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Abstract

Classification is a general framework that can be applied to various tasks such
as object recognition, prediction, diagnosis or learning. There exist at least
two different approaches for classification, namely rule-based and similarity-
based classification. The two approaches have different strengths and weak-
nesses. The former requires a domain theory in order to make inferences from
the test instance to its class. The latter does not have this requirement and
approximates the class of a test instance via its similarity to a set of known
instances.
In this thesis the above two approaches are integrated in the realm of Case-
Based Reasoning (CBR). CBR treats new cases according to their similarity
to stored cases. Similarity is calculated by a similarity measure, which is
the crucial factor for classification accuracy. In this work, rule-based domain
knowledge is incorporated into the similarity measures of CBR in order to
increase classification accuracy. Several novel integration methods are intro-
duced, implemented and evaluated. Since knowledge about real world do-
mains is typically imperfect, the approach does not assume that the domain
theories are accurate or complete. Rather, a systematic analysis of different
knowledge types is presented that shows the effect of imperfect knowledge
on classification accuracy. The analysis is conducted partly empirically in
artificial and in real world domains, and partly formally.
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Chapter 1

Introduction

Many cognitive and computational tasks can be seen as classification prob-
lems. Object recognition, concept learning, decision processes, diagnosis, and
predictions can be treated in a classification framework, to name only a few.
Classification can be achieved by rule-based (Anderson, 1983; Newell & Si-
mon, 1990) or instance-based (Kolodner, 1991; Nosofsky, 1984) approaches,
which are traditionally assumed to exclude each other. Rule-based approaches
process inference rules that express generalized relations between properties.
In contrast, instance-based approaches defer generalization until classification
time and store instances without further analysis. Generalization is achieved
by inferring properties from similar instances. Recently the question arose
of how these two approaches can be integrated (Domingos, 1995; Nosofsky,
Palmeri, & McKinley, 1994). One motivation for this integration is that there
is good psychological evidence that humans apply both rules and instances
in categorization and learning (Erickson & Kruschke, 1998). Another, more
technical motivation is that both approaches may complement each other in
overcoming approach-specific weaknesses (Aamodt, 1994; Hahn & Chater,
1998; Porter, Bareiss, & Holte, 1990; Cain, Pazzani, & Silverstein, 1991).

This thesis builds upon both psychological and technical motivations. More
specifically, it is situated in artificial intelligence with a psychological perspec-
tive. One goal is to use findings from experiments about human similarity
assessment in order to apply them in the technical domain of case-based rea-
soning (CBR). Since humans are good and flexible at categorization, it is in-
tuitive to test whether cognitive phenomena associated with this task will also
be helpful in AI implementations. Another goal is to analyze similarity-based
classification from a computational perspective and motivate knowledge-rich

13
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similarity measures technically. In other words, in this thesis the influence of
domain knowledge on similarity is examined, formalized, and implemented.
As will be outlined later, the specific technical aims in this thesis consist
of increasing the classification accuracy of CBR systems, and introducing
flexibility with respect to different classification goals into these systems. Of
course these benefits do not come for free, so an additional aspect is to keep
the additional computational overhead low.

Since similarity is an important construct in many domains beyond CBR,
the resulting methods and heuristics are formalized in a way that is general
enough for use in other fields that employ similarity, e. g. clustering and
object recognition.

1.1 Back to the Roots of Case-Based Reason-

ing

In this thesis, we go back to the roots of case-based reasoning (CBR). In
its early stages, CBR was inspired by psychological models about human
problem solving: New problems are solved by using experience about similar
known problems (Kolodner, 1991). As the state of the art progressed, CBR
became practically one of the standard approaches in computer science, with
much of the research focussing on technical details. Nowadays, psychological
studies provide much more insights about human problem solving and how
humans assess the similarity of problem instances (Ahn, Kim, Lassaline, &
Dennis, 2000; Choplin, Cheng, & Holyoak, 2001; Medin, Goldstone, & Gen-
tner, 1993). These findings are at odds with typical recent CBR approaches.
Our work aims at integrating new psychological models into the similarity
measures of CBR in order to enhance their flexibility and accuracy.

CBR works by storing previous cases in a case-base. The cases are represented
using a fixed vocabulary of attributes. If a query is posed, the system retrieves
the case that is most similar to the query. In some applications, the retrieved
case has to be adapted in order to be useful for the query. In classification,
such adaption is not necessary, the class of the retrieved case is predicted to
be the class of the query.

Creating appropriate similarity measures is considered one of the major chal-
lenges in CBR, since the accuracy of a CBR system depends heavily on the
similarity measure. Often, the measure is designed by talking to domain ex-
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perts. This knowledge acquisition is deemed the bottleneck of the CBR de-
signing phase (Craw, 2003). Although it is widely held that domain knowl-
edge is crucial for high performance, a systematic analysis of the different
types of knowledge that can be incorporated into a CBR system has not
yet been conducted. Even worse, the knowledge acquired by interviewing do-
main experts is typically imperfect, because many domains are not yet well
understood (Porter et al., 1990), and only theoretically uncertain knowledge
is available (Aamodt, 1994). We analyze the effect of imperfect knowledge
and show empirically and theoretically that even partial, inconsistent and
inaccurate knowledge can improve similarity-based classification.
It should be noted that we clearly do not propose a boot-strapping method.
We use domain knowledge, but do not focus on acquiring this knowledge
by processing the cases. In other words, we are not concerned with learning
knowledge bottom-up from the data (refer to (Stahl, 2004) for a recent ap-
proach of such a learning mechanism), but we will discuss further below how
our approach might facilitate boot-strapping. We assume that there is addi-
tional knowledge available, either from outside of the system or from another
process. This makes sense both technically and psychologically. In CBR it
can be assumed that domain experts possess knowledge about underlying
principles that cannot be inferred from a sparse set of cases. In psychology,
it can be assumed that humans do not have to infer all knowledge from their
own experiences, but acquire socially and culturally shared knowledge.
While we go back to the psychological roots of CBR, we also treat CBR as
it was conceived of in the machine learning community originally. In its pure
form, CBR is an instance of lazy learning (Aha, 1997). Lazy learning stores
the cases without further analysis and defers generalization until classification
time. In order to fully exploit the flexibility of lazy learning, a CBR system
should not commit itself to a narrow learning bias (Aha, 1997). However, we
argue that using a fixed similarity measure (as is the main paradigm in CBR
nowadays) is a very rigid learning bias. To soften this bias, we investigate
how to dynamically adapt similarity measures to varying classification goals,
in order to exploit the strengths of lazy learning. This way, the similarity
measure is not fixed anymore, but a function of the classification goal (cf. the
Patdex/2-System which adapted weights to the classification goal (Janetzko,
Wess, & Melis, 1992)). The system keeps all cases without further analysis in
the case-base. The similarity measure is adapted if a new classification goal
is used, or if the domain knowledge is updated.
For applications where a wide generalization bias is not necessary (or even
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counter-productive), there exist CBR approaches that incorporate the advan-
tages of eager learning by generalizing cases already in the case-base (e. g.
(Bergmann & Vollrath, 1999)).

1.2 The Knowledge Container Approach in

CBR

We follow the knowledge container approach in CBR proposed by Richter
(Wess & Globig, 1994; Richter, 1995). It acknowledges that CBR is a
knowledge-based approach and states that the existing domain knowledge
has to be spread into four knowledge containers: the case representation (vo-
cabulary), the case-base, the similarity measure and adaptation knowledge.
More details about these containers will be discussed in the next chapter. In
this thesis we focus on how to integrate domain knowledge into the similarity
measure container.

According to the knowledge container approach all containers have to be filled
for a CBR system to run. Interestingly, almost all knowledge can be moved
into an arbitrary container while the other containers are filled only to a
minimum. For example, Richter (Richter, 1992) showed theoretically that one
can move a maximal amount of knowledge into the similarity measure so that
only one case per class is necessary in the case-base. Vice versa, (theoretically)
if all possible cases are collected in the case-base, the similarity measure
can be reduced to the identity operator abandoning all domain knowledge
for similarity (Richter, 1992). Hence, a similarity measure can be seen as a
form of knowledge. Bergmann even subsumes similarity assessment in CBR
systems under reuse-related knowledge (Bergmann, 2002).

Yet, Richter’s analysis does not provide concrete means about how to incor-
porate knowledge into similarity measures, let alone methods for different
types of knowledge or imperfect knowledge.

We examined how rule-based domain knowledge can be exploited for similar-
ity measures. This knowledge can range from single rules to complete domain
theories. Since the cases in the case-base can also be regarded as knowledge,
we use the term ”domain knowledge” to cover knowledge that is not specific
to single instances (e. g. red(car1)), but refers to relations between attributes
(e. g.: if fast(X) then expensive(X)).

The direction taken is to analyze the weighting and similarity techniques and
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then to examine which types of knowledge are useful. We do not follow the
reverse direction, which would be to examine which types of knowledge exist
and whether and how they can be used in similarity measures. The types of
knowledge are too vast to be considered as a whole. Thus, we grouped knowl-
edge types by the way they can be incorporated into similarity measures, and
did not group them by epistemological principles.

1.3 Contributions of this Thesis

This thesis provides contributions for both technical and cognitive science
questions.

The technical contribution is for similarity-based classification techniques.
Traditionally, CBR is viewed as a knowledge-poor method, because it can
be applied in domains where no domain knowledge exists. However, during
the last 15 years research on integrating knowledge into CBR and similarity
measures has been an active area of research. This is due to the fact that in
many domains at least partial, inaccurate or inconsistent knowledge exists
(Porter et al., 1990; Aamodt, 1990; Bergmann, Pews, & Wilke, 1994; Cain et
al., 1991; Surma, 1994). The systematic investigation in this thesis on how
knowledge can be exploited will allow developers to adapt or maximize the
amount of used knowledge. We developed a systematic hierarchy of knowledge
types, introduced incorporation methods for each type and investigated the
impact of each type on classification accuracy.

As we mentioned before, we are not considering a boot-strapping method.
This means, we do not generate rules or domain theories by processing the
case-base. Instead, our approach takes the existing imperfect domain theory
for granted and exploits it as much as possible. The systematic analysis of
which types of knowledge are useful will lead to incentives to learn such
knowledge from the cases or extract it statistically. Then the system would
not be dependent of additional knowledge apart from the case-base. Previous
work focussed on isolated knowledge chunks which were learned from cases
and then used for planning (Armano, Cherchi, & Vargiu, 2004), classification
(Gabel & Stahl, 2004; Stahl, 2004), or Bayesian learning (Lamma, Riguzzi,
& Storari, 2004). This thesis offers a systematic analysis of various types of
knowledge and provides insights into which information should be learned
from the instances if the knowledge is not explicitly given.

The contribution to cognitive science is to provide a formal model of how
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knowledge can be employed in similarity assessment at all. To understand a
cognitive system, it is useful to synthesize it, test it, find correspondences to
the human paragon, and then examine discrepancies. We analyzed which in-
formation is contained in concept hierarchies, rules, isolated definitions, and
equations. Although we cannot make claims yet how exactly humans use such
knowledge, we can at least show how knowledge can be used in principle. We
identified several vague notions of knowledge in the psychological and cog-
nitive science literature that were associated with similarity assessment and
clarified them. That is, we distinguish between types of knowledge in a formal
and precise way. Furthermore, we grouped these refined types of knowledge
in a hierarchy and showed important commonalities and differences. As a
side effect this identification of knowledge types might lead to new strategies
how to interview domain experts during knowledge acquisition.

With these clarifications of knowledge and the methods to incorporate knowl-
edge into similarity measures it is now possible to derive clear predictions for
psychological similarity assessment from our model. This way, we provide a
falsifiable model so that it is possible to analyze which parts also hold for
human cognition.

To sum up, our main contribution is threefold: First we systematically ana-
lyzed which types of knowledge are useful in similarity measures. Second we
examined how each type of knowledge can be incorporated into a similarity
measure and how it can be exploited. Third, we analyzed which requirements
the knowledge must fulfill in terms of completeness, accuracy and consistency.

1.4 Evaluating the Approach

We evaluated the benefit of knowledge-enhanced similarity measures partly
formally and partly by simulations in artificial domains and benchmark do-
mains. Since these domains are very different, we believe that our approach
is general enough to enhance similarity-based classification in many domains.
Furthermore, we implemented the approach also for a specific application,
namely similarity-based opponent modelling in multi-agent systems. This
application is well-suited for our evaluation purposes, because it allows for
various classification goals and is complex enough to experiment with differ-
ent types of knowledge. The domain is also a particular challenge, since it
does not assume that cases are easy to acquire as is assumed in most CBR
applications. Instead, it has to be able to make good predictions based on
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very few observations.
In brief, opponent modelling tries to predict the behavior of an agent. In
the framework of similarity-based classification, the classification goal is the
opponent’s action and the assumption is that the opponent behaves similar
in similar situations.
Opponent modelling is well-suited to show why both instances and general
domain knowledge are useful. Domain knowledge (we also used problem solv-
ing knowledge) is of a general nature and is thus not detailed enough to serve
as a basis for predicting specific opponent actions. In contrast, observations
are very detailed, but not general enough to predict actions in other situa-
tions. Our approach combines the knowledge contained in observations, i. e.
in the case-base, with domain knowledge.

1.5 Related Work

This thesis draws upon several different areas of research. First of all, psycho-
logical research on similarity is scattered across different communities, such
as analogical reasoning, perception, decision-making, concept formation, and
similarity per se. Also in the technical areas, similarity is researched within
different communities, such as clustering, object recognition, alignment, in-
formation retrieval, and CBR. Thus, it is infeasible to give an exhaustive
treatment of related work at this place. Rather, we will discuss related work
in the next chapter and give additional references throughout the thesis.
For now, we only give a short overview here about closely related work on
incorporating knowledge into CBR.
There are also many methods for classification, such as neural networks and
regression techniques. However, in our experiments we do not compare our
similarity-based approach with those other machine learning methods, be-
cause our main focus is the question how domain knowledge can be incorpo-
rated into similarity measures, with a cognitive science perspective.
The idea to incorporate rule-based knowledge into CBR is not new. In fact
even among the very first CBR systems, CABARET was a system that re-
trieved legal cases using similarity-based and rule-based methods (Rissland
& Skalak, 1989). The purpose of the system is different from our aims: The
cases in the case-base were used to sharpen and instantiate vague notions in
the background knowledge. For example, a law about work accidents may use
the vague notion of ”in furtherance of employment” in order to define which
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accidents have to be payed for by the employer. Previous legal judgements
form cases and are used to instantiate such vague notions. The knowledge
was not used to modify the similarity measure.
CABARET is an example for vertical integration (Aamodt, 1994) of rule-
based and similarity-based classification. That is, both approaches are in-
tertwined and do not run independent of each other. In contrast, horizontal
integration means that two systems run in parallel and individually generate
two outputs. A mediator module has to decide which of the two outputs will
be the final result.
Our approach is an instance of vertical integration. Prominent further ex-
amples of vertical integration are the PROTOS system (Porter et al., 1990)
which matches syntactically different features if they are semantically equiv-
alent, and explanation-based CBR (e. g. (Aamodt, 1994; Bergmann et al.,
1994; Cain et al., 1991)). In explanation-based CBR, strong domain theories
are used to filter attributes that are not used in explanation-chains for the
classification.
Our thesis extends previous work substantially, by treating several kinds of
knowledge and analyzing the effects of imperfectness, such as partialness,
inaccuracy and inconsistency. Furthermore, previous work that incorporated
knowledge required structured case-representations. We will show that do-
main knowledge can be used even for less structured data, namely attribute-
value representations.

1.6 Structure of the Thesis

This thesis is organized as follows:
In chapter 2 we give an overview over research on similarity in cognitive
science, particularly in philosophy, psychology and computer science, in order
to motivate our research. Furthermore, CBR is explained in more detail.
In chapter 3 we introduce the formal notation used in this thesis. Similarity,
domain knowledge, and cases are defined.
Based on those definitions, in chapter 4 we define a hierarchy of knowledge
types and show how each type can be incorporated into similarity measures.
In chapter 5, we analyze the effect of the knowledge types on classification
accuracy. Furthermore, we examine how inaccurate, partial and inconsistent
knowledge influences the classification.
In chapter 6 we show how domain knowledge can be combined with weight
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learning and describe experiments in two benchmark domains. Furthermore,
we introduce a method to use domain knowledge in a weight learning method
itself.
Chapter 7 extends our methods to similarity-based opponent modelling in
multi-agent systems and reports experimental results in the domain of sim-
ulated soccer .
Finally, in chapter 8 we conclude and outline future work.
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Chapter 2

Similarity in Cognitive Science

This sense of sameness is the
very keel and backbone of our
thinking.

William James, American
psychologist (1890)

2.1 Introduction

Similarity is a prominent notion in cognitive science and its subdisciplines.
Already the British Empiricists regarded similarity as the main means of
cognition, and psychology researched similarity from the beginning of this
discipline throughout to the present day. However, this prolonged work has
also resulted in diluting the notion of similarity so that some researchers even
see it as an empty shell without meaning and explanatory power (Goodman,
1972). Furthermore, due to the cyclic progress in science, many insights about
similarity have been ignored for a long time. In this chapter we define our
own starting point by reviewing previous work and identify challenges and
open questions from a cognitive science perspective. We discuss similarity in
philosophy and psychology, and computer science techniques that are related
to similarity-based classification.

23
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2.2 Similarity in Philosophy

The most simple notion of similarity was used by the British Empiricists,
such as Locke and Hume. According to them, the only way to increase one’s
insight into the world is by experience. Experience comes as so-called ”ideas”,
that is, objects of perception. Composite ideas (e. g. chair) are compounded
from simple ideas (e.g. brown or wooden). Ideas are then associated using
only three principles of connection: Contiguity in place and time, cause and
effect, and resemblance (Hume, 1777/1975) (which in fact is our notion of
similarity).
This means that one can predict similar effects given similar causes. Re-
semblance was based on sharing components or so-called sensory qualities.
Qualities would be called dimensions or attributes nowadays. Resemblance
was clearly distinguished from matching. Whereas the former requires sharing
of similar components, the latter requires sharing of strictly identical com-
ponents. It is obvious that resemblance is a recursive definition of similarity,
since similarity of an ”idea” is based on the similarity of its components. The
ability to perceive the similarity of primitive ideas (e. g. brown and red) was
assumed to be inherent in human cognition. In the view of the Empiricists,
similarity is a bottom-up phenomenon, directly determined by the perception
apparatus. There is no top-down influence of cognition and knowledge.
Similarity was thought of as a binary relation. Either two ”ideas” were similar
or not. Similarity was not graded as is usually the case nowadays. Further-
more, similarity was based on superficial attributes, that is, on properties
(”qualities”) that can be sensed directly. Context or even differences in per-
ception were regarded as irrelevant.
When philosophy gave birth to psychology, Bain (1855) extended the ideas of
associationism with a thorough investigation of the physiology of sensation
and movement. However, he does not define similarity more clearly than the
British Empiricists, but bases it on the undefined primitive resemblance. The
ability to perceive such resemblance seems to be directly given to humans
(Jurisica, 1994).
In Carnap’s Aufbau (1928) all binary reflexive and symmetric relations were
similarity relations. Relations that were additionally transitive are equiv-
alence relations. He set out to define all scientific concepts using similarity
relations on so-called raw experiences. This is again reminiscent of the British
associationism.
It was Fullerton (1890) who took Bain’s idea that similarity is upper-bounded
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by identity to grade similarity between dissimilarity and identity. However,
the semantics of graded similarity remained unclear. Goodman (Goodman,
1951) dealt with this problem by using a four-place predicate to state that a
pair of objects is at least as similar to each other than another pair.

Goodman entertained a sceptic view on similarity, though. He rejects the idea
of objective similarity independent of language. Two objects can be viewed
as similar only if they are referred to by the same language constructs. This
means for example, that two objects that are believed to belong to the same
concept in language are viewed as similar after this concept has been identi-
fied. Goodman sharpened his criticism in a famous article (Goodman, 1972)
where he states that similarity is a ”quack” and denies it any explanatory
power. Since similarity is no absolute notion, the statement that two objects
are similar yields no information at all unless one lists the features that they
share. This, however, is also useless since any two objects share infinitely
many features. An illustrative example from (Hahn & Chater, 1998) is that
a lawnmower and a plum have in common that they weigh less than 100
kilo, and less than 101 kilo and so on. Thus, all objects are equally similar
to each other. From a philosophical point of view Goodman’s criticism was a
rigid point against similarity as an explanatory construct for cognition. Only
later, the criticism was dissolved by work in psychology.

2.3 Similarity in Psychology

Early psychological work on similarity was heavily influenced by the philo-
sophical tradition of associationism. This is not surprising, because the first
psychologists were often philosophers who studied the human mind. The
work of Bain mentioned above can also be seen as psychological research.
Also the foundational work of William James sees a foundational role of sim-
ilarity in cognition, because along with contiguity it forms the foundations
of associations (James, 1890).

Although the idea of the British Empiricists had an influence on early psy-
chological work, the new discipline provided new research methods, namely
empirical experiments. This resulted in a purely descriptive notion of sim-
ilarity as grouping principle for Gestalts (Wertheimer, 1923). The Law of
Similarity states that objects are perceptually grouped together if they look
similar.

The main area of interest at that time was psychophysics, that is, perception.
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Similarity appeared as basis of generalization in primary stimulation gradi-
ents (Pavlov, 1927). In experiments on conditioning it turned out that the
probability of a reaction to a new stimulus is a function of its similarity to the
old stimulus. Similarity was defined as the distance on sensory dimensions
such as tone frequency or loudness.
Although there has been work on similarity for a long time, the first modern
study on psychology (Jurisica, 1994) is considered to be Wallach’s article on
psychological similarity in the late 50s (Wallach, 1958). He identifies several
weaknesses in the assumptions of the British Empiricists and pits ”psycho-
logical” similarity against their ”potential” similarity. The latter can be seen
as a form of objective physical similarity, whereas the former is perceived sim-
ilarity. That is, Wallach assumes that humans can select or ignore features.
He also reports experiments that showed effects of context and attention.
Furthermore, most important for this thesis, he argues that also extrinsic
features might play a role in similarity assessment. Such features are not
perceivable directly, but have to be attributed from the outside to the ob-
ject, such as its use or its construction. This already hints to the hypothesis
that knowledge (e. g. about what an object is used for) has to be activated
for similarity assessment. In this sense, similarity also has top-down aspects.
After Wallach’s article, research on similarity widened its focus and differ-
ent various aspects were examined. To account for this, in the remainder
of this chapter we will not treat the literature chronologically anymore, but
thematically.
Common to the different psychological approaches is that they treat similar-
ity between representations and not between the real objects.

2.3.1 Object Representation

Similarity can be researched only if some assumptions on the representa-
tion of the objects or cases are made, because similarity always works on
representations (Medin & Ortony, 1989).
Today, there are three main approaches of measuring psychological similarity.
They differ in the way objects are represented. The geometrical model has
been introduced by Shepard (1957). The set-theoretic contrast model was
proposed in Tversky’s classic paper (Tversky, 1977). Relational or structured
similarity is advocated by Gentner (1989).
Shepard’s model treats similarity of objects as their distance in a psycholog-
ical space spanned by the objects’ attributes.
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Figure 2.1: Three cases of arranged geometrical objects showing the necessity
of relations. Only a relation can express that in the rightmost arrangements
the circle is to the left of the square. Adapted from Medin, Goldstone, Gen-
tner, 1993.

In Tversky’s contrast model, similarity is a function of shared and distinctive
features of the comparison partners. Features are assumed to be discrete, and
are compared via an identity operator. This simple feature approach does not
allow to cope with context or different classification goals, which resulted in
experimental observations that suggested that reflexivity and symmetry of
similarity are invalid.

Both Shepard’s and Tversky’s approaches assume very simple representations
for objects, either as points in an n-dimensional space or as sets of discrete
features. However, most cognitive science theories for representation of nat-
ural objects - such as faces, visual scenes, or sentences - assume structured
representations (Hahn, Chater, & Richardson, 2003). Objects usually consist
of subcomponents or are related to other objects in taxonomical or mereo-
logical relations. Therefore, much research has gone into structural similarity
(Gentner, 1989; Markman & Gentner, 2005; Hahn & Chater, 1998; Mark-
man, 2001). In the structural approach, perceivable features are represented
as unary predicates. The crucial idea is to additionally use relations with
higher arity. This way, it cannot only be stated which features an object has,
but also how features are interrelated. For example, by using a ”left of” rela-
tion, it can be stated in a case of geometrical arrangements that an object A
is to the left of an object B (see figure 2.1). Such a statement is impossible
in simple feature representations.

Hahn and Chater (Hahn et al., 2003) propose an even more general approach
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to similarity that subsumes the afore-mentioned models as special cases. They
suggest that similarity between two objects is determined by the complexity
required to transform the representation of one objects into the representa-
tion of the other object. Based on the mathematical notion of Kolmogorov
complexity, their approach can handle arbitrary kinds of representation. How-
ever, to make falsifiable predictions, their model requires selection of a finite
set of primitive transformations. Up to now it is not clear what transforma-
tions can be seen as given and whether additional transformations can be
learnt.

2.3.2 Respects

Goodman noted that similarity is a useless notion, since the statement that
two things are similar bears no information unless one states in which re-
spect they are similar (Goodman, 1972). That is, one has to list the features
in which they are identical. As already mentioned in section 2.2 this argument
remained an important criticism for a long time. However, Medin, Goldstone
and Gentner (1993) suggest that the respects of similarity are fixed system-
atically. The respects arise from the task, context, background knowledge,
and from the objects themselves. Thus, respects constrain the (according to
Goodman theoretically infinitely many) features that enter the comparison
process and thus also determine similarity.
In Medin et al.’s experiments there was high agreement between subjects
for similarity ratings. This is a contradiction to Goodman’s statement that
similarity is arbitrary and carries no information. It is hypothesized that
the across-subject agreement in similarity ratings is due to the fact that the
features that are used for comparison are constrained systematically (Medin
et al., 1993). In the extreme, children are very rigid about similarity, since
they do not analyze stimuli in their components but compare them as wholes
(L. B. Smith, 1989).
But also adults show systematic selection of features. Context activates fea-
tures or makes them less salient. For example, a snake and a racoon are
judged to be more similar if the context is pet, than if no context is provided.
This reminds of Goodman’s idea that objects that both belong (or do not
belong) to a concept are judged more similar than if they belong to different
concepts (cf. 2.2).
Research in analogy suggests another phenomenon that determines which
features are used for similarity assessment. Similarity between problems is
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assumed to determine whether analogical transfer from a known problem to a
new problem is successful. Apparently, isolated features are less likely to en-
ter the comparison process than features that are interrelated and belong to
a system of connected relations (Gentner, 1989). This phenomenon is called
systematicity and is the core of Gentner’s structure mapping theory of anal-
ogy and alignment (Gentner, 1983). There is good evidence that the success
of analogical transfer depends on the type and size of the structural overlap
of such relational systems (Schmid, Wirth, & Polkehn, 2003). The theory also
predicts that n-ary relations are more likely to enter the comparison process
than unary predicates (object properties).
Further constraints on the selected features come from process principles of
comparison (Medin et al., 1993). For instance, it has been reported that the
properties of the object that is encountered first are more likely to enter the
comparison process than the properties of the second object (Tversky, 1977).
Context, systematicity, and process principles complement each other to con-
strain the respects of similarity. It is however uncertain, whether these con-
straints are strong enough to completely fix the respects of similarity. It has
been proposed to see the flexibility of similarity not as a weakness, but as a
strength, though. People can dynamically adapt their similarity assessment
to various tasks and contexts without the need to relearn features or feature
relevance (Lamberts & Chong, 1998).

2.3.3 Background Knowledge

In this section we review psychological work on the question whether and
how background knowledge influences similarity assessment. We look at how
knowledge provides additional attributes, and how knowledge helps to deter-
mine feature relevance.

Abstract attributes:

In some domains generalization cannot work on superficial attributes alone
(Wallach, 1958). Not all properties of an object that are necessary for classi-
fication are directly perceivable. For example, in chess it is not due to their
shape that the bishop is more similar to the rook than to the pawn, but by
their ability to move or their number in the starting configuration (Groot,
1978). Apparently, such properties have to be inferred or retrieved from mem-
ory.
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For such inferred properties, Medin and Ortony coined the term of ”deep sim-
ilarity”, as opposed to ”surface similarity” which is based on readily accessible
components (Medin & Ortony, 1989). Surface (or superficial) attributes can
be represented by simple unary predicates (such as blue(X)) (Medin et al.,
1993), whereas for deep similarity more complex relations with higher ar-
ity are needed (such as causes(X,Y )). Obviously, abstract relations require
knowledge (Brown, 1989; Gentner, 1989). For example, children compare a
sponge and a cloud by mere appearance as ”both are round and fluffy”, while
adults as ”both hold water and give it back later” (Gentner, 1988). This dif-
ference is due to better representation and structuring of knowledge (Carey,
1984).
This is also in line with the finding that the comparison processes of novices
and experts differ in that the former rely on superficial attributes, whereas
the latter use more abstract attributes (Chi, Feltovich, & Glaser, 1981). For
example, in order to determine the similarity of physics problems, physics
novices use superficial features like the objects mentioned in the problem de-
scription (e. g. ”river steamer” or ”wooden box”). In contrast, physics experts
determine problem similarity based on underlying principles like ”conserva-
tion of energy”. Such abstract attributes are only present if some knowledge
has already been acquired (Chi et al., 1981; Medin et al., 1993), because they
have to be inferred from the superficial attributes that are contained in the
problem description.
Furthermore, a dissociation exists between categorization and surface simi-
larity (Ahn & Dennis, 2001). That is, people may judge an object A more
similar to B than to C, but still categorize A identical to C. However, this
dissociation vanishes if subjects are encouraged to use deep similarity. This
suggests that categorization is based on deep rather than surface similarity.

Feature relevance:

Considering that in theory all objects share infinitely many features, there
have to be some criteria to decide which features are important and which are
irrelevant. Furthermore, some features will be more diagnostic than others.
For instance, when deciding whether a particular animal is a bird or a mam-
mal, the feature has feathers is more diagnostic than can fly (Lamberts &
Chong, 1998), because both bats (being mammals) and eagles (being birds)
can fly.
Experiments about similarity judgements suggest that features that cause
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other features are deemed more important than features that are effects of or
only correlated to other features (Choplin et al., 2001). In an experiment sub-
jects were told that keys with a certain notch were able to open a particular
safe. The opening of the safe is an effect of the notch in the key. Additionally,
keys had the feature whether they were able to open the safe. In the similar-
ity ratings it turned out that the feature notch (cause) influenced similarity
between keys more than the feature open safe (effect). The higher relevance
for cause features provides support for the hypothesis that domain knowledge
about the relations between attributes influences similarity assessment.
This finding is also supported by another study in which subjects learned a
causal chain (Ahn et al., 2000): ”Because Roobans have sticky feet, they can
climb trees. Because they can climb trees, they eat fruits.” The experiments
showed that the feature that is the first cause in the chain (sticky feet) is the
most important feature in the similarity rating, followed by the feature that
is the intermediate cause (climbs trees). Finally, the feature that is only an
effect (eats fruits) had the smallest impact on similarity.
Furthermore, the experiments suggest that causal background knowledge can
be used to infer missing or unobservable features (Ahn et al., 2000).
However, feature relevance is not static, but is assessed dynamically based
on the task and the context (Lamberts & Chong, 1998). In an experiment
subjects were asked to categorize faces into families based on their similarity
to other members of the families. They assigned different relevance to fea-
tures depending on whether they were told that the faces in comparison were
related as cousins or as brothers. It has been proposed that these differences
are due to background knowledge that is activated by the concepts of cousin
and brother (Lamberts, 1994). What is most relevant for this thesis is that
feature relevance can be rapidly changed by giving additional information.
If subjects are told that a particular feature is relevant for the target cate-
gory, they adjust their similarity assessment immediately by increasing the
influence of that feature (Lamberts & Chong, 1998). This suggests that fea-
ture relevance is not (or at least not only) slowly learned, but can be set by
isolated chunks of knowledge. Furthermore, similarity is not determined by
bottom-up processes, but can also be influenced by top-down processes.
Another phenomenon related to feature relevance is salience. Even if a fea-
ture might be objectively relevant, it is not certain that it will be selected,
unless it is salient. Salience of features for conceptual similarity is regarded to
depend on the activation of knowledge (Medin et al., 1993). It is infeasible to
assume that all knowledge related to an object will be activated for compari-
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son. Instead, only properties that are strongly associated with a stimulus will
be activated upon presentation of the stimulus and will influence similarity.
This introduces a great deal of flexibility and ambiguity into similarity judge-
ments, because background knowledge varies across subjects and knowledge
activation depends on the context. For example, if the similarity of England
and the United States is to be judged, in the context of sport the concepts
soccer, basketball and football might be activated (Medin et al., 1993). In
the context of geography, knowledge about continents might be activated.
Hence, it has to be known in which respects the similarity of objects should
be tested in order to determine which knowledge chunks are activated and
are used as attributes for similarity.

2.3.4 Categorization

Similarity is believed to play an important role in categorization. In fact, the
technical approach of similarity-based classification is based on psychological
models of categorization (Kolodner, 1993; Ross, 1989).
Categories and concepts are essential for cognition, since they allow to gener-
alize over experiences and to infer predictions (Bruner, Goodnow, & Austin,
1956). For example, if an object is categorized as tiger based on its color and
shape, further attributes such as dangerous, carnivorous, and so forth can be
predicted (Lamberts & Chong, 1998).
For a lot of categories no necessary or sufficient conditions can be given
(Rosch & Mervis, 1975). Therefore it was proposed that objects are catego-
rized based on their similarity to prototypes (Rosch & Mervis, 1975) or on
their similarity to other exemplars (Nosofsky, 1990). Even for categories that
can be defined in terms of necessary and sufficient conditions, it might be the
case that humans categorize them similarity-based in daily life. For example,
whales were defined to belong to the category of mammals, whereas people
might classify them as fish because of their shape and living situation.
Although theory-based (rule-based) approaches to categorization have been
proposed due to dissociations between categorization and similarity (see
(Rips, 1989) or (Ahn & Dennis, 2001) for a discussion), we will review only
similarity-based approaches here.
Barsalou (Barsalou, 1989) reports that category representations are unstable.
The representation of the color red varies depending on whether it is used
together with wine, hair, or apple. He explains this by the hypothesis that
category representations consist of an context-independent core, a context-
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dependent part, and a part of recently activated knowledge. Features in the
core are always activated if the category is used. Features in the context-
dependent part are only activated in certain contexts. Finally, some features
are only activated if they were recently used. Thus, the similarity of cate-
gories will vary across contexts and the recent experiences of the subject.
However, the question remains open which features belong into which part
of the category representation (DeJong, 1989).

As noted earlier, a dissociation between categorization and surface similarity
was found by Ahn (Ahn & Dennis, 2001). However, she reported a correlation
between categorization and deep similarity. Apparently, for categorization
other attributes are used than for mere surface comparisons. This is also
supported by findings in analogy (Gentner, 1983).

However, category complexity seems to determine whether classification is
done rule- or similarity-based. Various experiments suggest that similarity-
based classification is only used if the target rule, which separates positive
from negative instances, becomes complex1. Otherwise, rule-based processes
seem to be activated (see (E. E. Smith, Patalano, & Jonides, 1998) for an
overview over such studies). It was also shown that similarity-based classifi-
cation is useful for handling exceptions (Erickson & Kruschke, 1998).

Further psychological research confirmed theoretical hypotheses that similar-
ity cannot be used for extrapolation tasks: Subjects that are instructed to
press a button with a duration proportional to the size of a stimulus, are able
to extrapolate their response to extremely long stimuli that have not been
encountered before (Shanks, 1995). A similarity-based model of classification
cannot account for this phenomenon.

The above findings suggest that the interaction of rule- and similarity-based
processes takes place on a very high level. That is, both processes work in
parallel (Erickson & Kruschke, 1998; E. E. Smith et al., 1998). However, there
is also evidence for interaction on earlier levels. One area of psychological re-
search puts forward the argument that similarity-based classification cannot
be done without rule-based knowledge at all: as mentioned in section 2.3.3
the assessment of similarity is strongly influenced by rule-based knowledge
about feature relations: In experiments conducted by Ahn and Kim (Ahn
et al., 2000), attributes that causally influenced other attributes were more
important in similarity judgements than effect-attributes.

1Complexity of a rule is operationalized as the number of critical attributes that need
to be checked.
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2.4 Computer science in general

Similarity assessment is a common method in computer science. Its use is
most prominent in nearest-neighbour classification (Friedman, 1994), case-
based reasoning (Kolodner, 1993) and information retrieval (Yang, 1999).
Typically, similarity is used in applications for which no perfect domain the-
ory or general knowledge exists (Porter et al., 1990). The assumption in
all similarity-based classification approaches is that the target function is
smooth. That is, similar objects are classified similarly. This assumption is
also used in an attempt to give a semantic to similarity values. The similar-
ity between two objects is in some frameworks seen as probability that the
two objects belong to the same class (Richter, 2003). In other application
areas apart from classification, the similarity measure is an a-priori heuris-
tics about the actual similarity. The latter can only be measured after the
solution has been generated, so that it is an a-posteriori criterion (cf. (Stahl,
2004)).
Several general-purpose similarity measures have been developed. None of
them is optimal in the sense that it performs better than the others in all
domains (Griffiths & Bridge, 1997; Cover & Hart, 1967). Choosing a simi-
larity measure depends on the object representation such as attribute-value
representations, graph representations, predicate logic representations, and
object-oriented representations. For an overview see (Bergmann, 2002). We
will discuss the first two in more detail, since they are commonly used.
Often, distance functions are used instead of similarity measures. However, it
is widely accepted that a similarity measure s can be derived from a distance
measure d via s = 1− d.

2.4.1 Attribute-value representations

The simplest form of representation is the attribute-value representation. An
object is a set of attributes, and each attribute has a type.
For numeric attributes, the most common measure is the Minkowski norm
(here normalized into the interval [0,1], cf. (Bergmann, 2002)):

dMinkowski,p(x, y) =

(

1

n
∗

n
∑

i=1

|xi − yi|
p

)1/p

where x and y are the objects to be compared, n is the number of dimensions,
xi and yi are the values for dimension i of object x and y, respectively. The
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Minkowski norm is a distance metric, that is, it is symmetric, reflexive and
fulfills the triangle inequality. The parameter p can be chosen so that the
metric resembles the City Block Metric (p = 1), Euclidean Distance (p = 2),
or the Maximum norm (p→∞).

For binary attributes, the best known measure is the Hamming Distance. It
measures the distance of two objects based on the number of attributes in
which they differ (Langley & Iba, 1993):

dHamming(x, y) =
1

n
∗ |{i|xi 6= yi}|

Attributes can also be weighted. We will introduce weighting in chapter 3.

Note that the representation methods are not mutually exclusive. The
attribute-value representation can be transformed into an analytical repre-
sentation, i. e. vectors (which will be discussed below), and into a logical
representation as unary predicates (Richter, 1992).

2.4.2 Graph representations

In many domains, objects cannot be represented as consisting of several in-
dependent dimensions. For example, a machine consists of many connected
parts and subparts. Graphs can be used to capture the object’s hierarchical
structure. For example, parts can form the nodes, and the has-part relation-
ship is specified by edges between the nodes.

Assessing the similarity of graphs is computationally expensive (Bergmann,
2002). In the graph matching approaches, determining the largest common
sub-graph is NP-complete (Mehlhorn, 1984).

Where determining the largest common sub-graph has the advantage that
similarity can be defined in a continuous way, checking graph isomorphism
or sub-graph isomorphism yields a binary similarity measure. The former
has a factorial worst-case complexity, the latter is NP-complete (Bergmann,
2002).

Another way to determine graph similarity is graph-editing (Bunke & Mess-
mer, 1994). Reminiscent to the approach of string editing, similarity is de-
termined by the cheapest set of editing operations that need to be performed
in order to transform one graph into the other. The editing operations insert
node, insert edge, delete node, delete edge, change node label, change edge la-
bel have an assigned cost, and the cost of the cheapest sequence of operations
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determines similarity. Also calculating this measure is NP-complete (Bunke
& Messmer, 1994).
Note that the psychological model of Gentner’s structural similarity
(see 2.3.1) is a graph representation.

2.4.3 Token vectors

In Information Retrieval, objects represent text-documents (e. g. (Klinken-
berg, 1998)). They are represented as vectors, where each component specifies
the frequency of a token (i. e. word) in the document. For example, the vector
[4, 0, 1, . . .] means that the first token (e. g. ”house”) appears 4 times in the
document, the second token does not appear at all, the third token appears
once, and so on.
Similarity between documents can be defined as the cosine of the angle be-
tween document vectors in the vector-space (Manning & Schuetze, 1999).
Typically, the components are weighted by the relation between the token’s
frequency in the document and in the whole document collection.

2.5 Case-Based Reasoning

Case-Based Reasoning (CBR) was inspired by human problem-solving and
categorization (Kolodner, 1991). In a way, CBR is the computer science in-
carnation of psychology’s exemplar-theory (Nosofsky, 1990). New problems
are solved by exploiting experience with known problems. That is, a case-
base stores previously seen cases which will be compared to the new problem.
The most similar known case is retrieved from the case-base. The retrieved
solution is then adapted for the new problem.
This paradigm can be used for problem-solving (Wilke & Bergmann, 1998),
diagnosis (Baumeister, Atzmueller, & Puppe, 2002), prediction (Nunez et al.,
2002), and planning (Bergmann et al., 1994; Rodriguez, 2001). In this thesis,
we are particularly concerned with classification, which is a general enough
framework to subsume or at least overlap with diagnosis and prediction.

2.5.1 Strengths of CBR

How does CBR differ from other machine learning methods such as decision
trees, neural networks, and Bayesian learning?
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In its pure form, CBR is an instance of lazy learning (Aha, 1997), which
means that training instances are stored without further analysis. General-
ization and bias are deferred until classification time, making CBR flexible
enough to use the same training instances (cases) for different purposes.
For example, in the Patdex/2 system, attribute weights were dependent on
the class (Janetzko et al., 1992). Further, the generalization and bias can
be adapted for the given query. However, in most systems this flexibility is
traded-off against performance. Similarity is typically determined by a fixed,
optimized measure (Wettschereck, Aha, & Mohri, 1997). So generalization is
not deferred until classification time, but already fixed at design or imple-
mentation time.
Nowadays, CBR systems are typically a combination of eager and lazy learn-
ing. For example, cases can be combined to generalized cases (Bergmann
& Vollrath, 1999), which means that analysis and generalization take place
before classification-time.
To further exploit the advantages of lazy learning, this thesis analyzes how
similarity measures can be adapted to classification goals. We show how
knowledge that is dependent on the classification goal can be incorporated
into similarity measures.
Compared to neural networks and reinforcement learning, CBR performs well
with sparse data and usually needs much less training instances. Furthermore,
CBR is robust against noise, since a noisy case has only a local effect.
Disadvantages of CBR compared to pure eager learning methods are the high
storage requirement and the fact that the generalization takes place at the
query time. Fortunately, improvement of the similarity measure allows one
to reduce the case-base size (Wess & Globig, 1994). Another problem is that
the generalization is performed at classification-time, which is often time-
critical. Thus, the flexibility with respect to classification-goals is traded off
with higher computational effort at classification-time.

2.5.2 The CBR cycle

A widely used framework for describing the CBR cycle has been proposed
by Aamodt and Plaza (1994). It divides the main process into four sub-
processes (the so-called ”four REs”): the retrieval, reuse, revise and retain
processes (see figure 2.2). After presenting a new problem (called the query)
to the system, the retrieval process finds the most similar case from a case-
base. Usually this involves some form of indexing so that not the whole
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Figure 2.2: The CBR cycle as proposed by Aamodt and Plaza (1994).

case-base has to be processed. The reuse process exploits the information
(often called the solution) contained in the retrieved case to solve the query.
In the classification framework reuse is particularly easy as it returns the
class of the retrieved case as the class for the query. In other applications
(e. g. planning or problem-solving) the revise process adapts the old solution
so that it fits to the new problem. Adapting retrieved solutions is often
not trivial and is an active area of research (e. g. (Boerner, 1994; Wilke &
Bergmann, 1996, 1998)). Finally, the retain process determines whether the
query and its solution should be stored into the case-base. This decision takes
into account how costly the adaptation of the solution was and how densely
the case-base is populated in the neighborhood of the query. In the retain
phase, additional learning mechanisms can be used (see (Stahl, 2004) for an
overview).

In this thesis we focus exclusively on the retrieval process, because it makes
use of similarity measures to determine the most similar case for a query.
Reuse and revise methods are mostly trivial for classification. Thus, the re-
trieval process is the main concern for classification with CBR. Indexing
techniques can be used to speed up retrieval but are also not in the scope of
this thesis.
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2.5.3 Knowledge containers

A complementary view to Aamodt and Plaza’s framework is the knowledge
container approach by Richter (Richter, 1995). In this approach, the similar-
ity measure, the case-base, the vocabulary of the case-representation, and the
adaptation methods are seen as knowledge. In order to implement a CBR sys-
tem, each of the four knowledge containers has to be filled at least minimally.
The knowledge can be shifted from one container into any other (Wess &
Globig, 1994). For example, if all knowledge is moved into the case-base con-
tainer, so that the case-base (theoretically) contains all possible cases, then
the similarity measure can be simplified to the identity operator (Richter,
1992).

Moving knowledge from the similarity measure to the case-base has no effect
on the classification for a given classification goal (Richter & Althoff, 1999).
For example, a rule like x < 30 can be integrated into the similarity measure
by making instances more similar that both satisfy or both do not satisfy
the rule. But it can also be incorporated into the case-base by removing all
cases that do not satisfy it. We argue that removing cases contradicts lazy
learning, since it performs eager generalization. Instead, we propose to move
as much knowledge as possible into the similarity measure in order to increase
flexibility. This way, the system keeps all cases in the case-base and can adapt
the similarity measure if a new classification goal is used, or if the domain
knowledge is updated. This is particularly useful if there is no overabundance
of data (as for example in our evaluation domain of opponent modelling).

When designing and implementing a CBR system, domain experts are con-
sulted in order to acquire the knowledge necessary to fill the knowledge con-
tainers. For example, if the CBR system will be used for diagnosing machine
faults, the domain experts are interviewed about the attributes that are con-
tained in a fault report (e. g. the temperature of and the pressure in the
machine) and their value range.

These attributes are part of the vocabulary container, just as their value
range or even taxonomies. The vocabulary defines which information of the
domain is important. In this sense, the vocabulary is the basis or language
to describe the knowledge in the other containers. Defining the vocabulary
is a crucial task when building a CBR system.

The experts might also specify how similarity between fault reports should
be calculated. Although it is not common to interview experts for concrete
attribute weights, they might be asked which of the attributes are particularly
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important. In many systems a lot of knowledge is needed for the adaptation
of the retrieved solutions (e. g. (Bergmann & Wilke, 1998)). Since the CBR
system designers are rarely experts in the domain, adaptation rules have to
be provided by domain experts.

The knowledge container approach is particularly interesting for this thesis,
because it shows that similarity measures are a form of knowledge and can
be extended with additional knowledge. Furthermore, domain experts are
in the loop anyway. Thus, it is reasonable to assume that some knowledge
exists even in domains where no perfect domain theories are available. It is
promising to analyze how partial, inaccurate or even inconsistent knowledge
can be exploited in similarity measures.

2.5.4 Incorporating knowledge into CBR

The idea of interfacing CBR with background knowledge is not new. Much
effort has been done to use domain knowledge for adapting retrieved solutions
(e. g. (Bergmann & Wilke, 1998; Bergmann, Wilke, Vollrath, & Wess, 1996;
Wilke & Bergmann, 1996)). We will not discuss those but focus on approaches
that deal with similarity measures.

The motivation for enhancing similarity assessment with domain theories is
the following: While cases are usually represented in a case language which
specifies superficial and intrinsic attributes, generalization needs more than
such superficial attributes in most domains (Porter et al., 1990). Abstract
attributes are needed to generalize in terms of functions, roles, and relations.
Such abstract attributes are defined in domain theories.

Explanation-based CBR (EBCBR) uses inference rules to create so-called
explanations describing why a solution is appropriate for a given case
(Bergmann et al., 1994; Cain et al., 1991). If an attribute was not used in
the explanation, it is regarded as irrelevant and ignored in future similarity
assessment. Thus, the motivation is to filter irrelevant attributes, whereas in
our approach the aim is to find additional attributes that help to approximate
the utility of solutions via similarity.

Another branch of EBCBR uses explanations to ”explain away” differences
that are either irrelevant or only of a syntactical rather than semantical na-
ture (Aamodt, 1994). Similarly, while not regarded as EBCBR, the famous
PROTOS system (Porter et al., 1990) uses domain-knowledge for matching
syntactically different features, too. The main difference to our approach is



41

buildingtypes

auxiliary buildings main buildings

garage shed house skyscraper

Figure 2.3: A simple concept hierarchy.

that those methods process only attributes that are already explicitly repre-
sented in the cases.

Adding abstract attributes to the similarity measure is similar to completion
rules, which are often used in diagnosis tasks (Wilke & Bergmann, 1996).
As the name suggests, completion rules calculate abstract attributes on the
basis of other attributes. They are a general means to integrate rule-based
domain knowledge.

Several types of knowledge are used in (Rodriguez, 2001). The similarity
measure is influenced by a concept hierarchy and a network of causal rela-
tions. The closer two concepts (i. e. values of a nominal attribute) are in the
concept hierarchy, the higher their similarity. For example, assume a case
has a discrete nominal attribute buildingtype (see figure 2.3). If the values
garage and shed are under the same father concept auxiliary building, which
does not subsume skyscraper, then garage is more similar to shed than to
skyscraper. Moreover, if two concepts stand in a causal relationship or have
identical effects according to the causal network, their similarity increases.

Formerly, it was proposed that rules can be used for CBR only in two ways,
namely for ”term reformulation” and ”case elaboration” (Branting & Porter,
1991). The former replaces an open-textured term by one or more terms that
are less open-textured. Case elaboration on the other hand infers features that
are only directly specified in one case, but not in the other, or that subsume
mismatching features. In our hierarchy of knowledge types (see chapter 4)
these two ways are subsumed under the same type, namely matching knowl-
edge. Since they cope only with matching, they are limited to features that
are already in at least one of the cases. This is of no use in homogenous case
representations, e. g. in chess board configurations or simulated soccer situ-
ations, where all cases are represented with the same fixed set of attributes
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(Steffens, 2004a).
Besides the afore-mentioned approaches that deal with individual types of
knowledge explicitly, use of domain knowledge in recent CBR systems typ-
cially takes place in an ad-hoc and application-specific way (Aamodt, 2001)
(refer to the INRECA-II methodology (Bergmann, Breen, Goeker, Mana-
gao, & Wess, 1999) for a first step towards a general framework for defining
knowledge-rich similarity measures, though).
Obviously, traditional use of domain theories in CBR misses the possibil-
ity to infer attributes that are explicit in none of the cases. Constructive
induction (CI) was concerned with changing instance representations by cre-
ating informative features or transforming existing predicates (e. g. (Fu &
Buchanan, 1985; Matheus, 1991; Rendell, 1989; Gunsch & Rendell, 1991)).
While the idea is closely related to our thesis, the focus is different. CI was
mainly concerned with rule-based induction (see (Aha, 1991b) for an excep-
tion), while in our work we examine how similarity-based classification can
be supported. Furthermore, we take a top-down perspective, while CI is a
bottom-up approach.
All of these CBR approaches that incorporate knowledge used structured
representations. In this thesis we show that domain knowledge can also be
exploited if the cases are represented as attribute-value lists.

2.5.5 Knowledge Acquisition

Research on knowledge acquisition in general is mainly concerned with spec-
ifying and sharing ontologies. The notion of ”ontology” is not clearly defined,
though. Interpretations range from a system that contains the vocabulary of
a logical system to a full semantical account of a domain (refer to (Guarino
& Giaretta, 1995) for an overview).
An ontology is different from a domain theory, since the former is an abstrac-
tion of the latter. That is, an ontology can refer to several different domain
theories. The ontology provides a viewpoint on a domain theory which can
be parameterized (Schreiber, Wielinga, & Jansweijer, 1995). For example,
the exact values in the domain theory can be adjusted by its father ontology.
Knowledge acquisition in CBR views a CBR system on the knowledge level
(Aamodt, 2001), an abstract level which describes the goal and purpose of
the system, and the tasks that have to be performed. The following three
types of knowledge are proposed: task knowledge, method knowledge, and
domain knowledge. The task knowledge defines a hierarchy of tasks and sub-
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tasks (Motta, Fensel, Gaspari, & Benjamins, 1999). For instance, the task
”diagnose car” can be decomposed into ”observe symptoms”, ”decide tests”,
”perform tests”, and ”identify likely faults” (Aamodt, 2001). Method knowl-
edge then describes how these tasks can be executed. The methods use do-
main knowledge in order to solve the tasks. Such domain knowledge has been
proposed to contain facts, heuristics, causal relationships, and specific cases.

In contrast to this thesis, knowledge acquisition for CBR systems does not
acquire domain knowledge to be used in similarity measures. Instead, domain
knowledge is used mainly for adaptation, the vocabulary, and to capture cases
(Leake & Wilson, 1999).

In its beginning, CBR was considered a knowledge-light approach (Wilke,
Vollrath, Althoff, & Bergmann, 1997). Nowadays there is the branch of
knowledge-intensive CBR (Diaz-Agudo & Gonzalez-Calero, 2001), which ac-
knowledges the importance of domain knowledge. Here knowledge acquisition
plays a role. Yet, knowledge acquisition in CBR is different from knowledge
acquisition in general. A major research area of the former is to acquire cases
(Strube, Enzinger, Janetzko, & Knauff, 1995) and to reuse components of im-
plemented CBR systems. The work in this thesis may be regarded as a first
step to bridge knowledge acquisition in general with knowledge acquisition
in CBR.

There exist advanced tools for knowledge management for CBR designers,
such as CBR-Works (Bergmann, Breen, et al., 1999) and CBROnto (Diaz-
Agudo & Gonzalez-Calero, 2001) which integrates ontologies and CBR. It
allows the designer to incorporate knowledge into the case representation by
suggesting commonly used descriptors like has-part, has-precondition, has-
effect depending on the application such as planning, diagnosis, or prediction.
The retrieval process can be guided by selecting one of the standard simi-
larity measures for attributes depending on their type. CBROnto provides
some domain-independent operators for solution adaptation (such as delete
part or insert part) and tries to learn domain-specific adaptations from the
adaptations that the domain experts execute during the training phase.

In this thesis, we represent knowledge more in the spirit of general knowledge
acquisition (as opposed to knowledge acquisition in CBR). Domain knowl-
edge is specified by domain theories. Our definition of domain theory is based
on logical Horn clauses and is given in chapter 3.
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2.6 Conclusions and Motivations

In this chapter we have given an overview over research on similarity in
subdisciplines of cognitive science. To conclude, we summarize the aspects
that are most relevant for this thesis.
A major insight is that similarity is not an absolute notion. Instead, the
respects in that objects are similar need to be specified. In humans, these
respects are systematically fixed by the context, task, and classification goal.
This systematic fixing also means that respects can be flexibly adapted to
the classification needs. We take this as motivation to make similarity mea-
sures dynamically adaptable to the classification goal and show where this
flexibility is beneficial.
There is overwhelming evidence that humans use knowledge to guide simi-
larity assessment. Similarity is both a bottom-up and a top-down process,
influenced by knowledge. This is in stark contrast to the use of ”knowledge-
light” similarity in computer science. Humans use deep attributes that are
activated by background knowledge. This way, they are able to compare and
categorize objects in more meaningful ways than just superficial attributes.
A large part of this thesis deals with how to incorporate such deep attributes
as additional attributes into similarity measures.
But humans do not only use knowledge for constructing features, they also
use it for determining the relevance of features. For example, causal relation-
ships boost cause attributes over effect attributes. This works even if humans
have available only isolated chunks of knowledge. Thus, we will take into ac-
count that domain knowledge can be useful for similarity-based classification
even if it is imperfect.
We have also discussed various object representations in psychological and
computational models. For our approach we adopt the attribute-value rep-
resentation since it is general enough for many CBR applications, and par-
ticularly well-suited for our evaluation application of opponent modelling
in multi-agent systems as we have shown in (Steffens, 2004a, 2005d) (also
cf. (Ahmadi, Keighobadi-Lamjiri, Nevisi, Habibi, & Badie, 2003; Wendler,
2004)).
The main approaches to psychological similarity (geometric, set-theoretic and
structural) neglect the issue of finding relevant properties and weights (Hahn
& Chater, 1998). This thesis proposes that this can (only) be done by using
background knowledge in form of rules and provides a first computational
model.
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Finally, Hahn states that researching the influence of different types of knowl-
edge on similarity remains an important open question (Hahn & Chater,
1998). We also tackle this question and provide a hierarchy of knowledge
types and show how they can be used for technical similarity measures.
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Chapter 3

Definitions: Cases, Similarity
Measures, Domain Theories

In this chapter we define the basic concepts that are used in our approach,
such as attributes, cases, domain knowledge and similarity measures.

3.1 Attributes and Cases

Informally, ”an attribute, in brief, is any discriminable feature of an event
that is susceptible of some discriminable variation from event to event.”
(Bruner et al., 1956) (p. 26). Formally, we define:

Definition 3.1.1. A set A = {a1, a2, . . . , an} is an attribute. The ai are
called attribute values.

Definition 3.1.2. An attribute A is nominal iff |A| is finite. Among the
attributes with |A| = ∞, we call an attribute numerical, iff it is an interval
[a, b] with a, b ∈ R.

Definition 3.1.3. The range of a numerical attribute A is range(A) =
(arg maxx x ∈ A)− (arg miny y ∈ A).

We assume that for all attributes range(A) 6=∞.

Definition 3.1.4. An attribute set A is a set of attributes {A1, A2, . . . , An}.

Definition 3.1.5. The universe U(A) over the attribute set A =
{A1, A2, . . . , An} is U(A) = A1 × A2 × . . . × An in an arbitrary but fixed
order.

47
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Definition 3.1.6. A predicate f : Um → A is a classification iff m = 1, f is
defined on the whole U , and A is a nominal attribute. If furthermore |A| = 2,
we call the class binary.

That is, a classification yields a (complete and disjunct) partition of the
universe of instances. We do not treat graded class membership.
Note that the mathematical notion of a relation arises if m > 1 and |A| = 2.
In the remainder we will sometimes refer to binary classes as concepts.

Definition 3.1.7. A case or instance c ∈ U(A) with |A| = n is an n-tuple of
attribute values (v1, v2, . . . , vn), where vi ∈ Ai and Ai ∈ A. We call Ai(c) = vi

the case’s value for Ai.

In other words, we assume homogenous cases, that is, all cases have the same
attributes. Furthermore, we assume that there are no missing values (except
the target class). This is for example different from CBR work in diagnosis
(Baumeister et al., 2002) or medicine (Porter et al., 1990).
When designing a CBR system, the representation (i. e. the choice of at-
tributes) should be classification distinguishable. That is, two cases whose
classes are different need to be distinguishable. Note that this assumption
is hard to guarantee in practical realistic implementations where no perfect
domain models exist. Thus, there is a trade-off between including enough at-
tributes to be classification distinguishable and avoiding irrelevant attributes.
Note that A(c) for a nominal attribute A is also a class, and for a numerical
attribute A(c) is a function.

Definition 3.1.8. Given a universe U(A) with A = {A1, A2, . . . , An}, an
n − 1-tuple q = (a1, a2, . . . , at−1, at+1, . . . , an) with ai ∈ Ai and 0 ≤ t ≤ n is
a query. At ∈ A is called the target attribute.

A query is a case for which the target attribute is not known. Regarding the
target attribute, in traditional CBR cases are often treated as pairs (d, l),
where d is an element of the so-called description space and l an element
of the lesson- or solution-space (Bergmann, 2002). Target attributes are el-
ements of the lesson-space. In our approach, there is no such dichotomy
between description- and lesson-space, because it would contradict the prin-
ciple of lazy learning that cases are stored without further analysis. The
target attribute is determined at classification time by providing a query. In
other words, one attribute of a query is not known and has to be predicted
from the other attributes.
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A1

A2 -     -      +
-      +    +

- -   - +
-  -    +  +

Figure 3.1: A universe spanned by the attributes A1 and A2, and cases from a
case-base. + denotes cases that are members of the target class, and - denotes
non-members.

In this thesis, the target attribute At is always nominal, since we treat clas-
sification. But similarity-based techniques are also applicable for regression,
which assumes numerical target functions (Atkeson, Moore, & Schaal, 1997).
A case-base I is a set of cases, that is I ⊂ U(A).
A case-base for a two-dimensional universe is depicted in figure 3.1.

3.2 Similarity

The proposed methods for incorporating knowledge do not rely on similarity
measures that are based on a particular form of distance function (such as
Manhattan distance), but are general enough to work with most similarity
measures, no matter what distance function they use. However, for consis-
tency throughout the chapters, our experiments and analyses were done with
a particular similarity measure. This also means that we do not cope with
knowledge about which measure to choose. This question, like the question
of the distribution of values, has been worked on in the statistical literature
(see (Atkeson et al., 1997) for references).

Definition 3.2.1. A case c′ ∈ U(A′) with A
′ =

{A1, A2, . . . , At−1, At+1, . . . , Am} is a projection of case c ∈ U(A) with
A

′ = {A1, A2, . . . , Am}, iff |A′| = |A| − 1, A
′ ⊂ A, and Ai(c

′) = Ai(c) for
1 ≤ i ≤ m, i 6= t.

In the remainder, we will often not distinguish between cases and their pro-
jections, as the projection can be easily performed and the context should
make it clear which one is meant.
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Definition 3.2.2. A local similarity function di(cn, cm) with 0 ≤ i ≤ |A′| is
defined as U(A′)× U(A′)→ [0, 1].
In particular,
if |Ai| 6=∞,

di(cn, cm) =

{

1 : iff Ai(cn) = Ai(cm)
0 : else

(which is the dual to the Hamming distance).
If |Ai| =∞,

di(cn, cm) = 1−

(

|Ai(cn)− Ai(cm)|

range(Ai)

)2

Note that one of the cases will usually be a query and the other one a pro-
jected case from the case-base.
A local similarity function calculates the similarity of two cases on one
attribute. We handle nominal attributes (i. e., attributes with a finite do-
main) only via identity. In some other works, nominal values can be or-
dered (e. g. (Surma, 1994)). Then the similarity between different pairs of
nominal attribute values can be different, so that for example pink can
be more similar to red than to green (assuming that there is an attribute
A = {pink, red, green}). In contrast, according to our definition, comparing
pink to red yields a similarity of 0, just as comparing pink to green.

Definition 3.2.3. A similarity measure s(cn, cm) is defined as U(A′) ×
U(A′)→ [0, 1],

s(cn, cm) =

√

√

√

√

1

m
·

m
∑

i=1

(wi · di(cn, cm))

where cn, cm ∈ U(A′), m = |A′| and 0 ≤ wi ≤ 1,
∑

wi = 1. The wi are called
weights.

The similarity measure is a weighted sum of the local similarity functions,
excluding the target attribute. For numerical attributes, the similarity mea-
sure is equivalent to the Weighted Euclidean Metric (cf. (Bergmann, 2002))
due to our definition of local similarity for numerical attributes.

Definition 3.2.4. A similarity measure is called reflexive, iff ∀c : s(c, c) = 1.



51

Definition 3.2.5. A similarity measure is called symmetric, iff ∀c1, c2 :
s(c1, c2) = s(c2, c1).

Although the general form of our similarity measure is symmetric, in later
chapters we will also consider measures that are not symmetric due to con-
textual attributes that depend on the query.

Definition 3.2.6. A similarity measure satisfies the triangle inequality, iff
∀c1, c2, c3 : s(c1, c2) + s(c2, c3) ≤ 1 + sim(c1, c3).

If we describe similarity in form of distance (i. e., d(c1, c2) = 1−s(c1, c2)), the
triangle inequality has the more commonly used form: d(c1, c2) + d(c2, c3) ≥
d(c1, c3).
The perfect similarity measure with respect to target attribute At would be
sim(c1, c2) = 1 iff At(c1) = At(c2).

3.3 Classification

3.3.1 The classifier

A classifier’s purpose is to predict the class of a query c. In other words, a
classifier predicts the unknown value At(c) ∈ At for a query c. In CBR and
k-nearest neighbor it is assumed that all misclassifications have equal cost
(Wettschereck et al., 1997).
Remember that we will often not distinguish between cases and their pro-
jections, as the projection can be easily performed and the context should
make it clear which one is meant.

Definition 3.3.1. Q(c1, s, I) is a candidate set of query c1 with a similarity
measure s on a case-base I, where Q(c1, s, I) ⊂ I. The elements in Q(c1, s, I),
called candidates, satisfy the condition ∀c2 : (c2 ∈ Q(c1, s, I) → c2 6= c1 ∧
¬∃c3 ∈ I : s(c1, c3) > s(c1, c2)).

That is, the candidate set for case c1 contains those cases from the case-base
I that are most similar to c1.

Definition 3.3.2. T (c1, s, I) → At ∪ {ambigue} is a classification of query
c1 ∈ U(A′) with a similarity measure s on a case-base I ⊂ U(A) with respect
to the target attribute At with A = A

′ ∪ {At}. T (c1, s, I) yields ambigue, iff
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∃c2, c3 ∈ Q(c1, s, I) : At(c2) 6= At(c3), and yields ai ∈ At, iff ∀c2 ∈ Q(c1, s, I) :
At(c2) = ai.
A classification is called correct with respect to class f , iff T (c1, s, I) = f(c1),
and wrong otherwise.

A classification is ambigue if the classification candidates have different values
for the target attribute. If all classification candidates (often there is only
one) have the same value for the target attribute, that value is returned to
be the classification for the query. If this value is the same that the to be
approximated class returns, the classification is correct.

3.3.2 Generalization bias

The definition of similarity for nominal and numerical attributes has of course
consequences for classification.
For nominal attributes the classification bias is that instances on the same
axis-parallel hyper-planes are with a high probability in the same class. The
more hyper-planes are shared, the higher the probability.
For numerical attributes the classification bias is that the closer (as defined by
the similarity measure) instances are in the instance-space, the more probable
is that they belong to the same class.

3.4 Ontological/epistemological considera-

tions about domain theories

Just as we assume that the cases in our universe U(A) are assumed to reflect
objects in the real world, and that the attribute set A can approximate
the objects’ real-world properties, we assume that we can approximate the
structure and regularities of the target class f . If f is defined randomly and
without structure, it can hardly be represented in any approach. Thus, our
assumption is that there is some structure in terms of causal relations and
correlations between properties. We call this knowledge about the structure
of the target function domain knowledge. Domain knowledge does not refer
to specific instances or cases, but rather to attributes and their relations.
The real world’s structure can in general only approximately be described
by a formal language (see figure 3.2). However, to specify domain knowledge
we need another specification language apart from the case representation
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domain theory
x+y=z
0<z<10

application
domain

Interpretation
context

Figure 3.2: A domain theory is connected to the application domain via an
interpretation context. Only parts of the domain can be modelled by the
theory. Adapted from Schreiber, Wielinga and Jansweijer (1995).

language. As noted in (Schreiber et al., 1995), such a language can be seen
as a certain view on the world. The properties of the real world are interpreted
by terms of the formal language.
For the domain knowledge language, one has to commit oneself to some
ontological assumptions. For example, in the language that we use in this
thesis, the difference between causality and inference is lost. The next section
defines the formal language for domain knowledge.

3.5 Definition of the domain theory language

Definition 3.5.1. A is an intermediate in the universe U(A), if A is an
attribute and A /∈ A.

Intermediate concepts are predicates that are used in the domain theory and
are not used to represent the cases in the case-base. If we write attribute in
the following, it may either be a case attribute or an intermediate.

Definition 3.5.2. A(c) is an arithmetic term if A is a numerical attribute
and c ∈ U(A).
r is an arithmetic term if r ∈ R.
If α and β are arithmetic terms, then (α+ β) is also an arithmetic term.
If α and β are arithmetic terms, then (α− β) is also an arithmetic term.
If α and β are arithmetic terms, then (α/β) is also an arithmetic term.
If α and β are arithmetic terms, then (α · β) is also an arithmetic term.
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If α and β are arithmetic terms, then (αβ) is also an arithmetic term.

For sake of readability we will avoid brackets if no ambiguity is introduced
by doing so.

A formula is an expression that can be assigned a truth-value:

Definition 3.5.3. If f is a concept, then f(c) is a formula.

(t1 OP t2) is a formula, if t1 and t2 are arithmetic terms, and OP ∈ {<,>
,<=, >=,=, 6=}.

(A(c) = a) is a formula, if A is a nominal attribute, c ∈ U(A) and a ∈ A.

(φ1 ∧ φ2) is a formula, if φ1, φ2 are formulas.

(φ1 ∨ φ2) is a formula, if φ1, φ2 are formulas.

(¬φ) is a formula, if φ is a formula.

If |A| = 2, we call A a binary attribute. For brevity, we will often use A as a
proposition in rules, assuming without loss of generality that one of the two
values is treated as ”true” and the other as ”false”.

Definition 3.5.4. A rule ρ is either a function of the form ρ : f(c) = α,
where f is a function, c ∈ U(A), and α is an arithmetic term, or a concept
of the form ρ : f(c)← φ, where f is a concept, c ∈ U(A), and φ is a formula.

head(ρ) = f is also called the head of a rule.

Note that rules are unary but can have n-ary relations in their body.

Let us consider an illustrating example in the domain of mushrooms. As-
sume that the cases in the case-base represent mushrooms that are mem-
bers or non-members of the class chanterelle. Assume that they are rep-
resented by a simple set of attributes {height, capThickness, color}. Let
height be numerical in the interval [0.5,20], capThickness numerical in the
interval [0.1,2], and color be nominal with the domain {white, red, yellow}.
A case could look like (10, 1.2, yellow). An example for a function rule is
stemHeight(c) = height(c)−capThickness(c). A concept rule could look like
Lachnocladiaceae(c) ← ((height(c)/stemHeight(c)) > 100) ∧ (color(c) =
yellow).

Definition 3.5.5. A theory Ψ is a set of rules.

C(Ψ) ⊂ Ψ denotes the set of concept rules in Ψ and F (Ψ) ⊂ Ψ denotes the
set of function rules in Ψ.
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It is possible that the structure in the real world cannot be captured by a the-
ory of that type. However, in order to have tractable theories we committed
ourselves to the language specified here.
In principle it is possible that the knowledge is not formulated in several infer-
ence rules (in the form of a tree) but in one long rule using discjunctions and
conjunctions. In such a case, strictly speaking there are no intermediates. To
remedy this problem, there exist feature construction approaches that mod-
ify and transform domain theories (Fawcett & Utgoff, 1992). For example,
conjunctions might be candidates for intermediates and can be moved into a
new rule. This is especially sensible if a conjunction appears more than once
in the rule. However, such situations should be rare, since domain experts
(or people who would be able to give a long specification of a concept) are
known to have well structured domain-knowledge (Medin et al., 1993). So,
in short, we assume a domain theory in conjunctive normal form that can be
viewed as a tree.

Definition 3.5.6. The intermediates of a theory Ψ are denoted by Int(Ψ).

Given a rule ρ in a theory Ψ, head(ρ) is an element of Int(Ψ).
In the literature on domain theories, case attributes are referred to as ob-
servables (Mooney & Ourston, 1991), intermediates as intermediate concepts,
and the target attribute as classification goal. When the domain theory is
depicted as a tree (see Fig. 3.3), the observables are located at the bottom,
the classification goal at the top, and the intermediates are in between.
The language here has no capabilities to talk about individual objects or
cases. Instead, it is attributes and their relations that are specified. This is due
to our motivation to incorporate general domain knowledge into similarity
measures. ”General” means that the knowledge is not specific to individual
cases but about attributes.

Definition 3.5.7. The direct conditions cond(ρ) of a concept rule ρ : f(c)←
φ are those attributes that appear in φ.
The direct conditions cond(ρ) of a function rule ρ : f(c) = α are those
attributes that appear in α.
An attribute Ai is in the transitive conditions cont,Ψ(ρ) of a rule ρ with respect
to a theory Ψ, if (Ai ∈ cond(ρ)) ∨ (Ak = head(ρ2) ∧ Ai ∈ cond(ρ2) ∧ (Ak ∈
cond(ρ) ∨ Ak ∈ cont,Ψ(ρ))).

Obviously, cond(ρ) ⊆ cont,Ψ(ρ). In the mushroom example above, the di-
rect conditions of Lachnocladiaceae are {height, stemHeight, color} and the



56 Enhancing Similarity Measures with Background Knowledge

Jobless ItemGender

Married Problema-
tic region

Age

Bank
deposit

Monthly
Payment

Number
Months

Company
Years

Jobless male
Jobless unmarried
Female

Unmatch
Female

Discredit
Bad region

Rejected age
Unstable work

Ok_credit

Promoter

Contact Conformation

Minus10 Minus35

Sequence Positions

Bad_credit

Figure 3.3: Domain theories of two domains. Nodes denote attributes, arcs
denote that the more general attribute is defined in terms of the less general
attributes.
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Figure 3.4: Properties of domain theories. The theories describe parts of the
target concept, of which there are positive (+) and negative (-) instances.
Left: Partial knowledge, only parts of the concept boundaries are known.
Middle: Vague knowledge, concept boundaries are believed to be somewhere
within the shaded areas. Right: Inconsistent knowledge, different rules make
differing predictions.

transitive conditions are {height, stemHeight, color, capThickness}.

3.5.1 Informal description of imperfectness

As motivated in section 2.5.5 knowledge about a domain is typically imper-
fect. There exist at least the following types of imperfectness (see Figure 3.4)
which we have already described informally in (Steffens, 2004b):

• Partialness: This is the case if some parts of the domain are not mod-
elled. Examples:

– Conditions are used but not defined. In figure 3.3 this would be
the case for the attribute jobless male, if the arcs between this
node and jobless and/or gender were removed.

– The relation of intermediates or directly represented case at-
tributes (observables) to the classification goal (target attribute)
is not known. In figure 3.3 this would be the case for the attribute
contact, if the arc between this node and Promoter was removed.

– The classification goal (target attribute) does not exist in the rule-
base at all. For example, if the node Promoter and the correspond-
ing arcs were removed in figure 3.3, there would be no information
on how the observables and intermediates were related to the clas-
sification goal.
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These situations correspond to gaps at the ”top” or ”bottom” of the
domain theory (Mooney & Ourston, 1991).

Partial knowledge does not always mean that the knowledge is incom-
plete for use. For example, if you know that a certain action is optimal
in a situation, it is not necessary to know the detailed effects of another
action in that situation. Hence, if we talk of partial knowledge in the
following, we mean ”partial wrt. to the task”.

In machine learning, work on partial domain theories usually deals
with the task to complete the theory by means of induction from ex-
perimental evidence (e. g. (Bergadano & Giordana, 1998)). However, in
this thesis, we do not try to complete the theory, but take it as it is.

• Vagueness and resulting inaccuracy: This is the case if values can only
be given within a certain confidence interval. In domains with vague
knowledge, classifications do not follow with logical strictness, but can
only be tentative. Rules may be about correlations or use confidence
factors. Vagueness of knowledge can for example be represented as a
mean with a confidence threshold. The correct value is within this
threshold with a certain percentage, say 95%. Such a representation
cannot be used in a straight-forward way in a similarity measure. Thus,
we handle vagueness in the following way: We assume a single value is
selected (for example, the mean or the one with the highest probability
of being correct). Then this value is used throughout the similarity cal-
culation. This reflects the fact that vague knowledge typically results in
the adoption of inaccuracies. In our experiments and formal analysis we
investigate the impact of the degree of inaccuracy on the classification
accuracy.

• Inconsistency/Alternative theories: In many science domains there ex-
ist alternative theories which make different predictions and it is not
known which theory is correct. This is typically reflected on the level
of rules, where different definitions for the same intermediate exist. Of-
ten this is handled as disjunction in a single theory so that it is not
obvious whether a class is disjunctive or has alternative theories (e. g.
the Promoter Gene domain in the UCI Machine Learning Repository
(Blake & Merz, 1998)). CBR is often used to overcome this problem,
because the cases provide knowledge which classification is correct for
individual cases.
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Although we will show later how imperfect domain theories can be exploited
for similarity-based classification, there are extreme domain theories that are
not suitable for our approach at all. Since our approach processes cases, do-
main knowledge is only useful if it can be related to the exemplars. Thus, if
the domain theory has so many gaps at the bottom that no intermediate or
target attribute can be related to the case attributes, the theory is useless.
Also, if the attributes in the theory are named differently than the corre-
sponding attributes in the cases, the theory cannot be used at all. Note that
we are aware of the possibility to use a bridging language between the case
attributes and the theory attributes. But we view such a bridging language
as part of the domain knowledge, and thus as part of the domain theory.
While extensive gaps at the bottom of domain theories are disadvantageous,
gaps in the top of domain theories can be treated more easily. Since gaps of
the latter type mean that the relevance of an attribute to the classification
goal is not known, such gaps can be bridged by weight learning methods. We
will treat such methods in a later chapter.
In the next section we give formal definitions for types of theory imperfect-
ness.

3.5.2 Definition of imperfectness

Partialness:

Definition 3.5.8. A rule ρ is syntactically partial (we write
partialsyn,A,Ψ(ρ)) with respect to a set of attributes A and a theory Ψ, iff
∃A : A ∈ cont,Ψ(ρ)∧A /∈ A∧(¬∃ρ2 ∈ Ψ : head(ρ2) = A∧¬partialsyn,A,Ψ(ρ2)).

This means that a rule is syntactically partial, if there is an attribute in
its transitive conditions that is neither an observable, nor defined by a non-
partial rule.

Definition 3.5.9. A theory Ψ is semantically partial iff there exists A1, A2 ∈
Int(Ψ) ∪ A so that in the real world there is a dependency between A1 and
A2, and A2 /∈ cont,Ψ(A1) and A1 /∈ cont,Ψ(A2).

Definition 3.5.10. A theory Ψ is partial if it contains at least one syntac-
tically or semantically partial rule or if At /∈ Int(Ψ).

We have two syntactic ways of checking whether a theory is partial. If a rule
uses undefined conditions or if the classification goal is not contained in the
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theory, it is partial. There is also a semantic way: If the theory does not
specify a dependency which exists in reality, then the theory is partial.
This of course raises the question about dependencies that are stated in the
theory but do not exist in the real world. We subsume this by the defi-
nition of inaccuracy. Superfluous dependencies is the problem of irrelevant
attributes which is handled by weight learning (see chapter 6). Superfluous
dependencies are easier to fix than missing dependencies. This is intuitively
clear, since filtering an irrelevant attribute by setting its weight to 0 is easier
than reasoning about an attribute that does not exist in the representation.

Inaccuracy:

Definition 3.5.11. A rule ρ is incorrect iff ∃c ∈ U(A)∧A = head(ρ)∧A(c) 6=
ρ(c).

Informally, if a rule predicts a wrong value for a case, then it is incorrect.

Definition 3.5.12. A rule is inaccurate if it is incorrect and not partial.

In other words, an inaccurate rule contains (different from partial rules) at
least the correct attributes in its condition, but is incorrect in the constants
or operators or contains too many attributes. For example, if the real world
is best approximated by the rule f(c) = A1(c) · 3 +A2(c), an inaccurate rule
would be f ′(c) = A1(c)/A2(c), because both rules use the attributes A1, A2.
As discussed above, we do not treat rules that have associated confidence
factors or rules that use values with a confidence interval.

Definition 3.5.13. A theory is inaccurate if it contains at least one inaccu-
rate rule.

Inconsistency:

Definition 3.5.14. A theory Ψ is inconsistent, if ∃ρ1, ρ2 ∈ C(Ψ) :
head(ρ1) = head(ρ2) ∧ ∃c ∈ U(A) : ¬(ρ1(c) ↔ ρ2(c)), or ∃ρ1, ρ2 ∈ F (Ψ) :
head(ρ1) = head(ρ2) ∧ ∃c ∈ U(A) : ρ1(c) 6= ρ2(c).

In short, a theory is inconsistent if there are two or more rules that predict
different values for the same attribute.



Chapter 4

Types of knowledge

Again within the field of
judgement itself we find
varieties, knowledge, opinion,
prudence, and their opposites;
of the differences between these
I must speak elsewhere.

Aristotle, On the Soul, Part III

4.1 Introduction

In this chapter we introduce and define several types of knowledge that can be
incorporated into similarity measures. Some of these types were used under
different names in psychology, artificial intelligence and cognitive science for
different reasoning methods. We show how they can be used in similarity-
based classification. Furthermore, we arrange them into a hierarchy and show
parallels between knowledge types that previously were studied in isolation.

Our grouping of knowledge types is different from previous work. Other typifi-
cations of knowledge in CBR are based on the size, strength, or environmental
dependency (Althoff & Aamodt, 1996).

The types of knowledge that can be represented are of course constrained by
the domain theory language specified in section 3.5. Still, the language proves
to be general enough in order to represent a variety of knowledge types.

61
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We do not treat frames, scripts, extended logics or other classical knowledge
representation methods, because the main focus of this thesis is to show that
even for attribute-value representations domain knowledge can be useful.
Classical knowledge representation methods require more structured data.
Neither do we group the knowledge types by epistemological principles. In-
stead, our analysis comes from the direction to examine similarity to find
out which sorts of knowledge are useful for similarity-based classification. In
other words, we group knowledge types from the perspective how they can
be incorporated into similarity measures. This can lead to new strategies
about how to interview domain experts during knowledge acquisition and
in which form their knowledge should be written down. Furthermore, a sys-
tematic analysis of which types of knowledge are useful will provide insights
into which information should be extracted from the instances if interviewing
domain experts is not feasible.

For all the different types of knowledge, we make no assumptions as to the
knowledge’s perfectness. Rather, in our approach we assume that we get
chunks of knowledge, which might be inaccurate, incomplete, or inconsistent
as outlined in section 3.5.1, and try to exploit it as much as possible.

We will first review several knowledge types that have been used in CBR
and in psychological work on similarity under various names. Differences
and commonalities will be pointed out so that each knowledge type can be
defined. Furthermore, a hierarchy of these knowledge types is proposed (see
figure 4.1). The semantics of the hierarchy are that all incorporation methods
for a knowledge type can also be applied to its subtypes. We will describe
the relation between knowledge types in the following sections.

We will show how the types are related to each other and we point out new
incorporation methods for each of them. To our knowledge this is the first
approach that formally defines knowledge types that can be incorporated
into similarity measures (apart from our earlier work in (Steffens, 2005d)
and (Steffens, 2005b)).

4.2 Types of knowledge proposed in CBR

In this section we identify the types of knowledge that have been used in CBR.
Typically, knowledge has not been regarded in terms of types, but rather
each approach used knowledge in its own ad-hoc and domain-specific way. In
most cases, the implementations used hybrids of different types of knowledge.
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Figure 4.1: Hierarchy of knowledge types.

This section contributes to a systematic analysis which role knowledge plays
in CBR and how the various kinds of knowledge can be arranged into a
common framework. As a result, knowledge types that were previously seen
as isolated will be handled by the same incorporation methods.
Remember that in the knowledge container approach cases are also a form
of knowledge. There is also work on how to capture experience in form of
cases from domain experts (e. g., (Leake & Wilson, 1999)). However, as noted
before we do not investigate case-specific knowledge but focus on general
domain knowledge about the attributes and their relations to each other.

4.2.1 Virtual attributes

Virtual attributes (Richter, 2003) are attributes that are not directly repre-
sented in the cases but can be inferred from the already existing attributes.
This requires inference rules which are part of domain knowledge.
Virtual attributes are useful if the monotonicity-principle is violated. If
s(c1, c2) > sim(c1, c3) is necessary to reflect class membership, then there
must at least be one attribute Ai, so that di(c1, c2) > di(c1, c3). If such
a pair does not exist, the similarity measure must make use of interde-
pendencies between attributes. For example, the similarity may not de-
pend on two attributes A1, A2 themselves, but on their difference A1 − A2.
Virtual attributes can express such interdependencies (e. g., deposit(c) =
income(c)− spending(c)).
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Figure 4.2: Types of virtual attributes. Left: A binary virtual attribute divides
the instance space into instances satisfying or not satisfying it. Middle: A
conjunction of binary attributes. Right: The most general type of virtual
attributes is to add a dimension to the instance space. (The instances may
for example denote credit-worthiness.)

Every virtual attribute forms an additional dimension in the instance space
(see figure 4.2 (right)). This is most intuitive for numerical attributes. An
example is the function

expectedIncomeT illRetirement(c) = (65− age(c)) · income(c)

Unfortunately, these dimensions can change assumptions about instance dis-
tributions and are most likely not orthogonal to the other dimensions, since
they are inferrable from other attributes.
Binary virtual attributes can be visualized as separating lines within the
original instance space (see figure 4.2 (left)). They divide the instance space
into two regions. For example,

taxFree(c)← income(c) < 330

may divide some instance space into salaries that are or are not subject
to paying taxes in Germany. We will show that especially those virtual at-
tributes are useful that describe target concept boundaries.
We propose to use intermediate concepts of domain theories as virtual at-
tributes. Virtual attributes can easily be added to the set of attributes of
each instance.
Intermediate attributes that are fully defined (i. e. that do not have gaps
at the bottom of the domain theory) can be computed from the values of
observables and other intermediates. In order to use an intermediate as a
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virtual attribute, it is added to the local similarities of the similarity measure.
Thus, if the standard similarity measure is defined on the attribute set A with
|A| = n, a virtual attribute can be added as An+1 as follows:

s(cn, cm) =

√

√

√

√

1

n+ 1
·

n+1
∑

i=1

(wi · di(cn, cm))

with the local similarity for the virtual attribute An+1 defined as usual. That
is:
if |An+1| 6=∞,

dn+1(cn, cm) =

{

1 : iff An+1(cn) = An+1(cm)
0 : else

if |An+1| =∞,

dn+1(cn, cm) = 1−

(

|An+1(cn)− An+1(cm)|

range(An+1)

)2

Transforming domain knowledge into virtual attributes is the most general
method for incorporating knowledge types that we propose in this thesis. How
virtual attributes are specified will be described in the next sections which
introduce subtypes of knowledge. Most of these subtypes have additional
incorporation methods.
We distinguish distributional knowledge from knowledge that can be repre-
sented by virtual attributes. Distributional knowledge describes the range,
density distribution and scaling of attributes. Incorporating such knowledge
is common in CBR, for example attributes are often normalized by their
range. Since distributional knowledge is already well researched, we focus on
the less researched types of knowledge that can be incorporated using virtual
attributes.

4.2.2 Matching knowledge

A common conceptualization of similarity is the amount of mutual features
(Tversky, 1977; Medin et al., 1993; Goodman, 1972). Thus, one important
aspect is to check whether two features are identical or match. This can
be difficult due to terminology, if the case representation allows the same
property to be specified in different ways. Such a problem is prone in predicate
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logic representations (Bergmann, 2002), where a property might be specified
with an abstract predicate (e. g. mother(x) to denote that x is a mother)
or with more primitive predicates (female(x) and parent(x)). To overcome
such differences, domain knowledge is needed. We refer to such knowledge as
matching knowledge. Basically, matching knowledge is used to match feature
values that are syntactically different but semantically equivalent. Nominal
matching knowledge states that two values of an attribute are equivalent.
Numerical matching knowledge defines regions in the instance space in which
cases are believed to be classified identically.
An examples for numerical matching knowledge is the region specified by
pressure(c) > 30 ∧ pressure(c) < 50 in an instance-space spanned by the
numerical attributes pressure and temperature.
Nominal matching knowledge is for example the statement poor ≡ very poor,
where poor, very poor ∈ speech specify the speech ability of a patient (Porter
et al., 1990).

Definition 4.2.1. Two attribute values Ai(cm) = am, Ai(cn) = an ∈ Ai

are equivalent, iff ∀cm, cn : Ai(cm) = Ai(cn) → At(cm) = At(cn). We write
am ≡ an.

In other words, two attribute values are equivalent if replacing one value with
the other does not change the class membership of the case.

Definition 4.2.2. Nominal matching knowledge is of the form ai ∈ A ≡
aj ∈ A, i 6= j.

Definition 4.2.3. Numerical matching knowledge defines an interval R ⊂ A
on a numerical attribute A.

Nominal matching knowledge can be incorporated into a similarity measure
by widening the constraint for di(cn, cm) = 1 in a local similarity function as
follows: Instead of
if |Ai| 6=∞,

di(cn, cm) =

{

1 : iff Ai(cn) = Ai(cm)
0 : else

we use
if |Ai| 6=∞,

di(cn, cm) =

{

1 : iff Ai(cn) ≡ Ai(cm)
0 : else
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In other words, the local similarity for an attribute is maximal not only if
the attribute values are identical, but also if they are equivalent.
Numerical matching knowledge can be incorporated as follows: Instead of
if |Ai| =∞,

di(cn, cm) = 1−

(

|Ai(cn)− Ai(cm)|

range(Ai)

)2

we use
if |Ai| =∞,

di(cn, cm) =

{

1 : iff Ai(cn) ∈ R ∧ Ai(cm) ∈ R

1−
(

|Ai(cn)−Ai(cm)|
range(Ai)

)2

: else

for a region R ⊂ Ai. If two attribute values are both within the region R,
their similarity is maximal.
Furthermore, matching knowledge can be incorporated using virtual at-
tributes. Au(c) ← Ai(c) ∈ R with R ⊂ Ai is a virtual attribute for
numerical matching knowledge. Nominal matching knowledge of the form
ai ∈ A ≡ aj ∈ A, i 6= j can be transformed into a virtual attribute
Av(c)← A(c) = ai ∨ A(c) = aj.
For numerical and nominal matching knowledge there exist at least these two
incorporation methods. As we will see later they have different behavior if
the knowledge is inaccurate and have different impact on classification accu-
racy. Additionally, using a virtual attribute requires adjusting an additional
parameter, namely the virtual attribute’s weight. The other incorporation
method is parameter-less.
Let us now examine where matching knowledge has been used.
A special instance of matching knowledge are taxonomies. Symbolic at-
tribute values form nodes, and subclass- and instance-relations link the nodes.
Bergmann (Bergmann, 2002) handles taxonomies as n-ary trees. Inner nodes
correspond to abstract attribute values and leaf nodes to primitive leaf nodes.
For example, in the domain of product recommendations for graphic cards
(Bergmann, 1998), an abstract value would be S3 Virge Card and a primitive
value would be ELSA 2000, stating that the latter is a subclass of the former
(see figure 4.3). Cases in the case-base are represented by primitive values
only, but queries can be formulated using primitive and abstract values.
According to Bergmann, taxonomies include two kinds of knowledge: Knowl-
edge that certain classes of objects exist in the domain, and knowledge about
the similarity between leaf nodes.
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S3 Graphics Card

S3 Virge Card S3 Trio Card

ELSA 2000 Stealth 3D200 Miro Video VGA V64

Figure 4.3: Part of a taxonomy for graphics cards. Adapted from Bergmann,
1998.

It is obvious that taxonomies are an instance of matching knowledge, since
they specify how syntactically different attribute values can be matched. For
example, in the graphic cards domain, the user may issue a query for a Stealth
3D200 card. If the shop does not have that specific brand, it can offer a ELSA
2000 card as alternative, because both cards are instances of the S3 Virge
Card class. In this sense, the system assumes ELSA2000 ≡ Stealth3D200,
where ELSA2000, Stealth3D200 ∈ GraphicCards.

The same methodology has been proposed in the design of aeroplanes, where
less-detailed parts such as ”engine” are matched to high-detailed parts such
as ”tail engine” (Leake & Wilson, 1999).

In the famous PROTOS system (Porter et al., 1990) explanations are
used to match attribute values to one another by a number of domain-
independent relations. Such relations are for example often-correlates-with,
causes, or is-a. For example, assume that in a car-diagnosis domain
two cases differ only in that one has the feature hard-driven and the
other has broken(carburretor). Given the relation causes(hard-driven,
broken(carburretor)), the two cases can be matched as being equiva-
lent. Similar relations are used in (Aamodt, 1994) and form inference
chains. An example for such an inference chain is lowV oltage(battery1);
isSubClassOf(lowV oltage(battery1), electricalFault);
causes(electricalFault,motorDoesNotStart), which is an explanation
for why the motor does not start if the battery is low. If two cases are
present that differ mainly in that one has the feature lowV oltage(battery1)
and the other has the feature motorDoesNotStart, their differences can be
”explained away”, so that they are judged similar.

In other systems, matching knowledge is used along with other types of
knowledge. For example, in (Rodriguez, 2001) a taxonomy is combined with
what we call causal knowledge (see section 4.2.3).
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While the above approaches assume nominal attributes, matching knowl-
edge can also be used for numerical attributes. By defining intervals on the
attributes, it can be stated that the behavior or classification does not change
within the interval. In simulated soccer for example, the behavior of the goalie
is strongly dependent on whether it is in the penalty area or not, because
it has privileges within that area. Defining the penalty area corresponds to
defining intervals on the numerical position attributes (cf. (Steffens, 2005d)).
Such a procedure is in many respects similar to approaches of qualitative rep-
resentation (Dylla et al., 2005). While there is no widely accepted definition
for ”qualitative representation”, such approaches usually discretize numer-
ical attributes by defining intervals in which changes of the value are not
important. For example, instead of representing the direction of an agent ac-
curately, it might be roughly represented as one of eight partitions of the 360
degree circle (Dylla et al., 2005). Work on qualitative representations sug-
gests that well-chosen intervals are often adequate for describing situations
which traditionally were represented on a numerical scale.
Matching knowledge is the principle that underlies the approach of using
generalized cases. A generalized case is a set of cases that have identical or
similar classifications. This set can be represented extensionally (Bergmann,
Vollrath, & Wahlmann, 1999). But generalized cases can also be represented
by constraints that specify intervals (Tartakovski & Maximini, 2003). In both
approaches the idea of generalized cases is to define subregions in the in-
stance space where the classification does not change. Bergmann noted that
taxonomies are strongly related to generalized cases, because an abstract
node can subsume all cases of a generalized case (Bergmann, Vollrath, &
Wahlmann, 1999). This observation fits nicely into our framework, because
both taxonomies and generalized cases are special kinds of matching knowl-
edge.
In summary, matching knowledge is obviously an important aspect when
determining the similarity of two objects or cases and can be found in many
CBR systems that employ background knowledge.

4.2.3 Inferential knowledge

Causal models have been proposed to represent the necessary information for
explaining classifications. For example, in Koton’s CBR system CASEY (Ko-
ton, 1988) (cf. (Aamodt, 1990)) cases contain explanations relating attributes
to the classification goal using cause relations. Attributes can be identified
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as relevant for the classification if they are roots of explanations. Attributes
that never appear in explanations are deemed irrelevant and excluded from
the comparison process of cases. A similar approach has been described by
Cain, Pazzani and Silverstein (Cain et al., 1991). The difference in their ap-
proach is that the relevance of a feature is not represented binary, but can
be adjusted by a parameter which determines the influence of explanations
on the similarity assessment.
We term this type of knowledge inferential knowledge, as it defines interme-
diate attributes on the basis of observables using logical inference. In other
words, the value of an attribute can be inferred from other attributes.

Definition 4.2.4. Inferential knowledge is a non-empty set V of rules (see
definition 3.5.4 for the definition of a rule).

Each rule ρ ∈ V can be incorporated into a similarity measure as a virtual
attribute, as described in section 4.2.1. The difference to the type ”virtual
attributes” is that the latter comprises all types that can be incorporated
as virtual attributes, whereas inferential knowledge is defined by its repre-
sentation in rule form. For example, matching knowledge can - as discussed
above - be incorporated as virtual attributes, but it is not an instantiation of
inferential knowledge, because matching knowledge per se does not explicitly
define new attributes.
Note that we do not distinguish between inferential and causal knowledge on
this level, although strictly speaking there is a difference. For the purposes of
incorporating knowledge into similarity measures, modelling causality equiv-
alently to inference will be sufficient. Inference is weaker than causality, thus,
if causality between two features is given, inference from one to the other fea-
ture can be assumed: If A causes B, then it can be inferred that an object
that has feature A will also have feature B.
Interestingly, the term ”explanation” is used in these approaches, just as in
approaches that used matching knowledge. In fact, the notion of explanation
is most prominent in the area of explanation-based CBR (EBCBR). The idea
of EBCBR is to use inference chains (i. e., explanations) in order to justify
the classification of a case, thereby determining or influencing the similarity
between new and stored case (Aamodt, 1994; Bergmann et al., 1994).
On a more detailed level, the notion of explanation is rather diverse. As de-
scribed in the previous section, explanations can be used to match values
that are syntactically different. In this sense, they are matching knowledge.
In contrast, the purpose of Koton’s and Cain’s explanations was to filter
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irrelevant attributes. And yet another notion of explanation is proposed by
Bergmann et al. (Bergmann et al., 1994) for problem-solving tasks. Here ex-
planations are explicitly stored with the cases and are proofs of the correct-
ness of a solution. In the approaches on matching knowledge, the explanations
were generated during the case retrieval and were not permanently stored.
More importantly, the way explanations influence similarity is different. In
PROTOS, explanations are used to influence the similarity between cases by
matching attribute values. In contrast, Bergmann defines similarity between
explanations themselves, so that cases are regarded as similar if they have
similar explanations.
The representation of explanations remains basically the same throughout
these approaches. An explanation is an inference chain from observables over
intermediates to classification goals. Still, these approaches are very differ-
ent. How can this variety of the notion ”explanation” be differentiated? We
propose to differentiate approaches based on how they use the knowledge for
similarity assessment. The framework which is introduced in this chapter is
based on the use of the knowledge. For example, according to our catego-
rization of knowledge types, the systems of Porter and Aamodt use matching
knowledge as it increases the local similarity of a nominal attribute if there
exists a relation between the values of that attribute. As opposed to this,
CASEY uses inferential knowledge in order to infer the target attribute from
the case attributes. Similarly, Bergmann et al. use inferential knowledge to
link case attributes to the target attribute.
The difference between matching and inferential knowledge is also reflected
in the domain theories used in the different approaches. Bergmann et al. use
strong domain theories, that is, inferences are strictly logical. The domain
theory used in PROTOS is weak, that is, relations have assigned confidence
values and are more about correlations than about strict logical inference.
In this section we have shown how different approaches that were subsumed
under the notion of explanation-based CBR could be differentiated by how
they use knowledge. We have shown that the explanations in Aamodt’s ap-
proach correspond to matching knowledge, whereas explanations in Koton’s
and Bergmann’s systems make use of inferential knowledge.
However, since both matching and inferential knowledge can generate expla-
nations, it is reasonable to group them under a common father node in a
hierarchy of knowledge types.
Note that often it is hard to discern between inferential and matching knowl-
edge, because inferential knowledge usually makes use of matching knowl-
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edge. Especially if nominal attribute values are to be inferred, the inference
rule needs to define regions of the instance space in its condition part. Such
regions are defined by matching knowledge.

4.2.4 Transformational knowledge

Since similarity measures work always on representations, one major issue
in CBR is to guarantee that similar cases have similar representations. Yet,
in complex domains superficial case representations often do not reflect the
underlying similarities.

A typical domain where this is an issue is the architectural domain where new
designs are generated by adapting previously designed CAD plans instead of
creating them from scratch. Börner (Boerner, 1994) states that in this do-
main case-specific knowledge is not sufficient, but rule-based domain knowl-
edge about transformations of the cases is necessary. Thus, in their system
case representations are modified by transformations in order to be match-
able. For example, rotated structures are identified as similar despite their
original dissimilar representation in the attribute-value approach. For illus-
tration, assume there are two cases copy(X, 3, circle) and copy(Y, 3, circle).
The term copy(d, n, s) denotes that shapes of the type s are copied n times
into direction d. So the former case represents a horizontal line of three cir-
cles and the latter represents a vertical one. Knowledge about rotations of
90 degrees is represented as rotate(copy(X,n, s)) = copy(Y, n, s). Using this
transformation, the two cases are regarded as structurally similar 1. Other
transformations are scaling and mirroring. Note that if transformations are
applied consecutively, they correspond to the relation-chains of the PRO-
TOS system. Thus, transformational knowledge is reminiscent of matching
knowledge, as it tries to match cases that are represented differently.

An example for approaches where transformation knowledge is not repre-
sented explicitly, but is coded directly into the similarity measure is (Coulon
& Steffens, 1994). The method scales images in order to ”view them from
a distance”, so that detailed differences vanish and more general similarities
can be detected. From the knowledge-container perspective, the knowledge
of transformation is encoded in the similarity measure.

1Note that in this example, also anti-unification would be suitable to compute struc-
tural similarity. However, for other transformations such as scaling the application of
anti-unification is not as straight-forward and would require some rule-based theory, too
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In the domain of simulated soccer we used transformational knowledge in
order to match situations from one wing of the field to the other (Steffens,
2005d). This was done by exploiting the information that the playing field
can be mirrored. Using a mirroring operation, a situation where a forward
attacks from the left and has a defender blocking his way to the goal can
be matched to a situation where the forward attacks from the right with a
defender blocking his way.
Outside of CBR, the relevance of transformational knowledge for concept
learning has been reported in the area of constructive induction. For example,
Ragavan and Rendell showed that knowledge of a symmetry transformation
leads to improved learning of tic-tac-toe concepts (Ragavan & Rendell, 1991).
They showed that the worth of the symmetry transformation can be directly
stated as reduction of required training instances. In a following chapter we
will use the knowledge container approach to examine whether inclusion of a
symmetry transformation into the similarity measure will reduce the number
of required cases in the case-base container, too.
To sum up, the purpose of transformational knowledge is to match cases
that are differently represented but are identical if some geometrical trans-
formations are applied. Thus, in our hierarchy transformational knowledge
is a subtype of matching knowledge. We define transformation knowledge as
matching knowledge that makes use of geometric transformations:

Definition 4.2.5. Transformational knowledge is of the form trans(c1) = c2,
where c1, c2 ∈ U(A), and trans : U(A)→ U(A) is a geometrically motivated
transformation.

Admittedly, whether a transformation is geometrically motivated is a se-
mantic question with some room for interpretation. However, our definition
of transformational knowledge can be easily extended if there are approaches
that emphasize that their transformations are not geometrically motivated.
Since transformational knowledge is a subtype of matching knowledge,
its incorporation in similarity measures is analogous. The constraint for
di(cn, cm) = 1 in a local similarity function is widened. For nominal at-
tributes, instead of
if |Ai| 6=∞,

di(cn, cm) =

{

1 : iff Ai(cn) = Ai(cm)
0 : else

we use
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if |Ai| 6=∞,

di(cn, cm) =

{

1 : iff Ai(cn) = Ai(cm) ∨ trans(cn) = cm
0 : else

The local similarity for an attribute is maximal not only if the attribute val-
ues are identical, but also if the query’s value can be transformed into the
case’s value. Note that the symmetry of the similarity measure depends on
the symmetry properties of the transformation. For instance, if the trans-
formation is a shrink-operation as used in (Coulon & Steffens, 1994), the
symmetry property is lost.
For numerical attributes,
if |Ai| =∞,

di(cn, cm) = 1−

(

|Ai(cn)− Ai(cm)|

range(Ai)

)2

is replaced by
if |Ai| =∞,

di(cn, cm) = max

(

1−

(

|Ai(cn)− Ai(cm)|

range(Ai)

)2

, 1−

(

|Ai(trans(cn))− Ai(cm)|

range(Ai)

)2
)

The local similarity is calculated as usual, unless transforming the query’s
attribute value leads to a greater local similarity.
Furthermore, transformational knowledge can also be incorporated as virtual
attributes. Additional attributes Av,i(c) = Ai(trans(c)) are added to the sim-
ilarity measure. However, obviously this method has the disadvantage that
often the virtual attributes are irrelevant. This is the case if the untrans-
formed attribute values are more similar to the comparison partner’s values
than the transformed values. We will show in experiments whether the vir-
tual attribute method is suited for incorporating transformational knowledge
(see section 5.6).

4.2.5 Gestalt and grouping principles

A psychologically motivated approach has been proposed by Schaaf in an-
other CBR system for architectural CAD plans (Schaaf, 1994). The obser-
vation is that architects often use gestalts such as ”comb” or ”fish-bones”
to remember similar problems and their solutions. Thus, in the CBR system
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plans are compared using pre-defined gestalts, which are salient shapes that
are represented abstractly by spatial relations. During the case retrieval, the
system tries to find mutual gestalts in the query and the cases, so that the
similarity assessment takes place on the gestalt level and not on the level of
single lines and objects.
While the author does not call these gestalts domain knowledge, from the
knowledge container perspective taken in this thesis, the gestalt set can be
seen as domain knowledge in the similarity container. The gestalts are rep-
resented explicitly in a set of abstract shapes and are not case-specific. They
are abstract attributes defined on the observables.

Definition 4.2.6. A gestalt is a concept rule ρ : U(A) → [true, false] that
is motivated by Gestalt psychology.

Similarly to transformational knowledge, the distinction between general in-
ferential knowledge and Gestalt knowledge is a semantical one. If the defini-
tion of ”motivated by Gestalt psychology” is disputed, Gestalts can also be
categorized as general inferential knowledge.
Incorporation of Gestalts into a similarity measure is analogous to incorpora-
tion of a nominal virtual attribute. If ρ is a Gestalt, then the corresponding
virtual attribute is Av with dv(c1, c2) = 1, iff ρ(c1)∧ ρ(c2), and dv(c1, c2) = 0
otherwise
Gestalts are a concept from research on psychological perception
(Wertheimer, 1923). Another approach that makes use of psychological prin-
ciples of perception is proposed by Knauff and Schlieder (Knauff & Schlieder,
1994). They use grouping to influence similarity in a top-down approach.
Objects and structures in a CAD plan are grouped based on their spatial
proximity and their similarity. This way, objects are partitioned into several
groupings. The plans are then compared as arrangements of such groupings
instead of arrangements of individual objects. For example, a line of five
squares will be similar to a line of four circles, because both arrangements
can be grouped into a sequence of identical objects (see figure 4.4). The
authors call this a knowledge-intensive approach, because it uses top-down
concepts like groupings that are not case-specific but defined in a general
way.
Although Schaaf does not call his approach knowledge-intensive, the parallel
between his work and the grouping approach is apparent. The similarity is
not calculated on the basis of individual objects, but rather on more abstract
levels, such as gestalts or groupings.
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Figure 4.4: Two parts from two different CAD plans. The dotted lines mark
groupings that make the two parts similar.

To place these two approaches into the canon of knowledge types, us-
ing gestalts and groupings can be seen as a specialization of inferential
knowledge: Parts of CAD plans are compared to each other by means
of a more general structure. Thus, two cases that are syntactically dif-
ferent, such as pos(circle, 20, 10), pos(circle, 30, 10), pos(circle, 40, 10) and
pos(square, 50, 15), pos(square, 50, 25), pos(square, 60, 35) will be assigned a
high similarity, because they can be represented as the same general struc-
ture, the gestalt of a line, or grouping based on proximity and similarity.

4.2.6 Contextual knowledge

Contextual attributes are only relevant in certain contexts. Thus, they are not
relevant when considered in isolation, but only relevant when combined with
other attributes (Turney, 1996). These other attributes specify the context in
which the contextual attribute is relevant. For example, in medical diagnosis,
the age of a patient is a contextual attribute, because it is uninformative when
considered in isolation, but informative if combined with other attributes such
as blood pressure (see (Turney, 1996) for an overview). Knowledge-light case-
based approaches do not perform well in the presence of contextual attributes
(Aha, 1991a).
We term knowledge that specifies in which contexts an attribute is relevant
as contextual knowledge.

Definition 4.2.7. Contextual knowledge for an attribute A is of the form
relevant(A, c)← ρ(c), where ρ is a concept rule.

Contextual knowledge can be incorporated into a similarity measure as fol-
lows. We assume without loss of generality that the knowledge-poor similarity
measure included the attribute Am with a global weight. In the knowledge-
rich similarity measure, the attribute is only included if it is relevant for
the query. Let relevant(Am, c) ← ρ(c) be the contextual knowledge to be
included.
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Figure 4.5: The domain theory of the JCS domain (left) and of the PGS
domain (right). Nodes denote attributes and the arcs denote that the more
general attribute is defined based on the more primitive ones.

s(c1, c2) =







√

1
m
·
(
∑m−1

i=1 (wi · di(c1, c2)) + wm · dm(c1, c2)
)

: iffρ(c1)
√

1
m
·
∑m−1

i=1 (wi · di(c1, c2)) : else

The weight wm can either be set to a default value or it can be learnt. In
the latter case, the benefit of contextual knowledge is to speed-up weight
learning if also the other weights are learnt (see section 5.5 for details).
Just as virtual attributes are defined on observables and intermediates, the
inclusion of a contextual attribute depends on the value of other attributes.
Contextual knowledge can be acquired from domain experts, e. g. ”The po-
sition of the goalie is only relevant if the opponent’s forwards have the ball”
in simulated soccer. It should also be possible to infer contextual knowledge
from a domain theory. As an illustrative example, consider the domain theory
for Credit Screening in Japan acquired from domain experts (Blake & Merz,
1998) depicted in figure 4.5. It is apparent that the feature married is only
relevant if the features female and jobless are present. As an approximation
of relevance, one can use the following heuristic: If an attribute appears only
in a subtree, then the context in which it is relevant is defined by the other
attributes in the subtree.
Our notion of contextual knowledge does not cover approaches as (Jurisica,
1994) where context is given directly as set of relevant attributes. In that
work, in an information retrieval system the user wants to find similar doc-
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Figure 4.6: Contextual attribute. Negative instances are denoted by −, pos-
itive instances by +.

uments to a query document and explicitly specifies which attributes are
relevant for his query. While this set of relevant attributes is called context,
we do not view it as contextual knowledge because the relevance of an at-
tribute is not inferred from other attributes, but is explicitly given.

In (Steffens, 2004a) we showed that contextual knowledge is useful for
similarity-based opponent modelling. In simulated soccer, the attributes de-
scribing team A’s defenders are irrelevant if team A’s forward has the ball
and is close to the opponent goal. But if team B’s forward has the ball, the
attributes describing team A’s defenders are highly relevant. Thus, these at-
tributes are contextual and are dependent on the context defined by which
team has the ball and by the ball’s position. We used a rule-base that deter-
mined in which contexts the attributes were relevant.

Contextual knowledge is a special form of inferential knowledge. It infers
from other attributes whether an attribute is relevant. Thus, regions in the
instance space can be defined and for each region it can be stated whether
the contextual attribute is relevant or not. A simple example for contextual
attributes can be seen in figure 4.6. The attributes X and Y span the in-
stance space. The positive instances of a target class are depicted by ”+”,
the negative instance by ”-”. The attributes are contextual, because in the
region on the left of the imagined dotted line X is not relevant for determin-
ing class membership. X is only relevant if it is greater than a certain value.
Similarly, Y is contextual because it is only relevant on the left of the dotted
line, but irrelevant on the right of the line.

If a similarity measure is based on context, it is not symmetrical anymore,
because the region of the query defines the context.

Contextual attributes are common in machine learning data sets, but their
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existence is often not acknowledged nor exploited (Turney, 1996). In this
thesis we will show how contextual knowledge can be exploited in similarity
measures. In the section about attribute relevance (section 4.2.7), we will
review the issue of context from another perspective.

4.2.7 Attribute relevance

It has often been observed that different attributes have different relevance
in determining the classification of an object. In CBR, this relevance is cap-
tured by attribute weights. The more relevant an attribute is, the higher is
its weight, and the higher is its influence on similarity. Another observation is
that the importance of attributes depends on the context and the goal of clas-
sification which leads to local weighting (Atkeson et al., 1997), which weights
an attribute differently in different regions of the instance space. However,
the most common method is to use global weighting so that attribute weights
do not change across the instance space.
The relevance of attributes and attribute weights are clearly parts of domain
knowledge (Richter, 1995; Gabel & Stahl, 2004). Usually, attribute weights
are represented globally and statically (Wettschereck et al., 1997). That is,
each attribute is assigned a weight at design time and the weight does not
change. In contrast, in the afore-mentioned PROTOS system weights are de-
pendent of the classification goal, each feature has an importance factor for
each classification goal. Such class-specific weights can for example be learnt
by the CBL4 algorithm proposed by Aha (Aha, 1991a). Even more dynami-
cally, in (Clark, 1989) rules directly modify the attribute weights depending
on the context.
Typically, weights are either explicitly set by domain experts (Clark, 1989)
or learnt from training instances (Wettschereck et al., 1997). An intermediate
approach is to infer attribute weights from the domain knowledge. In a CBR
approach for software classes (Spanoudakis & Constantopoulos, 1994) the
relevance of attributes is determined by their charactericity, abstractness,
and causality, which are calculated from the domain model. Causality means
that an attribute influences the value of another attribute. Charactericity is
a measure for how distinct the attribute value ranges are among the different
classification classes. That is, an attribute is characteristic for a class, if given
the attribute value one can predict class-membership with a high certainty.
Finally, abstractness is a measure for how essential the attribute is for the
identity of a concept. For example, abstractness is high if the class introduced



80 Enhancing Similarity Measures with Background Knowledge

the attribute, and low if it inherited the attribute from a superclass.

In order to insert weights as knowledge type into a hierarchy, we examine
its relation to contextual knowledge. Similarity measures that employ local
weighting are context-sensitive (Ricci & Avesani, 1995). In such a measure
the attribute weights depend on the query, that is instead of wi, wi(c) is
used as weight for attribute i. This way, context-dependent relevance can
be stated, e. g. ”if attribute A1 is less than 50, set the weight of A2 to 0”.
This is similar to the problem stated in section 4.2.6. The correspondence
to contextual knowledge is apparent. As we have argued elsewhere (Steffens,
2005d), weights are a special form of contextual knowledge in our hierar-
chy. Weights express the relevance of a feature on a numerical scale. Global
weighting corresponds to a context that subsumes the whole instance space.
Local weighting uses contextual knowledge to specify the relevance in differ-
ent regions. In other words, local weights are inferred from the attributes,
just as in contextual knowledge.

Definition 4.2.8. Attribute relevance knowledge for an attribute A is of the
form relevant(A, c, w)← ρ(c), where ρ is a concept rule.

Note that knowledge about global weights can be specified as
relevant(A, c, w)← true to denote that the weight of attribute A is w.

We assume that the instance-space is partitioned into several subregions and
that the attribute relevance remains the same in a subregion. We do not
handle attribute weights that change numerically.

Attribute relevance knowledge can be incorporated into a similarity measure
as follows. We assume without loss of generality that the knowledge-poor
similarity measure included the attribute Am with a global weight. In the
knowledge-rich similarity measure, the attribute’s weight depends on the
context of the query. Let relevant(Am, c, w)← ρ(c) be the attribute relevance
knowledge to be included.

s(c1, c2) =







√

1
m
·
(
∑m−1

i=1 (wi · di(c1, c2)) + w · dm(c1, c2)
)

: iffρ(c1)
√

1
m
·
∑m−1

i=1 (wi · di(c1, c2)) : else

Typically, for each subregion there will be a rule defining the attribute’s
weight.
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4.2.8 Distributional knowledge

A type of knowledge which is placed apart from the other types mentioned so
far was proposed in (Surma, 1994). Matrices specify the ordering of nominal
attributes, i. e. similarities within the value set of an attribute itself. The rows
and columns denote the attribute values, and the cells contain the similarity
between two attribute values. The assumption is that even in a nominal
attribute, some value pairs are more similar to each other than others. For
example, if a feature color has the possible values yellow, orange, blue, then
yellow is more similar to orange than to blue. This allows to enhance matching
results from the dichotomy ”match” vs. ”no-match” to numerical similarities.
While in (Surma, 1994) the similarities between attribute values were given
by a domain expert, these similarities were learned in (Baumeister et al.,
2002).
Knowledge about the ordering of nominal values and the similarity between
values is distributional knowledge, since it specifies the scale of an attribute.
We do not give a formal definition here, because we will not discuss ordering
of nominal values in the remainder of this thesis.
As described in the introduction, distributional knowledge specifies the range,
density distribution and scaling of attributes. Although distributional knowl-
edge is a type of itself, it can be combined with other types. For example, it
can be combined with contextual knowledge to state information such as ”If
an attribute is given, other attributes have a specific range” (Gabel & Stahl,
2004).

4.2.9 Summarizing remarks on knowledge used in

CBR

We reviewed kinds of knowledge that have been used in case retrieval. We
have ignored approaches that used domain knowledge to adapt retrieved
solutions to the new case (see section 2.5.4 for references). Adapting solutions
is out of the scope of this thesis.
In the case retrieval approaches, knowledge is typically not formally defined,
but used in an ad-hoc fashion. To our knowledge we presented the first sys-
tematic grouping of knowledge types for case retrieval. Moreover, domain
knowledge has mostly been used for structured representations so far. In the
past, it has even been claimed that attribute-value representations inhibit
the incorporation of domain knowledge (Branting, 1989), but this view has
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been abandoned nowadays (e. g. (Aha, 1991b)). Our proposed incorporation
methods have been described with attribute-value representations, and our
experiments (to be reported later) show that similarity-based classification
can indeed benefit from domain knowledge even with attribute-value repre-
sentations.
For example, in simulated soccer we have shown that using inaccurate do-
main knowledge can improve the accuracy of predicting the opponent’s ac-
tions (Steffens, 2004a, 2005d). In those experiments we used goal-dependency
networks (GDNs) as proposed by Stepp and Michalski (Stepp & Michalski,
1986). In our framework, GDNs specify contextual and inferential knowledge.
More details about the experiments can be found in chapter 7.
The main disadvantage of using additional background knowledge in CBR
is that of higher computational cost. For example, matching attribute values
by relation-chains as in PROTOS is more complex than using a simple iden-
tity operator. Thus, the additional effort has to be motivated by accuracy
improvement or case-base reduction. In the later chapters we will analyze the
effect of knowledge types on classification accuracy.

4.3 Psychological knowledge types

In this section an overview over the knowledge types that have been pro-
posed to influence psychological similarity assessment is given. Research on
similarity includes categorization, analogy, object recognition, and similarity
in general. Often, in the psychological literature the researched principles are
not called knowledge. Yet, as will be seen, many of them correspond to the
knowledge types defined in the previous sections.
However, the technical knowledge container perspective is of no use to decide
whether a psychological phenomenon is based on knowledge. Rather, Hahn
(Hahn & Chater, 1998) makes a distinction between knowledge-based factors
and process principles. We will follow this distinction and use the notion of
knowledge conservatively.

4.3.1 Causal knowledge

Causal knowledge is believed to influence attribute relevance for similarity
assessment. Features that cause others are deemed more relevant than at-
tributes that are effected by others (Ahn et al., 2000). Additionally, causal
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attributes are deemed more important than correlated ones (Choplin et al.,
2001). Causal background knowledge can also be used to infer missing or
unobservable attributes (Ahn et al., 2000).
In contrast to research in CBR, here the focus is not on inferring additional
abstract attributes, but to determine which attributes are salient. The as-
sumption is that humans possess a large amount of information about prop-
erties of objects, and not all of this information can be used for similarity
assessment. This is different from the CBR perspective, where every informa-
tion has to be given explicitly. Psychological research is thus concerned with
how to constrain the available information. Often, salience and relevance are
mixed, so that attributes that are salient are relevant for the comparison
process. In this light, the finding that causal knowledge influences attribute
relevance is less similar to attribute relevance knowledge and more reminis-
cent of explanation-based CBR. In EBCBR irrelevant attributes were filtered
if they were not used in explanation-chains from the observables to the clas-
sification goal. This is the same concern as the psychological approach to
identify principles that constrain information. Thus, the causal knowledge
used in psychology corresponds to inferential knowledge in our hierarchy.
The distinction between causality and inference is not existent or at least
not clear in the cited psychological work.

4.3.2 Contextual knowledge

Aha and Goldstone suggest that attribute weights are not represented stati-
cally, but dynamically based on the case’s context (Aha & Goldstone, 1992).
The context to determine an attribute’s importance is defined as the set of
other features that are present in the case. As an example they state that the
importance of the feature date of the next deadline for the category will work
on the weekend depends on the attribute upcoming computer downtime. That
is, the importance will be greater if there is a computer downtime directly
before the next deadline.
Aha and Goldstone also showed that subjects can learn context-specific
weights from a set of cases. Depending on where in the instance-space the case
was located, attribute importance was estimated differently. Furthermore,
they developed the GCM-ISW algorithm that learns contextual weights and
fits the psychological data closely.
In the experiments, subjects had to categorize stimuli into category A or
B. The stimuli consisted of a square with eight possible sizes and a vertical
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bar at eight possible horizontal positions. For each category there were two
clusters, which were constructed in a way, so that differentiating between
the first cluster of A and the first cluster of B the position of the bar was
relevant. For differentiating between the second cluster of A and the second
cluster of B, the size of the square was relevant (refer to figure 4.6 for a rough
idea).
An example of the verbal protocol that subjects gave during classifying stim-
uli (Aha & Goldstone, 1992) (p. 537):

”I looked at the size of the square. If it was big, then I looked at
where the bar was. If it was a little further to the right, then I
put it in A. Otherwise I put it in B. If the square was small, I
looked carefully at its size. A squares were slightly bigger than B
squares.”

This can be stated in our terminology as relevant(barPosition, c) ←
size(c) > someSize and relevant(size, c) ← size(c) < someSize. It is ap-
parent that this form of contextual knowledge fits our notion as defined in
section 4.2.6. Thus, using contextual knowledge in similarity-based classifi-
cation is psychologically plausible.
Interestingly, also a finding by Gentner (Medin et al., 1993) can be related to
contextual knowledge, where she states that an object’s shape is considered
as relevant if an object has to be classified into a category that is described
by a noun. For example, if the target concept is described by an adjective
such as ”eatable”, children consider the shape of an object less relevant than
if the target concept is described by a fantasy noun such as ”wug”.

4.3.3 Deep attributes

Similarity can be based on so-called deep attributes if the person possesses
background knowledge for the domain (Chi et al., 1981; Medin et al., 1993).
Such deep attributes are distinguished from superficial attributes by the fact
that they cannot be directly perceived in the objects but have to be inferred
using background knowledge. For example, if the similarity between exercises
in physics is to be assessed, superficial attributes are those that are given in
the exercise text. Deep attributes are not given explicitly, but have to be
inferred. From the superficial attributes ”collision”, ”momentum” etc. that
are present in the exercise text the deep attribute ”copes with conservation
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of energy” must be inferred in order to identify the solution method for the
exercise (Chi et al., 1981).
Obviously, superficial attributes correspond to observables in our terminol-
ogy. Deep attributes correspond to the intermediate attributes that can be
derived from observables using inferential knowledge.
For psychology, the possibility to use deep attributes raises the question of
which knowledge is activated for similarity assessment. It is not feasible to
assume that the complete knowledge of a human is used during similarity
assessment (Medin et al., 1993). A proposal to remedy this issue was given
by Barsalou (Barsalou, 1989). He regards concepts as being represented in
different parts. The core part describes properties that are always activated
if the concept is reasoned about. In another part context-specific properties
are stored that are only activated in certain contexts. For example, for the
concept ”France” the fact that France won the soccer world-championship
in 1998 will only be activated if the context is sport, and not politics or
economy. Further properties are stored in a part that is activated by recent
knowledge, that is, by information that was acquired or active shortly before
the reasoning.
Barsalou’s idea of context-dependent representations for deep attributes is
another hint that inferential and contextual knowledge are intertwined.

4.4 Learning knowledge types

The bottleneck of knowledge-rich similarity is acquiring the domain knowl-
edge. The additional effort of knowledge engineering must be minimized.
Thus, an important aspect is to analyze the requirements for the knowledge.
If imperfect knowledge will turn out to be useful, this will facilitate knowledge
acquisition as it lightens some requirements such as correctness, consistency
and/or completeness.
If no domain experts are available or too expensive, partial and inaccurate
(or vague) knowledge can also be acquired with machine learning or statis-
tical methods. Before employing machine learning methods it must be clear
which knowledge can be incorporated into similarity measures. The above
definitions of knowledge types will be useful to decide for which knowledge
the cases should be processed for.
In this section we will give a short overview over which methods can be used
to learn knowledge of the defined types. However, the focus of our thesis is not
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to learn knowledge, but to examine how different types of knowledge effect
similarity-based classification and what the impact of imperfectness is. Thus,
we will only give references and ideas for learning knowledge types here. Still,
it will be interesting to examine how other machine learning methods can be
integrated into CBR in future work.
Of course, the issue of applying other learning methods than CBR raises the
question why not to learn the whole target class with other learning methods.
Yet, learning the different knowledge types requires less effort than learning
the whole concept. For example, while the target class may have many con-
cept boundaries in the instance space, one can apply learning methods to
derive only one of these boundaries, or to check whether some of the bound-
aries are axis-parallel. As we will see in the next chapter, such knowledge
chunks are useful for similarity-based classification. Such knowledge can be
learned with less effort than learning the whole concept.
Furthermore, learning from training data is inherently prone to inaccuracies.
Thus, learning from data will always only yield an estimation of the correct
information. In contrast to lazy learning approaches, many eager learning
algorithms learn hypotheses in a global way and are thus sensitive to noise.
In this thesis we investigate how imperfect, inaccurate knowledge influences
similarity-based classification.

4.4.1 Contextual knowledge

The assumption that learning knowledge chunks is easier than learning the
whole target concept is intuitively clear if one considers learning contextual
knowledge, where the information that an attribute is relevant in some region
can be learnt easier than the exact function that separates class-members
from non-members in that region.
To illustrate this, consider decision tree learning (Quinlan, 1993). Decision
trees partition the instance-space with the attributes that have the highest
information-gain, that is, that best separate positive from negative instances.
Attributes are selected sequentially, until no attribute can further increase
the classification accuracy. Since decision trees can only use axis-parallel sep-
aration lines for partitioning, there might be concepts that cannot be learnt
perfectly. In such cases, it has been proposed to use the imperfectly classi-
fying decision tree for CBR (Ling, Parry, & Wang, 1997). The information
gain of the attributes in the decision tree are used as weights in the similarity
measure of CBR. Attributes that did not appear in the decision tree were
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Figure 4.7: Left: A non-noisy instance space, with ”+” denoting positive,
and ”-” denoting negative instances of some concept. Right: An imperfect
decision tree describing the concept.

deemed irrelevant and weighted with 0. While up to now these weights were
used globally, it is obvious, that the paths in a decision tree define a context
(cf. (Domingos, 1997)). For example, in figure 4.7, it is shown that in the
subtree under X < 50 the attribute Y is not used. This can be stated in our
terminology as contextual knowledge relevant(Y, c)← X ≥ 50.

The tree-structure of decision trees is not equivalent to the structure of do-
main theories. However, the definition of context in decision trees is similar
to inferring context from domain theories as discussed in section 4.2.6. Yet,
we have to postpone an implementation and experiments for future work.

Note that there are several other approaches to learn context-sensitive fea-
ture weights (e. g. (Domingos, 1997; Aha & Goldstone, 1992)). However, for
contextual knowledge as defined in section 4.2.6, we approximated feature rel-
evance as binary and assume that feature relevance does not change within
specific regions. Since context-sensitive feature weighting stores weights for
each exemplar, the weights are not constant over regions, but may change
from instance to instance. Thus, traditional context-sensitive weight learning
methods do not output the information that we need for contextual knowl-
edge.
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4.4.2 Virtual attributes

Adding virtual attributes to the similarity measure is basically equivalent
to re-representing the cases to better fit the classification task. Exactly the
same motivation is behind constructive induction (CI). The idea behind CI is
to learn additional features from cases that transform the instance-space so
that the concept can be better approximated (Matheus, 1991). For example,
if a concept was dispersed over the instance-space (which is the case for
disjunctive concepts), additional features were learned on which the concept
was not dispersed.

While our approach is top-down, CI is a bottom-up approach (Wogulis &
Langley, 1989). These two directions complement each other nicely, as the
focus of CI ends where our focus starts. While we analyze which types of
knowledge are useful for similarity-measures and what the effects of imper-
fectness of knowledge are, CI investigated how to learn additional attributes.
CI was basically concerned with rule-based processes, e. g. completing incom-
plete domain-theories (Mooney & Ourston, 1991; Fu & Buchanan, 1985) or
to find additional features for rule-based reasoning (Matheus, 1991; Wogulis
& Langley, 1989; Gunsch & Rendell, 1991). However, it has been shown
that constructing features can also improve exemplar-based learning (Aha,
1991b). Aha’s IB3-CI algorithm constructs simple features if the system re-
trieves a case c that has a different class than the query q. In such a situation
the feature-set is increased in order to reduce the similarity between c and
q. This is done by identifying features that are only present in q and not in
c. By logically conjuncting these features, a new feature is constructed that
is likely to better discriminate between positive and negative cases in future
retrievals. The new feature is discarded if it is a specialization of a feature
that is already contained in the feature-set. IB3-CI significantly outperforms
other instance-based learning methods that do not construct features.

The methods of CI, such as IB3-CI, are potential candidates for learning
virtual attributes and inferential knowledge. They also show that learning
individual features is easier than learning the whole target class.

4.4.3 Weights

Weights are a type of knowledge that is unlikely to be acquired from domain
experts, as the semantics of numerical weights can only be implicitly defined
by comparing them to other weights.
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The influence of weights on classification has been studied extensively al-
ready. There exist many learning methods that estimate attribute weights
from data (see (Wettschereck et al., 1997) for an overview). These weight
learning methods can be organized and dichotomized in a framework intro-
duced by Wettschereck, Aha and Mohri (Wettschereck et al., 1997). Discrim-
inating dimensions in this framework are the following:

• Performance vs. preset bias: Weight learning methods with a perfor-
mance bias analyze the result of the system’s classification and adapt
weights accordingly. If for example a misclassification occurred, the
weights of matching attributes can be reduced and weights of mismatch-
ing attributes can be increased (Salzberg, 1991). In contrast, meth-
ods with a preset bias estimate weights by statistical or information-
theoretic means. For example, the information-gain used in decision-
tree learning (Quinlan, 1993) can also be used as attribute weights in
similarity measures (Daelemans & Bosch, 1992).

• Continuous vs. binary weight space: In a binary weight space, weight
learning is equivalent to feature selection, that is, some features are
weighted with 1, and those that are weighted with 0 have no influence
at all. This works well if attributes are either relevant or irrelevant. But
if attributes are partially relevant, a continuous weight space has to be
searched (Wettschereck et al., 1997).

• Given vs. transformational representation: Weight learning methods
can either work with the given representation only, or they can change
the representation. The afore-mentioned algorithm IB3-CI is an exam-
ple for a method that changes the representation by adding constructed
features (Aha, 1991b).

• Global vs. local generality: Weights can either be learnt globally so that
they are the same over the whole instance space, or they can be learnt
locally. In the latter case, the weights depend on where in the instance
space the query is located.

• Poor vs. intensive use of knowledge: Another dimension is the amount
of domain knowledge that is used for learning weights. An example for
knowledge-intensive methods is the EBCBR approach where feature
weights are set to 1 if they appear in an explanation, and to 0 else.



90 Enhancing Similarity Measures with Background Knowledge

We implemented several of the existing weight-learning methods to learn
weights for virtual attributes. More details about this are presented in chap-
ter 6.

Recently, an approach to learn weights has been proposed for knowledge-
intensive CBR (Stahl, 2004). The system adapts weights during daily usage
based on utility feedback (this process is also called introspective learning
(Bonzano, Cunningham, & Smyth, 1997)). To do this, the traditional CBR
cycle of retrieve, reuse, revise, and retain is refined. Particularly, in the revise
phase, the performance of the retrieval process is measured, and in the retain
phase the similarity measure is optimized based on the performance feedback.
For example, this feedback can form an error function, so that the system can
update weights in a gradient descent fashion. Additionally, it was shown that
genetic algorithms can learn feature weights and local similarity functions by
using the error function as fitness function (Stahl, 2004).

4.4.4 Matching knowledge

Discretisation is an approach that transforms a numerical attribute into a
set of nominal features (Fayyad & Irani, 1993). It outputs intervals as used
by numerical matching knowledge. Surprisingly, discretisation is rarely used
in lazy learning approaches, because it discards information (Ting, 1997).
However, it was shown that discretisation can improve performance if the
case-base is noisy or if there are many irrelevant attributes (Ting, 1997). In
contrast, we will show in our experiments that defining intervals can improve
classification accuracy even if the data is not noisy and attributes are rele-
vant. Furthermore, in our approach not the whole range of an attribute is
discretized, but only parts of it.

Matching knowledge is similar to the ”close-interval” operator in constructive
induction (Gunsch & Rendell, 1991). For example, if objects from a class are
described as weighting 60, 64, and 70 ounces, and all the objects from the
other classes weight less than 60 or more than 70, a new feature ”weights 60
to 70 ounces” can be created.

As mentioned in the previous section, genetic algorithms have been used to
learn local similarity functions (Stahl, 2004). As a special case, these algo-
rithms could also be used to learn equivalences within numerical intervals or
between nominal feature values.
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4.5 Conclusion

In this chapter we have introduced a framework for knowledge types that have
been used or researched in connection with similarity in cognitive science. We
have cleared up the terminology by giving definitions for the knowledge types.
Differences and commonalities have been discussed, so that parallels between
similarity in CBR and psychology were identified. With this hierarchy we
have systematized and formalized incorporation of knowledge into similarity
measures, which has been previously usually done in an application-specific
ad-hoc fashion.
Furthermore, we proposed several novel incorporation methods. In fact, in-
tegrating the types into a hierarchy was only possible by introducing new
incorporation methods. Different types that can be used in the same way
were arranged under the same more general type.
The proposed knowledge types are applicable to attribute-value representa-
tions.
In the subsequent chapters we will examine the impact of the knowledge types
on classification accuracy, and we will analyze how robust the incorporation
methods are if the knowledge is imperfect.
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Chapter 5

Impact of Imperfect Knowledge
on Classification Accuracy

An investment in knowledge
always pays the best interest.

Benjamin Franklin

5.1 Introduction

Incorporating domain knowledge into similarity measures is an additional
effort which has to be motivated by increased classification accuracy. In this
chapter we analyze the effect of the different knowledge types on accuracy
partly formally and mainly by experiments. The experiments are done in
artificial and in real-world domains. Furthermore we examine how robust the
incorporation methods are if the domain knowledge is inaccurate, partial, or
inconsistent.

5.2 Virtual attributes

Virtual attributes are intermediate attributes that are derivable from observ-
ables. That is, only intermediate attributes that are fully defined (without
gaps in the bottom of the domain theory (Mooney & Ourston, 1991)) can

93
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Figure 5.1: Areas of equal similarity. 1. For the standard similarity based on
Euclidean distance. 2. With a binary virtual attribute Av(c)← A1(c) > k. 3.
With a binary virtual attribute but the query is far away from the separating
line. 4. With a binary virtual attribute, the similarity value of the iso-area
is smaller than 1 − wv. 5. With a binary virtual attribute that is not axis-
parallel.

be used as virtual attributes. Our definition of intermediate allows a vir-
tual attribute to be nominal or numerical (refer back to figure 4.2). Virtual
attributes with a nominal domain can be seen as partitioning the instance
space into regions with equal values for the virtual attribute. An example for
a nominal (more specifically, binary) virtual attribute is Av(c)← A1(c) < 30
which defines a separating hyperplane through the instance space at A1 = 30.

A numerical virtual attribute would be Av(c) = A1(c) + A2(c) which forms
an additional numerical dimension in the instance space.

The effect of virtual attributes can be intuitively understood by looking at
how they change the area of equal similarity around a query. If the standard
Euclidean distance is used as basis for the local similarities, the cases with
equal similarity to a query are located on a circle around the query (see
figure 5.1). If a binary virtual attribute is added, the area of equal similarity
is changed as follows: The circle of equal similarity is cut off by the hyperplane
described by the virtual attribute. That is, two instances that are on different
sides of the hyperplane will be less similar to each other than two instances
that are on the same side. To be precise the iso-similarity area is only cut
off by a virtual attribute Av for similarities that are greater than r = 1−wv

(note that 1 is the maximal similarity, which is equivalent to identity). For
iso-similarity areas with similarity values smaller than r it is not necessary
anymore that the instances are on the same side of the separating hyperplane.
Then the area of equal similarity will begin to grow a smaller circle around
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Figure 5.2: Areas of equal similarity. 1. With a numerical virtual attribute
Av(c) = A1(c) + A2(c). 2. With the same virtual attribute, but a higher
weight wv.

the query that goes over the separating line. In a classification framework
this situation is only relevant if no case has the same value for the virtual
attribute as the query.
The effect of a numerical virtual attribute is different. Let us look at the
universe spanned by two numerical observables A1, A2. If a numerical virtual
attribute A3(c) = A1(c) +A2(c) is added to the similarity measure, the area
of equal similarity (if plotted in the universe spanned by the observables)
changes to a diagonal lense (see figure 5.2). By changing the weight of the
virtual attribute, the lense can be thickened or thinned. The diagonal lense
shape is due to the fact that the area of equal similarity for the virtual
attribute alone is a diagonal stripe, i. e. low A2 values have to be compensated
by high A1 values to achieve the same A3 value, and vice versa.
The main difference between nominal and numerical virtual attributes is
the following. For nominal virtual attributes, the area of equal similarity
for a given similarity value remains the same if the query is far away from
the hyperplane. The area is only affected if it intersects a hyperplane. For
numerical virtual attributes, the shape of iso-similarity is inherently changed.
In the following we focus on nominal virtual attributes.

5.2.1 Inaccurate knowledge

Vague knowledge about a separating hyperplane is that its position is not
exactly known and only a possibly inaccurate estimation can be given.
First we illustrate the effect of adding an inaccurate virtual attribute Av(c)←
A1(c) < k, k ∈ R to the standard similarity measure in a universe spanned
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Figure 5.3: Accuracy of a similarity measure with the virtual attribute
Av(c)← A1(c) > k for the concept f(c)← A1(c) > 50 in a two-dimensional
universe. 100 cases were in the case-base, 200 test cases were used, and the
experiment was repeated 3000 times.

by the attributes A1, A2. For illustration we choose the simple target class
f(c) ← A1(c) > 50. By varying k we operationalize the inaccuracy of the
knowledge about the separating hyperplane. In this experiment, A1 and A2

are numerical in the interval [0, 100], 100 random cases were in the case-base,
200 random test cases were used, and the experiment was repeated 3000
times. The mean accuracies for various values of k are depicted in figure 5.3.

The similarity measure that does not use any knowledge about the separating
hyperplane at all is equivalent to setting k to 0 or 100. In the experimental
results, knowing the exact position of the hyperplane boosts the classification
accuracy to nearly 100 %. However, the accuracy degrades rapidly if the
hyperplane is vaguely approximated by k. If k is only 4% off the correct value,
the virtual attributes has no positive effect anymore. Even worse, for certain



97

Figure 5.4: Three regions (X,Y, Z) defined by the concept boundary (solid
line) and the separating line described by an inaccurate virtual attribute
(dashed line).

values of k, the knowledge-rich similarity measure yields worse accuracy than
the similarity measure without the virtual attribute. Surprisingly, if k is very
wrong, the accuracy is as good as the knowledge-poor baseline.

Intuitive analysis:

Let us look at the effect of this virtual attribute more closely in order to
understand in which situations the accuracy is increased and when it is de-
creased. If the virtual attribute describes the concept boundary correctly, the
misclassifications at the concept boundary vanish, because the area of equal
similarity is cut off at the concept boundary. If the iso-similarity area around
a query is gradually increased until it includes a case from the case-base, it
is guaranteed that the area only increases on the correct side of the concept
boundary (unless there is no instance at all on the same side, but then a
misclassification will occur with any similarity measure).
If the virtual attribute describes a separating line slightly shifted from the
concept boundary, for a query three situations can occur:

1. If the query is in region Z (see figure 5.4), the estimated separating
line is between the query and the concept boundary. This is a good
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situation, because the query will be most similar to a case on the same
side of the concept boundary (in very extreme situations no case with
the same class might be on the same side of the virtual attribute, but
this will be very rare and will yield the same results as the standard
measure).

2. If the query is in region X, the separating line is on the other side of
the concept boundary. In this situation, a misclassification is possible,
if the increasing iso-similarity area reaches a case between the separat-
ing line and the concept boundary before it reaches a case with the
same class as the query. The probability of a misclassification increases
with the space between the separating line and the concept boundary
and inversely with the distance of the query to the concept bound-
ary. However, such a misclassification would also occur without the
virtual attribute. Even more so, if the space between separating line
and concept boundary is small enough so that no case is in it, some
misclassifications can be avoided that would occur with the standard
similarity measure. In such a situation the separating line discriminates
correctly between the negative and the positive cases in the case-base,
because then cases which contradict the separating line do not exist
in the case-base. This is reflected by the data points in figure 5.3 that
describe wrong separating lines very close to the correct value but are
still above the baseline of the standard similarity measure.

3. If the query is in region Y, additional misclassifications (as compared
to the standard similarity measure) can occur, because the query is
between the separating line and the concept boundary. In this situa-
tion, the increasing iso-similarity area can only hit same-classed cases
within the area between the separating line and the concept bound-
ary. If this area is small (relative to the case density), it is likely that
the iso-similarity area will hit a case only after it crossed the concept
boundary. Then a misclassification will occur. Interestingly, the proba-
bility of misclassifications decreases if the space between the separating
line and the concept boundary increases. This explains why in figure 5.3
the accuracy of similarity measures with very wrong virtual attributes
is not different from the standard similarity measure.

Obviously, in the second and third situation, the probability of misclassifi-
cations depends on the density of the cases in the case-base. For example,
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for low densities the probability for avoiding misclassifications in situation 2
increases, but the probability of additional misclassifications in situation 3
also increases.

In figure 5.5, we compare the accuracy of inaccurate virtual attributes for
different sizes of the case-base. The curve for a case-base with 100 cases
(CB100) is the same as in figure 5.3, additionally there are curves for case-
base sizes of 20 (CB20) and 500 cases (CB500). Apparently, the robustness
for slightly wrong virtual attributes is greater for low case densities. While for
CB100 the accuracy is only better than the baseline 1 if the virtual attribute is
about 3% wrong, for CB20 the accuracy is better even if the virtual attribute
is about 6% wrong. For CB500, the virtual attribute has to be less than 1.5%
wrong. On the other hand, the probability for additional misclassifications
in situation 3 is increased for low case densities which is shown by the fact
that the difference between the baseline and the lowest accuracy is biggest
for CB20 and lowest for CB500.

Formal analysis:

Formally estimating the effect of a binary virtual attribute in a similarity
measure is difficult, since even predicting the classification error of a standard
similarity measure at a vertical concept boundary in a two-dimensional space
has been shown to result in a non-closed formula by Ling and Wang (Ling &
Wang, 1997), so that is has to be approximated numerically. We adapt Ling
and Wang’s method to deal with additional binary virtual attributes. To
approximate the misclassification of a similarity measure with an inaccurate
virtual attribute, we consider again the three regions depicted in figure 5.4.
Region Z is the area partitioned by the virtual attribute which does not
include the concept boundary. Region Y is between the concept boundary
and the separating line introduced by the inaccurate virtual attribute. Region
X is the area of the concept that does not include the separating line.

For the formal analysis, we assume that the universe is spanned by two nu-
merical attributes, that cases are uniformly distributed with density λ, that
positive and negative cases are separated by an axis-parallel concept bound-
ary at A1 = k, and that all attributes in the similarity measure are weighted
equally. The analysis is for a given d1, which specifies the distance between

1The baseline is the similarity measure without a virtual attribute, which is equivalent
to setting k to 0 or 100.
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Figure 5.5: Accuracy of a similarity measure with the virtual attribute
Av(c)← A1(c) > k for the concept f(c)← A1(c) > 50 in a two-dimensional
universe for different case-base sizes. 20, 100 or 500 cases were in the case-
base, 200 test cases were used, and the setting was repeated 3000 times. Note
that the horizontal axis is stretched in the interval 40-60.
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Figure 5.6: Area of equal similarity around a query q in regionX. The concept
boundary is depicted by the solid vertical line. The separating line estimated
by the virtual attribute is depicted by the dashed vertical line.

the concept boundary and the separating line described by the virtual at-
tribute.
To estimate the number of misclassifications, we consider queries differently
depending on the region they are in. We approximate that queries in region
Z are classified correctly, since the area of equal similarity is cut off by the
virtual attribute before it goes over the concept boundary.
Misclassifications for queries in region X can be estimated as follows. A
misclassification for a query in X can only occur if the most similar case to
the query is in region B (see figure 5.6). Let p1 be the probability that at
least one case is in region B. Let p2 be the probability that no case is in
region C. Let S be the size of the universe.

p1 = 1−

(

1−
B

S

)S·λ

p2 =

(

1−
C

S

)S·λ

Then, the error rate at the query is

Eq =

∫ 100−k

0

p1 · p2 dd3.

The error introduced by a boundary with the length 1 is

EX =

∫ k

0

Eq dd2.

Now, the areas of A,B,C can be calculated as follows:
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Figure 5.7: Area of equal similarity around a query r in region Y . The concept
boundary is depicted by the solid vertical line. The separating line estimated
by the virtual attribute is depicted by the dashed vertical line.

C = π · (d2 + d3)
2 − (A+B)

A = (d2 + d3)
2ArcCos

(

d1 + d2

d2 + d3

)

− (d1 + d2) ·
√

(d2 + d3)2 − (d1 + d2)2

B = (d2 + d3)
2ArcCos

(

d2

d2 + d3

)

− d2 ·
√

((d2 + d3)2 − d2
2)− A

The misclassifications for queries in region Y can be estimated in a similar
way. Let p3 be the probability that at least one case is in region D (see
figure 5.7). Let p4 be the probability that no case is in region E.

p3 = 1−

(

1−
D

S

)S·λ

p4 =

(

1−
E

S

)S·λ

Then, the error rate at the query is

Er =

∫ k

0

p3 · p4 de1.

The error introduced by a boundary with the length 1 is

EY =

∫ d1

0

Er de2.
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Figure 5.8: Experimental and formal accuracy of a similarity measure with
the virtual attribute Av(c) ← A1(c) > k for the concept f(c) ← A1(c) > 50
in a two-dimensional universe. 100 cases were in the case-base (that is, λ =
0.01). For the experimental data 200 test cases were used, and the setting
was repeated 3000 times.

The areas of D,E, F can be calculated as follows:

D = (e1 + e2)
2 · ArcCos

(

e2
e1 + e2

)

− e2 ·
√

(e1 + e2)2 − e22

F = (e1 + e2)
2 · ArcCos

(

d1 − e2
e1 + e2

)

− (d1 − e2) ·
√

(e1 + e2)2 − (d1 − e2)2

E = π · (e1 + e2)
2 − (D + F )

EX and EY are weighted with the probability that the query is in them:

Etotal =
X

S
· EX +

Y

S
· EY

In figure 5.8 we compare the analytical results with the empirical results. The
curve from figure 5.3 is replotted in the interesting interval around the correct
value for k. The curve for the analytical Etotal (plotted as Accuracy=1−Etotal)
fits closely.
Both the formal and the experimental results suggest that similarity measures
can benefit from virtual attributes describing separating lines, even if the
knowledge is slightly inaccurate.
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Note that this analysis can be easily extended to settings in which the two
dimensions are weighted differently. In such a case, only the area calculations
have to be changed from circle segments to ellipse segments (cf. (Ling &
Wang, 1997)). Furthermore, the same formula holds for horizontal lines (cf.
(Ling & Wang, 1997)), so that misclassification rates for concepts that are
formed by axis-parallel boundaries can be calculated. We are investigating
the effect of virtual attributes on concepts with several boundaries in the
section on partial knowledge (section 5.2.3). For polygonal concepts whose
boundaries are not axis-parallel, the equations need to be modified to depend
on the angle α between the boundary and the horizontal axis (as proposed
by Ling and Wang (Ling & Wang, 1997) for standard similarity measures).

5.2.2 Inconsistent knowledge

Inconsistent knowledge means that different rules make different predictions
about the same fact. To evaluate the effect of inconsistent virtual attributes
on classification accuracy, we set up the following experiment: Again, we
have a universe spanned by two numerical attributes in the interval [0,100].
Positive and negative cases are separated by a simple vertical line at A1 =
50. We incorporate two virtual attributes in the similarity measure, which
both estimate the same concept boundary. By this we simulate the situation
that the knowledge about the concept boundary is inconsistent. The virtual
attributes are Av(c) ← A1 > k1 and Aw(c) ← A1 > k2. By varying k1 and
k2 we can operationalize various degrees of inconsistency. For example, if
k1 = k2, there is no inconsistency. If |k1 − k2| is small, the inconsistency is
also small.
In the experiments, we used 100 randomly generated cases in the case-base,
200 randomly generated test-cases and repeated the setup 3000 times. In
figure 5.9 the mean accuracies are plotted over k1 and k2. The baseline is the
accuracy for the standard similarity measure which is about 96.7%.
Most importantly, the results suggest that the accuracy is close to 100% if at
least one of the rules is correct. In this case, the other (inaccurate) rule does
not have a big effect. We analyzed this situation in an additional experiment,
where we kept k1 = 50 and varied only k2. The accuracy curve is depicted in
figure 5.10. First of all, the accuracy is always above 99.8% accuracy. More-
over, if k2 is far off the correct value, the accuracy is 100%. Only if k2 is
close to the correct value, the accuracy decreases slightly. On first sight, this
finding appears counterintuitive, as the accuracy is best if there is great in-
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Figure 5.9: Accuracy of a similarity measure with two virtual attributes
Av(c) ← A1(c) > k1 and Aw(c) ← A1(c) > k2 for the concept f(c) ←
A1(c) > 50 in a two-dimensional universe. k1 and k2 are sampled at intervals
of 5, except in the interval [45, 55] where data is sampled in intervals of 1.
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Figure 5.10: Accuracy of a similarity measure with a correct virtual attribute
Av(c)← A1(c) > 50 and an inaccurate virtual attribute Aw(c)← A1(c) > k2

for the concept f(c)← A1(c) > 50 in a two-dimensional universe. Note that
the accuracy of the standard similarity measure is much lower, at about 96.7.
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consistency, and the accuracy is lowest if the inconsistency is rather small. So
let us look at this finding in more detail. The fact that for very wrong values
of k2 the accuracy is almost 100% is closely related to the finding that very
inaccurate virtual attributes do not effect classification accuracy negatively
(see figure 5.3). Since the correct virtual attribute separates negative from
positive cases, the very wrong virtual attribute is in a homogeneous region,
that is, a region with cases that have equal classes. Thus, if k2 is far off, to
either side of it there are many equally classed cases, so that a misclassifica-
tion is unlikely. Only if k2 is close to the concept boundary and the correct
virtual attribute, the situation can arise that there is no case in region Y
between the inaccurate and the correct virtual attribute. If this happens, for
a query q within Y there will be no case that has the same values as q for the
virtual attributes. Thus, the area of equal similarity around q has to extend
over at least one of the separating lines specified by the virtual attributes.
This way, the negative and positive cases are not separated by the correct
virtual attribute anymore, and a misclassification is possible. However, since
the situation that Y is empty and that a query is located in Y is rare, the
decrease in average accuracy in figure 5.10 is only small.
Back to the experiment where both k1 and k2 are varied: If we assume that
both virtual attributes are inaccurate and k1 is different from k2, there can
be two situations: Either both separating lines are on the same side of the
concept boundary, or they are on different sides (see figure 5.11). With simi-
lar arguments as for inaccurate virtual attributes, we can treat queries in the
different regions of each situation. If both virtual attributes are on the same
side of the concept boundary, region A is a good region for queries (similar
to region Z in figure 5.4). The area of equal similarity has to go over two
separating lines before it reaches a case that has the wrong class. Also region
B is a good region for queries. Either there is a case in region B, then it has
the correct class, or there is no case in B. In the latter situation, the area
of equal similarity will have to extend over one or even two separating lines
before it reaches a case. Then there is the same probability for misclassifica-
tions as for the standard similarity measure. C is a bad region for queries, for
the same reasons as region Y in figure 5.4. If region C is small and contains
no case, there will be no misclassifications for queries in region D. However,
if there are cases in C, misclassifications for queries in D are possible.
If the virtual attributes are on different sides of the concept boundary, region
A and D are good regions for queries, as they are separated from the other
classes by a separating line. Regions B and C are prone to misclassifications



108 Enhancing Similarity Measures with Background Knowledge

Figure 5.11: Situations for two inaccurate virtual attributes. Either the sepa-
rating lines (dashed lines) described by the virtual attributes are on the same
side of the concept boundary (solid line) or they are on different sides.

for the same reasons as region Y in figure 5.4.

To further understand the effect of inconsistent virtual attributes, we plot
the accuracy of similarity measures with two virtual attributes, where one
virtual attribute is held constant and the other is varied. In figure 5.12 the
accuracy curves of three similarity measures are depicted. For the left curve
the constant virtual attribute was Au(c)← A1(c) > 20, for the middle curve
it was Av(c) ← A1(c) > 40, and for the right one Aw(c) ← A1(c) > 48. The
constant values of 20, 40, 48 were chosen because they represent values for
which the accuracy is similar to the standard similarity measure, worse than
the standard measure, and better than the standard measure, respectively
(refer to figure 5.3 to see the accuracy for measures with exactly one virtual
attribute). An additional virtual attribute Ax(c)← A1(c) > k2 was combined
with each of Au, Av, Aw, and the accuracy of these three similarity measures
is plotted over k2.

The curves are similar to the accuracy curve for one virtual attribute (see
figure 5.3). Note that the accuracy of using only the constant virtual attribute
is equivalent to setting k2 = 0 or k2 = 100, which serves as baseline in this
experiment. This way, we can analyze the effect of adding an inconsistent
virtual attribute Ax to the extended similarity measure. Intuitively, adding
an inconsistent virtual attribute to an already extended similarity measure
is similar to adding an inaccurate virtual attribute to a standard similarity
measure.

Obviously, the accuracy is increased for all measures if k2 is close to the
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Figure 5.12: Accuracy for a similarity measure with two virtual attributes,
where one attribute is held constant (A(c)← A1(c) > k with k = 20 on the
left, k = 40 in the middle, k = 48 on the right), and the other is varied as
Ax(c)← A1(c) > k2 with k2 plotted on the horizontal axis.

concept boundary. As already noted, even accuracy rates close to 100% are
possible if k2 is close to the correct value. Yet, also decrease in accuracy
is possible. To analyze the low accuracy situations, we have to distinguish
between the situation where both virtual attributes are on the same side of
the concept boundary and the situation where they are on different sides,
because obviously the accuracy curves are not symmetric with respect to the
position of the concept boundary. If both virtual attributes are on the same
side of the concept boundary (that is, k < 50), accuracy degradation only
occurs if the second virtual attribute is closer to the concept boundary than
the constant one. Furthermore, the degradation can only occur if the second
virtual attribute is close enough to the concept boundary (that is, it must be
in the valley in figure 5.3).
If the virtual attributes are on different sides of the concept boundary, the
same degradation valley as for single inaccurate virtual attributes occurs.

5.2.3 Partial and inaccurate knowledge

Partial knowledge can be visualized as gaps in the domain theory. In fig-
ure 5.13 a partial domain theory for a polygon-shaped concept is depicted.
The nodes correspond to attributes, and the arcs denote relationships, that
is, the more abstract attribute is derived from the more primitive attributes.
Observables (here X and Y ) are located at the bottom, the classification goal
is at the top, and in between are intermediate attributes. A domain theory
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Figure 5.13: A partial domain theory for describing a polygon-shaped con-
cept.

is partial if there are gaps. A gap in the bottom means that an intermediate
attribute is not fully defined (in the example, border4 has a gap in the defi-
nition, because it is not connected to any observable). If there is a gap in the
top, then the relation of an attribute to the classification goal is unknown (in
the example, the relation of the fully defined border3 to the concept polygon
is undefined). While gaps in the top of a domain theory can be bridged using
weight learning methods, gaps in the bottom can not easily be bridged. In
the following we use fully defined intermediate concepts as virtual attributes.

Intuitive analysis:

The effect of using a partial, but otherwise correct domain theory for deriving
nominal virtual attributes can best be seen with a concept that has more
than one boundary. In figure 5.14 (left) the misclassifications of a standard
similarity measure for a centered concept f(c)← (30 < A1(c)∧A1(c) < 70)∧
(30 < A2(c) ∧ A2(c) < 70) with the shape of a square in a two-dimensional
universe are depicted. For a centered, square concept, the optimal weight
setting is to weight both attributes equally (Ling & Wang, 1997). Thus, the
misclassifications depicted are the best that can be achieved with a standard
similarity measure. Unsurprisingly, the misclassifications occur around the
concept boundaries.

If we add a partial chunk of knowledge (i. e. a part of the domain theory as a
set of horn clauses) as the virtual attribute Av(c) ← 30 < A1(c) to describe
the left vertical concept boundary, the misclassifications at that boundary
vanish. Furthermore, the probability of additional misclassifications at the
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Figure 5.14: Misclassifications for the concept f(c)← (30 < A1(c)∧A1(c) <
70)∧ (30 < A2(c)∧A2(c) < 70) with a standard similarity measure (left) and
a similarity measure with the virtual attribute Av(c)← 30 < A1(c) (right).

line A1 = 30 above and below the concept is small (see figure 5.14 (right)).
This is a nice property as it allows to add partial knowledge chunks to ap-
proximate single target boundaries. Only at the corners where the horizontal
target boundaries hit the vertical line, additional misclassifications are pos-
sible. In section 5.2.4 we will argue empirically that such additional misclas-
sifications are so rare that they can be ignored (cf. (Ling & Wang, 1997) for
a similar argument).

Thus, adding partial (but otherwise correct) knowledge as virtual attributes
increases the classification accuracy monotonically. We have also shown this
in (Steffens, 2004c). Figure 5.15 depicts the classification accuracy of a sim-
ilarity measure with different numbers of partial, but correct virtual at-
tributes. The target concepts were centered and square-shaped of the form
f(c)← A1(c) > LOW ∧A1(c) < HIGH∧A2(c) > LOW ∧A2(c) < HIGH in
a universe spanned by two numerical attributes A1, A2 in the range [0,100].
(LOW,HIGH) was one of {(20, 80), (30, 70), (40, 60), (45, 55)}. 100 randomly
generated cases were in the case-base, 200 random test cases were used, and
3000 runs were performed. In the experiments the sequence in which virtual
attributes were added did not matter, so that only the number of virtual
attributes is plotted (and not their identity, e. g. ”left boundary and top
boundary”).

The results show that the effects of correct virtual attributes add up. For
these target concepts the optimal weight ratio was used (i. e. all attributes
were weighted equally), so that the standard similarity measure performs
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Figure 5.15: Accuracy of a similarity measure for different concepts with dif-
ferent numbers of concept boundaries described by correct virtual attributes.
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Figure 5.16: Accuracy of a similarity measure with different numbers of con-
cept boundaries described by virtual attributes with different degrees (in
percent of the correct value) of inaccuracy.

at its optimum. Still, with virtual attributes the accuracy was improved.
Differences between the concepts are due to the boundary length. The smaller
the concept area is, the smaller is the concept boundary and the smaller is
the probability of errors.

However, this experiment assumed that the virtual attributes were correct. In
order to test whether the effects of virtual attributes add up even if they are
inaccurate, we ran another experiment. We used the target concept f(c) ←
A1(c) > 30∧A1(c) < 70∧A2(c) > 30∧A2(c) < 70, and varied the inaccuracy
of the virtual attributes from 0 to 5% of the correct value. In figure 5.16 the
accuracy curves are plotted.

If the attributes’ inaccuracy is small (for example, 1 or 2%), the classifica-
tion accuracy increases as more virtual attributes are added. However, if the
attribute’s inaccuracy is within a certain interval (i. e. 4 or 5%), the classi-
fication accuracy degrades as more virtual attributes are incorporated. We
tested the classification accuracy curve for single inaccurate virtual attributes
for this concept, and it turned out that the degradation occurs for inaccu-
racy levels that are in the classification accuracy valley of single inaccurate
virtual attributes (see figure 5.3). Accordingly, if the attribute’s inaccuracy
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level is rather high (e. g. 20% off) (that is, in the value range for which single
inaccurate attributes perform like the baseline), the degradation does not
occur anymore, but the classification accuracy remains rather constant. This
means that both the positive and negative effects of virtual attributes add
up in a straight-forward way.

Formal analysis:

In order to describe the effect of partial knowledge formally, we extend our
calculation of the error rate from section 5.2.1. Remember that Etotal de-
scribes the error introduced by a unit-length boundary. Thus, the error rate
for a concept described by a n-sided polygon l1, l2, . . . , ln can be calculated
as

length(l1) · Etotal + length(l2) · Etotal + . . .+ length(ln) · Etotal

(cf. (Ling & Wang, 1997)).
For a concept boundary that is not described by any virtual attribute, Etotal

can be computed in the way originally proposed by Ling and Wang:

ELW = 2 ·

∫ ∞

0

(∫ ∞

0

(

1− e−λA1

)

· e−λA2dd3

)

dd2

where

A1 = ArcCos

(

d2

d2 + d3

)

(d3 + d2)
2 − d2 ·

√

(d3 + d2)2 − d2
2

A2 = π · (d3 + d2)
2 − A1

To experimentally validate these formal predictions, we varied the number
of virtual attributes and their inaccuracy. The target concept was f(c) ←
A1(c) > 40 ∧ A1(c) < 60 ∧ A2(c) > 40 ∧ A2(c) < 60, the virtual attributes
described the four concept boundaries. The number of virtual attributes in
the similarity measure was varied from 0 to 4. Furthermore, the inaccuracy
of the virtual attributes was varied: We ran experiments with correct virtual
attributes (inaccuracy of 0%), with attributes that were 2% off, and with
attributes that were 15% off. These values were chosen to reflect the situation
of partial, but correct knowledge (0% inaccuracy), of knowledge that is only
slightly inaccurate and increases classification accuracy (2% inaccuracy), and
of knowledge that is so inaccurate that it decreases classification accuracy
(15% inaccuracy). The classification accuracy curves for the formal prediction
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Figure 5.17: Experimental and formal accuracies for different numbers of vir-
tual attributes with inaccuracy levels of 0, 2, and 15%. The target concept
was in the shape of a centered square with side length 20. For the experi-
mental data, 100 random cases were in the case-base, 200 random test-cases
were used and 3000 runs were averaged.

and the experimental results are shown in figure 5.17. Apparently, for all
three situations, the corresponding curves fit to a certain degree. The formal
predictions are linear when plotted over the number of virtual attributes, and
also the experimental data suggest a linear function.

5.2.4 Conjunctions of virtual attributes

Describing a concept boundary with a nominal virtual attributes leads to the
fact that the boundary is approximated by a separating line that partitions
the whole instance space, even if the concept boundary is only short. As
we have mentioned in section 5.2.3, this can lead to misclassifications at
corners where the other concept boundaries intersect the separating line.
Even worse, such corners at intersections are multiplied if more than one
concept boundary is approximated with separating lines. In this subsection
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we investigate empirically whether such misclassifications can be avoided by
combining the virtual attributes into a conjuncted attribute if the target
concept is convex.
Assume there is a set of binary virtual attributes A1, A2, . . . , An that are used
to approximate n concept boundaries. If the target concept is convex, they
can be combined into another virtual attribute A(C)← A1∧A2∧ . . .∧An. If
this combined virtual attribute is added to the standard similarity measure
instead of the single Ai, the separating lines do not cross the whole instance
space but are constrained by the other separating lines. The prediction is
that the error rate is decreased (as compared to the measure with n vir-
tual attributes), because the instance space is not separated superfluously by
overlong separating lines.
Unfortunately, this prediction is not met by the experimental results. A
counter-example is the following setup. The target concept has again the
shape of a centered square with side length 40 in an instance-space spanned
by two numerical attributesA5, A6 with the range [0,100]. One similarity mea-
sure sim1 incorporates three correct virtual attributes A1(c) ← A5(c) > 30,
A2(c) ← A5(c) < 70, A3(c) ← A6(c) < 70. Another similarity measure sim2

incorporates only the combined virtual attributeA(c)← A1(c)∧A2(c)∧A3(c).
With the usual setup of 100 cases in the case-base, 200 test cases, 3000 runs,
and equal weights the accuracies are 98.6177 (standard error 0.1804) for sim1

and 98.6278 (standard error 0.1793) for sim2. The difference (for N=3000) is
not significant in a two-tailed t-test (p=0.689). We believe this is due to the
fact that the additional misclassifications introduced by overlong separating
lines are very rare. This is in line with arguments in (Ling & Wang, 1997)
and is a promising result for the use of partial virtual attributes describing
concept boundaries.

5.2.5 Experiments with real-world data

The domain of the previous sections allowed us to vary the inaccuracy and
partialness of the domain theory. However, since the domain was handcrafted
and simple, we ran additional experiments with real-world data from the
UCI Machine Learning Repository (Blake & Merz, 1998). We used a data
set that provides an imperfect domain theory. Note that some data sets in
the repository come along with perfect domain models, as the instances were
created by those models. However, in this thesis we use only data sets whose
domain theories are imperfect.
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Figure 5.18: The structure of the domain theory of the JCS domain. Nodes
denote attributes, arcs denote relations. The leaf nodes are observables, the
top node is the classification goal. The attributes in between are intermedi-
ates.

We presented preliminary results already in (Steffens, 2004b) and (Steffens,
2005c) and will extend them here.

The Japanese Credit Screening (JCS) domain provides 124 cases of credit
applications. There are 5 binary, 5 linear, and the binary target attribute
(whether the credit was granted or not). The JCS domain comes with a do-
main theory that was created by interviewing domain experts. Since such
knowledge acquisition is difficult, the theory is imperfect and classifies only
100 of the 124 cases correctly. The theory consists of PROLOG predicates
specifying 7 binary intermediate concepts, ranging from simple conjuncted
observables (e. g. jobless male) to complex concepts using arithmetic (e. g.
numberMonths · monthlyPayment > bankDeposit). The structure of the the-
ory is depicted in figure 5.18. All intermediate concepts are related to the
goal and are completely defined, so that all intermediates were treated as
candidates for virtual attributes.

Most of the intermediate concepts process several observables. For example,
rejected age unstable work processes the observables age and number years2:

2This attribute denotes the number of years that the applicant worked at the same
company.
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Figure 5.19: Number of correct classifications of similarity measures con-
taining different virtual attributes. In experiment 1, virtual attributes were
weighted with 1, in experiment 2 with 10. The case-base contained 124 cases.

rejected_age_unstable_work(S) :-

age_test(S, N1),

59 < N1,

number_years_test(S, N2),

N2 < 3.

To generate a similarity measure for the JCS domain, one or all intermediates
were added as virtual attributes. In the first experiment all attributes were
weighted equally. In the second round the virtual attributes were weighted
ten times greater than the observables, because in the first round the virtual
attributes were overshadowed by the large number of observables. Thus we
chose the weight that makes the virtual attribute as heavy as the observables
together. The classification accuracies of the resulting measures were achieved
using the leave-one-out design (S. M. Weiss & Kulikowski, 1991). That is,
each of the cases in the case-base is selected as query once and the others are
used to predict its class. The accuracies are depicted in figure 5.19.
The results suggest that adding intermediate concepts as virtual attributes
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can indeed improve the classification accuracy, when compared to the stan-
dard similarity measure that does not use intermediates. This supports our
finding in the artificial domain that imperfect knowledge used as virtual at-
tributes can increase classification accuracy. Unfortunately, the accuracies
are worse than the accuracy of the domain theory alone. Furthermore, some
intermediate concepts did not improve the baseline. This means that we have
to find methods to select good intermediates from the domain theory.
In the next chapter we will show how to select intermediates so that the
classification accuracy is even more increased.

5.3 Numerical matching knowledge

5.3.1 The virtual attribute method and the equiva-
lence method

Numerical matching knowledge defines regions in the instance space in which
cases are believed to be classified identically. These regions are defined by in-
tervals on the attributes. Vagueness of numerical matching knowledge means
that the positions of the onset and offset of the interval are not precisely
known. If a value is selected, it is likely to be inaccurate.
Remember that numerical matching knowledge can be incorporated with the
equivalence method and with the virtual attribute method. We compare the
effects of these two incorporation methods by assuming inaccurate knowledge
about the expanse of the concept on attribute A1.
For the experiments, the concept is (for making weighting transparent) again
a centered square, more precisely f(c)← A1 > 30∧A1 < 70∧A2 > 30∧A2 <
70. According to the equivalence method, the local similarity function for A1

is

d1(cn, cm) =

{

1 : iff A1(cn) ∈ R ∧ A1(cm) ∈ R

(1− |A1(cn)−A1(cm)|
range(A1)

)2 : else

where R is defined as [50 − k, 50 + k], 0 ≤ k ≤ 50 (to allow for variation of
inaccuracy via k). That means, that the center of the estimated interval is
in the center of the concept, and its range can be varied via k.
The virtual attribute method defines an attribute A3 ← A1 > 50− k ∧A1 <
50 + k and adds it to the standard similarity measure in the usual way.
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Figure 5.20: Comparison of the equivalence method and the virtual attribute
method for numerical matching knowledge (accuracy is given as number of
correctly classified cases, not in percent).
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Figure 5.20 depicts the accuracies of the equivalence method and the virtual
attribute method for the concept f(c). Apparently, the two methods are not
equivalent, although they use the same knowledge. But since the assumptions
of the two incorporation methods are different, also their effect on classifi-
cation is different. The equivalence method increases classification accuracy
as long as the estimated interval is inside the concept (the baseline of the
standard similarity measure is equivalent to using an interval length of 0).
As soon as k is greater than 20 (i. e. the interval length is 40), the accuracy
decreases rapidly. And for large intervals, the accuracy is dramatically worse
than the baseline. Practically this means that when in doubt a CBR designer
should tend to use smaller intervals for the equivalence method.
The behavior of the virtual attribute method is different. It does not increase
monotonically for lengths smaller than 20 as the equivalence method does.
That is, if the estimated interval is small, the accuracy is decreased. How-
ever, the maximum of its accuracy curve is the same as for the equivalence
method. The virtual attribute method is more robust against very inaccurate
knowledge in the form of large intervals. Its minimal accuracy is significantly
better than the minimal accuracy of the equivalence method.
It is apparent that the equivalence method increases accuracy even if the
estimated interval for A1 is not even close to the concept boundaries for A1.
So how does this accuracy increase come about? Setting the local similarity
of all values in interval R ⊂ A1 to 1 is equivalent to infinitely stretching
dimension A1 in R. This again is equivalent to using a local weight of 0 for
A1 in interval R. Thus, the decision of whether a query is in the concept or
not is based on the other attributes, in this case A2. This means, that if R is
completely inside the target concept, the accuracy is increased, because A1

is irrelevant for queries in R and only the other attributes are used.
The above experiment is satisfying for estimating the effects of the length of
the estimated interval. However, its setup may appear artificial, as it assumes
that the estimated interval is centered at the center of the target concept.
Thus, in the following experiments, the onset of the interval is varied, while
its length is held constant.
Figure 5.21 shows the accuracy of the two incorporation methods for the
same target concept as before. However, this time the length of the esti-
mated interval is held constant, and the onset of the interval is varied. Both
incorporation methods have peaks if the onset or the end of the interval
touches a concept boundary. This is due to the fact that misclassifications
on the side of the boundary where the interval is are improbable. Since cases
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virtual attribute method.
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with the same class already have a local similarity of 1 for A1 (in the equiva-
lence method) or an additional local similarity of 1 if they are in the interval
(in the virtual attribute method), it is very probable that a case is retrieved
that has the same class as the query.

As in the previous experiment, the equivalence method yields good accura-
cies as long as the interval is completely within the concept. However, if the
interval goes over a concept boundary, the accuracy drops dramatically. In
contrast, for the virtual attribute method the difference between the min-
imum and maximum accuracy is small, but the peaks are restricted to be
around the concept boundaries.

Both incorporation methods perform best if the interval boundaries touch
the concept boundaries. This finding is in line with the previous experiment.
The reason for this is that cases that are on opposite sides of the concept
boundary will be less similar than cases that are on the same side of the con-
cept boundary, because of the equivalence or the additional virtual attribute,
respectively.

5.3.2 Matching knowledge for distributed concepts

Distributed concepts are those that have at least two unconnected regions
in the instance space. Such concepts are due to disjunctions in their defini-
tion (Ragavan & Rendell, 1991). Disjunctive concepts are problematic be-
cause they contradict the assumption of similarity-based classification which
is that neighboring regions tend to be classified identically (continuity as-
sumption, e. g. (Matheus, 1991)). Furthermore, disjunctive concepts tend to
have longer boundaries for the same concept volume. Since misclassifications
occur at concept boundaries (Ling & Wang, 1997), for disjunctive concepts
classification accuracy is low. In this section we show how virtual attributes
and matching knowledge can be applied to distributed concepts.

In our experiments we found that the benefit of both incorporation methods
depends on how much overlap there is between the projections of the concept
parts onto the axes. An example for a concept that has two non-overlapping
parts is f1(c) ← (20 ≤ A1(c) ≤ 40 ∧ 20 ≤ A2(c) ≤ 40) ∨ (60 ≤ A1(c) ≤
80 ∧ 60 ≤ A2(c) ≤ 80)3. The projections on both dimensions A1, A2 do not
overlap (see figure 5.22 (left)). With our standard setting of 100 cases in the

3For readability’s sake we combine the comparison operators slightly different from the
definition of our domain language, and do not use one literal per comparison operator.
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Figure 5.22: Concepts where the projections of the disjunctive parts onto the
axes do not overlap (left) or overlap on A1 (right).

Table 5.1: Accuracies of different similarity measures for a non-overlapping
disjuncted concept.

Measure Accuracy Deviation

standard 95.40 % 1.75
with virtual attributes Av,1(c) and Av,2(c) 96.94 % 1.65
with virtual attribute Aw(c) 96.14 % 1.68
with intervals [20, 40] and [60, 80] on A1 96.69 % 1.70
with interval [20, 80] on A1 88.47 % 2.62

case-base, 200 test cases, 5000 runs and equal weights, different similarity
measures yield the accuracies shown in table 5.1.
The virtual attributes are defined as follows:

Av,1(c)← 20 ≤ A1(c) ≤ 40 and Av,2(c)← 60 ≤ A1(c) ≤ 80

Aw(c)← 20 ≤ A1(c) ≤ 80

The intervals are incorporated using the equivalence method for numerical
attributes. All measures are pairwise significantly different (p < 0.001 in a
two-tailed t-test).
The measure using the virtual attributes Av,1, Av,2 yields a better accuracy
than the standard measure, because misclassifications will only occur at
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Table 5.2: Accuracies of different similarity measures for an overlapping dis-
juncted concept.

Measure Accuracy Deviation

standard 95.29 % 1.81
with virtual attributes Au,1(c) and Au,2(c) 95.54 % 2.09
with virtual attribute Ar(c) 96.95 % 1.81
with intervals [35, 55] and [45, 65] on A1 94.63 % 1.88
with interval [35, 65] on A1 93.16 % 2.03

the horizontal boundaries. However, since the vertical boundaries are rather
short, the difference to the standard measure is not very large.
Surprisingly, even the measure using the inaccurate virtual attribute Aw is
significantly better than the standard measure. They prevent misclassifica-
tions at the boundaries A1 = 20 and A1 = 80 and obviously do not introduce
too many additional misclassifications. In contrast, if the equivalence method
uses the interval from 20 to 80, the accuracy decreases drastically. This is
due to the fact that the important attribute A1 is basically made irrelevant
in the interval 20 to 80, so that many misclassifications (in and outside the
concepts) are introduced in that interval. However, if the interval is split into
[20, 40] and [60, 80], the accuracy is almost as good as the accuracy of the
measure with Av,1, Av,2.
Let us now consider a concept, where the projections of dispersed parts onto
A1 overlap. The test concept is f1(c) ← (35 ≤ A1(c) ≤ 55 ∧ 20 ≤ A2(c) ≤
40) ∨ (45 ≤ A1(c) ≤ 65 ∧ 60 ≤ A2(c) ≤ 80). Obviously, the two disjuncted
parts overlap in the interval A1 = [45, 55] if projected onto A1 (see figure 5.22
(right)). Again, we tested several similarity measures (see table 5.2).
The virtual attributes are defined as follows:

Au,1(c)← 35 ≤ A1(c) ≤ 55 and Au,2(c)← 45 ≤ A1(c) ≤ 65

Ar(c)← 35 ≤ A1(c) ≤ 65

Most apparently, the measure using two virtual attributes, which performed
best for the non-overlapping concept, now performs only slightly better than
the standard measure. The difference is still significant (p=0.001). The de-
creased impact is due to the fact that both virtual attributes now separate
even cases that belong to the same concept part, because the line that ap-
proximates one part’s boundary goes through the other concept part. The



126 Enhancing Similarity Measures with Background Knowledge

measure that uses only one virtual attribute now performs better than the
one with two virtual attributes, because all members of the concepts share
the same value for Ar. Both similarity measures achieve higher accuracies
than the standard measure, because they prevent misclassifications at the
outer concept boundaries at A1 = 45 and A1 = 65.
As another difference to the non-overlapping concept, the measure with two
intervals now performs worse than the standard measure. This is due to the
fact that in both intervals there are two vertical concept boundaries (A1 = 55
in [45, 65] and A1 = 45 in [35, 55]) which are ignored due to the equivalence
statements.
Summarizing, both the virtual attribute and the equivalence method work
better if the projections of the distributed concept parts onto the axes do
not overlap.

5.4 Nominal Matching Knowledge

The incorporation method for nominal matching knowledge introduced in
section 4.2.2 states the equivalence of two nominal attribute values. In sec-
tion 5.4.1 we will investigate how this method performs if the attribute’s
domain has more than two values. In section 5.4.2 the attribute’s domain
has exactly two values. In section 5.4.3 we compare the virtual attribute
method to the equivalence method. In all sections we investigate the effect
of correct and of wrong knowledge both formally and empirically.

5.4.1 Equivalence of individual values

Empirical experiments

With our approach two attribute values can be treated as equivalent if the
target concept is disjunctive regarding these attribute values. Consider a
universe spanned by the attributes A1 = {a, b, c, d}, A2 = {w, x, y, z} and
the concept f(c) ← (A1(c) = a ∨ A1(c) = b) ∧ A2(c) = w. It is apparent,
that there is no difference between a and b in this concept definition. Thus,
our hypothesis is that adding the matching knowledge rule a ≡ b into the
similarity measure can increase accuracy.
In real world scenarios, the concept definition will certainly not be available in
a perfect form. If a partial domain theory contains a disjunction of two values
of an attribute, it is worth investigating whether stating the equivalence of
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Figure 5.23: A concept in a two-dimensional universe, spanned by nominal
attributes with a domain of four possible values. Squares that are filled with a
+ denote members of the concept. The attribute values a and c are equivalent,
just as b and d, and all values of A2.

the two disjuncted values is justified. Assume that a concept is conceptualized
in the form

g(c)← (Av(c) ∧ A2(c) = d) ∨ Aw(c)

Av(c)← A1(c) = a ∨ A1(c) = b

and Aw(c) is undefined. Although keeping in mind that the knowledge is
partial, there is no evidence that a and b should not be treated as equivalent.
Yet, if additionally Aw(c) ← A1(c) = a ∧ ¬(A2(c) = d) is known, this is a
hint that the equivalence of a and b is not justified, since only a is used in the
definition of Aw. However, from the knowledge engineer’s point of view, it is
also possible that the definition of Aw is incorrect, and should in reality be
Aw(c)← (A1(c) = a ∨ A1(c) = b) ∧ ¬(A2(c) = d). Hence, when dealing with
incomplete domain knowledge, there are many uncertainties. Analyzing the
effect of incorrect equivalences in similarity measures is a first step to learn
to handle such uncertainties.
Let us assume that for the target concept, the values a, b ∈ Ai are indeed
equivalent. A possible concept is depicted in figure 5.23.
With the standard un-weighted similarity measure for nominal attributes and
a case-base I, a query q in an n-dimensional universe is classified correctly
wrt. target attribute At, iff
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• a) the query is in the case-base: q ∈ I, or

• b) the query is not in the case-base and all those cases in the case-base
that differ in exactly one attribute from the query have the correct
class: ∀c : (∃!i,∀j : Ai(c) 6= Ai(q) ∧ (i 6= j → Aj(c) = Aj(q))) →
At(c) = At(q), or

• c) the query is not in the case-base, there are no cases that differ in
exactly one attribute from the query, and all cases in the case-base that
differ in exactly two attributes from the query have the correct class:
¬∃c : (∃!i,∀j : Ai(c) 6= Ai(q) ∧ (i 6= j → Aj(c) = Aj(q))) → At(c) =
At(q) and ∀c : (∃!h,∃!i,∀j : Ah(c) 6= Ah(q) ∧ Ai(c) 6= Ai(q) ∧ (h 6=
i ∧ j 6= i ∧ j 6= h→ Aj(c) = Aj(q)))→ At(c) = At(q)

• d) there are no cases that differ in exactly two attributes from the query,
and all cases in the case-base that differ in exactly three attributes from
the query have the correct class, and so on...

With an un-weighted similarity measure that states the equivalence of a ∈ Ai

and b ∈ Ai, a query is classified correctly, iff

• a) the query itself is in the case-base: q ∈ I, or

• b) the query is not in the case-base and there is a case in the case-base
that differs from the query only in that one has value a for attribute
Ai, and the other has value b and has the correct class: ∃c ∈ I : Ai(c) ≡
Ai(q) ∧ ∀j : j 6= i→ Aj(c) = Aj(q) or

• c) all those cases in the case-base that differ in exactly one attribute
from the query have the correct class: ∀c : (∃!i : (¬(Ai(c) ≡ Ai(q))∧∀j :
(i 6= j → Aj(c) = Aj(q)))→ At(c) = At(q), or

• d) the above conditions do not hold and all cases in the case-base that
differ in exactly two attributes from the query have the correct class,
and so on...

That is, the effect of using an equivalence in a similarity measure is that
the probability that an appropriate case is in the case-base is increased.
For example, for maximal similarity it is not necessary that the query is
included in the case-base. Rather, a case that differs from the query only in
that it has an equivalent value for Ai will yield the maximal similarity. This
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Figure 5.24: Accuracies of similarity measures that use correct, wrong, or no
knowledge about equivalence.

finding is reminiscent to the result of (Ragavan & Rendell, 1991) for matching
symmetrical tic-tac-toe board configurations. They stated the worth of the
additional knowledge in terms of additional training instances.
In an experiment we analyze the difference between the standard similarity
measure s, a measure sc that uses a correct equivalence, and a measure sw

that uses a wrong equivalence. As the most basic set-up, we investigate the
concept f(c)← A1(c) = a0∨A1(c) = a1 in an n-dimensional universe spanned
by the attributes A1 = {a0, a1, a2, a3} and A2, A3, . . . , An which all have the
domain size 4. sc uses the equivalence a0 ≡ a1, and sw uses the equivalence
a0 ≡ a2. We varied the number of dimensions and used a case-base that was
filled to a quarter.The accuracies for the various conditions are depicted in
figure 5.24.
Most apparently, using wrong knowledge about the equivalence of two at-
tribute values is disastrous in this experiment. Although the accuracy re-
mains rather stable when the number of dimensions is increased, it is always
much lower than the accuracy of the standard similarity measure. Fortu-
nately, using correct knowledge boosts the accuracy considerably.
In another experiment, we analyze the effect of nominal matching knowledge
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Figure 5.25: Hierarchy of nucleotides.

on a real-world data-set from the UCI Machine Learning Repository (Blake
& Merz, 1998). In the ”Promoter Gene Sequence” (PGS) data-set, there are
106 cases of promoter sequences, represented as strings of 57 nucleotides.
For each case it is known whether it is a promoter gene or not. Nucleotides
can be arranged in a hierarchy depicted in figure 5.25. The standard sim-
ilarity measure will specify the similarity of identical nucleotides as 1, and
of different nucleotides as 0. For the knowledge-rich similarity measure we
use the equivalence A ≡ G and T ≡ C. In a leave-one-out evaluation the
standard similarity measure classifies 81 sequences correctly. Unfortunately,
the knowledge-rich similarity measure classifies only 69 cases correctly. This
degradation in classification accuracy is probably due to the fact that in-
terpreting nucleotides that have a common father-node as equivalent is not
appropriate for such a hierarchy. Although the nucleotides A and G might
be more similar to each other than to T or C, stating their equivalence is
too strong an assumption. Instead, the similarity between A and G should
be stated as somewhere between 0 and 1.

Inspired from (Bergmann, 1998), we modified the integration of nominal
matching knowledge into similarity measures, to allow for such a statement.
The local similarity measure introduced in section 4.2.2 is modified as follows:

di(cn, cm) =







1 : iff Ai(cn) = Ai(cm)
γ : iff Ai(cn) 6= Ai(cm) ∧ Ai(cn) ≡ Ai(cm)
0 : else

For γ = 0.5 the classification accuracy increases to 87 cases. However, choos-
ing a value for γ is similar to adjusting similarity values for nominal attributes
as described in (Surma, 1994). Since this is a kind of distributional knowl-
edge, fixing the value for γ is out of the scope of this thesis.
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Formal analysis

In order to formally analyze the effect of adding an equivalence statement to
a similarity measure, we adapt the average-case analysis for standard sim-
ilarity measures by (Okamoto & Yugami, 2000) and extend it to similarity
measures that use equivalence statements. The analysis assumes nominal at-
tributes and a uniform distribution of the cases. The accuracy of a similarity
measure for a classification f is calculated as a function of the following
domain characteristics:

• n: the number of cases in the case-base (sampled independently of each
other)

• r: the number of relevant attributes (used to define the concept)

• i: the number of irrelevant attributes

• l: the number of attribute values

• ψf (d): Number of pairs of cases that have similarity d to each other and
have the same class if the query does not have one of the equivalence
values

• ψ′
f (d): Number of pairs of cases that have similarity d to each other

and have the same class if the query has one of the equivalence values

For sake of exposition, it is assumed that all attributes have the same domain
size l. Any classification can be analyzed (e. g. disjunctive, conjunctive, or
threshold classifications) by characterizing it by ψf (d) and ψ′

f (d). For better
readability, we will not use all domain characteristics as parameters of the
accuracy function, but implicitly assume them.
Our analysis is for a similarity measure that states the equivalence of two
values la, lb ∈ Ae for an attribute Ae. In our analysis it is not necessary that
this equivalence of the two values is reflected in the classification. In other
words, our analysis handles both situations of correct and wrong equivalence
statements. Let the universe U(A) be spanned by the m = r + i attributes.
Let S ⊂ U(A) denote the set of cases {c | Ae(c) = la ∨ Ae(c) = lb}, that is,
the set of cases that have one of the values used in the equivalence statement.
The target classification f is characterized by ψf (d) and ψ′

f (d), the number
of pairs of cases that belong to the same class and have distance d to each
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other:

ψ′
f (d) = |{〈c1, c2〉 | f(c1) = f(c2) ∧ s(c1, c2) = d ∧ c1 ∈ S}|

ψf (d) = |{〈c1, c2〉 | f(c1) = f(c2) ∧ s(c1, c2) = d ∧ c1 /∈ S}| ,

where c1, c2 ∈ U(A). Let Ψf (c) be the set of cases that belong to the same
class as c:

Ψf (c) = {c′ ∈ U(A) | f(c) = f(c′)}.

According to our assumptions, each case is drawn with the same probability
from the universe. We represent the distribution of cases as

p(c) =
1

|U(A)|
=

1

lm
.

A query q is classified correctly, if a case t is retrieved that has the same class
as the query. Thus, the classification accuracy for any f can be expressed as:

A(n) =
∑

q∈U(A)

p(q) ·
∑

t∈Ψf (q)

Pnn(t|n, q),

where Pnn(t|n, q) is the probability that case t is selected as nearest neighbor
for query q if the case-base contains n cases. Let d (0 ≤ d ≤ m) be the
distance from an arbitrary query to its nearest neighbors. Then, Pnn(t|n, q)
can be split into two components:

Pnn(t|n, q) = P
′′d
nn(d|n, q) · P q

nn(t|d),

where P
′′d
nn(d|n, q) is the probability that the nearest neighbor has similarity

d to an arbitrary query q, and P q
nn(t|d) is the probability that among those

nearest neighbors case t is selected (we assume here that ties are broken
randomly).
Now, according to our classification algorithm if s(q, t) 6= d then P q

nn(t|d) = 0.
Thus, we can rewrite the accuracy function as

A(n) =
∑

q∈U(A)

p(q) ·
∑

t∈Ψf (q)

P
′′d
nn(d|n, q) · P q

nn(t|d)

=
1

lm

∑

q∈U(A)

m
∑

d=0

P
′′d
nn(d|n, q) ·

∑

t∈φf (q,d)

P q
nn(t|d),
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where
φf (q, d) = {t ∈ Ψf (q) | s(q, t) = d} .

The next step is to express P
′′d
nn(d|n, q) as a function of the domain character-

istics. The number of cases with similarity d to query q depends on whether
q has one of the equivalence values or not. We could use q as parameter
to these functions, but since we want to express the accuracy function in a
global way independent of individual queries, we define two functions, one
for q ∈ S and one for q /∈ S. In the following, functions that assume q ∈ S
will have an apostrophe ′. If q /∈ S, the number of cases with similarity d to
query q is

Ndis(d) =

(

m

d

)

(l − 1)m−d

If q ∈ S, the number of cases with similarity d to query q is

N ′
dis(d) =

(

m− 1

d

)

(l − 1)m−d−1 · (l − 2) +

(

m− 1

d− 1

)

(l − 1)m−d · 2

In other words, if the query does not have one of the equivalence values,
there are

(

m
d

)

ways to choose attributes in which the query and the case
are identical. Multiplied with the ways in which the case can differ on the
m− d other dimensions (by having for each attribute one of the l− 1 values
that are different from the query’s value), it yields the number of cases that
have similarity d to the query q. If the query has one of the equivalence
values, the similarity is more complicated. The first summand handles the
situation that the case has identical values for other attributes than Ae.
That is, d attributes can be chosen from the remaining m − 1 attributes.
Accordingly, the combinations in which the case differs has to be adapted:
On the attributes that are neither Ae nor included in the d attributes, there
are l − 1 possibilities to differ. For attribute Ae there are l − 2 possibilities
to differ, since the two values la and lb have to be excluded. The second
summand handles the situation that case and query are identical in d − 1
attributes and identical or equivalent in Ae. Accordingly, there are d−1 ways
to select the attributes from the m − 1 attributes excluding Ae. The factor
2 expresses that there are two ways to have similarity 1 for attribute Ae, by
identity and by equivalence.
From our assumption of uniform distribution, it follows that the probability
that an arbitrary case has similarity d from q is

Pdis(d) =
1

lm
·Ndis(d)
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if q /∈ S, and else

P ′
dis(d) =

1

lm
·N ′

dis(d).

Summing over d, the probability that an arbitrary case has a similarity
smaller than d from q is:

Pout(d) =
d−1
∑

e=0

Pdis(e)

if q /∈ S, and else

P ′
out(d) =

d−1
∑

e=0

P ′
dis(e).

Let us consider the situation that there are x nearest neighbors for q with
similarity d and n− x cases with a smaller similarity. The probability of this
situation is

P n
nn(d, x|q, n) =

(

n

x

)

· Pdis(d)
x · Pout(d)

n−x,

if q /∈ S, or

P
′n
nn(d, x|q, n) =

(

n

x

)

· P ′
dis(d)

x · P ′
out(d)

n−x

if q ∈ S.
Hence, the aforementioned probability that the nearest neighbor has similar-
ity d to an arbitrary query q is

P d
nn(d|n, q) =

n
∑

x=1

P n
nn(d, x|q, n) =

n
∑

x=1

(

n

x

)

Pdis(d)
x · Pout(d)

n−x

if q /∈ S, and

P
′d
nn(d|n, q) =

n
∑

x=1

P
′n
nn(d, x|q, n) =

n
∑

x=1

(

n

x

)

P ′
dis(d)

x · P ′
out(d)

n−x

if q ∈ S.
Now, we rewrite the accuracy function by splitting the sum over all cases
into two sums, one sum for the cases in S and one for the other cases:

A(n) =
∑

q /∈S

p(q)
m
∑

d=0

P d
nn(d|n, q)

∑

t∈Ψf (q,d)

P q
nn(t|d)+



135

∑

q∈S

p(q)
m
∑

d=0

P
′d
nn(d|n, q)

∑

t∈Ψf (q,d)

P
′q
nn(t|d)

=
m
∑

d=0



P d
nn(d|n, q) ·

1

lm
·
∑

q /∈S

∑

t∈Ψf (q,d)

P q
nn(t|d)



+

m
∑

d=0



P
′d
nn(d|n, q) ·

1

lm
·
∑

q∈S

∑

t∈Ψf (q,d)

P
′q
nn(t|d)



 .

In this equation, let us define

Pf (d) =
1

lm

∑

q /∈S

∑

t∈Ψf (q,d)

P q
nn(t|d)

and

P ′
f (d) =

1

lm

∑

q∈S

∑

t∈Ψf (q,d)

P
′q
nn(t|d)

which clearly denotes the probability that a pair of cases belongs to the same
class if they have similarity d to each other.
These probabilities can also be expressed as

Pf (d) =
1

lmNdis(d)
ψf (d)

and

P ′
f (d) =

1

lmN ′
dis(d)

ψ′
f (d).

That is, the accuracy function can be expressed as

A(n) = h1 ·

m
∑

d=0

P d
nn(d|n, q) · Pf (d) + h2 ·

m
∑

d=0

P
′d
nn(d|n, q) · P ′

f (d),

where h1 = 1
lm
· (l − 2) · lm−1 and h2 = 1

lm
· 2 · lm−1 are the number of cases

that do not or do have one of the equivalence values, respectively.
Future work will have to analyze the effects of multiple equivalence state-
ments. In section 5.4.2 we analyze multiple equivalence statements for binary
attributes.
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Figure 5.26: Comparison of accuracies obtained by experiments and by the
formal analysis. Left: target concept is f1(c) ← A0(c) = a1 ∨ A0(c) = a2.
Right: target concept is f2(c)← (A0(c) = a1 ∨ A0(c) = a2) ∧ A1(c) = b1.

Empirical validation of the formal analysis

In order to test our assumptions and the analysis, we compare the accuracies
obtained by experiments and by the formulas. First, we test two concepts
in a universe spanned by the nominal attributes A0, A1, A2, A3, where each
attribute has four possible values. The first concept is f1(c) ← A0(c) =
a1 ∨ A0(c) = a2 and the second is slightly more complex: f2(c) ← (A0(c) =
a1 ∨ A0(c) = a2) ∧ A1(c) = b1. The same similarity measure is used for both
concepts and uses the correct equivalence statement a1 ≡ a2 for the local
similarity of attribute A0.
As depicted in figure 5.26, the formal results match the empirical ones so
closely that the lines are hard to discern. As a general result, the accuracy
increases monotonically if the number of cases in the case-base is increased.
Furthermore, the second (more complex) concept is approximated slightly
better. We believe that this is due to the fact that in the second concept the
entropy is smaller.
In our next experiment, the similarity measure uses a wrong equivalence
statement. We use the concept f1(c) again, but the similarity measure now
states that a1 ≡ a3. Note that the only parameters that are different from
the analysis with correct knowledge are the ψ′

f (d) values. Figure 5.27 shows



137

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Number of cases in case-base (n)

60,0

62,0

64,0

66,0

68,0

70,0

72,0

M
ea

n
a
c
c
u
ra

c
y

empirical

formal

Figure 5.27: Comparison of accuracies obtained by experiments and by the
formal analysis if the similarity measure uses a wrong equivalence statement.

the accuracies of the formal analysis and the empirical evaluation. Again, the
curves match closely.

5.4.2 Stating irrelevance of an attribute

A special application of matching knowledge is to code the irrelevance of an
attribute Ai. For numerical attributes this can be achieved by defining the
whole domain of the attribute as the interval of equivalence, that is, R = Ai.
For nominal attributes, this can be achieved by stating the equivalence of all
possible value pairs of that attribute, that is, ∀am, an ∈ Ai : am ≡ an.

Correct matching knowledge:

Stating the irrelevance of an attribute via matching knowledge yields equiva-
lent results to setting the attribute’s weight to 0. The impact of filtering irrel-
evant attributes is already well-researched (e. g. (Aha, 1992; Wettschereck et
al., 1997)). However, for completeness’ sake we conducted some experiments
to investigate the performance of using nominal matching knowledge to state
the irrelevance of attributes. In these experiments, we used 50% of all pos-
sible cases in the case-base. The universe was spanned by n = r + i binary
attributes, of which r ∈ {1, 2, 3, 4, 5} were relevant (that is, they were used
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Figure 5.28: Accuracies of the standard similarity measure and of stating
the irrelevance of an attribute via equivalence in a universe spanned by bi-
nary attributes. One attribute is irrelevant, the case-base contains 50% of all
possible cases.

to define a random conjunctive concept) and i ∈ {1, 2, 3} were irrelevant. In
each experiment, s of the i attributes were stated as irrelevant using nominal
matching knowledge. For each combination of i, r, s 3000 runs were executed
with randomly generated concepts and randomly generated case-bases and
test-instances. The mean accuracy for i = 1, i = 2 and i = 3 are shown in
figure 5.28, 5.29 and 5.30, respectively.
These results are in line with previous research. The more attributes are
known to be irrelevant, the better the accuracy. Furthermore, the effect of
stating irrelevance of a given number of attributes decreases with the number
of relevant attributes (that is, with the size of the universe).
To model these effects formally, we again extend the average-case analysis
of (Okamoto & Yugami, 2000). By constraining the attributes to be binary,
we can analyze the effect of several equivalence statements (not just one
as in the previous section). The parameters of the accuracy function are
simpler than in section 5.4.1: we only need the number of training cases n,
the number of relevant (r) and irrelevant (i) attributes, and the number of
pairs of cases that have similarity d to each other and are in the same class
(ψf (d)). We assume that s equivalence statements are incorporated into the
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Figure 5.29: Accuracies of stating the irrelevance of various numbers (equiv-
alences) of attributes via equivalence in a universe spanned by binary at-
tributes. Two attributes are irrelevant, the case-base contains 50% of all
possible cases.
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Figure 5.30: The same experiment, but three attributes are irrelevant.
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similarity measure in order to state the irrelevance of s attributes. Due to
the characterization of the concept by ψf (d), the analysis holds for correct
and for wrong equivalence statements.
With analogous steps as previously, we arrive at

A(n) =
1

2m

∑

q∈U(A)

m
∑

d=0

P d
nn(d|n, q) ·

∑

t∈φf (q,d)

P q
nn(t|d),

where
φf (q, d) = {t ∈ Ψf (q) | s(q, t) = d} .

The number of instances with similarity d from an arbitrary query is inde-
pendent of q:

Ndis(d) =

(

m− s

d− s

)

· 2s

All pairs of cases will result in maximal local similarities for at least s at-
tributes, thus Ndis(d) = 0 if d < s. For similarities d that are greater than or
equal to s, there are

(

m−s
d−s

)

many ways to select d − s additional attributes
from the m − s remaining ones. Since the cases can have any of the two
possible values for each of the s attributes, the factor 2s is applied.
Pdis(d) and Pout(d) are analogous to the functions in section 5.4.1:

Pdis(d) =
1

2m
Ndis(d)

Pout(d) =
d−1
∑

e=s

Pdis(e)

Also the next functions are analogous:

P n
nn(d, x|q, n) =

(

n

x

)

Pdis(d)
xPout(d)

n−x

P d
nn(d|n, q) =

n
∑

x=1

(

n

x

)

Pdis(d)
xPout(d)

n−x

Thus, we finally arrive at

A(n) =
m
∑

d=0

P d
nn(d|n, q) · Pf (d)
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Figure 5.31: Accuracies of the empirical and formal analysis for the concept
f(c)← A0(c) = 0 in a 4-dimensional universe, using equivalence statements
for A1 and A2.

with Pf (d) defined as before:

Pf (d) =
1

2mNdis(d)
ψf (d)

To validate our analysis empirically, we compare the formal predictions
with experimental accuracies. In the first experiment, the target concept
is f1(c) ← A0(c) = ”true” in a 4-dimensional universe. A1 and A2 are
stated to be irrelevant by using two equivalence statements in the similarity
measure. In the second experiment, the target concept is f2(c) ← A0(c) =
”true” ∧ A1(c) = ”true” in a 5-dimensional universe. A2 is stated to be ir-
relevant by using an equivalence statement in the similarity measure. The
formal and empirical accuracies are shown in figure 5.31 for experiment 1
and figure 5.32 for experiment 2. Apparently, the accuracies obtained in the
empirical implementation are very similar to the formally predicted accura-
cies.

In the next subsection we will show that the formal and empirical accuracies
match also for incorrect equivalence statements.
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Figure 5.32: Accuracies of the empirical and formal analysis for the concept
f(c) ← A0(c) = ”true” ∧ A1(c) = ”true” in a 5-dimensional universe, using
an equivalence statement for A2. The scale is widened in order to show the
small discrepancies due to noise in the empirical results. Note that the curve
has in principle ”reached” its asymptotically limit at the right hand-side, but
due to the scaling of the vertical axis it appears as still increasing.

Incorrect matching knowledge:

We also investigate what happens if a relevant attribute is stated to be ir-
relevant via matching knowledge. The literature has only reported the effect
of removing irrelevant attributes, but there is not much work (if any) on
the effects of removing relevant attributes. Existing average-case analysis
such as (Langley & Iba, 1993; Okamoto & Yugami, 2003, 2000) do not cover
situations in which relevant attributes are believed to be irrelevant due to
inaccurate domain knowledge. Our analysis presented in section 5.4.1 can
be used to analyze the effect of one wrong equivalence statement, but not
for several. Now, this analysis which is limited to binary attributes allows to
model the effect of several wrong equivalence statements.
To compare the formal and empirical results, we used the concept f(c) ←
A0(c) = ”true” ∧ A1(c) = ”true” in a 4-dimensional universe and used two
equivalence statements for A1 and A2 in the similarity measure. Apparently,
the first equivalence statement is wrong. The empirically acquired accuracies
depicted match the formal predictions (see figure 5.33).
In the next experiment we examine the effect of wrong nominal matching-
knowledge for various situations. We used a universe spanned by 6 binary
attributes. The target concepts are conjunctive and defined by r attributes of
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Figure 5.33: Accuracies of the empirical and formal analysis for the concept
f(c)← A0(c) = ”true” ∧ A1(c) = ”true in a 4-dimensional universe, using a
wrong equivalence statement for A1 and a correct equivalence statement for
A2.

which s are practically removed by stating their values’ equivalence to each
other.
The results depicted in figure 5.34 are analogous to the experiment with
correct matching knowledge. The only difference is that the accuracies are
decreasing instead of increasing with increasing dimensions.

5.4.3 Comparing the equivalence method to the vir-

tual attribute method

Experimental analysis:

As discussed in section 4.2.2, nominal matching knowledge can also be in-
corporated as virtual attribute. In this section the equivalence method as
described in the previous experiments is compared to the virtual attribute
method.
We analyze again the concept f(c) ← A1(c) = a0 ∨ A1(c) = a1 in an n-
dimensional universe where the domain size of all attributes is 4. We define
a correct virtual attributes Ac(c) ← A1(c) = a0 ∨ A1(c) = a1 and an inac-
curate virtual attribute Aw(c) ← A1(c) = a0 ∨ A1(c) = a2. We varied n and
used a case-base that was filled to a quarter. The accuracies for the various
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Figure 5.34: Accuracies of wrongly stating the irrelevance of different num-
bers of relevant attributes via equivalence in a universe spanned by 6 binary
attributes. The case-base contains 50% of all possible cases.

conditions are depicted in figure 5.35.
Note that the curve for the standard similarity measure is in principle (apart
from some noise) the same as in figure 5.24 where it is compared to measures
using correct or wrong equivalence statements. Apparently, the measure with
the virtual attribute Ac yields much higher accuracies than the standard
measure or the equivalence method (refer to figure 5.24). Furthermore, even
the similarity measure that uses the ”wrong” virtual attribute Aw performs
better than the standard measure. This is in stark contrast to the disastrous
performance of the similarity measure with the wrong equivalence statement.
So how does this come about?
First of all, the equivalence method has an effect only if the query and case
in comparison both have one of the attribute values that are stated as equiv-
alent. In contrast, virtual attribute are used for any query-case pair. This
means that the similarity is increased if case and query both satisfy or both
do not satisfy the virtual attribute. Thus, Ac makes also cases appear more
similar that are both not members of the concept, whereas the equivalence
method only makes concept members more similar to each other. This ex-
plains why the measure with the ”wrong” virtual attribute Aw is better than
the standard measure. Although Aw wrongly makes cases more similar if one
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Figure 5.35: Accuracies of the standard similarity measure, the measure with
the virtual attribute Ac and with Aw. For comparison, also the curves from
figure 5.24 are depicted.

has a0 and the other has a2, it correctly makes cases more similar if one has
attribute values a1 and the other a3. Now one might wonder why these effects
of Aw do not cancel each other? The overall advantageous effect is that due
to Aw also those cases become even more similar that are identical in the
relevant attribute A1 and only differ in A2.

Formal analysis:

The virtual attribute method can also be formally analyzed for a given virtual
attribute by extending (Okamoto & Yugami, 2000). The analysis is parallel to
the one presented in section 5.4.1 with the following changes: Let the virtual
attribute be Av(c) ← Ae(c) = ae1 ∨ Ae(c) = ae2. The number of cases with
similarity d to a query that does not have one of the values ae1, ae2 for Ae is

Ndis(d) =

(

m− 1

d

)

(l − 1)m−1−d · 2+

(

m− 1

d− 2

)

(l − 1)m−d+1 +

(

m− 1

d− 1

)

(l − 1)m−d(l − 3).
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The first summand counts the cases that do not share the negative value
with the query for the virtual attribute. Thus, the d matching attributes
must be selected from the m−1 observables that are not Ae. Since the query
does not have any of the values ae1, ae2 for Ae, there are 2 possible attribute
values for the other case, namely ae1, ae2. The second summand describes the
cases that are identical to the query in Ae. Since this way the query and the
case also have the same value for the virtual attribute, they share at least
two attribute values. The other d − 2 attributes must be selected from the
remaining m−1 observables. The third summand counts the cases that have
the same value for the virtual attribute as the query, but are not identical in
Ae. The factor (l − 3) is due to the fact that for Ae the possible values are
restricted to ones that are neither identical to the query’s value, and neither
ae1, ae2.

The number of cases with similarity d to a query that has one of the values
ae1, ae2 for Ae is

N ′
dis(d) =

(

m− 1

d

)

(l − 1)m−1−d(l − 2)+

(

m− 1

d− 2

)

(l − 1)m−d+1 +

(

m− 1

d− 1

)

(l − 1)m−d.

The first summand counts the cases that do not share the positive value for
the virtual attribute. The factor (l − 2) accounts for the fact that the case
cannot have ae1, ae2 for Ae (otherwise the virtual attribute would be true).
The second summand counts those cases that share the same value for Ae.
The third summand comprises cases that are not identical in Ae, but share
the positive value for Av.

Another change is that the maximal similarity is increased due to the virtual
attribute. Thus we change the accuracy function to

A(n) = h1 ·
m+1
∑

d=0

P d
nn(d|n, q) · Pf (d) + h2 ·

m+1
∑

d=0

P
′d
nn(d|n, q) · P ′

f (d).

The empirical validation (not shown here) resulted again in accuracies that
match the formally predicted ones.
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5.5 Contextual knowledge

Contextual knowledge specifies the relevance of an attribute in regions of
the instance space. In this section we will investigate the effect of contextual
knowledge in numerical and nominal instance spaces, in the Japanese Credit
Screening domain and for distributed concepts.

5.5.1 Using contextual knowledge to determine rele-

vance of numerical observables

In this section we take a feature-selection (Domingos, 1997) approach, that is,
weights are either 1 or 0. This way, one can state that in a certain region of the
instance-space an attribute is relevant or irrelevant. The default assumption
is that all observables are relevant, if not stated otherwise in a contextual
rule. We investigate the benefit of such contextual knowledge on classification
with different concepts.
The concepts are defined as follows:

f1(c)← (30 ≤ A1(c) ≤ 70) ∧ (30 ≤ A2(c) ≤ 70)

f2(c)← (25 ≤ A1(c) ≤ 50) ∨ [(50 ≤ A1 ≤ 75) ∧

((A2 ≤ −2 · A1 + 200) ∨ (A2 ≥ 2 · A1 − 100)) ]

f3(c)← (25 ≤ A1(c) ≤ 50) ∨ [(50 ≤ A1(c) ≤ 75) ∧ (30 ≤ A2(c) ≤ 70)]

f1 describes a square region, f2 describes a region that is a compound of
a rectangle and a triangle, and f3 is a combination of two rectangles (see
figure 5.36).
For f1 we define an inaccurate contextual rule simulating the knowledge that
left of the square the attribute A2 is irrelevant: relevant(A2, c)← A1(c) > k.
In the area where A2 is stated to be irrelevant there is no concept boundary.
Since misclassifications occur mostly at concept boundaries, our prediction
is that this knowledge will not have much impact. Even more so, also A1

is irrelevant in that area, so the contextual rule does not seem useful. For
completeness’ sake, we vary the constant k over the whole range of A1.
For f2 we define an inaccurate contextual rule that states that for the left
boundary of the rectangle (which spreads over the whole range of A2) the
attribute A2 is irrelevant: relevant(A2, c)← A1(c) > k. Since the left bound-
ary of the rectangle is formed exclusively by A1, our prediction is that this
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Figure 5.36: The three concepts f1, f2, f3.

contextual knowledge will improve the classification accuracy. Again for com-
pleteness’ sake, we vary k over the whole range of A1.
We include f3 as a contrast to f2. For the latter, both observables A1, A2 are
relevant for the triangle region. For f3, the relevance of A2 increases with
a jump at the right boundary of the left rectangle, as the main distinction
between positive and negative cases in that area are the horizontal bound-
aries of the right rectangle. Thus, f3 should be more sensitive to inaccurate
contextual knowledge describing the irrelevance of A2 in the area A1 > 50.
Again, we vary k in relevant(A2, c)← A1(c) > k.
The accuracies for the different concepts are depicted in figure 5.37.
For all concepts the baseline is the standard similarity measure that uses
no contextual knowledge, which is equivalent to setting k = 0. As expected,
the accuracy increase is smallest for f1 (around the left concept boundary
at A1 = 30). The accuracy for f1 decreases considerably as the region of
purported irrelevance of A2 overlaps with the concept region. This is not
a surprise, because A2 is relevant for f1, so the more queries are classified
without using A2, the lower is the accuracy. The small increase at k = 70 is
due to the fact that the rightmost concept boundary is indeed independent
of A2.
For f2 the effect of contextual knowledge is better. First of all, the accuracy
increases noticeably around A1 = 25 (the leftmost concept boundary) and
remains steady while k is within the rectangle-part of the concept (25 ≤ A1 ≤
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Figure 5.37: Accuracies of similarity measures using contextual knowledge
for the concepts f1, f2, f3.

50). This phenomenon is due to the fact that the only concept boundary that
is effected is the vertical leftmost one for which A2 is indeed irrelevant. Only
if the other concept boundaries are within the area of believed irrelevance,
the accuracy decreases slowly as the area where A1 is believed to be irrelevant
spreads over the triangle part. For the triangle part, A2 is relevant again, so
that the accuracy decrease is not surprising.

The accuracy curve for f3 is similar to the one of f2 for values k < 50,
since the two concepts are equivalent in the region A1 < 50. As expected, the
accuracy for f3 decreases further than for f2, because A2 is the only attribute
that can separate the cases in the region 50 < A1 < 75.

In summary, concept boundaries that are independent of an observable are
approximated better if contextual knowledge is used. This knowledge can
even be inaccurate, that is, the exact boundaries where the attribute is ir-
relevant can be stated inaccurately (as long as no other boundaries that
depend on the attribute are effected, and as long as the boundary for which
the attribute is irrelevant is in the region of purported irrelevance).

We also showed in (Steffens, 2004a) and (Steffens, 2005d) that contextual
knowledge for numerical attributes can be useful in similarity-based opponent
modelling (refer to chapter 7). In section 6.5 we learn the weights of the
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Table 5.3: Accuracy of the knowledge-poor measures for a case-base filled to
a quarter, averaged over 5000 runs.

measure accuracy standard deviation

standard measure 67.63 % 3.76
without A2 73.17 % 7.23
without A3 50.25 % 6.94

relevant attributes and use contextual knowledge to improve weight-learning.

5.5.2 Contextuals for nominal attributes

In order to understand the effect of contextual knowledge on nominal fea-
tures, we examine a concept that is simple, yet provides several ways to use
contextual knowledge. The target concept is

f(c)← (A1(c) 6= a1 ∧ A3(c) = c1) ∨ (A1(c) = a1 ∧ A2(c) = b1)

in a universe spanned by the attributes A1 = {a1, a2, a3, a4, a5}, A2 =
{b1, b2, b3, b4, b5}, A3 = {c1, c2, c3, c4, c5}. Obviously, attribute A2 is only rel-
evant if A1 has the value a1, and attribute A3 is only relevant if A1 has a
value different from a1.
First of all, the baselines (against which the measure with contextual knowl-
edge has to compete) are the standard similarity measure, the measure that
does not use A2 at all, and the measure that does not use A3 at all.
The differences in accuracy between the three baselines are highly signifi-
cant (see table 5.3). Despite the great standard deviation, the baselines are
pairwise significantly different from each other (p < 0.001 in a two-tailed
t-test). Surprisingly, removing A2 from the similarity measure yields a better
accuracy than the standard measure. Obviously, the lack of distinguishing be-
tween negative and positive cases when A1(c) = a1 is more than outweighed
by the misclassifications of the standard measure in the other areas where
A2 is used although it is irrelevant. Surprisingly, there is also a difference
between the measures that do not use A2 or A3. The latter seems to be more
important for classification. This is explained by the fact that A3 defines the
concept boundary for more values of A1 than A2.
Now, we define rules capturing correct or wrong contextual knowledge. Ta-
ble 5.4 shows the accuracy of similarity measures using different chunks of
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Table 5.4: Accuracy of the measures using contextual knowledge about the
relevance of attributes.
measure accuracy deviation

correct: relevant(A2, c)← A1(c) = a1 90.84 % 3.17
wrong: relevant(A2, c)← A1(c) = a2 79.52 % 4.87
negation of correct: relevant(A2, c)← A1(c) 6= a1 62.20 % 5.26
correct: relevant(A3, c)← A1(c) 6= a1 73.78 % 3.42
wrong: relevant(A3, c)← A1(c) 6= a2 61.67 % 4.90
negation of correct: relevant(A3, c)← A1(c) = a1 44.02 % 7.12
both correct rules 96.93 % 3.17

contextual knowledge.

Note that for each attribute we tested two kinds of wrong knowledge. One
kind just uses a wrong trigger value for the relevance rule. The other kind is
the negation of the condition in the correct relevance rule.

Using correct contextual knowledge about A2 yields higher accuracies than
the standard measure or the measure that ignores A2 (significantly with
p < 0.001). This is due to the fact that in the knowledge-rich measure, A2

does not influence the classification when it is irrelevant, but is used when the
classification depends on it. Similarly, when using the wrong knowledge that
A2 is relevant if A1(c) = a2, the accuracy is still better than for the standard
measure (p < 0.001), because A2 is not used for cases which have values
a3 or a4 where A2 is indeed irrelevant. It is also better than removing A2

totally (p < 0.001), because removing A2 totally introduces misclassifications
if A1(q) = a1 (where A2 is relevant). To continue this trend, the measure
that incorporates the negation of the correct contextual knowledge performs
worst. A2 is used where it is irrelevant, and not used when it is relevant,
increasing the misclassification probability for all cases, no matter what value
of A1 they have.

There is also a difference between attributes. The impact of the correct knowl-
edge about the relevance of A3 is smaller than of the knowledge concerning
A2. This is no surprise, because the default method to use A3 fits well with
the fact that it is relevant for most cases. Only if a case has value a1, A3

should not be used. Thus, the contextual rule is not triggered often. Still, the
increase in accuracy is significant (p < 0.001).

If the contextual knowledge about A2 and A3 is combined, for each case the
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relevant attributes are used which leads to high accuracies.
In the next section we apply contextual knowledge to real-world data.

5.5.3 Contextual knowledge in a real-world data set

In this section we exploit the imperfect domain theory of the Japanese
Credit Screening domain for contextual knowledge. See figure 5.18 for the
structure of the domain theory. We generated rules of contextual knowl-
edge from the domain theory as follows. For each observable it was checked
in which subtrees it was used. For each subtree, the literals of the other
attributes in that subtree were AND-conjuncted. Finally, if there were sev-
eral subtrees, the propositions for the subtrees were OR-conjuncted. For ex-
ample, the observable number years appears as follows in the subtrees for
discredit bad region and rejected age unstable work (the domain the-
ory is given in PROLOG notation):

discredit_bad_region(Case) :-

problematic_region(Case),

number_years(Case,N),

not(10 < N).

rejected_age_unstable_work(Case) :-

age(Case, Age),

59 < Age,

number_years(Case, N),

N < 3.

Thus, the contextual rule for number years is relevant(number years, c)←
problematic region(c)∨age(c) > 59. The contextual knowledge for the other
observables was generated analogously. Table 5.5 shows the contextual rules
and the associated number of correctly classified cases in a leave-one-out
evaluation.
The relevance rule for gender (not listed in the table for space constraints)
is

r(gender, c)← jobless(c) ∨ item(c) = bike ∨

monthly(c) ·months(c) > deposit(c),

and for job is

r(job, c)← male(c) ∨ (female(c) ∧ unmarried(c)) ∨
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Table 5.5: Accuracy of similarity measures using contextual knowledge for
the observables in the JCS domain. The relevant-predicate is abbreviated as
r due to space constraints.

measure acc

standard measure 79
r(unmarried, c)← jobless(c) ∧ female(c) 87
relevance rule for gender 82
r(item, c)← female(c) 82
r(region, c)← number years(c) ≤ 10 81
r(months, c)← female(c) ∧monthly(c) ·months(c) > deposit(c) 80
r(deposit, c)← female(c) ∧monthly(c) ·months(c) > deposit(c) 79
r(monthly, c)← female(c) ∧monthly(c) ·months(c) > deposit(c) 79
relevance rule for job 78
r(number years, c)← region(c) ∨ age(c) > 59 78
r(age, c)← number years(c) < 3 78

(female(c) ∧married(c) ∧ item(c) = bike) ∨

(female(c) ∧married(c) ∧monthly(c) ·months(c) > deposit(c)).

The effect is a little disappointing. In three situations the accuracy is slightly
decreased by adding contextual knowledge. Three times the accuracy remains
unaffected. In five situations the accuracy is increased (up to 7% of the 124
test cases).

The results are different depending on the type of the attributes.
Except for job, using contextual knowledge for nominal attributes
(unmarried, item, region, gender) increased accuracy, while for the numeri-
cal attributes (months, deposit,monthly, number years, age) the accuracies
are in the bottom half. The trigger for job is only activated by four cases, that
is why the effect is so small. Furthermore, for these four cases the predicate
job partitions well between positive and negative cases, thus the irrelevance
prediction is false for this attribute. The bad performance of using contex-
tual knowledge about the numerical attributes is due to the following: The
contextual knowledge is correct in the sense that in the respective region the
attributes are irrelevant, that is, they do not separate positive from nega-
tive cases clearly. However, there exist some intervals, in which positive or
negative cases cluster. The standard similarity measure benefits from these
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clusters, so that the measure with the contextual knowledge performs slightly
worse.

In summary, in this domain the contextual knowledge does not decrease
accuracy much, but can lead to small increases in accuracy.

5.6 Transformational knowledge

In this section we will investigate how transformational knowledge can be
used to better approximate concepts. As described earlier, transformational
knowledge is made up of geometrically motivated transformations. There are
arbitrary many different affine transformations in geometry, so we focus on
the standard operations here, such as translation, reflection, rotation and
scaling. Concepts that benefit from such knowledge must also have the cor-
responding geometrical property.

First of all, let us consider examples of concepts which are prone to be
described using geometric transformations. Let us consider a system that
records patient data such as temperature, blood pressure etc., for example in
order to learn the concept when the patient feels a head-ache. Assume that
each data point is associated with a time stamp. Often such time stamps
are measured in milli-seconds since a fixed date, resulting in a numerical,
open-ended attribute. However, a domain expert might say that the patient
state is not a sequence of independent time-points, but that time should be
treated as a loop, segmenting the time-line into intervals of 24 hours. This
way it is possible to associate the patient states with the time of the day. In
other words, a certain temperature at 8am means something different than
at 6pm. We will show how the 24h intervals could be translated onto each
other, so that the data density is increased.

The above setting is an example for geometrical translation. An example for
reflection is the concept ”dangerous forward” from the RoboCup domain. For
this concept, a scene where a forward dribbles toward the goal on the left wing
is equivalent to a scene where a forward dribbles toward the goal on the right
wing. We implemented this as geometrical reflection (Steffens, 2005d, 2005a)
(for more details, see chapter 7). Symmetric concepts are rather common
in artificial domains (e. g. in board games such as tic-tac-toe (Ragavan &
Rendell, 1991)).
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Figure 5.38: The symmetric concept f(c).

5.6.1 Symmetry

Let us now examine symmetry in a less complex domain than simulated
soccer. We use a concept that consists of two unconnected triangles in a
universe spanned by the numerical attributes A1, A2. The triangles are sym-
metric with respect to the line A1 = 50 (see figure 5.38). Let the predi-
cate triangle(A1,1, A2,1, A1,2, A2,2, A1,3, A2,3, x, y) be true if the point (x, y) is
within the triangle defined by the points (A1,1, A2,1), (A1,2, A2,2), (A1,3, A2,3).
Then the concept is defined as

f(c)← triangle(10, 80, 40, 60, 30, 20, A1(c), A2(c)) ∨

triangle(90, 80, 60, 60, 70, 20, A1(c), A2(c)).

In the usual setting of 100 cases in the case-base, 200 test cases, 5000 runs and
equal weights, the standard similarity measure yields an average accuracy of
92.02 % (standard deviation 2.28).
The knowledge-rich similarity measure exploits knowledge of the symmetry
property: If reflecting the query yields a higher similarity than not reflecting
it, than the similarity value of the reflected query to the case is calculated.
Otherwise, the non-reflected query is used. Thus, the local similarity function
for A1 is

d1(cn, cm) = max

(

1−

(

|Xn −Xm|

range(A1)

)2

, 1−

(

|(100−Xn)−Xm|

range(A1)

)2
)

,
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Figure 5.39: Accuracies of the standard measure and the measure exploiting
symmetry. The accuracy values of the knowledge-rich measure correspond to
the values of the standard measure at the doubled case-base size.

where Xn = A1(cn) and Xm = A1(cm). This measure yields an average
accuracy of 94.17 % (standard deviation 1.98). This value is almost identical
to the accuracy of the standard measure if the case-base size is doubled:
94.18 % (standard deviation 1.77). Furthermore, plotting the accuracy of the
standard measure and the knowledge-rich measure (see 5.39) suggests that
the knowledge-rich measure yields the same accuracy values as the standard
measure with the doubled case-base size.
This suggests that using symmetrical knowledge can simulate the effect of
increasing the case-base size (provided the concept has the symmetry prop-
erty). The similarity between the query and a reflected case can be as high
as between the query and a non-reflected nearby case. Thus, all cases of the
instance space are treated as if they were on the same side of the mirror
line as the query. This results in a simulated increase of the case-base size
proportional to the smaller area of the mirrored partitions.
If the instance space does not have a (fully) symmetric structure, reflection
will result in mixing positive and negative cases in the areas that are not
symmetric. Consider the instance space depicted in figure 5.40. The two
areas A and B are not symmetric. Nevertheless, if the similarity measure
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Figure 5.40: A concept that is not fully symmetrical to A1 = 50. Concept
boundaries are depicted by solid lines, imaginary auxiliary lines are depicted
by dashed lines. Thus, region A belongs to the right concept area, whereas
B (the reflection of A) does not belong to the concept area.

assumes that A1 is symmetric wrt. to A1 = 50, then cases from A will be
used to classify queries in B, and vice versa. Assuming a uniform distribution
queries in A and B will be classified wrongly with a probability of 50% 4.
Misclassifications do not only occur at the concept boundaries, but can occur
all over the nonsymmetric areas. Thus, the additional error probability will
increase proportionally with the size of the nonsymmetric areas. The relation
between non-symmetric areas and accuracy of a measure assuming symmetry
is illustrated by figure 5.41. For the concept f(c) ← 30 ≤ A1(c) ≤ k ∧ 30 ≤
A2(c)∧ 70 the left boundary is varied. The concept is fully symmetrical wrt.
A1 = 50 for k = 70, and the size of the non-symmetric areas is |70− k| · 40.
The accuracy is roughly linear, supporting the proportionality hypothesis.
However, some noise is introduced by the normal misclassifications that occur
at the concept boundaries independently of the symmetry assumption.

4This is true if we ignore interferences at the concept boundaries. The concept
f(c)← A1(c) < 50 has a theoretical accuracy of 50% for the measure using the symmetry
assumption independent of the case-base size. Empirically for a case-base of 100 cases, 200
test cases and 5000 runs, the accuracy is 49.65% which supports this hypothesis.
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Figure 5.41: Accuracies of the similarity measure that assumes that the con-
cept is symmetrical to A1 = 50. The concept is f(c)← 30 ≤ A1(c) ≤ k∧30 ≤
A2(c) ∧ 70.

5.6.2 Rotation

The only concepts that are globally invariant under rotation are spherical.
It is possible to combine rotational knowledge with contextual triggers so
that the concept is invariant under rotation only in certain subregions, but
we consider only global transformational knowledge here. Circular concepts
are rather uncommon in similarity-based classification, but it seems feasible
to apply similarity measures with rotational knowledge if it is known that
the concept is circular around a certain point, but the diameter is unknown.
Since this set-up seems rather uncommon, we restrict our analysis to a short
investigation of a concept that has the shape of a circle around the point
50, 50 with the diameter 40. In our usual experimental setting, the standard
similarity measure yields an average accuracy of 96.05 % (standard deviation
1.61), and the measure that applies rotational knowledge by comparing cases
via their distance to the concept center yields 99.51 % (standard deviation
0.70). The difference is highly significant (p < 0.001).
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Figure 5.42: f and f ′ are invariant under translation.

5.6.3 Translation

Translation knowledge seems to be applicable to real-world concepts as we
have illustrated with the time-attribute in the patient data example. In the
following experiments we will show that knowledge about the translational
invariance of a concept can increase classification accuracy, but only if the
instance space can be partitioned into congruent regions. This means, that
these congruent regions are not allowed to overlap and that the translation
must map the regions onto each other. We will also examine the result of using
translations in the similarity measure if the instance space is not partitioned
into congruent regions.
But first we investigate concepts that have a translational structure. The
concept

f(c)← triangle(10, 80, 40, 80, 40, 30, A1(c), A2(c)) ∨

triangle(60, 80, 90, 80, 90, 30, A1(c), A2(c))

(see figure 5.42) is invariant under translation of 50 on the A1-dimension
(in our implementation, cases with A1(c) < 50 are translated by 50, and by
-50 else). The two halves generated by the line A1(c) = 50 are congruent to
each other. With the usual setting, the standard measure yields an average
accuracy of 91.83 % (standard deviation 2.33).
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The knowledge-rich similarity measure which uses transformational knowl-
edge uses the local similarity function

d1(cn, cm) =















max

(

1−
(

|Xn−Xm|
range(A1)

)2

, 1−
(

|Xn+50−Xm|
range(A1)

)2
)

: if Xn ≤ 50

max

(

1−
(

|Xn−Xm|
range(A1)

)2

, 1−
(

|Xn−50−Xm|
range(A1)

)2
)

: if Xn > 50

where Xn = A1(cn) and Xm = A1(cm). This measure yields an accuracy of
94.18 % (standard deviation 1.93). This is a significant increase. Furthermore,
it is equivalent to the accuracy of the standard measure on a case-base with
the doubled size (94.13 %, standard deviation 1.84). Again, this is evidence
for the fact that transformational knowledge simulates increasing the case-
base density. Since the instance space is partitioned into two halves which are
translated onto each other, the effect is that of a case-base with the doubled
size.
Translation can of course also be done on more than one dimension. The
concept

f ′(c)← (10 ≤ A1(c) ≤ 40 ∧ 30 ≤ A2(c) ≤ 50) ∨

(60 ≤ A1(c) ≤ 90 ∧ 60 ≤ A2(c) ≤ 80)

(see figure 5.42) is invariant under translation by
−→
t = (50, 30). The average

accuracy of the standard measure is 93.86 % (standard deviation 2.11). The
measure which exploits translational knowledge returns the maximum of the
standard similarity on the original query and the case, of the standard sim-
ilarity of the case and the query translated by (50, 30), and of the standard
similarity of the case and the query translated by (−50,−30). This increased
computational effort yields an average accuracy of 95.70 % (standard devia-
tion 1.66), which is again equivalent to the accuracy of the standard measure
on a case-base with the double size (95.67 %, standard deviation 1.56).
However, if the instance-space cannot be partitioned into congruent regions
wrt. the translation, using translations decreases the accuracy, even if the
boundaries of the distributed concept parts are shifted correctly onto each
other. This is illustrated by the concept

f ′′(c)← triangle(10, 80, 30, 80, 60, 20, A1(c), A2(c)) ∨

triangle(40, 80, 60, 80, 90, 20, A1(c), A2(c))
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Figure 5.43: The instance space for f ′′ cannot be partitioned into congruent
regions wrt. the translation (30,0). For example, the point (5,60) which does
not belong to the concept, is translated to (35,60), which is inside the concept
area of the left triangle.

(see figure 5.43). Although the two triangles can be translated onto each other
by 30 on the A1 dimension, the instance space cannot be partitioned into
congruent regions wrt. the translation. Thus, the query (5, 60) which is not a
concept member, will be translated to (35, 60), which is in the left triangular
concept region. This will lead to a misclassification. Accordingly, the average
accuracy of the standard measure (91.19 %, standard deviation 2.39) is better
than the accuracy of the measure that makes use of the translation (88.47
%, standard deviation 2.59). With the same considerations as for symmetry,
the additional error probability increases with the size of the non-congruent
areas. So, although there are local regions that can be translated onto each
other, global translation decreases the accuracy. To remedy this, a trigger is
required that activates the transformation only if the query is in a certain
region. This can easily be incorporated into a similarity measure, but we will
not investigate triggers further.
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5.6.4 Scaling

Concepts that are invariant under scaling are certainly only minimally rele-
vant in real-world applications. But for completeness’ sake we will investigate
such concepts briefly. The concept f(c)← 50 ≤ A2(c) ≤ 70 is invariant under
scaling of the A1 dimension. The standard measure results in an average ac-
curacy of 93.47 % (standard deviation 2.10). The extended similarity measure
uses the local similarity function

d1(cn, cm) =















max

(

1−
(

|Xn−Xm|
range(A1)

)2

, 1−
(

|Xn·1.5−Xm|
range(A1)

)2
)

: ifXn ≤ Xm

max

(

1−
(

|Xn−Xm|
range(A1)

)2

, 1−
(

|Xn/1.5−Xm|
range(A1)

)2
)

: else

where Xn = A1(cn) and Xm = A1(cm). We determined the scaling factor
of 1.5 empirically for this concept, as for the geometrical structure the scal-
ing factor is arbitrary. This extended measure achieves an average accuracy
of 95.63 % (standard deviation 1.65). This is significantly better than the
standard measure with the same case-base, and also significantly better (al-
though only slightly) than using the standard measure on a case-base with
the doubled size (95.38 %, standard deviation 1.61).

5.6.5 Incorporating transformational knowledge as

virtual attribute

Transformational knowledge can also be incorporated as virtual attribute.
That is, the transformation is applied to case and query, and the trans-
formed values are treated as additional attributes. However, this incorpora-
tion method has no effect on the classification behavior. In our experiments
with the above concepts, the virtual attribute method results in accuracies
that are not significantly different from the standard measure. Even adapting
the weights of the virtual attributes has no effect.
The reason is that virtual attributes do not change the topology of the in-
stance space. Assume that case c is very similar to query q according to
the standard similarity measure. Then also the virtual attributes (i. e. the
transformed values) of c will be very similar to q (at least for standard trans-
formations such as translation, scaling, rotation and reflection). In contrast,
assume a second case c′ is less similar to q than c is, but corresponds to q
after transformation (i. e. trans(c′) = q). Even though the virtual attributes
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of c′ may have similar values to q, the original case attributes will still be
different, so that the similarity of q to c will be higher than of q to c′. In short,
cases that are highly similar to the query according to the standard measure
will also be highly similar according to the measure that uses transformed
attributes as additional virtual attributes.
Thus, for transformational knowledge the virtual attribute method does not
change the accuracy.

5.6.6 Conclusion for transformational knowledge

We investigated the effect of knowledge about the invariance of concepts
under geometrical standard operations. The result is that transformational
knowledge can increase the classification accuracy similar to increasing the
case-base size. This is consistent with the finding of (Ragavan & Rendell,
1991), who showed that the worth of symmetry knowledge for inductive
learning can be stated as number of additional training cases. Our results
suggest that their finding also holds for similarity-based classification and
other transformations.
Our analysis also showed that using the transformed values as additional
virtual attributes does not change the classification behavior of the classifier,
because the neighborhood-relations remain unchanged.

5.7 Conclusion

In this chapter we have investigated the impact of the different knowledge
types on classification accuracy. We have implemented the incorporation
methods and have systematically tested them in artificial and real-world
domains. For some methods we have also given a formal analysis.
While in most other knowledge-rich CBR approaches a complete or correct
knowledge base is required (e. g. (Boerner, 1994)), we have examined the con-
sequences of inaccurate, partial, and inconsistent knowledge. The conclusion
is that partial (but otherwise correct) knowledge increases classification accu-
racy. Especially if several knowledge chunks are incorporated into the similar-
ity measure, the increase in classification accuracy is substantial. In contrast,
the benefit of inaccurate or inconsistent knowledge is more constrained, since
the knowledge is only useful if the inaccuracy and inconsistency are not too
great. The virtual attribute method turned out to be more robust against
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imperfect knowledge than the more specialized incorporation methods, since
it keeps the observables unchanged as basis for comparison. Only for trans-
formational knowledge, the virtual attribute method is not suited because it
does not change the classification behavior.
In summary, imperfect knowledge can increase the classification accuracy of
similarity measures. These results form a new incentive to exploit knowledge
even in domains where no perfect knowledge is available. In this sense it
refutes the traditional ”knowledge-poor” approach of similarity-based classi-
fication which does not consider domain knowledge. Since the requirements
for knowledge in terms of correctness and completeness are softened, knowl-
edge acquisition from domain experts (which usually results in inaccurate
and incomplete knowledge) seems viable. We believe that our results are a
step to facilitate the interview process, because even knowledge that cannot
be acquired perfectly can be useful.



Chapter 6

Weighting attributes

In this chapter we apply weight-learning methods to deal with incomplete
domain theories. The relevance of virtual attributes for the classification
goal is estimated by adjusting their weights. Furthermore we extend existing
weight-learning algorithms to exploit domain knowledge.

6.1 Introduction

In the previous chapters we made the following two simplifications: First of
all, all attributes were weighted equally. Secondly, if we used partial knowl-
edge it was known to be relevant. In this chapter we tackle both of these
issues by using weight-learning algorithms. This way, the first issue is reme-
died because attributes receive weights that are correlated with their rele-
vance. Relevant attributes will be associated with high weights, irrelevant
attributes with low ones. The second issue can be characterized as follows. If
a domain theory is incomplete, there might be intermediate concepts which
are completely defined but whose relation to the classification goal is un-
known. In section 3.5.1 we called this phenomenon ”gaps at the top” of the
domain theory. A consequence of such gaps is that it is uncertain whether
an intermediate should be added as virtual attribute for the classification
goal or not. Weight-learning methods are a means to use the case-base in
order to learn whether an intermediate will be a useful virtual attribute or
not. Learning weights has the additional benefit that the relevance of virtual
attributes can be graded. Even if two virtual attributes are relevant, it is
possible that one is more relevant than the other. Such information can be
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learnt with weight-learning algorithms.
In the next section we motivate why intermediate concepts need to be selected
carefully and that weight-learning is an appropriate means.

6.2 The need to select intermediate concepts

We reported experimental results that suggested that not all intermediate
concepts in the JCS domain theory are good virtual attributes (section 5.2.5).
Thus, a criterion for selecting intermediate concepts is needed.
Since a domain theory is available, it seems promising to analyze the struc-
ture of the theory in order to identify concepts that will form good virtual
attributes. If the impact of an intermediate concept as virtual attribute can
be inferred from the domain theory, it would be unnecessary to process train-
ing cases. Thus, a methodology to exploit the structure of the domain theory
seems promising. Unfortunately, we did not find any cross-domain theory
characteristics that predict the impact of intermediate concepts.
For example, in the JCS domain theory we calculated the following charac-
teristics for each intermediate concept:

• Level of abstraction: We operationalize abstraction as number of infer-
ence steps from the observables. For example, the concept bad credit
(see figure 5.18) does not use observables but other intermediates and
has a level of abstraction of 2. The intermediate unmatch female is
directly related to observables and has a level of abstraction of 1. Our
hypothesis was that concepts that are abstract and thus close to the
classification goal will be good virtual attributes.

• Connectivity: The number of concepts that use an attribute describe
the attribute’s connectivity. We hypothesized that concepts that are
used by many other concepts are highly relevant and will thus be good
virtual attributes.

• Specificity: The specificity of a concept is operationalized as the number
of its conditions. We predicted that highly specific intermediates per-
form bad as virtual attributes because they are only relevant in small
regions.

Table 6.1 shows the characteristics for each intermediate concept from the
JCS domain theory.
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Table 6.1: Characteristics of intermediate concepts from the JCS domain
theory, and the accuracy that a similarity measure obtains if the intermediate
is added as virtual attribute (weighted with 10) to the standard measure.

intermediate abstractness connectivity specificity acc

jobless male 1 1 2 74
jobless unmarried female 1 1 3 70
unmatch female 1 2 2 77
discredit bad region 1 1 2 76
rejected age unstable work 1 1 2 75
bad credit 2 1 5 81
ok credit 3 0 1 81

In earlier work we correlated these characteristics to the accuracy of similar-
ity measures that contained exclusively one intermediate attribute (and not
any observables) (Steffens, 2004b). Unfortunately, these characteristics do not
predict the accuracy of similarity measures that use a virtual attribute and
observables. Although our hypothesis that abstract intermediates are good, is
not contradicted, it is not strongly supported by these sparse data either. The
two intermediates with the highest abstractness also yield the highest accu-
racy. Furthermore, there is no difference in accuracy between bad credit and
ok credit, although the latter is more abstract. Our connectivity-hypothesis is
contradicted, as there is no clear trend visible. Also the specificity-hypothesis
is contradicted, because the intermediate with the highest specificity yields
the highest accuracy (just as the one with the lowest specificity).

Now, it may be argued that we just did not use the correct characteristics or
that we need more data. To make sure that analysis of the structure of domain
theories cannot predict the impact of intermediate concepts, we investigated
another domain from the UCI Machine Learning Repository. The Mechanical
Analysis domain provides a complex domain theory (see figure 6.1).

As can be seen, the intermediate concepts v alta and v molto alta have iden-
tical structures and only differ in their name. Both are defined using Cpm and
Mis, and are used for defining v pericolosa. If the structure of the domain
theory is a predictor of the impact of an intermediate as virtual attribute, the
accuracy of these two intermediates should be equal. However, when adding
v molto alta as virtual attribute to the standard measure, 2595 cases are
classified correctly, and when adding v alta, 2615 cases are classified cor-
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Figure 6.1: The structure of the domain theory of the Mechanical Analy-
sis domain. Nodes denote attributes, arcs denote relations. (The labels are
Italian.)
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rectly. The former yields the same result as the standard measure, and the
latter increases accuracy. Thus, we think that the structure of the domain
theory cannot be used to determine whether an intermediate concept will be
a good virtual attribute.
In the literature there is not much work on how to decide whether an ad-
ditional attribute will improve a similarity measure. The existing literature
does not cope with the idea of extending similarity measures, but is rather
focussed on how to reduce the number of attributes while retaining classi-
fication accuracy (Wettschereck et al., 1997). Thus, in the next section we
apply weight-learning methods in the following way: We add all available
intermediate concepts to the similarity measure and let the weight-learning
methods filter irrelevant attributes by converging on small weights. Note that
the weight-learning process is not an additional effort that is caused by the
use of virtual attributes. Instead, the weights of observables have to be learnt
anyway, so that the virtual attributes can be handled in the same process.
After that we analyze how weights can be used to filter bad inaccurate virtual
attributes.

6.3 Learning weights in the JCS and PGS do-

main

In this section we apply weight-learning methods in the Japanese Credit
Screening and the Promoter Gene Sequences domain. We show that learn-
ing weights of virtual and observable attributes increases the classification
accuracies.

Weighting methods

In order to approximate the relevance of intermediate concepts and observ-
ables in the JCS and PGS domain, we implemented several weight-learning
methods that are described in the literature. According to the classification
of weighting methods as proposed in (Wettschereck et al., 1997), we selected
four methods with performance bias, and six with preset bias (i. e., statistical
and information-theoretic methods).

• Performance bias: Weighting methods with a performance bias classify
instances in a hill-climbing fashion. They update weights based on the
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outcome of the classification process. The performance bias performs
well if there are many irrelevant features (Wettschereck et al., 1997).
Since the intermediate concepts of the domain theories can be assumed
to be relevant, we expected performance bias methods to perform badly.

1. EACH (Salzberg, 1991) retrieves the most similar case to a query.
If the case has the same class as the query, the weight of matching
features are increased and the weight of mismatching features are
decreased by a hand-coded value. If the case has a wrong class,
the weights of matching features are decreased, and weights of
mismatching features are increased.

2. IB4 (Aha, 1992) is a parameter-free extension of EACH. It makes
use of the concept distribution and is thus sensitive to skewed con-
cept distributions. It assumes that the values of irrelevant features
are uniformly distributed.

3. RELIEF (Kira & Rendell, 1992) is a feature selection- rather than
feature weighting-algorithm. It calculates weights based on the
instance’s most similar neighbors of each class and then filters
attributes whose weights are below a hand-coded threshold.

4. ISAC (Bonzano et al., 1997) increases weights of matching at-
tributes and decreases weights of mismatching attributes by a
value that is calculated from the ratio of the prior use of the
instance. The more often the instance was retrieved for correct
classifications, the higher the update value.

• Preset bias: The bias of the following methods is based on probabilistic
or information-theoretic concepts. They process each training instance
exactly once.

1. CCF (Creecy, Masand, Smith, & Waltz, 1992) binarizes attributes
and weights them according to the target classes’ conditional prob-
ability given a feature.

2. PCF (Creecy et al., 1992) is an extension of CCF which takes the
distribution of the feature’s values over classes into account. It
calculates different weights for different classes.

3. MI (Daelemans & Bosch, 1992) (for mutual information) calcu-
lates the reduction of entropy in the class distribution by at-
tributes and uses it as the attribute weight.
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4. CD (Nunez et al., 2002) creates a correlation matrix of the dis-
cretized attributes and the classes. The weight of an attribute
increases with the accuracy of the prediction from attribute value
to class.

5. VD (Nunez et al., 2002) extends CD in that it considers both the
best prediction for a class and the predictions of all attributes.

6. CVD (Nunez et al., 2002) combines CD and VD.

Results

All available intermediate concepts were added as virtual attributes to the
similarity measure, and then the weights of observables and virtual attributes
were learnt. Also for the standard measure the weights of the observables
were learnt. For evaluation we used the leave-one-out method. For most of
the weighting methods, the knowledge-rich similarity measure performs bet-
ter than the standard one. In table 6.2 we underline the accuracy of the
knowledge-rich similarity measure if it outperformed the standard similarity
measure when using the same weighting method. In the PGS domain, seven
of ten weighting methods perform better if the similarity measure is extended
with virtual attributes. Even more so, in the JCS domain the accuracies of
eight of ten weighting methods were improved by using virtual attributes.
In its optimal setting, with an accuracy of 98.11% our approach performs
also better than the results from the literature reported for the PGS domain.
The accuracy of KBANN in (Towell, Shavlik, & Noordenier, 1990) is 96.23%,
which to our knowledge was the highest accuracy reported so far and also used
the leave-one-out evaluation. Note that KBANN also uses domain knowledge
which is encoded into the neural network. We found no classification accuracy
results for JCS in the literature1.
Obviously, these improvements are not restricted to a certain class of weight-
ing methods. For example, methods with performance bias (most notably
ISAC), information-theoretic bias (i. e. MI), and with a statistical correla-
tion bias (e. g. VD) benefit from processing virtual attributes.
Even in the PGS domain, the improvements are substantial. This is sur-
prising, since the domain knowledge is the worst possible since it classifies
at chance level when used for rule-based classification. This is a promising

1The domain often referred to as ’credit screening’ with 690 instances is actually the
credit card application domain.
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Table 6.2: Classification accuracies of the standard similarity measure with-
out (w/o) virtual attributes and the measure with (w/) virtual attributes.
The columns report the accuracies for the unweighted classification and for
several weighting methods.

Domain unw. EACH RELIEF IB4 ISAC

JCS (w/o) 74.19 74.19 78.23 74.19 72.58
JCS (w/) 74.19 72.58 79.03 72.58 79.03
PGS (w/o) 86.79 89.62 96.23 88.68 50.0
PGS (w/) 85.85 93.40 96.23 90.57 96.23

CCF PCF MI CD VD CVD

72.58 72.58 74.19 74.19 72.58 71.77
73.39 75.0 75.0 77.42 75.0 75.0
85.85 87.74 68.87 88.68 77.36 83.02
91.51 86.79 98.11 88.68 97.17 87.74

result as it shows that adding intermediate concepts may increase accuracy
even if the domain theory is very inaccurate.

6.4 Weight-learning for inaccurate virtual at-

tributes

The experiments in the JCS domain have the limitation that there were no
virtual attributes that deteriorated performance. The worst virtual attributes
achieved the same accuracy as the standard measure (refer to figure 5.19).
In this section we investigate whether weight-learning methods can be used
to deal with inaccurate virtual attributes so that bad virtual attributes are
filtered away. First we give a formal analysis about the probability that a
weighted virtual attribute has no effect on the classification. By doing this,
we can understand how small the weights have to be for filtering out a bad
virtual attribute. Then we run weight-learning experiments in order to check
whether learning algorithms can balance the influence of inaccurate virtual
attributes. That is, based on the curve in figure 5.3 we examine the following
virtual attributes:



173

• virtual attributes that make the measure perform similar to the stan-
dard measure,

• virtual attributes that make the measure perform worse than the stan-
dard measure,

• virtual attributes that make the measure perform better than the stan-
dard measure,

• correct virtual attributes.

6.4.1 Formal analysis

First we analyze formally how small the weight of a binary virtual attribute
has to be in order to cancel out the effect of the virtual attribute. Assume
the virtual attribute describes a concept boundary at A1 = k that partitions
a two-dimensional instance-space into two parts. Let there be a similarity
measure s that uses this virtual attribute Av(c) ← A1(c) > k. We have
reported earlier that for weights that are great enough, the virtual attribute
makes misclassifications at the concept boundary disappear. Now we want
to analyze how small the weight has to be so that the effect of the virtual
attribute vanishes. This weight threshold cannot be an absolute threshold,
but can only be described probabilistically, since it depends on the case-base
distribution.
In order to analyze the weight of the virtual attribute Av, we look at sit-
uations where a case, that has a different value for Av than the query, is
the nearest neighbor of the query. That is, the case is more similar to the
query than all other cases which share the value for Av with the query:
∃c1, q,∀c2 : s(c1, q) > s(c2, q) ∧ Av(c1) 6= Av(q) ∧ Av(c2) = Av(q) (refer to
figure 6.2).
Obviously, c1 and q have a local similarity of 0 for Av (i. e. dv(c1, q) = 0),
while c2 and q have a local similarity of 1 (i. e. dv(c2, q) = 1). c1 has to be so
much spatially closer to the query than c2 is, that it can overcome the factor
of the virtual attribute, which amounts to wv ∗ 1, where wv is the weight of
Av.
Consider the line of equal similarity around q on which c1 lies. Since A1 and
A2 can be weighted differently, this line is an ellipse. Cases on the other side
of the line A1 = k are at least as similar to q as c1 is, if they are within an
ellipse that is extended by wv ∗ 1. This is due to the fact that these cases can
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Figure 6.2: Situation where a case c1 that is on the other side of a separating
line (as induced by a virtual attribute) is more similar to the query q than a
case c2 on the same side. Without loss of generality (since only the relative
weights are important), w1 is assumed to be 1. wv is the weight of the virtual
attribute.

accommodate greater spatial distance with their shared value of Av. Thus,
c1 is the nearest neighbor of q iff there is no case in area B1 (depicted in
figure 6.2), where B1 is the part of the extended ellipse around q which is
on the same side of the separating line as the query. B2 is the part of the
smaller, unextended ellipse on the other side of the separating line.
Let p1 be the probability that there is no case in B1, and p2 be the probability
that at least one case is in B2 (S and λ are defined as in section 5.2.1):

p1 =

(

1−
B1

S

)S∗λ

, p2 = 1−

(

1−
B2

S

)S∗λ

The areas of B1 and B2 can be calculated as follows:

B1 = π ∗ (d1 + d2 + wv) ∗
d1 + d2 + wv

w2

−

2 ∗ d1+d2+wv

w2

(d1 + d2 + wv)
∗

∫ d1+d2+wv

d2

√

(d1 + d2 + wv)2 − x2

B2 = 2 ∗
d1+d2

w2

d1 + d2

∗

∫ d1+d2

d2

√

(d1 + d2)2 − x2

Then, the probability that B1 is empty and at least one case is in B2 is

P =

∫ ∞

0

∫ ∞

0

p1 ∗ p2 dd1 dd2.
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Figure 6.3: The curves show the formal and empirical probability that a case,
that is on the other side of a separating line than the query, is the nearest
neighbor to the query.

To validate this formal analysis, we compare the prediction to empirical re-
sults. We set k = 50, let A1 and A2 be in the interval [0, 100], have 100
cases in the case-base, 1000 test cases, and run the experiment over 10000
runs. The formal prediction and the empirical results are quite similar (see
figure 6.3).

Both the formal and the empirical curve show that the probability (that a
case on the other side of the separating line is the nearest neighbor) is very
small in general and goes to almost 0 already for small values of wv. That
means that the effect of a virtual attribute is only cancelled if its weight is
very small. In the next section we test empirically whether existing weight-
learning methods can converge to such low weights.

Also the virtual attributes in real-world data behave like our analysis sug-
gests. We add intermediates from the JCS domain theory to the similarity
measure and vary its weight. The curve depicted in figure 6.4 shows the same
low sensitivity of virtual attributes to weights. Only if the weight of the ben-
eficial virtual attribute is small, the errors increase. The accuracy does not
change anymore if the weight is above a certain threshold.
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Figure 6.4: The curves show the error that a measure using the virtual at-
tribute unmatch female or discredit bad region makes if the virtual at-
tribute is weighted as plotted on the horizontal axis.

6.4.2 Weight-learning experiments with bad inaccu-

rate virtual attributes

In the following experiment we test whether weight-learning algorithms are
sensitive enough to learn small weights for bad inaccurate virtual attributes,
and high values for good inaccurate virtual attributes.

We performed experiments in a universe spanned by three numerical at-
tributes. As target concept we chose a centered cuboid f(c)← 20 ≤ A1(c) ≤
80 ∧ 20 ≤ A2(c) ≤ 80 ∧ 20 ≤ A3(c) ≤ 80. The similarity measure uses a
virtual attribute of the form Av(c) ← A1(c) > k, where k is chosen as de-
scribed below. We chose such a regular target concept, because the optimal
weight setting of the observables is to use equal weights. Thus, if there is an
increase of accuracy from the similarity measure, which uses equal weights
for all observables and the virtual attribute, as compared to the similarity
measure that uses learnt weights, this increase must be due to the weight of
the virtual attribute.

Four different values for k were used, namely 0,10,17 and 20. These values
were chosen because they describe virtual attributes that lead to
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Table 6.3: Accuracies of the similarity measure using equal weights or learnt
weights.

k equal RELIEF RELIEF weight IB4 IB4 weight

0 (baseline) 87.36 87.23 0 87.30 0.26
10 86.97 86.95 0.13 87.07 0.23
17 87.85 87.77 0.31 87.75 0.24
20 88.82 88.88 0.43 88.86 0.25

• the same behavior as the standard measure (k = 0)

• decreased performance (k = 10)

• slightly increased performance (k = 17)

• or increased performance (k = 20).

Our hypothesis was that the virtual attributes that used k = 20 would re-
ceive the highest weights, followed by the virtual attribute that uses k = 17.
Finally, we hoped that the attribute that used k = 10 would receive such
a low weight that its deteriorating effect vanishes. Table 6.3 shows the ac-
curacies for a case-base of 100 cases, 200 test cases, and 5000 runs. We ran
experiments with the weight-learning methods RELIEF and IB4, because
they are well-suited for numerical attributes.
The accuracies obtained by RELIEF and IB4 are not significantly better
than the accuracies obtained with equal weights. However, the weights for
the virtual attribute that were learnt by RELIEF support our hypothesis
from above. The virtual attribute that has a deteriorating effect on accuracy
receives lower weights than the virtual attributes that increase accuracy. For
RELIEF, there is a clear trend that good virtual attributes receive higher
weights. This trend can also be seen in the IB4 weights, but the differences
are so small that they might be due to noise.
Remember that the weight has to be very small in order to cancel the effect
of a bad virtual attribute. Although the learnt weight for the bad virtual
attribute is already the smallest, it is still not small enough to make the
deteriorating effect disappear. It might be the case that the learning methods
need more training instances in order to converge to such low weights. Thus,
we increased the case-base size to 1000 and tested the virtual attribute for
k = 10. Using learnt weights, the accuracy is not significantly higher (94.20%
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for RELIEF and 94.24% for IB4) than when using equal weights (94.25%).
On average, the learnt weight for the virtual attribute was 0.21 for RELIEF
and 0.24 for IB4 which are even greater than the weights learnt with only
100 training cases. These weights are still far away from values where the
formal analysis predicts that the deteriorating effect of the virtual attribute
vanishes.

Since even increasing the number of training cases does not improve per-
formance in both RELIEF and IB4, we think that the effect of the virtual
attributes is too small to have an effect on the weight-learning method. This
means that inaccurate virtual attributes that deteriorate accuracy will not
be filtered away during the weight-learning process. This result is not as bad
as it seems, because inaccurate virtual attributes only have a deteriorating
effect in a small interval of inaccuracy.

6.5 Incorporating contextual knowledge into

weight learning

Generally, weight-learning methods can benefit from domain knowledge. For
example, all methods of incorporating domain knowledge into similarity mea-
sures can be used implicitly for weighting methods that have a performance
bias, since they make use of the similarity measure. Thus, the knowledge in
the similarity measure biases the weight-learning.

Furthermore, performance bias methods implicitly use the knowledge that
there are several attributes. In contrast, most of the methods in section 6.3
with a preset bias learn the weight of attributes individually while being
oblivious to the fact that there are other attributes. Thus, interferences and
dependencies between attributes can only be handled by methods with a
performance bias. But those methods use the knowledge implicitly, while we
are more interested in ways to explicitly use domain knowledge. In this sec-
tion we explicitly incorporate contextual knowledge into the weight-learning
method RELIEF (Kira & Rendell, 1992).

In section 5.5.1 we applied contextual knowledge in order to express that an
attribute was not relevant in a certain region. If we use traditional weight-
learning to learn the weights of the remaining attributes, there are the fol-
lowing issues. First of all, global weight-learning methods such as RELIEF
will converge on weights that try to express the relevance of attributes for
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the whole instance-space. This contradicts the bias of the knowledge-rich
similarity measure which treats some attributes as irrelevant only in certain
regions. Second, the weight-learning methods cannot exploit the knowledge
that in certain regions some attribute weights should be exactly 0.
We tackle these issues by incorporating contextual knowledge into the weight-
learning method RELIEF. The RELIEF algorithm works as follows: It ran-
domly selects case x from the case-base, retrieves the most similar case p
with the same class from the case-base, and the most similar case n with a
different class. Then the weight wi of each attribute Ai is updated by using
the formula

wi = wi − δ(Ai(x), Ai(p)) + δ(Ai(x), Ai(n)),

where

δ(Ai(c1), Ai(c2)) =







|Ai(c1)− Ai(c2)| : iff Ai numerical
1 : iff Ai nominal, Ai(cn) = Ai(cm)
0 : iff Ai nominal, Ai(cn) 6= Ai(cm)

This procedure is repeated m times. In (Kononenko, 1994) it has been pro-
posed to modify the algorithm to repeat the weight-update once for each
training case.
Contextual knowledge of the form relevant(A, c)← ρ(c) can be incorporated
as shown in the following PSEUDO-code:

set the default weight of all attributes to 0

repeat for each training case x

retrieve most similar case p with the same class as x

* (using only attributes satisfying relevant(A, x))

retrieve most similar case n with a different class than x

* (using only attributes satisfying relevant(A, x))

for all attributes Ai

* that satisfy relevant(Ai,x)

wi = wi - delta(Ai(x),Ai(p))+delta(Ai(x),Ai(n))

The lines marked with a star are new as compared to the standard RE-
LIEF algorithm. We use the values learnt by RELIEF as weights and not
as threshold criterion for filtering features (cf. (Wettschereck et al., 1997)).
The changes have the effect that the weight for an attribute is not adjusted
in regions where it is known to be irrelevant. Thus, if the relevance of an
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Figure 6.5: The accuracies obtained by the traditional RELIEF weight-
learning algorithm and the knowledge-rich extension.

attribute is different in different regions, the global weight is not influenced
by the regions where the relevance is 0.

In a three-dimensional instance space, the concept

f(c)← (A1(c) < 50∨ 60 < A1(c) < 90)∧ 20 < A2(c) < 80∧ 40 < A3(c) < 60

has the shape of two cuboids that differ in their position and length on the A1

dimension. We assume the contextual knowledge relevant(A2, c)← A1(c) >
50. The standard similarity measure whose weights are learnt with the tra-
ditional RELIEF algorithm performs significantly worse than the similarity
measure that uses the contextual knowledge and whose weights are learnt by
the above weight-learning algorithm that exploits the contextual knowledge
(see figure 6.5).

This means that contextual knowledge can also be used in a weight-learning
method such as RELIEF. In this particular experiment, the contextual knowl-
edge successfully separates the two concept parts and focusses the weight
learning for A1 on the region where it is relevant. In contrast, the traditional
RELIEF algorithm has to converge on a weight that is a compromise be-
tween irrelevance (in the half of the instance-space with A1 < 50) and high
irrelevance (in the other half).
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6.6 Conclusion

In this chapter we showed that learning the weights of virtual attributes and
observables can drastically increase classification accuracy. Since the weights
of observables have to be learnt anyway, the weights of virtual attributes
can be learnt in the same process. We implemented several weight-learning
methods with different biases and showed that the accuracy increase is not
restricted to individual methods or particular biases. In the benchmark data
set of the Promoter Gene Sequence domain, we achieved accuracies that ex-
ceed the best results reported in the literature so far. In the Japanese Credit
Screening domain we did not find results in the literature, but the weight-
learning methods provided accuracies that are better than the weighted
knowledge-poor similarity measure.
Unfortunately, it seems that the weight-learning methods that we tested can-
not be used to filter away those virtual attributes that are in the inaccuracy
interval where they deteriorate classification accuracy. This finding supports
our formal analysis which showed that binary virtual attributes are robust
against weight changes. Only if the weight of a virtual attribute is very small,
its effect on classification vanishes. The weight-learning methods did not con-
verge to such low weights, although there is a tendency to give lower weights
to worse virtual attributes.
Knowledge that is useful in similarity measures can also be used in weight-
learning methods. We incorporated contextual knowledge into RELIEF and
showed that the knowledge improves accuracy. Future work will have to in-
vestigate other weight-learning methods and knowledge types in order to test
whether other incorporation methods are equally successful.
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Chapter 7

Application to Multi-Agent
Systems

I came to the conclusion that
the whole purpose of the
simulation-league was to come
up with coaching.

Gal A. Kaminka, Chair of the
2001 RoboCup simulation

competition

In this chapter we implement and evaluate our approach of enriching similar-
ity measures with domain knowledge in the domain of opponent modelling in
multi-agent systems. We show that the different knowledge types are useful
in a complex domain such as simulated soccer.

7.1 Introduction

Opponent modeling is an essential part of performing well in adversary do-
mains, as it allows to predict future actions of the opponent and adapt one’s
own policy accordingly. Case-based reasoning is a common method for oppo-
nent modeling in multi-agent systems (e. g. (Ahmadi et al., 2003; Wendler,
2004; Denzinger & Hamdan, 2004)), because it requires only few training
instances and can describe any situation-action space which is important,
as the different opponents may use various situation-action spaces for their
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decision-making. In multi-agent systems several autonomous agents are ac-
tive. From a CBR perspective, the classification goal is to predict an agent
A’s action in a given situation c. The CBR system compares c to a case-base
of previously observed situations, selects the situation c′ that is most similar
to c, and returns the action of A in c′.
MAS are a particularly interesting domain for our approach, because each
case can be used for several classification goals. That is, for the same situation
there are several actions taken by the agents. Since in our approach the
classification goal is to predict an agent’s actions, each agent’s action can be
seen as a classification goal. For example, the same situations can be used
for classifying a defender’s actions or a forward’s actions. Different attribute
weights and different attributes will be needed for the various classification
goals (cf. (Ahmadi et al., 2003)).
Our assumption which serves as learning bias is that an agent behaves sim-
ilarly in similar situations. This is certainly true for reactive agents which
act mostly based on their perceptions of the world-state (cf. (Denzinger &
Hamdan, 2004; Ahmadi et al., 2003) for a similar assumption). However, for
deliberative agents which plan or even learn, this assumption may not hold.
Still, in a highly dynamic domain such as RoboCup, planning can only be
done for short time steps. Hence, we believe that our similarity assumption
works for most agents. In any case, to validate this assumption, we made
experiments with a variety of agents.
The classification- or prediction-accuracy of CBR depends on the quality of
the similarity measure. Unfortunately, implementing a similarity measure for
opponent modeling is not trivial due to a number of issues:

Context: Which situations should be regarded as similar depends on the
context. The similarity measure must be adapted to the game situa-
tion and role of the agent whose action is to be predicted. Consider
situations in a soccer game: The positions of team B’s defenders will
be rather irrelevant if the classification goal is the action of team A’s
goalie, but rather relevant if the classification goal is the action of team
A’s forwards. For these two classification goals, the similarity measure
must weigh attributes (i. e. player positions) differently. Other CBR ap-
proaches in simulated soccer dealt with this problem by introducing a
focus: Cases contain only positions of those players that are close to the
ball (Ahmadi et al., 2003). Another method is to partition the known
cases into defensive, transitional, and offensive sets (Marling, Tomko,
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Gillen, Alexander, & Chelberg, 2003). Yet, such methods are domain
specific ad-hoc solutions.

Selecting features: The performance of similarity-based classification de-
grades with the number of irrelevant attributes (Griffiths & Bridge,
1996). However, even after successful filtering of irrelevant attributes,
similarity measures can still be improved. Adding relevant abstract
features can improve classification accuracy (Richter, 2003; Steffens,
2004c).

Sparseness of data: Usually, in CBR it is assumed that there is an abun-
dance of data (Wilke & Bergmann, 1998). However, in opponent mod-
eling this is not the case, since cases enter the case-base over time as
observations are made. Thus, a requirement for similarity-based oppo-
nent modeling is that it has to perform well with sparse data. The less
data is required, the sooner the system can provide good predictions.
Fortunately, the lack of knowledge in the case knowledge container can
be compensated by moving additional knowledge into the similarity
measure knowledge container (Wess & Globig, 1994; Richter, 1995). In
this chapter we explore how different forms of knowledge can be in-
corporated into similarity measures in order to make good predictions
with sparse data.

Attribute matching: In most CBR applications, matching attributes is
straight-forward, as equally named attributes or attributes at the same
position of a vector are matched. However, when applying CBR to
opponent modeling in multi-agent systems, matching of attributes is
not trivial. The agents of the two situations have to be matched in
a situation-specific way, so that their properties (e. g., their positions
and velocities) can be compared. This matching has to take the agents’
roles into account.

These issues make opponent modelling in multi-agent systems a challenge for
case-based reasoning (and any other machine learning approach). We show
how these issues can be tackled by incorporating domain knowledge into the
similarity measure.
The next section describes the evaluation domain, simulated soccer. Sec-
tion 7.3 defines which types of knowledge we used for similarity-based oppo-
nent modeling. In section 7.4 we motivate why we focus on high-level actions
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in our experiments. Afterwards, in section 7.5 we describe how some of the
knowledge types can be represented using goal-dependency networks. The
knowledge-poor and knowledge-rich similarity measures are defined in sec-
tion 7.6. Section 7.7 will show how the knowledge-rich similarity measure can
be used for attribute- as well as multi-agent matching. Section 7.8 reports
the evaluation results of the implementations. Related work is discussed in
section 7.9, and the last section concludes and outlines future work.

7.2 An Example Multi-Agent System:

RoboCup

The RoboCup domain is a typical multi-agent system where opponent mod-
eling is crucial for successfully counteracting adversary agents (Kitano et
al., 1997; Ahmadi et al., 2003). Two teams of autonomous agents connect
to a server and play simulated soccer against each other. Each player is an
autonomous process. This is a challenge for opponent modeling, since the
behavior of each opponent player has to be approximated.

Decision making is done in discrete time steps: Every 100ms the agents can
execute a primitive action and the world-state changes based on the actions
of all players and the game physics (Chen et al., 2001). Basically, the action
primitives are dash, turn, kick, which must be combined in consecutive time
steps in order to form high-level actions such as passes or marking. The agents
act on incomplete and uncertain information: Their visual input consists
of noisy information about objects in their limited field of vision. There is
an additional privileged agent, the online coach, which receives noise-free
and complete visual input of the playing field. The online coach has been
introduced mostly for opponent modeling purposes. Every 100 ms it receives
information about the position and velocity of all objects on the playing field
(22 players and the ball). The agents’ actions cannot be observed directly,
but can be inferred from the differences between consecutive world-states. For
instance, in our implementation the coach assumes that the player controlling
the ball executed a kick, if the ball’s velocity increases.

The match is always in one of several play-modes, such as ”free kick for left
team”, ”ball out of bounds for right team”, or ”play on”. In the play-modes
different rules apply. For example, in free kick-situations only one team is
allowed to kick the ball.
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Cases for our CBR system are generated from the observations of the coach.
A case is represented in two parts: 47 attributes (23 positions, 23 velocities
and the play-mode) specifying the situation, and 22 attributes storing the
actions. In a query, only the situation is known and one of the actions serves
as the classification goal; the other actions are ignored.

RoboCup is an ideal domain for evaluating our approach, because the same
case-base can be used for different classification goals: The action of each
player is handled as a single prediction task with its own classification goal.
Since the coach receives information about all situation attributes, cases can
be stored without further analysis. Generalization wrt. the specific classifi-
cation goal is deferred until classification time, a property of lazy learning
(Aha, 1997). Furthermore, the domain is complex enough so that we can use
almost all of the knowledge types that we introduced before.

7.3 Types of Domain Knowledge

This section discusses which types of knowledge are useful for similarity-
based opponent modeling. Previous similarity-based approaches used domain
knowledge implicitly or in an ad-hoc kind of way (e. g. (Denzinger & Hamdan,
2004; Marling et al., 2003; Ahmadi et al., 2003)).

Multi-agent systems are situated in typically rich and complex domains (G.
Weiss, 1999). Usually much domain knowledge exists, but problem-solving
knowledge is missing. Remember that domain knowledge specifies which ob-
jects and relations between them exist in the domain (Bergmann et al., 1994),
while problem-solving knowledge states which actions are to be taken given
a state of the problem space and a goal. That is, in MAS it is known which
objects and relations exist in the domain, but it is unknown how to develop a
good policy or behavior for the agents. In our approach we use the fact that
the behavior of the agents are constrained by the properties of the domain.
For example, in simulated soccer, an agent should avoid being offside, oth-
erwise his actions result in penalties. We exploit the explicit rules of soccer
and the implicit structure of the domain by incorporating domain knowledge
into the similarity measure.

In our evaluation we implemented the following types of knowledge (this
is an extension of previous work (Steffens, 2005d)). For details about the
implementation refer to section 7.6.
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Transformational knowledge:

We used transformational knowledge in order to match situations from one
wing of the field to the other. This was done by exploiting the information
that the playing field can be mirrored. Using a mirroring operation, a situ-
ation where a forward attacks from the left and has a defender blocking his
way to the goal can be matched to a situation where the forward attacks
from the right with a defender blocking his way.

Inferential knowledge:

Based on the observable attributes we defined additional virtual attributes.
The feature pressing is true if two or more players attack the ball-owner,
that is, if two or more opponent players are within a radius of 5m around
the ball.

Another virtual attribute is the role of the ball-owner. Roles are determined
by the players’ relative positions (see section 7.5). Note that role is a player-
specific attribute, so that 22 additional attributes are introduced. However,
we use only one weight for these 22 attributes and normalize them to blend
in with the other attributes (such as play mode) (see below). Before players
(and their positions and velocities) are compared to each other, they have to
be matched (see section 7.7)

player free is another player-specific attribute that describes whether a
player stands free. This is defined as having no opponent around the player
in a circle with the radius 5m. The radius was found empirically. Additionally,
we introduced a player-specific attribute player behind ball which is true
if the player is between the ball and the opponent goal.

Contextual knowledge:

Contextual knowledge is useful for similarity-based opponent modelling. In
simulated soccer, the attributes describing team A’s defenders are irrelevant
if team A’s forward has the ball and is close to the opponent goal. But if
team B’s forward has the ball, the attributes describing team A’s defenders
are highly relevant. Thus, these attributes are contextual and are dependent
on the context defined by which team has the ball and by the ball’s position.
We used a rule-base that determined in which contexts the attributes were
relevant.
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Matching knowledge

We treat all break play-modes (that is, all modes except ”play on”) as equiv-
alent. These play-modes are special since play only resumes if the ball is
passed by a player of the appropriate team.

At the moment, there is an effort to represent soccer knowledge as qualitative
knowledge (Dylla et al., 2005). While the notion of ”qualitative” is not strictly
defined in the knowledge representation and reasoning community, in most
work it means to discretize numerical parameters into a small set of intervals.
For example, the soccer field is partitioned into regions such as penalty-area,
left wing, right wing. This is equivalent to our notion of matching knowledge,
where the exact value of an attribute is not important as long as it is in a
certain interval. The same idea is used in (Dylla et al., 2005): Positions in the
same region are assumed to be equivalent with respect to decision making.

We used the matching knowledge to partition the field into a set of regions
(directly in front of goal, penalty area, opponent corners, and wings). Note
that in our approach we also make use of transformational knowledge as we
mirror the two opponent corners and the two wings.

Apart from the matching knowledge, maybe even more types of knowledge
can be found in such a qualitative theory of soccer. However, the details are
not yet published and not available to us.

7.4 Focus on high-level actions

In a complex domain such as RoboCup it is infeasible to predict an agent’s
behavior in terms of primitive actions. For individual skills (e. g. dribbling),
primitive actions are often combined by neural networks. These are trained
using amounts of training instances that are typically one or two levels
of magnitude greater than the amount of observations available for oppo-
nent modeling. Hence, it is infeasible to predict an agent’s primitive actions.
Rather, in our experiments we predict the high-level action shoot on goal.
We assume that for taking countermeasures it is sufficient to anticipate high-
level actions within a certain time window. For example, if a defender knows
that within the next 20 time steps an opponent will shoot on the goal, it
can position itself accordingly (and maybe even inhibit the shot by doing so.
Therefore, in our prediction experiments the agents do not use the predic-
tive information in order not to interfere with the prediction accuracy.) For
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Win game

Score goals Defend own goal

Circumvent
Defenders Block ball Block forwards

Ball-position Ball-velocity
Forwards’
Positions

Forwards’
Velocities

Defenders’
Positions

Defenders’
Velocities

Figure 7.1: Vague domain knowledge represented by a goal dependency net-
work (GDN). Goals and subgoals are depicted as ellipses, attributes as rect-
angles, virtual attributes as dotted rectangles. Dotted arrows connect goals
to properties, solid lines connect subgoals to goals.

both the static and the adaptable similarity measures, the prediction of an
action is counted as correct if the action occurs within 20 time steps after
the prediction.

Note that recognizing high-level actions is not trivial, since the recognition
has to aggregate several consecutive observations. We used recognition meth-
ods from our earlier works (Steffens, 2002), which provides acceptable recog-
nition rates.

7.5 A first experiment: Goal-dependency

networks

In a first experiment we tested whether inferential and contextual knowledge
can really be useful in a complex domain such as RoboCup. This experiment
is preparatory in nature, as it does not consider knowledge types such as
transformational or matching knowledge. To represent the knowledge we used
goal-dependency networks (GDNs) as proposed in (Stepp & Michalski, 1986).
More details about this experiment can be found in (Steffens, 2004a).
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7.5.1 Using the Goal-Dependency Network

In GDNs the agent’s goals are divided into subgoals and linked with them.
Attributes are connected to a subgoal if they are relevant to achieve that sub-
goal. For example, the goal defend own goal can be divided into the subgoals
block forwards and block ball. A relevant attribute for block ball is the
ball position (see Figure 7.1).

We can apply our framework in order to analyze the knowledge contained in
GDNs. From the perspective of the knowledge type hierarchy, GDNs are a
combination of inferential knowledge (about virtual attributes) and of con-
textual knowledge (a property is important if a certain subgoal is active).

A GDN can be exploited to select attributes based on the situation (cf.
context-dependence in section 7.1). To do this, the part of the GDN-
tree that is relevant for the situation must be determined. First, the es-
timated goal of the agent serves as an entry point into the GDN. The
goal is estimated by an explicit mapping of the modeled agent’s role
onto a node in the GDN, e. g. {〈forward, score goals〉, 〈generic, win game〉,
〈defender, defend own goal〉}. For example, for predicting the action of a
forward, the subtree under score goals will be activated.

The inferred role must not necessarily reflect the role that the programmer of
the opponent agent intended. Rather, it must capture the situation-specific
function of the agent in the particular situation. For our experiments, we
approximated agent roles (forwards, midfielders, defenders, goalie) by their
positions on the field. It might be the case that the team dynamically changes
roles, that is, a player might switch from one role to another (cf. (Kuhlmann,
Stone, & Lallinger, 2005)). Accordingly, our system does not infer roles stat-
ically, but reconsiders the role of each agent for every situation: During a
manually selected observation window, the average x-coordinate (the x-axis
runs from one goal to the other) of each player of a team is calculated. The
players are then sorted according to their average x-coordinate. The player
with the smallest coordinate is assumed to be the goalie. The rest of the
sorted list is analyzed for the two largest gaps between consecutive players.
These gaps are assumed to be the dividing line between forwards, midfielders,
and defenders. Although this is a rough approximation of the true roles, the
method proved to be accurate enough for our purposes (cf. (Steffens, 2004a)).

After identifying a node G as the entry point into the GDN, the relevant
attributes are inferred via backward-chaining. The whole subtree of G is
activated recursively, and the attributes of each activated subgoal-node are
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added to the set R, the so-called respects of similarity (Medin et al., 1993).
When using GDNs, attributes can only be divided into relevant vs. irrelevant.
The similarity measure is adapted by setting the weight of attributes in R to 1
(relevant), and all the other ones to 0 (irrelevant). That is, relevant attributes
receive the maximum weight, and irrelevant attributes receive the minimal
weight. Hence, the similarity measure for predicting actions of a defender
differs from the similarity measure for predicting actions of a forward.

7.5.2 The Similarity Measures for Experiment 1

In this experiment, we use a standard knowledge-poor similarity measure as
the baseline. As in the previous chapters, such a measure uses all available
attributes and normalizes them into [0,1]. Thus, the static (i. e. knowledge-
poor) similarity measure is defined as follows:

sim(c1, c2) = (7.1)
22
∑

i=1

[ωi ·∆(p(i, c1), p(i, c2)) +

ω′
i ·∆(v(i, c1), v(i, c2))] +

ω0 ·∆(bp(c1), bp(c2)) + ω′
0 ·∆(bv(c1), bv(c2)) +

ω23 · 1(pm(c1), pm(c2))

where c1 and c2 are the two situations in comparison, p(i, cj) and v(i, cj)
are the position and velocity of player i in situation cj, respectively, bp(cj)
and bv(cj) are the ball-position and ball-velocity in cj, respectively. ∆(A,B)
is the Euclidean distance between A and B. 1(A,B) is 1 iff A = B, and 0
otherwise. pm(ci) denotes the playmode in a situation, and ωk and ω′

k with
∑23

k=0(ωk + ω′
k) = 1 are weights for positions and velocities, respectively. In

this first experiment we set all weights to 1. In later experiments, weights
were learnt using RELIEF.
The knowledge-rich similarity measure is adaptive to the situation for which
the prediction is made. If attributes are deemed irrelevant in a situation,
they are removed by setting their weight to 0. Relevance of the attributes is
determined by using the GDN as described in section 7.5.1
In short, the knowledge-poor (static) similarity measure weights all at-
tributes equally. The knowledge-rich (adaptable) similarity measure incorpo-
rates knowledge from the GDN depicted in Figure 7.1 and weights attributes
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Table 7.1: Experiment 1: Mean accuracies of the static and the adapted
similarity measures for various sizes of the case-base. p is the significance
level of a paired, two-tailed t-test. N=48

Size of case-base Static Adaptable p

1000 0.7499 0.7547 0.258
1500 0.7530 0.7605 0.08
2000 0.7558 0.7651 0.01
2500 0.7566 0.7685 0.003
3000 0.7573 0.7677 0.014
3500 0.7557 0.7665 0.013
4000 0.7670 0.7740 0.194
4500 0.7614 0.7734 0.057
5000 0.7719 0.7788 0.421

that are irrelevant for the classification goal with 0 and relevant attributes
with 1 (cf. (Steffens, 2004a)).

7.5.3 Data

Both measures are tested on the same case-base and test cases. In this ex-
periment we used 48 publicly available logfiles of recorded games 1 between
32 different teams. For each game, the two similarity measures were tested
with various sizes of the case-base. A complete game lasts 6000 time steps,
the case-base sizes ranged from 1000 to 5000 time steps with intervals of 500.
The test cases were drawn from the remaining time steps at fixed intervals of
50 time steps. The classification goal was the action of the ball-owner. Hence,
the role of the agent whose actions were to be predicted varied throughout
the game.

7.5.4 Results

The mean accuracies of the static similarity measure and the similarity mea-
sure that was adapted to the classification goal are depicted in Figure 7.2.
For the significance levels of paired two-tailed t-tests, refer to table 7.1.

1Available from http://www.carc.aist.go.jp/∼noda/RoboCup/LogFiles.
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Figure 7.2: Experiment 1: Mean accuracies of the static and the adapted
similarity measures for various sizes of the case-base. N=48



195

For all case-base sizes, the adaptable similarity measure achieved better ac-
curacy values than the static measure. For most sizes, the difference is signif-
icant (p < 0.1, or even p < 0.05). This suggests that the prediction accuracy
of CBR can be increased if the similarity-measure is extended by the knowl-
edge contained in a GDN. More specifically, our results suggest that opponent
modelling can benefit from taking into account the role or type of the agents.
However, the difference between the two similarity measures is only small.
We analyzed the retrieved cases and believe that the small impact is due
to fixed formations in many teams: Players that were not directly involved
in handling the ball stayed at fixed positions. E. g., whenever the forwards
handled the ball close to the opponent goal, the defenders stayed at their
home positions. Hence, the variance in positions is small, so that the static
similarity measure retrieved the same cases as did the similarity measure that
ignored defenders’ positions for predicting the forward’s action.
Still, the significant results show that using inferential and contextual knowl-
edge yields better prediction results than the static similarity measure. Fu-
ture research will consider non-binary weights in order to further increase
accuracy.
General remarks about the experiment will also be discussed in section 7.8.6.

7.6 The Similarity Measures for Experiments

2 to 5

In the following experiments, we analyze different knowledge types.

7.6.1 Standard Measure

In all following experiments, we again use a standard knowledge-poor simi-
larity measure. As in section 7.5.2 the standard measure is defined as follows:

sim(c1, c2) = (7.2)
22
∑

i=1

[ωi ·∆(p(i, c1), p(i, c2)) +

ω′
i ·∆(v(i, c1), v(i, c2))] +

ω0 ·∆(bp(c1), bp(c2)) + ω′
0 ·∆(bv(c1), bv(c2)) +

ω23 · 1(pm(c1), pm(c2)).
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Any modification to this measure (such as removing or adding an attribute)
would require additional domain knowledge. Note that even the standard
similarity measure uses some domain knowledge, that is, it uses distributional
knowledge, as it normalizes the ball and player positions and velocities.

7.6.2 Knowledge-Rich Measure for Experiment 2

The extended (knowledge-rich) similarity measure in experiment 2 is defined
as follows:

sim′(c1, c2) = ω1 · 1(region(c1), region(c2)) +

ω2 ·

(

22
∑

i=1

1(role(c1, i), role(c2, i))

)

/22 +

ω3 · β(playmode(c1), playmode(c2)) +

ω4 · 1(pressing(c1), pressing(c2)) +

ω5 ·

(

22
∑

i=1

1(free(c1, i), free(c2, i))

)

/22 +

ω6 ·

(

22
∑

i=1

1(behindBall(c1, i), behindBall(c2, i))

)

/22 +

ω7 ·∆
′(positions(c1), positions(c2)) +

ω8 ·∆
′(velocities(c1), velocities(c2)) (7.3)

where 1(X,Y ) = 1 iff X = Y , and 0 otherwise.
region makes use of matching knowledge as it defines re-
gions in which positions are treated as equivalent. region(c) ∈
{inFrontOfGoal, penaltyArea, corner, wing,midfield} denotes the re-
gion the ball is in. Note that no distinction is made between left and right
wing, and between the four corners. It should be noted that in this scenario,
the definition of region must be considered as possibly inaccurate, since it
is not known whether the opponent uses the same definitions.
playmode(c) determines the play-mode in situation c. There are about 20 dif-
ferent playmodes (Chen et al., 2001) and β(Playmode1, P laymode2) is true
iff PlayMode1 = PlayMode2 ∨ (PlayMode1 6= ”playOn” ∧ PlayMode2 6=
”playOn”).
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The positions and velocities of the 22 players are subject to contextual knowl-
edge. That is, ∆′ works as follows:

∆′(positions(c1), positions(c2)) =

∑22
i=1 g(pos(c1, i), pos(c2,m(i)))

r
,

where pos(c, i) is the position of player i in situation c, m(i) is the player in c2
who corresponds to player i in c1 (refer back to section 7.7), r is the number of
agents that are relevant in situation c1. g(A,B) returns the similarity of the
two positions A and B if the agent is relevant, and 0 if the agent is irrelevant.
Relevance is determined based on the agent’s role by the following rules:

• If the ball-owner is a forward, then the forwards from his own team,
and the defenders and the goalie of the other team are relevant.

• If the ball-owner is a defender, then the defenders and midfielders of
his own team, and the midfielders and forwards of the other team are
relevant.

• In other situations, all players are relevant.

Of course also the contextual knowledge is possibly inaccurate, since the
opponent may determine relevance of objects differently.
The predicates pressing, free, behindBall and role make use of inferential
knowledge. pressing(c) checks whether pressing is performed in the situation,
that is, whether the opponent attacks the ball owner with two or more players
(defined as a situation where two opponents are closer than 5m to the ball).
free(c, i) checks whether player i stands free, that is, no opponent player
is within 5m distance of i. Since the parameters for free and pressing are
guessed, they are another example for possibly inaccurate domain knowledge.
behindBall(c, i) is true if the player i is between the ball and the opponent
goal. role(c, i) ∈ {forward, defender,midfielder} denotes the role of player
i as described in section 7.5.
We applied the RELIEF method (Kira & Rendell, 1992) for learning the at-
tribute weights. As noted before, we aggregate player-specific attributes such
as free and role so that only one weight is used for all of them, instead of 22.
RELIEF does not have to be modified by this, because this is encapsulated in
the delta-function (refer back to section 6.5), which calculates the difference
of two cases for a given attribute:

delta(c1, c2) =

∑22
i=1 d(A(c1, i), A(c2, i))

22
,
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where d is the local similarity of attribute A.

7.6.3 Knowledge-Rich Measure for Experiment 3

In experiment 3 we compare the standard measure with another knowledge-
rich measure sim′′. This latter measure uses only transformational knowledge:

sim′′(c1, c2) = max
{

(7.4)

22
∑

i=1

[ωi ·∆(p(i, c1), p(i, c2)) +

ω′
i ·∆(v(i, c1), v(i, c2))] +

ω0 ·∆(bp(c1), bp(c2)) + ω′
0 ·∆(bv(c1), bv(c2)) +

ω23 · 1(pm(c1), pm(c2)) ,

22
∑

i=1

[ωi ·∆(p(i, trans(c1)), p(i, c2)) +

ω′
i ·∆(v(i, trans(c1)), v(i, c2))] +

ω0 ·∆(bp(trans(c1)), bp(c2)) + ω′
0 ·∆(bv(trans(c1)), bv(c2)) +

ω23 · 1(pm(trans(c1)), pm(c2))
}

(7.5)

trans(C) mirrors the situation’s positions and velocities vertically, so that left
and right wing are swapped. This means that transformational knowledge is
used, as all positions and velocities of the cases in the case-base are compared
to the query once in their original form and once vertically mirrored. The
form which yields a higher similarity determines the similarity value of a
query-case pair.

7.6.4 Knowledge-Rich Measure for Experiment 4

In experiment 4 we added inferential knowledge to the measure of experiment
3, so that the resulting measure used transformational knowledge and virtual
attributes.
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sim′′′(c1, c2) = max
{

ω1 ·

(

22
∑

i=1

1(role(c1, i), role(c2, i))

)

/22 +

ω2 · 1(playmode(c1), playmode(c2)) +

ω3 · 1(pressing(c1), pressing(c2)) +

ω4 ·

(

22
∑

i=1

1(free(c1, i), free(c2, i))

)

/22 +

ω5 ·

(

22
∑

i=1

1(behindBall(c1, i), behindBall(c2, i))

)

/22 +

ω6 ·∆(positions(c1), positions(c2)) +

ω7 ·∆(velocities(c1), velocities(c2)) ,

ω1 ·

(

22
∑

i=1

1(trans(role(c1), i), role(c2, i))

)

/22 +

ω2 · 1(playmode(trans(c1)), playmode(c2)) +

ω3 · 1(pressing(trans(c1)), pressing(c2)) +

ω4 ·

(

22
∑

i=1

1(free(trans(c1), i), free(c2, i))

)

/22 +

ω5 ·

(

22
∑

i=1

1(behindBall(trans(c1), i), behindBall(c2, i))

)

/22 +

ω6 ·∆(positions(trans(c1)), positions(c2)) +

ω7 ·∆(velocities(trans(c1)), velocities(c2))
}

(7.6)

Note that no matching knowledge is used: region has been removed, and
playmodes are tested for identity only. Also no contextual knowledge is used
(positions and velocities are compared using the Euclidean distance only, as
specified by ∆).
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7.6.5 Knowledge-Rich Measure for Experiment 5

In experiment 5 we slightly modified the measure from experiment 2 by
removing the matching knowledge in the form of region.

sim′′′′(c1, c2) = ω1 ·

(

22
∑

i=1

1(role(c1, i), role(c2, i))

)

/22 +

ω2 · β(playmode(c1), playmode(c2)) +

ω3 · 1(pressing(c1), pressing(c2)) +

ω4 ·

(

22
∑

i=1

1(free(c1, i), free(c2, i))

)

/22 +

ω5 ·

(

22
∑

i=1

1(behindBall(c1, i), behindBall(c2, i))

)

/22 +

ω6 ·∆
′(positions(c1), positions(c2)) +

ω7 ·∆
′(velocities(c1), velocities(c2)). (7.7)

Considering the large number of logfiles that have to be used for each exper-
iment, it is infeasible to test all combinations of knowledge types. However,
with the measures that we defined (and with the results of the GDN experi-
ments), the experiments will provide enough data to form some hypotheses
about useful knowledge types for similarity-based opponent modelling.
Before we look at the results of the experiments, we have to deal with the
problem of attribute matching, which we describe in the next section.

7.7 Multi-Agent Matching

In most CBR applications, matching attributes is straight-forward, as equally
named attributes or attributes at the same position of a vector are matched.
However, when applying CBR to opponent modeling in multi-agent systems,
matching of attributes is not trivial. For example, the positions and velocities
stored in the cases are linked to specific players. Since it is rather common to
swap positions in RoboCup (e. g. to move a tired player from an exhausting
to a slower position), comparing positions of situation S1 to situation S2

must take into account that it is not necessarily the case that the position of
player number 3 in situation S1 must be compared to the position of player
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number 3 in situation S2. Instead, it might be the case that in S2 players 3
and 9 swapped positions. In that case, the desired concept of similarity can
only be achieved by comparing the positions of players 3 and 9.
Hence, before two situations can be compared the agents of the two situations
have to be matched. Traditional multi-agent matching usually requires a 1
to 1 matching (Stolzenburg, Murray, & Sturm, 2003). However, when doing
multi-agent matching for attribute matching, this requirement must be lifted.
Consider the example soccer situation in Figure 7.3 (top). The players A,B,C
belong to one team and x,y,z to the other team. The situation on the right
differs from the one on the left only in that player x has been moved. An
optimal 1 to 1 matching (minimizing the summed distances) would match
each player from the left situation to itself in the right situation. However,
the relevance of player x is different in both situations. On the left, player
x marks player C so that A cannot safely pass the ball to C. On the right,
player x is basically equivalent to player z and does not mark player C. Hence,
we propose to match both players x and z on the right to player z on the
left, and to leave player x on the left unmatched, as no player on the right
corresponds to its situation-specific role of marking.
Therefore, in our implementation multi-agent matching is done by matching
those players of the same team that are most similar with respect to the
similarity-measure. For each pair of player the similarity is calculated. This
value is calculated by the normal similarity-measure, including spatial close-
ness and all player-specific virtual attributes, such as mirroring and knowl-
edge of the role of the player. Each player is then matched with the player
who achieves the highest similarity. In other words, the matching is done in
a way as to maximize the similarity measure. We allow N to 1 matchings,
because several players can have the same situation-specific role as another
player in the other situation.
The knowledge-rich virtual attributes are also used for multi-agent matching.
This is different than previous work in multi-agent matching in RoboCup
where players were matched based on their spatial distance only (Stolzenburg
et al., 2003).
To illustrate why virtual attributes are also useful for multi-agent matching,
consider the example soccer situation in Figure 7.3 (bottom). The left bottom
situation is the same one as the left top one. It differs from the right bottom
one only in the position of player x. A matching algorithm that computes
player similarity only based on spatial distance would assign player x and
y from situation 4 to player y in situation 3. However, in situation 4 player
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Figure 7.3: Player matching in soccer situations. Players A,B,C belong to one
team, player x,y,z to the other. Unless otherwise depicted by arrows, players
from the left are matched to themselves on the right. Top: Situation 1 and 2
are compared. Bottom: Situation 3 and 4 are compared.

x is not equivalent to player y since it may intercept a pass from player
A to player C, just as player x in situation 3. Thus, a virtual attribute
betweenBallAndP layer(X, .) is useful which is true for player x in both
situations. If it is weighted great enough so that it outweighs the spatial
distances, player x from situation 1 will be matched to player x in situation
2, which is consistent with the player’s situation-specific roles.

Additionally, in our matching algorithm, the ball-owners of two situations
are always matched, and of course players are only matched to players of
their own team. The former fact is reminiscent of work in analogy (Markman
& Gentner, 1990) where for example people in a situation are matched to
each other based on the function or role they fulfill.

Since some contextual attributes in the similarity measure specify that some
players are irrelevant (for example, team A’s defenders are deemed irrelevant
if team A’s forward has the ball) in certain situations, the matching algorithm
does not match these players in the corresponding situations.
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7.8 Experiments

The following experiments tested whether the prediction accuracy for player
actions increases if the similarity measure is extended with imperfect domain
knowledge and which types of domain knowledge are particularly effective
for this prediction task. That is, the standard measure was compared to the
knowledge-rich measures. Both the unextended and the extended similarity
measures are tested on the same case-base and test cases. The test domain
is RoboCup.

7.8.1 Data

For the experiments 2 to 5, we used 51 publicly available logfiles2 of recorded
games between 21 different teams. For each game, the first W cycles of the
match were recorded into the case-base. A complete game lasts 6000 time
steps. The test cases were drawn from the remaining time steps at fixed
intervals of 50 time steps. The maximal value for W was 4000 in order to
have enough test cases remaining. The classification goal was the action of
the ball owner.
The attribute weights were learned with RELIEF for all similarity measures
(including the knowledge-poor measure). For each game the weights were
relearned using the case-base as training data3.

7.8.2 Results Experiment 2

In experiment 2 the standard measure was compared to sim′, which used all
knowledge types that were available. The mean prediction accuracies of both
similarity measures are shown in figure 7.4.
For small case-bases that contain less situations than half the game, the
prediction accuracy of the knowledge-rich measure is greater than the ac-
curacy of the knowledge-poor one. However, if more data is available, the
standard measure outperforms the extended measure. In statistical terms,
for case-base sizes smaller than 2500, the extended measure is different from
the standard measure with probability greater than 99.95% in a two-tailed
t-test. For case-base sizes greater than 3250, again the extended measure is

2Available from http://www.carc.aist.go.jp/∼noda/RoboCup/LogFiles.
3Later analysis revealed that the ordering of the weights remained constant over games

(and therefore constant over teams, too).
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Figure 7.4: Experiment 2: Mean accuracies of the standard and the extended
similarity measure sim′ for various sizes of the case-base.

different from the standard measure with probability greater than 99.95% in
a two-tailed t-test.

The dominance of the knowledge-rich measure for small case-bases is no
surprise, since the knowledge container approach states that lack of case
knowledge can be accommodated by additional knowledge in the similarity
measure. But the fact that for larger case-bases this dominance is reversed, is
surprising. This reversal is due to the fact that the accuracy of the knowledge-
rich measure remains rather constant across the different case-base sizes.
It even has a tendency to become smaller for greater case-base sizes. The
accuracy of the standard measure behaves as expected and increases with
the case-base size.

We believe that the accuracy of the knowledge-rich measure remains constant
because with the incorporation of imperfect knowledge it has already reached
an asymptotic level so that additional case knowledge does not add more
information. Since the knowledge is imperfect, the asymptotic level is lower
than the asymptotic level of the standard measure at greater case-base sizes.
Even more so, as additional cases enter the case-base, they can conflict with
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Figure 7.5: Experiment 3: Mean accuracies of the standard measure and sim′′

(transformational knowledge only) for various sizes of the case-base.

the imperfect domain knowledge of sim′ so that the accuracy decreases.

Regarding the challenges of this domain, opponent modeling usually does not
have plenty of data, that is, the system can not wait until late in the game.
In particular, a modelling approach that has to accumulate observations for
the whole first half of the game is useless. Thus, a method that performs well
with few and medium amounts of data should be preferred. The measure
sim′ satisfies this condition.

As a first result, we can conclude that our approach of incorporating imper-
fect domain knowledge into the similarity measure increases the accuracy of
similarity-based opponent modelling. In the next experiments we investigate
which types of knowledge contribute mostly to this good performance.

7.8.3 Results Experiment 3

In experiment 3 the standard measure was compared to sim′′ which uses
only transformational knowledge. The mean prediction accuracies of both
similarity measures are shown in figure 7.5.
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Remember that the curve of the standard measure is the same as in the
previous experiment.
The most striking difference to experiment 2 is that the knowledge-rich mea-
sure is not constant across the case-base sizes, but has a valley-shaped form
for small case-base sizes and a peak-sized form for greater case-base sizes.
This behavior is due to the domain-specific characteristics of soccer. In the
early parts of a game, it is unlikely that a given situation occurs once on
both wings. Now assume a situation on the left wing is used as query. By the
transformation of vertically mirroring, this situation is reflected to the right
wing. But it is very unlikely that in the early parts this situation has already
occurred on the right wing. Instead, due to the mirroring the query might
now have become more similar to situations on the right wing that occurred
e. g. closer to the goal. Thus, the horizontal difference is counter-weighted
by the reduced vertical difference after mirroring. Actions will be different
depending on the horizontal position so that the retrieved case provides the
wrong prediction.
For a certain time, the probability of retrieving bad cases will increase as
the case-base gets fuller. However, there is a threshold where the case-base
gets so full, that it becomes more likely that situations occur on both wings.
From that time on, the prediction accuracy will increase again.
The results suggest that transformational knowledge should only be used
with medium case-base sizes.

7.8.4 Results Experiment 4

In experiment 4 the standard measure was compared to sim′′′ which uses
virtual attributes and transformational knowledge. The mean prediction ac-
curacies of both similarity measures are shown in figure 7.6.
The accuracy curves shows that adding virtual attributes to sim′′ (which used
only transformational knowledge) makes the valley disappear. Furthermore,
the accuracy of sim′′′ has the intuitive behavior to increase with the case-
base size. Unfortunately, there is no significant difference to the standard
measure.

7.8.5 Results Experiment 5

In experiment 5 the standard measure was compared to sim′′′′ which is a vari-
ant of sim′′ and uses no matching knowledge. The mean prediction accuracies
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Figure 7.6: Experiment 4: Mean accuracies of the standard measure and sim′′′

(virtual attributes and transformational knowledge) for different CB sizes.

of both similarity measures are shown in figure 7.7.

Apparently, the accuracy curve of sim′′′′ is not significantly different from the
curve of sim′′ (it might be slightly lower, but not significantly so with this
number of games). This suggests that the matching knowledge contained in
the definition of regions on the field was either too different from the defini-
tions used in the teams, or does not have a major impact on the prediction
accuracy in general. Since the implementation of the teams is not public, it
is impossible to decide which of these two explanations are correct. However,
this should be addressed in future work, since the recent efforts to describe
qualitative soccer knowledge (which makes use of matching knowledge by
discretizing positions and directions) will possibly introduce matching knowl-
edge into the decision processes of several teams.

This result is also consistent with our analysis of the learnt attribute weights.
The weight of the region attribute was always very low which suggests that
its relevance for the prediction task was also low. In fact we conducted this
particular experiment only because the weight was so low.
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Figure 7.7: Experiment 5: Mean accuracies of the standard measure and
sim′′′′ (without matching knowledge) for various sizes of the case-base.

7.8.6 Results: General Discussion

The accuracy difference between the extended and non-extended measures
is always small. Our analysis suggests that the small impact of the extended
similarity measures is due to the fact that any increase of prediction accu-
racy is difficult, since the behaviors of the player agents are implemented by
many different methods. Player implementations range from simple decision
trees (Buttinger et al., 2001), through probabilistic approaches (Boer, Kok,
& Groen, 2002) to neural networks (Riedmiller, Merke, Nowak, Nickschas, &
Withopf, 2003). Particularly if behaviors are learned, the partitioning of the
situation space can be highly irregular and complex.
Furthermore, it is very unlikely that the opponent players used the same
domain knowledge. Hence, their situation space will be different from the
situation space of our case-base.
An additional factor in the experiments is the underlying noise. First of
all, our system has available perfect information about the world-state, but
the players that are to be predicted have noisy and incomplete information.
Thus, an inherent problem of such an opponent-modelling approach is that it
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does not use the same information that the modelled agents possess. A second
effect of the noisy domain is that actions cannot be recognized unambiguously
(Steffens, 2002) and may come out differently than intended. Thus, if the
coach correctly predicts that an agent will decide to execute a pass, the
agent may fail to kick the ball, so that in the evaluation the prediction will
be counted as wrong.
Note that no team-specific knowledge is used, but only general knowledge
about the domain.
On the positive side, the knowledge-rich similarity measures sim′′ and sim′′′′

are significantly better for small case-base sizes than the standard measure.
This means that additional domain knowledge helps to predict the actions of
agents even if it is imperfect. We cannot investigate the level of inaccuracy
and incompleteness more closely since the target concepts are hidden in the
implementation of the teams. Thus we can only state that the knowledge
that we used was certainly incomplete and inaccurate, but still helped to
increase the prediction accuracy.
Note that in our experiments the accuracies do not converge to some limits
asymptotically. This is due to the fact that the amount of data available from
a game of 6000 time steps is not sufficient to reach the limit.

7.9 Related Work

In this section we discuss alternative approaches to opponent modeling be-
yond case-based reasoning.

7.9.1 Assuming optimal opponents

The most simple form of opponent modelling is to assume that the opponent
behaves optimally. For example, if a player wants to intercept the ball before
the opponent does, it may assume that the opponent has a correct world
model and uses the fastest path to the ball. This way, the agent can reason
about the needed speed and power that it has to spend in order to get
to the ball first. Or, if the needed power is not available, it can give up
trying. (Stone, Riley, & Veloso, 2000) report that such opponent modelling
can improve performance.
Such an approach is similar to the classic minimax-algorithms (Shannon,
1950) for search-trees in turn-based games and does not use specific knowl-
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edge of the opponent at all. It has been shown that as soon as the opponent is
not optimal, overestimating its performance leads to wrong predictions and
thus many chances are ignored (Jansen, 1990). Thus, in order to exploit flaws
of the opponent, opponent-specific knowledge has to be acquired.

7.9.2 Similarity-based prediction

One method to represent opponent-specific knowledge is a similarity-based
approach as proposed in (Denzinger & Hamdan, 2004), where pre-defined
stereotypes of situation-action pairs and the nearest-neighbor-rule are used.
The method was designed to generalize well with sparse observations and
to be efficient when there are large amounts of observations. Just as in our
approach, it is assumed that the modelled agent is reactive. However, the
similarity measure is not systematically enriched with domain knowledge.

Opponent models used for similarity-based prediction are easy to acquire
(Wendler, 2004). Observations of the opponent are stored as state-action
pairs into a case-base. To reduce the required number of observations, (Ah-
madi et al., 2003) proposes to use a second layer in the case-based reasoning
system. This additional layer is used to retrieve parameters for the similarity
measure and to decide where the focus is in the field. Cases are not stored for
specific teams as in (Steffens, 2005d), but cases of different teams are stored
together in one case-base. Outside of the domain of RoboCup, it has been
proposed to use models of other agents as stereotypes for agents for which
not enough observations are available (Denzinger & Hamdan, 2004).

Similarity-based approaches are easy to implement and maintain, but have
the problem that expensive computations are deferred to the time-critical
phase of online classification.

7.9.3 Model selection

One method to represent opponent-specific knowledge is to aggregate knowl-
edge into a set of predefined opponent models. Each model in the set is
assumed to roughly describe the behavior of a subset of all possible oppo-
nents. During play, the observations of the opponent are used to select the
most probable model which is then used to generate predictions (e. g. (Ri-
ley & Veloso, 2002)) or to select a counter-strategy (e. g. (Visser, Drücker,
Hübner, Schmidt, & Weland, 2001; Steffens, 2002)).
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There are different types of opponent models. In (Visser et al., 2001), mod-
els describe typical formations. The observed positions of the opponent are
fed into a trained neural network, which tries to classify them into a set
of predefined formations. If a classification can be done, the appropriate
counter-formation is looked up and communicated to the players.

In contrast, an opponent model is a set of state-action pairs in (Steffens,
2002). In this work, not the whole behavior is described in the manually cre-
ated models, but only typical and salient tactical moves. A matching module
then tries to match observed behaviors to the opponent models. Each model
is associated with a counter-strategy. If a matching succeeds, the counter-
strategy is sent to the players.

Another way to use opponent models is to predict future world states. Riley
(Riley & Veloso, 2002) uses models that describe probability distributions of
player positions. Observed player positions are classified by a Naive Bayesian
classifier into a model. This model is then used to predict probable opponent
positions given that the team moves the ball according to a given plan.

An inherent issue of model selection techniques is that they require a set of
opponent models (which often have to be generated manually), and often
require a mapping from models to counter-measures (which are typically
handcrafted, too (Visser et al., 2001; Steffens, 2002)). In contrast, CBR only
requires a set of observations, tuning of the similarity measure is optional.
However, CBR as used in this paper does not provide an appropriate counter-
action. Up to now it only predicts the opponent’s actions.

7.9.4 Markov Decision Processes

Markov Decision Processes are well-suited to learn models that describe a
sequence of observations. In (Riley, 2005), first Markov Chains are learnt from
the observational data, which describe the transition probabilities between
world-states. In order to reduce complexity and to better conform with the
granularity of the coach language, abstract world states and actions are used.
In order to transform the Markov Chains into a Markov Decision Process,
the possible actions have to be provided, so that the transition probabilities
can be expressed based on the action that the agents execute.
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7.9.5 Rule learning

In order to learn and describe regular and systematic behaviors, rule-learning
has been applied. (Ledezma, Aler, Sanch́ıs, & Borrajo, 2005) uses C4.5 to
learn decision trees for predicting the action type (such as dash, turn, kick).
Then M5 is used to learn regression trees in order to predict the action’s
parameter values (such as the dash power). While learning the action type
was successful, the parameter estimation performed badly.

Passing-behavior has been learnt in (Riley, 2005). First the positions of
the passer, the pass receiver and all player positions were clustered. Then
decision-tree learning was performed on the clusters of the passer locations,
the clusters of receiver locations, and the angle and distance of all players
to the ball. The learnt passing rules have been successfully used to mimic
strong teams or to predict the behavior of opponents.

In (Kuhlmann et al., 2005) the opponent behavior is partitioned into offen-
sive, defensive and formational modules, and each module is handled by a
learning process. In experiments, it turned out that the formational learn-
ing was most successful, and that defensive and offensive learning did not
contribute advantages.

While the above approaches learn rules from logfiles, in (Visser & Weland,
2003) propositional rules are learnt fast online for describing passing behavior
and the goalkeeper.

7.9.6 Other approaches

In game theory there are approaches to learn opponent models from action
sequences (Carmel & Markovich, 1996). Usually a payoff-matrix is neces-
sary, but for predicting the opponent’s actions this requirement does not
hold (Rogowski, 2004). Unfortunately, these learning techniques assume that
the opponent strategy can be described by a deterministic finite automaton,
which might not always be the case in a complex domain. Most importantly,
game theory can describe game states only as history of actions, which is in-
feasible in complex games such as RoboCup, where subsequent game states
are not only determined by player actions but also by the game physics.

Predicting opponent actions can also be done via plan-recognition (Kautz,
1991). Predefined plan libraries are needed. Although recently there have
been proposed approaches that can even handle reactive agents (Kaminka &
Avrahami, 2004), to our knowledge plan recognition has not been applied to
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RoboCup.

7.10 Conclusions and Outlook

We enriched similarity-based opponent modeling in multi-agent systems with
imperfect domain knowledge. We showed how the knowledge types can be
implemented and used in a complex domain such as RoboCup. This way
we demonstrated that the knowledge types are not only present in artificial
domains but can also be applied in simulations of the real world.
The prediction accuracies of knowledge-rich measures were compared to
knowledge-poor measures in the domain of simulated soccer. The results
suggest that similarity-based opponent modeling can benefit from domain
knowledge even if it is imperfect and not known whether the opponent uses
the same domain knowledge.
It is apparent that the accuracy curves did not reach an asymptotic level in
our experiments. Thus, in future work it would be interesting to use several
logfiles as case-base before a match in order to check when the approach
reaches its maximum. If several logfiles are used, it will become necessary to
use indexing approaches like case retrieval nets (Burkhard, 1998) in order to
facilitate online processing and reduce the computational load.
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Chapter 8

Conclusion

In this chapter we summarize the contributions of this thesis and outline
directions for future work.

8.1 Contributions

We investigated how domain knowledge can be incorporated into similarity
measures for classification. Specifically, we showed how different types of
knowledge can be used to improve the accuracy of CBR with attribute-value
representations.

We created a taxonomy of knowledge types that were previously researched
in isolation. These types were proposed in psychology or in CBR focussing
on structured representations. The contribution of this thesis is to formalize
these types of knowledge, so that their differences and commonalities can be
compared. As it turned out, several of these types stand in a type-subtype
relation. That means, incorporation methods for a father type are also ap-
plicable to a child type. This systematization was only possible because we
introduced new incorporation methods for several knowledge types, and also
showed how existing incorporation methods can be applied to new knowledge
types.

Furthermore, we investigated the effects of imperfectness of the domain
knowledge. For empirical evaluation, the incorporation methods have been
implemented and tested in several domains. These domains were artificial
or from real-world sources. Some of these evaluations have been backed up
with formal analysis. The empirical and formal investigations suggest that
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partial knowledge adds up, positively or negatively, depending on the inac-
curacy of the knowledge. A surprising result was the influence of inaccurate
virtual attributes on classification accuracy. It turned out that there is a
certain interval of attribute inaccuracy in which the classification accuracy
decreases. If the attribute inaccuracy is below this interval, classification ac-
curacy increases beyond the baseline, and if the attribute inaccuracy is above
the interval, the classification accuracy is equivalent to the baseline of a stan-
dard similarity measure.
For inconsistent virtual attributes the investigations suggest that the effect of
a good virtual attribute is not deteriorated by another contradicting virtual
attribute.
We believe that these findings will facilitate knowledge engineering for CBR
systems, as the requirements of completeness and accuracy regarding the
domain knowledge are softened. Of course, further research in real-world
domains and applications will have to validate this hope.
Concerning the area of Machine Learning, our approach led to very good
results in the Promoter Gene Sequences domain, where the accuracy in a
leave-one-out evaluation exceeded the best known results from the litera-
ture. This suggests that CBR together with imperfect domain knowledge and
weight-learning is a method that is as good as other learning mechanisms.
Finally, we evaluated our approach as knowledge-rich similarity-based oppo-
nent modelling in the complex domain of simulated soccer. The domain is
rich enough so that the knowledge types can be implemented and tested.
The results showed that incorporating general domain knowledge into the
similarity measure can increase the prediction accuracy for agents.

8.2 Future work

Our analysis can be extended in several ways. First of all, since we focussed on
attribute-value representations, it would be interesting to do a similar analy-
sis for structured representations. We hypothesize that in principle the same
knowledge types can be used for structured representations. Thus, a straight-
forward extension would be to investigate the effect of imperfect knowledge
on similarity measures for object-oriented or graph-like representations.
Another interesting direction is to merge our results with approaches that ac-
tively learn domain knowledge by processing the cases in the case-base (e. g.
(Stahl, 2004)). The requirements of domain knowledge (in terms of accuracy,



217

consistency and completeness) can serve as goals or bias for learning mecha-
nisms. As a special branch of such learning mechanisms, it seems promising
to reactivate the research area of constructive induction, i. e. feature genera-
tion. As we have mentioned earlier, it sometimes appears necessary to modify
intermediates in a domain theory, so that the feature is less specific or does
not use vague sub-conditions anymore. Also, picking out sub-formulas that
appear in several other intermediate concept descriptions should be a fruitful
task for future work.
More work is needed in order to transfer our results from the classification
domain to other domains that use similarity measures. In particular, cluster-
ing could benefit from knowledge-rich similarity measures so that meaningful
clusters can emerge.
Finally, it would be most interesting to check whether and how the knowledge
types that we proposed are valid for human similarity assessment, too. Our
definition of knowledge types provides a clear terminology that can be used
in cognitive science in order to set up new experiments about the effect of
knowledge on similarity judgements. Such an analysis would complete the
circle of psychologically motivated AI.
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