simulator does not have to provide a precise model of the physical properties of
the system, but it should capture the principles of the target hardware. What a sufficient
abstraction is, can only be determined when the physical and simulated robots are compared on
the behaviour level. This does not mean that the artificial evolution is run until a final solution
is obtained, and then ported to the target platform, but rather that the intermediary results are
validated against the target platform periodically during the evolution. This needs to be done,
until the principles of the target platform are captured in the simulator (see fig. 3.3).

With this approach, the advantages discussed previously, namely, decreased evolution time,
preventing hardware from damage, and increased comparability of individuals, hold true and
justify the use of a simulator for the evaluation during the artificial evolution.

Different simulators were written for different experiments (see fig. A.19ff), basically from
scratch. An error in one simulator was likely to be reproduced in the following simulators.
Also, for each experiment, the communication to Hinton was written from scratch, and es-
pecially adapted to the simulated robot platform. A walking machine with many degrees of
freedom requires a different communication compared to a wheel-driven system. Nevertheless,

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

160 APPENDIX A. ISEE

the programmed simulations were necessary to gain enough experience in programming simula-
tors based on ODE. This experiences finally lead to YARS, a general physical robot simulator
based on ODE.

As stated in the specifications (see sec. A.2), ISEE should require only minimal — if any —
programming knowledge. This must hold true in particular for the simulator YARS, because
setting up a simulation is essential for the experiment. This means that no programming in
C/C++ and no compilation by the user should be necessary in order to set-up a new experiment.
We chose the Extensible Markup Language (XML) (Arbouzov et al., 2004) as the current user
interface. This was done for four reasons:

1. XML can be written with almost any editor.

2. If the keywords of the description language are chosen with care, it is human readable and
does not require any knowledge in programming languages such as C/C++.

3. With XSLT (Extensible Stylesheet Language Transformations) (J. Clark et al., 1999) there
exists a method to transform a description form e.g. VRML (web3D Consortium, 1997)
or X3D (web3D Consortium, 2006) into an XML file for YARS, and vice versa.

4. There are many, good open-source and freeware, context-sensitive XML editors available
for every operating system. Writing a general graphical editing tool for YARS, based on
the information available in the XML Schema grammar is possible without much imple-
mentation effort (currently a work in progress).

The goal was to provide a minimal and human readable interface. The description languages
VRML and X3D were not chosen, because they are too extensive in their possibilities, and
require advanced programming knowledge. A possible advantage of VRML and X3D is the
availability of a variety of graphical development tools, but as VRML and X3D are designed to
specify graphical scenes, they do not provide any possibility to describe robot sensors, such as
an infra-red proximity sensor. This requires heavy extensions in order to serve as a general robot
description language, which would make the description languages proprietary, such that graph-
ical development tools could not be used any more. Hence, another language was developed,
which is minimal but rich enough to describe an experiment and includes description elements
for actuators and sensors: the Robot Simulation Markup Language (RoSiML) (Zahedi et al.,
2005).

The first version of RoSiML was used in the German Research Foundation Priority Program
1125: as a general description language for all used simulators. It was agreed on RoSiML as the
common description language so that experiment descriptions would be exchangeable between
project members, independent of the simulation system. An overview of RoSiML is available in
the appendix (see app. B.7).

RoSiML offers the possibility of a comprehensive experiment description. One RoSiML file
includes the simulator set-up (camera position, window size, etc.), the environment description,
and the description of the robots. In particular, the description does not limit the number of
robots, such that a simulation of swarms is possible.

:German Foundation Priority Program 1125 ”Cooperating teams of mobile robots in dynamic environments”
(DFG-SPP 1125 ”Kooperierende Teams mobiler Roboter in dynamischen Umgebungen”)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 161

For each robot, YARS automatically creates a communication port and exchanges the sensor
and motor configuration with Hinton. Although this communication protocol was programmed
for Hinton, it is open, so that other control programs can connect to YARS. Hinton and YARS
typically run locally on one machine. Local communication is lossless, so that there is no need
for the TCP/IP flaw control. Hence, for maximal communication speed, UDP is the chosen
communication protocol.

Other simulators and physics engines, such as Havok (Havok.com Inc, 2006), Vortex (CM-
Labs Simulations Inc, 2006), Webots (Michel, 2006), Adams (Software, 2006), Darwin2k (Leger,
2006) etc. were reviewed by the author but not chosen because of either cost, speed, or missing
usability for evolutionary robotics.

Acknowledgements

Steffen Wischmann contributed to the implementation of the early version of the YARS core.
The generic communication interface between YARS and Hinton was designed and implemented
by Björn Mahn. Verena Thomas implemented the dynamical loading of control programs and
the virtual camera sensor. Arndt Twickel wrote a tutorial and was an extensive tester. He
became the co-author of YARS.

A.3.6 Brightwell

The previous sections discussed the software tools Hinton and Analyser with respect to the
analysis of the dynamics of a recurrent neural network in the sensori-motor loop.

A recurrent neural network, understood as a dynamical system, can show a rich reservoir
of dynamical properties, such as fixed point attractors, oscillations, quasi-periodic, and chaotic
attractors. From this reservoir, only a subset of properties is selected if the recurrent neural
network controls a robot in the sensori-motor loop.

If the dynamical reservoir of the recurrent neural network is known, the transients shown
by the Analyser are better understood, if they are related to the reservoir by taking the sensor
information into account.

The Brightwell tool is designed to visualise the dynamical properties of a recurrent neu-
ral network decoupled from the sensori-motor loop. It provides methods to visualise different
dynamical properties. In a similar manner to the concept of fitness-function and communica-
tion classes in Hinton, Brightwell provides functionality to add new visualisation methods with
minimal implementation effort (see app. B.5).

The following section describes the visualisation methods which are currently provided by
Brightwell.

Brightwell tools

The available tools are divided into two groups, those which process recurrent neural networks,
and those which visualise the behaviour of other dynamical systems. The second group is
added for educational purposes. The intention is to provide an interface, such that students can
implement any dynamical system and experiment with its parameters. This enables insights

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

162 APPENDIX A. ISEE

to be gained on how the plots are generated, what they show, and the behaviour of dynamical
systems.

The discussion begins with the tools for the analysis of the dynamical properties of recurrent
neural networks. It is followed by the description of visualisation methods for other dynamical
systems. Each tool description begins with the tool name which is given in bold characters.

Bifurcation Diagram: A bifurcation diagram shows the converged state of a recurrent neural
network for a range of one of the system parameters. The properties of such a diagram are shown
in figure A.8 by means of the single chaotic neuron (Pasemann, 1997b), which is given by the
following equation:

apt� 1q � Θ� κaptq � wσpaptqq.

In this case, the bias value Θ of the system is varied over the interval Θ P r0, 8s. The bifurcation
diagram for this example (see fig. A.8 centre) shows how the dynamics of the single chaotic
neuron differ for different setting of Θ. For Θ P r0,� 1.5s the plot shows that the system has a
fixed point attractor. For values of Θ P r� 1.5,� 4s a period-doubling route to chaos and finally
chaos is observed. The state for which the quality of the attractor of the system changes, is
called a bifurcation point. In this example, the plots show such a bifurcation from a fixed point
attractor to a period-2 attractor for Θ � 1.5.

A bifurcation diagram is generated as follows (see alg. 4). The dynamical system is set to
its initial state. This can be a random initialisation or a user-defined state. For this initial
state, a given number of convergence iterations are performed. After the convergence iterations,
a given number of plot or draw iterations follow. This means, that after each draw iteration
the current state of the system is plotted. This way oscillations or chaos, for which the system
takes different values for iterations for one specific parameter configuration is visualised. An
example is the period-2 oscillation of the single chaotic neuron for Θ ¥ 6 (see fig. A.8). After
the draw steps are performed, the parameter is increased according to the defined parameter
domain (x-range). Depending on the user’s choice, the system is either reinitialised to its user-
defined initial condition, reinitialised to randomised values, or kept in the current state. For
the new parameter setting and the selected initial state for the system, the convergence and
plot iterations are repeated. In order to visualise hysteresis or co-existing attractors, the system
must be processed at least twice, once from the lower border to the upper, and once from the
upper to the lower border.

For recurrent neural networks, the parameters open to variation are the bias term of a
neuron and the weight of a synapse. The parameters of the other neurons and synapses are
kept constant. The Bifurcation Diagram tool provides a graphical user interface, such that the
user can set the algorithms parameter (see fig. A.8). The standard visualisation displays the
bifurcation diagram of the average output over all neurons. The average may hide the dynamical
properties of isolated neurons, which can differ significantly. Therefore, any set of neurons can
be selected and displayed in isolation.

In some cases, it may not be possible to resolved whether the system is quasi-periodic or
chaotic simply through visualisation. A good indication method is the Lyapunov exponent
(Thomson & Stewart, 2002; Strogatz, 1994). If the exponent is negative, the system is neither

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 163

Figure A.8: Bifurcation Plot Tool. From left to right: Tool Parameter GUI, an example plot. The
GUI provides an interface to the tool parameters, which are the initial activation function, the parameter
open to variation, selection of neurons to be additionally plotted, file output, chaotic input, and calculation
of the Lyapunov exponent. Possible initial activation functions are continuous, random, and resetted.
This function determines how the neural network is reset for each new parameter configuration (see alg. 4).
For the tool, either a bias of a neuron or one synapse is varied over the x-range. The chaotic input can
be used to analyse the convergence behaviour system. The Lyapunov exponent can be calculated for the
entire network and is displayed in an additional window. The example shows a single chaotic neuron
with κ � 0.6, w � �16, and the standard sigmoid transfer-function (Pasemann, 1997b).

chaotic nor quasi-periodic. If it is zero, the system is quasi-periodic, while a positive exponent
indicates a chaotic behaviour. The Lyapunov exponent is drawn in addition to the bifurcation
diagram (see fig. A.8 left).

The last option allows the logging (to a file) of the states of the recurrent neural network as
a white-space-separated list of values. This file can be used with third-party tools.

Iso-periodic Plot: An iso-periodic plot is a sketch of the dynamical properties of a system
seen in figure A.9 left as it is applied to a neuron-module, in which the colours encode the
periodic attractors existing for corresponding points in a two-dimensional subspace (Pasemann,
2002).

The iso-periodic plot is generated as follows (see alg. 5): For each setting of the two selected
parameters, a system is reinitialised according to the initial state setting. As for the bifurcation
diagram a defined number of convergence iterations are performed. After convergence, the
system is iterated until the current state of the system is repeated. The equality of a state is
defined by the maximal difference (see fig. A.9) between the values of two consecutive states. If
it difference is small enough, the states are assumed to be equal. The period of the attractor is
then given by the number of iterations until the periodic point is repeated. A maximal number
of iterations, and therefore, maximal displayed period is set. All higher periods are coloured
alike and denoted with “ch” in the legend, which indicates chaos. This is, however, only a
place-holder for higher periods and does not mean that the corresponding parameter set leads
to chaos. It also occurs when the number of convergence iterations is set too small during the
calculation of the period, such that the attractor is not reached.

The tool allows the generation of plots for any two combinations of parameters, bias–bias,
bias–synapse, synapse–synapse.

It should be noted that hysteresis cannot be visualised with the current version of the Iso-
periodic Plot. For that, at each coordinate, the algorithm has to be executed at least twice for

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

164 APPENDIX A. ISEE

Algorithm 4 Bifurcation Diagram.

Require: Nptq :� tniptqui�0,...,|N |�1 {set of all neurons}
Require: C := number of convergence iterations
Require: D := number of draw iterations
Require: xmin, xmax,∆x, the range and step size

1: for x � xmin to xmax step ∆x do
2: for all nip0q P Np0q do
3: reinit(nip0q) {depending on the selected method}
4: end for
5: for i � 0 to C do
6: process(Npiq) {One iteration of the network (see sec. A.3.1)}
7: end for
8: for i � 0 to D do
9: process(Npiq) {One iteration of the network (see sec. A.3.1)}

10: opiq � 1
N

°|N |
i oipiq

11: plot px, opiqq
12: for all selected nj P Npiq do
13: plotpx, ojpiqq
14: end for
15: end for
16: end for

all attractors with a period of one. The fixed point attractor of the system must be calculated
for an upper and lower setting of the initial state. Comparing the resulting fixed points shows
hysteresis, when they are unequal.

Transient Plot: The bifurcation and iso-periodic plot methods, described above, visualise the
asymptotic set of states of a recurrent neural network for varying parameters. The visualisation
methods do not provide any insights about the transient behaviour of the system and they do not
give any information about the trajectory or orbit, as in the case of the bifurcation diagram, the
visualisation does not provide any information about the order of the states. Consider a quasi-
periodic attractor or higher-order attractor (larger than three). In this case, the bifurcation
diagram does visualise the elements of the asymptotic set, but not the sequence in which a
neuron iterates over them. The iso-periodic plot only visualises the quality of the attractor, its
set, but not its orbit.

The Transient Plot Tool displays the transients and orbits of the neuron outputs for any
set of neurons (see fig. A.10). For a selected initial condition, the recurrent neural network is
iterated according to the number of convergence iterations specified by the user. The tool’s GUI
enables the selection of the iteration step from which the system state is plotted (see alg. 6). This
can be used to visualise the transient, and transient length of the system, while approaching the
attractor from a specific initial condition. Additionally, it may show only the orbit of the system
once the attractor has been reached, e.g. the output behaviour of a quasi-periodic neuron.

The transients can be written as a white-space-separated list to a file for further analysis

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 165

Figure A.9: Iso-periodic Plot Tool. From left to right: Tool Parameter GUI, an example plot. The
GUI provides an interface to the tool parameters. Parameters are the colouring method, the parameters
open to variation, and the maximal difference for the period calculation. The colouring method is either
colour or Gray values. Two parameters need to varied for the Iso-periodic plot. This can be any possible
combination of bias values and synaptic strength. If both parameter are bias or synapse, the must
given as comma separated list. For the maximal difference the reader is referred to the text and the
described algorithm (see alg. 5). The example is the iso-periodic map of the two neuron module with
w21 � �6,Θ1 � �3,Θ2 � 4, and the standard sigmoid transfer-function (Pasemann, 1997b).

with third party tools.

Figure A.10: Transient Plot Tool. From left to right: Tool Parameter GUI, an example plot. The
GUI provides an interface to the tool parameters. Parameters include the neurons that will be plotted,
the start index of the plot, and a file-name of the white-space-separated value output in ASCII format.
The start index corresponds to the n-th iteration from which the plot begins. The number of iterations
plotted is determined by the convergence iterations setting in the Tool Parameter Panel. The example
plot shows the output of the two neurons of a SO(2)-Network (Pasemann, Hild, & Zahedi, 2003).

First-Return Map: The First-Return map is also known as a Poincaré map (Katok & Hassel-
blatt, 1999; Strogatz, 1994). Other authors distinguish between a time-T map and a Poincaré
map (Alligood et al., 1996). The principle of both is very similar but differ in detail. For a
Poincaré map, the complex structure of an attractor of a continuous-time dynamical system
is captured by the intersections of its orbit with a sub-manifold (the Poincaré section). For a
three-dimensional system, this is a plane. The motion will appear as a sequence of points, and
e.g. a periodic attractor will appear as a repeating sequence of points while a quasi-periodic
attractor will appear as a closed orbit on this plane (Lakshmanan & Rajaseekar, 2003). The
difference between a Poincaré map and a time-T map is that in the first case, the plane must
not necessarily capture points which are equally-spaced in time whereas the time-T map is

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

166 APPENDIX A. ISEE

Algorithm 5 Iso-periodic Map.

Require: Nptq :� tniptqui�0,...,|N |�1 {set of all neurons}
Require: C := number of convergence iterations
Require: maxPeriod := the maximal tested period
Require: maxDiff := upper limit to consider to states as equal

1: for x � xmin to xmax step δx do
2: for y � ymin to ymax step δy do
3: for all nip0q P Np0q do
4: reinit(nip0q) {depending on selected method}
5: end for
6: for i � 0 to C do
7: process(Npiq) {(see sec. A.3.1)}
8: end for
9: for i � 0 to maxPeriod do

10: process(NpC � iq) {(see sec. A.3.1)}
11: ∆i �

°N
j |ojpC � iq � oipC � i� 1q|

12: if ∆i maxDiff then
13: plot px, y, iq {i denotes the period}
14: break
15: end if
16: end for
17: end for
18: end for

stroboscopic, mapping the values of the variables at equal time intervals (Alligood et al., 1996).
For discrete-time systems, as they are used here, the first-return map is constructed by

plotting the state xptq against the state xpt� 1q, which relates to a stroboscopic capturing. The
First-Return Map tool plots the average over all outputs poptq, opt� 1qq, or the output of any
tupel of selected neurons poiptq, ojpt� 1qq, i, j � 0, . . . , |N | � 1 in the two-dimensional plane.

In order to visualise co-existing attractors, the tool restarts the system from random initial
conditions. For each new initial condition, a different colour is used to plot the attractor. This
allows co-existing attractors to be distinguished visually.

Peek Plot: The Peek Plot tool plots the transient response of a recurrent neural network
to a peek stimulus (see fig. A.11). The stimulus is represented by a varying bias value for a
given neuron of the neural network. The peek is defined by a minimum and maximum value,
the number of peek iterations, and a function determining the shape of the peek. Implemented
functions are peek (rectangle shaped pulse) and ramp (trapezoidal shaped pulse) (see fig. A.11b).

Firing Pattern Plot: The Firing Pattern tool is used to visualise the periodic behaviour of a
recurrent neural network (see fig. A.12). In contrast to the Transient Plot tool, only the sign of
the output values are plotted, and not the actual neuron output values. This enables the visual
determinations of the period and the phase-shift of the neuron output patterns.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 167

Algorithm 6 Tranisent Plot.

Require: Nptq :� tniptqui�0,...,|N |�1 {set of all neurons}
Require: C := number of convergence iterations
Require: P := plot index
Require: P C

1: init(niptq) {depending on selected method}
2: for i � 0 to P do
3: process(Npiq) {(see sec. A.3.1)}
4: end for
5: for j � 0 to C � P do
6: process(Npjq) {(see sec. A.3.1)}
7: for i � 0 to |N | do
8: plot pj, oiptqq
9: end for

10: end for

Centrality Tool: The Centrality Tool visualises the centrality of each neuron within a neural
network. The centrality measurement is known from the analysis of social networks (Brandes,
2000; Hanneman & Riddle, 2005), in which the centrality defines the importance of an actor
within a group of actors. The known measurements are:

• Degree centrality.

• In-degree centrality.

• Out-degree centrality.

• Closeness centrality.

• Betweenness centrality.

• Flow-Betweenness centrality.

The Centrality Tool enables the selection of any set of the methods listed above (except flow-
betweenness). An overall classification is given by the average of the selected centralities. The
results can be displayed visually (see fig. A.13), or written as a table to an ASCII-file for further
analysis using third-party tools. In the following paragraphs, the centrality methods, listed
above, are detailed.

Degree / In- / Out-degree centrality The three degree centralities measure the different
aspects of the connectivity of a neuron in a neural network. The degree centrality takes into
account all synapses connected to a neuron, whereas the in-degree and out-degree centrality only
take into account the number of incoming and outgoing connections, respectively.

A.3.3 Definition: Degree / In- / Out-degree centrality

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

168 APPENDIX A. ISEE

Figure A.11: Peek Tool. From left to right: Tool Parameter GUI, two example plots. The GUI
provides an interface to the tool parameters. Parameters include the peek method, minimal and maximal
peek value, pre-peek-, peek-, and post-peek-steps, and the neuron to be varied by the peek. Two peek
methods are currently implemented and shown here. For both plots the same network is used. An
input neuron is connected to an output neuron. The synaptic strengths are w21 � 1, w22 � �1.5. The
peek (centre) changes the activation of the input neuron from the minimal value (-1) to the maximal
value (+1) as a step function. The ramp (right) changes the activation of the input neuron between the
minimal value (-1) and the maximal value (+1) through a linear increase and decrease. The plots show
the difference in behaviour for the two methods.

Let G � pV,Eq be the graph describing the neural network. Then the three degree centralities
are then defined as

degpvq :� |tu P V |pu, vq P E _ pv, uq P Eu|
indegpvq :� |tu P V |pu, vq P Eu|
outdegpvq :� |tu P V |pv, uq P Eu|
Cdegpvq � degpvq

|V |2 � 1

Cindegpvq � indegpvq
|V |

Coutdegpvq � outdegpvq
|V |

Closeness centrality The description of the Closeness centrality concept is given here. Con-
sider two different synaptic pathways. Let t be a destination neuron, and r and s two source
neurons. If the synaptic pathway rt is shorter than the synaptic pathway st, then the output
of the neuron r is considered to have a higher influence on t. The closeness centrality measures
the degree of shortest pathways a neuron has within a network.

A.3.4 Definition: Closeness centrality
Let G � pV,Eq be the graph describing the neural network. Then the closeness centrality is
defined as

distpv, tq � length of the shortest path between v and t

CCpvq �
¸

tPV ztvu
distpv, tq

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 169

Figure A.12: Firing Pattern Tool. Firing Pattern Tool. From left to right: Tool Parameter GUI,
three example plots. The parameters for the tool are the start index from which the plot starts, and
whether colour should be used. The neural network is iterated according to the convergence iterations
setting. The plot starts when the network has been iterated index times. The example plot has been
created with two coupled SO(2)-networks (Pasemann, Hild, & Zahedi, 2003) which were used as a CPG
for an Aibo (Markelić & Zahedi, 2007; Markelić, 2005) and an Aibo-like morphology (Klaassen et al.,
2004). The centre plot shows the average over all neurons. The two plots on the right-hand side show the
firing pattern for all neurons. The neurons are ordered from bottom to top with increasing neuron index.
The x-axis is the iteration step of the recurrent neural network. White-space denotes an output below 0
for the hyperbolic tangent transfer-function and below 0.5 for the standard sigmoid transfer-function (in
the black and white images). Black dots denote an output above 0 or 0.5, respectively. In the coloured
image, red corresponds to a high activation (�1) and blue to a low activation (�1 in the case of the
hyperbolic tangent, 0 in the case of the standard sigmoid).

smaller values indicate higher centrality

CCpvq � 1°
tPV ztvu distpv, tq

higher values indicate higher centrality

Betweenness centrality The Betweenness centrality measures how many shortest paths be-
tween any two neurons s, t pass a neuron v. The concept originates from communication path-
ways between actors. The larger number of shortest communication pathways between two
actors are controlled by a third actor, the more powerful the third actor is.

A.3.5 Definition: Betweenness centrality
Let G � pV,Eq be the graph describing the neural network. Then the betweenness centrality is
defined as

σst � number of shortest paths between s and t
σstpvq � number of shortest paths between s and t over v

CBpvq �
¸

sPV ztvu

¸
tPV ztv,su

σstpvq
σst

Flow-Betweenness centrality The Flow-Betweenness centrality measures how much infor-
mation or signal flow passes an actor, with respect to the maximum flow (Cormen et al., 1990)
in the network. The maximal flow between two neurons can be defined by the strength of the
synapse connecting them.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

170 APPENDIX A. ISEE

Figure A.13: Centrality Tool. From left to right: Tool Parameter GUI, an example plot. The
GUI provides the list of available centrality measurements. From this list any subset can be selected. In
addition the overall average over the selected set of centralities can be chosen as well. If a file-name and
the check box are filled, the results are written to an ASCII-File. On the right-hand side, an example
is given for a star network. This is a configuration, in which one neuron is bidirectionally connected to
every other neuron. The other neurons have no further connections. The plots was generated with the
JFreeChart library (Viklund, 2006).

A.3.6 Definition: Flow-Betweenness centrality
Let G � pV,Eq be the graph describing the neural network. Then the betweenness centrality is
defined as

fst � maximum flow between s and t
fstpvq � maximum flow between s and t over v

CF pvq �
¸

sPV ztvu

¸
tPV ztv,su

fstpvq
fst

This centrality measurement is currently not included in Brightwell.

First-Return Map (File): The First-Return Map (File) tool (see fig. A.14) is similar to
the First-Return Map tool described above. In contrast, this tool does not generate the data
by processing a recurrent neural network, but takes the data from an input file. This file is a
white-space-separated table of values. The user specifies which column defines the x- and y-axis.
The tool plots the y value of the line i� 1 against the x value of the line i.

Magnetic Pendulum: The Magnetic Pendulum tool is the first educational tool found in the
Brightwell application. The magnetic pendulum is a chaotic dynamical system. Two or more
magnets are placed on a plane around the centre of a swinging pendulum. The pendulum is
then displaced from its centre and released to swing. The trajectory is affected by the forces
of the magnets. At which magnet the pendulum finally rests is highly dependent on the initial
position and initial velocity of the pendulum. Small variations of the initial condition result
in a different outcome. The magnetic pendulum is a good visualisation of fractal basins (see
fig. A.15). It is given by the following equations take from Dickau (2008):

:xptq �R 9xptq �
Ş

i�1

xi � xptq�a
pxi � xptqq2 � pyi � yptqq2

	3 � Cxptq � 0

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 171

Figure A.14: First-Return Map (File). From left to right: Tool Parameter GUI, and one example
plot. The parameters define which columns of the input file are selected for plotting (X/Y), which rows
are selected (start/end) and how the axes will be labelled. The last parameter determines whether lines or
points are used for plotting. The plot on the right hand side shows a First-Return map for a Braitenberg
controller with the SRN model (see sec. 5.2.2).

Figure A.15: Magnetic Pendulum. From left to right: Tool Parameter GUI, and one example plot.
The tool parameters are the time step dt used by the Runge-Kutta method, the number of magnets, which
are equally distributed around the centre, with the distance (3rd parameter) defined by the user. The
example plot shows the basins for the parameters visible in the left figure. The plot was generated with
5000 convergence iterations. The colouring is determined by the magnet, with the smallest distance to
the end position of the pendulum. At each coordinate, the pendulum is started with zero initial velocity:
9xp0q � 0, 9yp0q � 0.

:yptq �R 9yptq �
Ş

i�1

yi � yptq�a
pxi � xptqq2 � pyi � yptqq2

	3 � Cyptq � 0,

where S is the number of magnets, pxi, yiq the coordinate of the i-th magnet, pxptq, yptqq is
the position of the pendulum at time t, d is the distance between the pendulum and the plane
containing the magnets, R the friction, and C the spring parameter. The parameters were
chosen as follows:

R � 0.2
C � 0.5.

The Runge-Kutta method (Strogatz, 1994) is used to calculate the dynamics.

Standard Equations: The Standard Equations tool is the second educational tool. It is de-
signed as a selection of dynamical systems found in standard literature (Strogatz, 1994; Thomson

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

172 APPENDIX A. ISEE

& Stewart, 2002). The goal is to provide explorative access in order to understand the effect of
various parameters on a dynamical system (see fig. A.16).

Figure A.16: Logistic map. From left to right: Tool Parameter GUI, an example plot. The GUI
allows the selection of the standard dynamical system from a pull-down menu. The parameters a, b, c, d
are intended to be used for newly implemented systems. The right-hand shows the resulting logistic map
as an example.

Tutorial: The last tool to be introduced is the Tutorial tool. It is not an implementation
of an analysis or visualisation method, but rather, it provides a template and description of
the process which is required to add new visualisation tools in the Brightwell framework. The
plot of the tool shows the various visualisation functions which are currently implemented. The
interface, shown in figure A.17, displays the various user interface functions which have been
implemented. The source code of this tool is documented, with a detailed description of the
methodology for the creation of a new tool for Brightwell.

Figure A.17: Tutorial Tool. From left to right: Tool Parameter GUI, an example plot. The GUI
shows the possible interface functionality (see app. B.5). The plot on the right-hand side shows the
various draw methods which are implemented.

Approx Key Frames: The Approx Key Frames tool was contributed by Bernhard Klaassen.
It was developed during a research project which was concerned with the automatic calculation
of parameters of a recurrent neural network, so that the periodic behaviour would match a given
set of key frames (Klaassen et al., 2004).

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.3. ISEE TOOLS 173

Figure A.18: Reading. From left to right: Reading GUI, Individual Network View.

A.3.7 Reading

The tool Reading is designed to visualise an evolution log-file written by EvoSun. The log-file for
an evolution typically grows very large. In order to find a specific individual, or generation, the
user may use any editor and search for the generation. This method is no longer applicable for a
file which already contains a few generations and individuals, as the clarity cannot be provided
by a text editor. Therefore, a tool was created, which enables the visualisation of an evolution
log-file (see fig. A.18). The GUI allows access to individual nets, and enables the sorting of the
list of individuals by generation, identification number, fitness, and other network properties.
Selected networks can be exported and used by other ISEE tools.

A.3.8 Newbury

Newbury is a program designed to generate a new initial population file from a set of neural
networks. The set of neural networks are individual XML files which are specified for Newbury
through the command line. These files are then merged into one new evolutionary logging file,
which can then be used by EvoSun as an initial population file.

A.3.9 Beaumy

Beaumy is a tool which is used to extract the best individuals of an evolution log-file to form a
new initial file for EvoSun. The parameters allow the user to select the number of generations,
and the number of individuals from each generation for the new initial population file. The
numbering of the generations is backwards, starting from the last generation in the evolution
log-file.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

174 APPENDIX A. ISEE

A.4 Examples of projects implemented with the ISEE frame-
work

This section gives an overview of projects, which have been implemented with the ISEE frame-
work. Not all projects were developed entirely within the framework. Some, such as the RunBot,
Scorpion and others existed before ISEE, but simulations were programmed to either provide an
evaluation environment for artificial evolution, or to test their controller structures in simulation
for the relevant platform. Each project is described below along with a figure of the simulation
and the physical robotic platform which was used.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.4. EXAMPLES OF PROJECTS IMPLEMENTED WITH THE ISEE FRAMEWORK 175

A.19.1 Aibo. Left: CALT (complex adaptive legged toys) project. The goal of the project
was to develop a modular control concept of pluggable walking machines of arbitrary structure
(Klaassen et al., 2004). Centre: Simulated Aibo in YARS. Right: the physical robot platform
to which the evolved controller was ported. The projects goal was to understand and evolve
a fast locomotion for a four-legged robot in the RoboCup domain (Markelić & Zahedi, 2007;
Markelić, 2005).

A.19.2 Octavio. Octavio (by Manfred Hild and Torsten Siedel) is a modular eight-legged
walking machine. Each leg has its own power supply and control unit. Only low bandwidth
communication is possible between the legs, which allows synchronisation. Left: First different
controllers for single-leg control were evolved (Twickel & Pasemann, 2006) and then combined
in a walking machine (centre). Right: The physical platform.

A.19.3 AMOS. AMOS is an umbrella term for a set of
walking machines. Shown here are a four-legged and
an eight-legged instance of AMOS. The four legged ma-
chine (by Poramate Manoonpong) is designed to evalu-
ate the use of artificial whiskers as multi-sensori input
(Manoonpong, 2007).

A.19.4 Scorpion. Scorpion (by Frank Kirchner)
is a biologically inspired eight-legged walking ma-
chine. A simulation for Scorpion was written by
Poramate Manoonpong. The image of the Scor-
pion robot was taken from the project page of the
University of Bremen (Spenneberg, 2008).

Figure A.19: ISEE project examples I/IV.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

176 APPENDIX A. ISEE

A.20.1 RunBot. RunBot (Geng et al.,
2006) is the fastest two-legged walking ma-
chine. The image of the robot was taken
from the project page at the BCCN in
Göttingen. A simulation was written by
Poramate Manoonpong in YARS.

A.20.2 Passive and dynamic walker. Steffen Wis-
chmann first evolved the morphology of a passive dynamic
walker (left). From that experiment, an active walker was
evolved which requires only very limited actuation (Wis-
chmann & Pasemann, 2004).

A.20.3 micro.adam and micro.eva. Two art projects, by Julius Popp (Popp, 2005). Left: simulation of
and the physical micro.adam, right: simulation and physical micro.eva. Both are gravity driven robots,
which rotate around the centre by displacement of their centre of gravity. micro.eva was used to compare
centralised and decentralised control strategies (Wischmann et al., 2005).

A.20.4 DFG OUTDOOR project. This project is funded by the German Research Foundation Priority
Program 1125. In an outdoor scenario, teams of mobile robots are supposed to cooperate on a large field.
Communication in such a scenario is difficult. The robots should be able to detect the intention of
team-mates by observation of their actions, using the concept of mirror neurons. The two figures on the
left-hand side show an experiment, implemented by Verena Thomas (Thomas, 2008) in YARS, to evolve
a neuro-controller which is able to distinguish between ego-motion and motion within the environment.
The figure in the centre is the physical OUTDOOR platform, based on the Volksbot (Wisspeintner &
Bose, 2005). The two figures on the right show a simulated environment, a maze with randomised hallway
width, used to evolve a controller with memory.

Figure A.20: ISEE project examples II/IV.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

A.4. EXAMPLES OF PROJECTS IMPLEMENTED WITH THE ISEE FRAMEWORK 177

A.21.1 Robertino with and without pole. Robertino (Verbeek, 2008) is a holo-
nomic platform (right-hand side). The two figures to the left show simulations (by
Björn Mahn) used to evolve a neuron controller to control a Robertino with and
without a pole (Mahn, 2003).

A.21.2 RoboCup. The images are taken from two different projects, both
related to RoboCup. In both projects, a controller for a RoboCup behaviour
was evolved. On the left-hand side, is a simulation based on ODE written for
goalkeeping behaviour for the AIS/Musashi MidSize RoboCup Team (Zahedi
et al., 2004). Next, the evaluation environment (by Björn Mahn) for a striker
behaviour. Two neuro-controllers were evolved and then fused to create an
overall striker behaviour, a ball-seeker, and a goal-shooting behaviour. The
striker project was led by Martin Hülse.

Figure A.21: ISEE project examples III/IV.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

178 APPENDIX A. ISEE

A.22.1 Uffington. This robot platform consists of five segments which are connected by four independent
actuators. The original platform was designed for Mars exploration. The two figures on the left show the
simulation, the figure on the right shows the redesigned physical platform (by Mirko Mannes).

A.22.2 Morpheus. Morpheus (by Jörn Fischer) is
a six-legged walking machine (left) with two degrees
of freedom in each leg (Fischer, 2003). Equipped
with a single infra-red sensor, it is able to explore
an office environment. Right: The simulation envi-
ronment used to evolve new behaviours.

A.22.3 Ted and Do:Little. Ted (by Manfred Hild)
is a walking machine with only two degrees of freedom
controlled by a SO(2)-Network (Pasemann, Hild, & Za-
hedi, 2003). Left: The physical machine, together with
Do:Little (by Manfred Hild and Jan Karabasz), left, the
simulation (by Steffen Wischmann).

A.22.4 Other projects From left to right: Light-seeker with randomised environment
in YARS, pole-balancer implementation in ODE, and swarm robots implementation in
YARS.

Figure A.22: ISEE project examples IV/IV.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Appendix B

Howto’s

This appendix provides guidelines on how to use and extend ISEE for artificial evolution and
analysis of recurrent neural networks.

In order to set-up an experiment, two steps are required. The first step is to include an
evaluation environment within the ISEE framework. This can be a simulation in YARS, a third
party simulator, or a physical robot. The second step is to implement a fitness-function which
evaluates the generated controller.

Both steps are discussed in this appendix, followed by a description of the process required
to extend ISEE through the neural network exporter, learning rules, and Brightwell visualisation
methods.

The description is written for the reader without expert knowledge in programming, and
may include information not required by experts.

The following typographical conventions are used in this appendix: function, class name,
component, gui element, variable/attribute.

B.1 Overview

The introduction mentioned two steps, including an evaluation environment, and defining a
fitness-function. Both these steps require modifications of Hinton. Therefore, this section gives
an overview of the process sequence for Hinton. This is necessary to understand the concept of
the communication and fitness-function classes and why the implementation of different functions
are required. The process sequence is described on the basis of the function calls between the
different classes of Hinton (see fig. B.1).

A brief introduction of the relevant classes is given (see tab. B.1), followed by the sequence
of interactions between them.

The process is discussed with respect to artificial evolution. When Hinton is used as an
analysis tool, decoupled from artificial evolution, the process may be considered equivalent. In
this case, only one individual is processed within each generation and it is not altered over the
generations. The steps are visualised in the figure B.1 and the step number refer to the number
given in the figure.

179

180 APPENDIX B. HOWTO’S

Net Implementation of the neural network.
RobotStruct Data exchange container for sensor and motor data of the

simulated/physical robot.
FitnessFunction Implementation of a fitness-function.
Ambassador Implementation of a communication class, either for the

simulated or physical robot.
SimCom Superclass of communication implementation, providing basic

functionality required by every communication. In this section a
simulated robot is chosen, but the process is equivalent for
physical robots.

Processor Processing of the neural network, communication with the
robot, calculation of the fitness-function.

ProcessorThread Controls the overall evolutionary process.

Table B.1: Classes used within the Hinton main loop. On the left-hand side: Names of the
classes which are used during the main loop for the evaluation and processing of a controller in Hinton.
Right-hand side: Brief description of the functionality of the class.

Step 1: The initial conditions for each individual in a generation must be equal, to assure that
the fitness values are comparable. Hence, a method must be provided, which sets the initial
conditions at the beginning of each new generation. This method, named setNewStartPosition,
is part of the ambassador implementation (see sec. A.3.3), and is called by the Processor-
Parameter.

Step 2: The evaluation of an individual begins with the setting of the initial conditions. For
this reason the ProcessorThread calls the reset method implemented in the ambassador. It
is responsible for setting the initial conditions to those previously defined in the setNewStart-
Position method.

Step 3: The third step is to reset the fitness-function before an individual is evaluated. This is
done by the ProcessorThread. It calls the reset method of the fitness-function implementation.

Step 4: After resetting the initial conditions and the fitness-function, the ProcessorThread
calls the run method of the Processor. The Processor is the neural network processing
implementation. Besides processing the neural network, the Processor is the implementation
of the sensori-motor loop, as described in the following steps.

Step 5: There are two different methods which may be used to start the sensori-motor loop.
The first possibility is to start it with the processing of the recurrent neural network and the
generation of the motor commands. Using this method, the first action of the controlled robot

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.1. OVERVIEW 181

is only dependent on the initial parameter of the controller. In the case of recurrent neural
networks, these parameters are the synaptic strength and bias values of the neurons.

In the implementation of Hinton, a second method was chosen. Before the recurrent neural
network is processed, sensor values from the simulated or physical robot are used as input to
the network. Then, the motor commands are generated and passed to the robot.

This method was chosen, because it adds another source of randomness to the evolution
process. In the case of the first method which is described above, the first motor command is
independent of the environmental setting. By making the motor commands of the controller
dependent on the first sensor signals, the first command varies for the same controller in different
environments. This increases the selection pressure for robust controllers.

In the process loop this means that the methods send and update of the ambassador are
called by the Process before the network is processed. The send method typically sends data
to the simulation/robot, and the update method receives data and fills the RobotStruct (see
app. B.4.2). Pre- and post-processing of the data is implemented in send/update methods,
where applicable.

Step 6: After the RobotStruct has been filled by the ambassador, the Proccessor receives
one sensor value for each input neuron from the RobotStruct by calling the getOutputDouble
method. The minimum of the number of input neurons |I| and the number of sensors |S|
determines how the sensors are mapped to the input neurons. The first n � minp|I|, |S|q input
neurons are fed by the first n sensor values. The order of the sensors is defined by an XML-file
(see app. B.4.2). If the number of input neurons exceed the number of sensors, the input neurons
activations are set to zero. If the number of sensors exceed the number of input neurons, the
sensor values are not used in the network processing. However, they can still be used in the
calculation of the fitness-function. Therefore, global sensors are typically added at the end of
the list of sensors, so that they are not available for the neural network, but for the evaluation
process using the fitness-function.

Step 7: Once the sensor values have been received, the next step is the processing of the
recurrent neural network. The number of iterations of the recurrent neural network is defined
in the ProcessParameter object. Typically only one iteration is performed, but any other
number of iterations is possible. A common example for a different setting is three. This
ensures that the newly applied sensor values reach the output neurons before motor commands
are generated. Three iterations are used because the recurrent neural network consists of three
neuron layers; input, output, and hidden.

Step 8: The values of the output neurons are fed back into the RobotStruct. The value
for the output neuron to motor mapping is set equivalent to the value for the input neuron to
sensor mapping (see step 7). If the number of motors exceeds the number of output neurons,
the relevant values are set to zero.

Step 9: After the neural network has been processed, the Proccessor calls the calculate
method of the fitness-function implementation. The fitness-function implementation has access

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

182 APPENDIX B. HOWTO’S

to all data that is made available by the ProcessorParamter and RobotStruct.
The experimenter has to ensure that the method calculate of the fitness-function implemen-

tation stores a valid fitness value at each step (see app. B.3).

Step 10: This step is optional and only applied, if the experimenter defines more then one try
for each evaluation. For each try, the controller is evaluated against a different initial condition,
which must be previously defined in the setNewStartPosition method. The overall fitness is the
sum of the fitness values of all the tries. The method nextTry is called by the Proccessor and
is typically implemented similarly to the reset method.

Summary

The steps one to ten define the framework in which the experimenter includes a new experiment.
This is the framework, in which the communication, the fitness-function, the RobotStruct, and
the ProcessParameter class are located.

B.2 How to write a Communication class

A communication class extends the class SimCom and must be located in the directory hin-
ton/simulators (see fig. A.2). From the superclass SimCom the communication class has
access to all information available through the three data exchange classes, RobotStruct, Pro-
cessParameter, and RobotStatus (see app. B.4).

This section explains which functions need to be implemented, and how they interact with
the overall framework.

String getSimName

The method getSimName must provide a unique, human readable string. The string defined
in this method is displayed in the communication selection pull-down menu available on the
Hinton GUI (see fig. A.5). If no configuration file is found, the getName of the superclass
SimCom adds extra character to the string provided by the getSimName, and therefore, the
superclass method should not be overwritten.

String getConfigName

The method getConfigName returns a string that specifies the location of a configuration XML-
file. This XML-file is read by the class SimCom when Hinton starts and is used to initialise
the RobotStruct (see app. B.4.2). It defines the sensor to input-neuron and output-neuron to
motor mappings.

void connect

The method connect is called as soon as the user activates the connect button on the simulation
panel of Hinton (see fig. A.5). This method initialises the connection between Hinton and the
simulation. Typically the attributes port and ip, which are available through the superclass

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.2. HOW TO WRITE A COMMUNICATION CLASS 183

SimComBroker

+getSimComNames() : String[]
+getSimCom(in simComName : String) : AmbassadorInterface

+getRobotComNames() : String[]
+getRobotCom(in robotComName : String) : AmbassadorInterface

RobotComBroker

+getName() : String
+update() : void
+robotStruct() : RobotStruct
+stop() : void
+connect() : void
+disconnect() : void
+reset() : void
+setNewStartPosition() : void
+close() : void
+getPreferredPort() : int
+getRobotStatus() : RobotStatus
+setSpeedFactor(in speedFactor : double) : void
+nextTry() : void
+setProcessParameter(in processParameter : ProcessParameter) : void
+setPortIp(in port : int, in ip : String) : void

«interface»AmbassadorInterface

SimCom

-ROBOT_OL : RobotStatus = 1
-ROBOT_BUMPED : RobotStatus = 2
-ROBOT_NEXT_TRY : RobotStatus = 3

RobotStatus

+getInputDouble(in key : String) : double
+getOutputDouble(in key : String) : double

RobotStruct

RobotCom

Loop #Generations

Loop #Individuals

Loop #tries-1

Loop #cycles

Loop
MIN(#outpuneuron, #actuators)

Loop
MIN(#inputneuron, #sensors)

ProcessorProcessorThread SimCom

setNewStartPosition

run

reset

FitnessFunction

reset

update

RobotStruct

getOutputDouble

Net

process

setInputDouble

calculate

nextTry

send

update

Ambassador

doReset

setNewStartPosition

reset

1.

2.
3.

5.

6.

7.

8.

9.

10.

4.

Figure B.1: Hinton UML class and UML sequence diagram.

SimCom, are used to identify the port and host ip of the simulator. These attributes are
automatically filled with the values given through the GUI.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

184 APPENDIX B. HOWTO’S

+needsNet() : <unspecified>
+init() : void
+getToolName() : String
+getToolDescription() : String
+doAnalysis() : void

#doAnalysis : boolean = false
#net : Net = null
#convergenceIterations : int = 0
#drawIterations : int = 0
#xStart : double = 0
#xEnd : double = 0
#yStart : double = 0
#yEnd : double = 0
#stepsX : double = 0
#stepsY : double = 0
#dx : double = 0
#dy : double = 0

Tool

+getSimName() : String
+getConfigFileName() : String
+connect() : void
+disconnect() : void
+stop() : void
+setNewStartPosition() : void
+reset() : void
+nextTry() : void
+send(in robotStruct) : void
+update(in robotStruct) : void

#robotStatus : <unspecified> = RobotStatus.OK
#robotStruct : <unspecified> = new RobotStruct()
#processParameter : <unspecified> = null
#port : int = 0
#ip : String = null

SimCom

+getName() : String
#doReset() : void
#setInitValues(in robotStruct) : void
#calculateStep(in robotStruct) : void

#fitnessValue : double
#processParameter : ProcessParameter

FitnessFunction

+getName() : String
+calculateLearningParameter(inout netParameter) : string

LearningRuleInterface

Figure B.2: Overview of the main extension clases. From left to right, and top to bottom: Sim-
Com, Tool, FitnessFunction, LearningRuleInterface. This digram does not show all implemented
functions and attributes. It only shows the available attributes, that can be accessed directly, and the
abstract methods, that need to be implemented by the user.

void disconnect

The method disconnect is called by the GUI, as soon as the user presses the disconnect button
on the simulation panel of Hinton (see fig. A.5). In this method, the user has to take care that
the connection previously established in the connect method is closed. Typically this function
sends a close command to the simulator, and frees the occupied socket.

void stop

The method stop is called as soon as the user presses the stop net button on the Hinton GUI.
No further data is exchanged between Hinton and the simulator once this is done. This means
that currently set motor commands are still controlling the robot. Hence, the robot might
continue to act according to the previously set motor commands. This function can be used to
send a stop command, ensuring that the robot halts.

void setNewStartPosition

The method setNewStartPosition is called once for each new generation (see fig. B.11). This
function generates the initial conditions for all individuals. They are set only once, because
they must be equal for all individuals in one generation. If they were not equal, the results
of the evaluation of each individual would not be comparable. The evolution would then be a
randomised search over the parameter-space.

void reset

The method reset is called once for each individual, before the evaluation begins (see fig. B.13).
Typically, this method sends a reset signal to the simulator.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.3. HOW TO WRITE A FITNESS-FUNCTION CLASS 185

void nextTry

The method nextTry is only called if more than one try is defined by the experimenter. A try
is similar to a new evaluation, but it is performed with the same controller. The overall fitness
is the sum of the fitness values over all tries. The method typically sends a next-try or reset
command to the simulator.

void send and void update

The methods send and update are redundant. There is no need to implement both. They are
both provided, to make it possible to distinguish between the data exchange (send-method) from
the data processing (update-method) methods. Typically, the send method is implemented such
that it first sends the motor commands to the simulator, and waits for the updated sensor values
returned by the simulator:. The new sensor values are then stored in the RobotStruct. This
is then done in the update method. The pre- and post-processing are provided within these
functions, where applicable.

B.3 How to write a Fitness-Function class

The fitness-function is a qualitative measurement of the behaviour of a robot performing a task
within an environment. The result of the fitness-function is the fitness value, a scalar assigned
to the behaviour. The comparison of the fitness values for different behaviours determine the
differences of the quality of the behaviours with respect to the given task.

Based on the fitness values of the individuals in one generation, the selection operator selects
the individuals that form the parents of the next generation (see sec. 3.3).

An implementation of a fitness-function extends the superclass FitnessFunction. To make
the newly-created fitness-function available in Hinton, the fitness-function implementation must
be located in the directory hinton/fitnessfunctions (see fig. A.2), from which it is automat-
ically loaded during the start up of Hinton.

This section describes the methods that are required for fitness-function implementations.

String getName

The method getName must provide a unique, human-readable string. The string defined in this
method is displayed in the fitness-function selection pull-down menu available on the Hinton
GUI (see fig. A.5).

void doReset

The method doReset is called once before the evaluation of an individual begins. This function
resets all variables and data structures. The only variable, which is reset by the superclass
FitnessFunction and does not need to be taken care of, is fitnessValue.

:This does not violate the statement of how the sensori-motor loop is initialised. At the beginning, all outputs
of the network are zero. Typically, these are stop commands, so that they do not initiate any action.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

186 APPENDIX B. HOWTO’S

void setInitValues

The method setInitValues is called once before an individual is evaluated. This method is used
to set the initial values of the fitness-function calculation. Examples are the starting coordinates
of the robot, so that the distance can be measured, or the initial sensor values, from which the
deviation is used for the fitness value calculation.

void calculateStep

The method calculateStep is called once after every update of the recurrent neural network.
Because it can not be determined, when the evaluation ends, this method must guaranty, that
after each calculation step, the variable fitnessValue is a valid representation of the current
behaviour evaluation. The evaluation can end unexpectedly if the simulator sends a bump
signal (see app. B.4.3). When the evaluation is terminated, the value currently stored in the
variable fitnessValue is returned to the evolution program (EvoSun) and is used in the selection
process.

B.4 Data-Exchange classes

This section discusses the data-exchange classes that provide all the available evolution and
evaluation information. All classes are initiated once at start-up time of Hinton, and the data
is updated during runtime. The objects are preserved.

B.4.1 ProcessParameter

The class ProcessParameter is a data container for the parameters that control the evaluation
and which are provided by the evolutionary program (EvoSun) and the GUI of Hinton. It
contains the current recurrent neural network and the process parameters that are available
to the experimenter through the EvoSun (see fig. A.4) and Hinton GUI (see fig. A.5). The
discussion of the parameters is divided into two groups, those related to EvoSun and those
related to Hinton.

EvoSun parameters:

Constants C0 – C3 are double values, which can be used as coefficients in the fitness value
calculation (see app. B.3).

Cycles The number of evaluation cycles. This is the maximal number of neural network itera-
tions in the evaluation process.

Warm-Up Steps The number of the initial evaluation steps, for which the fitness value is not
computed, i.e. for which Hinton does not call the calculateStep method (see sec. B.3) of
the fitness function implementation. This can be used to allow the behaviour to converge,
without any punishment in the fitness value. This was discussed in the evolution chapter
(see chap. 6).

Net The current recurrent neural network.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.4. DATA-EXCHANGE CLASSES 187

+getCycles() : int
+getWarmUpSteps() : int
+getConstant(in index : int) : double
+getNet() : Net
+getMaxSpeed() : double
+getDisplay() : boolean
+getIterations() : int
+getTries() : int
+getInitialIterations() : int
+getFitnessFunction() : FitnessFunctionInterface
+nextInt() : int
+nextInt(in size : int) : int
+nextFloat() : float
+nextDouble() : double
+nextBoolean() : boolean

ProcessParameter

+getInputDouble(in key : String) : double
+getOutputDouble(in key : String) : double
+setInputDouble(in key : String, in value : double) : void
+setOutputDouble(in key : String, in value : double) : void
+getInputObject(in key : String) : Object
+getOutputObject(in key : String) : Object
+setInputObject(in key : String, in value : Object) : void
+setOutputObject(in key : String, in value : Object) : void

RobotStruct

+OK : RobotStatus
+BUMPED : RobotStatus
+NEXT_TRY : RobotStatus

RobotStatus

Figure B.3: Data-Exchange classes. From left to right: ProcessParameter, RobotStruct, and
RobotStatus.

Hinton parameters:

Display is a boolean value, which can be used in the fitness-function implementation to toggle
the print out of debug information on the fitness value calculation.

Maximal Speed This parameter is used for the post-processing of motor commands. The
transfer-function, and therefore, the output of the output-neurons is limited (σpxq Ps0, 1r,
τpxq Ps�1, 1r). In order to control the speed of a robot, higher speeds might be appropriate.

Iterations This parameter controls how often the network is processed after receiving the
sensor information, and before sending the generated motor commands. This can be used
to process the network several times, such that the sensor value, currently presented at
the input neurons, reaches the output neurons before the motor command is generated.

Initial Iterations The initial iterations are performed once for each individual at the beginning
of an evaluation. After presenting the first available sensor information, a number of initial
iterations of the recurrent neural network are performed. This can be used to ensure, that
the recurrent neural network has converged to a stable state, before controlling the robot
(see chap. 6).

Fitness Function This is the current fitness-function instance. The reference to the fitness-
function is typically used, to send the fitness value to the simulator. This is done, so that
the simulator can plot the trajectory of the best individual within the current generation.

B.4.2 RobotStruct

The class RobotStruct is a representation of the sensor and motor data from the robot’s
perspective. Sensor values are considered as robot output and motor commands as robot input.
For each of the data streams, input and output, the RobotStruct provides getter and setter

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

188 APPENDIX B. HOWTO’S

methods. The first set of commands work on double values (see fig. B.3), because the data type
double is the standard data type in Hinton.

The second set of functions works on the Java data type Object. As Object is the superclass
of every class in Java, these getter and setter methods are not restricted and can be used to
store and pass any desired data type.

B.4.3 RobotStatus

The class RobotStatus is only available in the communication class SimCom. The Processor
checks the attribute robotStatus after each send-update call of the communication implementa-
tion. The attribute robotStatus can only take one of the following values:

RobotStatus.OK If the attribute robotStatus is set to RobotStatus.OK, the evaluation is
continued.

RobotStatus.BUMPED The bump originates from obstacle-avoidance experiments. In the
evolution of an obstacle avoidance behaviour the evaluation is terminated if the robot has
bumped into an obstacle. The concept of a bump is generalised to an external event that
terminates the evaluation of an individual. Depending on the setting for the tries parameter
(see app. B.1), either the next try is processed, or the next individual is evaluated.

B.5 How to write a Tool class

The program Brighwell (see sec. A.3.6) provides a set of analysis and visualisation tools. In this
section they are simply referred to as tools. This section describes how a new tool is included
in Brighwell.

A new tool extends the class Tool, and must be located in the directory brightwell/tools
(see fig. A.2). In the following guide, the attributes, which are available from the superclass Tool,
and the functions which need to be implemented, are discussed.

Available attributes

This section describes the attributes, that are available when the superclass Tool is extended.
The attributes include data which the user specifies through the control panel of the Brightwell
GUI (see sec. A.3.6).

convergenceIterations The number of neural network update iterations, before the plot be-
gins.

drawIterations The number of plot iterations. For each coordinate, a number of convergenceIt-
erations are first performed, followed by a number of drawIterations for which the current
state of the systems is plotted on the DrawingPanel (see below).

doAnalysis Analysis algorithms are mostly preformed in loops. It is desirable that a user
can interrupt a running analysis by an event. The variable doAnalysis, which is true by
default, is set to false when Brightwell has caught the escape key. It can, therefore, be
used to interrupt the current analysis.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.5. HOW TO WRITE A TOOL CLASS 189

net This is a pointer to the currently selected neural network (visible over the NetEdit GUI).
It is null if no net was selected.

xStart/xEnd/yStart/yEnd Define the x- and y-domain of the plot.

stepsX/stepsY The resolution of the x- and y-domain.

dx/dy Domain divided by the resolution.

Available functions

A set of functions are predefined in the Tool superclass. These must be defined in the imple-
mentation of a new analysis tool.

needsNet This function only returns a boolean value. It must be overwritten. When the run
button is pressed by the user, the value of this function is evaluated. If it is true, and no
network was selected, a message dialogue is presented, reminding the user to select one.
In this case, the analysis tool is not executed.

init This function is called, when the tool is first loaded at start-up time. It is used to initialise
the tool GUI (see below, How to create an input panel).

getToolName This function returns a string, which is displayed in the tab selection menu of
Brighwell.

getToolDescription This function returns a string, which is displayed in the tool tip, when
the mouse is placed and kept over the tool name for a while. It can be used to give detailed
information about the purpose of the tool.

doAnalysis This function is called, when the tool is executed.

How to create an input panel

Besides the globally available attributes that are accessible in every tool, such as the selected
network and the number of convergence and draw iterations, each tool has specific parameter
requirements. To be able to provide a graphical interface with minimum implementation effort,
a set of functions are provided by the Tool superclass. These functions are derived from the
Analyser which was written by Michael Rosemann (Rosemann, 2004).

For each input device (integers, doubles, check boxes, etc.), there is an add function, which
places the corresponding input field on the tool’s GUI, and a get function, which is used to
retrieve the value from the input field. Both use a string as an identifier. The string is also used
as a label for the input field.

The syntax for all input fields is similar and shown below:

public void addInteger(String name,
int minValue, int maxValue, int defaultValue)

public int getInteger(String name)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

190 APPENDIX B. HOWTO’S

public void addDouble(String name,
double minValue, double maxValue, double defaultValue)

public double getDouble(String name)

public void addString(String name, String initialValue)
public String getString(String name)

public void addComboBox(String name, String[] entries,
int selectedIndex)

public int getComboBoxIndex(String name)

public void addCheckBox(String name, boolean initialValue)
public boolean getCheckBox(String name)

public void addFileChooser(String name, String initialValue)
public String getFileChooser(String name)

B.5.1 How to to use the DrawPanel

Brighwell provides a simplified drawing panel. There are different ways to initialise such a
panel, specific for neurons, synapses, etc.. The generic method is given here as an example.
For a detailed list of all possible functions, please refer to (Zahedi & Hülse, 2008). This section
simply provides a general overview of the available functionality.

public DrawingPlane getNewWindow(String name,
double xMin, double xMax,
double yMin, double yMax)

The name is displayed as the window name. The domain ranges for the x- and y-axis are given
as additional parameters to the function. This is important as drawing coordinates are not given
in global window coordinates (starting with 0,0 at the upper left corner of the drawing panel),
but in coordinates with respect to the given domain range.

Different functions to draw lines and points are provide by a DrawingPlane.

public void drawPoint(double x, double y)

public void drawPoint(double x, double y, Color color)

public void drawLine(double x0, double y0, double x1, double y1)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.6. HOW TO WRITE A LEARNING RULE CLASS 191

public void drawLine(double x0, double y0, double x1, double y1,
Color color)

As stated above, the coordinates are given with respect to the intervals which were defined when
the panel was created.

B.6 How to write a Learning Rule class

For this thesis, an interface is required to enable the implementation of different learning meth-
ods with minimal implementation effort, and enable to dynamic loading of new classes without
needing to re-compiling the entire framework. This allows the testing of different implemen-
tations and the subsequent comparison of the results. The learning rule class consists of two
functions, which must be specified by the experimenter.

public String getName()

public void calculateLearningParameter(Vector netParameter)

The netParameter vector includes all neuron parameters (aptq, optq, ξptq, ηptq, . . .) and must be
updated in the calculateLearningParameter function. The getName function must return a
unique human readable string. It is listed in a pull-down menu in the NetEditor (see sec. A.3.3).

Each new learning rule class must be placed in the directory learningrules from which
it is automatically loaded during the start-up of Hinton. The string provided by the getName
function is used as identification such that a learning rule can be selected during runtime by the
NetEdit dialogue box.

B.7 RoSiML

To define an experiment in YARS, an XML-based description language is provided (see app.
A.3.5). This section gives an overview of the current state of RoSiML. It is under constant
development, but the concept and the basic structure for objects and joints remain the same.
The newest version of RoSiML and its documentation is provided online (Zahedi et al., 2007). An
experiment description in RoSiML (robot simulation meta language) is divided into three parts,
the simulator, environment, and movable objects (simply referred to as movables) description.

A movable is a set of compounds, which are divided into objects. An object is a geometrical
primitive, and is connected to another by a joint. When YARS is started, it prints a list of all
objects, motors and sensor, as a tree. A naming mechanism is implemented, such that every
sensors and every motor is identified by a unique string, which is communicated to the control
program during the handshake process. This identification can then be used to access the desired
information.

The simulator description specifies general simulator specific configurations, such as the
position of the global camera, the size of the simulator visualisation, etc.

The environment description specifies the static objects in the environment. Although they
can be placed randomly, they remain immovable throughout the simulation.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

192 APPENDIX B. HOWTO’S

There are different types of movables, which are labelled as controlled, active, passive, and
moving. They differ in the way they are controlled.

passive A passive movable is not controlled at all. These objects can, for example, be used to
simulate a ball in a RoboCup scenario (The RoboCup Federation, 2007).

active An active movable is controlled through a socket communication. Motor commands and
sensor values are communicated over and UDP protocol (see app. A).

controlled A dynamically loaded program written in C++ controls the robot. The controller
is identified by a name given as a human-readable string.

moving A dynamically loaded program written in C++ controls the robot. The controller
is identified by a name given in a human-readable string. In contrast to the controlled
movable, this type of object outputs are forces which are directly applied to the body of
the movable.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.7. ROSIML 193

R
oS

iM
L

en
vi

ro
nm

en
t

si
m

ul
at

or

ca
m

er
aP

os
iti

on

ca
m

er
aO

rie
nt

at
io

n

w
in

do
w

S
iz

e

en
vi

ro
nm

en
t

lig
ht

S
ou

rc
e

am
bi

en
tL

ig
ht

S
ou

rc
e

si
m

ul
at

or

m
ov

ab
le

co
m

m
en

t
ob

je
ct

G
ro

up

lig
ht

S
ou

rc
e

co
or

di
na

te

ca
m

er
aP

os
iti

on

am
bi

en
tL

ig
ht

S
ou

rc
e

ca
m

er
aO

rie
nt

at
io

n

w
in

do
w

S
iz

e

x y

in
te

ns
ity

in
te

ns
ity

dr
aw

dr
aw

tru
e

fa
ls

e

ra
nd

om
is

eI
nt

er
va

l

ra
nd

om
is

eL
is

t

ra
nd

om
is

eI
nt

er
va

l

co
or

di
na

te
po

in
t3

D
R

an
do

m
is

e

co
lo

r

co
lo

r
co

lo
rA

lp
ha

va
ria

nc
e

pr
ob

ab
ili

ty

m
ax

m
in

m
et

ho
d

ra
nd

om
is

eI
nt

er
va

l
pr

ob
ab

ili
ty

m
et

ho
d

en
try

va
lu

e

en
try

po
in

t3
D

or
ie

nt
at

io
n

E
le

m
en

t
O

pt
io

na
l E

le
m

en
t

0.
..∞

1.
..∞

D
ef

in
iti

on

A
ttr

ib
ut

e

D
ou

bl
e

va
lu

e
P

re
df

in
ed

 v
al

ue

S
tri

ng
 v

al
ue

C
ho

ic
e

C
hi

ld
Le
ge
nd

In
te

ge
r v

al
ue

En
tr

y
Po

in
t

Figure B.4: RoSiML I/VI: Simulator and environment configuration.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

194 APPENDIX B. HOWTO’S

m
ov

ab
le

bo
dy

in
iti

al
O

rie
nt

at
io

n

in
iti

al
P

os
iti

on

bo
dy

co
m

m
en

t

co
m

po
un

d

co
m

po
un

dC
on

ne
ct

or

co
m

po
un

d

ob
je

ct
C

on
ne

ct
or

ob
je

ct
G

ro
up

co
m

po
un

dC
on

ne
ct

or

de
st

in
at

io
n

so
ur

ce

gl
ob

al
S

en
so

rs

co
nt

ro
lle

r
na

m
e

gl
ob

al
S

en
so

rs
gl

ob
al

S
en

so
rs

D
es

cr
ip

tio
n

in
iti

al
O

rie
nt

at
io

n

in
iti

al
P

os
iti

on

jo
in

tG
ro

up

gl
ob

al
S

en
so

rs
D

es
cr

ip
tio

n

co
or

di
na

te
S

en
so

r

am
bi

en
tL

ig
ht

S
en

so
r

am
bi

en
tL

ig
ht

S
en

so
r

co
or

di
na

te
S

en
so

r

x y z

/

po
in

t3
D

po
in

t3
D

ob
je

ct
C

on
ne

ct
or

de
st

in
at

io
n

so
ur

ce

jo
in

tG
ro

up

de
st

in
at

io
n

so
ur

ce

co
m

po
un

dN
am

e

ob
je

ct
N

am
e

ob
je

ct
Id

en
tif

ie
r

ob
je

ct
Id

en
tif

ie
r

ob
je

ct
Id

en
tif

ie
r

na
m

e

na
m

e

de
st

in
at

io
n

so
ur

ce
ob

je
ct

Id
en

tif
ie

r

ob
je

ct
Id

en
tif

ie
r

co
or

di
na

te

co
or

di
na

te

ob
je

ct
Id

en
tif

ie
r

E
le

m
en

t
O

pt
io

na
l E

le
m

en
t

0.
..∞

1.
..∞

D
ef

in
iti

on

A
ttr

ib
ut

e

D
ou

bl
e

va
lu

e
P

re
df

in
ed

 v
al

ue

S
tri

ng
 v

al
ue

C
ho

ic
e

C
hi

ld
Le
ge
nd

In
te

ge
r v

al
ue

ty
pe

ty
pe

x y

Figure B.5: RoSiML II/VI: Movable configuration.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.7. ROSIML 195

cy
lin

de
r

ca
pp

ed
C

yl
in

de
r

sp
he

re

bo
x

ob
je

ct
M

in
im

al
D

ef
in

iti
on

di
m

en
si

on

w
id

th

he
ig

ht

de
pt

h

di
m

en
si

on

ob
je

ct
M

in
im

al
D

ef
in

iti
on

di
m

en
si

on

ra
di

us
di

m
en

si
on

ob
je

ct
M

in
im

al
D

ef
in

iti
on

di
m

en
si

on

ra
di

us

di
m

en
si

on

he
ig

ht

ob
je

ct
M

in
im

al
D

ef
in

iti
on

di
m

en
si

on

ra
di

us

di
m

en
si

on

he
ig

ht

ob
je

ct
M

in
im

al
D

ef
in

iti
on

tra
ce

Li
ne

tra
ce

P
os

iti
on

tra
ce

C
on

ta
ct

bu
m

pa
bl

e

co
or

di
na

te

or
ie

nt
at

io
n

gr
ap

hi
ca

lR
ep

re
se

nt
at

io
n

ph
ys

ic
al

R
ep

re
se

nt
at

io
n

ob
je

ct
S

en
so

rD
ef

in
iti

on

na
m

e

gr
ap

hi
ca

lR
ep

re
se

nt
at

io
n

le
ve

lO
fD

et
ai

ls

co
or

di
na

te

or
ie

nt
at

io
n

or
ie

nt
at

io
n

de
sc

rip
tio

n

de
sc

rip
tio

n

po
in

t

po
in

t

na
m

e

tra
ce

Li
ne

tra
ce

P
os

iti
on

ite
ra

tio
n

ite
ra

tio
n

si
ze

tra
ce

C
on

ta
ct

bu
m

pa
bl

e
//

le
ve

O
fD

es
cr

ip
tio

n

co
lo

r

co
lo

r

co
lo

r

te
xt

ur
e

po
in

t3
D

po
in

t3
D

ob
je

ct
G

ro
up

cy
lin

de
r

ca
pp

ed
C

yl
in

de
r

sp
he

re

bo
x

pl
an

e

E
le

m
en

t
O

pt
io

na
l E

le
m

en
t

0.
..∞

1.
..∞

D
ef

in
iti

on

A
ttr

ib
ut

e

D
ou

bl
e

va
lu

e

P
re

df
in

ed
 v

al
ue

S
tri

ng
 v

al
ue

C
ho

ic
e

C
hi

ld

In
te

ge
r v

al
ue

Le
ge
nd

pl
an

e
ob

je
ct

M
in

im
al

D
ef

in
iti

on

te
xt

ur
e

fil
eL

oc
at

io
n

Figure B.6: RoSiML III/VI: Object configuration.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

196 APPENDIX B. HOWTO’S

fix
ed

sl
id

er

hi
ng

e2

jo
in

tD
ef

in
tio

n

ty
pe

m
ax

Fo
rc

e

m
ap

pi
ng

an
ch

or
P

oi
nt

ro
ta

tio
nA

xi
s

jo
in

tS
en

so
rD

ef
in

tio
n

de
fle

ct
io

n

se
vr

o

no
se

hi
ng

e
jo

in
tD

ef
in

tio
n

se
co

nd
H

in
ge

fir
st

H
in

ge

se
co

nd
H

in
ge

fir
st

H
in

ge
jo

in
tD

ef
in

tio
n

jo
in

tD
ef

in
tio

n

jo
in

tD
ef

in
tio

n

/

m
ax

Ve
lo

ci
ty

m
ax

Fo
rc

e

m
ap

pi
ng

an
ch

or
P

oi
nt

ro
ta

tio
nA

xi
s

m
ax

Ve
lo

ci
ty

va
lu

e

va
lu

e

m
in

m
ax

m
in

m
ax

se
rv

o

sl
ow

D
ow

nB
ia

s

st
op

B
ia

s

x y z x y z

de
fle

ct
io

n

jo
in

tG
ro

up

fix
ed

sl
id

er

hi
ng

e2

hi
ng

e

E
le

m
en

t
O

pt
io

na
l E

le
m

en
t

0.
..∞

1.
..∞

D
ef

in
iti

on

A
ttr

ib
ut

e

D
ou

bl
e

va
lu

e
P

re
df

in
ed

 v
al

ue

S
tri

ng
 v

al
ue

C
ho

ic
e

C
hi

ld
Le
ge
nd

In
te

ge
r v

al
ue

Figure B.7: RoSiML IV/VI: Joint configuration.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

B.7. ROSIML 197

jo
in

tS
en

so
rD

ef
in

tio
n

an
gl

eS
en

so
r

fe
ed

ba
ck

S
en

so
r

sl
id

er
P

os
iti

on
S

en
so

r

sl
id

er
Ve

lo
ci

ty
S

en
so

r

ve
lo

ci
ty

S
en

so
r

an
gl

eS
en

so
r

fe
ed

ba
ck

S
en

so
r

sl
id

er
P

os
iti

on
S

en
so

r

sl
id

er
Ve

lo
ci

ty
S

en
so

r

ve
lo

ci
ty

S
en

so
r

ra
ng

eM
ap

pi
ng

N
oi

se
D

ef
in

iti
on

ra
ng

eM
ap

pi
ng

N
oi

se
D

ef
in

iti
on

ra
ng

eM
ap

pi
ng

N
oi

se
D

ef
in

iti
on

di
re

ct
io

n

ta
rg

et

ty
pe

ra
ng

eM
ap

pi
ng

N
oi

se
D

ef
in

iti
on

ra
ng

eM
ap

pi
ng

N
oi

se
D

ef
in

iti
on

ob
je

ct
S

en
so

rD
ef

in
iti

on

in
fra

re
dD

is
ta

nc
eS

en
so

r

sh
ar

pG
P

2D
12

-3
7

ld
rS

en
so

r

in
fra

re
dD

is
ta

nc
eS

en
so

r
sc

al
ar

S
en

so
rD

ef
in

iti
on

ld
rS

en
so

r

sh
ar

pG
P

2D
12

-3
7

sc
al

ar
S

en
so

rD
ef

in
iti

on

sc
al

ar
S

en
so

rD
ef

in
iti

on

ra
ng

eM
ap

pi
ng

N
oi

se
D

ef
in

iti
on

m
ap

pi
ng

ra
ng

e

no
is

e

sc
al

ar
S

en
so

rD
ef

in
iti

on

ra
ng

eM
ap

pi
ng

N
oi

se
D

ef
in

iti
on

or
ie

nt
at

io
n

co
or

di
na

te

op
en

in
gA

ng
le

or
ie

nt
at

io
n

co
or

di
na

te

m
ap

pi
ng

ra
ng

e

op
en

in
gA

ng
le

po
in

t3
d

or
ie

nt
at

io
n

x y m
in

m
ax

m
in

m
ax ra

ng
e

no
is

e

ty
pe

ty
pe

ga
us

no
rm

al

E
le

m
en

t
O

pt
io

na
l E

le
m

en
t

0.
..∞

1.
..∞

D
ef

in
iti

on

A
ttr

ib
ut

e

D
ou

bl
e

va
lu

e
P

re
df

in
ed

 v
al

ue

S
tri

ng
 v

al
ue

C
ho

ic
e

C
hi

ld
Le
ge
nd

In
te

ge
r v

al
ue

Figure B.8: RoSiML V/VI: Joint sensor configuration.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

198 APPENDIX B. HOWTO’S

ph
ys

ic
al

R
ep

re
se

nt
at

io
n

m
as

s

ce
nt

er
O

fM
as

s

fri
ct

io
n

sl
ip

er
ro

rR
ed

uc
tio

nP
ar

am
et

er

co
ns

tra
in

tF
or

ce
M

ix
in

g

bo
un

ce

m
as

s
va

lu
e

ce
nt

re
O

fM
as

s
po

in
t3

D

fri
ct

io
n

x y

sl
ip

x y

er
ro

rR
ed

uc
tio

nP
ar

am
et

er
va

lu
e

co
ns

tra
in

tF
or

ce
M

ix
in

g
va

lu
e

bo
un

ce

va
lu

e

ve
lo

ci
ty

po
in

t3
d

x y z

or
ie

nt
at

io
n

al
ph

a

be
ta

ga
m

m
a

P
oi

nt
3D

ra
nd

om
is

eI
nt

er
va

l

ra
nd

om
is

eL
is

t

po
in

t3
d

ra
nd

om
is

eI
nt

er
va

l

in
te

rv
al

va
ria

nc
e

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty
po

in
t3

D

m
et

ho
d

m
et

ho
d

ad
di

tiv
e

gl
ob

al

in
te

rv
al

va
ria

nc
e

m
in

m
ax

m
in

m
ax

ra
nd

om
is

eL
is

t

en
try

m
et

ho
d

en
try

po
in

t3
d

co
lo

r

r g b

al
ph

a

E
le

m
en

t
O

pt
io

na
l E

le
m

en
t

0.
..∞

1.
..∞

D
ef

in
iti

on

A
ttr

ib
ut

e

D
ou

bl
e

va
lu

e
P

re
df

in
ed

 v
al

ue

S
tri

ng
 v

al
ue

C
ho

ic
e

C
hi

ld
Le
ge
nd

In
te

ge
r v

al
ue

Figure B.9: RoSiML VI/VI: Physical object configuration.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Appendix C

SRN Model Stability Analysis

Single neuron with excitatory recurrent connection

This section presents the detailed calculations of the stability analysis for the single Self-
Regulating Neuron with excitatory recurrent connection, the results have been previously pre-
sented and discussed (see chap. 4). Whenever necessary and possible, the calculations were
conducted with the assistance of a computer algebra program.

The SRN with positive self-coupling is given by the following set of equations:

a pt� 1q � Θ� ξ ptq η ptq τ pa ptqq
ξ pt� 1q � ξ ptq

�
1� β

�
τ pa�q2 � τ pa ptqq2

		
η pt� 1q � p1� γq η ptq � δ p1� τ pa ptqqq .

Assuming that the activation coordinate of the fixed point is equal to the target value, the fixed
point of the system ρ� � pa�, ξ�, η�q is given by:

a� � Θ� ξ�η�τ pa�q
η� � δ

γ
p1� τ pa�qq

ξ� � a� �Θ
δ
γ p1� τ pa�qq τ pa�q .

To calculate the Jacobian matrix, the equations of the SRN are rewritten as follows:

ρ :� pa, ξ, ηq
ρ� :� pa�, ξ�, η�q

fa : R3 ÞÑ R, fa pρq :� Θ� ξητ paq
fξ : R3 ÞÑ R, fξ pρq :� ξ

�
1� β

�
τ pa�q2 � τ paq2

		
fη : R3 ÞÑ R, fη pρq :� p1� γq η � δ p1� τ paqq
f : R3 ÞÑ R3, f pρq :� pfa pρq , fξ pρq , fη pρqq .

199

200 APPENDIX C. SRN MODEL STABILITY ANALYSIS

The Jacobian matrix of the SRN is then written as:

Df pρq �

�
��
δfa
δa pρq δfa

δξ pρq δfa
δη pρq

δfξ
δa pρq

δfξ
δξ pρq

δfξ
δη pρq

δfη
δa pρq δfη

δξ pρq δfη
δη pρq

�
�
,

where

δfa
δa

pρq � ξη
�

1� τ paq2
	

δfξ
δa

pρq � �2βξτ paq
�

1� τ paq2
	

δfη
δa

pρq � δ
�

1� τ paq2
	

δfa
δξ

pρq � ητ paq
δfξ
δξ

pρq � 1� β
�
τ pa�q2 � τ paq2

	

δfη
δξ

pρq � 0

δfa
δη

pρq � γ

δ

a� �Θ
1� τ paq

δfξ
δη

pρq � 0

δfη
δη

pρq � 1� γ

resulting in

Df pρq �

�
���

ξη
�

1� τ paq2
	

�2βξτ paq
�

1� τ paq2
	

δ
�

1� τ paq2
	

ητ paq 1� β
�
τ pa�q2 � τ paq2

	
0

γ
δ
a��Θ
1�τpaq 0 1� γ

�
��
.

The stability analysis is conducted for the fixed point, hence, the Jacobian matrix is calculated
for ρ � ρ�:

Df pρ�q �

�
���

pa�Θqp1�τpa�q2q
τpa�q �2βγpa��Θqp1�τpa�q2q

δp1�τpa�qq δ
�

1� τ pa�q2
	

δ
γ p1� τ pa�qq τ pa�q 1 0

γ
δ

a��Θ
1�τpa�q 0 1� γ

�
��
.

A symbolic solution of the eigenvalues of the matrix given above is not possible, as the solu-
tions grows too large in complexity. Therefore, in the next step, the plasticity parameters are
substituted with empirically-determined values (see chap. 5):

a� :� α � arctanh
�

1?
3

	
α � �1 β � 0.01
γ � 0.01 δ � 0.02.

Note that a positive value for α is chosen, which means that in what follows the stability is
analysed for the upper target value. This is equivalent to the positive fixed point �a�. The

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

201

result is a Jacobian matrix of the SRN model at the fixed point depending on Θ:

Df pρ�q �

�
������
�2

?
3
�

Θ�arctanh
�?

3
3

		

3

2
300

�
Θ�arctanh

�?
3

3

		
?

3
3
�1

1
75

2
3

?
3
�?

3
3 � 1

	
1 0

�0.5
�

Θ�arctanh
�?

3
3

		
?

3
3
�1

0 0.99

�
�����
.

Of this matrix, the eigenvalues λi can be computed as functions of Θ. For the purpose of
readability, every additive term aΘb with a 10�4 and b ¡ 3 is neglected in the presentation of
the eigenvalue equations presented below, as stability only occurs for |Θ| a� 1 (see chap. 4),
so that they are approximated by zero:. The functions for the eigenvalues are then given by:

λ1 pΘq � ��0.03543Θ2 � 0.05702Θ3 � 0.00672Θ
� 1

3

�0.3849Θ

� 0.1481Θ2 � 0.06137Θ� 0.005364

p�0.03543Θ2 � 0.05702Θ3 � 0.00672Θq 1
3

�0.9168
λ2 pΘq � 0.9168

�p0.5� 0.866iq ��0.03543Θ2 � 0.05702Θ3 � 0.00672Θ
� 1

3

�p0.5� 0.866iq �0.1481Θ2 � 0.06137Θ� 0.005364
�

p�0.03543Θ2 � 0.05702Θ3 � 0.00672Θq 1
3

� 0.3849Θ

λ3 pΘq � 0.9168

�p0.5� 0.866iq ��0.03543Θ2 � 0.05702Θ3 � 0.00672Θ
� 1

3

�p0.5� 0.866iq �0.1481Θ2 � 0.06137Θ� 0.005364
�

p�0.03543Θ2 � 0.05702Θ3 � 0.00672Θq 1
3

� 0.3849Θ.

The solutions for |λi pΘq | � 1 are calculated to determine the boundaries for the stable region,
which are:

@i � 1, 2, 3 : |λi pΘq | ¤ 1 ñ Θ P r�0.15, 0.65s.

Note that the condition λi � 1 for at least one i and |λi| 1 for all other i determines the value
of Θ, at which the system state switches from stable to unstable (and vice versa) as at least a
single eigenvalue is equal to one.

Figure C.1 shows the eigenvalues plotted against Θ. To create the plots, the Jacobian
matrix was first solved for a certain value of Θ. A numerical calculation of the eigenvalues of
the resulting matrix was then calculated. This was necessary, as singularities occurred, due

:Nevertheless, if these simplified eigenvalues are used for further calculations, the results differ significantly
from those calculated with the unsimplified eigenvalues. Hence, in the following steps, the unsimplified equations
are used for calculation.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

202 APPENDIX C. SRN MODEL STABILITY ANALYSIS

α β γ δ lower target value �a� upper target value �a�
�1 0.1 0.01 0.015 �0.6585 0.1958 �0.1958 0.6585

�1 0.01 0.01 0.02 �0.6585 0.1559 �0.1559 0.6585

�0.7 0.01 0.01 0.02 �0.2675 0.04232 �0.04232 0.2675

Table C.1: Results of the stability analysis for different parameter settings. For a
detailed discussion of the results, the reader is referred to the chapter Self-Regulating Neuron Model (see
chap. 4).

to technical limitations, if the eigenvalues were computed directly as functions of Θ. Slight
differences are, therefore, observable between the calculation for the boundary conditions above
and the values plotted in the figure.

Next, the same calculations are performed for the lower target value α � �1, and therefore,
for the lower fixed point �a�. As the calculations are otherwise identical to those presented
above, only the parameters and the solution are presented below. The chosen parameters are:

a� :� α � arctanh
�

1?
3

	
α � �1 β � 0.01
γ � 0.01 δ � 0.02

and for the Jacobian matrix it follows that:

Df pρ�q �

�
������

2
?

3
�

Θ�arctanh
�?

3
3

		

3 �
2

300

�
Θ�arctanh

�?
3

3

		
?

3
3
�1

1
75

2
3

?
3
�?

3
3 � 1

	
1 0

0.5
�

Θ�arctanh
�?

3
3

		
?

3
3
�1

0 0.99

�
�����

and consequently the simplified (see above) eigenvalues are:

λ1 pΘq � 1

λ2 pΘq � 0.5773502692Θ� 0.5
a

1.333333333Θ2 � 4.025344939Θ� 3.052578869
�0.1148270019

λ3 pΘq � 0.5773502692Θ� 0.5
a

1.333333333Θ2 � 4.025344939Θ� 3.052578869
�0.1148270019

As before, the solutions for |λi pΘq | � 1 are calculated to determine the boundaries for the stable
region, which are given by:

@i � 1, 2, 3 : |λi pΘq | ¤ 1 ñ Θ P r�0.65, 0.15s.
The eigenvalues for the lower target values are plotted against Θ with the method described
above (see fig. C.1). The figure C.1 and the table C.1 also include the eigenvalues for differ-
ent parameter settings. The calculations are omitted at this point, as they identical to the
calculations presented above, except for the modifications made to the plasticity parameters
α, β, γ, δ.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

203

 0

 1

 2

-1 0 1

! = 1, " = 0.01, # = 0.01, $ = 0.02

|%i|

&

-0.19 0.65
|%1| |%2| |%3|

 1

 0

! = 1, " = 0.01, # = 0.01, $ = 0.02

|%i|

&

-0.19 0.65
|%1| |%2| |%3|

 0

 1

 2

-1 0 1

! = -1, " = 0.01, # = 0.01, $ = 0.02

|%i|

&

-0.65 0.19
|%1| |%2| |%3|

 1

 0

! = -1, " = 0.01, # = 0.01, $ = 0.02

|%i|

&

0.19-0.65
|%1| |%2| |%3|

 0

 1

 2

-1 0 1

! = 1, " = 0.1, # = 0.01, $ = 0.015

|%i|

&

-0.15 0.65
|%1| |%2| |%3|

 1

 0

! = 1, " = 0.1, # = 0.01, $ = 0.015

|%i|

&

-0.15 0.65
|%1| |%2| |%3|

 0

 1

 2

-1 0 1

! = -1, " = 0.1, # = 0.01, $ = 0.015

|%i|

&

0.15-0.65
|%1| |%2| |%3|

 1

 0

! = -1, " = 0.1, # = 0.01, $ = 0.015

|%i|

&

0.15-0.65
|%1| |%2| |%3|

 0

 1

 2

-1 0 1

! = 0.7, " = 0.01, # = 0.01, $ = 0.02

|%i|

&

-0.04 0.26
|%1| |%2| |%3|

 1

 0

! = 0.7, " = 0.01, # = 0.01, $ = 0.02

|%i|

&

-0.04 0.26
|%1| |%2| |%3|

 0

 1

 2

-1 0 1

! = 0.7, " = 0.01, # = 0.01, $ = 0.02

|%i|

&

0.04-0.26
|%1| |%2| |%3|

 1

 0

! = 0.7, " = 0.01, # = 0.01, $ = 0.02

|%i|

&

0.04-0.26
|%1| |%2| |%3|

Figure C.1: Eigenvalues of the Jacobian matrix. From left to right (columns): pα, β, γ, δq �
p1, 0.1, 0.01, 0.015q, pα, β, γ, δq � p1, 0.01, 0.01, 0.02q, pα, β, γ, δq � p0.7, 0.01, 0.01, 0.02q. From top to
bottom (rows): Eigenvalues for the positive target value for Θ P r�1, 1s. Clipping of the region of interest
of the eigenvalue for the positive target value with Θ P r�0.25 : 0.7s, Eigenvalues for the positive target
value for Θ P r�1, 1s. Clipping of the region of interest of the eigenvalue for the positive target value
with Θ P r�0.7 : 0.25s. The chapter Self-Regulating Neuron Model (see chap. 4) discusses the different
homeostatic regions with respect to the plasticity parameters. Differences in the values of the stable
regions between the plots and the table (see last column) arise from the different methods of calculation.
The explanation is given in the text.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

List of Figures

2.1 Field . 13
2.2 The Homeostat . 16
2.3 Aplysia . 22
2.4 Propagation of an action-potential over the synaptic cleft 26
2.5 Ionotropic receptor . 27
2.6 STP & LTP . 28
2.7 Forms of Synaptic plasticity . 30

3.1 Logistic map / Quasi-periodic attractor . 38
3.2 Biological neuron and mathematical modelling 42
3.3 The approach of evolutionary robotics . 53

4.1 Transfer-function, its derivatives, and receptor behaviour 57
4.2 Single excitatory neuron . 61
4.3 Single inhibitory neuron . 66
4.4 Numerical analysis of input-output neuro-modules 68
4.5 Input-output neuro-modules with excitatory recurrent connection 70
4.6 Input-output neuro-modules with inhibitory recurrent connection 71

5.1 Khepera robot . 80
5.2 Comparison of real and simulated Khepera proximity sensors 83
5.3 Khepera simulator and evaluation environments 84
5.4 SRN-Braitenberg and SRN-MRC controllers . 85
5.5 Braitenberg vehicles . 86
5.6 Peek plot comparison of vehicles B1 and B2 . 87
5.7 Behaviour comparison of vehicles B1 and B2 . 88
5.8 Trajectory plots for each pair γ, δ . 91
5.9 Transient plots of the vehicles A–I . 92
5.10 Comparison of trajectories of vehicles C and I . 93
5.11 Analysis of the behaviour of vehicle I . 93
5.12 Trajectory and transient plot for adaptive Braitenberg vehicle 95
5.13 Behaviour comparison of static controllers derived from the adaptive Braitenberg

vehicle . 96
5.14 Different implementation of the MRC . 97

205

206 LIST OF FIGURES

5.15 Symmetric SRN-MRC with constant bias . 99
5.16 Symmetric SRN-MRC . 103
5.17 Symmetric SRN-MRC with regulated bias . 104
5.18 Asymmetric SRN-MRC with constant bias . 105

6.1 Cart-pole neural network and its sub-modules . 111
6.2 Best evolved controller and comparison with a static solution 117
6.3 Cart-pole transients for different initial conditions 118
6.4 Cart-pole transients for the conditions A and B 119
6.5 Cart-pole transients for the conditions C and D 120
6.6 Cart-pole transients for the conditions E and F 121
6.7 Detailed cart-pole transients for the conditions E and F 122
6.8 SRN Light-Seeker Environments . 124
6.9 ASM-II Robot and YARS Simulation . 125
6.10 SRN Adaptive Light-Seeker . 128
6.11 SRN Adaptive Light-Seeker with ambient light intensity of 0.5 131
6.12 SRN Adaptive Light-Seeker with ambient light intensity of 0.75 132
6.13 SRN Adaptive Light-Seeker with ambient light intensity of 1.0 132
6.14 SRN Adaptive Light-Seeker with ambient light intensity of 0 133
6.15 SRN Adaptive Light-Seeker with ambient light intensity of 1.1 133
6.16 Input-output module with noisy input . 134

A.1 ISEE concept . 144
A.2 ISEE directory structure . 148
A.3 Cholsey UML diagram . 150
A.4 EvoSun GUI . 153
A.5 Hinton GUI . 154
A.6 Hinton UML diagram . 155
A.7 Analyser . 157
A.8 Bifurcation Plot Tool . 163
A.9 Iso-periodic Plot Tool . 165
A.10 Transient Plot Tool . 165
A.11 Peek Tool . 168
A.12 Firing Pattern Tool . 169
A.13 Centrality Tool . 170
A.14 First-Return Map (File) . 171
A.15 Magnetic Pendulum . 171
A.16 Logistic map . 172
A.17 Tutorial Tool . 172
A.18 Reading . 173
A.19 ISEE project examples I/IV . 175
A.20 ISEE project examples II/IV . 176
A.21 ISEE project examples III/IV . 177
A.22 ISEE project examples IV/IV . 178

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

LIST OF FIGURES 207

B.1 Hinton UML class and UML sequence diagram 183
B.2 Overview of the main extension clases . 184
B.3 Data-Exchange classes . 187
B.4 RoSiML I/VI: Simulator and environment configuration 193
B.5 RoSiML II/VI: Movable configuration . 194
B.6 RoSiML III/VI: Object configuration . 195
B.7 RoSiML IV/VI: Joint configuration . 196
B.8 RoSiML V/VI: Joint sensor configuration . 197
B.9 RoSiML VI/VI: Physical object configuration . 198

C.1 Eigenvalues of the Jacobian matrix . 203

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

List of Tables

3.1 Neural Network Conventions . 44
3.2 Evolution parameters and variables . 48

4.1 Parameter dependence of the homeostatic region 63

5.1 Khepera I/II Specifications . 81
5.2 Khepera simulator model . 82
5.3 Experimental set-up for γ and δ . 90

6.1 Standard Cart Pole parameters . 108
6.2 Cart-pole controller input/output . 109
6.3 Physical properties of the simulated ASM-II robot 126

A.1 ISEE Tools . 149

B.1 Classes used within the Hinton main loop . 180

C.1 Results of the stability analysis for different parameter settings 202

209

List of Algorithms

1 Poisson distributed offspring calculation . 51
2 Implementation of Cholsey . 151
3 Implementation of Cholsey with the SRN model 151
4 Bifurcation Diagram . 164
5 Iso-periodic Map . 166
6 Tranisent Plot . 167

211

212 CURRICULUM

Curriculum Vitae

Professional

May 2007 PhD Scholarship at the Max-Planck Institute for
Present Mathematics in the Sciences, Leipzig, Germany

Mar. 2002 Research Associate at the Fraunhofer Institute for
Apr. 2007 Intelligent Analysis and Information Systems, Sankt Augustin, Germany,

(formerly Fraunhofer Institute for Autonomous Intelligent Systems)

Jan. 2007 Research Associate in the fundamental research project MACS (EU-IST)
Apr. 2007

May 2006 Research Associate in the fundamental research project XPERO (EU-FET)
Jan. 2007

Jan. 2006 Research Associate and deputy project leader in the fundamental research
May 2007 project OUTDOOR (DFG)

Jan. 2005 Deputy Department Chief, department INDY (Intelligent Dynamics)
Dec. 2005 (INDY was fused with the Autonomous Robots department Jan. 2006)

Sep. 2004 Elected Member of the Institute Executive Committee (ILA)
Sep. 2005

Sep. 2001 Software Engineer Robowatch Technologies, Berlin
Feb. 2002

Aug. 2001 Research Associate University of Tübingen, Graph-Visualisation,
Professor Dr. rer. nat. Michael Kaufmann

Dec. 1998 Software Engineer, 3X direct/3X Banktechnik AG, Göppingen
Jul. 2001

Education

Oct. 1995 Studied Computer Science at the University of Tübingen
Jul. 2001 Diploma Thesis “Analysis and Visualisation of Social Networks”,

supervised by Professor Dr. rer. nat. Michael Kaufmann.

Others Successful completion of the Manager Trainee Program of the Fraunhofer AIS.
Project leader of different industrial and research projects at Fraunhofer AIS.
Participated in RoboCup 2003, Padua, Italy, Team AIS-Musashi, 7th place.
Participated in RoboCup 1998, Paris, France, Team Tübingen, 2nd place.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

PUBLICATIONS 213

Publications

Journal Articles

Adaptive Behaviour Control by Self-regulating Neurons, Frank Pasemann, Keyan Zahedi,
Marieke Rohde, Neural Networks, accepted

Book Articles

Representing Robot-Environment Interactions by Dynamical Features of Neuro-Controllers,
Martin Hülse, Keyan Zahedi, Frank Pasemann, Anticipatory Behavior in Adaptive Learn-
ing Systems, Butz, M.; Sigaud, O., Gérard, P. (ed.), LNAI 2684, pp. 222-242, Springer,
2003

Adaptive Behavior Control wit Self-Regulating Neurons, Keyan Zahedi and Frank Pase-
mann, 50 Years of AI, M. Lungarella, F. Iida, J. Bongard, and R. Pfeifer (eds), Festschrift,
LNAI 4850, Springer, pp. 196–205, 2007

Conference Proceedings

Yars: A physical 3d simulator for evolving controllers for real robots, Keyan Zahedi, Arndt
von Twickel, and Frank Pasemann, In S. Carpin and et al., editors, SIMPAR 2008, LNAI
5325, pages 71—82. Springer, 2008.

An Evolved Neural Network for Fast Quadrupedal Locomotion, Irene Markelić, Keyan Za-
hedi, Advances in Climbing and Walking Robots, Proceedings of 10th International Con-
ference (CLAWAR 2007), pp. 65–72, 2007

Evolving Neurocontrollers in the RoboCup Domain, Keyan Zahedi, Martin Hülse, Frank
Pasemann, Robotik 2004, VDI-Berichte 1841, Düsseldorf, Germany, pp. 63–70, 2004

A Modular Approach to Construction and Control of Walking Robots, Bernhard Klaassen,
Keyan Zahedi, Frank Pasemann, Robotik 2004, VDI-Berichte 1841, Düsseldorf Germany,
pp. 633–640, 2004

SO(2)-Networks as Neural Oscillators, Frank Pasemann, Manfred Hild, Keyan Zahedi,
Computational Methods in Neural Modeling, Proceedings IWANN 2003, LNCS 2686, Mira,
J., and Alvarez, J. R., (Eds.), Springer, Berlin, pp. 144-151, 2003

Evolved Neurodynamics for Robot Control, Frank Pasemann, Martin Hülse, Keyan Za-
hedi, European Symposium on Artificial Neural Networks 2003, M.Verleysen (ed.), D-side
publications, pp. 439-444, 2003

Robo-Salamander — an approach for the benefit of both robotics and biology, Ralph Brei-
thaupt, Jochen Dahnke, Keyan Zahedi, Joachim Hertzberg, Frank Pasemann, 5th interna-
tional Conference on Climbing and Walking Robots, Philippe Bedaud (Eds.), pp. 55-62,
2002

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

214 PUBLICATIONS

Workshop Proceedings

Representing Robot-Environment Interactions by Dynamical Features of Neuro-Controllers,
Martin Hülse, Frank Pasemann, Keyan Zahedi, The 7th International Conference on the
Simulation of Adaptive Behavior

Preprints

Adaptive Behaviour Control by Self-regulating Neurons, Frank Pasemann, Keyan Zahedi,
Marieke Rohde, MPI MiS 2004, Nr. 55, (2004)

Reviewed Abstracts

In the search of principles underlying cognitive phenomena, Hülse, M., Zahedi, K., Wis-
chmann, S., and Pasemann, F., Proceedings of the 50th Anniversary Summit of Artificial
Intelligence (ASAI50), 2006.

Unreviewed

Team Design of AIS-Musashi 2003, A. Bredenfeld, V. Becanovic, Th. Christaller, I.
Godler, M. Hülse, G. Indiveri, K. Ishii, J. Ji, H-U. Kobialka, N. Mayer, B. Mahn, H.
Miyamoto, A.F.F. Nassiraei, F. Pasemann, P.-G. Plöger, P. Schöll, M. Shimizu, K. Za-
hedi, RoboCup-2003: Robot Soccer World Cup VII, Springer Verlag, 2003

Team Design and Evaluation of the T-Team of the University of Tuebingen for RoboCup
’98, Michael Plagge, Boris Diebold, Richard Günther, Jörn Ihlendburg, Dirk Jung, Keyan
Zahedi, Andreas Zell, RoboCup-98: Robot Soccer World Cup II, Springer Verlag, 1998

Diploma Thesis

Analysis and Visualisation of Social Networks, Keyan Mahmoud Ghazi-Zahedi, University
of Tübingen, 2001

Invited Article

Evolution nicht-linearer Kontroller für mobile Roboter in dynamischen Umgebungen, Keyan
Zahedi, Martin Hülse, Frank Pasemann, atp - automatisierungstechnische praxis, vol. 10,
pp. 94-100, Springer, 2004

Others

ISEE - A Framework for the Evolution and Analysis of Recurrent Neural Networks for
Embodied Agents, Martin Hülse, Steffen Wischmann, Keyan Zahedi, ECRIM News 64,
Emergent Computing, pp 33-34, 2006

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Proclamation

Hereby I confirm that I wrote this thesis independently and that I have not made use of any
other resources or means than those indicated.

Osnabrück, January 2009

Bibliography

Abraham, & Shaw. (1992). Dynamics, the geometry of behavior (Second ed.). Addison-Wesley.
Abraham, R. H., Gardini, L., & Mira, C. (1997). Chaos in discrete dynamical systems: a visual

introduction in 2 dimensions (P. Willin, Ed.). Santa Clara, CA, USA: TELOS.
Alligood, K. T., Sauer, T. D., & Yorke, J. A. (1996). Chaos: An introduction to dynamical

systems (Vol. XVII). Heidelberg: Springer.
Alvarez, V. A., & Sabatini, B. L. (2007). Anatomical and physiological plasticity of dendritic

spines. Annual Review of Neuroscience, 30 (1), 79–97.
Anderson, D., & Copeland, B. J. (2002). Artificial life and the chinese room argument. Artificial

Life, 8 (4), 371–378.
Andronov, A., Leontovich, E., Gordon, I., & Maier, A. (1973). Qualitative theory of second-order

dynamic systems. New York: John Wiley. (Jerusalem)
Angeline, P. J., Saunders, G. M., & Pollack, J. P. (1994, January). An evolutionary algorithm

that constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5 (1),
54–65.

Arbib, M. A. (1995). The handbook of brain theory and neural networks. Cambridge, MA, USA:
MIT Press.

Arbouzov, L., Cowan, J., Fang, A., Grosso, P., Lanz, K., Le Hégaret, P., et al. (2004). Extensible
Markup Language (XML) 1.0 (Third ed.; F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-
McQueen, & E. Maler, Eds.). W3C Consortium.

Arrowsmith, D. K., & Place, C. M. (1990). An introduction to dynamical systems. Cambridge,
UK: Cambridge University Press. (Reprinted 1994)

Ashby, W. R. (1954). Desgin for a brain. London, UK: Chapman & Hall Ltd. (Reprinted with
corrections, First published in 1952)

Ashby, W. R. (1956). An introduction to cybernetics. London, UK: Chapman & Hall, London.
(Available online: http://pcp.vub.ac.be/books/IntroCyb.pdf)

Atmel. (2008). Atmel AVR. www.atmel.com/atmel/acrobat/doc1022.pdf.
Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolution-

ary programming, genetic algorithms. Oxford, UK: Oxford University Press.
Bailey, C., Giustetto, M., Huang, Y., Hawkins, R., & Kandel, E. (2002). Is heterosynaptic

modulation essential for stabilizing hebbian plasticity and memory? Nature Reviews in
Neuroscience, 1, 11–20.

Bamon, R., & Roussarie, L. (1996). Dynamical systems. In R. Bamon, J.-M. Gambaudo, &
S. Martinez (Eds.), (pp. 4–8). Paris: Hermann.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that

217

218 Bibliography

can solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13, 834–846.

Beer, R. (1996). Towards the evolution of dynamical neural networks for minimally cognitive
behavior. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, & S. Wilson (Eds.), From
animals to animats (Vol. 4, pp. 421–429). Cambridge, MA: MIT Press.

Bi, G.-Q. (2002). Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms.
Biological Cybernetics, 87, 319–332.

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of
neuron selectivity: orientation specificity and binocular interaction in visual cortex. The
Journal of Neuroscience, 2 (1), 32–48.

Bliss, T. V. P., & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the
dendate area of anaesthetized rabbit following stimulation of the prefrant path. Physiology,
232, 551–556.

Bois-Reymond, E. D. (1848). Untersuchungen Über Thierische Elektricität (Vols. 1, 2 ed.).
Berlin: Reimer.

Bongard, J. C., & Pfeifer, R. (2001, 7–11 July). Repeated structure and dissociation of genotypic
and phenotypic complexity in artificial ontogeny. In L. Spector et al. (Eds.), Proceedings of
the genetic and evolutionary computation conference (GECCO-2001) (pp. 829–836). San
Francisco, California, USA: Morgan Kaufmann.

Box, G. (1957). Evolutionary operation: A method for increasing industrial productivity.
Applied Statistics, 6 (2), 81–101.

Braitenberg, V. (1984). Vehicles. Cambridge MA: MIT Press.
Brandes, U. (2000, May). Faster evaluation of shortest-path based centrality indices. (Vol. 120;

Preprint: Konstanzer Schriften in Mathematik und Informatik No. 120).
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., et al. (2007, Decem-

ber). Simulation of networks of spiking neurons: A review of tools and strategies. Journal
of Computational Neuroscience, 23 (3), 349–398.

Britannia.com, L. (2006, July). Britannia. http://www.britannia.com/history/berks/
index.html.

Brooks, R. A. (1986, March). A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2 (1), 14–23.

Brooks, R. A. (1989). A robot that walks; emergent behaviors from a carefully evolved network
(Tech. Rep.). Cambridge, MA, USA.

Brooks, R. A. (1990). Elephants don’t play chess. In P. Maes (Ed.), Designing autonomous
agents: Theory and practice from biology to engineering and back (pp. 3–15). The MIT
Press: Cambridge, MA, USA.

Brooks, R. A. (1991a). How to build complete creatures rather than isolated cognitive architec-
tures. In K. Vanlehn (Ed.), Architectures for intelligence. (Erlbaum: Hillsdale, NJ).

Brooks, R. A. (1991b). Intelligence without reason. In J. Myopoulos & R. Reiter (Eds.),
Proceedings of the 12th international joint conference on artificial intelligence (IJCAI-91)
(pp. 569–595). Sydney, Australia: Morgan Kaufmann publishers Inc.: San Mateo, CA,
USA.

Brooks, R. A. (1991c). Intelligence without representation. Artificial Intelligence, 47 (1–3),
139–159.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Bibliography 219

Cajal, S. R. y. (1892). A new concept of the histology of the central nervous system. Hafner,
1977, 7–29.

Cajal, S. R. y. (1906). The stucture and connexions of neurons. Nobel Lectures: Physiology or
Medicine, 1901–1921, 220–253. (Elsevier, Amsterdam (1967))

Camel, J. E., Withers, G. S., & Greenough, W. T. (1986, December). Persistence of visual cortex
dendritic alterations induced by postweaning exposure to a “superenriched” environment
in rats. Behavioral Neuroscience, 100 (6), 810–813.

Cannon, W. B. (1932). The wisdom of the body. New York: Norton.
Castellani, G. C., Quinlan, E. M., Cooper, L. N., & Shouval, H. Z. (2001, Oct). A biophysical

model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors.
Proceedings of the National Academy of Sciences of the United States of America, 98 (22),
12772–12777.

Chained learning architectures in a simple closed-loop behavioural context. (2007, Oct). Bio-
logical Cybernetics, Online First.

Champneys, A., Crutchfield, J., Doole, S., Elliot, D., Klingener, F., Kennel, M., et al. (2007,
September). Sci.nonlinear faq 2.0 (sept 2003). http://amath.colorado.edu/faculty/
jdm/faq-Contents.html.

Chaumont, N., Egli, R., & Adami, C. (2007). Evolving virtual creatures and catapults. Artificial
Life, 13 (2), 139–157.

Chiel, H., & Beer, R. (1997). The brain has a body: adaptive behavior emerges from interactions
of nervous system, body and environment. Trends in Neuroscience, 20 (12), 553–557.

Churchland, P. M., & Churchland, P. S. (1990, January). Could a machine think? Scientific
American, 262 (1), 26–31.

Clark, A. (1996). Being there: Putting brain, body, and world together again. Cambridge, MA,
USA: MIT Press.

Clark, J., Lipkin, D., Marsh, J., Thompson, H., Walsh, N., & Zilles, S. (1999). XSL Transfor-
mations (XSLT) Version 1.0 (J. Clark, Ed.). W3C.

Cliff, D. (1990). Computational neuroethology: a provisional manifesto. In Proceedings of
the first international conference on simulation of adaptive behavior on from animals to
animats (pp. 29–39). Cambridge, MA, USA: MIT Press.

CMLabs Simulations Inc. (2006, July). Vortex. http://www.cm-labs.com/products/vortex/.
Cole, D. (2004). The chinese room argument. In E. N. Zalta (Ed.), The stanford encyclopedia

of philosophy. http://plato.stanford.edu/: Stanford Univiversity.
Conrad, M. (1969). Computer experiments on the evolution of coadaptation in a primitive

ecosystem. Unpublished doctoral dissertation, Stanford University.
Cooper, L. N. (1986, Dec). Neuron learning to brain organization. Cell Biophysics, 9 (1–2),

103–144.
Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms (Twenty

second printing (1999) ed.). Cambridge, MA, USA: MIT Press/McGraw-Hill.
Cowan, W., Südhof, T., & Stevens, C. (Eds.). (2001). Synapses. Baltimore, MD: Johns Hopkins

Univ. Press.
Craig, A. M., & Shatz, C. J. (2001). Synapse formation and maturation. In W. Cowan,

T. Südhof, & C. Stevens (Eds.), (pp. 571–612). Baltimore, MD: Johns Hopkins Univ.
Press.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

220 Bibliography

Davis, G. W. (2006, March). Homeostatic control of neural activity: From phenomenology to
molecular design. Annual Review of Neuroscience, 29 (1), 307–323.

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. MIT Press.
Der, R., Hesse, F., & Martius, G. (2005). Learning to feel the physics of a body. In Cimca ’05:

Proceedings of the international conference on computational intelligence for modelling,
control and automation and international conference on intelligent agents, web technologies
and internet commerce Vol-2 (CIMCA-IAWTIC’06) (pp. 252–257). Washington, DC,
USA: IEEE Computer Society.

Der, R., & Pantzer, T. (1999). Emergent robot behavior from the principle of homeokine-
sis. In A. Löffler, F. Mondada, & U. Rückert (Eds.), Experiments with the mini-robot
Khepera. Proceedings of the 1st international khepera workshop’99. Heinz-Nixdorf-Institut
Verlagsschriftenreihe.

Dickau, R. M. (2008, March). Magnetic pendulum. http://mathforum.org/advanced/
robertd/magneticpendulum.html.

Dieckmann, U. (1995). Coevolution as an autonoumous learning strategy for neuromodules.
In Supercomputing in brain research: From tomography to neural networks (pp. 427–432).
World Scientific, London, Eds. Herrmann, H.J., Wolf, D.E., and Poeppel, E.

Dieckmann, U., & Pasemann, F. (1995, June). Coevolution as an autonomous learning strategy
for neuromodules. In Proceedings of the european conference on artificial life (ECAL’95).
Granada, Spain. (Postersession)

Dinse, H. R., & Merzenich, M. (2002). Adaptation of inputs in the somatosensory system. In
M. Fahle & T. Poggio (Eds.), Perceptual learning (pp. 19–42). MIT Press.

Di Paolo, E. A. (2000). Homeostatic adaptation to inversion of the visual field and other
sensorimotor disruptions. In J.-A. Meyer, A. Berthoz, H. Floreano D. and. Roitblat, &
S. Wilson (Eds.), From animals to animats 6. proceedings of the VI international conference
on simulation of adaptive behavior. Cambridge, MA: MIT Press.

Di Paolo, E. A. (2003). Organismically-inspired robotics: Homeostatic adaptation and natural
teleology beyond the closed sensorimotor loop. In K. Murase & T. Asakura (Eds.), Dy-
namical systems approach to embodiment and sociality (pp. 19–42). Adelaide, Australia:
Advanced Knowledge International.

Dreyfus, H. L. (1972). What computers can’t do. the limits of artificial intelligence. Harper and
Row.

Dreyfus, H. L. (1992). What computers still can’t do. a critique of artificial reason. Harper and
Row. (First published: What computers can’t do: The limits of artifial intelligence, 1972,
second edition with corrections and additions, 1979. Third edition: What computers still
can’t do. A Critique of Artificial Reason, 1992, with additions to the previous unchanged
editions.)

Eckmiller, R. (1974). Hysteresis in the static characteristics of eye position coded neurons in
the alert monkey. Pflugers Archiv. European Journal of Physiology, 350 (3), 249–258.

Eco, U. (1998). The island of the day before. London, UK: Vintage. (Translated by Harcourt
Brace & Company)

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14 (2), 179–211.
Elman, J. L. (1998). Connectionism, artificial life, and dynamical systems: New approaches

to old questions. In W. Bechtel & G. Graham (Eds.), A companion to cognitive science.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Bibliography 221

Oxford: Basil Blackwood.
Encarnação, J., Straßer, W., & Klein, R. (1996). Graphische Datenverarbeitung I. R. Oldenbourg

Verlag.
Evolving brain structures for robot control. (2001). In J. Mira & A. Prieto (Eds.), Bio-inspired

applications of connectionism, proceedings IWANN 2001 (Vol. LNCS 2085, pp. 410–417).
MPI-MIS-Preprint 20/2001: Springer, Berlin. (MPI-MIS-Preprint 20/2001)

Farmer, J. D., & Belin, A. d’A. (1992). Artificial life: The coming evolution. In C. G. Langton,
C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), (pp. 815–838). Redwood City, Calif.:
Addison-Wesley. (Workshop held February, 1990 in Santa Fe, New Mexico)

Faure, P., & Korn, H. (2001, Sep). Is there chaos in the brain? I. concepts of nonlinear dynamics
and methods of investigation. 324 (9), 773–793.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate
cerebral cortex. Cerebral cortex, 1 (1), 1-a-47.

Fiala, B. A., Joyce, J. N., & Greenough, W. T. (1978, May). Environmental complexity
modulates growth of granule cell dendrites in developing but not adult hippocampus of
rats. Experimental Neurology, 59 (3), 372–383.

Fischer, J. (2003). A modulatory learning rule for neural learning and metalearning in real
world robots with many degrees of freedom. Unpublished doctoral dissertation, Westfälische
Wilhelms-Universität Münster.

Floreano, D. (2000). Evolutionary robotics in behavior engineering and artificial life. In T. Gomi
(Ed.), ER - evolutionary robotics symposiums 1997, 1998, 2000. Applied AI Systems.

Floreano, D., & Mondada, F. (1996). Evolution of plastic neurocontrollers for situated agents.
In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, & S. Wilson (Eds.), 4th International
Conference on Simulation of Adaptive Behavior (SAB’1996). MA: MIT Press. (P. Maes,
M. Mataric, J-A. Meyer, J. Pollack, and S. Wilson (eds.))

Fogel, G. B. (2008, Feb). Scholarpedia – evolutionary algorithms. http://www.scholarpedia.
org/article/Evolutionary_algorithms.

Förster, H. von. (1993). Wissen und Gewissen : Versuch einer Brücke (1. Aufl. ed.; S. J.
Schmidt, Ed.). Frankfurt am Main, D: Suhrkamp.

Förster, H. von. (2003). Understanding understanding - essays on cybernetics and cognition.
Springer Verlag, New York.

Friedberg, R. (1958). A learning machine: Part 1. IBM Journal of Research and Development,
2 (1), 2–13.

Friedman, G. (1956). Selective feedback computers for engineering synthesis and nervous system
analogy. Unpublished master’s thesis, University of California (UCLA).

Froemke, R. C., Poo, M.-M., & Dan, Y. (2005, Mar). Spike-timing-dependent synaptic plasticity
depends on dendritic location. Nature, 434 (7030), 221–5.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of reusable
object-oriented software. Addison-Wesley, Reading, MA, USA.

Gelder, T. van. (1998, October). The dynamical hypothesis in cognitive science. The Behavioral
and brain sciences, 21 (5), 615–665.

Gelder, T. van. (1999). Dynamic approaches to cognition. In R. Wilson & F. Keil (Eds.), The
MIT encyclopedia of cognitive science (pp. 244–6). Cambridge MA:: MIT Press.

Geng, T., Porr, B., & Worgotter, F. (2006). Fast biped walking with a sensor-driven neuronal

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

222 Bibliography

controller and real-time online learning. The International Journal of Robotics Research,
25 (3), 243–259.

Germanteam2004 (http://www.germanteam.org/GT2004.pdf). (2004).
Gerstner, W., & Kistler, W. M. (2002a). Mathematical formulations of hebbian learning.

Biological Cybernetics, 87, 404–415.
Gerstner, W., & Kistler, W. M. (2002b). Spiking neuron models: Single neurons, populations,

plasticity. Cambridge University Press.
Geva, S., & Sitte, J. (1993). The cart pole experiment as a benchmark for trainable controllers.

IEEE Control Systems Magazine, 13 (5), 40–51.
Ghazi-Zahedi, K. M. (2001). Analysis and visualistion of social networks. Diplom thesis,

Universitiy of Tübingen.
Gibson, J. J. (1977). The theory of affordances (Vols. Perceiving, Acting, and Knowing.; R. Shaw

& J. Bransford, Eds.). Hillsdale, N.J.: Elrbaum.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley Professional.
Group, K. (2007, October). Opengl. http://www.opengl.org/. (OpenGL is a registered

trademark of SGI)
Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside,

CA (published in digital form at http://faculty.ucr.edu/~hanneman/): University of
California, Riverside.

Harand, S. (2001). What’s wrong and right about searle’s chinese romm argument? In M. Bishop
& J. Preston (Eds.), Essays on searle’s chinese room argument. Oxford Univeristy Press.

Harnad, S. (1991). The symbol grounding problem. 335–346.
Harnad, S. (2005). Searle’s chinese room experiment. In Encyclopedia of philosophy. Macmillan.
Harvey, I., Husbands, P., Cliff, D., Thompson, A., & Jakobi, N. (1997). Evolutionary robotics:

the sussex approach. Robotics and Autonomous Systems, 20 (2–4), 205–224.
Harvey, I., Paolo, E. D., Wood, R., Quinn, M., Tuci, E., & Iridia, E. T. (2005). Evolutionary

robotics: A new scientific tool for studying cognition. Artificial Life, 11 (1), 79–98.
Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.
Havok.com Inc. (2006, July). Havok. http://www.havok.com/.
Hebb, D. O. (1949). The organization of behavior. New York: John Wiley.
Helmholtz, H. v. (1850). On the rate of transmission of the nerve impulse. Monatsber. Preuss.

Akad. Wiss. Berl., 14–15.
Heylighen, F., & Joslyn, C. (2001). Cybernetics and second-order cybernetics. In R. Meyers

(Ed.), Encyclopedia of physical science & technology. Academic Press, New York.
Himsolt, M. (1997). GML: a portable graph file format (Tech. Rep.). 94030 Passau, Germany.
Holland, J. H. (1974). Genetic algorithms and the optimal allocation of trials. SIAM Journal

of Computing, 3 (4), 326.
Hopfield, J. (1982). Neural networks and physical systems with emergent collective computa-

tional abilities. Proceedings of the National Academy of Sciences of the United States of
America, 79, 2554–2558.

Hülse, M. (2007). Multifunktionalität rekurrenter neuronaler Netze: Synthese und Analyse
nichtlinearer Kontrolle autonomer Roboter (W. Bibel, Ed.). Berlin: Akademische Verlags-
gesellschaft Aka GmbH. (PhD Thesis, University of Osnabrueck)

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Bibliography 223

Hülse, M., Lara, B., Pasemann, F., & Steinmetz, U. (2001). Evolving neural behavior control
for autonomous robots. In G. Dorffner, H. Bischof, & K. Hornik (Eds.), Icann 2001 (Vol.
LNCS 2130, pp. 957–962).

Hülse, M., & Pasemann, F. (2002, August). Dynamical neural schmitt trigger for robot control.
In J. Dorronsoro (Ed.), Icann ’02: Proceedings of the international conference on artificial
neural networks (Vol. LNCS 2415, pp. 783–788). London, UK: Springer-Verlag.

Hülse, M., Wischmann, S., & Pasemann, F. (2004). Structure and function of evolved neuro-
controllers for autonomous robots. Connection Science, 16 (4), 294–266.

I Support Learning. (2007, July). ASM webpresence. http://www.isupportlearning.com/
noflash/ASM.html.

Izhikevich, E. M. (2007, September). Encyclopedia of dynamical systems. http://www.
scholarpedia.org/article/Encyclopedia_of_Dynamical_Systems.

Jacobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The use of simulation
in evolutionary robotics. In Proceedings of the third european conference on advances in
artificial life (pp. 704–720). London, UK: Springer-Verlag.

Jäger, H., & Christaller, T. (1997). Dual dynamics: designing behavior systems for autonomous
robots. In Second international symposium on artificial life and robotics.

Jin, Y., & Branke, J. (2005). Evolutionary optimization in uncertain environments – a survey.
IEEE Trans. Evolutionary Computation, 9 (3), 303–317.

Jordan, M. I. (1986). Serial order: A parallel distributed processing approach (ICS report No.
8608). La Jolla: Institute for Cognitive Science, UCSD.

Juraska, J. M., Greenough, W. T., Elliott, C., Mack, K. J., & Berkowitz, R. (1980, June).
Plasticity in adult rat visual cortex: An examination of several cell populations after
differential rearing. Behavioral and Neural Biology, 29 (2), 157–167.

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. (4 ed.).
McGraw-Hill.

Katok, A., & Hasselblatt, B. (1999). Introduction to the modern theory of dynamical systems
(54 ed.; G.-C. Rota, Ed.). Cambridge Press.

Kaufman, H. (1967). An experimental investigation of process identification by competitive
evolution. IEEE Trans. Systems Science and Cybernetics, SSC3-1, 11–16.

Kelso, S. J. A. (1995). Dynamic patterns: The self-organization of brain and behavior (complex
adaptive systems). The MIT Press.

Klaassen, B., Zahedi, K., & Pasemann, F. (2004). A modular approach to construction and
control of walking robots. In Robotik 2004 (pp. 633–640).

Kleinschmidt, A., Buchel, C., Hutton, C., Friston, K. J., & Frackowiak, R. S. J. (2002, May).
The neural structures expressing perceptual hysteresis in visual letter recognition. Neuron,
34 (4), 659–666.

Klinke, R., & Silbernagl, S. (2005). Lehrbuch der Physiologie (Auflage: 4 ed.). Stuttgart:
Thieme.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of
natural selection (complex adaptive systems). The MIT Press.

K-Team. (1999, March). Khepera user manual. Ch. de Vuasset, CP 111 1028 Préverenges
Switzerland.

K-Team. (2005, July). Khepera documentation.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

224 Bibliography

Khepera Modules: http://www.k-team.com/robots/khepera/oldbase.html
Khepera II: http://www.k-team.com/robots/khepera/index.html
Khepera II Modules: http://www.k-team.com/robots/khepera/base.html.

Lakshmanan, M., & Rajaseekar, S. (2003). Nonlinear dynamics – integrability, chaos and
patterns. Beriln: Springer.

Langton, C. G., Taylor, C., Farmer, J. D., & Rasmussen, S. (Eds.). (1992). Artificial life
ii: Proceedings of the workshop on artificial life. Redwood City, Calif.: Addison-Wesley.
(Workshop held February, 1990 in Santa Fe, New Mexico)

Lara, B., Hülse, M., & Pasemann, F. (2001). Evolving different neuro-modules and their inter-
faces to control autonomous robots. In World multiconference on systemics, cybernetics
and informatics 2001, proceedings (Vol. IX, pp. 259–264).

Law, C. C., & Cooper, L. N. (1994, Aug). Formation of receptive fields in realistic visual en-
vironments according to the Bienenstock, Cooper, and Munro (BCM) theory. Proceedings
of the National Academy of Sciences of the United States of America, 91 (16), 7797–7801.

Leger, C. (2006, July). Darwin2k. http://www.darwin2k.com/.
Levy, S. (1992). Artificial life: the quest for a new creation. New York, NY, USA: Random

House Inc.
Levy, W. B., & Steward, O. (1983, Apr). Temporal contiguity requirements for long-term

associative potentiation/depression in the hippocampus. Neuroscience, 8 (4), 791–797.
Lipson, H. (2005). Evolutionary design and evolutionary robotics. In B. Cohen (Ed.), Biomimet-

ics: Biologically inspired technologies (pp. 129–155). CRC Press.
Lipson, H., & Pollack, J. B. (2000, 31 August). Automatic design and manufacture of robotic

lifeforms. Nature(406), 974–978.
Lucas, J., & Hazes, P. (Eds.). (1982). Proceesdings of the cognitive curriculum conference.
Mahn, B. (2003). Entwicklung von neurocontrollern fÃ1

4r eine holonome roboterplattform.
Diploma thesis, Fachbereich Technik, Fachhochschule Oldenburg/Ostfriesland/Wilhelms-
haven, Emden.

Malaka, R., & Spitzer, M. (Eds.). (2006). Interdisciplinary College. Focus Theme: Learning.
Malenka, R. C., & Siegelbaum, S. A. (2001). Synaptic plasticity. diverse targets and mechnisms

for regulating synaptic efficancy. In W. Cowan, T. Südhof, & C. Stevens (Eds.), (pp.
393–453). Baltimore, MD: Johns Hopkins Univ. Press.

Malsburg, C. von der. (1981). The correlation theory of brain function (Tech. Rep. Nos. 81–2).
Göttingen, Germany: Dept. Neurobiology, Max-Plank-Insititute for Biophysical Chem-
istry. (Also in Domany (Eds.), Models of Neural Networks II (pp. 95–119), London:
Springer Verlag)

Manoonpong, P. (2007). Neural preprocessing and control of reactive walking machines towards
versatile artificial perception-action systems. Heidelberg: Springer.

Manoonpong, P., Pasemann, F., & Fischer, J. (2004). Neural processing of auditory-tactile
sensor data to perform reactive behavior of walking machines. In Proceedings of the IEEE
MechRob 2004 (pp. 189–194).

Maris, M., & Boekhorst, I. J. A. R. te. (1996). Exploiting physical constraints: Heap formation
through behavioral error in a group of robots. In IROS’96, IEEE/RSJ international con-
ference on intelligent robots and systems, November 4-8, 1996, Senri Life Science Center,
Osaka, Japan.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Bibliography 225

Markelić, I. (2005). Evolving a neurocontroller for a fast quadrupedal walking behavior. Diplom
thesis, University of Koblenz.

Markelić, I., & Zahedi, K. (2007). An evolved neural network for fast quadrupedal locomotion.
In M. Xie & S. Dubowsky (Eds.), Advances in climbing and walking robots, proceedings of
10th international conference (CLAWAR 2007) (pp. 65–72). World Scientific Publishing
Company. (Singapore 16-18 July 2007)

Martone, M., Gupta, A., Ellisman, M., Sargis, J., Tran, J., Wong, W., et al. (2007, March).
Cell centered database. http://ccdb.ucsd.edu/index.html. (University of California)

McAllister, A. K. (2007). Dynamic aspects of cns synapse formation. Annual Review of Neuro-
science, 30 (1), 425–450.

McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5/115, 15–27.

McGeer, T. (1990). Passive dynamic walking. International Journal of Robotic Research, 9 (2),
62–82.

Michel, O. (2005, July). Khepera simulator 2.0. http://diwww.epfl.ch/lami/team/michel/
khep-sim/.

Michel, O. (2006, July). Webots. http://www.cyberbotics.com/products/webots/.
MICRO-EPSILON. (2006, July). Iconnect. http://iconnect.micro-epsilon.de/.
Miglino, O., Lund, H. H., & Nolfi, S. (1995). Evolving mobile robots in simulated and real

environments. Artificial Life, 2 (4), 417–434.
Milholland, J. E., Copi, I. M., & Garner, W. R. (1954, June). Book reviews. Psychometrika,

19 (2), 165–172.
Miller, K. D. (1996). Synaptic economics: competition and cooperation in synaptic plasticity.

Neuron, 17, 371–374.
Mills, D. L., Plunkett, K., Prat, C., & Schafer, G. (2005). Watching the infant brain learn

words: effects of vocabulary size and experience. Cognitive Development, 20 (1), 19–31.
Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry.

Cambridge, Mass.: MIT Press.
Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot miniaturization: A tool for in-

vestigation in control algorithms. In Proceedings of the third international symposium on
experimental robotics (pp. 501–513). Berlin: Springer Verlag.

Morris, L. G., & Hooper, S. L. (1998). Muscle response to changing neuronal input in the lob-
ster (panulirus interruptus) stomatogastric system: Slow muscle properties can transform
rhythmic input into tonic output. The Journal of Neuroscience, 18 (9), 3433–3442.

Neumann, J. von. (1951). The general and logical theory of automata. In A. H. Taub (Ed.), John
von Neumann, Collected Works (pp. 288–328). Oxford: Pergamon Press. (First published
1951 as pages 1–41 of: L. Jeffress, A. (ed), Cerebral Mechanisms in Behavior—The Hixon
Symposium, New York: John Wiley)

Neumann, J. von. (1966). Theory of self-reproducing automata. Urbana: University of Illinois
Press. (Edited and completed by Arthur W. Burks)

Newell, A., & Simon, H. A. (1963). GPS, a program that simulates human thought. In
E. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279–296). McGraw-
Hill.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

226 Bibliography

Nolfi, S., & Floreano, D. (1998). Co-evolving predator and prey robots: Do ’arm races’ arise in
artificial evolution? Artificial Life, 4 (4), 311–335.

Nolfi, S., & Floreano, D. (2000). Evolutionary robotics. MIT Press.
Nolfi, S., Floreano, D., Miglino, O., & Mondada, F. (1994). How to Evolve Autonomous Robots:

Different Approaches in Evolutionary Robotics. In R. A. Brooks & P. Maes (Eds.), 4th
International Workshop on Artificial Life. MA: MIT Press. (R. A. Brooks and P. Maes
(eds.))

Ott, E. (1993). Chaos in dynamical systems. Cambridge: Cambridge University Press.
Pasemann, F. (1993). Dynamics of a single model neuron. International Journal of Bifurcation

and Chaos, 2, 271–278.
Pasemann, F. (1995). Characteristics of periodic attractors in neural ring networks. Neural

Networks, 8, 421–429.
Pasemann, F. (1996). Repräsentation ohne Repräsentation - Überlegungen zu einer Neuro-

dynamik modularer kognitiver Systeme. In G. Rush, S. J. Schmidt, & O. Breidbach
(Eds.), Interne repräsentationen – neuro konzepte der hinforschung (pp. 42–91). Frank-
furt: Suhrkamp (stw 1277).

Pasemann, F. (1997a, October). Pole-balancing with different evolved neurocontrollers. In
W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), Artificial neural networks -
icann’97 (Vol. LNCS 1327, pp. 823–829). Lausanne, Switzerland: Springer, Berlin.

Pasemann, F. (1997b). A simple chaotic neuron. Physica D. Nonlinear phenomena, 104, 205–
211.

Pasemann, F. (1998). Evolving neurocontrollers for balancing an inverted pendulum. Network:
Computation in Neural Systems, 9, 495–511.

Pasemann, F. (2002). Complex dynamics and the structure of small neural networks. Network:
Computation in Neural Systems, 13 (2), 195–216.

Pasemann, F., & Dieckmann, U. (1997a). Balancing rotators with evolved neurocontrollers
(Tech. Rep.). Max Planck Insitute for Mathematics in the Sciences. MIS-MPG-preprint
97/37.

Pasemann, F., & Dieckmann, U. (1997b, June). Evolved neurocontrollers for pole-balancing.
In J. C. J. Mira R. Moreno-Diaz (Ed.), Biological and artificial computation: From neuro-
science to technology, proceedings iwann’97 (pp. 1279–1287). Lanzarote, Canary Islands,
Spain: Springer, Berlin.

Pasemann, F., Hild, M., & Zahedi, K. (2003). So(2)-networks as neural oscillators. In J. Mira
& J. Alvarez (Eds.), Computational methods in neural modeling, proceedings iwann 2003
(pp. 144–151). Berlin: Springer.

Pasemann, F., Hülse, M., & Zahedi, K. (2003). Evolved neurodynamics for robot control.
In M. Verleysen (Ed.), European symposium on artificial neural networks (pp. 439–444).
D-side publications.

Pasemann, F., Steinmetz, U., Hülse, M., & Lara, B. (2001). Robot control and the evolution of
modular neurodynamics. Theory in Biosciences, 120, 311–326.

Pasemann, F., Zahedi, K., & Rohde, M. (2004). Adaptive behaviour control by self-regulating
neurons (Preprint No. 55). MPI MiS.

Pfeifer, R. (2007, February). Talking robots podcast. http://lis.epfl.ch/resources/
podcast/2007/02/rolf-pfeifer-new-ai.html, Producer: Markus Waibel, EPFL.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Bibliography 227

Pfeifer, R., & Bongard, J. C. (2006). How the body shapes the way we think: A new view of
intelligence. The MIT Press (Bradford Books).

Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA, USA: MIT Press.
Pinker, S. (1999). How the mind works. W. W. Norton & Company.
Pollack, J., & Lipson, H. (2000, 13–15 July). The golem project: Evolving hardware bodies and

brains. In J. Lohn, A. Stoica, & D. Keymeulen (Eds.), The second NASA/DoD workshop
on evolvable hardware (pp. 37–42). Palo Alto, California: IEEE Computer Society.

Pollack, J., Lipson, H., Funes, P., Ficici, S., & Hornby, G. (1999). Coevolutionary robotics.
In EH ’99: Proceedings of the 1st nasa/dod workshop on evolvable hardware (p. 208).
Washington, DC, USA: IEEE Computer Society.

Popp, J. (2005, November). sphericalrobots. http://www.sphericalrobots.org.
Porr, B. (2003). Sequence-learning in a self-referential closed-loop behavioural system. Unpub-

lished doctoral dissertation, Faculty of Human Sciences, Department of Psychology.
Porr, B., & Wörgötter, F. (2003). Isotropic sequence order learning. Neural Computation,

15 (4), 831–864.
Port, R. F., & Van Gelder, T. (Eds.). (1998). Mind as motion: Explorations in the dynamics of

cognition. Cambridge, MA, USA: MIT Press.
Rabinovich, M. I., Varona, P., Selverston, A. I., & Abarbanel, H. D. I. (2006). Dynamical

principles in neuroscience. Reviews of Modern Physics, 78 (4).
Rechenberg, I. (1965). Cybernetic solution path of an experimental problem. Royal Aircraft

Establishment, Library Translation, 1122.
Relais d’information sur les science la cognitin. (2007, July). Swarm robotics - collective light

seeking of 5 ASM II robots. http://www.risc.cnrs.fr/detail_films.php?ID=536.
Riedmiller, M. (1996). Learning to control dynamic systems. In R. Trappl (Ed.), Proceedings

of the 13th. european meeting on cybernetics and systems research – EMCSR ’96 (pp.
1055–1063). Vienna.

Rosemann, M. (2004). Visualisierung der Aktivität von Neurokontrollern auf autono-
men mobilen Robotern. Master thesis, Fachbereich Technik, Fachhochschule Olden-
burg/Ostfriesland/Wilhelmshaven, Emden, Germany.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65 (6), 386–408.

Royer, S., & Paré, D. (2003, April). Conservation of total synaptic weight through balanced
synaptic depression and potentiation. Nature, 422 (6931), 518–522.

Rumelhart, D., Hinton, G., & Williams, R. (G1986). Learning representation by back-
propagating errors. Nature, 323, 533–536.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations
by error propagation. 318–362.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group. (1986). Parallel distributed
processing: Explorations in the microstructure of cognition, volumes 1 and 2. Cambridge:
MIT Press.

Sarbadhikari, S. N., & Chakrabarty, K. (2001, Sep). Chaos in the brain: a short review alluding
to epilepsy, depression, exercise and lateralization. Medical engineering & physics, 23 (7),
445–455.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

228 Bibliography

Schwefel, H.-P. (1965). Kybernetische Evolution als Strategie der experimentellen Forschung in
der Strömungstechnik. Unpublished master’s thesis, Technical Univ. Berlin.

Searle, J. R. (1980). Minds, brains, and programs. The Behavioral and Brain Sciences, 3 (3),
417–457.

Seung, S. (2007, September). Introduction to neurons and classical neurodynamics. http:
//hebb.mit.edu/courses/9.641/lectures/lecture01.pdf. (Lecture Notes)

Sims, K. (1994). Evolving 3d morphology and behavior by competition. Artificial Life, 1 (4),
353–372.

Skarda, C., & Freeman, W. (1987). How brains makes chaos in order to make sense of the world.
The Behavioral and brain sciences, 10, 161–195.

Smith, R. (2005, Nov). ODE. www.ode.org.
Smythies, J. R. (2002). The dynamic neuron. Cambridge, Massachusetts, London, England:

MIT Press, Bradford Books.
Socolar, J. E. S. (2006). Nonlinear dynamical systems. In E. Micheli-Tzanakou (Ed.), (pp.

115–140). Springer US.
Software, M. (2006, July). Adams. http://www.mscsoftware.com/products/adams.cfm.
Song, S., Miller, K., & Abbott, L. (2000). Competitive hebbian learning through spiketime-

dependent synaptic plasticity. Nature neurosciences, 3, 919–926.
Spenneberg, D. (2008, April). Scorpion project website. http://www.dfki-bremen.de/

robotik/forschung/projekte/weltraumrobotik/scorpion/.
Spong, M. (1998). Underactuated mechanical systems. In B. Siciliano & K. P. Valavanis (Eds.),

Control problems in robotics and automation (Vol. 230, pp. 135–150). London: Springer
Verlag.

Squire, L. R., & Kandel, E. R. (1998). Memory: From mind to molecules. New York: Scientific
American Library.

Steels, L. (2007). The symbol grounding problem is solved, so what’s next? In M. De Vega,
G. Glennberg, & G. Graesser (Eds.), Symbols, embodiment and meaning. Academic Press,
New Haven.

Stein, R. B. (1967, January). The frequency of nerve action potentials generated by applied
currents. Royal Society of London Proceedings Series B, 167, 64–86.

Stewart, I. (1999). Does god play dice? the mathematics of chaos. Massachusetts, USA:
Blackwell Publishers Inc.

Streeting, S., Xie, J., Castaneda, P. J., Muldowney, T., Doyle, J., O’Sullivan, J., et al. (2006,
July). Ogre. http://www.ogre3d.org.

Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Reading, MA, USA: Addison-Wesley.
Stroustrup, B. (2000). The c++ programming language: Special edition (Third Edition ed.).

Addison-Wesley.
Sun Microsystems. (2007). Java. http://java.sun.com.
Tani, J. (2007, March). Talking robots podcast. http://lis.epfl.ch/resources/podcast/

2007/02/rolf-pfeifer-new-ai.html, Producer: Markus Waibel, EPFL.
Taub, A. H. (Ed.). (1961). John von Neumann: Collected Works. Volume V: Design of Com-

puters, Theory of Automata and Numerical Analysis. Oxford: Pergamon Press.
The RoboCup Federation. (2007, Novembre). Robocup. http://www.robocup.org.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

Bibliography 229

Thomas, V. (2008). Evolution einer kamerabasierten Neurokontrolle autonomer Roboter unter
Berücksichtigung der Eigenbewegung. Unpublished master’s thesis.

Thomson, J. M. T., & Stewart, B. (2002). Nonlinear dynamics and chaos (Second Edition ed.).
New York, NY, USA: John Wiley and Sons, LTD.

Tsodyks, M., Kenet, T., Grinvald, A., & Arieli, A. (1999). Linking spontaneous activity of
single cortical neurons and the underlying functional architecture. Science, 286 (5446),
1943–1946.

Turrigiano, G. G. (1999, May). Homeostatic plasticity in neuronal networks: the more things
change, the more they stay the same. Trends in Neuroscience, 22 (5), 221–7.

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998,
Feb). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature,
391 (6670), 892–6.

Twickel, A. von, & Pasemann, F. (2006). Reflex-oscillations in evolved single leg neurocontrollers
for walking machines. Natural Computing.

Uylings, H. B., Kuypers, K., Diamond, M. C., & Veltman, W. A. (1978, Dec). Effects of
differential environments on plasticity of dendrites of cortical pyramidal neurons in adult
rats. Exp Neurol, 62 (3), 658–677.

Valverde, F. (1971, Oct). Rate and extent of recovery from dark rearing in the visual cortex of
the mouse. Brain Res, 33 (1), 1–11.

Verbeek, C. (2008). Robotino. http://www.openrobotino.org. (Follow-up of Robertino)
Viklund, A. (2006, July). JFreeChart. http://www.jfree.org/jfreechart/.
Volkmar, F. R., & Greenough, W. T. (1972). Rearing complexity affects branching of dendrites

in the visual cortex of the rat. Science, 176 (4042), 1445–1447.
Walker, J., Garrett, S., & Wilson, M. (2003, September). Evolving controllers for real robots:

A survey of the literature. Adaptive Behavior, 11 (3), 179–203.
Walker, J. F., & Oliver, J. H. (1997). A survey of artificial life and evolutionary robotics.

http://citeseer.comp.nus.edu.sg/walker97survey.html.
Wallace, C. S., Kilman, V. L., Withers, G. S., & Greenough, W. T. (1992, Jul). Increases in

dendritic length in occipital cortex after 4 days of differential housing in weanling rats.
Behavioral and neural biology, 58 (1), 64–68.

Walter, W. G. (1950, May). An imitation of life. Scientific American, 182 (5), 42–45.
Walter, W. G. (1951, August). A machine that learns. Scientific American, 185 (2), 60–63.
web3D Consortium. (1997). Vrml ’97. http://www.web3d.org/x3d/specifications/vrml/

ISO-IEC-14772-VRML97/. New York, NY, USA: ACM Press.
web3D Consortium. (2006, July). X3d. http://www.web3d.org/x3d/specifications/x3d\

_specification.html.
Welch, R. B. (1974). Research on adaptation to rearranged vision. Perception, 3:, 367–392.
Wiener, N. (1948). Cybernetics. Cambridge, Massachusetts: The Technology Press; New York:

John Wiley & Sons, Inc.
Wiener, N. (1954). The human use of human beings - cybernetics and society. New York: Avon

Books.
Williams, H. (2004). Homeostatic plasticity in recurrent neural networks. In S. Schaal,

A. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, & J.-A. Meyer (Eds.), Proceedings

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

230 Bibliography

of the eighth international conference on simulation of adaptive behavior. Cambridge,
MA: MIT Press / Bradford Books.

Williams, T., & Kelley, C. (2007, July). gnuplot 4.2. http://www.gnuplot.info.
Wilson, C. J., Weyrick, A., Terman, D., Hallworth, N. E., & Bevan, M. D. (2004, May). A

model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus
neurons. Journal of Neurophysiology, 91 (5), 1963–1980.

Wischmann, S. (2007). Neural dynamics of social behavior: An evolutionary and mechanis-
tic perspective on communication, cooperation, and competition among situated agents.
Unpublished doctoral dissertation, University of Bonn.

Wischmann, S., Hülse, M., & Pasemann, F. (2005). (co)evolution of (de)centralized neural
control for a gravitationally driven machine. Advances in Artificial Life, 179–188.

Wischmann, S., & Pasemann, F. (2004). From Passive to Active Dynamic 3D Bipedal Walking
- An Evolutionary Approach. In M. Armada & P. Gonzalez de Santos (Eds.), CLAWAR
2004 (pp. 737–744).

Wisse, M. (2004). Essentials of dynamic walking: Analysis and design of two-legged robots.
Unpublished doctoral dissertation, Technische Universiteit Delft.

Wisspeintner, T., & Bose, A. (2005). The volksbot concept - rapid prototyping for real-life
applications in mobile robotics. it - Information Technology, 5, 274–281.

Wolbers, T., & Büchel, C. (2005, Mar). Dissociable retrosplenial and hippocampal contributions
to successful formation of survey representations. The Journal of Neuroscience, 25 (13),
3333–3340.

Ye, B., Zhang, Y., Song, W., Younger, S. H., Jan, L. Y., & Jan, Y. N. (2007, Aug). Growing
dendrites and axons differ in their reliance on the secretory pathway. Cell, 130 (4), 717–729.

Zahedi, K., & Hülse, M. (2008, January). ISEE – integrated structure envolution environment.
http://sourceforge.net/projects/isee/.

Zahedi, K., Hüsle, M., & Pasemann, F. (2004). Evolving neurocontrollers in the robocup domain.
In Robotik 2004 (pp. 63–70).

Zahedi, K., Laue, T., Röfer, T., Schöll, P., & Spiess, K. (2005, Januar). RoSiML – robot
simulation markup language. http://www.tzi.de/spprobocup/RoSiML.html.

Zahedi, K., & Pasemann, F. (2007). Adaptive behavior control with self-regulating neurons.
In M. Lungarella, F. Iida, J. Bongard, & R. Pfeifer (Eds.), 50 years of ai (Vol. 4850, pp.
196–205). Berlin Heidelberg: Springer.

Zahedi, K., Twickel, A. von, & Wischmann, S. (2007, October). YARS – yet another robot
simulator. http://sourceforge.net/projects/yars/.

Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., & Squire, L. R. (1999). Fundamental
neuroscience. San Diego, California: Academic Press.

Self-Regulating Neurons:
A model for synaptic plasticity in artificial recurrent neural networks

